

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Contents xix

14.6 Databases . 141

14.7 Pickling . 142

14.8 Pipes . 142

14.9 Writing modules . 143

14.10 Debugging . 144

14.11 Glossary . 145

14.12 Exercises . 145

15 Classes and objects 147

15.1 Programmer-defined types . 147

15.2 Attributes . 148

15.3 Rectangles . 149

15.4 Instances as return values . 150

15.5 Objects are mutable . 151

15.6 Copying . 151

15.7 Debugging . 152

15.8 Glossary . 153

15.9 Exercises . 154

16 Classes and functions 155

16.1 Time . 155

16.2 Pure functions . 156

16.3 Modifiers . 157

16.4 Prototyping versus planning . 158

16.5 Debugging . 159

16.6 Glossary . 160

16.7 Exercises . 160

17 Classes and methods 161

17.1 Object-oriented features . 161

17.2 Printing objects . 162

17.3 Another example . 163

https://hemanthrajhemu.github.io

xx Contents

17.4 A more complicated example . 164

17.5 The init method . 164

17.6 The __str__ method . 165

17.7 Operator overloading . 165

17.8 Type-based dispatch . 166

17.9 Polymorphism . 167

17.10 Debugging . 168

17.11 Interface and implementation . 169

17.12 Glossary . 169

17.13 Exercises . 170

18 Inheritance 171

18.1 Card objects . 171

18.2 Class attributes . 172

18.3 Comparing cards . 173

18.4 Decks . 174

18.5 Printing the deck . 174

18.6 Add, remove, shuffle and sort . 175

18.7 Inheritance . 176

18.8 Class diagrams . 177

18.9 Debugging . 178

18.10 Data encapsulation . 179

18.11 Glossary . 180

18.12 Exercises . 181

19 The Goodies 183

19.1 Conditional expressions . 183

19.2 List comprehensions . 184

19.3 Generator expressions . 185

19.4 any and all . 185

19.5 Sets . 186

19.6 Counters . 187

https://hemanthrajhemu.github.io

Chapter 15

Classes and objects

At this point you know how to use functions to organize code and built-in types to organize
data. The next step is to learn “object-oriented programming”, which uses programmer-
defined types to organize both code and data. Object-oriented programming is a big topic;
it will take a few chapters to get there.

Code examples from this chapter are available from http://thinkpython2.com/code/

Point1.py; solutions to the exercises are available from http://thinkpython2.com/code/

Point1_soln.py.

15.1 Programmer-defined types

We have used many of Python’s built-in types; now we are going to define a new type. As
an example, we will create a type called Point that represents a point in two-dimensional
space.

In mathematical notation, points are often written in parentheses with a comma separating
the coordinates. For example, (0, 0) represents the origin, and (x, y) represents the point x
units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is more complicated than the other options, but it has advantages that
will be apparent soon.

A programmer-defined type is also called a class. A class definition looks like this:

class Point:

"""Represents a point in 2-D space."""

https://hemanthrajhemu.github.io

148 Chapter 15. Classes and objects

x

y

3.0

4.0

blank

Point

Figure 15.1: Object diagram.

The header indicates that the new class is called Point. The body is a docstring that ex-
plains what the class is for. You can define variables and methods inside a class definition,
but we will get back to that later.

Defining a class named Point creates a class object.

>>> Point

<class '__main__.Point'>

Because Point is defined at the top level, its “full name” is __main__.Point.

The class object is like a factory for creating objects. To create a Point, you call Point as if it
were a function.

>>> blank = Point()

>>> blank

<__main__.Point object at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank.

Creating a new object is called instantiation, and the object is an instance of the class.

When you print an instance, Python tells you what class it belongs to and where it is stored
in memory (the prefix 0x means that the following number is in hexadecimal).

Every object is an instance of some class, so “object” and “instance” are interchangeable.
But in this chapter I use “instance” to indicate that I am talking about a programmer-
defined type.

15.2 Attributes

You can assign values to an instance using dot notation:

>>> blank.x = 3.0

>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi
or string.whitespace. In this case, though, we are assigning values to named elements of
an object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed to
“a-TRIB-ute”, which is a verb.

Figure 15.1 is a state diagram that shows the result of these assignments. A state diagram
that shows an object and its attributes is called an object diagram.

The variable blank refers to a Point object, which contains two attributes. Each attribute
refers to a floating-point number.

You can read the value of an attribute using the same syntax:

https://hemanthrajhemu.github.io

15.3. Rectangles 149

>>> blank.y

4.0

>>> x = blank.x

>>> x

3.0

The expression blank.x means, “Go to the object blank refers to and get the value of x.” In
the example, we assign that value to a variable named x. There is no conflict between the
variable x and the attribute x.

You can use dot notation as part of any expression. For example:

>>> '(%g, %g)' % (blank.x, blank.y)

'(3.0, 4.0)'

>>> distance = math.sqrt(blank.x**2 + blank.y**2)

>>> distance

5.0

You can pass an instance as an argument in the usual way. For example:

def print_point(p):

print('(%g, %g)' % (p.x, p.y))

print_point takes a point as an argument and displays it in mathematical notation. To
invoke it, you can pass blank as an argument:

>>> print_point(blank)

(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank changes.

As an exercise, write a function called distance_between_points that takes two Points as
arguments and returns the distance between them.

15.3 Rectangles

Sometimes it is obvious what the attributes of an object should be, but other times you have
to make decisions. For example, imagine you are designing a class to represent rectangles.
What attributes would you use to specify the location and size of a rectangle? You can ig-
nore angle; to keep things simple, assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the
height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement the
first one, just as an example.

Here is the class definition:

https://hemanthrajhemu.github.io

150 Chapter 15. Classes and objects

y

0.0x

0.0

width 100.0

corner

200.0

Point

Rectangle

box

height

Figure 15.2: Object diagram.

class Rectangle:

"""Represents a rectangle.

attributes: width, height, corner.

"""

The docstring lists the attributes: width and height are numbers; corner is a Point object
that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values to the
attributes:

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select the attribute
named corner; then go to that object and select the attribute named x.”

Figure 15.2 shows the state of this object. An object that is an attribute of another object is
embedded.

15.4 Instances as return values

Functions can return instances. For example, find_center takes a Rectangle as an argu-
ment and returns a Point that contains the coordinates of the center of the Rectangle:

def find_center(rect):

p = Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

Here is an example that passes box as an argument and assigns the resulting Point to
center:

>>> center = find_center(box)

>>> print_point(center)

(50, 100)

https://hemanthrajhemu.github.io

15.5. Objects are mutable 151

15.5 Objects are mutable

You can change the state of an object by making an assignment to one of its attributes. For
example, to change the size of a rectangle without changing its position, you can modify
the values of width and height:

box.width = box.width + 50

box.height = box.height + 100

You can also write functions that modify objects. For example, grow_rectangle takes a
Rectangle object and two numbers, dwidth and dheight, and adds the numbers to the
width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight):

rect.width += dwidth

rect.height += dheight

Here is an example that demonstrates the effect:

>>> box.width, box.height

(150.0, 300.0)

>>> grow_rectangle(box, 50, 100)

>>> box.width, box.height

(200.0, 400.0)

Inside the function, rect is an alias for box, so when the function modifies rect, box
changes.

As an exercise, write a function named move_rectangle that takes a Rectangle and two
numbers named dx and dy. It should change the location of the rectangle by adding dx to
the x coordinate of corner and adding dy to the y coordinate of corner.

15.6 Copying

Aliasing can make a program difficult to read because changes in one place might have
unexpected effects in another place. It is hard to keep track of all the variables that might
refer to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a function
called copy that can duplicate any object:

>>> p1 = Point()

>>> p1.x = 3.0

>>> p1.y = 4.0

>>> import copy

>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.

>>> print_point(p1)

(3, 4)

>>> print_point(p2)

(3, 4)

>>> p1 is p2

False

https://hemanthrajhemu.github.io

152 Chapter 15. Classes and objects

y

0.0x

0.0

width

height

100.0

corner

200.0

box 100.0

200.0

width

height

corner

box2

Figure 15.3: Object diagram.

>>> p1 == p2

False

The is operator indicates that p1 and p2 are not the same object, which is what we ex-
pected. But you might have expected == to yield True because these points contain the
same data. In that case, you will be disappointed to learn that for instances, the default
behavior of the == operator is the same as the is operator; it checks object identity, not
object equivalence. That’s because for programmer-defined types, Python doesn’t know
what should be considered equivalent. At least, not yet.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectangle
object but not the embedded Point.

>>> box2 = copy.copy(box)

>>> box2 is box

False

>>> box2.corner is box.corner

True

Figure 15.3 shows what the object diagram looks like. This operation is called a shallow
copy because it copies the object and any references it contains, but not the embedded
objects.

For most applications, this is not what you want. In this example, invoking
grow_rectangle on one of the Rectangles would not affect the other, but invoking
move_rectangle on either would affect both! This behavior is confusing and error-prone.

Fortunately, the copy module provides a method named deepcopy that copies not only the
object but also the objects it refers to, and the objects they refer to, and so on. You will not
be surprised to learn that this operation is called a deep copy.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.corner is box.corner

False

box3 and box are completely separate objects.

As an exercise, write a version of move_rectangle that creates and returns a new Rectangle
instead of modifying the old one.

15.7 Debugging

When you start working with objects, you are likely to encounter some new exceptions. If
you try to access an attribute that doesn’t exist, you get an AttributeError:

https://hemanthrajhemu.github.io

15.8. Glossary 153

>>> p = Point()

>>> p.x = 3

>>> p.y = 4

>>> p.z

AttributeError: Point instance has no attribute 'z'

If you are not sure what type an object is, you can ask:
>>> type(p)

<class '__main__.Point'>

You can also use isinstance to check whether an object is an instance of a class:
>>> isinstance(p, Point)

True

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr:
>>> hasattr(p, 'x')

True

>>> hasattr(p, 'z')

False

The first argument can be any object; the second argument is a string that contains the name
of the attribute.

You can also use a try statement to see if the object has the attributes you need:
try:

x = p.x

except AttributeError:

x = 0

This approach can make it easier to write functions that work with different types; more
on that topic is coming up in Section 17.9.

15.8 Glossary
class: A programmer-defined type. A class definition creates a new class object.

class object: An object that contains information about a programmer-defined type. The
class object can be used to create instances of the type.

instance: An object that belongs to a class.

instantiate: To create a new object.

attribute: One of the named values associated with an object.

embedded object: An object that is stored as an attribute of another object.

shallow copy: To copy the contents of an object, including any references to embedded
objects; implemented by the copy function in the copy module.

deep copy: To copy the contents of an object as well as any embedded objects, and any
objects embedded in them, and so on; implemented by the deepcopy function in the
copy module.

object diagram: A diagram that shows objects, their attributes, and the values of the at-
tributes.

https://hemanthrajhemu.github.io

154 Chapter 15. Classes and objects

15.9 Exercises

Exercise 15.1. Write a definition for a class named Circle with attributes center and radius,
where center is a Point object and radius is a number.

Instantiate a Circle object that represents a circle with its center at (150, 100) and radius 75.

Write a function named point_in_circle that takes a Circle and a Point and returns True if the
Point lies in or on the boundary of the circle.

Write a function named rect_in_circle that takes a Circle and a Rectangle and returns True if
the Rectangle lies entirely in or on the boundary of the circle.

Write a function named rect_circle_overlap that takes a Circle and a Rectangle and returns
True if any of the corners of the Rectangle fall inside the circle. Or as a more challenging version,
return True if any part of the Rectangle falls inside the circle.

Solution: http: // thinkpython2. com/ code/ Circle. py .
Exercise 15.2. Write a function called draw_rect that takes a Turtle object and a Rectangle and
uses the Turtle to draw the Rectangle. See Chapter 4 for examples using Turtle objects.

Write a function called draw_circle that takes a Turtle and a Circle and draws the Circle.

Solution: http: // thinkpython2. com/ code/ draw. py .

https://hemanthrajhemu.github.io

Chapter 16

Classes and functions

Now that we know how to create new types, the next step is to write functions that take
programmer-defined objects as parameters and return them as results. In this chapter I
also present “functional programming style” and two new program development plans.

Code examples from this chapter are available from http://thinkpython2.com/code/

Time1.py. Solutions to the exercises are at http://thinkpython2.com/code/Time1_soln.
py.

16.1 Time

As another example of a programmer-defined type, we’ll define a class called Time that
records the time of day. The class definition looks like this:

class Time:

"""Represents the time of day.

attributes: hour, minute, second

"""

We can create a new Time object and assign attributes for hours, minutes, and seconds:

time = Time()

time.hour = 11

time.minute = 59

time.second = 30

The state diagram for the Time object looks like Figure 16.1.

As an exercise, write a function called print_time that takes a Time object and prints it in
the form hour:minute:second. Hint: the format sequence '%.2d' prints an integer using
at least two digits, including a leading zero if necessary.

Write a boolean function called is_after that takes two Time objects, t1 and t2, and re-
turns True if t1 follows t2 chronologically and False otherwise. Challenge: don’t use an
if statement.

https://hemanthrajhemu.github.io

156 Chapter 16. Classes and functions

59

30

hour

minute

second

11

Time

time

Figure 16.1: Object diagram.

16.2 Pure functions

In the next few sections, we’ll write two functions that add time values. They demonstrate
two kinds of functions: pure functions and modifiers. They also demonstrate a develop-
ment plan I’ll call prototype and patch, which is a way of tackling a complex problem by
starting with a simple prototype and incrementally dealing with the complications.

Here is a simple prototype of add_time:
def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

return sum

The function creates a new Time object, initializes its attributes, and returns a reference to
the new object. This is called a pure function because it does not modify any of the objects
passed to it as arguments and it has no effect, like displaying a value or getting user input,
other than returning a value.

To test this function, I’ll create two Time objects: start contains the start time of a movie,
like Monty Python and the Holy Grail, and duration contains the run time of the movie,
which is one hour 35 minutes.

add_time figures out when the movie will be done.
>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 0

>>> duration = Time()

>>> duration.hour = 1

>>> duration.minute = 35

>>> duration.second = 0

>>> done = add_time(start, duration)

>>> print_time(done)

10:80:00

The result, 10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seconds or minutes adds up to
more than sixty. When that happens, we have to “carry” the extra seconds into the minute
column or the extra minutes into the hour column.

Here’s an improved version:

https://hemanthrajhemu.github.io

16.3. Modifiers 157

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

if sum.second >= 60:

sum.second -= 60

sum.minute += 1

if sum.minute >= 60:

sum.minute -= 60

sum.hour += 1

return sum

Although this function is correct, it is starting to get big. We will see a shorter alternative
later.

16.3 Modifiers

Sometimes it is useful for a function to modify the objects it gets as parameters. In that case,
the changes are visible to the caller. Functions that work this way are called modifiers.

increment, which adds a given number of seconds to a Time object, can be written naturally
as a modifier. Here is a rough draft:

def increment(time, seconds):

time.second += seconds

if time.second >= 60:

time.second -= 60

time.minute += 1

if time.minute >= 60:

time.minute -= 60

time.hour += 1

The first line performs the basic operation; the remainder deals with the special cases we
saw before.

Is this function correct? What happens if seconds is much greater than sixty?

In that case, it is not enough to carry once; we have to keep doing it until time.second is
less than sixty. One solution is to replace the if statements with while statements. That
would make the function correct, but not very efficient. As an exercise, write a correct
version of increment that doesn’t contain any loops.

Anything that can be done with modifiers can also be done with pure functions. In fact,
some programming languages only allow pure functions. There is some evidence that
programs that use pure functions are faster to develop and less error-prone than programs
that use modifiers. But modifiers are convenient at times, and functional programs tend to
be less efficient.

https://hemanthrajhemu.github.io

158 Chapter 16. Classes and functions

In general, I recommend that you write pure functions whenever it is reasonable and resort
to modifiers only if there is a compelling advantage. This approach might be called a
functional programming style.

As an exercise, write a “pure” version of increment that creates and returns a new Time
object rather than modifying the parameter.

16.4 Prototyping versus planning

The development plan I am demonstrating is called “prototype and patch”. For each func-
tion, I wrote a prototype that performed the basic calculation and then tested it, patching
errors along the way.

This approach can be effective, especially if you don’t yet have a deep understanding
of the problem. But incremental corrections can generate code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it is hard to
know if you have found all the errors.

An alternative is designed development, in which high-level insight into the problem can
make the programming much easier. In this case, the insight is that a Time object is really
a three-digit number in base 60 (see http://en.wikipedia.org/wiki/Sexagesimal.)! The
second attribute is the “ones column”, the minute attribute is the “sixties column”, and the
hour attribute is the “thirty-six hundreds column”.

When we wrote add_time and increment, we were effectively doing addition in base 60,
which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert Time
objects to integers and take advantage of the fact that the computer knows how to do
integer arithmetic.

Here is a function that converts Times to integers:
def time_to_int(time):

minutes = time.hour * 60 + time.minute

seconds = minutes * 60 + time.second

return seconds

And here is a function that converts an integer to a Time (recall that divmod divides the first
argument by the second and returns the quotient and remainder as a tuple).
def int_to_time(seconds):

time = Time()

minutes, time.second = divmod(seconds, 60)

time.hour, time.minute = divmod(minutes, 60)

return time

You might have to think a bit, and run some tests, to convince yourself that these functions
are correct. One way to test them is to check that time_to_int(int_to_time(x)) == x for
many values of x. This is an example of a consistency check.

Once you are convinced they are correct, you can use them to rewrite add_time:
def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

https://hemanthrajhemu.github.io

16.5. Debugging 159

This version is shorter than the original, and easier to verify. As an exercise, rewrite
increment using time_to_int and int_to_time.

In some ways, converting from base 60 to base 10 and back is harder than just dealing with
times. Base conversion is more abstract; our intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers and make the investment of
writing the conversion functions (time_to_int and int_to_time), we get a program that
is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to find
the duration between them. The naive approach would be to implement subtraction with
borrowing. Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (because
there are fewer special cases and fewer opportunities for error).

16.5 Debugging

A Time object is well-formed if the values of minute and second are between 0 and 60
(including 0 but not 60) and if hour is positive. hour and minute should be integral values,
but we might allow second to have a fraction part.

Requirements like these are called invariants because they should always be true. To put
it a different way, if they are not true, something has gone wrong.

Writing code to check invariants can help detect errors and find their causes. For example,
you might have a function like valid_time that takes a Time object and returns False if it
violates an invariant:

def valid_time(time):

if time.hour < 0 or time.minute < 0 or time.second < 0:

return False

if time.minute >= 60 or time.second >= 60:

return False

return True

At the beginning of each function you could check the arguments to make sure they are
valid:

def add_time(t1, t2):

if not valid_time(t1) or not valid_time(t2):

raise ValueError('invalid Time object in add_time')

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

Or you could use an assert statement, which checks a given invariant and raises an excep-
tion if it fails:

def add_time(t1, t2):

assert valid_time(t1) and valid_time(t2)

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

assert statements are useful because they distinguish code that deals with normal condi-
tions from code that checks for errors.

https://hemanthrajhemu.github.io

160 Chapter 16. Classes and functions

16.6 Glossary
prototype and patch: A development plan that involves writing a rough draft of a pro-

gram, testing, and correcting errors as they are found.

designed development: A development plan that involves high-level insight into the
problem and more planning than incremental development or prototype develop-
ment.

pure function: A function that does not modify any of the objects it receives as arguments.
Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receives as arguments. Most
modifiers are void; that is, they return None.

functional programming style: A style of program design in which the majority of func-
tions are pure.

invariant: A condition that should always be true during the execution of a program.

assert statement: A statement that check a condition and raises an exception if it fails.

16.7 Exercises

Code examples from this chapter are available from http://thinkpython2.com/code/

Time1.py; solutions to the exercises are available from http://thinkpython2.com/code/

Time1_soln.py.
Exercise 16.1. Write a function called mul_time that takes a Time object and a number and returns
a new Time object that contains the product of the original Time and the number.

Then use mul_time to write a function that takes a Time object that represents the finishing time
in a race, and a number that represents the distance, and returns a Time object that represents the
average pace (time per mile).
Exercise 16.2. The datetime module provides time objects that are similar to the Time objects
in this chapter, but they provide a rich set of methods and operators. Read the documentation at
http: // docs. python. org/ 3/ library/ datetime. html .

1. Use the datetime module to write a program that gets the current date and prints the day of
the week.

2. Write a program that takes a birthday as input and prints the user’s age and the number of
days, hours, minutes and seconds until their next birthday.

3. For two people born on different days, there is a day when one is twice as old as the other.
That’s their Double Day. Write a program that takes two birth dates and computes their
Double Day.

4. For a little more challenge, write the more general version that computes the day when one
person is n times older than the other.

Solution: http: // thinkpython2. com/ code/ double. py

https://hemanthrajhemu.github.io

Chapter 17

Classes and methods

Although we are using some of Python’s object-oriented features, the programs from the
last two chapters are not really object-oriented because they don’t represent the relation-
ships between programmer-defined types and the functions that operate on them. The next
step is to transform those functions into methods that make the relationships explicit.

Code examples from this chapter are available from http://thinkpython2.com/code/

Time2.py, and solutions to the exercises are in http://thinkpython2.com/code/Point2_

soln.py.

17.1 Object-oriented features

Python is an object-oriented programming language, which means that it provides fea-
tures that support object-oriented programming, which has these defining characteristics:

• Programs include class and method definitions.

• Most of the computation is expressed in terms of operations on objects.

• Objects often represent things in the real world, and methods often correspond to the
ways things in the real world interact.

For example, the Time class defined in Chapter 16 corresponds to the way people record
the time of day, and the functions we defined correspond to the kinds of things people do
with times. Similarly, the Point and Rectangle classes in Chapter 15 correspond to the
mathematical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-
oriented programming. These features are not strictly necessary; most of them provide
alternative syntax for things we have already done. But in many cases, the alternative is
more concise and more accurately conveys the structure of the program.

For example, in Time1.py there is no obvious connection between the class definition and
the function definitions that follow. With some examination, it is apparent that every func-
tion takes at least one Time object as an argument.

https://hemanthrajhemu.github.io

162 Chapter 17. Classes and methods

This observation is the motivation for methods; a method is a function that is associated
with a particular class. We have seen methods for strings, lists, dictionaries and tuples. In
this chapter, we will define methods for programmer-defined types.

Methods are semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship be-
tween the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling a function.

In the next few sections, we will take the functions from the previous two chapters and
transform them into methods. This transformation is purely mechanical; you can do it by
following a sequence of steps. If you are comfortable converting from one form to another,
you will be able to choose the best form for whatever you are doing.

17.2 Printing objects

In Chapter 16, we defined a class named Time and in Section 16.1, you wrote a function
named print_time:

class Time:

"""Represents the time of day."""

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

To call this function, you have to pass a Time object as an argument:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

>>> print_time(start)

09:45:00

To make print_time a method, all we have to do is move the function definition inside the
class definition. Notice the change in indentation.

class Time:

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

Now there are two ways to call print_time. The first (and less common) way is to use
function syntax:

>>> Time.print_time(start)

09:45:00

In this use of dot notation, Time is the name of the class, and print_time is the name of the
method. start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()

09:45:00

https://hemanthrajhemu.github.io

17.3. Another example 163

In this use of dot notation, print_time is the name of the method (again), and start is
the object the method is invoked on, which is called the subject. Just as the subject of
a sentence is what the sentence is about, the subject of a method invocation is what the
method is about.

Inside the method, the subject is assigned to the first parameter, so in this case start is
assigned to time.

By convention, the first parameter of a method is called self, so it would be more common
to write print_time like this:

class Time:

def print_time(self):

print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

The reason for this convention is an implicit metaphor:

• The syntax for a function call, print_time(start), suggests that the function is the
active agent. It says something like, “Hey print_time! Here’s an object for you to
print.”

• In object-oriented programming, the objects are the active agents. A method invoca-
tion like start.print_time() says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it is useful. In the
examples we have seen so far, it may not be. But sometimes shifting responsibility from the
functions onto the objects makes it possible to write more versatile functions (or methods),
and makes it easier to maintain and reuse code.

As an exercise, rewrite time_to_int (from Section 16.4) as a method. You might be tempted
to rewrite int_to_time as a method, too, but that doesn’t really make sense because there
would be no object to invoke it on.

17.3 Another example

Here’s a version of increment (from Section 16.3) rewritten as a method:

inside class Time:

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

This version assumes that time_to_int is written as a method. Also, note that it is a pure
function, not a modifier.

Here’s how you would invoke increment:

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)

>>> end.print_time()

10:07:17

https://hemanthrajhemu.github.io

164 Chapter 17. Classes and methods

The subject, start, gets assigned to the first parameter, self. The argument, 1337, gets
assigned to the second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example, if you
invoke increment with two arguments, you get:

>>> end = start.increment(1337, 460)

TypeError: increment() takes 2 positional arguments but 3 were given

The error message is initially confusing, because there are only two arguments in paren-
theses. But the subject is also considered an argument, so all together that’s three.

By the way, a positional argument is an argument that doesn’t have a parameter name;
that is, it is not a keyword argument. In this function call:

sketch(parrot, cage, dead=True)

parrot and cage are positional, and dead is a keyword argument.

17.4 A more complicated example

Rewriting is_after (from Section 16.1) is slightly more complicated because it takes two
Time objects as parameters. In this case it is conventional to name the first parameter self
and the second parameter other:

inside class Time:

def is_after(self, other):

return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as an argument:

>>> end.is_after(start)

True

One nice thing about this syntax is that it almost reads like English: “end is after start?”

17.5 The init method

The init method (short for “initialization”) is a special method that gets invoked when an
object is instantiated. Its full name is __init__ (two underscore characters, followed by
init, and then two more underscores). An init method for the Time class might look like
this:

inside class Time:

def __init__(self, hour=0, minute=0, second=0):

self.hour = hour

self.minute = minute

self.second = second

It is common for the parameters of __init__ to have the same names as the attributes. The
statement

self.hour = hour

https://hemanthrajhemu.github.io

17.6. The __str__ method 165

stores the value of the parameter hour as an attribute of self.

The parameters are optional, so if you call Time with no arguments, you get the default
values.

>>> time = Time()

>>> time.print_time()

00:00:00

If you provide one argument, it overrides hour:

>>> time = Time (9)

>>> time.print_time()

09:00:00

If you provide two arguments, they override hour and minute.

>>> time = Time(9, 45)

>>> time.print_time()

09:45:00

And if you provide three arguments, they override all three default values.

As an exercise, write an init method for the Point class that takes x and y as optional
parameters and assigns them to the corresponding attributes.

17.6 The __str__ method

__str__ is a special method, like __init__, that is supposed to return a string representa-
tion of an object.

For example, here is a str method for Time objects:

inside class Time:

def __str__(self):

return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

When you print an object, Python invokes the str method:

>>> time = Time(9, 45)

>>> print(time)

09:45:00

When I write a new class, I almost always start by writing __init__, which makes it easier
to instantiate objects, and __str__, which is useful for debugging.

As an exercise, write a str method for the Point class. Create a Point object and print it.

17.7 Operator overloading

By defining other special methods, you can specify the behavior of operators on
programmer-defined types. For example, if you define a method named __add__ for the
Time class, you can use the + operator on Time objects.

Here is what the definition might look like:

https://hemanthrajhemu.github.io

166 Chapter 17. Classes and methods

inside class Time:

def __add__(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

When you apply the + operator to Time objects, Python invokes __add__. When you print
the result, Python invokes __str__. So there is a lot happening behind the scenes!

Changing the behavior of an operator so that it works with programmer-defined types is
called operator overloading. For every operator in Python there is a corresponding spe-
cial method, like __add__. For more details, see http://docs.python.org/3/reference/

datamodel.html#specialnames.

As an exercise, write an add method for the Point class.

17.8 Type-based dispatch

In the previous section we added two Time objects, but you also might want to add an
integer to a Time object. The following is a version of __add__ that checks the type of
other and invokes either add_time or increment:

inside class Time:

def __add__(self, other):

if isinstance(other, Time):

return self.add_time(other)

else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if the
value is an instance of the class.

If other is a Time object, __add__ invokes add_time. Otherwise it assumes that the param-
eter is a number and invokes increment. This operation is called a type-based dispatch
because it dispatches the computation to different methods based on the type of the argu-
ments.

Here are examples that use the + operator with different types:

https://hemanthrajhemu.github.io

17.9. Polymorphism 167

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

>>> print(start + 1337)

10:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the
first operand, you get

>>> print(1337 + start)

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking an
integer to add a Time object, and it doesn’t know how. But there is a clever solution for this
problem: the special method __radd__, which stands for “right-side add”. This method
is invoked when a Time object appears on the right side of the + operator. Here’s the
definition:

inside class Time:

def __radd__(self, other):

return self.__add__(other)

And here’s how it’s used:

>>> print(1337 + start)

10:07:17

As an exercise, write an add method for Points that works with either a Point object or a
tuple:

• If the second operand is a Point, the method should return a new Point whose x
coordinate is the sum of the x coordinates of the operands, and likewise for the y
coordinates.

• If the second operand is a tuple, the method should add the first element of the tuple
to the x coordinate and the second element to the y coordinate, and return a new
Point with the result.

17.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not always neces-
sary. Often you can avoid it by writing functions that work correctly for arguments with
different types.

Many of the functions we wrote for strings also work for other sequence types. For exam-
ple, in Section 11.2 we used histogram to count the number of times each letter appears in
a word.

def histogram(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

https://hemanthrajhemu.github.io

168 Chapter 17. Classes and methods

else:

d[c] = d[c]+1

return d

This function also works for lists, tuples, and even dictionaries, as long as the elements of
s are hashable, so they can be used as keys in d.
>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']

>>> histogram(t)

{'bacon': 1, 'egg': 1, 'spam': 4}

Functions that work with several types are called polymorphic. Polymorphism can fa-
cilitate code reuse. For example, the built-in function sum, which adds the elements of a
sequence, works as long as the elements of the sequence support addition.

Since Time objects provide an add method, they work with sum:
>>> t1 = Time(7, 43)

>>> t2 = Time(7, 41)

>>> t3 = Time(7, 37)

>>> total = sum([t1, t2, t3])

>>> print(total)

23:01:00

In general, if all of the operations inside a function work with a given type, the function
works with that type.

The best kind of polymorphism is the unintentional kind, where you discover that a func-
tion you already wrote can be applied to a type you never planned for.

17.10 Debugging

It is legal to add attributes to objects at any point in the execution of a program, but if
you have objects with the same type that don’t have the same attributes, it is easy to make
mistakes. It is considered a good idea to initialize all of an object’s attributes in the init
method.

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr (see Section 15.7).

Another way to access attributes is the built-in function vars, which takes an object and
returns a dictionary that maps from attribute names (as strings) to their values:
>>> p = Point(3, 4)

>>> vars(p)

{'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep this function handy:
def print_attributes(obj):

for attr in vars(obj):

print(attr, getattr(obj, attr))

print_attributes traverses the dictionary and prints each attribute name and its corre-
sponding value.

The built-in function getattr takes an object and an attribute name (as a string) and returns
the attribute’s value.

https://hemanthrajhemu.github.io

17.11. Interface and implementation 169

17.11 Interface and implementation

One of the goals of object-oriented design is to make software more maintainable, which
means that you can keep the program working when other parts of the system change, and
modify the program to meet new requirements.

A design principle that helps achieve that goal is to keep interfaces separate from imple-
mentations. For objects, that means that the methods a class provides should not depend
on how the attributes are represented.

For example, in this chapter we developed a class that represents a time of day. Methods
provided by this class include time_to_int, is_after, and add_time.

We could implement those methods in several ways. The details of the implementation
depend on how we represent time. In this chapter, the attributes of a Time object are hour,
minute, and second.

As an alternative, we could replace these attributes with a single integer representing the
number of seconds since midnight. This implementation would make some methods, like
is_after, easier to write, but it makes other methods harder.

After you deploy a new class, you might discover a better implementation. If other parts
of the program are using your class, it might be time-consuming and error-prone to change
the interface.

But if you designed the interface carefully, you can change the implementation without
changing the interface, which means that other parts of the program don’t have to change.

17.12 Glossary
object-oriented language: A language that provides features, such as programmer-

defined types and methods, that facilitate object-oriented programming.

object-oriented programming: A style of programming in which data and the operations
that manipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is invoked on instances of
that class.

subject: The object a method is invoked on.

positional argument: An argument that does not include a parameter name, so it is not a
keyword argument.

operator overloading: Changing the behavior of an operator like + so it works with a
programmer-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and in-
vokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type.

https://hemanthrajhemu.github.io

170 Chapter 17. Classes and methods

17.13 Exercises

Exercise 17.1. Download the code from this chapter from http: // thinkpython2. com/ code/

Time2. py . Change the attributes of Time to be a single integer representing seconds since mid-
night. Then modify the methods (and the function int_to_time) to work with the new implemen-
tation. You should not have to modify the test code in main. When you are done, the output should
be the same as before. Solution: http: // thinkpython2. com/ code/ Time2_ soln. py .
Exercise 17.2. This exercise is a cautionary tale about one of the most common, and difficult to
find, errors in Python. Write a definition for a class named Kangaroo with the following methods:

1. An __init__ method that initializes an attribute named pouch_contents to an empty list.

2. A method named put_in_pouch that takes an object of any type and adds it to
pouch_contents.

3. A __str__ method that returns a string representation of the Kangaroo object and the con-
tents of the pouch.

Test your code by creating two Kangaroo objects, assigning them to variables named kanga and
roo, and then adding roo to the contents of kanga’s pouch.

Download http: // thinkpython2. com/ code/ BadKangaroo. py . It contains a solution to the
previous problem with one big, nasty bug. Find and fix the bug.

If you get stuck, you can download http: // thinkpython2. com/ code/ GoodKangaroo. py ,
which explains the problem and demonstrates a solution.

https://hemanthrajhemu.github.io

