Or
Visit : https://hemanthrajhemu.github.io

to All Study Materials according to VTU,
— Computer Science En

— Information Science E
ctronics and Communica
& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU TELEGRAM

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

he¢eps:/hemanthrajhemu.github.io

253 AIX Assembler 108
Exercises 111

Chapter 3 Loaders and Linkers 123

3.1 Basic Loader Functions 124
31 Design of an Absolute Loader 124
312 ASimple Bootstrap Loader 127

3.2 Machine-Dependent Loader Features 129

321 Relocation 130

3.22 Program Linking 134

323 Algorithm and Data Structures for a Linking Loader 141
3.3 Machine-Independent Loader Features 147

33.1 Automatic Library Search 147

33.2 Loader Options 149

3.4 Loader Design Options 151
341 Linkage Editors 152
342 Dynamic Linking 155
343 Bootstrap Loaders 158

3.5 Implementation Examples 159
3.5.1 MS-DOS Linker 160
352 SunOS Linkers 162
3.53 Cray MPP Linker 164

Exercises 166

Chapter 4 Macro Processors 175

41 Basic Macro Processor Functions 176
411 Macro Definition and Expansion 176
412 Macro Processor Algorithm and Data Structures 181

4.2 Machine-Independent Macro Processor Features 186
421 Concatenation of Macro Parameters 186
422 Generation of Unique Labels 187
423 Conditional Macro Expansion 189
424 Keyword Macro Parameters 196

4.3 Macro Processor Design Options 197

43.1 Recursive Macro Expansion 199

43.2 General-Purpose Macro Processors 202

43.3 Macro Processing within Language Translators 204
44 Implementation Examples 206

441 MASM Macro Processor 206
442 ANSIC Macro Language 209

Chapter 3

Loaders énd Linkers

As we have seen, an object program contains translated instructions and data
values from the source program, and specifies addresses in memory where
these items are to be loaded. Our discussions in Chapter 2 introduced the fol-
lowing three processes:

1. Loading, which brings the object program into memory for execution.

2. Relocation, which modifies the object program so that it can be loaded
at an address different from the location originally specified (see
Section 2.2.2).

3. Linking, which combines two or more separate object programs and
supplies the information needed to allow references between them
(see Section 2.3.5).

A loader is a system program that performs the loading function. Many
loaders also support relocation and linking. Some systems have a linker (or
linkage editor) to perform the linking operations and a separate loader to han-
dle relocation and loading. In most cases all the program translators (i.e., as-
semblers and compilers) on a particular system produce object programs in
the same format. Thus one system loader or linker can be used regardless of
the original source programming language.

In this chapter we study the design and implementation of loaders and
linkers. For simplicity we often use the term loader in place of loader and/or
linker. Because the processes of assembly and loading are closely related, this
chapter is similar in structure to the preceding one. Many of the same exam-
ples used in our study of assemblers are carried forward in this chapter.
During our discussion of assemblers, we studied a number of features and ca-
pabilities that are of concern to both the assembler and the loader. In the pre-
sent chapter we encounter many of the same concepts again. This time, of
course, we are primarily concerned with the operation of the loader; however,
it is important to remember the close connections between program transla-
tion and loading.

htéps:/hemanthrajhemu.github.io

123

heteps:/hemanthrajhemu.github.io

124

Chapter 3 Loaders and Linkers

As in the preceding chapter, we begin by discussing the most basic soft-
ware function—in this case, loading an object program into memory for execu-
tion. Section 3.1 presents the design of an absolute loader and illustrates its
operation. Such a loader might be found on a simple SIC machine that uses
the sort of assembler described in Section 2.1.

Section 3.2 examines the issues of relocation and linking from the loader’s
point of view. We consider some possible alternatives for object program rep-
resentation and examine how these are related to issues of machine architec-
ture. We also present the design of a linking loader, a more advanced type of
loader that is typical of those found on most modern computing systems.

Section 3.3 presents a selection of commonly encountered loader features
that are not directly related to machine architecture. As before, our purpose is
not to cover all possible options, but to introduce some of the concepts and
techniques most frequently found in loaders.

Section 3.4 discusses alternative ways of accomplishing loader functions.
We consider the various times at which relocation and linking can be per-
formed, and the advantages and disadvantages associated with each. In this
context we study linkage editors (which perform linking before loading) and
dynamic linking schemes (which delay linking until execution time).

Finally, in Section 3.5 we briefly discuss some examples of actual loaders
and linkers. As before, we are primarily concerned with aspects of each piece
of software that are related to hardware or software design decisions.

3.1 BASIC LOADER FUNCTIONS

In this section we discuss the most fundamental functions of a loader—bring-
ing an object program into memory and starting its execution. You are proba-
bly already familiar with how these basic functions are performed. This
section is intended as a review to set the stage for our later discussion of more
advanced loader functions. Section 3.1.1 discusses the functions and design of
an absolute loader and gives the outline of an algorithm for such a loader.
Section 3.1.2 presents an example of a very simple absolute loader for SIC/XE,
to clarify the coding techniques that are involved.

3.1.1 Design of an Absolute Loader

We consider the design of an absolute loader that might be used with the sort
of assembler described in Section 2.1. The object program format used is the
same as that described in Section 2.1.1. An example of such an object program
is shown in Fig. 3.1(a).

T L

htéps:/hemanthrajhemu.github.io

3.1 Basic Loader Functions

HCOPY PGIODQPUIO?A
EPOIOOQQ§34103%582Q3%pﬂ103@@3103q90101%&32065@6100%pOIOEQQClOS%pUIOZD
%pﬂlOl%J%PCIG3§§B20&%98103%&COOOQﬁSﬁFﬁQPOOOO%POOODO
§90203%l§pé103%@0103qg0205q90203&ﬂ8205%@8103?@0205a969032@C205%@8203F
%90205alq&0103§3COOOQ?LPDIOOQPﬁ103%@020?%}0206ﬁ§0903%PC20?%@C1036
;POZU?%P%@BZOGE?COOOQPS

quIUOO
(a) Object program
Memory
address Contents
0000 XXXXXXAX AXXXXAXK XAXXXAXXX XXXXXNXX
0010 XXXXXAXX XAXXXXXX XXAXXXXKXX HXXXXXXX
L] . L] L] L]
L] L] . L] .
. . . - L]
OFFO XXXAXXXX XAXXXXKX XXXXXAXXX XXXXXXXX

1000 14103348 20390010 36281030 30101548
1010 20613C10 0300102A 0C103900 102D0OC10
1020 36482061 0810334C 0000454F 46000003
1030 D00000%xx XXXXXXXX XXXXXXXX XXXXXXXX +—COPY

L] L]
L] L] L] - L]

L] L]
2030 XXXXXXXX xxxxxxxx xx041030 001030E0
2040 205D3020 3FD8205D 28103030 20575490
2050 392C205E 38203F10 10364C00 OOF10010
2060 00041030 EO207930 20645090 39Dc2079
2070 2C103638 20644C00 Oﬂﬂﬂmxxx XXXXXXXX

2080 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
- L] . L] .
L - L] . L]
. L] . L] L]

(b) Program loaded in memory

Figure 3.1 Loading of an absolute program.

Because our loader does not need to perform such functions as linking and
program relocation, its operation is very simple. All functions are accom-
plished in a single pass. The Header record is checked to verify that the correct
program has been presented for loading (and that it will fit into the available
memory). As each Text record is read, the object code it contains is moved to
the indicated address in memory. When the End record is encountered, the
loader jumps to the specified address to begin execution of the loaded pro-
gram. Figure 3.1(b) shows a representation of the program from Fig. 3.1(a) af-
ter loading. The contents of memory locations for which there is no Text record
are shown as xxxx. This indicates that the previous contents of these locations
remain unchanged.

125

126

heteps:/hemanthrajhemu.github.io

Chapter 3 Loaders and Linkers

Figure 3.2 shows an algorithm for the absolute loader we have discussed.
Although this process is extremely simple, there is one aspect that deserves
comment. In our object program, each byte of assembled code is given using
its hexadecimal representation in character form. For example, the machine
operation code for an STL instruction would be represented by the pair of char-
acters “1” and “4”. When these are read by the loader (as part of the object pro-
gram), they will occupy two bytes of memory. In the instruction as loaded for
execution, however, this operation code must be stored in a single byte with
hexadecimal value 14. Thus each pair of bytes from the object program record
must be packed together into one byte during loading. It is very important to
realize that in Fig. 3.1(a), each printed character represents one bytfe of the ob-
ject program record. In Fig. 3.1(b), on the other hand, each printed character
represents one hexadecimal digit in memory (i.e., a half-byte).

This method of representing an object program is inefficient in terms of
both space and execution time. Therefore, most machines store object pro-
grams in a binary form, with each byte of object code stored as a single byte in
the object program. In this type of representation, of course, a byte may con-
tain any binary value. We must be sure that our file and device conventions do
not cause some of the object program bytes to be interpreted as control charac-
ters. For example, the convention described in Section 2.1—indicating the end
of a record with a byte containing hexadecimal 00—would clearly be unsuit-
able for use with a binary object program.

Obviously object programs stored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue to use
character representations of object programs in our examples in this book.

begin
read Header record
verify program name and length
read first Text record
while record type # 'E’ do
begin
{if object code is in character form, convert into
internal representation}
move object code to specified location in memory
read next object program record
end
jump to address specified in End record
end :

Figure 3.2 Algorithm for an absolute loader.

3.1 Basic Loader Functions

3.1.2 A Simple Bootstrap Loader

When a computer is flrst turned on or restarted, a special type of absolute
loader, called a bootstrap loader, is executed. This bootstrap loads the first pro-
gram to be run by the computer—usually an operating system. (Bootstrap
loaders are discussed in more detail in Section 3.4.3.) In this section, we exam-
ine a very simple bootstrap loader for SIC/XE. In spite of its simplicity, this
program illustrates almost all of the logic and coding techniques that are used
in an absolute loader.

Figure 3.3 shows the source code for our bootstrap loader. The bootstrap it-
self begins at address 0 in the memory of the machine. It loads the operating
system (or some other program) starting at address 80. Because this loader is
used in a unique situation (the initial program load for the system), the pro-
gram to be loaded can be represented in a very simple format. Each byte of ob-
ject code to be loaded is represented on device F1 as two hexadecimal digits
(just as it is in a Text record of a SIC object program). However, there is no
Header record, End record, or control information (such as addresses or
lengths). The object code from device F1 is always loaded into consecutive
bytes of memory, starting at address 80. After all of the object code from device
F1 has been loaded, the bootstrap jumps to address 80, which begins the exe-
cution of the program that was loaded.

Much of the work of the bootstrap loader is performed by the subroutine
GETC. This subroutine reads one character from device F1 and converts it
from the ASCII character code to the value of the hexadecimal digit that is rep-
resented by that character. For example, the ASCII code for the character “0”
(hexadecimal 30) is converted to the numeric value 0. Likewise, the ASCII
codes for “1” through “9” (hexadecimal 31 through 39) are converted to the
numeric values 1 through 9, and the codes for “A” through “F” (hexadecimal
41 through 46) are converted to the values 10 through 15. This is accomplished
by subtracting 48 (hexadecimal 30) from the character codes for “0” through
“9”, and subtracting 55 (hexadecimal 37) from the codes for “A” through “F”.
The subroutine GETC jumps to address 80 when an end-of-file (hexadecimal
04) is read from device F1. It skips all other input characters that have ASCII
codes less than hexadecimal 30. This causes the bootstrap to ignore any control
bytes (such as end-of-line) that are read.

The main loop of the bootstrap keeps the address of the next memory loca-
tion to be loaded in register X. GETC is used to read and convert a pair of
characters from device F1 (representing 1 byte of object code to be loaded).
These two hexadecimal digit values are combined into a single byte by shift-
ing the first one left 4 bit positions and adding the second to it. The resulting
byte is stored at the address currently in register X, using a STCH instruction
that refers to location 0 using indexed addressing. The TIXR instruction is then
used to add 1 to the value in register X. (Because we are not interested in the
result of the comparison performed by TIXR, register X is also used as the sec-
ond operand for this instruction.)

https:llhemanthiajhemu.github.io

127

htcps:/hemanthrajhemu.github.io

128 Chapter 3 Loaders and Linkers

BOOT START 0 BOOTSTRAP LOADER FOR SIC/XE

. THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT
. INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF
. THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF
. THE PROGRAM JUST LOADED. REGISTER X CONTAINS THE NEXT ADDRESS
. TO BE LOADED.

CLEAR A CLEAR REGISTER A TO ZERO
LDX #128 INITIALIZE REGISTER X TO HEX 80
LOOP JSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED
RMO A,S SAVE IN REGISTER S
SHIFTL 5,4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDR S,A COMBINE DIGITS TO FORM ONE BYTE
STCH 0,X STORE AT ADDRESS IN REGISTER X
TIXR X, X ADD 1 TO MEMORY ADDRESS BEING LOADED
J LOOP LOOP UNTIL END OF INPUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECTMAL, DIGIT VALUE. THE
. CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING
. ADDRESS (HEX 80).

GETC D INEPUT TEST INPUT DEVICE

JEQ GETC LOOP UNTIL READY
RD INPUT READ CHARACTER
COoMP #4 IF CHARACTER IS HEX 04 (END OF FILE),
JEQ 80 JUMP TO START OF PROGRAM JUST LOADED
COMP #48 COMPARE TO HEX 30 (CHARACTER ‘0')
JLT GETC SKIP CHARACTERS LESS THAN 'O’
SUB #48 SUBTRACT HEX 30 FROM ASCII CODE
CcoMP #10 IF RESULT IS LESS THAN 10, CONVERSION IS
JLT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE
SUB #7 (FOR HEX DIGITS ‘A’ THROUGH 'F')
RETURN RSUB RETURN TO CALLER
INPUT BYTE el o CODE FOR INPUT DEVICE
END LOOP

Figure 3.3 Bootstrap loader for SIC/XE.

You should work through the-execution of this bootstrap routine by hand
with several bytes of sample input, keeping track of the exact contents of all
registers and memory locations as you go. This will help you become familiar
with the machine-level details of how loading is performed.

For simplicity, the bootstrap routine in Fig. 3.3 does not do any error check-
ing it assumes that its input is correct. You are encouraged to think about the

heteps:/hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features

different kinds of error conditions that might arise during the loading, and
how these could be handled.

L 3

3.2 MACHINE-DEPENDENT LOADER FEATURES

The absolute loader described in Section 3.1 is certainly simple and efficient;
however, this scheme has several potential disadvantages. One of the most ob-
vious is the need for the programmer to specify (when the program is assem-
bled) the actual address at which it will be loaded into memory. If we are
considering a very simple computer with a small memory (such as the stan-
dard version of SIC), this does not create much difficulty. There is only room
to run one program at a time, and the starting address for this single user pro-
gram is known in advance. On a larger and more advanced machine (such as
SIC/XE), the situation is not quite as easy. We would often like to run several
independent programs together, sharing memory (and other system resources)
between them. This means that we do not know in advance where a program
will be loaded. Efficient sharing of the machine requires that we write relocat-
able programs instead of absolute ones.

Writing absolute programs also makes it difficult to use subroutine li-
braries efficiently. Most such libraries (for example, scientific or mathematical
packages) contain many more subroutines than will be used by any one pro-
gram. To make efficient use of memory, it is important to be able to select and
load exactly those routines that are needed. This could not be done effectively
if all of the subroutines had preassigned absolute addresses.

In this section we consider the design and implementation of a more com-
plex loader. The loader we present is one that is suitable for use on a SIC/XE
system and is typical of those that are found on most modern computers. This
loader provides for program relocation and linking, as well as for the simple
loading functions described in the preceding section. As part of our discus-
sion, we examine the effect of machine architecture on the design of the loader.

The need for program relocation is an indirect consequence of the change
to larger and more powerful computers. The way relocation is implemented in
a loader is also dependent upon machine characteristics. Section 3.2.1 dis-
cusses these dependencies by examining different implementation techniques
and the circumstances in which they might be used.

Section 3.2.2 examines program linking from the loader’s point of view.
Linking is not a machine-dependent function in the sense that relocation is;
however, the same implementation techniques are often used for these two
functions. In addition, the process of linking usually involves relocation of
some of the routines being linked together. (See, for example, the previous dis-
cussion concerning the use of subroutine libraries.) For these reasons we dis-
cuss linking together with relocation in this section.

129

heteps:/hemanthrajhemu.github.io

130

Chapter 3 Loaders and Linkers

Section 3.2.3 discusses the data structures used by a typical linking (and re-
locating) loader, and gives a description of the processing logic involved. The
algorithm presented here serves as a starting point for discussion of some of
the more advanced loader features in the following sections.

3.2.1 Relocation

Loaders that allow for program relocation are called relocating loaders or relative
loaders. The concept of program relocation was introduced in Section 2.2.2; you
may want to briefly review that discussion before reading further. In this
section we discuss two methods for specifying relocation as part of the object
program.

The first method we discuss is essentially the same as that introduced in
Chapter 2. A Modification record is used to describe each part of the object
code that must be changed when the program is relocated. (The format of the
Modification record is given in Section 2.3.5.) Figure 3.4 shows a SIC/XE pro-
gram we use to illustrate this first method of specifying relocation. The pro-
gram is the same as the one in Fig. 2.6; it is reproduced here for convenience.
Most of the instructions in this program use relative or immediate addressing.
The only portions of the assembled program that contain actual addresses are
the extended format instructions on lines 15, 35, and 65. Thus these are the
only items whose values are affected by relocation.

Figure 3.5 displays the object program corresponding to the source in
Fig.3.4. Notice that there is one Modification record for each value that must
be changed during relocation (in this case, the three instructions previously
mentioned). Each Modification record specifies the starting address and length
of the field whose value is to be altered. It then describes the modification to
be performed. In this example, all modifications add the value of the symbol
COPY, which represents the starting address of the program. The algorithm
the loader uses to perform these modifications is discussed in Section 3.2.3.
More examples of relocation specified in this manner appear in the next sec-
tion when we examine the relationship between relocation and linking.

The Modification record scheme is a convenient means for specifying pro-
gram relocation; however, it is not well suited for use with all machine archi-
tectures. Consider, for example, the program in Fig. 3.6. This is a relocatable
program written for the standard version of SIC. The important difference
between this example and the one in Fig. 3.4 is that the standard SIC machine
does not use relative addressing. In this program the addresses in all the in-
structions except RSUB must be modified when the program is relocated. This
would require 31 Modification records, which results in an object program
more than twice as large as the one in Fig. 3.5.

ht¢ps:/hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features 131
Line Loc Source statement Object code
5 0000 copY START 0
10 0000 FIRST STL RETADR 17202D
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH
15 0006 CLOOP +JSUB RDREC 4B101036
20 000A LDA LENGTH 032026
25 000D coMP #0 290000
30 0010 JEOQ ENDFIL 332007
35 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP 3F2FEC
45 001A ENDFIL LDA EOF 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 002A J ERETADR 3E2003
80 002D EOF BYTE C’EOF' 454746
g8 0030 RETADR RESW L
100 0033 LENGTH RESW ali
105 0036 BUFFER RESB 4096
110 J
i 2 SUBROUTINE TO READ RECORD INTO BUFFER
120 :
125 1036 RDREC CLEAR X B410
130 1038 CLEAR A B400
132 103a CLEAR S B440
133 103¢ +LDT #4096 75101000
135 1040 RLOOP TD INPUT E32019
140 1043 JEQ RLOOP 332FFA
145 1046 RD INPUT DB2013
150 1049 COMPR A,S A004
155 104B JEQ EXIT 332008
160 104E STCH BUFFER, X 57C003
165 1051 TIXR T B850
170 1053 JLT RLOOP 3B2FEA
175 1056 EXTIT STX LENGTH 134000
180 1059 RSUB 4F0000
185 105C INPUT BYTE KPS F1
195 2
200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 5
210 105D WRREC CLEAR X B410
212 105F LDT LENGTH 774000
215 1062 WLOOP D OUTPUT E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD OUTPUT DF2008
235 106E TIXR 1 B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
250 1076 OUTPUT BYTE X'05' 05
255 END FIRST
Figure 3.4 Example of a SIC/XE program (from Fig. 2.6).

https:/hemanthrajhemu.github.io

132 Chapter 3 Loaders and Linkers

HCOPY FQOOOOOAOO 1077

T0000001D1 7 202Dﬂ69202 Dnﬁnl 0 1036’,\032DZﬁA290000n33200?‘\&310 1 OSDA3F2 FEC032010
'1;\00001 DﬂIBAOFZO 1 6A010003A0F200%\63 101 050{\322003’\6 54F46

'I‘AOOI 0361DB4 10A3600AB440A7 5101 O00E32019332FFADB201 %\AOO&A332003A57C003,\38 50
15;\001 053n]' DA332FEAA1 34000’61?0000‘,\17 LB4 10"\7 74000E3201 1}\332FF%§ SCOOSnDFZOOBﬂBBSO
TAOOI070n07h382FEFAGF0000A05

M00000705+COPY

M00001405+COPY

HnDOOUZ ?A05+C0PY

E000000

Figure 3.5 Object program with relocation by Modification records.

On a machine that primarily uses direct addressing and has a fixed instruc-
tion format, it is often more efficient to specify relocation using a different
technique. Figure 3.7 shows this method applied to our SIC program example.
There are no Modification records. The Text records are the same as before ex-
cept that there is a relocation bit associated with each word of object code. Since
all SIC instructions occupy one word, this means that there is one relocation
bit for each possible instruction. The relocation bits are gathered together into
a bit mask following the length indicator in each Text record. In Fig. 3.7 this
mask is represented (in character form) as three hexadecimal digits. These
characters are underlined for easier identification in the figure.

If the relocation bit corresponding to a word of object code is set to 1, the
program'’s starting address is to be added to this word when the program is re-
located. A bit value of 0 indicates that no modification is necessary. If a Text
record contains fewer than 12 words of object code, the bits corresponding to
unused words are set to 0. Thus the bit mask FFC (representing the bit string
111111111100) in the first Text record specifies that all 10 words of object code
are to be modified during relocation. These words contain the instructions cor-
responding to lines 10 through 55 in Fig. 3.6. The mask E00 in the second Text
record specifies that the first three words are to be modified. The remainder of
the object code in this record represents data constants (and the RSUB instruc-
tion) and thus does not require modification.

The other Text records follow the same pattern. Note that the object code
generated from the LDX instruction on line 210 begins a new Text record even
though there is room for it in the preceding record. This occurs because each
relocation bit is associated with a 3-byte segment of object code in the Text
record. Any value that is to be modified during relocation must coincide with
one of these 3-byte segments so that it corresponds to a relocation bit. The as-
sembled LDX instruction does require modification because of the direct ad-
dress. However, if it were placed in the preceding Text record, it would not be

.

Line

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
L5
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255

hé¢cps:/hemanthrajhemu.github.io

Loc

0000
0000
0003
0006
0002
oooc
000F
0012
0015
0018
001B
001E
0021
0024
0027
002A
002D
0030
0033
0036
0039

1039
103C
103F
1042
1045
1048
104B
104E
1051
1054
1057
105A
105D
105E

1061
1064
1067
1068
106D
1070
1073
1076
1079

3.2 Machine-Dependent Loader Features

Source statement

COPY,
FIRST
CLOOP

ENDFIL

ZERO

RETADE
LENGTH
BUFFER

RDREC

RLOCF

EXTT

MAXT.EN

WLOOP

OUTPUT

START
STL
JSUB
LDA
COMP
JEQ
JSUB
J
LDA
STA
LDA
STA
JSUB
LDL
RSUB
BYTE

Object code

140033
481039
000036
280030
300015
481061
3C0003
00002a
0c0039
00002D
0c0036
481061
080033
4C0000
454F46
000003
000000

SUBROUTINE TC READ RECORD INTO

TIX
JLT
8TX
RSUB
BYTE
WORD

SUBROUTINE TO WRITE RECORD FROM BUFFER

LDX
TD

ZERO
ZERO
INPUT
RLOOP
INPUT
ZERO
EXIT
BUFFER, X
MAXLEN
RLOOP
LENGTH

b g T B
4096

ZERO
OUTPUT
WLOOP
BUFFER, X
OUTPUT
LENGTH
LOOP

X055
FIRST

040030
000030
E0105D
30103F
D8105D
280030
301057
548039
2C105E
38103F
100036
4C0000
1018

001000

040030
E01079
301064
508039
DC1079
2c0036
381064
4C0000
05

BUFFER

Figure 3.6 Relocatable program for a standard SIC machine.

133

heteps:/hemanthrajhemu.github.io nﬂ

134 Chapter 3 Loaders and Linkers

HCOPY 000000001074

TAOUUDOUAI EEE“I 4003 3A48 103 9:\000036.\280030,\3000 1548106 1A3CGOOBnOOOOZAECOOJQnODOOZD
T00001 Enl 5&0(’:0[}36’\48 106 1{\08003 3*(20000;’-;5& F46000003000000

T0010391 m0&0030n000030.\50105Dn30103F,-\D31050n23003on30105}:&5{'303%\2(:105%33 103F
TﬂOU 1 057&#&&1 00036nﬁCOOOOAF 1001000

T001 06 11 9&0&0030}0 1079301 064‘,\508039}\DC1 07 %\2C0036ﬁ38 10644C000005

EAODOOOO

Figure 3.7 Object program with relocation by bit mask.

properly aligned to correspond to a relocation bit because of the l-byte data
value generated from line 185. Therefore, this instruction must begin a new
Text record in the object program.

You should carefully examine the remainder of the object program in Fig.
3.7. Make sure you understand how the relocation bits are generated by the as-
sembler and used by the loader.

Some computers provide a hardware relocation capability that eliminates
some of the need for the loader to perform program relocation. For example,
some such machines consider all memory references to be relative to the be-
ginning of the user’s assigned area of memory. The conversion of these rela-
tive addresses to actual addresses is performed as the program is executed.
(We discuss this further when we study memory management in Chapter 6.)
As the next section illustrates, however, the loader must still handle relocation
of subprograms in connection with linking.

3.2.2 Program Linking

The basic concepts involved in program linking were introduced in Section
2.3.5. Before proceeding you may want to review that discussion and the ex-
amples in that section. In this section we consider more complex examples of
external references between programs and examine the relationship between
relocation and linking. The next section gives an algorithm for a linking and
relocating loader.

Figure 2.15 in Section 2.3.5 showed a program made up of three control
sections. These control sections could be assembled together (that is, in the
same invocation of the assembler), or they could be assembled independently
of one another. In either case, however, they would appear as separate seg-
ments of object code after assembly (see Fig. 2.17). The programmer has a nat-
ural inclination to think of a program as a logical entity that combines all of
the related control sections. From the loader’s point of view, however, there is
no such thing as a program in this sense—there are only control sections that

htéps:/hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features

are to be linked, relocated, and loaded. The loader has no way of knowing
(and no need to know) which control sections were assembled at the same
time. i

Consider the three (separately assembled) programs in Fig. 3.8, each of
which consists of a single control section. Each program contains a list of items
(LISTA, LISTB, LISTC); the ends of these lists are marked by the labels ENDA,
ENDB, ENDC. The labels on the beginnings and ends of the lists are external
symbols (that is, they are available for use in linking). Note that each program
contains exactly the same set of references to these external symbols. Three of
these are instruction operands (REF1 through REF3), and the others are the
values of data words (REF4 through REEFS8). In considering this example, we
examine the differences in the way these identical expressions are handled
within the three programs. This emphasizes the relationship between the relo-
cation and linking processes. To focus on these issues, we have not attempted
to make these programs appear realistic. All portions of the programs not in-
volved in the relocation and linking process are omitted. The same applies to
the generated object programs shown in Fig. 3.9.

Consider first the reference marked REF1. For the first program (PROGA),
REF1 is simply a reference to a label within the program. It is assembled in the
usual way as a program-counter relative instruction. No modification for relo-
cation or linking is necessary. In PROGB, on the other hand, the same operand
refers to an external symbol. The assembler uses an extended-format instruc-
tion with address field set to 00000. The object program for PROGB (see Fig.
3.9) contains a Modification record instructing the loader to add the value of
the symbol LISTA to this address field when the program is linked. This refer-
ence is handled in exactly the same way for PROGC.

The reference marked REF2 is processed in a similar manner. For PROGA,
the operand expression consists of an external reference plus a constant. The
assembler stores the value of the constant in the address field of the instruc-
tion and a Modification record directs the loader to add to this field the value
of LISTB. In PROGB, the same expression is simply a local reference and is as-
sembled using a program-counter relative instruction with no relocation or
linking required.

REF3 is an immediate operand whose value is to be the difference between
ENDA and LISTA (that is, the length of the list in bytes). In PROGA, the as-
sembler has all of the information necessary to compute this value. During the
assembly of PROGB (and PROGC), however, the values of the labels are un-
known. In these programs, the expression must be assembled as an external
reference (with two Modification records) even though the final result will be
an absolute value independent of the locations at which the programs are
loaded.

135

htéps:/hemanthrajhemu.github.io

136 Chapter 3

Loc

0000

0020
0023
0027

0040

0054
0054
0057
005A
005D
0060

Loc

0000

0036
003a
003D

0060

0070
0070
0073
0076
0079
007C

Loaders and Linkers

PROGA

REF1
REF2
REF3

LISTA

ENDA
REF4
REF5
REF6
REF7
REF8

PROGB

REF1
REF2
REF3

LISTB

ENDB
REF4
REF5
REF&6
REF7
REF8

Figure 3.8

Source statement

START

0

EXTDEF LISTA,ENDA
EXTREF LISTB,ENDB,LISTC, ENDC

LDA
+LDT

LISTA
LISTB+4
#ENDA-LISTA

*x

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA- (ENDB-LISTB)
LISTB-LISTA

REF1

Source statement

START

0

EXTDEF LISTB,ENDB
EXTREF LISTA,ENDA,LISTC, ENDC

+LDA
LoT
+LDX

LISTA
LISTB+4
#ENDA-LISTA

*

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA- (ENDB-LISTB)
LISTB-LISTA

Object code

03201D
77100004
050014

000014
FFFFF6
00003F
000014
FFFFCO

Object code

03100000
772027
05100000

000000
FFFFF6
FFEFFF
FFFFF0
000060

Sample programs illustrating linking and relocation.

heteps:/hemanthrajhemu.github.io

Loc Source statement
0000 PROGC START 0
EXTDEF LISTC,ENDC
EXTREF LISTA,ENDA,LISTB, ENDB
0018 REF1 +LDA LISTA
0o0l1c REF2 +L.DT LISTE+4
0020 REF3 +L.DX #ENDA-LISTA
0030 LISTC EQU ~
0042 ENDC EQU *
0042 REF4 WORD ENDA-LISTA+LISTC
0045 REF5 WORD ENDC-LISTC-10
0048 REF6 WORD ENDC-LISTC+LISTA-1
004B REF7 WORD ENDA-LISTA- (ENDBE-LISTB)
004E REF8 WORD LISTB-LISTA
END
Figure 3.8 (contd)

gpaoca 000000000063
LISTA D0004OENDA 000054

%@ISTB FNDB

ALISTC LENDC

T0000200403201D77100004050014
L]

TO000540F000014FFFFF600003E000014FFFFCO

M00002405+LISTB
M00005406+LISTC

0005fh5+znnc
0005706-LISTC
0005A06+ENDC
0005 LISTC
0005 +PROGA
0005D06,-ENDB
00005006+LISTE
490006006+Llswn

0006006-PROGA
E000020

Figure 3.9 Object programs corresponding to Fig. 3.8.

3.2 Machine-Dependent Loader Features

137

Object code

03100000
77100004
05100000

000030
000008
000011
000000
000000

heteps:/hemanthrajhemu.github.io

138 Chapter 3 Loaders and Linkers

HPROGB 00000000007 F
DLISTB 0O00060ENDE 000070
RLISTA ENDA ,LISTC ENDC

T0000360B0310000077202 705100000

TOOO0?OﬂUFOODOOO‘\FFFFF%FFFFFFFFFFFOOOUO&O
00003705+ LISTA
O0003EQ5+ENDA
MDOOO3EQS-LISTA
0007 GO6+ENDA

0007006-LISTA
00007606+LISTC

0007306+ENDC

0007306-LISTC

000760 6+ENDC
M00007606-LISTC

0007606+LISTA
MO0007906+ENDA
MP0007906-LISTA
400007 CO6+PROGE
Hh00007 ChO n"LISTA
E

HPROGC 000000000051
DLISTC 00030ENDC 000042
RLISTA ENDA LISTBE ENDB

T0000180C031000007710000405100000

T0000420F000030000008000011,000000000000
¥00001905+LISTA
¥00001D0S+LISTB
upoooz1o§43nna
qpaooz? S_LISTA
00004 206+ENDA
mpoooazoe LISTA
M00004206+PROGC
M00004806+LISTA
¥00004EO6+ENDA
M00004B06-LISTA
M00004B06~ENDB
M00004BO6+LISTE
MO0004EQ6+LISTH
MOO004E06-LISTA
E

Figure 3.9 (contd)

The remaining references illustrate a variety of other possibilities. The gen-
eral approach taken is for the assembler to evaluate as much of the expression
as it can. The remaining terms are passed on to the loader via Modification
records. To see this, consider REF4. The assembler for PROGA can evaluate all

https://hemanthrajhemu.github.io

3.2 Machine-Dependent Loader Features

of the expression in REF4 except for the value of LISTC. This results in an ini-
tial value of (hexadecimal) 000014 and one Modification record. However, the
same expression in PROGB contains no terms that can be evaluated by the as-
sembler. The object code therefore contains an initial value of 000000 and three
Modification records. For PROGC, the assembler can supply the value of
LISTC relative to the beginning of the program (but not the actual address,
which is not known until the program is loaded). The initial value of this data
word contains the relative address of LISTC (hexadecimal 000030). Modifica-
tion records instruct the loader to add the beginning address of the program
(i.e., the value of PROGC), to add the value of ENDA, and to subtract the
value of LISTA. Thus the expression in REF4 represents a simple external ref-
erence for PROGA, a more complicated external reference for PROGB, and a
combination of relocation and external references for PROGC.

You should work through references REF5 through REFS for yourself to be
sure you understand how the object code and Modification records in Fig. 3.9
were generated.

Figure 3.10(a) shows these three programs as they might appear in mem-
ory after loading and linking. PROGA has been loaded starting at address
4000, with PROGB and PROGC immediately following. Note that each of
REF4 through REF8 has resulted (after relocation and linking is performed) in
the same value in each of the three programs. This is as it should be, since the
same source expression appeared in each program.

For example, the value for reference REF4 in PROGA is located at address
4054 (the beginning address of PROGA plus 0054, the relative address of REF4
within PROGA). Figure 3.10(b) shows the details of how this value is com-
puted. The initial value (from the Text record) is 000014. To this is added the
address assigned to LISTC, which is 4112 (the beginning address of PROGC
plus 30). In PROGB, the value for REF4 is located at relative address 70 (actual
address 40D3). To the initial value (000000), the loader adds the values of
ENDA (4054) and LISTC (4112), and subtracts the value of LISTA (4040). The
result, 004126, is the same as was obtained in PROGA. Similarly, the computa-
tion for REF4 in PROGC results in the same value. The same is also true for
each of the other references REF5 through REFS.

For the references that are instruction operands, the calculated values after
loading do not always appear to be equal. This is because there is an addi-
tional address calculation step involved for program-counter relative (or base
relative) instructions. In these cases it is the target addresses that are the same.
For example, in PROGA the reference REF1 is a program-counter relative in-
struction with displacement 01D. When this instruction is executed, the pro-
gram counter contains the value 4023 (the actual address of the next
instruction). The resulting target address is 4040. No relocation is necessary for
this instruction since the program counter will always contain the actual (not

139

he¢eps:/hemanthrajhemu.github.io

140 Chapter 3 Loaders and Linkers

-

relative) address of the next instruction. We could also think of this process as
automatically providing the needed relocation at execution time through the
target address calculation. In PROGB, on the other hand, reference REF1 is an
extended format instruction that contains a direct (actual) address. This ad-
dress, after linking, is 4040—the same as the target address for the same refer-
ence in PROGA.

You should work through the details of the other references to see that the
target addresses (for REF2 and REF3) or the data values (for REF5 through
REF8) are the same in each of the three programs. You do not need to worry
about how these calculations are actually performed by the loader because the
algorithm and data structures for doing this are discussed in the next section.
It is important, however, that you understand the calculations to be performed,
and that you are able to carry out the computations by hand (following the in-
structions that are contained in the object programs).

Memory
address Contents
0000 XAXXXKAXX XXXXXXKX XNXXXXAX XXXXXXXX
. . L] L]
L] L] L] L] L]
L] L]
3FF0 XAAXXXXX XXXAAXXXX XXXAXAXXX XXXXXXXX
4000 e einiate e Es eraleieie | aisteiackrered i R S (e
4010 vesisesss easessae saaseass dasseses

4020 |03201D77 1040C705 00l4.... +eveese.|le—PROGA

4030 sssssnse sesssses ssesssss sssessas

4040 ssssssse sessssse ssssssas sssssnss

4050 seseses. 00412600 00080040 51000004

4060 D000BIes seseness ssesnenn sesesises

010 Benis wiiisas
K080 « L Sramed T O 3. o o L LI i N
4090 |...... ce sseessss 22031040 40772027
ROKD' (JOSTE00IE coinirie Tersisas | seadsics]t EHOGH
TR
PO N e e i N O
4000 [......00 41260000 08004051 00000400

40E0 0083.... cessense ssssaess smssssas
40F0 cssesuse esessses sesa0310 40407710
4100 0C70510° 004 ... iisscess sesasseet—FROGE

4110 sessesse sesesses sesssess ssssssns

4120 wesssess 00412600 00080040 51000004
4130 00008§xx XXXXXXXX XXXXXXXX XXXXXXXX
4140 AXAXXXX XXXXXXXX XXXXXXXX XXXXXXXX

. L] L] L]

L] - - L] -

. - L L] L]

Figure 3.10(a) Programs from Fig. 3.8 after linking and loading.

https:llhemanthi'ajhemu.github.io

* 3.2 Machine-Dependent Loader Features 141
Object programs Memory contents
0000

PROGA | HPROGA eee

: (REF4)" :

(REF4)

————
secceecee [)04126|eeessscsncanse

__,/
/] <
/ |DESTS00030 (Actual address
Ve [of LISTC)

|’ Load addresses
\ PROGA 004000

. ProcB

RO

Figure 3.10(b) Relocation and linking operations performed on REF4
from PROGA.

004063

3.2.3 Algorithm and Data Structures for a Linking Loader

Now we are ready to present an algorithm for a linking (and relocating)
loader. We use Modification records for relocation so that the linking and relo-
cation functions are performed using the same mechanism. As mentioned pre-
viously, this type of loader is often found on machines (like SIC/XE) whose
relative addressing makes relocation unnecessary for most instructions.

The algorithm for a linking loader is considerably more complicated than
the absolute loader algorithm discussed in Section 3.1. The input to such a
loader consists of a set of object programs (i.e., control sections) that are to be
linked together. It is possible (and common) for a control section to make an
external reference to a symbol whose definition does not appear until later in
this input stream. In such a case the required linking operation cannot be per-
formed until an address is assigned to the external symbol involved (that is,

he¢eps:/hemanthrajhemu.github.io

142

Chapter 3 Loaders and Linkers

-

until the later control section is read). Thus a linking loader usually makes two
passes over its input, just as an assembler does. In terms of general function,
the two passes of a linking loader are quite similar to the two passes of an as-
sembler: Pass 1 assigns addresses to all external symbols, and Pass 2 performs
the actual loading, relocation, and linking,.

The main data structure needed for our linking loader is an external sym-
bol table ESTAB. This table, which is analogous to SYMTAB in our assembler
algorithm, is used to store the name and address of each external symbol in the
set of control sections being loaded. The table also often indicates in which
control section the symbol is defined. A hashed organization is typically used
for this table. Two other important variables are PROGADDR (program load
address) and CSADDR (control section address). PROGADDR is the beginning
address in memory where the linked program is to be loaded. Its value is sup-
plied to the loader by the operating system. (In Chapter 6 we discuss how
PROGADDR might be generated within the operating system.) CSADDR con-
tains the starting address assigned to the control section currently being
scanned by the loader. This value is added to all relative addresses within the
control section to convert them to actual addresses.

The algorithm itself is presented in Fig. 3.11. As we discuss this algorithm,
you may find it useful to refer to the example of loading and linking in the pre-
ceding section (Figs. 3.9 and 3.10).

During the first pass [Fig. 3.11(a)], the loader is concerned only with
Header and Define record types in the control sections. The beginning load ad-
dress for the linked program (PROGADDR) is obtained from the operating
system. This becomes the starting address (CSADDR) for the first control sec-
tion in the input sequence. The control section name from the Header record is
entered into ESTAB, with value given by CSADDR. All external symbols
appearing in the Define record for the control section are also entered into
ESTAB. Their addresses are obtained by adding the value specified in the
Define record to CSADDR. When the End record is read, the control section
length CSLTH (which was saved from the Header record) is added to
CSADDR. This calculation gives the starting address for the next control sec-
tion in sequence.

At the end of Pass 1, ESTAB contains all external symbols defined in the set
of control sections together with the address assigned to each. Many loaders
include as an option the ability to print a load map that shows these symbols
and their addresses. This information is often useful in program debugging.
For the example in Figs. 3.9 and 3.10, such a load map might look like the
following. This is essentially the same information contained in ESTAB at the
end of Pass 1.

htéps:/hemanthrajhemu.github.io

¢« 3.2 Machine-Dependent Loader Features 143

Control Symbol

section name Address Length

PROGA y 4000 0063
LISTA 4040
ENDA 4054

PROGB 4063 007F
LISTB 40C3
ENDB 40D3

PROGC 40E2 0051
LISTC 4112
ENDC 4124

Pass 1:
begin

get PROGADDR from operating system
set CSADDR to PROGADDR {for first control section}
while not end of input do
begin
read next input record {Header record for control section}
set CSLTH to control section length
search ESTAB for control section name
if found then
set error flag {duplicate external symbol}
else
enter control section name into ESTAB with value CSADDR
while record type # 'E’ do
begin
read next input record
if record type = ‘D’ then
for each symbol in the record do
begin
search ESTAB for symbol name
if found then
set error flag (duplicate external symbol)
else
enter symbol into ESTAB with wvalue
(CSADDR + indicated address)
end {for}
end {while # 'E’'}
add CSLTH to CSADDR {startimg address for next control section}
end {while not EOF}
end {Pass 1}

Figure 3.11(a) Algorithm for Pass 1 of a linking loader.

heteps:/hemanthrajhemu.github.io

144 Chapter 3 Loaders and Linkers

Pass 2:

begin
set CSADDR to PROGADDR
set EXECADDR to PROGADDR |
while not end of input do
begin
read next input record {Header record)
set CSLTH to control section length
while record type # 'E’ do
begin
read next input record
if record type = ‘T’ then
begin
{if object code is in character form, convert
into internal representation}
move object code from record to location
(CSADDR + specified address)
end {if 'T'}
else if record type = ‘M’ then
begin
search ESTAB for modifying symbol name
if found then
add or subtract symbol value at location 1
(CSADDR + specified address)
else
set error flag (undefined external symbol)
end ({if 'M’'}
end {while # 'E’}
if an address is specified {in End record} then
set EXECADDR to (CSADDR + specified address)
add CSLTH to CSADDR
end {while not EOF}
Jjump to location giwven by EXECADDR {to start execution of loaded program}
end {Pass 2}

Figure 3.11(b) Algorithm for Pass 2 of a linking loader.

Pass 2 of our loader [Fig. 3.11(b)] performs the actual loading, relocation,
and linking of the program. CSADDR is used in the same way it was in
Pass 1—it always contains the actual starting address of the control section
currently being loaded. As each Text record is read, the object code is moved to
the specified address (plus the current value of CSADDR). When a
Modification record is encounteréQ, the symbol whose value is to be used for
modification is looked up in ESTAB. This value is then added to or subtracted
from the indicated location in memory.

he¢eps:/hemanthrajhemu.github.io

+ 3.2 Machine-Dependent Loader Features

The last step performed by the loader is usually the transferring of control
to the loaded program to begin execution. (On some systems, the address
where execution is to bggin is simply passed back to the operating system. The
user must then enter a separate Execute command.) The End record for each
control section may contain the address of the first instruction in that control
section to be executed. Our loader takes this as the transfer point to begin exe-
cution. If more than one control section specifies a transfer address, the loader
arbitrarily uses the last one encountered. If no control section contains a trans-
fer address, the loader uses the beginning of the linked program (i.e.,
PROGADDR) as the transfer point. This convention is typical of those found
in most linking loaders. Normally, a transfer address would be placed in the
End record for a main program, but not for a subroutine. Thus the correct exe-
cution address would be specified regardless of the order in which the control
sections were presented for loading. (See Fig. 2.17 for an example of this.)

You should apply this algorithm (by hand) to load and link the object pro-
grams in Fig. 3.9. If PROGADDR is taken to be 4000, the result should be the
same as that shown in Fig. 3.10.

This algorithm can be made more efficient if a slight change is made in the
object program format. This modification involves assigning a referernce number
to each external symbol referred to in a control section. This reference number
is used (instead of the symbol name) in Modification records.

Suppose we always assign the reference number 01 to the control section
name. The other external reference symbols may be assigned numbers as part
of the Refer record for the control section. Figure 3.12 shows the object

ROGA 000000000063
DLISTA 000040ENDA 000054
RO2LISTB O3ENDB Q4LISTC QSENDC
L]
L]

T0000200403201D77100004050014

L]
.

T0000540E000014FFFFF600003F000014FFFFCO
M00002405+02
M00005406+04
¥000057,06+05
M000057,06-04
MO0005A06+05
M00005406-04
MD00U5A06+01
¥00005D06-03
M00005D06+02
M00006006+02
¥00006006-01
E000020

Figure 3.12 Object programs corresponding to Fig. 3.8 using reference
numbers for code modification. (Reference numbers are underlined for
easier reading.)

145

heéeps:/hemanthrajhemu.github.io

146 Chapter 3 Loaders and Linkers

HPROGB 00000000007F
ISTB 000060ENDB 000070

A A ~
RO2LISTA O3ENDA QOA4LISTC QS5ENDC

T0000360B0310000077202705100000

TUDOU700F0000DQFFFFFQFFFFFRFFFFFQPOOQ&O
M000037,05+02
MD0003E05+03
M00003EQ5-02
MD0007006+03
M00007006-02
00007006+04
0007306405
¥00007306-04
00007606405
¥00007606-04
400007606302
0007906303
00007906-02
¥00007C06+01
Mp0007C06- 02

ROGC 000000000051
DLISTC L000030ENDC 000042
RO2LISTA O3ENDA QO4LISTB OSENDB

T0000180C03100000,7710000405100000
.
T0000420E000030000008000011000000000000
M00001905+02
M00001D05+04
MP0002105+03
¥00002105-02
M00004206+03
M00004206-02
M00004206+01
M00004806+02
M00004B06+03
0004B06-02
M00004B06-05
M00004BO6+04
M00004EQ630%4
qpoooazog-oz

Figure 3.12 (contd)

heteps:/hemanthrajhemu.github.io

¢ 3.3 Machine-Independent Loader Features

programs from Fig. 3.9 with this change. The reference numbers are under-
lined in the Refer and Modification records for easier reading. The common
use of a technique such as this is one reason we included Refer records in our
object programs. You may have noticed that these records were not used in the
algorithm of Fig. 3.11.

The main advantage of this reference-number mechanism is that it avoids
multiple searches of ESTAB for the same symbol during the loading of a con-
trol section. An external reference symbol can be looked up in ESTAB once for
each control section that uses it. The values for code modification can then be
obtained by simply indexing into an array of these values. You are encouraged
to develop an algorithm that includes this technique, together with any addi-
tional data structures you may require.

3.3 MACHINE-INDEPENDENT LOADER FEATURES

In this section we discuss some loader features that are not directly related to
machine architecture and design. Loading and linking are often thought of as
operating system service functions. The programmer’s connection with such
services is not as direct as it is with, for example, the assembler during pro-
gram development. Therefore, most loaders include fewer different features
(and less varied capabilities) than are found in a typical assembler.

Section 3.3.1 discusses the use of an automatic library search process for
handling external references. This feature allows a programmer to use stan-
dard subroutines without explicitly including them in the program to be
loaded. The routines are automatically retrieved from a library as they are
needed during linking.

Section 3.3.2 presents some common options that can be selected at the
time of loading and linking. These include such capabilities as specifying alter-
native sources of input, changing or deleting external references, and control-
ling the automatic processing of external references.

3.3.1 Automatic Library Search

Many linking loaders can automatically incorporate routines from a subpro-
gram library into the program being loaded. In most cases there is a standard
system library that is used in this way. Other libraries may be specified by con-
trol statements or by parameters to the loader. This feature allows the pro-
grammer to use subroutines from one or more libraries (for example,
mathematical or statistical routines) almost as if they were a part of the pro-
gramming language. The subroutines called by the program being loaded are

147

heteps:/hemanthrajhemu.github.io

148

Chapter 3 Loaders and Linkers

automatically fetched from the library, linked with the main program, and
loaded. The programmer does not need to take any action beyond mentioning
the subroutine names as external references in the source program. On some
systems, this feature is referred to as automatic library call. We use the term
library search to avoid confusion with the call feature found in most program-
ming languages.

Linking loaders that support automatic library search must keep track of
external symbols that are referred to, but not defined, in the primary input to
the loader. One easy way to do this is to enter symbols from each Refer record
into the symbol table (ESTAB) unless these symbols are already present. These
entries are marked to indicate that the symbol has not yet been defined. When
the definition is encountered, the address assigned to the symbol is filled in to
complete the entry. At the end of Pass 1, the symbols in ESTAB that remain un-
defined represent unresolved external references. The loader searches the
library or libraries specified for routines that contain the definitions of these
symbols, and processes the subroutines found by this search exactly as if they
had been part of the primary input stream.

Note that the subroutines fetched from a library in this way may them-
selves contain external references. It is therefore necessary to repeat the library
search process until all references are resolved (or until no further resolution
can be made). If unresolved external references remain after the library search
is completed, these must be treated as errors.

The process just described allows the programmer to override the standard
subroutines in the library by supplying his or her own routines. For example,
suppose that the main program refers to a standard subroutine named SQRT.
Ordinarily the subroutine with this name would automatically be included via
the library search function. A programmer who for some reason wanted to use
a different version of SQRT could do so simply by including it as input to the
loader. By the end of Pass 1 of the loader, SQRT would already be defined, so
it would not be included in any library search that might be necessary.

The libraries to be searched by the loader ordinarily contain assembled or
compiled versions of the subroutines (that is, object programs). It is possible to
search these libraries by scanning the Define records for all of the object pro-
grams on the library, but this might be quite inefficient. In most cases a special
file structure is used for the libraries. This structure contains a directory that
gives the name of each routine and a pointer to its address within the file. If a
subroutine is to be callable by more than one name (using different entry
points), both names are entered into the directory. The object program itself, of
course, is only stored once. Both directory entries point to the same copy of the
routine. Thus the library search itself really involves a search of the directory,
followed by reading the object programs indicated by this search. Some oper-
ating systems can keep the directory for commonly used libraries permanently

https:llhemanthi?ajhemu.sithub.io

Section 3.3 Machine-Independent Loader Features

in memory. This can expedite the search process if a large number of external
references are to be resolved.

The process of librayy search has been discussed as the resolution of a call
to a subroutine. Obviously the same technique applies equally well to the res-
olution of external references to data items.

3.3.2 Loader Options

Many loaders allow the user to specify options that modify the standard pro-
cessing described in Section 3.2. In this section we discuss some typical loader
options and give examples of their use. Many loaders have a special command
language that is used to specify options. Sometimes there is a separate input
file to the loader that contains such control statements. Sometimes these same
statements can also be embedded in the primary input stream between object
programs. On a few systems the programmer can even include loader control
statements in the source program, and the assembler or compiler retains these
commands as a part of the object program.

We discuss loader options in this section as though they were specified us-
ing a command language, but there are other possibilities. On some systems
options are specified as a part of the job control language that is processed by
the operating system. When this approach is used, the operating system incor-
porates the options specified into a control block that is made available to the
loader when it is invoked. The implementation of such options is, of course,
the same regardless of the means used to select them.

One typical loader option allows the selection of alternative sources of
input. For example, the command

INCLUDE program-name (library-name)
might direct the loader to read the designated object program from a library
and treat it as if it were part of the primary loader input.
Other commands allow the user to delete external symbols or entire con-
trol sections. It may also be possible to change external references within the
programs being loaded and linked. For example, the command

DELETE csect-name

might instruct the loader to delete the named control section(s) from the set of
programs being loaded. The command

CHANGE namel,name2

149

he¢eps:/hemanthrajhemu.github.io

150

Chapter 3 Loaders and Linkers

might cause the external symbol namel to be changed to name2 wherever it ap-
pears in the object programs. An illustration of the use of such commands is
given in the following example.

Consider the source program in Fig. 2.15 and the corresponding object pro-
gram in Fig. 2.17. There is a main program (COPY) that uses two subprograms
(RDREC and WRREC); each of these is a separate control section. If RDREC
and WRREC are designed only for use with COPY, it is likely that the three
control sections will be assembled at the same time. This means that the three
control sections of the object program will appear in the same file (or as part of
the same library member).

Suppose now that a set of utility subroutines is made available on the com-
puter system. Two of these, READ and WRITE, are designed to perform the
same functions as RDREC and WRREC. It would probably be desirable to
change the source program of COPY to use these utility routines. As a tempo-
rary measure, however, a sequence of loader commands could be used to
make this change without reassembling the program. This might be done, for
example, to test the utility routines before the final conversion is made.

Suppose that a file containing the object programs in Fig. 2.17 is the pri-
mary loader input with the loader commands

INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE

These commands would direct the loader to include control sections READ
and WRITE from the library UTLIB, and to delete the control sections RDREC
and WRREC from the load. The first CHANGE command would cause all ex-
ternal references to symbol RDREC to be changed to refer to symbol READ.
Similarly, references to WRREC would be changed to WRITE. The result
would be exactly the same as if the source program for COPY had been
changed to use READ and WRITE. You are encouraged to think for yourself
about how the loader might handle such commands to perform the specified
processing.

Another common loader option involves the automatic inclusion of library
routines to satisfy external references (as described in the preceding section).
Most loaders allow the user to specify alternative libraries to be searched,
using a statement such as

LIBRARY MYLIB

https.llhemanthrajhemu.slthub.lo

3.4 Loader Design Options

Such user-specified libraries are normally searched before the standard system
libraries. This allows the user to use special versions of the standard routines.

Loaders that perform automatic library search to satisfy external references
often allow the user to specify that some references not be resolved in this
way. Suppose, for example, that a certain program has as its main function the
gathering and storing of data. However, the program can also perform an
analysis of the data using the routines STDDEV, PLOT, and CORREL from a
statistical library. The user may request this analysis at execution time. Since
the program contains external references to these three routines, they would
ordinarily be loaded and linked with the program. If it is known that the sta-
tistical analysis is not to be performed in a particular execution of this pro-
gram, the user could include a command such as

NOCALL STDDEV, PLOT, CORREL

to instruct the loader that these external references are to remain unresolved.
This avoids the overhead of loading and linking the unneeded routines, and
saves the memory space that would otherwise be required.

It is also possible to specify that no external references be resolved by li-
brary search. Of course, this means an error will result if the program attempts
to make such an external reference during execution. This option is more use-
ful when programs are to be linked but not executed immediately. It is often
desirable to postpone the resolution of external references in such a case. In
Section 3.4.1 we discuss linkage editors that perform this sort of function.

Another common option involves output from the loader. In Section 3.2.3
we gave an example of a load map that might be generated during the loading
process. Through control statements the user can often specify whether or not
such a map is to be printed at all. If a map is desired, the level of detail can be
selected. For example, the map may include control section names and ad-
dresses only. It may also include external symbol addresses or even a cross-
reference table that shows references to each external symbol.

Loaders often include a variety of other options. One such option is the
ability to specify the location at which execution is to begin (overriding any in-
formation given in the object programs). Another is the ability to control
whether or not the loader should attempt to execute the program if errors are
detected during the load (for example, unresolved external references).

3.4 LOADER DESIGN OPTIONS

In this section we discuss some common alternatives for organizing the load-
ing functions, including relocation and linking. Linking loaders, as described

151

heteps:/hemanthrajhemu.github.io

152

Chapter 3 Loaders and Linkers

in Section 3.2.3, perform all linking and relocation at load time. We discuss
two alternatives to this: linkage editors, which perform linking prior to load
time, and dynamic linking, in which the linking function is performed at exe-
cution time.

Section 3.4.1 discusses linkage editors, which are found on many comput-
ing systems instead of or in addition to the linking loader. A linkage editor
performs linking and some relocation; however, the linked program is written
to a file or library instead of being immediately loaded into memory. This ap-
proach reduces the overhead when the program is executed. All that is re-
quired at load time is a very simple form of relocation.

Section 3.4.2 introduces dynamic linking, which uses facilities of the oper-
ating system to load and link subprograms at the time they are first called. By
delaying the linking process in this way, additional flexibility can be achieved.
However, this approach usually involves more overhead than does a linking
loader.

In Section 3.4.3 we discuss bootstrap loaders. Such loaders can be used to
run stand-alone programs independent of the operating system or the system
loader. They can also be used to load the operating system or the loader itself
into memory.

3.4.1 Linkage Editors

The essential difference between a linkage editor and a linking loader is illus-
trated in Fig. 3.13. The source program is first assembled or compiled, produc-
ing an object program (which may contain several different control sections).
A linking loader performs all linking and relocation operations, including au-
tomatic library search if specified, and loads the linked program directly into
memory for execution. A linkage editor, on the other hand, produces a linked
version of the program (often called a load module or an executable image),
which is written to a file or library for later execution.

When the user is ready to run the linked program, a simple relocating
loader can be used to load the program into memory. The only object code
modification necessary is the addition of an actual load address to relative val-
ues within the program. The linkage editor performs relocation of all control
sections relative to the start of the linked program. Thus, all items that need to
be modified at load time have values that are relative to the start of the linked
program. This means that the loading can be accomplished in one pass with
no external symbol table required. This involves much less overhead than us-
ing a linking loader.

If a program is to be executed many times without being reassembled, the
use of a linkage editor substantially reduces the overhead required. Resolution

https.llhemanthrajhemu.slthub.lo

3.4 Loader Design Options

of external references and library searching are only pertormed once (when
the program is link edited). In contrast, a linking loader searches libraries and
resolves external references every time the program is executed.

Sometimes, however, a program is reassembled for nearly every execution.
This situation might occur in a program development and testing environ-
ment (for example, student programs). It also occurs when a program is used
so infrequently that it is not worthwhile to store the assembled version in a li-
brary. In such cases it is more efficient to use a linking loader, which avoids the
steps of writing and reading the linked program.

The linked program produced by the linkage editor is generally in a form
that is suitable for processing by a relocating loader. All external references are
resolved, and relocation is indicated by some mechanism such as Modification
records or a bit mask. Even though all linking has been performed, informa-
tion concerning external references is often retained in the linked program.
This allows subsequent relinking of the program to replace control sections,
modify external references, etc. If this information is not retained, the linked
program cannot be reprocessed by the linkage editor; it can only be loaded

and executed.
Object Object
program(s) program(s)

e S

i Linking ; Linkage

Lbieny loader Horecy editor
Memory Linked
program

(a)
Relocating

loader

Memory
(b)

Figure 3.13 Processing of an object program using (a) linking loader
and (b) linkage editor.

153

heteps:/hemanthrajhemu.github.io

154

Chapter 3 Loaders and Linkers

If the actual address at which the program will be loaded is known in ad-
vance, the linkage editor can perform all of the needed relocation. The result is
a linked program that is an exact image of the way the program will appear in
memory during execution. The content and processing of such an image are
the same as for an absolute object program. Normally, however, the added
flexibility of being able to load the program at any location is easily worth the
slight additional overhead for performing relocation at load time.

Linkage editors can perform many useful functions besides simply prepar-
ing an object program for execution. Consider, for example, a program
(PLANNER) that uses a large number of subroutines. Suppose that one sub-
routine (PROJECT) used by the program is changed to correct an error or to
improve efficiency. After the new version of PROJECT is assembled or com-
piled, the linkage editor can be used to replace this subroutine in the linked
version of PLANNER. It is not necessary to go back to the original (separate)
versions of all of the other subroutines. The following is a typical sequence of
linkage editor commands used to accomplish this. The command language is
similar to that discussed in Section 3.3.2.

|

INCLUDE PLANNER (PROGLIE)

DELETE PROJECT {DELETE from existing PLANNER}
INCLUDE PROJECT (NEWLIE) {INCLUDE new version}

REPLACE PLANNER (PROGLIB)

Linkage editors can also be used to build packages of subroutines or other
control sections that are generally used together. This can be useful when deal-
ing with subroutine libraries that support high-level programming languages.
In a typical implementation of FORTRAN, for example, there are a large num-
ber of subroutines that are used to handle formatted input and output. These
include routines to read and write data blocks, to block and deblock records,
and to encode and decode data items according to format specifications. There
are a large number of cross-references between these subprograms because of
their closely related functions. However, it is desirable that they remain as sep-
arate control sections for reasons of program modularity and maintainability.

If a program using formatted 1/O were linked in the usual way, all of the
cross-references between these library subroutines would have to be processed
individually. Exactly the same set of cross-references would need to be
processed for almost every FORTRAN program linked. This represents a sub-
stantial amount of overhead. The linkage editor could be used to combine the
appropriate subroutines into a package with a command sequence like the
following:

INCLUDE READR (FTNLIB)
INCLUDE WRITER (FTNLIB)

https:llhemanthi'ajhemu.sithub.io

3.4 Loader Design Options

INCLUDE BLOCK (FTNLIB)

INCLUDE DEBLOCK(FTNLIB)
INCLUDE ENCORE (FTNLIB)
INCLUDE DECODE (FTNLIB)

SAVE FTNIO (SUBLIB)

The linked module named FTNIO could be indexed in the directory of SUBLIB
under the same names as the original subroutines. Thus a search of SUBLIB
before FTNLIB would retrieve FTNIO instead of the separate routines. Since
FTNIO already has all of the cross-references between subroutines resolved,
these linkages would not be reprocessed when each user’s program is linked.
The result would be a much more efficient linkage editing operation for each
program and a considerable overall savings for the system.

Linkage editors often allow the user to specify that external references are
not to be resolved by automatic library search. Suppose, for example, that 100
FORTRAN programs using the I/O routines described above were to be
stored on a library. If all external references were resolved, this would mean
that a total of 100 copies of FTNIO would be stored. If library space were an
important resource, this might be highly undesirable. Using commands like
those discussed in Section 3.3.2, the user could specify that no library search
be performed during linkage editing. Thus only the external references be-
tween user-written routines would be resolved. A linking loader could then be
used to combine the linked user routines with FTNIO at execution time.
Because this process involves two separate linking operations, it would re-
quire slightly more overhead; however, it would result in a large savings in
library space.

Linkage editors often include a variety of other options and commands
like those discussed for linking loaders. Compared to linking loaders, linkage
editors in general tend to offer more flexibility and control, with a correspond-
ing increase in complexity and overhead.

3.4.2 Dynamic Linking

Linkage editors perform linking operations before the program is loaded for
execution. Linking loaders perform these same operations at load time. In this
section we discuss a scheme that postpones the linking function until execu-
tion time: a subroutine is loaded and linked to the rest of the program when it
is first called. This type of function is usually called dynamic linking, dynamic
loading, or load on call.

155

heéeps:/hemanthrajhemu.github.io

156

Chapter 3 Loaders and Linkers

-

Dynamic linking is often used to allow several executing programs to
share one copy of a subroutine or library. For example, run-time support rou-
tines for a high-level language like C could be stored in a dynantic link library.
A single copy of the routines in this library could be loaded into the memory
of the computer. All C programs currently in execution could be linked to this
one copy, instead of linking a separate copy into each object program.

In an object-oriented system, dynamic linking is often used for references
to software objects. This allows the implementation of the object and its meth-
ods to be determined at the time the program is run. The implementation can
be changed at any time, without affecting the program that makes use of the
object. Dynamic linking also makes it possible for one object to be shared by
several programs, as discussed previously. (See Section 8.4 for an introduction
to object-oriented programming and design.)

Dynamic linking also offers some other advantages over the other types of
linking we have discussed. Suppose, for example, that a program contains
subroutines that correct or clearly diagnose errors in the input data during ex-
ecution. If such errors are rare, the correction and diagnostic routines may not
be used at all during most executions of the program. However, if the program
were completely linked before execution, these subroutines would need to be
loaded and linked every time the program is run. Dynamic linking provides
the ability to load the routines only when (and if) they are needed. If the sub-
routines involved are large, or have many external references, this can result in
substantial savings of time and memory space.

Similarly, suppose that in any one execution a program uses only a few out
of a large number of possible subroutines, but the exact routines needed can-
not be predicted until the program examines its input. This situation could oc-
cur, for example, with a program that allows its user to interactively call any of
the subroutines of a large mathematical and statistical library. Input data could
be supplied by the user, and results could be displayed at the terminal. In this
case, all of the library subroutines could potentially be needed, but only a few
will actually be used in any one execution. Dynamic linking avoids the neces-
sity of loading the entire library for each execution. As a matter of fact, dy-
namic linking may make it unnecessary for the program even to know the
possible set of subroutines that might be used. The subroutine name might
simply be treated as another input item.

There are a number of different mechanisms that can be used to accom-
plish the actual loading and linking of a called subroutine. Figure 3.14 illus-
trates a method in which routines that are to be dynamically loaded must be
called via an operating system service request. This method could also be
thought of as a request to a part of the loader that is kept in memory during
execution of the program.

hetcps:/hemanthrajhemu.github.io

3.4 Loader Design Options 157

| Dynamic
loader :
(part of the Dynamic
operating loader
system)
Load-and-call
ERRHANDL
. | User User
program program
ERRHANDL
(a) (b)
-
- Dynamic Dynamic | Dynamic
loader loader | —_ loader
Load-and-call
ERRHANDL
User User - User
program program program
_—
-
ERRHANDL ERRHANDL ERRHANDL

(c) (d) (e)

Figure 3.14 Loading and calling of a subroutine using dynamic linking.

heéeps:/hemanthrajhemu.github.io

158 Chapter 3 Loaders and Linkers

Instead of executing a JSUB instruction that refers to an external symbol,
the program makes a load-and-call service request to the operating system.
The parameter of this request is the symbolic name of the routine to be called.
[See Fig. 3.14(a).] The operating system examines its internal tables to deter-
mine whether or not the routine is already loaded. If necessary, the routine is
loaded from the specified user or system libraries as shown in Fig. 3.14(b).
Control is then passed from the operating system to the routine being called
[Fig. 3.14(c)].

When the called subroutine completes its processing, it returns to its caller
(that is, to the operating system routine that handles the load-and-call service
request). The operating system then returns control to the program that issued
the request. This process is illustrated in Fig. 3.14(d). It is important that con-
trol be returned in this way so that the operating system knows when the
called routine has completed its execution. After the subroutine is completed,
the memory that was allocated to load it may be released and used for other
purposes. However, this is not always done immediately. Sometimes it is
desirable to retain the routine in memory for later use as long as the storage
space is not needed for other processing. If a subroutine is still in memory,
a second call to it may not require another load operation. Control may simply
be passed from the dynamic loader to the called routine, as shown in
Fig. 3.14(e).

When dynamic linking is used, the association of an actual address with
the symbolic name of the called routine is not made until the call statement is
executed. Another way of describing this is to say that the binding of the name
to an actual address is delayed from load time until execution time. This de-
layed binding results in greater flexibility, as we have discussed. It also re-
quires more overhead since the operating system must intervene in the calling
process. In later chapters we see other examples of delayed binding. In those
examples, too, delayed binding gives more capabilities at a higher cost.

3.4.3 Bootstrap Loaders

In our discussions of loaders we have neglected to answer one important h

question: How is the loader itself loaded into memory? Of course, we could

say that the operating system loads the loader; however, we are then left with :

the same question with respect to the operating system. More generally, the

question is this: Given an idle computer with no program in memory, how do

we get things started? \
In this situation, with the machine empty and idle, there is no need for pro-

gram relocation. We can simply specify the absolute address for whatever pro-

gram is first loaded. Most often, this program will be the operating system,

S

https:llhemanthi'ajhemu.sithub.io

3.5 Implementation Examples

which occupies a predefined location in memory. This means that we need
some means of accomplishing the functions of an absolute loader. Some early
computers required thé operator to enter into memory the object code for an
absolute loader, using switches on the computer console. However, this
process is much too inconvenient and error-prone to be a good solution to the
problem.

On some computers, an absolute loader program is permanently resident
in a read-only memory (ROM). When some hardware signal occurs (for exam-
ple, the operator pressing a “system start” switch), the machine begins to exe-
cute this ROM program. On some computers, the program is executed directly
in the ROM; on others, the program is copied from ROM to main memory and
executed there. However, some machines do not have such read-only storage.
In addition, it can be inconvenient to change a ROM program if modifications
in the absolute loader are required.

An intermediate solution is to have a built-in hardware function (or a very
short ROM program) that reads a fixed-length record from some device into
memory at a fixed location. The particular device to be used can often be se-
lected via console switches. After the read operation is complete, control is au-
tomatically transferred to the address in memory where the record was stored.
This record contains machine instructions that load the absolute program that
follows. If the loading process requires more instructions than can be read in a
single record, this first record causes the reading of others, and these in turn
can cause the reading of still more records—hence the term bootstrap. The first
record (or records) is generally referred to as a bootstrap loader. (A simple exam-
ple of such a bootstrap loader was given in Section 3.1.2.) Such a loader is
added to the beginning of all object programs that are to be loaded into an
empty and idle system. This includes, for example, the operating system itself
and all stand-alone programs that are to be run without an operating system.

3.5 IMPLEMENTATION EXAMPLES

In this section we briefly examine linkers and loaders for actual computers. As
in our previous discussions, we make no attempt to give a full description of
the linkers and loaders used as examples. Instead we concentrate on any par-
ticularly interesting or unusual features, and on differences between these im-
plementations and the more general model discussed earlier in this chapter.
We also point out areas in which the linker or loader design is related to the
assembler design or to the architecture and characteristics of the machine.

The loader and linker examples we discuss are for the Pentium, SPARC,
and T3E architectures. You may want to review the descriptions of these archi-
tectures in Chapter 1, and the related assembler examples in Section 2.5.

159

heteps:/hemanthrajhemu.github.io

160

Chapter 3 Loaders and Linkers

3.5.1 MS-DOS Linker

This section describes some of the features of the Microsoft MS-DOS linker for
Pentium and other x86 systems. Further information can be found in Simrin
(1991) and Microsoft (1988).

Most MS-DOS compilers and assemblers (including MASM) produce ob-
ject modules, not executable machine language programs. By convention,
these object modules have the file name extension .OB]J. Each object module
contains a binary image of the translated instructions and data of the program.
It also describes the structure of the program (for example, the grouping of
segments and the use of external references in the program).

MS-DOS LINK is a linkage editor that combines one or more object mod-
ules to produce a complete executable program. By convention, this exe-
cutable program has the file name extension .EXE. LINK can also combine the
translated programs with other modules from object code libraries, as we dis-
cussed previously.

Figure 3.15 illustrates a typical MS-DOS object module. There are also sev-
eral other possible record types (such as comment records), and there is some
flexibility in the order of the records.

The THEADR record specifies the name of the object module. The MOD-
END record marks the end of the module, and can contain a reference to the
entry point of the program. These two records generally correspond to the
Header and End records we discussed for SIC/XE.

Record Types Description

THEADR Translator header

TYPDEF

PUBDEF External symbols and references
EXTDEF

LNAMES

SEGDEF Segment definition and grouping
GRPDEF

tfgﬁ: } Translated instructions and data
FIXUPP * Relocation and linking information
MODEND End of object module

Figure 3.15 MS-DOS object module.

heteps:/hemanthrajhemu.github.io

3.5 Implementation Examples

The PUBDEF record contains a list of the external symbols (called public
names) that are defined in this object module. The EXTDEF record contains a
list of the external symbols that are referred to in this object module. These
records are similar in function to the SIC/XE Define and Refer records. Both
PUBDEF and EXTDEEF can contain information about the data type designated
by an external name. These types are defined in the TYPDEF record.

SEGDEEF records describe the segments in the object module, including
their name, length, and alignment. GRPDEF records specify how these seg-
ments are combined into groups. (See Section 2.5.1 for a discussion of the use
of segmentation in the MASM assembler.) The LNAMES record contains a list
of all the segment and class names used in the program. SEGDEF and
GRPDEF records refer to a segment by giving the position of its name in the
LNAMES record. (This approach to specifying names is similar to the “refer-
ence number” technique described near the end of Section 3.2.3.)

LEDATA records contain translated instructions and data from the source
program, similar to the SIC/XE Text record. LIDATA records specify trans-
lated instructions and data that occur in a repeating pattern. (See Exercise
217)

FIXUPP records are used to resolve external references, and to carry out
address modifications that are associated with relocation and grouping of seg-
ments within the program. This is similar to the function performed by the
SIC/XE Modification records. However, FIXUPP records are substantially
more complex, because of the more complicated object program structure. A
FIXUPP record must immediately follow the LEDATA or LIDATA record to
which it applies.

LINK performs its processing in two passes, following a similar approach
to that described in Section 3.2.3. Pass 1 computes a starting address for each
segment in the program. In general, segments are placed into the executable
program in the same order that the SEGDEF records are processed. However,
in some cases segments from different object modules that have the same seg-
ment name and class are combined. Segments with the same class, but differ-
ent names, are concatenated. The starting address initially associated with a
segment is updated during Pass 1 as these combinations and concatenations
are performed.

Pass 1 constructs a symbol table that associates an address with each seg-
ment (using the LNAMES, SEGDEF, and GRPDEF records) and each external
symbol (using the EXTDEF and PUBDEF records). If unresolved external sym-
bols remain after all object modules have been processed, LINK searches the
specified libraries as described in Section 3.3.1.

During Pass 2, LINK extracts the translated instructions and data from the
object modules, and builds an image of the executable program in memory. It
does this because the executable program is organized by segment, not by the

161

heteps:/hemanthrajhemu.github.io

162

Chapter 3 Loaders and Linkers

order of the object modules. Building a memory image is the most efficient
way to handle the rearrangements caused by combining and concatenating
segments. If there is not enough memory available to contain the entire exe-
cutable image, LINK uses a temporary disk file in addition to all of the avail-
able memory.

Pass 2 of LINK processes each LEDATA and LIDATA record along with the
corresponding FIXUPP record (if there is one). It places the binary data from
LEDATA and LIDATA records into the memory image at locations that reflect
the segment addresses computed during Pass 1. (Repeated data specified in
LIDATA records is expanded at this time.) Relocations within a segment
(caused by combining or grouping segments) are performed, and external ref-
erences are resolved. Relocation operations that involve the starting address of
a segment are added to a table of segment fixups. This table is used to perform
relocations that reflect the actual segment addresses when the program is
loaded for execution.)

After the memory image is complete, LINK writes it to the executable
(.EXE) file. This file also includes a header that contains the table of segment
fixups, information about memory requirements and entry points, and the ini-
tial contents for registers CS and SP.

3.5.2 SunOSs Linkers

This section describes some of the features of the SunOS linkers for SPARC
systems. Further information can be found in Sun Microsystems (1994b).

SunOS actually provides two different linkers, called the link-editor and the
run-time linker. The link-editor is most commonly invoked in the process of
compiling a program. It takes one or more object modules produced by assem-
blers and compilers, and combines them to produce a single output module.
This output module may be one of the following types:

1. A relocatable object module, suitable for further link-editing

2. A static executable, with all symbolic references bound and ready to
run

3. A dynamic executable, in which some symbolic references may need to
be bound at run time

4. A shared object, which provides services that can be bound at run time

to one or more dynamic executables

An object module contains one or more sections, which represent the in-
structions and data areas from the source program. Each section has a set of

https:llhemanthi'ajhemu.sithub.io

3.5 Implementation Examples

attributes, such as “executable” and “writeable.” (See Section 2.5.2 for a dis-
cussion of how sections are defined in an assembler language program.) The
object module also incdludes a list of the relocation and linking operations that
need to be performed, and a symbol table that describes the symbols used in
these operations.

The SunOS link-editor begins by reading the object modules (or other files)
that are presented to it to process. Sections from the input files that have the
same attributes are concatenated to form new sections within the output file.
The symbol tables from the input files are processed to match symbol defini-
tions and references, and relocation and linking operations within the output
file are performed. The linker normally generates a new symbol table, and a
new set of relocation instructions, within the output file. These represent sym-
bols that must be bound at run time, and relocations that must be performed
when the program is loaded.

Relocation and linking operations are specified using a set of processor-
specific codes. These codes describe the size of the field that is to be modified,
and the calculation that must be performed. Thus, the set of codes reflects the
instruction formats and addressing modes that are found on a particular ma-
chine. For example, there are 24 different relocation codes that are used on
SPARC systems. SunOS linker implementations on x86 systems use a different
set of 11 codes.

Symbolic references from the input files that do not have matching defini-
tions are processed by referring to archives and shared objects. An archive is a
collection of relocatable object modules. A directory stored with the archive as-
sociates symbol names with the object modules that contain their definitions.
Selected modules from an archive are automatically included to resolve sym-
bolic references, as described in Section 3.3.1.

A shared object is an indivisible unit that was generated by a previous
link-edit operation. When the link-editor encounters a reference to a symbol
defined in a shared object, the entire contents of the shared object become a
logical part of the output file. All symbols defined in the object are made avail-
able to the link-editing process. However, the shared object is not physically
included in the output file. Instead, the link-editor records the dependency on
the shared object. The actual inclusion of the shared object is deferred until run
time. (This is an example of the dynamic linking approach we discussed in
Section 3.4.2. In this case, the use of dynamic linking allows several executing
programs to share one copy of a shared object.)

The SunOS run-time linker is used to bind dynamic executables and
shared objects at execution time. The linker determines what shared objects
are required by the dynamic executable, and ensures that these objects are in-
cluded. It also inspects the shared objects to detect and process any additional
dependencies on other shared objects.

163

https

164

s/mhemanthrajhemu.github.io

Chapter 3 Loaders and Linkers

After it locates and includes the necessary shared objects, the linker per-
forms relocation and linking operations to prepare the program for execution.
These operations are specified in the relocation and linking sections of the dy-
namic executable and shared objects. They bind symbols to the actual memory
addresses at which the segments are loaded. Binding of data references is per-
formed before control is passed to the executable program. Binding of proce-
dure calls is normally deferred until the program is in execution. During
link-editing, calls to globally defined procedures are converted to references to
a procedure linkage table. When a procedure is called for the first time, control
is passed via this table to the run-time linker. The linker looks up the actual
address of the called procedure and inserts it into the linkage table. Thus sub-
sequent calls will go directly to the called procedure, without intervention by
the linker. This process is sometimes referred to as lazy binding.

The run-time linker also provides an additional level of flexibility. During
execution, a program can dynamically bind to new shared objects by request-
ing the same services of the linker that we have just described. This feature al-
lows a program to choose between a number of shared objects, depending on
the exact services required. It also reduces the amount of overhead required
for starting a program. If a shared object is not needed during a particular run,
it is not necessary to bind it at all. These advantages are similar to those that
we discussed for dynamic linking in Section 3.4.2.

3.5.3 Cray MPP Linker

This section describes some of the features of the MPP linker for Cray T3E sys-
tems. Further information can be found in Cray Research (1995b).

As we discussed in Chapter 1, a T3E system contains a large number of
processing elements (PEs). Each PE has its own local memory. In addition, any
PE can access the memory of all other PEs (this is sometimes referred to as
remote memory). However, the fastest access time always results from a PE ac-
cessing its own local memory.

An application program on a T3E system is normally allocated a partition
that consists of several PEs. (It is possible to run a program in a partition of
one PE, but this does not take advantage of the parallel architecture of the ma-
chine.) The work to be done by the program is divided between the PEs in the
partition. One common method for doing this is to distribute the elements of
an array among the PEs. For example, if a partition consists of 16 PEs, the ele-
ments of a one-dimensional array might be distributed as shown in Fig. 3.16.

The processing of such an array can also be divided among the PEs.
Suppose, for example, that the program contains a loop that processes all 256
array elements. PEO could execute this loop for subscripts 1 through 16, PE1

heteps:/hemanthrajhemu.github.io

3.5 Implementation Examples

PEO PE1 PE15
A[1] A[17] A[241]
Al2) A[18] A[242]
A[3) A[19] ol A[243]
A[16] A[32] A[256]

Figure 3.16 Example of data shared between PEs.

could execute the loop for subscripts 17 through 32, and so on. In this way, all
of the PEs would share in the array processing, with each PE handling the ar-
ray elements from its own local memory. Section 5.5.3 describes how this kind
of sharing of data and work between PEs can be specified in a program.
Section 6.5.4 discusses some of the operating system functions that are used to
support the parallel operation of PEs.

Data that is divided among a number of PEs, as in the example just dis-
cussed, is called shared data. Data that is not shared in this way is called private
data. In most cases, private data is replicated on each PE in the partition—that
is, each PE has its own copy. It is also possible for a PE to have private data
items that exist only in its own local memory.

When a program is loaded, each PE gets a copy of the executable code for
the program, its private data, and its portion of the shared data. There are a
number of possible arrangements of these items, but the overall situation can
be visualized as shown in Fig. 3.17. In this diagram, shared data-i indicates the
portion of the shared data that is assigned to PEi.

The MPP linker organizes blocks of code or data from the object programs
into lists. The blocks on a given list all share some common property—for ex-
ample, executable code, private data, or shared data. The blocks on each list
are collected together, an address is assigned to each block, and relocation and
linking operations are performed. The linker then writes an executable file
that contains the relocated and linked blocks. This executable file also specifies
the number of PEs required and other control information.

Notice that the distribution of shared data depends on the number of PEs
in the partition. For example, if the partition in Fig. 3.16 contained only 8 PEs,
each PE would receive 32 elements of the shared array. If the number of PEs in
the partition is specified at compile time, it cannot be overridden later. If the

165

heteps:/hemanthrajhemu.github.io

166

Chapter 3 Loaders and Linkers

PEO PE1 PEn
Code Code Code
Private Private Private
data data data
Shared Shared Shared
data-0 data-1 data-n

Figure 3.17 T3E program loaded on multiple PEs.

partition size is not specified at compile time, there are two possibilities. The
linker can create an executable file that is targeted for a fixed number of PEs,
or one that allows the partition size to be chosen at run time. This latter type is
called a plastic executable. A plastic executable file must contain a copy of all
relocatable object modules, and all linker directives that are needed to produce
the final executable. Thus, a plastic executable is often considerably larger than
one targeted for a fixed number of PEs.

EXERCISES

Section 3.1

1. Define a binary object program format for SIC and write an absolute
loader (in SIC assembler language) to load programs in this format.

2. Describe a method for performing the packing required when load-
ing an object program such as that in Fig. 3.1(a), which uses character
representation of assembled code. How could you implement this
method in SIC assembler language?

3. What would be the advantages and disadvantages of writing a
loader using a high-level programming language? What problems
might you encounter, and how might these be solved?

https:llhemanthi'ajhemu.sithub.io

Exercises 167

3.2 Section Exercises

L4

1. Modify the algorithm given in Fig. 3.11 to use the bit-mask approach
to relocation. Linking will still be performed using Modification
records.

2. Suppose that a computer primarily uses direct addressing, but has
several different instruction formats. What problems does this create
for the relocation-bit approach to program relocation? How might
these problems be solved?

3. Apply the algorithm described in Fig. 3.11 to link and load the object
programs in Fig. 3.9. Compare your results with those shown in
Fig. 3.10.

4, Assume that PROGA, PROGB, and PROGC are the same as in
Fig. 3.8. Show how the object programs would change (including
Text and Modification records) if the following statements were
added to each program:

REF9 WORD LISTC

REF10 WORD LISTB-3

REF11 WORD LISTA+LISTB

REF12 WORD ENDC-LISTC-100

REF13 WORD LISTA-LISTB-ENDA+ENDB

5. Apply the algorithm described in Fig. 3.11 to link and load the re-
vised object programs you generated in Exercise 4.

6. Using the methods outlined in Chapter 8, develop a modular design
for a relocating and linking loader.

7. Extend the algorithm in Fig. 3.11 to include the detection of improper
external reference expressions as suggested in the text. (See Section
2.3.5 for the set of rules to be applied.) What problems arise in per-
forming this kind of error checking?

8. Modify the algorithm in Fig. 3.11 to use the reference-number tech-
nique for code modification that is described in Section 3.2.3.

9. Suppose that you are implementing an assembler and loader and
want to allow absolute-valued external symbols. For example, one
control section might contain the statements

he¢eps:/hemanthrajhemu.github.io

168 Chapter 3 Loaders and Linkers

10.

10

12.

EXTDEF MAXLEN

MAXLEN EQU 4096

and other control sections could refer to the value of MAXLEN as an
external symbol. Describe a way of implementing this new feature,
including any needed changes in the loader logic and object program
format.

Suppose that you have been given the task of writing an “un-
loader”—that is, a piece of software that can take the image of a pro-
gram that has been loaded and write out an object program that
could later be loaded and executed. The computer system uses a re-
locating loader, so the object program you produce must be capable
of being loaded at a location in memory that is different from where
your unloader took it. What problems do you see that would prevent
you from accomplishing this task?

Suppose that you are given two images of a program as it would ap-
pear after loading at two different locations in memory. Assume that
the images represent the program after it is loaded and relocated, but
before any of the program’s instructions are actually executed.
Describe how this information could be used to accomplish the “un-
loading” task mentioned in Exercise 10.

Some loaders have used an indirect linking scheme. To use such a
technique with SIC/XE, the assembler would generate a list of
pointer words from the EXTREF directive (one pointer word for each
external reference symbol). Modification records would direct the
loader to insert the external symbol addresses into the corresponding
words in the pointer list. External references would then be accom-
plished with indirect addressing using these pointers. Thus, for ex-
ample, an instruction like

LDA XYZ

(where XYZ is an external reference) would be assembled as if it
were

LDA @PXYZ

14.

15.

16.

heteps:/hemanthrajhemu.github.io

Exercises

where PXYZ is the pointer word containing the address of XYZ.
What would be the advantages and disadvantages of using such a
method? 2

Suggest a design for a one-pass linking loader. What restrictions (if
any) would be required? What would be the advantages and disad-
vantages of such a one-pass loader?

Some programming languages allow data items to be placed in com-
mon areas. There may be more than one common area (with different
names) in a source program. We may think of each common area as
being a separate control section in the object program.

When object programs are linked and loaded, all of the common
areas with the same name are assigned the same starting address in
memory. (These common areas may be of different lengths in the dif-
ferent programs declaring them.) This assignment of memory estab-
lishes an equivalence between the variables that were declared in
common by the different programs. Any data value stored into a
common area by one program is thus available to the others.

How might the loader handle such common areas? (Suggest modifi-
cations to the algorithm of Fig. 3.11 that will perform the necessary
processing.)

Suppose that you have a one-pass assembler that produces object
code directly in memory, as described in Section 2.4. This assembler
was designed to assemble and run only one control section. Now
you want to change it so that it can assemble and run a program that
consists of several different control sections (as illustrated in Fig.
2.15).

Describe the changes you would make to implement this new capa-
bility. Your modified assembler should still run in one pass, and
should still produce object code in memory, without using any other
files.

Suppose that a relocatable SIC/XE program is to be loaded in three
different parts. One part contains the assembled instructions of the
program (LDA, JSUB, etc.). Another part contains the data variables
used in the program (which are defined by RESW, RESB, BYTE, and
WORD). The third part contains data constants (which are defined
by a new assembler directive named CONST).

169

he¢eps:/hemanthrajhemu.github.io

170 Chapter 3 Loaders and Linkers

1%

Object program

-

Constants

H

J it SAUIREE
PN e
4\ Ergi

P
ot Executable instructions

TI. .. N
M
E

¢

Variables

In the object program, the assembled instructions are contained in
type TI records, the variables in type TV records, and the constants in
type TC records. (These new record types take the place of the nor-
mal Text records in the object program.) The three parts of the object
program will be loaded into separate areas of memory, as illustrated
above. The starting address for each of the three segments of the pro-
gram will be supplied to the loader at the time the program is being
loaded.

Describe how the assembler could separate the object program into
TI, TV, and TC records as described above. Describe how the loader
would use the information in these records in loading the program.

Consider an extended version of SIC/XE that has a new register R.
The contents of R cannot be accessed or changed by the user pro-
gram. When a program is loaded, however, the loader sets register R
so that it contains the starting address of the program. For simplicity,
assume that this version of SIC has no program-counter or base rela-
tive addressing—thus, all instructions that refer to memory must use
Format 4.

Each time the program refers to an address in memory, the contents
of register R are automatically added into the target address calcula-
tion. Suppose, for example, that an assembled instruction specifies
an address of 800 (hexadecimal). If R contains 5000, executing this in-

heteps:/hemanthrajhemu.github.io

Exercises 171

struction would actually refer to memory address 5800. If R contains
8000, executing the same instruction would actually refer to memory
address 8800. *

Consider the control sections shown in Fig. 3.8. Assume that these
control sections are being loaded and linked at the addresses shown
in Fig. 3.10; thus the loader will set register R to the value 4000. What
value should appear in the External Symbol Table of the loader for
the symbol LISTB? What should the instruction labeled REF2 in con-
trol section PROGC look like after all loading and linking operations
have been performed?

Section 3.3

1. Modify the algorithm in Fig. 3.11 to include automatic library search
to resolve external references. You may assume that the details of
library access are handled by operating system service routines.

2. Modify the algorithm in Fig. 3.11 to implement CHANGE, DELETE,
and INCLUDE directives as described in Section 3.3.2. If you need to
place any restrictions on the use of these commands, be sure to state
what they are.

3. Suppose that the loader is to produce a listing that shows not only
the addresses assigned to external symbols, but also the cross-
references between control sections in the program being loaded.
What information might be useful in such a listing? Briefly describe
how you might implement this feature and include a description of
any data structures needed.

Section 3.4

1. Define a module format suitable for representing linked programs
produced by a linkage editor. Assume that the linked program is not
to be reprocessed by the linkage editor. Describe an algorithm for a
relocating loader that would be suitable for the loading of linked
programs in this format.

heteps:/hemanthrajhemu.github.io

172 Chapter 3 Loaders and Linkers

-

2. Define a module format suitable for representing linked programs
produced by a linkage editor. This format should allow for the load-
ing of the linked program by a one-pass relocating loader, as in
Exercise 1. However, it should also allow for the linked program to
be reprocessed by the linkage editor. Describe how your format al-
lows for both one-pass loading and relinking,.

3. Consider the following possibilities for the storage, linking, and exe-
cution of a user’s program:

a. Store the source program only; reassemble the program and use a
linking loader each time it is to be executed.

b. Store the source and object versions of the program; use a linking
loader each time the program is to be executed.

c. Store the source program and the linked version with external ref-
erences to library subroutines left unresolved. Use a linking
loader each time the program is to be executed.

d. Store the source program and the linked version with all external
references resolved. Use a relocating loader each time the pro-
gram is to be executed.

e. Store the source program and a linked version that has all exter-
nal references resolved and all relocation performed. Use an ab-
solute loader each time the program is to be executed.

Under what conditions might each of these approaches be appropri-
ate? Assume that no changes are required in the source program
from one execution to the next.

4. Dynamic linking, as described in Section 3.4.2, works for transfers of
control only. How could the implementation be extended so that
data references could also cause dynamic loading to occur?

5. Suppose that routines that are brought into memory by dynamic
loading need not be removed until the termination of the main pro-
gram. Suggest a way to improve the efficiency of dynamic linking by
making it unnecessary for the operating system to be involved in the
transfer of control after the routine is loaded.

6. Suppose that it may be necessary to remove from memory routines
that were dynamically loaded (to reuse the space). Will the method
that you suggested in Exercise 5 still work? What problems arise,
and how might they be solved?

https:llhemanth-rajhemu.sithub.l‘o

Exercises 173

7. What kinds of errors might occur during bootstrap loading? What
action should the bootstrap loader take for such errors? Modify the
SIC/XE bootstrap loader shown in Fig. 3.3 to include such error
checking.

Section 3.5

1. Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX linker and
loader?

2. Consider the description of the PowerPC architecture in Section
1.5.2, and the description of the PowerPC assembler in Section 2.5.3.
What characteristics would you expect to find in a PowerPC linker
and loader?

ht¢cps:/hemanthrajhemu.github.io

