

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

CONTENTS ix

10 Tuples 117

10.1 Tuples are immutable . 117

10.2 Comparing tuples . 118

10.3 Tuple assignment . 120

10.4 Dictionaries and tuples . 121

10.5 Multiple assignment with dictionaries 122

10.6 The most common words . 123

10.7 Using tuples as keys in dictionaries 124

10.8 Sequences: strings, lists, and tuples - Oh My! 124

10.9 Debugging . 125

10.10 Glossary . 125

10.11 Exercises . 126

11 Regular expressions 127

11.1 Character matching in regular expressions 128

11.2 Extracting data using regular expressions 129

11.3 Combining searching and extracting 132

11.4 Escape character . 136

11.5 Summary . 136

11.6 Bonus section for Unix / Linux users 137

11.7 Debugging . 138

11.8 Glossary . 138

11.9 Exercises . 139

12 Networked programs 141

12.1 Hypertext Transfer Protocol - HTTP 141

12.2 The world’s simplest web browser 142

12.3 Retrieving an image over HTTP 144

12.4 Retrieving web pages with urllib 146

12.5 Reading binary files using urllib 147

12.6 Parsing HTML and scraping the web 148

12.7 Parsing HTML using regular expressions 148

12.8 Parsing HTML using BeautifulSoup 150

12.9 Bonus section for Unix / Linux users 153

12.10 Glossary . 153

12.11 Exercises . 154

https://hemanthrajhemu.github.io

x CONTENTS

13 Using Web Services 155

13.1 eXtensible Markup Language - XML 155

13.2 Parsing XML . 156

13.3 Looping through nodes . 157

13.4 JavaScript Object Notation - JSON 158

13.5 Parsing JSON . 159

13.6 Application Programming Interfaces 160

13.7 Security and API usage . 161

13.8 Glossary . 162

13.9 Application 1: Google geocoding web service 162

13.10 Application 2: Twitter . 166

14 Object-oriented programming 171

14.1 Managing larger programs . 171

14.2 Getting started . 172

14.3 Using objects . 172

14.4 Starting with programs . 173

14.5 Subdividing a problem . 175

14.6 Our first Python object . 175

14.7 Classes as types . 178

14.8 Object lifecycle . 179

14.9 Multiple instances . 180

14.10 Inheritance . 181

14.11 Summary . 182

14.12 Glossary . 183

15 Using Databases and SQL 185

15.1 What is a database? . 185

15.2 Database concepts . 185

15.3 Database Browser for SQLite . 186

15.4 Creating a database table . 186

15.5 Structured Query Language summary 189

15.6 Spidering Twitter using a database 191

15.7 Basic data modeling . 196

15.8 Programming with multiple tables 197

https://hemanthrajhemu.github.io

CONTENTS xi

15.8.1 Constraints in database tables 200

15.8.2 Retrieve and/or insert a record 201

15.8.3 Storing the friend relationship 202

15.9 Three kinds of keys . 203

15.10 Using JOIN to retrieve data . 204

15.11 Summary . 206

15.12 Debugging . 207

15.13 Glossary . 207

16 Visualizing data 209

16.1 Building a Google map from geocoded data 209

16.2 Visualizing networks and interconnections 211

16.3 Visualizing mail data . 214

A Contributions 221

A.1 Contributor List for Python for Everybody 221

A.2 Contributor List for Python for Informatics 221

A.3 Preface for “Think Python” . 221

A.3.1 The strange history of “Think Python” 221

A.3.2 Acknowledgements for “Think Python” 223

A.4 Contributor List for “Think Python” 223

B Copyright Detail 225

https://hemanthrajhemu.github.io

12.8. PARSING HTML USING BEAUTIFULSOUP 151

import urllib.request, urllib.parse, urllib.error

from bs4 import BeautifulSoup

import ssl

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

Code: http://www.py4e.com/code3/urllinks.py

The program prompts for a web address, then opens the web page, reads the data
and passes the data to the BeautifulSoup parser, and then retrieves all of the
anchor tags and prints out the href attribute for each tag.

When the program runs, it produces the following output:

Enter - https://docs.python.org

genindex.html

py-modindex.html

https://www.python.org/

#

whatsnew/3.6.html

whatsnew/index.html

tutorial/index.html

library/index.html

reference/index.html

using/index.html

howto/index.html

installing/index.html

distributing/index.html

extending/index.html

c-api/index.html

faq/index.html

py-modindex.html

genindex.html

glossary.html

search.html

contents.html

bugs.html

about.html

license.html

copyright.html

download.html

https://hemanthrajhemu.github.io

152 CHAPTER 12. NETWORKED PROGRAMS

https://docs.python.org/3.8/

https://docs.python.org/3.7/

https://docs.python.org/3.5/

https://docs.python.org/2.7/

https://www.python.org/doc/versions/

https://www.python.org/dev/peps/

https://wiki.python.org/moin/BeginnersGuide

https://wiki.python.org/moin/PythonBooks

https://www.python.org/doc/av/

genindex.html

py-modindex.html

https://www.python.org/

#

copyright.html

https://www.python.org/psf/donations/

bugs.html

http://sphinx.pocoo.org/

This list is much longer because some HTML anchor tags are relative paths (e.g.,
tutorial/index.html) or in-page references (e.g., ‘#’) that do not include “http://”
or “https://”, which was a requirement in our regular expression.

You can use also BeautifulSoup to pull out various parts of each tag:

To run this, download the BeautifulSoup zip file

http://www.py4e.com/code3/bs4.zip

and unzip it in the same directory as this file

from urllib.request import urlopen

from bs4 import BeautifulSoup

import ssl

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, "html.parser")

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:

Look at the parts of a tag

print('TAG:', tag)

print('URL:', tag.get('href', None))

print('Contents:', tag.contents[0])

print('Attrs:', tag.attrs)

Code: http://www.py4e.com/code3/urllink2.py

python urllink2.py

https://hemanthrajhemu.github.io

12.9. BONUS SECTION FOR UNIX / LINUX USERS 153

Enter - http://www.dr-chuck.com/page1.htm

TAG:

Second Page

URL: http://www.dr-chuck.com/page2.htm

Content: ['\nSecond Page']

Attrs: [('href', 'http://www.dr-chuck.com/page2.htm')]

html.parser is the HTML parser included in the standard Python 3 library. In-
formation on other HTML parsers is available at:

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

These examples only begin to show the power of BeautifulSoup when it comes to
parsing HTML.

12.9 Bonus section for Unix / Linux users

If you have a Linux, Unix, or Macintosh computer, you probably have commands
built in to your operating system that retrieves both plain text and binary files
using the HTTP or File Transfer (FTP) protocols. One of these commands is
curl:

$ curl -O http://www.py4e.com/cover.jpg

The command curl is short for “copy URL” and so the two examples listed earlier
to retrieve binary files with urllib are cleverly named curl1.py and curl2.py

on www.py4e.com/code3 as they implement similar functionality to the curl com-
mand. There is also a curl3.py sample program that does this task a little more
effectively, in case you actually want to use this pattern in a program you are
writing.

A second command that functions very similarly is wget:

$ wget http://www.py4e.com/cover.jpg

Both of these commands make retrieving webpages and remote files a simple task.

12.10 Glossary

BeautifulSoup A Python library for parsing HTML documents and extracting
data from HTML documents that compensates for most of the imperfections
in the HTML that browsers generally ignore. You can download the Beauti-
fulSoup code from www.crummy.com.

port A number that generally indicates which application you are contacting when
you make a socket connection to a server. As an example, web traffic usually
uses port 80 while email traffic uses port 25.

https://hemanthrajhemu.github.io

154 CHAPTER 12. NETWORKED PROGRAMS

scrape When a program pretends to be a web browser and retrieves a web page,
then looks at the web page content. Often programs are following the links
in one page to find the next page so they can traverse a network of pages or
a social network.

socket A network connection between two applications where the applications can
send and receive data in either direction.

spider The act of a web search engine retrieving a page and then all the pages
linked from a page and so on until they have nearly all of the pages on the
Internet which they use to build their search index.

12.11 Exercises

Exercise 1: Change the socket program socket1.py to prompt the user
for the URL so it can read any web page. You can use split('/') to
break the URL into its component parts so you can extract the host
name for the socket connect call. Add error checking using try and
except to handle the condition where the user enters an improperly
formatted or non-existent URL.

Exercise 2: Change your socket program so that it counts the number
of characters it has received and stops displaying any text after it has
shown 3000 characters. The program should retrieve the entire docu-
ment and count the total number of characters and display the count
of the number of characters at the end of the document.

Exercise 3: Use urllib to replicate the previous exercise of (1) retrieving
the document from a URL, (2) displaying up to 3000 characters, and
(3) counting the overall number of characters in the document. Don’t
worry about the headers for this exercise, simply show the first 3000
characters of the document contents.

Exercise 4: Change the urllinks.py program to extract and count para-
graph (p) tags from the retrieved HTML document and display the
count of the paragraphs as the output of your program. Do not display
the paragraph text, only count them. Test your program on several
small web pages as well as some larger web pages.

Exercise 5: (Advanced) Change the socket program so that it only shows
data after the headers and a blank line have been received. Remember
that recv receives characters (newlines and all), not lines.

https://hemanthrajhemu.github.io

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse documents over HTTP using
programs, it did not take long to develop an approach where we started producing
documents that were specifically designed to be consumed by other programs (i.e.,
not HTML to be displayed in a browser).

There are two common formats that we use when exchanging data across the web.
eXtensible Markup Language (XML) has been in use for a very long time and
is best suited for exchanging document-style data. When programs just want to
exchange dictionaries, lists, or other internal information with each other, they
use JavaScript Object Notation (JSON) (see www.json.org). We will look at both
formats.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HTML. Here
is a sample of an XML document:

<person>

<name>Chuck</name>

<phone type="intl">

+1 734 303 4456

</phone>

<email hide="yes" />

</person>

Each pair of opening (e.g., <person>) and closing tags (e.g., </person>) represents
a element or node with the same name as the tag (e.g., person). Each element
can have some text, some attributes (e.g., hide), and other nested elements. If
an XML element is empty (i.e., has no content), then it may be depicted by a
self-closing tag (e.g., <email />).

Often it is helpful to think of an XML document as a tree structure where there is
a top element (here: person), and other tags (e.g., phone) are drawn as children
of their parent elements.

155https://hemanthrajhemu.github.io

156 CHAPTER 13. USING WEB SERVICES

name

person

Chuck

phone

+1 734
303 4456

type=intl
phone

hide=yes

Figure 13.1: A Tree Representation of XML

13.2 Parsing XML

Here is a simple application that parses some XML and extracts some data elements
from the XML:

import xml.etree.ElementTree as ET

data = '''

<person>

<name>Chuck</name>

<phone type="intl">

+1 734 303 4456

</phone>

<email hide="yes" />

</person>'''

tree = ET.fromstring(data)

print('Name:', tree.find('name').text)

print('Attr:', tree.find('email').get('hide'))

Code: http://www.py4e.com/code3/xml1.py

The triple single quote ('''), as well as the triple double quote ("""), allow for
the creation of strings that span multiple lines.

Calling fromstring converts the string representation of the XML into a “tree” of
XML elements. When the XML is in a tree, we have a series of methods we can
call to extract portions of data from the XML string. The find function searches
through the XML tree and retrieves the element that matches the specified tag.

Name: Chuck

Attr: yes

Using an XML parser such as ElementTree has the advantage that while the
XML in this example is quite simple, it turns out there are many rules regarding

https://hemanthrajhemu.github.io

13.3. LOOPING THROUGH NODES 157

valid XML, and using ElementTree allows us to extract data from XML without
worrying about the rules of XML syntax.

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loop to process all of
the nodes. In the following program, we loop through all of the user nodes:

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

</user>

<user x="7">

<id>009</id>

<name>Brent</name>

</user>

</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')

print('User count:', len(lst))

for item in lst:

print('Name', item.find('name').text)

print('Id', item.find('id').text)

print('Attribute', item.get('x'))

Code: http://www.py4e.com/code3/xml2.py

The findall method retrieves a Python list of subtrees that represent the user

structures in the XML tree. Then we can write a for loop that looks at each of
the user nodes, and prints the name and id text elements as well as the x attribute
from the user node.

User count: 2

Name Chuck

Id 001

Attribute 2

Name Brent

Id 009

Attribute 7

https://hemanthrajhemu.github.io

158 CHAPTER 13. USING WEB SERVICES

It is important to include all parent level elements in the findall statement except
for the top level element (e.g., users/user). Otherwise, Python will not find any
desired nodes.

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

</user>

<user x="7">

<id>009</id>

<name>Brent</name>

</user>

</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')

print('User count:', len(lst))

lst2 = stuff.findall('user')

print('User count:', len(lst2))

lst stores all user elements that are nested within their users parent. lst2 looks
for user elements that are not nested within the top level stuff element where
there are none.

User count: 2

User count: 0

13.4 JavaScript Object Notation - JSON

The JSON format was inspired by the object and array format used in the
JavaScript language. But since Python was invented before JavaScript, Python’s
syntax for dictionaries and lists influenced the syntax of JSON. So the format of
JSON is nearly identical to a combination of Python lists and dictionaries.

Here is a JSON encoding that is roughly equivalent to the simple XML from above:

{

"name" : "Chuck",

"phone" : {

"type" : "intl",

"number" : "+1 734 303 4456"

https://hemanthrajhemu.github.io

13.5. PARSING JSON 159

},

"email" : {

"hide" : "yes"

}

}

You will notice some differences. First, in XML, we can add attributes like “intl”
to the “phone” tag. In JSON, we simply have key-value pairs. Also the XML
“person” tag is gone, replaced by a set of outer curly braces.

In general, JSON structures are simpler than XML because JSON has fewer ca-
pabilities than XML. But JSON has the advantage that it maps directly to some
combination of dictionaries and lists. And since nearly all programming languages
have something equivalent to Python’s dictionaries and lists, JSON is a very nat-
ural format to have two cooperating programs exchange data.

JSON is quickly becoming the format of choice for nearly all data exchange between
applications because of its relative simplicity compared to XML.

13.5 Parsing JSON

We construct our JSON by nesting dictionaries and lists as needed. In this example,
we represent a list of users where each user is a set of key-value pairs (i.e., a
dictionary). So we have a list of dictionaries.

In the following program, we use the built-in json library to parse the JSON and
read through the data. Compare this closely to the equivalent XML data and code
above. The JSON has less detail, so we must know in advance that we are getting a
list and that the list is of users and each user is a set of key-value pairs. The JSON
is more succinct (an advantage) but also is less self-describing (a disadvantage).

import json

data = '''

[

{ "id" : "001",

"x" : "2",

"name" : "Chuck"

} ,

{ "id" : "009",

"x" : "7",

"name" : "Brent"

}

]'''

info = json.loads(data)

print('User count:', len(info))

for item in info:

print('Name', item['name'])

https://hemanthrajhemu.github.io

160 CHAPTER 13. USING WEB SERVICES

print('Id', item['id'])

print('Attribute', item['x'])

Code: http://www.py4e.com/code3/json2.py

If you compare the code to extract data from the parsed JSON and XML you will
see that what we get from json.loads() is a Python list which we traverse with
a for loop, and each item within that list is a Python dictionary. Once the JSON
has been parsed, we can use the Python index operator to extract the various bits
of data for each user. We don’t have to use the JSON library to dig through the
parsed JSON, since the returned data is simply native Python structures.

The output of this program is exactly the same as the XML version above.

User count: 2

Name Chuck

Id 001

Attribute 2

Name Brent

Id 009

Attribute 7

In general, there is an industry trend away from XML and towards JSON for web
services. Because the JSON is simpler and more directly maps to native data struc-
tures we already have in programming languages, the parsing and data extraction
code is usually simpler and more direct when using JSON. But XML is more self-
descriptive than JSON and so there are some applications where XML retains an
advantage. For example, most word processors store documents internally using
XML rather than JSON.

13.6 Application Programming Interfaces

We now have the ability to exchange data between applications using HyperText
Transport Protocol (HTTP) and a way to represent complex data that we are send-
ing back and forth between these applications using eXtensible Markup Language
(XML) or JavaScript Object Notation (JSON).

The next step is to begin to define and document “contracts” between applications
using these techniques. The general name for these application-to-application con-
tracts is Application Program Interfaces (APIs). When we use an API, generally
one program makes a set of services available for use by other applications and
publishes the APIs (i.e., the “rules”) that must be followed to access the services
provided by the program.

When we begin to build our programs where the functionality of our program
includes access to services provided by other programs, we call the approach a
Service-oriented architecture (SOA). A SOA approach is one where our overall
application makes use of the services of other applications. A non-SOA approach
is where the application is a single standalone application which contains all of the
code necessary to implement the application.

https://hemanthrajhemu.github.io

13.7. SECURITY AND API USAGE 161

We see many examples of SOA when we use the web. We can go to a single web
site and book air travel, hotels, and automobiles all from a single site. The data
for hotels is not stored on the airline computers. Instead, the airline computers
contact the services on the hotel computers and retrieve the hotel data and present
it to the user. When the user agrees to make a hotel reservation using the airline
site, the airline site uses another web service on the hotel systems to actually make
the reservation. And when it comes time to charge your credit card for the whole
transaction, still other computers become involved in the process.

Auto
Rental
Service

Hotel
Reservation

Service

Airline
Reservation

Service

Travel
Application

API

API API

Figure 13.2: Service-oriented architecture

A Service-oriented architecture has many advantages, including: (1) we always
maintain only one copy of data (this is particularly important for things like hotel
reservations where we do not want to over-commit) and (2) the owners of the data
can set the rules about the use of their data. With these advantages, an SOA
system must be carefully designed to have good performance and meet the user’s
needs.

When an application makes a set of services in its API available over the web, we
call these web services.

13.7 Security and API usage

It is quite common that you need an API key to make use of a vendor’s API. The
general idea is that they want to know who is using their services and how much
each user is using. Perhaps they have free and pay tiers of their services or have a
policy that limits the number of requests that a single individual can make during
a particular time period.

Sometimes once you get your API key, you simply include the key as part of POST
data or perhaps as a parameter on the URL when calling the API.

https://hemanthrajhemu.github.io

162 CHAPTER 13. USING WEB SERVICES

Other times, the vendor wants increased assurance of the source of the requests
and so they expect you to send cryptographically signed messages using shared
keys and secrets. A very common technology that is used to sign requests over
the Internet is called OAuth. You can read more about the OAuth protocol at
www.oauth.net.

Thankfully there are a number of convenient and free OAuth libraries so you can
avoid writing an OAuth implementation from scratch by reading the specification.
These libraries are of varying complexity and have varying degrees of richness. The
OAuth web site has information about various OAuth libraries.

13.8 Glossary

API Application Program Interface - A contract between applications that defines
the patterns of interaction between two application components.

ElementTree A built-in Python library used to parse XML data.
JSON JavaScript Object Notation. A format that allows for the markup of struc-

tured data based on the syntax of JavaScript Objects.
SOA Service-Oriented Architecture. When an application is made of components

connected across a network.
XML eXtensible Markup Language. A format that allows for the markup of

structured data.

13.9 Application 1: Google geocoding web service

Google has an excellent web service that allows us to make use of their large
database of geographic information. We can submit a geographical search string
like “Ann Arbor, MI” to their geocoding API and have Google return its best
guess as to where on a map we might find our search string and tell us about the
landmarks nearby.

The geocoding service is free but rate limited so you cannot make unlimited use of
the API in a commercial application. But if you have some survey data where an
end user has entered a location in a free-format input box, you can use this API
to clean up your data quite nicely.

When you are using a free API like Google’s geocoding API, you need to be respectful
in your use of these resources. If too many people abuse the service, Google might
drop or significantly curtail its free service.

You can read the online documentation for this service, but it is quite simple and
you can even test it using a browser by typing the following URL into your browser:

http://maps.googleapis.com/maps/api/geocode/json?address=Ann+Arbor%2C+MI

Make sure to unwrap the URL and remove any spaces from the URL before pasting
it into your browser.

The following is a simple application to prompt the user for a search string, call
the Google geocoding API, and extract information from the returned JSON.

https://hemanthrajhemu.github.io

13.9. APPLICATION 1: GOOGLE GEOCODING WEB SERVICE 163

import urllib.request, urllib.parse, urllib.error

import json

import ssl

api_key = False

If you have a Google Places API key, enter it here

api_key = 'AIzaSy___IDByT70'

https://developers.google.com/maps/documentation/geocoding/intro

if api_key is False:

api_key = 42

serviceurl = 'http://py4e-data.dr-chuck.net/json?'

else :

serviceurl = 'https://maps.googleapis.com/maps/api/geocode/json?'

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

while True:

address = input('Enter location: ')

if len(address) < 1: break

parms = dict()

parms['address'] = address

if api_key is not False: parms['key'] = api_key

url = serviceurl + urllib.parse.urlencode(parms)

print('Retrieving', url)

uh = urllib.request.urlopen(url, context=ctx)

data = uh.read().decode()

print('Retrieved', len(data), 'characters')

try:

js = json.loads(data)

except:

js = None

if not js or 'status' not in js or js['status'] != 'OK':

print('==== Failure To Retrieve ====')

print(data)

continue

print(json.dumps(js, indent=4))

lat = js['results'][0]['geometry']['location']['lat']

lng = js['results'][0]['geometry']['location']['lng']

print('lat', lat, 'lng', lng)

location = js['results'][0]['formatted_address']

print(location)

https://hemanthrajhemu.github.io

164 CHAPTER 13. USING WEB SERVICES

Code: http://www.py4e.com/code3/geojson.py

The program takes the search string and constructs a URL with the search string
as a properly encoded parameter and then uses urllib to retrieve the text from
the Google geocoding API. Unlike a fixed web page, the data we get depends on
the parameters we send and the geographical data stored in Google’s servers.

Once we retrieve the JSON data, we parse it with the json library and do a few
checks to make sure that we received good data, then extract the information that
we are looking for.

The output of the program is as follows (some of the returned JSON has been
removed):

$ python3 geojson.py

Enter location: Ann Arbor, MI

Retrieving http://py4e-data.dr-chuck.net/json?address=Ann+Arbor%2C+MI&key=42

Retrieved 1736 characters

{

"results": [

{

"address_components": [

{

"long_name": "Ann Arbor",

"short_name": "Ann Arbor",

"types": [

"locality",

"political"

]

},

{

"long_name": "Washtenaw County",

"short_name": "Washtenaw County",

"types": [

"administrative_area_level_2",

"political"

]

},

{

"long_name": "Michigan",

"short_name": "MI",

"types": [

"administrative_area_level_1",

"political"

]

},

{

"long_name": "United States",

"short_name": "US",

https://hemanthrajhemu.github.io

13.9. APPLICATION 1: GOOGLE GEOCODING WEB SERVICE 165

"types": [

"country",

"political"

]

}

],

"formatted_address": "Ann Arbor, MI, USA",

"geometry": {

"bounds": {

"northeast": {

"lat": 42.3239728,

"lng": -83.6758069

},

"southwest": {

"lat": 42.222668,

"lng": -83.799572

}

},

"location": {

"lat": 42.2808256,

"lng": -83.7430378

},

"location_type": "APPROXIMATE",

"viewport": {

"northeast": {

"lat": 42.3239728,

"lng": -83.6758069

},

"southwest": {

"lat": 42.222668,

"lng": -83.799572

}

}

},

"place_id": "ChIJMx9D1A2wPIgR4rXIhkb5Cds",

"types": [

"locality",

"political"

]

}

],

"status": "OK"

}

lat 42.2808256 lng -83.7430378

Ann Arbor, MI, USA

Enter location:

You can download www.py4e.com/code3/geoxml.py to explore the XML variant
of the Google geocoding API.

https://hemanthrajhemu.github.io

166 CHAPTER 13. USING WEB SERVICES

Exercise 1: Change either geojson.py or geoxml.py to print out the two-
character country code from the retrieved data. Add error checking so
your program does not traceback if the country code is not there. Once
you have it working, search for “Atlantic Ocean” and make sure it can
handle locations that are not in any country.

13.10 Application 2: Twitter

As the Twitter API became increasingly valuable, Twitter went from an open and
public API to an API that required the use of OAuth signatures on each API
request.

For this next sample program, download the files twurl.py, hidden.py, oauth.py,
and twitter1.py from www.py4e.com/code and put them all in a folder on your
computer.

To make use of these programs you will need to have a Twitter account, and
authorize your Python code as an application, set up a key, secret, token and
token secret. You will edit the file hidden.py and put these four strings into the
appropriate variables in the file:

Keep this file separate

https://apps.twitter.com/

Create new App and get the four strings

def oauth():

return {"consumer_key": "h7Lu...Ng",

"consumer_secret" : "dNKenAC3New...mmn7Q",

"token_key" : "10185562-eibxCp9n2...P4GEQQOSGI",

"token_secret" : "H0ycCFemmC4wyf1...qoIpBo"}

Code: http://www.py4e.com/code3/hidden.py

The Twitter web service are accessed using a URL like this:

https://api.twitter.com/1.1/statuses/user_timeline.json

But once all of the security information has been added, the URL will look more
like:

https://api.twitter.com/1.1/statuses/user_timeline.json?count=2

&oauth_version=1.0&oauth_token=101...SGI&screen_name=drchuck

&oauth_nonce=09239679&oauth_timestamp=1380395644

&oauth_signature=rLK...BoD&oauth_consumer_key=h7Lu...GNg

&oauth_signature_method=HMAC-SHA1

You can read the OAuth specification if you want to know more about the meaning
of the various parameters that are added to meet the security requirements of
OAuth.

https://hemanthrajhemu.github.io

13.10. APPLICATION 2: TWITTER 167

For the programs we run with Twitter, we hide all the complexity in the files
oauth.py and twurl.py. We simply set the secrets in hidden.py and then send the
desired URL to the twurl.augment() function and the library code adds all the
necessary parameters to the URL for us.

This program retrieves the timeline for a particular Twitter user and returns it to
us in JSON format in a string. We simply print the first 250 characters of the
string:

import urllib.request, urllib.parse, urllib.error

import twurl

import ssl

https://apps.twitter.com/

Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/statuses/user_timeline.json'

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

while True:

print('')

acct = input('Enter Twitter Account:')

if (len(acct) < 1): break

url = twurl.augment(TWITTER_URL,

{'screen_name': acct, 'count': '2'})

print('Retrieving', url)

connection = urllib.request.urlopen(url, context=ctx)

data = connection.read().decode()

print(data[:250])

headers = dict(connection.getheaders())

print headers

print('Remaining', headers['x-rate-limit-remaining'])

Code: http://www.py4e.com/code3/twitter1.py

When the program runs it produces the following output:

Enter Twitter Account:drchuck

Retrieving https://api.twitter.com/1.1/ ...

[{"created_at":"Sat Sep 28 17:30:25 +0000 2013","

id":384007200990982144,"id_str":"384007200990982144",

"text":"RT @fixpert: See how the Dutch handle traffic

intersections: http:\/\/t.co\/tIiVWtEhj4\n#brilliant",

"source":"web","truncated":false,"in_rep

Remaining 178

Enter Twitter Account:fixpert

https://hemanthrajhemu.github.io

168 CHAPTER 13. USING WEB SERVICES

Retrieving https://api.twitter.com/1.1/ ...

[{"created_at":"Sat Sep 28 18:03:56 +0000 2013",

"id":384015634108919808,"id_str":"384015634108919808",

"text":"3 months after my freak bocce ball accident,

my wedding ring fits again! :)\n\nhttps:\/\/t.co\/2XmHPx7kgX",

"source":"web","truncated":false,

Remaining 177

Enter Twitter Account:

Along with the returned timeline data, Twitter also returns metadata about
the request in the HTTP response headers. One header in particular,
x-rate-limit-remaining, informs us how many more requests we can make
before we will be shut off for a short time period. You can see that our remaining
retrievals drop by one each time we make a request to the API.

In the following example, we retrieve a user’s Twitter friends, parse the returned
JSON, and extract some of the information about the friends. We also dump the
JSON after parsing and “pretty-print” it with an indent of four characters to allow
us to pore through the data when we want to extract more fields.

import urllib.request, urllib.parse, urllib.error

import twurl

import json

import ssl

https://apps.twitter.com/

Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

while True:

print('')

acct = input('Enter Twitter Account:')

if (len(acct) < 1): break

url = twurl.augment(TWITTER_URL,

{'screen_name': acct, 'count': '5'})

print('Retrieving', url)

connection = urllib.request.urlopen(url, context=ctx)

data = connection.read().decode()

js = json.loads(data)

print(json.dumps(js, indent=2))

headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])

https://hemanthrajhemu.github.io

13.10. APPLICATION 2: TWITTER 169

for u in js['users']:

print(u['screen_name'])

if 'status' not in u:

print(' * No status found')

continue

s = u['status']['text']

print(' ', s[:50])

Code: http://www.py4e.com/code3/twitter2.py

Since the JSON becomes a set of nested Python lists and dictionaries, we can use a
combination of the index operation and for loops to wander through the returned
data structures with very little Python code.

The output of the program looks as follows (some of the data items are shortened
to fit on the page):

Enter Twitter Account:drchuck

Retrieving https://api.twitter.com/1.1/friends ...

Remaining 14

{

"next_cursor": 1444171224491980205,

"users": [

{

"id": 662433,

"followers_count": 28725,

"status": {

"text": "@jazzychad I just bought one .__.",

"created_at": "Fri Sep 20 08:36:34 +0000 2013",

"retweeted": false,

},

"location": "San Francisco, California",

"screen_name": "leahculver",

"name": "Leah Culver",

},

{

"id": 40426722,

"followers_count": 2635,

"status": {

"text": "RT @WSJ: Big employers like Google ...",

"created_at": "Sat Sep 28 19:36:37 +0000 2013",

},

"location": "Victoria Canada",

"screen_name": "_valeriei",

"name": "Valerie Irvine",

}

],

"next_cursor_str": "1444171224491980205"

}

https://hemanthrajhemu.github.io

170 CHAPTER 13. USING WEB SERVICES

leahculver

@jazzychad I just bought one .__.

_valeriei

RT @WSJ: Big employers like Google, AT&T are h

ericbollens

RT @lukew: sneak peek: my LONG take on the good &a

halherzog

Learning Objects is 10. We had a cake with the LO,

scweeker

@DeviceLabDC love it! Now where so I get that "etc

Enter Twitter Account:

The last bit of the output is where we see the for loop reading the five most recent
“friends” of the @drchuck Twitter account and printing the most recent status for
each friend. There is a great deal more data available in the returned JSON. If
you look in the output of the program, you can also see that the “find the friends”
of a particular account has a different rate limitation than the number of timeline
queries we are allowed to run per time period.

These secure API keys allow Twitter to have solid confidence that they know who
is using their API and data and at what level. The rate-limiting approach allows
us to do simple, personal data retrievals but does not allow us to build a product
that pulls data from their API millions of times per day.

https://hemanthrajhemu.github.io

Chapter 14

Object-oriented
programming

14.1 Managing larger programs

At the beginning of this book, we came up with four basic programming patterns
which we use to construct programs:

• Sequential code
• Conditional code (if statements)
• Repetitive code (loops)
• Store and reuse (functions)

In later chapters, we explored simple variables as well as collection data structures
like lists, tuples, and dictionaries.

As we build programs, we design data structures and write code to manipulate
those data structures. There are many ways to write programs and by now, you
probably have written some programs that are “not so elegant” and other programs
that are “more elegant”. Even though your programs may be small, you are starting
to see how there is a bit of art and aesthetic to writing code.

As programs get to be millions of lines long, it becomes increasingly important to
write code that is easy to understand. If you are working on a million-line program,
you can never keep the entire program in your mind at the same time. We need
ways to break large programs into multiple smaller pieces so that we have less to
look at when solving a problem, fix a bug, or add a new feature.

In a way, object oriented programming is a way to arrange your code so that you
can zoom into 50 lines of the code and understand it while ignoring the other
999,950 lines of code for the moment.

171https://hemanthrajhemu.github.io

172 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

14.2 Getting started

Like many aspects of programming, it is necessary to learn the concepts of object
oriented programming before you can use them effectively. You should approach
this chapter as a way to learn some terms and concepts and work through a few
simple examples to lay a foundation for future learning.

The key outcome of this chapter is to have a basic understanding of how objects
are constructed and how they function and most importantly how we make use of
the capabilities of objects that are provided to us by Python and Python libraries.

14.3 Using objects

As it turns out, we have been using objects all along in this book. Python provides
us with many built-in objects. Here is some simple code where the first few lines
should feel very simple and natural to you.

stuff = list()

stuff.append('python')

stuff.append('chuck')

stuff.sort()

print (stuff[0])

print (stuff.__getitem__(0))

print (list.__getitem__(stuff,0))

Code: http://www.py4e.com/code3/party1.py

Instead of focusing on what these lines accomplish, let’s look at what is really
happening from the point of view of object-oriented programming. Don’t worry
if the following paragraphs don’t make any sense the first time you read them
because we have not yet defined all of these terms.

The first line constructs an object of type list, the second and third lines call
the append() method, the fourth line calls the sort() method, and the fifth line
retrieves the item at position 0.

The sixth line calls the __getitem__() method in the stuff list with a parameter
of zero.

print (stuff.__getitem__(0))

The seventh line is an even more verbose way of retrieving the 0th item in the list.

print (list.__getitem__(stuff,0))

In this code, we call the __getitem__ method in the list class and pass the list
and the item we want retrieved from the list as parameters.

https://hemanthrajhemu.github.io

14.4. STARTING WITH PROGRAMS 173

The last three lines of the program are equivalent, but it is more convenient to
simply use the square bracket syntax to look up an item at a particular position
in a list.

We can take a look at the capabilities of an object by looking at the output of the
dir() function:

>>> stuff = list()

>>> dir(stuff)

['__add__', '__class__', '__contains__', '__delattr__',

'__delitem__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__getitem__',

'__gt__', '__hash__', '__iadd__', '__imul__', '__init__',

'__iter__', '__le__', '__len__', '__lt__', '__mul__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__',

'__repr__', '__reversed__', '__rmul__', '__setattr__',

'__setitem__', '__sizeof__', '__str__', '__subclasshook__',

'append', 'clear', 'copy', 'count', 'extend', 'index',

'insert', 'pop', 'remove', 'reverse', 'sort']

>>>

The rest of this chapter will define all of the above terms so make sure to come
back after you finish the chapter and re-read the above paragraphs to check your
understanding.

14.4 Starting with programs

A program in its most basic form takes some input, does some processing, and
produces some output. Our elevator conversion program demonstrates a very short
but complete program showing all three of these steps.

usf = input('Enter the US Floor Number: ')

wf = int(usf) - 1

print('Non-US Floor Number is',wf)

Code: http://www.py4e.com/code3/elev.py

If we think a bit more about this program, there is the “outside world” and the
program. The input and output aspects are where the program interacts with the
outside world. Within the program we have code and data to accomplish the task
the program is designed to solve.

One way to think about object-oriented programming is that it separates our pro-
gram into multiple “zones.” Each zone contains some code and data (like a pro-
gram) and has well defined interactions with the outside world and the other zones
within the program.

If we look back at the link extraction application where we used the BeautifulSoup
library, we can see a program that is constructed by connecting different objects
together to accomplish a task:

https://hemanthrajhemu.github.io

174 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

Program

OutputInput

Figure 14.1: A Program

To run this, download the BeautifulSoup zip file

http://www.py4e.com/code3/bs4.zip

and unzip it in the same directory as this file

import urllib.request, urllib.parse, urllib.error

from bs4 import BeautifulSoup

import ssl

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

Code: http://www.py4e.com/code3/urllinks.py

We read the URL into a string and then pass that into urllib to retrieve the data
from the web. The urllib library uses the socket library to make the actual
network connection to retrieve the data. We take the string that urllib returns
and hand it to BeautifulSoup for parsing. BeautifulSoup makes use of the object
html.parser1 and returns an object. We call the tags() method on the returned
object that returns a dictionary of tag objects. We loop through the tags and call
the get() method for each tag to print out the href attribute.

We can draw a picture of this program and how the objects work together.

The key here is not to understand perfectly how this program works but to see
how we build a network of interacting objects and orchestrate the movement of
information between the objects to create a program. It is also important to
note that when you looked at that program several chapters back, you could fully
understand what was going on in the program without even realizing that the

1https://docs.python.org/3/library/html.parser.html

https://hemanthrajhemu.github.io

14.5. SUBDIVIDING A PROBLEM 175

String
Object OutputInput

Dictionary
Object

BeautifulSoup
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

Figure 14.2: A Program as Network of Objects

program was “orchestrating the movement of data between objects.” It was just
lines of code that got the job done.

14.5 Subdividing a problem

One of the advantages of the object-oriented approach is that it can hide complexity.
For example, while we need to know how to use the urllib and BeautifulSoup
code, we do not need to know how those libraries work internally. This allows us
to focus on the part of the problem we need to solve and ignore the other parts of
the program.

BeautifulSoup
Object

String
Object OutputInput

Dictionary
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

Figure 14.3: Ignoring Detail When Using an Object

This ability to focus exclusively on the part of a program that we care about and
ignore the rest is also helpful to the developers of the objects that we use. For
example, the programmers developing BeautifulSoup do not need to know or care
about how we retrieve our HTML page, what parts we want to read, or what we
plan to do with the data we extract from the web page.

14.6 Our first Python object

At a basic level, an object is simply some code plus data structures that are smaller
than a whole program. Defining a function allows us to store a bit of code and
give it a name and then later invoke that code using the name of the function.

https://hemanthrajhemu.github.io

176 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

String
Object OutputInput

Dictionary
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

BeautifulSoup
Object

Figure 14.4: Ignoring Detail When Building an Object

An object can contain a number of functions (which we call methods) as well as
data that is used by those functions. We call data items that are part of the object
attributes.

We use the class keyword to define the data and code that will make up each
of the objects. The class keyword includes the name of the class and begins an
indented block of code where we include the attributes (data) and methods (code).

class PartyAnimal:

x = 0

def party(self) :

self.x = self.x + 1

print("So far",self.x)

an = PartyAnimal()

an.party()

an.party()

an.party()

PartyAnimal.party(an)

Code: http://www.py4e.com/code3/party2.py

Each method looks like a function, starting with the def keyword and consisting
of an indented block of code. This object has one attribute (x) and one method
(party). The methods have a special first parameter that we name by convention
self.

Just as the def keyword does not cause function code to be executed, the class

keyword does not create an object. Instead, the class keyword defines a template
indicating what data and code will be contained in each object of type PartyAnimal.
The class is like a cookie cutter and the objects created using the class are the
cookies2. You don’t put frosting on the cookie cutter; you put frosting on the
cookies, and you can put different frosting on each cookie.

If we continue through this sample program, we see the first executable line of
code:

2Cookie image copyright CC-BY https://www.flickr.com/photos/dinnerseries/23570475099

https://hemanthrajhemu.github.io

14.6. OUR FIRST PYTHON OBJECT 177

Figure 14.5: A Class and Two Objects

an = PartyAnimal()

This is where we instruct Python to construct (i.e., create) an object or instance
of the class PartyAnimal. It looks like a function call to the class itself. Python
constructs the object with the right data and methods and returns the object which
is then assigned to the variable an. In a way this is quite similar to the following
line which we have been using all along:

counts = dict()

Here we instruct Python to construct an object using the dict template (already
present in Python), return the instance of dictionary, and assign it to the variable
counts.

When the PartyAnimal class is used to construct an object, the variable an is used
to point to that object. We use an to access the code and data for that particular
instance of the PartyAnimal class.

Each Partyanimal object/instance contains within it a variable x and a
method/function named party. We call the party method in this line:

an.party()

When the party method is called, the first parameter (which we call by convention
self) points to the particular instance of the PartyAnimal object that party is
called from. Within the party method, we see the line:

self.x = self.x + 1

This syntax using the dot operator is saying ‘the x within self.’ Each time party()

is called, the internal x value is incremented by 1 and the value is printed out.

The following line is another way to call the party method within the an object:

PartyAnimal.party(an)

https://hemanthrajhemu.github.io

178 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

In this variation, we access the code from within the class and explicitly pass the
object pointer an as the first parameter (i.e., self within the method). You can
think of an.party() as shorthand for the above line.

When the program executes, it produces the following output:

So far 1

So far 2

So far 3

So far 4

The object is constructed, and the party method is called four times, both incre-
menting and printing the value for x within the an object.

14.7 Classes as types

As we have seen, in Python all variables have a type. We can use the built-in dir

function to examine the capabilities of a variable. We can also use type and dir

with the classes that we create.

class PartyAnimal:

x = 0

def party(self) :

self.x = self.x + 1

print("So far",self.x)

an = PartyAnimal()

print ("Type", type(an))

print ("Dir ", dir(an))

print ("Type", type(an.x))

print ("Type", type(an.party))

Code: http://www.py4e.com/code3/party3.py

When this program executes, it produces the following output:

Type <class '__main__.PartyAnimal'>

Dir ['__class__', '__delattr__', ...

'__sizeof__', '__str__', '__subclasshook__',

'__weakref__', 'party', 'x']

Type <class 'int'>

Type <class 'method'>

You can see that using the class keyword, we have created a new type. From the
dir output, you can see both the x integer attribute and the party method are
available in the object.

https://hemanthrajhemu.github.io

14.8. OBJECT LIFECYCLE 179

14.8 Object lifecycle

In the previous examples, we define a class (template), use that class to create
an instance of that class (object), and then use the instance. When the program
finishes, all of the variables are discarded. Usually, we don’t think much about
the creation and destruction of variables, but often as our objects become more
complex, we need to take some action within the object to set things up as the
object is constructed and possibly clean things up as the object is discarded.

If we want our object to be aware of these moments of construction and destruction,
we add specially named methods to our object:

class PartyAnimal:

x = 0

def __init__(self):

print('I am constructed')

def party(self) :

self.x = self.x + 1

print('So far',self.x)

def __del__(self):

print('I am destructed', self.x)

an = PartyAnimal()

an.party()

an.party()

an = 42

print('an contains',an)

Code: http://www.py4e.com/code3/party4.py

When this program executes, it produces the following output:

I am constructed

So far 1

So far 2

I am destructed 2

an contains 42

As Python constructs our object, it calls our __init__ method to give us a chance
to set up some default or initial values for the object. When Python encounters
the line:

an = 42

It actually “thows our object away” so it can reuse the an variable to store the value
42. Just at the moment when our an object is being “destroyed” our destructor

https://hemanthrajhemu.github.io

180 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

code (__del__) is called. We cannot stop our variable from being destroyed, but
we can do any necessary cleanup right before our object no longer exists.

When developing objects, it is quite common to add a constructor to an object to
set up initial values for the object. It is relatively rare to need a destructor for an
object.

14.9 Multiple instances

So far, we have defined a class, constructed a single object, used that object,
and then thrown the object away. However, the real power in object-oriented
programming happens when we construct multiple instances of our class.

When we construct multiple objects from our class, we might want to set up dif-
ferent initial values for each of the objects. We can pass data to the constructors
to give each object a different initial value:

class PartyAnimal:

x = 0

name = ''

def __init__(self, nam):

self.name = nam

print(self.name,'constructed')

def party(self) :

self.x = self.x + 1

print(self.name,'party count',self.x)

s = PartyAnimal('Sally')

j = PartyAnimal('Jim')

s.party()

j.party()

s.party()

Code: http://www.py4e.com/code3/party5.py

The constructor has both a self parameter that points to the object instance
and additional parameters that are passed into the constructor as the object is
constructed:

s = PartyAnimal('Sally')

Within the constructor, the second line copies the parameter (nam) that is passed
into the name attribute within the object instance.

self.name = nam

The output of the program shows that each of the objects (s and j) contain their
own independent copies of x and nam:

https://hemanthrajhemu.github.io

14.10. INHERITANCE 181

Sally constructed

Sally party count 1

Jim constructed

Jim party count 1

Sally party count 2

14.10 Inheritance

Another powerful feature of object-oriented programming is the ability to create
a new class by extending an existing class. When extending a class, we call the
original class the parent class and the new class the child class.

For this example, we move our PartyAnimal class into its own file. Then, we can
‘import’ the PartyAnimal class in a new file and extend it, as follows:

from party import PartyAnimal

class CricketFan(PartyAnimal):

points = 0

def six(self):

self.points = self.points + 6

self.party()

print(self.name,"points",self.points)

s = PartyAnimal("Sally")

s.party()

j = CricketFan("Jim")

j.party()

j.six()

print(dir(j))

Code: http://www.py4e.com/code3/party6.py

When we define the CricketFan class, we indicate that we are extending the
PartyAnimal class. This means that all of the variables (x) and methods (party)
from the PartyAnimal class are inherited by the CricketFan class. For example,
within the six method in the CricketFan class, we call the party method from
the PartyAnimal class.

As the program executes, we create s and j as independent instances of
PartyAnimal and CricketFan. The j object has additional capabilities beyond
the s object.

Sally constructed

Sally party count 1

Jim constructed

Jim party count 1

Jim party count 2

Jim points 6

['__class__', '__delattr__', ... '__weakref__',

'name', 'party', 'points', 'six', 'x']

https://hemanthrajhemu.github.io

182 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

In the dir output for the j object (instance of the CricketFan class), we see that
it has the attributes and methods of the parent class, as well as the attributes and
methods that were added when the class was extended to create the CricketFan

class.

14.11 Summary

This is a very quick introduction to object-oriented programming that focuses
mainly on terminology and the syntax of defining and using objects. Let’s quickly
review the code that we looked at in the beginning of the chapter. At this point
you should fully understand what is going on.

stuff = list()

stuff.append('python')

stuff.append('chuck')

stuff.sort()

print (stuff[0])

print (stuff.__getitem__(0))

print (list.__getitem__(stuff,0))

Code: http://www.py4e.com/code3/party1.py

The first line constructs a list object. When Python creates the list object,
it calls the constructor method (named __init__) to set up the internal data at-
tributes that will be used to store the list data. We have not passed any parameters
to the constructor. When the constructor returns, we use the variable stuff to
point to the returned instance of the list class.

The second and third lines call the append method with one parameter to add a
new item at the end of the list by updating the attributes within stuff. Then
in the fourth line, we call the sort method with no parameters to sort the data
within the stuff object.

We then print out the first item in the list using the square brackets which are a
shortcut to calling the __getitem__ method within the stuff. This is equivalent
to calling the __getitem__ method in the list class and passing the stuff object
as the first parameter and the position we are looking for as the second parameter.

At the end of the program, the stuff object is discarded but not before calling
the destructor (named __del__) so that the object can clean up any loose ends as
necessary.

Those are the basics of object-oriented programming. There are many additional
details as to how to best use object-oriented approaches when developing large
applications and libraries that are beyond the scope of this chapter.3

3If you are curious about where the list class is defined, take a look at (hopefully the URL
won’t change) https://github.com/python/cpython/blob/master/Objects/listobject.c - the list
class is written in a language called “C”. If you take a look at that source code and find it curious
you might want to explore a few Computer Science courses.

https://hemanthrajhemu.github.io

14.12. GLOSSARY 183

14.12 Glossary

attribute A variable that is part of a class.
class A template that can be used to construct an object. Defines the attributes

and methods that will make up the object.
child class A new class created when a parent class is extended. The child class

inherits all of the attributes and methods of the parent class.
constructor An optional specially named method (__init__) that is called at

the moment when a class is being used to construct an object. Usually this
is used to set up initial values for the object.

destructor An optional specially named method (__del__) that is called at the
moment just before an object is destroyed. Destructors are rarely used.

inheritance When we create a new class (child) by extending an existing class
(parent). The child class has all the attributes and methods of the parent
class plus additional attributes and methods defined by the child class.

method A function that is contained within a class and the objects that are con-
structed from the class. Some object-oriented patterns use ‘message’ instead
of ‘method’ to describe this concept.

object A constructed instance of a class. An object contains all of the attributes
and methods that were defined by the class. Some object-oriented documen-
tation uses the term ‘instance’ interchangeably with ‘object’.

parent class The class which is being extended to create a new child class. The
parent class contributes all of its methods and attributes to the new child
class.

https://hemanthrajhemu.github.io

184 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

https://hemanthrajhemu.github.io

Chapter 15

Using Databases and SQL

15.1 What is a database?

A database is a file that is organized for storing data. Most databases are organized
like a dictionary in the sense that they map from keys to values. The biggest
difference is that the database is on disk (or other permanent storage), so it persists
after the program ends. Because a database is stored on permanent storage, it can
store far more data than a dictionary, which is limited to the size of the memory
in the computer.

Like a dictionary, database software is designed to keep the inserting and accessing
of data very fast, even for large amounts of data. Database software maintains its
performance by building indexes as data is added to the database to allow the
computer to jump quickly to a particular entry.

There are many different database systems which are used for a wide variety of pur-
poses including: Oracle, MySQL, Microsoft SQL Server, PostgreSQL, and SQLite.
We focus on SQLite in this book because it is a very common database and is
already built into Python. SQLite is designed to be embedded into other applica-
tions to provide database support within the application. For example, the Firefox
browser also uses the SQLite database internally as do many other products.

http://sqlite.org/

SQLite is well suited to some of the data manipulation problems that we see
in Informatics such as the Twitter spidering application that we describe in this
chapter.

15.2 Database concepts

When you first look at a database it looks like a spreadsheet with multiple sheets.
The primary data structures in a database are: tables, rows, and columns.

In technical descriptions of relational databases the concepts of table, row, and
column are more formally referred to as relation, tuple, and attribute, respectively.
We will use the less formal terms in this chapter.

185https://hemanthrajhemu.github.io

186 CHAPTER 15. USING DATABASES AND SQL

2.3

Table

row

column

2.3

Relation

tuple

attribute

Figure 15.1: Relational Databases

15.3 Database Browser for SQLite

While this chapter will focus on using Python to work with data in SQLite database
files, many operations can be done more conveniently using software called the
Database Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

Using the browser you can easily create tables, insert data, edit data, or run simple
SQL queries on the data in the database.

In a sense, the database browser is similar to a text editor when working with text
files. When you want to do one or very few operations on a text file, you can just
open it in a text editor and make the changes you want. When you have many
changes that you need to do to a text file, often you will write a simple Python
program. You will find the same pattern when working with databases. You will
do simple operations in the database manager and more complex operations will
be most conveniently done in Python.

15.4 Creating a database table

Databases require more defined structure than Python lists or dictionaries1.

When we create a database table we must tell the database in advance the names
of each of the columns in the table and the type of data which we are planning to
store in each column. When the database software knows the type of data in each
column, it can choose the most efficient way to store and look up the data based
on the type of data.

You can look at the various data types supported by SQLite at the following url:

http://www.sqlite.org/datatypes.html

Defining structure for your data up front may seem inconvenient at the beginning,
but the payoff is fast access to your data even when the database contains a large
amount of data.

1SQLite actually does allow some flexibility in the type of data stored in a column, but we
will keep our data types strict in this chapter so the concepts apply equally to other database
systems such as MySQL.

https://hemanthrajhemu.github.io

15.4. CREATING A DATABASE TABLE 187

The code to create a database file and a table named Tracks with two columns in
the database is as follows:

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

conn.close()

Code: http://www.py4e.com/code3/db1.py

The connect operation makes a “connection” to the database stored in the file
music.sqlite in the current directory. If the file does not exist, it will be created.
The reason this is called a “connection” is that sometimes the database is stored
on a separate “database server” from the server on which we are running our
application. In our simple examples the database will just be a local file in the
same directory as the Python code we are running.

A cursor is like a file handle that we can use to perform operations on the data
stored in the database. Calling cursor() is very similar conceptually to calling
open() when dealing with text files.

Your
Program

�

U

+

S

O

+

execute

fetchone

fetchall

close

Users

Members

Courses

Figure 15.2: A Database Cursor

Once we have the cursor, we can begin to execute commands on the contents of
the database using the execute() method.

Database commands are expressed in a special language that has been standardized
across many different database vendors to allow us to learn a single database
language. The database language is called Structured Query Language or SQL for
short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our database. As a
convention, we will show the SQL keywords in uppercase and the parts of the

https://hemanthrajhemu.github.io

188 CHAPTER 15. USING DATABASES AND SQL

command that we are adding (such as the table and column names) will be shown
in lowercase.

The first SQL command removes the Tracks table from the database if it exists.
This pattern is simply to allow us to run the same program to create the Tracks

table over and over again without causing an error. Note that the DROP TABLE

command deletes the table and all of its contents from the database (i.e., there is
no “undo”).

cur.execute('DROP TABLE IF EXISTS Tracks ')

The second command creates a table named Tracks with a text column named
title and an integer column named plays.

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

Now that we have created a table named Tracks, we can put some data into that
table using the SQL INSERT operation. Again, we begin by making a connection
to the database and obtaining the cursor. We can then execute SQL commands
using the cursor.

The SQL INSERT command indicates which table we are using and then defines a
new row by listing the fields we want to include (title, plays) followed by the
VALUES we want placed in the new row. We specify the values as question marks
(?, ?) to indicate that the actual values are passed in as a tuple ('My Way',

15) as the second parameter to the execute() call.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('INSERT INTO Tracks (title, plays) VALUES (?, ?)',

('Thunderstruck', 20))

cur.execute('INSERT INTO Tracks (title, plays) VALUES (?, ?)',

('My Way', 15))

conn.commit()

print('Tracks:')

cur.execute('SELECT title, plays FROM Tracks')

for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')

conn.commit()

cur.close()

Code: http://www.py4e.com/code3/db2.py

https://hemanthrajhemu.github.io

15.5. STRUCTURED QUERY LANGUAGE SUMMARY 189

title plays

My Way

Thunderstruck

15

20

Tracks

Figure 15.3: Rows in a Table

First we INSERT two rows into our table and use commit() to force the data to be
written to the database file.

Then we use the SELECT command to retrieve the rows we just inserted from the
table. On the SELECT command, we indicate which columns we would like (title,

plays) and indicate which table we want to retrieve the data from. After we
execute the SELECT statement, the cursor is something we can loop through in a
for statement. For efficiency, the cursor does not read all of the data from the
database when we execute the SELECT statement. Instead, the data is read on
demand as we loop through the rows in the for statement.

The output of the program is as follows:

Tracks:

('Thunderstruck', 20)

('My Way', 15)

Our for loop finds two rows, and each row is a Python tuple with the first value
as the title and the second value as the number of plays.

Note: You may see strings starting with u' in other books or on the Internet. This
was an indication in Python 2 that the strings are Unicode* strings that are capable
of storing non-Latin character sets. In Python 3, all strings are unicode strings by
default.*

At the very end of the program, we execute an SQL command to DELETE the
rows we have just created so we can run the program over and over. The DELETE

command shows the use of a WHERE clause that allows us to express a selection
criterion so that we can ask the database to apply the command to only the rows
that match the criterion. In this example the criterion happens to apply to all the
rows so we empty the table out so we can run the program repeatedly. After the
DELETE is performed, we also call commit() to force the data to be removed from
the database.

15.5 Structured Query Language summary

So far, we have been using the Structured Query Language in our Python examples
and have covered many of the basics of the SQL commands. In this section, we
look at the SQL language in particular and give an overview of SQL syntax.

https://hemanthrajhemu.github.io

190 CHAPTER 15. USING DATABASES AND SQL

Since there are so many different database vendors, the Structured Query Language
(SQL) was standardized so we could communicate in a portable manner to database
systems from multiple vendors.

A relational database is made up of tables, rows, and columns. The columns
generally have a type such as text, numeric, or date data. When we create a table,
we indicate the names and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

To insert a row into a table, we use the SQL INSERT command:

INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

The INSERT statement specifies the table name, then a list of the fields/columns
that you would like to set in the new row, and then the keyword VALUES and a list
of corresponding values for each of the fields.

The SQL SELECT command is used to retrieve rows and columns from a database.
The SELECT statement lets you specify which columns you would like to retrieve
as well as a WHERE clause to select which rows you would like to see. It also allows
an optional ORDER BY clause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = 'My Way'

Using * indicates that you want the database to return all of the columns for each
row that matches the WHERE clause.

Note, unlike in Python, in a SQL WHERE clause we use a single equal sign to indicate
a test for equality rather than a double equal sign. Other logical operations allowed
in a WHERE clause include <, >, <=, >=, !=, as well as AND and OR and parentheses
to build your logical expressions.

You can request that the returned rows be sorted by one of the fields as follows:

SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you need a WHERE clause on an SQL DELETE statement. The
WHERE clause determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = 'My Way'

It is possible to UPDATE a column or columns within one or more rows in a table
using the SQL UPDATE statement as follows:

UPDATE Tracks SET plays = 16 WHERE title = 'My Way'

The UPDATE statement specifies a table and then a list of fields and values to change
after the SET keyword and then an optional WHERE clause to select the rows that
are to be updated. A single UPDATE statement will change all of the rows that
match the WHERE clause. If a WHERE clause is not specified, it performs the UPDATE

on all of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, and DELETE)
allow the four basic operations needed to create and maintain data.

https://hemanthrajhemu.github.io

15.6. SPIDERING TWITTER USING A DATABASE 191

15.6 Spidering Twitter using a database

In this section, we will create a simple spidering program that will go through
Twitter accounts and build a database of them. Note: Be very careful when running
this program. You do not want to pull too much data or run the program for too
long and end up having your Twitter access shut off.

One of the problems of any kind of spidering program is that it needs to be able
to be stopped and restarted many times and you do not want to lose the data that
you have retrieved so far. You don’t want to always restart your data retrieval at
the very beginning so we want to store data as we retrieve it so our program can
start back up and pick up where it left off.

We will start by retrieving one person’s Twitter friends and their statuses, looping
through the list of friends, and adding each of the friends to a database to be
retrieved in the future. After we process one person’s Twitter friends, we check
in our database and retrieve one of the friends of the friend. We do this over and
over, picking an “unvisited” person, retrieving their friend list, and adding friends
we have not seen to our list for a future visit.

We also track how many times we have seen a particular friend in the database to
get some sense of their “popularity”.

By storing our list of known accounts and whether we have retrieved the account
or not, and how popular the account is in a database on the disk of the computer,
we can stop and restart our program as many times as we like.

This program is a bit complex. It is based on the code from the exercise earlier in
the book that uses the Twitter API.

Here is the source code for our Twitter spidering application:

from urllib.request import urlopen

import urllib.error

import twurl

import json

import sqlite3

import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

conn = sqlite3.connect('spider.sqlite')

cur = conn.cursor()

cur.execute('''

CREATE TABLE IF NOT EXISTS Twitter

(name TEXT, retrieved INTEGER, friends INTEGER)''')

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

https://hemanthrajhemu.github.io

192 CHAPTER 15. USING DATABASES AND SQL

while True:

acct = input('Enter a Twitter account, or quit: ')

if (acct == 'quit'): break

if (len(acct) < 1):

cur.execute('SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1')

try:

acct = cur.fetchone()[0]

except:

print('No unretrieved Twitter accounts found')

continue

url = twurl.augment(TWITTER_URL, {'screen_name': acct, 'count': '5'})

print('Retrieving', url)

connection = urlopen(url, context=ctx)

data = connection.read().decode()

headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])

js = json.loads(data)

Debugging

print json.dumps(js, indent=4)

cur.execute('UPDATE Twitter SET retrieved=1 WHERE name = ?', (acct,))

countnew = 0

countold = 0

for u in js['users']:

friend = u['screen_name']

print(friend)

cur.execute('SELECT friends FROM Twitter WHERE name = ? LIMIT 1',

(friend,))

try:

count = cur.fetchone()[0]

cur.execute('UPDATE Twitter SET friends = ? WHERE name = ?',

(count+1, friend))

countold = countold + 1

except:

cur.execute('''INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1)''', (friend,))

countnew = countnew + 1

print('New accounts=', countnew, ' revisited=', countold)

conn.commit()

cur.close()

Code: http://www.py4e.com/code3/twspider.py

Our database is stored in the file spider.sqlite and it has one table named
Twitter. Each row in the Twitter table has a column for the account name,
whether we have retrieved the friends of this account, and how many times this
account has been “friended”.

https://hemanthrajhemu.github.io

15.6. SPIDERING TWITTER USING A DATABASE 193

In the main loop of the program, we prompt the user for a Twitter account name
or “quit” to exit the program. If the user enters a Twitter account, we retrieve
the list of friends and statuses for that user and add each friend to the database
if not already in the database. If the friend is already in the list, we add 1 to the
friends field in the row in the database.

If the user presses enter, we look in the database for the next Twitter account that
we have not yet retrieved, retrieve the friends and statuses for that account, add
them to the database or update them, and increase their friends count.

Once we retrieve the list of friends and statuses, we loop through all of the user

items in the returned JSON and retrieve the screen_name for each user. Then
we use the SELECT statement to see if we already have stored this particular
screen_name in the database and retrieve the friend count (friends) if the record
exists.

countnew = 0

countold = 0

for u in js['users'] :

friend = u['screen_name']

print(friend)

cur.execute('SELECT friends FROM Twitter WHERE name = ? LIMIT 1',

(friend,))

try:

count = cur.fetchone()[0]

cur.execute('UPDATE Twitter SET friends = ? WHERE name = ?',

(count+1, friend))

countold = countold + 1

except:

cur.execute('''INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1)''', (friend,))

countnew = countnew + 1

print('New accounts=',countnew,' revisited=',countold)

conn.commit()

Once the cursor executes the SELECT statement, we must retrieve the rows. We
could do this with a for statement, but since we are only retrieving one row (LIMIT

1), we can use the fetchone() method to fetch the first (and only) row that is the
result of the SELECT operation. Since fetchone() returns the row as a tuple (even
though there is only one field), we take the first value from the tuple using to get
the current friend count into the variable count.

If this retrieval is successful, we use the SQL UPDATE statement with a WHERE clause
to add 1 to the friends column for the row that matches the friend’s account.
Notice that there are two placeholders (i.e., question marks) in the SQL, and the
second parameter to the execute() is a two-element tuple that holds the values
to be substituted into the SQL in place of the question marks.

If the code in the try block fails, it is probably because no record matched the
WHERE name = ? clause on the SELECT statement. So in the except block, we
use the SQL INSERT statement to add the friend’s screen_name to the table with
an indication that we have not yet retrieved the screen_name and set the friend
count to zero.

https://hemanthrajhemu.github.io

194 CHAPTER 15. USING DATABASES AND SQL

So the first time the program runs and we enter a Twitter account, the program
runs as follows:

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 20 revisited= 0

Enter a Twitter account, or quit: quit

Since this is the first time we have run the program, the database is empty and
we create the database in the file spider.sqlite and add a table named Twitter

to the database. Then we retrieve some friends and add them all to the database
since the database is empty.

At this point, we might want to write a simple database dumper to take a look at
what is in our spider.sqlite file:

import sqlite3

conn = sqlite3.connect('spider.sqlite')

cur = conn.cursor()

cur.execute('SELECT * FROM Twitter')

count = 0

for row in cur:

print(row)

count = count + 1

print(count, 'rows.')

cur.close()

Code: http://www.py4e.com/code3/twdump.py

This program simply opens the database and selects all of the columns of all of the
rows in the table Twitter, then loops through the rows and prints out each row.

If we run this program after the first execution of our Twitter spider above, its
output will be as follows:

('opencontent', 0, 1)

('lhawthorn', 0, 1)

('steve_coppin', 0, 1)

('davidkocher', 0, 1)

('hrheingold', 0, 1)

...

20 rows.

We see one row for each screen_name, that we have not retrieved the data for that
screen_name, and everyone in the database has one friend.

Now our database reflects the retrieval of the friends of our first Twitter account
(drchuck). We can run the program again and tell it to retrieve the friends of the
next “unprocessed” account by simply pressing enter instead of a Twitter account
as follows:

https://hemanthrajhemu.github.io

15.6. SPIDERING TWITTER USING A DATABASE 195

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 18 revisited= 2

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 17 revisited= 3

Enter a Twitter account, or quit: quit

Since we pressed enter (i.e., we did not specify a Twitter account), the following
code is executed:

if (len(acct) < 1) :

cur.execute('SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1')

try:

acct = cur.fetchone()[0]

except:

print('No unretrieved twitter accounts found')

continue

We use the SQL SELECT statement to retrieve the name of the first (LIMIT 1) user
who still has their “have we retrieved this user” value set to zero. We also use the
fetchone()[0] pattern within a try/except block to either extract a screen_name

from the retrieved data or put out an error message and loop back up.

If we successfully retrieved an unprocessed screen_name, we retrieve their data as
follows:

url=twurl.augment(TWITTER_URL,{'screen_name': acct,'count': '20'})

print('Retrieving', url)

connection = urllib.urlopen(url)

data = connection.read()

js = json.loads(data)

cur.execute('UPDATE Twitter SET retrieved=1 WHERE name = ?',(acct,))

Once we retrieve the data successfully, we use the UPDATE statement to set the
retrieved column to 1 to indicate that we have completed the retrieval of the
friends of this account. This keeps us from retrieving the same data over and over
and keeps us progressing forward through the network of Twitter friends.

If we run the friend program and press enter twice to retrieve the next unvisited
friend’s friends, then run the dumping program, it will give us the following output:

('opencontent', 1, 1)

('lhawthorn', 1, 1)

('steve_coppin', 0, 1)

('davidkocher', 0, 1)

('hrheingold', 0, 1)

...

('cnxorg', 0, 2)

('knoop', 0, 1)

https://hemanthrajhemu.github.io

196 CHAPTER 15. USING DATABASES AND SQL

('kthanos', 0, 2)

('LectureTools', 0, 1)

...

55 rows.

We can see that we have properly recorded that we have visited lhawthorn and
opencontent. Also the accounts cnxorg and kthanos already have two followers.
Since we now have retrieved the friends of three people (drchuck, opencontent,
and lhawthorn) our table has 55 rows of friends to retrieve.

Each time we run the program and press enter it will pick the next unvisited
account (e.g., the next account will be steve_coppin), retrieve their friends, mark
them as retrieved, and for each of the friends of steve_coppin either add them
to the end of the database or update their friend count if they are already in the
database.

Since the program’s data is all stored on disk in a database, the spidering activity
can be suspended and resumed as many times as you like with no loss of data.

15.7 Basic data modeling

The real power of a relational database is when we create multiple tables and make
links between those tables. The act of deciding how to break up your application
data into multiple tables and establishing the relationships between the tables
is called data modeling. The design document that shows the tables and their
relationships is called a data model.

Data modeling is a relatively sophisticated skill and we will only introduce the
most basic concepts of relational data modeling in this section. For more detail on
data modeling you can start with:

http://en.wikipedia.org/wiki/Relational_model

Let’s say for our Twitter spider application, instead of just counting a person’s
friends, we wanted to keep a list of all of the incoming relationships so we could
find a list of everyone who is following a particular account.

Since everyone will potentially have many accounts that follow them, we cannot
simply add a single column to our Twitter table. So we create a new table that
keeps track of pairs of friends. The following is a simple way of making such a
table:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person who drchuck is following, we would insert a row
of the form:

INSERT INTO Pals (from_friend,to_friend) VALUES ('drchuck', 'lhawthorn')

As we are processing the 20 friends from the drchuck Twitter feed, we will insert
20 records with “drchuck” as the first parameter so we will end up duplicating the
string many times in the database.

https://hemanthrajhemu.github.io

15.8. PROGRAMMING WITH MULTIPLE TABLES 197

This duplication of string data violates one of the best practices for database nor-
malization which basically states that we should never put the same string data
in the database more than once. If we need the data more than once, we create a
numeric key for the data and reference the actual data using this key.

In practical terms, a string takes up a lot more space than an integer on the disk
and in the memory of our computer, and takes more processor time to compare
and sort. If we only have a few hundred entries, the storage and processor time
hardly matters. But if we have a million people in our database and a possibility
of 100 million friend links, it is important to be able to scan data as quickly as
possible.

We will store our Twitter accounts in a table named People instead of the Twitter

table used in the previous example. The People table has an additional column
to store the numeric key associated with the row for this Twitter user. SQLite has
a feature that automatically adds the key value for any row we insert into a table
using a special type of data column (INTEGER PRIMARY KEY).

We can create the People table with this additional id column as follows:

CREATE TABLE People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)

Notice that we are no longer maintaining a friend count in each row of the People

table. When we select INTEGER PRIMARY KEY as the type of our id column, we are
indicating that we would like SQLite to manage this column and assign a unique
numeric key to each row we insert automatically. We also add the keyword UNIQUE

to indicate that we will not allow SQLite to insert two rows with the same value
for name.

Now instead of creating the table Pals above, we create a table called Follows

with two integer columns from_id and to_id and a constraint on the table that the
combination of from_id and to_id must be unique in this table (i.e., we cannot
insert duplicate rows) in our database.

CREATE TABLE Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

When we add UNIQUE clauses to our tables, we are communicating a set of rules
that we are asking the database to enforce when we attempt to insert records.
We are creating these rules as a convenience in our programs, as we will see in a
moment. The rules both keep us from making mistakes and make it simpler to
write some of our code.

In essence, in creating this Follows table, we are modelling a “relationship” where
one person “follows” someone else and representing it with a pair of numbers indi-
cating that (a) the people are connected and (b) the direction of the relationship.

15.8 Programming with multiple tables

We will now redo the Twitter spider program using two tables, the primary keys,
and the key references as described above. Here is the code for the new version of
the program:

https://hemanthrajhemu.github.io

198 CHAPTER 15. USING DATABASES AND SQL

People

name

drchuck

opencontent

 1

1

retrieved
Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

Figure 15.4: Relationships Between Tables

import urllib.request, urllib.parse, urllib.error

import twurl

import json

import sqlite3

import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

conn = sqlite3.connect('friends.sqlite')

cur = conn.cursor()

cur.execute('''CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)''')

cur.execute('''CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

Ignore SSL certificate errors

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

while True:

acct = input('Enter a Twitter account, or quit: ')

if (acct == 'quit'): break

if (len(acct) < 1):

cur.execute('SELECT id, name FROM People WHERE retrieved=0 LIMIT 1')

try:

(id, acct) = cur.fetchone()

https://hemanthrajhemu.github.io

15.8. PROGRAMMING WITH MULTIPLE TABLES 199

except:

print('No unretrieved Twitter accounts found')

continue

else:

cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(acct,))

try:

id = cur.fetchone()[0]

except:

cur.execute('''INSERT OR IGNORE INTO People

(name, retrieved) VALUES (?, 0)''', (acct,))

conn.commit()

if cur.rowcount != 1:

print('Error inserting account:', acct)

continue

id = cur.lastrowid

url = twurl.augment(TWITTER_URL, {'screen_name': acct, 'count': '100'})

print('Retrieving account', acct)

try:

connection = urllib.request.urlopen(url, context=ctx)

except Exception as err:

print('Failed to Retrieve', err)

break

data = connection.read().decode()

headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])

try:

js = json.loads(data)

except:

print('Unable to parse json')

print(data)

break

Debugging

print(json.dumps(js, indent=4))

if 'users' not in js:

print('Incorrect JSON received')

print(json.dumps(js, indent=4))

continue

cur.execute('UPDATE People SET retrieved=1 WHERE name = ?', (acct,))

countnew = 0

countold = 0

for u in js['users']:

friend = u['screen_name']

https://hemanthrajhemu.github.io

200 CHAPTER 15. USING DATABASES AND SQL

print(friend)

cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(friend,))

try:

friend_id = cur.fetchone()[0]

countold = countold + 1

except:

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0)''', (friend,))

conn.commit()

if cur.rowcount != 1:

print('Error inserting account:', friend)

continue

friend_id = cur.lastrowid

countnew = countnew + 1

cur.execute('''INSERT OR IGNORE INTO Follows (from_id, to_id)

VALUES (?, ?)''', (id, friend_id))

print('New accounts=', countnew, ' revisited=', countold)

print('Remaining', headers['x-rate-limit-remaining'])

conn.commit()

cur.close()

Code: http://www.py4e.com/code3/twfriends.py

This program is starting to get a bit complicated, but it illustrates the patterns
that we need to use when we are using integer keys to link tables. The basic
patterns are:

1. Create tables with primary keys and constraints.

2. When we have a logical key for a person (i.e., account name) and we need the
id value for the person, depending on whether or not the person is already
in the People table we either need to: (1) look up the person in the People

table and retrieve the id value for the person or (2) add the person to the
People table and get the id value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

15.8.1 Constraints in database tables

As we design our table structures, we can tell the database system that we would
like it to enforce a few rules on us. These rules help us from making mistakes and
introducing incorrect data into out tables. When we create our tables:

cur.execute('''CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)''')

cur.execute('''CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

https://hemanthrajhemu.github.io

15.8. PROGRAMMING WITH MULTIPLE TABLES 201

We indicate that the name column in the People table must be UNIQUE. We also
indicate that the combination of the two numbers in each row of the Follows table
must be unique. These constraints keep us from making mistakes such as adding
the same relationship more than once.

We can take advantage of these constraints in the following code:

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0)''', (friend,))

We add the OR IGNORE clause to our INSERT statement to indicate that if this
particular INSERT would cause a violation of the “name must be unique” rule, the
database system is allowed to ignore the INSERT. We are using the database con-
straint as a safety net to make sure we don’t inadvertently do something incorrect.

Similarly, the following code ensures that we don’t add the exact same Follows

relationship twice.

cur.execute('''INSERT OR IGNORE INTO Follows

(from_id, to_id) VALUES (?, ?)''', (id, friend_id))

Again, we simply tell the database to ignore our attempted INSERT if it would
violate the uniqueness constraint that we specified for the Follows rows.

15.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the account exists, we must
look up its id value. If the account does not yet exist in the People table, we must
insert the record and get the id value from the inserted row.

This is a very common pattern and is done twice in the program above. This code
shows how we look up the id for a friend’s account when we have extracted a
screen_name from a user node in the retrieved Twitter JSON.

Since over time it will be increasingly likely that the account will already be in
the database, we first check to see if the People record exists using a SELECT

statement.

If all goes well2 inside the try section, we retrieve the record using fetchone()

and then retrieve the first (and only) element of the returned tuple and store it in
friend_id.

If the SELECT fails, the fetchone()[0] code will fail and control will transfer into
the except section.

friend = u['screen_name']

cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(friend,))

try:

2In general, when a sentence starts with “if all goes well” you will find that the code needs to
use try/except.

https://hemanthrajhemu.github.io

202 CHAPTER 15. USING DATABASES AND SQL

friend_id = cur.fetchone()[0]

countold = countold + 1

except:

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0)''', (friend,))

conn.commit()

if cur.rowcount != 1 :

print('Error inserting account:',friend)

continue

friend_id = cur.lastrowid

countnew = countnew + 1

If we end up in the except code, it simply means that the row was not found, so
we must insert the row. We use INSERT OR IGNORE just to avoid errors and then
call commit() to force the database to really be updated. After the write is done,
we can check the cur.rowcount to see how many rows were affected. Since we are
attempting to insert a single row, if the number of affected rows is something other
than 1, it is an error.

If the INSERT is successful, we can look at cur.lastrowid to find out what value
the database assigned to the id column in our newly created row.

15.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and the friend in the JSON,
it is a simple matter to insert the two numbers into the Follows table with the
following code:

cur.execute('INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?)',

(id, friend_id))

Notice that we let the database take care of keeping us from “double-inserting” a
relationship by creating the table with a uniqueness constraint and then adding
OR IGNORE to our INSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:

No unretrieved Twitter accounts found

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 20 revisited= 0

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 17 revisited= 3

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...

New accounts= 17 revisited= 3

Enter a Twitter account, or quit: quit

https://hemanthrajhemu.github.io

15.9. THREE KINDS OF KEYS 203

We started with the drchuck account and then let the program automatically pick
the next two accounts to retrieve and add to our database.

The following is the first few rows in the People and Follows tables after this run
is completed:

People:

(1, 'drchuck', 1)

(2, 'opencontent', 1)

(3, 'lhawthorn', 1)

(4, 'steve_coppin', 0)

(5, 'davidkocher', 0)

55 rows.

Follows:

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

60 rows.

You can see the id, name, and visited fields in the People table and you see
the numbers of both ends of the relationship in the Follows table. In the People

table, we can see that the first three people have been visited and their data has
been retrieved. The data in the Follows table indicates that drchuck (user 1) is
a friend to all of the people shown in the first five rows. This makes sense because
the first data we retrieved and stored was the Twitter friends of drchuck. If you
were to print more rows from the Follows table, you would see the friends of users
2 and 3 as well.

15.9 Three kinds of keys

Now that we have started building a data model putting our data into multiple
linked tables and linking the rows in those tables using keys, we need to look at
some terminology around keys. There are generally three kinds of keys used in a
database model.

• A logical key is a key that the “real world” might use to look up a row. In
our example data model, the name field is a logical key. It is the screen name
for the user and we indeed look up a user’s row several times in the program
using the name field. You will often find that it makes sense to add a UNIQUE

constraint to a logical key. Since the logical key is how we look up a row
from the outside world, it makes little sense to allow multiple rows with the
same value in the table.

• A primary key is usually a number that is assigned automatically by the
database. It generally has no meaning outside the program and is only used
to link rows from different tables together. When we want to look up a row
in a table, usually searching for the row using the primary key is the fastest
way to find the row. Since primary keys are integer numbers, they take up
very little storage and can be compared or sorted very quickly. In our data
model, the id field is an example of a primary key.

https://hemanthrajhemu.github.io

204 CHAPTER 15. USING DATABASES AND SQL

• A foreign key is usually a number that points to the primary key of an
associated row in a different table. An example of a foreign key in our data
model is the from_id.

We are using a naming convention of always calling the primary key field name id

and appending the suffix _id to any field name that is a foreign key.

15.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalization and have data
separated into two tables, linked together using primary and foreign keys, we need
to be able to build a SELECT that reassembles the data across the tables.

SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you specify
the fields that are used to reconnect the rows between the tables.

The following is an example of a SELECT with a JOIN clause:

SELECT * FROM Follows JOIN People

ON Follows.from_id = People.id WHERE People.id = 1

The JOIN clause indicates that the fields we are selecting cross both the Follows

and People tables. The ON clause indicates how the two tables are to be joined:
Take the rows from Follows and append the row from People where the field
from_id in Follows is the same the id value in the People table.

People

name

drchuck

opencontent

 1

1

retrieved

Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

name

drchuck opencontent

id

1 2

3

4

lhawthorn

steve_coppin

drchuck 1

drchuck 1

to_id namefrom_id

1

1

1

Figure 15.5: Connecting Tables Using JOIN

https://hemanthrajhemu.github.io

15.10. USING JOIN TO RETRIEVE DATA 205

The result of the JOIN is to create extra-long “metarows” which have both the
fields from People and the matching fields from Follows. Where there is more
than one match between the id field from People and the from_id from People,
then JOIN creates a metarow for each of the matching pairs of rows, duplicating
data as needed.

The following code demonstrates the data that we will have in the database after
the multi-table Twitter spider program (above) has been run several times.

import sqlite3

conn = sqlite3.connect('friends.sqlite')

cur = conn.cursor()

cur.execute('SELECT * FROM People')

count = 0

print('People:')

for row in cur:

if count < 5: print(row)

count = count + 1

print(count, 'rows.')

cur.execute('SELECT * FROM Follows')

count = 0

print('Follows:')

for row in cur:

if count < 5: print(row)

count = count + 1

print(count, 'rows.')

cur.execute('''SELECT * FROM Follows JOIN People

ON Follows.to_id = People.id

WHERE Follows.from_id = 2''')

count = 0

print('Connections for id=2:')

for row in cur:

if count < 5: print(row)

count = count + 1

print(count, 'rows.')

cur.close()

Code: http://www.py4e.com/code3/twjoin.py

In this program, we first dump out the People and Follows and then dump out
a subset of the data in the tables joined together.

Here is the output of the program:

python twjoin.py

People:

https://hemanthrajhemu.github.io

206 CHAPTER 15. USING DATABASES AND SQL

(1, 'drchuck', 1)

(2, 'opencontent', 1)

(3, 'lhawthorn', 1)

(4, 'steve_coppin', 0)

(5, 'davidkocher', 0)

55 rows.

Follows:

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

60 rows.

Connections for id=2:

(2, 1, 1, 'drchuck', 1)

(2, 28, 28, 'cnxorg', 0)

(2, 30, 30, 'kthanos', 0)

(2, 102, 102, 'SomethingGirl', 0)

(2, 103, 103, 'ja_Pac', 0)

20 rows.

You see the columns from the People and Follows tables and the last set of rows
is the result of the SELECT with the JOIN clause.

In the last select, we are looking for accounts that are friends of “opencontent”
(i.e., People.id=2).

In each of the “metarows” in the last select, the first two columns are from the
Follows table followed by columns three through five from the People table. You
can also see that the second column (Follows.to_id) matches the third column
(People.id) in each of the joined-up “metarows”.

15.11 Summary

This chapter has covered a lot of ground to give you an overview of the basics of
using a database in Python. It is more complicated to write the code to use a
database to store data than Python dictionaries or flat files so there is little reason
to use a database unless your application truly needs the capabilities of a database.
The situations where a database can be quite useful are: (1) when your application
needs to make small many random updates within a large data set, (2) when your
data is so large it cannot fit in a dictionary and you need to look up information
repeatedly, or (3) when you have a long-running process that you want to be able
to stop and restart and retain the data from one run to the next.

You can build a simple database with a single table to suit many application needs,
but most problems will require several tables and links/relationships between rows
in different tables. When you start making links between tables, it is important to
do some thoughtful design and follow the rules of database normalization to make
the best use of the database’s capabilities. Since the primary motivation for using
a database is that you have a large amount of data to deal with, it is important to
model your data efficiently so your programs run as fast as possible.

https://hemanthrajhemu.github.io

15.12. DEBUGGING 207

15.12 Debugging

One common pattern when you are developing a Python program to connect to
an SQLite database will be to run a Python program and check the results using
the Database Browser for SQLite. The browser allows you to quickly check to see
if your program is working properly.

You must be careful because SQLite takes care to keep two programs from changing
the same data at the same time. For example, if you open a database in the browser
and make a change to the database and have not yet pressed the “save” button
in the browser, the browser “locks” the database file and keeps any other program
from accessing the file. In particular, your Python program will not be able to
access the file if it is locked.

So a solution is to make sure to either close the database browser or use the
File menu to close the database in the browser before you attempt to access the
database from Python to avoid the problem of your Python code failing because
the database is locked.

15.13 Glossary

attribute One of the values within a tuple. More commonly called a “column” or
“field”.

constraint When we tell the database to enforce a rule on a field or a row in a
table. A common constraint is to insist that there can be no duplicate values
in a particular field (i.e., all the values must be unique).

cursor A cursor allows you to execute SQL commands in a database and retrieve
data from the database. A cursor is similar to a socket or file handle for
network connections and files, respectively.

database browser A piece of software that allows you to directly connect to a
database and manipulate the database directly without writing a program.

foreign key A numeric key that points to the primary key of a row in another
table. Foreign keys establish relationships between rows stored in different
tables.

index Additional data that the database software maintains as rows and inserts
into a table to make lookups very fast.

logical key A key that the “outside world” uses to look up a particular row. For
example in a table of user accounts, a person’s email address might be a good
candidate as the logical key for the user’s data.

normalization Designing a data model so that no data is replicated. We store
each item of data at one place in the database and reference it elsewhere
using a foreign key.

primary key A numeric key assigned to each row that is used to refer to one row
in a table from another table. Often the database is configured to automati-
cally assign primary keys as rows are inserted.

relation An area within a database that contains tuples and attributes. More
typically called a “table”.

tuple A single entry in a database table that is a set of attributes. More typically
called “row”.

https://hemanthrajhemu.github.io

208 CHAPTER 15. USING DATABASES AND SQL

https://hemanthrajhemu.github.io

Chapter 16

Visualizing data

So far we have been learning the Python language and then learning how to use
Python, the network, and databases to manipulate data.

In this chapter, we take a look at three complete applications that bring all of these
things together to manage and visualize data. You might use these applications as
sample code to help get you started in solving a real-world problem.

Each of the applications is a ZIP file that you can download and extract onto your
computer and execute.

16.1 Building a Google map from geocoded data

In this project, we are using the Google geocoding API to clean up some user-
entered geographic locations of university names and then placing the data on a
Google map.

To get started, download the application from:

www.py4e.com/code3/geodata.zip

The first problem to solve is that the free Google geocoding API is rate-limited to
a certain number of requests per day. If you have a lot of data, you might need to
stop and restart the lookup process several times. So we break the problem into
two phases.

In the first phase we take our input “survey” data in the file where.data and read it
one line at a time, and retrieve the geocoded information from Google and store it
in a database geodata.sqlite. Before we use the geocoding API for each user-entered
location, we simply check to see if we already have the data for that particular line
of input. The database is functioning as a local “cache” of our geocoding data to
make sure we never ask Google for the same data twice.

You can restart the process at any time by removing the file geodata.sqlite.

Run the geoload.py program. This program will read the input lines in where.data
and for each line check to see if it is already in the database. If we don’t have the

209https://hemanthrajhemu.github.io

210 CHAPTER 16. VISUALIZING DATA

Figure 16.1: A Google Map

data for the location, it will call the geocoding API to retrieve the data and store
it in the database.

Here is a sample run after there is already some data in the database:

Found in database Northeastern University

Found in database University of Hong Kong, ...

Found in database Technion

Found in database Viswakarma Institute, Pune, India

Found in database UMD

Found in database Tufts University

Resolving Monash University

Retrieving http://maps.googleapis.com/maps/api/

geocode/json?address=Monash+University

Retrieved 2063 characters { "results" : [

{'status': 'OK', 'results': ... }

Resolving Kokshetau Institute of Economics and Management

Retrieving http://maps.googleapis.com/maps/api/

geocode/json?address=Kokshetau+Inst ...

Retrieved 1749 characters { "results" : [

{'status': 'OK', 'results': ... }

...

The first five locations are already in the database and so they are skipped. The
program scans to the point where it finds new locations and starts retrieving them.

https://hemanthrajhemu.github.io

16.2. VISUALIZING NETWORKS AND INTERCONNECTIONS 211

The geoload.py program can be stopped at any time, and there is a counter that
you can use to limit the number of calls to the geocoding API for each run. Given
that the where.data only has a few hundred data items, you should not run into the
daily rate limit, but if you had more data it might take several runs over several
days to get your database to have all of the geocoded data for your input.

Once you have some data loaded into geodata.sqlite, you can visualize the data
using the geodump.py program. This program reads the database and writes the
file where.js with the location, latitude, and longitude in the form of executable
JavaScript code.

A run of the geodump.py program is as follows:

Northeastern University, ... Boston, MA 02115, USA 42.3396998 -71.08975

Bradley University, 1501 ... Peoria, IL 61625, USA 40.6963857 -89.6160811

...

Technion, Viazman 87, Kesalsaba, 32000, Israel 32.7775 35.0216667

Monash University Clayton ... VIC 3800, Australia -37.9152113 145.134682

Kokshetau, Kazakhstan 53.2833333 69.3833333

...

12 records written to where.js

Open where.html to view the data in a browser

The file where.html consists of HTML and JavaScript to visualize a Google map.
It reads the most recent data in where.js to get the data to be visualized. Here is
the format of the where.js file:

myData = [

[42.3396998,-71.08975, 'Northeastern Uni ... Boston, MA 02115'],

[40.6963857,-89.6160811, 'Bradley University, ... Peoria, IL 61625, USA'],

[32.7775,35.0216667, 'Technion, Viazman 87, Kesalsaba, 32000, Israel'],

...

];

This is a JavaScript variable that contains a list of lists. The syntax for JavaScript
list constants is very similar to Python, so the syntax should be familiar to you.

Simply open where.html in a browser to see the locations. You can hover over each
map pin to find the location that the geocoding API returned for the user-entered
input. If you cannot see any data when you open the where.html file, you might
want to check the JavaScript or developer console for your browser.

16.2 Visualizing networks and interconnections

In this application, we will perform some of the functions of a search engine. We
will first spider a small subset of the web and run a simplified version of the
Google page rank algorithm to determine which pages are most highly connected,
and then visualize the page rank and connectivity of our small corner of the web.
We will use the D3 JavaScript visualization library http://d3js.org/ to produce the
visualization output.

You can download and extract this application from:

https://hemanthrajhemu.github.io

212 CHAPTER 16. VISUALIZING DATA

Figure 16.2: A Page Ranking

www.py4e.com/code3/pagerank.zip

The first program (spider.py) program crawls a web site and pulls a series of pages
into the database (spider.sqlite), recording the links between pages. You can restart
the process at any time by removing the spider.sqlite file and rerunning spider.py.

Enter web url or enter: http://www.dr-chuck.com/

['http://www.dr-chuck.com']

How many pages:2

1 http://www.dr-chuck.com/ 12

2 http://www.dr-chuck.com/csev-blog/ 57

How many pages:

In this sample run, we told it to crawl a website and retrieve two pages. If you
restart the program and tell it to crawl more pages, it will not re-crawl any pages
already in the database. Upon restart it goes to a random non-crawled page and
starts there. So each successive run of spider.py is additive.

Enter web url or enter: http://www.dr-chuck.com/

['http://www.dr-chuck.com']

How many pages:3

3 http://www.dr-chuck.com/csev-blog 57

4 http://www.dr-chuck.com/dr-chuck/resume/speaking.htm 1

5 http://www.dr-chuck.com/dr-chuck/resume/index.htm 13

How many pages:

You can have multiple starting points in the same database—within the program,

https://hemanthrajhemu.github.io

16.2. VISUALIZING NETWORKS AND INTERCONNECTIONS 213

these are called “webs”. The spider chooses randomly amongst all non-visited links
across all the webs as the next page to spider.

If you want to dump the contents of the spider.sqlite file, you can run spdump.py
as follows:

(5, None, 1.0, 3, 'http://www.dr-chuck.com/csev-blog')

(3, None, 1.0, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')

(1, None, 1.0, 2, 'http://www.dr-chuck.com/csev-blog/')

(1, None, 1.0, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4 rows.

This shows the number of incoming links, the old page rank, the new page rank,
the id of the page, and the url of the page. The spdump.py program only shows
pages that have at least one incoming link to them.

Once you have a few pages in the database, you can run page rank on the pages
using the sprank.py program. You simply tell it how many page rank iterations to
run.

How many iterations:2

1 0.546848992536

2 0.226714939664

[(1, 0.559), (2, 0.659), (3, 0.985), (4, 2.135), (5, 0.659)]

You can dump the database again to see that page rank has been updated:

(5, 1.0, 0.985, 3, 'http://www.dr-chuck.com/csev-blog')

(3, 1.0, 2.135, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')

(1, 1.0, 0.659, 2, 'http://www.dr-chuck.com/csev-blog/')

(1, 1.0, 0.659, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4 rows.

You can run sprank.py as many times as you like and it will simply refine the page
rank each time you run it. You can even run sprank.py a few times and then go
spider a few more pages with spider.py and then run sprank.py to reconverge the
page rank values. A search engine usually runs both the crawling and ranking
programs all the time.

If you want to restart the page rank calculations without respidering the web pages,
you can use spreset.py and then restart sprank.py.

How many iterations:50

1 0.546848992536

2 0.226714939664

3 0.0659516187242

4 0.0244199333

5 0.0102096489546

6 0.00610244329379

...

42 0.000109076928206

43 9.91987599002e-05

https://hemanthrajhemu.github.io

214 CHAPTER 16. VISUALIZING DATA

44 9.02151706798e-05

45 8.20451504471e-05

46 7.46150183837e-05

47 6.7857770908e-05

48 6.17124694224e-05

49 5.61236959327e-05

50 5.10410499467e-05

[(512, 0.0296), (1, 12.79), (2, 28.93), (3, 6.808), (4, 13.46)]

For each iteration of the page rank algorithm it prints the average change in page
rank per page. The network initially is quite unbalanced and so the individual
page rank values change wildly between iterations. But in a few short iterations,
the page rank converges. You should run sprank.py long enough that the page
rank values converge.

If you want to visualize the current top pages in terms of page rank, run spjson.py
to read the database and write the data for the most highly linked pages in JSON
format to be viewed in a web browser.

Creating JSON output on spider.json...

How many nodes? 30

Open force.html in a browser to view the visualization

You can view this data by opening the file force.html in your web browser. This
shows an automatic layout of the nodes and links. You can click and drag any
node and you can also double-click on a node to find the URL that is represented
by the node.

If you rerun the other utilities, rerun spjson.py and press refresh in the browser to
get the new data from spider.json.

16.3 Visualizing mail data

Up to this point in the book, you have become quite familiar with our mbox-
short.txt and mbox.txt data files. Now it is time to take our analysis of email data
to the next level.

In the real world, sometimes you have to pull down mail data from servers. That
might take quite some time and the data might be inconsistent, error-filled, and
need a lot of cleanup or adjustment. In this section, we work with an application
that is the most complex so far and pull down nearly a gigabyte of data and
visualize it.

You can download this application from:

www.py4e.com/code3/gmane.zip

We will be using data from a free email list archiving service called www.gmane.org.
This service is very popular with open source projects because it provides a nice
searchable archive of their email activity. They also have a very liberal policy
regarding accessing their data through their API. They have no rate limits, but
ask that you don’t overload their service and take only the data you need. You
can read gmane’s terms and conditions at this page:

https://hemanthrajhemu.github.io

16.3. VISUALIZING MAIL DATA 215

Figure 16.3: A Word Cloud from the Sakai Developer List

http://gmane.org/export.php

It is very important that you make use of the gmane.org data responsibly by adding
delays to your access of their services and spreading long-running jobs over a longer
period of time. Do not abuse this free service and ruin it for the rest of us.

When the Sakai email data was spidered using this software, it produced nearly a
Gigabyte of data and took a number of runs on several days. The file README.txt
in the above ZIP may have instructions as to how you can download a pre-spidered
copy of the content.sqlite file for a majority of the Sakai email corpus so you don’t
have to spider for five days just to run the programs. If you download the pre-
spidered content, you should still run the spidering process to catch up with more
recent messages.

The first step is to spider the gmane repository. The base URL is hard-coded in the
gmane.py and is hard-coded to the Sakai developer list. You can spider another
repository by changing that base url. Make sure to delete the content.sqlite file if
you switch the base url.

The gmane.py file operates as a responsible caching spider in that it runs slowly and
retrieves one mail message per second so as to avoid getting throttled by gmane.
It stores all of its data in a database and can be interrupted and restarted as often
as needed. It may take many hours to pull all the data down. So you may need to
restart several times.

Here is a run of gmane.py retrieving the last five messages of the Sakai developer
list:

How many messages:10

https://hemanthrajhemu.github.io

216 CHAPTER 16. VISUALIZING DATA

http://download.gmane.org/gmane.comp.cms.sakai.devel/51410/51411 9460

nealcaidin@sakaifoundation.org 2013-04-05 re: [building ...

http://download.gmane.org/gmane.comp.cms.sakai.devel/51411/51412 3379

samuelgutierrezjimenez@gmail.com 2013-04-06 re: [building ...

http://download.gmane.org/gmane.comp.cms.sakai.devel/51412/51413 9903

da1@vt.edu 2013-04-05 [building sakai] melete 2.9 oracle ...

http://download.gmane.org/gmane.comp.cms.sakai.devel/51413/51414 349265

m.shedid@elraed-it.com 2013-04-07 [building sakai] ...

http://download.gmane.org/gmane.comp.cms.sakai.devel/51414/51415 3481

samuelgutierrezjimenez@gmail.com 2013-04-07 re: ...

http://download.gmane.org/gmane.comp.cms.sakai.devel/51415/51416 0

Does not start with From

The program scans content.sqlite from one up to the first message number not
already spidered and starts spidering at that message. It continues spidering until
it has spidered the desired number of messages or it reaches a page that does not
appear to be a properly formatted message.

Sometimes gmane.org is missing a message. Perhaps administrators can delete
messages or perhaps they get lost. If your spider stops, and it seems it has hit
a missing message, go into the SQLite Manager and add a row with the missing
id leaving all the other fields blank and restart gmane.py. This will unstick the
spidering process and allow it to continue. These empty messages will be ignored
in the next phase of the process.

One nice thing is that once you have spidered all of the messages and have them
in content.sqlite, you can run gmane.py again to get new messages as they are sent
to the list.

The content.sqlite data is pretty raw, with an inefficient data model, and not
compressed. This is intentional as it allows you to look at content.sqlite in the
SQLite Manager to debug problems with the spidering process. It would be a bad
idea to run any queries against this database, as they would be quite slow.

The second process is to run the program gmodel.py. This program reads the raw
data from content.sqlite and produces a cleaned-up and well-modeled version of
the data in the file index.sqlite. This file will be much smaller (often 10X smaller)
than content.sqlite because it also compresses the header and body text.

Each time gmodel.py runs it deletes and rebuilds index.sqlite, allowing you to adjust
its parameters and edit the mapping tables in content.sqlite to tweak the data
cleaning process. This is a sample run of gmodel.py. It prints a line out each time
250 mail messages are processed so you can see some progress happening, as this
program may run for a while processing nearly a Gigabyte of mail data.

Loaded allsenders 1588 and mapping 28 dns mapping 1

1 2005-12-08T23:34:30-06:00 ggolden22@mac.com

251 2005-12-22T10:03:20-08:00 tpamsler@ucdavis.edu

501 2006-01-12T11:17:34-05:00 lance@indiana.edu

751 2006-01-24T11:13:28-08:00 vrajgopalan@ucmerced.edu

...

The gmodel.py program handles a number of data cleaning tasks.

https://hemanthrajhemu.github.io

16.3. VISUALIZING MAIL DATA 217

Domain names are truncated to two levels for .com, .org, .edu, and .net. Other
domain names are truncated to three levels. So si.umich.edu becomes umich.edu
and caret.cam.ac.uk becomes cam.ac.uk. Email addresses are also forced to lower
case, and some of the @gmane.org address like the following

arwhyte-63aXycvo3TyHXe+LvDLADg@public.gmane.org

are converted to the real address whenever there is a matching real email address
elsewhere in the message corpus.

In the mapping.sqlite database there are two tables that allow you to map both
domain names and individual email addresses that change over the lifetime of the
email list. For example, Steve Githens used the following email addresses as he
changed jobs over the life of the Sakai developer list:

s-githens@northwestern.edu

sgithens@cam.ac.uk

swgithen@mtu.edu

We can add two entries to the Mapping table in mapping.sqlite so gmodel.py will
map all three to one address:

s-githens@northwestern.edu -> swgithen@mtu.edu

sgithens@cam.ac.uk -> swgithen@mtu.edu

You can also make similar entries in the DNSMapping table if there are multiple
DNS names you want mapped to a single DNS. The following mapping was added
to the Sakai data:

iupui.edu -> indiana.edu

so all the accounts from the various Indiana University campuses are tracked to-
gether.

You can rerun the gmodel.py over and over as you look at the data, and add
mappings to make the data cleaner and cleaner. When you are done, you will have
a nicely indexed version of the email in index.sqlite. This is the file to use to do
data analysis. With this file, data analysis will be really quick.

The first, simplest data analysis is to determine “who sent the most mail?” and
“which organization sent the most mail”? This is done using gbasic.py:

How many to dump? 5

Loaded messages= 51330 subjects= 25033 senders= 1584

Top 5 Email list participants

steve.swinsburg@gmail.com 2657

azeckoski@unicon.net 1742

ieb@tfd.co.uk 1591

csev@umich.edu 1304

david.horwitz@uct.ac.za 1184

https://hemanthrajhemu.github.io

218 CHAPTER 16. VISUALIZING DATA

Top 5 Email list organizations

gmail.com 7339

umich.edu 6243

uct.ac.za 2451

indiana.edu 2258

unicon.net 2055

Note how much more quickly gbasic.py runs compared to gmane.py or even
gmodel.py. They are all working on the same data, but gbasic.py is using the
compressed and normalized data in index.sqlite. If you have a lot of data to
manage, a multistep process like the one in this application may take a little
longer to develop, but will save you a lot of time when you really start to explore
and visualize your data.

You can produce a simple visualization of the word frequency in the subject lines
in the file gword.py:

Range of counts: 33229 129

Output written to gword.js

This produces the file gword.js which you can visualize using gword.htm to produce
a word cloud similar to the one at the beginning of this section.

A second visualization is produced by gline.py. It computes email participation by
organizations over time.

Loaded messages= 51330 subjects= 25033 senders= 1584

Top 10 Oranizations

['gmail.com', 'umich.edu', 'uct.ac.za', 'indiana.edu',

'unicon.net', 'tfd.co.uk', 'berkeley.edu', 'longsight.com',

'stanford.edu', 'ox.ac.uk']

Output written to gline.js

Its output is written to gline.js which is visualized using gline.htm.

This is a relatively complex and sophisticated application and has features to do
some real data retrieval, cleaning, and visualization.

https://hemanthrajhemu.github.io

