

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

CONTENTS vii

5 Iteration 57

5.1 Updating variables . 57

5.2 The while statement . 57

5.3 Infinite loops . 58

5.4 Finishing iterations with continue 59

5.5 Definite loops using for . 60

5.6 Loop patterns . 61

5.6.1 Counting and summing loops 61

5.6.2 Maximum and minimum loops 62

5.7 Debugging . 64

5.8 Glossary . 64

5.9 Exercises . 64

6 Strings 67

6.1 A string is a sequence . 67

6.2 Getting the length of a string using len 68

6.3 Traversal through a string with a loop 68

6.4 String slices . 69

6.5 Strings are immutable . 70

6.6 Looping and counting . 70

6.7 The in operator . 71

6.8 String comparison . 71

6.9 String methods . 71

6.10 Parsing strings . 74

6.11 Format operator . 74

6.12 Debugging . 75

6.13 Glossary . 76

6.14 Exercises . 77

7 Files 79

7.1 Persistence . 79

7.2 Opening files . 80

7.3 Text files and lines . 81

7.4 Reading files . 82

7.5 Searching through a file . 83

https://hemanthrajhemu.github.io

viii CONTENTS

7.6 Letting the user choose the file name 85

7.7 Using try, except, and open . 86

7.8 Writing files . 87

7.9 Debugging . 88

7.10 Glossary . 89

7.11 Exercises . 89

8 Lists 91

8.1 A list is a sequence . 91

8.2 Lists are mutable . 92

8.3 Traversing a list . 92

8.4 List operations . 93

8.5 List slices . 94

8.6 List methods . 94

8.7 Deleting elements . 95

8.8 Lists and functions . 96

8.9 Lists and strings . 97

8.10 Parsing lines . 98

8.11 Objects and values . 99

8.12 Aliasing . 100

8.13 List arguments . 100

8.14 Debugging . 102

8.15 Glossary . 105

8.16 Exercises . 105

9 Dictionaries 107

9.1 Dictionary as a set of counters . 109

9.2 Dictionaries and files . 110

9.3 Looping and dictionaries . 111

9.4 Advanced text parsing . 113

9.5 Debugging . 114

9.6 Glossary . 115

9.7 Exercises . 115

https://hemanthrajhemu.github.io

4.6. ADDING NEW FUNCTIONS 47

To choose an element from a sequence at random, you can use choice:

>>> t = [1, 2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3

The random module also provides functions to generate random values from con-
tinuous distributions including Gaussian, exponential, gamma, and a few more.

4.6 Adding new functions

So far, we have only been using the functions that come with Python, but it is also
possible to add new functions. A function definition specifies the name of a new
function and the sequence of statements that execute when the function is called.
Once we define a function, we can reuse the function over and over throughout our
program.

Here is an example:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def is a keyword that indicates that this is a function definition. The name of
the function is print_lyrics. The rules for function names are the same as for
variable names: letters, numbers and some punctuation marks are legal, but the
first character can’t be a number. You can’t use a keyword as the name of a
function, and you should avoid having a variable and a function with the same
name.

The empty parentheses after the name indicate that this function doesn’t take any
arguments. Later we will build functions that take arguments as their inputs.

The first line of the function definition is called the header ; the rest is called
the body. The header has to end with a colon and the body has to be indented.
By convention, the indentation is always four spaces. The body can contain any
number of statements.

If you type a function definition in interactive mode, the interpreter prints ellipses
(. . .) to let you know that the definition isn’t complete:

>>> def print_lyrics():

... print("I'm a lumberjack, and I'm okay.")

... print('I sleep all night and I work all day.')

...

To end the function, you have to enter an empty line (this is not necessary in a
script).

Defining a function creates a variable with the same name.

https://hemanthrajhemu.github.io

48 CHAPTER 4. FUNCTIONS

>>> print(print_lyrics)

<function print_lyrics at 0xb7e99e9c>

>>> print(type(print_lyrics))

<class 'function'>

The value of print_lyrics is a function object, which has type “function”.

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For exam-
ple, to repeat the previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():

print_lyrics()

print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous section, the whole program
looks like this:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def repeat_lyrics():

print_lyrics()

print_lyrics()

repeat_lyrics()

Code: http://www.py4e.com/code3/lyrics.py

https://hemanthrajhemu.github.io

4.8. FLOW OF EXECUTION 49

This program contains two function definitions: print_lyrics and repeat_lyrics.
Function definitions get executed just like other statements, but the effect is to
create function objects. The statements inside the function do not get executed
until the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In
other words, the function definition has to be executed before the first time it is
called.

Exercise 2: Move the last line of this program to the top, so the function
call appears before the definitions. Run the program and see what error
message you get.

Exercise 3: Move the function call back to the bottom and move the
definition of print_lyrics after the definition of repeat_lyrics. What
happens when you run this program?

4.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know
the order in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are
executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but re-
member that statements inside the function are not executed until the function is
called.

A function call is like a detour in the flow of execution. Instead of going to the next
statement, the flow jumps to the body of the function, executes all the statements
there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the state-
ments in another function. But while executing that new function, the program
might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it.
When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always
want to read from top to bottom. Sometimes it makes more sense if you follow the
flow of execution.

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when
you call math.sin you pass a number as an argument. Some functions take more
than one argument: math.pow takes two, the base and the exponent.

https://hemanthrajhemu.github.io

50 CHAPTER 4. FUNCTIONS

Inside the function, the arguments are assigned to variables called parameters.
Here is an example of a user-defined function that takes an argument:

def print_twice(bruce):

print(bruce)

print(bruce)

This function assigns the argument to a parameter named bruce. When the func-
tion is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')

Spam

Spam

>>> print_twice(17)

17

17

>>> import math

>>> print_twice(math.pi)

3.141592653589793

3.141592653589793

The same rules of composition that apply to built-in functions also apply to
user-defined functions, so we can use any kind of expression as an argument for
print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the
expressions 'Spam '*4 and math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do
with the name of the parameter (bruce). It doesn’t matter what the value was
called back home (in the caller); here in print_twice, we call everybody bruce.

https://hemanthrajhemu.github.io

4.10. FRUITFUL FUNCTIONS AND VOID FUNCTIONS 51

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;
for lack of a better name, I call them fruitful functions. Other functions, like
print_twice, perform an action but don’t return a value. They are called void
functions.

When you call a fruitful function, you almost always want to do something with
the result; for example, you might assign it to a variable or use it as part of an
expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.23606797749979

But in a script, if you call a fruitful function and do not store the result of the
function in a variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store the result in
a variable or display the result, it is not very useful.

Void functions might display something on the screen or have some other effect,
but they don’t have a return value. If you try to assign the result to a variable,
you get a special value called None.

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string “None”. It is a special value that has
its own type:

>>> print(type(None))

<class 'NoneType'>

To return a result from a function, we use the return statement in our function.
For example, we could make a very simple function called addtwo that adds two
numbers together and returns a result.

https://hemanthrajhemu.github.io

52 CHAPTER 4. FUNCTIONS

def addtwo(a, b):

added = a + b

return added

x = addtwo(3, 5)

print(x)

Code: http://www.py4e.com/code3/addtwo.py

When this script executes, the print statement will print out “8” because the
addtwo function was called with 3 and 5 as arguments. Within the function, the
parameters a and b were 3 and 5 respectively. The function computed the sum of
the two numbers and placed it in the local function variable named added. Then
it used the return statement to send the computed value back to the calling code
as the function result, which was assigned to the variable x and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are several reasons:

• Creating a new function gives you an opportunity to name a group of state-
ments, which makes your program easier to read, understand, and debug.

• Functions can make a program smaller by eliminating repetitive code. Later,
if you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at
a time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write
and debug one, you can reuse it.

Throughout the rest of the book, often we will use a function definition to explain
a concept. Part of the skill of creating and using functions is to have a function
properly capture an idea such as “find the smallest value in a list of values”. Later
we will show you code that finds the smallest in a list of values and we will present
it to you as a function named min which takes a list of values as its argument and
returns the smallest value in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you might run into problems with
spaces and tabs. The best way to avoid these problems is to use spaces exclusively
(no tabs). Most text editors that know about Python do this by default, but some
don’t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to
find an editor that manages indentation for you.

https://hemanthrajhemu.github.io

4.13. GLOSSARY 53

Also, don’t forget to save your program before you run it. Some development
environments do this automatically, but some don’t. In that case, the program
you are looking at in the text editor is not the same as the program you are
running.

Debugging can take a long time if you keep running the same incorrect program
over and over!

Make sure that the code you are looking at is the code you are running. If you’re
not sure, put something like print("hello") at the beginning of the program and
run it again. If you don’t see hello, you’re not running the right program!

4.13 Glossary

algorithm A general process for solving a category of problems.
argument A value provided to a function when the function is called. This value

is assigned to the corresponding parameter in the function.
body The sequence of statements inside a function definition.
composition Using an expression as part of a larger expression, or a statement

as part of a larger statement.
deterministic Pertaining to a program that does the same thing each time it

runs, given the same inputs.
dot notation The syntax for calling a function in another module by specifying

the module name followed by a dot (period) and the function name.
flow of execution The order in which statements are executed during a program

run.
fruitful function A function that returns a value.
function A named sequence of statements that performs some useful operation.

Functions may or may not take arguments and may or may not produce a
result.

function call A statement that executes a function. It consists of the function
name followed by an argument list.

function definition A statement that creates a new function, specifying its name,
parameters, and the statements it executes.

function object A value created by a function definition. The name of the func-
tion is a variable that refers to a function object.

header The first line of a function definition.
import statement A statement that reads a module file and creates a module

object.
module object A value created by an import statement that provides access to

the data and code defined in a module.
parameter A name used inside a function to refer to the value passed as an

argument.
pseudorandom Pertaining to a sequence of numbers that appear to be random,

but are generated by a deterministic program.
return value The result of a function. If a function call is used as an expression,

the return value is the value of the expression.
void function A function that does not return a value.

https://hemanthrajhemu.github.io

54 CHAPTER 4. FUNCTIONS

4.14 Exercises

Exercise 4: What is the purpose of the “def” keyword in Python?

a) It is slang that means “the following code is really cool”
b) It indicates the start of a function
c) It indicates that the following indented section of code is to be stored for later
d) b and c are both true
e) None of the above

Exercise 5: What will the following Python program print out?

def fred():

print("Zap")

def jane():

print("ABC")

jane()

fred()

jane()

a) Zap ABC jane fred jane
b) Zap ABC Zap
c) ABC Zap jane
d) ABC Zap ABC
e) Zap Zap Zap

Exercise 6: Rewrite your pay computation with time-and-a-half for over-
time and create a function called computepay which takes two parameters
(hours and rate).

Enter Hours: 45

Enter Rate: 10

Pay: 475.0

Exercise 7: Rewrite the grade program from the previous chapter using
a function called computegrade that takes a score as its parameter and
returns a grade as a string.

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

Enter score: 0.95

A

Enter score: perfect

Bad score

https://hemanthrajhemu.github.io

4.14. EXERCISES 55

Enter score: 10.0

Bad score

Enter score: 0.75

C

Enter score: 0.5

F

Run the program repeatedly to test the various different values for input.

https://hemanthrajhemu.github.io

56 CHAPTER 4. FUNCTIONS

https://hemanthrajhemu.github.io

Chapter 5

Iteration

5.1 Updating variables

A common pattern in assignment statements is an assignment statement that up-
dates a variable, where the new value of the variable depends on the old.

x = x + 1

This means “get the current value of x, add 1, and then update x with the new
value.”

If you try to update a variable that doesn’t exist, you get an error, because Python
evaluates the right side before it assigns a value to x:

>>> x = x + 1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple
assignment:

>>> x = 0

>>> x = x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a
decrement.

5.2 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or
similar tasks without making errors is something that computers do well and people
do poorly. Because iteration is so common, Python provides several language
features to make it easier.

One form of iteration in Python is the while statement. Here is a simple program
that counts down from five and then says “Blastoff!”.

57https://hemanthrajhemu.github.io

58 CHAPTER 5. ITERATION

n = 5

while n > 0:

print(n)

n = n - 1

print('Blastoff!')

You can almost read the while statement as if it were English. It means, “While
n is greater than 0, display the value of n and then reduce the value of n by 1.
When you get to 0, exit the while statement and display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at
the next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the
top. We call each time we execute the body of the loop an iteration. For the above
loop, we would say, “It had five iterations”, which means that the body of the loop
was executed five times.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. We call the vari-
able that changes each time the loop executes and controls when the loop finishes
the iteration variable. If there is no iteration variable, the loop will repeat forever,
resulting in an infinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the observation that the di-
rections on shampoo, “Lather, rinse, repeat,” are an infinite loop because there is
no iteration variable telling you how many times to execute the loop.

In the case of countdown, we can prove that the loop terminates because we know
that the value of n is finite, and we can see that the value of n gets smaller each
time through the loop, so eventually we have to get to 0. Other times a loop is
obviously infinite because it has no iteration variable at all.

Sometimes you don’t know it’s time to end a loop until you get half way through
the body. In that case you can write an infinite loop on purpose and then use the
break statement to jump out of the loop.

This loop is obviously an infinite loop because the logical expression on the while

statement is simply the logical constant True:

n = 10

while True:

print(n, end=' ')

n = n - 1

print('Done!')

https://hemanthrajhemu.github.io

5.4. FINISHING ITERATIONS WITH CONTINUE 59

If you make the mistake and run this code, you will learn quickly how to stop
a runaway Python process on your system or find where the power-off button is
on your computer. This program will run forever or until your battery runs out
because the logical expression at the top of the loop is always true by virtue of the
fact that the expression is the constant value True.

While this is a dysfunctional infinite loop, we can still use this pattern to build
useful loops as long as we carefully add code to the body of the loop to explicitly
exit the loop using break when we have reached the exit condition.

For example, suppose you want to take input from the user until they type done.
You could write:

while True:

line = input('> ')

if line == 'done':

break

print(line)

print('Done!')

Code: http://www.py4e.com/code3/copytildone1.py

The loop condition is True, which is always true, so the loop runs repeatedly until
it hits the break statement.

Each time through, it prompts the user with an angle bracket. If the user types
done, the break statement exits the loop. Otherwise the program echoes whatever
the user types and goes back to the top of the loop. Here’s a sample run:

> hello there

hello there

> finished

finished

> done

Done!

This way of writing while loops is common because you can check the condition
anywhere in the loop (not just at the top) and you can express the stop condition
affirmatively (“stop when this happens”) rather than negatively (“keep going until
that happens.”).

5.4 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finish the current iteration
and immediately jump to the next iteration. In that case you can use the continue

statement to skip to the next iteration without finishing the body of the loop for
the current iteration.

Here is an example of a loop that copies its input until the user types “done”, but
treats lines that start with the hash character as lines not to be printed (kind of
like Python comments).

https://hemanthrajhemu.github.io

60 CHAPTER 5. ITERATION

while True:

line = input('> ')

if line[0] == '#':

continue

if line == 'done':

break

print(line)

print('Done!')

Code: http://www.py4e.com/code3/copytildone2.py

Here is a sample run of this new program with continue added.

> hello there

hello there

> # don't print this

> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with the hash sign because
when the continue is executed, it ends the current iteration and jumps back to
the while statement to start the next iteration, thus skipping the print statement.

5.5 Definite loops using for

Sometimes we want to loop through a set of things such as a list of words, the lines
in a file, or a list of numbers. When we have a list of things to loop through, we
can construct a definite loop using a for statement. We call the while statement
an indefinite loop because it simply loops until some condition becomes False,
whereas the for loop is looping through a known set of items so it runs through
as many iterations as there are items in the set.

The syntax of a for loop is similar to the while loop in that there is a for

statement and a loop body:

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends:

print('Happy New Year:', friend)

print('Done!')

In Python terms, the variable friends is a list1 of three strings and the for loop
goes through the list and executes the body once for each of the three strings in
the list resulting in this output:

1We will examine lists in more detail in a later chapter.

https://hemanthrajhemu.github.io

5.6. LOOP PATTERNS 61

Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

Done!

Translating this for loop to English is not as direct as the while, but if you think
of friends as a set, it goes like this: “Run the statements in the body of the for
loop once for each friend in the set named friends.”

Looking at the for loop, for and in are reserved Python keywords, and friend

and friends are variables.

for friend in friends:

print('Happy New Year:', friend)

In particular, friend is the iteration variable for the for loop. The variable friend

changes for each iteration of the loop and controls when the for loop completes.
The iteration variable steps successively through the three strings stored in the
friends variable.

5.6 Loop patterns

Often we use a for or while loop to go through a list of items or the contents of
a file and we are looking for something such as the largest or smallest value of the
data we scan through.

These loops are generally constructed by:

• Initializing one or more variables before the loop starts

• Performing some computation on each item in the loop body, possibly chang-
ing the variables in the body of the loop

• Looking at the resulting variables when the loop completes

We will use a list of numbers to demonstrate the concepts and construction of these
loop patterns.

5.6.1 Counting and summing loops

For example, to count the number of items in a list, we would write the following
for loop:

count = 0

for itervar in [3, 41, 12, 9, 74, 15]:

count = count + 1

print('Count: ', count)

https://hemanthrajhemu.github.io

62 CHAPTER 5. ITERATION

We set the variable count to zero before the loop starts, then we write a for loop
to run through the list of numbers. Our iteration variable is named itervar and
while we do not use itervar in the loop, it does control the loop and cause the
loop body to be executed once for each of the values in the list.

In the body of the loop, we add 1 to the current value of count for each of the
values in the list. While the loop is executing, the value of count is the number
of values we have seen “so far”.

Once the loop completes, the value of count is the total number of items. The
total number “falls in our lap” at the end of the loop. We construct the loop so
that we have what we want when the loop finishes.

Another similar loop that computes the total of a set of numbers is as follows:

total = 0

for itervar in [3, 41, 12, 9, 74, 15]:

total = total + itervar

print('Total: ', total)

In this loop we do use the iteration variable. Instead of simply adding one to the
count as in the previous loop, we add the actual number (3, 41, 12, etc.) to the
running total during each loop iteration. If you think about the variable total, it
contains the “running total of the values so far”. So before the loop starts total is
zero because we have not yet seen any values, during the loop total is the running
total, and at the end of the loop total is the overall total of all the values in the
list.

As the loop executes, total accumulates the sum of the elements; a variable used
this way is sometimes called an accumulator.

Neither the counting loop nor the summing loop are particularly useful in practice
because there are built-in functions len() and sum() that compute the number of
items in a list and the total of the items in the list respectively.

5.6.2 Maximum and minimum loops

To find the largest value in a list or sequence, we construct the following loop:

largest = None

print('Before:', largest)

for itervar in [3, 41, 12, 9, 74, 15]:

if largest is None or itervar > largest :

largest = itervar

print('Loop:', itervar, largest)

print('Largest:', largest)

When the program executes, the output is as follows:

Before: None

Loop: 3 3

https://hemanthrajhemu.github.io

5.6. LOOP PATTERNS 63

Loop: 41 41

Loop: 12 41

Loop: 9 41

Loop: 74 74

Loop: 15 74

Largest: 74

The variable largest is best thought of as the “largest value we have seen so far”.
Before the loop, we set largest to the constant None. None is a special constant
value which we can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen so far is None since we have
not yet seen any values. While the loop is executing, if largest is None then we
take the first value we see as the largest so far. You can see in the first iteration
when the value of itervar is 3, since largest is None, we immediately set largest

to be 3.

After the first iteration, largest is no longer None, so the second part of the
compound logical expression that checks itervar > largest triggers only when
we see a value that is larger than the “largest so far”. When we see a new “even
larger” value we take that new value for largest. You can see in the program
output that largest progresses from 3 to 41 to 74.

At the end of the loop, we have scanned all of the values and the variable largest

now does contain the largest value in the list.

To compute the smallest number, the code is very similar with one small change:

smallest = None

print('Before:', smallest)

for itervar in [3, 41, 12, 9, 74, 15]:

if smallest is None or itervar < smallest:

smallest = itervar

print('Loop:', itervar, smallest)

print('Smallest:', smallest)

Again, smallest is the “smallest so far” before, during, and after the loop executes.
When the loop has completed, smallest contains the minimum value in the list.

Again as in counting and summing, the built-in functions max() and min() make
writing these exact loops unnecessary.

The following is a simple version of the Python built-in min() function:

def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

smallest = value

return smallest

In the function version of the smallest code, we removed all of the print statements
so as to be equivalent to the min function which is already built in to Python.

https://hemanthrajhemu.github.io

64 CHAPTER 5. ITERATION

5.7 Debugging

As you start writing bigger programs, you might find yourself spending more time
debugging. More code means more chances to make an error and more places for
bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if
there are 100 lines in your program and you check them one at a time, it would
take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program,
or near it, for an intermediate value you can check. Add a print statement (or
something else that has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the
program. If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have
to search. After six steps (which is much less than 100), you would be down to
one or two lines of code, at least in theory.

In practice it is not always clear what the “middle of the program” is and not
always possible to check it. It doesn’t make sense to count lines and find the exact
midpoint. Instead, think about places in the program where there might be errors
and places where it is easy to put a check. Then choose a spot where you think
the chances are about the same that the bug is before or after the check.

5.8 Glossary

accumulator A variable used in a loop to add up or accumulate a result.
counter A variable used in a loop to count the number of times something hap-

pened. We initialize a counter to zero and then increment the counter each
time we want to “count” something.

decrement An update that decreases the value of a variable.
initialize An assignment that gives an initial value to a variable that will be

updated.
increment An update that increases the value of a variable (often by one).
infinite loop A loop in which the terminating condition is never satisfied or for

which there is no terminating condition.
iteration Repeated execution of a set of statements using either a function that

calls itself or a loop.

5.9 Exercises

Exercise 1: Write a program which repeatedly reads numbers until the
user enters “done”. Once “done” is entered, print out the total, count,
and average of the numbers. If the user enters anything other than a
number, detect their mistake using try and except and print an error
message and skip to the next number.

https://hemanthrajhemu.github.io

5.9. EXERCISES 65

Enter a number: 4

Enter a number: 5

Enter a number: bad data

Invalid input

Enter a number: 7

Enter a number: done

16 3 5.333333333333333

Exercise 2: Write another program that prompts for a list of numbers
as above and at the end prints out both the maximum and minimum of
the numbers instead of the average.

https://hemanthrajhemu.github.io

66 CHAPTER 5. ITERATION

https://hemanthrajhemu.github.io

Chapter 6

Strings

6.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time
with the bracket operator:

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement extracts the character at index position 1 from the fruit

variable and assigns it to the letter variable.

The expression in brackets is called an index. The index indicates which character
in the sequence you want (hence the name).

But you might not get what you expect:

>>> print(letter)

a

For most people, the first letter of “banana” is “b”, not “a”. But in Python, the
index is an offset from the beginning of the string, and the offset of the first letter
is zero.

>>> letter = fruit[0]

>>> print(letter)

b

So “b” is the 0th letter (“zero-th”) of “banana”, “a” is the 1th letter (“one-th”),
and “n” is the 2th (“two-th”) letter.

You can use any expression, including variables and operators, as an index, but
the value of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]

TypeError: string indices must be integers

67https://hemanthrajhemu.github.io

68 CHAPTER 6. STRINGS

b
[0]

a
[1]

n
[2]

a
[3]

n
[4]

a
[5]

Figure 6.1: String Indexes

6.2 Getting the length of a string using len

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in “banana” with the index
6. Since we started counting at zero, the six letters are numbered 0 to 5. To get
the last character, you have to subtract 1 from length:

>>> last = fruit[length-1]

>>> print(last)

a

Alternatively, you can use negative indices, which count backward from the end of
the string. The expression fruit[-1] yields the last letter, fruit[-2] yields the
second to last, and so on.

6.3 Traversal through a string with a loop

A lot of computations involve processing a string one character at a time. Often
they start at the beginning, select each character in turn, do something to it, and
continue until the end. This pattern of processing is called a traversal. One way
to write a traversal is with a while loop:

index = 0

while index < len(fruit):

letter = fruit[index]

print(letter)

index = index + 1

https://hemanthrajhemu.github.io

6.4. STRING SLICES 69

This loop traverses the string and displays each letter on a line by itself. The
loop condition is index < len(fruit), so when index is equal to the length of
the string, the condition is false, and the body of the loop is not executed. The
last character accessed is the one with the index len(fruit)-1, which is the last
character in the string.

Exercise 1: Write a while loop that starts at the last character in the
string and works its way backwards to the first character in the string,
printing each letter on a separate line, except backwards.

Another way to write a traversal is with a for loop:

for char in fruit:

print(char)

Each time through the loop, the next character in the string is assigned to the
variable char. The loop continues until no characters are left.

6.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a
character:

>>> s = 'Monty Python'

>>> print(s[0:5])

Monty

>>> print(s[6:12])

Python

The operator returns the part of the string from the “n-th” character to the “m-th”
character, including the first but excluding the last.

If you omit the first index (before the colon), the slice starts at the beginning of
the string. If you omit the second index, the slice goes to the end of the string:

>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:

>>> fruit = 'banana'

>>> fruit[3:3]

''

An empty string contains no characters and has length 0, but other than that, it
is the same as any other string.

Exercise 2: Given that fruit is a string, what does fruit[:] mean?

https://hemanthrajhemu.github.io

70 CHAPTER 6. STRINGS

6.5 Strings are immutable

It is tempting to use the operator on the left side of an assignment, with the
intention of changing a character in a string. For example:

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried
to assign. For now, an object is the same thing as a value, but we will refine that
definition later. An item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t
change an existing string. The best you can do is create a new string that is a
variation on the original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> print(new_greeting)

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no
effect on the original string.

6.6 Looping and counting

The following program counts the number of times the letter “a” appears in a
string:

word = 'banana'

count = 0

for letter in word:

if letter == 'a':

count = count + 1

print(count)

This program demonstrates another pattern of computation called a counter. The
variable count is initialized to 0 and then incremented each time an “a” is found.
When the loop exits, count contains the result: the total number of a’s.

Exercise 3: Encapsulate this code in a function named count, and gen-
eralize it so that it accepts the string and the letter as arguments.

https://hemanthrajhemu.github.io

6.7. THE IN OPERATOR 71

6.7 The in operator

The word in is a boolean operator that takes two strings and returns True if the
first appears as a substring in the second:

>>> 'a' in 'banana'

True

>>> 'seed' in 'banana'

False

6.8 String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == 'banana':

print('All right, bananas.')

Other comparison operations are useful for putting words in alphabetical order:

if word < 'banana':

print('Your word,' + word + ', comes before banana.')

elif word > 'banana':

print('Your word,' + word + ', comes after banana.')

else:

print('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way that people
do. All the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format,
such as all lowercase, before performing the comparison. Keep that in mind in case
you have to defend yourself against a man armed with a Pineapple.

6.9 String methods

Strings are an example of Python objects. An object contains both data (the actual
string itself) and methods, which are effectively functions that are built into the
object and are available to any instance of the object.

Python has a function called dir which lists the methods available for an object.
The type function shows the type of an object and the dir function shows the
available methods.

https://hemanthrajhemu.github.io

72 CHAPTER 6. STRINGS

>>> stuff = 'Hello world'

>>> type(stuff)

<class 'str'>

>>> dir(stuff)

['capitalize', 'casefold', 'center', 'count', 'encode',

'endswith' , 'expandtabs', 'find', 'format', 'format_map',

'index' , 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier' , 'islower', 'isnumeric', 'isprintable',

'isspace' , 'istitle', 'isupper', 'join', 'ljust', 'lower',

'lstrip' , 'maketrans', 'partition', 'replace', 'rfind',

'rindex' , 'rjust', 'rpartition', 'rsplit', 'rstrip',

'split' , 'splitlines', 'startswith', 'strip', 'swapcase',

'title' , 'translate', 'upper', 'zfill']

>>> help(str.capitalize)

Help on method_descriptor:

capitalize(...)

S.capitalize() -> str

Return a capitalized version of S, i.e. make the first character

have upper case and the rest lower case.

>>>

While the dir function lists the methods, and you can use help to get some simple
documentation on a method, a better source of documentation for string methods
would be https://docs.python.org/library/stdtypes.html#string-methods.

Calling a method is similar to calling a function (it takes arguments and returns
a value) but the syntax is different. We call a method by appending the method
name to the variable name using the period as a delimiter.

For example, the method upper takes a string and returns a new string with all
uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax
word.upper().

>>> word = 'banana'

>>> new_word = word.upper()

>>> print(new_word)

BANANA

This form of dot notation specifies the name of the method, upper, and the name
of the string to apply the method to, word. The empty parentheses indicate that
this method takes no argument.

A method call is called an invocation; in this case, we would say that we are
invoking upper on the word.

For example, there is a string method named find that searches for the position
of one string within another:

https://hemanthrajhemu.github.io

6.9. STRING METHODS 73

>>> word = 'banana'

>>> index = word.find('a')

>>> print(index)

1

In this example, we invoke find on word and pass the letter we are looking for as
a parameter.

The find method can find substrings as well as characters:

>>> word.find('na')

2

It can take as a second argument the index where it should start:

>>> word.find('na', 3)

4

One common task is to remove white space (spaces, tabs, or newlines) from the
beginning and end of a string using the strip method:

>>> line = ' Here we go '

>>> line.strip()

'Here we go'

Some methods such as startswith return boolean values.

>>> line = 'Have a nice day'

>>> line.startswith('Have')

True

>>> line.startswith('h')

False

You will note that startswith requires case to match, so sometimes we take a line
and map it all to lowercase before we do any checking using the lower method.

>>> line = 'Have a nice day'

>>> line.startswith('h')

False

>>> line.lower()

'have a nice day'

>>> line.lower().startswith('h')

True

In the last example, the method lower is called and then we use startswith to
see if the resulting lowercase string starts with the letter “h”. As long as we are
careful with the order, we can make multiple method calls in a single expression.

**Exercise 4: There is a string method called count that is similar to the function
in the previous exercise. Read the documentation of this method at:

https://docs.python.org/library/stdtypes.html#string-methods

Write an invocation that counts the number of times the letter a occurs in “ba-
nana”.**

https://hemanthrajhemu.github.io

74 CHAPTER 6. STRINGS

6.10 Parsing strings

Often, we want to look into a string and find a substring. For example if we were
presented a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

and we wanted to pull out only the second half of the address (i.e., uct.ac.za)
from each line, we can do this by using the find method and string slicing.

First, we will find the position of the at-sign in the string. Then we will find the
position of the first space after the at-sign. And then we will use string slicing to
extract the portion of the string which we are looking for.

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'

>>> atpos = data.find('@')

>>> print(atpos)

21

>>> sppos = data.find(' ',atpos)

>>> print(sppos)

31

>>> host = data[atpos+1:sppos]

>>> print(host)

uct.ac.za

>>>

We use a version of the find method which allows us to specify a position in
the string where we want find to start looking. When we slice, we extract the
characters from “one beyond the at-sign through up to but not including the space
character”.

The documentation for the find method is available at

https://docs.python.org/library/stdtypes.html#string-methods.

6.11 Format operator

The format operator, % allows us to construct strings, replacing parts of the strings
with the data stored in variables. When applied to integers, % is the modulus
operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, which contains one or more format sequences
that specify how the second operand is formatted. The result is a string.

For example, the format sequence %d means that the second operand should be
formatted as an integer (“d” stands for “decimal”):

>>> camels = 42

>>> '%d' % camels

'42'

https://hemanthrajhemu.github.io

6.12. DEBUGGING 75

The result is the string ‘42’, which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the string, so you can embed a value
in a sentence:

>>> camels = 42

>>> 'I have spotted %d camels.' % camels

'I have spotted 42 camels.'

If there is more than one format sequence in the string, the second argument has
to be a tuple1. Each format sequence is matched with an element of the tuple, in
order.

The following example uses %d to format an integer, %g to format a floating-point
number (don’t ask why), and %s to format a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple must match the number of format sequences
in the string. The types of the elements also must match the format sequences:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in the second, the element is
the wrong type.

The format operator is powerful, but it can be difficult to use. You can read more
about it at

https://docs.python.org/library/stdtypes.html#printf-style-string-formatting.

6.12 Debugging

A skill that you should cultivate as you program is always asking yourself, “What
could go wrong here?” or alternatively, “What crazy thing might our user do to
crash our (seemingly) perfect program?”

For example, look at the program which we used to demonstrate the while loop
in the chapter on iteration:

while True:

line = input('> ')

if line[0] == '#':

1A tuple is a sequence of comma-separated values inside a pair of parenthesis. We will cover
tuples in Chapter 10

https://hemanthrajhemu.github.io

76 CHAPTER 6. STRINGS

continue

if line == 'done':

break

print(line)

print('Done!')

Code: http://www.py4e.com/code3/copytildone2.py

Look what happens when the user enters an empty line of input:

> hello there

hello there

> # don't print this

> print this!

print this!

>

Traceback (most recent call last):

File "copytildone.py", line 3, in <module>

if line[0] == '#':

IndexError: string index out of range

The code works fine until it is presented an empty line. Then there is no zero-th
character, so we get a traceback. There are two solutions to this to make line three
“safe” even if the line is empty.

One possibility is to simply use the startswith method which returns False if
the string is empty.

if line.startswith('#'):

Another way is to safely write the if statement using the guardian pattern and
make sure the second logical expression is evaluated only where there is at least
one character in the string.:

if len(line) > 0 and line[0] == '#':

6.13 Glossary

counter A variable used to count something, usually initialized to zero and then
incremented.

empty string A string with no characters and length 0, represented by two quo-
tation marks.

format operator An operator, %, that takes a format string and a tuple and gen-
erates a string that includes the elements of the tuple formatted as specified
by the format string.

format sequence A sequence of characters in a format string, like %d, that spec-
ifies how a value should be formatted.

https://hemanthrajhemu.github.io

6.14. EXERCISES 77

format string A string, used with the format operator, that contains format
sequences.

flag A boolean variable used to indicate whether a condition is true or false.
invocation A statement that calls a method.
immutable The property of a sequence whose items cannot be assigned.
index An integer value used to select an item in a sequence, such as a character

in a string.
item One of the values in a sequence.
method A function that is associated with an object and called using dot notation.

object Something a variable can refer to. For now, you can use “object” and
“value” interchangeably.

search A pattern of traversal that stops when it finds what it is looking for.
sequence An ordered set; that is, a set of values where each value is identified by

an integer index.
slice A part of a string specified by a range of indices.
traverse To iterate through the items in a sequence, performing a similar opera-

tion on each.

6.14 Exercises

Exercise 5: Take the following Python code that stores a string:

str = 'X-DSPAM-Confidence:0.8475'

Use find and string slicing to extract the portion of the string after the
colon character and then use the float function to convert the extracted
string into a floating point number.

Exercise 6: Read the documentation of the string methods at
https://docs.python.org/library/stdtypes.html#string-methods You
might want to experiment with some of them to make sure you
understand how they work. strip and replace are particularly useful.

The documentation uses a syntax that might be confusing. For example,
in find(sub[, start[, end]]), the brackets indicate optional arguments.
So sub is required, but start is optional, and if you include start, then
end is optional.

https://hemanthrajhemu.github.io

78 CHAPTER 6. STRINGS

https://hemanthrajhemu.github.io

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communicate our intentions to
the Central Processing Unit using conditional execution, functions, and iterations.
We have learned how to create and use data structures in the Main Memory. The
CPU and memory are where our software works and runs. It is where all of the
“thinking” happens.

But if you recall from our hardware architecture discussions, once the power is
turned off, anything stored in either the CPU or main memory is erased. So up to
now, our programs have just been transient fun exercises to learn Python.

Input and
Output
Devices

Software

Main
Memory

Central
Processing

Unit

What
Next?

Network

Secondary

Memory

Figure 7.1: Secondary Memory

In this chapter, we start to work with Secondary Memory (or files). Secondary
memory is not erased when the power is turned off. Or in the case of a USB flash
drive, the data we write from our programs can be removed from the system and
transported to another system.

79https://hemanthrajhemu.github.io

80 CHAPTER 7. FILES

We will primarily focus on reading and writing text files such as those we create in
a text editor. Later we will see how to work with database files which are binary
files, specifically designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), we first must
open the file. Opening the file communicates with your operating system, which
knows where the data for each file is stored. When you open a file, you are
asking the operating system to find the file by name and make sure the file exists.
In this example, we open the file mbox.txt, which should be stored in the same
folder that you are in when you start Python. You can download this file from
www.py4e.com/code3/mbox.txt

>>> fhand = open('mbox.txt')

>>> print(fhand)

<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

If the open is successful, the operating system returns us a file handle. The file
handle is not the actual data contained in the file, but instead it is a “handle” that
we can use to read the data. You are given a handle if the requested file exists and
you have the proper permissions to read the file.

From stephen.m..
Return-Path: <p..
Date: Sat, 5 Jan ..
To: source@coll..
From: stephen...
Subject: [sakai]...
Details: http:/...
…Your

Program

H
A
N
D
L
E

open

close

read

write

Figure 7.2: A File Handle

If the file does not exist, open will fail with a traceback and you will not get a
handle to access the contents of the file:

>>> fhand = open('stuff.txt')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'stuff.txt'

Later we will use try and except to deal more gracefully with the situation where
we attempt to open a file that does not exist.

https://hemanthrajhemu.github.io

7.3. TEXT FILES AND LINES 81

7.3 Text files and lines

A text file can be thought of as a sequence of lines, much like a Python string can
be thought of as a sequence of characters. For example, this is a sample of a text
file which records mail activity from various individuals in an open source project
development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: r39772 - content/branches/

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

...

The entire file of mail interactions is available from

www.py4e.com/code3/mbox.txt

and a shortened version of the file is available from

www.py4e.com/code3/mbox-short.txt

These files are in a standard format for a file containing multiple mail messages.
The lines which start with “From” separate the messages and the lines which start
with “From:” are part of the messages. For more information about the mbox
format, see https://en.wikipedia.org/wiki/Mbox.

To break the file into lines, there is a special character that represents the “end of
the line” called the newline character.

In Python, we represent the newline character as a backslash-n in string constants.
Even though this looks like two characters, it is actually a single character. When
we look at the variable by entering “stuff” in the interpreter, it shows us the \n

in the string, but when we use print to show the string, we see the string broken
into two lines by the newline character.

>>> stuff = 'Hello\nWorld!'

>>> stuff

'Hello\nWorld!'

>>> print(stuff)

Hello

World!

>>> stuff = 'X\nY'

>>> print(stuff)

X

Y

>>> len(stuff)

3

You can also see that the length of the string X\nY is three characters because the
newline character is a single character.

https://hemanthrajhemu.github.io

82 CHAPTER 7. FILES

So when we look at the lines in a file, we need to imagine that there is a special
invisible character called the newline at the end of each line that marks the end of
the line.

So the newline character separates the characters in the file into lines.

7.4 Reading files

While the file handle does not contain the data for the file, it is quite easy to
construct a for loop to read through and count each of the lines in a file:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

count = count + 1

print('Line Count:', count)

Code: http://www.py4e.com/code3/open.py

We can use the file handle as the sequence in our for loop. Our for loop simply
counts the number of lines in the file and prints them out. The rough translation
of the for loop into English is, “for each line in the file represented by the file
handle, add one to the count variable.”

The reason that the open function does not read the entire file is that the file might
be quite large with many gigabytes of data. The open statement takes the same
amount of time regardless of the size of the file. The for loop actually causes the
data to be read from the file.

When the file is read using a for loop in this manner, Python takes care of splitting
the data in the file into separate lines using the newline character. Python reads
each line through the newline and includes the newline as the last character in the
line variable for each iteration of the for loop.

Because the for loop reads the data one line at a time, it can efficiently read and
count the lines in very large files without running out of main memory to store
the data. The above program can count the lines in any size file using very little
memory since each line is read, counted, and then discarded.

If you know the file is relatively small compared to the size of your main memory,
you can read the whole file into one string using the read method on the file handle.

>>> fhand = open('mbox-short.txt')

>>> inp = fhand.read()

>>> print(len(inp))

94626

>>> print(inp[:20])

From stephen.marquar

In this example, the entire contents (all 94,626 characters) of the file mbox-short.txt
are read directly into the variable inp. We use string slicing to print out the first
20 characters of the string data stored in inp.

https://hemanthrajhemu.github.io

7.5. SEARCHING THROUGH A FILE 83

When the file is read in this manner, all the characters including all of the lines
and newline characters are one big string in the variable inp. It is a good idea
to store the output of read as a variable because each call to read exhausts the
resource:

>>> fhand = open('mbox-short.txt')

>>> print(len(fhand.read()))

94626

>>> print(len(fhand.read()))

0

Remember that this form of the open function should only be used if the file data
will fit comfortably in the main memory of your computer. If the file is too large
to fit in main memory, you should write your program to read the file in chunks
using a for or while loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very common pattern to read
through a file, ignoring most of the lines and only processing lines which meet a
particular condition. We can combine the pattern for reading a file with string
methods to build simple search mechanisms.

For example, if we wanted to read a file and only print out lines which started with
the prefix “From:”, we could use the string method startswith to select only those
lines with the desired prefix:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

if line.startswith('From:'):

print(line)

Code: http://www.py4e.com/code3/search1.py

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

...

The output looks great since the only lines we are seeing are those which start with
“From:”, but why are we seeing the extra blank lines? This is due to that invisible
newline character. Each of the lines ends with a newline, so the print statement

https://hemanthrajhemu.github.io

84 CHAPTER 7. FILES

prints the string in the variable line which includes a newline and then print adds
another newline, resulting in the double spacing effect we see.

We could use line slicing to print all but the last character, but a simpler approach
is to use the rstrip method which strips whitespace from the right side of a string
as follows:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if line.startswith('From:'):

print(line)

Code: http://www.py4e.com/code3/search2.py

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

...

As your file processing programs get more complicated, you may want to structure
your search loops using continue. The basic idea of the search loop is that you are
looking for “interesting” lines and effectively skipping “uninteresting” lines. And
then when we find an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skipping uninteresting lines as
follows:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

Skip 'uninteresting lines'

if not line.startswith('From:'):

continue

Process our 'interesting' line

print(line)

Code: http://www.py4e.com/code3/search3.py

The output of the program is the same. In English, the uninteresting lines are
those which do not start with “From:”, which we skip using continue. For the
“interesting” lines (i.e., those that start with “From:”) we perform the processing
on those lines.

We can use the find string method to simulate a text editor search that finds lines
where the search string is anywhere in the line. Since find looks for an occurrence

https://hemanthrajhemu.github.io

7.6. LETTING THE USER CHOOSE THE FILE NAME 85

of a string within another string and either returns the position of the string or -1
if the string was not found, we can write the following loop to show lines which
contain the string “@uct.ac.za” (i.e., they come from the University of Cape Town
in South Africa):

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if line.find('@uct.ac.za') == -1: continue

print(line)

Code: http://www.py4e.com/code3/search4.py

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

X-Authentication-Warning: set sender to stephen.marquard@uct.ac.za using -f

From: stephen.marquard@uct.ac.za

Author: stephen.marquard@uct.ac.za

From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008

X-Authentication-Warning: set sender to david.horwitz@uct.ac.za using -f

From: david.horwitz@uct.ac.za

Author: david.horwitz@uct.ac.za

...

Here we also use the contracted form of the if statement where we put the
continue on the same line as the if. This contracted form of the if functions the
same as if the continue were on the next line and indented.

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every time we want to
process a different file. It would be more usable to ask the user to enter the file
name string each time the program runs so they can use our program on different
files without changing the Python code.

This is quite simple to do by reading the file name from the user using input as
follows:

fname = input('Enter the file name: ')

fhand = open(fname)

count = 0

for line in fhand:

if line.startswith('Subject:'):

count = count + 1

print('There were', count, 'subject lines in', fname)

Code: http://www.py4e.com/code3/search6.py

https://hemanthrajhemu.github.io

86 CHAPTER 7. FILES

We read the file name from the user and place it in a variable named fname and
open that file. Now we can run the program repeatedly on different files.

python search6.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python search6.py

Enter the file name: mbox-short.txt

There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the above program and ask
yourself, “What could go possibly wrong here?” or “What might our friendly user
do that would cause our nice little program to ungracefully exit with a traceback,
making us look not-so-cool in the eyes of our users?”

7.7 Using try, except, and open

I told you not to peek. This is your last chance.

What if our user types something that is not a file name?

python search6.py

Enter the file name: missing.txt

Traceback (most recent call last):

File "search6.py", line 2, in <module>

fhand = open(fname)

FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'

python search6.py

Enter the file name: na na boo boo

Traceback (most recent call last):

File "search6.py", line 2, in <module>

fhand = open(fname)

FileNotFoundError: [Errno 2] No such file or directory: 'na na boo boo'

Do not laugh. Users will eventually do every possible thing they can do to break
your programs, either on purpose or with malicious intent. As a matter of fact,
an important part of any software development team is a person or group called
Quality Assurance (or QA for short) whose very job it is to do the craziest things
possible in an attempt to break the software that the programmer has created.

The QA team is responsible for finding the flaws in programs before we have
delivered the program to the end users who may be purchasing the software or
paying our salary to write the software. So the QA team is the programmer’s best
friend.

So now that we see the flaw in the program, we can elegantly fix it using the
try/except structure. We need to assume that the open call might fail and add
recovery code when the open fails as follows:

https://hemanthrajhemu.github.io

7.8. WRITING FILES 87

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

count = 0

for line in fhand:

if line.startswith('Subject:'):

count = count + 1

print('There were', count, 'subject lines in', fname)

Code: http://www.py4e.com/code3/search7.py

The exit function terminates the program. It is a function that we call that never
returns. Now when our user (or QA team) types in silliness or bad file names, we
“catch” them and recover gracefully:

python search7.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python search7.py

Enter the file name: na na boo boo

File cannot be opened: na na boo boo

Protecting the open call is a good example of the proper use of try and except

in a Python program. We use the term “Pythonic” when we are doing something
the “Python way”. We might say that the above example is the Pythonic way to
open a file.

Once you become more skilled in Python, you can engage in repartee with other
Python programmers to decide which of two equivalent solutions to a problem
is “more Pythonic”. The goal to be “more Pythonic” captures the notion that
programming is part engineering and part art. We are not always interested in
just making something work, we also want our solution to be elegant and to be
appreciated as elegant by our peers.

7.8 Writing files

To write a file, you have to open it with mode “w” as a second parameter:

>>> fout = open('output.txt', 'w')

>>> print(fout)

<_io.TextIOWrapper name='output.txt' mode='w' encoding='cp1252'>

If the file already exists, opening it in write mode clears out the old data and starts
fresh, so be careful! If the file doesn’t exist, a new one is created.

https://hemanthrajhemu.github.io

88 CHAPTER 7. FILES

The write method of the file handle object puts data into the file, returning the
number of characters written. The default write mode is text for writing (and
reading) strings.

>>> line1 = "This here's the wattle,\n"

>>> fout.write(line1)

24

Again, the file object keeps track of where it is, so if you call write again, it adds
the new data to the end.

We must make sure to manage the ends of lines as we write to the file by explicitly
inserting the newline character when we want to end a line. The print statement
automatically appends a newline, but the write method does not add the newline
automatically.

>>> line2 = 'the emblem of our land.\n'

>>> fout.write(line2)

24

When you are done writing, you have to close the file to make sure that the last
bit of data is physically written to the disk so it will not be lost if the power goes
off.

>>> fout.close()

We could close the files which we open for read as well, but we can be a little sloppy
if we are only opening a few files since Python makes sure that all open files are
closed when the program ends. When we are writing files, we want to explicitly
close the files so as to leave nothing to chance.

7.9 Debugging

When you are reading and writing files, you might run into problems with whites-
pace. These errors can be hard to debug because spaces, tabs, and newlines are
normally invisible:

>>> s = '1 2\t 3\n 4'

>>> print(s)

1 2 3

4

The built-in function repr can help. It takes any object as an argument and
returns a string representation of the object. For strings, it represents whitespace
characters with backslash sequences:

>>> print(repr(s))

'1 2\t 3\n 4'

https://hemanthrajhemu.github.io

7.10. GLOSSARY 89

This can be helpful for debugging.

One other problem you might run into is that different systems use different char-
acters to indicate the end of a line. Some systems use a newline, represented \n.
Others use a return character, represented \r. Some use both. If you move files
between different systems, these inconsistencies might cause problems.

For most systems, there are applications to convert from one format to another.
You can find them (and read more about this issue) at wikipedia.org/wiki/Newline.
Or, of course, you could write one yourself.

7.10 Glossary

catch To prevent an exception from terminating a program using the try and
except statements.

newline A special character used in files and strings to indicate the end of a line.

Pythonic A technique that works elegantly in Python. “Using try and except is
the Pythonic way to recover from missing files”.

Quality Assurance A person or team focused on insuring the overall quality of
a software product. QA is often involved in testing a product and identifying
problems before the product is released.

text file A sequence of characters stored in permanent storage like a hard drive.

7.11 Exercises

Exercise 1: Write a program to read through a file and print the contents
of the file (line by line) all in upper case. Executing the program will
look as follows:

python shout.py

Enter a file name: mbox-short.txt

FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008

RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>

RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;

SAT, 05 JAN 2008 09:14:16 -0500

You can download the file from www.py4e.com/code3/mbox-short.txt

Exercise 2: Write a program to prompt for a file name, and then read
through the file and look for lines of the form:

X-DSPAM-Confidence: 0.8475

When you encounter a line that starts with “X-DSPAM-Confidence:”
pull apart the line to extract the floating-point number on the line.
Count these lines and then compute the total of the spam confidence
values from these lines. When you reach the end of the file, print out
the average spam confidence.

https://hemanthrajhemu.github.io

90 CHAPTER 7. FILES

Enter the file name: mbox.txt

Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt

Average spam confidence: 0.750718518519

Test your file on the mbox.txt and mbox-short.txt files.

Exercise 3: Sometimes when programmers get bored or want to have a
bit of fun, they add a harmless Easter Egg to their program. Modify
the program that prompts the user for the file name so that it prints a
funny message when the user types in the exact file name “na na boo
boo”. The program should behave normally for all other files which
exist and don’t exist. Here is a sample execution of the program:

python egg.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python egg.py

Enter the file name: missing.tyxt

File cannot be opened: missing.tyxt

python egg.py

Enter the file name: na na boo boo

NA NA BOO BOO TO YOU - You have been punk'd!

We are not encouraging you to put Easter Eggs in your programs; this
is just an exercise.

https://hemanthrajhemu.github.io

