

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

2.5.3 AIX Assembler 108

Exercises 11]

Chapter 3 Loaders and Linkers 123

3.1

oo

3.4

3.0

Basic Loader Functions 124

3.1.1 Design of an Absolute Loader 124
3.1.2. ASimple Bootstrap Loader 127

Machine-Dependent Loader Features 129

3.2.1 Relocation 130
3.2.2 Program Linking 134
3.2.3. Algorithm and DataStructures for a Linking Loader 141

Machine-Independent Loader Features 147
3.3.1 Automatic Library Search 147
3.3.2 Loader Options 149

Loader Design Options 151
3.4.1 Linkage Editors 152

3.4.2 Dynamic Linking 155
3.4.3 Bootstrap Loaders 158

Implementation Examples 159
3.5.1 MS-DOS Linker 160
3.5.2 SunOS Linkers 162

3.5.3. Cray MPP Linker 164

Exercises 166

Chapter 4 Macro Processors 175

4.1

4.2

4.3

4.4

Basic Macro Processor Functions 176
4.1.1. Macro Definition and Expansion 176
4.1.2 Macro Processor Algorithm and Data Structures 181

Machine-Independent Macro Processor Features 186

4.2.1. Concatenation of Macro Parameters 186

4.2.2 Generation of Unique Labels 187

4.2.3 Conditional Macro Expansion 189

4.24 Keyword Macro Parameters 196

MacroProcessor Design Options 197

4.3.1 Recursive Macro Expansion 199
4.3.2 General-Purpose Macro Processors 202
4.3.3. Macro Processing within Language Translators 204

Implementation Examples 206
44.1 MASM MacroProcessor 206
44.2 ANSIC Macro Language 209

https://hemanthrajhemu.github.io

Chapter 3

Loaders and Linkers

As we haveseen, an object program contains translated instructions and data

values from the source program, and specifies addresses in memory where
these items are to be loaded. Our discussions in Chapter 2 introducedthe fol-

lowing three processes:

1. Loading, which brings the object program into memory for execution.

2. Relocation, which modifies the object program so that it can be loaded
at an address different from the location originally specified (see
Section 2.2.2).

3. Linking, which combines two or more separate object programs and
supplies the information needed to allow references between them

(see Section 2.3.5).

A loader is a system program that performs the loading function. Many
loaders also support relocation and linking. Some systems havea linker (or

linkage editor) to perform the linking operations and a separate loader to han-
dle relocation and loading. In mostcasesall the program translators(i.e., as-

semblers and compilers) on a particular system produce object programsin
the same format. Thus one system loaderor linker can be used regardless of
the original source programminglanguage.

In this chapter we study the design and implementation of loaders and
linkers. For simplicity we often use the term loader in place of loader and/or
linker. Because the processes of assembly and loadingare closely related, this
chapteris similar in structure to the preceding one. Many of the same exam-
ples used in our study of assemblers are carried forward in this chapter.
During our discussion of assemblers, we studied a numberof features and ca-

pabilities that are of concern to both the assembler and the loader. In the pre-
sent chapter we encounter many of the same concepts again. This time, of
course, we are primarily concerned with the operation of the loader; however,

it is important to remember the close connections between program transla-
tion and loading.

123

https://hemanthrajhemu.github.io

124 Chapter 3 Loaders and Linkers

-

As in the preceding chapter, we begin by discussing the most basic soft-
ware function—inthis case, loading an object program into memoryfor execu-

tion. Section 3.1 presents the design of an absolute loader and illustrates its
operation. Such a loader might be found on a simple SIC machine that uses
the sort of assembler described in Section 2.1.

Section 3.2 examines the issues of relocation and linking from the loader’s
point of view. We consider some possible alternatives for object program rep-
resentation and examine how these are related to issues of machine architec-
ture. We also present the design of a linking loader, a more advanced type of
loaderthatis typical of those found on most modern computing systems.

Section 3.3 presents a selection of commonlyencountered loader features
that are not directly related to machine architecture. As before, our purposeis
not to cover all possible options, but to introduce some of the concepts and
techniques most frequently foundin loaders.

Section 3.4 discusses alternative ways of accomplishing loader functions.
We consider the various times at which relocation and linking can be per-
formed, and the advantages and disadvantages associated with each. In this
context we studylinkage editors (which perform linking before loading) and
dynamic linking schemes (which delay linking until execution time).

Finally, in Section 3.5 we briefly discuss some examples of actual loaders
and linkers. As before, we are primarily concerned with aspects of each piece
of software that are related to hardware or software design decisions.

3.1 BASIC LOADER FUNCTIONS

In this section we discuss the most fundamental functions of a loader—bring-
ing an object program into memory andstarting its execution. You are proba-
bly already familiar with how these basic functions are performed. This

section is intended as a reviewto set the stage for our later discussion of more
advanced loader functions. Section 3.1.1 discusses the functions and design of

an absolute loader and gives the outline of an algorithm for such a loader.
Section 3.1.2 presents an example of a very simple absolute loader for SIC/XE,
to clarify the coding techniquesthat are involved.

3.1.1 Design of an Absolute Loader

Weconsider the design of an absolute loader that might be used with thesort
of assembler described in Section 2.1. The object program format used is the
sameasthat described in Section 2.1.1. An example of such an object program
is shownin Fig.3.1(a).

https://hemanthrajhemu.github.io

3.1 Basic Loader Functions

HCOPY 01000001074

BRORUUOLEFELUS GAALDSTBUAUAEAPO TGSO TEES ELRS LSE LER SCO TD LAG C LOSIOMT O2D

700101E150C10364820610810334C0000454F46000003000000

7002039.1E041030001030E0205D30203FD8205D2810303020575490392C205E38203F

7002057161010364CO000F1001000041030E02079302064509039DC20792C1036

7,002073073820644C000005

£001000
(a) Object program

Memory
address Contents

0000 KKXKKXXK XKKKKXKK %XXKKXXXK XXXXXXXK

0010 XXXKXXXX XMMXKXXXXK XXKKXXXK XXKKXXKK

* * . * .

. . . * *

.

OFFO KMXKXKMX XKXKXXKKX XXXKXXKX XKXXXXXXX

1000 14103348 20390010 36281030 30101548

1010 20613C10 0300102A 0C103900 102D0Cc10

1020 36482061 0810334C 0000454F 46000003
1030 OOOO000xx x«xxxxxxK %XKXKKXXXK XKXXXXXXK +—COPY

. . .

.

. . . .

2030 XXXKMKXK XXXXKXXxX *x041030 001030E0

2040 205D3020 3FD8205D 28103030 20575490

2050 392C205E 38203F10 10364C00 OOFI1O010

2060 00041030 £0207930 20645090 39Dc2079

2070 2€103638 20644C00 000 5fxxxx XMKKKEKK

2080 KXXKXXKXX XXXXXXXX XKKXKXKXKXX XKXKXXKX

. s . . .

. . . . e

. . . . e

(b) Program loaded in memory

Figure 3.1 Loading of an absolute program.

Because our loader does not need to perform such functionsas linking and
program relocation, its operation is very simple. All functions are accom-
plished in a single pass. The Headerrecord is checkedto verify that the correct
program has been presented for loading (and thatit will fit into the available

memory). As each Text record is read, the object code it contains is moved to

the indicated address in memory. Whenthe End record is encountered, the
loader jumps to the specified address to begin execution of the loaded pro-

gram. Figure 3.1(b) showsa representation of the program from Fig. 3.1(a) af-
ter loading. The contents of memory locations for which there is no Text record
are shownas xxxx. This indicates that the previous contents of these locations
remain unchanged.

125

https://hemanthrajhemu.github.io

126 Chapter 3 Loaders and Linkers

Figure 3.2 shows an algorithm for the absolute loader we have discussed.
Although this process is extremely simple, there is one aspect that deserves
comment. In our object program, each byte of assembled codeis given using

its hexadecimal representation in character form. For example, the machine

operation code for an STL instruction would be represented by the pair of char-
acters “1” and “4”. Whenthese are read by the loader(as part of the object pro-
gram), they will occupy two bytes of memory.In the instruction as loaded for
execution, however, this operation code mustbe stored in a single byte with
hexadecimal value 14. Thus each pair of bytes from the object program record
must be packed together into one byte during loading.It is very important to
realize that in Fig. 3.1(a), each printed character represents one byte of the ob-

ject program record. In Fig. 3.1(b), on the other hand, each printed character
represents one hexadecimaldigit in memory (i.e., a half-byte).

This method of representing an object program is inefficient in terms of
both space and execution time. Therefore, most machines store object pro-
gramsin a binary form, with each byte of object code stored as a single byte in
the object program.In this type of representation, of course, a byte may con-
tain any binary value. We mustbesurethat our file and device conventions do
not cause someof the object program bytesto be interpreted as control charac-
ters. For example, the convention described in Section 2.1—indicating the end
of a record with a byte containing hexadecimal 00—would clearly be unsuit-
able for use with a binary object program.

Obviously object programsstored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue to use

character representations of object programsin our examplesin this book.

begin

read Header record

verify program name and length

read first Text record

while record type # ‘E’ do

begin

{if object code is in character form, convert into

internal representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end ;

Figure 3.2 Algorithm for an absolute loader.

https://hemanthrajhemu.github.io

3.1 Basic Loader Functions

3.1.2 A Simple Bootstrap Loader

When a computeris first turned on or restarted, a special type of absolute
loader, called a bootstrap loader, is executed. This bootstrap loads thefirst pro-

gram to be run by the computer—usually an operating system. (Bootstrap
loaders are discussed in more detail in Section 3.4.3.) In this section, we exam-
ine a very simple bootstrap loader for SIC/XE. In spite of its simplicity, this
program illustrates almostall of the logic and coding techniques that are used
in an absolute loader.

Figure 3.3 showsthe source code for our bootstrap loader. The bootstrap it-
self begins at address 0 in the memory of the machine. It loads the operating
system (or some other program)starting at address 80. Because this loaderis
used in a uniquesituation (the initial program load for the system), the pro-
gram to be loaded can be represented in a very simple format. Each byte of ob-
ject code to be loaded is represented on device Fl as two hexadecimaldigits
(just as it is in a Text record of a SIC object program). However, there is no
Header record, End record, or control information (such as addresses or

lengths). The object code from device F1 is always loaded into consecutive
bytes of memory, starting at address 80. After all of the object code from device
F1 has been loaded, the bootstrap jumps to address 80, which begins the exe-
cution of the program that was loaded.

Muchof the work of the bootstrap loader is performed by the subroutine
GETC. This subroutine reads one character from device F1 and convertsit
from the ASCII character codeto the value of the hexadecimaldigit that is rep-
resented by that character. For example, the ASCII code for the character “0”
(hexadecimal 30) is converted to the numeric value 0. Likewise, the ASCII

codes for “1” through “9” (hexadecimal 31 through 39) are converted to the
numeric values 1 through 9, and the codes for “A” through “F” (hexadecimal
41 through 46) are converted to the values 10 through 15. This is accomplished
by subtracting 48 (hexadecimal 30) from the character codes for “0” through
“9”, and subtracting 55 (hexadecimal 37) from the codes for “A” through “F”.
The subroutine GETC jumps to address 80 when an end-of-file (hexadecimal
04) is read from device F1. It skips all other input characters that have ASCII
codesless than hexadecimal 30. This causes the bootstrap to ignore any control
bytes (such as end-of-line) that are read.

The main loop of the bootstrap keeps the address of the next memoryloca-
tion to be loaded in register X. GETC is used to read and convert a pair of
characters from device F1 (representing 1 byte of object code to be loaded).
These two hexadecimal digit values are combined into a single byte by shift-
ing the first one left 4 bit positions and adding the secondto it. The resulting
byte is stored at the address currently in register X, using a STCH instruction
that refers to location 0 using indexed addressing. The TIXR instruction is then
used to add 1 to the valuein register X. (Because weare not interested in the

result of the comparison performed by TIXR,register X is also used as the sec-
ond operandfor this instruction.)

127

https://hemanthrajhemu.github.io

128 Chapter 3 Loaders and Linkers

-

BOOT START 0 BOOTSTRAP LOADER FOR SIC/XE

- THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE Fl AND ENTERS IT

. INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF

. THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF

: THE PROGRAM JUST LOADED. REGISTER X CONTAINS THE NEXT ADDRESS

- TO BE LOADED.

CLEAR A CLEAR REGISTER A TO ZERO

LDX #128 INITIALIZE REGISTER X TO HEX 80

LOOP JSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED

RMO A,& SAVE IN REGISTER S

SHIFTL s,4 MOVE TO HIGH-ORDER 4 BITS OF BYTE

JSUB GETC GET NEXT HEX DIGIT

ADDR S,A COMBINE DIGITS TO FORM ONE BYTE

STCH 0,X STORE AT ADDRESS IN REGISTER X

TIAR x,X ADD 1 TO MEMORY ADDRESS BEING LOADED

J LOOP LOOP UNTIL END OF INPUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE

. CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING

. ADDRESS (HEX 80).

GETC TD INPUT TEST INPUT DEVICE

JEQ GETC LOOP UNTIL READY

RD INPUT READ CHARACTER

COMP #4 IF CHARACTER IS HEX 04 (END OF FILE),

JEQ 80 JUMP TO START OF PROGRAM JUST LOADED

COMP #48 COMPARE TO HEX 30 (CHARACTER ‘'0‘)

JLT GETC SKIP CHARACTERS LESS THAN ’0'

SUB #48 SUBTRACT HEX 30 FROM ASCII CODE

COMP #10 IF RESULT IS LESS THAN 10, CONVERSION IS

JLT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE

SUB #7 (FOR HEX DIGITS ‘A’ THROUGH ‘F’)

RETURN RSUB RETURN TO CALLER

INPUT BYTE sos! CODE FOR INPUT DEVICE

END LOOP

Figure 3.3 Bootstrap loader for SIC/XE.

You should work through the*execution of this bootstrap routine by hand
with several bytes of sample input, keeping track of the exact contentsof all
registers and memory locations as you go. This will help you become familiar
with the machine-level details of how loading is performed.

For simplicity, the bootstrap routinein Fig. 3.3 does not do any error check-
ing it assumes thatits input is correct. You are encouraged to think aboutthe

https://hemanthrajhemu.github.io

3.2. Machine-Dependent Loader Features

different kinds of error conditions that might arise during the loading, and
howthese could be handled.

.

3.2 MACHINE-DEPENDENT LOADER FEATURES

The absolute loader described in Section 3.1 is certainly simple and efficient;
however, this schemehas several potential disadvantages. One of the most ob-
vious is the need for the programmerto specify (when the program is assem-
bled) the actual address at which it will be loaded into memory. If we are

considering a very simple computer with a small memory (such as the stan-
dard version of SIC), this does not create much difficulty. There is only room

to run one program at a time, and the starting address for this single user pro-
gram is knownin advance. On a larger and more advanced machine (such as
SIC/XE), the situation is not quite as easy. We would often like to run several
independent programstogether, sharing memory (and other system resources)
between them. This means that we do not know in advance where a program
will be loaded.Efficient sharing of the machine requires that we write relocat-
able programsinstead of absolute ones.

Writing absolute programs also makesit difficult to use subroutineli-
braries efficiently. Most such libraries (for example, scientific or mathematical
packages) contain many more subroutines than will be used by any one pro-
gram. To makeefficient use of memory,it is important to be able to select and
load exactly those routines that are needed. This could not be doneeffectively
if all of the subroutines had preassigned absolute addresses.

In this section we consider the design and implementation of a more com-
plex loader. The loader we presentis one that is suitable for use on a SIC/XE
system andis typical of those that are found on most modern computers. This
loader provides for program relocation and linking, as well as for the simple
loading functions described in the preceding section. As part of our discus-
sion, we examinethe effect of machine architecture on the design of the loader.

The need for program relocation is an indirect consequence of the change
to larger and more powerful computers. The wayrelocation is implemented in
a loader is also dependent upon machinecharacteristics. Section 3.2.1 dis-
cusses these dependencies by examining different implementation techniques
and the circumstances in which they might be used.

Section 3.2.2 examines program linking from the loader’s point of view.

Linking is not a machine-dependent function in the sense that relocation is;
however, the same implementation techniques are often used for these two
functions. In addition, the process of linking usually involves relocation of
someof the routines being linked together. (See, for example, the previousdis-
cussion concerning the use of subroutine libraries.) For these reasons we dis-
cuss linking together with relocation in this section.

129

https://hemanthrajhemu.github.io

130 Chapter 3 Loaders and Linkers

Section 3.2.3 discusses the data structures used by a typical linking (and re-

locating) loader, and gives a description of the processing logic involved. The
algorithm presented here serves as a starting point for discussion of some of
the more advancedloaderfeaturesin the following sections.

3.2.1 Relocation

Loaders that allowfor program relocation are called relocating loaders orrelative

loaders. The concept of program relocation wasintroducedin Section 2.2.2; you

may want to briefly review that discussion before reading further. In this
section we discuss two methodsfor specifying relocation as part of the object

program.

The first method we discuss is essentially the same as that introduced in

Chapter 2. A Modification record is used to describe each part of the object
code that must be changed whenthe program is relocated. (The format of the

Modification record is given in Section 2.3.5.) Figure 3.4 shows a SIC/XE pro-
gram we usetoillustrate this first method of specifying relocation. The pro-
gram is the sameas the onein Fig. 2.6; it is reproduced here for convenience.
Mostof the instructions in this program userelative or immediate addressing.
The only portions of the assembled program that contain actual addresses are
the extended format instructions on lines 15, 35, and 65. Thus these are the
only items whose valuesare affected by relocation.

Figure 3.5 displays the object program corresponding to the source in
Fig.3.4. Notice that there is one Modification record for each value that must
be changed during relocation (in this case, the three instructions previously
mentioned). Each Modification record specifies the starting address and length
of the field whose valueis to be altered. It then describes the modification to

be performed.In this example, all modifications add the value of the symbol
COPY, which represents the starting address of the program. The algorithm
the loader uses to perform these modifications is discussed in Section 3.2.3.
More examples of relocation specified in this manner appear in the next sec-

tion when we examinethe relationship betweenrelocation andlinking.
The Modification record schemeis a convenient means for specifying pro-

gram relocation; however,it is not well suited for use with all machine archi-

tectures. Consider, for example, the program in Fig. 3.6. This is a relocatable
program written for the standard version of SIC. The important difference
between this example and the onein Fig. 3.4 is that the standard SIC machine
does not use relative addressing. In this program the addressesin all the in-
structions except RSUB must be modified when the program is relocated. This

would require 31 Modification records, which results in an object program

more than twiceas large as the one in Fig. 3.5.

https://hemanthrajhemu.github.io

 225

230

Loc

0000
0000

0003

0006

OOOA

000D
0010

0013

0017

001D
0020
0023
0026
002A
002D
0030
0033
0036

1036
1038
103A
103C
1040
1043
1046
1049
104B
104E
1051
1053
1056
1059
105¢

105D
LO5F

1062

1065
1068
106B

106E

1070
1073

1076

3.2 Machine-Dependent Loader Features 131

Source statement

COPY START
FIRST STL

LDB
BASE
+JSUB

LDA
COMP

CLOOP

+JSUB

ENDFTL LDA

EOF BYTE

RETADR RESW

LENGTH RESW
BUFFER RESB

0

RETADR
#LENGTH
LENGTH

RDREC

LENGTH
#0
ENDFIL

WRREC
CLOOP
EOF

BUFFER

#3
LENGTH

WRREC
@RETADR

CoHOR?

ali
all

4096

Object code

17202D

69202D

4B101036
032026

290000
332007

4B10105D

3FAPEC
032010

OF2016

010003
OF200D

4B10105D

3E2003

454F46

SUBROUTINE TO READ RECORD INTO BUFFER

CLEAR

CLEAR

CLEAR
+LDT

RLOOP Jub;

JEQ
RD
COMPR

JEQ
STCH

TIXR

JLT
EXIT STx

RSUB
BYTE

x

A

s

#4096
INPUT
RLOOP

INPUT

A,5
EXT?

BUFFER, X

2

RLOOP

LENGTH

RiPLS

B410

B400

B440
75101000
E32019

332FFA

DB2013

A004

332008
57C003

B850

3B2FEA

134000
4F0000

Fl

SUBROUTINE TO WRITE RECORD FROM BUFFER

CLEAR

LD?
WLOOP TD

JEQ
LDCH

WD
TIXR

JLT

RSUB

BYTE
END

OUTPUT

x

LENGTH

OUTPUT
WLOOP
BUFFER, X

OUTPUT
T

WLOOP

K’05'
FIRST

B410

774000

E32011

332FFA
53Cc003

DF2008

B850

3B2FEF
4F0000

05

Figure 3.4 Example of a SIC/XE program (from Fig. 2.6).

https://hemanthrajhemu.github.io

132 Chapter 3 Loaders and Linkers

HCOPY fo000000 1077

TOOOOOOIDI 7 202D69202 D4BI 010360320262900003320074B10 1 O5D3F2FECO32010

100001 D130F20 1 6,.0100030F200D4B 101 O5D3E20034 54F46

T0010361DB4 10B400B4407 5101 O0Q0E32019332FFADB201 3400433200857C003B850

7001 0531 D3B2FEAL 340004FO000F 1B4 107 74000E3201 1332FFA5 3C003DF2008B850

7,001070073B2FEF4FO000005

400000705+COPY

M0000] 405+COPY

M00002 7,05+COPY

E£000000

>

Figure 3.5 Object program with relocation by Modification records.

On a machine that primarily uses direct addressing and hasa fixed instruc-
tion format, it is often more efficient to specify relocation using a different
technique. Figure 3.7 shows this method applied to our SIC program example.
There are no Modification records. The Text records are the same as before ex-
ceptthatthereis a relocation bit associated with each wordofobject code. Since

all SIC instructions occupy one word, this means that there is one relocation
bit for each possible instruction. The relocation bits are gathered together into
a bit mask following the length indicator in each Text record. In Fig. 3.7 this
maskis represented (in character form) as three hexadecimal digits. These
characters are underlined for easier identification in thefigure.

If the relocation bit corresponding to a word of object codeis set to 1, the
program’sstarting addressis to be added to this word whenthe programis re-
located. A bit value of 0 indicates that no modification is necessary. If a Text
record contains fewer than 12 wordsof object code, the bits corresponding to

unused wordsare set to 0. Thus the bit mask FFC (representing the bit string

111111111100)in the first Text record specifies that all 10 words of object code
are to be modified during relocation. These words contain the instructions cor-
respondingto lines 10 through 55 in Fig. 3.6. The mask E00 in the second Text
record specifies that the first three words are to be modified. The remainder of
the object code in this record represents data constants (and the RSUB instruc-
tion) and thus does not require modification.

The other Text records follow the same pattern. Note that the object code
generated from the LDX instruction on line 210 begins a new Text record even
though there is room for it in the preceding record. This occurs because each
relocation bit is associated with 4 3-byte segment of object code in the Text
record. Any value that is to be modified during relocation must coincide with
one of these 3-byte segments so that it correspondsto a relocation bit. The as-
sembled LDXinstruction does require modification because of the direct ad-
dress. However,if it were placed in the preceding Text record, it would not be

https://hemanthrajhemu.github.io

Line

10

15

20

25

30

35

40

45

50

55

60

65

70

45

80

85

90

95

100

105

110

15

120

125

130

135

140

145

150

55

160

165

170

cS

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

Loc

0000

0000

0003

0006

0009

oo00c

OOOF

0012

0015

0018

001B

OO1E

0021

0024

0027

002A

002D

0030

0033

0036

0039

1039

103C

103F

1042

1045

1048

104B

10458

1051

1054

1057

105A

105D

105E

1061

1064

1067

106A

106D

1070

1073

1076

1079

3.2 Machine-Dependent Loader Features

Source statement

COPY,
FIRST

CLOOGP

ENDFIL

ZERO

RETADR

LENGTH

BUFFER

RDREC

RLOOP

EXIT

MAXLEN

WLOOP

OUTPUT

START
STL
JSUB
LDA
COMP
JEQ
JSUB
aj
LDA
STA
LDA
STA
JSUB
LDL
RSUB
BYTE

0

RETADR

LENGTH

Object code

140033

481039

000036

280030

300015

481061

3C0003

00002A

0c0039

00002D

0C0036

481061

080033

4c0000

454PF46

000003

000000

SUBROUTINE TO READ RECORD INTO

LDX

LDA

TD

JEO

RD

COMP

JEQ
STCH

TIX

JLT

STXx

RSUB

BYTE

WORD

SUBROUTINE TO WRITE RECORD FROM BUFFER

LD
TD

JEQ

ZERO

ZERO

INPUT

RLOOP

INPUT

ZERO

EXIT

BUFFER, X

MAXLEN

RLOOP

LENGTH

ae

4096

ZERO

OUTPUT

WLOOP

BUFFER, X

OUTPUT

LENGTH

LOOP

m05"

FIRST

040030

000030

E0105D

30103F

D8105D

280030

301057

548039

2C105E

38103F

100036

4c0000

BL

001000

040030

£01079

301064

508039

DC1079

2C0036

381064

4c0000

05

BUFFER

Figure 3.6 Relocatable program for a standard SIC machine.

133

https://hemanthrajhemu.github.io

134 Chapter 3 Loaders and Linkers

HCOPY 00000000107a

7,0000001 EFFCI 4003 348 1 0390000362800303000 1548106 13€000300002a0C003900002D

TOOOOL El 5E000C003648 106 108003 34C0000454F46000003000000

70010391 BFFC040030000030E0105D30103FD8105D2800303010575480392C105E38 103F

TOO 1 057,0A8001 000364CO0000F 1001000

T001 06 11 ZFE0040030E0 1079301 064508039DC10 792003638 10644cC000005

E000000

Figure 3.7 Object program with relocation by bit mask.

properly aligned to correspond to a relocation bit because of the I-byte data
value generated from line 185. Therefore, this instruction must begin a new
Text record in the object program.

You should carefully examine the remainder of the object program in Fig.
3.7. Make sure you understand howtherelocation bits are generated by the as-
sembler and used bytheloader.

Some computers provide a hardware relocation capability that eliminates
some of the need for the loader to perform program relocation. For example,
some such machines consider all memory references to be relative to the be-
ginning of the user’s assigned area of memory. The conversion of these rela-
tive addresses to actual addresses is performed as the program is executed.
(We discuss this further when we study memory managementin Chapter 6.)
Asthe next section illustrates, however, the loader muststill handle relocation

of subprograms in connection with linking.

3.2.2 Program Linking

The basic concepts involved in program linking were introduced in Section
2.3.5. Before proceeding you may wantto review that discussion and the ex-
amplesin that section. In this section we consider more complex examples of
external references between programs and examinethe relationship between

relocation and linking. The next section gives an algorithm for a linking and
relocating loader.

Figure 2.15 in Section 2.3.5 showed a program madeupofthree control
sections. These control sections could be assembled together (that is, in the

same invocation of the assembler), or they could be assembled independently
of one another. In either case, however, they would appear as separate seg-
ments of object code after assembly (see Fig. 2.17). The programmerhasa nat-
ural inclination to think of a program asa logical entity that combinesall of
the related control sections. From the loader’s point of view, however, there is
no such thing as a program in this sense—there are only control sections that

https://hemanthrajhemu.github.io

3.2. Machine-Dependent Loader Features

are to be linked, relocated, and loaded. The loader has no way of knowing
(and no need to know) which control sections were assembled at the same

time. i
Consider the three (separately assembled) programsin Fig. 3.8, each of

which consists of a single control section. Each program containsa list of items

(LISTA, LISTB, LISTC); the ends of these lists are marked by the labels ENDA,

ENDB, ENDC.Thelabels on the beginnings and endsofthelists are external
symbols (that is, they are available for use in linking). Note that each program
contains exactly the sameset of references to these external symbols. Three of

these are instruction operands (REF1 through REF3), and the others are the
values of data words (REF4 through REFS). In considering this example, we
examine the differences in the way these identical expressions are handled

within the three programs. This emphasizes the relationship betweentherelo-
cation and linking processes. To focus on these issues, we have not attempted

to make these programs appearrealistic. All portions of the programs notin-
volved in the relocation and linking process are omitted. The same applies to

the generated object programs shownin Fig.3.9.

Considerfirst the reference marked REF1. For the first program (PROGA),
REF1is simply a reference to a label within the program.It is assembled in the
usual way as a program-counterrelative instruction. No modification for relo-
cation or linking is necessary. In PROGB,on the other hand, the same operand

refers to an external symbol. The assembler uses an extended-format instruc-
tion with addressfield set to 00000. The object program for PROGB(seeFig.
3.9) contains a Modification record instructing the loader to add the value of
the symbol LISTAto this address field when the program is linked. This refer-
ence is handled in exactly the same way for PROGC.

The reference marked REF2 is processed in a similar manner. For PROGA,

the operand expression consists of an external reference plus a constant. The

assembler stores the value of the constant in the address field of the instruc-
tion and a Modification record directs the loader to addto this field the value

of LISTB. In PROGB, the same expression is simply a local reference andis as-
sembled using a program-counterrelative instruction with no relocation or
linking required.

REF3 is an immediate operand whosevalueis to be the difference between

ENDAand LISTA(thatis, the length of the list in bytes). In PROGA,the as-
semblerhas all of the information necessary to computethis value. During the
assembly of PROGB (and PROGC), however, the values of the labels are un-

known.In these programs, the expression must be assembled as an external
reference (with two Modification records) even though thefinal result will be
an absolute value independentof the locations at which the programs are
loaded.

135

https://hemanthrajhemu.github.io

136 Chapter 3 Loaders and Linkers

Loc Source statement Object code

0000 PROGA START 0

EXTDEF LISTA, ENDA

EXTREF LISTB,ENDB, LISTC, ENDC

0020 REF1 LDA LISTA 03201D

0023 REF2 +LDT LISTB+4 77100004

0027 REF3 LDX #ENDA-LISTA 050014

0040 LISTA EQU +

0054 ENDA FOU a

0054 REF4 WORD ENDA-LISTA+LISTC 000014

0057 REF5 WORD ENDC-LISTC-10 FFFFF6

QO5A REF6 WORD ENDC-LISTC+LISTA-1 00003F

005D REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000014

0060 REFS WORD LISTB-LISTA FFFFCO

END REFL

Loc Source statement Object code

0000 PROGB START 0

EXTDEF LISTB,ENDB

EXTREF LISTA,ENDA, LISTC, ENDC

0036 REF1 +LDA LISTA 03100000

003A REF2 LDT LISTB+4 772027

003D REF3 +LDX #ENDA-LISTA 05100000

0060 LISTB EQU

0070 ENDB EQU 2

0070 REF4 WORD ENDA-LISTA+LISTC 000000

0073 REF5 WORD ENDC-LISTC-10 FFFFF6

0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF

0079 REF7 WORD ENDA-LISTA- (ENDB-LISTB) FFFFFO

oo7C REF8 WORD LISTB-LISTA 000060

END

Figure 3.8 Sample programsillustrating linking and relocation.

https://hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features 137

Loc Source statement Object code

0000 PROGC START 0

EXTDEF LISTC,ENDC

EXTREP LISTA,ENDA, LISTB, ENDB

0018 REFL +LDA LISTA 03100000

001C REF2 +LDT LISTB+4 77100004

0020 REF3 +LDX #ENDA-LISTA 05100000

0030 LISTC EQU a

0042 ENDC EOU x

0042 REF4 WORD ENDA-LISTA+LISTC 000030

0045 REF5 WORD ENDC-LISTC-10 000008

0048 REF6 WORD ENDC-LISTC+LISTA-1 000011

004B REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000000

0045 REFS WORD LISTB-LISTA 000000

Figure 3.8 (contd)

BPROGA 00000000063
JLISTA POOOSOENDA 00054
RLISTB jENDB wistc NDC

70000200403201D77100004050014
.

.

70000540F000014FFFFF600003F000014FFFFCO
400002405,+LISTB
400005406+LISTC
Gpa00sfoe+anne

0005706-LISTC
0005A06+ENDC

poses-LISTC

0005 gernoca

™b0005 -ENDB
00005D06+LISTB
0006006+LISTB
00060,06-PROGA

£00020

Figure 3.9 Object programs correspondingto Fig. 3.8.

https://hemanthrajhemu.github.io

138 Chapter 3 Loaders and Linkers

ROGB 00000000007F
DLISTB 0O00060ENDB 000070
RLISTA /ENDA |LISTC 'ENDC

70000360B0310000077202 705100000

100007 00F00000QFFFFF6FFFFFEFFFFF0000060
4000037,05+LISTA
400003E05,+ENDA

0003E05-LISTA
0007006+ENDA
0007006-LISTA
0007006+LISTC
0007306+ENDC
0007306-LISTC
0007606#+ENDC

M00007606-LISTC
0007606+LISTA
0007906+ENDA

Mp0007906-LISTA
400007C06+PROGB
400007 CD¢-LISTA

HPROGC 000000000051

DLISTC 000030ENDC 000042
RLISTA ENDA LISTE ENDB

T,00001 80C031000007710000405100000

7,0000420F00003000000800001 1000000000000
0001905+LISTA

400001D05+LISTB
0002105+ENDA

P0002 303.LISTA
M00004206+ENDA
40004206LISTA
400004706+PROGC
(00004806+LISTA
0004 B06+ENDA

400004B06-LISTA
M00004B06-ENDB
M00004B06+LISTB
M00004E06+LISTB
MOOO04E06-LISTA
E

Figure 3.9 (contd)

The remaining references illustrate a variety of other possibilities. The gen-

eral approach takenis for the assembler to evaluate as much of the expression
as it can. The remaining terms are passed on to the loader via Modification
records. To see this, consider REF4. The assembler for PROGAcan evaluateall

https://hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features

of the expression in REF4 except for the value of LISTC. This results in an ini-
tial value of (hexadecimal) 000014 and one Modification record. However, the

same expression in PROGBcontains no termsthat can be evaluated by the as-
sembler. The object code therefore containsan initial value of 000000 and three

Modification records. For PROGC, the assembler can supply the value of

LISTC relative to the beginning of the program (but not the actual address,
which is not knownuntil the program is loaded). Theinitial value of this data

word contains the relative address of LISTC (hexadecimal 000030). Modifica-

tion records instruct the loader to add the beginning address of the program
(i.e., the value of PROGC), to add the value of ENDA,and to subtract the

value of LISTA. Thus the expression in REF4 represents a simple external ref-

erence for PROGA, a more complicated external reference for PROGB, and a

combination of relocation and external references for PROGC.
You should work through references REF5 through REF8 for yourself to be

sure you understand howthe object code and Modification records in Fig. 3.9

were generated.
Figure 3.10(a) shows these three programs as they might appear in mem-

ory after loading and linking. PROGAhas been loaded starting at address
4000, with PROGB and PROGC immediately following. Note that each of
REF4 through REF8hasresulted (after relocation and linking is performed)in
the same valuein each of the three programs. Thisis as it should be, since the
same source expression appeared in each program.

For example, the value for reference REF4 in PROGAislocated at address

4054 (the beginning address of PROGAplus 0054,the relative address of REF4
within PROGA). Figure 3.10(b) showsthe details of how this value is com-

puted. Theinitial value (from the Text record) is 000014. To this is added the
address assigned to LISTC, which is 4112 (the beginning address of PROGC
plus 30). In PROGB,the value for REF4is located at relative address 70 (actual

address 40D3). To the initial value (000000), the loader adds the values of

ENDA(4054) and LISTC (4112), and subtracts the value of LISTA (4040). The

result, 004126, is the same as was obtained in PROGA.Similarly, the computa-
tion for REF4 in PROGCresults in the same value. The sameis also true for
each of the other references REF5 through REF8.

For the references that are instruction operands,the calculated valuesafter

loading do not always appear to be equal. This is because there is an addi-

tional address calculation step involved for program-counterrelative (or base
relative) instructions. In these casesit is the target addresses that are the same.

For example, in PROGAthe reference REF1 is a program-counterrelative in-
struction with displacement 01D. When this instruction is executed, the pro-

gram counter contains the value 4023 (the actual address of the next
instruction). The resulting target address is 4040. No relocation is necessary for

this instruction since the program counter will always contain the actual (not

139

https://hemanthrajhemu.github.io

140 Chapter 3 Loaders and Linkers

-

relative) address of the next instruction. We could also think of this process as

automatically providing the needed relocation at execution time through the
target address calculation. In PROGB,on the other hand, reference REF1 is an
extended format instruction that contains a direct (actual) address. This ad-

dress, after linking, is 4040—the sameas the target address for the samerefer-
ence in PROGA.

You should work through the details of the other references to see that the
target addresses (for REF2 and REF3) or the data values (for REF5 through

REF8) are the same in each of the three programs. You do not need to worry
about howthese calculations are actually performed by the loader because the
algorithm and data structures for doing this are discussed in the nextsection.
It is important, however, that you understand the calculations to be performed,

andthat you are able to carry out the computations by hand (following the in-
structions that are contained in the object programs).

Memory
address Contents

0000 XMXKXKXX XXXKXXKX XXNKKXKKX XXKXKXXKX

. . °

. s * * .

. . .

3FFO XXXXKXXMXM XXXMXXXX XKXXXXKKX XXXXXXXX

4000 wesiaieiven eats salelele aleuesece ec eoesaeee

4010) |lisacetus saspemie cpiaxtasls deeeeess
4020 |03201D77 1040C705 0014.... ..++++++le—-PROGA
HOSOI coicysae eel pieaiee aie le invieceale UmEN ale tur ata
4040 een cette ee eect ees cet eee
4050 eeeeeeee 00412600 00080040 51000004
4060 OOO008 A. vaceees es cseenwnle seesisiees
4070 Se

4080 eee ete settee es te eenens eeeeenes
4090 eerseses seseeses e8931040 40772027
40A0 05100014 one eee ee oe eee eee se ee eee

40B0 ee eee eee ele ecele alee Coens tee e ewes

'¢— PROGB

40C0 cade eens eeneeees eebenese saveeves
40D0 eeeee-00 41260000 08004051 00000400
40E0 o083.... se seeeene eepeeeeere sees eeee

40F0 SEMGeuins siclbveinais sas sQaln S000 0L0
4100 SOCTOSIO OOL4.... Liseccee ceceece e #—FHOGO
4110 eeeee ee

 4120 eeeeeess 00412600 00080040 51000004

4130 000083kx XXXKKKXX XKKXXKKKXK XXKXXXKX

4140 XXKKXXXX XXXKKXXKXK XKXXXKXKX XXXKXKKX

. . . e .

e . * * .

. . . s

Figure 3.10(a) Programs from Fig. 3.8 after linking and loading.

https://hemanthrajhemu.github.io

* 3.2 Machine-Dependent Loader Features

Object programs Memory contents

0000

PROGA HPROGA eee
.: (REF4) | :

oD
: |

(REF4)
ak
seeoseces (004125 eeeeeeee0008

I

PROGC . sea)

(Actual address He Ved of LISTC)
/

{ Load addresses

\ PROGA 004000

a PROGB 004063
‘\ ROD
Figure 3.10(b) Relocation and linking operations performed on REF4

from PROGA.

3.2.3 Algorithm and Data Structures for a Linking Loader

Now weare ready to present an algorithm for a linking (and relocating)

loader. We use Modification recordsfor relocation so that the linking and relo-
cation functions are performed using the same mechanism. As mentioned pre-
viously, this type of loader is often found on machines (like SIC/XE) whose

relative addressing makes relocation unnecessary for most instructions.
The algorithm for a linking loader is considerably more complicated than

the absolute loader algorithm discussed in Section 3.1. The input to such a
loader consists of a set of object programs(i.e., control sections) that are to be
linked together. It is possible (and common) for a control section to make an

external reference to a symbol whosedefinition does not appear until later in
this input stream.In such a case the required linking operation cannot be per-
formed until an address is assigned to the external symbol involved (thatis,

141

https://hemanthrajhemu.github.io

142 Chapter 3 Loaders and Linkers

until the later control section is read). Thus a linking loader usually makes two

passes over its input, just as an assembler does. In terms of general function,
the two passesof a linking loader are quite similar to the two passesof an as-

sembler: Pass 1 assigns addressesto all external symbols, and Pass 2 performs
the actual loading, relocation, and linking.

The main data structure needed for our linking loader is an external sym-
bol table ESTAB. This table, which is analogous to SYMTABin our assembler
algorithm, is used to store the name and address of each external symbolin the
set of control sections being loaded. The table also often indicates in which
control section the symbolis defined. A hashed organization is typically used
for this table. Two other important variables are PROGADDR(program load
address) and CSADDR(control section address). PROGADDRis the beginning

address in memory wherethe linked program is to be loaded.Its value is sup-
plied to the loader by the operating system. (In Chapter 6 we discuss how
PROGADDRmight be generated within the operating system.) CSADDRcon-
tains the starting address assigned to the control section currently being
scanned by the loader. This value is addedto all relative addresses within the
control section to convert them to actual addresses.

The algorithm itself is presented in Fig. 3.11. As we discuss this algorithm,
you mayfindit useful to refer to the example of loading andlinkingin the pre-
ceding section (Figs. 3.9 and 3.10).

During the first pass [Fig. 3.11(a)], the loader is concerned only with
Header and Define record typesin the control sections. The beginning load ad-
dress for the linked program (PROGADDR)is obtained from the operating
system. This becomesthe starting address (CSADDR)for thefirst control sec-
tion in the input sequence. The control section name from the Headerrecord is

entered into ESTAB, with value given by CSADDR.All external symbols
appearing in the Define record for the control section are also entered into
ESTAB. Their addresses are obtained by adding the value specified in the
Define record to CSADDR. Whenthe Endrecord is read, the control section
length CSLTH (which was saved from the Header record) is added to

CSADDR.This calculation gives the starting address for the next control sec-
tion in sequence.

At the end of Pass 1, ESTAB containsall external symbols defined in the set

of control sections together with the address assigned to each. Many loaders
include as an option the ability to print a load map that shows these symbols
and their addresses. This information is often useful in program debugging.
For the example in Figs. 3.9 and 3.10, such a load map might looklike the
following. This is essentially the same information contained in ESTABat the
end of Pass1.

https://hemanthrajhemu.github.io

« 3.2 Machine-Dependent Loader Features 143

Control Symbol
section name Address Length

PROGA . 4000 0063

LISTA 4040

ENDA 4054

PROGB 4063 007F

LISTB 40C3

ENDB 40D3

PROGC 40E2 0051

LISTC 4112

ENDC 4124

Pass1:

begin
get PROGADDR from operating system

set CSADDR to PROGADDR {for first control section}
while not end of input do

begin

read next input record {Header record for control section}

set CSLTH to control section length

search ESTAB for control section name

if found then

set error flag {duplicate external symbol}

else

enter control section name into ESTAB with value CSADDR

while record type # 'E’ do

begin

read next input record

if record type = 'D’ then

for each symbol in the record do

begin

search ESTAB for symbol name

if found then

set error flag (duplicate external symbol)
else

enter symbol into ESTAB with value

(CSADDR + indicated address)

end {for}

end {while # ’E’}

add CSLTH to CSADDR {startimg address for next control section}
end {while not EOF} .

end {Pass i}

Figure 3.11(a) Algorithm for Pass 1 of a linking loader.

https://hemanthrajhemu.github.io

144 Chapter 3 Loaders and Linkers

Pass 2: a

begin

set CSADDR to PROGADDR

set EXECADDR to PROGADDR

while not end of input do

begin

read next input record {Header record}

set CSLTH to control section length

while record type # ‘E’ do

begin

read next input record

if record type = ‘T’ then

begin

{if object code is in character form, convert

into internal representation}

move object code from record to location

(CSADDR + specified address)

end {if ‘T’}

else if record type = 'M’ then

begin

search ESTAB for modifying symbol name

if found then

add or subtract symbol value at location

(CSADDR + specified address)

else

set error flag (undefined external symbol)

end {if ‘'M’}

end {while # ‘'E’}

if an address is specified {in End record} then

set EXECADDR to (CSADDR + specified address)

add CSLTH to CSADDR

end {while not EOF}

jump to location given by EXECADDR {to start execution of loaded program}

end {Pass 2}

Figure 3.11(b) Algorithm for Pass 2 ofa linking loader.

Pass 2 of our loader [Fig. 3.11(b)] performs the actual loading, relocation,

and linking of the program. CSADDRis used in the same wayit was in
Pass 1—it always contains the actual starting address of the control section
currently being loaded. As each Text record is read, the object code is moved to
the specified address (plus the current value of CSADDR). When a
Modification record is encountered, the symbol whosevalue is to be used for

modification is looked up in ESTAB.This valueis then addedto or subtracted
from the indicated location in memory.

https://hemanthrajhemu.github.io

* 3.2 Machine-Dependent Loader Features

The last step performed by the loaderis usually the transferring of control
to the loaded program to begin execution. (On some systems, the address
where execution is to begin is simply passed back to the operating system. The
user must then enter a separate Execute command.) The End record for each
control section may contain the address of the first instruction in that control
section to be executed. Our loadertakes this as the transfer point to begin exe-
cution. If more than one control section specifies a transfer address, the loader

arbitrarily uses the last one encountered.If no control section contains a trans-
fer address, the loader uses the beginning of the linked program (i.e.,
PROGADDR)asthe transfer point. This convention is typical of those found
in mostlinking loaders. Normally, a transfer address would be placed in the
End record for a main program, but not for a subroutine. Thusthe correct exe-
cution address would be specified regardless of the order in which the control
sections were presented for loading. (See Fig. 2.17 for an example ofthis.)

You should apply this algorithm (by hand) to load andlink the object pro-
gramsin Fig. 3.9. If PROGADDRis taken to be 4000, the result should be the
sameas that shownin Fig. 3.10.

This algorithm can be made moreefficientif a slight change is made in the
object program format. This modification involves assigning a reference number
to each external symbolreferred to in a control section. This reference number
is used (instead of the symbol name) in Modification records.

Suppose we always assign the reference number 01 to the control section
name. The other external reference symbols may be assigned numbersas part
of the Refer record for the control section. Figure 3.12 shows the object

ROGA 000000000063

DLISTA 00004QENDA 000054
RO2LISTB Q3ENDB P4LIstc Q5ENDC

70000200403201D77100004050014
.

.

70000540F000014FFFFF600003F000014FFFFCO
M00002405+02
™00005406+04
400005706+05
4000057,06-04
400005A06+05
400005A06-04
M00005A06+01
400005D06-03
M00005D06+02
M00006006+02
400006006-01
£000020 °

Figure 3.12 Object programs correspondingto Fig. 3.8 using reference

numbers for code modification. (Reference numbers are underlined for
easier reading.)

145

https://hemanthrajhemu.github.io

146 Chapter 3 Loaders and Linkers

ROGB £0000000007F
ISTB OO060ENDB 000070

ROZLISTA O3ENDA 4LISTC OSENDC

7,0000360B03100000772027,05100000

T0000700F000000FFFFFOFFFFFEFFFFFO000060

4000037,05+02
400003E05+03
M00003E05-02
4000070,06+03
400007006-02

0007006+04
0007306+05

400007 306-04
Hp0007 06705

0007606-04
00007606402

0007906403
0007906-02

400007606401
40000760602
E

ROGC 000000000051
DLISTC QO0O030ENDC 000042
RO2LISTA O3ENDA O4LISTB OSENDB

T0000180C031000007710000405100000
*7

T0000420F000030000008000011,000000000000
M00001905+02
M00001D05+04
M00002105+03

0002105-02
M000042,06+03
M00004206-02
M00004206+01
M00004806+02
M00004B,06+03

0004B06-02
0004B06-05

M00004B06+04
M00004E,06+04
Reasoees2

Figure 3.12 (contd)

https://hemanthrajhemu.github.io

* 3.3 Machine-Independent Loader Features

programs from Fig. 3.9 with this change. The reference numbers are under-

lined in the Refer and Modification records for easier reading. The common

use of a technique such,as this is one reason weincluded Refer records in our
object programs. You may have noticed that these records were not used in the

algorithm ofFig. 3.11.
The main advantage of this reference-number mechanismis that it avoids

multiple searches of ESTAB for the same symbol during the loading of a con-
trol section. An external reference symbol can be looked up in ESTAB once for
each control section that uses it. The values for code modification can then be
obtained by simply indexingintoan array of these values. You are encouraged
to develop an algorithm that includes this technique, together with any addi-
tional data structures you may require.

3.3 MACHINE-INDEPENDENT LOADER FEATURES

In this section we discuss someloader features that are not directly related to
machine architecture and design. Loading andlinking are often thoughtof as
operating system service functions. The programmer's connection with such
Services is not as direct as it is with, for example, the assembler during pro-
gram development. Therefore, most loaders include fewer different features
(and less varied capabilities) than are foundin a typical assembler.

Section 3.3.1 discusses the use of an automatic library search process for
handling external references. This feature allows a programmerto use stan-
dard subroutines without explicitly including them in the program to be
loaded. The routines are automatically retrieved from a library as they are
needed duringlinking.

Section 3.3.2 presents some commonoptions that can be selected at the
time of loading and linking. These include such capabilities as specifying alter-
native sources of input, changing or deleting external references, and control-
ling the automatic processing of external references.

3.3.1 Automatic Library Search

Manylinking loaders can automatically incorporate routines from a subpro-
gram library into the program being loaded. In most cases there is a standard
system library that is used in this way. Otherlibraries may be specified by con-
trol statements or by parameters to the loader. This feature allows the pro-

_ grammerto use subroutines from one or morelibraries (for example,
mathematical or statistical routines) almost as if they were a part of the pro-

_ gramming language. The subroutines called by the program being loaded are

147

https://hemanthrajhemu.github.io

148 Chapter 3 Loaders and Linkers

automatically fetched from the library, linked with the main program, and

loaded. The programmerdoes not need to take any action beyond mentioning
the subroutine names as external references in the source program. On some

systems, this feature is referred to as automaticlibrary call. We use the term
library search to avoid confusion with the call feature found in most program-
ming languages.

Linking loaders that support automatic library search must keep track of
external symbols that are referred to, but not defined, in the primary input to
the loader. One easy way to dothis is to enter symbols from each Refer record

into the symbol table (ESTAB) unless these symbols are already present. These
entries are marked to indicate that the symbolhas not yet been defined. When
the definition is encountered, the address assigned to the symbolis filled in to
complete the entry. At the end of Pass 1, the symbols in ESTABthat remain un-
defined represent unresolved external references. The loader searches the
library or libraries specified for routines that contain the definitions of these
symbols, and processes the subroutines found by this search exactly as if they
had beenpart of the primary input stream.

Note that the subroutines fetched from a library in this way may them-
selves contain external references.It is therefore necessary to repeat the library
search process until all references are resolved (or until no further resolution
can be made). If unresolved external references remain after the library search
is completed, these must be treated as errors.

The processjust described allows the programmerto override the standard
subroutinesin the library by supplying his or her own routines. For example,
suppose that the main program refers to a standard subroutine named SORT.
Ordinarily the subroutine with this name would automatically be included via
the library search function. A programmer who for some reason wanted to use
a different version of SORT could do so simply by including it as input to the
loader. By the end of Pass 1 of the loader, SORT would already be defined, so

it would not be includedin anylibrary search that might be necessary.
The libraries to be searched by the loader ordinarily contain assembled or

compiled versions of the subroutines (that is, object programs). It is possible to
search these libraries by scanning the Define recordsfor all of the object pro-

gramsonthelibrary, but this might be quite inefficient. In most cases a special
file structure is used for the libraries. This structure contains a directory that

gives the nameof each routine and a pointer to its address within thefile. If a
subroutine is to be callable by more than one name(using different entry
points), both namesare entered into the directory. The object program itself, of
course, is only stored once. Both directory entries point to the same copy of the
routine. Thus the library searchitself really involves a search of the directory,
followed by reading the object programs indicated by this search. Some oper-
ating systems can keep the directory for commonlyused libraries permanently

https://hemanthrajhemu.github.io

Section 3.3. Machine-Independent Loader Features

in memory. This can expedite the search process if a large numberof external
references are to be resolved.

The process of library search has been discussed as the resolution of a call

to a subroutine. Obviously the same technique applies equally well to the res-
olution of external references to data items.

3.3.2 Loader Options

Manyloaders allow the user to specify options that modify the standard pro-
cessing described in Section 3.2. In this section we discuss sometypical loader

options and give examplesof their use. Many loaders have a special command
language that is used to specify options. Sometimes there is a separate input
file to the loader that contains such control statements. Sometimes these same
statements can also be embedded in the primary input stream between object
programs. On a few systems the programmer can even includeloader control
statements in the source program, and the assembler or compiler retains these
commandsasa part of the object program.

Wediscuss loader optionsin this section as though they were specified us-
ing a commandlanguage, but there are other possibilities. On some systems
options are specified as a part of the job control language that is processed by
the operating system. When this approachis used, the operating system incor-

porates the options specified into a control block that is made available to the

loader whenit is invoked. The implementation of such optionsis, of course,
the same regardless of the meansusedto select them.

Onetypical loader option allowsthe selection of alternative sources of
input. For example, the command

INCLUDE program—-name (library-name)

might direct the loader to read the designated object program from a library
andtreatit as if it were part of the primary loaderinput.

Other commands allow the user to delete external symbols or entire con-
trol sections. It may also be possible to change external references within the
programsbeing loaded andlinked. For example, the command

DELETE csect-name

mightinstruct the loader to delete the named controlsection(s) from the set of

programsbeing loaded. The command

CHANGE mnamel,name2

149

https://hemanthrajhemu.github.io

150

Chapter 3 Loaders and Linkers

might cause the external symbol name1 to be changed to name2 whereverit ap-
pears in the object programs. Anillustration of the use of such commandsis
given in the following example.

Consider the source program in Fig. 2.15 and the corresponding object pro-
gram in Fig. 2.17. There is a main program (COPY)that uses two subprograms
(RDREC and WRREC); each of these is a separate control section. If RDREC
and WRRECare designed only for use with COPY,it is likely that the three
control sections will be assembled at the same time. This meansthat the three
control sections of the object program will appear in the samefile (or as part of
the same library member).

Suppose nowthata set of utility subroutines is madeavailable on the com-
puter system. Two of these, READ and WRITE,are designed to perform the
same functions as RDREC and WRREC.It would probably be desirable to
change the source program of COPYto use theseutility routines. As a tempo-
rary measure, however, a sequence of loader commandscould be used to

make this change without reassembling the program. This might be done, for
example, to test the utility routines before the final conversion is made.

Suppose that a file containing the object programsin Fig. 2.17 is the pri-
mary loader input with the loader commands

INCLUDE READ (UTLIB)

INCLUDE WRITE(UTLIB)

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

These commands would direct the loader to include control sections READ
and WRITE fromthelibrary UTLIB, and to delete the control sections RDREC

and WRRECfrom the load. The first CHANGE command would cause all ex-
ternal references to symbol RDRECto be changed to refer to symbol READ.
Similarly, references to WRREC would be changed to WRITE. The result

would be exactly the same as if the source program for COPY had been
changed to use READ and WRITE. You are encouraged to think for yourself
about how the loader might handle such commandsto perform the specified
processing.

Another commonloader option involves the automatic inclusion oflibrary
routines to satisfy external references (as described in the preceding section).

Mostloaders allow the user to specify alternative libraries to be searched,

using a statement such as

LIBRARY MYLIB

https://hemanthrajhemu.github.io

, 3.4 Loader Design Options

Such user-specified libraries are normally searched before the standard system
libraries. This allowsthe userto use special versions of the standard routines.

Loaders that perform automaticlibrary search to satisfy external references
often allow the user to specify that some references not be resolved in this

way. Suppose, for example, that a certain program hasas its main function the

gathering and storing of data. However, the program can also perform an

analysis of the data using the routines STDDEV, PLOT, and CORREL from a

statistical library. The user may request this analysis at execution time. Since

the program contains external references to these three routines, they would

ordinarily be loaded and linked with the program.If it is known thatthe sta-
tistical analysis is not to be performedin a particular execution of this pro-

gram, the user could include a commandsuch as

NOCALL STDDEV, PLOT, CORREL

to instruct the loader that these external references are to remain unresolved.
This avoids the overhead of loading and linking the unneeded routines, and
saves the memoryspace that would otherwise be required.

It is also possible to specify that no external references be resolved byli-
brary search. Of course, this meansan error will result if the program attempts
to make such an external reference during execution. This option is more use-
ful when programsare to be linked but not executed immediately. It is often
desirable to postpone the resolution of external references in such a case. In
Section 3.4.1 we discuss linkage editors that perform this sort of function.

Another commonoption involves output from the loader. In Section 3.2.3
we gave an example of a load mapthat might be generated during the loading
process. Through control statements the user can often specify whether or not

such a mapisto be printedatall. If a mapis desired, the level of detail can be
selected. For example, the map may include control section names and ad-

dresses only. It may also include external symbol addresses or even a cross-
reference table that shows references to each external symbol.

Loaders often include a variety of other options. One such option is the

ability to specify the location at which execution is to begin (overriding any in-
formation given in the object programs). Anotheris the ability to control
whetheror not the loader should attempt to execute the program if errors are
detected during the load (for example, unresolved external references).

3.4 LOADER DESIGN OPTIONS

In this section we discuss some commonalternatives for organizing the load-

ing functions, including relocation and linking. Linking loaders, as described

151

https://hemanthrajhemu.github.io

152 Chapter 3 Loaders and Linkers

in Section 3.2.3, perform all linking and relocation at load time. We discuss
twoalternatives to this: linkage editors, which perform linking prior to load
time, and dynamic linking, in which the linking function is performed at exe-

cution time.

Section 3.4.1 discusses linkage editors, which are found on many comput-
ing systems instead of or in addition to the linking loader. A linkage editor
performs linking and somerelocation; however, the linked program is written
to file or library instead of being immediately loaded into memory. This ap-
proach reduces the overhead when the program is executed. All thatis re-
quired at load timeis a very simple form ofrelocation.

Section 3.4.2 introduces dynamic linking, which usesfacilities of the oper-

ating system to load and link subprogramsat the time they arefirst called. By
delaying the linking process in this way, additionalflexibility can be achieved.

However, this approach usually involves more overhead than does a linking

loader.

In Section 3.4.3 we discuss bootstrap loaders. Such loaders can be used to
run stand-alone programs independent of the operating system or the system

loader. They can also be used to load the operating system or the loaderitself

into memory.

3.4.1 Linkage Editors

The essential difference between a linkage editor and a linking loaderis illus-
trated in Fig. 3.13. The source programis first assembled or compiled, produc-
ing an object program (which may contain several different control sections).
A linking loader performsall linking and relocation operations, including au-
tomatic library search if specified, and loads the linked program directly into
memory for execution. A linkage editor, on the other hand, produces a linked
version of the program (often called a load module or an executable image),

whichis written to a file or library for later execution.
Whenthe user is ready to run the linked program, a simple relocating

loader can be used to load the program into memory. The only object code
modification necessary is the addition of an actual load address to relative val-
ues within the program. Thelinkage editor performs relocation ofall control

sectionsrelative to the start of the linked program. Thus,all items that need to
be modified at load time have valuesthat are relative to the start of the linked
program. This meansthat the loading can be accomplished in one pass with
no external symbol table required. This involves much less overhead than us-
ing a linking loader.

If a program is to be executed many times without being reassembled, the
use of a linkage editor substantially reduces the overhead required. Resolution

https://hemanthrajhemu.github.io

‘ 3.4 Loader Design Options

of external references and library searching are only pertormed once (when
the programis link edited). In contrast, a linking loader searcheslibraries and
resolves external references every time the program is executed.

Sometimes, however, a program is reassembled for nearly every execution.
This situation might occur in a program development and testing environ-

ment(for example, student programs). It also occurs when a program is used
so infrequently that it is not worthwhile to store the assembled versionina li-
brary. In suchcasesit is moreefficient to use a linking loader, which avoidsthe
steps of writing andreading the linked program.

The linked program produced by the linkage editor is generally in a form
that is suitable for processing by a relocating loader. All external references are
resolved, and relocation is indicated by some mechanism such as Modification

records or a bit mask. Even thoughall linking has been performed, informa-
tion concerning external references is often retained in the linked program.
This allows subsequentrelinking of the program to replace control sections,
modify external references, etc. If this information is not retained, the linked

program cannot be reprocessed by the linkage editor; it can only be loaded
and executed.

Object Object
program(s) program(s)

3 i

; Linking ; Linkage
cstieal loader pprey editor

Memory Linked
program

(a)

Relocating
loader

Memory

(b)

Figure 3.13 Processing of an object program using (a) linking loader
and (b) linkage editor.

153

https://hemanthrajhemu.github.io

154 Chapter 3 Loaders and Linkers

-

If the actual address at which the program will be loaded is knownin ad-
vance, the linkage editor can perform all of the needed relocation. The result is

a linked program that is an exact image of the way the program will appear in
memory during execution. The content and processing of such an image are
the same as for an absolute object program. Normally, however, the added

flexibility of being able to load the program atany location is easily worth the

slight additional overhead for performingrelocation at load time.

Linkage editors can perform many useful functions besides simply prepar-
ing an object program for execution. Consider, for example, a program
(PLANNER) that uses a large number of subroutines. Suppose that one sub-

routine (PROJECT) used by the program is changed to correct an error or to

improve efficiency. After the new version of PROJECTis assembled or com-
piled, the linkage editor can be used to replace this subroutine in the linked
version of PLANNER.It is not necessary to go back to the original (separate)
versionsofall of the other subroutines. The following is a typical sequence of
linkage editor commands used to accomplish this. The command languageis
similar to that discussed in Section 3.3.2.

|

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {DELETE from existing PLANNER}

INCLUDE PROJECT (NEWLIB) {INCLUDE new version}

REPLACE PLANNER (PROGLIB)

Linkage editors can also be used to build packages of subroutines or other
control sections that are generally used together. This can be useful when deal-
ing with subroutinelibraries that support high-level programming languages.
In a typical implementation of FORTRAN,for example, there are a large num-

ber of subroutines that are used to handle formatted input and output. These
include routines to read and write data blocks, to block and deblock records,
and to encode and decode data items according to formatspecifications. There
are a large numberof cross-references between these subprograms because of
their closely related functions. However,it is desirable that they remain as sep-
arate control sections for reasons of program modularity and maintainability.

If a program using formatted I/O were linked in the usual way,all of the
cross-references betweenthese library subroutines would have to be processed
individually. Exactly the same set of cross-references would need to be
processed for almost every FORTRAN program linked. This represents a sub-
stantial amountof overhead. The linkage editor could be used to combine the
appropriate subroutines into a package with a command sequencelike the
following:

INCLUDE READR(FTNLIB)

INCLUDE WRITER(FTNLIB)

https://hemanthrajhemu.github.io

3.4 Loader Design Options

INCLUDE BLOCK (FTNLIB)

INCLUDE DEBLOCK (FTNLIB)

INCLUDE ENCOQE(FTNLIB)

INCLUDE DECODE(FTNLIB)

SAVE FINIO(SUBLIB)

The linked module named FTNIOcould be indexedin the directory of SUBLIB
under the same namesas the original subroutines. Thus a search of SUBLIB

before FINLIB would retrieve FINIO instead of the separate routines. Since
FINIO already hasall of the cross-references between subroutines resolved,

these linkages would not be reprocessed when each user’s program is linked.
The result would be a much moreefficient linkage editing operation for each
program and a considerable overall savings for the system.

Linkage editors often allow the user to specify that external references are
not to be resolved by automatic library search. Suppose, for example, that 100

FORTRAN programs using the I/O routines described above were to be
stored on a library. If all external references were resolved, this would mean
that a total of 100 copies of FTNIO would bestored.If library space were an
important resource, this might be highly undesirable. Using commandslike

those discussed in Section 3.3.2, the user could specify that no library search
be performed during linkage editing. Thus only the external references be-

tween user-written routines would be resolved. A linking loader could then be
used to combine the linked user routines with FTNIO at execution time.

Because this process involves two separate linking operations, it would re-
quire slightly more overhead; however, it would result in a large savings in
library space.

Linkage editors often include a variety of other options and commands

like those discussed for linking loaders. Comparedto linking loaders, linkage
editors in general tend to offer moreflexibility and control, with a correspond-

ing increase in complexity and overhead.

3.4.2 Dynamic Linking

Linkage editors perform linking operations before the program is loaded for

execution. Linking loaders perform these same operations at load time. In this

section we discuss a schemethat postpones the linking function until execu-
tion time: a subroutine is loaded andlinked to the rest of the program whenit
is first called. This type of function is usually called dynamic linking, dynamic
loading, or load on call.

155

https://hemanthrajhemu.github.io

156

Chapter 3 Loaders and Linkers

-

Dynamiclinking is often used to allow several executing programs to
share one copy of a subroutine or library. For example, run-time support rou-
tines for a high-level language like C could be stored in a dynamic link library.
A single copy of the routines in this library could be loaded into the memory
of the computer. All C programscurrently in execution could be linkedto this
one copy, instead oflinking a separate copy into each object program.

In an object-oriented system, dynamic linking is often used for references
to software objects. This allows the implementation of the object and its meth-
ods to be determinedat the time the program is run. The implementation can
be changed at any time, without affecting the program that makes use of the
object. Dynamic linking also makes it possible for one object to be shared by
several programs, as discussed previously. (See Section 8.4 for an introduction
to object-oriented programming and design.)

Dynamiclinking also offers some other advantages over the other types of
linking we have discussed. Suppose, for example, that a program contains
subroutines that correct or clearly diagnose errors in the input data during ex-

ecution. If such errors are rare, the correction and diagnostic routines may not
be usedat all during most executions of the program. However, if the program
were completely linked before execution, these subroutines would need to be
loaded and linked every time the program is run. Dynamic linking provides
the ability to load the routines only when (andif) they are needed.If the sub-
routines involved are large, or have many external references, this can result in

substantial savings of time and memory space.
Similarly, suppose that in any one execution a program uses only a few out

of a large numberof possible subroutines, but the exact routines needed can-
not be predicted until the program examinesits input. This situation could oc-
cur, for example, with a program thatallowsits user to interactively call any of
the subroutines of a large mathematical andstatistical library. Input data could
be supplied by the user, and results could be displayed at the terminal. In this
case, all of the library subroutines could potentially be needed, but only a few
will actually be used in any one execution. Dynamic linking avoids the neces-
sity of loading the entire library for each execution. As a matter of fact, dy-
namic linking may make it unnecessary for the program even to know the
possible set of subroutines that might be used. The subroutine name might
simply be treated as another input item.

There are a numberof different mechanisms that can be used to accom-
plish the actual loading and linking of a called subroutine. Figure 3.14 illus-
trates a method in which routines that are to be dynamically loaded must be
called via an operating system service request. This method could also be

thought of as a request to a part of the loader that is kept in memory during
execution of the program.

https://hemanthrajhemu.github.io

3.4 Loader Design Options

Dynamic
loader

User
program

ERRHANDL

Dynamic
loader

(part of the

operating
system)

Load-and-call
ERRHANDL

User
program

(a)

Dynamic Dynamic |,
loader loader

User User
program program

ERRHANDL ERRHANDL

(c) (d)

Figure 3.14 Loading and calling of a subroutine using dynamiclinking.

(b)

Load-and-call

ERRHANDL

Dynamic
loader

 User

program
ERRHANDL

(e)

157

https://hemanthrajhemu.github.io

158 Chapter 3 Loaders and Linkers

-

Instead of executing a JSUB instruction that refers to an external symbol,

the program makesa load-and-call service request to the operating system.
The parameterof this request is the symbolic nameof the routine to becalled.
[See Fig. 3.14(a).] The operating system examinesits internal tables to deter-
mine whether or not the routine is already loaded. If necessary, the routine is
loaded from the specified user or system libraries as shownin Fig. 3.14(b).
Control is then passed from the operating system to the routine being called
[Fig. 3.14(c)].

Whenthe called subroutine completes its processing,it returns to its caller
(that is, to the operating system routine that handles the load-and-call service

request). The operating system then returns control to the program that issued
the request. This process isillustrated in Fig. 3.14(d). It is important that con-
trol be returned in this way so that the operating system knows when the
called routine has completed its execution. After the subroutine is completed,
the memory that was allocatedto load it may be released and used for other
purposes. However, this is not always done immediately. Sometimesit is

desirable to retain the routine in memory for later use as long as the storage
space is not needed for other processing. If a subroutine isstill in memory,
a secondcall to it may not require another load operation. Control may simply
be passed from the dynamic loader to the called routine, as shownin
Fig. 3.14(e).

When dynamic linking is used, the association of an actual address with
the symbolic nameof the called routine is not made until the call statement is
executed. Another way of describingthis is to say that the binding of the name
to an actual address is delayed from load time until execution time. This de-

layed binding results in greater flexibility, as we have discussed. It also re-
quires more overheadsince the operating system mustintervenein thecalling

process. In later chapters we see other examples of delayed binding. In those
examples, too, delayed binding gives more capabilities at a highercost.

3.4.3 Bootstrap Loaders

In our discussions of loaders we have neglected to answer one important
question: Howis the loaderitself loaded into memory? Of course, we could
say that the operating system loads the loader; however, weare thenleft with
the same question with respect to the operating system. More generally, the
questionis this: Given an idle computer with no program in memory, how do
weget things started?

In this situation, with the machine empty andidle, there is no need for pro-

gram relocation. We can simply specify the absolute address for whatever pro-
gram is first loaded. Most often, this program will be the operating system,

https://hemanthrajhemu.github.io

3.5 Implementation Examples

which occupies a predefined location in memory. This means that we need
some means of accomplishing the functions of an absolute loader. Someearly
computers required thé operator to enter into memory the object code for an
absolute loader, using switches on the computer console. However, this
process is much too inconvenient and error-prone to be a good solution to the
problem.

On some computers, an absolute loader program is permanently resident
in a read-only memory (ROM). When some hardwaresignal occurs (for exam-

ple, the operator pressing a “system start” switch), the machine begins to exe-
cute this ROM program. On some computers, the program is executed directly
in the ROM;on others, the program is copied from ROM to main memory and
executed there. However, some machines do not have such read-only storage.
In addition, it can be inconvenient to change a ROM program if modifications
in the absolute loader are required.

An intermediate solution is to have a built-in hardware function (or a very
short ROM program) that reads a fixed-length record from some device into
memory at a fixed location. The particular device to be used can often be se-
lected via console switches. After the read operation is complete, control is au-

tomatically transferred to the address in memory where the record wasstored.
This record contains machineinstructions that load the absolute program that
follows. If the loading process requires more instructions than can be read ina

single record, this first record causes the reading of others, and these in turn
can cause the reading of still more records—hence the term bootstrap. Thefirst
record (or records) is generally referred to as a bootstrap loader. (A simple exam-

ple of such a bootstrap loader was given in Section 3.1.2.) Such a loaderis
added to the beginning of all object programs that are to be loaded into an
empty andidle system. This includes, for example, the operating system itself
andall stand-alone programsthat are to be run without an operating system.

3.5 IMPLEMENTATION EXAMPLES

In this section we briefly examine linkers and loaders for actual computers. As
in our previous discussions, we make no attemptto give a full description of
the linkers and loaders used as examples. Instead we concentrate on any par-
ticularly interesting or unusualfeatures, and on differences between these im-
plementations and the more general model discussed earlier in this chapter.
Wealso point out areas in which the linker or loader design is related to the
assemblerdesign or to the architecture and characteristics of the machine.

The loader and linker examples we discuss are for the Pentium, SPARC,
and T3E architectures. You may wantto review the descriptionsof these archi-
tectures in Chapter 1, and the related assembler examplesin Section 2.5.

159

https://hemanthrajhemu.github.io

160 Chapter 3 Loaders and Linkers

3.5.1 MS-DOSLinker

This section describes some of the features of the Microsoft MS-DOSlinkerfor

Pentium and other x86 systems. Further information can be found in Simrin
(1991) and Microsoft (1988).

Most MS-DOS compilers and assemblers (including MASM) produce ob-
ject modules, not executable machine language programs. By convention,
these object modules have the file name extension .OBJ. Each object module
contains a binary image of the translated instructions and data of the program.
It also describes the structure of the program (for example, the grouping of
segments andthe use of external references in the program).

MS-DOSLINKis a linkage editor that combines one or more object mod-
ules to produce a complete executable program. By convention, this exe-
cutable program hasthefile name extension .EXE. LINK can also combine the
translated programs with other modules from object code libraries, as we dis-
cussed previously.

Figure 3.15 illustrates a typical MS-DOS object module. There are also sev-
eral other possible record types (such as commentrecords), and there is some
flexibility in the order of the records.

The THEADRrecord specifies the name of the object module. The MOD-
END record marks the end of the module, and can contain a reference to the

entry point of the program. These two records generally correspond to the
Header and Endrecords we discussed for SIC/XE.

Record Types Description

THEADR Translator header

TYPDEF

PUBDEF External symbols and references
EXTDEF

LNAMES

SEGDEF Segmentdefinition and grouping
GRPDEF

LEDATA ; :
LIDATA } Translated instructions and data

FIXUPP * Relocation and linking information

MODEND Endof object module

Figure 3.15 MS-DOSobject module.

https://hemanthrajhemu.github.io

3.5 Implementation Examples

The PUBDEFrecord contains a list of the external symbols (called public
names) that are defined in this object module. The EXTDEFrecord contains a

list of the external synibols that are referred to in this object module. These
records are similar in function to the SIC/XE Define and Refer records. Both

PUBDEFand EXTDEFcancontain information aboutthe data type designated

byan external name. These typesare defined in the TYPDEFrecord.
SEGDEFrecords describe the segments in the object module, including

their name, length, and alignment. GRPDEF records specify how these seg-
ments are combined into groups. (See Section 2.5.1 for a discussion of the use
of segmentation in the MASM assembler.) The LNAMESrecordcontainsa list
of all the segment and class names used in the program. SEGDEF and

GRPDEFrecordsrefer to a segment by giving the position of its namein the
LNAMESrecord. (This approach to specifying namesis similar to the “refer-

ence number” technique described near the end of Section 3.2.3.)

LEDATArecords contain translated instructions and data from the source
program, similar to the SIC/XE Text record. LIDATArecords specify trans-

lated instructions and data that occur in a repeating pattern. (See Exercise
2.1.7.)

FIXUPPrecords are used to resolve external references, and to carry out

address modifications that are associated with relocation and grouping of seg-
ments within the program.This is similar to the function performed by the
SIC/XE Modification records. However, FIXUPP records are substantially

more complex, because of the more complicated object program structure. A
FIXUPP record must immediately follow the LEDATA or LIDATArecord to
which it applies.

LINK performs its processing in two passes, following a similar approach
to that described in Section 3.2.3. Pass 1 computesa starting address for each

segment in the program. In general, segments are placed into the executable
program in the same order that the SEGDEFrecords are processed. However,
in some cases segments from different object modules that have the same seg-
ment nameandclass are combined. Segments with the sameclass, but differ-

ent names, are concatenated. The starting addressinitially associated with a
segment is updated during Pass 1 as these combinations and concatenations
are performed.

Pass 1 constructs a symbol table that associates an address with each seg-
ment (using the LNAMES, SEGDEF, and GRPDEFrecords) and each external
symbol (using the EXTDEF and PUBDEFrecords).If unresolved external sym-
bols remain after all object modules have been processed, LINK searches the
specified libraries as described in Section 3.3.1.

During Pass 2, LINK extracts the translated instructions and data from the
object modules, and builds an image of the executable program in memory.It
does this because the executable program is organized by segment, not by the

161

https://hemanthrajhemu.github.io

162 Chapter 3 Loaders and Linkers

order of the object modules. Building a memory image is the mostefficient

way to handle the rearrangements caused by combining and concatenating
segments. If there is not enough memoryavailable to contain the entire exe-
cutable image, LINK uses a temporarydisk file in additionto all of the avail-
able memory.

Pass 2 of LINK processes each LEDATA and LIDATArecord along with the
corresponding FIXUPP record (if there is one). It places the binary data from
LEDATA and LIDATArecords into the memory imageatlocations thatreflect
the segment addresses computed during Pass 1. (Repeated data specified in
LIDATArecords is expanded at this time.) Relocations within a segment
(caused by combining or grouping segments) are performed, and external ref-
erences are resolved. Relocation operations that involve the starting address of
a segmentare addedto a table of segmentfixups. This table is used to perform
relocations that reflect the actual segment addresses when the program is
loaded for execution. —_—__

After the memory image is complete, LINK writes it to the executable
(.EXE) file. This file also includes a header that contains the table of segment

fixups, information about memory requirements and entry points, and theini-

tial contents for registers CS and SP.

3.5.2 SunOS Linkers

This section describes some of the features of the SunOS linkers for SPARC
systems. Further information can be found in Sun Microsystems (1994b).

SunOSactually provides two different linkers, called the link-editor and the
run-time linker. The link-editor is most commonly invoked in the process of
compiling a program.It takes one or more object modules produced by assem-

blers and compilers, and combines them to produce a single output module.
This output module may be oneof the following types:

1. A relocatable object module, suitable for further link-editing

2. A static executable, with all symbolic references bound and ready to

run

3. A dynamtic executable, in which some symbolic references may need to

be boundat run time

4. Ashared object, which provides services that can be boundat run time
to one or more dynamic executables

An object module contains one or moresections, which represent the in-

structions and data areas from the source program. Each section has set of

https://hemanthrajhemu.github.io

3.5 Implementation Exantples

attributes, such as “executable” and “writeable.” (See Section 2.5.2 for a dis-

cussion of howsections are defined in an assembler language program.) The
object module also indludesa list of the relocation and linking operations that
need to be performed, and a symboltable that describes the symbols used in
these operations.

The SunOSlink-editor begins by reading the object modules(or otherfiles)
that are presented to it to process. Sections from the input files that have the
same attributes are concatenated to form new sections within the outputfile.
The symboltables from the input files are processed to match symboldefini-
tions and references, and relocation and linking operations within the output
file are performed. The linker normally generates a new symboltable, and a
new set of relocation instructions, within the outputfile. These represent sym-

bols that must be bound at run time, and relocations that must be performed

whenthe program is loaded.

Relocation and linking operations are specified using a set of processor-
specific codes. These codes describe the size of the field that is to be modified,

andthe calculation that must be performed. Thus,the set of codes reflects the
instruction formats and addressing modesthat are found on a particular ma-

chine. For example, there are 24 different relocation codes that are used on
SPARC systems. SunOSlinker implementations on x86 systemsusea different
set of 11 codes.

Symbolic references from the inputfiles that do not have matching defini-
tions are processed by referring to archives and shared objects. An archive is a
collection of relocatable object modules. A directory stored with the archive as-
sociates symbol names with the object modules that contain their definitions.
Selected modules from an archive are automatically included to resolve sym-
bolic references, as described in Section 3.3.1.

A shared object is an indivisible unit that was generated by a previous
link-edit operation. When the link-editor encounters a reference to a symbol

defined in a shared object, the entire contents of the shared object becomea

logical part of the outputfile. All symbols defined in the object are madeavail-
able to the link-editing process. However, the shared object is not physically

included in the outputfile. Instead, the link-editor records the dependency on
the shared object. The actual inclusion of the shared object is deferred until run
time. (This is an example of the dynamic linking approach we discussed in
Section 3.4.2. In this case, the use of dynamic linking allows several executing
programsto share one copy of a shared object.)

The SunOS run-time linker is used to bind dynamic executables and

shared objects at execution time. The linker determines what shared objects
are required by the dynamic executable, and ensures that these objects are in-
cluded. It also inspects the shared objects to detect and process any additional
dependencies on other shared objects.

163

https://hemanthrajhemu.github.io

164 Chapter 3 Loaders and Linkers

After it locates and includes the necessary shared objects, the linker per-
forms relocation and linking operations to prepare the program for execution.

These operations are specified in the relocation and linking sections of the dy-

namic executable and shared objects. They bind symbols to the actual memory
addresses at which the segments are loaded. Binding of data references is per-

formed before control is passed to the executable program. Binding of proce-
dure calls is normally deferred until the program is in execution. During
link-editing, calls to globally defined procedures are converted to references to
a procedure linkage table. When a procedureis called for thefirst time, control
is passed via this table to the run-time linker. The linker looks up the actual
address of the called procedure andinsertsit into the linkage table. Thus sub-
sequentcalls will go directly to the called procedure, without intervention by

the linker. This process is sometimesreferred to as lazy binding.
The run-time linker also provides an additional level of flexibility. During

execution, a program can dynamically bind to new shared objects by request-
ing the sameservices of the linker that we have just described. This feature al-
lows a program to choose between a numberof shared objects, depending on
the exact services required. It also reduces the amount of overhead required
for starting a program.If a shared object is not needed during a particular run,
it is not necessary to bind it at all. These advantages are similar to those that
wediscussed for dynamiclinking in Section 3.4.2.

3.5.3 Cray MPP Linker

This section describes someof the features of the MPPlinker for Cray T3E sys-
tems. Further information can be found in Cray Research (1995b).

As wediscussed in Chapter 1, a T3E system contains a large number of

processing elements (PEs). Each PE has its own local memory.In addition, any
PE can access the memory ofall other PEs (this is sometimes referred to as
remote memory). However, the fastest access time always results from a PE ac-
cessing its own local memory.

An application program on a T3E system is normally allocated a partition

that consists of several PEs. (It is possible to run a program in a partition of

one PE, butthis does not take advantage of the parallel architecture of the ma-

chine.) The work to be done by the program is divided between the PEsin the
partition. One common method for doingthis is to distribute the elements of
an array among the PEs. For example, if a partition consists of 16 PEs, the ele-

ments of a one-dimensional array mightbe distributed as shown in Fig. 3.16.
The processing of such an array can also be divided among the PEs.

Suppose, for example, that the program contains a loop that processes all 256
array elements. PEO could execute this loop for subscripts 1 through 16, PE1

https://hemanthrajhemu.github.io

3.5 Implementation Examples

PEO PE1 PE15

Ali] * A[17] Al241]

Al2] A[18] Al242]

A[3] A[19] “a A[243]

A[16] A[32] A[256]

Figure 3.16 Example of data shared between PEs.

could execute the loop for subscripts 17 through 32, and so on.In this way,all
of the PEs would share in the array processing, with each PE handlingthear-
ray elements from its own local memory. Section 5.5.3 describes how this kind
of sharing of data and work between PEs can bespecified in a program.

Section 6.5.4 discusses some of the operating system functions that are used to
supportthe parallel operation of PEs.

Data that is divided among a numberof PEs, as in the examplejust dis-

cussed,is called shared data. Data that is not shared in this wayis called private
data. In mostcases, private data is replicated on each PE in the partition—that
is, each PE has its own copy.It is also possible for a PE to have private data

itemsthat exist only in its own local memory.
Whena program is loaded, each PE gets a copy of the executable code for

the program, its private data, and its portion of the shared data. There are a
number of possible arrangements of these items, but the overall situation can
be visualized as shownin Fig. 3.17. In this diagram, shared data-i indicates the
portion of the shared data that is assigned to PEi.

The MPPlinker organizes blocks of code or data from the object programs

into lists. The blocks on a givenlist all share some common property—for ex-
ample, executable code, private data, or shared data. The blocks on eachlist
are collected together, an address is assigned to each block, and relocation and
linking operations are performed. The linker then writes an executablefile
that contains the relocated and linked blocks. This executablefile also specifies
the numberof PEs required and other control information.

Notice that the distribution of shared data depends on the numberof PEs
in the partition. For example, if the partition in Fig. 3.16 contained only 8 PEs,
each PE would receive 32 elements of the sharedarray. If the numberof PEs in
the partition is specified at compile time, it cannot be overriddenlater. If the

165

https://hemanthrajhemu.github.io

166 Chapter 3 Loaders and Linkers

PEO PE1 PEn

Code Code Code

Private Private Private
data data data

Shared Shared Shared
data-0 data-1 data-n

Figure 3.17 T3E program loaded on multiple PEs.

partition size is not specified at compile time, there are two possibilities. The
linker can create an executablefile that is targeted for a fixed numberof PEs,
or onethat allows the partition size to be chosen at run time. Thislatter type is
called a plastic executable. A plastic executable file must contain a copy ofall
relocatable object modules, andalllinker directives that are needed to produce
the final executable. Thus, a plastic executable is often considerably larger than
one targeted for a fixed numberof PEs.

EXERCISES

Section 3.1

1. Define a binary object program format for SIC and write an absolute
loader(in SIC assembler language) to load programsin this format.

2. Describe a method for performing the packing required when load-
ing an object program such asthat in Fig. 3.1(a), which uses character
representation of assembled code. How could you implementthis
method in SIC assembler language?

3. What would be the advantages and disadvantages of writing a
loader using a high-level programming language? What problems
might you encounter, and how might these be solved?

https://hemanthrajhemu.github.io

Exercises 167

3.2 Section Exercises

¥

1. Modify the algorithm givenin Fig. 3.11 to use the bit-mask approach
to relocation. Linking will still be performed using Modification

records.

2. Suppose that a computer primarily uses direct addressing, but has

several different instruction formats. What problems doesthis create

for the relocation-bit approach to program relocation? How might
these problems be solved?

3. Apply the algorithm described in Fig. 3.11 to link and load the object
programs in Fig. 3.9. Compare your results with those shown in
Fig. 3.10.

4. Assume that PROGA, PROGB, and PROGCare the same as in

Fig. 3.8. Show how the object programs would change(including
Text and Modification records) if the following statements were
added to each program:

REF9 WORD LISTC

REF1O WORD LISTB-3

REF11 WORD LISTA+LISTB

REF12 WORD ENDC-LISTC-100

REF13 WORD LISTA-LISTB-ENDA+ENDB

5. Apply the algorithm described in Fig. 3.11 to link and load the re-
vised object programs you generated in Exercise4.

6. Using the methodsoutlined in Chapter 8, develop a modular design
for a relocating and linking loader.

7. Extend the algorithm in Fig. 3.11 to include the detection of improper
external reference expressions as suggested in the text. (See Section
2.3.5 for the set of rules to be applied.) What problemsarise in per-

forming this kind of error checking?

8. Modify the algorithm in Fig. 3.11 to use the reference-number tech-
nique for code modification that is described in Section 3.2.3.

9. Suppose that you are implementing an assembler and loader and
want to allow absolute-valued external symbols. For example, one
control section might contain the statements

https://hemanthrajhemu.github.io

168 Chapter 3 Loaders and Linkers

10.

ie

12.

EXTDEF MAXLEN

MAXLEN EQU 4096

and other control sections could refer to the value of MAXLENas an

external symbol. Describe a way of implementing this new feature,

including any needed changesin the loader logic and object program
format.

Suppose that you have been given the task of writing an “un-
loader”—thatis;.a piece of software that can take the imageof a pro-
gram that has been loaded and write out an object program that

could later be loaded and executed. The computer system usesa re-
locating loader, so the object program you produce must be capable
of being loadedat a location in memory thatis different from where
your unloader took it. What problems do you see that would prevent
you from accomplishing this task?

Supposethat you are given two images of a program as it would ap-

pear after loading at two different locations in memory. Assumethat
the images represent the program after it is loaded and relocated, but
before any of the program’s instructions are actually executed.
Describe howthis information could be used to accomplish the “un-
loading” task mentioned in Exercise 10.

Some loaders have used an indirect linking scheme. To use such a
technique with SIC/XE, the assembler would generate a list of
pointer words from the EXTREFdirective (one pointer word for each
external reference symbol). Modification records would direct the
loaderto insert the external symbol addresses into the corresponding
wordsin the pointerlist. External references would then be accom-
plished with indirect addressing using these pointers. Thus, for ex-
ample, an instruction like

LDA KY

(where XYZ is an external reference) would be assembled asif it

were

LDA @PXYZ

https://hemanthrajhemu.github.io

14.

15.

16.

Exercises

where PXYZ is the pointer word containing the address of XYZ.

What would be the advantages and disadvantages of using such a

method? t

Suggest a design for a one-pass linking loader. What restrictions(if

any) would be required? What would be the advantages and disad-
vantages of such a one-pass loader?

Some programming languagesallow data items to be placed in com-

mon areas. There may be more than one commonarea (with different
names) in a source program. We may think of each commonarea as
being a separate controlsection in the object program.

Whenobject programs are linked and loaded,all of the common
areas with the same nameare assigned the samestarting address in

memory. (These common areas maybe of different lengths in the dif-
ferent programs declaring them.) This assignment of memory estab-
lishes an equivalence between the variables that were declared in

common by the different programs. Any data value stored into a
commonarea by one program is thus available to the others.

How might the loader handle such commonareas? (Suggest modifi-
cations to the algorithm of Fig. 3.11 that will perform the necessary
processing.)

Suppose that you have a one-pass assembler that produces object
code directly in memory, as described in Section 2.4. This assembler

was designed to assemble and run only one control section. Now

you wantto changeit so that it can assemble and run a program that
consists of several different control sections (as illustrated in Fig.

2.15).

Describe the changes you would make to implement this new capa-

bility. Your modified assembler should still run in one pass, and

should still produce object code in memory, without using any other
files.

Supposethat a relocatable SIC/XE program is to be loaded in three
different parts. One part contains the assembled instructions of the
program (LDA,JSUB,etc.). Another part contains the data variables

used in the program (which are defined by RESW, RESB, BYTE, and
WORD). The third part contains data constants (which are defined

by a new assembler directive named CONST).

169

https://hemanthrajhemu.github.io

170 Chapter 3 Loaders and Linkers

Object program

ik

Constants

H

PTs

ES oe

Tiss

ea

TVs Executable instructions

Paes

Moses

E

Variables

In the object program, the assembled instructions are contained in

type TI records, the variables in type TV records, and the constants in
type TC records. (These new record types take the place of the nor-
mal Text records in the object program.) The three parts of the object
program will be loaded into separate areas of memory, asillustrated
above. Thestarting address for each of the three segmentsof the pro-
gram will be supplied to the loader at the time the program is being
loaded.

Describe how the assembler could separate the object program into
TI, TV, and TC records as described above. Describe how the loader
would use the information in these records in loading the program.

Consider an extended version of SIC/XE that has a newregister R.
The contents of R cannot be accessed or changed by the user pro-
gram. When a program is loaded, however, the loadersets register R

so that it contains the starting address of the program. For simplicity,
assumethat this version of SIC has no program-counterorbaserela-
tive addressing—thus,all instructions that refer to memory must use
Format4.

Each time the program refers to an addressin memory, the contents
of register R are automatically addedinto the target address calcula-
tion. Suppose, for example, that an assembled instruction specifies
an address of 800 (hexadecimal). If R contains 5000, executing this in-

https://hemanthrajhemu.github.io

Exercises 171

struction would actually refer to memory address 5800. If R contains
8000, executing the sameinstruction would actually refer to memory

address 8800. *

Consider the control sections shownin Fig. 3.8. Assume that these
control sections are being loaded andlinked at the addresses shown

in Fig. 3.10; thus the loader will set register R to the value 4000. What
value should appear in the External Symbol Table of the loader for

the symbol LISTB? Whatshould the instruction labeled REF2 in con-

trol section PROGClooklike after all loading and linking operations
have been performed?

Section 3.3

1. Modify the algorithm in Fig. 3.11 to include automatic library search

to resolve external references. You may assumethat the details of
library access are handled by operating system service routines.

2. Modify the algorithm in Fig. 3.11 to implement CHANGE, DELETE,
and INCLUDEdirectives as described in Section 3.3.2. If you need to
place anyrestrictions on the use of these commands,be sure to state
whattheyare.

3. Suppose that the loader is to producea listing that shows not only
the addresses assigned to external symbols, but also the cross-
references between control sections in the program being loaded.
Whatinformation might be useful in sucha listing? Briefly describe
how you might implementthis feature and include a description of
any data structures needed.

Section 3.4

1. Define a module format suitable for representing linked programs
produced bya linkage editor. Assumethat the linked program is not
to be reprocessed by the linkage editor. Describe an algorithm for a
relocating loader that would be suitable for the loading of linked
programsin this format.

https://hemanthrajhemu.github.io

172 Chapter 3 Loaders and Linkers

2. Define a module format suitable for representing linked programs
produced by a linkage editor. This format should allow for the load-
ing of the linked program by a one-pass relocating loader, as in
Exercise 1. However, it should also allow for the linked program to
be reprocessed by the linkage editor. Describe how your formatal-
lowsfor both one-pass loading andrelinking.

3. Consider the following possibilities for the storage, linking, and exe-
cution of a user’s program:

a. Store the source program only; reassemble the program and use a
linking loader each timeit is to be executed.

b. Store the source and object versions of the program; use a linking

loader each time the progranvistobeexecuted.

c. Store the source program andthe linked version with external ref-
erences to library subroutines left unresolved. Use a linking
loader each time the programis to be executed.

d. Store the source program andthe linked version with all external
references resolved. Use a relocating loader each time the pro-
gram is to be executed.

e. Store the source program and a linked version that hasall exter-
nal references resolved andall relocation performed. Use an ab-
solute loader each time the programis to be executed.

Under whatconditions might each of these approaches be appropri-
ate? Assume that no changesare required in the source program
from one execution to the next.

4. Dynamic linking, as described in Section 3.4.2, works for transfers of
control only. How could the implementation be extended so that
data references could also cause dynamic loading to occur?

5. Suppose that routines that are brought into memory by dynamic
loading need not be removed until the termination of the main pro-
gram. Suggest a way to improvethe efficiency of dynamic linking by
making it unnecessary for the operating system to be involved in the
transfer of controlafter the routine is loaded.

6. Suppose that it may be necessary to remove from memory routines
that were dynamically loaded (to reuse the space). Will the method
that you suggested in Exercise 5 still work? What problemsarise,
and how might they be solved?

https://hemanthrajhemu.github.io

° Exercises 173

7. What kinds of errors might occur during bootstrap loading? What
action should the bootstrap loader take for such errors? Modify the
SIC/XE bootstrap loader shownin Fig. 3.3 to include such error
checking.

Section 3.5

1. Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX linker and
loader?

2. Consider the description of the PowerPC architecture in Section
1.5.2, and the description of the PowerPC assembler in Section 2.5.3.

Whatcharacteristics would you expect to find in a PowerPC linker
and loader?

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

