

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Contents xvii

10 Lists 89

10.1 A list is a sequence . 89

10.2 Lists are mutable . 90

10.3 Traversing a list . 91

10.4 List operations . 91

10.5 List slices . 91

10.6 List methods . 92

10.7 Map, filter and reduce . 93

10.8 Deleting elements . 94

10.9 Lists and strings . 94

10.10 Objects and values . 95

10.11 Aliasing . 96

10.12 List arguments . 97

10.13 Debugging . 98

10.14 Glossary . 100

10.15 Exercises . 100

11 Dictionaries 103

11.1 A dictionary is a mapping . 103

11.2 Dictionary as a collection of counters . 104

11.3 Looping and dictionaries . 106

11.4 Reverse lookup . 106

11.5 Dictionaries and lists . 107

11.6 Memos . 109

11.7 Global variables . 110

11.8 Debugging . 111

11.9 Glossary . 112

11.10 Exercises . 113

https://hemanthrajhemu.github.io

xviii Contents

12 Tuples 115

12.1 Tuples are immutable . 115

12.2 Tuple assignment . 116

12.3 Tuples as return values . 117

12.4 Variable-length argument tuples . 118

12.5 Lists and tuples . 118

12.6 Dictionaries and tuples . 120

12.7 Sequences of sequences . 121

12.8 Debugging . 122

12.9 Glossary . 122

12.10 Exercises . 123

13 Case study: data structure selection 125

13.1 Word frequency analysis . 125

13.2 Random numbers . 126

13.3 Word histogram . 127

13.4 Most common words . 128

13.5 Optional parameters . 129

13.6 Dictionary subtraction . 129

13.7 Random words . 130

13.8 Markov analysis . 130

13.9 Data structures . 132

13.10 Debugging . 133

13.11 Glossary . 134

13.12 Exercises . 134

14 Files 137

14.1 Persistence . 137

14.2 Reading and writing . 137

14.3 Format operator . 138

14.4 Filenames and paths . 139

14.5 Catching exceptions . 140

https://hemanthrajhemu.github.io

Chapter 10

Lists

This chapter presents one of Python’s most useful built-in types, lists. You will also learn
more about objects and what can happen when you have more than one name for the same
object.

10.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in a list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in square
brackets ([and]):

[10, 20, 30, 40]

['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings. The elements
of a list don’t have to be the same type. The following list contains a string, a float, an
integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, [].

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [42, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [42, 123] []

https://hemanthrajhemu.github.io

90 Chapter 10. Lists

0

1

list

numbers

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

42

Figure 10.1: State diagram.

10.2 Lists are mutable
The syntax for accessing the elements of a list is the same as for accessing the characters
of a string—the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at 0:
>>> cheeses[0]

'Cheddar'

Unlike strings, lists are mutable. When the bracket operator appears on the left side of an
assignment, it identifies the element of the list that will be assigned.
>>> numbers = [42, 123]

>>> numbers[1] = 5

>>> numbers

[42, 5]

The one-eth element of numbers, which used to be 123, is now 5.

Figure 10.1 shows the state diagram for cheeses, numbers and empty:

Lists are represented by boxes with the word “list” outside and the elements of the list
inside. cheeses refers to a list with three elements indexed 0, 1 and 2. numbers contains
two elements; the diagram shows that the value of the second element has been reassigned
from 123 to 5. empty refers to a list with no elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an IndexError.

• If an index has a negative value, it counts backward from the end of the list.

The in operator also works on lists.
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

https://hemanthrajhemu.github.io

10.3. Traversing a list 91

10.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The syntax is
the same as for strings:

for cheese in cheeses:

print(cheese)

This works well if you only need to read the elements of the list. But if you want to write
or update the elements, you need the indices. A common way to do that is to combine the
built-in functions range and len:

for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of elements
in the list. range returns a list of indices from 0 to n− 1, where n is the length of the list.
Each time through the loop i gets the index of the next element. The assignment statement
in the body uses i to read the old value of the element and to assign the new value.

A for loop over an empty list never runs the body:

for x in []:

print('This never happens.')

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

10.4 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> c

[1, 2, 3, 4, 5, 6]

The * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2, 3]

three times.

10.5 List slices

The slice operator also works on lists:

https://hemanthrajhemu.github.io

92 Chapter 10. Lists

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy before performing operations that
modify lists.

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> t

['a', 'x', 'y', 'd', 'e', 'f']

10.6 List methods

Python provides methods that operate on lists. For example, append adds a new element
to the end of a list:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> t

['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> t1

['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> t

['a', 'b', 'c', 'd', 'e']

Most list methods are void; they modify the list and return None. If you accidentally write
t = t.sort(), you will be disappointed with the result.

https://hemanthrajhemu.github.io

10.7. Map, filter and reduce 93

10.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

def add_all(t):

total = 0

for x in t:

total += x

return total

total is initialized to 0. Each time through the loop, x gets one element from the list.
The += operator provides a short way to update a variable. This augmented assignment
statement,

total += x

is equivalent to

total = total + x

As the loop runs, total accumulates the sum of the elements; a variable used this way is
sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python provides it as a
built-in function, sum:

>>> t = [1, 2, 3]

>>> sum(t)

6

An operation like this that combines a sequence of elements into a single value is some-
times called reduce.

Sometimes you want to traverse one list while building another. For example, the following
function takes a list of strings and returns a new list that contains capitalized strings:

def capitalize_all(t):

res = []

for s in t:

res.append(s.capitalize())

return res

res is initialized with an empty list; each time through the loop, we append the next ele-
ment. So res is another kind of accumulator.

An operation like capitalize_all is sometimes called a map because it “maps” a function
(in this case the method capitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elements from a list and return a sublist.
For example, the following function takes a list of strings and returns a list that contains
only the uppercase strings:

def only_upper(t):

res = []

for s in t:

if s.isupper():

res.append(s)

return res

https://hemanthrajhemu.github.io

94 Chapter 10. Lists

isupper is a string method that returns True if the string contains only upper case letters.

An operation like only_upper is called a filter because it selects some of the elements and
filters out the others.

Most common list operations can be expressed as a combination of map, filter and reduce.

10.8 Deleting elements
There are several ways to delete elements from a list. If you know the index of the element
you want, you can use pop:
>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> t

['a', 'c']

>>> x

'b'

pop modifies the list and returns the element that was removed. If you don’t provide an
index, it deletes and returns the last element.

If you don’t need the removed value, you can use the del operator:
>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> t

['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:
>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> t

['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> t

['a', 'f']

As usual, the slice selects all the elements up to but not including the second index.

10.9 Lists and strings
A string is a sequence of characters and a list is a sequence of values, but a list of characters
is not the same as a string. To convert from a string to a list of characters, you can use list:

>>> s = 'spam'

>>> t = list(s)

>>> t

['s', 'p', 'a', 'm']

https://hemanthrajhemu.github.io

10.10. Objects and values 95

a

b
’banana’

a

b

’banana’

’banana’

Figure 10.2: State diagram.

Because list is the name of a built-in function, you should avoid using it as a variable
name. I also avoid l because it looks too much like 1. So that’s why I use t.

The list function breaks a string into individual letters. If you want to break a string into
words, you can use the split method:

>>> s = 'pining for the fjords'

>>> t = s.split()

>>> t

['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which characters to use as word bound-
aries. The following example uses a hyphen as a delimiter:

>>> s = 'spam-spam-spam'

>>> delimiter = '-'

>>> t = s.split(delimiter)

>>> t

['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements. join is
a string method, so you have to invoke it on the delimiter and pass the list as a parameter:

>>> t = ['pining', 'for', 'the', 'fjords']

>>> delimiter = ' '

>>> s = delimiter.join(t)

>>> s

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string, '', as a delimiter.

10.10 Objects and values

If we run these assignment statements:

a = 'banana'

b = 'banana'

We know that a and b both refer to a string, but we don’t know whether they refer to the
same string. There are two possible states, shown in Figure 10.2.

In one case, a and b refer to two different objects that have the same value. In the second
case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is operator.

https://hemanthrajhemu.github.io

96 Chapter 10. Lists

a

b

[1, 2, 3]

[1, 2, 3]

Figure 10.3: State diagram.

a

b
[1, 2, 3]

Figure 10.4: State diagram.

>>> a = 'banana'

>>> b = 'banana'

>>> a is b

True

In this example, Python only created one string object, and both a and b refer to it. But
when you create two lists, you get two objects:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

So the state diagram looks like Figure 10.3.

In this case we would say that the two lists are equivalent, because they have the same el-
ements, but not identical, because they are not the same object. If two objects are identical,
they are also equivalent, but if they are equivalent, they are not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more precise
to say that an object has a value. If you evaluate [1, 2, 3], you get a list object whose
value is a sequence of integers. If another list has the same elements, we say it has the
same value, but it is not the same object.

10.11 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The state diagram looks like Figure 10.4.

The association of a variable with an object is called a reference. In this example, there are
two references to the same object.

An object with more than one reference has more than one name, so we say that the object
is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

https://hemanthrajhemu.github.io

10.12. List arguments 97

0

1

2

’a’

’b’

’c’

list

t

letters

delete_head

__main__

Figure 10.5: Stack diagram.

>>> b[0] = 42

>>> a

[42, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:

a = 'banana'

b = 'banana'

It almost never makes a difference whether a and b refer to the same string or not.

10.12 List arguments

When you pass a list to a function, the function gets a reference to the list. If the function
modifies the list, the caller sees the change. For example, delete_head removes the first
element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> letters

['b', 'c']

The parameter t and the variable letters are aliases for the same object. The stack diagram
looks like Figure 10.5.

Since the list is shared by two frames, I drew it between them.

It is important to distinguish between operations that modify lists and operations that cre-
ate new lists. For example, the append method modifies a list, but the + operator creates a
new list.

Here’s an example using append:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> t1

[1, 2, 3]

>>> t2

None

https://hemanthrajhemu.github.io

98 Chapter 10. Lists

The return value from append is None.

Here’s an example using the + operator:

>>> t3 = t1 + [4]

>>> t1

[1, 2, 3]

>>> t3

[1, 2, 3, 4]

The result of the operator is a new list, and the original list is unchanged.

This difference is important when you write functions that are supposed to modify lists.
For example, this function does not delete the head of a list:

def bad_delete_head(t):

t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but that doesn’t
affect the caller.

>>> t4 = [1, 2, 3]

>>> bad_delete_head(t4)

>>> t4

[1, 2, 3]

At the beginning of bad_delete_head, t and t4 refer to the same list. At the end, t refers
to a new list, but t4 still refers to the original, unmodified list.

An alternative is to write a function that creates and returns a new list. For example, tail
returns all but the first element of a list:

def tail(t):

return t[1:]

This function leaves the original list unmodified. Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> rest = tail(letters)

>>> rest

['b', 'c']

10.13 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Most list methods modify the argument and return None. This is the opposite of the
string methods, which return a new string and leave the original alone.

If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this:

https://hemanthrajhemu.github.io

10.13. Debugging 99

t = t.sort() # WRONG!

Because sort returns None, the next operation you perform with t is likely to fail.

Before using list methods and operators, you should read the documentation care-
fully and then test them in interactive mode.

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things. For exam-
ple, to remove an element from a list, you can use pop, remove, del, or even a slice
assignment.

To add an element, you can use the append method or the + operator. Assuming that
t is a list and x is a list element, these are correct:

t.append(x)

t = t + [x]

t += [x]

And these are wrong:

t.append([x]) # WRONG!

t = t.append(x) # WRONG!

t + [x] # WRONG!

t = t + x # WRONG!

Try out each of these examples in interactive mode to make sure you understand
what they do. Notice that only the last one causes a runtime error; the other three are
legal, but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method like sort that modifies the argument, but you need to
keep the original list as well, you can make a copy.

>>> t = [3, 1, 2]

>>> t2 = t[:]

>>> t2.sort()

>>> t

[3, 1, 2]

>>> t2

[1, 2, 3]

In this example you could also use the built-in function sorted, which returns a new,
sorted list and leaves the original alone.

>>> t2 = sorted(t)

>>> t

[3, 1, 2]

>>> t2

[1, 2, 3]

https://hemanthrajhemu.github.io

100 Chapter 10. Lists

10.14 Glossary
list: A sequence of values.

element: One of the values in a list (or other sequence), also called items.

nested list: A list that is an element of another list.

accumulator: A variable used in a loop to add up or accumulate a result.

augmented assignment: A statement that updates the value of a variable using an opera-
tor like +=.

reduce: A processing pattern that traverses a sequence and accumulates the elements into
a single result.

map: A processing pattern that traverses a sequence and performs an operation on each
element.

filter: A processing pattern that traverses a list and selects the elements that satisfy some
criterion.

object: Something a variable can refer to. An object has a type and a value.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two or more variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.

10.15 Exercises

You can download solutions to these exercises from http://thinkpython2.com/code/

list_exercises.py.
Exercise 10.1. Write a function called nested_sum that takes a list of lists of integers and adds up
the elements from all of the nested lists. For example:
>>> t = [[1, 2], [3], [4, 5, 6]]

>>> nested_sum(t)

21

Exercise 10.2. Write a function called cumsum that takes a list of numbers and returns the cumu-
lative sum; that is, a new list where the ith element is the sum of the first i + 1 elements from the
original list. For example:
>>> t = [1, 2, 3]

>>> cumsum(t)

[1, 3, 6]

Exercise 10.3. Write a function called middle that takes a list and returns a new list that contains
all but the first and last elements. For example:
>>> t = [1, 2, 3, 4]

>>> middle(t)

[2, 3]

https://hemanthrajhemu.github.io

10.15. Exercises 101

Exercise 10.4. Write a function called chop that takes a list, modifies it by removing the first and
last elements, and returns None. For example:

>>> t = [1, 2, 3, 4]

>>> chop(t)

>>> t

[2, 3]

Exercise 10.5. Write a function called is_sorted that takes a list as a parameter and returns True
if the list is sorted in ascending order and False otherwise. For example:

>>> is_sorted([1, 2, 2])

True

>>> is_sorted(['b', 'a'])

False

Exercise 10.6. Two words are anagrams if you can rearrange the letters from one to spell the other.
Write a function called is_anagram that takes two strings and returns True if they are anagrams.
Exercise 10.7. Write a function called has_duplicates that takes a list and returns True if there
is any element that appears more than once. It should not modify the original list.
Exercise 10.8. This exercise pertains to the so-called Birthday Paradox, which you can read about
at http: // en. wikipedia. org/ wiki/ Birthday_ paradox .

If there are 23 students in your class, what are the chances that two of you have the same birthday?
You can estimate this probability by generating random samples of 23 birthdays and checking for
matches. Hint: you can generate random birthdays with the randint function in the random

module.

You can download my solution from http: // thinkpython2. com/ code/ birthday. py .
Exercise 10.9. Write a function that reads the file words.txt and builds a list with one element
per word. Write two versions of this function, one using the append method and the other using
the idiom t = t + [x]. Which one takes longer to run? Why?

Solution: http: // thinkpython2. com/ code/ wordlist. py .
Exercise 10.10. To check whether a word is in the word list, you could use the in operator, but it
would be slow because it searches through the words in order.

Because the words are in alphabetical order, we can speed things up with a bisection search (also
known as binary search), which is similar to what you do when you look a word up in the dictionary
(the book, not the data structure). You start in the middle and check to see whether the word you are
looking for comes before the word in the middle of the list. If so, you search the first half of the list
the same way. Otherwise you search the second half.

Either way, you cut the remaining search space in half. If the word list has 113,809 words, it will
take about 17 steps to find the word or conclude that it’s not there.

Write a function called in_bisect that takes a sorted list and a target value and returns True if
the word is in the list and False if it’s not.

Or you could read the documentation of the bisect module and use that! Solution: http: //

thinkpython2. com/ code/ inlist. py .
Exercise 10.11. Two words are a “reverse pair” if each is the reverse of the other. Write a program
that finds all the reverse pairs in the word list. Solution: http: // thinkpython2. com/ code/
reverse_ pair. py .
Exercise 10.12. Two words “interlock” if taking alternating letters from each forms a new
word. For example, “shoe” and “cold” interlock to form “schooled”. Solution: http: //

https://hemanthrajhemu.github.io

102 Chapter 10. Lists

thinkpython2. com/ code/ interlock. py . Credit: This exercise is inspired by an example at
http: // puzzlers. org .

1. Write a program that finds all pairs of words that interlock. Hint: don’t enumerate all pairs!

2. Can you find any words that are three-way interlocked; that is, every third letter forms a
word, starting from the first, second or third?

https://hemanthrajhemu.github.io

Chapter 11

Dictionaries

This chapter presents another built-in type called a dictionary. Dictionaries are one of
Python’s best features; they are the building blocks of many efficient and elegant algo-
rithms.

11.1 A dictionary is a mapping

A dictionary is like a list, but more general. In a list, the indices have to be integers; in a
dictionary they can be (almost) any type.

A dictionary contains a collection of indices, which are called keys, and a collection of
values. Each key is associated with a single value. The association of a key and a value is
called a key-value pair or sometimes an item.

In mathematical language, a dictionary represents a mapping from keys to values, so you
can also say that each key “maps to” a value. As an example, we’ll build a dictionary that
maps from English to Spanish words, so the keys and the values are all strings.

The function dict creates a new dictionary with no items. Because dict is the name of a
built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()

>>> eng2sp

{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictionary,
you can use square brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key 'one' to the value 'uno'. If we print the
dictionary again, we see a key-value pair with a colon between the key and value:

>>> eng2sp

{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictionary
with three items:

https://hemanthrajhemu.github.io

104 Chapter 11. Dictionaries

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

But if you print eng2sp, you might be surprised:

>>> eng2sp

{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs might not be the same. If you type the same example
on your computer, you might get a different result. In general, the order of items in a
dictionary is unpredictable.

But that’s not a problem because the elements of a dictionary are never indexed with inte-
ger indices. Instead, you use the keys to look up the corresponding values:

>>> eng2sp['two']

'dos'

The key 'two' always maps to the value 'dos' so the order of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:

>>> eng2sp['four']

KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries, too; it tells you whether something appears as a key
in the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

To see whether something appears as a value in a dictionary, you can use the method
values, which returns a collection of values, and then use the in operator:

>>> vals = eng2sp.values()

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and dictionaries. For lists, it searches the
elements of the list in order, as in Section 8.6. As the list gets longer, the search time gets
longer in direct proportion.

Python dictionaries use a data structure called a hashtable that has a remarkable property:
the in operator takes about the same amount of time no matter how many items are in the
dictionary. I explain how that’s possible in Section B.4, but the explanation might not make
sense until you’ve read a few more chapters.

11.2 Dictionary as a collection of counters

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

https://hemanthrajhemu.github.io

11.2. Dictionary as a collection of counters 105

1. You could create 26 variables, one for each letter of the alphabet. Then you could tra-
verse the string and, for each character, increment the corresponding counter, proba-
bly using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character to
a number (using the built-in function ord), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the correspond-
ing values. The first time you see a character, you would add an item to the dictionary.
After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that
computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that we
don’t have to know ahead of time which letters appear in the string and we only have to
make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] += 1

return d

The name of the function is histogram, which is a statistical term for a collection of counters
(or frequencies).

The first line of the function creates an empty dictionary. The for loop traverses the string.
Each time through the loop, if the character c is not in the dictionary, we create a new item
with key c and the initial value 1 (since we have seen this letter once). If c is already in the
dictionary we increment d[c].

Here’s how it works:

>>> h = histogram('brontosaurus')

>>> h

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters 'a' and 'b' appear once; 'o' appears twice, and
so on.

Dictionaries have a method called get that takes a key and a default value. If the key
appears in the dictionary, get returns the corresponding value; otherwise it returns the
default value. For example:

>>> h = histogram('a')

>>> h

{'a': 1}

>>> h.get('a', 0)

https://hemanthrajhemu.github.io

106 Chapter 11. Dictionaries

1

>>> h.get('c', 0)

0

As an exercise, use get to write histogram more concisely. You should be able to eliminate
the if statement.

11.3 Looping and dictionaries

If you use a dictionary in a for statement, it traverses the keys of the dictionary. For exam-
ple, print_hist prints each key and the corresponding value:
def print_hist(h):

for c in h:

print(c, h[c])

Here’s what the output looks like:
>>> h = histogram('parrot')

>>> print_hist(h)

a 1

p 1

r 2

t 1

o 1

Again, the keys are in no particular order. To traverse the keys in sorted order, you can use
the built-in function sorted:
>>> for key in sorted(h):

... print(key, h[key])

a 1

o 1

p 1

r 2

t 1

11.4 Reverse lookup

Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k]. This
operation is called a lookup.

But what if you have v and you want to find k? You have two problems: first, there might
be more than one key that maps to the value v. Depending on the application, you might
be able to pick one, or you might have to make a list that contains all of them. Second,
there is no simple syntax to do a reverse lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that value:
def reverse_lookup(d, v):

for k in d:

if d[k] == v:

return k

raise LookupError()

https://hemanthrajhemu.github.io

11.5. Dictionaries and lists 107

This function is yet another example of the search pattern, but it uses a feature we haven’t
seen before, raise. The raise statement causes an exception; in this case it causes a
LookupError, which is a built-in exception used to indicate that a lookup operation failed.

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value, so
we raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram('parrot')

>>> key = reverse_lookup(h, 2)

>>> key

'r'

And an unsuccessful one:

>>> key = reverse_lookup(h, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 5, in reverse_lookup

LookupError

The effect when you raise an exception is the same as when Python raises one: it prints a
traceback and an error message.

When you raise an exception, you can provide a detailed error message as an optional
argument. For example:

>>> raise LookupError('value does not appear in the dictionary')

Traceback (most recent call last):

File "<stdin>", line 1, in ?

LookupError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or if the
dictionary gets big, the performance of your program will suffer.

11.5 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you are given a dictionary that
maps from letters to frequencies, you might want to invert it; that is, create a dictionary
that maps from frequencies to letters. Since there might be several letters with the same
frequency, each value in the inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:

def invert_dict(d):

inverse = dict()

for key in d:

val = d[key]

if val not in inverse:

inverse[val] = [key]

else:

inverse[val].append(key)

return inverse

https://hemanthrajhemu.github.io

108 Chapter 11. Dictionaries

’a’ 1

1

dict

hist

’p’

1

’o’ 1

’r’ 2

’t’

0

1

’a’

’p’

list

2 ’t’

’o’3

1

dict

inv

2 0

list

’r’

Figure 11.1: State diagram.

Each time through the loop, key gets a key from d and val gets the corresponding value.
If val is not in inverse, that means we haven’t seen it before, so we create a new item and
initialize it with a singleton (a list that contains a single element). Otherwise we have seen
this value before, so we append the corresponding key to the list.

Here is an example:

>>> hist = histogram('parrot')

>>> hist

{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}

>>> inverse = invert_dict(hist)

>>> inverse

{1: ['a', 'p', 't', 'o'], 2: ['r']}

Figure 11.1 is a state diagram showing hist and inverse. A dictionary is represented as a
box with the type dict above it and the key-value pairs inside. If the values are integers,
floats or strings, I draw them inside the box, but I usually draw lists outside the box, just
to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be keys. Here’s
what happens if you try:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'oops'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that means that
the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries
use these integers, called hash values, to store and look up key-value pairs.

This system works fine if the keys are immutable. But if the keys are mutable, like lists,
bad things happen. For example, when you create a key-value pair, Python hashes the key
and stores it in the corresponding location. If you modify the key and then hash it again, it
would go to a different location. In that case you might have two entries for the same key,
or you might not be able to find a key. Either way, the dictionary wouldn’t work correctly.

That’s why keys have to be hashable, and why mutable types like lists aren’t. The simplest
way to get around this limitation is to use tuples, which we will see in the next chapter.

https://hemanthrajhemu.github.io

11.6. Memos 109

fibonacci

n 4

fibonacci

n 3

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci

n 1

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

Figure 11.2: Call graph.

Since dictionaries are mutable, they can’t be used as keys, but they can be used as values.

11.6 Memos

If you played with the fibonacci function from Section 6.7, you might have noticed that
the bigger the argument you provide, the longer the function takes to run. Furthermore,
the run time increases quickly.

To understand why, consider Figure 11.2, which shows the call graph for fibonacci with
n=4:

A call graph shows a set of function frames, with lines connecting each frame to the frames
of the functions it calls. At the top of the graph, fibonacci with n=4 calls fibonacci with
n=3 and n=2. In turn, fibonacci with n=3 calls fibonacci with n=2 and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient
solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing them
in a dictionary. A previously computed value that is stored for later use is called a memo.
Here is a “memoized” version of fibonacci:

known = {0:0, 1:1}

def fibonacci(n):

if n in known:

return known[n]

res = fibonacci(n-1) + fibonacci(n-2)

known[n] = res

return res

known is a dictionary that keeps track of the Fibonacci numbers we already know. It starts
with two items: 0 maps to 0 and 1 maps to 1.

https://hemanthrajhemu.github.io

110 Chapter 11. Dictionaries

Whenever fibonacci is called, it checks known. If the result is already there, it can return
immediately. Otherwise it has to compute the new value, add it to the dictionary, and
return it.

If you run this version of fibonacci and compare it with the original, you will find that it
is much faster.

11.7 Global variables

In the previous example, known is created outside the function, so it belongs to the special
frame called __main__. Variables in __main__ are sometimes called global because they
can be accessed from any function. Unlike local variables, which disappear when their
function ends, global variables persist from one function call to the next.

It is common to use global variables for flags; that is, boolean variables that indicate (“flag”)
whether a condition is true. For example, some programs use a flag named verbose to
control the level of detail in the output:

verbose = True

def example1():

if verbose:

print('Running example1')

If you try to reassign a global variable, you might be surprised. The following example is
supposed to keep track of whether the function has been called:

been_called = False

def example2():

been_called = True # WRONG

But if you run it you will see that the value of been_called doesn’t change. The problem
is that example2 creates a new local variable named been_called. The local variable goes
away when the function ends, and has no effect on the global variable.

To reassign a global variable inside a function you have to declare the global variable before
you use it:

been_called = False

def example2():

global been_called

been_called = True

The global statement tells the interpreter something like, “In this function, when I say
been_called, I mean the global variable; don’t create a local one.”

Here’s an example that tries to update a global variable:

count = 0

def example3():

count = count + 1 # WRONG

If you run it you get:

https://hemanthrajhemu.github.io

11.8. Debugging 111

UnboundLocalError: local variable 'count' referenced before assignment

Python assumes that count is local, and under that assumption you are reading it before
writing it. The solution, again, is to declare count global.

def example3():

global count

count += 1

If a global variable refers to a mutable value, you can modify the value without declaring
the variable:

known = {0:0, 1:1}

def example4():

known[2] = 1

So you can add, remove and replace elements of a global list or dictionary, but if you want
to reassign the variable, you have to declare it:

def example5():

global known

known = dict()

Global variables can be useful, but if you have a lot of them, and you modify them fre-
quently, they can make programs hard to debug.

11.8 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and check-
ing the output by hand. Here are some suggestions for debugging large datasets:

Scale down the input: If possible, reduce the size of the dataset. For example if the pro-
gram reads a text file, start with just the first 10 lines, or with the smallest example
you can find. You can either edit the files themselves, or (better) modify the program
so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the error, and
then increase it gradually as you find and correct errors.

Check summaries and types: Instead of printing and checking the entire dataset, consider
printing summaries of the data: for example, the number of items in a dictionary or
the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For debugging
this kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that
the result is not greater than the largest element in the list or less than the smallest.
This is called a “sanity check” because it detects results that are “insane”.

Another kind of check compares the results of two different computations to see if
they are consistent. This is called a “consistency check”.

https://hemanthrajhemu.github.io

112 Chapter 11. Dictionaries

Format the output: Formatting debugging output can make it easier to spot an error. We
saw an example in Section 6.9. Another tool you might find useful is the pprint mod-
ule, which provides a pprint function that displays built-in types in a more human-
readable format (pprint stands for “pretty print”).

Again, time you spend building scaffolding can reduce the time you spend debugging.

11.9 Glossary
mapping: A relationship in which each element of one set corresponds to an element of

another set.

dictionary: A mapping from keys to their corresponding values.

key-value pair: The representation of the mapping from a key to a value.

item: In a dictionary, another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair. This is
more specific than our previous use of the word “value”.

implementation: A way of performing a computation.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location for a key.

hashable: A type that has a hash function. Immutable types like integers, floats and strings
are hashable; mutable types like lists and dictionaries are not.

lookup: A dictionary operation that takes a key and finds the corresponding value.

reverse lookup: A dictionary operation that takes a value and finds one or more keys that
map to it.

raise statement: A statement that (deliberately) raises an exception.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the execution of a program,
with an arrow from each caller to each callee.

memo: A computed value stored to avoid unnecessary future computation.

global variable: A variable defined outside a function. Global variables can be accessed
from any function.

global statement: A statement that declares a variable name global.

flag: A boolean variable used to indicate whether a condition is true.

declaration: A statement like global that tells the interpreter something about a variable.

https://hemanthrajhemu.github.io

11.10. Exercises 113

11.10 Exercises

Exercise 11.1. Write a function that reads the words in words.txt and stores them as keys in a
dictionary. It doesn’t matter what the values are. Then you can use the in operator as a fast way to
check whether a string is in the dictionary.

If you did Exercise 10.10, you can compare the speed of this implementation with the list in operator
and the bisection search.
Exercise 11.2. Read the documentation of the dictionary method setdefault and use it to write a
more concise version of invert_dict. Solution: http: // thinkpython2. com/ code/ invert_
dict. py .
Exercise 11.3. Memoize the Ackermann function from Exercise 6.2 and see if memoization
makes it possible to evaluate the function with bigger arguments. Hint: no. Solution: http:

// thinkpython2. com/ code/ ackermann_ memo. py .
Exercise 11.4. If you did Exercise 10.7, you already have a function named has_duplicates that
takes a list as a parameter and returns True if there is any object that appears more than once in the
list.

Use a dictionary to write a faster, simpler version of has_duplicates. Solution: http: //

thinkpython2. com/ code/ has_ duplicates. py .
Exercise 11.5. Two words are “rotate pairs” if you can rotate one of them and get the other (see
rotate_word in Exercise 8.5).

Write a program that reads a wordlist and finds all the rotate pairs. Solution: http: //

thinkpython2. com/ code/ rotate_ pairs. py .
Exercise 11.6. Here’s another Puzzler from Car Talk (http: // www. cartalk. com/ content/
puzzlers):

This was sent in by a fellow named Dan O’Leary. He came upon a common one-syllable,
five-letter word recently that has the following unique property. When you remove the
first letter, the remaining letters form a homophone of the original word, that is a word
that sounds exactly the same. Replace the first letter, that is, put it back and remove
the second letter and the result is yet another homophone of the original word. And the
question is, what’s the word?

Now I’m going to give you an example that doesn’t work. Let’s look at the five-letter
word, ‘wrack.’ W-R-A-C-K, you know like to ‘wrack with pain.’ If I remove the first
letter, I am left with a four-letter word, ’R-A-C-K.’ As in, ‘Holy cow, did you see the
rack on that buck! It must have been a nine-pointer!’ It’s a perfect homophone. If you
put the ‘w’ back, and remove the ‘r,’ instead, you’re left with the word, ‘wack,’ which is
a real word, it’s just not a homophone of the other two words.

But there is, however, at least one word that Dan and we know of, which will yield two
homophones if you remove either of the first two letters to make two, new four-letter
words. The question is, what’s the word?

You can use the dictionary from Exercise 11.1 to check whether a string is in the word list.

To check whether two words are homophones, you can use the CMU Pronouncing Dictionary. You
can download it from http: // www. speech. cs. cmu. edu/ cgi-bin/ cmudict or from http:

// thinkpython2. com/ code/ c06d and you can also download http: // thinkpython2.

com/ code/ pronounce. py , which provides a function named read_dictionary that reads the
pronouncing dictionary and returns a Python dictionary that maps from each word to a string that
describes its primary pronunciation.

https://hemanthrajhemu.github.io

114 Chapter 11. Dictionaries

Write a program that lists all the words that solve the Puzzler. Solution: http: // thinkpython2.
com/ code/ homophone. py .

https://hemanthrajhemu.github.io

Chapter 12

Tuples

This chapter presents one more built-in type, the tuple, and then shows how lists, dictionar-
ies, and tuples work together. I also present a useful feature for variable-length argument
lists, the gather and scatter operators.

One note: there is no consensus on how to pronounce “tuple”. Some people say “tuh-
ple”, which rhymes with “supple”. But in the context of programming, most people say
“too-ple”, which rhymes with “quadruple”.

12.1 Tuples are immutable

A tuple is a sequence of values. The values can be any type, and they are indexed by
integers, so in that respect tuples are a lot like lists. The important difference is that tuples
are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include a final comma:

>>> t1 = 'a',

>>> type(t1)

<class 'tuple'>

A value in parentheses is not a tuple:

>>> t2 = ('a')

>>> type(t2)

<class 'str'>

Another way to create a tuple is the built-in function tuple. With no argument, it creates
an empty tuple:

>>> t = tuple()

>>> t

()

https://hemanthrajhemu.github.io

116 Chapter 12. Tuples

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of
the sequence:

>>> t = tuple('lupins')

>>> t

('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a built-in function, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> t[0]

'a'

And the slice operator selects a range of elements.

>>> t[1:3]

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

Because tuples are immutable, you can’t modify the elements. But you can replace one
tuple with another:

>>> t = ('A',) + t[1:]

>>> t

('A', 'b', 'c', 'd', 'e')

This statement makes a new tuple and then makes t refer to it.

The relational operators work with tuples and other sequences; Python starts by comparing
the first element from each sequence. If they are equal, it goes on to the next elements, and
so on, until it finds elements that differ. Subsequent elements are not considered (even if
they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

12.2 Tuple assignment

It is often useful to swap the values of two variables. With conventional assignments, you
have to use a temporary variable. For example, to swap a and b:

>>> temp = a

>>> a = b

>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:

>>> a, b = b, a

https://hemanthrajhemu.github.io

12.3. Tuples as return values 117

The left side is a tuple of variables; the right side is a tuple of expressions. Each value
is assigned to its respective variable. All the expressions on the right side are evaluated
before any of the assignments.

The number of variables on the left and the number of values on the right have to be the
same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple). For exam-
ple, to split an email address into a user name and a domain, you could write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned to
uname, the second to domain.

>>> uname

'monty'

>>> domain

'python.org'

12.3 Tuples as return values

Strictly speaking, a function can only return one value, but if the value is a tuple, the effect
is the same as returning multiple values. For example, if you want to divide two integers
and compute the quotient and remainder, it is inefficient to compute x//y and then x%y. It
is better to compute them both at the same time.

The built-in function divmod takes two arguments and returns a tuple of two values, the
quotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> quot

2

>>> rem

1

Here is an example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a sequence.
min_max computes both and returns a tuple of two values.

https://hemanthrajhemu.github.io

118 Chapter 12. Tuples

12.4 Variable-length argument tuples

Functions can take a variable number of arguments. A parameter name that begins with
* gathers arguments into a tuple. For example, printall takes any number of arguments
and prints them:

def printall(*args):

print(args)

The gather parameter can have any name you like, but args is conventional. Here’s how
the function works:

>>> printall(1, 2.0, '3')

(1, 2.0, '3')

The complement of gather is scatter. If you have a sequence of values and you want to pass
it to a function as multiple arguments, you can use the * operator. For example, divmod
takes exactly two arguments; it doesn’t work with a tuple:

>>> t = (7, 3)

>>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)

(2, 1)

Many of the built-in functions use variable-length argument tuples. For example, max and
min can take any number of arguments:

>>> max(1, 2, 3)

3

But sum does not.

>>> sum(1, 2, 3)

TypeError: sum expected at most 2 arguments, got 3

As an exercise, write a function called sum_all that takes any number of arguments and
returns their sum.

12.5 Lists and tuples

zip is a built-in function that takes two or more sequences and interleaves them. The name
of the function refers to a zipper, which interleaves two rows of teeth.

This example zips a string and a list:

>>> s = 'abc'

>>> t = [0, 1, 2]

>>> zip(s, t)

<zip object at 0x7f7d0a9e7c48>

The result is a zip object that knows how to iterate through the pairs. The most common
use of zip is in a for loop:

https://hemanthrajhemu.github.io

12.5. Lists and tuples 119

>>> for pair in zip(s, t):

... print(pair)

...

('a', 0)

('b', 1)

('c', 2)

A zip object is a kind of iterator, which is any object that iterates through a sequence.
Iterators are similar to lists in some ways, but unlike lists, you can’t use an index to select
an element from an iterator.

If you want to use list operators and methods, you can use a zip object to make a list:

>>> list(zip(s, t))

[('a', 0), ('b', 1), ('c', 2)]

The result is a list of tuples; in this example, each tuple contains a character from the string
and the corresponding element from the list.

If the sequences are not the same length, the result has the length of the shorter one.

>>> list(zip('Anne', 'Elk'))

[('A', 'E'), ('n', 'l'), ('n', 'k')]

You can use tuple assignment in a for loop to traverse a list of tuples:

t = [('a', 0), ('b', 1), ('c', 2)]

for letter, number in t:

print(number, letter)

Each time through the loop, Python selects the next tuple in the list and assigns the ele-
ments to letter and number. The output of this loop is:

0 a

1 b

2 c

If you combine zip, for and tuple assignment, you get a useful idiom for traversing two
(or more) sequences at the same time. For example, has_match takes two sequences, t1
and t2, and returns True if there is an index i such that t1[i] == t2[i]:

def has_match(t1, t2):

for x, y in zip(t1, t2):

if x == y:

return True

return False

If you need to traverse the elements of a sequence and their indices, you can use the built-in
function enumerate:

for index, element in enumerate('abc'):

print(index, element)

The result from enumerate is an enumerate object, which iterates a sequence of pairs; each
pair contains an index (starting from 0) and an element from the given sequence. In this
example, the output is

0 a

1 b

2 c

Again.

https://hemanthrajhemu.github.io

120 Chapter 12. Tuples

12.6 Dictionaries and tuples

Dictionaries have a method called items that returns a sequence of tuples, where each
tuple is a key-value pair.
>>> d = {'a':0, 'b':1, 'c':2}

>>> t = d.items()

>>> t

dict_items([('c', 2), ('a', 0), ('b', 1)])

The result is a dict_items object, which is an iterator that iterates the key-value pairs. You
can use it in a for loop like this:
>>> for key, value in d.items():

... print(key, value)

...

c 2

a 0

b 1

As you should expect from a dictionary, the items are in no particular order.

Going in the other direction, you can use a list of tuples to initialize a new dictionary:
>>> t = [('a', 0), ('c', 2), ('b', 1)]

>>> d = dict(t)

>>> d

{'a': 0, 'c': 2, 'b': 1}

Combining dict with zip yields a concise way to create a dictionary:
>>> d = dict(zip('abc', range(3)))

>>> d

{'a': 0, 'c': 2, 'b': 1}

The dictionary method update also takes a list of tuples and adds them, as key-value pairs,
to an existing dictionary.

It is common to use tuples as keys in dictionaries (primarily because you can’t use lists). For
example, a telephone directory might map from last-name, first-name pairs to telephone
numbers. Assuming that we have defined last, first and number, we could write:
directory[last, first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse this dic-
tionary.
for last, first in directory:

print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples. It assigns the elements of each
tuple to last and first, then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. The more detailed version
shows the indices and elements just as they appear in a list. For example, the tuple
('Cleese', 'John') would appear as in Figure 12.1.

But in a larger diagram you might want to leave out the details. For example, a diagram of
the telephone directory might appear as in Figure 12.2.

Here the tuples are shown using Python syntax as a graphical shorthand. The telephone
number in the diagram is the complaints line for the BBC, so please don’t call it.

https://hemanthrajhemu.github.io

12.7. Sequences of sequences 121

0

1

’Cleese’

’John’

tuple

Figure 12.1: State diagram.

(’Cleese’, ’John’) ’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

(’Chapman’, ’Graham’)

(’Idle’, ’Eric’)

(’Jones’, ’Terry’)

(’Gilliam’, ’Terry’)

(’Palin’, ’Michael’) ’08700 100 222’

dict

Figure 12.2: State diagram.

12.7 Sequences of sequences

I have focused on lists of tuples, but almost all of the examples in this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how should you choose one over the others?

To start with the obvious, strings are more limited than other sequences because the ele-
ments have to be characters. They are also immutable. If you need the ability to change the
characters in a string (as opposed to creating a new string), you might want to use a list of
characters instead.

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

1. In some contexts, like a return statement, it is syntactically simpler to create a tuple
than a list.

2. If you want to use a sequence as a dictionary key, you have to use an immutable type
like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse, which
modify existing lists. But Python provides the built-in function sorted, which takes any
sequence and returns a new list with the same elements in sorted order, and reversed,
which takes a sequence and returns an iterator that traverses the list in reverse order.

https://hemanthrajhemu.github.io

122 Chapter 12. Tuples

12.8 Debugging

Lists, dictionaries and tuples are examples of data structures; in this chapter we are starting
to see compound data structures, like lists of tuples, or dictionaries that contain tuples as
keys and lists as values. Compound data structures are useful, but they are prone to what
I call shape errors; that is, errors caused when a data structure has the wrong type, size, or
structure. For example, if you are expecting a list with one integer and I give you a plain
old integer (not in a list), it won’t work.

To help debug these kinds of errors, I have written a module called structshape that
provides a function, also called structshape, that takes any kind of data structure as
an argument and returns a string that summarizes its shape. You can download it from
http://thinkpython2.com/code/structshape.py

Here’s the result for a simple list:

>>> from structshape import structshape

>>> t = [1, 2, 3]

>>> structshape(t)

'list of 3 int'

A fancier program might write “list of 3 ints”, but it was easier not to deal with plurals.
Here’s a list of lists:

>>> t2 = [[1,2], [3,4], [5,6]]

>>> structshape(t2)

'list of 3 list of 2 int'

If the elements of the list are not the same type, structshape groups them, in order, by
type:

>>> t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]

>>> structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int)'

Here’s a list of tuples:

>>> s = 'abc'

>>> lt = list(zip(t, s))

>>> structshape(lt)

'list of 3 tuple of (int, str)'

And here’s a dictionary with 3 items that map integers to strings.

>>> d = dict(lt)

>>> structshape(d)

'dict of 3 int->str'

If you are having trouble keeping track of your data structures, structshape can help.

12.9 Glossary
tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuple of vari-
ables on the left. The right side is evaluated and then its elements are assigned to the
variables on the left.

https://hemanthrajhemu.github.io

12.10. Exercises 123

gather: An operation that collects multiple arguments into a tuple.

scatter: An operation that makes a sequence behave like multiple arguments.

zip object: The result of calling a built-in function zip; an object that iterates through a
sequence of tuples.

iterator: An object that can iterate through a sequence, but which does not provide list
operators and methods.

data structure: A collection of related values, often organized in lists, dictionaries, tuples,
etc.

shape error: An error caused because a value has the wrong shape; that is, the wrong type
or size.

12.10 Exercises

Exercise 12.1. Write a function called most_frequent that takes a string and prints the let-
ters in decreasing order of frequency. Find text samples from several different languages and see
how letter frequency varies between languages. Compare your results with the tables at http:
// en. wikipedia. org/ wiki/ Letter_ frequencies . Solution: http: // thinkpython2.

com/ code/ most_ frequent. py .
Exercise 12.2. More anagrams!

1. Write a program that reads a word list from a file (see Section 9.1) and prints all the sets of
words that are anagrams.

Here is an example of what the output might look like:

['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']

['retainers', 'ternaries']

['generating', 'greatening']

['resmelts', 'smelters', 'termless']

Hint: you might want to build a dictionary that maps from a collection of letters to a list
of words that can be spelled with those letters. The question is, how can you represent the
collection of letters in a way that can be used as a key?

2. Modify the previous program so that it prints the longest list of anagrams first, followed by
the second longest, and so on.

3. In Scrabble a “bingo” is when you play all seven tiles in your rack, along with a letter on
the board, to form an eight-letter word. What collection of 8 letters forms the most possible
bingos?

Solution: http: // thinkpython2. com/ code/ anagram_ sets. py .

Exercise 12.3. Two words form a “metathesis pair” if you can transform one into the other by
swapping two letters; for example, “converse” and “conserve”. Write a program that finds all of
the metathesis pairs in the dictionary. Hint: don’t test all pairs of words, and don’t test all possible
swaps. Solution: http: // thinkpython2. com/ code/ metathesis. py . Credit: This exercise
is inspired by an example at http: // puzzlers. org .

https://hemanthrajhemu.github.io

124 Chapter 12. Tuples

Exercise 12.4. Here’s another Car Talk Puzzler (http: // www. cartalk. com/ content/
puzzlers):

What is the longest English word, that remains a valid English word, as you remove its
letters one at a time?

Now, letters can be removed from either end, or the middle, but you can’t rearrange any
of the letters. Every time you drop a letter, you wind up with another English word. If
you do that, you’re eventually going to wind up with one letter and that too is going
to be an English word—one that’s found in the dictionary. I want to know what’s the
longest word and how many letters does it have?

I’m going to give you a little modest example: Sprite. Ok? You start off with sprite,
you take a letter off, one from the interior of the word, take the r away, and we’re left
with the word spite, then we take the e off the end, we’re left with spit, we take the s off,
we’re left with pit, it, and I.

Write a program to find all words that can be reduced in this way, and then find the longest one.

This exercise is a little more challenging than most, so here are some suggestions:

1. You might want to write a function that takes a word and computes a list of all the words that
can be formed by removing one letter. These are the “children” of the word.

2. Recursively, a word is reducible if any of its children are reducible. As a base case, you can
consider the empty string reducible.

3. The wordlist I provided, words.txt, doesn’t contain single letter words. So you might want
to add “I”, “a”, and the empty string.

4. To improve the performance of your program, you might want to memoize the words that are
known to be reducible.

Solution: http: // thinkpython2. com/ code/ reducible. py .

https://hemanthrajhemu.github.io

