

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Contents

Preface v

1 The way of the program 1

1.1 What is a program? . 1

1.2 Running Python . 2

1.3 The first program . 3

1.4 Arithmetic operators . 3

1.5 Values and types . 4

1.6 Formal and natural languages . 4

1.7 Debugging . 6

1.8 Glossary . 6

1.9 Exercises . 7

2 Variables, expressions and statements 9

2.1 Assignment statements . 9

2.2 Variable names . 9

2.3 Expressions and statements . 10

2.4 Script mode . 11

2.5 Order of operations . 11

2.6 String operations . 12

2.7 Comments . 12

2.8 Debugging . 13

2.9 Glossary . 14

2.10 Exercises . 14

https://hemanthrajhemu.github.io

xiv Contents

3 Functions 17

3.1 Function calls . 17

3.2 Math functions . 18

3.3 Composition . 19

3.4 Adding new functions . 19

3.5 Definitions and uses . 20

3.6 Flow of execution . 21

3.7 Parameters and arguments . 21

3.8 Variables and parameters are local . 22

3.9 Stack diagrams . 23

3.10 Fruitful functions and void functions . 24

3.11 Why functions? . 24

3.12 Debugging . 25

3.13 Glossary . 25

3.14 Exercises . 26

4 Case study: interface design 29

4.1 The turtle module . 29

4.2 Simple repetition . 30

4.3 Exercises . 31

4.4 Encapsulation . 32

4.5 Generalization . 32

4.6 Interface design . 33

4.7 Refactoring . 34

4.8 A development plan . 35

4.9 docstring . 35

4.10 Debugging . 36

4.11 Glossary . 36

4.12 Exercises . 37

https://hemanthrajhemu.github.io

Contents xv

5 Conditionals and recursion 39

5.1 Floor division and modulus . 39

5.2 Boolean expressions . 40

5.3 Logical operators . 40

5.4 Conditional execution . 41

5.5 Alternative execution . 41

5.6 Chained conditionals . 41

5.7 Nested conditionals . 42

5.8 Recursion . 43

5.9 Stack diagrams for recursive functions . 44

5.10 Infinite recursion . 44

5.11 Keyboard input . 45

5.12 Debugging . 46

5.13 Glossary . 47

5.14 Exercises . 47

6 Fruitful functions 51

6.1 Return values . 51

6.2 Incremental development . 52

6.3 Composition . 54

6.4 Boolean functions . 54

6.5 More recursion . 55

6.6 Leap of faith . 57

6.7 One more example . 57

6.8 Checking types . 58

6.9 Debugging . 59

6.10 Glossary . 60

6.11 Exercises . 60

https://hemanthrajhemu.github.io

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of think-
ing combines some of the best features of mathematics, engineering, and natural science.
Like mathematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components into sys-
tems and evaluating tradeoffs among alternatives. Like scientists, they observe the behav-
ior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem solv-
ing means the ability to formulate problems, think creatively about solutions, and express
a solution clearly and accurately. As it turns out, the process of learning to program is an
excellent opportunity to practice problem-solving skills. That’s why this chapter is called,
“The way of the program”.

On one level, you will be learning to program, a useful skill by itself. On another level, you
will use programming as a means to an end. As we go along, that end will become clearer.

1.1 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or
finding the roots of a polynomial, but it can also be a symbolic computation, such as search-
ing and replacing text in a document or something graphical, like processing an image or
playing a video.

The details look different in different languages, but a few basic instructions appear in just
about every language:

input: Get data from the keyboard, a file, the network, or some other device.

output: Display data on the screen, save it in a file, send it over the network, etc.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and run the appropriate code.

https://hemanthrajhemu.github.io

2 Chapter 1. The way of the program

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of instructions that look pretty much like these.
So you can think of programming as the process of breaking a large, complex task into
smaller and smaller subtasks until the subtasks are simple enough to be performed with
one of these basic instructions.

1.2 Running Python

One of the challenges of getting started with Python is that you might have to install
Python and related software on your computer. If you are familiar with your operating
system, and especially if you are comfortable with the command-line interface, you will
have no trouble installing Python. But for beginners, it can be painful to learn about sys-
tem administration and programming at the same time.

To avoid that problem, I recommend that you start out running Python in a browser. Later,
when you are comfortable with Python, I’ll make suggestions for installing Python on your
computer.

There are a number of web pages you can use to run Python. If you already have a fa-
vorite, go ahead and use it. Otherwise I recommend PythonAnywhere. I provide detailed
instructions for getting started at http://tinyurl.com/thinkpython2e.

There are two versions of Python, called Python 2 and Python 3. They are very similar, so
if you learn one, it is easy to switch to the other. In fact, there are only a few differences you
will encounter as a beginner. This book is written for Python 3, but I include some notes
about Python 2.

The Python interpreter is a program that reads and executes Python code. Depending
on your environment, you might start the interpreter by clicking on an icon, or by typing
python on a command line. When it starts, you should see output like this:

Python 3.4.0 (default, Jun 19 2015, 14:20:21)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The first three lines contain information about the interpreter and the operating system it’s
running on, so it might be different for you. But you should check that the version number,
which is 3.4.0 in this example, begins with 3, which indicates that you are running Python
3. If it begins with 2, you are running (you guessed it) Python 2.

The last line is a prompt that indicates that the interpreter is ready for you to enter code. If
you type a line of code and hit Enter, the interpreter displays the result:

>>> 1 + 1

2

Now you’re ready to get started. From here on, I assume that you know how to start the
Python interpreter and run code.

https://hemanthrajhemu.github.io

1.3. The first program 3

1.3 The first program

Traditionally, the first program you write in a new language is called “Hello, World!” be-
cause all it does is display the words “Hello, World!”. In Python, it looks like this:

>>> print('Hello, World!')

This is an example of a print statement, although it doesn’t actually print anything on
paper. It displays a result on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and end of the text to be dis-
played; they don’t appear in the result.

The parentheses indicate that print is a function. We’ll get to functions in Chapter 3.

In Python 2, the print statement is slightly different; it is not a function, so it doesn’t use
parentheses.

>>> print 'Hello, World!'

This distinction will make more sense soon, but that’s enough to get started.

1.4 Arithmetic operators

After “Hello, World”, the next step is arithmetic. Python provides operators, which are
special symbols that represent computations like addition and multiplication.

The operators +, -, and * perform addition, subtraction, and multiplication, as in the fol-
lowing examples:

>>> 40 + 2

42

>>> 43 - 1

42

>>> 6 * 7

42

The operator / performs division:

>>> 84 / 2

42.0

You might wonder why the result is 42.0 instead of 42. I’ll explain in the next section.

Finally, the operator ** performs exponentiation; that is, it raises a number to a power:

>>> 6**2 + 6

42

In some other languages, ^ is used for exponentiation, but in Python it is a bitwise operator
called XOR. If you are not familiar with bitwise operators, the result will surprise you:

>>> 6 ^ 2

4

I won’t cover bitwise operators in this book, but you can read about them at http://wiki.
python.org/moin/BitwiseOperators.

https://hemanthrajhemu.github.io

4 Chapter 1. The way of the program

1.5 Values and types

A value is one of the basic things a program works with, like a letter or a number. Some
values we have seen so far are 2, 42.0, and 'Hello, World!'.

These values belong to different types: 2 is an integer, 42.0 is a floating-point number, and
'Hello, World!' is a string, so-called because the letters it contains are strung together.

If you are not sure what type a value has, the interpreter can tell you:

>>> type(2)

<class 'int'>

>>> type(42.0)

<class 'float'>

>>> type('Hello, World!')

<class 'str'>

In these results, the word “class” is used in the sense of a category; a type is a category of
values.

Not surprisingly, integers belong to the type int, strings belong to str and floating-point
numbers belong to float.

What about values like '2' and '42.0'? They look like numbers, but they are in quotation
marks like strings.

>>> type('2')

<class 'str'>

>>> type('42.0')

<class 'str'>

They’re strings.

When you type a large integer, you might be tempted to use commas between groups of
digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> 1,000,000

(1, 0, 0)

That’s not what we expected at all! Python interprets 1,000,000 as a comma-separated
sequence of integers. We’ll learn more about this kind of sequence later.

1.6 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them);
they evolved naturally.

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly
good at denoting relationships among numbers and symbols. Chemists use a formal lan-
guage to represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to
express computations.

https://hemanthrajhemu.github.io

1.6. Formal and natural languages 5

Formal languages tend to have strict syntax rules that govern the structure of statements.
For example, in mathematics the statement 3 + 3 = 6 has correct syntax, but 3+ = 3$6
does not. In chemistry H2O is a syntactically correct formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the
problems with 3+ = 3$6 is that $ is not a legal token in mathematics (at least as far as I
know). Similarly, 2Zz is not legal because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the way tokens are combined. The equation
3 + /3 is illegal because even though + and / are legal tokens, you can’t have one right
after the other. Similarly, in a chemical formula the subscript comes after the element name,
not before.

This is @ well-structured Engli$h sentence with invalid t*kens in it. This sentence all valid
tokens has, but invalid structure with.

When you read a sentence in English or a statement in a formal language, you have to
figure out the structure (although in a natural language you do this subconsciously). This
process is called parsing.

Although formal and natural languages have many features in common—tokens, struc-
ture, and syntax—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using con-
textual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any statement has exactly one meaning,
regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural
languages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny
dropped”, there is probably no penny and nothing dropping (this idiom means that
someone understood something after a period of confusion). Formal languages mean
exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to adjust to for-
mal languages. The difference between formal and natural language is like the difference
between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole poem
together creates an effect or emotional response. Ambiguity is not only common but
often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes more
meaning. Prose is more amenable to analysis than poetry but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can be
understood entirely by analysis of the tokens and structure.

https://hemanthrajhemu.github.io

6 Chapter 1. The way of the program

Formal languages are more dense than natural languages, so it takes longer to read them.
Also, the structure is important, so it is not always best to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and inter-
preting the structure. Finally, the details matter. Small errors in spelling and punctuation,
which you can get away with in natural languages, can make a big difference in a formal
language.

1.7 Debugging

Programmers make mistakes. For whimsical reasons, programming errors are called bugs
and the process of tracking them down is called debugging.

Programming, and especially debugging, sometimes brings out strong emotions. If you
are struggling with a difficult bug, you might feel angry, despondent, or embarrassed.

There is evidence that people naturally respond to computers as if they were people. When
they work well, we think of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude, obstinate people (Reeves and Nass,
The Media Equation: How People Treat Computers, Television, and New Media Like Real People
and Places).

Preparing for these reactions might help you deal with them. One approach is to think of
the computer as an employee with certain strengths, like speed and precision, and partic-
ular weaknesses, like lack of empathy and inability to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate
the weaknesses. And find ways to use your emotions to engage with the problem, without
letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activ-
ities beyond programming. At the end of each chapter there is a section, like this one, with
my suggestions for debugging. I hope they help!

1.8 Glossary
problem solving: The process of formulating a problem, finding a solution, and express-

ing it.

high-level language: A programming language like Python that is designed to be easy for
humans to read and write.

low-level language: A programming language that is designed to be easy for a computer
to run; also called “machine language” or “assembly language”.

portability: A property of a program that can run on more than one kind of computer.

interpreter: A program that reads another program and executes it

prompt: Characters displayed by the interpreter to indicate that it is ready to take input
from the user.

program: A set of instructions that specifies a computation.

https://hemanthrajhemu.github.io

1.9. Exercises 7

print statement: An instruction that causes the Python interpreter to display a value on
the screen.

operator: A special symbol that represents a simple computation like addition, multipli-
cation, or string concatenation.

value: One of the basic units of data, like a number or string, that a program manipulates.

type: A category of values. The types we have seen so far are integers (type int), floating-
point numbers (type float), and strings (type str).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.

string: A type that represents sequences of characters.

natural language: Any one of the languages that people speak that evolved naturally.

formal language: Any one of the languages that people have designed for specific pur-
poses, such as representing mathematical ideas or computer programs; all program-
ming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, analogous to a
word in a natural language.

syntax: The rules that govern the structure of a program.

parse: To examine a program and analyze the syntactic structure.

bug: An error in a program.

debugging: The process of finding and correcting bugs.

1.9 Exercises

Exercise 1.1. It is a good idea to read this book in front of a computer so you can try out the
examples as you go.

Whenever you are experimenting with a new feature, you should try to make mistakes. For example,
in the “Hello, world!” program, what happens if you leave out one of the quotation marks? What if
you leave out both? What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps when you are programming,
because you get to know what the error messages mean. It is better to make mistakes now and on
purpose than later and accidentally.

1. In a print statement, what happens if you leave out one of the parentheses, or both?

2. If you are trying to print a string, what happens if you leave out one of the quotation marks,
or both?

3. You can use a minus sign to make a negative number like -2. What happens if you put a plus
sign before a number? What about 2++2?

https://hemanthrajhemu.github.io

8 Chapter 1. The way of the program

4. In math notation, leading zeros are ok, as in 09. What happens if you try this in Python?
What about 011?

5. What happens if you have two values with no operator between them?

Exercise 1.2. Start the Python interpreter and use it as a calculator.

1. How many seconds are there in 42 minutes 42 seconds?

2. How many miles are there in 10 kilometers? Hint: there are 1.61 kilometers in a mile.

3. If you run a 10 kilometer race in 42 minutes 42 seconds, what is your average pace (time per
mile in minutes and seconds)? What is your average speed in miles per hour?

https://hemanthrajhemu.github.io

Chapter 2

Variables, expressions and
statements

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

2.1 Assignment statements
An assignment statement creates a new variable and gives it a value:
>>> message = 'And now for something completely different'

>>> n = 17

>>> pi = 3.1415926535897932

This example makes three assignments. The first assigns a string to a new variable named
message; the second gives the integer 17 to n; the third assigns the (approximate) value of
π to pi.

A common way to represent variables on paper is to write the name with an arrow pointing
to its value. This kind of figure is called a state diagram because it shows what state each
of the variables is in (think of it as the variable’s state of mind). Figure 2.1 shows the result
of the previous example.

2.2 Variable names
Programmers generally choose names for their variables that are meaningful—they docu-
ment what the variable is used for.

message

n

pi

17

’And now for something completely different’

3.1415926535897932

Figure 2.1: State diagram.

https://hemanthrajhemu.github.io

10 Chapter 2. Variables, expressions and statements

Variable names can be as long as you like. They can contain both letters and numbers, but
they can’t begin with a number. It is legal to use uppercase letters, but it is conventional to
use only lower case for variables names.

The underscore character, _, can appear in a name. It is often used in names with multiple
words, such as your_name or airspeed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'

SyntaxError: invalid syntax

76trombones is illegal because it begins with a number. more@ is illegal because it contains
an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

Python 3 has these keywords:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

You don’t have to memorize this list. In most development environments, keywords are
displayed in a different color; if you try to use one as a variable name, you’ll know.

2.3 Expressions and statements

An expression is a combination of values, variables, and operators. A value all by itself is
considered an expression, and so is a variable, so the following are all legal expressions:

>>> 42

42

>>> n

17

>>> n + 25

42

When you type an expression at the prompt, the interpreter evaluates it, which means that
it finds the value of the expression. In this example, n has the value 17 and n + 25 has the
value 42.

A statement is a unit of code that has an effect, like creating a variable or displaying a
value.

>>> n = 17

>>> print(n)

https://hemanthrajhemu.github.io

2.4. Script mode 11

The first line is an assignment statement that gives a value to n. The second line is a print
statement that displays the value of n.

When you type a statement, the interpreter executes it, which means that it does whatever
the statement says. In general, statements don’t have values.

2.4 Script mode

So far we have run Python in interactive mode, which means that you interact directly
with the interpreter. Interactive mode is a good way to get started, but if you are working
with more than a few lines of code, it can be clumsy.

The alternative is to save code in a file called a script and then run the interpreter in script
mode to execute the script. By convention, Python scripts have names that end with .py.

If you know how to create and run a script on your computer, you are ready to go. Oth-
erwise I recommend using PythonAnywhere again. I have posted instructions for running
in script mode at http://tinyurl.com/thinkpython2e.

Because Python provides both modes, you can test bits of code in interactive mode before
you put them in a script. But there are differences between interactive mode and script
mode that can be confusing.

For example, if you are using Python as a calculator, you might type
>>> miles = 26.2

>>> miles * 1.61

42.182

The first line assigns a value to miles, but it has no visible effect. The second line is an ex-
pression, so the interpreter evaluates it and displays the result. It turns out that a marathon
is about 42 kilometers.

But if you type the same code into a script and run it, you get no output at all. In script
mode an expression, all by itself, has no visible effect. Python evaluates the expression, but
it doesn’t display the result. To display the result, you need a print statement like this:
miles = 26.2

print(miles * 1.61)

This behavior can be confusing at first. To check your understanding, type the following
statements in the Python interpreter and see what they do:
5

x = 5

x + 1

Now put the same statements in a script and run it. What is the output? Modify the script
by transforming each expression into a print statement and then run it again.

2.5 Order of operations

When an expression contains more than one operator, the order of evaluation depends
on the order of operations. For mathematical operators, Python follows mathematical
convention. The acronym PEMDAS is a useful way to remember the rules:

https://hemanthrajhemu.github.io

12 Chapter 2. Variables, expressions and statements

• Parentheses have the highest precedence and can be used to force an expression to
evaluate in the order you want. Since expressions in parentheses are evaluated first,
2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to make an
expression easier to read, as in (minute * 100) / 60, even if it doesn’t change the
result.

• Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and 2 *

3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction.
So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right (except exponen-
tiation). So in the expression degrees / 2 * pi, the division happens first and the
result is multiplied by pi. To divide by 2π, you can use parentheses or write degrees
/ 2 / pi.

I don’t work very hard to remember the precedence of operators. If I can’t tell by looking
at the expression, I use parentheses to make it obvious.

2.6 String operations

In general, you can’t perform mathematical operations on strings, even if the strings look
like numbers, so the following are illegal:

'chinese'-'food' 'eggs'/'easy' 'third'*'a charm'

But there are two exceptions, + and *.

The + operator performs string concatenation, which means it joins the strings by linking
them end-to-end. For example:

>>> first = 'throat'

>>> second = 'warbler'

>>> first + second

throatwarbler

The * operator also works on strings; it performs repetition. For example, 'Spam'*3 is
'SpamSpamSpam'. If one of the values is a string, the other has to be an integer.

This use of + and * makes sense by analogy with addition and multiplication. Just as 4*3
is equivalent to 4+4+4, we expect 'Spam'*3 to be the same as 'Spam'+'Spam'+'Spam', and
it is. On the other hand, there is a significant way in which string concatenation and repe-
tition are different from integer addition and multiplication. Can you think of a property
that addition has that string concatenation does not?

2.7 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what
it is doing, or why.

https://hemanthrajhemu.github.io

2.8. Debugging 13

For this reason, it is a good idea to add notes to your programs to explain in natural lan-
guage what the program is doing. These notes are called comments, and they start with
the # symbol:
compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end
of a line:
percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the execution of
the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is more useful to
explain why.

This comment is redundant with the code and useless:
v = 5 # assign 5 to v

This comment contains useful information that is not in the code:
v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make com-
plex expressions hard to read, so there is a tradeoff.

2.8 Debugging
Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.

Syntax error: “Syntax” refers to the structure of a program and the rules about that struc-
ture. For example, parentheses have to come in matching pairs, so (1 + 2) is legal,
but 8) is a syntax error.

If there is a syntax error anywhere in your program, Python displays an error mes-
sage and quits, and you will not be able to run the program. During the first few
weeks of your programming career, you might spend a lot of time tracking down
syntax errors. As you gain experience, you will make fewer errors and find them
faster.

Runtime error: The second type of error is a runtime error, so called because the error does
not appear until after the program has started running. These errors are also called
exceptions because they usually indicate that something exceptional (and bad) has
happened.

Runtime errors are rare in the simple programs you will see in the first few chapters,
so it might be a while before you encounter one.

Semantic error: The third type of error is “semantic”, which means related to meaning.
If there is a semantic error in your program, it will run without generating error
messages, but it will not do the right thing. It will do something else. Specifically, it
will do what you told it to do.

Identifying semantic errors can be tricky because it requires you to work backward
by looking at the output of the program and trying to figure out what it is doing.

https://hemanthrajhemu.github.io

14 Chapter 2. Variables, expressions and statements

2.9 Glossary
variable: A name that refers to a value.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values they refer to.

keyword: A reserved word that is used to parse a program; you cannot use keywords like
if, def, and while as variable names.

operand: One of the values on which an operator operates.

expression: A combination of variables, operators, and values that represents a single re-
sult.

evaluate: To simplify an expression by performing the operations in order to yield a single
value.

statement: A section of code that represents a command or action. So far, the statements
we have seen are assignments and print statements.

execute: To run a statement and do what it says.

interactive mode: A way of using the Python interpreter by typing code at the prompt.

script mode: A way of using the Python interpreter to read code from a script and run it.

script: A program stored in a file.

order of operations: Rules governing the order in which expressions involving multiple
operators and operands are evaluated.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programmers (or anyone read-
ing the source code) and has no effect on the execution of the program.

syntax error: An error in a program that makes it impossible to parse (and therefore im-
possible to interpret).

exception: An error that is detected while the program is running.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

2.10 Exercises

Exercise 2.1. Repeating my advice from the previous chapter, whenever you learn a new feature,
you should try it out in interactive mode and make errors on purpose to see what goes wrong.

• We’ve seen that n = 42 is legal. What about 42 = n?

https://hemanthrajhemu.github.io

2.10. Exercises 15

• How about x = y = 1?

• In some languages every statement ends with a semi-colon, ;. What happens if you put a
semi-colon at the end of a Python statement?

• What if you put a period at the end of a statement?

• In math notation you can multiply x and y like this: xy. What happens if you try that in
Python?

Exercise 2.2. Practice using the Python interpreter as a calculator:

1. The volume of a sphere with radius r is 4
3 πr3. What is the volume of a sphere with radius 5?

2. Suppose the cover price of a book is $24.95, but bookstores get a 40% discount. Shipping costs
$3 for the first copy and 75 cents for each additional copy. What is the total wholesale cost for
60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3 miles at
tempo (7:12 per mile) and 1 mile at easy pace again, what time do I get home for breakfast?

https://hemanthrajhemu.github.io

16 Chapter 2. Variables, expressions and statements

https://hemanthrajhemu.github.io

Chapter 3

Functions

In the context of programming, a function is a named sequence of statements that performs
a computation. When you define a function, you specify the name and the sequence of
statements. Later, you can “call” the function by name.

3.1 Function calls

We have already seen one example of a function call:
>>> type(42)

<class 'int'>

The name of the function is type. The expression in parentheses is called the argument of
the function. The result, for this function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The result
is also called the return value.

Python provides functions that convert values from one type to another. The int function
takes any value and converts it to an integer, if it can, or complains otherwise:
>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it chops off the
fraction part:
>>> int(3.99999)

3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:
>>> float(32)

32.0

>>> float('3.14159')

3.14159

https://hemanthrajhemu.github.io

18 Chapter 3. Functions

Finally, str converts its argument to a string:

>>> str(32)

'32'

>>> str(3.14159)

'3.14159'

3.2 Math functions

Python has a math module that provides most of the familiar mathematical functions. A
module is a file that contains a collection of related functions.

Before we can use the functions in a module, we have to import it with an import state-
ment:

>>> import math

This statement creates a module object named math. If you display the module object, you
get some information about it:

>>> math

<module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To access
one of the functions, you have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This format is called dot notation.

>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)

The first example uses math.log10 to compute a signal-to-noise ratio in decibels (assuming
that signal_power and noise_power are defined). The math module also provides log,
which computes logarithms base e.

The second example finds the sine of radians. The variable name radians is a hint that
sin and the other trigonometric functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 180 and multiply by π:

>>> degrees = 45

>>> radians = degrees / 180.0 * math.pi

>>> math.sin(radians)

0.707106781187

The expression math.pi gets the variable pi from the math module. Its value is a floating-
point approximation of π, accurate to about 15 digits.

If you know trigonometry, you can check the previous result by comparing it to the square
root of two divided by two:

>>> math.sqrt(2) / 2.0

0.707106781187

https://hemanthrajhemu.github.io

3.3. Composition 19

3.3 Composition

So far, we have looked at the elements of a program—variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small
building blocks and compose them. For example, the argument of a function can be any
kind of expression, including arithmetic operators:
x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:
x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one ex-
ception: the left side of an assignment statement has to be a variable name. Any other
expression on the left side is a syntax error (we will see exceptions to this rule later).
>>> minutes = hours * 60 # right

>>> hours * 60 = minutes # wrong!

SyntaxError: can't assign to operator

3.4 Adding new functions

So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. A function definition specifies the name of a new function and the
sequence of statements that run when the function is called.

Here is an example:
def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function definition. The name of the function
is print_lyrics. The rules for function names are the same as for variable names: letters,
numbers and underscore are legal, but the first character can’t be a number. You can’t use a
keyword as the name of a function, and you should avoid having a variable and a function
with the same name.

The empty parentheses after the name indicate that this function doesn’t take any argu-
ments.

The first line of the function definition is called the header; the rest is called the body. The
header has to end with a colon and the body has to be indented. By convention, indentation
is always four spaces. The body can contain any number of statements.

The strings in the print statements are enclosed in double quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this where a
single quote (which is also an apostrophe) appears in the string.

All quotation marks (single and double) must be “straight quotes”, usually located next
to Enter on the keyboard. “Curly quotes”, like the ones in this sentence, are not legal in
Python.

If you type a function definition in interactive mode, the interpreter prints dots (...) to let
you know that the definition isn’t complete:

https://hemanthrajhemu.github.io

20 Chapter 3. Functions

>>> def print_lyrics():

... print("I'm a lumberjack, and I'm okay.")

... print("I sleep all night and I work all day.")

...

To end the function, you have to enter an empty line.

Defining a function creates a function object, which has type function:

>>> print(print_lyrics)

<function print_lyrics at 0xb7e99e9c>

>>> type(print_lyrics)

<class 'function'>

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example, to
repeat the previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():

print_lyrics()

print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

3.5 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks
like this:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print("I sleep all night and I work all day.")

def repeat_lyrics():

print_lyrics()

print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Func-
tion definitions get executed just like other statements, but the effect is to create function
objects. The statements inside the function do not run until the function is called, and the
function definition generates no output.

https://hemanthrajhemu.github.io

3.6. Flow of execution 21

As you might expect, you have to create a function before you can run it. In other words,
the function definition has to run before the function gets called.

As an exercise, move the last line of this program to the top, so the function call appears
before the definitions. Run the program and see what error message you get.

Now move the function call back to the bottom and move the definition of print_lyrics
after the definition of repeat_lyrics. What happens when you run this program?

3.6 Flow of execution

To ensure that a function is defined before its first use, you have to know the order state-
ments run in, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are run one at a
time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that
statements inside the function don’t run until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next state-
ment, the flow jumps to the body of the function, runs the statements there, and then comes
back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While
in the middle of one function, the program might have to run the statements in another
function. Then, while running that new function, the program might have to run yet an-
other function!

Fortunately, Python is good at keeping track of where it is, so each time a function com-
pletes, the program picks up where it left off in the function that called it. When it gets to
the end of the program, it terminates.

In summary, when you read a program, you don’t always want to read from top to bottom.
Sometimes it makes more sense if you follow the flow of execution.

3.7 Parameters and arguments

Some of the functions we have seen require arguments. For example, when you call
math.sin you pass a number as an argument. Some functions take more than one ar-
gument: math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters. Here is a
definition for a function that takes an argument:

def print_twice(bruce):

print(bruce)

print(bruce)

This function assigns the argument to a parameter named bruce. When the function is
called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

https://hemanthrajhemu.github.io

22 Chapter 3. Functions

>>> print_twice('Spam')

Spam

Spam

>>> print_twice(42)

42

42

>>> print_twice(math.pi)

3.14159265359

3.14159265359

The same rules of composition that apply to built-in functions also apply to programmer-
defined functions, so we can use any kind of expression as an argument for print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the expressions
'Spam '*4 and math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn’t matter what the value was called back home (in
the caller); here in print_twice, we call everybody bruce.

3.8 Variables and parameters are local

When you create a variable inside a function, it is local, which means that it only exists
inside the function. For example:

def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

This function takes two arguments, concatenates them, and prints the result twice. Here is
an example that uses it:

>>> line1 = 'Bing tiddle '

>>> line2 = 'tiddle bang.'

>>> cat_twice(line1, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an
exception:

https://hemanthrajhemu.github.io

3.9. Stack diagrams 23

line1

line2 ’tiddle bang.’

part1

part2

cat

bruce

’Bing tiddle ’

’Bing tiddle ’

’tiddle bang.’

’Bing tiddle tiddle bang.’

’Bing tiddle tiddle bang.’

cat_twice

print_twice

__main__

Figure 3.1: Stack diagram.

>>> print(cat)

NameError: name 'cat' is not defined

Parameters are also local. For example, outside print_twice, there is no such thing as
bruce.

3.9 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a stack
diagram. Like state diagrams, stack diagrams show the value of each variable, but they
also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
beside it and the parameters and variables of the function inside it. The stack diagram for
the previous example is shown in Figure 3.1.

The frames are arranged in a stack that indicates which function called which, and so
on. In this example, print_twice was called by cat_twice, and cat_twice was called
by __main__, which is a special name for the topmost frame. When you create a variable
outside of any function, it belongs to __main__.

Each parameter refers to the same value as its corresponding argument. So, part1 has the
same value as line1, part2 has the same value as line2, and bruce has the same value as
cat.

If an error occurs during a function call, Python prints the name of the function, the name
of the function that called it, and the name of the function that called that, all the way back
to __main__.

For example, if you try to access cat from within print_twice, you get a NameError:

Traceback (innermost last):

File "test.py", line 13, in __main__

cat_twice(line1, line2)

File "test.py", line 5, in cat_twice

print_twice(cat)

File "test.py", line 9, in print_twice

print(cat)

NameError: name 'cat' is not defined

https://hemanthrajhemu.github.io

24 Chapter 3. Functions

This list of functions is called a traceback. It tells you what program file the error occurred
in, and what line, and what functions were executing at the time. It also shows the line of
code that caused the error.

The order of the functions in the traceback is the same as the order of the frames in the
stack diagram. The function that is currently running is at the bottom.

3.10 Fruitful functions and void functions

Some of the functions we have used, such as the math functions, return results; for lack of
a better name, I call them fruitful functions. Other functions, like print_twice, perform
an action but don’t return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the result;
for example, you might assign it to a variable or use it as part of an expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost forever!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store or display the result, it
is not very useful.

Void functions might display something on the screen or have some other effect, but they
don’t have a return value. If you assign the result to a variable, you get a special value
called None.

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string 'None'. It is a special value that has its own
type:

>>> type(None)

<class 'NoneType'>

The functions we have written so far are all void. We will start writing fruitful functions in
a few chapters.

3.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There
are several reasons:

https://hemanthrajhemu.github.io

3.12. Debugging 25

• Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if you
make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a time
and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

3.12 Debugging

One of the most important skills you will acquire is debugging. Although it can be frus-
trating, debugging is one of the most intellectually rich, challenging, and interesting parts
of programming.

In some ways debugging is like detective work. You are confronted with clues and you
have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is going
wrong, you modify your program and try again. If your hypothesis was correct, you can
predict the result of the modification, and you take a step closer to a working program. If
your hypothesis was wrong, you have to come up with a new one. As Sherlock Holmes
pointed out, “When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming
is the process of gradually debugging a program until it does what you want. The idea is
that you should start with a working program and make small modifications, debugging
them as you go.

For example, Linux is an operating system that contains millions of lines of code, but it
started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. Ac-
cording to Larry Greenfield, “One of Linus’s earlier projects was a program that would
switch between printing AAAA and BBBB. This later evolved to Linux.” (The Linux Users’
Guide Beta Version 1).

3.13 Glossary
function: A named sequence of statements that performs some useful operation. Func-

tions may or may not take arguments and may or may not produce a result.

function definition: A statement that creates a new function, specifying its name, param-
eters, and the statements it contains.

function object: A value created by a function definition. The name of the function is a
variable that refers to a function object.

header: The first line of a function definition.

https://hemanthrajhemu.github.io

26 Chapter 3. Functions

body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed as an argument.

function call: A statement that runs a function. It consists of the function name followed
by an argument list in parentheses.

argument: A value provided to a function when the function is called. This value is as-
signed to the corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable can only be used
inside its function.

return value: The result of a function. If a function call is used as an expression, the return
value is the value of the expression.

fruitful function: A function that returns a value.

void function: A function that always returns None.

None: A special value returned by void functions.

module: A file that contains a collection of related functions and other definitions.

import statement: A statement that reads a module file and creates a module object.

module object: A value created by an import statement that provides access to the values
defined in a module.

dot notation: The syntax for calling a function in another module by specifying the mod-
ule name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or a statement as part of
a larger statement.

flow of execution: The order statements run in.

stack diagram: A graphical representation of a stack of functions, their variables, and the
values they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local vari-
ables and parameters of the function.

traceback: A list of the functions that are executing, printed when an exception occurs.

3.14 Exercises

Exercise 3.1. Write a function named right_justify that takes a string named s as a parameter
and prints the string with enough leading spaces so that the last letter of the string is in column 70
of the display.

>>> right_justify('monty')

monty

Hint: Use string concatenation and repetition. Also, Python provides a built-in function called len

that returns the length of a string, so the value of len('monty') is 5.

https://hemanthrajhemu.github.io

3.14. Exercises 27

Exercise 3.2. A function object is a value you can assign to a variable or pass as an argument. For
example, do_twice is a function that takes a function object as an argument and calls it twice:

def do_twice(f):

f()

f()

Here’s an example that uses do_twice to call a function named print_spam twice.

def print_spam():

print('spam')

do_twice(print_spam)

1. Type this example into a script and test it.

2. Modify do_twice so that it takes two arguments, a function object and a value, and calls the
function twice, passing the value as an argument.

3. Copy the definition of print_twice from earlier in this chapter to your script.

4. Use the modified version of do_twice to call print_twice twice, passing 'spam' as an
argument.

5. Define a new function called do_four that takes a function object and a value and calls the
function four times, passing the value as a parameter. There should be only two statements in
the body of this function, not four.

Solution: http: // thinkpython2. com/ code/ do_ four. py .
Exercise 3.3. Note: This exercise should be done using only the statements and other features we
have learned so far.

1. Write a function that draws a grid like the following:

+ - - - - + - - - - +

| | |

| | |

| | |

| | |

+ - - - - + - - - - +

| | |

| | |

| | |

| | |

+ - - - - + - - - - +

Hint: to print more than one value on a line, you can print a comma-separated sequence of
values:

print('+', '-')

By default, print advances to the next line, but you can override that behavior and put a
space at the end, like this:

print('+', end=' ')

print('-')

https://hemanthrajhemu.github.io

28 Chapter 3. Functions

The output of these statements is '+ -' on the same line. The output from the next print
statement would begin on the next line.

2. Write a function that draws a similar grid with four rows and four columns.

Solution: http: // thinkpython2. com/ code/ grid. py . Credit: This exercise is based on an
exercise in Oualline, Practical C Programming, Third Edition, O’Reilly Media, 1997.

https://hemanthrajhemu.github.io

Chapter 5

Conditionals and recursion

The main topic of this chapter is the if statement, which executes different code depending
on the state of the program. But first I want to introduce two new operators: floor division
and modulus.

5.1 Floor division and modulus

The floor division operator, //, divides two numbers and rounds down to an integer. For
example, suppose the run time of a movie is 105 minutes. You might want to know how
long that is in hours. Conventional division returns a floating-point number:

>>> minutes = 105

>>> minutes / 60

1.75

But we don’t normally write hours with decimal points. Floor division returns the integer
number of hours, rounding down:

>>> minutes = 105

>>> hours = minutes // 60

>>> hours

1

To get the remainder, you could subtract off one hour in minutes:

>>> remainder = minutes - hours * 60

>>> remainder

45

An alternative is to use the modulus operator, %, which divides two numbers and returns
the remainder.

>>> remainder = minutes % 60

>>> remainder

45

The modulus operator is more useful than it seems. For example, you can check whether
one number is divisible by another—if x % y is zero, then x is divisible by y.

https://hemanthrajhemu.github.io

40 Chapter 5. Conditionals and recursion

Also, you can extract the right-most digit or digits from a number. For example, x % 10

yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

If you are using Python 2, division works differently. The division operator, /, performs
floor division if both operands are integers, and floating-point division if either operand is
a float.

5.2 Boolean expressions

A boolean expression is an expression that is either true or false. The following examples
use the operator ==, which compares two operands and produces True if they are equal
and False otherwise:

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

The == operator is one of the relational operators; the others are:

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different
from the mathematical symbols. A common error is to use a single equal sign (=) instead of
a double equal sign (==). Remember that = is an assignment operator and == is a relational
operator. There is no such thing as =< or =>.

5.3 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is true
only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either or both of the conditions is true, that is, if the number
is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > y is
false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpreted as True:

https://hemanthrajhemu.github.io

5.4. Conditional execution 41

>>> 42 and True

True

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

5.4 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us this
ability. The simplest form is the if statement:

if x > 0:

print('x is positive')

The boolean expression after if is called the condition. If it is true, the indented statement
runs. If not, nothing happens.

if statements have the same structure as function definitions: a header followed by an
indented body. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has to
be at least one. Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven’t written yet). In that case, you can use the pass statement,
which does nothing.

if x < 0:

pass # TODO: need to handle negative values!

5.5 Alternative execution

A second form of the if statement is “alternative execution”, in which there are two possi-
bilities and the condition determines which one runs. The syntax looks like this:

if x % 2 == 0:

print('x is even')

else:

print('x is odd')

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program
displays an appropriate message. If the condition is false, the second set of statements
runs. Since the condition must be true or false, exactly one of the alternatives will run. The
alternatives are called branches, because they are branches in the flow of execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

https://hemanthrajhemu.github.io

42 Chapter 5. Conditionals and recursion

if x < y:

print('x is less than y')

elif x > y:

print('x is greater than y')

else:

print('x and y are equal')

elif is an abbreviation of “else if”. Again, exactly one branch will run. There is no limit on
the number of elif statements. If there is an else clause, it has to be at the end, but there
doesn’t have to be one.
if choice == 'a':

draw_a()

elif choice == 'b':

draw_b()

elif choice == 'c':

draw_c()

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch runs and the statement ends. Even if more than
one condition is true, only the first true branch runs.

5.7 Nested conditionals

One conditional can also be nested within another. We could have written the example in
the previous section like this:
if x == y:

print('x and y are equal')

else:

if x < y:

print('x is less than y')

else:

print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains another if statement, which has two branches of its own.
Those two branches are both simple statements, although they could have been conditional
statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. It is a good idea to avoid them when you
can.

Logical operators often provide a way to simplify nested conditional statements. For ex-
ample, we can rewrite the following code using a single conditional:
if 0 < x:

if x < 10:

print('x is a positive single-digit number.')

The print statement runs only if we make it past both conditionals, so we can get the same
effect with the and operator:
if 0 < x and x < 10:

print('x is a positive single-digit number.')

https://hemanthrajhemu.github.io

5.8. Recursion 43

For this kind of condition, Python provides a more concise option:
if 0 < x < 10:

print('x is a positive single-digit number.')

5.8 Recursion

It is legal for one function to call another; it is also legal for a function to call itself. It may
not be obvious why that is a good thing, but it turns out to be one of the most magical
things a program can do. For example, look at the following function:
def countdown(n):

if n <= 0:

print('Blastoff!')

else:

print(n)

countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then calls
a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?
>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs the
value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than 0, it
outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is greater
than 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and since n is
not greater than 0, it outputs the word, “Blastoff!” and then
returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in __main__. So, the total output looks like this:
3

2

1

Blastoff!

A function that calls itself is recursive; the process of executing it is called recursion.

As another example, we can write a function that prints a string n times.
def print_n(s, n):

if n <= 0:

return

print(s)

print_n(s, n-1)

https://hemanthrajhemu.github.io

44 Chapter 5. Conditionals and recursion

__main__

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

Figure 5.1: Stack diagram.

If n <= 0 the return statement exits the function. The flow of execution immediately re-
turns to the caller, and the remaining lines of the function don’t run.

The rest of the function is similar to countdown: it displays s and then calls itself to display
s n− 1 additional times. So the number of lines of output is 1 + (n - 1), which adds up
to n.

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion, so it
is good to start early.

5.9 Stack diagrams for recursive functions
In Section 3.9, we used a stack diagram to represent the state of a program during a function
call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a frame to contain the function’s local
variables and parameters. For a recursive function, there might be more than one frame on
the stack at the same time.

Figure 5.1 shows a stack diagram for countdown called with n = 3.

As usual, the top of the stack is the frame for __main__. It is empty because we did not
create any variables in __main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the
stack, where n=0, is called the base case. It does not make a recursive call, so there are no
more frames.

As an exercise, draw a stack diagram for print_n called with s = 'Hello' and n=2. Then
write a function called do_n that takes a function object and a number, n, as arguments, and
that calls the given function n times.

5.10 Infinite recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a
good idea. Here is a minimal program with an infinite recursion:

https://hemanthrajhemu.github.io

5.11. Keyboard input 45

def recurse():

recurse()

In most programming environments, a program with infinite recursion does not really run
forever. Python reports an error message when the maximum recursion depth is reached:

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

.

.

.

File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the error
occurs, there are 1000 recurse frames on the stack!

If you encounter an infinite recursion by accident, review your function to confirm that
there is a base case that does not make a recursive call. And if there is a base case, check
whether you are guaranteed to reach it.

5.11 Keyboard input
The programs we have written so far accept no input from the user. They just do the same
thing every time.

Python provides a built-in function called input that stops the program and waits for the
user to type something. When the user presses Return or Enter, the program resumes and
input returns what the user typed as a string. In Python 2, the same function is called
raw_input.
>>> text = input()

What are you waiting for?

>>> text

'What are you waiting for?'

Before getting input from the user, it is a good idea to print a prompt telling the user what
to type. input can take a prompt as an argument:
>>> name = input('What...is your name?\n')

What...is your name?

Arthur, King of the Britons!

>>> name

'Arthur, King of the Britons!'

The sequence \n at the end of the prompt represents a newline, which is a special character
that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:
>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

42

>>> int(speed)

42

https://hemanthrajhemu.github.io

46 Chapter 5. Conditionals and recursion

But if the user types something other than a string of digits, you get an error:
>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int() with base 10

We will see how to handle this kind of error later.

5.12 Debugging
When a syntax or runtime error occurs, the error message contains a lot of information, but
it can be overwhelming. The most useful parts are usually:

• What kind of error it was, and

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.
>>> x = 5

>>> y = 6

File "<stdin>", line 1

y = 6

^

IndentationError: unexpected indent

In this example, the problem is that the second line is indented by one space. But the error
message points to y, which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise
ratio in decibels. The formula is SNRdb = 10 log10(Psignal/Pnoise). In Python, you might
write something like this:
import math

signal_power = 9

noise_power = 10

ratio = signal_power // noise_power

decibels = 10 * math.log10(ratio)

print(decibels)

When you run this program, you get an exception:
Traceback (most recent call last):

File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)

ValueError: math domain error

The error message indicates line 5, but there is nothing wrong with that line. To find the
real error, it might be useful to print the value of ratio, which turns out to be 0. The
problem is in line 4, which uses floor division instead of floating-point division.

You should take the time to read error messages carefully, but don’t assume that everything
they say is correct.

https://hemanthrajhemu.github.io

5.13. Glossary 47

5.13 Glossary
floor division: An operator, denoted //, that divides two numbers and rounds down (to-

ward negative infinity) to an integer.

modulus operator: An operator, denoted with a percent sign (%), that works on integers
and returns the remainder when one number is divided by another.

boolean expression: An expression whose value is either True or False.

relational operator: One of the operators that compares its operands: ==, !=, >, <, >=, and
<=.

logical operator: One of the operators that combines boolean expressions: and, or, and
not.

conditional statement: A statement that controls the flow of execution depending on some
condition.

condition: The boolean expression in a conditional statement that determines which
branch runs.

compound statement: A statement that consists of a header and a body. The header ends
with a colon (:). The body is indented relative to the header.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

return statement: A statement that causes a function to end immediately and return to the
caller.

recursion: The process of calling the function that is currently executing.

base case: A conditional branch in a recursive function that does not make a recursive call.

infinite recursion: A recursion that doesn’t have a base case, or never reaches it. Eventu-
ally, an infinite recursion causes a runtime error.

5.14 Exercises

Exercise 5.1. The time module provides a function, also named time, that returns the current
Greenwich Mean Time in “the epoch”, which is an arbitrary time used as a reference point. On
UNIX systems, the epoch is 1 January 1970.

>>> import time

>>> time.time()

1437746094.5735958

Write a script that reads the current time and converts it to a time of day in hours, minutes, and
seconds, plus the number of days since the epoch.

https://hemanthrajhemu.github.io

48 Chapter 5. Conditionals and recursion

Exercise 5.2. Fermat’s Last Theorem says that there are no positive integers a, b, and c such that

an + bn = cn

for any values of n greater than 2.

1. Write a function named check_fermat that takes four parameters—a, b, c and n—and
checks to see if Fermat’s theorem holds. If n is greater than 2 and

an + bn = cn

the program should print, “Holy smokes, Fermat was wrong!” Otherwise the program should
print, “No, that doesn’t work.”

2. Write a function that prompts the user to input values for a, b, c and n, converts them to
integers, and uses check_fermat to check whether they violate Fermat’s theorem.

Exercise 5.3. If you are given three sticks, you may or may not be able to arrange them in a triangle.
For example, if one of the sticks is 12 inches long and the other two are one inch long, you will not
be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to
see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two, then you cannot
form a triangle. Otherwise, you can. (If the sum of two lengths equals the third, they
form what is called a “degenerate” triangle.)

1. Write a function named is_triangle that takes three integers as arguments, and that prints
either “Yes” or “No”, depending on whether you can or cannot form a triangle from sticks
with the given lengths.

2. Write a function that prompts the user to input three stick lengths, converts them to integers,
and uses is_triangle to check whether sticks with the given lengths can form a triangle.

Exercise 5.4. What is the output of the following program? Draw a stack diagram that shows the
state of the program when it prints the result.

def recurse(n, s):

if n == 0:

print(s)

else:

recurse(n-1, n+s)

recurse(3, 0)

1. What would happen if you called this function like this: recurse(-1, 0)?

2. Write a docstring that explains everything someone would need to know in order to use this
function (and nothing else).

The following exercises use the turtle module, described in Chapter 4:
Exercise 5.5. Read the following function and see if you can figure out what it does (see the exam-
ples in Chapter 4). Then run it and see if you got it right.

https://hemanthrajhemu.github.io

5.14. Exercises 49

Figure 5.2: A Koch curve.

def draw(t, length, n):

if n == 0:

return

angle = 50

t.fd(length*n)

t.lt(angle)

draw(t, length, n-1)

t.rt(2*angle)

draw(t, length, n-1)

t.lt(angle)

t.bk(length*n)

Exercise 5.6. The Koch curve is a fractal that looks something like Figure 5.2. To draw a Koch
curve with length x, all you have to do is

1. Draw a Koch curve with length x/3.

2. Turn left 60 degrees.

3. Draw a Koch curve with length x/3.

4. Turn right 120 degrees.

5. Draw a Koch curve with length x/3.

6. Turn left 60 degrees.

7. Draw a Koch curve with length x/3.

The exception is if x is less than 3: in that case, you can just draw a straight line with length x.

1. Write a function called koch that takes a turtle and a length as parameters, and that uses the
turtle to draw a Koch curve with the given length.

2. Write a function called snowflake that draws three Koch curves to make the outline of a
snowflake.

Solution: http: // thinkpython2. com/ code/ koch. py .

3. The Koch curve can be generalized in several ways. See http: // en. wikipedia. org/

wiki/ Koch_ snowflake for examples and implement your favorite.

https://hemanthrajhemu.github.io

50 Chapter 5. Conditionals and recursion

https://hemanthrajhemu.github.io

Chapter 6

Fruitful functions

Many of the Python functions we have used, such as the math functions, produce return
values. But the functions we’ve written are all void: they have an effect, like printing a
value or moving a turtle, but they don’t have a return value. In this chapter you will learn
to write fruitful functions.

6.1 Return values

Calling the function generates a return value, which we usually assign to a variable or use
as part of an expression.

e = math.exp(1.0)

height = radius * math.sin(radians)

The functions we have written so far are void. Speaking casually, they have no return
value; more precisely, their return value is None.

In this chapter, we are (finally) going to write fruitful functions. The first example is area,
which returns the area of a circle with the given radius:

def area(radius):

a = math.pi * radius**2

return a

We have seen the return statement before, but in a fruitful function the return statement
includes an expression. This statement means: “Return immediately from this function
and use the following expression as a return value.” The expression can be arbitrarily
complicated, so we could have written this function more concisely:

def area(radius):

return math.pi * radius**2

On the other hand, temporary variables like a can make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a condi-
tional:

https://hemanthrajhemu.github.io

52 Chapter 6. Fruitful functions

def absolute_value(x):

if x < 0:

return -x

else:

return x

Since these return statements are in an alternative conditional, only one runs.

As soon as a return statement runs, the function terminates without executing any subse-
quent statements. Code that appears after a return statement, or any other place the flow
of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the pro-
gram hits a return statement. For example:

def absolute_value(x):

if x < 0:

return -x

if x > 0:

return x

This function is incorrect because if x happens to be 0, neither condition is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end
of a function, the return value is None, which is not the absolute value of 0.

>>> print(absolute_value(0))

None

By the way, Python provides a built-in function called abs that computes absolute values.

As an exercise, write a compare function that takes two values, x and y, and returns 1 if x
> y, 0 if x == y, and -1 if x < y.

6.2 Incremental development

As you write larger functions, you might find yourself spending more time debugging.

To deal with increasingly complex programs, you might want to try a process called in-
cremental development. The goal of incremental development is to avoid long debugging
sessions by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the
coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

distance =
√
(x2 − x1)2 + (y2 − y1)2

The first step is to consider what a distance function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can represent using four numbers. The
return value is the distance represented by a floating-point value.

Immediately you can write an outline of the function:

def distance(x1, y1, x2, y2):

return 0.0

https://hemanthrajhemu.github.io

6.2. Incremental development 53

Obviously, this version doesn’t compute distances; it always returns zero. But it is syn-
tactically correct, and it runs, which means that you can test it before you make it more
complicated.

To test the new function, call it with sample arguments:
>>> distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that
way, the result is 5, the hypotenuse of a 3-4-5 triangle. When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start
adding code to the body. A reasonable next step is to find the differences x2 − x1 and
y2 − y1. The next version stores those values in temporary variables and prints them.
def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

print('dx is', dx)

print('dy is', dy)

return 0.0

If the function is working, it should display dx is 3 and dy is 4. If so, we know that the
function is getting the right arguments and performing the first computation correctly. If
not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:
def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

print('dsquared is: ', dsquared)

return 0.0

Again, you would run the program at this stage and check the output (which should be
25). Finally, you can use math.sqrt to compute and return the result:
def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

result = math.sqrt(dsquared)

return result

If that works correctly, you are done. Otherwise, you might want to print the value of
result before the return statement.

The final version of the function doesn’t display anything when it runs; it only returns
a value. The print statements we wrote are useful for debugging, but once you get the
function working, you should remove them. Code like that is called scaffolding because it
is helpful for building the program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain more
experience, you might find yourself writing and debugging bigger chunks. Either way,
incremental development can save you a lot of debugging time.

The key aspects of the process are:

https://hemanthrajhemu.github.io

54 Chapter 6. Fruitful functions

1. Start with a working program and make small incremental changes. At any point, if
there is an error, you should have a good idea where it is.

2. Use variables to hold intermediate values so you can display and check them.

3. Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not
make the program difficult to read.

As an exercise, use incremental development to write a function called hypotenuse that
returns the length of the hypotenuse of a right triangle given the lengths of the other two
legs as arguments. Record each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another. As an exam-
ple, we’ll write a function that takes two points, the center of the circle and a point on the
perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is
in xp and yp. The first step is to find the radius of the circle, which is the distance between
the two points. We just wrote a function, distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius; we just wrote that, too:

result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp)

result = area(radius)

return result

The temporary variables radius and result are useful for development and debugging,
but once the program is working, we can make it more concise by composing the function
calls:

def circle_area(xc, yc, xp, yp):

return area(distance(xc, yc, xp, yp))

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated tests in-
side functions. For example:

def is_divisible(x, y):

if x % y == 0:

return True

else:

return False

https://hemanthrajhemu.github.io

6.5. More recursion 55

It is common to give boolean functions names that sound like yes/no questions;
is_divisible returns either True or False to indicate whether x is divisible by y.

Here is an example:
>>> is_divisible(6, 4)

False

>>> is_divisible(6, 3)

True

The result of the == operator is a boolean, so we can write the function more concisely by
returning it directly:
def is_divisible(x, y):

return x % y == 0

Boolean functions are often used in conditional statements:
if is_divisible(x, y):

print('x is divisible by y')

It might be tempting to write something like:
if is_divisible(x, y) == True:

print('x is divisible by y')

But the extra comparison is unnecessary.

As an exercise, write a function is_between(x, y, z) that returns True if x ≤ y ≤ z or
False otherwise.

6.5 More recursion
We have only covered a small subset of Python, but you might be interested to know that
this subset is a complete programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you would need a few
commands to control devices like the mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the
first computer scientists (some would argue that he was a mathematician, but a lot of early
computer scientists started as mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of the Turing Thesis, I recommend
Michael Sipser’s book Introduction to the Theory of Computation.

To give you an idea of what you can do with the tools you have learned so far, we’ll eval-
uate a few recursively defined mathematical functions. A recursive definition is similar to
a circular definition, in the sense that the definition contains a reference to the thing being
defined. A truly circular definition is not very useful:

vorpal: An adjective used to describe something that is vorpal.

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this:

0! = 1
n! = n(n− 1)!

https://hemanthrajhemu.github.io

56 Chapter 6. Fruitful functions

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n− 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals 3
times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can write a Python program to
evaluate it. The first step is to decide what the parameters should be. In this case it should
be clear that factorial takes an integer:

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):

if n == 0:

return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n− 1 and then multiply it by n:

def factorial(n):

if n == 0:

return 1

else:

recurse = factorial(n-1)

result = n * recurse

return result

The flow of execution for this program is similar to the flow of countdown in Section 5.8. If
we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of n-1...

Since 1 is not 0, we take the second branch and calculate the factorial
of n-1...

Since 0 equals 0, we take the first branch and return 1 without
making any more recursive calls.

The return value, 1, is multiplied by n, which is 1, and the result is
returned.

The return value, 1, is multiplied by n, which is 2, and the result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Figure 6.1 shows what the stack diagram looks like for this sequence of function calls.

The return values are shown being passed back up the stack. In each frame, the return
value is the value of result, which is the product of n and recurse.

In the last frame, the local variables recurse and result do not exist, because the branch
that creates them does not run.

https://hemanthrajhemu.github.io

6.6. Leap of faith 57

n 3 recurse 2

recurse 1

recurse 1

__main__

factorial

n 2

n 1

n 0

factorial

factorial

factorial

1

1

2

6

1result

2

6result

result

Figure 6.1: Stack diagram.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly become
overwhelming. An alternative is what I call the “leap of faith”. When you come to a
function call, instead of following the flow of execution, you assume that the function works
correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions. When
you call math.cos or math.exp, you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-in functions were good
programmers.

The same is true when you call one of your own functions. For example, in Section 6.4, we
wrote a function called is_divisible that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is correct—by examining the
code and testing—we can use the function without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works (returns
the correct result) and then ask yourself, “Assuming that I can find the factorial of n− 1,
can I compute the factorial of n?” It is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you haven’t
finished writing it, but that’s why it’s called a leap of faith!

6.7 One more example

After factorial, the most common example of a recursively defined mathematical func-
tion is fibonacci, which has the following definition (see http://en.wikipedia.org/

wiki/Fibonacci_number):

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2)

Translated into Python, it looks like this:

https://hemanthrajhemu.github.io

58 Chapter 6. Fruitful functions

def fibonacci(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls work
correctly, then it is clear that you get the right result by adding them together.

6.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?
>>> factorial(1.5)

RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. How can that be? The function has a base case—when n

== 0. But if n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets
smaller (more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with
floating-point numbers, or we can make factorial check the type of its argument. The
first option is called the gamma function and it’s a little beyond the scope of this book. So
we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument. While
we’re at it, we can also make sure the argument is positive:
def factorial(n):

if not isinstance(n, int):

print('Factorial is only defined for integers.')

return None

elif n < 0:

print('Factorial is not defined for negative integers.')

return None

elif n == 0:

return 1

else:

return n * factorial(n-1)

The first base case handles nonintegers; the second handles negative integers. In both
cases, the program prints an error message and returns None to indicate that something
went wrong:
>>> print(factorial('fred'))

Factorial is only defined for integers.

None

>>> print(factorial(-2))

Factorial is not defined for negative integers.

None

https://hemanthrajhemu.github.io

6.9. Debugging 59

If we get past both checks, we know that n is a non-negative integer, so we can prove that
the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two condi-
tionals act as guardians, protecting the code that follows from values that might cause an
error. The guardians make it possible to prove the correctness of the code.

In Section 11.4 we will see a more flexible alternative to printing an error message: raising
an exception.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debugging.
If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function is getting; a precondition
is violated.

• There is something wrong with the function; a postcondition is violated.

• There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the
function and display the values of the parameters (and maybe their types). Or you can
write code that checks the preconditions explicitly.

If the parameters look good, add a print statement before each return statement and
display the return value. If possible, check the result by hand. Consider calling the function
with values that make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the return value
is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow of
execution more visible. For example, here is a version of factorial with print statements:

def factorial(n):

space = ' ' * (4 * n)

print(space, 'factorial', n)

if n == 0:

print(space, 'returning 1')

return 1

else:

recurse = factorial(n-1)

result = n * recurse

print(space, 'returning', result)

return result

space is a string of space characters that controls the indentation of the output. Here is the
result of factorial(4) :

https://hemanthrajhemu.github.io

60 Chapter 6. Fruitful functions

factorial 4

factorial 3

factorial 2

factorial 1

factorial 0

returning 1

returning 1

returning 2

returning 6

returning 24

If you are confused about the flow of execution, this kind of output can be helpful. It takes
some time to develop effective scaffolding, but a little bit of scaffolding can save a lot of
debugging.

6.10 Glossary
temporary variable: A variable used to store an intermediate value in a complex calcula-

tion.

dead code: Part of a program that can never run, often because it appears after a return

statement.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final
version.

guardian: A programming pattern that uses a conditional statement to check for and han-
dle circumstances that might cause an error.

6.11 Exercises

Exercise 6.1. Draw a stack diagram for the following program. What does the program print?

def b(z):

prod = a(z, z)

print(z, prod)

return prod

def a(x, y):

x = x + 1

return x * y

def c(x, y, z):

total = x + y + z

square = b(total)**2

return square

https://hemanthrajhemu.github.io

6.11. Exercises 61

x = 1

y = x + 1

print(c(x, y+3, x+y))

Exercise 6.2. The Ackermann function, A(m, n), is defined:

A(m, n) =

n + 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m, n− 1)) if m > 0 and n > 0.

See http: // en. wikipedia. org/ wiki/ Ackermann_ function . Write a function named ack

that evaluates the Ackermann function. Use your function to evaluate ack(3, 4), which should be
125. What happens for larger values of m and n? Solution: http: // thinkpython2. com/ code/
ackermann. py .
Exercise 6.3. A palindrome is a word that is spelled the same backward and forward, like “noon”
and “redivider”. Recursively, a word is a palindrome if the first and last letters are the same and the
middle is a palindrome.

The following are functions that take a string argument and return the first, last, and middle letters:

def first(word):

return word[0]

def last(word):

return word[-1]

def middle(word):

return word[1:-1]

We’ll see how they work in Chapter 8.

1. Type these functions into a file named palindrome.py and test them out. What happens if
you call middle with a string with two letters? One letter? What about the empty string,
which is written '' and contains no letters?

2. Write a function called is_palindrome that takes a string argument and returns True if it
is a palindrome and False otherwise. Remember that you can use the built-in function len

to check the length of a string.

Solution: http: // thinkpython2. com/ code/ palindrome_ soln. py .
Exercise 6.4. A number, a, is a power of b if it is divisible by b and a/b is a power of b. Write a
function called is_power that takes parameters a and b and returns True if a is a power of b. Note:
you will have to think about the base case.
Exercise 6.5. The greatest common divisor (GCD) of a and b is the largest number that divides
both of them with no remainder.

One way to find the GCD of two numbers is based on the observation that if r is the remainder when
a is divided by b, then gcd(a, b) = gcd(b, r). As a base case, we can use gcd(a, 0) = a.

Write a function called gcd that takes parameters a and b and returns their greatest common divisor.

Credit: This exercise is based on an example from Abelson and Sussman’s Structure and Interpre-
tation of Computer Programs.

https://hemanthrajhemu.github.io

62 Chapter 6. Fruitful functions

https://hemanthrajhemu.github.io

