

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Contents

Chapter 9 Virtual Memory .
9.1 Background 315 9.8 Allocating Kernel Memory 353
9.2 Demand Paging 319 9.9 Other Considerations 357
9.3 Copy-on-Write 325 9.10 Operating-System Examples 363
9.4 Page Replacement 327 9.11 Summary 365
9.5 Allocation of Frames 340 Exercises 366
9.6 Thrashing 343 Bibliographical Notes 370
9.7 Memory-Mapped Files 348

PART FOUR • STORAGE MANAGEMENT
Chapter 10 File-System Interface
10.1 File Concept 373 10.6 Protection 402
10.2 Access Methods 382 10.7 Summary 407
10.3 Directory Structure 385 Exercises 408
10.4 File-System Mounting 395 Bibliographical Notes 409
10.5 File Sharing 397

Chapter 11 File-System Implementation
11.1 File-System Structure 411 11.8 Log-Structured File Systems 437
11.2 File-System Implementation 413 11.9 NFS 438
11.3 Directory Implementation 419 11.10 Example: The WAFL File System 444
11.4 Allocation Methods 421 11.11 Summary 446
11.5 Free-Space Management 429 Exercises 447
11.6 Efficiency and Performance 431 Bibliographical Notes 449
11.7 Recovery 435

Chapter 12 Mass-Storage Structure
12.1 Overview of Mass-Storage 12.7 RAID Structure 468

Structure 451 12.8 Stable-Storage Implementation 477
12.2 Disk Structure 454 12.9 Tertiary-Storage Structure 478
12.3 Disk Attachment 455 12.10 Summary 488
12.4 Disk Scheduling 456 Exercises 489
12.5 Disk Management 462 Bibliographical Notes 493
12.6 Swap-Space Management 466

Chapter 13 I/O Systems
13.1 Overview 495 13.6 STREAMS 520
13.2 I/O Hardware 496 13.7 Performance 522
13.3 Application I/O Interface 505 13.8 Summary 525
13.4 Kernel I/O Subsystem 511 Exercises 526
13.5 Transforming I/O Requests to Bibliographical Notes 527

Hardware Operations 518

https://hemanthrajhemu.github.io

xx Contents

PART FIVE • PROTECTION AND SECURITY*

Chapter 14 Protection
14.1 Goals of Protection 531 14.7 Revocation of Access Rights 546
14.2 Principles of Protection 532 14.8 Capability-Based Systems 547
14.3 Domain of Protection 533 14.9 Language-Based Protection 550
14.4 Access Matrix 538 14.10 Summary 555
14.5 Implementation of Access Matrix 542 Exercises 556
14.6 Access Control 545 Bibliographical Notes 557

Chapter 15 Security
15.1 The Security Problem 559 15.8 Computer-Security
15.2 Program Threats 563 Classifications 600
15.3 System and Network Threats 571 15.9 An Example: Windows XP 602
15.4 Cryptography as a Security Tool 576 15.10 Summary 604
15.5 User Authentication 587 Exercises 604
15.6 Implementing Security Defenses 592 Bibliographical Notes 606
15.7 Firewalling to Protect Systems and

Networks 599

PART SIX • DISTRIBUTED SYSTEMS

Chapter 16 Distributed System Structures
16.1 Motivation 611 16.7 Robustness 631
16.2 Types of Distributed Operating 16.8 Design Issues 633

Systems 613 16.9 An Example: Networking 636
16.3 Network Structure 617 16.10 Summary 637
16.4 Network Topology 620 Exercises 638
16.5 Communication Structure 622 Bibliographical Notes 640
16.6 Communication Protocols 628

Chapter 17 Distributed File Systems
17.1 Background 641 17.6 An Example: AFS 654
17.2 Naming and Transparency 643 17.7 Summary 659
17.3 Remote File Access 646 Exercises 660
17.4 Stateful Versus Stateless Service 651 Bibliographical Notes 661
17.5 File Replication 652

https://hemanthrajhemu.github.io

Contents

Chapter 18 Distributed Coordination
18.1 Event Ordering 663
18.2 Mutual Exclusion 666
18.3 Atomicity 669
18.4 Concurrency Control 672
18.5 Deadlock Handling 676

18.6 Election Algorithms 683
18.7 Reaching Agreement 686
18.8 Summary 688

Exercises 689
Bibliographical Notes 690

PART SEVEN SPECIAL-PURPOSE SYSTEMS

Chapter 19 Real-Time Systems
19.1 Overview 695
19.2 System Characteristics 696
19.3 Features of Real-Time Kernels 698
19.4 Implementing Real-Time Operating

Systems 700

19.5 Real-Time CPU Scheduling 704
19.6 VxWorks5.x 710
19.7 Summary 712

Exercises 713
Bibliographical Notes 713

Multimedia Systems
15

Chapter 20
20.1 What Is Multimedia?
20.2 Compression 718
20.3 Requirements of Multimedia

Kernels 720
20.4 CPU Scheduling 722
20.5 Disk Scheduling 723

20.6 Network Management 725
20.7 An Example: CineBlitz 728
20.8 Summary 730

Exercises 731
Bibliographical Notes 733

PART EIGHT CASE STUDIES

Chapter 21 The Linux System
21.1 Linux History 737
21.2 Design Principles 742
21.3 Kernel Modules 745
21.4 Process Management 748
21.5 Scheduling 751
21.6 Memory Management 756
21.7 FileSvstems 764

21.8 Input and Output 770
21.9 Interprocess Communication

21.10 Network Structure 774
21.11 Security 777
21.12 Summary 779

Exercises 780
Bibliographical Notes 781

773

Chapter 22 Windows XP
22.1 History 783
22.2 Design Principles 785
22.3 System Components 787
22.4 Environmental Subsystems 811
22.5 File System 814

22.6 Networking 822
22.7 Programmer Interface 829
22.8 Summary 836

Exercises 836
Bibliographical Notes 837

https://hemanthrajhemu.github.io

The file system can be viewed logically as consisting of three parts. In Chapter
10, we saw the user and programmer interface to the file system. In Chapter 11,
we described the internal data structures and algorithms used by the operating
system to implement this interface. In this chapter, we discuss the lowest
level of the file system: the secondary and tertiary storage structures. We first
describe the physical structure of magenetic disks and magnetic tapes. We
then describe disk-scheduling algorithms that schedule the order of disk I/Os
to improve performance. Next, we discuss disk formatting and management
of boot blocks, damaged blocks, and swap space. We then examine secondary
storage structure, covering disk reliability and stable-storage implementation.
We conclude with a brief description of tertiary storage devices and the
problems that arise when an operating system uses tertiary storage.

CHAPTER OBJECTIVES

» Describe the physical structure of secondary and tertiary storage devices
and the resulting effects on the uses of the devices.

• Explain the performance characteristics of mass-storage devices.

« Discuss operating-system services provided for mass storage, including
RAID and HSM.

12.1 Overview of Mass-Storage Structure

In this section we present a general overview of the physical structure of
secondary and tertiary storage devices.

12.1.1 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 12.1). Each disk
platter has a flat circular shape, like a CD. Common platter diameters range
from 1.8 to 5.25 inches. The two surfaces of a platter are covered with a magnetic
material. We store information by recording it magnetically on the platters.

451

https://hemanthrajhemu.github.io

452 Chapter 12 Mass-Storage Structure

track

sector s . i

arm assembly

cylinder c

platter

rotation

Figure 12.1 Moving-head disk mechanism.

A read-write head "flies" just above each surface of every platter. The
heads are attached to a disk arm that moves all the heads as a unit. The surface
of a platter is logically divided into circular tracks, which are subdivided into
sectors. The set of tracks that are at one arm position makes up a cylinder.
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of common disk drives
is measured in gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 200 times per second. Disk speed has two parts. The transfer
rate is the rate at which data flow between the drive and the computer. The
positioning time, sometimes called the random-access time, consists of the
time to move the disk arm to the desired cylinder, called the seek time, and
the time for the desired sector to rotate to the disk head, called the rotational
latency. Typical disks can transfer several megabytes of data per second, and
they have seek times and rotational latencies of several milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surface. Although the disk platters are coated with a thin protective layer,
sometimes the head will damage the magnetic surface. This accident is called
a head crash. A head crash normally cannot be repaired; the entire disk must
be replaced.

A disk can be removable, allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic case
to prevent damage while not in the disk drive. Floppy disks are inexpensive
removable magnetic disks that have a soft plastic case containing a flexible
platter. The head of a floppy-disk drive generally sits directly on the disk
surface, so the drive is designed to rotate more slowly than a hard-disk drive

https://hemanthrajhemu.github.io

12.1 Overview of Mass-Storage Structure 453

to reduce the wear on the disk surface. The storage capacity of a floppy disk
is typically only 1.44 MB or so. Removable disks are available that work much
like normal hard disks and have capacities measured in gigabytes.

A disk drive is attached to a computer by a set of wires called an I/O
bus. Several kinds of buses are available, including enhanced integrated
drive electronics (EIDE), advanced technology attachment (ATA), serial ATA
(SATA), universal serial bus (USB), fiber channel (FC), and SCSI buses. The
data transfers on a bus are carried out by special electronic processors called
controllers. The host controller is the controller at the computer end of the
bus. A disk controller is built into each disk drive. To perform a disk I/O
operation, the computer places a command into the host controller, typically
using memory-mapped I/O ports, as described in Section 9.7.3. The host
controller then sends the command via messages to the disk controller, and the
disk controller operates the disk-drive hardware to carry out the command.
Disk controllers usually have a built-in cache. Data transfer at the disk drive
happens between the cache and the disk surface, and data transfer to the host,
at fast electronic speeds, occurs betwreen the cache and the host controller.

12.1.2 Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it
is relatively permanent and can hold large quantities of data, its access time
is slow compared with that of main memory and magnetic disk. In addition,
random access to magnetic tape is about a thousand times slower than random
access to magnetic disk, so tapes are not very useful for secondary storage.
Tapes are used mainly for backup, for storage of infrequently used information,
and as a medium for transferring information from one system to another.

A tape is kept in a spool and is wound or rewound past a read-write head.
Moving to the correct spot on a tape can take minutes, but once positioned,
tape drives can write data at speeds comparable to disk drives. Tape capacities
vary greatly, depending on the particular kind of tape drive. Typically, they
store from 20 GB to 200 GB. Some have built-in compression that can more than
double the effective storage. Tapes and their drivers are usually categorized
by width, including 4, 8, and 19 millimeters and 1/4 and 1/2 inch. Some are
named according to technology, such as LTO-2 and SDLT. Tape storage is further
described in Section 12.9.

https://hemanthrajhemu.github.io

454 Chapter 12 Mass-Storage Structure

l i * k&i&U fco^aiiijitiierftieE^siesagiiyd; Fyr:.

the :1EE.E: |39:4. a i a d d S j d i i i f f i ^ ^ i g p |
:|#itilwiMIK;: up;: fe ::SflO: Hi:ega|i,|s:j:per. geccinp.;:: $.%cently^ ::a :::new:;:sfa;ii.f arc!
| | i ^ fe Mel; i ^ : ! i | A M # i t e | i | I ^ i i

12.2 Disk Structure

Modern disk drives are addressed as large one-dimensional arrays of logical
blocks, where the logical block is the smallest unit of transfer. The size of
a logical block is usually 512 bytes, although some disks can be low-level
formatted to have a different logical block size, such as 1,024 bytes. This option
is described in Section 12.5.1. The one-dimensional array of logical blocks is
mapped onto the sectors of the disk sequentially. Sector 0 is the first sector
of the first track on the outermost cylinder. The mapping proceeds in order
through that track, then through the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to innermost.

By using this mapping, we can—at least in theory—convert a logical block
number into an old-style disk address that consists of a cylinder number, a track
number within that cylinder, and a sector number within that track. In practice,
it is difficult to perform, this translation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sectors per track is not a
constant on some drives.

Let's look more closely at the second reason. On media that use constant
linear velocity (CLV), the density of bits per track is uniform. The farther a track
is from the center of the disk, the greater its length, so the more sectors it can
hold. As we move from outer zones to inner zones, the number of sectors per
track decreases. Tracks in the outermost zone typically hold 40 percent more
sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the head moves from the outer to the inner tracks to keep the same rate
of data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant, and the density
of bits decreases from inner tracks to outer tracks to keep the data rate constant.
This method is used in hard disks and is known as constant angular velocity
(CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

https://hemanthrajhemu.github.io

12.3 Disk Attachment 4S5

12.3 Disk Attachment

Computers access disk storage in two ways. One way is via I/O ports (or
host-attached storage); this is common on small systems. The other way is via
a remote host in a distributed file system; this is referred to as network-attached
storage.

12.3.1 Host-Attached Storage

Host-attached storage is storage accessed through local I/O ports. These ports
use several technologies. The typical desktop PC uses an I/O bus architecture
called IDE or ATA. This architecture supports a maximum of two drives per I/O
bus. A newer, similar protocol that has simplified cabling is SATA. High-end
workstations and servers generally use more sophisticated I/O architectures,
such as SCSI and fiber channel (FC).

SCSI is a bus architecture. Its physical medium is usually a ribbon cable
having a large number of conductors (typically 50 or 68). The SCSI protocol
supports a maximum of 16 devices on the bus. Generally, the devices include
one controller card in the host (the SCSI initiator) and up to 15 storage devices
(the SCSI targets). A SCSI disk is a common SCSI target, but the protocol provides
the ability to address up to 8 logical units in each SCSI target. A typical use of
logical unit addressing is to direct commands to components of a RATD array
or components of a removable media library (such as a CD jukebox sending
commands to the media-changer mechanism or to one of the drives).

FC is a high-speed serial architecture that can operate over optical fiber or
over a four-conductor copper cable. It has two variants. One is a large switched
fabric having a 24-bit address space. This variant is expected to dominate
in the future and is the basis of storage-area networks (SANs), discussed in
Section 12.3.3. Because of the large address space and the switched nature of
the communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in I/O communication. The other PC variant is an
arbitrated loop (FC-AL) that can address 126 devices (drives and controllers).

A wide variety of storage devices are suitable for use as host-attached
storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and
tape drives. The I/O commands that initiate data transfers to a host-attached
storage device are reads and writes of logical data blocks directed to specifically
identified storage units (such as bus ID, SCSI ID, and target logical unit).

12.3.2 Network-Attached Storage

A network-attached storage (NAS) device is a special-purpose storage system
that is accessed remotely over a data network (Figure 12.2). Clients access
network-attached storage via a remote-procedure-call interface such as NFS
for UNIX systems or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network—-usually the same
local-area network (LAN) that carries all data traffic to the clients. The network-
attached storage unit is usua lly implemented as a RAID array with software that
implements the RPC interface. It is easiest to think of NAS as simply another
storage-access protocol. For example, rather than using a SCSI device driver
and SCSI protocols to access storage, a system using NAS would use RPC over
TCP/IP.

https://hemanthrajhemu.github.io

456 Chapter 12 Mass-Storage Structure

Figure 12.2 Network-attached storage.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

ISCSI is the latest network-attached storage protocol. In essence, it uses
the IP network protocol to carry the SCSI protocol. Thus, networks rather than
SCSI cables can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, but the
storage can be distant from the host.

12.3.3 Storage-Area Network

One drawback of network-attached storage systems is that the storage I/O
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute
in large client-server installations—the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage protocols
rather than networking protocols) connecting servers and storage units, as
shown in Figure 12.3. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can
be dynamically allocated to hosts. A SAN switch allows or prohibits access
between the hosts and the storage. As one example, if a host is running low-
on disk space, the SAN can be configured to allocate more storage to that host.
SANs make it possible for clusters of servers to share the same storage and
for storage arrays to include multiple direct host connections. SANs typically
have more ports, and less expensive ports, than storage arrays. FC is the most
common. SAN interconnect.

An emerging alternative is a special-purpose bus architecture named
InfiniBand, which provides hardware and software support for high-speed
interconnection networks for servers and storage units.

12.4 Disk Scheduling

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having

https://hemanthrajhemu.github.io

12.4 Disk Scheduling 457

Figure 12.3 Storage-area network.

fast access time and large disk bandwidth. The access time has two major
components (also see Section 12.1.1). The seek time is the time for the disk arm
to move the heads to the cylinder containing the desired sector. The rotational
latency is the additional time for the disk to rotate the desired sector to the disk
head. The disk bandwidth is the total number of bytes transferred, divided
by the total time between the first request for service and the completion of
the last transfer. We can improve both the access time and the bandwidth by
scheduling the servicing of disk I/O requests in a good order.

Whenever a process needs I/O to or from the disk, it issues a system call to
the operating system. The request specifies several pieces of information:

• Whether this operation is input or output

• What the disk address for the transfer is

• What the memory address for the transfer is

• What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be
serviced immediately. If the drive or controller is busy, any new requests
for service will be placed in the queue of pending requests for that drive.
For a multiprogramming system with many processes, the disk queue may
often have several pending requests. Thus, when one request is completed,, the
operating system chooses which pending request to service next. How does
the operating system make this choice? Any one of several disk-scheduling
algorithms can be used, and we discuss them next.

12.4.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for I/O to blocks on cylinders

98, 183, 37,122, 14, 124, 65, 67,

https://hemanthrajhemu.github.io

458 Chapter 12 Mass-Storage Structure

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
'• .< 11 . I.I. . I I! i . . j

Figure 12.4 FCFS disk scheduling.

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124/65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 12.4.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests at 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

12.4.2 SSTF Scheduling

It seems reasonable to service all the requests close to the current head position
before moving the head far away to service other requests. This assumption is
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm
selects the request with the minimum seek time from the current head position.
Since seek time increases with the number of cylinders traversed by the head,
SSTF chooses the pending request closest to the current head position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
one at 98, so 37 is served next. Continuing, we service the request at cylinder 14,
then 98,122, 124, and finally 183 (Figure 12.5). This scheduling method results
in a total head movement of only 236 cylinders—little more than one-third of
the distance needed for FCFS scheduling of this request queue. This algorithm
gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;
and like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in
the queue, for cylinders 14 and 186, and while servicing the request from 14,
a new request near 14 arrives. This new request will be serviced next, making
the request at 186 wait. While this request is being serviced, another request
close to 14 could arrive. In theory, a continual stream of requests near one
another could arrive, causing the request for cylinder 186 to wait indefinitely.

https://hemanthrajhemu.github.io

12.4 Disk Scheduling 459

queue = 98. 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199

l

Figure 12.5 SSTF disk scheduling.

This scenario becomes increasingly likely if the pending-request queue grows
long.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183. This strategy reduces
the total head movement to 208 cylinders.

12.4.3 SCAN Scheduling

In the SCAN algorithm, the disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the elevator
algorithm, since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let's return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98,183, 37,122,14, 124, 65, and 67, we need to know
the direction of head movement in addition to the head's current position (53).
If the disk arm is moving toward 0, the head will service 37 and then 14. At
cylinder 0, the arm will reverse and will move toward the other end of the
disk, servicing the requests at 65, 67, 98, 122, 124, and 183 (Figure 12.6). If a
request arrives in the queue just in front of the head, it will be serviced almost
immediately; a request arriving just behind the head will have to wait until the
arm moves to the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and"reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algorithm.

https://hemanthrajhemu.github.io

460 Chapter 12 Mass-Storage Structure

queue = 98, 183, 37, 122, 14. 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199

Figure 12.6 SCAN disk scheduling.

12.4.4 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end
of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip (Figure 12.7). The
C-SCAN scheduling algorithm essentially treats the cylinders as a circular list
that wraps around from the final cylinder to the first one.

12.4.5 LOOK Scheduling

As we described them, both SCAN and C-SCAK move the disk arm across the
full width of the disk. In practice, neither algorithm is often implemented this
way. More commonly, the arm goes only as far as the final request in each

queue = 98: 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
I—_J 1 LJJ _J LJ , I I

H

>**

Figure 12.7 C-SCAN disk scheduling.

https://hemanthrajhemu.github.io

12.4 Disk Scheduling 461

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199

1% %

Figure 12.8 C-LOOK disk scheduling.

direction. Then, it reverses direction immediately, without going all the way to
the end of the disk. Versions of SCAN and C-SCAN that follow this pattern are
called LOOK and C-LOOK scheduling, because they look for a request before
continuing to move in a given direction (Figure 12.8).

12.4.6 Selection of a Disk-Scheduling Algorithm

Given so many disk-scheduling algorithms, how do we choose the best one?
SSTF is common and has a natural appeal because it increases performance over
FCFS. SCAM and C-SCAN perform better for systems that place a heavy load on
the disk, because they are less likely to cause a starvation problem.. For any
particular list of requests, we can define an optimal order of retrieval, but the
computation needed to find an optimal schedule may not justify the savings
over SSTF or SCAN. With any scheduling algorithm, however, performance
depends heavily on the number and types of requests. For instance, suppose
that the queue usually has just one outstanding request. Then, all scheduling
algorithms behave the same, because they have only one choice for where to
move the disk head: They all behave like FCFS scheduling.

Requests for disk service can be greatly influenced by the file-allocation
method. A program reading a contiguously allocated file will generate several
requests that are close together on the disk, resulting in limited head movement.
A linked or indexed file, in contrast, may include blocks that are widely
scattered on the disk, resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be used, and opening a file requires searching the
directory structure, the directories will be accessed frequently. Suppose that a
directory entry is on the first cylinder and a file's data are on the final cylinder.
In this case, the disk head has to move the entire width of the disk. If the
directory entry were on the middle cylinder, the head would have to move,
at most, one-half the width. Caching the directories and index blocks in main
memory can also help to reduce the disk-arm movement, particularly for read
requests.

https://hemanthrajhemu.github.io

462 Chapter 12 Mass-Storage Structure

Because of these complexities, the disk-scheduling algorithm should be
written as a separate module of the operating system, so that it can be replaced
with a different algorithm if necessary. Either SSTF or LOOK is a reasonable
choice for the default algorithm.

The scheduling algorithms described here consider only the seek distances.
For modern disks, the rotational latency can be nearly as large as the
average seek time. It is difficult for the operating system to schedule for
improved rotational latency, though, because modern disks do not disclose the
physical location of logical blocks. Disk manufacturers have been alleviating
this problem by implementing disk-scheduling algorithms in the controller
hardware built into the disk drive. If the operating system sends a batch of
requests to the controller, the controller can queue them and then schedule
them to improve both the seek time and the rotational latency.

If I/O performance were the only consideration, the operating system
would gladly turn over the responsibility of disk scheduling to the disk hard-
ware. In practice, however, the operating system may have other constraints on
the service order for requests. For instance, demand paging may take priority
over application I/O, and writes are more urgent than reads if the cache is
running out of free pages. Also, it may be desirable to guarantee the order of a
set of disk writes to make the file system robust in the face of system crashes.
Consider what could happen if the operating system allocated a disk page to a
file and the application wrote data into that page before the operating system
had a chance to flush the modified inode and free-space list back to disk. To
accommodate such requirements, an operating system may choose to do its
own disk scheduling and to spoon-feed the requests to the disk controller, one
by one, for some types of F/O.

12.5 Disk Management

The operating system is responsible for several other aspects of disk manage-
ment, too. Here we discuss disk initialization, booting from disk, and bad-block
recovery.

12.5.1 Disk Formatting

A new magnetic disk is a blank slate: It is just a platter of a magnetic recording
material. Before a disk can store data, it must be divided into sectors that the
disk controller can read and write. This process is called low-level formatting,
or physical formatting. Low-level formatting fills the disk with a special data
structure for each sector. The data structure for a sector typically consists of a
header, a data area (usually 512 bytes in size), and a trailer. The header and
trailer contain information used by the disk controller, such as a sector number
and an error-correcting code (ECC). When the controller writes a sector of data
during normal I/O, the ECC is updated with a value calculated from all the
bytes in the data area. When the sector is read, the ECC is recalculated and
is compared with the stored value. If the stored and calculated numbers are
different, this mismatch indicates that the data area of the sector has become
corrupted and that the disk sector may be bad (Section 12.5.3). The ECC is an
error-correcting code because it contains enough information that, if only a few

https://hemanthrajhemu.github.io

12.5 Disk Management 463

bits or data have been corrupted, the controller can identify which bits, have
changed and can calculate what their correct values should be. It then reports
a recoverable soft error. The controller automatically does the ECC processing
whenever a sector is read or written.

Most hard disks are low-level-forniatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the
disk and to initialize the mapping from logical block numbers to defect-free
sectors on the disk. For many hard disks, when the disk controller is instructed
to low-level-format the disk, it can also be told how many bytes of data space
to leave between the header and trailer of all sectors. It is usually possible to
choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk
with a larger sector size means that fewer sectors can fit on each track; but it
also means that fewer headers and trailers are written on each track and more
space is available for user data. Some operating systems can handle only a
sector size of 512 bytes.

To use a disk to hold files, the operating system still needs to record its own
data structures on the disk. It does so in two steps. The first step is to partition
the disk into one or more groups of cylinders. The operating system can treat
each partition as though it were a separate disk. For instance, one partition can
hold a copy of the operating system's executable code, while another holds
user files. After partitioning, the second step is logical formatting (or creation
of a file system). In this step, the operating system stores the initial file-system
data structures onto the disk. These data structures may include maps of free
and allocated space (a FAT or modes) and an initial empty directory.

To increase efficiency, most file systems group blocks together into larger
chunks, frequently called clusters. Disk I/O is done via blocks, but file system
I /O is done via clusters, effectively assuring that I/O has more sequential-access
and fewer random-access characteristics.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and 1 /O to this array
is termed raw I/O. For example, some database systems prefer raw I/O because
it enables them to control the exact disk location where each database record is
stored. Raw I/O bypasses all the file-system services, such as the buffer cache,
file locking, prefetching, space allocation, file names, and directories. We can
make certain applications more efficient by allowing them to implement their
own special-purpose storage services on a raw partition, but most applications
perform better when they use the regular file-system services.

12.5.2 Boot Block

For a computer to start running—for instance, when it is powered up or
rebooted—it must have an initial program to run. This initial bootstrap program
tends to be simple. It initializes all aspects of the system, from CPU registers
to device controllers and the contents of main memory, and then starts the
operating system. To do its job, the bootstrap program finds the operating-
system kernel on disk, loads that kernel into memory, and jumps to an initial
address to begin the operating-system execution.

For most computers, the bootstrap is stored in read-only memory (ROM).
This location is convenient, because ROM needs no initialization and is at a fixed

https://hemanthrajhemu.github.io

464 Chapter 12 Mass-Storage Structure

partition 1

partition 2

partition 3

partition 4

boo'
code

part ten
ia.D'e

boot partition

Figure 12.9 Booting from disk in Windows 2000.

location that the processor can start executing when powered up or reset. And,
since ROM is read only, it cannot be infected by a computer virus. The problem is
that changing this bootstrap code requires changing the ROM, hardware chips.
For this reason, most systems store a tiny bootstrap loader program in the boot
ROM whose only job is to bring in a full bootstrap program from disk. The
full bootstrap program can be changed easily: A new version is simply written
onto the disk. The full bootstrap program is stored in ''the boot blocks" at a
fixed location on the disk. A disk that has a boot partition is called a boot disk
or system disk.

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point) and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM; it is able to load the entire operating system
from a non-fixed location on disk and to start the operating system running.
Even so, the full bootstrap code may be small.

Let's consider as an example the boot process in Windows 2000. The
Windows 2000 system places its boot code in the first sector on the hard disk
(which it terms the master boot record, or MBR). Furthermore, Windows 2000
allows a hard disk to be divided into one or more partitions; one partition,
identified as the boot partition, contains the operating system and device
drivers. Booting begins in a Windows 2000 system by running code that is
resident in the system's ROM memory. This code directs the system to read the
boot code from, the MBR. In addition to containing boot code, the MBR contains
a table listing the partitions for the hard disk and a flag indicating which
partition the system is to be booted from. This is illustrated in Figure 12.9.
Once the system identifies the boot partition, it reads the first sector from that
partition (which is called the boot sector) and continues with the remainder of
the boot process, which includes loading the various subsystems and system
services.

12.5.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk
head flies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, one or more

https://hemanthrajhemu.github.io

12.5 Disk Management 465

sectors become defective. Most disks even come from the factory with bad
blocks. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On simple disks, such as some disks with [DE controllers, bad blocks are
handled manually. For instance, the MS-DOS format command performs logical
formatting and, as a part of the process, scans the disk to find bad blocks. If
format finds a bad block, it writes a special value into the corresponding FAT
entry to tell the allocation routines not to use that block. If blocks go bad during
normal operation, a special program (such as chkdsk) must be run manually
to search for the bad blocks and to lock them away as before. Data that resided
on the bad blocks usually are lost.

More sophisticated disks, such as the SCSI disks used in high-end PCs
and most workstations and servers, are smarter about bad-block recovery. The
controller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

The operating system tries to read logical block 87.

The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system.

The next time the system is rebooted, a special, command is run to tell the
SCSI controller to replace the bad sector with a spare.

After that, whenever the system requests logical block 87, the request is
translated into the replacement sector's address by the controller.

Such a redirection by the controller could invalidate any optimization by
the operating system's disk-scheduling algorithm! For this reason, most disks
are formatted to provide a few spare sectors in each, cylinder and a spare
cylinder as well. When a bad block is remapped, the controller uses a spare
sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that
logical block 17 becomes defective and the first available spare follows sector
202. Then, sector slipping remaps all the sectors from 17 to 202, moving them
all down one spot. That is, sector 202 is copied into the spare, then sector 201
into 202, and then 200 into 201, and so on, until sector 18 is copied into sector
19. Slipping the sectors in this way frees up the space of sector 18, so sector 17
can be mapped to it.

The replacement of a bad block generally is not totally automatic because
the data in the bad block are usually lost. Several soft errors could trigger a
process in which a copy of the block data is made and the block is spared or
slipped. An unrecoverable hard error, however, results in lost data. Whatever
file was using that block must be repaired (for instance, by restoration from a
backup tape), and that requires manual intervention.

https://hemanthrajhemu.github.io

466 Chapter 12 Mass-Storage Structure

12,6 Swap-Space Management

Swapping was first presented in Section 8.2, where wre discussed moving
entire processes between disk and main memory. Swapping in that setting
occurs when the amount of physical memory reaches a critically low point
and processes (which are usually selected because they are the least active) are
moved from memory to swap space to free available memory. In practice, very
few modern operating systems implement swapping in this fashion. Rather,
systems now combine swapping with virtual memory techniques (Chapter 9)
and swap pages, not necessarily entire processes. In fact, some systems now
use the terms swapping and paging interchangeably, reflecting the merging of
these two concepts.

Swap-space management is another low-level task of the operating
system. Virtual memory uses disk space as an extension of main memory.
Since disk access is much slower than memory access, using swap space
significantly decreases system performance. The main goal for the design, and
implementation of swap space is to provide the best throughput for the virtual
memory system. In this section, we discuss how swap space is used, where
swap space is located on disk, and how swap space is managed.

12.6.1 Swap-Space Use

Swap space is used in various ways by different operating systems, depending
on the memory-management algorithms in use. For instance, systems that
implement swapping may use swap space to hold an entire process image,
including the code and data segments. Paging systems may simply store pages
that have been pushed out of main memory. The amount of swap space needed
on a system can therefore vary depending on the amount of physical memory,
the amount of virtual memory it is backing, and the way in which the virtual
memory is used. It can range from a few megabytes of disk space to gigabytes.

Note that it may be safer to overestimate than to underestimate the amount
of swap space required, because if a system runs out of swap space it may be
forced to abort processes or may crash entirely. Overestimation wastes disk
space that could otherwise be used for files, but it does no other harm. Some
systems recommend the amount to be set aside for swap space. Solaris, for
example, sviggests setting swap space equal to the amount by which virtual
memory exceeds pageable physical memory. Historically, Linux suggests
setting swap space to double the amount of physical memory, although most
Linux systems now use considerably less swap space. In fact, there is currently
much debate in the Linux community about whether to set aside swap space
at all!

Some operating systems—including Linux—allow the use of multiple
swap spaces. These swap spaces are usually put on separate disks so the load
placed on the I/O system by paging and swapping can be spread over the
system's I/O devices.

12.6.2 Swap-Space Location

A swap space can reside in one of two places: It can be carved out of the
normal file system, or it can be in a separate disk partition. If the swap
space is simply a large file within the file system, normal file-system routines

https://hemanthrajhemu.github.io

12.6 Swap-Space Management 467

can be used to create it, name it, and allocate its space. This approach,
though easy to implement, is inefficient. Navigating the directory structure
and the disk-allocation data structures takes time and (potentially) extra
disk accesses. External fragmentation can greatly increase swapping times by
forcing multiple seeks during reading or writing of a process image. We can
improve performance by caching the block location information in physical
memory and by using special tools to allocate physically contiguous blocks
for the swap file, but the cost of traversing the file-system data structures still
remains.

Alternatively, swap space can be created in a separate raw partition, as no
file system or directory structure is placed in this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks
from the raw partition. This manager uses algorithms optimized for speed
rather than for storage efficiency, because swap space is accessed much more
frequently than file systems (when it is used). Internal fragmentation may
increase, but this trade-off is acceptable because the life of data in the swap
space generally is much shorter than that of files in the file system. Swap space
is reinitialized at boot time so any fragmentation is short-lived. This approach
creates a fixed amount of swap space during disk partitioning. Adding more
swap space requires repartitioning the disk (which involves moving the other
file-system, partitions or destroying them and restoring them from backup) or
adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Linux is an example: The policy and. implementation
are separate, allowing the machine's administrator to decide which type of
swapping to use. The trade-off is between the convenience of allocation and
management in the file system and the performance of swapping in raw
partitions.

12.6.3 Swap-Space Management: An Example

We can illustrate how swap space is used by following the evolution of
swapping and paging in various UNIX systems. The traditional UNIX kernel
started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX later evolved to a
combination of swapping and paging as paging hardware became available.

In Solaris 1 (SunOS), the designers changed standard UNIX methods to
improve efficiency and reflect technological changes. When a process executes,
text-segment pages containing code are brought in from the file system,
accessed in main memory, and thrown away if selected for pageout. It is more
efficient to reread a page from the file system than to write it to swap space
and then reread it from there. Swap space is only used as a backing store for
pages of anonymous memory, which includes memory allocated for the stack,
heap, and uninitialized data of a process.

More changes were made in later versions of Solaris. The biggest change
is that Solaris now allocates swap space only when a page is forced out of
physical memory, rather than when the virtual memory page is first created.
This scheme gives better performance on modern computers, which have more
physical memory than older systems and tend to page less.

https://hemanthrajhemu.github.io

468 Chapter 12 Mass-Storage Structure

- swap area -
page
slot

Swap partition 1;!; •!;M;Hi;!M
or swap file j::; J j : | %:\ ill

swap map 1

• : • : : : : :

: : : : : : :

0

_|IiliL.
. : ' • : ' • • . : • : ' • : • - . : • • ; . M'.- . • ' • • - ' •

• : ; : • ; ; ; • • = : • ; ; ; : • ; : ;

3 0 F 1

Figure 12.10 The data structures for swapping on Linux systems.

Linux is similar to Solaris in that swap space is only used for anonymous
memory or for regions of memory shared by several processes. Linux allows
one or more swap areas to be established. A swap area may be in either a
swap file on a regular file system or a raw swap partition. Each swap area
consists of a series of 4-KB page slots, which are used to hold swapped pages.
Associated with each swap area is a swap map—an array of integer counters,
each corresponding to a page slot in the swap area. Tf the value of a counter is 0,
the corresponding page slot is available. Values greater than 0 indicate that the
page slot is occupied by a swapped page. The value of the counter indicates the
number of mappings to the swapped page; for example, a value of 3 indicates
that the swapped page is mapped to three different processes (which can occur
if the swapped page is storing a region of memory shared by three processes).
The data structures for swapping on Linux systems are shown in Figure 12.10.

12.7 RAID Structure

Disk drives have continued to get smaller and cheaper, so it is now econom-
ically feasible to attach .many disks to a computer system. Having a large
number of disks in a system presents opportunities for improving the rate
at which data can be read or written, if the disks are operated in parallel.
Furthermore, this setup offers the potential for improving the reliability of data
storage, because redundant information can be stored on multiple disks. Thus,
failure of one disk does not lead to loss of data. A variety of disk-organization
techniques, collectively called redundant arrays of inexpensive disks (RAIDS),
are commonly used to address the performance and reliability issues.

In the past, RAIDs composed of small, cheap disks were viewed as a
cost-effective alternative to large, expensive disks; today, RAIDs are used for
their higher reliability and higher data-transfer rate, rather than for economic
reasons. Hence, the I in RAID now stands for "independent" instead of
"inexpensive."

12.7.1 Improvement of Reliability via Redundancy

Let us first consider the reliability of RAIDs. The chance that some disk out of
a set of N disks will fail is much higher than the chance that a specific single
disk will fail. Suppose that the mean time to failure of a single disk is 100,000
hours. Then the mean time to failure of some disk in an array of 100 disks

https://hemanthrajhemu.github.io

12.7 RAID Structure 469

| p t p g g § | | j ^ f Idi? 8xaitt|fe,:;a-:s|slejii:
"can." fes-e ilisftsMrect& mtycfeti:: t&: :itg.bases*; .'lit: Ih'ft:::ca«e*tfit*•: epgiattftg;

' S c t e (u s u a l l y l , S i r t d l S k t . f t H a f H c f l e t ! :f <S | I h | E c g f : v fa 'S&H; a r : H I & | i |

'tfea

will be 100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we
store only one copy of the data, then each disk failure will result in loss of a
significant amount of data—and such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; we
store extra information that is not normally needed but that can be used in the
event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost.

The simplest (but most expensive) approach to introducing redundancy is
to duplicate every disk. This technique is called mirroring. A logical disk then
consists of two physical disks, and every write is carried out on both disks. If
one of the disks fails, the data can be read from the other. Data will be lost only
if the second disk fails before the first failed disk is replaced.

The mean time to failure—where failure is the loss of data—of a mirrored
volume (made up of two disks, mirrored) depends on two factors. One is
the mean time to failure of the individual disks. The other is the mean time
to repair, which is the time it takes (on average) to replace a failed disk
and to restore the data on it. Suppose that the failures of the two disks are
independent; that is, the failure of one disk is not connected to the failure of
the other. Then, if the mean time to failure of a single disk is 100,000 hours and
the mean time to repair is 10 hours, the mean time to data loss of a mirrored
disk system is 100, 0002/(2 * 10) = 500 * 106 hours, or 57,000 years!

You should be aware that the assumption of independence of disk failures
is not valid. Power failures and natural disasters, such as earthquakes, fires,
and floods, may result in damage to both disks at the same time. Also,
manufacturing defects in a batch of disks can cause correlated, failures. As
disks age, the probability of failure grows, increasing the chance that a second
disk will fail while the first is being repaired. In spite of all these considerations,
however, mirrored-disk systems offer much higher reliability than do single-
disk systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Even with mirroring of disks, if writes
are in progress to the same block in both disks, and power fails before both
blocks are fully written, the two blocks can be in an inconsistent state. One
solution to this problem is to write one copy first, then the next, so that one

https://hemanthrajhemu.github.io

470 Chapter 12 Mass-Storage Structure

of the two copies is always consistent. Another is to add a nonvolatile' RAM
(NVRAM) cache to the RAID array. This write-back cache is protected from data
loss during power failures, so the write can be considered complete at that
point, assuming the NVRAM has some kind of error protection and correction.,
such as ECC or mirroring.

12.7.2 Improvement in Performance via Parallelism

Now let's consider how parallel access to multiple disks improves perfor-
mance. With disk mirroring, the rate at which read requests can be handled is
doubled, since read requests can be sent to either disk (as long as both disks
in a pair are functional, as is almost always the case). The transfer rate of each
read is the same as in a single-disk system, but the number of reads per unit
time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead)
by striping data across the disks. In its simplest form, data striping consists
of splitting the bits of each byte across multiple disks; such striping is called
bit-level striping. For example, if we have an array of eight disks, we write bit
/' of each byte to disk /. The array of eight disks can be treated as a single disk
with sectors that are eight times the normal size and, more important, that have
eight times the access rate. In such an organization, every disk participates in
every access (read or write); so the number of accesses that can be processed
per second is about the same as on a single disk, but each access can read eight
times as many data in the same time as on a single disk.

Bit-level striping can be generalized to include a number of disks that either
is a multiple of 8 or divides 8. For example, if we use an array of four disks,
bits / and 4 + i of each byte go to disk /. Further, striping need not be at the bit
level. For example, in block-level striping, blocks of a file are striped across
multiple disks; with n disks, block / of a file goes to disk (/ mod n) + 1. Other
levels of striping, such as bytes of a sector or sectors of a block, also are possible.
Block-level striping is the most common.

Parallelism in a disk system, as achieved through striping, has two main
goals:

1. increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

2. Reduce the response time of large accesses.

12.7.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes to
provide redundancy at lower cost by using the idea of disk striping combined
with "parity" bits (which we describe next) have been proposed. These schemes
have different cost-performance trade-offs and are classified according to
levels called RAID levels. We describe the various levels here; Figure 12.11
shows them pictorially (in the figure, P indicates error-correcting bits, and C
indicates a second copy of the data). In all cases depicted in the figure, four
disks' worth of data are stored, and the extra disks are used to store redundant
information for failure recovery.

https://hemanthrajhemu.github.io

12.7 RAID Structure 471

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.

Figure 12.11 RAID levels.

• RAID Level 0. RAID level 0 refers to disk arrays with striping at the level of
blocks but without any redundancy (such as mirroring or parity bits), as
shown in Figure 12.11(a).

• RAID Level 1. RAID level 1 refers to disk mirroring. Figure 12.11 (b) shows
a mirrored organization.

• RAID Level 2. RAID level 2 is also known as memory-style error-correcting-
code (ECC) organization. Memory systems have long detected certain
errors by using parity bits. Each byte in a memory system may have a
parity bit associated with it that records whether the number of bits in the
byte set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the
byte is damaged (either a 1 becomes a 0, or a 0 becomes a 1), the parity of
the byte changes and thus will not match the stored parity. Similarly, if the
stored parity bit is damaged, it will not match the computed parity. Thus,
all single-bit errors are detected by the memory system. Error-correcting

https://hemanthrajhemu.github.io

472 Chapter 12 Mass-Storage Structure

schemes store two or more extra bits and can reconstruct the data if a
single bit is damaged. The idea of ECC can be used directly in disk arrays
via striping of bytes across disks. For example, the first bit of each byte can
be stored in disk 1, the second bit in disk 2, and so on until the eighth bit
is stored in disk 8; the error-correction bits are stored in further disks. This
scheme is shown pictorially in Figure 12.11 (c), where the disks labeled P
store the error-correction bits. If one of the disks fails, the remaining bits
of the byte and the associated error-correction bits can be read from other
disks and used to reconstruct the damaged data. Note that RAID level 2
requires only three disks' overhead for four disks of data, unlike RAID level
1, which requires four disks' overhead.

* RAID Level 3. RAID level 3, or bit-interleaved parity organization,
improves on level 2 by taking into account the fact that, unlike memory
systems, disk controllers can detect whether a sector has been read
correctly, so a single parity bit can be used for error correction as well
as for detection. The idea is as follows: If one of the sectors is damaged, we
know exactly which sector it is, and we can figure out whether any bit in
the sector is a 1 or a 0 by computing the parity of the corresponding bits
from sectors in the other disks. If the parity of the remaining bits is equal
to the stored parity, the missing bit is 0; otherwise, it is 1. RAID level 3 is as
good as level 2 but is less expensive in the number of extra disks required
(it has only a one-disk overhead), so level 2 is not used in practice. This
scheme is shown pictorially in Figure 12.11(d).

RAID level 3 has two advantages over level 1. First, the storage over-
head is reduced because only one parity disk is needed for several regular
disks, whereas one mirror disk is needed for every disk in level 1. Second,
since reads and writes of a byte are spread out over multiple disks with
A/-way striping of data, the transfer rate for reading or writing a single
block is N times as fast as with RAID level 1. On the negative side, RAID
level 3 supports fewer I/Os per second, since every disk has to participate
in every I/O request.

A further performance problem with RAID 3—and with all parity-
based RAID levels—is the expense of computing and writing the parity.
This overhead results in significantly slower writes than with non-parity
RAID arrays. To moderate this performance penalty, many RAID storage
arrays include a hardware controller with dedicated parity hardware. This
controller offloads the parity computation from the CPU to the array. The
array has an NVRAM cache as well, to store the blocks while the parity is
computed and to buffer the writes from the controller to the spindles. This
combination can make parity RAID almost as fast as non-parity. In fact, a
caching array doing parity RAID can outperform a non-caching non-parity
RAID.

• RAID Level 4. RAID level 4, or block-interleaved parity organization, uses
block-level striping, as in RAID 0, and in addition keeps a parity block on a
separate disk for corresponding blocks from A! other disks. This scheme is
diagramed in Figure 12.11(e). If one of the disks fails, the parity block can
be used with the corresponding blocks from the other disks to restore the
blocks of the failed disk.

https://hemanthrajhemu.github.io

12.7 RAID Structure 473

A block read accesses only one disk, allowing other requests to be
processed by the other disks, thus, the data-transfer rate for each access
is slower, but multiple read accesses can proceed in parallel, leading to a
higher overall I/O rate. The transfer rates for large reads are high, since all
the disks can be read in parallel; large writes also have high transfer rates,
since the data and parity can be written in parallel

Small independent writes cannot be performed in parallel. An operating
system write of data smaller than a block requires that the block be read,
modified with the new data, and written back. The parity block has to be
updated as well. This is known as the read-modify-write cycle. Thus, a
single write requires four disk accesses: two to read the two old blocks and
two to write the two new blocks.

WAFL (Chapter 11) uses RAID level 4 because this RAID level allows disks
to be added to a RAID set seamlessly. If the added ciisks are initialized with
blocks containing all zeros, then the parity value does not change, and the
RAID set is still correct.

• RAID Level 5. RAID level 5, or block-interleaved distributed parity, differs
from level 4 by spreading data and parity among all N + 1 disks, rather
than storing data in N disks and parity in one disk. For each block, one of
the disks stores the parity, and the others store data. For example, with an
array of five disks, the parity for the nth block is stored in disk (n mod 5)^1;
the nth blocks of the other four disks store actual data for that block. This
setup is shown in Figure 12.1 l(f), where the Ps are distributed across all
the disks. A parity block cannot store parity for blocks in the same disk,
because a disk failure would result in loss of data as well as of parity, and
hence the loss would not be recoverable. By spreading the parity across all
the disks in the set, RAID 5 avoids the potential overuse of a single parity-
disk that can occur with RAID 4. RAID 5 is the most common parity RAID
system.

• RAID Level 6. RAID level 6, also called the P + Q redundancy scheme, is
much like RAID level 5 but stores extra redundant information to guard
against multiple disk failures. Instead of parity, error-correcting codes such
as the Reed-Solomon codes are used. In the scheme shown in Figure
12.11(g), 2 bits of redundant data are stored for every 4 bits of data—
compared with 1 parity bit in level 5—and the system can tolerate two
disk failures.

• RAID Level 0 + 1. RAID level 0 + 1 refers to a combination of RAID levels
0 and 1. RAID 0 provides the performance, while RAID 1 provides the
reliability. Generally, this level provides better performance than RAID 5.
It is common in environments where both performance and. reliability
are important. Unfortunately, it doubles the number of disks needed for
storage, as does RAID 1, so it is also more expensive, in RAID 0 - 1, a set
of disks are striped, and then the stripe is mirrored to another, equivalent
stripe.

Another RAID option that is becoming available commercially is RAID
level 1 + 0, in which disks are mirrored in pairs, and then the resulting
mirror pairs are striped. This RAID has some theoretical advantages over
RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, the entire

https://hemanthrajhemu.github.io

474 Chapter 12 Mass-Storage Structure

stripe

mirror

stripe

a) RAID 0 + 1 with a single disk failure.

stripe
mirror mirror mirror mirror

b) RAID 1 + 0 with a single disk failure.

Figure 12.12 RAID 0 + 1 and 1 + 0.

stripe is inaccessible, leaving only the other stripe available. With a failure
in RAID 1 + 0 , the single disk is unavailable, but its mirrored pair is still
available, as are all the rest of the disks (Figure 12.12).

Numerous variations have been proposed to the basic RAID schemes described
here. As a result, some confusion may exist about the exact definitions of the
different RAID levels.

The implementation of RAID is another area of variation. Consider the
following layers at which RAID can be implemented.

• Volume-management software can implement RAID within the kernel or
at the system software layer. In this case, the storage hardware can provide
a minimum of features and still be part of a full RAID solution. Parity RAID
is fairly slow when implemented in software, so typically RAID 0,1, or 0 +
1 is used.

• RAID can be implemented in the host bus-adapter (HBA) hardware. Only
the disks directly connected to the HBA can be part of a given RAID set.
This solution is low in cost but not very flexible.

• RAID can be implemented in the hardware of the storage array. The storage
array can create RAID sets of various levels and can even slice these sets
into smaller volumes, which are then presented to the operating system.

https://hemanthrajhemu.github.io

12.7 RAID Structure 475

The operating system need only implement the file system on each ©f the
volumes. Arrays can have multiple connections available or can be part of
a SAN, allowing multiple hosts to take advantage of the array's features.

• RAID can be implemented in the SAN interconnect layer by disk virtualiza-
tion devices. In this case, a device sits between the hosts and the storage.
It accepts commands from the servers and manages access to the storage.
It could provide mirroring, for example, by writing each block to two
separate storage devices.

Other features, such as snapshots and replication, can be implemented at
each of these levels as well. Replication involves the automatic duplication of
writes between separate sites for redimdancy and disaster recovery. Replication
can be synchronous or asynchronous. In synchronous replication, each block
must be written locally and remotely before the write is considered complete,
whereas in asynchronous replication, the writes are grouped together and
written periodically. Asynchronous replication can result in data loss if the
primary site fails but is faster and has no distance limitations.

The implementation of these features differs depending on the layer at
which RAID is implemented. For example, if RAID is implemented in software,
then each host may need to implement and manage its own replication. If
replication is implemented in the storage array or in the SAN interconnect,
however, then whatever the host operating system or features, the hosts data
can be replicated.

One other aspect of most RAID implementations is a hot spare disk or disks.
A hot spare is not used for data but is configured to be used as a replacement
should any other disk fail. For instance, a hot spare can be used to rebuild a
mirrored pair should one of the disks in the pair fail. In this way, the RAID level
can be reestablished automatically, without waiting for the failed disk to be
replaced. Allocating more than one hot spare allows more than one failure to
be repaired without human intervention.

12.7.4 Selecting a RASD Level

Given the many choices they have, how do system designers choose a RAID
level? One consideration is rebuild performance. If a disk fails, the time needed
to rebuild its data can be significant and will vary with the RAID level used.
Rebuilding is easiest for RAID level 1, since data can be copied from another
disk; for the other levels, we need to access all the other disks in the array-
to rebuild data in a failed disk. The rebuild performance of a RAID system
may be an important factor if a continuous supply of data is required, as it
is in high-performance or interactive database systems. Furthermore, rebuild
performance influences the mean time to failure. Rebuild times can be hours
for RAID 5 rebuilds of large disk sets.

RAID level 0 is used in high-performance applications where data loss is
not critical. RAID level 1 is popular for applications that require high reliability
with fast recovery. RAID 0 + 1 and 1 - 0 are used where both performance and
reliability are important—for example, for small databases. Due to RAID l's
high space overhead, RAID level 5 is often preferred for storing large volumes
of data. Level 6 is not supported currently by many RAID implementations, but
it should offer better reliability than level 5.

https://hemanthrajhemu.github.io

476 Chapter 12 Mass-Storage Structure

RAID system designers and administrators of storage have to make Several
other decisions as well. For example, how many disks should be in a given
RAID set? How many bits should be protected by each parity bit? If more disks
are in an array, data-transfer rates are higher, but the system is more expensive.
If more bits are protected by a parity bit. the space overhead due to parity bits
is lower, but the chance that a second disk will fail before the first failed disk is
repaired is greater, and that wall result in data loss.

12.7.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, RAID structures are able to recover data even if one
of the tapes in an array is damaged. When applied to broadcast of data, a block
of data is split into short units and is broadcast along with a parity unit; if one
of the units is not received for any reason, it can be reconstructed from the
other units. Commonly, tape-drive robots containing multiple tape drives will
stripe data across all the drives to increase throughput and decrease backup
time.

. .•; :: •;: • THE InSarv

titicin, in an effort to provide betfer;:fasfei-, and less expeifisiye^ohitions,

: : ge:arr^y:ffOBn::3:Pftr.::uln|ifce:mQst:other^ storage :array$,;:thB:JnSei-v:

does not Require::that :a;:set;;nf disks:|be' coh|igua-ed:::a:t a specific RMD) level,
jptfier, | aeh d i k iiSrokeh :i;iiloi;2a6-MB Iciaunklie&l :Rllp Isaheniapplied at
the chu:hKlgt:leV(i:L::A; disk:can:thus:piiftic-ipated]n.miiiiiiple and:variou;s RAID
teyfefajas: ferhiirnklefis afe:usedfar multiple vaiumes.-: -\ :: ;:.-;: V !: •• :

: . I ^ s ipServ; al5d;pmiddes:::snapSha^ toy the;Vy^PL,

lliowiing :|hpiti:pledis@s:tS;; tc);:iii:0unt:NC0pdgs:;idf a giygii: fits gvstlarK
i;:ai;e;ed:i Big t̂heiiriidWniKBpiies mi. the 4Jrt;ti;rei: fflc systBnfi; Mny ̂ changes a:

0tHer GOplesJ1 :: ': ' :. ;- 0 ; :;: • •': ;
 : : ?: :: ;^: : ;: : :" : v'

sh rink! ©fti these file systems, ttieioriginal sizeistheDniy size, and :an̂ y: changes
ceciudre Copying data:, ^niadrninistiratcitvcan canfigure: ImServ toip'i'ovide a

aTtiiount:p|phygical storage. ̂ \s the htsi;:si:ar:t$:a;afig |ln;ti gt«ffage:;;uinHsed disk
area;llpeatefltb;:HE;hml,:iip fe:|&::bggjHii llipinlleve!:. Jnithisimanneiva^vgs
can l5t;lteve:that:i!::li,asi a::targe .fixt>d;sta:.rage space; ereaite'lts file systerfis;there,
ajtd so on:, ;Disks:Gan:h&.added q.f :fenK):ved:::froin;:th.e; file system :by :&tSe:re
wifhbut the | l e systeens noticing the change, T(-jis; feature can reduce the
number of drives needed by "hosts, or at least delay tbe purchase of disks

https://hemanthrajhemu.github.io

12.8 Stable-Storage Implementation 477

12.7.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. A pointer to a file could be wrong, for example,
or pointers within the file structure could be wrong. Incomplete writes, if not
properly recovered, could result in corrupt data. Some other process could
accidentally write over a file system's structures, too. RAID protects against
physical rnedia errors, but not other hardware and software errors. As large as
the landscape of software and hardware bugs is, that is how numerous are the
potential perils for data on a system.

The Solaris ZFS file system takes an innovative approach to solving these
problems. It maintains internal checksums of all blocks, including data and
metadata. Added functionality comes in the placement of the checksums. They
are not kept with the block that is being checksummed. Rather, they are stored
with the pointer to that block. Consider an inode with pointers to its data.
Within the inode is the checksum, of each block of data. If there is a problem
with the data, the checksum will be incorrect, and the file system will know-
about it. If the data are mirrored, and there is a block with a correct checksum
and one with an incorrect checksum, ZFS will automatically update the bad
block with the good one. Likewise, the directory entry that points to the inode
has a checksum for the inode. Any problem in the mode is detected when
the directory is accessed. This checksumming takes places throughout all ZFS
structures, providing a much higher level of consistency, error detection, and
error correction than is found in RAID disk sets or standard file systems. The
extra overhead that is created by the checksum calculation and extra block
read-modify-write cycles is not noticeable because the overall performance of
ZFS is very fast.

12.8 Stable-Storage Implementation

In Chapter 6, we introduced the write-ahead log, which requires the availability
of stable storage. By definition, information residing in stable storage is never
lost. To implement such storage, we need to replicate the needed information
on multiple storage devices (usually disks) with independent failure modes.
We need to coordinate the writing of updates in a way that guarantees that
a failure during an update will not leave all the copies in a damaged state
and that, when we are recovering from a failure, we can force all copies to a
consistent and correct value, even if another failure occurs during the recovery.
In this section, we discuss how to meet these needs.

A disk write results in one of three outcomes:

1. Successful completion. The data were written correctly on disk.

2. Partial failure. A failure occurred in the midst of transfer, so only some of
the sectors were written with the new data, and the sector being written
during the failure may have been corrupted.

3. Total failure. The failure occurred before the disk write started, so the
previous data values on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to
detect it and invoke a recovery procedure to restore the block to a consistent

https://hemanthrajhemu.github.io

478 Chapter 12 Mass-Storage Structure

state. To do that, the system must maintain two physical blocks for each logical
block. An output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information
onto the second physical block,

3. Declare the operation complete only after the second write completes
successfully.

During recovery from a failure, each pair of physical blocks is examined.
If both are the same and no detectable error exists, then no further action is
necessary. If one block contains a detectable error, then we replace its contents
with the value of the other block. If neither block contains a detectable error,
but the blocks differ in content, then wre replace the content of the first block
with that of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely or results in no change.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although having a large
number of copies further reduces the probability of a failure, it is usually
reasonable to simulate stable storage with only two copies. The data in stable
storage are guaranteed to be safe unless a failure destroys all the copies.

Because waiting for disk writes to complete (synchronous I/O) is time
consuming, many storage arrays add NVRAM as a cache. Since the memory is
nonvolatile (usually it has battery power as a backup to the unit's power), it
can be trusted to store the data en route to the disks. It is thus considered part
of the stable storage. Writes to it are much faster than to disk, so performance
is greatly improved.

12.9 Tertiary-Storage Structure

Would you buy a VCR that had inside it only one tape that you could not take
out or replace? Or a DVD or CD player that had one disk sealed inside? Of course
not. You expect to use a VCR or CD player with many relatively inexpensive
tapes or disks. On a computer as well, using many inexpensive cartridges with
one drive lowers the overall cost. Low cost is the defining characteristic of
tertiary storage, which we discuss in this section.

12.9.1 Tertiary-Storage Devices

Because costis so important, in practice, tertiary storage is built with removable
media. The most common examples are floppy disks, tapes, and read-only,
write-once, and rewritable CDs and DVDs. Many any other kinds of tertiary-
storage devices are available as well, including removable devices that store
data in flash memory and interact with the computer system via a USB interface.

12.9.1.1 Removable Disks

Removable disks are one kind of tertiary storage. Floppy disks are an example
of removable magnetic disks. They are made from a thin, flexible disk coated

https://hemanthrajhemu.github.io

12.9 Tertiary-Storage Structure 479

with magnetic material and enclosed in a protective plastic case. Although
common floppy disks can hold only about 1 MB, similar technology is used
for removable magnetic disks that hold more than 1 GB. Removable magnetic
disks can be nearly as fast as hard disks, although the recording surface is at
greater risk of damage from scratches.

A magneto-optic disk is another kind of removable disk. It records data
on a rigid platter coated with magnetic material, but the recording technology
is quite different from that for a magnetic disk. The magneto-optic head flies
much farther from the disk surface than a magnetic disk head does, and the
magnetic material is covered with a thick protective layer of plastic or glass.
This arrangement makes the disk much more resistant to head crashes.

The drive has a coil that produces a magnetic field; at room temperature,
the field is too large and too weak to magnetize a bit on the disk. To write a
bit, the disk head flashes a laser beam at the disk surface. The laser is aimed at
a tiny spot where a bit is to be written. The laser heats this spot, which makes
the spot susceptible to the magnetic field. Now the large, weak magnetic field
can record a tiny bit.

The magneto-optic head is too far from the disk surface to read the data by-
detecting the tiny magnetic fields in the way that the head of a hard disk does.
Instead, the drive reads a bit using a property of laser light called the Kerr
effect. When a laser beam is bounced off of a magnetic spot, the polarization
of the laser beam is rotated clockwise or counterclockwise, depending on the
orientation of the magnetic field. This rotation is what the head detects to read
a bit.

Another category of removable disk is the optical disk. Optical disks do not
use magnetism at all. Instead, they use special materials that can be altered by
laser light to have relatively dark or bright spots. One example of optical-disk
technology is the phase-change disk, which is is coated with a material that
can freeze into either a crystalline or an amorphous state. The crystalline state
is more transparent, and hence a laser beam is brighter when it passes through
the material and bounces off the reflective layer. The phase-change drive uses
laser light at three different powers: low power to read data, medium power
to erase the disk by melting and refreezing the recording medium into the
crystalline state, and high power to melt the medium into the amorphous state
to write to the disk. The most common examples of this technology are the
re-recordable CD-RW and DVD-RW.

The kinds of disks just described can be used over and over. They are called
read-write disks. In contrast, write-once, read-many-times (WORM) disks can
be written only once. An old way to make a WORM disk is to manufacture a thin
aluminum film sandwiched between two glass or plastic platters. To write a
bit, the drive uses a laser light to burn a small hole through the aluminum,. This
burning cannot be reversed. Although it is possible to destroy the information
on a WORM disk by burning holes everywhere, it is virtually impossible to alter
data on the disk, because holes can only be added, and the ECC code associated
with each sector is likely to detect such additions. WORtvl disks are considered
durable and reliable because the metal layer is safely encapsulated between
the protective glass or plastic platters and magnetic fields cannot damage the
recording. A newer write-once technology records on an organic polymer dye
instead of an aluminum layer; the dye absorbs laser light to form marks. This
technology is used in the recordable CD-R and DVD-R.

https://hemanthrajhemu.github.io

480 Chapter 12 Mass-Storage Structure

Read-only disks, such as CD-ROM and DVD-ROM, come from the factory
with the data prerecorded. They use technology similar to that of WORM disks
(although the bits are pressed, not burned), and they are very durable.

Most removable disks are slower than their nonremovable counterparts.
The writing process is slower, as are rotation and sometimes seek time.

12.9.1.2 Tapes

Magnetic tape is another type of removable medium. As a general rule, a tape
holds more data than an optical or magnetic disk cartridge. Tape drives and

. disk drives have similar transfer rates. But random access to tape is much
slower than a disk seek, because it requires a fast-forward or rewind operation
that takes tens of seconds or even minutes.

Although a typical tape drive is more expensive than a typical disk drive,
the price of a tape cartridge is lower than the price of the equivalent capacity
of magnetic disks. So tape is an economical medium for purposes that do not
require fast random access. Tapes are commonly used to hold backup copies
of disk data. They are also used in large supercomputer centers to hold the
enormous volumes of data used in scientific research and by large commercial
enterprises.

Large tape installations typically use robotic tape changers that move tapes
between tape drives and storage slots in a tape library. These mechanisms give
the computer automated access to many tape cartridges.

A robotic tape library can lower the overall cost of data storage. A disk-
resident file that will not be neecied for a while can be archived to tape, where
the cost per gigabyte is lower; if the file is needed in the future, the computer
can stage it back into disk storage for active use. A robotic tape library is
sometimes called near-line storage, since it is between the high performance
of on-line magnetic disks and the low cost of off-line tapes sitting on shelves
in a storage room.

12.9.1.3 Future Technology

In the future, other storage technologies may become important. One promis-
ing storage technology, holographic storage, uses laser light to record holo-
graphic photographs on special media. We can think of a hologram as a
three-dimensional array of pixels. Each pixel represents one bit: 0 for black or 1
for white. And all the pixels in a hologram are transferred in one flash of laser
light, so the data transfer rate is extremely high. With continued development,
holographic storage may become commercially viable.

Another storage technology under active research, is based on micro-
electronic mechanical systems (MEMS). The idea is to apply the fabrication
technologies that produce electronic chips to the manufacture of small data-
storage machines. One proposal calls for the fabrication of an array of 10,000
tiny disk heads, with a square centimeter of magnetic storage material sus-
pended above the array. When the storage material is moved lengthwise over
the heads, each head accesses its own linear track of data on the material. The
storage material can be shifted sideways slightly to enable all the heads to
access their next track. Although it remains to be seen whether this technology
can be successful, it may provide a nonvolatile data-storage technology that is
faster than magnetic disk and cheaper than semiconductor DRAM.

https://hemanthrajhemu.github.io

12.9 Tertiary-Storage Structure 481

Whether the storage medium is a removable magnetic disk, a DVD, or a
magnetic tape, the operating system needs to provide several capabilities to use
removable media for data storage. These capabilities are discussed in Section
12.9.2.

12.9.2 Operat ing-System Support

Two major jobs of an operating system are to manage physical devices and
to present a virtual machine abstraction to applications. In this chapter, we
have seen that, for hard disks, the operating system provides two abstractions.
One is the raw device, which is just an array of data blocks. The other is a file
system. For a file system on a magnetic disk, the operating system queues and
schedules the interleaved requests from several applications. Now, we shall see
how the operating system does its job when the storage media are removable.

12.9.2.1 Application Interface

Most operating systems can handle removable disks almost exactly as they do
fixed disks. When a blank cartridge is inserted into the drive (or mounted), the
cartridge must be formatted, and then an empty file system is generated on the
disk. This file system is used just like a file system on a hard disk.

Tapes are often handled differently. The operating system usually presents
a tape as a raw storage medium. An application does not open a file on the
tape; it opens the whole tape drive as a raw device. Usually, the tape drive
then is reserved for the exclusive use of that application until the application
exits or closes the tape device. This exclusivity makes sense, because random
access on a tape can take tens of seconds, or even a few minutes, so interleaving
random accesses to tapes from more than one application would be likely to
cause thrashing.

When the tape drive is presented as a raw device, the operating system
does not provide file-system services. The application must decide how to use
the array of blocks. For instance, a program, that backs up a hard, disk to tape
might store a list of file names and sizes at the beginning of the tape and then
copy the data of the files to the tape in that order.

It is easy to see the problems that can arise from this wray of using tape.
Since every application makes up its own. rules for how to organize a tape, a
tape full of data can generally be used by only the program that created it. For
instance, even if we know that a backup tape contains a list of file names and
file sizes followed by the file data in that order, we still would find it difficult to
use the tape. How exactly are the file names stored? Are the file sizes in binary
or in ASCII? Are the files written one per block, or are they all concatenated
together in one tremendously long string of bytes? We do not even knowr the
block size on the tape, because this variable is generally one that can be chosen
separately for each block written.

For a disk drive, the basic operations are readO, wr i teO, and seek().
Tape drives have a different set of basic operations. Instead of seekQ, a tape
drive uses the locate () operation. The tape locate 0 operation is more
precise than the disk seek() operation, because it positions the tape to a
specific logical block, rather than an entire track. Locating to block 0 is the
same as rewinding the tape.

https://hemanthrajhemu.github.io

482 Chapter 12 Mass-Storage Structure

For most kinds of tape drives, it is possible to locate to any block that has
been written on a tape. In a partly filled tape, however, it is not possible to
locate into the empty space beyond the written area, because most tape drives
do not manage their physical space in the same way disk drives do. For a disk
drive, the sectors have a fixed size, and the formatting process must be used to
place empty sectors in their final positions before any data can be written. Most
tape drives have a variable block size, and the size of each block is determined
on the fly when that block is written. If an area of defective tape is encountered
during writing, the bad area is skipped and the block is written again. This
operation explains why it is not possible to locate into the empty space beyond
the written area—the positions and numbers of the logical blocks have not yet
been determined.

Most tape drives have a read_posit ion() operation that returns the
logical block number where the tape head is. Many tape drives also support a
space () operation for relative motion. So, for example, the operation space (-
2) would locate backward over two logical blocks.

For most kinds of tape drives, writing a block has the side effect of logically
erasing everything beyond the position of the write. In practice, this side effect
means that most tape drives are append-only devices, because updating a
block in the middle of the tape also effectively erases everything beyond that
block. The tape drive implements this appending by placing an end-of-tape
(EOT) mark after a block that is written. The drive refuses to locate past the EOT
mark, but it is possible to locate to the EOT and then start writing. Doing so
overwrites the old EOT mark and places a new one at the end of the new blocks
just written.

In principle, a file system can be implemented on a tape. But many of the
file-system data structures and algorithms would be different from those used
for disks, because of the append-only property of tape.

12.9.2.2 File Naming

Another question that the operating system needs to handle is how to name
files on removable media. For a fixed disk, naming is not difficult. On a PC, the
file name consists of a drive letter followed by a path name. In UNIX, the file
name does not contain a drive letter, but the mount table enables the operating
system to discover on what drive the file is located. If the disk is removable,
however, knowing what drive contained, the cartridge at some time in the past
does not mean knowing how to find the file. If every removable cartridge in
the world had a different serial number, the name of a file on a removable
device could be prefixed with the serial number, but to ensure that no two
serial numbers are the same would require each one to be about 12 digits in
length. Who could remember the names of her files if she had to memorize a
12-digit serial number for each one?

The problem becomes even more difficult when we want to write data
on a removable cartridge on one computer and then use the cartridge in
another computer. If both machines are of the same type and have the same
kind of removable drive, the only difficulty is knowing the contents and data
layout on the cartridge. But if the machines or drives are different, many
additional problems can arise. Even if the drives are compatible, different

https://hemanthrajhemu.github.io

12.9 Tertiary-Storage Structure 483

computers may store bytes in different orders and may use different encodings
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC
on mainframes).

Today's operating systems generally leave the name-space problem
unsolved for removable media and depend on applications and users to figure
out how to access and interpret the data. Fortunately, a few kinds of removable
.media are so well standardized that all computers use them the same way. One
example is the CD. Music CDs use a universal format that is understood by any
CD drive. Data CDs are available in only a few different formats, so it is usual
for a CD drive and the operating-system device driver to be programmed to
handle all the common formats. DVD formats are also well standardized.

12.9.2.3 Hierarchical Storage Management

A robotic jukebox enables the computer to change the removable cartridge in a
tape or disk drive without human assistance. Two major uses of this technology
are for backups and hierarchical storage systems. The use of a jukebox for
backups is simple: When one cartridge becomes full, the computer instructs
the jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives
and thousands of cartridges, with robotic arms managing the movement of
tapes to the drives.

A hierarchical storage system extends the storage hierarchy beyond
primary memory and secondary storage (that is, magnetic disk) to incorporate
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes
or removable disks. This level of the storage hierarchy is larger, cheaper, and
slower.

Although the virtual memory system can be extended in a straightforward
manner to tertiary storage, this extension is rarely carried out in practice. The
reason is that a retrieval from a jukebox can take tens of seconds or even
minutes, and such a long delay is intolerable for demand paging and for other
forms of virtual memory use.

The usual way to incorporate tertiary storage is to extend the file system.
Small and frequently used files remain on magnetic disk, while large and old
files that are not actively used are archived to the jukebox. In some file-archiving
systems, the directory entry for the file continues to exist, but the contents of
the file no longer occupy space in secondary storage. If an application tries to
open the file, the openC) system call is suspended until the file contents can
be staged in from tertiary storage. When the contents are again available from
magnetic disk, the open() operation returns control to the application, which
proceeds to use the disk-resident copy of the data.

Today, hierarchical storage management (HSM) is usually found in instal-
lations that have large volumes of data that are used seldom, sporadically,
or periodically. Current work in HSM includes extending it to provide full
information life-cycle management (ILM). Here, data move from disk to tape
and back to disk, as needed, but are deleted on a schedule or according to
policy. For example, some sites save e-mail for seven years but want to be sure
that at the end oi seven years it is destroyed. At that point, the data could be
on disk, HSM tape, and backup tape. ILM centralizes knowledge of where the
data are so that policies can be applied across all these locations.

https://hemanthrajhemu.github.io

484 Chapter 12 Mass-Storage Structure

12.9.3 Performance Issues

As with any component of the operating system, the three most important
aspects of tertiary-storage performance are speed, reliability, and cost.

12.9.3.1 Speed

The speed of tertiary storage has two aspects: bandwidth and latency. We
measure the bandwidth in bytes per second. The sustained bandwidth is the
average data rate during a large transfer—that is, the number of bytes divided
by the transfer time. The effective bandwidth calculates the average over the
entire I/O time, including the time for seekQ or locate 0 and any cartridge-
switching time in a jukebox. In essence, the sustained bandwidth is the data
rate when the data stream, is actually flowing, and the effective bandwidth is
the overall data rate provided by the drive. The bandwidth of a drive is generally
understood to mean the sustained bandwidth.

For removable disks, the bandwidth ranges from a few megabytes per
second for the slowest to over 40 MB per second for the fastest. Tapes have a
similar range of bandwidths, from a few megabytes per second to over 30 MB
per second.

The second aspect of speed is the access latency. By this performance
measure, disks are much faster than tapes: Disk storage is essentially two-
dimensional—all the bits are out in the open. A disk access simply moves the
arm to the selected cylinder and waits for the rotational latency, which may
take less than 5 milliseconds. By contrast, tape storage is three-dimensional.
At any time, a small portion of the tape is accessible to the head, whereas most
of the bits are buried below hundreds or thousands of layers of tape wound
on the reel. A random access on tape requires winding the tape reels until
the selected block reaches the tape head, which can take tens or hundreds of
seconds. So we can generally say that random access within a tape cartridge is
more than a thousand times slower than random access on disk.

If a jukebox is involved, the access latency can be significantly higher. For
a removable disk to be changed, the drive must stop spinning, then the robotic
arm must switch the disk cartridges, and then the drive must spin up the new
cartridge. This operation takes several seconds—about a hundred times longer
than the random-access time within one disk. So switching disks in a jukebox
incurs a relatively high performance penalty.

For tapes, the robotic-arm time is about the same as for disk. But for tapes
to be switched, the old tape generally must rewind before it can be ejected, and
that operation can take as long as 4 minutes. And, after a new tape is loaded
into the drive, many seconds can be required for the drive to calibrate itself
to the tape and to prepare for I/O. Although a slow tape jukebox can have a
tape-switch time of 1 or 2 minutes, this time is not enormously greater than the
random-access time within one tape.

So, to generalize, we say that random access in a disk jukebox has a latency
of tens of seconds, whereas random access in a tape jukebox has a latency of
hundreds of seconds; switching tapes is expensive, but switching disks is not.
Be careful not to overgeneralize, though: Some expensive tape jukeboxes can
rewind, eject, load a new tape, and fast-forward to a random item of data all
in less than 30 seconds.

https://hemanthrajhemu.github.io

12.9 Tertiary-Storage Structure 485

If we pay attention to only the performance of the drives in a jukebox,
the bandwidth and latency seem reasonable. But if we focus our attention
on the cartridges instead, we find a terrible bottleneck. Consider first the
bandwidth. The bandwidth-to-storage-capacity ratio of a robotic library is
much less favorable than that of a fixed disk. To read all the data stored on
a large hard disk could take about an hour. To read all the data stored in a
large tape library could take years. The situation with respect to access latency
is nearly as bad. To illustrate this, if 100 requests are queued for a disk drive,
the average waiting time will be about a second. If 100 requests are queued
for a tape library, the average waiting time could be over an hour. The low-
cost of tertiary storage results from having many cheap cartridges share a few
expensive drives. But a removable library is best devoted to the storage of
infrequently used data, because the library can satisfy only a relatively small
number of I/O requests per hour.

12.9.3.2 Reliability

Although we often think good performance means high speed, another important
aspect of performance is reliability. If we try to read some data and are unable
to do so because of a drive or media failure, for all practical purposes the access
time is infinitely long and the bandwidth is infinitely small. So it is important
to understand the reliability of removable media.

Removable magnetic disks are somewhat less reliable than are fixed
hard disks because the cartridge is more likely to be exposed to harmful
environmental conditions such as dust, large changes in temperature and
humidity, and mechanical forces such as shock and bending. Optical disks
are considered very reliable, because the layer that stores the bits is protected
by a transparent plastic or glass layer. The reliability of magnetic tape varies
widely, depending on the kind of drive. Some inexpensive drives wear out
tapes after a few dozen uses; other kinds are gentle enough to allow millions of
reuses. By comparison with a magnetic-disk head, the head in a magnetic-tape
drive is a weak spot. A disk head flies above the media, but a tape head is in
close contact with the tape. The scrubbing action of the tape can wear out the
head after a few thousands or tens of thousands of hours.

In summary, we say that a fixed disk drive is likely to be more reliable than
a removable disk or tape drive, and an optical disk is likely to be more reliable
than a magnetic disk or tape. But a fixed magnetic disk has one weakness. A
head crash in a hard disk generally destroys the data, whereas the failure of a
tape drive or optical disk drive often leaves the data cartridge unharmed.

12.9.3.3 Cost

Storage cost is another important factor. Here is a concrete example of how
removable media may lower the overall storage cost. Suppose that a hard disk
that holds X GB has a price of $200; of this amount, $190 is for the housing,
motor, and controller, and $10 is for the magnetic platters. The storage cost
for this disk is $200/ X per gigabyte. Now, suppose that we can manufacture
the platters in a removable cartridge. For one drive and 10 cartridges, the total
price is $190 + $100, and the capacity is 10X GB, so the storage cost is $29/ X per
gigabyte. Even if it is a little more expensive to make a removable cartridge,

https://hemanthrajhemu.github.io

486 Chapter 12 Mass-Storage Structure

512 MB

1982 1984 1986 19S8 1990 1992 1994 199S 1998 2000 2002 2004
Year

Figure 12.13 Price per megabyte of DRAM, from 1981 to 2004.

the cost per gigabyte of removable storage may well be lower than the cost per
gigabyte of a hard disk, because the expense of one drive is averaged with the
low price of many removable cartridges.

Figures 12.13,12.14, and 12.15 show the cost trends per megabyte for DRAM
memory, magnetic hard disks, and tape drives. The prices in the graphs are
the lowest prices found in advertisements in various computer magazines and
on the World Wide Web at the end of each year. These prices reflect the small-
computer marketplace of the readership of these magazines, where prices are
low by comparison with the mainframe and minicomputer markets. In the
case of tape, the price is for a drive with one tape. The overall cost of tape
storage becomes much lower as more tapes are purchased for use with the
drive, because the price of a tape is a small fraction of the price of the drive.
However, in a huge tape library containing thousands of cartridges, the storage

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Year

Figure 12.14 Price per megabyte of magnetic hard disk, from 1981 to 2004.

https://hemanthrajhemu.github.io

12.9 Tertiary-Storage Structure 487

20-<

0.025

1984 1985 1

320 GB
1

1990 1992 1994 ^996 1998 2000 2002 2004

Year

Figure 12.15 Price per megabyte of a tape drive, from 1984 to 2004.

cost is dominated by the cost of the tape cartridges. As of this writing in 2004,
the cost per GB of tape cartridges can be approximated as somewhat less than
$2.

The cost of DRAM fluctuates widely. In the period from 1981 to 2004, we
can see three price crashes (around 1981, 1989, and 1996) as excess production
caused a glut in the marketplace. We can also see two periods (around 1987 and
1993) where shortages in the marketplace caused significant price increases. In
the case of hard disks, the price decline has been much steadier, although it
appears to have accelerated since 1992. Tape-drive prices also fell steadily up to
1997. Since 1997, the price per gigabyte of inexpensive tape drives has ceased
its dramatic fall, although the price of mid-range tape technology (such as
DAT/DDS) has continued to fall and is now approaching that of the inexpensive
drives. Tape-drive prices are not shown prior to 1984, because, as mentioned,
the magazines used in tracking prices are targeted to the small-computer
marketplace, and tape drives were not widely used with small computers
prior to 1984.

We can see from these graphs that the cost of storage has fallen dramatically
over the past twenty years or so. By comparing the graphs, we can also see
that the price of disk storage has plummeted relative to the price of DRAM and
tape.

The price per megabyte of magnetic disk has improved by more than four
orders of magnitude during the past two decades, whereas the corresponding
improvement for main memory has been only three orders of magnitude. Main
memory today is more expensive than disk storage by a factor of 100.

The price per megabyte has dropped much more rapidly for disk drives
than for tape drives as well. In fact, the price per megabyte of a magnetic
disk drive is approaching that of a tape cartridge without the tape drive.
Consequently, small- and medium-sized tape libraries have a higher storage
cost than disk systems with equivalent capacity.

The dramatic fall in disk prices has largely rendered tertiary storage
obsolete: We no longer have any tertiary storage technology that is orders
of magnitude less expensive than magnetic disk. It appears that the revival

https://hemanthrajhemu.github.io

488 Chapter 12 Mass-Storage Structure

of tertiary storage must await a revolutionary technology breakthrough.
Meanwhile, tape storage will find its use mostly limited to purposes such
as backups of disk drives and archival storage in enormous tape libraries that
greatly exceed the practical storage capacity of large disk farms.

12.10 Summary

Disk drives are the major secondary-storage I/O devices on most computers.
Most secondary storage devices are either magnetic disks or magnetic tapes.
Modern disk drives are structured as a large one-dimensional array of logical
disk blocks which is usually 512 bytes.

Disks may be attached to a computer system in one of two ways: (1) using
the local I/O ports on the host computer or (2) using a network connection such
as storage area networks.

Requests for disk I/O are generated by the file system and by the virtual
memory system. Each request specifies the address on the disk to be referenced,
in the form of a logical block number. Disk-scheduling algorithms can improve
the effective bandwidth, the average response time, and the variance in
response time. Algorithms such as SSTF, SCAN, C-SCAN, LOOK, and C-LOOK
are designed to make such improvements through strategies for disk-queue
ordering.

Performance can be harmed by external fragmentation. Some systems
have utilities that scan the file system to identify fragmented files; they then
move blocks around to decrease the fragmentation. Defragmenting a badly
fragmented file system can significantly improve performance, but the system
may have reduced performance while the defragmentation is in progress.
Sophisticated file systems, such as the UNIX Fast File System, incorporate
many strategies to control fragmentation during space allocation so that disk
reorganization is not needed.

The operating system manages the disk blocks. First, a disk must be low-
level-formatted to create the sectors on the raw hardware—new disks usually
come preformatted. Then, the disk is partitioned, file systems are created, and
boot blocks are allocated to store the system's bootstrap program. Finally, when
a block is corrupted, the system must have a way to lock out that block or to
replace it logically with a spare.

Because an efficient swap space is a key to good performance, systems
usually bypass the file system and use raw disk access for paging I/O. Some
systems dedicate a raw disk partition to swap space, and others use a file
within the file system instead. Still other systems allow the user or system
administrator to make the decision by providing both options.

Because of the amount of storage required on large systems, disks are
frequently made redundant via RAID algorithms. These algorithms allow more
than one disk to be used for a given operation and allow continued operation
and even automatic recovery in the face of a disk failure. RAID algorithms
are organized into different levels; each level provides some combination of
reliability and high transfer rates.

The write-ahead log scheme requires the availability of stable storage.
To implement such storage, we need to replicate the needed information on
multiple nonvolatile storage devices (usually disks) with independent failure

https://hemanthrajhemu.github.io

Exercises 489

modes. We also need to update the information in a controlled manner to
ensure that we can recover the stable data after any failure during data transfer
or recovery.

Tertiary storage is built from disk and tape drives that use removable
media. Many different technologies are available, including magnetic tape,
removable magnetic and magneto-optic disks, and optical disks.

For removable disks, the operating system generally provides the full
services of a file-system interface, including space management and request-
queue scheduling. For many operating systems, the name of a file on a
removable cartridge is a combination of a drive name and a file name within
that drive. This convention is simpler but potentially more confusing than is
using a name that identifies a specific cartridge.

For tapes, the operating system generally just provides a raw interface.
Many operating systems have no built-in support for jukeboxes. Jukebox
support can be provided by a device driver or by a privileged application
designed for backups or for HSM.

Three important aspects of performance are bandwidth, latency, and
reliability. Many bandwidths are available for both disks and tapes, but the
random-access latency for a tape is generally much greater than that for a disk.
Switching cartridges in a jukebox is also relatively slow. Because a jukebox
has a low ratio of drives to cartridges, reading a large fraction of the data in a
jukebox can take a long time. Optical media, which protect the sensitive layer
with a transparent coating, are generally more robust than magnetic media,
which are more likely to expose the magnetic material to physical damage.

:xercises

12.1 None of the disk-scheduling disciplines, except FCFS, is truly fair
(starvation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure
fairness.

c. Explain why fairness is an important goal in a time-sharing
system.

d. Give three or more examples of circumstances in which it is
important that the operating system be unfair in serving I/O
requests.

12.2 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The
drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, in FIFO
order, is:

86,1470, 913, 1774, 948, 1509, 1022,1750,130

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms?

https://hemanthrajhemu.github.io

490 Chapter 12 Mass-Storage Structure

a. FCFS ,

b. SSTF

c. SCAN

d. LOOK

e. C-SCAN

f. C-LOOK

12.3 Elementary physics states that when an object is subjected to a constant
acceleration a, the relationship between distance d and time f is given
by d — \at2. Suppose that, during a seek, the disk in Exercise 12.2
accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 millisecond and a full-stroke seek over all 5,000 cylinders in 18
milliseconds.

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form t = x + yv'L,
where t is the time in milliseconds and L is the seek distance in
cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
12.2. Determine which schedule is the fastest (has the smallest
total seek time).

d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

12.4 Suppose that the disk in Exercise 12.3 rotates at 7,200 RPVI.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found
for part a?

12.5 Write a Java program for disk scheduling using the SCAN and C-SCAN
disk-scheduling algorithms.

12.6 Compare the performance of C-SCAN and SCAN scheduling, assuming
a uniform distribution of requests. Consider the average response time
(the time between the arrival of a request and the completion of that
request's service), the variation in response time, and the effective
bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

12.7 Requests are not usually uniformly distributed. For example, we can
expect a cylinder containing the file-system FAT or modes to be accessed

https://hemanthrajhemu.github.io

Exercises 491

more frequently than a cylinder containing only files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better
performance by taking advantage of this "hot spot'" on the disk.

c. File systems typically find data blocks via an indirection table,
such as a FAT in DOS or inodes in UNIX. Describe one or more
ways to take advantage of this indirection to improve disk
performance.

12.8 Could a RAID Level 1 organization achieve better performance for read
requests than a RAID Level 0 organization (with nonredundant striping
of data)? If so, how?

12.9 Consider a RAID Level 5 organization comprising five disks, with the
parity for sets of four blocks on four disks stored on the fifth disk. How
many blocks are accessed in order to perform the following?

a. A write of one block of data

b. A write of seven continuous blocks of data

12.10 Compare the throughput achieved by a RAID Level 5 organization with
that achieved by a RAID Level 1 organization for the following:

a. Read operations on single blocks

b. Read operations on multiple contiguous blocks

12.11 Compare the performance of write operations achieved by a RAID Level
5 organization with that achieved by a RAID Level 1 organization.

12.12 Assume that you have a mixed configuration comprising disks orga-
nized as RAID Level 1 and as RAID Level 5 disks. Assume that the system
has flexibility in deciding which disk organization to use for storing a
particular file. Which files should be stored in the RAID Level 1 disks
and which in the RAID Level 5 disks in order to optimize performance?

12.13 Is there any way to implement truly stable storage? Explain your
answer.

» 12.14 The reliability of a hard-disk drive is typically described in terms of a
\ quantity called mean time betiveen failures (MTBF). Although this quantity
s is called a "time/7 the MTBF actually is measured in drive-hours per
? failure.
•i

j a. If a system, contains 1,000 disk drives, each of which has a
5 750,000-hour MTBF, which of the following best describes how
d often a drive failure will occur in that disk farm: once per
j- thousand years, once per century, once per decade, once per
i year, once per month, once per week, once per day, once per
= hour, once per minute, or once per second?

https://hemanthrajhemu.github.io

492 Chapter 12 Mass-Storage Structure

b. Mortality statistics indicate that, on the average, a U.S. resident
has about 1 in 1,000 chance of dying between ages 20 and 21
years. Deduce the MTBF hours for 20-year-olds. Convert this
figure from hours to years. What does this MTBF tell you about
the expected lifetime of a 20-year-old?

c. The manufacturer guarantees a 1-million-hour MTBF for a certain
model of disk drive. What can you conclude about the number
of years for which one of these drives is under warranty?

12.15 Discuss the relative advantages and disadvantages of sector sparing
and sector slipping.

12.16 Discuss the reasons why the operating system might require accurate
information on how blocks are stored on a disk. How could the oper-
ating system improve file system performance with this knowledge?

12.17 The operating system generally treats removable disks as shared file
systems but assigns a tape drive to only one application at a time. Give
three reasons that could explain this difference in treatment of disks and
tapes. Describe the additional features that an operating system would
need to support shared file-system access to a tape jukebox. Would the
applications sharing the tape jukebox need any special properties, or
could they use the files as though the files were disk-resident? Explain
your answer.

12.18 What would be the effects on cost and performance if tape storage had
the same areal density as disk storage? (Areal density is the number of
gigabits per square inch.)

12.19 You can use simple estimates to compare the cost and performance
of a terabyte storage system made entirely from disks with one that
incorporates tertiary storage. Suppose that magnetic disks each hold
10 GB, cost $1,000, transfer 5 MB per second, and have an average access
latency of 15 milliseconds. Suppose that a tape library costs $10 per
gigabyte, transfers 10 MB per second, and has an average access latency
of 20 seconds. Compute the total cost, the maximum total data rate,
and the average waiting time for a pure disk system. If you make
any assumptions about the workload, describe and justify them. Now,
suppose that 5 percent of the data are frequently used, so they must
reside on disk, but the other 95 percent are archived in the tape library.
Further suppose that the disk system handles 95 percent of the requests
and the library handles the other 5 percent. What are the total cost,
the maximum total data rate, and the average waiting time for this
hierarchical storage system?

12.20 Imagine that a holographic storage drive has been invented. Suppose
that the holographic drive costs $10,000 and has an average access time
of 40 milliseconds. Suppose that it uses a $100 cartridge the size of
a CD. This cartridge holds 40,000 images, and each image is a square
black-and-white picture with a resolution of 6, 000 x 6. 000 pixels (each
pixel stores 1 bit). Suppose that the drive can read or write one picture
in 1 millisecond. Answer the following questions.

https://hemanthrajhemu.github.io

Bibliographical Notes 493

a. What would be some good uses for this device? *

b. How would this device affect the I/O performance of a comput-
ing system?

c. Which other kinds of storage devices, if any, would become
obsolete as a result of the invention of this device?

12.21 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal
density of 1 gigabit per square inch. Suppose that a magnetic tape has
an areal density of 20 megabits per square inch and is 1/2 inch wide and
1,800 feet long. Calculate an estimate of the storage capacities of these
two kinds of storage cartridges. Suppose that an optical tape exists that
has the same physical size as the tape but the same storage density
as the optical disk. What volume of data could the optical tape hold?
What would be a marketable price for the optical tape if the magnetic
tape cost $25?

12.22 Discuss how an operating system could maintain a free-space list
for a tape-resident file system. Assume that the tape technology is
append-only and that it uses EOT marks and locate , space, and read
pos i t ion commands as described in Section 12.9.2.1.

Bibliographical Notes

Discussions of redundant arrays of independent disks (RAID) are presented
by Patterson et al. [1988] and in the detailed survey of Chen et al. [1994],
Disk-system architectures for high-performance computing are discussed by
Katz et al. [1989]. Enhancements to the RAID systems are discussed in Wilkes
et al. [1996] and Yu et al. [2000], Teorey and Pinkerton [1972] present an early
comparative analysis of disk-scheduling algorithms. They use simulations that
model a disk for which seek time is linear in the number of cylinders crossed.
For this disk, LOOK is a good choice for queue lengths below 140, and C-LOOK
is good for queue lengths above 100. King [1990] describes ways to improve the
seek time by moving the disk arm when the disk is otherwise idle. Seltzer et al.
[1990] and Jacobson and Wilkes [1991] describe disk-scheduling algorithms that
consider rotational latency in addition to seek time. Scheduling optimizations
that exploit disk idle times are discussed in Lumb et al. [2000]. Worthington
et al. [1994] discuss disk performance and show the negligible performance
impact of defect management. The placement of hot data to improve seek
times has been considered by Ruemmler and Wilkes [1991] and Akyurek and
Salem [1993]. Ruemmler and Wilkes [1994] describe an accurate performance
model for a modern disk drive. Worthington et al. [1995] tell how to determine
low-level disk properties such, as the zone structure, and this work is further
advanced by Schindler and Gregory [1999]. Disk power management issues
are discussed in Douglis et al. [1994], Douglis et al. [1995], Greenawalt [1994],
and Golding et al. [1995].

The I/O size and randomness of the workload has a considerable influence
on disk performance. Ousterhout et al. [1985] and Ruemmler and Wilkes
[1993] report numerous interesting workload characteristics, including that
most files are small, most newlv created files are deleted soon thereafter, most

https://hemanthrajhemu.github.io

494 Chapter 12 Mass-Storage Structure

files that are opened for reading are read sequentially in their entirety, and most
seeks are short. McKusick et al. [1984] describe the Berkeley Fast File System
(FF5), which uses many sophisticated techniques to obtain good performance
for a wide variety of workloads. McVoy and Kleiman [1991] discuss further
improvements to the basic FFS. Quinlan [1991) describes how to implement
a file system on WORM storage with a magnetic disk cache; Richards [1990]
discusses a file-system approach to tertiary storage. Maher et al. [1994] give an
overview of the integration of distributed file systems and tertiary storage.

The concept of a storage hierarchy has been studied for more than
thirty years. For instance, a 1970 paper by Mattson et al. [1970] describes a
mathematical approach to predicting the performance of a storage hierarchy.
Alt [1993] describes the accommodation of removable storage in a commercial
operating system, and Miller and Katz [1993] describe the characteristics of
tertiary-storage access in a supercomputing environment. Benjamin [1990J
gives an overview of the massive storage requirements for the EOSDI5 project
at NASA. Management and use of network-attached disks and programmable
disks are discussed in Gibson et al. [1997b], Gibson et al. [1997a], Riedel et al.
[1998], and Lee and Thekkath [1996].

Holographic storage technology is the subject of an article by Psaltis and
Mok [1995]; a collection of papers on this topic dating from 1963 has been
assembled by Sincerbox [1994]. Asthana and Finkelstein [1995] describe several
emerging storage technologies, including holographic storage, optical tape,
and electron trapping. Tbigo [2000] gives an in-depth description of modern
disk technology and several potential future storage technologies.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

The processes in an operating system must be protected from one another's
activities. To provide such protection, we can use various mechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, and other resources
of a system.

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specifying the controls to be imposed,
together with a means of enforcement. We distinguish between protection and
security, which is a measure of confidence that the integrity of a system and
its data will be preserved. Security assurance is a much broader topic than is
protection, and we address it in Chapter 15.

CHAPTER OBJECTIVES

• Discuss the goals and principles of protection in a modern computer
system.

• Explain how protection domains combined with an access matrix are used
to specify the resources a process may access.

• Examine capability- and language-based protection systems.

14,1 Goals of Protection

As computer systems have become more sophisticated and pervasive in their
applications, the need to protect their integrity has also grown. Protection was
originally conceived as an adjunct to multiprogramming operating systems,,
so that untrustworthy users might safely share a common logical name space,
such as a directory of files, or share a common physical name space, such as
memory. Modern protection concepts have evolved to increase the reliability
of any complex system that makes use of shared resources.

We need to provide protection for several reasons. The most obvious is
the need to prevent mischievous, intentional violation of an access restriction

531

https://hemanthrajhemu.github.io

532 Chapter 14 Protection

by a user. Of more general importance, however, is the need to ensure that
each program component active in a system uses system resources only in
ways consistent with stated policies. This requirement is an absolute one for a
reliable system.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by a malfunctioning subsystem.
An unprotected resource cannot defend against use (or misuse) by an unau-
thorized or incompetent user. A protection-oriented system provicies means to
distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism for
the enforcement of the policies governing resource use. These policies can be
established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by the individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of policies.

Policies for resource use may vary by application, and they may change
over time. For these reasons, protection is no longer the concern solely of the
designer of an operating system. The application programmer needs to use
protection mechanisms as well, to guard resources created and supported
by an application subsystem against misuse. In this chapter, we describe
the protection m.echanisms the operating system should provide, so that
application designers can use them in designing their own protection software.

Note that mechanisms are distinct horn policies. Mechanisms determine how
something will be done; policies decide what will be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from place to place or time to time. In the worst case, every change
in policy would require a change in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

14,2 Principles of Protection

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Following this principle simplifies design
decisions and keeps the system consistent and easy to understand. A key,
time-tested guiding principle for protection is the principle of least privilege. It
dictates that programs, users, and even systems be given just enough privileges
to perform their tasks.

Consider the analogy of a security guard with a passkey. If this key allows
the guard into just the public areas that she guards, then misuse of the key
will result in minimal damage. If, however, the passkey allows access to all
areas, then damage from its being lost, stolen, misused, copied, or otherwise
compromised will be much greater.

An operating system following the principle of least privilege implements
its features, programs, system calls, and data structures so that failure or
compromise of a component does the minimum damage and allows the
minimum damage to be done. The overflow of a buffer in a system daemon
might cause the daemon to fail, for example, but should not allow the execution
of code from the process's stack that would enable a remote user to gain

https://hemanthrajhemu.github.io

14.3 Domain of Protection 533

maximum privileges and access to the entire system (as happens too, often
today).

Such an operating system also provides system calls and services that
allow applications to be written with fine-grained access controls. It provides
mechanisms to enable privileges when they are needed and to disable them
when they are not needed. Also beneficial is the creation of audit trails for
all privileged function access. The audit trail allows the programmer, systems
administrator, or law-enforcement officer to trace all protection and security
activities on the system.

Managing users with the principle of least privilege entails creating a
separate account for each user, with just the privileges that the user needs. An
operator who needs to mount tapes and backup files on the system has access
to just those commands and files needed to accomplish the job. Some systems
implement role-based access control (RBAC) to provide this functionality.

Computers implemented in a computing facility under the principle of least
privilege can be limited to running specific services, accessing specific remote
hosts via specific services, and doing so during specific times. Typically, these
restrictions are implemented through enabling or disabling each service and
through access control lists, as described in Section 10.6.2 and 14.6.

The principle of least privilege can help produce a more secure computing
environment. Unfortunately, it frequently does not. For example, Windows
2000 has a complex protection scheme at its core and yet has many security
holes. By comparison, Solaris is considered relatively secure, even though it
is a variant of UNIX, which historically was designed with little protection
in mind. One reason for the difference may be that Windows 2000 has more
lines of code and more services than Solaris and thus has more to secure and
protect. Another reason could be that the protection scheme in Windows 2000
is incomplete or protects the wrong aspects of the operating system, leaving
other areas vulnerable.

14.3 Domain of Protection

A computer system is a collection of processes and objects. By objects, we mean
both hardware objects (such as the CPU, memory segments, printers, disks, and
tape drives) and software objects (such as files, programs, and semaphores).
Each object has a unique name that differentiates it from all other objects in the
system, and each can be accessed only through well-defined and meaningful
operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,
a CPU can only be executed on. Memory segments can be read and written,
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read,
written, and rewound. Data files can be created, opened, read, written, closed,
and deleted; program files can be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it
has authorization. Furthermore, at any time, a process should be able to access
only those resources that it currently requires to complete its task. This second
requirement, commonly referred to as the need-to-knozv principle, is useful in
limiting the amount of damage a faulty process can cause in the system. For
example, when process p invokes procedure A{), the procedure should be

https://hemanthrajhemu.github.io

534 Chapter 14 Protection

allowed to access only its own variables and the formal parameters passed
to it; it should not be able to access all the variables of process p. Similarly,
consider the case where process p invokes a compiler to compile a particular
file. The compiler should not be able to access files arbitrarily but should have
access only to a well-defined subset of files (such as the source file, listing file,
and so on) related to the file to be compiled. Conversely, the compiler may have
private files used for accounting or optimization purposes that process p should
not be able to access. The need-to-know principle is similar to the principle of
least privilege discussed in Section 14.2 in that the goals of protection are to
minimize the risks of possible security violations.

14.3.1 Domain Structure

To facilitate this scheme, a process operates within a protection domain, which
specifies the resources that the process may access. Each domain defines a set
of objects and the types of operations that may be invoked on each object.
The ability to execute an operation on an object is an access right. A domain
is a collection of access rights, each of which is an ordered pair <object-iiame,
rights-set>. For example, if domain D has the access right <file F, {read,write} >,
then a process executing in domain D can both read and write file F; it cannot,
however, perform any other operation on that object.

Domains do not need to be disjoint; they may share access rights. For
example, in Figure 14.1, we have three domains: Dir D2, and D3. The access
right < Oi, (print}> is shared by D? and D3, implying that a process executing
in either of these two domains can print object O4. Note that a process must be
executing in domain D\ to read and write object O\, while only processes in
domain D3 may execute object O\.

The association between a process and a domain may be either static, if
the set of resources available to the process is fixed throughout the process's
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static., we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa. Thus,

D,

Figure 14.1 System with three protection domains.

https://hemanthrajhemu.github.io

14.3 Domain of Protection 535

the need-to-know principle is violated. We must allow the contents of a domain
to be modified so that it always reflects the minimum necessary access rights.

If the association is dynamic, a mechanism is available to allow domain
switching, enabling the process to switch from one domain to another. We may
also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new
domain with the changed content and switching to that new domain when we
want to change the domain content.

A domain can be realized in a variety of ways:

» Each user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed—generally when one user logs out and another
user logs in.

• Each process may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the process. Domain switching occurs
when one process sends a message to another process and then waits for
a response.

• Each procedure may be a domain. In this case, the set of objects that can be
accessed corresponds to the local variables defined within the procedure.
Domain switching occurs when a procedure call is made.

We discuss domain switching in greater detail in Section 14.4.
Consider the standard dual-mode (monitor-user mode) model of

operating-system execution. When a process executes in monitor mode, it
can execute privileged instructions and thus gain complete control, of the
computer system. In contrast, when a process executes in user mode, it can
invoke only nonprivileged instructions. Consequently, it can execute only
within its predefined memory space. These two modes protect the operating
system (executing in monitor domain) from the user processes (executing
in user domain). In a multiprogrammed operating system, two protection
domains are insufficient, since users also want to be protected from one
another. Therefore, a more elaborate scheme is needed. We illustrate such a
scheme by examining two influential operating systems—UNIX and MULT1CS
—to see how these concepts have been implemented there.

14.3.2 An Example: UNIX

In the UNIX operating system, a domain is associated with the user. Switching
the domain corresponds to changing the user identification temporarily.
This change is accomplished through the file system as follows. An owner
identification and a domain bit (known as the setuid bit) are associated with
each file. When the setuid bit is on, and a user executes that file, the user ID is
set to that of the owner of the file; when the bit is off however, the user ID does
not change. For example, when a user A (that is, a user with userlD = A) starts
executing a file owned by B, whose associated domain bit is off, the uscrlD of
the process is set to A. When the setuid bit is on, the userlD is set to that of
the owner of the file: B. When the process exits, this temporary userlD change
ends.

https://hemanthrajhemu.github.io

536 Chapter 14 Protection

Other methods are used to change domains in operating systems in which
user IDs are used for domain definition, because almost all systems need
to provide such a mechanism. This mechanism is used when an otherwise
privileged facility needs to be made available to the general user population.
For instance, it might be desirable to allow users to access a network without
letting them write their own networking programs. In such a case, on a UNIX
system, the setuid bit on a networking program would be set, causing the user
ID to change when the program was run. The user ID would change to that
of a user with network access privilege (such as root, the most powerful user
ID). One problem with this method is that if a user manages to create a file
with user ID root and with its setuid bit on, that user can become root and do
anything and everything on the system. The setuid mechanism is discussed
further in Appendix A.

An alternative to this method used in other operating systems is to place
privileged programs in a special directory. The operating system would be
designed to change the user ID of any program run from this directory, either
to the equivalent of root or to the user ID of the owner of the directory. This
eliminates one security problem, with setuid programs in which crackers create
and hide (using obscure file or directory names) them for later use. This method
is less flexible than that used in UNIX, however.

Even more restrictive, and thus more protective, are systems that simply
do not allow a change of user ID. In these instances, special techniques must
be used to allow users access to privileged facilities. For instance, a daemon
process may be started at boot time and run as a special user ID. Users then
run a separate program, which sends requests to this process whenever they
need to use the facility This method is used by the TOPS-20 operating system.

In any of these systems, great care must be taken in writing privileged
programs. Any oversight can result in a total lack of protection on the system.
Generally, these programs are the first to be attacked by people trying to
break into a system; unfortunately, the attackers are frequently successful.
For example, security has been breached on many UNIX systems because of the
setuid feature. We discuss security in Chapter 15.

14.3.3 An Example: MULTICS

In the MULTICS system, the protection domains are organized hierarchically
into a ring structure. Each ring corresponds to a single domain (Figure 14.2).
The rings are numbered from 0 to 7. Let D, and D- be any two domain rings.
If / < /, then D; is a subset of D ;. That is, a process executing in domain D,
has more privileges than does a process executing in domain D,\ A process
executing in domain Do has the most privileges. If only two rings exist, this
scheme is equivalent to the monitor—user mode of execution, where monitor
mode corresponds to Do and user mode corresponds to D\.

MULTICS has a segmented address space; each segment is a file, and each
segment is associated with one of the rings. A segment description includes an
entry that identifies the ring number. In addition, it includes three access bits
to control reading, writing, and execution. The association between segments
and rings is a policy decision with which we are not concerned here.

A cuirent-ring-mtmber counter is associated with each process, identifying
the ring in which the process is executing currently. When a process is executing

https://hemanthrajhemu.github.io

14.3 Domain of Protection S37

ring 1

ring N- 1

Figure 14.2 MULTICS ring structure.

in ring /', it cannot access a segment associated, with ring/ (/ < i). It can access a
segment associated with ring k (k > /). The type of access, however, is restricted
according to the access bits associated with that segment.

Domain switching in MULTICS occurs when a process crosses from one ring
to another by calling a procedure in a different ring. Obviously, this switch must
be done in a controlled manner; otherwise, a process could start executing in
ring 0, and no protection would be provided. To allow controlled domain
switching, we modify the ring field of the segment descriptor to include the
following:

• Access bracket. A pair of integers, bl and bl, such that bl < bl.

• Limit. An integer b3 such that b3 > bl.

« List of gates. Identifies the entry points (or gates) at which the segments
may be called.

If a process executing in ring /' calls a procedure (or segment) with access bracket
(bl,bl), then the call is allowed if bl s ' < bl, and the current ring number of
the process remains /'. Otherwise, a trap to the operating system occurs, and
the situation is handled as follows:

If / < bl, then the call is allowed to occur, because we have a transfer to a
ring (or domain) with fewer privileges. However, if parameters are passed
that refer to segments in a lower ring (that is, segments not accessible to
the called procedure), then these segments must be copied into an area
that can be accessed by the called procedure.

If / > bl, then the call is allowed to occur only if b3 is greater than or equal
to / and the call has been directed to one of the designated entry points in
the list of gates. This scheme allows processes with limited access rights to
call procedures in lower rings that have more access rights, but only in a
carefully controlled manner.

https://hemanthrajhemu.github.io

538 Chapter 14 Protection

The main disadvantage of the ring (or hierarchical) structure is that it ctoes not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain D, but not accessible in domain Du then we must have
/ < i. But this requirement means that every segment accessible in D, is also
accessible in D-.

The MULT1CS protection system is generally more complex and less efficient
than are those used in current operating systems. If protection interferes with
the ease of use of the system or significantly decreases system performance,
then its use must be weighed carefully against the purpose of the system. For
instance, we would want to have a complex protection system on a computer
used by a university to process students' grades and also used by students for
classwork. A similar protection system would notbe suited to a computer being
used for number crunching, in which performance is of utmost importance. We
would prefer to separate the mechanism from the protection policy, allowing
the same system to have complex or simple protection depending on the needs
of its users. To separate mechanism from policy, we require a more general
model of protection.

14.4 Access Matrix

Our model of protection can be viewed abstractly as a matrix, called an access
matrix. The rows of the access matrix represent domains, and the columns
represent objects. Each entry in the matrix consists of a set of access rights.
Because the column defines objects explicitly, we can omit the object name
from the access right. The entry access(/,/) defines the set of operations that a
process executing in domain Dj can invoke on object Or

To illustrate these concepts, we consider the access matrix shown in Figure
14.3. There are four domains and four objects—three files (F|, F2, F:1) and one
laser printer. A process executing in domain D\ can read files Fj and F3. A
process executing in domain D4 has the same privileges as one executing in
domain D\; but in addition, it can also write onto files F| and F?. Note that the
laser printer can be accessed only by a process executing in domain Do-

Figure 14.3 Access matrix.

https://hemanthrajhemu.github.io

14.4 Access Matrix 539

The access-matrix scheme provides us with the mechanism for specifying
a variety of policies. The mechanism consists of implementing the access
matrix and ensuring that the semantic properties we have outlined indeed,
hold. More specifically, we must ensure that a process executing in domain D,
can access only those objects specified in row \, and then only as allowed by
the access-matrix entries.

The access matrix can implement policy decisions concerning protection.
The policy decisions involve which rights should be included in the (z',;')th
entry. We must also decide the domain in which each process executes. This
last policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries. When
a user creates a new object O-, the column 0/ is added to the access matrix
with the appropriate initialization entries, as dictated by the creator. The user
may decide to enter some rights in some entries in column / and other rights
in other entries, as needed.

The access matrix provides an appropriate mechanism for defining and
implementing strict control for both the static and dynamic association between
processes and domains. WThen we switch a process from one domain to another,
we are executing an operation (switch) on an object (the domain). We can
control domain switching by including domains among the objects of the
access matrix. Similarly, when we change the content of the access matrix,
we are performing an operation on an object: the access matrix. Again, we
can control these changes by including the access matrix itself as an object.
Actually, since each entry in the access matrix may be modified individually,
we must consider each entry in the access matrix as an object to be protected.
Now, we need to consider only the operations possible on these new objects
(domains and the access matrix) and decide how we want processes to be able
to execute these operations.

Processes should be able to switch from one domain to another. Domain
switching from domain D; to domain D\ is allowed if and only if the access
right switch e access(/,;'). Thus, in Figure 14.4, a process executing in domain
D2 can switch to domain D3 or to domain D4. A process in domain D4 can
switch to D], and one in domain D\ can switch to domain D2.

object

domain:

read;

react
vyfilf

F I laser
' 3 printer

rti

:; :| ;pf|n|

yfjte swiiah

swifcfi ;l

!;; | swiich

Figure 14.4 Access matrix of Figure 14.3 with domains as objects.

https://hemanthrajhemu.github.io

540 Chapter 14 Protection

;i object ;|

(a)

N-l_̂ -. - . . -. - - -i - - . . . - - . .

;;K.::: :;c>pjeGt:;! ; :;; ;
;: : ;:

; :
• . - • : - • ^ - x ; : - : : - : • - ; - - : - : | ^ • - : • - - :

Cta fT ia i n; ^ ^ ; i;i \i\ :;: ::: ::: i:i :::

-: -: - : -: "XL** A " : " : " " : " : " : " -

: -' ' : - : " - ' : - -f': Si**,':'-' ":'-': ': -: ' - ' :- ' ' : -

-: -: - : -: \~~J>f*\'' ''' ''' ''' ''

:;:; .JlrBaB*::;:.;::;::

:;:...;:; rSeUil.I.

:: :;: ;:; :;: ;:; :;: ;
ii... ill writes JiLii

(b)

Figure 14.5 Access matrix with copy rights.

Allowing controlled change in the contents of the access-matrix entries
requires three additional operations: copy, owner, and control . We examine
these operations next.

The ability to copy an access right from one domain (or row) of the access
matrix to another is denoted by an asterisk (*) appended to the access right.
The copy right allows the copying of the access right only within the column
(that is, for the object) for which the right is defined. For example, in Figure
14.5(a), a process executing in domain D2 can copy the read operation into any
entry associated with file F2. Hence, the access matrix of Figure 14.5(a) can be
modified to the access matrix shown in Figure 14.5(b).

This scheme has two variants:

1. A right is copied from access(/, /) to access(/c,/); it is then removed from
access(/,/). This action is a transfer of a right, rather than a copy.

2. Propagation of the copy right may be limited. That is, when the right
R* is copied from access(/,y) to access(/t,/), only the right R (not R")
is created. A process executing in domain Dk cannot further copy the
right R.

A system may select only one of these three copy rights, or it may provide all
three by identifying them as separate rights: copy, transfer, and limited copy.

We also need a mechanism to allow addition of new rights and removal of
some rights. The owner right controls these operations. If access(/,/) includes
the oivncr right, then a process executing in domain D, can add and remove
any right in any entry in column /'. For example, in Figure 14.6(a), domain D|
is the owner of F, and thus can add and delete any valid right in column F,.

https://hemanthrajhemu.github.io

14.4 Access Matrix S41

: domain; n ^ ; :

i: !MI1I

——. - - - - - . - . ! - - . - . - . p » _ . : . : . : . : j : . : : . ^ _ ' . : . . : . :

....:: ; .£ , : : . : . i\..M.\z\. :\:...lit?*;::;..:;i..hi:. :•:.. ;;;rs..:;.;.:;....;

: :: :: :; \\ ii: ;i-i -: ;i- •• ; i . -I; ::: 1:!; i;i ;!; i-i : i ; ; i : I
r1^|lfllllij If! fill!':

:,imi

::: ::: tieacl*::::

N ii; write: i;: :

ii. jii wrjte:L;:L:

(b)

Figure 14.6 Access matrix with owner rights.

Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove
any valid right within these two columns. Thus, the access matrix of Figure
14.6(a) can be modified to the access matrix shown in Figure 14.6(b).

The copy and owner rights allow a process to change the entries in a column.
A mechanism is also needed to change the entries in a row. The control right
is applicable only to domain objects. If access(/,/) includes the control right,
then a process executing in domain D. can remove any access right from
row /'. For example, suppose that, in Figure 14.4, we include the control right in
access(D2, D4). Then, a process executing in domain DT could modify domain
D4, as shown in Figure 14.7.

The copy and owner rights provide us with a mechanism to limit the
propagation of access rights. However, they do not give us the appropriate tools
for preventing the propagation (or disclosure) of information. The problem of
guaranteeing that no information initially held in an object can migrate outside
of its execution environment is called the confinement problem. This problem
is in general unsolvable (see Bibliographical Notes for references).

These operations on the domains and the access matrix are not in them-
selves important, but they illustrate the ability of the access-matrix model to
allow the implementation and control of dynamic protection requirements.
New objects and new domains can be created dynamically and included in the
access-matrix model. However, we have shown only that the basic mechanism

https://hemanthrajhemu.github.io

542 Chapter 14 Protection

Figure 14.7 Modified access matrix of Figure 14.4.

is here; system designers and users must make the policy decisions concerning
which domains are to have access to which objects in which ways.

14.5 Implementation of Access Matrix

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparse matrices, they are
not particularly useful for this application, because of the way in which
the protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.

14.5.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an operation
M is executed on an object O, within domain D-,, the global table is searched
for a triple <D,, O;, Rk>, with M e R/:. If this triple is found, the operation is
allowed to continue; otherwise, an exception (or error) condition is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional I/O is needed.
Virtual memory techniques are often used for managing this table. In addition,
it is difficult to take advantage of special groupings of objects or domains. For
example, if everyone can read a particular object, it must have a separate entry
in every domain.

14.5.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 10.6.2. Obviously, the empty entries can be
discarded. The resulting list for each object consists of ordered pairs <rfomnin,
rights-set>, which define all domains with a nonempty set of access rights for
that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operation M on an object 0/ is attempted in domain

https://hemanthrajhemu.github.io

14.5 Implementation of Access Matrix 543

Dj, we search the access list for object O., looking for an entry <D,, R; > with
M e Kj. If the entry is found, we allow the operation; if it is not, we check the
default set. If M is in the default set, we allow the access. Otherwise, access is
denied, and an exception condition occurs. For efficiency, we may check the
default set first and then search the access list.

14.5.3 Capability Lists for Domains

Rather than associating the columns of the access matrix with the objects as
access lists, we can associate each row with its domain. A capability list for
a domain is a list of objects together with the operations allowed on those
objects. An object is often represented by its physical, name or address, called
a capability. To execute operation M on object 0,, the process executes the
operation M, specifying the capability (or pointer) for object O/ as a parameter.
Simple possession of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly
accessible to a process executing in that domain. Rather, the capability list
is itself a protected object, maintained by the operating system and accessed
by the user only indirectly. Capability-based protection relies on the fact that
the capabilities are never allowed to migrate into any address space directly
accessible by a user process (where they could be modified). If all capabilities
are secure, the object they protect is also secure against unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to
meet the need for resource protection that was foreseen as multiprogrammed
computer systems came of age. The idea of an inherently protected pointer
provides a foundation for protection that canbe extended up to the applications
level.

To provide inherent protection, we must distinguish capabilities from other
kinds of objects and they must be interpreted by an abstract machine on which
higher-level programs run. Capabilities are usually distinguished from other
data in one of two ways:

9 Each object has a tag to denote its type either as a capability or as
accessible data. The tags themselves must not be directly accessible by
an application program. Hardware or firmware support may be used to
enforce this restriction. Although only 1 bit is necessary to distinguish
between capabilities and other objects, more bits are often used. This
extension allows all objects to be tagged with their types by the hardware.
Thus, the hardware can distinguish integers, floating-point numbers,
pointers, Booleans, characters, instructions, capabilities, and uninitialized
values by their tags.

• Alternatively, the address space associated with a program can be split into
two parts. One part is accessible to the program and contains the program's
normal data and instructions. The other part, containing the capability list,
is accessible only by the operating system. A segmented memory space
(Section 8.6) is useful to support this approach.

Several capability-based protection systems have been developed; we describe
them briefly in Section 14.8. The Mach operating system also uses a version of
capability-based protection; it is described in Appendix B.

https://hemanthrajhemu.github.io

544 Chapter 14 Protection

14.5.4 A Lock-Key Mechanism

The lock-key scheme is a compromise between access lists and capability
lists. Each object has a list of unique bit patterns, called locks. Similarly, each
domain has a list of unique bit patterns, called keys. A process executing in a
domain can access an object only if that domain has a key that matches one of
the locks of the object.

As with capability lists, the list of keys for a domain must be managed
by the operating system on behalf of the domain. Users are not allowed to
examine or modify the list of keys (or locks) directly.

14.5.5 Comparison

We now compare the various techniques for implementing an access matrix.
Using a global table is simple; however, the table can be quite large and often
cannot take advantage of special groupings of objects or domains. Access lists
correspond directly to the needs of users. When a user creates an object, he
can specify which domains can access the object, as well as the operations
allowed. However, because access-rights information for a particular domain
is not localized, determining the set of access rights for each domain is difficult.
In addition, every access to the object must be checked, requiring a search of
the access list. In a large system with long access lists, this search can be time
consuming.

Capability lists do not correspond directly to the needs of users; they
are useful, however, for localizing information for a given process. The
process attempting access must present a capability for that access. Then, the
protection system needs only to verify that the capability is valid. Revocation
of capabilities, however, may be inefficient (Section 14.7).

The lock-key mechanism, as mentioned, is a compromise between access
lists and capability lists. The mechanism can be both effective and flexible,
depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object
(Section 14.7).

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy is used in the M.ULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in a new entry in a file
table associated with, the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification
of the index into the file table. The entry in the file table then points to the file
and its buffers. When the file is closed, the file-table entry is deleted. Since the
file table is maintained by the operating system, the user cannot accidentally
corrupt it. Thus, the user can access only those files that have been opened.

https://hemanthrajhemu.github.io

14.6 Access Control 545

Since access is checked when the file is opened, protection is ensured^ This
strategy is used in the UNIX system.

The right to access must still be checked on each access, and the file-table
entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If
an attempt is made to write onto the file, the system identifies this protection
violation by comparing the requested operation with the capability in the
file-table entrv.

14.6 Access

In Section 10.6.2, we described how access controls can be used on files within a
file system. Each file and directory are assigned an owner, a group, or possibly
a list of users, and for each of those entities, access-control information is
assigned. A similar function can be added to other aspects of a computer
system. A good example of this is found in Solaris 10.

Solaris 10 advances the protection available in the Sun Microsystems
operating system by explicitly adding the principle of least privilege via
role-based access control (RBAC). This facility revolves around privileges.
A privilege is the right to execute a system call or to use an option within
that system call (such as opening a file with write access). Privileges can be
assigned to processes, limiting them to exactly the access they need to perform
their work. Privileges and programs can also be assigned to roles. Users are
assigned roles or can take roles based on passwords to the roles. In this way, a
user can take a role that enables a privilege, allowing the user to run a program
to accomplish a specific task, as depicted in Figure 14.8. This implementation
of privileges decreases the security risk associated with superusers and setuid
programs.

executes with role 1 privileges

Figure 14.8 Rote-based access control in Solaris 10.

https://hemanthrajhemu.github.io

346 Chapter 14 Protection

Notice that this facility is similar to the access matrix described in Section
14.4. This relationship will be further explored in the exercises at the end of the
chapter.

14.7 Revocation of Access Rights

In a dynamic protection system, we may sometimes need to revoke access
rights to objects shared by different users. Various questions about revocation
may arise:

• Immediate versus delayed. Does revocation occur immediately/ or is it
delayed? If revocation is delayed, can we find out when it will take place?

• Selective versus general. When an access right to an object is revoked,
does it affect all the users who have an access right to that object, or can
we specify a select group of users whose access rights should be revoked?

• Partial versus total. Can a subset of the rights associated with an object be
revoked, or must we revoke all access rights for this object?

• Temporary versus permanent. Can access be revoked permanently (that
is, the revoked access right will never again be available), or can access be
revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for
any access rights to be revoked, and they are deleted from the list. Revocation
is immediate and can be general or selective, total or partial, and permanent
or temporary.

Capabilities, however, present a much more difficult revocation problem.
Since the capabilities are distributed throughout the system, we must find them
before we can revoke them. Schemes that implement revocation for capabilities
include the following:

• Reacquisition. Periodically, capabilities are deleted from each domain. If
a process wants to use a capability, it may find that that capability has been
deleted. The process may then try to reacquire the capability. If access has
been revoked, the process will not be able to reacquire the capability.

• Back-pointers. A list of pointers is maintained with each object, pointing
to all capabilities associated with that object. When revocation is required,
we can follow these pointers, changing the capabilities as necessary. This
scheme was adopted in the MULTICS system. It is quite general, but its
implementation is costly.

• Indirection. The capabilities point indirectly, not directly, to the objects.
Each capability points to a unique entry in a global table, which in turn
points to the object. We implement revocation by searching the global table
for the desired entry and deleting it. Then, when an access is attempted,
the capability is found to point to an illegal table entry. Table entries can
be reused for other capabilities without difficulty, since both the capability
and the table entry contain the unique name of the object. The object for a

https://hemanthrajhemu.github.io

14.8 Capability-Based Systems 547

capability and its table entry must match. This scheme was adopted in the
CAL system. It does not allow selective revocation.

Keys. A key is a unique bit pattern that can be associated with a capability.
Tliis key is defined when the capability is created, and it can be neither
modified nor inspected by the process owning the capability. A master
key is associated with each object; it can be defined or replaced with
the set-key operation. When a capability is created, the current value
of the master key is associated with the capability. When the capability
is exercised, its key is compared with the master key. If the keys match,
the operation is allowed to continue; otherwise, an exception condition
is raised. Revocation replaces the master key with a new value via the
set-key operation, invalidating all previous capabilities for this object.

This scheme does not allowr selective revocation, since only one master
key is associated with each object. If we associate a list of keys with each
object, then selective revocation can be implemented. Finally, we can group
all keys into one global table of keys. A capability is valid only if its
key matches some key in the global table. We implement revocation by
removing the matching key from the table. With this scheme, a key can be
associated with several objects, and several keys can be associated with
each object, providing maximum flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users.
In particular, it would be reasonable to allow only the owner of an object
to set the keys for that object. This choice, however, is a policy decision
that the protection system can implement but should not define.

14.8 Capability-Based Systems

In this section, we survey two capability-based protection systems. These
systems vary in their complexity and in the types of policies that can be
implemented on them. Neither system is widely used, but they are interesting
proving grounds for protection theories.

14.8.1 An Example: Hydra

Hydra is a capability-based protection system that provides considerable
flexibility. A fixed set of possible access rights is known to and interpreted
by the system. These rights include such basic forms of access as the right to
read, write, or execute a memory segment. In addition, a user (of the protection
system) can declare other rights. The interpretation of user-defined rights
is performed solely by the user's program, but the system provides access
protection for the use of these rights, as well as for the use of system-defined
rights. These facilities constitute a significant development in protection
technology.

Operations on objects are defined procedurally. The procedures that
implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must
be identified to the protection system if it is to deal with objects of the user-
defined type. When the definition of an object is made known to Hydra, the

https://hemanthrajhemu.github.io

548 Chapter 14 Protection

names of operations on the type become auxiliary rights. Auxiliary rights
can be described in a capability for an instance of the type. For a process to
perform an operation on a typed object, the capability it holds for that object
must contain the name of the operation being invoked among its auxiliary
rights. This restriction enables discrimination of access rights to be made on an
instance-by-instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a procedure
to be certified as trustworthy to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent of, and may exceed, the
rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

Amplification allows implementation procedures access to the represen-
tation variables of an abstract data type. If a process holds a capability to a
typed object A, for instance, this capability may include an auxiliary right to
invoke some operation P but would not include any of the so-called kernel
rights, such as read, write, or execute, on the segment that represents A. Such
a capability gives a process a means of indirect access (through the operation
P) to the representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to A may be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representing A so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cannot.
On return from P, the capability for A is restored to its original, unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to the Hydra operating
system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the abject. We can implement this
restriction readily by passing an access right that does not have the modification
(write) right. However, if amplification may occur, the right to modify may
be reinstated. Thus, the user-protection requirement can be circumvented.
In general, of course, a user may trust that a procedure performs its task
correctly. This assumption is not always correct, however, because of hardware
or software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program is provided that can be invoked as a service
by a number of different users (for example, a sort routine, a compiler, a
game). When users invoke this service program, they take the risk that the
program will malfunction and will either damage the given data or retain
some access right to the data to be used (without authority) later. Similarly,
the service program may have some private files (for accounting purposes,

https://hemanthrajhemu.github.io

14.8 Capability-Based Systems 549

for example) that should not be accessed directly by the calling user program.
Hydra provides mechanisms for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define policies
for use of these resources by user processes, but the policies are enforceable by
use of the standard access protection afforded by the capability system.

A programmer can make direct use of the protection system after acquaint-
ing herself with its features in the appropriate reference manual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. A user of the Hydra system would explicitly incorporate calls
on these system procedures into the code of her programs or would use a
program translator that had been interfaced to Hydra.

14.8.2 An Example: Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP's capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a
data capability. It can be used to provide access to objects, but the only
rights provided are the standard read, write, and execute of the individual
storage segments associated with the object. Data capabilities are interpreted
by microcode in the CAP machine.

The second kind of capability is the so-called software capability, which
is protected, but not interpreted, by the CAP microcode. It is interpreted by
a protected (that is, a privileged) procedure, which may be written by an
application programmer as part of a subsystem. A particular kind of rights
amplification is associated with a protected procedure. When executing the
code body of such a procedure, a process temporarily acquires the right to
read or write the contents of a software capability itself. This specific kind
of rights amplification corresponds to an implementation of the seal and
unseal primitives on capabilities. Of course, this privilege is still subject to type
verification to ensure that only software capabilities for a specified abstract
type are passed to any such procedure. Universal trust is not placed in any
code other than the CAP machine's microcode. (See Bibliographical Notes for
references.)

The interpretation of a software capability is left completely to the sub-
system., through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although a programmer can
define her own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

https://hemanthrajhemu.github.io

.550 Chapter 14 Protection

The designers of the CAP system, have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, a subsystem designer who wants to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, she must learn the principles and techniques of protection, since the
system provides her with no library of procedures.

14.9 Language-Based Protection

To the degree that protection is provided in existing computer systems, it is
usually achieved through an operating-system kernel, which acts as a security
agent to inspect and validate each attempt to access a protected resource.
Since comprehensive access validation is potentially a source of considerable
overhead, either we must give it hardware support to reduce the cost of
each validation or we must accept that the system designer may compromise
the goals of protection. Satisfying all these goals is difficult if the flexibility
to implement protection policies is restricted by the support mechanisms
provided or if protection environments are made larger than necessary to
secure greater operational efficiency.

As operating systems have become more complex, and particularly as they
have attempted to provide higher-level user interfaces, the goals of protection
have become much more refined. The designers of protection systems have
drawn heavily on ideas that originated in programming languages and
especially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access, in the newest
protection systems, concern for the function to be invoked extends beyond
a set of system-defined functions, such as standard file-access methods, to
include functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection
can no longer be considered a matter of concern to only the designer of an
operating system. It should also be available as a tool for use by the application
designer, so that resources of an applications subsystem can be guarded against
tampering or the influence of an error.

14.9.1 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into a
language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a
system. Such a specification should be given directly as a program is composed,
and in the language in which the program itself is stated.. This approach has
several significant advantages:

https://hemanthrajhemu.github.io

14.9 Language-Based Protection 551

1. Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an, operating system.

2. Protection requirements can be stated independently of the facilities
provided by a particular operating system.

3. The means for enforcement need not be provided by the designer of a
subsystem.

4. A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.

A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system. On this system, every storage reference made on the underlying
hardware occurs indirectly through a capability. This restriction prevents any
process from accessing a resource outside of its protection environment at
any time. However, a program may impose arbitrary restrictions on how
a resource can be used during execution of a particular code segment.
We can implement such restrictions most readily by using the software
capabilities provided by CAP. A language implementation might provide
standard protected procedures to interpret software capabilities that would
realize the protection policies that could be specified in the language. This
scheme puts policy specification at the disposal of the programmers, while
freeing them from implementing its enforcement.

Even if a system does not provide a protection kernel as powerful as those
of Hydra or CAP, mechanisms are still available for implementing protection
specifications given in a programming language. The principal distinction is
that the security of this protection will not be as great as that supported by
a protection kernel, because the mechanism must rely on more assumptions
about the operational state of the system. A compiler can separate references
for which it can certify that no protection violation could occur from those
for which a violation might be possible, and it can treat them differently. The
security provided by this form of protection rests on the assumption that the
code generated by the compiler will not be modified prior to or during its
execution.

What, then, are the relative merits of-enforcement based solely on a kernel,
as opposed to enforcement provided largely by a compiler?

• Security. Enforcement by a kernel provides a greater degree of security
of the protection system itself than does the generation of protection-
checking code by a compiler. In a compiler-supported scheme, security
rests on correctness of the translator, on some underlying mechanism of
storage management that protects the segments from which compiled
code is executed, and, ultimately, on'the security of files from which a
program is loaded. Some of these considerations also apply to a software-
supported protection kernel, but to a lesser degree, since the kernel may
reside in fixed physical storage segments and may be loaded from only
a designated file. With a tagged-capability system, in which all address

https://hemanthrajhemu.github.io

.552 Chapter 14 Protection

computation is performed either by hardware or by a fixed microprogram,
even greater security is possible. Hardware-supported protection is also
relatively immune to protection violations that might occur as a result of
either hardware or system software malfunction.

• Flexibility. There are limits to the flexibility of a protection kernel in
implementing a user-defined policy, although it may supply adequate
facilities for the system to provide enforcement of its own policies.
With a programming language, protection policy can be declared and
enforcement provided as needed by an implementation. If a language
does not provide sufficient flexibility, it can be extended or replaced with
less disturbance of a system in service than would be caused by the
modification of an operating-system kernel.

• Efficiency. The greatest efficiency is obtained wrhen enforcement of protec-
tion is supported directly by hardware (or microcode). Insofar as software
support is required, language-based enforcement has the advantage that
static access enforcement can be verified off-line at compile time. Also,
since an intelligent compiler can tailor the enforcement mechanism to
meet the specified need, the fixed overhead of kernel calls can often be
avoided.

In summary, the specification of protection in a programming language
allows the high-level description of policies for the allocation and use of
resources. A language implementation can provide software for protection
enforcement when automatic hardware-supported checking is unavailable. In
addition, it can interpret protection specifications to generate calls on whatever
protection system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object
of computation. Inherent in this concept is the idea that certain program
components might have the privilege of creating or examining these software
capabilities. A capability-creating program would be able to execute a primitive
operation that would seal a data structure, rendering the latter's contents
inaccessible to any program components that did not hold either the seal or
the unseal privilege. They might copy the data structure or pass its address
to other program components, but they could not gain access to its contents.
The reason for introducing such software capabilities is to bring a protection
mechanism into the programming language. The only problem with the
concept as proposed is that the use of the seal and unseal operations takes a
procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferable way to make protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for distribut-
ing capabilities to system resources among user processes. To contribute to the
overall reliability of a system, the access-control mechanism should be safe
to use. To be useful in practice, it should also be reasonably efficient. This
requirement has led to the development of a number of language constructs
that allow the programmer to declare various restrictions on the use of a specific
managed resource. (See the Bibliographical Notes for appropriate references.)
These constructs provide mechanisms for three functions:

https://hemanthrajhemu.github.io

14.9 Language-Based Protection 553

1. Distributing capabilities safely and efficiently among customer processes:
In particular, mechanisms ensure that a user process will use the managed
resource only if it was granted a capability to that resource,

2. Specifying the type of operations that a particular process may invoke on
an allocated resource (for example, a reader of a file should be allowed
only to read the file, whereas a writer should be able both to read and
to write): It should not be necessary to grant the same set of rights to
every user process, and it should be impossible for a process to enlarge
its set of access rights, except with the authorization of the access-control
mechanism.

3. Specifying the order in which a particular process may invoke the various
operations of a resource (for example, a file must be opened before it can
be read): It should be possible to give two processes different restrictions
on the order in which they can invoke the operations of the allocated
resource.

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protection will likely become
a matter of greater concern to the designers of new systems with distributed
architectures and increasingly stringent requirements on data security. Then
the importance of suitable language notations in which to express protection
requirements will be recognized more widely.

14.9.2 Protection in Java

Because Java was designed to run in a distributed environment, the Java virtual
machine—or JVM—has many built-in protecion mechanisms. Java programs
are composed of classes, each of which is a collection of data fields and
functions (called methods) that operate on those fields. The JVM loads a class
in response to a request to create instances (or objects) of that class. One of the
most novel and useful features of Java is its support for dynamically loading
untrusted classes over a network and for executing mutually distrusting classes
within the same]"VM.

Because of these capabilities of Java, protection is a paramount concern.
Classes running in the same JVM may be from different sources and may not
be equally trusted. As a result, enforcing protection at the granularity of the
JVM process is insufficient. Intuitively, whether a request to open a file should
be allowed will generally depend on which class has requested the open. The
operating system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the
JVM loads a class, it assigns the class to a protection domain that gives
the permissions of that class. The protection domain to which the class is
assigned depends on the URL from which the class was loaded and any digital
signatures on the class file. (Digital signatures are covered in Section 15.4.1.3.)
A configurable policy file determines the permissions granted to the domain
(and its classes). For example, classes loaded from a trusted server might be
placed in a protection domain that allows them to access files in the user's
home directory, whereas classes loaded from an untrusted server might have
no file access permissions at all.

https://hemanthrajhemu.github.io

5s4 Chapter 14 Protection

It can be complicated for the JVM to determine what class is responsible for a
request to access a protected resource. Accesses are often performed indirectly,
through system libraries or other classes. For example, consider a class that
is not allowed to open network connections. It could call a system library to
request the load of the contents of a URL. The JVM must decide whether or not
to open a network connection for this request. But which class should be used
to determine if the connection should be allowed, the application or the system
library?

The philosophy adopted in Java is to require the library class to explicitly
permit the network connection to load the requested URL. More generally, in
order to access a protected resource, some method in the calling sequence that
resulted in the request must explicitly assert the privilege to access the resource.
By doing so, this method takes responsibility for the request; presumably, it will
also perform whatever checks are necessary to ensure the safety of the request.
Of course, not every method is allowed to assert a privilege; a method can
assert a privilege only if its class is in a protection domain that is itself allowed
to exercise the privilege.

This implementation approach is called stack inspection. Every thread
in the JVM has an associated stack of its ongoing method invocations. When
its caller may not be trusted, a method executes an access request within a
doPrivileged block to perform the access to a protected resource directly or
indirectly. doPrivi leged() is a static method in the AccessController class
that is passed a class with a run() method to invoke. When the doPrivileged
block is entered, the stack frame for this method is annotated to indicate this
fact. Then, the contents of the block are executed. When an access to a protected
resource is subsequently requested, either by this method or a method it
calls, a call to checkPermissionsO is used to invoke stack inspection to
determine if the request should be allowed. The inspection examines stack
frames on the calling thread's stack, starting from the most recently added
frame and working toward the oldest. If a stack frame is first found that has the
doPrivileged () annotation, then checkPermissionsO returns immediately
and silently, allowing the access. If a stack frame is first found for which
access is disallowed based on the protection domain of the method's class,
then checkPermissionsO throws an AccessControlException. If the stack
inspection exhausts the stack without finding either type of frame, then
whether access is allowed depends on the implementation (for example, some
implementations of the JVM may allow access, other implementations may
disallow it).

Stack inspection is illustrated in Figure 14.9. Here, the gui() method of
a class in the tmtrusted applet protection domain performs two operations,
first a get O and then an open(). The former is an invocation of the
get () method of a class in the URL loader protection domain, which is
permitted to openO sessions to sites in the lucent . com domain, in particular
a proxy server proxy.lucent.com for retrieving URLs. For this reason, the
untrusted applet's ge t () invocation will succeed: the checkPermissionsO
call in the networking library encounters the stack frame of the get ()
method, which performed its openO in a doPrivileged block. However,
the untrusted applet's openO invocation will result in an exception, because
the checkPermissionsO call finds no doPrivileged annotation before
encountering the stack frame of the gui 0 method.

https://hemanthrajhemu.github.io

14.10 Summary 555

Drotection
domain: ::apie! t iii ii I \

socket |;rS;|:S .? ••;!;: H i ;;i
permission: f:;"?1:;?^ ,.l',t .i; ^ ^

t ~ . •-•• . : . , : • " : • : • : : /

class: ^i&rfy.W^V'A
'•'•- '••'--} '-}•'-- " : ; : : ; : ' ; ; ; i ; : ' M : ;
r - ' - ' - - - r - r - . r.- r - • - r -

: ' : ' : ' ' - . ' - ' . ' - . • - [- .'-. • - . '-['- .'-

':'-': - I - 1 : - : - : - : - : ' - : - : - : - : - :

. - : - : - : - : - : - : - : ' - : - ' . - . - : ' - :

; : ; : ; : ; : ; - ; : ; : ; - \:- :•-. \:- :•-. -• ;•:• :•: ; : ; ; : ; ; : ; ^ \ i \ \ ; : ; ; : ; ; : ; ; : ; ; : ; ; ! ; ; # ; ; ; ; ! ; ; ; ; : ;

' : • ' : ' • ' : ' • ' : ' • ' : " : : | : : : : : : : : : : : : : : " ' • ; : ; : ; : ; : ; : ; : ; : ; :

; : | | | | | | | | | | ; [^

:;:|. i l f f f 1.11 "1!;
;: ;:; v R;

;*
 :; : ;:; :; ; ;: ;:; ;;: ;:; :;

:i ! i : :H ;!: •!;! ;!; :;: h ::: n hi ;:
; : • ; ! ; I ; : . . ; ! ; ! : : ; : ; . : ; : : ;

Figure 14.9 Stack inspection.

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to do other manipulations
of stack inspection. This is one of the most important differences between
Java and many other languages (including C++). A Java program cannot
directly access memory. Rather, it can manipulate only an object for which
it has a reference. References cannot be forged, and the manipulations are
made only through well-defined interfaces. Compliance is enforced through a
sophisticated collection of load-time and run-time checks. As a result, an object
cannot manipulate its run-time stack, because it cannot get a reference to the
stack or other components of the protection system.

More generally, Java's load-time and run-time checks enforce type safety of
Java classes. Type safety ensures that classes cannot treat integers as pointers,
write past the end of an array, or otherwise access memory in arbitrary ways.
Rather, a program can access an object only via the methods defined on that
object by its class. This is the foundation of Java protection, since it enables a
class to effectively encapsulate and protect its data and methods from other
classes loaded in the same JVM. For example, a variable can be defined as
pr iva te so that only the class that contains it can access it or protec ted so
that it can be accessed only by the class that contains it, subclasses of that class,
or classes in the same package. Type safety' ensures that these restrictions can
be enforced.

14,10 Summary

Computer systems contain many objects, and they need to be protected from
misuse. Objects may be hardware (such as memory, CPU time, and I/O devices)
or software (such as files, programs, and semaphores). An access right is
permission to perform an operation on an object. A domain is a set of access
rights. Processes execute in domains and may use any of the access rights in
the domain, to access and manipulate objects. During its lifetime, a process may
be either bound to a protection domain or allowed to switch from one domain
to another.

https://hemanthrajhemu.github.io

556 Chapter 14 Protection

The access matrix is a general model of protection that provides a
mechanism for protection without imposing a particular protection policy on
the system or its users. The separation of policy and mechanism, is an important
design property.

The access matrix is sparse. It is normally implemented either as access lists
associated with each object or as capability lists associated with each domain.
We can include dynamic protection in the access-matrix model by considering
domains and the access matrix itself as objects. Revocation of access rights in a
dynamic protection model is typically easier to implement with an access-list
scheme than with a capability list.

Real systems are much more limited than the general model and tend to
provide protection only for files. UNIX is representative, providing read, write,
and execution protection separately for the owner, group, and general public
for each file. MULTJCS uses a ring structure in addition to file access. Hydra, the
Cambridge CAP system, and Mach are capability systems that extend protection
to user-defined software objects. Solaris 10 implements the principle of least
privilege via role-based access control, a form of the access matrix.

Language-based protection provides finer-grained arbitration of requests
and privileges than the operating system is able to provide. For example, a
single Java JVM can run several threads, each in a different protection class. It
enforces the resource requests tlirough sophisticated stack inspection and via
the type safety of the language.

Exercises

14.1 Consider the ring protection scheme in MULTICS. If we were to imple-
ment the system calls of a typical operating system and store them in a
segment associated with ring 0, what should be the values stored in the
ring field of the segment descriptor? What happens during a system
call when a process executing in a higher-numbered ring invokes a
procedure in ring 0?

14.2 The access-control matrix could be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?

14.3 Consider a computer system in which ''computer games" can be played
by students only between 10 P.M. and 6 A.M., by faculty members
between 5 P.M. and 8 A.M., and by the computer center staff at all
times. Suggest a scheme for implementing this policy efficiently.

14.4 What hardware features are needed in a computer system for efficient
capability manipulation? Can these be used for memory protection?

14.5 Discuss the strengths and weaknesses of implementing an access matrix
using access lists that are associated with objects.

14.6 Discuss the strengths and weaknesses of implementing an access matrix
using capabilities that are associated with domains.

https://hemanthrajhemu.github.io

Bibliographical Notes 557

14.7 Explain why a capability-based system such as Hydra provides greater
flexibility than the ring protection scheme in enforcing protection
policies.

14.8 Discuss the need for rights amplification in Hydra. How does this
practice compare with the cross-ring calls in a ring protection scheme?

14.9 What is the need-to-know principle? Why is it important for a protec-
tion system to adhere to this principle?

14.10 Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. The MULTICS ring protection scheme

b. Hydra's capabilities

c. jVM's stack-inspection scheme

14.11 Describe how the Java protection model would be sacrificed if a Java
program were allowed to directly alter the annotations of its stack
frame.

14.12 How are the access-matrix facility and the role-based access-control
facility similar? How do they differ?

14.13 How does the principle of least privilege aid in the creation of protection
systems?

14.14 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?

Bibliographical Notes

The access-matrix model of protection between domains and objects was
developed by Lampson [1969] and Lampson [1971]. Popek [1974] and Saltzer
and Schroeder [1975] provided excellent surveys on the subject of protection.
Harrison et al. [1976] used a formal version of this model to enable them to
prove properties of a protection system mathematically.

The concept of a capability evolved from Iliffe's and Jodeit's codewords,
which were implemented in the Rice University computer (Iliffe and Jodeit
[1962]). The term capability was introduced by Dennis and Horn [1966].

The Hydra system was described by Wulf et al. [1981]. The CAP system
was described by Needham and Walker [1977]. Organick [1972] discussed the
MULTICS ring protection system.

Revocation was discussed by Redell and Fabry [1974], Cohen and Jefferson
[1975], and Ekanadham and Bernstein [1979]. The principle of separation of
policy and mechanism was advocated by the designer of Hydra (Levin et al.
[1975]). The confinement problem was first discussed by Lampson [1973] and
was further examined by Lipner [1975].

The use of higher-level languages for specifying access control was
suggested first by Morris [1973], who proposed the use of the seal and unseal
operations discussed in Section 14.9. Kieburtz and Silberschatz [1978], Kieburtz
and Silberschatz [1983], and McGraw and Andrews [1979] proposed various

https://hemanthrajhemu.github.io

558 Chapter 14 Protection

language constructs for dealing with general dynamic-resource-nianagi*ment
schemes. Jones and Liskov [1978] considered how a static access-control scheme
can be incorporated in a programming language that supports abstract data
types. The use of minimal operating-system support to enforce protection
was advocated by the Exokernel Project (Ganger et al. [2002], Kaashoek
et al. [1997]). Extensibility of system code through language-based protection
mechanisms was discussed in Bershad et al. [1995b]. Other techniques for
enforcing protection include sandboxing (Goldberg et al. [1996]) and software
fault isolation (Wahbe et al. [1993b]). The issues of lowering the overhead
associated with protection costs and enabling user-level access to networking
devices were discussed in McCanne and Jacobson [1993] and Basu et al. [1995].

More detailed analyses of stack inspection, including comparisons with
other approaches to Java security, can be found in Wallach et al. [1997] and
Gong etal. [1997].

https://hemanthrajhemu.github.io

The Linux
System

This chapter presents an in-depth examination of the Linux operating system.
By examining a complete, real system, we can see how the concepts we have
discussed relate both to one another and to practice.

Linux is a version of UNIX that has gained popularity in recent years. In this
chapter, we look at the history and development of Linux and cover the user
and programmer interfaces that Linux presents—interfaces that owe a great
deal to the UNIX tradition. We also discuss the internal methods by which Linux
implements these interfaces. Linux is a rapidly evolving operating system.
This chapter describes developments through the Linux 2.6 kernel, which was
released in late 2003.

CHAPTER OBJECTIVES

• To explore the history of the UNIX operating system from which Linux is
derived and the principles upon which Linux is designed.

• To examine the Linux process model and illustrate how Linux schedules
processes and provides interprocess communication.

• To look at memory management in Linux.
9 To explore how Linux implements file systems and manages I/O devices.

21.1 Linux History

Linux looks and feels much like any other UNIX system; indeed, UNIX
compatibility has been a major design goal of the Linux project. However,
Linux is much younger than most UNIX systems. Its development began in
1991, when a Finnish student, Linus Torvalds, wrote and christened Linux,
a small but self-contained kernel for the 80386 processor, the first true 32-bit
processor in Intel's range of PC-compatible CPUs.

Early in its development, the Linux source code was made available free
on the Internet. As a result, Linux's history has been one of collaboration by
many users from all around the world, corresponding almost exclusively over
the Internet. From an initial kernel that partially implemented a small subset of

737https://hemanthrajhemu.github.io

738 Chapter 21 The Linux System

the UNIX system services, the Linux system has grown to include much ifFNIX
functionality.

In its early days, Linux development revolved largely around the central
operating-system kernel—the core, privileged executive that manages all
system resources and that interacts directly with the computer hardware.
We need much more than this kernel to produce a full operating system,
of course. It is useful to make the distinction between the Linux kernel and
a Linux system. The Linux kernel is an entirely original piece of software
developed from scratch by the Linux community. The Linux system, as we
know it today, includes a multitude of components, some written from scratch,
others borrowed from other development projects, and still others created in
collaboration with other teams.

The basic Linux system is a standard environment for applications and
user programming, but it does not enforce any standard means of managing
the available functionality as a whole. As Linux has matured, a need has arisen
for another layer of functionality on top of the Linux system. This need has
been met by various Linux distributions. A Linux distribution includes all the
standard components of the Linux system, plus a set of administrative tools
to simplify the initial installation and subsequent upgrading of Linux and to
manage installation and removal of other packages on the system. A modern
distribution also typically includes tools for management of file systems,
creation and management of user accounts, administration of networks, web
browsers, word processors, and so on.

21.1.1 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May
14,1991. It had no networking, ran only on 80386-compatible Intel processors
and PC hardware, and had extremely limited device-driver support. The virtual
memory subsystem was also fairly basic and included no support for memory-
mapped files; however, even this early incarnation supported shared pages
with copy-on-write. The only file system supported was the Minix file system
—the first Linux kernels were cross-developed on a Minix platform. However,
the kernel did implement proper UNIX processes with protected address spaces.

The next milestone version, Linux 1.0, was released on March 14, 1994.
This release culminated three years of rapid development of the Linux kernel.
Perhaps the single biggest new feature was networking: 1.0 included support
for UNIX's standard TCP/IP networking protocols, as well as a BSD-compatible
socket interface for networking programming. Device-driver support was
added for running IP over an Ethernet or (using PPP or SLIP protocols) over
serial lines or modems.

The 1.0 kernel also included a new, much enhanced file system without the
limitations of the original Minix file system and supported a range of SCSI con-
trollers for high-performance disk access. The developers extended the virtual
memory subsystem to support paging to swap files and memory mapping of
arbitrary files (but only read-only memory mapping was implemented in 1.0).

A range of extra hardware support was also included in this release.
Although still restricted to the Intel PC platform, hardware support had grown
to include floppy-disk and CD-ROM devices, as well as sound cards, a range
of mice, and international keyboards. Floating-point emulation was provided

https://hemanthrajhemu.github.io

21.1 Linux History 739

in the kernel for 80386 users who had no 80387 math coprocessor; System
V UNIX-style interprocess communication (IPC), including shared memory,
semaphores, and message queues, was implemented. Simple support for
dynamically loadable and unloadable kernel modules was supplied as well.

At this point, development started on the 1.1 kernel stream, but numerous
bug-fix patches were released subsequently against 1.0. A pattern was adopted
as the standard numbering convention for Linux kernels. Kernels with an odd
minor-version number, such as 1.1,1.3, and 2.1, are development kernels; even-
numbered minor-version numbers are stable production kernels. Updates
against the stable kernels are intended only as remedial versions, whereas the
development kernels may include newer and relatively untested functionality.

In March 1995, the 1.2 kernel was released. This release did not offer
nearly the same improvement in functionality as the 1.0 release, but it did
support a much wider variety of hardware, including the new PCI hardware
bus architecture. Developers added another PC-specific feature—support for
the 80386 CPU's virtual 8086 mode—to allow emulation of the DOS operating
system for PC computers. They also updated the networking stack to provide
support for the IPX protocol and made the IP implementation more complete
by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution
for Linux 1.2 included partially implemented support for SPARC, Alpha, and
MIPS CPUs, but full integration of these other architectures did not begin until
after the 1.2 stable kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more
complete implementations of existing functionality. Much new functionality
was under development at the time, but integration of the new code into the
main kernel source code had been deferred until after the stable 1.2 kernel had
been released. As a result, the 1.3 development stream saw a great deal of new
functionality added to the kernel.

This work was finally released as Linux 2.0 in June 1996. This release
was given a major version-number increment on account of two major new
capabilities: support for multiple architectures, including a fully 64-bit native
Alpha port, and support for multiprocessor architectures. Linux distributions
based on 2.0 are also available for the Motorola 68000-series processors and for
Sun's SPARC systems. A derived version of Linux running on top of the Mach
microkernel also runs on PC and PowerMac systems.

The changes in 2.0 did not stop there. The memory-management code
was substantially improved to provide a unified cache for file-system data
independent of the caching of block devices. As a result of this change, the
kernel offered greatly increased file-system and virtual memory performance.
For the first time, file-system caching was extended to networked file systems,
and writable memory-mapped regions also were supported.

The 2.0 kernel also included much improved TCP/IP performance, and a
number of new networking protocols were added, including AppleTalk, AX.25
amateur radio networking, and ISDN support. The ability to mount remote
netware and SMB (Microsoft LanManager) network volumes was added.

Other major improvements in 2.0 were support for internal kernel threads,
for handling dependencies between loadable modules, and for automatic
loading of modules on demand. Dynamic configuration of the kernel at run
time was much improved through a new, standardized configuration interface.

https://hemanthrajhemu.github.io

740 Chapter 21 The Linux System

Additional new features included file-system quotas and POSIX-compatible
real-time process-scheduling classes.

Improvements continued with the release of Linux 2.2 in January 1999. A
port for UltraSPARC systems was added. Networking was enhanced with more
flexible firewalling, better routing and traffic management, and support for
TCP large window and selective acks. Acorn, Apple, and NT disks could now
be read, and NFS was enhanced and a kernel-mode NFS daemon added. Signal
handling, interrupts, and some I/O were locked at a finer level than before to
improve symmetric multiprocessor (SMP) performance.

Advances in the 2.4 and 2.6 releases of the kernel include increased support
for SMP systems, journaling file systems, and enhancements to the memory-
management system. The process scheduler has been modified in version 2.6,
providing an efficient 0(1) scheduling algorithm. In addition, the Linux 2.6
kernel is now preemptive, allowing a process to be preempted while running
in kernel mode.

21.1.2 The Linux System

In many ways, the Linux kernel forms the core of the Linux project, but other
components make up the complete Linux operating system. Whereas the Linux
kernel is composed entirely of code written from scratch specifically for the
Linux project, much of the supporting software that makes up the Linux
system is not exclusive to Linux but is common to a number of UNIX-like
operating systems. In particular, Linux uses many tools developed as part
of Berkeley's BSD operating system, MIT's X Window System, and the Free
Software Foundation's GNU project.

This sharing of tools has worked in both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux community
greatly improved the libraries by addressing omissions, inefficiencies, and
bugs. Other components, such as the GNU C compiler (gcc), were already
of sufficiently high quality to be used directly in Linux. The networking-
administration tools under Linux were derived from code first developed for
4.3 BSD, but more recent BSD derivatives, such as FreeBSD, have borrowed code
from Linux in return. Examples include the Intel floating-point-emulation math
library and the PC sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of
developers collaborating over the Internet, with small groups or individuals
having responsibility for maintaining the integrity of specific components. A
small number of public Internet file-transfer-protocol (ftp) archive sites act as de
facto standard repositories for these components. The File System Hierarchy
Standard document is also maintained by the Linux community as a means of
keeping compatibility across the various system components. This standard
specifies the overall layout of a standard Linux file system; it determines
under which directory names configuration files, libraries, system binaries,
and run-time data files should be stored.

21.1.3 Linux Distributions

In theory, anybody can install a Linux system by fetching the latest revisions
of the necessary system components from the ftp sites and compiling them.
In Linux's early days, this operation was often precisely what a Linux user

https://hemanthrajhemu.github.io

21.1 Linux History 741

had to carry out. As Linux has matured, however, various individuals and
groups have attempted to make this job less painful by providing a standard,
precompiled set of packages for easy installation.

These collections, or distributions, include much more than just the
basic Linux system. They typically include extra system-installation and
management utilities, as well as precompiled and ready-to-install packages
of many of the common UNIX tools, such as news servers, web browsers,
text-processing and editing tools, and even games.

The first distributions managed these packages by simply providing
a means of unpacking all the files into the appropriate places. One of
the important contributions of modern distributions, however, is advanced
package management. Today's Linux distributions include a package-tracking
database that allows packages to be installed, upgraded, or removed painlessly.

The SLS distribution, dating back to the early days of Linux, was the first
collection of Linux packages that was recognizable as a complete distribution.
Although it could be installed as a single entity, SLS lacked the package-
management tools now expected of Linux distributions. The Slackware
distribution represented a great improvement in overall quality, even though it
also had poor package management; it is still one of the most widely installed
distributions in the Linux community.

Since Slackware's release, many commercial and noncommercial Linux
distributions have become available. Red Hat and Debian are particularly
popular distributions; the first comes from a commercial Linux support
company and the second from the free-software Linux community. Other
commercially supported versions of Linux include distributions from Caldera,
Craftworks, and WorkGroup Solutions. A large Linux following in Germany
has resulted in several dedicated German-language distributions, including
versions from SuSE and Unifix. There are too many Linux distributions in
circulation for us to list all of them here. The variety of distributions does not
prohibit compatibility across Linux distributions, however. The RPM package
file format is used, or at least understood, by the majority of distributions, and
commercial applications distributed in this format can be installed and run on
any distribution that can accept RPM files.

21.1.4 Linux Licensing

The Linux kernel is distributed under the GNU general public license (GPL),
the terms of which are set out by the Free Software Foundation. Linux is not
public-domain software. Public domain implies that the authors have waived
copyright rights in the software, but copyright rights in Linux code are still
held by the code's various authors. Linux is free software, however, in the sense
that people can copy it, modify it, use it in any manner they want, and give
away their own copies, without any restrictions.

The main implications of Linux's licensing terms are that nobody using
Linux, or creating her own derivative of Linux (a legitimate exercise), can
make the derived product proprietary Software released under the GPL cannot
be redistributed as a binary-only product. If you release software that includes
any components covered by the GPL, then, under the GPL, you must make
source code available alongside any binary distributions. (This restriction does

https://hemanthrajhemu.github.io

742 Chapter 21 The Linux System

not prohibit making—or even selling—binary-only software distributions, as
long as anybody who receives binaries is also given the opportunity to get
source code, for a reasonable distribution charge.)

21.2 Design Principles

In its overall design, Linux resembles any other traditional, nonmicrokernel
UNIX implementation. It is a multiuser, multitasking system with a full set
of UNIX-compatible tools. Linux's file system adheres to traditional UNIX
semantics, and the standard UNIX networking model is implemented fully.
The internal details of Linux's design have been influenced heavily by the
history of this operating system's development.

Although Linux runs on a wide variety of platforms, it was developed
exclusively on PC architecture. A great deal of that early development was
carried out by individual enthusiasts, rather than by well-funded development
or research facilities, so from the start Linux attempted to squeeze as much
functionality as possible from limited resources. Today, Linux can run happily
on a multiprocessor machine with hundreds of megabytes of main memory
and many gigabytes of disk space, but it is still capable of operating usefully
in under 4 MB of RAM.

As PCs became more powerful and as memory and hard disks became
cheaper, the original, minimalist Linux kernels grew to implement more UNIX
functionality. Speed and efficiency are still important design goals, but much
of the recent and current work on Linux has concentrated on a third major
design goal: standardization. One of the prices paid for the diversity of UNIX
implementations currently available is that source code written for one flavor
may not necessarily compile or run correctly on another. Even when the same
system calls are present on two different UNIX systems, they do not necessarily
behave in exactly the same way. The POSIX standards comprise a set of
specifications of different aspects of operating-system behavior. There are POSIX
documents for common operating-system functionality and for extensions
such as process threads and real-time operations. Linux is designed to be
compliant with the relevant POSIX documents; at least two Linux distributions
have achieved official POSIX certification.

Because it presents standard interfaces to both the programmer and the
user, Linux presents few surprises to anybody familiar with UNIX. We do
not detail these interfaces here. The sections on the programmer interface
(Section A.3) and user interface (Section A.4) of BSD apply equally well to
Linux. By default, however, the Linux programming interface adheres to SVR4
UNIX semantics, rather than to BSD behavior. A separate set of libraries is
available to implement BSD semantics in places where the two behaviors are
significantly different.

Many other standards exist in the UNIX world, but full certification of
Linux against them is sometimes slowed because they are often available
only for a fee, and the expense involved in certifying an operating system's
compliance with most standards is substantial. However, supporting a wide
base of applications is important for any operating system, so implementation
of standards is a major goal for Linux development, even if the implementation
is not formally certified. In addition to the basic POSIX standard, Linux currently

https://hemanthrajhemu.github.io

21.2 Design Principles 743

supports the POSIX threading extensions—Pthreads—and a subset of tl\e POSIX
extensions for real-time process control.

21.2.1 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important
abstractions of the operating system, including such things as virtual
memory and processes.

2. System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implement much of the operating-system functionality that does not need
the full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individ-
ual, specialized management tasks. Some system utilities may be invoked
just once to initialize and configure some aspect of the system; others—
known as daemons in UNIX terminology—may run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and
everything else. All the kernel code executes in the processor's privileged
mode with full access to all the physical resources of the computer. Linux
refers to this privileged mode as kernel mode. Under Linux, no user-mode
code is built into the kernel. Any operating-system-support code that does not
need to run in kernel mode is placed into the system libraries instead.

Although various modern operating systems have adopted a message-
passing architecture for their kernel internals, Linux retains UNIX's historical
model: The kernel is created as a single, monolithic binary. The main reason is
to improve performance: Because all kernel code and data structures are kept in
a single address space, no context switches are necessary when a process calls
an operating-system function or when a hardware interrupt is delivered. Not

system- ! user j
manaqement • ' utility i compilers

programs r I progiarrw j

system sharer! libraries

Linux kernel

loadable kernel modules

Figure 21.1 Components of the Linux system.

https://hemanthrajhemu.github.io

744 Chapter 21 The Linux System

only the core scheduling and virtual memory code occupies this address space;
all kernel code, including all device drivers, file systems, and networking cod̂ e,
is present in the same single address space.

Even though all the kernel components share this same melting pot, there
is still room for modularity. In the same way that user applications can load
shared libraries at run time to pull in a needed piece of code, so the Linux
kernel can load (and unload) modules dynamically at run time. The kernel
does not necessarily need to know in advance which modules may be loaded
-—they are truly independent loadable components.

The Linux kernel forms the core of the Linux operating system. It provides
all the functionality necessary to run processes, and it provides system services
to give arbitrated and protected access to hardware resources. The kernel
implements all the features required to qualify as an operating system. On
its own, however, the operating system provided by the Linux kernel looks
nothing like a UNIX system. It is missing many of the extra features of UNIX,
and the features that it does provide are not necessarily in the format in which
a UNIX application expects them to appear. The operating-system interface
visible to running applications is not maintained directly by the kernel. Rather,
applications make calls to the system libraries, which in turn call the operating-
system services as necessary.

The system libraries provide many types of functionality. At the simplest
level, they allow applications to make kernel-system-service requests. Making
a system call involves transferring control from unprivileged user mode to
privileged kernel mode; the details of this transfer vary from architecture to
architecture. The libraries take care of collecting the system-call arguments and,
if necessary, arranging those arguments in the special form necessary to make
the system call.

The libraries may also provide more complex versions of the basic system
calls. For example, the C language's buffered file-handling functions are all
implemented in the system libraries, providing more advanced control of file
I/O than the basic kernel system calls. The libraries also provide routines that do
not correspond to system calls at all, such as sorting algorithms, mathematical
functions, and string-manipulation routines. All the functions necessary to
support the running of UNIX or POS1X applications are implemented here in the
system libraries.

The Linux system includes a wide variety of user-mode programs—both
system utilities and user utilities. The system utilities include all the programs
necessary to initialize the system, such as those to configure network devices
and to load kernel modules. Continually running server programs also count as
system utilities; svich programs handle user login requests, incoming network
connections, and the printer queues.

Not all the standard utilities serve key system-administration functions.
The UNIX user environment contains a large number of standard utilities to
do simple everyday tasks, such as listing directories, moving and deleting
files, and displaying the contents of a file. More complex utilities can perform
text-processing functions, such as sorting textual data and performing pattern
searches on input text. Together, these utilities form a standard tool set that
users can expect on any UNIX system; although they do not perform any
operating-system function, they are an important part of the basic Linux
system.

https://hemanthrajhemu.github.io

21.3 Kernel Modules 745

21.3 Kernel Modules

The Linux kernel has the ability to load and unload arbitrary sections of kernel
code on demand. These loadable kernel modules run in privileged kernel mode
and as a consequence have full access to all the hardware capabilities of the
machine on which they run. In theory, there is no restriction on what a kernel
module is allowed to do; typically, a module might implement a device driver,
a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linux's source code is
free, so anybody wanting to write kernel code is able to compile a modified
kernel and to reboot to load that new functionality; however, recompiling,
relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver. If you use kernel modules, you do not
have to make a new kernel to test a new driver—the driver can be compiled
on its own and loaded into the already-running kernel. Of course, once a new
driver is written, it can be distribttted as a module so that other users can
benefit from it without having to rebuild their kernels.

This latter point has another implication. Because it is covered by the
GPL license, the Linux kernel cannot be released with proprietary components
added to it, unless those new components are also released under the GPL and
the source code for them is made available on demand. The kernel's module
interface allows third parties to write and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard, minimal
kernel, without any extra device drivers built in. Any device drivers that
the user needs can be either loaded explicitly by the system at startup or
loaded automatically by the system on demand and unloaded when not in
use. For example, a CD-ROM driver might be loaded when a CD is mounted
and unloaded from memory when the CD is dismounted from the file system.

The module support under Linux has three components:

1. The module management allows modules to be loaded into memory and
to talk to the rest of the kernel.

2. The driver registration allows modules to tell the rest of the kernel that
a new driver has become available.

3. A conflict-resolution mechanism allows different device drivers to
reserve hardware resources and to protect those resources from accidental
use by another driver.

21.3.1 Module Management

Loading a module requires more than just loading its binary contents into
kernel memory. The system must also make sure that any references the
module makes to kernel symbols or entry points are updated to point to the
correct locations in the kernel's address space. Linux deals with this reference
updating by splitting the job of module loading into two separate sections: the
management of sections of module code in kernel memory and the handling
of symbols that modules are allowed to reference.

https://hemanthrajhemu.github.io

746 Chapter 21 The Linux System

Linux maintains an internal symbol table in the kernel. This symbol table
does not contain the full set of symbols defined in the kernel during the latter's
compilation; rather, a symbol must be exported explicitly by the kernel. The set
of exported symbols constitutes a well-defined interface by which a module
can interact with the kernel.

Although exporting symbols from a kernel function requires an explicit
request by the programmer, no special effort is needed to import those symbols
into a module. A module writer just uses the standard external linking of the
C language: Any external symbols referenced by the module but not declared
by it are simply marked as unresolved in the final module binary produced by
the compiler. When a module is to be loaded into the kernel, a system utility
first scans the module for these unresolved references. All symbols that still
need to be resolved are looked up in the kernel's symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into
the module's code. Only then is the module passed to the kernel for loading. If
the system utility cannot resolve any references in the module by looking them
up in the kernel's symbol table, then the module is rejected.

The loading of the module is performed in two stages. First, the module-
loader utility asks the kernel to reserve a continuous area of virtual kernel
memory for the module. The kernel returns the address of the memory
allocated, and the loader utility can use this address to relocate the module's
machine code to the correct loading address. A second system call then passes
the module, plus any symbol table that the new module wants to export, to the
kernel. The module itself is now copied verbatim into the previously allocated
space, and the kernel's symbol table is updated with the new symbols for
possible use by other modules not yet loaded.

The final module-management component is the module requestor. The
kernel defines a communication interface to which a module-management
program can connect. With this connection established, the kernel will inform
the management process whenever a process requests a device driver, file
system, or network service that is not currently loaded and will give the
manager the opportunity to load that service. The original service request will
complete once the module is loaded. The manager process regularly queries
the kernel to see whether a dynamically loaded module is still in use and
unloads that module when it is no longer actively needed.

21.3.2 Driver Registration

Once a module is loaded, it remains no more than an isolated region of memory
until it lets the rest of the kernel know what new functionality it provides.
The kernel maintains dynamic tables of all known drivers and provides a
set of routines to allow drivers to be added to or removed from these tables
at any time. The kernel makes sure that it calls a module's startup routine
when that module is loaded and calls the module's cleanup routine before
that module is unloaded: These routines are responsible for registering the
module's functionality.

A module may register many types of drivers and may register more than
one driver if it wishes. For example, a device driver might want to register two
separate mechanisms for accessing the device. Registration tables include the
following items:

https://hemanthrajhemu.github.io

21.3 Kernel Modules 747

• Device drivers. These drivers include character devices (such as printers,
terminals, and mice), block devices (including all disk drives), and network

. interface devices.

• File systems. The file system may be anything that implements Linux's
virrual-file-system calling routines. It might implement a format for storing
files on a disk, but it might equally well be a network file system, such as
NFS, or a virtual file system whose contents are generated on demand, such
as Linux's /proc file system.

• Network protocols. A module may implement an entire networking
protocol, such as IPX, or simply a new set of packet-filtering rules for a
network firewrall.

• Binary format. This format specifies a way of recognizing, and loading, a
new type of executable file.

In addition, a module can register a new set of entries in the sysctl and /proc
' tables, to allow that module to be configured dynamically (Section 21.7A),

21.3.3 Conflict Resolution

Commercial UNIX implementations are usually sold to run on a vendor's
own hardware. One advantage of a single-supplier solution is that the
software vendor has a good idea about what hardware configurations are
possible. IBM PC hardware, however, comes in a vast number of configurations,
with large numbers of possible drivers for devices such as network cards,
SCSI controllers, and video display adapters. The problem of managing the
hardware configuration becomes more severe when modular device drivers
are supported, since the currently active set of devices becomes dynamically
variable.

Linux provides a central conflict-resolution mechanism to help arbitrate
access to certain hardware resources. Its aims are as follows:

• To prevent modules from clashing over access to hardware resources

• To prevent autoprobes—device-driver probes that auto-detect device
configuration—from interfering with existing device drivers

j • To resolve conflicts among multiple drivers trying to access the same
j hardware—for example, as when both the parallel printer driver and the
i: parallel-line IP (PLIP) network driver try to talk to the parallel printer port

.,* To these ends, the kernel maintains lists of allocated hardware resources.
E1 The PC has a limited number of possible I/O ports (addresses in its hardware
I" I/O address space), interrupt lines, and DMA channels; when any device driver
I wants to access such a resource, it is expected to reserve the resource with
I the kernel database first. This requirement incidentally allows the system
;i administrator to determine exactly which resources have been allocated by
% which driver at any given point.
:;•• A module is expected to use this mechanism to reserve in advance any
f hardware resources that it expects to use. If the reservation is rejected because
i the resource is not present or is already in use, then it is up to the module

https://hemanthrajhemu.github.io

748 Chapter 21 The Linux System

to decide how to proceed. It may fail its initialization and request thatnt be
unloaded if it cannot continue, or it may carry on, using alternative hardware
resources.

21.4 Process Management

A process is the basic context within which all user-requested activity is
serviced within the operating system. To be compatible with other UNIX
systems, Linux must use a process model similar to those of other versions
of UNIX. Linux operates differently from UNIX in a few key places, however. In
this section, we review the traditional UNIX process model from Section A.3.2
and introduce Linux's own threading model.

21.4.1 The fork() and exec() Process Model

The basic principle of UNIX process management is to separate two operations:
the creation of a process and the running of a new program. A new process
is created by the f ork() system call, and a new program is run after a call to
exec(). These are two distinctly separate functions. A new process may be
created with forkO without a new program being run—the new subprocess
simply continues to execute exactly the same program that the first, parent
process was running. Equally, running a new program does not require that
a new process be created first: Any process may call exec 0 at any time. The
currently running program is immediately terminated, and the new program
starts executing in the context of the existing process.

This model has the advantage of great simplicity. Rather than having to
specify every detail of the environment of a new program in the system call that
runs that program, new programs simply run in their existing environment. If
a parent process wishes to modify the environment in which a new program
is to be run, it can fork and then, still running the original program in a child
process, make any system calls it requires to modify that child process before
finally executing the new program.

Under UNIX, then, a process encompasses all the information that the
operating system must maintain to track the context of a single execution of a
single program. Under Linux, we can break down this context into a number of
specific sections. Broadly, process properties fall into three groups: the process
identity, environment, and context.

21.4.1.1 Process Identity

A process identity consists mainly of the following items:

• Process ID (PID). Each process has a unique identifier. PIDs are used to
specify processes to the operating system when an application makes
a system call to signal, modify, or wait for another process. Additional
identifiers associate the process with a process group (typically, a tree of
processes forked by a single user command) and login session.

• Credentials. Each process must have an associated user ID and one or more
group IDs (user groups are discussed in Section 10.6.2) that determine the
rights of a process to access system resources and files.

https://hemanthrajhemu.github.io

21.4 Process Management 749

• Personality. Process personalities are not traditionally found on/UNIX
systems, but under Linux each process has an associated personality
identifier that can modify slightly the semantics of certain system calls.
Personalities are primarily used by emulation libraries to request that
system calls be compatible with certain flavors of UNIX.

Most of these identifiers are under limited control of the process itself.
The process group and session identifiers can be changed if the process
wants to start a new group or session. Its credentials can be changed, subject
to appropriate security checks. However, the primary PID of a process is
unchangeable and uniquely identifies that process until termination.

21.4.1.2 Process Environment

A process's environment is inherited from its parent and is composed of two
null-terminated vectors: the argument vector and the environment vector. The
argument vector simply lists the command-line arguments used to invoke the
running program; it conventionally starts with the name of the program itself.
The environment vector is a list of "NAME=VALUE" pairs that associates named
environment variables with arbitrary textual values. The environment is not
held in kernel memory but is stored in the process's own user-mode address
space as the first datum at the top of the process's stack.

The argument and environment vectors are not altered when a new process
is created: The new child process will inherit the environment that its parent
possesses. However, a completely new environment is set up when a new
program is invoked. On calling exec () , a process must supply the environment
for the new program. The kernel passes these environment variables to the next
program, replacing the process's current environment. The kernel otherwise
leaves the environment and command-line vectors alone—their interpretation
is left entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the
inheriting of these variables by the children of a process provide flexible ways
to pass information to components of the user-mode system software. Various
important environment variables have conventional meanings to related parts
of the system software. For example, the TERM variable is set up to name the
type of terminal connected to a user's login session; many programs use this
variable to determine how to perform operations on the user's display, such as
moving the cursor and scrolling a region of text. Programs with multilingual
support use the LANG variable to determine in which language to display
system messages for programs that include multilingual support.

The environment-variable mechanism custom tailors the operating system
on a per-process basis, rather than for the system as a whole. Users can choose
their own languages or select their own editors independently of one another.

21.4.1.3 Process Context

The process identity and environment properties are usually set up when a
process is created and not changed until that process exits. A process may
choose to change some aspects of its identity if it needs to do so, or it may
alter its environment. In contrast, process context is the state of the running
program at any one time; it changes constantly. Process context includes the
following parts.

https://hemanthrajhemu.github.io

750 Chapter 21 The Linux System

• Scheduling context. The most important part of the process contexHs its
scheduling context—the information that the scheduler needs to suspend
and restart the process. This information includes saved copies of all the
process's registers. Floating-point registers are stored separately and are
restored only when needed, so that processes that do not use floating-point
arithmetic do not incur the overhead of saving that state. The scheduling
context also includes information about scheduling priority and about any
outstanding signals waiting to be delivered to the process. A key part of the
scheduling context is the process's kernel stack, a separate area of kernel
memory reserved for use exclusively by kernel-mode code. Both system
calls and interrupts that occur while the process is executing will use this
stack.

• Accounting. The kernel maintains information about the resources cur-
rently being consumed by each process and the total resources consumed
by the process in its entire lifetime so far.

• File table. The file table is an array of pointers to kernel file structures.
When making file-I/O system calls, processes refer to files by their index
into this table.

• File-system context. Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files. The current root
and default directories to be used for new file searches are stored here.

• Signal-handler table. UNIX systems can deliver asynchronous signals to
a process in response to various external events. The signal-handler table
defines the routine in the process's address space to be called when specific
signals arrive.

• Virtual memory context. The virtual memory context describes the full
contents of a process's private address space; we discuss it in Section 21.6.

21.4.2 Processes and Threads

Linux provides the forkO system call with the traditional functionality of
duplicating a process. Linux also provides the ability to create threads using the
clone () system call. However, Linux does not distinguish between processes
and threads. In fact, Linux generally uses the term task—rather than process or
thread—when referring to a flow of control within a program. When clone ()
is invoked, it is passed a set of flags that determine how much sharing is to
take place between the parent and child tasks. Some of these flags are listed
below:

flag

CLQNE_jFS:

CL0NE__VM

CLONE_SIGHAND

CLONE_FILES

meaning' : : ;

File-system ififornrtatipniS: snared:

The same memory; space is ̂ shared.

Signal handlers are shared.

The set of open files is shared.

https://hemanthrajhemu.github.io

21.5 Scheduling 751

Thus, if clone() is passed the flags CLONE_FS, CL0NE_VM, CLONE_SIG£AND,
and CLONE_FILES, the parent and child tasks will share the same file-system
information (such as the current working directory), the same memory space,
the same signal handlers, and the same set of open files. Using clone () in this
fashion is equivalent to creating a thread in other systems, since the parent task
shares most of its resources with its child task. However, if none of these flags is
set when clone () is invoked, no sharing takes place, resulting in functionality
similar to the f ork() system call.

The lack of distinction between processes and threads is possible because
Linux does not hold a process's entire context within the main process data
structure; rather, it holds the context within independent subcontexts. Thus,
a process's file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in separate data structures. The process data
structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext as
appropriate.

The arguments to the clone () system call tell it which subcontexts to copy,
and which to share, when it creates a new process. The new process always is
given a new identity and a new scheduling context; according to the arguments
passed, however, it may either create new subcontext data structures initialized
to be copies of the parent's or set up the new process to use the same subcontext
data structures being used by the parent. The fork() system call is nothing
more than a special case of clone O that copies all subcontexts, sharing none.

21.5 Scheduling

Scheduling is the job of allocating CPU time to different tasks within an
operating system. Normally, we think of scheduling as being the running and
interrupting of processes, but another aspect of scheduling is also important
to Linux: the running of the various kernel tasks. Kernel tasks encompass both
tasks that are requested by a running process and tasks that execute internally
on behalf of a device driver.

21.5.1 Process Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing
algorithm for fair, preemptive scheduling among multiple processes; the other
is designed for real-time tasks, where absolute priorities are more important
than fairness.

The scheduling algorithm used for routine, time-sharing tasks received a
major overhaul with version 2.5 of the kernel. Prior to version 2.5, the Linux
kernel ran a variation of the traditional UNIX scheduling algorithm. Among
other issues, problems with the traditional UNIX scheduler are that it does
not provide adequate support for SMP systems and that it does not scale well
as the number of tasks on the system grows. The overhaul of the scheduler
with version 2.5 of the kernel now provides a scheduling algorithm that runs
in constant time—known as O(l)—regardless of the number of tasks on the
system. The new scheduler also provides increased support for SMP, including

https://hemanthrajhemu.github.io

752 Chapter 21 The Linux System

numeric
priority

0
•
*
*

99
100

•
•
•

140

relative
priority

highest

lowest

real-time
tasks

other
tasks

time
quantum

200 ms

10 ms

Figure 21.2 The relationship between priorities and time-slice length.

processor affinity and load balancing, as well as maintaining fairness and
support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, Linux assigns higher-priority
tasks longer time quanta and vice-versa. Because of the unique nature of the
scheduler, this is appropriate for Linux, as we shall soon see. The relationship
between priorities and time-slice length is shown in Figure 21.2.

A runnable task is considered eligible for execution on the CPU so long as
it has time remaining in its time slice. When a task has exhausted its time slice,
it is considered expired and is not eligible for execution again until all other
tasks have also exhausted their time quanta. The kernel maintains a list of all
runnable tasks in a runqueue data structure. Because of its support for SMP,
each processor maintains its own runqueue and schedules itself independently.
Each runqueue contains two priority arrays—active and expired. The active
array contains all tasks with time remaining in their time slices, and the expired
array contains all expired tasks. Each of these priority arrays includes a list of
tasks indexed according to priority (Figure 21.3). The scheduler chooses the
task with the highest priority from the active array for execution on the CPU.
On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks
have exhausted their time slices (that is, the active array is empty), the two
priority arrays are exchanged as the expired array becomes the active array
and vice-versa.

Tasks are assigned dynamic priorities that are based on the nice value plus
or minus up to the value 5 based upon the interactivity of the task. Whether
a value is added to or subtracted from a task's nice value depends on the
interactivity of the task. A task's interactivity is determined by how long it has
been sleeping while waiting for I/O. Tasks that are more interactive typically
have longer sleep times and therefore are more likely to have an adjustment
closer to -5, as the scheduler favors such interactive tasks. Conversely, tasks
with shorter sleep times are often more CPU-bound and thus will have their
priorities lowered.

https://hemanthrajhemu.github.io

21.5 Scheduling 753

active expired
array array

priority task lists priority task lists
[0] O—O [0] O—O—O
[1] O K X) [1] O

[140] O [140] O - O

Figure 21.3 List of tasks indexed according to priority.

The recalculation of a task's dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

Linux's real-time scheduling is simpler still. Linux implements the two real-
time scheduling classes required by POSIX.lb: first-come, first-served (FCFS) and
round-robin (Sections 5.3.1 and 5.3.4, respectively). In both cases, each process
has a priority in addition to its scheduling class. Processes of different priorities
can compete with one another to some extent in time-sharing scheduling; in
real-time scheduling, however, the scheduler always runs the process with the
highest priority. Among processes of equal priority, it runs the process that
has been waiting longest. The only difference between FCFS and round-robin
scheduling is that FCFS processes continue to run until they either exit or
block, whereas a round-robin process will be preempted after a while and
will be moved to the end of the scheduling queue, so round-robin processes of
equal priority will automatically time-share among themselves. Unlike routine
time-sharing tasks, real-time tasks are assigned static priorities.

Linux's real-time scheduling is soft—rather than hard—real time. The
scheduler offers strict guarantees about the relative priorities of real-time
processes, but the kernel does not offer any guarantees about how quickly
a real-time process will be scheduled once that process becomes runnable.

21.5.2 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules processes. A request for kernel-mode execution
can occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly—for example, when
a page fault occurs. Alternatively, a device driver may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem posed to the kernel is that all these tasks may try to access the
same internal data structures. If one kernel task is in the middle of accessing
some data structure when an interrupt service routine executes, then that
service routine cannot access or modify the same data without risking data
corruption. This fact relates to the idea of critical sections—portions of code
that access shared data and that must not be allowed to execute concurrently.
As a result, kernel synchronization involves much more than just process

https://hemanthrajhemu.github.io

754 Chapter 21 The Linux System

scheduling. A framework is required that allows kernel tasks to run wfthout
violating the integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a
process running in kernel mode could not be preempted—even if a higher-
priority process became available to run. With version 2.6, the Linux kernel
became fully preemptive; so a task can now be preempted when it is running
in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader-
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock; the kernel is designed so that
the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding a
spinlock, the task disables kernel preemption. When the task would otherwise
release the spinlock, it enables kernel preemption. This pattern is summarized
below:

single processor

Disable kernel preemption.

Enable kernel preemption.

multiple processors

Acquire spin lock.

Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt.disable 0 and pre-
empt .enable () —for disabling and enabling kernel preemption. However, in
addition, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task in the system has a thread-info structure that
includes the field preempt_count, which is a counter indicating the number
of locks being held by the task. When a lock is acquired, preempt_count is
incremented. Likewise, it is decremented when a lock is released. If the value
of preempt .count for the task currently running is greater than zero, it is not
safe to preempt the kernel, as this task currently holds a lock. If the count is
zero, the kernel can safely be interrupted, assuming there are no outstanding
calls to preempt_disable().

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when the lock is held for short durations. When a lock
must be held for longer periods, semaphores are used.

The second protection technique that Linux uses applies to critical sections
that occur in interrupt service routines. The basic tool is the processor's
interrupt-control hardware. By disabling interrupts (or using spinlocks) during
a critical section, the kernel guarantees that it can proceed without the risk of
concurrent access of shared data structures.

However, there is a penalty for disabling interrupts. On most hardware
architectures, interrupt enable and disable instructions are expensive. Further-
more, as long as interrupts remain disabled, all I/O is suspended, and any
device waiting for servicing will have to wait until interrupts are reenabled; so
performance degrades. The Linux kernel uses a synchronization architecture
that allows long critical sections to run for their entire duration without having
interrupts disabled. This ability is especially useful in the networking code: An

https://hemanthrajhemu.github.io

21.5 Scheduling 755

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible)

user-mode programs (preemptible)

Figure 21.4 Interrupt protection levels.

interrupt in a network device driver can signal the arrival of an entire network
packet, which may result in a great deal of code being executed to disassemble,
route, and forward that packet within the interrupt service routine.

Linux implements this architecture by separating interrupt service routines
into two sections: the top half and the bottom half. The top half is a normal
interrupt service routine and runs with recursive interrupts disabled; interrupts
of a higher priority may interrupt the routine, but interrupts of the same
or lower priority are disabled. The bottom half of a service routine is run,
with all interrupts enabled, by a miniature scheduler that ensures that bottom
halves never interrupt themselves. The bottom-half scheduler is invoked
automatically whenever an interrupt service routine exits.

This separation means that the kernel can complete any complex processing
that has to be done in response to an interrupt without worrying about being
interrupted itself. If another interrupt occurs while a bottom half is executing,
then that interrupt can request that the same bottom half execute, but the
execution will be deferred until the one currently running completes. Each
execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom half.

The top-half/bottom-half architecture is completed by a mechanism for
disabling selected bottom halves while executing normal, foreground kernel
code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the
foreground kernel wants to enter a critical section, it can disable any relevant
bottom halves to prevent any other critical sections from interrupting it. At
the end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 21.4 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level
but will never be interrupted by code running at the same or a lower level;
except for user-mode code, user processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs.

21.5.3 Symmetric Multiprocessing

The Linux 2.0 kernel was the first stable Linux kernel to support symmetric
multiprocessor (SMP) hardware, allowing separate processes to execute in
parallel on separate processors. Originally, the implementation of SMP imposed

https://hemanthrajhemu.github.io

756 Chapter 21 The Linux System

the restriction that only one processor at a time could be executing kernel-anode
code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for "big kernel lock") was created to allow multiple processes (running
on different processors) to be active in the kernel concurrently. However, the
BKL provided a very coarse level of locking granularity. Later releases of the
kernel made the SMP implementation more scalable by splitting this single
kernel spinlock into multiple locks, each of which protects only a small subset
of the kernel's data structures. Such spinlocks are described in Section 21.5.2.
The 2.6 kernel provided additional SMP enhancements, including processor
affinity and load-balancing algorithms.

21.6 Memory Management

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory—pages, groups of pages, and small
blocks of memory. The second handles virtual memory, which is memory
mapped into the address space of running processes. In this section, we
describe these two components and then examine the mechanisms by which
the loadable components of a new program are brought into a process's virtual
memory in response to an exec () system call.

21.6.1 Management of Physical Memory

Due to specific hardware characteristics, Linux separates physical memory into
three different zones identifying different regions of memory. The zones are
identified as:

• Z0NE_DMA

• ZONEJTORMAL

• ZONE_HIGHMEM

These zones are architecture specific. For example, on the Intel 80x86 archi-
tecture, certain ISA (industry standard architecture) devices can only access
the lower 16 MB of physical memory using DMA. On these systems, the
first 16 MB of physical memory comprise ZONE-DMA. ZQNEJIORMAL identifies
physical memory that is mapped to the CPU's address space. This zone is
used for most routine memory requests. For architectures that do not limit
what DMA can access, ZONEJDMA is not present, and ZQNEJJQRMAL is used.
Finally, ZONE_HIGHMEM (for "high memory") refers to physical memory that is
not mapped into the kernel address space. For example, on the 32-bit Intel
architecture (where 232 provides a 4-GB address space), the kernel is mapped
into the first 896 MB of the address space; the remaining memory is referred
to as high memory and is allocated from ZONE_HIGHMEM. The relationship of
zones and physical addresses on the Intel 80x86 architecture is shown in Figure
21.5. The kernel maintains a list of free pages for each zone. When a request for
physical memory arrives, the kernel satisfies the request using the appropriate
zone.

https://hemanthrajhemu.github.io

21.6 Memory Management 757

ZONE :-DMA
. : : • : • • ; ; : ;

ZONE NORMAL

: ZONBJKIGpitSM. ::

:..;:;.;;; pftysfeal memory::- % r

< 16 K/SS

16 ,. 896 MB

;'•-: :;. ::i a > t 9 6 : l t e 'ik 'i '

Figure 21.5 Relationship of zones and physical addresses on the Intel 80x86.

The primary physical-memory manager in the Linux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone, and it is capable of allocating
ranges of physically contiguous pages on request. The allocator uses a buddy
system (Section 9.8.1) to keep track of available physical pages. In this scheme,
adjacent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner (or buddy). Whenever two
allocated partner regions are freed up, they are combined to form a larger
region—a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request
cannot be satisfied by allocation of an existing small free region, then a larger
free region will be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size;
under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 21.6 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultimately, all memory allocations in the Linux kernel are made either
statically, by drivers that reserve a contiguous area of memory during system
boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memory. Several specialized
memory-management subsystems use the underlying page allocator to man-
age their own pools of memory. The most important are the virtual memory
system, described in Section 21.6.2; the kmallocO variable-length allocator;

Figure 21.6 Splitting of memory in the buddy system.

https://hemanthrajhemu.github.io

758 Chapter 21 The Linux System

the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel
provides an additional allocator for arbitrary-sized requests, where the size
of a reqiiest is not known in advance and may be only a few bytes, rather
than an entire page. Analogous to the C language's mallocO function, this
kmalloc () service allocates entire pages on demand but then splits them
into smaller pieces. The kernel maintains a set of lists of pages in use by the
kmalloc () service. Allocating memory involves working out the appropriate
list and either taking the first free piece available on the list or allocating a new
page and splitting it up. Memory regions claimed by the kmalloc() system
are allocated permanently until they are freed explicitly; the kmalloc () system
cannot relocate or reclaim these regions in response to memory shortages.

Another strategy adopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data
structures and is made up of one or more physically contiguous pages. A
cache consists of one or more slabs and there is a single cache for each unique
kernel data structure —for example, a cache for the data structure representing
process descriptors, a cache for file objects, a cache for semaphores, and
so forth. Each cache is populated with objects that are instantiations of the
kernel data structure the cache represents. For example, the cache representing
semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, etc. The
relationship among slabs, caches, and objects is shown in Figure 21.7. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initially marked as free—are
allocated to the cache. The number of objects in the cache depends on the size of

kernel objects caches slabs

3-KB
objects

7-KB
objects

physically
contiguous
pages

Figure 21.7 Slab allocator in Linux.

https://hemanthrajhemu.github.io

21.6 Memory Management 759

the associated slab. For example, a 12-KB slab (comprised of three contirjguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type s t ruc t task_st ruct , which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the s t r u c t task_struct object from its
cache. The cache will fulfill the request using a s t ruc t task_st ruct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. AH objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The other two main subsystems in Linux that do their own management
of physical pages are closely related to one another. These are the page cache
and the virtual memory system. The page cache is the kernel's main cache for
block-oriented devices and memory-mapped files and is the main mechanism
through which I/O to these devices is performed. Both the native Linux disk-
based file systems and the NFS networked file system use the page cache.
The page cache caches entire pages of file contents and is not limited to block
devices; it can also cache networked data. The virtual memory system manages
the contents of each process's virtual address space. These two systems interact
closely with one another because reading a page of data into the page cache
requires mapping pages in the page cache using the virtual memory system. In
the following sections, we look at the virtual memory system in greater detail.

21.6.2 Virtual Memory

The Linux virtual memory system is responsible for maintaining the address
space visible to each process. It creates pages of virtual memory on demand
and manages the loading of those pages from disk or their swapping back out
to disk as required. Under Linux, the virtual memory manager maintains two
separate views of a process's address space: as a set of separate regions and as
a set of pages.

The first view of an address space is the logical view, describing instructions
that the virtual memory system has received concerning the layout of the
address space. In this view, the address space consists of a set of nonoverlapping
regions, each region representing a continuous, page-aligned subset of the
address space. Each region is described internally by a single vm_area_struct

https://hemanthrajhemu.github.io

760 Chapter 21 The Linux System

structure that defines the properties of the region, including the process's read,
write, and execute permissions in the region, and information about any files
associated with the region. The regions for each address space are linked into
a balanced binary tree to allow fast lookup of the region corresponding to any
virtual address.

The kernel also maintains a second, physical view of each address space.
This view is stored in the hardware page tables for the process. The page-table
entries determine the exact current location of each page of virtual memory,
whether it is on disk or in physical memory. The physical view is managed
by a set of routines invoked from the kernel's software-intermpt handlers
whenever a process tries to access a page that is not currently present in the page
tables. Each vm_axea^struct in the address-space description contains a field
that points to a table of functions that implement the key page-management
functions for any given virtual memory region. All requests to read or write
an unavailable page are eventually dispatched to the appropriate handler
in the function table for the vm_area_struct, so that the central memory-
management routines do not have to know the details of managing each
possible type of memory region.

21.6.2.1 Virtual Memory Regions

Linux implements several types of virtual memory regions. The first property
that characterizes a type of virtual memory is the backing store for the region,
which describes where the pages for a region come from. Most memory regions
are backed either by a file or by nothing. A region backed by nothing is
the simplest type of virtual memory. Such a region represents demand-zero
memory: When a process tries to read a page in such a region, it is simply given
back a page of memory filled with zeros.

A region backed by a file acts as a viewport onto a section of that file:
Whenever the process tries to access a page within that region, the page table
is filled with the address of a page within the kernel's page cache corresponding
to the appropriate offset in the file. The same page of physical memory is used
both by the page cache and by the process's page tables, so any changes made
to the file by the file system are immediately visible to any processes that have
mapped that file into their address space. Any number of processes can map
the same region of the same file, and they will all end up using the same page
of physical memory for the purpose.

A virtual memory region is also defined by its reaction to writes. The
mapping of a region into the process's address space can be either private or
shared. If a process writes to a privately mapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In
contrast, writes to a shared region result in updating of the object mapped into
that region, so that the change will be visible immediately to any other process
that is mapping that object.

21.6.2.2 Lifetime of a Virtual Address Space

The kernel will create a new virtual address space in two situations: when a
process runs a new program with the execO system call and on creation of
a new process by the f ork() system call. The first case is easy: When a new
program is executed, the process is given a new, completely empty virtual

https://hemanthrajhemu.github.io

21.6 Memory Management 761

address space. It is up to the routines for loading the program to populate the
address space with virtual memory regions.

The second case, creating a new process with f ork (), involves creating
a complete copy of the existing process's virtual address space. The kernel
copies the parent process's vm_area_struct descriptors, then creates a new set
of page tables for the child. The parent's page tables are copied directly into
the child's, and the reference count of each page covered is incremented; thus,
after the fork, the parent and child share the same physical pages of memory
in their address spaces.

A special case occurs when the copying operation reaches a virtual memory
region that is mapped privately. Any pages to which the parent process has
written within such a region are private, and subsequent changes to these pages
by either the parent or the child must not update the page in the other process's
address space. When the page-table entries for such regions are copied, they
are set to be read only and are marked for copy-on-write. As long as neither
process modifies these pages, the two processes share the same page of physical
memory However, if either process tries to modify a copy-on-write page, the
reference count on the page is checked. If the page is still shared, then the
process copies the page's contents to a brand-new page of physical memory
and uses its copy instead. This mechanism ensures that private data pages
are shared between processes whenever possible; copies are made only when
absolutely necessary.

21.6.2.3 Swapping and Paging

An important task for a virtual memory system is to relocate pages of memory
from physical memory out to disk when that memory is needed. Early UNIX
systems performed this relocation by swapping out the contents of entire
processes at once, but modern versions of UNIX rely more on paging—the
movement of individual pages of virtual memory between physical memory
and disk. Linux does not implement whole-process swapping; it uses the newer
paging mechanism exclusively.

The paging system can be divided into two sections. First, the policy
algorithm decides which pages to write out to disk and when to write them.
Second, the paging mechanism carries out the transfer and pages data back
into physical memory when they are needed again.

Linux's pageout policy uses a modified version of the standard clock (or
second-chance) algorithm described in Section 9.4.5.2. Under Linux, a multiple-
pass clock is used, and every page has an age. that is adjusted on each pass of
the clock. The age is more precisely a measure of the page's youthfulness, or
how much activity the page has seen recently. Frequently accessed pages will
attain a higher age value, but the age of infrequently accessed pages will drop
toward zero with each pass. This age valuing allows the pager to select pages
to page out based on a least frequently used (LFU) policy.

The paging mechanism supports paging both to dedicated swap devices
and partitions and to normal files, although swapping to a file is significantly
slower due to the extra overhead incurred by the file system. Blocks are
allocated from the swap devices according to a bitmap of used blocks, which
is maintained in physical memory at all times. The allocator uses a next-fit
algorithm to try to write out pages to continuous runs of disk blocks for

https://hemanthrajhemu.github.io

762 Chapter 21 The Linux System

improved performance. The allocator records the fact that a page has been
paged out to disk by using a feature of the page tables on modern processors:
The page-table entry's page-not-present bit is set, allowing the rest of the
page-table entry to be filled with an index identifying where the page has bef i
written.

21.6.2.4 Kernel Virtual Memory

Linux reserves for its own internal use a constant, architecture-dependent
region of the virtual address space of every process. The page-table entries
that map to these kernel pages are marked as protected, so that the pages are
not visible or modifiable when the processor is running in user mode. This
kernel virtual memory area contains two regions. The first is a static area that
contains page-table references to every available physical page of memory
in the system, so that a simple translation from physical to virtual addresses
occurs when kernel code is run. The core of the kernel, along with all pages
allocated by the normal page allocator, resides in this region.

The remainder of the kernel's reserved section of address space is not
reserved for any specific purpose. Page-table entries in this address range
can be modified by the kernel to point to any other areas of memory. The
kernel provides a pair of facilities that allow processes to use this virtual
memory. The vmallocO function allocates an arbitrary number of physical
pages of memory that may not be physically contiguous into a single region of
virtually contiguous kernel memory. The vremap () function maps a sequence
of virtual addresses to point to an area of memory used by a device driver for
memory-mapped I/O.

21.6.3 Execution and Loading of User Programs

The Linux kernel's execution of user programs is triggered by a call to the
exec () system call. This call commands the kernel to run a new program within
the current process, completely overwriting the current execution context with
the initial context of the new program. The first job of this system service is to
verify that the calling process has permission rights to the file being executed.
Once that matter has been checked, the kernel invokes a loader routine to start
running the program. The loader does not necessarily load the contents of the
program file into physical memory, but it does at least set up the mapping of
the program into virtual memory.

There is no single routine in Linux for loading a new program. Instead,
Linux maintains a table of possible loader functions, and it gives each such
function the opportunity to try loading the given file when an exec () system
call is made. The initial reason for this loader table was that, between the
releases of the 1.0 and 1.2 kernels, the standard format for Linux's binary files
was changed. Older Linux kernels understood the a.out format for binary
files—a relatively simple format common on older UNIX systems. Newer
Linux systems use the more modern ELF format, now supported by most
current UNIX implementations. ELF has a number of advantages over a.out,
including flexibility and extensibility: New sections can be added to an ELF
binary (for example, to add extra debugging information) without causing

https://hemanthrajhemu.github.io

21.6 Memory Management 763

the loader routines to become confused. By allowing registration of multiple
loader routines, Linux can easily support the ELF and a. out binary formats in
a single running system.

In Sections 21.6.3.1 and 21.6.3.2, we concentrate exclusively on the loading
and running of ELF-format binaries. The procedure for loading a. out binaries
is simpler but is similar in operation.

21.6.3.1 Mapping of Programs into Memory

Under Linux, the binary loader does not load a binary file into physical memory.
Rather, the pages of the binary file are mapped into regions of virtual memory.
Only when the program tries to access a given page will a page fault result in
the loading of that page into physical memory using demand paging.

It is the responsibility of the kernel's binary loader to set up the initial
memory mapping. An ELF-format binary file consists of a header followed by
several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Figure 21.8 shows the typical layout of memory regions set up by the ELF
loader. In a reserved region at one end of the address space sits the kernel, in
its own privileged region of \drtual memory inaccessible to normal user-mode
programs. The rest of virtual memory is available to applications, which can use
the kernel's memory-mapping functions to create regions that map a portion
of a file or that are available for application data.

The loader's job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized include
the stack and the program's text and data regions.

The stack is created at the top of the user-mode virtual memory; it
grows downward toward lower-mimbered addresses. It includes copies of the

kernel virtual memory

stack

memory-mapped region

memory-mapped region

memory-mapped region

±
run-time data

uninitialized data
initialized data
program text

memory invisible to user-mode code

the 'brk' pointer

forbidden region

Figure 21.8 Memory layout for ELF programs.

https://hemanthrajhemu.github.io

764 Chapter 21 The Linux System

arguments and environment variables given to the program in the execO
system call. The other regions are created near the bottom end of virtual
memory. The sections of the binary file that contain program text or read-only
data are mapped into memory as a write-protected region. Writable initialized
data are mapped next; then any uninitialized data are mapped in as a private
demand-zero region.

Directly beyond these fixed-sized regions is a variable-sized region that
programs can expand as needed to hold data allocated at run time. Each
process has a pointer, brk, that points to the current extent of this data region,
and processes can extend or contract their brk region with a single system call
—sbrkO.

Once these mappings have been set up, the loader initializes the process's
program-counter register with the starting point recorded in the ELF header,
and the process can be scheduled.

21.6.3.2 Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary
contents of the binary file have been loaded into the process's virtual address
space. However, most programs also need to run functions from the system
libraries, and these library functions also need to be loaded. In the simplest
case, the necessary library functions are embedded directly in the program's
executable binary file. Such a program is statically linked to its libraries, and
statically linked executables can commence running as soon as they are loaded.

The main disadvantage of static linking is that every program generated
must contain copies of exactly the same common system library functions. It is
much more efficient, in terms of both physical memory and disk-space usage,
to load the system libraries into memory only once. Dynamic linking allows
this single loading to happen.

Linux implements dynamic linking in user mode through a special linker
library. Every dynamically linked program contains a small, statically linked
function that is called when the program starts. This static function just maps
the link library into memory and runs the code that the function contains. The
link library determines the dynamic libraries required by the program and the
names of the variables and functions needed from those libraries by reading the
information contained in sections of the ELF binary. It then maps the libraries
into the middle of virtual memory and resolves the references to the symbols
contained in those libraries. It does not matter exactly where in memory these
shared libraries are mapped: They are compiled into position-independent
code (PIC), which can run at any address in memory.

21.7 File Systems

Linux retains UNIX's standard file-system model. In UNIX, a file does not have
to be an object stored on disk or fetched over a network from a remote file
server. Rather, UNIX files can be anything capable of handling the input or
output of a stream of data. Device drivers can appear as files, and interprocess-
communication channels or network connections also look like files to the
user.

https://hemanthrajhemu.github.io

21.7 File Systems 765

The Linux kernel handles all these types of file by hiding the implemen-
tation details of any single file type behind a layer of software, the virtual file
system (VFS). Here, we first cover the virtual file system and then discuss the
standard Linux file system—ext2fs.

21.7.1 The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two
components: a set of definitions that specify what file-system objects are
allowed to look like and a layer of software to manipulate the objects. The
VFS defines four main object types:

• An inode object represents an individual file.

• A file object represents an open file.

• A superblock object represents an entire file system.

• A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations.
Every object of one of these types contains a pointer to a function table. The
function table lists the addresses of the actual functions that implement the
defined operations for that object. For example, an abbreviated API for some of
the file object's operations includes:

• in t open (. . .) — Open a file.

• ssize_t r ead(. . .) —Read from a file.

• ssize_t wri te (. . .) —Write to a file.

• in t mmap (. . .) — Memory-map a file.

The complete definition of the file object is specified in the s t ruc t
f i le_operat ions, which is located in the file / u s r / i n c l u d e / l i n u x / f s . h .
An implementation of the file object (for a specific file type) is required to
implement each function specified in the definition of the file object.

The VFS software layer can perform an operation on one of the file-system
objects by calling the appropriate function from the object's function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a networked
file, a disk file, a network socket, or a directory file. The appropriate function
for that file's readQ operation will always be at the same place in its function
table, and the VFS software layer will call that function without caring how the
data are actually read.

The inode and file objects are the mechanisms used to access files. An inode
object is a data structure containing pointers to the disk blocks that contain the
actual hie contents, and a file object represents a point of access to the data in an
open file. A process cannot access an inode's contents without first obtaining a
file object pointing to the inode. The file object keeps track of where in the file
the process is currently reading or writing, to keep track of sequential file I/O. It
also remembers whether the process asked for write permissions when the file

https://hemanthrajhemu.github.io

766 Chapter 21 The Linux System

was opened and tracks the process's activity if necessary to perform adaptive
read-ahead, fetching file data into memory before the process requests the data,
to improve performance.

File objects typically belong to a single process, but inode objects do not.
Even when a file is no longer being used by any processes, its inode object
may still be cached by the VFS to improve performance if the file is used again
in the near future. All cached file data are linked onto a list in the file's inode
object. The inode also maintains standard information about each file, such as
the owner, size, and time most recently modified.

Directory files are dealt with slightly differently from other files. The UNIX
programming interface defines a number of operations on directories, such as
creating, deleting, and renaming a file in a directory. The system calls for these
directory operations do not require that the user open the files concerned,
unlike the case for reading or writing data. The VFS therefore defines these
directory operations in the inode object, rather than in the file object.

The superblock object represents a connected set of files that form a
self-contained file system. The operating-system kernel maintains a single
superblock object for each disk device mounted as a file system and for
each networked file system currently connected. The main responsibility of
the superblock object is to provide access to inodes. The VFS identifies every
inode by a unique (file-system/inode number) pair, and it finds the inode
corresponding to a particular inode number by asking the superblock object to
return the inode with that number.

Finally, a dentry object represents a directory entry that may include the
name of a directory in the path name of a file (such as /usr) or the actual file
(such as s t d i o . h). For example, the file A i s r / i nc lude / s td io . h contains the
directory entries (1) /, (2) usr, (3) include, and (4) s td io .h. Each one of these
values is represented by a separate dentry object.

As an example of how dentry objects are used, consider the situ-
ation in which a process wishes to open the file with the pathname
/ u s r / i n c l u d e / s t d i o . h using an editor. Because Linux treats directory names
as files, translating this path requires first obtaining the inode for the root—
/. The operating system must then read through this file to obtain the inode
for the file include. It must continue this process until it obtains the inode for
the file s td io . h. Because path-name translation can be a time-consuming task,
Linux maintains a cache of dentry objects, which is consulted during path-name
translation. Obtaining the inode from the dentry cache is considerably faster
than having to read the on-disk file.

21.7.2 The Linux ext2fs File System

The standard on-disk file system used by Linux is called ext2fs, for historical
reasons. Linux was originally programmed with a Minix-compatible file
system, to ease exchanging data with the Minix development system, but
that file system was severely restricted by 14-character file-name limits and a
maximum file-system size of 64 MB. The Minix file system was superseded by
a new file system, which was christened the extended file system (extfs). A
later redesign of this file system to improve performance and scalability and
to add a few missing features led to the second extended file system (ext2fs).

https://hemanthrajhemu.github.io

21.7 File Systems 767

Linuxs ext2fs has much in common with the BSD Fast File Systen] (FFS)
(Section A.7.7). It uses a similar mechanism for locating the data blocks
belonging to a specific file, storing data-block pointers in indirect blocks
throughout the file system with up to three levels of indirection. As in FFS,
directory files are stored on disk just like normal files, although their contents
are interpreted differently. Each block in a directory file consists of a linked list
of entries; each entry contains the length of the entry, the name of a file, and
the inode number of the inode to which that entry refers.

The main differences between ext2fs and FFS lie in their disk-allocation
policies. In FFS, the disk is allocated to files in blocks of 8 KB. These blocks are
subdivided into fragments of 1 KB for storage of small files or partially filled
blocks at the ends of files. In contrast, ext2fs does not use fragments at all but
performs all its allocations in smaller units. The default block size on ext2fs is
1 KB, although 2-KB and 4-KB blocks are also supported.

To maintain high performance, the operating system must try to perform
I/O operations in large chunks whenever possible by clustering physically
adjacent I/O requests. Clustering reduces the per-request overhead incurred
by device drivers, disks, and disk-controller hardware. A 1-KB I/O request size
is too small to maintain good performance, so ext2fs uses allocation policies
designed to place logically adjacent blocks of a file into physically adjacent
blocks on disk, so that it can submit an I/O request for several disk blocks as a
single operation.

The ext2fs allocation policy comes in two parts. As in FFS, an ext2fs file
system is partitioned into multiple block groups. FFS uses the similar concept
of cylinder groups, where each group corresponds to a single cylinder of a
physical disk. However, modern disk-drive technology packs sectors onto the
disk at different densities, and thus with different cylinder sizes, depending
on how far the disk head is from the center of the disk. Therefore, fixed-sized
cylinder groups do not necessarily correspond to the disk's geometry.

When allocating a file, ext2fs must first select the block group for that file.
For data blocks, it attempts to allocate the file to the block group to which the
file's inode has been allocated. For inode allocations, it selects the block group
in which the file's parent directory resides, for nondirectory files. Directory
files are not kept together but rather are dispersed throughout the available
block groups. These policies are designed not only to keep related information
within the same block group but also to spread out the disk load among the
disk's block groups to reduce the fragmentation of any one area of the disk.

Within a block group, ext2fs tries to keep allocations physically contiguous
if possible, reducing fragmentation if it can. It maintains a bitmap of all free
blocks in a block group. When allocating the first blocks for a new file, it
starts searching for a free block from the beginning of the block group; when
extending a file, it continues the search from the block most recently allocated
to the file. The search is performed in two stages. First, ext2fs searches for an
entire free byte in the bitmap; if it fails to find one, it looks for any free bit.
The search for free bytes aims to allocate disk space in chunks of at least eight
blocks where possible.

Once a free block has been identified, the search is extended backward until
an allocated block is encountered. When a free byte is found in the bitmap, this
backward extension prevents ext2fs from leaving a hole between the most
recently allocated block in the previous nonzero byte and the zero byte found.

https://hemanthrajhemu.github.io

768 Chapter 21 The Linux System

allocating scattered free blocks

m 1 i-i
: i

• • •

1 A A A A AA

allocating continuous free blocks

: :

/

•

•

A

block in use

free block

block selected
by allocator

bitmap search

bit boundary

byte boundary

Figure 21.9 ext2fs block-allocation policies.

Once the next block to be allocated has been found by either bit or byte search,
ext2fs extends the allocation forward for up to eight blocks and preallocates
these extra blocks to the file. This preallocation helps to reduce fragmentation
during interleaved writes to separate files and also reduces the CPU cost of
disk allocation by allocating multiple blocks simultaneously. The preallocated
blocks are returned to the free-space bitmap when the file is closed.

Figure 21.9 illustrates the allocation policies. Each row represents a
sequence of set and unset bits in an allocation bitmap, indicating used and
free blocks on disk. In the first case, if we can find any free blocks sufficiently
near the start of the search, then we allocate them no matter how fragmented
they may be. The fragmentation is partially compensated for by the fact that
the blocks are close together and can probably all be read without any disk
seeks, and allocating them all to one file is better in the long run than allocating
isolated blocks to separate files once large free areas become scarce on disk. In
the second case, we have not immediately found a free block close by, so we
search forward for an entire free byte in the bitmap. If we allocated that byte as
a whole, we would end up creating a fragmented area of free space before it, so
before allocating we back up to make this allocation flush with the allocation
preceding it, and then we allocate forward to satisfy the default allocation of
eight blocks.

21.7.3 Journaling

Many different types of file systems are available for Linux systems. One
popular feature in a file system is journaling, whereby modifications to the file
system are sequentially written to a journal. A set of operations that performs
a specific task is a transaction. Once a transaction is written to the journal, it
is considered to be committed, and the system call modifying the file system

https://hemanthrajhemu.github.io

21.7 File Systems 769

(i.e. wri te ()) can return to the user process, allowing it to continue execution.
Meanwhile, the journal entries relating to the transaction are replayed across
the actual file-system structures. As the changes are made, a pointer is updated
to indicate which actions have completed and which are still incomplete.
When an entire committed transaction is completed, it is removed from the
journal. The journal, which is actually a circular buffer, may be in a separate
section of the file system, or it may even be on a separate disk spindle. It is
more efficient, but more complex, to have it under separate read-write heads,
thereby decreasing head contention and seek times.

If the system crashes, there will be zero or more transactions in the journal.
Those transactions were never completed to the file system even though they
were committed by the operating system, so they must be completed. The
transactions can be executed from the pointer until the work is complete, and
the file-system structures remain consistent. The only problem occurs when a
transaction has been aborted. That is, it was not committed before the system
crashed. Any changes from those transactions that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating all problems with
consistency checking.

Journaling file systems are also typically faster than non-journaling sys-
tems, as updates proceed much faster when they are applied to the in-memory
journal rather than directly to the on-disk data structures. The reason for this
improvement is found in the performance advantage of sequential I/O over
random I/O. The costly synchronous random writes to the file system are
turned into much less costly synchronous sequential writes to the file system's
journal. Those changes in turn are replayed asynchronously via random writes
to the appropriate structures. The overall result is a significant gain in perfor-
mance of file system metadata-oriented operations, such as file creation and
deletion.

Journaling is not provided in ext2fs. It is provided, however, in another
common file system available for Linux systems, ext3, which is based on ext2fs.

21.7.4 The Linux proc File System

The flexibility of the Linux VFS enables us to implement a file system that does
not store data persistently at all but rather simply provides an interface to
some other functionality. The Linux process file system, known as the /proc
file system, is an example of a file system whose contents are not actually stored
anywhere but are computed on demand according to user file I/O requests.

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc
file system as an efficient interface to the kernel's process debugging support:
Each subdirectory of the file system corresponded not to a directory on any
disk but rather to an active process on the current system. A listing of the file
system reveals one directory per process, with the directory name being the
ASCII decimal representation of the process's unique process identifier (PID).

Linux implements such a /proc file system but extends it greatly by
adding a number of extra directories and text files under the file system's root
directory. These new entries correspond to various statistics about the kernel
and the associated loaded drivers. The /proc file system provides a way for
programs to access this information as plain text files, which the standard

https://hemanthrajhemu.github.io

770 Chapter 21 The Linux System

UNIX user environment provides powerful tools to process. For example, in
the past, the traditional UNIX ps command for listing the states of all running
processes has been implemented as a privileged process that reads the process
state directly from the kernel's virtual memory. Under Linux, this command
is implemented as an entirely unprivileged program that simply parses and
formats the information from /proc.

The /proc file system must implement two things: a directory structure
and the file contents within. Given that a UNIX file system is defined as a set
of file and directory inodes identified by their inode numbers, the /proc file
system must define a unique and persistent inode number for each directory
and the associated files. Once such a mapping exists, it can use this inode
number to identify just what operation is required when a user tries to read
from a particular file inode or to perform a lookup in a particular directory
inode. When data are read from one of these files, the /proc file system will
collect the appropriate information, format it into textual form, and place it
into the requesting process's read buffer.

The mapping from inode number to information type splits the inode
number into two fields. In Linux, a PID is 16 bits wide, but an inode number is
32 bits. The top 16 bits of the inode number are interpreted as a PID, and the
remaining bits define what type of information is being requested about that
process.

A PID of zero is not valid, so a zero PID field in the inode number is
taken to mean that this inode contains global—rather than process-specific—
information. Separate global files exist in /proc to report information such as
the kernel version, free memory, performance statistics, and drivers currently
running.

Not all the inode numbers in this range are reserved. The kernel can allocate
new /proc inode mappings dynamically, maintaining a bitmap of allocated
inode numbers. It also maintains a tree data structure of registered global /proc
file-system entries. Each entry contains the file's inode number, file name, and
access permissions, along with the special functions used to generate the file's
contents. Drivers can register and Reregister entries in this tree at any time,
and a special section of the tree—appearing under the /proc/sys directory—
is reserved for kernel variables. Files under this tree are dealt with by a set
of common handlers that allow both reading and writing of these variables,
so a system administrator can tune the value of kernel parameters simply by
writing the new desired values out in ASCII decimal to the appropriate file.

To allow efficient access to these variables from within applications, the
/proc/sys subtree is made available through a special system call, s y s c t l O ,
that reads and writes the same variables in binary, rather than in text, without
the overhead of the file system, sysc t l () is not an extra facility; it simply reads
the /proc dynamic entry tree to decide to which variables the application is
referring.

21.8 Input and Output

To the user, the I/O system in Linux looks much like that in any UNIX system.
That is, to the extent possible, all device drivers appear as normal files. A
user can open an access channel to a device in the same way she opens any

https://hemanthrajhemu.github.io

21.8 Input and Output

user application

771

i

file system j . b!ock..,
| device file

I/O scheduler

block 1 SCSI manager

device [S C S | deVice
d n v e r driver

character
device file

1.;:;,.:;,..;;; i,I;;.;;

ji. ,;;..;;; ; ; , . : ; ; . ; : , I;

l : ::: : : ::: :: : ::

character
device
driver

network
socket

;ij protocol
•j driver

network
device
driver

Figure 21.10 Device-driver block structure.

other file—devices can appear as objects within the file system. The system
administrator can create special files within a file system that contain references
to a specific device driver, and a user opening such a file will be able to read
from and write to the device referenced. By using the normal file-protection
system, which determines who can access which file, the administrator can set
access permissions for each device.

Linux splits all devices into three classes: block devices, character devices,
and network devices. Figure 21.10 illustrates the overall structure of the
device-driver system.

Block devices include all devices that allow random access to completely
independent, fixed-sized blocks of data, including hard disks and floppy disks,
CD-ROMs, and flash memory. Block devices are typically used to store file
systems, but direct access to a block device is also allowed so that programs
can create and repair the file system that the device contains. Applications can
also access these block devices directly if they wish; for example, a database
application may prefer to perform its own, fine-tuned laying out of data onto
the disk, rather than using the general-purpose file system.

Character devices include most other devices, such as mice and keyboards.
The fundamental difference between block and character devices is random
access—block devices may be accessed randomly, while character devices are
only accessed serially. For example, seeking to a certain position in a file might
be supported for a DVD but makes no sense to a pointing device such as a
mouse.

Network devices are dealt with differently from block and character
devices. Users cannot directly transfer data to network devices; instead,
they must communicate indirectly by opening a connection to the kernel's
networking subsystem. We discuss the interface to network devices separately
in Section 21.10.

21.8.1 Block Devices

Block devices provide the main interface to all disk devices in a system.
Performance is particularly important for disks, and the block-device system
must provide functionality to ensure that disk access is as fast as possible. This
functionality is achieved through the scheduling of I/O operations.

https://hemanthrajhemu.github.io

772 Chapter 21 The Linux System

In the context of block devices, a block represents the unit with which the
kernel performs I/O. When a block is read into memory, it is stored in a buffer.
The request manager is the layer of software that manages the reading and
writing of buffer contents to and from a block-device driver.

A separate list of requests is kept for each block-device driver. Traditionally,
these requests have been scheduled according to a unidirectional-elevator
(C-SCAN) algorithm that exploits the order in which requests are inserted in
and removed from the per-device lists. The request lists are maintained in
sorted order of increasing starting-sector number. When a request is accepted
for processing by a block-device driver, it is not removed from the list. It is
removed only after the I/O is complete, at which point the driver continues
with the next request in the list, even if new requests have been inserted into
the list before the active request. As new I/O requests are made, the request
manager attempts to merge requests in the per-device lists.

The scheduling of I/O operations changed somewhat with version 2.6 of
the kernel. The fundamental problem with the elevator algorithm is that I/O
operations concentrated in a specific region of the disk can result in starvation
of requests that need to occur in other regions of the disk. The deadline
I/O scheduler used in version 2.6 works similarly to the elevator algorithm
except that it also associates a deadline with each request, thus addressing
the starvation issue. By default, the deadline for read requests is 0.5 second
and that for write requests is 5 seconds. The deadline scheduler maintains a
sorted queue of pending I/O operations sorted by sector number. However,
it also maintains two other queues—a read queue for read operations and a
write queue for write operations. These two queues are ordered according to
deadline. Every I/O request is placed in both the sorted queue and either the
read or the write queue, as appropriate. Ordinarily, I/O operations occur from
the sorted queue. However, if a deadline expires for a request in either the read
or the write queue, I/O operations are scheduled from the queue containing the
expired request. This policy ensures that an I/O operation will wait no longer
than its expiration time.

21.8.2 Character Devices

A character-device driver can be almost any device driver that does not offer
random access to fixed blocks of data. Any character-device drivers registered
to the Linux kernel must also register a set of functions that implement the
file I/O operations that the driver can handle. The kernel performs almost no
preprocessing of a file read or write request to a character device; it simply
passes the request to the device in question and lets the device deal with the
request.

The main exception to this rule is the special subset of character-device
drivers that implement terminal devices. The kernel maintains a standard
interface to these drivers by means of a set of t ty_s t ruc t structures. Each of
these structures provides buffering and flow control on the data stream from
the terminal device and feeds those data to a line discipline.

A line discipline is an interpreter for the information from the terminal
device. The most common line discipline is the t t y discipline, which glues the
terminal's data stream onto the standard input and output streams of a user's
running processes, allowing those processes to communicate directly with the

https://hemanthrajhemu.github.io

21.9 Interprocess Communication 773

user's terminal. This job is complicated by the fact that several such processes
may be running simultaneously, and the t t y line discipline is responsible for
attaching and detaching the terminal's input and output from the various
processes connected to it as those processes are suspended or awakened by the
user.

Other line disciplines also are implemented that have nothing to do with
I/O to a user process. The PPP and SLIP networking protocols are ways of
encoding a networking connection over a terminal device such as a serial
line. These protocols are implemented under Linux as drivers that at one end
appear to the terminal system as line disciplines and at the other end appear
to the networking system as network-device drivers. After one of these line
disciplines has been enabled on a terminal device, any data appearing on that
terminal will be routed directly to the appropriate network-device driver.

21.9 Interprocess Communication

UNIX provides a rich environment for processes to communicate with each
other. Communication may be just a matter of letting another process know
that some event has occurred, or it may involve transferring data from one
process to another.

21.9.1 Synchronization and Signals

The standard UNIX mechanism for informing a process that an event has
occurred is the signal. Signals canbe sent from any process to any other process,
with restrictions on signals sent to processes owned by another user. However,
a limited number of signals are available, and they cannot carry information:
Only the fact that a signal occurred is available to a process. Signals are not
generated only by processes. The kernel also generates signals internally; for
example, it can send a signal to a server process when data arrive on a network
channel, to a parent process when a child terminates, or to a waiting process
when a timer expires.

Internally, the Linux kernel does not use signals to communicate with
processes running in kernel mode. If a kernel-mode process is expecting an
event to occur, it will not normally use signals to receive notification of that
event. Rather, communication about incoming asynchronous events within
the kernel is performed through the use of scheduling states and wait^queue
structures. These mechanisms allow kernel-mode processes to inform one
another about relevant events, and they also allow events to be generated
by device drivers or by the networking system. Whenever a process wants to
wait for some event to complete, it places itself on a wait queue associated with
that event and tells the scheduler that it is no longer eligible for execution. Once
the event has completed, it will wake up every process on the wait queue. This
procedure allows multiple processes to wait for a single event. For example,
if several processes are trying to read a file from a disk, then they will all be
awakened once the data have been read into memory successfully.

Although signals have always been the main mechanism for commu-
nicating asynchronous events among processes, Linux also implements the
semaphore mechanism of System V UNIX. A process can wait on a semaphore

https://hemanthrajhemu.github.io

774 Chapter 21 The Linux System

as easily as it can wait for a signal, but semaphores have two advantages: Large
numbers of semaphores can be shared among multiple independent processes,
and operations on multiple semaphores can be performed atomically. Inter-
nally, the standard Linux wait queue mechanism synchronizes processes that
are communicating with semaphores.

21.9.2 Passing of Data Among Processes

Linux offers several mechanisms for passing data among processes. The stan-
dard UNIX pipe mechanism allows a child process to inherit a communication
channel from its parent; data written to one end of the pipe can be read at the
other. Under Linux, pipes appear as just another type of inode to virtual-file-
system software, and each pipe has a pair of wait queues to synchronize the
reader and writer. UNIX also defines a set of networking facilities that can send
streams of data to both local and remote processes. Networking is covered in
Section 21.10.

Two other methods of sharing data among processes are available. First,
shared memory offers an extremely fast way to communicate large or small
amounts of data; any data written by one process to a shared memory region
can be read immediately by any other process that has mapped that region into
its address space. The main disadvantage of shared memory is that, on its own,
it offers no synchronization: A process can neither ask the operating system
whether a piece of shared memory has been written to nor suspend execution
until such a write occurs. Shared memory becomes particularly powerful when
used in conjunction with another interprocess-communication mechanism that
provides the missing synchronization.

A shared-memory region in Linux is a persistent object that can be created
or deleted by processes. Such an object is treated as though it were a small
independent address space. The Linux paging algorithms can elect to page
out to disk shared-memory pages, just as they can page out a process's data
pages. The shared-memory object acts as a backing store for shared-memory
regions, just as a file can act as a backing store for a memory-mapped memory
region. When a file is mapped into a virtual-address-space region, then any
page faults that occur cause the appropriate page of the file to be mapped into
virtual memory. Similarly, shared-memory mappings direct page faults to map
in pages from a persistent shared-memory object. Also just as for files, shared-
memory objects remember their contents even if no processes are currently
mapping them into virtual memory.

21.10 Network Structure

Networking is a key area of functionality for Linux. Not only does Linux
support the standard Internet protocols used for most UNIX-to-UNIX com-
munications, but it also implements a number of protocols native to other,
non-UNIX operating systems. In particular, since Linux was originally imple-
mented primarily on PCs, rather than on large workstations or on server-class
systems, it supports many of the protocols typically used on PC networks, such
as AppleTalk and IPX.

https://hemanthrajhemu.github.io

21.10 Network Structure 775

Internally, networking in the Linux kernel is implemented by three layers
of software:

1. The socket interface

2. Protocol drivers

3. Network-device drivers

User applications perform all networking requests through the socket
interface. This interface is designed to look like the 4.3 BSD socket layer, so
that any programs designed to make use of Berkeley sockets will run on Linux
without any source-code changes. This interface is described in Section A.9.1.
The BSD socket interface is sufficiently general to represent network addresses
for a wide range of networking protocols. This single interface is used in Linux
to access not just those protocols implemented on standard BSD systems but all
the protocols supported by the system.

The next layer of software is the protocol stack, which is similar in
organization to BSD's own framework. Whenever any networking data arrive at
this layer, either from an application's socket or from a network-device driver,
the data are expected to have been tagged with an identifier specifying which
network protocol they contain. Protocols can communicate with one another
if they desire; for example, within the Internet protocol set, separate protocols
manage routing, error reporting, and reliable retransmission of lost data.

The protocol layer may rewrite packets, create new packets, split or
reassemble packets into fragments, or simply discard incoming data. Ulti-
mately, once it has finished processing a set of packets, it passes them on, up to
the socket interface if the data are destined for a local connection or downward
to a device driver if the packet needs to be transmitted remotely. The protocol
layer decides to which socket or device to send the packet.

All communication between the layers of the networking stack is per-
formed by passing single skbuff structures. An skbuff contains a set of
pointers into a single continuous area of memory, representing a buffer inside
which network packets can be constructed. The valid data in an skbuff do not
need to start at the beginning of the skbuf f's buffer, and they do not need to
run to the end. The networking code can add data to or trim data from either
end of the packet, as long as the result still fits into the skbuff. This capacity
is especially important on modern microprocessors, where improvements in
CPU speed have far outstripped the performance of main memory. The skbuff
architecture allows flexibility in manipulating packet headers and checksums
while avoiding any unnecessary data copying.

The most important set of protocols in the Linux networking system is the
TCP/IP protocol suite. This suite comprises a number of separate protocols.
The IP protocol implements routing between different hosts anywhere on the
network. On top of the routing protocol are built the UDP, TCP, and ICMP
protocols. The UDP protocol carries arbitrary individual datagrams between
hosts. The TCP protocol implements reliable connections between hosts with
guaranteed in-order delivery of packets and automatic retransmission of lost
data. The ICMP protocol is used to carry various error and status messages
between hosts.

https://hemanthrajhemu.github.io

776 Chapter 21 The Linux System

Packets (skbuf f s) arriving at the networking stack's protocol software are
expected to be already tagged with an internal identifier indicating to which
protocol the packet is relevant. Different networking-device drivers encode
the protocol type in different ways over their communications media; thus, the
protocol for incoming data must be identified in the device driver. The device
driver uses a hash table of known networking-protocol identifiers to look up
the appropriate protocol and passes the packet to that protocol. New protocols
can be added to the hash table as kernel-loadable modules.

Incoming IP packets are delivered to the IP driver. The job of this layer is
to perform routing. After deciding where the packet is destined, it forwards
the packet to the appropriate internal protocol driver to be delivered locally or
injects it back into a selected network-device-driver queue to be forwarded to
another host. It performs the routing decision using two tables: the persistent
forwarding information base (FIB) and a cache of recent routing decisions.
The FIB holds routing-configuration information and can specify routes based
either on a specific destination address or on a wildcard representing multiple
destinations. The FIB is organized as a set of hash tables indexed by destination
address; the tables representing the most specific routes are always searched
first. Successful lookups from this table are added to the route-caching table,
which caches routes only by specific destination; no wildcards are stored in
the cache, so lookups can be made quickly. An entry in the route cache expires
after a fixed period with no hits.

At various stages, the IP software passes packets to a separate section
of code for firewall management—selective filtering of packets according
to arbitrary criteria, usually for security purposes. The firewall manager
maintains a number of separate firewall chains and allows an skbuf f to be
matched against any chain. Chains are reserved for separate purposes: One is
used for forwarded packets, one for packets being input to this host, and one
for data generated at this host. Each chain is held as an ordered list of rules,
where a rule specifies one of a number of possible firewall-decision functions
plus some arbitrary data to match against.

Two other functions performed by the IP driver are disassembly and
reassembly of large packets. If an outgoing packet is too large to be queued to
a device, it is simply split up into smaller fragments, which are all queued to
the driver. At the receiving host, these fragments must be reassembled. The IP
driver maintains an ipf rag object for each fragment awaiting reassembly and
an ipq for each datagram being assembled. Incoming fragments are matched
against each known ipq. If a match is found, the fragment is added to it;
otherwise, a new ipq is created. Once the final fragment has arrived for a
ipq, a completely new skbuf f is constructed to hold the new packet, and this
packet is passed back into the IP driver.

Packets identified by the IP as destined for this host are passed on to one
of the other protocol drivers. The UDP and TCP protocols share a means of
associating packets with source and destination sockets: Each connected pair
of sockets is uniquely identified by its source and destination addresses and
by the source and destination port numbers. The socket lists are linked onto
hash tables keyed on these four address-port values for socket lookup on
incoming packets. The TCP protocol has to deal with unreliable connections, so
it maintains ordered lists of unacknowledged outgoing packets to retransmit

https://hemanthrajhemu.github.io

21.11 Security 777

after a timeout and of incoming out-of-order packets to be presented #to the
socket when the missing data have arrived.

21.11 Security

Linux's security model is closely related to typical UNIX security mechanisms.
The security concerns can be classified in two groups:

1. Authentication. Making sure that nobody can access the system without
first proving that she has entry rights

2. Access control. Providing a mechanism for checking whether a user has
the right to access a certain object and preventing access to objects as
required

21.11.1 Authentication

Authentication in UNIX has typically been performed through the use of a
publicly readable password file. A user's password is combined with a random
"salt" value, and the result is encoded with a one-way transformation function
and stored in the password file. The use of the one-way function means that
the original password cannot be deduced from the password file except by
trial and error. When a user presents a password to the system, the password is
recombined with the salt value stored in the password file and passed through
the same one-way transformation. If the result matches the contents of the
password file, then the password is accepted.

Historically, UNIX implementations of this mechanism have had several
problems. Passwords were often limited to eight characters, and the number
of possible salt values was so low that an attacker could easily combine a
dictionary of commonly used passwords with every possible salt value and
have a good chance of matching one or more passwords in the password
file, gaining unauthorized access to any accounts compromised as a result.
Extensions to the password mechanism have been introduced that keep the
encrypted password secret in a file that is not publicly readable, that allow
longer passwords, or that use more secure methods of encoding the password.
Other authentication mechanisms have been introduced that limit the times
during which a user is permitted to connect to the system or to distribute
authentication information to all the related systems in a network.

A new security mechanism has been developed by UNIX vendors to
address authentication problems. The pluggable authentication modules
(PAM) system is based on a shared library that can be used by any system
component that needs to authenticate users. An implementation of this system
is available under Linux. PAM allows authentication modules to be loaded on
demand as specified in a system-wide configuration file. If a new authentication
mechanism is added at a later date, it can be added to the configuration file,
and all system components will immediately be able to take advantage of it.
PAM modules can specify authentication methods, account restrictions, session-
setup functions, and password-changing functions (so that, when users change
their passwords, all the necessary authentication mechanisms can be updated
at once).

https://hemanthrajhemu.github.io

778 Chapter 21 The Linux System

21.11.2 Access Control

Access control under UNIX systems, including Linux, is performed through the
use of unique numeric identifiers. A user identifier (uid) identifies a single user
or a single set of access rights. A group identifier (gid) is an extra identifier that
can be used to identify rights belonging to more than one user.

Access control is applied to various objects in the system. Every file
available in the system is protected by the standard access-control mecha-
nism. In addition, other shared objects, such as shared-memory sections and
semaphores, employ the same access system.

Every object in a UNIX system under user and group access control has a
single uid and a single gid associated with it. User processes also have a single
uid, but they may have more than one gid. If a process's uid matches the uid
of an object, then the process has user rights or owner rights to that object.
If the uids do not match but any of the process's gids match the object's gid,
then group rights are conferred; otherwise, the process has world rights to the
object.

Linux performs access control by assigning objects a protection mask that
specifies which access modes—read, write, or execute—are to be granted to
processes with owner, group, or world access. Thus, the owner of an object
might have full read, write, and execute access to a file; other users in a certain
group might be given read access but denied write access; and everybody else
might be given no access at all.

The only exception is the privileged root uid. A process with this special uid
is granted automatic access to any object in the system, bypassing normal access
checks. Such processes are also granted permission to perform privileged
operations, such as reading any physical memory or opening reserved network
sockets. This mechanism allows the kernel to prevent normal users from
accessing these resources: Most of the kernel's key internal resources are
implicitly owned by the root uid.

Linux implements the standard UNIX se tu id mechanism described in
Section A.3.2. This mechanism allows a program to run with privileges different
from those of the user running the program. For example, the lp r program
(which submits a job onto a print queue) has access to the system's print queues
even if the user running that program does not. The UNIX implementation of
se tu id distinguishes between a process's real and effective uid: The real uid is
that of the user running the program; the effective uid is that of the file's owner.

Under Linux, this mechanism is augmented in two ways. First, Linux
implements the POSIX specification's saved use r - id mechanism, which
allows a process to drop and reacquire its effective uid repeatedly. For security
reasons, a program may want to perform most of its operations in a safe mode,
waiving the privileges granted by its se tu id status, but may wish to perform
selected operations with all its privileges. Standard UNIX implementations
achieve this capacity only by swapping the real and effective uids; the previ-
ous effective uid is remembered, but the program's real uid does not always
correspond to the uid of the user running the program. Saved uids allow a
process to set its effective uid to its real uid and then back to the previous value
of its effective uid without having to modify the real uid at any time.

The second enhancement provided by Linux is the addition of a process
characteristic that grants just a subset of the rights of the effective uid. The

https://hemanthrajhemu.github.io

21.12 Summary 779

fsuid and fsgid process properties are used when access rights are granted
to files. The appropriate property is set every time the effective uid or gid is
set. However, the fsuid and fsgid can be set independently of the effective ids,
allowing a process to access files on behalf of another user without taking on
the identity of that other user in any other way. Specifically, server processes
can use this mechanism to serve files to a certain user without the process
becoming vulnerable to being killed or suspended by that user.

Finally, Linux provides a mechanism for flexible passing of rights from
one program to another—a mechanism that has become common in modern
versions of UNIX. When a local network socket has been set up between any
two processes on the system, either of those processes may send to the other
process a file descriptor for one of its open files; the other process receives a
duplicate file descriptor for the same file. This mechanism allows a client to
pass access to a single file selectively to some server process without granting
that process any other privileges. For example, it is no longer necessary for a
print server to be able to read all the files of a user who submits a new print
job; the print client could simply pass the server file descriptors for any files to
be printed, denying the server access to any of the user's other files.

21.12 Summary

Linux is a modern, free operating system based on UNIX standards. It has been
designed to run efficiently and reliably on common PC hardware; it also runs
on a variety of other platforms. It provides a programming interface and user
interface compatible with standard UNIX systems and can run a large number of
UNIX applications, including an increasing number of commercially supported
applications.

Linux has not evolved in a vacuum. A complete Linux system includes
many components that were developed independently of Linux. The core
Linux operating-system kernel is entirely original, but it allows much existing
free UNIX software to run, resulting in an entire UNIX-compatible operating
system free from proprietary code.

The Linux kernel is implemented as a traditional monolithic kernel for
performance reasons, but it is modular enough in design to allow most drivers
to be dynamically loaded and unloaded at run time.

Linux is a multiuser system, providing protection between processes and
running multiple processes according to a time-sharing scheduler. Newly
created processes can share selective parts of their execution environment
with their parent processes, allowing multithreaded programming. Interpro-
cess communication is supported by both System V mechanisms—message
queues, semaphores, and shared memory—and BSD's socket interface. Multi-
ple networking protocols can be accessed simultaneously through the socket
interface.

To the user, the file system appears as a hierarchical directory tree that obeys
UNIX semantics. Internally, Linux uses an abstraction layer to manage multiple
different file systems. Device-oriented, networked, and virtual file systems are
supported. Device-oriented file systems access disk storage through a page
cache that is unified with the virtual memory system.

https://hemanthrajhemu.github.io

780 Chapter 21 The Linux System

The memory-management system uses page sharing and copy-on^write
to minimize the duplication of data shared by different processes. Pages are
loaded on demand when they are first referenced and are paged back out to
backing store according to an LFU algorithm if physical memory needs to be
reclaimed.

Exercises

21.1 What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?

21.2 In what circumstances is the system-call sequence f ork () exec () most
appropriate? When is vforkO preferable?

21.3 What socket type should be used to implement an intercomputer
file-transfer program? What type should be used for a program that
periodically tests to see whether another computer is up on the
netwrork? Explain your answer.

21.4 Linux runs on a variety of hardware platforms. What steps must the
Linux developers take to ensure that the system is portable to different
processors and memory-management architectures, and to minimize
the amount of architecture-specific kernel code?

21.5 What are the advantages and disadvantages of making only some of the
symbols defined inside a kernel accessible to a loadable kernel module?

21.6 What are the primary goals of the conflict-resolution mechanism used
by the Linux kernel for loading kernel modules?

21.7 Discuss how the clone() operation supported by Linux is used to
support both processes and threads.

21.8 Would one classify Linux threads as user-level threads or as kernel-level
threads? Support your answer with the appropriate arguments.

21.9 What extra costs are incurred by the creation and scheduling of a
process, compared with the cost of a cloned thread?

21.10 The Linux scheduler implements soft real-time scheduling. What fea-
tures necessary for certain real-time programming tasks are missing?
How might they be added to the kernel?

21.11 Under what circumstances would an user process request an operation
that results in the allocation of a demand-zero memory region?

21.12 What scenarios would cause a page of memory to be mapped into an
user program's address space with the copy-on-write attribute enabled?

21.13 In Linux, shared libraries perform many operations central to the
operating system. What is the advantage of keeping this functionality
out of the kernel? Are there any drawbacks? Explain your answer.

21.14 The directory structure of a Linux operating system could comprise of
files corresponding to different file systems, including the Linux /proc

https://hemanthrajhemu.github.io

Bibliographical Notes 781

file system. What are the implications of having to support different
file-system types on the structure of the Limix kernel?

21.15 In what ways does the Linux setuid feature differ from the setuid feature
in standard Unix?

21.16 The Linux source code is freely and widely available over the Internet or
from CD-ROM vendors. What are three implications of this availability
for the security of the Linux system?

Bibliographical Notes

The Linux system is a product of the Internet; as a result, much of the
available documentation on Linux is available in some form on the Internet.
The following key sites reference most of the useful information available:

• The Linux Cross-Reference Pages at http://lxr.linux.no/ maintain current
listings of the Linux kernel, browsable via the Web and fully cross-
referenced.

• Linux-HQ at http:/ /www.linuxhq.com/ hosts a large amount of informa-
tion relating to the Linux 2.x kernels. This site also includes links to the
home pages of most Linux distributions, as well as archives of the major
mailing lists.

• The Linux Documentation Project at http://sunsite.unc.edu/linux/ lists
many books on Linux that are available in source format as part of the Linux
Documentation Project. The project also hosts the Linux How-To guides,
which contain a series of hints and tips relating to aspects of Linux.

• The Kernel Hackers' Guide is an Internet-based guide to kernel
internals in general. This constantly expanding site is located at
http: / / www.redhat.com:8080 /Hyper News / get / khg.html.

• The Kernel Newbies website (http://www.kernelnewbies.org/) provides
a resource for introducing the Linux kernel to newcomers.

Many mailing lists devoted to Linux are also available. The most important
are maintained by a mailing-list manager that can be reached at the e-mail
address maj ordomoOvger. rutgers . edu. Send e-mail to this address with the
single line "help" in the mail's body for information on how to access the list
server and to subscribe to any lists.

Finally, the Linux system itself can be obtained over the Internet. Complete
Linux distributions can be obtained from the home sites of the companies
concerned, and the Linux community also maintains archives of current system
components at several places on the Internet. The most important are these:

• ftp://tsx-ll.mit.edu/pub/linux/

• ftp://sunsite.unc.edu/pub/Linux/

• ftp:// linux .kernel. org / pub / linux /

In addition to investigating Internet resources, you can read about the
internals of the Linux kernel in Bovet and Cesati [2002] and Love [2004].

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

