

One Stop for All Study Materials

& Lab Programs

Fifure Vision By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, CSE – Computer Science Engineering, ISE – Information Science Engineering, ECE - Electronics and Communication Engineering & MORE...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

MULTI-CORE ARCH	HITECTURE ANI	D PROGRAMMINO	r T		
[As per Choice Based Credit System (CBCS) scheme]					
(Effective from the academic year 2017 -2018)					
SEMESTER – VI					
Subject Code	17CS666	IA Marks	40		
Number of Lecture Hours/Week	3	Exam Marks	60		
Total Number of Lecture Hours	40	Exam Hours	03	1	
CREDITS – 03					
Module – 1				eaching	
Introduction to Multi-core Architecture Motivation for Concurrency in			in 8	Hours	
software Parallel Computing Platforms Parallel Computing in Microprocessors			ors 0	110015	
Differentiating Multi-core Architectures from Hyper- Threading Technology					
Multi-threading on Single-Core versus Multi-Core Platforms Understanding					
Performance Amdahl's Law Growing Returns: Gustafson's Law System					
Overview of Threading : Defining Threads, System View of Threads,					
Threading above the Operating System. Threads inside the OS. Threads inside					
the Hardware. What Happens When a Thread Is Created. Application					
Programming Models and Threading, Virtual Environment: VMs and Platforms,					
Runtime Virtualization, System Virtualization.					
Module – 2					
Fundamental Concepts of Parallel Programming :Designing for Threads, 8 Hour					
Task Decomposition, Data Deco	mposition, Data	Flow Decomposition	ion,		
Implications of Different Decompo	sitions, Challenges	s You'll Face, Para	llel		
Programming Patterns, A Motivating	Problem: Error Di	iffusion, Analysis of	the		
Error Diffusion Algorithm, An Alternate Approach: Parallel Error Diffusion,					
Other Alternatives. Threading and Parallel Programming Constructs:					
Synchronization, Critical Sections, Deadlock, Synchronization Primitives,					
Semaphores, Locks, Condition Variables, Messages, Flow Control- based					
Concepts, Fence, Barrier, Implementation-dependent Threading Features					
Module – 3					
Threading APIs :ThreadingAPIs for	Microsoft Window	ws, Win32/MFC Thr	ead 8	Hours	
APls, Threading APls for Microso	oft. NET Framew	ork, Creating Threa	ads,		
Managing Threads, Thread Pools,	Thread Synchroniz	ation, POSIX Threa	ads,		
Creating Threads, Managing Threads	ads, Thread Sync	chronization, Signal	ing,		
Compilation and Linking.					
Module – 4		11 ' 771 1'			
OpenMP: A Portable Solution for	Threading : Cha	allenges in Threadin	g a 8	Hours	
Loop, Loop-carried Dependence, Data-race Conditions, Managing Shared and					
Private Data, Loop Scheduling and Portioning, Effective Use of Reductions,					
Minimizing Threading Overhead, Work-sharing Sections, Performance-oriented					
Frogramming, Using Barrier and No wait, Interleaving Single-thread and Multi-					
Variables Intel Task quanting Extension to OpenMD Updates of Shared					
variables, miler rask queuing Ex	Voriables C-	wir, Openivir Libi	ary		
performance	variables, Co	inpitation, Debuggi	ing,		
Modulo 5					
wiouule – 5					

https://hemanthrajhemu.github.io

Solutions to Common Parallel Programming Problems : Too Many Threads,
Data Races, Deadlocks, and Live Locks, Deadlock, Heavily Contended Locks,
Priority Inversion, Solutions for Heavily Contended Locks, Non-blocking
Algorithms, ABA Problem, Cache Line Ping-ponging, Memory Reclamation
Problem, Recommendations, Thread-safe Functions and Libraries, Memory
Issues, Bandwidth, Working in the Cache, Memory Contention, Cache-related
Issues, False Sharing, Memory Consistency, Current IA-32 Architecture, Itanium
Architecture, High-level Languages, Avoiding Pipeline Stalls on IA-32,Data
Organization for High Performance.8 Hours

Course outcomes: The students should be able to:

- Identify the issues involved in multicore architectures
- Explain fundamental concepts of parallel programming and its design issues
- Solve the issues related to multiprocessing and suggest solutions
- Discuss salient features of different multicore architectures and how they exploit parallelism
- Illustrate OpenMP and programming concept

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Multicore Programming , Increased Performance through Software Multi-threading by ShameemAkhter and Jason Roberts , Intel Press , 2006

Reference Books:

NIL

https://hemanthrajhemu.github.io