

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

viii CONTENTS

7.6 Letting the user choose the file name 85

7.7 Using try, except, and open . 86

7.8 Writing files . 87

7.9 Debugging . 88

7.10 Glossary . 89

7.11 Exercises . 89

8 Lists 91

8.1 A list is a sequence . 91

8.2 Lists are mutable . 92

8.3 Traversing a list . 92

8.4 List operations . 93

8.5 List slices . 94

8.6 List methods . 94

8.7 Deleting elements . 95

8.8 Lists and functions . 96

8.9 Lists and strings . 97

8.10 Parsing lines . 98

8.11 Objects and values . 99

8.12 Aliasing . 100

8.13 List arguments . 100

8.14 Debugging . 102

8.15 Glossary . 105

8.16 Exercises . 105

9 Dictionaries 107

9.1 Dictionary as a set of counters . 109

9.2 Dictionaries and files . 110

9.3 Looping and dictionaries . 111

9.4 Advanced text parsing . 113

9.5 Debugging . 114

9.6 Glossary . 115

9.7 Exercises . 115

https://hemanthrajhemu.github.io

CONTENTS ix

10 Tuples 117

10.1 Tuples are immutable . 117

10.2 Comparing tuples . 118

10.3 Tuple assignment . 120

10.4 Dictionaries and tuples . 121

10.5 Multiple assignment with dictionaries 122

10.6 The most common words . 123

10.7 Using tuples as keys in dictionaries 124

10.8 Sequences: strings, lists, and tuples - Oh My! 124

10.9 Debugging . 125

10.10 Glossary . 125

10.11 Exercises . 126

11 Regular expressions 127

11.1 Character matching in regular expressions 128

11.2 Extracting data using regular expressions 129

11.3 Combining searching and extracting 132

11.4 Escape character . 136

11.5 Summary . 136

11.6 Bonus section for Unix / Linux users 137

11.7 Debugging . 138

11.8 Glossary . 138

11.9 Exercises . 139

12 Networked programs 141

12.1 Hypertext Transfer Protocol - HTTP 141

12.2 The world’s simplest web browser 142

12.3 Retrieving an image over HTTP 144

12.4 Retrieving web pages with urllib 146

12.5 Reading binary files using urllib 147

12.6 Parsing HTML and scraping the web 148

12.7 Parsing HTML using regular expressions 148

12.8 Parsing HTML using BeautifulSoup 150

12.9 Bonus section for Unix / Linux users 153

12.10 Glossary . 153

12.11 Exercises . 154

https://hemanthrajhemu.github.io

Chapter 8

Lists

8.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters;
in a list, they can be any type. The values in list are called elements or sometimes
items.

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets (“[" and “]”):

[10, 20, 30, 40]

['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains
a string, a float, an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with
empty brackets, [].

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [17, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [17, 123] []

91https://hemanthrajhemu.github.io

92 CHAPTER 8. LISTS

8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the
characters of a string: the bracket operator. The expression inside the brackets
specifies the index. Remember that the indices start at 0:

>>> print(cheeses[0])

Cheddar

Unlike strings, lists are mutable because you can change the order of items in a
list or reassign an item in a list. When the bracket operator appears on the left
side of an assignment, it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print(numbers)

[17, 5]

The one-th element of numbers, which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This rela-
tionship is called a mapping; each index “maps to” one of the elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an
IndexError.

• If an index has a negative value, it counts backward from the end of the list.

The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

8.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The
syntax is the same as for strings:

for cheese in cheeses:

print(cheese)

https://hemanthrajhemu.github.io

8.4. LIST OPERATIONS 93

This works well if you only need to read the elements of the list. But if you want
to write or update the elements, you need the indices. A common way to do that
is to combine the functions range and len:

for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of
elements in the list. range returns a list of indices from 0 to n − 1, where n is
the length of the list. Each time through the loop, i gets the index of the next
element. The assignment statement in the body uses i to read the old value of the
element and to assign the new value.

A for loop over an empty list never executes the body:

for x in empty:

print('This never happens.')

Although a list can contain another list, the nested list still counts as a single
element. The length of this list is four:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

8.4 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print(c)

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats four times. The second example repeats the list three
times.

https://hemanthrajhemu.github.io

94 CHAPTER 8. LISTS

8.5 List slices

The slice operator also works on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second,
the slice goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy before performing opera-
tions that fold, spindle, or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> print(t)

['a', 'x', 'y', 'd', 'e', 'f']

8.6 List methods

Python provides methods that operate on lists. For example, append adds a new
element to the end of a list:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> print(t)

['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> print(t1)

['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

https://hemanthrajhemu.github.io

8.7. DELETING ELEMENTS 95

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> print(t)

['a', 'b', 'c', 'd', 'e']

Most list methods are void; they modify the list and return None. If you acciden-
tally write t = t.sort(), you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If you know the index of the
element you want, you can use pop:

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> print(t)

['a', 'c']

>>> print(x)

b

pop modifies the list and returns the element that was removed. If you don’t
provide an index, it deletes and returns the last element.

If you don’t need the removed value, you can use the del operator:

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> print(t)

['a', 'c']

If you know the element you want to remove (but not the index), you can use
remove:

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> print(t)

['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> print(t)

['a', 'f']

As usual, the slice selects all the elements up to, but not including, the second
index.

https://hemanthrajhemu.github.io

96 CHAPTER 8. LISTS

8.8 Lists and functions

There are a number of built-in functions that can be used on lists that allow you
to quickly look through a list without writing your own loops:

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print(len(nums))

6

>>> print(max(nums))

74

>>> print(min(nums))

3

>>> print(sum(nums))

154

>>> print(sum(nums)/len(nums))

25

The sum() function only works when the list elements are numbers. The other
functions (max(), len(), etc.) work with lists of strings and other types that can
be comparable.

We could rewrite an earlier program that computed the average of a list of numbers
entered by the user using a list.

First, the program to compute an average without a list:

total = 0

count = 0

while (True):

inp = input('Enter a number: ')

if inp == 'done': break

value = float(inp)

total = total + value

count = count + 1

average = total / count

print('Average:', average)

Code: http://www.py4e.com/code3/avenum.py

In this program, we have count and total variables to keep the number and
running total of the user’s numbers as we repeatedly prompt the user for a number.

We could simply remember each number as the user entered it and use built-in
functions to compute the sum and count at the end.

numlist = list()

while (True):

inp = input('Enter a number: ')

if inp == 'done': break

value = float(inp)

https://hemanthrajhemu.github.io

8.9. LISTS AND STRINGS 97

numlist.append(value)

average = sum(numlist) / len(numlist)

print('Average:', average)

Code: http://www.py4e.com/code3/avelist.py

We make an empty list before the loop starts, and then each time we have a number,
we append it to the list. At the end of the program, we simply compute the sum
of the numbers in the list and divide it by the count of the numbers in the list to
come up with the average.

8.9 Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list
of characters is not the same as a string. To convert from a string to a list of
characters, you can use list:

>>> s = 'spam'

>>> t = list(s)

>>> print(t)

['s', 'p', 'a', 'm']

Because list is the name of a built-in function, you should avoid using it as
a variable name. I also avoid the letter “l” because it looks too much like the
number “1”. So that’s why I use “t”.

The list function breaks a string into individual letters. If you want to break a
string into words, you can use the split method:

>>> s = 'pining for the fjords'

>>> t = s.split()

>>> print(t)

['pining', 'for', 'the', 'fjords']

>>> print(t[2])

the

Once you have used split to break the string into a list of words, you can use the
index operator (square bracket) to look at a particular word in the list.

You can call split with an optional argument called a delimiter that specifies
which characters to use as word boundaries. The following example uses a hyphen
as a delimiter:

>>> s = 'spam-spam-spam'

>>> delimiter = '-'

>>> s.split(delimiter)

['spam', 'spam', 'spam']

https://hemanthrajhemu.github.io

98 CHAPTER 8. LISTS

join is the inverse of split. It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimiter and pass the list
as a parameter:

>>> t = ['pining', 'for', 'the', 'fjords']

>>> delimiter = ' '

>>> delimiter.join(t)

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words.
To concatenate strings without spaces, you can use the empty string, “”, as a
delimiter.

8.10 Parsing lines

Usually when we are reading a file we want to do something to the lines other than
just printing the whole line. Often we want to find the “interesting lines” and then
parse the line to find some interesting part of the line. What if we wanted to print
out the day of the week from those lines that start with “From”?

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The split method is very effective when faced with this kind of problem. We can
write a small program that looks for lines where the line starts with “From”, split

those lines, and then print out the third word in the line:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if not line.startswith('From '): continue

words = line.split()

print(words[2])

Code: http://www.py4e.com/code3/search5.py

The program produces the following output:

Sat

Fri

Fri

Fri

...

Later, we will learn increasingly sophisticated techniques for picking the lines to
work on and how we pull those lines apart to find the exact bit of information we
are looking for.

https://hemanthrajhemu.github.io

8.11. OBJECTS AND VALUES 99

8.11 Objects and values

If we execute these assignment statements:

a = 'banana'

b = 'banana'

we know that a and b both refer to a string, but we don’t know whether they refer
to the same string. There are two possible states:

a

b

‘banana’

‘banana’

a

b
‘banana’

Figure 8.1: Variables and Objects

In one case, a and b refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is oper-
ator.

>>> a = 'banana'

>>> b = 'banana'

>>> a is b

True

In this example, Python only created one string object, and both a and b refer to
it.

But when you create two lists, you get two objects:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

In this case we would say that the two lists are equivalent, because they have the
same elements, but not identical, because they are not the same object. If two
objects are identical, they are also equivalent, but if they are equivalent, they are
not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you execute a = [1,2,3], a refers to
a list object whose value is a particular sequence of elements. If another list has
the same elements, we would say it has the same value.

https://hemanthrajhemu.github.io

100 CHAPTER 8. LISTS

8.12 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same
object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The association of a variable with an object is called a reference. In this example,
there are two references to the same object.

An object with more than one reference has more than one name, so we say that
the object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17

>>> print(a)

[17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to
avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this
example:

a = 'banana'

b = 'banana'

it almost never makes a difference whether a and b refer to the same string or not.

8.13 List arguments

When you pass a list to a function, the function gets a reference to the list. If
the function modifies a list parameter, the caller sees the change. For example,
delete_head removes the first element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print(letters)

['b', 'c']

https://hemanthrajhemu.github.io

8.13. LIST ARGUMENTS 101

The parameter t and the variable letters are aliases for the same object.

It is important to distinguish between operations that modify lists and operations
that create new lists. For example, the append method modifies a list, but the +

operator creates a new list:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print(t1)

[1, 2, 3]

>>> print(t2)

None

>>> t3 = t1 + [3]

>>> print(t3)

[1, 2, 3]

>>> t2 is t3

False

This difference is important when you write functions that are supposed to modify
lists. For example, this function does not delete the head of a list:

def bad_delete_head(t):

t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but
none of that has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For
example, tail returns all but the first element of a list:

def tail(t):

return t[1:]

This function leaves the original list unmodified. Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> rest = tail(letters)

>>> print(rest)

['b', 'c']

Exercise 1: Write a function called chop that takes a list and modifies
it, removing the first and last elements, and returns None. Then write
a function called middle that takes a list and returns a new list that
contains all but the first and last elements.

https://hemanthrajhemu.github.io

102 CHAPTER 8. LISTS

8.14 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging.
Here are some common pitfalls and ways to avoid them:

1. Don’t forget that most list methods modify the argument and return None.
This is the opposite of the string methods, which return a new string and
leave the original alone.

If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Because sort returns None, the next operation you perform with t is likely
to fail.

Before using list methods and operators, you should read the documentation
carefully and then test them in interactive mode. The methods and operators
that lists share with other sequences (like strings) are documented at:

docs.python.org/library/stdtypes.html#common-sequence-operations

The methods and operators that only apply to mutable sequences are docu-
mented at:

docs.python.org/library/stdtypes.html#mutable-sequence-types

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things.
For example, to remove an element from a list, you can use pop, remove, del,
or even a slice assignment.

To add an element, you can use the append method or the + operator. But
don’t forget that these are right:

t.append(x)

t = t + [x]

And these are wrong:

t.append([x]) # WRONG!

t = t.append(x) # WRONG!

t + [x] # WRONG!

t = t + x # WRONG!

Try out each of these examples in interactive mode to make sure you under-
stand what they do. Notice that only the last one causes a runtime error;
the other three are legal, but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method like sort that modifies the argument, but you
need to keep the original list as well, you can make a copy.

https://hemanthrajhemu.github.io

8.14. DEBUGGING 103

orig = t[:]

t.sort()

In this example you could also use the built-in function sorted, which returns
a new, sorted list and leaves the original alone. But in that case you should
avoid using sorted as a variable name!

4. Lists, split, and files

When we read and parse files, there are many opportunities to encounter
input that can crash our program so it is a good idea to revisit the guardian
pattern when it comes writing programs that read through a file and look
for a “needle in the haystack”.

Let’s revisit our program that is looking for the day of the week on the from
lines of our file:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Since we are breaking this line into words, we could dispense with the use
of startswith and simply look at the first word of the line to determine if
we are interested in the line at all. We can use continue to skip lines that
don’t have “From” as the first word as follows:

fhand = open('mbox-short.txt')

for line in fhand:

words = line.split()

if words[0] != 'From' : continue

print(words[2])

This looks much simpler and we don’t even need to do the rstrip to remove
the newline at the end of the file. But is it better?

python search8.py

Sat

Traceback (most recent call last):

File "search8.py", line 5, in <module>

if words[0] != 'From' : continue

IndexError: list index out of range

It kind of works and we see the day from the first line (Sat), but then the
program fails with a traceback error. What went wrong? What messed-up
data caused our elegant, clever, and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it or ask someone
for help, but the quicker and smarter approach is to add a print statement.
The best place to add the print statement is right before the line where the
program failed and print out the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output, but at least you will
immediately have some clue as to the problem at hand. So we add a print of
the variable words right before line five. We even add a prefix “Debug:” to
the line so we can keep our regular output separate from our debug output.

https://hemanthrajhemu.github.io

104 CHAPTER 8. LISTS

for line in fhand:

words = line.split()

print('Debug:', words)

if words[0] != 'From' : continue

print(words[2])

When we run the program, a lot of output scrolls off the screen but at the
end, we see our debug output and the traceback so we know what happened
just before the traceback.

Debug: ['X-DSPAM-Confidence:', '0.8475']

Debug: ['X-DSPAM-Probability:', '0.0000']

Debug: []

Traceback (most recent call last):

File "search9.py", line 6, in <module>

if words[0] != 'From' : continue

IndexError: list index out of range

Each debug line is printing the list of words which we get when we split

the line into words. When the program fails, the list of words is empty [].
If we open the file in a text editor and look at the file, at that point it looks
as follows:

X-DSPAM-Result: Innocent

X-DSPAM-Processed: Sat Jan 5 09:14:16 2008

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

The error occurs when our program encounters a blank line! Of course there
are “zero words” on a blank line. Why didn’t we think of that when we were
writing the code? When the code looks for the first word (word[0]) to check
to see if it matches “From”, we get an “index out of range” error.

This of course is the perfect place to add some guardian code to avoid check-
ing the first word if the first word is not there. There are many ways to
protect this code; we will choose to check the number of words we have
before we look at the first word:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

words = line.split()

print('Debug:', words)

if len(words) == 0 : continue

if words[0] != 'From' : continue

print(words[2])

First we commented out the debug print statement instead of removing it,
in case our modification fails and we need to debug again. Then we added
a guardian statement that checks to see if we have zero words, and if so, we
use continue to skip to the next line in the file.

https://hemanthrajhemu.github.io

8.15. GLOSSARY 105

We can think of the two continue statements as helping us refine the set of
lines which are “interesting” to us and which we want to process some more.
A line which has no words is “uninteresting” to us so we skip to the next line.
A line which does not have “From” as its first word is uninteresting to us so
we skip it.

The program as modified runs successfully, so perhaps it is correct. Our
guardian statement does make sure that the words[0] will never fail, but
perhaps it is not enough. When we are programming, we must always be
thinking, “What might go wrong?”

Exercise 2: Figure out which line of the above program is still not
properly guarded. See if you can construct a text file which causes the
program to fail and then modify the program so that the line is properly
guarded and test it to make sure it handles your new text file.

Exercise 3: Rewrite the guardian code in the above example without
two if statements. Instead, use a compound logical expression using
the or logical operator with a single if statement.

8.15 Glossary

aliasing A circumstance where two or more variables refer to the same object.
delimiter A character or string used to indicate where a string should be split.
element One of the values in a list (or other sequence); also called items.
equivalent Having the same value.
index An integer value that indicates an element in a list.
identical Being the same object (which implies equivalence).
list A sequence of values.
list traversal The sequential accessing of each element in a list.
nested list A list that is an element of another list.
object Something a variable can refer to. An object has a type and a value.
reference The association between a variable and its value.

8.16 Exercises

Exercise 4: Download a copy of the file www.py4e.com/code3/romeo.txt.
Write a program to open the file romeo.txt and read it line by line. For
each line, split the line into a list of words using the split function.
For each word, check to see if the word is already in a list. If the word
is not in the list, add it to the list. When the program completes, sort
and print the resulting words in alphabetical order.

Enter file: romeo.txt

['Arise', 'But', 'It', 'Juliet', 'Who', 'already',

'and', 'breaks', 'east', 'envious', 'fair', 'grief',

'is', 'kill', 'light', 'moon', 'pale', 'sick', 'soft',

'sun', 'the', 'through', 'what', 'window',

'with', 'yonder']

https://hemanthrajhemu.github.io

106 CHAPTER 8. LISTS

Exercise 5: Write a program to read through the mail box data and
when you find line that starts with “From”, you will split the line into
words using the split function. We are interested in who sent the
message, which is the second word on the From line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each
From line, then you will also count the number of From (not From:)
lines and print out a count at the end. This is a good sample output
with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt

stephen.marquard@uct.ac.za

louis@media.berkeley.edu

zqian@umich.edu

[...some output removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

Exercise 6: Rewrite the program that prompts the user for a list of
numbers and prints out the maximum and minimum of the numbers at
the end when the user enters “done”. Write the program to store the
numbers the user enters in a list and use the max() and min() functions to
compute the maximum and minimum numbers after the loop completes.

Enter a number: 6

Enter a number: 2

Enter a number: 9

Enter a number: 3

Enter a number: 5

Enter a number: done

Maximum: 9.0

Minimum: 2.0

https://hemanthrajhemu.github.io

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the index positions have to
be integers; in a dictionary, the indices can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are
called keys) and a set of values. Each key maps to a value. The association of a
key and a value is called a key-value pair or sometimes an item.

As an example, we’ll build a dictionary that maps from English to Spanish words,
so the keys and the values are all strings.

The function dict creates a new dictionary with no items. Because dict is the
name of a built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()

>>> print(eng2sp)

{}

The curly brackets, {}, represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key 'one' to the value “uno”. If we
print the dictionary again, we see a key-value pair with a colon between the key
and value:

>>> print(eng2sp)

{'one': 'uno'}

This output format is also an input format. For example, you can create a new
dictionary with three items. But if you print eng2sp, you might be surprised:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print(eng2sp)

{'one': 'uno', 'three': 'tres', 'two': 'dos'}

107https://hemanthrajhemu.github.io

108 CHAPTER 9. DICTIONARIES

The order of the key-value pairs is not the same. In fact, if you type the same
example on your computer, you might get a different result. In general, the order
of items in a dictionary is unpredictable.

But that’s not a problem because the elements of a dictionary are never indexed
with integer indices. Instead, you use the keys to look up the corresponding values:

>>> print(eng2sp['two'])

'dos'

The key 'two' always maps to the value “dos” so the order of the items doesn’t
matter.

If the key isn’t in the dictionary, you get an exception:

>>> print(eng2sp['four'])

KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries; it tells you whether something appears as
a key in the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

To see whether something appears as a value in a dictionary, you can use the
method values, which returns the values as a type that can be converted to a list,
and then use the in operator:

>>> vals = list(eng2sp.values())

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and dictionaries. For lists, it
uses a linear search algorithm. As the list gets longer, the search time gets longer
in direct proportion to the length of the list. For dictionaries, Python uses an
algorithm called a hash table that has a remarkable property: the in operator
takes about the same amount of time no matter how many items there are in a
dictionary. I won’t explain why hash functions are so magical, but you can read
more about it at wikipedia.org/wiki/Hash_table.

Exercise 1: Download a copy of the file www.py4e.com/code3/words.txt

Write a program that reads the words in words.txt and stores them as
keys in a dictionary. It doesn’t matter what the values are. Then you
can use the in operator as a fast way to check whether a string is in the
dictionary.

https://hemanthrajhemu.github.io

9.1. DICTIONARY AS A SET OF COUNTERS 109

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter
appears. There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you
could traverse the string and, for each character, increment the corresponding
counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in function ord), use the number as
an index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add
an item to the dictionary. After that you would increment the value of an
existing item.

Each of these options performs the same computation, but each of them implements
that computation in a different way.

An implementation is a way of performing a computation; some implementations
are better than others. For example, an advantage of the dictionary implementa-
tion is that we don’t have to know ahead of time which letters appear in the string
and we only have to make room for the letters that do appear.

Here is what the code might look like:

word = 'brontosaurus'

d = dict()

for c in word:

if c not in d:

d[c] = 1

else:

d[c] = d[c] + 1

print(d)

We are effectively computing a histogram, which is a statistical term for a set of
counters (or frequencies).

The for loop traverses the string. Each time through the loop, if the character c

is not in the dictionary, we create a new item with key c and the initial value 1
(since we have seen this letter once). If c is already in the dictionary we increment
d[c].

Here’s the output of the program:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters “a” and “b” appear once; “o” appears
twice, and so on.

Dictionaries have a method called get that takes a key and a default value. If the
key appears in the dictionary, get returns the corresponding value; otherwise it
returns the default value. For example:

https://hemanthrajhemu.github.io

110 CHAPTER 9. DICTIONARIES

>>> counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

>>> print(counts.get('jan', 0))

100

>>> print(counts.get('tim', 0))

0

We can use get to write our histogram loop more concisely. Because the get

method automatically handles the case where a key is not in a dictionary, we can
reduce four lines down to one and eliminate the if statement.

word = 'brontosaurus'

d = dict()

for c in word:

d[c] = d.get(c,0) + 1

print(d)

The use of the get method to simplify this counting loop ends up being a very
commonly used “idiom” in Python and we will use it many times in the rest of the
book. So you should take a moment and compare the loop using the if statement
and in operator with the loop using the get method. They do exactly the same
thing, but one is more succinct.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occurrence of words in a
file with some written text. Let’s start with a very simple file of words taken from
the text of Romeo and Juliet.

For the first set of examples, we will use a shortened and simplified version of
the text with no punctuation. Later we will work with the text of the scene with
punctuation included.

But soft what light through yonder window breaks

It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

We will write a Python program to read through the lines of the file, break each
line into a list of words, and then loop through each of the words in the line and
count each word using a dictionary.

You will see that we have two for loops. The outer loop is reading the lines of the
file and the inner loop is iterating through each of the words on that particular
line. This is an example of a pattern called nested loops because one of the loops
is the outer loop and the other loop is the inner loop.

Because the inner loop executes all of its iterations each time the outer loop makes
a single iteration, we think of the inner loop as iterating “more quickly” and the
outer loop as iterating more slowly.

The combination of the two nested loops ensures that we will count every word on
every line of the input file.

https://hemanthrajhemu.github.io

9.3. LOOPING AND DICTIONARIES 111

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

counts = dict()

for line in fhand:

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

print(counts)

Code: http://www.py4e.com/code3/count1.py

In our else statement, we use the more compact alternative for incrementing a
variable. counts[word] += 1 is equivalent to counts[word] = counts[word] +

1. Either method can be used to change the value of a variable by any desired
amount. Similar alternatives exist for -=, *=, and /=.

When we run the program, we see a raw dump of all of the counts in unsorted
hash order. (the romeo.txt file is available at www.py4e.com/code3/romeo.txt)

python count1.py

Enter the file name: romeo.txt

{'and': 3, 'envious': 1, 'already': 1, 'fair': 1,

'is': 3, 'through': 1, 'pale': 1, 'yonder': 1,

'what': 1, 'sun': 2, 'Who': 1, 'But': 1, 'moon': 1,

'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,

'grief': 1, 'with': 1, 'light': 1, 'It': 1, 'Arise': 1,

'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

It is a bit inconvenient to look through the dictionary to find the most common
words and their counts, so we need to add some more Python code to get us the
output that will be more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence in a for statement, it traverses the keys of
the dictionary. This loop prints each key and the corresponding value:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

for key in counts:

print(key, counts[key])

https://hemanthrajhemu.github.io

112 CHAPTER 9. DICTIONARIES

Here’s what the output looks like:

jan 100

chuck 1

annie 42

Again, the keys are in no particular order.

We can use this pattern to implement the various loop idioms that we have de-
scribed earlier. For example if we wanted to find all the entries in a dictionary
with a value above ten, we could write the following code:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

for key in counts:

if counts[key] > 10 :

print(key, counts[key])

The for loop iterates through the keys of the dictionary, so we must use the index
operator to retrieve the corresponding value for each key. Here’s what the output
looks like:

jan 100

annie 42

We see only the entries with a value above 10.

If you want to print the keys in alphabetical order, you first make a list of the keys
in the dictionary using the keys method available in dictionary objects, and then
sort that list and loop through the sorted list, looking up each key and printing
out key-value pairs in sorted order as follows:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

lst = list(counts.keys())

print(lst)

lst.sort()

for key in lst:

print(key, counts[key])

Here’s what the output looks like:

['jan', 'chuck', 'annie']

annie 42

chuck 1

jan 100

First you see the list of keys in unsorted order that we get from the keys method.
Then we see the key-value pairs in order from the for loop.

https://hemanthrajhemu.github.io

9.4. ADVANCED TEXT PARSING 113

9.4 Advanced text parsing

In the above example using the file romeo.txt, we made the file as simple as possible
by removing all punctuation by hand. The actual text has lots of punctuation, as
shown below.

But, soft! what light through yonder window breaks?

It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

Since the Python split function looks for spaces and treats words as tokens sep-
arated by spaces, we would treat the words “soft!” and “soft” as different words
and create a separate dictionary entry for each word.

Also since the file has capitalization, we would treat “who” and “Who” as different
words with different counts.

We can solve both these problems by using the string methods lower, punctuation,
and translate. The translate is the most subtle of the methods. Here is the
documentation for translate:

line.translate(str.maketrans(fromstr, tostr, deletestr))

Replace the characters in fromstr with the character in the same position in tostr

and delete all characters that are in deletestr. The fromstr and tostr can be
empty strings and the deletestr parameter can be omitted.

We will not specify the tostr but we will use the deletestr parameter to delete
all of the punctuation. We will even let Python tell us the list of characters that
it considers “punctuation”:

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The parameters used by translate were different in Python 2.0.

We make the following modifications to our program:

import string

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

counts = dict()

for line in fhand:

line = line.rstrip()

https://hemanthrajhemu.github.io

114 CHAPTER 9. DICTIONARIES

line = line.translate(line.maketrans('', '', string.punctuation))

line = line.lower()

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

print(counts)

Code: http://www.py4e.com/code3/count2.py

Part of learning the “Art of Python” or “Thinking Pythonically” is realizing that
Python often has built-in capabilities for many common data analysis problems.
Over time, you will see enough example code and read enough of the documentation
to know where to look to see if someone has already written something that makes
your job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt

{'swearst': 1, 'all': 6, 'afeard': 1, 'leave': 2, 'these': 2,

'kinsmen': 2, 'what': 11, 'thinkst': 1, 'love': 24, 'cloak': 1,

a': 24, 'orchard': 2, 'light': 5, 'lovers': 2, 'romeo': 40,

'maiden': 1, 'whiteupturned': 1, 'juliet': 32, 'gentleman': 1,

'it': 22, 'leans': 1, 'canst': 1, 'having': 1, ...}

Looking through this output is still unwieldy and we can use Python to give us
exactly what we are looking for, but to do so, we need to learn about Python tuples.
We will pick up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and
checking data by hand. Here are some suggestions for debugging large datasets:

Scale down the input If possible, reduce the size of the dataset. For example
if the program reads a text file, start with just the first 10 lines, or with the
smallest example you can find. You can either edit the files themselves, or
(better) modify the program so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the
error, and then increase it gradually as you find and correct errors.

Check summaries and types Instead of printing and checking the entire
dataset, consider printing summaries of the data: for example, the number
of items in a dictionary or the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value.

https://hemanthrajhemu.github.io

9.6. GLOSSARY 115

Write self-checks Sometimes you can write code to check for errors automati-
cally. For example, if you are computing the average of a list of numbers, you
could check that the result is not greater than the largest element in the list
or less than the smallest. This is called a “sanity check” because it detects
results that are “completely illogical”.

Another kind of check compares the results of two different computations to
see if they are consistent. This is called a “consistency check”.

Pretty print the output Formatting debugging output can make it easier to
spot an error.

Again, time you spend building scaffolding can reduce the time you spend debug-
ging.

9.6 Glossary

dictionary A mapping from a set of keys to their corresponding values.
hashtable The algorithm used to implement Python dictionaries.
hash function A function used by a hashtable to compute the location for a key.

histogram A set of counters.
implementation A way of performing a computation.
item Another name for a key-value pair.
key An object that appears in a dictionary as the first part of a key-value pair.
key-value pair The representation of the mapping from a key to a value.
lookup A dictionary operation that takes a key and finds the corresponding value.

nested loops When there are one or more loops “inside” of another loop. The
inner loop runs to completion each time the outer loop runs once.

value An object that appears in a dictionary as the second part of a key-value
pair. This is more specific than our previous use of the word “value”.

9.7 Exercises

Exercise 2: Write a program that categorizes each mail message by
which day of the week the commit was done. To do this look for lines
that start with “From”, then look for the third word and keep a running
count of each of the days of the week. At the end of the program print
out the contents of your dictionary (order does not matter).

Sample Line:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:

python dow.py

Enter a file name: mbox-short.txt

{'Fri': 20, 'Thu': 6, 'Sat': 1}

https://hemanthrajhemu.github.io

116 CHAPTER 9. DICTIONARIES

Exercise 3: Write a program to read through a mail log, build a his-
togram using a dictionary to count how many messages have come from
each email address, and print the dictionary.

Enter file name: mbox-short.txt

{'gopal.ramasammycook@gmail.com': 1, 'louis@media.berkeley.edu': 3,

'cwen@iupui.edu': 5, 'antranig@caret.cam.ac.uk': 1,

'rjlowe@iupui.edu': 2, 'gsilver@umich.edu': 3,

'david.horwitz@uct.ac.za': 4, 'wagnermr@iupui.edu': 1,

'zqian@umich.edu': 4, 'stephen.marquard@uct.ac.za': 2,

'ray@media.berkeley.edu': 1}

Exercise 4: Add code to the above program to figure out who has the
most messages in the file. After all the data has been read and the dic-
tionary has been created, look through the dictionary using a maximum
loop (see Chapter 5: Maximum and minimum loops) to find who has
the most messages and print how many messages the person has.

Enter a file name: mbox-short.txt

cwen@iupui.edu 5

Enter a file name: mbox.txt

zqian@umich.edu 195

Exercise 5: This program records the domain name (instead of the
address) where the message was sent from instead of who the mail came
from (i.e., the whole email address). At the end of the program, print
out the contents of your dictionary.

python schoolcount.py

Enter a file name: mbox-short.txt

{'media.berkeley.edu': 4, 'uct.ac.za': 6, 'umich.edu': 7,

'gmail.com': 1, 'caret.cam.ac.uk': 1, 'iupui.edu': 8}

https://hemanthrajhemu.github.io

Chapter 10

Tuples

10.1 Tuples are immutable

A tuple1 is a sequence of values much like a list. The values stored in a tuple can
be any type, and they are indexed by integers. The important difference is that
tuples are immutable. Tuples are also comparable and hashable so we can sort lists
of them and use tuples as key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses to help
us quickly identify tuples when we look at Python code:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>

Without the comma Python treats ('a') as an expression with a string in paren-
theses that evaluates to a string:

>>> t2 = ('a')

>>> type(t2)

<type 'str'>

Another way to construct a tuple is the built-in function tuple. With no argument,
it creates an empty tuple:

1Fun fact: The word “tuple” comes from the names given to sequences of numbers of varying
lengths: single, double, triple, quadruple, quintuple, sextuple, septuple, etc.

117https://hemanthrajhemu.github.io

118 CHAPTER 10. TUPLES

>>> t = tuple()

>>> print(t)

()

If the argument is a sequence (string, list, or tuple), the result of the call to tuple

is a tuple with the elements of the sequence:

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a constructor, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print(t[0])

'a'

And the slice operator selects a range of elements.

>>> print(t[1:3])

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with
another:

>>> t = ('A',) + t[1:]

>>> print(t)

('A', 'b', 'c', 'd', 'e')

10.2 Comparing tuples

The comparison operators work with tuples and other sequences. Python starts by
comparing the first element from each sequence. If they are equal, it goes on to the
next element, and so on, until it finds elements that differ. Subsequent elements
are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

https://hemanthrajhemu.github.io

10.2. COMPARING TUPLES 119

The sort function works the same way. It sorts primarily by first element, but in
the case of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern called DSU for

Decorate a sequence by building a list of tuples with one or more sort keys
preceding the elements from the sequence,

Sort the list of tuples using the Python built-in sort, and
Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you want to sort them from
longest to shortest:

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()

for length, word in t:

res.append(word)

print(res)

Code: http://www.py4e.com/code3/soft.py

The first loop builds a list of tuples, where each tuple is a word preceded by its
length.

sort compares the first element, length, first, and only considers the second el-
ement to break ties. The keyword argument reverse=True tells sort to go in
decreasing order.

The second loop traverses the list of tuples and builds a list of words in descending
order of length. The four-character words are sorted in reverse alphabetical order,
so “what” appears before “soft” in the following list.

The output of the program is as follows:

['yonder', 'window', 'breaks', 'light', 'what',

'soft', 'but', 'in']

Of course the line loses much of its poetic impact when turned into a Python list
and sorted in descending word length order.

https://hemanthrajhemu.github.io

120 CHAPTER 10. TUPLES

10.3 Tuple assignment

One of the unique syntactic features of the Python language is the ability to have
a tuple on the left side of an assignment statement. This allows you to assign more
than one variable at a time when the left side is a sequence.

In this example we have a two-element list (which is a sequence) and assign the first
and second elements of the sequence to the variables x and y in a single statement.

>>> m = ['have', 'fun']

>>> x, y = m

>>> x

'have'

>>> y

'fun'

>>>

It is not magic, Python roughly translates the tuple assignment syntax to be the
following:2

>>> m = ['have', 'fun']

>>> x = m[0]

>>> y = m[1]

>>> x

'have'

>>> y

'fun'

>>>

Stylistically when we use a tuple on the left side of the assignment statement, we
omit the parentheses, but the following is an equally valid syntax:

>>> m = ['have', 'fun']

>>> (x, y) = m

>>> x

'have'

>>> y

'fun'

>>>

A particularly clever application of tuple assignment allows us to swap the values
of two variables in a single statement:

>>> a, b = b, a

2Python does not translate the syntax literally. For example, if you try this with a dictionary,
it will not work as might expect.

https://hemanthrajhemu.github.io

10.4. DICTIONARIES AND TUPLES 121

Both sides of this statement are tuples, but the left side is a tuple of variables;
the right side is a tuple of expressions. Each value on the right side is assigned
to its respective variable on the left side. All the expressions on the right side are
evaluated before any of the assignments.

The number of variables on the left and the number of values on the right must be
the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list, or tuple).
For example, to split an email address into a user name and a domain, you could
write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned
to uname, the second to domain.

>>> print(uname)

monty

>>> print(domain)

python.org

10.4 Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each
tuple is a key-value pair:

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

As you should expect from a dictionary, the items are in no particular order.

However, since the list of tuples is a list, and tuples are comparable, we can now
sort the list of tuples. Converting a dictionary to a list of tuples is a way for us to
output the contents of a dictionary sorted by key:

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = list(d.items())

>>> t

[('b', 1), ('a', 10), ('c', 22)]

>>> t.sort()

>>> t

[('a', 10), ('b', 1), ('c', 22)]

The new list is sorted in ascending alphabetical order by the key value.

https://hemanthrajhemu.github.io

122 CHAPTER 10. TUPLES

10.5 Multiple assignment with dictionaries

Combining items, tuple assignment, and for, you can see a nice code pattern for
traversing the keys and values of a dictionary in a single loop:

for key, val in list(d.items()):

print(val, key)

This loop has two iteration variables because items returns a list of tuples and key,

val is a tuple assignment that successively iterates through each of the key-value
pairs in the dictionary.

For each iteration through the loop, both key and value are advanced to the next
key-value pair in the dictionary (still in hash order).

The output of this loop is:

10 a

22 c

1 b

Again, it is in hash key order (i.e., no particular order).

If we combine these two techniques, we can print out the contents of a dictionary
sorted by the value stored in each key-value pair.

To do this, we first make a list of tuples where each tuple is (value, key). The
items method would give us a list of (key, value) tuples, but this time we want
to sort by value, not key. Once we have constructed the list with the value-key
tuples, it is a simple matter to sort the list in reverse order and print out the new,
sorted list.

>>> d = {'a':10, 'b':1, 'c':22}

>>> l = list()

>>> for key, val in d.items() :

... l.append((val, key))

...

>>> l

[(10, 'a'), (22, 'c'), (1, 'b')]

>>> l.sort(reverse=True)

>>> l

[(22, 'c'), (10, 'a'), (1, 'b')]

>>>

By carefully constructing the list of tuples to have the value as the first element
of each tuple, we can sort the list of tuples and get our dictionary contents sorted
by value.

https://hemanthrajhemu.github.io

10.6. THE MOST COMMON WORDS 123

10.6 The most common words

Coming back to our running example of the text from Romeo and Juliet Act 2,
Scene 2, we can augment our program to use this technique to print the ten most
common words in the text as follows:

import string

fhand = open('romeo-full.txt')

counts = dict()

for line in fhand:

line = line.translate(str.maketrans('', '', string.punctuation))

line = line.lower()

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

Sort the dictionary by value

lst = list()

for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10]:

print(key, val)

Code: http://www.py4e.com/code3/count3.py

The first part of the program which reads the file and computes the dictionary
that maps each word to the count of words in the document is unchanged. But
instead of simply printing out counts and ending the program, we construct a list
of (val, key) tuples and then sort the list in reverse order.

Since the value is first, it will be used for the comparisons. If there is more than
one tuple with the same value, it will look at the second element (the key), so
tuples where the value is the same will be further sorted by the alphabetical order
of the key.

At the end we write a nice for loop which does a multiple assignment iteration
and prints out the ten most common words by iterating through a slice of the list
(lst[:10]).

So now the output finally looks like what we want for our word frequency analysis.

61 i

42 and

40 romeo

34 to

34 the

https://hemanthrajhemu.github.io

124 CHAPTER 10. TUPLES

32 thou

32 juliet

30 that

29 my

24 thee

The fact that this complex data parsing and analysis can be done with an easy-to-
understand 19-line Python program is one reason why Python is a good choice as
a language for exploring information.

10.7 Using tuples as keys in dictionaries

Because tuples are hashable and lists are not, if we want to create a composite key
to use in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to create a telephone directory
that maps from last-name, first-name pairs to telephone numbers. Assuming that
we have defined the variables last, first, and number, we could write a dictionary
assignment statement as follows:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in a for loop
to traverse this dictionary.

for last, first in directory:

print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples. It assigns the elements
of each tuple to last and first, then prints the name and corresponding telephone
number.

10.8 Sequences: strings, lists, and tuples - Oh
My!

I have focused on lists of tuples, but almost all of the examples in this chapter
also work with lists of lists, tuples of tuples, and tuples of lists. To avoid enumer-
ating the possible combinations, it is sometimes easier to talk about sequences of
sequences.

In many contexts, the different kinds of sequences (strings, lists, and tuples) can
be used interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because
the elements have to be characters. They are also immutable. If you need the
ability to change the characters in a string (as opposed to creating a new string),
you might want to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But there
are a few cases where you might prefer tuples:

https://hemanthrajhemu.github.io

10.9. DEBUGGING 125

1. In some contexts, like a return statement, it is syntactically simpler to create
a tuple than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have to use an im-
mutable type like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples
reduces the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse,
which modify existing lists. However Python provides the built-in functions sorted

and reversed, which take any sequence as a parameter and return a new sequence
with the same elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known generically as data structures; in this
chapter we are starting to see compound data structures, like lists of tuples, and
dictionaries that contain tuples as keys and lists as values. Compound data struc-
tures are useful, but they are prone to what I call shape errors; that is, errors
caused when a data structure has the wrong type, size, or composition, or perhaps
you write some code and forget the shape of your data and introduce an error. For
example, if you are expecting a list with one integer and I give you a plain old
integer (not in a list), it won’t work.

10.10 Glossary

comparable A type where one value can be checked to see if it is greater than,
less than, or equal to another value of the same type. Types which are
comparable can be put in a list and sorted.

data structure A collection of related values, often organized in lists, dictionaries,
tuples, etc.

DSU Abbreviation of “decorate-sort-undecorate”, a pattern that involves building
a list of tuples, sorting, and extracting part of the result.

gather The operation of assembling a variable-length argument tuple.
hashable A type that has a hash function. Immutable types like integers, floats,

and strings are hashable; mutable types like lists and dictionaries are not.
scatter The operation of treating a sequence as a list of arguments.
shape (of a data structure) A summary of the type, size, and composition of

a data structure.
singleton A list (or other sequence) with a single element.
tuple An immutable sequence of elements.
tuple assignment An assignment with a sequence on the right side and a tuple

of variables on the left. The right side is evaluated and then its elements are
assigned to the variables on the left.

https://hemanthrajhemu.github.io

126 CHAPTER 10. TUPLES

10.11 Exercises

Exercise 1: Revise a previous program as follows: Read and parse the
“From” lines and pull out the addresses from the line. Count the num-
ber of messages from each person using a dictionary.

After all the data has been read, print the person with the most commits
by creating a list of (count, email) tuples from the dictionary. Then
sort the list in reverse order and print out the person who has the most
commits.

Sample Line:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt

cwen@iupui.edu 5

Enter a file name: mbox.txt

zqian@umich.edu 195

Exercise 2: This program counts the distribution of the hour of the day
for each of the messages. You can pull the hour from the “From” line
by finding the time string and then splitting that string into parts using
the colon character. Once you have accumulated the counts for each
hour, print out the counts, one per line, sorted by hour as shown below.

python timeofday.py

Enter a file name: mbox-short.txt

04 3

06 1

07 1

09 2

10 3

11 6

14 1

15 2

16 4

17 2

18 1

19 1

Exercise 3: Write a program that reads a file and prints the letters

in decreasing order of frequency. Your program should convert all the
input to lower case and only count the letters a-z. Your program should
not count spaces, digits, punctuation, or anything other than the letters
a-z. Find text samples from several different languages and see how
letter frequency varies between languages. Compare your results with
the tables at https://wikipedia.org/wiki/Letter_frequencies.

https://hemanthrajhemu.github.io

Chapter 11

Regular expressions

So far we have been reading through files, looking for patterns and extracting
various bits of lines that we find interesting. We have been

using string methods like split and find and using lists and string slicing to
extract portions of the lines.

This task of searching and extracting is so common that Python has a very powerful
library called regular expressions that handles many of these tasks quite elegantly.
The reason we have not introduced regular expressions earlier in the book is because
while they are very powerful, they are a little complicated and their syntax takes
some getting used to.

Regular expressions are almost their own little programming language for searching
and parsing strings. As a matter of fact, entire books have been written on the
topic of regular expressions. In this chapter, we will only cover the basics of regular
expressions. For more detail on regular expressions, see:

https://en.wikipedia.org/wiki/Regular_expression

https://docs.python.org/library/re.html

The regular expression library re must be imported into your program before you
can use it. The simplest use of the regular expression library is the search()

function. The following program demonstrates a trivial use of the search function.

Search for lines that contain 'From'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('From:', line):

print(line)

Code: http://www.py4e.com/code3/re01.py

We open the file, loop through each line, and use the regular expression search()

to only print out lines that contain the string “From:”. This program does not

127https://hemanthrajhemu.github.io

128 CHAPTER 11. REGULAR EXPRESSIONS

use the real power of regular expressions, since we could have just as easily used
line.find() to accomplish the same result.

The power of the regular expressions comes when we add special characters to
the search string that allow us to more precisely control which lines match the
string. Adding these special characters to our regular expression allow us to do
sophisticated matching and extraction while writing very little code.

For example, the caret character is used in regular expressions to match “the
beginning” of a line. We could change our program to only match lines where
“From:” was at the beginning of the line as follows:

Search for lines that start with 'From'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^From:', line):

print(line)

Code: http://www.py4e.com/code3/re02.py

Now we will only match lines that start with the string “From:”. This is still a
very simple example that we could have done equivalently with the startswith()

method from the string library. But it serves to introduce the notion that regular
expressions contain special action characters that give us more control as to what
will match the regular expression.

11.1 Character matching in regular expressions

There are a number of other special characters that let us build even more powerful
regular expressions. The most commonly used special character is the period or
full stop, which matches any character.

In the following example, the regular expression F..m: would match any of the
strings “From:”, “Fxxm:”, “F12m:”, or “F!@m:” since the period characters in the
regular expression match any character.

Search for lines that start with 'F', followed by

2 characters, followed by 'm:'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^F..m:', line):

print(line)

Code: http://www.py4e.com/code3/re03.py

https://hemanthrajhemu.github.io

11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 129

This is particularly powerful when combined with the ability to indicate that a
character can be repeated any number of times using the * or + characters in your
regular expression. These special characters mean that instead of matching a single
character in the search string, they match zero-or-more characters (in the case of
the asterisk) or one-or-more of the characters (in the case of the plus sign).

We can further narrow down the lines that we match using a repeated wild card
character in the following example:

Search for lines that start with From and have an at sign

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^From:.+@', line):

print(line)

Code: http://www.py4e.com/code3/re04.py

The search string ˆFrom:.+@ will successfully match lines that start with “From:”,
followed by one or more characters (.+), followed by an at-sign. So this will match
the following line:

From: stephen.marquard@uct.ac.za

You can think of the .+ wildcard as expanding to match all the characters between
the colon character and the at-sign.

From:.+@

It is good to think of the plus and asterisk characters as “pushy”. For example,
the following string would match the last at-sign in the string as the .+ pushes
outwards, as shown below:

From: stephen.marquard@uct.ac.za, csev@umich.edu, and cwen @iupui.edu

It is possible to tell an asterisk or plus sign not to be so “greedy” by adding
another character. See the detailed documentation for information on turning off
the greedy behavior.

11.2 Extracting data using regular expressions

If we want to extract data from a string in Python we can use the findall()

method to extract all of the substrings which match a regular expression. Let’s use
the example of wanting to extract anything that looks like an email address from
any line regardless of format. For example, we want to pull the email addresses
from each of the following lines:

https://hemanthrajhemu.github.io

130 CHAPTER 11. REGULAR EXPRESSIONS

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;

Received: (from apache@localhost)

Author: stephen.marquard@uct.ac.za

We don’t want to write code for each of the types of lines, splitting and slicing
differently for each line. This following program uses findall() to find the lines
with email addresses in them and extract one or more addresses from each of those
lines.

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

lst = re.findall('\S+@\S+', s)

print(lst)

Code: http://www.py4e.com/code3/re05.py

The findall() method searches the string in the second argument and returns a
list of all of the strings that look like email addresses. We are using a two-character
sequence that matches a non-whitespace character (\S).

The output of the program would be:

['csev@umich.edu', 'cwen@iupui.edu']

Translating the regular expression, we are looking for substrings that have at least
one non-whitespace character, followed by an at-sign, followed by at least one more
non-whitespace character. The \S+ matches as many non-whitespace characters
as possible.

The regular expression would match twice (csev@umich.edu and cwen@iupui.edu),
but it would not match the string “@2PM” because there are no non-blank char-
acters before the at-sign. We can use this regular expression in a program to read
all the lines in a file and print out anything that looks like an email address as
follows:

Search for lines that have an at sign between characters

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('\S+@\S+', line)

if len(x) > 0:

print(x)

Code: http://www.py4e.com/code3/re06.py

We read each line and then extract all the substrings that match our regular
expression. Since findall() returns a list, we simply check if the number of

https://hemanthrajhemu.github.io

11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 131

elements in our returned list is more than zero to print only lines where we found
at least one substring that looks like an email address.

If we run the program on mbox.txt we get the following output:

['wagnermr@iupui.edu']

['cwen@iupui.edu']

['<postmaster@collab.sakaiproject.org>']

['<200801032122.m03LMFo4005148@nakamura.uits.iupui.edu>']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['apache@localhost)']

['source@collab.sakaiproject.org;']

Some of our email addresses have incorrect characters like “<” or “;” at the begin-
ning or end. Let’s declare that we are only interested in the portion of the string
that starts and ends with a letter or a number.

To do this, we use another feature of regular expressions. Square brackets are used
to indicate a set of multiple acceptable characters we are willing to consider match-
ing. In a sense, the \S is asking to match the set of “non-whitespace characters”.
Now we will be a little more explicit in terms of the characters we will match.

Here is our new regular expression:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

This is getting a little complicated and you can begin to see why regular expressions
are their own little language unto themselves. Translating this regular expression,
we are looking for substrings that start with a single lowercase letter, uppercase
letter, or number “[a-zA-Z0-9]”, followed by zero or more non-blank characters
(\S*), followed by an at-sign, followed by zero or more non-blank characters (\S*),
followed by an uppercase or lowercase letter. Note that we switched from + to *

to indicate zero or more non-blank characters since [a-zA-Z0-9] is already one
non-blank character. Remember that the * or + applies to the single character
immediately to the left of the plus or asterisk.

If we use this expression in our program, our data is much cleaner:

Search for lines that have an at sign between characters

The characters must be a letter or number

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('[a-zA-Z0-9]\S+@\S+[a-zA-Z]', line)

if len(x) > 0:

print(x)

Code: http://www.py4e.com/code3/re07.py

https://hemanthrajhemu.github.io

132 CHAPTER 11. REGULAR EXPRESSIONS

...

['wagnermr@iupui.edu']

['cwen@iupui.edu']

['postmaster@collab.sakaiproject.org']

['200801032122.m03LMFo4005148@nakamura.uits.iupui.edu']

['source@collab.sakaiproject.org']

['source@collab.sakaiproject.org']

['source@collab.sakaiproject.org']

['apache@localhost']

Notice that on the source@collab.sakaiproject.org lines, our regular expres-
sion eliminated two letters at the end of the string (“>;”). This is because when
we append [a-zA-Z] to the end of our regular expression, we are demanding that
whatever string the regular expression parser finds must end with a letter. So
when it sees the “>” at the end of “sakaiproject.org>;” it simply stops at the last
“matching” letter it found (i.e., the “g” was the last good match).

Also note that the output of the program is a Python list that has a string as the
single element in the list.

11.3 Combining searching and extracting

If we want to find numbers on lines that start with the string “X-” such as:

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

we don’t just want any floating-point numbers from any lines. We only want to
extract numbers from lines that have the above syntax.

We can construct the following regular expression to select the lines:

^X-.*: [0-9.]+

Translating this, we are saying, we want lines that start with X-, followed by zero
or more characters (.*), followed by a colon (:) and then a space. After the
space we are looking for one or more characters that are either a digit (0-9) or
a period [0-9.]+. Note that inside the square brackets, the period matches an
actual period (i.e., it is not a wildcard between the square brackets).

This is a very tight expression that will pretty much match only the lines we are
interested in as follows:

Search for lines that start with 'X' followed by any non

whitespace characters and ':'

followed by a space and any number.

The number can include a decimal.

import re

hand = open('mbox-short.txt')

for line in hand:

https://hemanthrajhemu.github.io

11.3. COMBINING SEARCHING AND EXTRACTING 133

line = line.rstrip()

if re.search('^X\S*: [0-9.]+', line):

print(line)

Code: http://www.py4e.com/code3/re10.py

When we run the program, we see the data nicely filtered to show only the lines
we are looking for.

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

X-DSPAM-Confidence: 0.6178

X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numbers. While it would
be simple enough to use split, we can use another feature of regular expressions
to both search and parse the line at the same time.

Parentheses are another special character in regular expressions. When you add
parentheses to a regular expression, they are ignored when matching the string.
But when you are using findall(), parentheses indicate that while you want the
whole expression to match, you only are interested in extracting a portion of the
substring that matches the regular expression.

So we make the following change to our program:

Search for lines that start with 'X' followed by any

non whitespace characters and ':' followed by a space

and any number. The number can include a decimal.

Then print the number if it is greater than zero.

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^X\S*: ([0-9.]+)', line)

if len(x) > 0:

print(x)

Code: http://www.py4e.com/code3/re11.py

Instead of calling search(), we add parentheses around the part of the regular
expression that represents the floating-point number to indicate we only want
findall() to give us back the floating-point number portion of the matching
string.

The output from this program is as follows:

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

['0.0000']

..

https://hemanthrajhemu.github.io

134 CHAPTER 11. REGULAR EXPRESSIONS

The numbers are still in a list and need to be converted from strings to floating
point, but we have used the power of regular expressions to both search and extract
the information we found interesting.

As another example of this technique, if you look at the file there are a number of
lines of the form:

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

If we wanted to extract all of the revision numbers (the integer number at the end
of these lines) using the same technique as above, we could write the following
program:

Search for lines that start with 'Details: rev='

followed by numbers and '.'

Then print the number if it is greater than zero

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^Details:.*rev=([0-9.]+)', line)

if len(x) > 0:

print(x)

Code: http://www.py4e.com/code3/re12.py

Translating our regular expression, we are looking for lines that start with
Details:, followed by any number of characters (.*), followed by rev=, and then
by one or more digits. We want to find lines that match the entire expression but
we only want to extract the integer number at the end of the line, so we surround
[0-9]+ with parentheses.

When we run the program, we get the following output:

['39772']

['39771']

['39770']

['39769']

...

Remember that the [0-9]+ is “greedy” and it tries to make as large a string of
digits as possible before extracting those digits. This “greedy” behavior is why we
get all five digits for each number. The regular expression library expands in both
directions until it encounters a non-digit, or the beginning or the end of a line.

Now we can use regular expressions to redo an exercise from earlier in the book
where we were interested in the time of day of each mail message. We looked for
lines of the form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

https://hemanthrajhemu.github.io

11.3. COMBINING SEARCHING AND EXTRACTING 135

and wanted to extract the hour of the day for each line. Previously we did this
with two calls to split. First the line was split into words and then we pulled
out the fifth word and split it again on the colon character to pull out the two
characters we were interested in.

While this worked, it actually results in pretty brittle code that is assuming the
lines are nicely formatted. If you were to add enough error checking (or a big
try/except block) to insure that your program never failed when presented with
incorrectly formatted lines, the code would balloon to 10-15 lines of code that was
pretty hard to read.

We can do this in a far simpler way with the following regular expression:

^From .* [0-9][0-9]:

The translation of this regular expression is that we are looking for lines that start
with From (note the space), followed by any number of characters (.*), followed by
a space, followed by two digits [0-9][0-9], followed by a colon character. This is
the definition of the kinds of lines we are looking for.

In order to pull out only the hour using findall(), we add parentheses around
the two digits as follows:

^From .* ([0-9][0-9]):

This results in the following program:

Search for lines that start with From and a character

followed by a two digit number between 00 and 99 followed by ':'

Then print the number if it is greater than zero

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^From .* ([0-9][0-9]):', line)

if len(x) > 0: print(x)

Code: http://www.py4e.com/code3/re13.py

When the program runs, it produces the following output:

['09']

['18']

['16']

['15']

...

https://hemanthrajhemu.github.io

136 CHAPTER 11. REGULAR EXPRESSIONS

11.4 Escape character

Since we use special characters in regular expressions to match the beginning or
end of a line or specify wild cards, we need a way to indicate that these characters
are “normal” and we want to match the actual character such as a dollar sign or
caret.

We can indicate that we want to simply match a character by prefixing that charac-
ter with a backslash. For example, we can find money amounts with the following
regular expression.

import re

x = 'We just received $10.00 for cookies.'

y = re.findall('\$[0-9.]+',x)

Since we prefix the dollar sign with a backslash, it actually matches the dollar
sign in the input string instead of matching the “end of line”, and the rest of
the regular expression matches one or more digits or the period character. Note:
Inside square brackets, characters are not “special”. So when we say [0-9.], it
really means digits or a period. Outside of square brackets, a period is the “wild-
card” character and matches any character. Inside square brackets, the period is
a period.

11.5 Summary

While this only scratched the surface of regular expressions, we have learned a bit
about the language of regular expressions. They are search strings with special
characters in them that communicate your wishes to the regular expression system
as to what defines “matching” and what is extracted from the matched strings.
Here are some of those special characters and character sequences:

ˆ Matches the beginning of the line.

$ Matches the end of the line.

. Matches any character (a wildcard).

\s Matches a whitespace character.

\S Matches a non-whitespace character (opposite of \s).

* Applies to the immediately preceding character(s) and indicates to match zero
or more times.

*? Applies to the immediately preceding character(s) and indicates to match zero
or more times in “non-greedy mode”.

+ Applies to the immediately preceding character(s) and indicates to match one or
more times.

+? Applies to the immediately preceding character(s) and indicates to match one
or more times in “non-greedy mode”.

https://hemanthrajhemu.github.io

11.6. BONUS SECTION FOR UNIX / LINUX USERS 137

? Applies to the immediately preceding character(s) and indicates to match zero
or one time.

?? Applies to the immediately preceding character(s) and indicates to match zero
or one time in “non-greedy mode”.

[aeiou] Matches a single character as long as that character is in the specified set.
In this example, it would match “a”, “e”, “i”, “o”, or “u”, but no other characters.

[a-z0-9] You can specify ranges of characters using the minus sign. This example
is a single character that must be a lowercase letter or a digit.

[ˆA-Za-z] When the first character in the set notation is a caret, it inverts the
logic. This example matches a single character that is anything other than an
uppercase or lowercase letter.

() When parentheses are added to a regular expression, they are ignored for the
purpose of matching, but allow you to extract a particular subset of the matched
string rather than the whole string when using findall().

\b Matches the empty string, but only at the start or end of a word.

\B Matches the empty string, but not at the start or end of a word.

\d Matches any decimal digit; equivalent to the set [0-9].

\D Matches any non-digit character; equivalent to the set [ˆ0-9].

11.6 Bonus section for Unix / Linux users

Support for searching files using regular expressions was built into the Unix operat-
ing system since the 1960s and it is available in nearly all programming languages
in one form or another.

As a matter of fact, there is a command-line program built into Unix called grep
(Generalized Regular Expression Parser) that does pretty much the same as the
search() examples in this chapter. So if you have a Macintosh or Linux system,
you can try the following commands in your command-line window.

$ grep '^From:' mbox-short.txt

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

This tells grep to show you lines that start with the string “From:” in the file
mbox-short.txt. If you experiment with the grep command a bit and read the
documentation for grep, you will find some subtle differences between the regular
expression support in Python and the regular expression support in grep. As an
example, grep does not support the non-blank character \S so you will need to
use the slightly more complex set notation [ˆ], which simply means match a
character that is anything other than a space.

https://hemanthrajhemu.github.io

138 CHAPTER 11. REGULAR EXPRESSIONS

11.7 Debugging

Python has some simple and rudimentary built-in documentation that can be quite
helpful if you need a quick refresher to trigger your memory about the exact name of
a particular method. This documentation can be viewed in the Python interpreter
in interactive mode.

You can bring up an interactive help system using help().

>>> help()

help> modules

If you know what module you want to use, you can use the dir() command to
find the methods in the module as follows:

>>> import re

>>> dir(re)

[.. 'compile', 'copy_reg', 'error', 'escape', 'findall',

'finditer' , 'match', 'purge', 'search', 'split', 'sre_compile',

'sre_parse' , 'sub', 'subn', 'sys', 'template']

You can also get a small amount of documentation on a particular method using
the dir command.

>>> help (re.search)

Help on function search in module re:

search(pattern, string, flags=0)

Scan through string looking for a match to the pattern, returning

a match object, or None if no match was found.

>>>

The built-in documentation is not very extensive, but it can be helpful when you
are in a hurry or don’t have access to a web browser or search engine.

11.8 Glossary

brittle code Code that works when the input data is in a particular format but
is prone to breakage if there is some deviation from the correct format. We
call this “brittle code” because it is easily broken.

greedy matching The notion that the + and * characters in a regular expression
expand outward to match the largest possible string.

grep A command available in most Unix systems that searches through text files
looking for lines that match regular expressions. The command name stands
for “Generalized Regular Expression Parser”.

https://hemanthrajhemu.github.io

11.9. EXERCISES 139

regular expression A language for expressing more complex search strings. A
regular expression may contain special characters that indicate that a search
only matches at the beginning or end of a line or many other similar capa-
bilities.

wild card A special character that matches any character. In regular expressions
the wild-card character is the period.

11.9 Exercises

Exercise 1: Write a simple program to simulate the operation of the
grep command on Unix. Ask the user to enter a regular expression and
count the number of lines that matched the regular expression:

$ python grep.py

Enter a regular expression: ^Author

mbox.txt had 1798 lines that matched ^Author

$ python grep.py

Enter a regular expression: ^X-

mbox.txt had 14368 lines that matched ^X-

$ python grep.py

Enter a regular expression: java$

mbox.txt had 4175 lines that matched java$

Exercise 2: Write a program to look for lines of the form:

New Revision: 39772

Extract the number from each of the lines using a regular expression
and the findall() method. Compute the average of the numbers and
print out the average as an integer.

Enter file:mbox.txt

38549

Enter file:mbox-short.txt

39756

https://hemanthrajhemu.github.io

140 CHAPTER 11. REGULAR EXPRESSIONS

https://hemanthrajhemu.github.io

