

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Part II Introduction to Object-Oriented Analysis, Design,
Implementation and Refactoring

5 Elementary Design Patterns . 109
5.1 Iterator. 110

5.1.1 Iterator Implementation . 113
5.2 Singleton . 116

5.2.1 Subclassing Singletons . 117
5.3 Adapter . 120
5.4 Discussion and Further Reading . 124
5.5 Exercises . 126
References. 127

6 Analysing a System . 129
6.1 Overview of the Analysis Phase . 130
6.2 Stage 1: Gathering the Requirements 131

6.2.1 Case Study Introduction . 132
6.3 Functional Requirements Specification 134

6.3.1 Use Case Analysis. 134
6.4 Defining Conceptual Classes and Relationships 145
6.5 Using the Knowledge of the Domain 151
6.6 Discussion and Further Reading . 153
6.7 Exercises . 156
References. 158

7 Design and Implementation . 159
7.1 Design . 159

7.1.1 Major Subsystems . 160
7.1.2 Creating the Software Classes 161
7.1.3 Assigning Responsibilities to the Classes 163
7.1.4 Class Diagrams . 173
7.1.5 User Interface . 178
7.1.6 Data Storage . 179

7.2 Implementing Our Design . 180
7.2.1 Setting Up the Interface . 180
7.2.2 Adding New Books . 181
7.2.3 Issuing Books . 182
7.2.4 Printing Transactions . 184
7.2.5 Placing and Processing Holds 185
7.2.6 Storing and Retrieving the Library Object 188

7.3 Discussion and Further Reading . 192
7.3.1 Conceptual, Software and Implementation

Classes. 193
7.3.2 Building a Commercially Acceptable System 193
7.3.3 The Facade Pattern . 195

Contents xv

https://hemanthrajhemu.github.io

Chapter 6
Analysing a System

In Chaps. 6–8, we examine the essential steps in object-oriented software develop-
ment: analysis, design, and implementation. To illustrate the process, we study a
relatively simple example—a piece of software to manage a small library—whose
function is limited to that of lending books to its members, receiving them back,
doing the associated operations such as querying, registering members, etc., and
keeping track of these transactions. In the course of these chapters, we go through
the entire process of analysing, designing and implementing this system.

The software construction process begins with an analysis that determines the
requirements of the system, which is what we introduce in this chapter. At this stage
the focus is on determining what the system must perform without regard to the
methodology to be employed. This process is carried out by a team of analysts,
perhaps familiar with the specific type of application. The requirements are spelled
out in a document known variously as the ‘Requirements Specification’, ‘System
Requirements’, etc. Using these, the system analyst creates a model of the system,
enabling the identification of some of the components of the system and the rela-
tionships between them. The end product of this phase is a conceptual model for
the system which describes the functionality of the system, identifies its conceptual
entities and records the nature of the associations between these entities.

Once the analysis has been satisfactorily completed, we move on to the design
phase, which is addressed in the first part of Chap.7. The design starts with a detailed
breakdown of how the system will emulate the behaviour outlined in the model. In
the course of this breakdown, all the parts of the system and their responsibilities
are clearly identified. This step is followed by determining the software and hard-
ware structures needed to implement the functionality discovered in the analysis
stage. In the object-oriented world, this would mean deciding on the language or
languages to be used, the packages, the platform, etc. The second part of Chap.7
looks at implementation, wherein we discuss the lower-level issues, language fea-
tures employed, etc.

A question that a conscientious beginner often ponders is: Did I do a good job
of the design? or Is my design really object-oriented? Indeed, in the real world, it is
often the case that designs conform to object-oriented principles to varying degrees.

© Universities Press (India) Private Ltd. 2015
B. Dathan and S. Ramnath, Object-Oriented Analysis, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-24280-4_6

129

https://hemanthrajhemu.github.io

130 6 Analysing a System

Fortunately, in addition to the broad guidelines for what constitutes a good object-
oriented design, there are some more specific rules that can be applied to look for
common mistakes and correct them. These rules, known as refactoring rules, are
more commonly presented as a means for improving the design of the existing code.
They are, however, just as useful to check the design of a system before it is fully
implemented. In Chap.8, we introduce the concept of refactoring and apply these
rules to our small system.

As our main focus in this book is the elaboration of the process of analysis,
design, and implementation, we will bypass many software engineering and project
management issues. We will not dwell on conceptual frameworks such as agile
software development for managing the software development life cycle. We use
UML notations in an appropriate manner that is sufficient to describe our design, but
do not cover these exhaustively. For a detailed exposition on these topics, the reader
is referred to the works cited at the end of each chapter.

6.1 Overview of the Analysis Phase

To put it in a simple sentence, the major goal of this phase is to address this basic
question: what should the system do? A typical computer science student writes a
number of programs by the time he/she graduates. Typically, the program require-
ments are written up by the instructor: the student does some design, writes the code,
and submits the program for grading. To some extent, the process of understanding
the requirements, doing the design, and implementing that design is relatively infor-
mal. Requirements are often simple and any clarifications can be had via questions
in the classroom, e-mail messages, etc.

The above simple-minded approach does not quite suffice for ‘real-life’ projects
for a number of reasons. For one reason, such systems are typically much bigger in
scope and size. They also have complex and ambiguously-expressed requirements.
Third, there is usually a large amount of money involved, which makes matters
quite serious. For a fourth reason, hard as it may be for a student to appreciate it,
project deadlines for these ‘real-life’ projects are more critical. (Users are fussier
than instructors!)

However, as in the case of the classroom assignment, there are still two parties: the
user community, which needs some system to be built and the development people,
who are assigned to do the work. The process could be split into three activities:

1. Gather the requirements: this involves interviews of the user community, reading
of any available documentation, etc.

2. Precisely document the functionality required of the system.
3. Develop a conceptual model of the system, listing the conceptual classes and their

relationships.

https://hemanthrajhemu.github.io

6.1 Overview of the Analysis Phase 131

It is not always the case that these activities occur in the order listed. In fact, as the
analysts gather the requirements, they will analyse and document what they have
collected. This may point to holes in the information, which may necessitate further
requirements collection.

6.2 Stage 1: Gathering the Requirements

The purpose of requirements analysis is to define what the new system should do.
The importance of doing this correctly cannot be overemphasized. Since the system
will be built based on the information garnered in this step, any errors made in
this stage will result in the implementation of a wrong system. Once the system is
implemented, it is expensive to modify it to overcome the mistakes introduced in the
analysis stage.

Imagine the scenario when you are asked to construct software for an application.
The client may not always be clear in his/her mind as to what should be constructed.
One reason for this is that it is difficult to imagine the workings of a system that is not
yet built. Only when we actually use a specific application such as a word processor
do we start realising the power and limitations of that system. Before actually dealing
with it, one may have some general notions of what one would like to see, but may
find it difficult to provide many details.

Incompleteness and errors in specifications can also occur because the client does
not have the technical skills to fully realise what technology can and cannot deliver.
Once again, the general concepts can be stated, but specifics are harder. A third reason
for omissions is that it is all too common to have a client who knows the system very
well and consequently either assumes a lot of knowledge on the part of the analyst
or simply skips over the ‘obvious details’.

Requirements for a new system are determined by a teamof analysts by interacting
with teams from the company paying for the development (clients) and the user
community, who ultimately uses the system on a day-to-day basis. This interaction
can be in the formof interviews, surveys, observations, study of existingmanuals, etc.

Broadly speaking, the requirements can be classified into two categories:

• Functional requirements These describe the interaction between the system and
its users, and between the system and any other systems, which may interact with
the system by supplying or receiving data.

• Non-functional requirements Any requirement that does not fall in the above cat-
egory is a non-functional requirement. Such requirements include response time,
usability and accuracy. Sometimes, there may be considerations that place restric-
tions on system development; these may include the use of specific hardware and
software and budget and time constraints.

It should be mentioned that initiating the development cycle for a software system
is usually preceded by a phase that includes the initial conception and planning.
A developer would be approached by a client who wishes to have a certain product

https://hemanthrajhemu.github.io

132 6 Analysing a System

developed for his/her business. Therewould be adomain associatedwith the business,
which would have its own jargon. Before approaching the developer, one would
assume that the client has determined that a need for a product exists. Once all
these issues are sorted out, the developer(s) would meet with the client and, perhaps
several would-be end-users, to determine what is expected of the system. Such a
process would result in a list of requirements of the system.

As mentioned at the beginning of this chapter, we study the development process
by analysing, designing, and implementing a simple library system; this is introduced
next.

6.2.1 Case Study Introduction

Let us proceed under the assumption that developers of our library system have
available to them a document that describes how the business is conducted. This
functionality is described as a list of what are commonly called business processes.

The business processes of the library system are listed below.

• Register new membersThe library receives applications frompeoplewhowant to
become library members, whomwe alternatively refer to as users. While applying
for membership, a person supplies his/her name, phone number and address to the
library. The library assigns each member a unique identifier (ID), which is needed
for transactions such as issuing books.

• Add books to the collection We will make the assumption that the collection
includes just books. For each book the library stores the title, the author’s name,
and a unique ID. (For simplicity, let us assume that there is only one author per
book. If there are multiple authors, let us say that the names will have to be
concatenated to get a pretty huge name such as ‘Brahma Dathan and Sarnath
Ramnath’. As a result, to the system, it appears that there is just one author.)
When it is added to the collection, a book is given a unique identifier by the clerk.
This ID is based on some standard system of classification.

• Issue a book to a member (or user) To check out books, a user (or member) must
identify himself to a clerk and hand over the books. The library remembers that
the books have been checked out to the member. Any number of books may be
checked out in a single transaction.

• Record the return of a book To return a book, the member gives the book to a
clerk, who submits the information to the system, which marks the book as ‘not
checked out’. If there is a hold on the book, the system should remind the clerk to
set the book aside so that the hold can be processed.

• Remove books from the collection From time to time, the library may remove
books from its collection. This could be because the books are worn-out, are no
longer of interest to the users, or other sundry reasons.

• Print out a user’s transactionsPrint out the interactions (book checkouts, returns,
etc.) between a specific user and the library on a certain date.

https://hemanthrajhemu.github.io

6.2 Stage 1: Gathering the Requirements 133

• Place/remove a hold on a book When a user wants to put a hold, he/she supplies
the clerk with the book’s ID, the user’s ID, and the number of days after which
the book is not needed. The clerk then adds the user to a list of users who wish
to borrow the book. If the book is not checked out, a hold cannot be placed. To
remove a hold, the user provides the book’s ID and the user’s ID.

• Renew books issued to a member Customers may walk in and request that
several of the books they have checked out be renewed (re-issued). The system
must display the relevant books, allow the user to make a selection, and inform
the user of the result.

• Notify member of book’s availability Customers who had placed a hold on a
book are notified when the book is returned. This process is done once at the end
of each day. The clerk enters the ID for each book that was set aside, and the
system returns the name and phone number of the user who is next in line to get
the book.

In addition, the system must support three other requirements that are not directly
related to the workings of a library, but, nonetheless, are essential.

• A command to save the data on a long-term basis.
• A command to load data from a long-term storage device.
• A command to quit the application. At this time, the system must ask the user if
data is to be saved before termination.

To keep the process simple, we restrict our attention for the time being to the above
operations. A real librarywould have to perform additional operations like generating
reports of various kinds, impose fines for late returns, etc. Many libraries also allow
users to check out books themselves without approaching a clerk. Whatever the case
may be, the analysts need to learn the existing system and the requirements. As
mentioned earlier, they achieve this through interviews, surveys, and study.

Our goal here is to present the reader with the big picture of the entire process so
that the beginner is not overwhelmed by the complexity or bogged down in minu-
tiae. Keeping this in mind, we will be designing a system that the reader may find
somewhat simplistic, particularly if one compares this with the kinds of features that
a ‘real’ system in today’s market can provide. While there is some truth to this obser-
vation, it should be noted that the simplification of the system has been done with a
view to reducing unnecessary detail so that we can focus instead on the development
process, elaborate on the use of tools described previously, and explain through an
example how good design principles are applied. In the course of applying the above,
we come with a somewhat simplified sample development process that may be used
as a template by someone who is getting started on this subject.

Assuming that we have a good grasp of the requirements, we need to document the
functional requirements of the application and determine the system’s major entities
and their relationships. As mentioned earlier, the steps may be, and are often, carried
out as an iterative, overlapping process; for pedagogical reasons, we discuss them as
a sequence of distinct activities.

https://hemanthrajhemu.github.io

134 6 Analysing a System

6.3 Functional Requirements Specification

It is important that the requirements be precisely documented. The requirements
specification document serves as a contract between the users and the developers.
When it is time to deliver the system, there should be no confusion as to what the
expectations are. Equally or perhaps even more important, it also tells the designers
the expected functionality of the system. Moreover, as we attempt to create a precise
documentation of the requirements, we will discover errors and omissions.

An accepted way of accomplishing this task is the use case analysis, which we
study now.

6.3.1 Use Case Analysis

Use case analysis is a case-based way of describing the uses of the system with
the goal of defining and documenting the system requirements. It is essentially a
narrative describing the sequence of events (actions) of an external agent (actor)
using the system to complete a process. It is a powerful technique that describes
the kind of functionality that a user expects from the system. Use cases have two or
more parties: agents who interact with the system and the system itself. In our simple
library system, the members do not use the system directly. Instead, they get services
via the library staff.

To initiate this process, we need to get a feel for how the system will interact with
the end-user. We assume that some kind of a user-interface is required, so that when
the system is started, it provides a menu with the following choices:

1. Add a member
2. Add books
3. Issue books
4. Return books
5. Remove books
6. Place a hold on a book
7. Remove a hold on a book
8. Process Holds: Find the first member who has a hold on a book
9. Renew books
10. Print out a member’s transactions
11. Store data on disk
12. Retrieve data from disk
13. Exit

The above menu gives us the list of ways in which the system is going to be used.
There are some implicit requirements associated with these operations. For instance,

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 135

when a book is checked out, the system must output a due-date so that the clerk can
stamp the book. This and other such details will be spelled out when we elaborate
on the use cases.

The actors in our system are members of the library staff who manage the daily
operations. This idea is depicted in the use case diagram in Fig. 6.1, which gives
an overview of the system’s usage requirements. Notice that even in the case of
issuing books, the functionality is invoked by a library staff member, who performs
the actions on behalf of a member.

We are about to take up the task of specifying the individual use cases. In order to
keep the discussionwithinmanageable size and not lose focus,wemake the following
assumption:While the use cases will state the need for the system to display different
messages prompting the user for data and informing the results of operations, the
user community is not fussy about the minute details of what the messages should
be; anymeaningful message is acceptable. For example, wemay specify in a use case
that the system ‘informs the clerk if the member was added’. The actual message
could be any one of a number of possibilities such as ‘Member added’, or ‘Member
registered’, etc.

Use case for registering a user Our first use case is for registering a new user and is
given in Table 6.1. Recall from our discussion in Chap. 2 that use cases are specified

Fig. 6.1 Use case diagram
for the library system

https://hemanthrajhemu.github.io

136 6 Analysing a System

Table 6.1 Use case Register New Member

Actions performed by the actor Responses from the system

1. The customer fills out an application form
containing the customer’s name, address, and
phone number and gives this to the clerk

2. The clerk issues a request to add a new
member

3. The system asks for data about the new
member

4. The clerk enters the data into the system

5. Reads in data, and if the member can be
added, generates an identification number
(which is not necessarily a number in the literal
sense just as social security numbers and phone
numbers are not actually numbers) for the
member and remembers information about the
member. Informs the clerk if the member was
added and outputs the member’s name,
address, phone and id

6. The clerk gives the user his identification
number

in a two-column format, where the left-column states the actions of the actor and the
right-column shows what the system does.

The above example illustrates several aspects of use cases.

1. Every use case has to be identified by a name. We have given the name Register

New Member to this use case.
2. It should represent a reasonably-sized activity in the organisation. It is important

to note that not all actions and operations should be identified as use cases. As
an extreme example, stamping a due-date on the book should not be a use case.
A use case is a relatively large end-to-end process description that captures some
business process that a client purchasing the software needs to perform. In some
instances, a business process may be decomposed into more than one use case,
particularlywhen there is some intervening real-world event(s) forwhich the agent
has to wait for an unspecified length of time. An example of such a situation is
presented later in this chapter.

3. The first step of the use case specifies a ‘real-world’ action that triggers the
exchange described in the use case. This is provided mainly for the sake of com-
pleteness and does not have much bearing on the actual design of the system. It
does, however, serve a useful purpose: by looking at the first steps of all the use
cases, we can verify that all external events that the system needs to respond to
have been taken care of.

4. The use case does not specify how the functionality is to be implemented. For
example, the details of how the clerk enters the required information into the

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 137

system are left unspecified. Although we assume that the user interacts with the
system through the menu, which was briefly described earlier, we do not specify
the details of this mechanism. The use case also does not state how the system
accomplishes the task of registering a user: what software components form the
system, how they may interact, etc.

5. The use case is not expected to cover all possible situations. While we would
expect that the sequence of events that are specified in the above use case is what
would actually happen in a library when a person wants to be registered, the
use case does not specify what the system should do if there are errors. In other
words, the use case explains only the most commonly-occurring scenario, which
is referred to as the main flow. Deviations from the main flow due to occurrences
of errors and exceptions are not detailed in the above use case.

Use case for adding books Next, we look at the use case for adding new books in
Table 6.2. Notice that we add more than one book in this use case, which involves a
repetitive process captured by a go-to statement in the last step. Notice that details of
how the identifier is generated are not specified. From the point of view of the system
analyst, this is something that the actor is expected to take care of independently.

Use case for issuing books Consider the use case where a member comes to the
check-out counter to issue a book. The user identifies himself/herself to a clerk, who
checks out the books for the user. It proceeds as in Table 6.3.

There are some drawbacks to the way this use case is written. One is that it does
not specify how due-dates are computed. We may have a simple rule (example:
due-dates are one month from the date of issue) or something quite complicated

Table 6.2 Use case Adding New Books

Actions performed by the actor Responses from the system

1. Library receives a shipment of books from
the publisher

2. The clerk issues a request to add a new book

3. The system asks for the identifier, title, and
author name of the book

4. The clerk generates the unique identifier,
enters the identifier, title, and author name of a
book

5. The system attempts to enter the information
in the catalog and echoes to the clerk the title,
author name, and id of the book. It then asks if
the clerk wants to enter information about
another book

6. The clerk answers in the affirmative or in the
negative

7. If the answer is in the affirmative, the system
goes to Step 3. Otherwise, it exits

https://hemanthrajhemu.github.io

138 6 Analysing a System

Table 6.3 Use case Book Checkout

Actions performed by the actor Responses from the system

1. The member arrives at the check-out counter
with a set of books and supplies the clerk with
his/her identification number

2. The clerk issues a request to check out books

3. The system asks for the user ID

4. The clerk inputs the user ID to the system

5. The system asks for the ID of the book

6. The clerk inputs the ID of a book that the
user wants to check out

7. The system records the book as having been
issued to the member; it also records the
member as having possession of the book. It
generates a due-date. The system displays the
book title and due-date and asks if there are any
more books

8. The clerk stamps the due-date on the book
and replies in the affirmative or negative

9. If there are more books, the system moves to
Step 5; otherwise it exits

10. The customer collects the books and leaves
the counter

(example: due-date is dependent on the member’s history, how many books have
been checked out, etc.). Putting all these details in the use case would make the use
case quite messy and harder to understand. Rules such as these are better expressed
as Business Rules. A business rule may be applicable to one or more use cases.

The business rule for due-date generation is simple in our case. It is Rule 1 given
in Table 6.4 along with all other rules for the system.

Table 6.4 Rules for the library system

Rule number Rule

Rule 1 Due-date for a book is one month from the date of issue

Rule 2 All books are issuable

Rule 3 A book is removable if it is not checked out and if it has no holds

Rule 4 A book is renewable if it has no holds on it

Rule 5 When a book with a hold is returned, the appropriate member will be
notified

Rule 6 Holds can be placed only on books that are currently checked out

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 139

A second problem with the use case is that as written above, it does not state what
to do in case things go wrong. For instance,

1. The person may not be a member at all. How should the use case handle this
situation? We could abandon the whole show or ask the person to register.

2. The clerk may have entered an invalid book id.

To take care of these additional situations, we modify the use case as given in
Table 6.5. We have resolved these issues in Step 7 by having the system check
whether the book is issuable, which can be expressed as a business rule. This could
check one (or more) of several conditions: Is the member in good standing with the
library? Is there some reason the book should not be checked out? Has the member
checked out more books than permitted (if such limits were to be imposed)? The
message displayed by the system in Step 7 informs the clerk about the result of the
transaction. In a real-life situation, the client will probably want specific details of

Table 6.5 Use case Book Checkout revised

Actions performed by the actor Responses from the system

1. The member arrives at the check-out counter
with a set of books and supplies the clerk with
his/her identification number

2. Clerk issues a request to check out books

3. The system asks for the user ID

4. Clerk inputs the user ID to the system

5. If the ID is valid, the system asks for the ID
of the book; otherwise it prints an appropriate
message and exits the use case

6. The clerk inputs the identifier of a book that
the user wants to check out

7. If the ID is valid and the book is issuable to
the member, the system records the book as
having been issued to the member; It records
the member as having possession of the book
and generates a due-date as in Rule 1. It then
displays the book’s title and due-date. If the
book is not issuable as per Rule 2, the system
displays a suitable error message. The system
asks if there are more books

8. The clerk stamps the due-date, prints out the
transaction (if needed) and replies positively or
negatively

9. If there are more books for checking out, the
system goes back to Step 5; otherwise it exits

10. The clerk stamps the due date and gives the
user the books checked out. The customer
leaves the counter

https://hemanthrajhemu.github.io

140 6 Analysing a System

what went wrong; if they are important to the client, these details should be expressed
in the use case. Since our goal is to cover the basics of requirements analysis, we
sidestep the issue.

Let us proceed to write more use cases. For the most part, these are quite ele-
mentary, and the reader may well choose to skip the details or try them out as an
exercise.

Use case for returning booksUsers return books by leaving them on a library clerk’s
desk; the clerk enters the book ids one by one to return them. Table 6.6 gives the
details of the use case. Here, as in the use case for issuing books, the clerk may enter
incorrect information into the system, which the use case handles. Notice that if there
is a hold on the book, that information is printed for use by the clerk at a later time.

Use cases for removing (deleting) books, printing member transactions, placing
a hold, and removing a hold The next four use cases deal with the scenarios for
removing books (Table 6.7), printing out member transactions (Table 6.8), placing a
hold (Table 6.9), and removing a hold (Table 6.10). In the second of these, the system
does not actually print out the transactions, but only displays them on the interface.
We are assuming that the necessary facilities to print will be a part of the underlying
platform.

In Step 5 in Table 6.7, we allow for the possibility that the deletionmay fail. In this
event, we assume that there will be some meaningful error message so that the clerk
can take corrective action. We shall revisit this issue when we discuss the design and
implementation in the next chapter.

Table 6.6 Use case Return Book

Actions performed by the actor Responses from the system

1. The member arrives at the return counter
with a set of books and leaves them on the
clerk’s desk

2. The clerk issues a request to return books

3. The system asks for the identifier of the book

4. The clerk enters the book identifier

5. If the identifier is valid, the system marks
that the book has been returned and informs the
clerk if there is a hold placed on the book;
otherwise it notifies the clerk that the identifier
is not valid. It then asks if the clerk wants to
process the return of another book

6. The clerk answers in the affirmative or in the
negative and sets the book aside in case there is
a hold on the book (see Rule 5)

7. If the answer is in the affirmative, the system
goes to Step 3. Otherwise, it exits

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 141

Table 6.7 Use case Removing Books

Actions performed by the actor Responses from the system

1. Librarian identifies the books to be deleted

2. The clerk issues a request to delete books

3. The system asks for the identifier of the book

4. The clerk enters the ID for the book

5. The system checks if the book can be
removed using Rule 3. If the book can be
removed, the system marks the book as no
longer in the library’s catalog. The system
informs the clerk about the success of the
deletion operation. It then asks if the clerk
wants to delete another book

6. The clerk answers in the affirmative or in the
negative

7. If the answer is in the affirmative, the system
goes to Step 3. Otherwise, it exits

Table 6.8 Use case Member Transactions

Actions performed by the actor Responses from the system

1. The clerk issues a request to get member
transactions

2. The system asks for the user ID of the
member and the date for which the transactions
are needed

3. The clerk enters the identity of the user and
the date

4. If the ID is valid, the system outputs
information about all transactions completed
by the user on the given date. For each
transaction, it shows the type of transaction
(book borrowed, book returned or hold placed)
and the title of the book

5. Clerk prints out the transactions and hands
them to the user

There may be some variations in the way these scenarios are played out. When
placing or removing a hold, the library staff may actually want to see a message
that the operation was successfully completed. These requirements would modify
the manner in which the system responds in these use cases. While such information
should be gleaned from the client as part of the requirements analysis, it is often
necessary to go back to the client after the use cases are written, to ensure that the
system interacts in the desired manner with the operator.

https://hemanthrajhemu.github.io

142 6 Analysing a System

Table 6.9 Use case Place a Hold

Actions performed by the actor Responses from the system

1. The clerk issues a request to place a hold

2. The system asks for the book’s ID, the ID of
the member, and the duration of the hold

3. The clerk enters the identity of the user, the
identity of the book and the duration

4. The system checks that the user and book
identifiers are valid and that Rule 6 is satisfied.
If yes, it records that the user has a hold on the
book and displays that; otherwise, it outputs an
appropriate error message

Table 6.10 Use case Remove a Hold

Actions performed by the actor Responses from the system

1. The clerk issues a request to remove a hold

2. The system asks for the book’s ID and the ID
of the member

3. The clerk enters the identity of the user and
the identity of the book

4. The system removes the hold that the user
has on the book (if any such hold exists), prints
a confirmation and exits

Table 6.11 Use case Process Holds

Actions performed by the actor Responses from the system

1. The clerk issues a request to process holds
(so that Rule 5 can be satisfied)

2. The system asks for the book’s ID

3. The clerk enters the ID of the book

4. The system returns the name and phone
number of the first member with an unexpired
hold on the book. If all holds have expired, the
system responds that there is no hold. The
system then asks if there are any more books to
be processed

5. If there is no hold, the book is then shelved
back to its designated location in the library.
Otherwise, the clerk prints out the information,
places it in the book and replies in the
affirmative or negative

6. If the answer is yes, the system goes to
Step 2; otherwise it exits

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 143

Use case for processing holds Given in Table 6.11, this use case deals with process-
ing the holds at the end of each day. In this case, once the contact information for the
member has been printed out, we assume that the library will contact the member.
The member may not come to collect the book within the specified time, at which
point the library will try to contact the next member in line. All this is not included
in the use case. If we were to do so, the system would, in essence, be waiting on
the user’s response for a long period of time. We therefore leave out these steps and
when the next user has to be contacted, we simply process holds on the book once
again.

How do Business Rules Relate to Use Cases?

Business rules can be broadly defined as the details through which a busi-
ness implements its strategy. Business analysts perform the task of gathering
business rules, and these belong to one of four categories:

• Definitional rules which explain what is meant when a certain word is used
in the context of the business operations. Thesemay include special technical
terms, or common words that have a particular significance for the business.
For instance the term Book in the context of the library refers to a book
owned by the library.

• Factual rules which explain basic things about the business’s operations;
they tell how the terms connect to each other. A library, for instance, would
have rules such as ‘Books are issued to Members,’ and ‘Members can place
holds on Books’.

• Constraints which are specific conditions that govern the manner in which
terms can be connected to each other. For instance, we have a constraint that
says ‘Holds can be placed only on Books that are currently checked out’.

• Derivations which are knowledge that can be derived from the facts and
constraints. For instance, a bank may have the constraint, “The balance in
an account cannot be less than zero,” from which we can derive that if an
amount requested forwithdrawal ismore than the balance, then the operation
is not successful.

When writing use cases, we are mainly concerned with constraints and deriva-
tions. Typically, such business rules are in-lined with the logic of the use-case.
The use-case may explicitly state the test that is being performed and cite
the appropriate rule, or may simply mention that the system will respond in
accordance with a specific rule.

https://hemanthrajhemu.github.io

144 6 Analysing a System

In addition to the kinds of rules we have presented for this case study, there
are always implicit rules that permeate the entire system. A common example
of this is validation of input data; a zip code, for instance, can be validated
against a database of zip-codes. Note that this rule does not deal with how
entities are connected to one another, but specifies the required properties of a
data element. Such constraints do not belong in use cases, but could be placed
in classes that store the corresponding data elements.

Use case for renewing books This use case (see Table 6.12) deals with situations
where a user has several books checked out and would like to renew some of these.
The user may not remember the details of all of them and would perhaps like the
system to prompt him/her. We shall assume that users only know the titles of the
books to be renewed (they do not bring the books or even the book ids to the library)
and that most users would have borrowed only a small number of books. In this
situation, it is entirely appropriate for the system to display the title of each book
borrowed by the user and ask if that book should be renewed.

Table 6.12 Use case Renew Books

Actions performed by the actor Responses from the system

1. Member makes a request to renew several of
the books that he/she has currently checked out

2. Clerk issues a request to renew books

3. System asks for the member’s ID

4. The clerk enters the ID into the system

5. System checks the member’s record to find
out which books the member has checked out.
If there are none, the system prints an
appropriate message and exits; otherwise it
moves to Step 6

6. The system displays the title of the next book
checked out to the member and asks whether
the book should be renewed

7. The clerk replies yes or no

8. The system attempts to renew the book using
Rule 4 and reports the result. If the system has
displayed all checked-out books, it reports that
and exits; otherwise the system goes to Step 6

https://hemanthrajhemu.github.io

6.3 Functional Requirements Specification 145

It may be the case that a library has additional rules for renewability: if a book
has a hold or a member has renewed a book twice, it might not be renewable. In the
above interaction, the system displays all the books and determines the renewability
only if the member wishes to renew the book. A different situation could arise if we
require that the system display only the renewable books. (The system would have
to have a way for checking renewability without actually renewing the book, which
places additional requirements on the system’s functionality.) For our simple library,
we go with the scenario described in Table6.5.

6.4 Defining Conceptual Classes and Relationships

As we discussed earlier, the last major step in the analysis phase involves the deter-
mination of the conceptual classes and the establishment of their relationships. For
example, in the library system, some of the major conceptual classes include mem-
bers and books. Members borrow books, which establishes a relationship between
them.

We could justify the usefulness of this step in at several ways:

1. Design facilitation Via use case analysis, we determined the functionality
required of the system. Obviously, the design stage must determine how to imple-
ment the functionality. For this, the designers should be in a position to determine
the classes that need to be defined, the objects to be created, and how the objects
interact. This is better facilitated if the analysis phase classifies the entities in the
application and determines their relationships.

2. Added knowledge The use cases do not completely specify the system. Some of
these missing details can be filled in by the class diagram.

3. Error reduction In carrying out this step, the analysts are forced to look at the
system more carefully. The result can be shown to the client who can verify its
correctness.

4. Useful documentationThe classes and relationships provide a quick introduction
to the system for someone who wants to learn it. Such people include personnel
who join the project to carry out the design or implementation or subsequent
maintenance of the system.

In practice, an analyst will probably use multiple methods to come up with the
conceptual classes and their relationships. In this case study, however,we use a simple
approach: we examine the use cases and pick out all the nouns in the description of
the requirements. For example, from the text of the use case for registering new users,
we can pick out the nouns.

https://hemanthrajhemu.github.io

146 6 Analysing a System

Guidelines to Remember When Writing Use Cases

• A use case must provide something of value to an actor or to the business:
when the scenario described in the use case has played out, the actor has
accomplished some task. The system may have other functions that do not
provide value; these will be just steps within a use case. This also implies
that each use case has at least one actor.

• Use cases should be functionally cohesive, i.e., they encapsulate a single
service that the system provides.

• Use cases should be temporally cohesive. This notion applies to the time
frame over which the use case occurs. For instance, when a book with a
hold is returned, the member who has the hold needs to be notified. The
notification is done after some delay; due to this delay, we do not combine
the two operations into one use case. Another example could be a university
registration system—when a student registers for a class, he or she should
be billed. Since the billing operation is not temporally cohesive with the
registration, the two constitute separate use cases.

• If a system has multiple actors, each actor must be involved in at least one,
and typically several use cases. If our library allowed members to check out
books by themselves, “member” is another possible actor.

• The model that we construct is a set of use cases, i.e., there is no relationship
between individual use cases.

• Exceptional exit conditions are not handled in use cases. For instance, if a
system should crash in the middle of a use case, we do not describe what
the system is supposed to do. It is assumed that some reasonable outcome
will occur.

• Use cases are written from the point of view of the actor in the active voice.
• A use case describes a scenario, i.e., tells us what the visible outcome is and
does not give details of any other requirements that are being imposed on
the system.

• Use cases change over the course of system analysis. We are trying to con-
struct a model and consequently the model is in a state of evolution during
this process. Use cases may be merged, added or deleted from the model at
any time.

Here is the text of that use case, once again, with all nouns bold-faced:
(1) The customer fills out an application form containing the customer’s name,

address, and phone number and gives this to the clerk. (2) The clerk issues a
request to add a newmember. (3)The system asks for data about the newmember.
(4) The clerk enters the data into the system. (5) Reads in data, and if the member
can be added, generates an identification number for the member and remembers

https://hemanthrajhemu.github.io

6.4 Defining Conceptual Classes and Relationships 147

information about the member. Informs the clerk if the member was added and
outputs the member’s name, address, phone, and id. (6) The clerk gives the user
his identification number.

Let us examine the nouns. First, let us eliminate duplicates to get the following list:
customer, application form, customer’s name, address, phone number, clerk,
request, system, data, identification number, member, user, member informa-
tion, andmember’s name. Someof the nouns such asmember are composite entities
that qualify to be classes.

While using this approach,wemust remember that natural languages are imprecise
and that synonyms may be found. We can eliminate the others as follows:

1. customer: becomes a member, so it is effectively a synonym for member.
2. user: the library refers tomembers alternatively as users, so this is also a synonym.
3. application form and request: application form is an external construct for gath-

ering information, and request is just a menu item, so neither actually becomes
part of the data structures.

4. customer’s name, address, and phone number: They are attributes of a cus-
tomer, so the Member class will have them as fields.

5. clerk: is just an agent for facilitating the functioning of the library, so it has no
software representation.

6. identification number: will become part of a member.
7. data: gets stored as a member.
8. information: same as data related to a member.
9. system: refers to the collection of all classes and software.

The noun system implies a conceptual class that represents all of the software; we
call this class Library. Although we do not have as yet any specifics of this class,
we note its existence and represent it in UML without any attributes and methods
(Fig. 6.2). (Recall from Chap.2 that a class is represented by a rectangle.)

A member is described by the attributes name, address, and phone number. More-
over, the systemgenerates an identifier for each user, so that also serves as an attribute.
The UML convention is to write the class name at the top with a line below it and
the attributes listed just below that line. The UML diagram is shown in Fig. 6.3.

Fig. 6.2 UML diagram for
the class Library

Fig. 6.3 UML diagram for
the class Member

https://hemanthrajhemu.github.io

148 6 Analysing a System

Recall the notion of association between classes, which we know from Chaps. 2
and 3 as a relationship between two or more classes. We note several examples of
association in our case study. The use case Register New Member (Table 6.1) says that
the system ‘remembers information about the member’. This implies an associa-
tion between the conceptual classes Library and Member. This idea is shown
in Fig. 6.4; note the line between the two classes and the labels 1, *, and ‘main-
tains a collection of’ just above it. They mean that one instance of the Library
maintains a collection of zero or more members.

Obviously, members and books are the most central entities in our system: the
sole reason for the library’s existence is to provide service to its members and that
is effected by letting them borrow books. Just as we reasoned for the existence of a
conceptual class named Member, we can argue for the need of a conceptual class
called Book to represent a book. It has attributes id, title, and author. A
UML description of the class is shown in Fig. 6.5. It should come as no surprise that
an association between the classes Library and Book, shown in Fig. 6.6, is also
needed.We show that a library has zero or more books. (Normally, you would expect
a library to have at least one book and at least one member; But our design takes no
chances!)

Fig. 6.4 UML diagram showing the association of Library and Member

Fig. 6.5 UML diagram for the class Book

Fig. 6.6 UML diagram showing the association of Library and Book

https://hemanthrajhemu.github.io

6.4 Defining Conceptual Classes and Relationships 149

Some associations are static, i.e., permanent, whereas others are dynamic. Dyna-
mic associations are those that change as a result of the transactions being recorded
by the system. Such associations are typically associated with verbs.

As an example of a dynamic association, consider members borrowing books.
This is an association between Member and Book, shown in Fig. 6.7. At any instant
in time, a book can be borrowed by one member and a member may have borrowed
any number of books. We say that the relationship Borrows is a one-to-many
relationship between the conceptual classes Member and Book and indicate it by
writing 1 by the side of the box that represents a user and the * near the box that
stands for a book.

This diagram actually tells us more than what the Issue Book use case does. That
use case does not say some of the considerations that come into play when a user
borrows a book: for example, how many books a user may borrow. We might have
forgotten to ask that question when we learned about the use case. But now that we
are looking at the association and are forced to put labels at the two ends, we may
end up capturing missing information. In the diagram of Fig. 6.7, we state that there
is no limit. It also states that two users may not borrow the same book at the same
time. Recollect from Chap.3 that an association does not imply that the objects of
the classes are always linked together; we may therefore have a situation where no
book in the library has been checked out.

Another action that a member can undertake is to place a hold on a book. Several
users can have holds placed on a book, and a user may place holds on an arbitrary
number of books. In other words, this relationship is many-to-many between users
and books. We represent this in Fig. 6.8 by putting a * at both ends of the line
representing the association.

Fig. 6.7 UML diagram showing the association Borrows between Member and Book

Fig. 6.8 UML diagram showing the association Holds between Member and Book

https://hemanthrajhemu.github.io

150 6 Analysing a System

Fig. 6.9 Conceptual classes and their associations

We capture all of the conceptual classes and their associations into a single dia-
gram in Fig. 6.9. To reduce complexity, we have omitted the attributes of Library,
Member, and Book. As seen before, a relationship formed between two entities is
sometimes accompanied by additional information. This additional information is
relevant only in the context of the relationship. There are two such examples in the
inter-class relationships we have seen so far: when a user borrows a book and when a
user places a hold on a book. Borrowing a book introduces new information into the
system, viz., the date on which the book is due to be returned. Likewise, placing a
hold introduces some information, viz., the date after which the book is not needed.
The lines representing the association are augmented to represent the information
that must be stored as part of the association. For the association Borrows and the
line connecting Member and Book, we come up with a conceptual class named
Borrows having an attribute named dueDate. Similarly, we create a conceptual
class named Holds with the attribute called date to store the information related
to the association Holds. Both these conceptual classes are attached to the line
representing the corresponding associations.

It is important to note that the above conceptual classes or their representation do
not, in any way, tell us how the information is going to be stored or accessed. Those
decisions will be deferred to the design and implementation phase. For instance,
there may be additional classes to support the operations of the Library class. We
may discover that while some of the conceptual classes have corresponding physical
realisations, some may disappear and the necessary information may be stored as
fields distributed over multiple classes. We may discover that while some of the
conceptual classes have corresponding physical realisations, somemaydisappear and
the necessary information may be stored as fields distributed over multiple classes.
We may choose to move fields that belong to an association elsewhere. For instance,
the field dueDatemay be stored as a field of the book or as a separate object, which
holds a reference to the book object and the user object involved. Upon making
that choice, the designer decides how the conceptual relationship between User and
Book is going to be physically realised. The conceptual class diagram is simply that:
conceptual.

https://hemanthrajhemu.github.io

6.5 Using the Knowledge of the Domain 151

6.5 Using the Knowledge of the Domain

Domain analysis is the process of analysing related application systems in a domain
so as to discover what features are common between them and what parts are vari-
able. In other words, we identify and analyse common requirements from a specific
application domain. In contrast to looking at a certain problem completely from
scratch, we apply the knowledge we already have from our study of similar systems
to speed up the creation of specifications, design, and code. Thus, one of the goals
of this approach is reuse.

Any area in which we develop software systems qualifies to be a domain. Exam-
ples include library systems, hotel reservation systems, university registration sys-
tems, etc. We can sometimes divide a domain into several interrelated domains.
For example, we could say that the domain of university applications includes the
domain of course management, the domain of student admissions, the domain of
payroll applications, and so on. Such a domain can be quite complex because of the
interactions of the smaller domains that make up the bigger one.

Before we analyse and construct a specific system, we first need to perform an
exhaustive analysis of the class of applications in that domain. In the domain of
libraries, for example, there are things we need to know including the following.

1. The environment, including customers and users. Libraries have loanable items
such as books, CDs, periodicals, etc. A library’s customers aremembers. Libraries
buy books from publishers.

2. Terminology that is unique to the domain. For example, the Dewey decimal clas-
sification (DDC) system for books.

3. Tasks and procedures currently performed. In a library system, for example:

(a) Members may check out loanable items.
(b) Some items are available only for reference; they cannot be checked out.
(c) Members may put holds on loanable items.
(d) Members will pay a fine if they return items after the due date.

Finding the Right Classes

In general, finding the right classes is non-trivial. It must be remembered that
this process is iterative, i.e., we start with a set of classes and complete a con-
ceptual design. In the process ofwalking through the use case implementations,
we may find that some classes have to be dropped and some others have to be
added. Familiarity with Design Patterns also helps in recognizing the classes.
The following thumb rules and caveats come in handy:

https://hemanthrajhemu.github.io

152 6 Analysing a System

• In general, do not build classes around functions. There are exceptions to
this rule as we will see in Chap.9. Write a class description. If it reads ‘This
class performs...’ wemost likely have a problem. If class name is imperative,
e.g., print, parse, etc., it is likely that either the class is wrong or the name
is wrong.

• Remember that a class usually has more than one method; otherwise it is
probably a method that should be attached to some other class.

• Do not form an inheritance hierarchy too soon unless we have a pre-
existing taxonomy. (Inheritance is supposed to be a relationship among
well-understood abstractions.)

• Be wary of classes that have no methods, (or only query methods) because
they are not frequent. Some situations in which they occur are:
(i) representing objects from outside world, (ii) encapsulating facilities, con-
stants or shared variables, (iii) applicative classes used to describe non-
modifiable objects, e.g., integer class in Java generates new integers, but
does not allow modification of integers.

• Check for the following properties of the ideal class: (i) a clearly associated
abstraction, which should be a data abstraction (as opposed to a process
abstraction), (ii) a descriptive noun/adjective for the class name, (iii) a non-
empty set of runtime objects, (iv) queries and commands, (v) abstract prop-
erties that can be described as pre/post conditions and invariants.

One of the major activities of this analysis is discovering the business rules, the rules
that any properly-functioning system in that domain must conform to.

Where does the knowledge of a specific domain come from? It could be from
sources such as surveys, existing applications, technical reports, user manuals, and
so on. As shown in Fig. 6.10, a domain analyst analyses this knowledge to come up
with specifications, designs, and code that can be reused in multiple projects.

Clearly, a significant amount of effort has to be expended to domain analysis before
undertaking the specific problem. The benefit is that after the initial investment of
resources, the products (such as specifications, designs, code, test data, etc.) can
be reused for the development of any number of applications in that domain. This
reduces development time and cost.

Fig. 6.10 Domain analysis

https://hemanthrajhemu.github.io

6.6 Discussion and Further Reading 153

6.6 Discussion and Further Reading

A detailed treatment of object-oriented analysis methods can be found in [1]. The
rules for finding the right classes are condensed from [2].

Obtaining the requirements specification is typically part of a larger ‘plan and
elaborate phase’ that would be an essential component of any large project. In addi-
tion to specification of requirements, this phase includes such activities as the initial
conception, investigation of alternatives, planning, budgeting etc. The end product
of this phase will include such documents as the Plan showing a schedule, resources,
budget etc., a preliminary investigation report that lists the motivation, alternatives,
and business needs, requirements specification, a glossary as an aid to understand-
ing the vocabulary of the domain, and, perhaps, a rough conceptual model. Larger
systems typically require more details before the analysis can proceed.

Use case modeling is one of the main techniques of a more general field of study
called usage modeling. Usage modeling employs the following techniques: essential
use cases, system use cases, UML use case diagrams, user stories and features
[3]. What we have discussed here are essential use cases, which deal only with the
fundamental business task without bringing technological issues into account. These
are used to explore usage-based requirements.

Making sure that our use cases have covered all the business processes is in itself a
non-trivial task. This area of study, called business process modeling, employs tools
such as data flow diagrams, flowcharts, and UML Activity Diagrams [3] and is used
to create process models for the business.

There are several UML tools available for analysis, and new variants are being
constantly developed.What a practitioner chooses often depends on the development
package being employed. A good, compact reference to the entire language can be
found in [4]. The use case table and the class diagram with associations exemplify
the very basic tools of object-oriented analysis.

There is no prescribed analysis or design technique that software designer must
follow at all costs. There are severalmethodologies in vogue, and these ideas continue
to evolve over time. In [5] it has been pointed out that while some researchers and
developers are of the opinion that object-oriented methodologies are a revolutionary
change from the conventional techniques, others have argued that object-oriented
techniques are nothing but an elaboration of structured design. A comparative study
of various object-oriented and conventional methodologies is also presented in that
article.

Projects

1. A database for a warehouse A large warehousing corporation operates as
follows:

(a) The warehouse stocks several products, and there are several manufacturers
for each product.

https://hemanthrajhemu.github.io

154 6 Analysing a System

(b) The warehouse has a large number of registered clients. The clients place
orders with the warehouse, which then ships the goods to the client. This
process is as follows: the warehouse clerk examines the client’s order and
creates an invoice, depending on availability of the product. The invoice is
then sent to the shop floor where the product is packed and shipped alongwith
the invoice. The unfilled part of the order is placed in a waiting list queue.

(c) When the stock of any product runs low, the warehouse orders that product
from one of the manufacturers, based on the price and terms of delivery.

(d) When a product shipment is received from a manufacturer, the orders in the
waiting list are filled in first. The remainder is added to the inventory.

The business processes: The warehouse has three main operational business
processes, namely,

(a) receiving and processing an order from a client,
(b) placing an order with the manufacturer,
(c) receiving a shipment,
(d) receiving payment from a client.

Let us examine the first of these. When an order is received from a client, the
following steps are involved:

(a) Clerk receives the order and enters the order into the system.
(b) The system generates an invoice based on the availability of the product(s).
(c) The clerk prints the invoice and sends it over to the storage area.
(d) A worker on the floor picks up the invoice, retrieves the product(s) from the

shelves and packs them, and ships the goods and the invoice to the client.
(e) The worker requests the system to mark the order as having been shipped.
(f) The system updates itself by recording the information.

This is an interesting business process because of the fact that steps of printing
the invoice and retrieving the product from the shelves are performed by different
actors. This introduces an indefinite delay into the process. If we were to translate
this into a single end-to-end use case, we have a situation where the systemwill be
waiting for a long time to get a response from an actor. It is therefore appropriate
to break this up into two use cases as follows:
1. Use case create-invoice.
2. Use case fill-invoice.

In addition to these operational business processes, the warehouse will have sev-
eral other querying and accounting processes such as:

(a) Registering a new client.
(b) Adding a new manufacturer for a certain product.
(c) Adding a new product.
(d) Printing a list of clients who have defaulted on payments.
(e) Printing a list of manufacturers who are owed money by the warehouse, etc.

https://hemanthrajhemu.github.io

6.6 Discussion and Further Reading 155

Write the use cases, and determine the conceptual classes and their relationships.

2. Managing a university registration system

A small university would like to create a registration system for its students.
The students will use this system to obtain information about courses, when and
where the classes meet, register for classes, print transcripts, drop classes, etc.
The faculty will be using this system to find out what classes they are assigned to
teach, when and where these classes meet, get a list of students registered for each
class, and assign grades to students in their classes. The university administrative
staff will be using this database to add new faculty and students, remove faculty
and students who have left, put in and update information about each course the
university ofers, enter the schedules for classes that are being offered in each
term, and any other housekeeping tasks that need to be performed.
Your task is to analyse this system, extract and list the details of the various
business processes, develop the use cases, and find the conceptual classes and
their relationships.
In finding the classes for this system, one of the issues that comes up is that of
distinguishing a course from an offering of the course. For instance ‘CS 430:
Principles of Object-Oriented Software Construction’ is a course listed in the
university’s course bulletin. The course is offered once during the fall term and
once during the spring term. Each offering may be taught at a different time
and place, and in all likelihood will have a different set of students. Therefore,
all offerings have some information in common and some information that is
unique to that offering. How will you choose a set of classes that models all these
interactions?

3. Creating an airline reservation and staff scheduling database

An airline has aweekly flight schedule. Associatedwith each flight is an aircraft, a
list of crew, and a list of passengers. The airline would like to create and maintain
a database that can perform the following functions:
For passengers Add a passenger to the database, reserve a seat on a flight, print
out an itinerary, request seating and meal preferences, and update frequent flier
records.
For crew Assign crew members to each flight, allow crew members to view their
schedule, keep track of what kinds of aircraft the crew member has been trained
to operate.
For flights Keep track of crew list, passenger list, and aircraft to be used for that
flight.
For aircraft Maintain all records about the aircraft and a schedule of operation.
Make an exhaustive list of queries that this system may be required to answer.
Carry out a requirements analysis for the system and model it as a collection of
use cases. Find the conceptual classes and their relationships.

https://hemanthrajhemu.github.io

156 6 Analysing a System

6.7 Exercises

1. In the use case Issue Book, the system displays the transaction details with each
book. Modify this so that there is only one display of transactions at the very
end of the process.

2. (Discussion) In a real library, there would be several other kinds of query oper-
ations that would be performed. Carry out a brainstorming exercise to come up
with a more complete list of use cases for a real library system.

3. A hotel reservation system supports the following functionality:

(a) Room reservation
(b) Changing the properties of a room (for example, from non-smoking to

smoking)
(c) Customer check-in
(d) Customer check-out

Come up with system use cases for the above functionality.
4. We are building a system to track personal finances. We plan an initial version

with minimal functionality: tracking the expenditures. (Each expenditure has a
description, date and amount.) We show below the use case for creating a new
expenditure item and a new income item.

Actor System
(1) Inputs a request to create a new expen-
diture item

(2) Asks for description, date, and amount
(3) Supplies the data

(4) Creates an expenditure item and noti-
fies the user

Actor System
(1) Inputs a request to create a new income
item

(2) Asks for description, date, and amount
(3) Supplies the data

(4) Creates an income item and notifies the
user

(a) The use cases are quite weakly specified. In what ways? (Hint: Compare
with the addition of a new member or book in the library system.)

(b) What are the alternate flows in the use cases? Modify the two use cases to
handle the alternate flows.

(c) Identify the conceptual classes.

https://hemanthrajhemu.github.io

6.7 Exercises 157

5. Consider the policies maintained by an automobile insurance company. A policy
has a primary policy holder, a set of autos insured, and a list of people who are
covered by the insurance. From your knowledge of insurance, come up with
system use cases for

(a) creating a new policy
(b) adding a new person to a policy
(c) adding a new automobile to a policy
(d) recording a claim.

6. Consider an information system to be created for handling the business of a
supermarket. For each of the following, state if it is a possible class. If not,
explain why not. Otherwise, why would you consider it to be a class? What is
its role in the system?

(a) Customer
(b) Vegetable
(c) Milk
(d) Stock
(e) Canned food
(f) Quantity on hand for a product

7. A company has several projects, and each employee works in a single project.
The human resource system evaluates the personnel needs of each project and
matches them against the personnel file to find the best possible employees to
be assigned to the project. Come up with the conceptual classes by conducting
use case analysis.

8. Explain why mistakes made in the requirements analysis stage are the costliest
to correct.

9. Among the following requirements, which are functional and which are non-
functional?

(a) Paychecks should be printed every two weeks.
(b) Database recovery should not take more than one hour.
(c) The system should be implemented using the C++ language.
(d) It should be possible to selectively print employee checks.
(e) Employee list should be displayed in lists of size 10.

10. Suppose the library system has to be augmented so that it can support inter-
library loans. That is, a customer can ask the clerk if a certain book, which is not
locally available, is available in some other library. What changes are needed
(classes and use cases) to incorporate this new functionality?

11. In Problem 6, assume that a customer may pay with cash, check, or credit/debit
cards. Should this aspect be taken into consideration while developing the use
case for purchasing grocery? Justify your answer.

https://hemanthrajhemu.github.io

158 6 Analysing a System

12. Again, in Problem 6, suppose that a user may check out by interacting with a
sales clerk or independently in an automated checkout counter. Should there be
two versions of the grocery purchase use case? Explain.

13. What are the advantages of ignoring implementation-related aspects while per-
forming analysis?

References

1. C. Larman, Applying UML and Patterns (Prentice Hall PTR, 1998)
2. B. Meyer, Object-Oriented Software Construction (Prentice Hall, 1997)
3. S. Ambler, The Object Primer: Agile Model-Driven Development with UML 2.0 (Cambridge

University Press, 2004)
4. M. Fowler, K. Scott, UML Distilled (Addison-Wesley Longman, 1997)
5. R. Fichman,C.Kemerer,Object-Oriented and Conventional Analysis and Design Methodologies

(IEEE Computer Society Press, 1995)

https://hemanthrajhemu.github.io

