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The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APis for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finaly, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

CHAPTER OBJECTIVES

» To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

» To discuss the APIs for Phtreads, Win32, and Java thread libraries.

4.1 Overview

A thread is a basic unit of CRU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open filesand signals. A traditional (or heavyweight) process
has a single thread of control. Tf a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

41.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread

127
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Figure 4.1 Single-threaded and multithreaded processes.

for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands) of clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time. The amount of time that a client might have to wait for its
request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, as was shown in the previous chapter. If the new process
will perform the same tasks as the existing process, why incur all that overhead?
It is generally more efficient to use one process that contains multiple threads.
This approach would multithread the web-server process. The server would
create a separate thread that would listen for client requests; when arequest was
made, rather than creating another process, the server would create another
thread to service the request.

Threads also play avital rolein remote procedure cal (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure cals. ...
Typicaly, RRC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests. Java's RM1 systems work similarly.

Finally, many operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices or interrupt handling. For example, Solaris creates a set
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42 Multithreading Models 129

of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it
is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a processis about thirty times slower than
is creating a thread, and context switching is about five times slower.

4. Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on amulti-CPU machine increases concurrency.

4.2 Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtualy al contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
True4 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user
space, <o it is efficient; but the entire process will block if a thread makes a
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SR

+—— kernel thread

Figure 4.2 Many-to-one model.

blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 4.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an

+—-user thread

I
OO O O

Figure 4.3 One-to-one model.
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Figure 4.4 Many-to-many model.

application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smaller or equal number of kernel threadsbut also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to asthe two-level model (Figure 4.5), issupported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

4.3 Thread Libraries

A thread library provides the programmer an AR for creating and managing
threads. There are two primary ways of implementing athread library. The first
approach is to provide alibrary entirely in user space with no kernel support.
All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a loca function cal in user space
and not a system call. N

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the AR for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the ROSX standard, may be
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\y Ic/ ® +— kernel thread

Figure 4.5 Two-level model.

provided as either a user- or kernel-level library. The Win32 thread library is a
kernel-level library available on Windows systems. The Javathread AR allows
thread creation and management directly in Java programs. However, because
in most instances the WM is running on top of a host operating system, the Java
thread AR is typically implemented using a thread library available on the
host system. This means that on Windows systems, Java threads are typically
implemented using the Win32 API; UNIX and Linux systems often use Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

N
sum— Zf
i=0

For example, if N were 5, this function would represent the summation from 0
to 5, whichis 15. Each of the three programswill be run with the upper bounds
of the summation entered on the command line; thus, if the user enters 8, the
summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

Pthreads refers to the POsIx standard (IEEE 1003.1c) defining an AR for thread
creation and synchronization. Thisis a specification for thread behavior, not an
implementation. Operating system designers may implement the specificationin
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac OS X, and Tru64 UNIX. Sharewarei mplementations
are available in the public domain for the various Windows operating systems. .
as well.

The C program shown in Figure 4.6 demonstrates the basic Pthreads AR for
constructing a multithreaded program that cal culates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.6, this is the runner()
function. When this program begins, a single thread of control begins in
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43 Thread Libraries 133

#i ncl ude <pthread.h>
#include <gtdio.h>

int sum /* this data is shared by the thread(s) */
voi d *runnex (void *param; /* the thread */

int main(int argc, char *argv[])

pthread_t tid; /* the thread identifier */
pthread.attr_t attr; /* set of thread attributes */

if (argc !'=2) {
fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

}

if (atoi(argv(il) < 0) {
fprintf (stderr, "%d nust be >= 0\n",atoi(argvI[l]));
return -1,

/* get the default attributes */
pthread.attr_init (&attr);

/* create the thread */

pthread create(&tid, &attr, runner, argv[1]) ;
/* wait for the thread to exit */
pthread join(tid, NULL) ;

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner {void *param)

{

int i, upper = atoi(param);

sSum= 0;

for (i =1; i <= upper; i++)
sum += i;

pthread exit(0) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.

main(). After some initialization, mainO creates a second thread that begins
control in the runner () function. Both threads share the global data sum.
Let's look more closdy at this program. All Pthreads programs must
include the pthread.h header file The statement pthread t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread_attr_t attr
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13 Chapter4 Threads

declaration represents the attributes for the thread. We st the attributes in
the function cal pthread attr init C&attr). Because we did not explicitly
St any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads AR.) A
separate thread iscreated withthe pthread create() function cal. Inaddition
to passing the thread identifier and the attributes for the thread, we aso pass
the name of the function where the new thread will begin execution—in this
case, the runner() function. Last, we pass the integer parameter that was
provided on the command line, argv [1].

At this point, the program has two threads: the initid (or parent) thread
inmain() and the summation (or child) thread performing the summation
operation in the runner () function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it cdls the function
pthread_exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is smilar to
the Pthreads technique in severa ways. We illustrate the Win32 thread AR in
the C program shownin Figure4.7. Notice that we must includethewindows . h
header file when using the Win32 AR.

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globaly (the DAGD data
type is an unsigned 32-bit integer. We aso define the Summation () function
that isto be performed in a separate thread. This function is passed a pointer to
avoid, which Win32 defines as LPVOD. The thread performing this function
sets the globd data Sm to the value of the summation from O to the parameter
passed to SummationO.

Threads are created in the Win32 AR using the CreateThreadO function
and—ijust &S in Pthreads—a &t of attributes for the thread is passed to this
function. These attributes include security information, the sze of the stack,
and a flag that can be st to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it digible
to be run by the CRU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sm, as
the value is set by the summation thread. Recdl that the Pthread program
(Figure 46) had the parent thread wait for the summation thread using the
pthread_join() statement. We perform the equivalent of thisinthe Win32 AR
using thewWaitForSingleObject () function, which causes the creating thread
to block until the summeation thread has exited. (Wewill cover synchronization
objects in more detail in Chapter 6.

4.3.3 Java Threads

Threads are the fundamenta model of program execution in a Java program,
and the Java language and its AR provide arich set of features for the creation
and management of threads. All Javaprograms comprise at least asingle thread
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43 Thread Libraries 135

#i nci ude <windows.h> s
#include <stdioc.h>
DWORD Sum /* data is shared by the thread(s) */

. /* the thread runs in this separate function */

DWORD WINAPI Summaticon(LPVOID Param)

{
DWORD Upper = * (DWORD*)Param;
for (DRDi = 0; i <= Upper; i++)
aAm += i;
return o;

int main(int argc, char *argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param
/* perform sone basic error checking */
if (argc !'=2) {
fprintf (stderr, "An i nteger paranmeter is required\n");
return -1;
}
Param = atoi(argv[l]);
if (Paam < 0) {
fprintf (stdexr,"An integer >= 0 is required\n");
return -1;

/1 create the thread
ThreadHandl e = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandl e != NULL) {
[/ now wait for the thread to finish
vaitForSingleObject (ThreadHandle, INFINITE) ;

/!l close the thread handl e
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum) ;

Figure 4.7 Multithreaded C program using the Win32 API.
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135  Chapter 4 Threads '

of control—even a Smple Java program consisting of only amain () méthod
runs as a single thread in the WM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run () method. An alternative—and more commonly used —
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{

public abstract void run();

When a class implements Runnable, it must define arun () method. The code
implementing the run() method is what runs as a separate thread.

Figure 48 shows the Java verson of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not pecificaly create the new thread; rather,
it is the start() method that actualy crestes the new thread. Caling the
start () method for the new object does two things:

1. It alocates memory and initializes a new thread in the WM.

2. It cdls the run() method, making the thread eigible to be run by the
MM. (Note that we never cdl the run () method directly. Rather, we cdl
the start () method, and it cdls the run() method on our behalf.)

When the summation program runs, two threads are created by the VM.
The fird is the parent thread, which starts execution in the main () method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are smply declared globaly. As a pure object-oriented language,
Java has no such notion of globd data; if two or more threads are to share
datain a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sm
class. This shared object is referenced through the appropriate getSum () and
setSum() methods. (You might wonder why we don't use an Integer object
rather than designing a new sum class. The reason is that the Integer dassis_ |
immutable—that iS, once itsvalue is s&t, it cannot change.)

Recd| that the parent threads in the Pthreads and Win32 libraries use
pthread join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides smilar functiondity. (Notice that join() can throw an
I nterruptedException, which we choose to ignore.)
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5 lass Qra

{

private int sum;

public int getSum{) {
return sum

'

public void setSum{int sum {
L this.sum = sum

}
}

class Summation inplenents Runnabl e

{

private int upper;
private SUT. sunval ue;

public Surmation{int upper, Sum sunval ue) }
this.upper = upper
this.sumValue = sunVal ue

}

public void run() {
int sum= 0;

for (int i = 0; i <= upper; i++)}
sum+= i o
sumValue.setSum(gum) ;

}
}

public class Driver
{ .
public static void main{String[] args) {
if (args.length> 0) {
if (Integer.parseInt(args(0]) < 0)
System.err.printlnlargs[0] + " nust be >= 0."] ;
el se {
/Il create the object to be shared
Sum sumObject = new Sum() ;
int upper = Integer.parselnt(args[0]) ;
Thread thrd = new Thread(new Summatior {upper, sumObject)];
thrd.start () ;
try {
thrd.join();
System.out.println
("The sum of "+upper+" is "+sumCbject.getSum());
} catch (InterruptedExceptiorie) { }
}
!

el se
System.err.println("Usage: Sunmation <integer value>"); }

Figure 4.8 Java program for the summation of a non-negative integer.
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138 Chapter 4 Threads

4.4 Threading Issues

In this section, we discuss some of the issues to consider with multithreaded
programs.

441 The fork() and exec() System Calls

In Chapter 3, we described how the fork () system cdl is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
cdls change in a multithreaded program.

If one thread in a program cals f ork (), does the new process duplicate
al threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork (), one that duplicates dl threads and
another that duplicates only the thread that invoked the fork () system cdl.

The exec() system cal typicaly works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system cdl, the program
soecified in the parameter to exec () will replace the entire process—including
al threads.

Which of the two versions of fork () to use depends on the appllcatlon
If exec() is cdled immediately after forking, then duplicating dl threads is
unnecessary, as the program specified in the parametersto exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process doesnot cal exec () afterforking, the separate
process should duplicate dl threads.
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44 Threading | ssues 139

4.4.2 Cancellation ?

Thread cancellation isthe task of terminating a thread before it has compl eted.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on aweb browser
{ that stops a web page from loading any further. Often, a web page is loaded
| using several threads—each image is loaded in a separate thread. When a
1 user presses the stop button on the browser, al threads loading the page are
" canceled.

A thread that is to be canceled is often referred to as the target thread.

Cancellation of a target thread may occur in two different scenarios:

I

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been alocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim al resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource. '

With deferred cancellation, in contrast, one thread indicates that a target
thread isto be canceled, but cancellation occurs only after the target thread has
checked aflag to determineif it should be canceled or not. This allows a thread
to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

Yo SUIG R

1. A signal is generated by the occurrence of a particular event.
3 2. A generated signal is delivered to a process.
3. Once delivered, the signal must be handled.

s, Examples of synchronous signals include illega memory  access and
il division by 0. If a running program performs either of these actions, a signal
> is generated. Synchronous signals are delivered to the same process that
i performed the operation that caused the signal (that is the reason they are
E considered synchronous).

2

"l
=
El
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140 Chapter 4 Threads ;

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals iiiclude
terminating a process with specific keystrokes (such as <control><C>) and
having a timer expire. Typicaly, an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler
2. A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

1. Deliver the signal to the thread to which the signal applies.
2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX alow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, asignal istypically
delivered only to the firg thread found that is not blocking it. The standard
UNIX function for delivering asignal iskill(aid_t aid, int signal); here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthread kill(pthread t tid,
int signal) function, which allows a signal to be delivered to a specified . .
thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedur e calls (APCs). The ARC fecility
allows a user thread to specify a function that is to be caled when the user
thread receives notification of a particular event. As indicated by its name,
an ARC is roughly equivalent to an asynchronous signal in UNIX. However,
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whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the ARC facility is more straightforward, as an ARC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow al concurrent requests to be serviced in anew thread, we have not placed
abound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to thisissue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a regquest, it awakens a thread from this pool—if one
is available—and passes it the request to service. Once the thread completes
its service, it returnsto the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

1. Servicing arequest with an existing thread is usually faster than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the systemis low. '

The Win32 AR provides several functions related to thread pools. Using
the thread pool Ar1 is similar to creating a thread with the Thread Create ()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

g DAMORD WINAPI PoolFunction (AVOID Param) {
: /**

* this function runs as a separate thread.

**/

}

A pointer to PoclFunction() is passed to one of the functions in the thread
pool AP, and a thread from the pool executes this function. One such member
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in the thread pool AR is the QueueUserWorkItem() function, which is passed
three parameters:

e LPTHREAD START ROUTINE Function—a pointer to the function that isto
run as a separate thread

* PVOID Param—the parameter passed to Function

» ULONG Flags-—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:
QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke Pool Function () on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
tion(). Because we specify O as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool AP1 include utilities that invoke
functions at periodic intervals or when an asynchronous 1/0 request compl etes.
Thejava.util. concurrent package in Java 15 provides a thread pool utility
aswell.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries—including Win32 and Pthreads—provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A fina issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This
data structure—typically known asalightweight process, or LWP—is shownin - -
Figure4.9. Tothe user-thread library, the LWP appearsto beavirtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an 170 operation to complete), the LWP blocks as well. Up the chain, the
user-level thread attached to the LWP also blocks.
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3 —-yser thread

~——— lightweight process

k +——kernel thread

Figure 4.9 Lightweight process (LWP)

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP is sufficient. An application that is1/0-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for 170 completion in the kernel. If a process has
only four LWPs then the fifth request must wait for one of the LWFs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then alocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler forthis event also requiresavirtual processor, and the kernel
may alocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

4.5 Operating-System Examples

In this section, we explore how threads are implemented in Windows XP and
Linux systems.
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4.5.1 Windows XP Threads #

Windows XP implements the Win32 APl. The Win32 AR is the primary AR for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 AR for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP aso provides support for afiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

» A thread ID uniquely identifying the thread
» A register set representing the status of the processor

» A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

» A private storage area used by various run-time libraries and dynamic link
libraries (DLL9Y

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

e ETHREAD—executive thread block
e KTHREAD—kernel thread block
e TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can accessthem. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-
gpecific data (which Windows XP terms thread-local storage). The structure of*~ -
aWindows XP thread isillustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the fork() system cal with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
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ETHREAD

thread start

KTHREAD

© synchronization

kernel space user space
Figure 4.10 Data structures of a Windows XP thread.

to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task—rather than process or thread—when referring to a flow of control
within a program. When clone 0 isinvoked, it is passed a set of flags, which
determine how much sharing is to take place between the parent and child
tasks. Some of these flags are listed below:

L
' CLONE: -FS File-systém_information:isishared:
 CLONE_VM The éérﬁ_e rh'erhd;ry s"pa'c:é is shared
CLONE_SIGHAND | - Signakhandlers are shared.
CLONE_FILES The set of open fifes is shared. 5;. g

For example, if clone() is passed the flags CLONE_FS, CLONE_VM,
CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share the
same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone() in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags are set when clone () is invoked, no
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sharing takes place, resulting in functionality similar to that provided By the
fork () system cal.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specificaly,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored —forexample, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork ()
isinvoked, a new task is created, along with a copy of al the associated data
structures of the parent process. A new task is also created when the clone ()
system cdl is made. However, rather than copying al data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

4.6 Summary

A thread is a flow of control within a process. A multithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kerndl threads, as no intervention from the kernel is required.
Three different types of modelsrelate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal humber of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an AR for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork() and exec() system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

42 Describe the actions taken by a thread library to context switch between
user-level threads.
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4.3 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

44 Which of the following components of program state are shared across
threads in a multithreaded process?

a Register values
b. Heap memory
c. Global variables
d. Stack memory

45 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

46 As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone () system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

47 The program shown in Figure 4.11 uses the Pthreads APl. What would
be output from the program at LINE C and LINE P?

48 Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. Thenumber of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

49 Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs al the prime
numbers less than or equal to the number entered by the user.

410 Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
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#include <pthread.h> s
#i ncl ude <stdio. h>

int value = 0;
void *runner(void *param); /* the thread */

int main{int argc, char *argv[])

int pid;
pthread_t tid,;
pthread.attr_t attr;

pid="fork() ;

if (pid == 0) {/* child process */
pthread attr.init (&attr);
pt hread_create {(&tid,&attzr, runner, NULL) ;
pthread_join(tid,NULL);
printf ("CHILD: value = %d",value); /* LINE C */

else if (pid > 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /+ LINE P */

}

void *runner(void *param) {
val ue = 5;
pthread exit(0) ;

}

Figure 4.11 C program for question 4.7.

411 The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8,....
Formally, it can be expressed as:

fib()”—” 0
fib1 =1
ﬁb,, = fibnf] + f’lbnAZ

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should
work as follows: The user will enter on the command line the number
of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
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the Fibonacci sequence until the child thread finishes, this will yequire
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

412 Exercise 39 in Chapter 3 specifies designing an echo server using the
Javathreading AP. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 39 so that the echo server services
each client in a separate request.

Project—Matrix Multiplication

Given two matrices A and B, where A is amatrix with M rows and K columns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i column /' (C; ;) isthe sum of the products of the elements for row i in
matrix A and column j in matrix B. That is,

K
CH' = Z AJ'.H x Bu.j

n=\

For example, if Awere a 3-by-2 matrix and B were a 2-by-3 matrix, element
Cs1would be thesum of As; X Bi; and As> X Bag.

For this project, calculate each element C; ; inaseparate worker thread. This
will involve creating M x N worker threads. The main—or parent—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has accessto A, B, and C.

Matrices Aand B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

1

int A M [K] = { {1,4}, {2,5}, {3,6
int B [K][N] ={ {8,7,6}, {5,4,3}}
int C M [N];

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column j that it isto use in calculating the matrix product.
This requires passing two parametersto each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:
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,/* structure for passing data to threads */ 7
struct v
{

int i; /* row */

int j; /* coumn */'

}i

Bath the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* W have to create M* N worker threads */
for (i =0; i <M, i ++;
for (j =0;j) <N j++) {
struct v *data = (struct v *) malloc(sizeof (struct v)) ;
data->i = i;
data->j = j;
/* Now create the thread passing it data as a parameter */
)
}

The data pointer will be passed to ether the pthread_create () (Pthreads)
function or the CreateThreadO (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to creste
and initidlize the matrices A, B, and C. This main thread will then cregte the
worker threads, passing the three matrices—along withrow i and column j —
to tfhﬁ constructor for eech worker. Thus, the outline of aworker thread appears
asfollows:

public class WorkerThread i nplenments Runnable

{

private int row;
private int col;
privateint [] [] A
privateint [] [] B;
privateint [] [] C

public WorkerThread(int row, int col, int[] [] A
int[][]1 B int[][] § {
this.row = row,
this.c col;
this.A
this.B
this.C

<

nonon 22

0 w>

i

public void run() {
/* calculate the matrix product in Cirow]l [col] */

}
}
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#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread.t wor ker s [NUM_THREADS] ;

for (int i = 0; i < NUM.THREADS; i++)
pthread join (workers[i] , NULL) ;

Figure 4.12 Phtread code for joining ten threads.

Waiting for Threads to Complete

Once al worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Severa different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject () function, whereas Pthreads
and Java use pthread_join() and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 AR also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

1. The number of objects to wait for
2. A pointer to the array of objects
3. A flagindicating if al objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for al its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE [INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Javas join() is to enclose the join operation within a
simple forloop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.

Bibliographical Notes
Thread performance issues were discussed by Anderson et al. [1989], who

continued their work in Anderson et a. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe

https:/hemanthrajhemu.github.io



152 Chapter 4 Threads
final static int NUM.THREADS =10; +

/* an array of threads to be joined upon */
Thread[] workers = new Thread [NUM_THREZADS] ;

for (int i = 0; i < NUMTHREARDS; i++} {
try {
workers [i] .join () ;
Jcatch (InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.

combining threads with RPC. Engelschall [2000] discusses a technique for
supporting user-level threads. An analysis of an optimal thread-pool size can
be found in Ling et al. [2000]. Scheduler activations were first presented in
Anderson et al. [1991], and Williams [2002] discusses scheduler activations in
the NetBSD system. Other mechanisms by which the user-level thread library
and the kernel cooperate with each other are discussed in Marsh et al. [1991],
Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta
and Young [1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on
Linux, Windows, and Solaris.

Vahalia [1996] covers threading in several versions of UNIX. Mauro and
McDougall [2001] describe recent developmentsinthreading the Solariskernel.
Solomon and Russinovich [2000] discuss threading in Windows 2000. Bovet
and Cesati [2002] explain how Linux handles threading.

Information on Pthreads programming is given in Lewis and Berg [1998]
and Butenhof [1997]. Information on threads programming in Solaris can be
found in Sun Microsystems [1995]. Oaks and Wong [1999], Lewis and Berg
[2000], and Holub [2000] discuss multithreading in Java. Beveridge and Wiener
[1997] and Cohen and Woodring [1997] describe multithreading using Win32.
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Scheduling

CRU scheduling is the basis of multiprogrammed operating systems. By
switching the CRU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

CHAPTER OBJECTIVES

» To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

* To describe various CPU-scheduling algorithms,

» To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

5.1 Basic Concepts

In a single-processor system, only one process can run at a time; any others
must wait until the CRU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at al times, to maximize
CRU utilization. The idea is relatively simple. A process is executed until”
it must wait, typically for the completion of some I/0 request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted,;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Severa processes are kept in memory at one time. When
one process has to wait, the operating system takes the CRU away from that
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process and gives the CRU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost al computer resources are scheduled before use. The CRU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
Process execution consists of a cycle of CRU execution and 1/0 wait. Processes
alternate between these two states. Process execution begins with a CRU burst.
That is followed by an 170 burst, which is followed by another CPU burst, then
another /0 burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CRU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CRU bursts and a small number of long CPU bursts.
An I/0-bound program typically has many short CRU bursts. A CPU-bound

load store
add store
read from file

~ CPU burst

wait for /© - 1/O burst

store increment

—_— A A A

index * CPU burst
write to file

wait for /0 e |/Q burst
load store
add store - CPU burst

read from file

— AN

wait for /O J I/O burst

Figure 5.1 Alternating sequence of CPU and /O bursts.
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Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CRU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CRU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CRU to that process.

Note that the ready queueis not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
gueue can be implemented as a HFO queue, a priority queue, atree, or simply
an unordered linked list. Conceptually, however, al the processes in the ready
gueue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCB9) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-.
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)
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2. When a process switches from the running state to the ready state {ior
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, a completion of 1/0)

4. When aprocess terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exigts in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CRU has been
alocated to aprocess, the process keeps the CRU until it rel eases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was vised by Microsoft Windows 3x; Windows 95 introduced preemptive
scheduling, and al subsequent versions of Windows operating systems have
used preemptivescheduling. TheMac OSX operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behaf of a process. Such activities may involve changing important kernel
data (for instance, 1/0 queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or modify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system cal to complete or for an 170 block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting rea-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 54 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost al times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
a exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.
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5.1.4 Dispatcher

k3

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher isthe modul e that gives control of the CRU to the process sel ected
by the short-term scheduler. This function involves the following:

» Switching context
» Switching to user mode
» Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

5.2 Scheduling Criteria

Different CRU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

* CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CRU utilization can range from 0 to 100 percent. In areal system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

» Throughput. If the CRU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

e Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

* Waiting time. The CRU scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the- -
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

* Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
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output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, caled
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

Itisdesirable to maximize CRU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU burstsand 1/0 bursts.
For simplicity, though, we consider only one CRU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CRU
scheduling algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS scheduling algorithm. With this scheme, the process that requests the
CRU firdt is allocated the CRU first. The implementation of the FOFS policy is
easily managed with a HFO queue. When a process enters the ready queue, its
RCB islinked onto the tail of the queue. When the CPU is freg, it is allocated to
the process at the head of the queue. The running processis then removed from
the queue. The code for FOFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CRU burst given in milliseconds:

Process Burst Time

P 24
b
P3 3

https:/hemanthrajhemu.github.io



53 Scheduling Algorithms 159

If the processes arrivein the order Py, P>, P3, and are served in FCFS grder,
we get the result shown in the following Gantt chart:

Py Ps P3

0 24 27 30

The waiting time is 0 milliseconds for process P, 24 milliseconds for process
P,, and 27 milliseconds for process P;. Thus, the average waiting time is (O
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P», P3, P,
however, the results will be as shown in the following Gantt chart:

P, | Ps P

(0] 3 6 30

The average waiting timeisnow (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FOFS policy is generally
not minimal and may vary substantially if the process's CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many 1/0-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, al the other processes will finish their 1/0 and will move into the ready
gueue, waiting for the CPU. While the processes wait in the ready queue, the
1/0 devices are idle. Eventually, the CPU-bound process finishes its CRU burst
and moves to an 1/0 device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the 1/0 queues. At this point,
the CRU dits idle. The CPU-bound process will then move back to the ready
gueue and be allocated the CPU. Again, al the1/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as al the other processes wait for the one big process to get off the CRU. This
effect results in lower CRU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CRU has been
allocated to a process, that process keepsthe CRU until it releasesthe CPU, either
by terminating or by requesting 1/0. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CRU at regular intervals. It would be disastrous to alow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process's next CRU burst. When the CRU isavailable, it isassigned to the process
that has the smallest next CRU burst. If the next CRU bursts of two processes are
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the same, FCFS scheduling is used to break the tie. Note that amore appropriate
term for this scheduling method would be the shortest-next-CPU-bur st algorithm,
because scheduling depends on the length of the next CRU burst of a process,
rather than its total length. We use the term SF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SF scheduling, consider the following set of processes,
with the length of the CRU burst given in milliseconds:

Process Burst Time
Py
P,
P
Py

w ~Nooo,

Using SF scheduling, we would schedule these processes according to the
following Gantt chart:

P4 Py Pg Ps

0 3 9 16 24

The waiting time is 3 milliseconds for process P\, 16 milliseconds for process
P>, 9 milliseconds for process P;, and O milliseconds for process P4. Thus, the
average waiting timeis (3 + 16 + 9 + 0)/4 - 7 milliseconds. By comparison, if
we were using the FOFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before along one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SF algorithm is knowing the length of the next
CRU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SF scheduling is used
frequently in long-term scheduling.

Although the SF algorithm isoptimal, it cannot be implemented at the level
of short-term CRU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SF scheduling. We may not .
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CRU burst, we
can pick the process with the shortest predicted CRU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CRU bursts. Let ¢, be the length of the nth CRU
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burst, and let 7,..; be our predicted value for the next CPU burst. Then, for a, 0
< ac< ], define

Tppr =aby (- &)1,

This formula defines an exponential average. The value of £, contains our
most recent information; =, stores the past history. The parameter « controls
the relative weight of recent and past history in our prediction. If « = O, then
Th+1 = Ty, @nd recent history has no effect (current conditions are assumed
to be transient); if « = 1, then 1,7 — t,, and only the most recent CRU burst
matters (history is assumed to be old and irrelevant). More commonly, a =
1/2, so recent history and past history are equally weighted. The initial 7, can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with a -1/2 and 7, = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,4, by substituting for =,, to find

il = at, + {1 - at, 4=+ {1 - a)"-(xt,,_‘,- oo+ (1= ) L.

Sinceboth aand (1 — &) arelessthan or equal to 1, each successive term has
less weight than its predecessor.

The SF algorithm can be either preemptive or nonpreemptive. The choice
ariseswhen anew process arrives at the ready queuewhileaprevious processis
still executing. The next CPU burst of the newly arrived process may be shorter
than what is left of the currently executing process. A preemptive SF algorithm

T, 10 gk e — o Y. P N A 2 .w e sG]

8 s o s s s i s s |
t/ 6 . i 7]

——-/
4
] EESS— N - -
1 i
time. >

CPU burst (f) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

Figure 5.3 Prediction of the length of the next CPU burst.
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will preempt the currently executing process, whereas a nonpreemptive SF
algorithm will alow the currently running process to finish its CRU burst.
Preemptive SF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

Py 0 8
P, 1 4
P 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SF scheduleis as depicted
in the following Gantt chart:

Py Py P4 ' 131 P3

Process P, isstarted at time O, sinceit is the only processin the queue. Process
P> arrives at time 1. The remaining time for process Pi (7 milliseconds) is
larger than the time required by process P, (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
exampleis((10 - 1) + (1 ~1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SF algorithmis a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CFU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CRU burst. The larger the CRU burst, the lower
the priority, and vice versa. '

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or O to 4,095. However, there is no general agreement on whether O is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time O, in the order P;, P, «» -, P5, with the length of the CRU burst
given in milliseconds:
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Process Burst Time Priority s
P 10 3
P, 1 1
P 2 4
Py 1 5
Ps 5 2

Using priority scheduling, we would schedul e these processes according to the
following Gantt chart:

Py Pg Py Py Py

] 1 & 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externaly. Internally defined
priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average 1/0 burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CRU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 AM. Sunday, when the system is finaly
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 704 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Agingis atechnique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to O (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventualy, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
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it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time
dice, isdefined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a HFO queue of
processes. New processes are added to the tail of the ready queue. The CRU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CRU
voluntarily. The scheduler will then proceed to the next process in the ready
gueue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CRU burst
given in milliseconds:

Process Burst Time

P 24
Py 3
Py 3

If we use a time quantum of 4 milliseconds, then process P, gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CRU is given to the next process in the queue,
process P,. Since process £ does not need 4 milliseconds, it quits before its
time quantum expires. The CPU is then given to the next process, process P3.
Once each process has received 1 time quantum, the CPU is returned to process
P, for an additional time quantum. The resulting RR schedule is

Pl P2 P3 Pl Py Py Pl P]_

0 4 7 10 14 %8 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR scheduling algorithm, no process is allocated the CRU for more
than 1 time quantum in a row (unless it is the only runnable process). If a
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process's CFU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CRU time in chunks of at most g time units.
Each process must wait no longer than (n — 1) x g time units until its
next time quantum. For example, with five processes and atime quantum of 20
milliseconds, each processwill get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the RR
policy is the same as the FCFS policy If the time quantum is extremely small
(say, 1 millisecond), the RR approachiscalled processor sharingand (in theory)
creates the appearance that each of n processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement ten peripheral processors with
only one set of hardware and ten sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in ten slow processors rather than one fast one. (Actualy, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than ten real processors would
have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Let us assume that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in lessthan 1
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum s
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CRU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10 quantum context
switches
12 0
0 10
_ 6 1
0 6 10
1 9

Figure 5.4 The way in which a smaller time quantum increases context switches.
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average turnaround time

I S

time quantum
Figure 5.5 The way in which turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. Aswe can
see from Figure 5.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround timeis
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degeneratesto FCFS policy. A rule of thumb is that 80 percent of the
CRU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In-
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
Size, process priority, or process type. Each queue has its own scheduling
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highest priority >

lowest priority

Figure 5.6 Multilevel queue scheduling.

algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let's look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

System processes
Interactive processes
Interactive editing processes
Batch processes

o > 0 DN -

Student processes

Each queue has absolute priority over lower-priority queues. No processin the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility isto time-slice among the queues. Here, each queue gets
a certain portion of the CRU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CRU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CRU to give to its processes on an FOFS basis.
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5.3.6 Multilevel Feedback-Queue Scheduling *

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback-queue scheduling algorithm, in contrast, allows
aprocess to move between queues. Theideais to separate processes according
to the characteristics of their CRU bursts. If a process uses too much CPU time,
it will be moved to alower-priority queue. This scheme leaves1/0-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three
queues, numbered from O to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues O
and 1 are empty. A process that arrives for queue 1 will preempt a process in
gueue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queueis put in queue 0. A processin queue 0
is given atime quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue O is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CRU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go dff to its next 1/0 burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CRU cycles left over from queues O
and 1.

Figure 5.7 Multilevel feedback queues.
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In general, a multilevel feedback-queue scheduler is defined by the
following parameters:

e The number of queues
» The scheduling algorithm for each queue

» The method used to determine when to upgrade a process to a higher-
priority gueue

» The method used to determine when to demote a process to a lower-
priority gueue

» Themethod used to determine which queue a processwill enter when that
process needs service

The definition of a multilevel feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for al the parameters.

5.4 Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CRU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CRU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical—homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an 170
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.4.1 Approaches to Multiple-Processor Scheduling

One approach to CAU scheduling in a multiprocessor system has al scheduling
decisions, [/O processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SVIP), where each .
processor is self-scheduling. All processes may beinacommon ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully: We must ensure that
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two processors do not choose the same process and that processes are n&t lost
from the queue. Virtually all modern operating systems support sMp, including
Windows xr, Windows 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SVIP
systems.

5.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
aspecific processor; The data most recently accessed by the process popul ates
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor: The contents of cache memory
must be invalidated for the processor being migrated from, and the cache for
the processor being migrated to must be re-populated. Because of the high
cost of invalidating and re-populating caches, most SVIP systems try to avoid
migration of processes from one processor to another and instead attempt to
keep a process running on the same processor. This is known as processor
affinity, meaning that a process has an affinity for the processor on which it is
currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor —but
not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors.

5.4.3 Load Balancing

On SVIP systems, it is important to keep the workload balanced among dll
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SVIP system. It is important to note that load balancing is typically only
necessary on systemswhere each processor has its own private queue of eigible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnabl e process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—ifit finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE schedul er
available for FreeBSD systems implement both techniques. Linux runs its load-
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balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.4.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its

| data being in that processor's cache memory. By either pulling or pushing a
process from one processor to another, we invalidate this benefit. Asis often the
case in systems engineering, there is no absolute rule concerning what policy
is best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.4.4 Symmetric Multithreading

VP systems alow several threads to run concurrently by providing multiple
physical processors. An alternative strategy is to provide multiple logical —
rather than physical—processors. Such a strategy is known as symmetric
multithreading (or SMT); it has also been termed hyperthreading technology
on Intel processors.

The idea behind SMT is to create multiple logical processors on the same
physical processor, presenting aview of several logical processors to the operat-
ing system, even on a systemwith only a single physical processor. Each logical
processor has its own ar chitecture state, which includes general-purpose and
machine-state registers. Furthermore, each logical processor is responsible for
its own interrupt handling, meaning that interrupts are delivered to—and
handled by —logical processors rather than physical ones. Otherwise, each
logical processor shares the resources of its physical processor, such as cache
memory and buses. Figure 5.8 illustrates a typical SVIT architecture with two
physical processors, each housing two logical processors. From the operating
system's perspective, four processors are available for work on this system.

It isimportant to recognize that VIT is a feature provided in hardware, not
software. That is, hardware must provide the representation of the architecture
state for each logical processor, as well as interrupt handling. Operating
systems need not necessarily be designed differently if they are to run on an
T system; however, certain performance gains are possible if the operating
system is aware that it is running on such a system. For example, consider a

: system with two physical processors, both of which are idle. The scheduler
should firgt try scheduling separate threads on each physical processor rather

T
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GPU
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Figure 5.8 A typical SMT architecture
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than on separate logical processors on the same physical processor. Otherwise,
both logical processors on one physical processor could be busy while the other
physical processor remained idle.

5.5 Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads bel onging
to the same process. When we say the thread library schedules user threads onto
available LWPs we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CRU, the
kernel uses system-contention scope (SCS). Competition for the CRU with SCS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (such as Windows XP, Solaris 9, and Linux) schedule threads
using only SCS

Typically, PCS is done according to priority-——the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may alow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.5.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.3.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the FOSX - -
Pthread AR that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

e PTHREAD_SCOPE_PROCESS schedulesthreads using PCS scheduling.
* PTHREAD.SCOPE.SYSTEM schedules threads using SCS scheduling.
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On systems implementing the many-to-many model (Section 4.2.3), the
PTHREAD_SCOPE_PROCESS policy schedules user-level threads onto available
LWHPRs The number of Lwps is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy (Section
42.2).

The Pthread IPC provides the following two functions for getting—and
setting—the contention scope policy:

* pthread attr_setscope(pthread attr t *attr, int scope)
» pthread.attr getscope(pthread attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread_attr_setscope O function
is passed either the PTHREAD.SCOPESYSTEM Of PTHREAD SCOPE_PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread attr_getscope (), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns non-zero values.

In Figure 5.9, we illustrate a Pthread program that first determines the
existing contention scope and sets it to PTHREAD _SCOPE_PROCESS. It then creates
five separate threads that will run using the SCS scheduling policy. Note that on
some systems, only certain contention scope values are allowed. For example,
Linux and Mac OS X systems allow only PTHREAD SCOPE_SYSTEM.

5.6 Operating System Examples

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Linux. Recall that
Linux does not distinguish between processes and threads; thus, we use the
term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling. It has defined four classes of
scheduling, which are, in order of priority:

Red time

System

Time sharing

NSNS

Interactive

Within each class there are different priorities and different scheduling algo-
rithms. Solaris scheduling is illustrated in Figure 5.10.
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#include <pthread.h> s
#inciude <stdio.h>
#define NUM_THREADS 5

int main{int argc, char *argv[])
oo
int i, scope;
pthread_t tid [NUM_THREADS];
pthread attr_ t attr;

/* get the default attributes */
pthread_attr_init (&attr);

/* first inquire on the current scope */
if (pthread.attr_.getscope(&attr, &scope) != 0)
fprintf (stderr, "Unable to get scheduling scope\n");
el se {
if (scope == PTHREAD_SCOPE_PROCESS)
printf( "PTHREAD_SCOPE_PROCESS") ;
else if (scope == PTHREAD_SCOPE_SYSTEM)
printf ( "PTHREAD_SCOPE SYSTEM");
el se
fprintf (stderxr, "Illegal scope value.\n");
}

/* set the scheduling algorithmto PCS or SCS */
pthread attr_setscope (&attr, PTHREAD SCOPE.SYSTEM) ;

/* create the threads */
for (i = 0; i < NUM_THREADS; i ++)
pthread create (&tidi] , &attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM.THREADS; i++)
pthread.join(tid[i] , NULL);

/* Each thread will begin control in this function */
voi d *runner (void *param)

{

/* do some work ... */

Dt hread_exit {0);

Figure 5.9 Pthread scheduling API.
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Figure 5.10 Solaris scheduling.

The default scheduling class for a process is time sharing. The scheduling
policy for time sharing dynamically alters priorities and assigns time slices
of different lengths using a multilevel feedback queue. By default, there is
an inverse relationship between priorities and time dices: The higher the
priority, the smaller the time dlice; and the lower the priority, the larger the
time dice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications a higher priority for better performance.

Figure 5.11 shows the dispatch table for scheduling interactive and time-
sharing threads. These two scheduling classes include 60 priority levels, but
for brevity, we display only a handful. The dispatch table shown in Figure 5.11
contains the following fields: .

» Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

* Time quantum. The time quantum for the associated priority. This
illustrates the inverse relationship between priorities and time quanta
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Figure 5.11 Solaris dispatch table for interactive and time-sharing threads.

The lowest priority (priority 0) has the highest time quantum (200
milliseconds), and the highest priority (priority 59) has the lowest time
guantum (20 milliseconds).

* Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered
CPU-intensive. As shown in the table, these threads have their priorities
lowered.

& Return from sleep. The priority of athread that is returning from sleeping
(such as waiting for 1/0). As the table illustrates, when 1/0 is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Solaris 9 introduced two new scheduling classes: fixed priority and fair
share. Threads in the fixed-priority class have the same priority range as
those in the time-sharing class; however, their priorities are not dynamically
adjusted. The fair-share scheduling class uses CPU shares instead of priorities
to make scheduling decisions. CPU shares indicate entitlement to available CRU
resources and are allocated to a set of processes (known as a pr oj ect).

Solaris uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are not in the systems class).
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Threadsin the real-time class are given the highest priority. This assigament
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CRU
until it (1) blocks, (2) usesits time dlice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. As mentioned, Solaris has traditionally used the many-
to-many model (4.2.3) but with Solaris 9 switched to the one-to-one model
(4.2.2).

5.6.2 Example: Windows XP Scheduling

Windows XP schedul es threads using a priority-based, preemptive scheduling
algorithm. The Windows X P scheduler ensures that the highest-priority thread
will alwaysrun. The portion of the Windows XP kernel that handl es scheduling
is called the dispatcher. Athread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for 1/0. If a
higher-priority real-time thread becomes ready while a lower-priority thread
isrunning, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having prioritiesfrom 1 to 15, and the r eal-time class contains
threads with prioritiesranging from 16 to 31. (Thereisalso athread running at
priority O that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 AP. The Win32 AR identifies several priority classes to
which a process can belong. These include:

e REALTIME_PRIORITY CLASS

s HIGH-PRIORITY-CLASS

* ABOVE NORMAL _PRIORITY CLASS

* NORMAL-PRIORITY-CLASS

e BELOW_NORMAL PRIORITY_CLASS

* IDLEPRIORITY-CLASS

Priorities in al classes except the REALTIMEPRIORITY-CLASS are variable,

meaning that the priority of a thread belonging to one of these classes can
change.
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Figure 5.12 Windows XP priorities.

Within each of the priority classes is a relative priority. The values for
relative priority include:

e TIME_CRITICAL

e HIGHEST

« ABOVE-NORMAL
« NORMAL

« BELOW-NORMAL
e LOWEST

« IDLE

The priority of each thread is based on the priority class it belongs to and its
relative priority within that class. Thisrelationship is shown in Figure 5.12. The
values of the priority classes appear in the top row. Theleft column contains the
values for the relative priorities. For example, if the relative priority of athread
in the ABOVE.NORMAL_PRIORITY_CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

« REALTIME_PRIORITY CLASS—24

+  HIGH PRIORITY.CLASS—13

«  ABOVE-NORMAL_PRIORITY_CLASS—10
« NORMAL_PRIORITY_.CLASS5—S§

+ BELOW_NORMAL PRIORITY CLASS—6
* IDLE_PRIORITY_CLASS—4
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Processes are typically members of the NORMAL .PRIORITY_CLASS. A pro-
cess will belong to this class unless the parent of the process was of the
IDLE.PRIORITY CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread's time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread's
priority tends to limit the CRU consumption of compute-bound threads. When a
variable-priority thread is released from await operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get alarge
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tendsto give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the 1/0 devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows XP
has a special scheduling rule for processes in the NORMAL PRIORITY_CLASS.
Windows XP distinguishes between the foreground process that is currently
selected on the screen and the background processes that are not currently
selected. When aprocess movesinto the foreground, Windows XPincreases the
scheduling quantum by some factor-—typically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
occurs.

5.6.3 Example: Linux Scheduling

Prior to version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: areal-timerange from 0 to 99 and anice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, including Solaris (5.6.1) and
Windows XP (5.6.2), Linux assigns higher-priority tasks longer time quanta and
lower-priority tasks shorter time quanta. The relationship between priorities
and time-dlice length is shown in Figure 5.13.
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numeric relative time
priority priority quantum
0 highest 200 ms
99
100
* other
ft tasks
140 lowest 10 ms

Figure 5.13 The relationship between priorities and time-slice length.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time siice. When a task has exhausted its time
dice, it is considered expired and is not eligible for execution again until al
other tasks have also exhausted their time quanta. The kernel maintains a list
of al runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays—active and expired. The
active array contains al tasks with time remaining in their time dlices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.14). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When al tasks have
exhausted their time dlices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by rOsix.1b, which is
fully described in Section 5.5.2. Real-time tasks are assigned static priorities.
All other tasks have dynamic priorities that are based on their nice values plus
or minus the value 5. The interactivity of atask determines whether the value
5 will be added to or subtracted from the nice value. A task's interactivity
is determined by how long it has been sleeping while waiting for 1/0. Tasks

active expired
array array
priority task lists priority task lists
[0] o—0 [0] o—o—0
[1] o—0—0 [1] ©
. . . .
. . [ «
[140] o [140] o—0

Figure 5.14 List of tasks indexed according to priority.
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that are more interactive typically have longer sleep times and therefore are
more likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

The recalculation of a task's dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasksin the new active array have been
assigned new priorities and corresponding time slices.

5.7 Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As aresult, selecting an algorithm can be difficult.

Thefirst problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these measures. Our criteria may include several
measures, such as:

* Maximizing CRU utilization under the constraint that the maximum
responsetimeis 1 second

* Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0O, in the order given, with the
length of the CPU burst given in milliseconds:

Process Burst Time

P 10
Py 29
P 3
Pi 7
P 12
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Consider the FCFS SF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

Pl Pz P3 P4 P5

¢ 10 39 42 49 61

The waiting time is O milliseconds for process P;, 10 milliseconds for process
P>, 39 milliseconds for process P3, 42 milliseconds for process P4, and 49
milliseconds for process Ps. Thus, the average waiting time is (0 + 10 + 39
+ 42 + 49) /5= 28 milliseconds.

With nonpreemptive SF scheduling, we execute the processes as

P3 P4 Py Pg P;

0 3 10 20 32 61

The waiting timeis 10 milliseconds for process P\, 32 milliseconds for process
P>, 0 milliseconds for process P3, 3 milliseconds for process P4, and 20
milliseconds for process P5. Thus, the average waiting time is (10 + 32 + 0
+ 3 +20)/5 = 13 milliseconds.

With the RR algorithm, we execute the processes as

Py Py Pyl P4 Ps P2 Ps Py

0 10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process P;, 32 milliseconds for process
P,, 20 milliseconds for process 5, 23 milliseconds for process P4, and 40
milliseconds for process P5. Thus, the average waiting time is (0 + 32 + 20
+ 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate val ue.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In
cases where we are running the same program over and over again and can . .
measure the program's processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SF policy will always result in the minimum waiting time.
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5.7.2 Queueing Models :

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CRU and 1/0 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CRU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CFU is a server with its ready queue, asis
the 1/0 system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, x x W
new processes will arrive in the queue. If the system isin a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n=hx W.

This equation, known as Little's formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little's formula to compute one of the three variables, if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—but unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable's value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
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Figure 5.15 Evaluation of CPU schedulers by simulation.

executes, statistics that indicate algorithm performance are gathered and
printed.

The datato drive the simulation can be generated in several ways. The most
common method uses a random-number generator, which is programmed to
generate processes, CFU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If adistribution isto be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of eventsin the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create atrace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.15). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, but it also requires
more computer time. In addition, trace tapes can require large amounts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.
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The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninferactive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal 1/0. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
lessthan 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. For instance, a workstation
that performs high-end graphical applications may have scheduling needs
different from those of a web server or file server. Some operating systems—
particularly severa versions of UNIX—allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to alow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPI/ provide such functions. The downfall
of this approach is that performance tuning a system or application most often
does not result in improved performance in more general situations.

5.8 Summary

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SF scheduling is provably optimal, providing the shortest average
waiting time. Implementing SF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.
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Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CRU to thefirst process in the ready
gueue for q time units, where ¢ is the time quantum. After q time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm isnonpreemptive; the RR algorithmis preemptive. The
SF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms alow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
vises FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedul e itself independently. Typically, each processor
maintains its own private queue of processes (or threads), al of which are
available to run. Issues related to multiprocessor scheduling include processor
affinity and load balancing.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a "representative"
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
"real-world" environment.

Exercises

51 Whyisitimportant for the scheduler to distinguish 1/0-bound programs
from CPU-bound programs?

52 Discuss how the following pairs of scheduling criteria conflict in certain -
settings.

a. CPU utilization and response time
b. Average turnaround time and maximum waiting time
c. I/Odeviceutilization and CPU utilization <

https:/hemanthrajhemu.github.io



Exercises 187

53 Consider the exponential average formula used to predict the length of
the next CRU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a a—= 0and Ty = 100 milliseconds
b. =099 and 7 = 10 milliseconds

54 Consider the following set of processes, with the length of the CRU burst
given in milliseconds:

Process Burst Time  Priority

P, 10 3
P 1 1
P 2 3
P, 1 4
Ps 5 2

The processes are assumed to have arrived in the order Py, P, P3, P4, P5,
al at time 0.

a Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCFS SF,
nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What isthewaiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the algorithms in part a results in the minimum average
waiting time (over al processes)?

55 Which of the following scheduling algorithms could result in starvation?
a  First-come, first-served
b. Shortest job first
c. Round robin
d. Priority

56 Consider avariant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be two major advantages and two disadvantages of
this scheme?

¢c. How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?
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57 Consider a system running ten 1/0-bound tasks and one CPU-bound
task. Assume that the 1/0-bound tasks issue an 1/0 operation once for
every millisecond of CRU computing and that each 1/O operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. Thetime quantum is 1 millisecond

b. Thetime quantum is 10 milliseconds

58 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CRU
time allocated to the user's process?

59 Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate a; when it is running, its priority
changes at a rate (3. All processes are given a priority of O when they
enter the ready queue. The parameters a and 3 can be set to give many
different scheduling algorithms.

a What isthe algorithm that resultsfrom (3 > « > 0?
b. What isthe algorithm that results from e < pi < 0?

510 Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a FCFS
b. R
c. Multilevel feedback queues

511 Using the Windows XP scheduling algorithm, what is the numeric
priority of athread for the following scenarios?

a. A thread in the REALTIME PRIORITY.CLASS with arelative priority

of HIGHEST

b. A thread in the NORMAL PRIORITY CLASS with arelative priority
of NORMAL

c. A thread in the HIGH_PRIORITY_CLASS with arelative priority of
ABOVE NORMAL

512 Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?
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c. Assume that a thread with priority 35 blocks for 1/0O before its
time quantum has expired. What new priority will the scheduler
assign this thread?

513 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recal culated.

Assume that recent CRU usage for process P, is 40, process P; is 18,
and process P; is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
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A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
lightweight processes or threads, which we discussed in Chapter 4. Concurrent
access to shared data may result in data inconsistency. In this chapter, we
discuss various mechanisms to ensure the orderly execution of cooperating
processes that share a logical address space, so that data consistency is
maintained.

CHAPTER OBJECTIVES

» To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

» To present both software and hardware solutions of the critical-section
problem.

» To intoduce the concept of atomic transaction and describe mechanisms
to ensure atomicity.

6.1 Background

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, al running asynchronously and possibly
sharing data. We illustrated this model with the producer—consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let us return to our consideration of the bounded buffer. As we pointed
out, our solution allows at most BUFFER.SIZE - 1 items in the buffer at the same
time. Suppose we want to modify the algorithm to remedy this deficiency. One
possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented

191
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every time we remove one item from the buffer. The code for the producer
process can be modified as follows:

while (true)
{
/* produce an itemin nextProduced */
while (counter == BUFFER. SIZE)
/* do nothing */
buffer[in] = next Produced;
in= (in + 1) % BUFFER.SIZE;
count er ++;

h
The code for the consumer process can be modified as follows:

while (true)

{
while (counter == 0)
; /* do nothing */
nextConsumed = buffer[out] ;
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in nextConsumed */

}

Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently. Asanillustration,
suppose that the value of the variable counter is currently 5 and that the
producer and consumer processes execute the statements “counter++” and
“counter--" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result,
though, is counter == 5, which is generated correctly if the producer and
consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement " counter++" may be implemented in machine language (on
atypical machine) as

register; = counter
registery =registery +1
counter - registeri

whereregister; isaloca CRU register. Smilarly, the statement “counter--"is
implemented as follows.

register; = counter
register, =register, —1
counter = registeri

where again register, is a locd CRU register. Even though register; and
register, may be the same physical register (an accumulator, say), remember
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that the contents of this register will be saved and restored by the intgrrupt
handler (Section 1.2.3).

The concurrent execution of “counter++" and “counter--"1is equivalent
to a sequential execution where the lower-level statements presented pre-
viously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

Tp: producer execute registeri — counter {register, = 5}
T;: producer execute register, =registery + 1 {register;= 6}
Tr. consumer execute register, = counter {register2 =5}
T;: consumer execute register;= registeri— 1 {register,=A4}
T;: producer execute counter = registeri {counter = 6}
T=: consumer execute counter = registers {counter = 4}

Notice that we have arrived at the incorrect state "counter == 4", indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at T, and Tz, we would arrive at the incorrect state
"counter———=6".

We would arrive at thisincorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is caled a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
thevariable counter. To make such aguarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Clearly, we
want the resulting changes not to interfere with one another. Because of the
importance of this issue, a mgor portion of this chapter is concerned with
process synchronization and coor dination.

6.2 The Critical-Section Problem

Consider a system consisting of n processes {Py, P4, ..., P,.1}. Each process
has a segment of code, caled a critical section, in which the process may
be changing common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problemisto design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical |
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process P; is shown in
Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.
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do{ ’

1 entry section]

critical section

remainder section
} while (TRUE);
Figure61 Genead dructure of atypica processF.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process P; isexecuting in itscritical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this selection
cannot be postponed indefinitely.

3. Bounded waiting. There exists abound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At agiven point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
thefile to the list or removing it from thelist). If two processeswere to open files
simultaneously, the separate updates to thislist could result in arace condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptivekernelsand (2) nonpreemptivekernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as
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only one process is active in the kernel a a time. We cannot say the:same
about nonpreemptive kernels, so they must be carefully designed to ensure
that shared kernel data are free from race conditions. Preemptive kernels are
especidly difficult to design for SMIP architectures, since in these environments
it is possible for two kernel-mode processes to run ssimultaneoudy on different
processors.

Why, then, would anyone favor a preemptive kernel over anonpreemptive
one? A preemptive kernel ismore suitable for real-time programming, asit will
alow areal-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since thereis less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kerndl code that does not behave in this way.

Windows XP and Windows 2000 are nonpreemptive kernels, as is the
traditional UNIX kernel. Prior to Linux 2.6, the Linux kernel was nonpreemptive
as well. However, with the release of the 26 kerndl, Linux changed to the
preemptive model. Severd commercia versions of UNIX are preemptive,
including Solaris and IRIX.

6.3 Peterson's Solution

Next, we illustrate a classc software-based solution to the critical-section
problem known as Peter son's solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson's solution will work correctly
on such architectures. However, we present the solution because it provides
a good algorithmic description of solving the critica-section problem and
illustrates some of the complexities involved in designing software that
addresses the requirements of mutual excluson, progress, and bounded
waiting requirements.

Peterson's solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered P, and P;. For convenience, when presenting P-, we use P; to
denote the other process; that is, j equals 1 — .

Peterson's solution requires two data items to be shared between the two
processes:

int turn;
boolean flag(2] e

The variable turnindicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is dlowed to execute in its critica section. The
flagarray isused to indicate if a process is ready to enter its critica section.
For example, if £lag[i] istrue, thisvaue indicates that P; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the agorithm shown in Figure 6.2.

To enter the critica section, process P; firg sets flag[i] to be true and
then setsturn to the value j, thereby asserting that if the other process wishes
to enter the critica section, it can do so. If both processes try to enter at the
same time, turn will be set to both i and j at roughly the same time. Only
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do { ’

flag[i] = TRUE
turn = j;
while (flag[j] && turn == j);

critical section

| flagli] = FALSE |

remainder section
} while (TRUE);
Fgure6.2 Thedructureof process”  in Peterson'ssolution.

one of these assignments will last; the other will occur but will be overwritten
immediately. The eventual value of turn decides which of the two processes
is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusionis preserved.
2. The progress requirement is satisfied.
3. Thebounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flag[j] == false or turn ==i. Also note that, if both processes
can be executing in their critical sections at the same time, then f1ag[0] ==
flag[1] == true. Thesetwo observationsimply that F; and P, could not have
successfully executed their while statements at about the same time, since the
value of turn can beeither O or 1 but cannot be both. Hence, one of the processes
—say P;—must have successfully executed the while statement, whereas P;
had to execute at least one additional statement ("turn==j"). However, since,
at that time, flag[j] == true, and turn == j, and this condition will persist
as long as P; isin its critica section, the result follows: Mutual exclusion is
preserved.

Toproveproperties2 and 3, we notethat aprocess P, can be prevented from
entering the critical section only if it isstuck in thewhile loop with the condition
flag[j] ==trueandturn == j; thisloop is the only one possible. If P; is not
ready to enter the critical section, then £lag[j] == false,and P; can enter its
critical section. If P; hasset flag[j] totrue and isaso executing initswhile
statement, then either turn==i or turn == j.If turn == i, then P; will enter
the critical section. If turn==j, then P; will enter the critica section. However,
once P; exitsits critical section, it will reset flag[j] to false,dlowing P; to
enter its critical section. If P; resets flag[j] totrue, it must also set turnto i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section (progress) after at most
one entry by P; (bounded waiting).
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do{ »

acquirelock

critical section

releaselock
remainder section
} while (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

6.4 Synchronization Hardware

We have just described one software-based solution to the critical-section
problem. In general, we can state that any solution to the critical-section
problem requires a simple tool—a lock. Race conditions are prevented by
requiring that critical regions be protected by locks. That is, a process must
acquire alock before entering a critical section; it releases the lock when it exits
the critical section. Thisisillustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the design of such locks
can be quite sophisticated.

Hardware features can make any programming task easier and improve
system efficiency. In this section, we present some simple hardware instructions
that are available on many systems and show how they can be used effectively
in solving the critical-section problem.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.
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dO{ B
whil e (TestAndSetLock{&lock))
/1 do nothing

/Il critical section
| ock = FALSE;

// remai nder section
}while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

message is passed to al the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system's clock, if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words atomically—thatis, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions.

The TestAndSet () instruction can be defined as shown in Figure 6.4.
The important characteristic is that this instruction is executed atomically.
Thus, if two TestAndSet C) instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process P; is shown in Figure 6.5.

The Swap() instruction, in contrast to the TestAndSet () instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet O instruction, it is executed atomicaly. If the machine
supports the Swap () instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P; isshownin Figure 6.7.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present

void Swap(boclean *a, boolean *b) {
boolean temp = *a;
*a — *b-
*b = temp;

}

Figure 6.6 The definition of the Swap () instruction.
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do { y
key = TRUE;
while (key == TRUE)
Swap (&lock, &key) ;

/1 critical section
| ock = FALSE;

/! remai nder section
lwhile (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap () instruction.

another algorithm using the TestAndSet () instruction that satisfies dl the
critical-section requirements. The common data structures are

boolean waiting[n];
boolean lock;

These data structures are initidized to false. To prove that the mutual-
excluson requirement is met, we note that process P, can enter its critica
section only if ether waiting[i] == false or key — false. The value
of key can become false only if the TestAndSet () IS executed. The firs
process to execute the TestAndSet () will find key == false; dl others must

do {
waiting[i] = TRUE;
key = TRUE;

while (waitingli] && key)
key = TestaAndSet (&lock) ;
waiting[i] = FALSE;

/1 critical section

j = (| + 1) % In;

while ((§ = 1) && lwaiting[j])
j = (J + 1) % n;

if (j =1)
| ock = FALSE;

el se
waiting[j] = FALSE;

/! remai nder section
}while (TRUE);

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet ().
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wait. The variable waiting[i] can become false only if another process
leavesits critica section; only onewaiting [i] iSset to false, maintaining the
mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual excluson aso apply here, since a process exiting the
critical section elther sets lock to false or sets waiting[j] to false. Both
alow a processthat iswaiting to enter its critica section to proceed.

To provethat the bounded-waiting requirement is met, we note that, when
a process leaves its criticd section, it scans the array waiting in the cydic
ordering@+ 1,i+ 2,...,n—1,0, ..., 1 — 1). It designatesthefirg processinthis
ordering that is in the entry section (waiting[j] =-true) as the next one to
enter the critica section. Any process waiting to enter its critical section will
thusdo sowithinn—1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
Set () instructions on multiprocessors is not atrivia task. Such implementa-
tions are discussed in books on computer architecture.

6.5 Semaphores

The various hardware-based solutions to the critical-section problem (using
the TestAndSet() and Swap() ingructions) presented in Section 64 are
complicated for application programmers to use. To overcome this difficulty,
we can use a synchronization tool called a semaphore.

A semaphore S is an integer variable that, apart from initiaization, is
accesed only through two standard atomic operations. wait () and signal ().
Thewait () operation was originaly termed P (from the Dutchproberen,  "to
test"); signal() wasoriginaly called V (from verhogen, "to increment"). The
definition of wait O is as follows:

wait(S) {
while S <=0
; Il no-op
S--;
}

The definition of signal() is asfollows

signal (S) {
S++;

}

All the modifications to the integer value of the semaphore in the wait ()
and signal() operations must be executed indivisibly. That is, when one -
process modifies the semaphore value, no other process can smultaneoudy
modify that same semaphore vaue. In addition, in the case of wait(S), the
testing of the integer value of S (S < 0), and its possible modification (3--),
must aso be executed without interruption. We shall see how these operations
can be implemented in Section 6.5.2; fird, let us see how semaphores can be
used.
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6.5.1 Usage

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some
systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P; is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait () operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal() operation
(incrementing the count). When the count for the semaphore goes to 0O, al
resources are being used. After that, processes that wish to use aresource will
block until the count becomes greater than 0.

We can aso use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: P; with astatement
S; and P, with a statement 5;. Suppose we require that 5, be executed only
after S; has completed. We can implement this scheme readily by letting P,
and P, share a common semaphore synch, initialized to 0, and by inserting the
statements

51;
signal(synch);

in process P\, and the statements

wait(synch);
5;

in process P». Because synchisinitialized to 0, P, will execute S; only after P\
has invoked signal (synch), which is after statement S; has been executed.

do {
waiting (mutex) ;
/! critical section

signal (mutex) ;

/!l remai nder section
}while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.
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6.5.2 Implementation i

The main disadvantage of the semaphore definition given hereisthat it requires
busy waiting. While a processis in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CFU is shared among many processes. Busy waiting wastes
CRU cycles that some other process might be able to use productively. This
type of semaphoreis also called a spinlock because the process "spins' while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can "spin" on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
thewait () and signal() semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CRU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal () operation. The process is
restarted by awakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CHRU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a"C" gtruct:

typedef struct {

int value;

struct process *list;
} semaphore;

Each semaphore has an integer value and a list of processes list. When
a process must wait on a semaphore, it is added to the list of processes. A
signal() operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait (semaphore *S) {
S->value—-—;
if (S>value < 0) {
add this process to S->list;
block();
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The signal 0 semaphore operation can now be defined as

signal (semaphore *S) {
S->value++;
if (S>value <= 0) {
remove a process P from S->1ist;
wakeup(P) ;

}

Theblock() operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system asbasic system cdls.

Note that, athough under the classca definition of semaphores with busy
waiting the semaphore vaue is never negative, this implementation may have
negative semaphore values. If the semaphore vaue is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The ligt of waiting processes can be easly implemented by a link fidd in
each process control block (FCB). Each semaphore contains an integer value
and a pointer to a list of FCBs One way to add and remove processes from
the list in away that ensures bounded waiting is to use a AFO queue, where
the semaphore contains both head and tail pointers to the queue. In generd,
however, the list can use any queueing strategy. Correct usage of semaphores
does not depend on a particular queueing strategy for the semaphore ligts.

The critical aspect of semaphores is that they be executed atomically. We
must guarantee that no two processes can execute wait() and signal()
operations on the same semaphore at the same time. This is a critical-section
problem; and in a single-processor environment (that is, where only one CRU
exists), we can solve it by smply inhibiting interrupts during the time the
wait () and signal () operationsare executing. Thisschemeworksinasingle-
processor environment because, once interrupts are inhibited, instructions
from different processes cannot be interleaved. Only the currently running
process executes until interrupts are reenabled and the scheduler can regain
control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts

- on every processor can be a difficult task and furthermore can seriously dimin-

! ish peformance. Therefore, sMr systems must provide aternative locking

: techniques—such &S spinlocks—to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completdy eliminated busy
waiting with this definition of the wait () and signal() operations. Rather,
we have removed busy waiting from the entry section to the critica sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of thewait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
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Thus, the critical section is almost never occupied, and busy waiting ‘occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal () operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, Py and
P, each accessing two semaphores, S and Q, set to the value 1:

Py Py
wait (8); wait (Q);
wait (Q); wait(8);
signal (S): signal(Q);
signal(Q); signal(8);

Supposethat P, executeswait (S) and then P; executeswait (Q). When P,
executes wait (Q), it must wait until P; executes signal (Q). Similarly, when
P, executes wait(S), it must wait until P, executes signal(S). Since these
signal() operations cannot be executed, Py and P; are deadlocked.

We say that a set of processesis in a deadlock state when every process in
the set iswaiting for an event that can be caused only by another process in the
set. The eventswith which we are mainly concerned here are resourceacquisition
and release. However, other types of events may result in deadlocks, aswe shall
show in Chapter 7. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
tion, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO (last-in, first-out) order.

6.6 Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples
of alarge class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.
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do {
/1 produce an itemin nextp

wait (empty) ;
walt {mutex) ;

/1 add nextp to buffer

signal (mutex) ;
signal (full} ;
}whi | e (TRUE) ,-

Figure 6.10 The structure of the producer process.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly
used to illustrate the power of synchronization primitives. We present here a
general structure of this schemewithout committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and fullsemaphores
count the number of empty and full buffers. The semaphore empty isinitialized
to the value n; the semaphore fullisinitialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait (full);
wait (mutex) ;

/!l renove an itemfrombuffer to nextc

signal (mutex) ;
signal (empty) ;

/] consune the itemin nextc
}while (TRUE);

Figure 6.11 The structure of the consumer process.
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6.6.2 The Readers-Writers Problem

A database is to be shared among several concurrent processes. Some of these
processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these
two types of processes by referring to the former as readers and to the latter
aswriters. Obvioudy, if two readers access the shared data s multaneously, no
adverse dfects will result. However, if a writer and some other thread (either
areader or awriter) access the database simultaneoudly, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization problemis
referred to asthe reader s-writers problem. Since it was originally stated, it has
been used to test nearly every new synchronization primitive. The readers-
writers problem has severa variations, dl involving priorities. The smplest
one, referred to as the first readers—writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish amply because awriter is waiting. The second readers-writers problem
requires that, once awriter is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading.

A solution to either problem may result in starvation. In the firs case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present a
solution to the fird readers—writers problem. Refer to the bibliographical notes
a the end of the chapter for references describing starvation-free solutions to
the second readers—writers problem.

In the solution to the firdt readers—writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;
int readcount;

The semaphoresmutex and wrt areinitialized to 1; readcount isinitialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual excluson when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is aso used by the firg or last

do {
wait (wrt) ;
/[l witing is perforned

signal (wt) ;
}while (TRUE);

Figure 6.12 The structure of a writer process.
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dO { *.
wait (mutex) ;
readcount++;
if (readcount == 1)
wait (wrt) ;
signal (mutex) ;

/1 reading is perfornmed

wai t (mut ex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
}while (TRUE);

Figure 6.13 The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for awriter processis shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and n readers are waiting, then onereader is queued on wrt, and n— 1 readers
are queued on mutex. Also observe that, when a writer executes signal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers~writers problem and its solutions has been generalized to
provide reader -writer locks on some systems. Acquiring areader-writer lock
requires specifying the mode of the lock: either read or write access. When a
process only wishes to read shared data, it requests the reader—writer lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader-writer lock in read mode; only one process may acquire the lock for
writing as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:

* Inapplicationswhere it iseasy to identify which processes only read shared
data and which threads only write shared data.

* Inapplicationsthat have more readersthan writers. Thisisbecause reader-
writer locks generally require more overhead to establish than semaphores
or mutual exclusion locks, and the overhead for setting up a reader-writer
lock is compensated by the increased concurrency of allowing multiple
readers.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher. In the center of the tableis abowl of rice, and thetableislaid
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Figure 6.14 The situation of the dining philosophers.

with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at atime. Obvioudy, she cannot pick up a chopstick that
is dready in the hand of a neighbor. When ahungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she isfinished eating, she puts down both of her chopsticks and startsthinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists didike philosophers but because it is an example of a large class
of concurrency-control problems. It is a Smple representation of the need
to alocate severa resources among severa processes in a deadlock-free and
darvation-free manner.

One smple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing await () operation on that
semaphore; she releases her chopsticks by executing the signal () operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where dl the dements of chopstick are initidized to 1. The structure of
philosopher i is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
smultaneoudly, it nevertheless must be rgected because it could create a
deadlock. Suppose that al five philosophers become hungry simultaneously
and each grabs her Ieft chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher triesto grab her right chopstick, she will be
delayed forever.

Severd possible remedies to the deadlock problem are listed next. In
Section 6.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

* Allow a most four philosophers to be sitting ssmultaneoudly at the table.
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do { s
wai t (chopstick[i]) ;
wait {chopstick[ (i +1) %5] ) ;

Il eat
sig;na;l (‘chopstick[ i1);
signal (chopstick[(i +1) %5]);
// think
}while (TRUE);
Figure 6.15 The structure of philosopher i.

» Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in acritical section).

* Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of
starvation.

6.7 Monitors

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer-consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-
section problem. All processes share a semaphore variable mutex, which is.
initialized to 1. Each process must execute wait (mutex) before entering the
critical section and signal (mutex) afterward. If this sequence is not observed,
two processes may be in their critical sections simultaneously. Let us examine
the various difficulties that may result. Note that these difficulties will arise
even if asingle processis not well behaved. This situation may be caused by an
honest programming error or an uncooperative programmer.
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* Suppose that a process interchanges the order in which the wait () and
signal() operations on the semaphore mutex are executed, resulting in
the following execution:

signal (mutex);
critical section
walt (mutex);

Inthissituation, several processesmay be executingintheir critical sections
smultaneoudly, violating the mutual-exclusion requirement. This error
may be discovered only if severad processes are smultaneoudy active
in their critical sections. Note that this situation may not aways be
reproducible.

» Suppose that a process replaces signal (mutex) with wait (mutex). That
IS, it executes

wait (mutex);
cri‘fi'cd section
waitzﬁutex);
In this case, a deadlock will occur.

» Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
OCCUI.

These examples illustrate that various types of errors can be generated easly
when programmers use semaphores incorrectly to solve the critica-section
problem. Similar problems may arise in the other synchronization models that
we discussed in Section 6.6.

To ded with such errors, researchers have developed high-level language
congtructs. In this section, we describe one fundamenta high-level synchro-
nization construct—the monitor type.

6.7.1 Usage

A type, or abstract data type, encapsulates private data with public methods
to operate on that data. A monitor type presents a set of programmer-defined
operationsthat are provided mutual exclusion within the monitor. The monitor
type dso contains the declaration of variables whose values define the state
of an instance of that type, adong with the bodies of procedures or functions
that operate on those variables. The syntax of a monitor is shown in Figure
6.16. The representation of a monitor type cannot be used directly by the
various processes. Thus, aprocedure defined within a monitor can access only
those variables declared locdly within the monitor and its forma parameters.
Smilarly, the locd variables of a monitor can be accessed by only the loca
procedures.
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monitor monitor name

// shared vari abl e decl arations

procedure PT (. . . ) {

}

procedure P2 (.. .){

}

procedure Pn (.. . ) {

}

initialization code (. . . ) {

}
}

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not need
to code this synchronization constraint explicitly (Figure 6.17). However,
the monitor construct, as defined so far, is not sufficiently powerful for
modeling some synchronization schemes. For this purpose, we need to define
additional synchronization mechanisms. These mechanisms are provided by
the condition construct. A programmer who needs to write a tailor-made
synchronization scheme can define one or more variables of type condition:

condition x, v;

The only operations that can be invoked on a condition variable are wait ()
and signal (). The operation

x.wait();

means that the process invoking this operation is suspended until another
process invokes

x.signal );

The x. signal () operation resumes exactly one suspended process. If no
process is suspended, then the signal() operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.18). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.
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entry queue

Figure 6.17 Schematic view of a monitor.

Now suppose that, when thex. signal () operationisinvoked by aprocess
P, there is a suspended process § associated with condition x. Clearly, if the
suspended processQ isallowed to resumeits execution, the signaling process P
must wait. Otherwise, both P and @ would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

1. Signal and wait. P either waits until (O leaves the monitor or waits for
another condition.

2. Signal and continue. Q either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, thesignal-and-continue
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which Q
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it immediately leaves the monitor. Hence, Q is immediately
resumed.

6.7.2 Dining-Philosophers Solution Using Monitors

We now illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
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entry queue

queues associated with {_y X
X, yconditions\;'y,_ S

Figure 6.18 Monitor with condition variables.

code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum { thinking, hungry, eating} state[5];

Philosopher i can set the variable state[i] = eating only if her two
neighbors are not eating: (state[(i+4) % 5] != eating)and (state[(i+1)
% 5] != eating).

We also need to declare

condition self [5];

where philosopher i can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

Wearenow in aposition to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controlled by the monitor dp,
whose definition is shown in Figure 6.19. Each philosopher, before starting to
eat, must invoke the operation pi ckup (). This may result in the suspension of
the philosopher process. After the successful completion of the operation, the
philosopher may eat. Following this, the philosopher invokes the putdownO
operation. Thus, philosopher i must invoke the operations pickup() and
putdown () in the following sequence:

dp.pickup(i);
eat

dp.putdown(i);
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monitor dp ,
{
enum {THINKING, HUNGRY, EATING}state {51
condition self [5] ;

voi d pickup(int 1) {
state[i] = HUNGRY;

test (i) ;
if (state[i] !'= EATING
sel f[i] .wait {);
}
void putdown(int i) {

statetil = THI NKI NG

test ((1 + 4) %5} ;

test{(i +1) %5) ;
}

void test(int i) {

if ((state[(i + 4) %5 !=EATING s&&
{state[i] == HUNGRY) &&
(state[(i + 1) %5] != EATING)) {

state[i] = EATING
self[i] .signal ();
J
}

initialization-code() {
for (inti =0; i <5; i++)
state[i] = THI NKI NG

}

Figure 6.19 A monitor solution to the dining-philosopher problem.

Itiseasy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, asemaphoremut X (initialized to 1) isprovided.
A process must execute wait (mutex) before entering the monitor and must
execute signal (mutex) after leaving the monitor.

Since asignaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to O, on
which the signaling processes may suspend themselves. An integer variable
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next _count is aso provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by ’

wait (mutex) ;
body of F

if (next_count > Q)
signal (next);
else
signal (mutex);

Mutual exclusion within a monitor is ensured.

We can now describe how condition variables are implemented. For each
condition x, we introduce a semaphore x_sem and an integer variable x_count,
both initialized to 0. The operation x.wait () can now be implemented as

x_count++;
if (next count > 0)
signal (next);
el se
signal (mutex) ;
wait (x_sem) ;
X_count--;

The operation x. signal () can be implemented as

if (x_count > 0) {
next_count++;
signal (x_sem) ;
wait(next);
next _count--;

}

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.17.

6.7.4 Resuming Processes Within a Monitor

We turn now to the subject of process-resumption order within a monitor. If

several processes are suspended on condition X, and an x. signal () operation
is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution isto use an’
FCOFS ordering, so that the process waiting the longest is resumed first. In many
circumstances, however, such a simple scheduling schemeis not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);
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nmoni t or Resour ceAl | ocat or \
bool ean busy;
condi tion x;

void acquire(int time) {
if (busy)
x.wait{time) ;
busy = TRUE;
}

voi d release() {
busy = FALSE;
x.signal () ;

}

initializaticn.code(} |
busy = FALSE;

}

Figure 6.20 A monitor to allocate a single resource.

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of ¢, which is called a priority number, is then stored
with the name of the process that is suspended. When x. signal () is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the ResourceAllocator
monitor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation
of this resource, specifies the maximum time it plans to use the resource.
The monitor allocates the resource to the process that has the shortest time-
allocation request. A process that needs to access the resource in question must
observe the following sequence:

R.acquire(t);
access the resource;

R.release();

where R is an instance of type ResourceAllocator.

Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

» A process might access a resource without first gaining access permission
to the resource.

» A process might never release a resource once it has been granted access
to the resource.
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6.8 Synchronization Examples 207

» A process might attempt to release a resource that it never requested.

* A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect al the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although thisinspection may be possible for a small, static system, it is not
reasonable for alarge system or adynamic system. This access-control problem
can be solved only by additional mechanisms that will be described in Chapter
14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages-—such as Erlang—provide some
type of concurrency support using a similar mechanism.

6.8 Synchronization Examples

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads AP. We
have chosen these three systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the
Pthreads AR because it iswidely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi-
tion variables, semaphores, reader-writer locks, and turnstiles. Solarisimple-
ments semaphores and condition variables essentialy as they are presented
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in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader-
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
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lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, spin waiting will be exceedingly inefficient. For these longer code
segments, condition variables and semaphores are used. If the desired lock is
aready held, the thread issues await and sleeps. When athread frees the lock, it
issues asignal to the next sleeping thread in the queue. The extracost of putting
a thread to slegp and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

Reader-writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader-writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
tothe data. Reader—writer locks arerelatively expensive to implement, so again
they are used on only long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader-writer lock. A turnstile is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object's lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile per object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Subsequent threads blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from alist of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol (Section 19.5). This means that if a lower-priority thread
currently holds a lock that a higher-priority thread is blocked on, the thread
with the lower priority will temporarily inherit the priority of the higher-
priority thread. Upon releasing the lock, the thread will revert to its original
priority.

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.5;
user-level thread-locking mechanisms do not provide this functionality. o

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.
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6.8.2 Synchronization in Windows XP ?

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for al interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
dispatcher objects. Using a dispatcher object, threads synchronize according
to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring athread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finaly, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A signaled state indicates that an object is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of athread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the
kernel moves one thread —or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads the
kernel selects from the waiting queue depends on the type of dispatcher object
it is waiting on. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be "owned" by only a single thread. For
an event object, the kernel will select al threads that are waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that isin a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.
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front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock. ’

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 AR.

6.8.3 Synchronization in Linux

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted —even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so atask can be preempted when it is running in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader-
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

single processor [ multiple processors

~-Enable kernel preemption; -

Release spin lock:

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt_disable() and pre-
empt _enable() —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this, each task in the system has athread-infostructure containing
a counter, preempt _count, to indicate the number of locks being held by the
task. Whenalock isacquired, preempt_countisincremented. Itisdecremented
when a lock is released. If the value of preempt_count for the task currently
running is greater than zero, it is not safe to preempt the kernel, as this task
currently holds a lock. If the count is zero, the kernel can safely be interrupted
(assuming there are no outstanding calls to preempt disable()).

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for alonger period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads AR provides mutex locks, condition variables, and read-write
locks for thread synchronization. This AR is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
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locks behave similarly to the locking mechanism described in Section, 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads Art include spinlocks, although not
all extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

6.9 Atomic Transactions

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at al. An
example is funds transfer, in which one account is debited and another is
credited. Clearly, it is essential for data consistency either that both the credit
and debit occur or that neither occur.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with database systems. Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc technigues used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database technigues and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It isthis
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logica
function is called a transaction. A magjor issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has
ended its normal execution due to some logical error or a system failure. *
If a terminated transaction has completed its execution successfully, it is
committed; otherwise, itis aborted.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
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an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it wasjust before the transaction started executing. We
say that such a transaction has been rolled back. It is part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

* Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

* Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but lessreliable
than magnetic tapes. Both disks and tapes, however, are subject to falure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

» Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing al the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording
is write-ahead logging. Here, the system maintains, on stable storage, a data
structure called the log. Each log record describes a single operation of a
transaction write and has the following fields:

* Transaction name. The unique name of the transaction that performed the
write operation

» Data item name. The unique name of the data item written

* Old value. The value of the data item prior to the write operation

* New value. The value that the data item will have after the write
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Other specid log records exist to record significant events during transac-
tion processing, such asthe start of a transaction and the commit or abort of a
transaction.

Before a transaction T, starts its execution, the record < 7, starts>iS
written to thelog. During itSexecution, any write operation by T; ispreceded
by the writing of the appropriate new record to the log. When 7/ commits, the
record < T, commits> iswritten to thelog.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot alow the actua
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themsalves and for the log recording the changes. In cases
where the data are extremely important and fast failure recovery is necessary,
the price is worth the functiondity.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

* undo(T;), which restores the value of dl data updated by transaction 7; to
the old values

» redo(T;), which sets the value of dl data updated by transaction T; to the
new vaues

The set of data updated by 7} and their respective old and new values can be
found in the log.

The undo and redo operations must be idempotent (that is, multiple
executions must have the same result as does one execution) to guarantee
correct behavior, even if a falure occurs during the recovery process.

If atransaction 7} aborts, then we can restore the state of the data that
it has updated by smply executing undo(T;). If a system failure occurs, we
restore the state of dl updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classfication
of transactions is accomplished as follows:

» Transaction T; needs to be undone if the log containsthe < T; starts>
record but doesnot containthe< 7;  commits> record.

» TransactionT; needsto beredoneif thelog containsboththe < T, starts>
and the < T; commits> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entirelog to make these determinations. There
are two mgor drawbacks to this approach:
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1. The searching process is time consuming.

2. Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

1. Output al log records currently residing in volatile storage (usually main
memory) onto stable storage.

Output al modified dataresiding in volatile storage to the stable storage.
Output a log record <checkpoint=> onto stable storage.

The presence of a <checkpoint> record in the log allows the system
to streamline its recovery procedure. Consider a transaction 7, that committed
prior to the checkpoint. The < T; commits> record appearsin the log before the
<checkpoint> record. Any modifications made by T, must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itsdf. Thus, at recovery time, there is no need to perform a redo operation on
Tj.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction 7] that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent
< T; start>record.

Once transaction T, hasbeenidentified, the redo and undo operations need
be applied only to transaction Tj and all transactions Tj that started executing
after transaction T;. Well call these transactions set T. The remainder of the log
can thus be ignored. The recovery operations that are required are as follows:

e For al transactions T; in T such that the record < T; commits> appearsin
the log, execute redo(T;).

» For dl transactions T in T that have no < T, commits> record in the log,
execute undo(T;).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actions are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within
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a critical section. That is, al transactions share a common semaphore mutex,
whichisinitialized to 1. When a transaction starts executing, itsfirst action isto
execute wait(mutex). After the transaction either commits or aborts, it executes
signal(mutex).

Although this scheme ensures the atomicity of al concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can alow transactions to overlap their execution while maintaining
seriadizability. A number of different concurrency-control algorithms ensure
serializability. These algorithms are described below.

6.94.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, Ty and T:. Suppose that these transactions are executed
atomically in the order T, followed by T;. This execution sequence, which is
called aschedule, isrepresented in Figure 6.22. In schedule 1 of Figure 6.22, the
sequence of instruction stepsisin chronological order from top to bottom, with
instructions of Ty appearing in the left columnand instructions of T; appearing
in the right column.

A schedule in which each transaction is executed atomically is called
a serial schedule. A serial schedule consists of a sequence of instructions
from various transactions wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of n transactions, there exist n\
different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result-
ing schedule is no longer serial. A nonserial schedule does not necessarily
imply an incorrect execution (that is, an execution that is not equivalent to one
represented by a serial schedule). To see that thisis the case, we need to define
the notion of conflicting operations.

Consider a schedule S in which there are two consecutive operations O;
and O; of transactions T; and Tj, respectively. We say that O; and Oj conflict if
they access the same data item and at least one of them is a write operation.
To illustrate the concept of conflicting operations, we consider the nonserial

Tn : T,

read(A) |

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

Figure 6.22 Schedule 1: A serial schedule in which 7, is followed by 7.
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read(A) |
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Figure 6.23 Schedule 2: A concurrent serializable schedule.

schedule 2 of Figure 6.23. The write(A) operation of T, conflicts with the
read(A) operation of T;. However, the write(A) operation of T; does not
conflict with the read(B) operation of T;, because the two operations access
different data items.

Let Oj and Oj be consecutive operations of aschedule S. If O; and O; are
operations of different transactionsand O; and O; do not conflict, then we can
swap the order of O; and 0/ to produce anew schedule S. We expect Sto be
equivalent to S, as all operations appear in the same order in both schedules,
except for O; and Oj, whose order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.23. Asthewrite(A) operation of T; does not conflict with the read(B)
operation of To, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final system state. Continuing with this procedure of swapping
nonconflicting operations, we get:

» Swap the read(B) operation of T, with the read(A) operation of T\.
* Swap thewrite(B) operation of T, with thewrite(A) operation of T;.
» Swap thewrite(B) operation of T, with the read(A) operation of T;.

The final result of these swaps is schedule 1 in Figure 6.22, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. Thisresultimpliesthat, regardless of theinitial system state, schedule
2 will produce the same fina state as will some serial schedule.

If a schedule S can be transformed into a serial schedule S by a series of
swaps of nonconflicting operations, we say that a schedule S is conflict serial-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.94.2 Locking Protocol

One way to ensure serializability is to associate with each data item a lock and
to require that each transaction follow a locking protocol that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:
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¢ Shared. If atransaction T; has obtained a shared-mode lock (deno'fed by
S) ondataitem Q, then T; can read thisitem but cannot write Q.

* Exclusive. If atransaction 7, has obtained an exclusive-mode lock (denoted
by X) on dataitem @, then T; can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access dataitem Q, transaction 7} must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then 7) may havetowait. More specifically, supposethat 7} requests
an exclusivelock on Q). Inthis case, 7] must wait until the lock on Q is released.
If T; requestsashared lock on Q, then 7) must wait if Q islocked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers-writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

* Growing phase. A transaction may obtain locks but may not release any
lock.

» Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initidly, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.25). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
However, to improve performance over two-phase locking, we need either to
have additional information about the transactions or to impose some structure
or ordering on the set of data.

6.94.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of -
conflicting transactions is determined at execution time by the first lock that
both request and that involves incompatible modes. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a timestamp ordering scheme.

With each transaction T; in the system, we associate a unique fixed
timestamp, denoted by TS(T;). This timestamp is assigned by the system

https:llhemanthrajhemu.github.io



69 Atomic Transactions 229

before the transaction 7; starts execution. If atransaction 7} has been aéigned
timestamp TS(T;), and later a new transaction 7) enters the system, then TS(T;)
< TS(T;). There are two simple methods for implementing this scheme:

* Use the value of the system clock as the timestamp; that is, a transaction's
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

* Usealogica counter as the timestamp; that is, a transaction's timestamp
isequal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T;) < TY(T,), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction T, appears
before transaction T;.

To implement this scheme, we associate with each data item Q two
timestamp values:

* W-timestamp(()) denotes the largest timestamp of any transaction that
successfully executed write((Q).

* R-timestamp(Q)) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or write(Q) instruc-
tion is executed.

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

* Suppose that transaction T; issuesread(Q):

o If TS(T;) < W-timestamp(), then T; needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

o If TS(T;) > W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T;).

* Suppose that transaction 7; issueswrite(Q):

o If TYT,) < R-timestamp(Q), then the value of Q that 7} is producing
was needed previously and T; assumed that this value would never be
produced. Hence, thewrite operation isrejected, and 7} isrolled back.

o If TS(T;) < W-timestamp(Q), then T, is attempting to write an obsol ete
value of Q. Hence, thiswrite operationisrejected, and T, isrolled back.

> Otherwise, the write operation is executed.

A transaction T; that isrolled back as aresult of the issuing of either aread or
write operation is assigned a new timestamp and is restarted.
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L 1;
read(B) !
i read(B)
write(B)
read(A)
read(A)
write{A)

Figure 6.24 Schedule 3: A schedule possible under the timestamp protocol.

To illustrate this protocol, consider schedule 3 of Figure 6.24, which
includes transactions T> and T;. We assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus, in schedule 3, TS(T3)
< TS(Ts), and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protocol also ensures freedomfrom deadlock, because no transaction
ever waits.

6.10 Summary

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided. One solution is to ensure that a critical section of
codeisin useby only one process or thread at atime. Different algorithms exist
for solving the critical-section problem, with the assumption that only storage
interlock is available.

The main disadvantage of these user-coded solutionsisthat they all require
busy waiting. Semaphores overcome this difficulty. Semaphores can be used
to solve various synchronization problems and can be implemented efficiently,
especialy if hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers-writers problem, and the dining-philosophers problem) are impor-
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads AR provides support for mutexes and condition variables.
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A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If asystem crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching thelog after asystem
failure has occurred, we can use a checkpoint scheme.

To ensure seridizability when the execution of severa transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure seridizability by delaying an operation or aborting the trans-
action that issued the operation. The most commeon ones are locking protocols
and timestamp ordering schemes.

Exercises

6.1 Thefirg known correct software solution to the critical-section problem
for two processes was devel oped by Dekker. The two processes, 7 and
Py, share the following variables:

boolean flagl2]; /* initially false */
int turn;

The structure of process P, (i ==0o0r 1) isshowninFigure 6.25; the other
processis P; (j == 1 or 0). Prove that the algorithm satisfies dl three
requirements for the critical-section problem.

do {
flag[i] = TRUE;

while (flag[j]) {
if (turn = §) {

flag[i] = false;

while (turn == j)
// do not hing

flag{i] = TRUE;

}
}

/1 critical section

turn = 5;
flag[i] = FALSE;

/! remainder section
}while (TRUE);

Figure 6.25 The structure of process £ in Dekker's algorithm.
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do {
while (TRUB {
flag[i] = want.in;
j = turn;
while (j '=1i) {
if (flag[j] '=ide) {
j = turn;
el se
i = +1) %n;
}
flag[i] = in.cs;
i=o0
while ( § <n & ( == i || flag[j] !'= in_cs) )
J++;
if ( § >=n) & ({urn == i | flag[turn] == idle) )
break;
}

/1 critical section
j = (turn +1) %n;

while (flag[j] == idle)
i =30 +1) %n;

turn = 3J;
flag(i] = idle;

/1 remai nder section

Ywhile(TRUB) ,-

Figure 6.26 The structure of process F in Eisenberg and McGuire’s algorithm.

6.2 Thefirg known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

All the dements of f1agare initidly idle; theinitia value of turnis
immaterial (between 0 and n-1). The structure of process P; isshownin
Figure 6.26. Prove that the algorithm satisfies dl three requirements for
the critical-section problem.
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6.3 What is the meaning of the term busy 'waiting? What other kifds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

64 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

65 Explan why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

66 Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

6.7 Describe how the Swap() instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

68 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

69 Show that, if the wait () and signal() semaphore operations are not
executed atomically, then mutual excluson may be violated.

6.10 Show how to implement the wait () and signal() semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

611 The Seeping-Barber Problem. A barbershop consists of awaiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to deep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber isbusy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

6.12 Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

6.13 Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

614 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.13 mainly suitable for small portions.

a Explain why thisis true.
b. Design a new scheme that is suitable for larger portions.
6.15 Discuss the tradeoff between fairness and throughput of operations

in the readers—writers problem. Propose a method for solving the
readers-writers problem without causing starvation.
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6.16 How does the signal() operation associated with monitors differ from
the corresponding operation defined for semaphores?

6.17 Suppose the signal() statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.

6.18 Consider asystem consisting of processes Py, Ps, ..., P,, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

6.19 A fileis to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of al unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

6.20 Whenasignd isperformed on aconditioninside amonitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two different ways in which signaling can be performed?

621 Suppose we replace the wait() and signal() operations of moni-
tors with a single construct await (B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.

a. Write a monitor using this scheme to implement the readers-
writers problem.

b. Explain why, in genera, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that
it can be implemented efficiently? (Hint: Restrict the generality of
B; seeKessdls[1977].)

6.22 Write a monitor that implements an alarm clock that enables a calling
program to delay itsdf for a specified number of time units (ticks).
You may assume the existence of a rea hardware clock that invokes
a procedure tick in your monitor at regular intervals.

623 Why do Solaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

6.24 Inlog-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary? :

6.25 Show that the two-phase locking protocol ensures conflict serializability.

626 What arethe implications of assigning anew timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?
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6.27 Assume that a finite number of resources of a single resource typg must
be managed. Processes may ask for a number of these resources and
—once finished —will return them. As an example, many commercia
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If dl licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
alicenseisreturned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX_RESOURCES 5
int available_resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease_count () function:

/* decrease available resources by count resources */
/* return O if sufficient resources available, */
/* otherwise return -1 */
int decrease_count(int count) {
if (available_resources < count)
return -1;
else {
available_resources -= count,;

return O;

}
}

When a process wants to return a number of resources, it cdls the
decrease_count() function:

/* increase available resources by count */
int increase_count(int count) {
available _resources += count;

return O;

}

The preceding program segment produces a race condition. Do the
following:

a. ldentify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphore, fix the race condition.
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628 The decrease.count() function in the previous exercise currently
returns O if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
resources:

while (decrease_count(count) == -1)

.
1

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count() function suspends
the process until sufficient resources are available. This will alow a
process to invoke decrease_count () by simply calling

decrease_count (count) ;

The process will only return from this function call when sufficient
resources are available.

Project: Producer-Consumer Problem

In Section 6.6.1, we present a semaphore-based solution to the producer-
consumer problem using a bounded buffer. In this project, we will design a
programming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 6.10 and 6.11. The solution presented in
Section 6.6.1 uses three semaphores: empty and full,which count the number
of empty and full dots in the buffer, and mutex, which is a binary (or mutual
exclusion) semaphore that protects the actual insertion or removal of items
in the buffer. For this project, standard counting semaphores will be used for
empty and full, and, rather than a binary semaphore, a mutex lock will be
used to represent mutex. The producer and consumer—running as separate
threads—will move items to and from a buffer that is synchronized with these
empty, full, and mutex structures. You can solve this problem using either
Pthreads or the Win32 AR.

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer_item
(which will be defined using a typef def). The array of buffer_item objects
will be manipulated as a circular queue. The definition of buf f er_item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h */
typedef int buffer_item;
#define BUFFER SZE 5

The buffer will be manipulated with two functions, insert_item() and
remove_item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears as.
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#include <buffer.h> R

/* the buffer */
buffer_item buffer [BUFFER SIZE] ;

int insert_item(buffer_item iten) {
/* insert iteminto buffer
return O if successful, otherw se
return -1 indicating an error condition */

}

int remove_item(buffer item *item) {
/* remove an object from buffer
placing it in item
return O if successful, otherwise
return -1 indicating an error condition */

}

The insert_item() and remove_item() functions will synchronize the pro-
ducer and consumer using the algorithms outlined in Figures 6.10 and 6.11.
The buffer will aso require an initialization function that initiaizes the mutual -
excluson object mutex aong with the empty and fullsemaphores.

The main() function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer and
consumer threads, the main() function will deep for a period of time and,
upon awakening, will terminate the application. Themain () function will be
passed three parameters on the command line:

1. How long to deep before terminating
2. The number of producer threads
3. The number of consumer threads

A skdeton for this function appears as.

#include <buffer.h>

int main{int argc, char *argv[]) {

/* 1. Gt commad line arguments argv([l], argv[2], argv[3] */
/* 2. Initialize buffer */

/* 3. Create producer thread(s) */

/* 4. Create consumer thread(s) =/

/* 5. Sleep */

/* 6. Exit */

}

Producer and Consumer Threads

The producer thread will aternate between deeping for a random period of
time and inserting a random integer into the buffer. Random numbers will
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be produced using the rand() function, which produces random iritegers
between 0 and RANDJAAX. The consumer will aso deep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears as.

#include <stdlib.h> /* required for rand() */
#include <buffer.h>

void *producer(void *param) {
buffer_item rand;

while (TRUE) {
/* sleep for a randomperiod of tine */
sleep(...);
/* generate a random nunber */
rand = rand();
printf ("producer produced %f \n",rand);
if (insert_item(rand))
fprintf ("report error condition");

}

void *consumer (void *param) {
buffer item rand;

while (TRUE) {
/* sleep for a randomperiod of time */
sleep(...);
if (remove_item(&rand))
fprintf ("report error condition");
else
printf ("consumer consumed %£\n" ,rand) ;

In the following sections, we first cover details specific to Pthreads and then
describe details of the Win32 ARL.

Pthreads Thread Creation

Creating threads using the Pthreads AR is discussed in Chapter 4. Please refer
to that chapter for specific instructions regarding creation of the producer and
consumer using Pthreads.

Pthreads Mutex Locks

The following code sampleillustrates how mutex locks available in the Pthread |
AR can be used to protect a critical section:
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#include <pthread.h> 3
pthread mutex_t mutex;

/* create the mutex lock =*/
pthread mutex_init (&mutex,NULL);

/* acquire the mutex lock */
pthread mutex lock(&mutex) ;

/**x critical section ***/

/* release the mutex lock */
pthread_mutex_unlock(&mutex) ;

Pthreads uses the pthread mutex_t data type for mutex locks. A
mutex is created with the pthread mutex init (&mutex,NULL) function,
with the firsd parameter being a pointer to the mutex. By passing NULL
as a second parameter, we initialize the mutex to its default attributes.
The mutex is acquired and released with the pthread mutex_lock() and
pthread mutex_unlock () functions. If the mutex lock is unavailable when
pthread_mutex_lock() is invoked, the calling thread is blocked until the
owner invokes pthread mutex unlock (). All mutex functions return avalue
of O with correct operation; if an error occurs, these functions return anonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores—named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a
semaphore is created:

#include <semaphore.h>
sem_t sem;

/* Create the semaphore and initialize it to 5 */
sem_init(&sem, 0, 5);

Thesem_init() createsandinitializesa semaphore. Thisfunctionispassed
three parameters:

1. A pointer to the semaphore
2. A flag indicating the level of sharing

3. The semaphore'sinitial value

In this example, by passing the flag O, we are indicating that this semaphore
can only be shared by threads belonging to the same process that created
the semaphore. A nonzero value would allow other processes to access the
semaphore aswell. In this example, we initialize the semaphore to the value 5.
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In Section 6.5, we described the classical wait () and signal() semaphore
operations. Pthreads names thewait () and signal() operations sem_wait ()
and sem_post(), respectively. The code example below creates a binary
semaphore mutex with aninitial value of 1 and illustrates its use in protecting
acritical section:

#include <semaphore.h>
sem_t sem MUtex;

/* create the semaphore */
sem_init (&mutex, 0, 1);

[* acquire the semaphore =/
sem_wait (&mutex) :

[*** critical section ***/

/* release the semaphore */
sem post (&mutex) ;

Win32

Details concerning thread creation using theWin32 AR are availablein Chapter
4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 6.8.2. The
following illustrates how to create a mutex lock using the CreateMutex ()
function:

#include <windows.h>

HANDLE Mit ex;
Mit ex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By setting

this attribute to NULL, we are disallowing any children of the process creating

this mutex lock to inherit the handle of the mutex. The second parameter

indicates whether the creator of the mutex is the initial owner of the mutex

lock. Passing a value of FALSE indicates that the thread creating the mutex is
not theinitial owner; we shall soon see how mutex locks are acquired. The third

parameter allows naming of the mutex. However, because we provide a value
of NULL, we do not name the mutex. If successful, CreateMutex () returnsa_
HANDLE to the mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either signaled
or nonsignaled. A signaled object is available for ownership; once a dispatcher
object (such as a mutex lock) is acquired, it moves to the nonsignaled state.
When the object is released, it returns to signaled.
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Mutex locks are acquired by invoking the WaitForSingleObjectO func-
tion, passing the function the HANDLE to the lock and aflag indicating how long
to wait. The following code demonstrates how the mutex lock created above
can be acquired:

WaitForSingleObject (Mutex, | NFI NI TE);

The parameter value INFINITE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
alow the calling thread to time out if the lock did not become available within
a specified time. If the lock isin a signaled state, WaitForSingleObject ()
returns immediately, and the lock becomes nonsignaled. A lock is released
(moves to the nonsignaled state) by invoking ReleaseMutex (), such as:

ReleaseMutex (Mutex) ;

Win32 Semaphores

Semaphores in the Win32 AR are also dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore (NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The second
and third parameters indicate the initial value and maximum value of the
semaphore. In this instance, the initial value of the semaphore is 1, and its
maximum value is 5. If successful, CreateSemaphore() returns a HANDLE to
the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject () func-
tion as mutex locks. We acquire the semaphore Sam created in this example by
using the statement:

WaitForSingleObject (Semaphore, | NFI NI TE) ;

If the value of the semaphore is > 0, the semaphore is in the signaled state
and thus is acquired by the calling thread. Otherwise, the calling thread blocks
indefinitely—as we are specifying INFINITE—until the semaphore becomes
signaled.

The equivalent of the signal() operation on Win32 semaphores is the
ReleaseSemaphore () function. This function is passed three parameters: (1)
the HANDLE of the semaphore, (2) the amount by which to increase the value
of the semaphore, and (3) a pointer to the previous value of the semaphore. We -
can increase Sam by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutexO return O if successful and
nonzero otherwise.
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The mutual-exclusion problem was first discussed in a classic paper by Dijkstra
[19658]. Dekker's algorithm (Exercise 6.1)—the first correct software solution
to the two-process mutual-exclusion problem—was developed by the Dutch
mathematician T. Dekker. This algorithm also was discussed by Dijkstra
[19658]. A simpler solution to the two-process mutual-exclusion problem has
since been presented by Peterson [1981] (Figure 6.2).

Dijkstra [1965b] presented the first solution to the mutual-exclusion prob-
lem for n processes. This solution, however does not have an upper bound
on the amount of time a process must wait before it is allowed to enter the
critical section. Knuth [1966] presented the first algorithm with a bound; his
bound was 2" turns. A refinement of Knuth’s algorithm by deBruijn [1967]
reduced the waiting time to n? turns, after which Eisenberg and McGuire
[1972] (Exercise 6.4) succeeded in reducing the time to the lower bound of n-1
turns. Another algorithm that also requires #n—1 turnsbut is easier to program
and to understand, is the bakery algorithm, which was developed by Lamport
[1974]. Burns [1978] developed the hardware-solution algorithm that satisfies
the bounded-waiting requirement.

General discussions concerning the mutual-exclusion problem were
offered by Lamport [1986] and Lamport [1991]. A collection of algorithms for
mutual exclusion was given by Raynal [1986].

The semaphore concept was suggested by Dijkstra [1965g]. Patil [1971]
examined the question of whether semaphores can solve dl possible syn-
chronization problems. Parnas [1975] discussed some of the flaws in Patil's
arguments. Kosargju [1973] followed up on Patil's work to produce a problem
that cannot be solved by wait() and signal() operations. Lipton [1974]
discussed the limitations of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The bounded-
buffer problem, the dining-philosophers problem, and the sleeping-barber
problem (Exercise 6.11) were suggested by Dijkstra [1965a] and Dijkstra [1971].
The cigarette-smokers problem (Exercise 6.8) was developed by Patil [1971].
The readers-writers problem was suggested by Courtois et al. [1971]. The
issue of concurrent reading and writing was discussed by Lamport [1977].
The problem of synchronization of independent processes was discussed by
Lamport [1976].

The critical-region concept was suggested by Hoare [1972] and by Brinch-
Hansen [1972]. The monitor concept was developed by Brinch-Hansen [1973].
A complete description of the monitor was given by Hoare [1974]. Kessels
[1977] proposed an extension to the monitor to allow automatic signaling.
Experience obtained from the use of monitors in concurrent programs was
discussed in Lampson and Redell [1979]. General discussions concerning
concurrent programming were offered by Ben-Ari [1990] and Birrell [1989].

Optimizing the performance of locking primitives has been discussed in
many works, such as Lamport [1987], Mellor-Crummey and Scott [1991], and
Anderson [1990]. The use of shared objects that do not require the use of critica
sections was discussed in Herlihy [1993], Bershad [1993], and Kopetz and
Reisinger [1993]. Novel hardware instructions and their utility in implementing
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synchronization primitives have been described in works such as Culler et al.
[1998], Goodman et al. [1989], Barnes [1993], and Herlihy and Moss [1993].

Some details of the locking mechanisms used in Solaris were presented
in Mauro and McDougall [2001]. Note that the locking mechanisms used by
the kernel are implemented for user-level threads as well, so the same types
of locks are available inside and outside the kernel. Details of Windows 2000
synchronization can be found in Solomon and Russinovich [2000].

The write-ahead log scheme was first introduced in System R by Gray
et a. [1981]. The concept of serializability was formulated by Eswaran et al.
[1976] in connection with their work on concurrency control for System R.
The two-phase locking protocol was introduced by Eswaran et al. [1976]. The
timestamp-based concurrency-control scheme was provided by Reed [1983].
An exposition of various timestamp-based concurrency-control algorithms was
presented by Bernstein and Goodman [1980].
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