

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

10.10.4 Recognising and Processing External Events. 317
10.10.5 Handling the Events . 318

10.11 Exercises . 321
References. 322

11 Interactive Systems and the MVC Architecture 323
11.1 Introduction . 323
11.2 The MVC Architectural Pattern. 324

11.2.1 Examples . 326
11.2.2 Implementation . 326
11.2.3 Benefits of the MVC Pattern. 328

11.3 Analysing a Simple Drawing Program 328
11.3.1 Specifying the Requirements. 328
11.3.2 Defining the Use Cases . 329

11.4 Designing the System . 331
11.4.1 Defining the Model . 332
11.4.2 Defining the Controller . 332
11.4.3 Selection and Deletion . 338
11.4.4 Saving and Retrieving the Drawing 339

11.5 Design of the Subsystems. 339
11.5.1 Design of the Model Subsystem 340
11.5.2 Design of Item and Its Subclasses 341
11.5.3 Design of the Controller Subsystem 348
11.5.4 Design of the View Subsystem 349

11.6 Getting into the Implementation . 352
11.6.1 Item and Its Subclasses . 352
11.6.2 Implementation of the Model Class 354
11.6.3 Implementation of the Controller Class 355
11.6.4 Implementation of the View Class 356
11.6.5 The Driver Program. 359
11.6.6 A Critique of Our Design 359

11.7 Implementing the Undo Operation. 360
11.7.1 Employing the Command Pattern 364
11.7.2 Implementation . 368

11.8 Drawing Incomplete Items . 371
11.9 Adding a New Feature . 374
11.10 Pattern-Based Solutions . 377

11.10.1 Examples of Architectural Patterns 379
11.11 Discussion and Further Reading . 380

11.11.1 Separating the View and the Controller 381
11.11.2 The Space Overhead for the Command Pattern 381
11.11.3 How to Store the Items . 382

xviii Contents

https://hemanthrajhemu.github.io

Chapter 11
Interactive Systems and the MVC
Architecture

11.1 Introduction

So far we have seen examples and case-studies involving relatively simple software
systems. This simplicity enabled us to use a fairly general step-by-step approach,
viz., specify the requirements, model the behaviour, find the classes, assign respon-
sibilities, capture class interactions, and so on. In larger systems, such an approach
may not lead to an efficient design and it would be wise to rely on the experience
of software designers who have worked on the problem and devised strategies to
tackle the problem. This is somewhat akin to planning our strategy for a game of
chess. A chess game has three stages—an opening, a middle game and an endgame.
While we are opening, the field is undisturbed and there are an immense number
of possibilities; toward the end there are few pieces and fewer options. If we are
in an endgame situation, we can solve the problem using a fairly direct approach
using first principles; to decide how to open is a much more complicated operation
and requires knowledge of ‘standard openings’. These standard openings have been
developed and have evolved along with the game, and provide a framework for the
player. Likewise, when we have a complex problem, we need a framework or struc-
ture within which to operate. For the problem of creating software systems, such a
structure is provided by choosing a software architecture.

In this chapter, we start by describing a well-known software architecture (some-
times referred to as an architectural pattern) called the Model–View–Controller
or MVC pattern. Next we design a small interactive system using such an archi-
tecture, look at some problems that arise in this context and explore solutions for
these problems using design patterns. Finally, we discuss pattern-based solutions in
software development and some other frequently employed architectural patterns.

© Universities Press (India) Private Ltd. 2015
B. Dathan and S. Ramnath, Object-Oriented Analysis, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-24280-4_11

323

https://hemanthrajhemu.github.io

324 11 Interactive Systems and the MVC Architecture

11.2 The MVC Architectural Pattern

The model view controller is a relatively old pattern that was originally introduced
in the Smalltalk programming language. As one might suspect, the pattern divides
the application into three subsystems: model, view, and controller. The architecture
is shown in Fig. 11.1. The pattern separates the application object or the data, which
is termed the Model, from the manner in which it is rendered to the end-user (View)
and from the way in which the end-user manipulates it (Controller). In contrast to
a system where all of these three functionalities are lumped together (resulting in a
low degree of cohesion), the MVC pattern helps produce highly cohesive modules
with a low degree of coupling. This facilitates greater flexibility and reuse. MVC
also provides a powerful way to organise systems that support multiple presentations
of the same information.

The model, which is a relatively passive object, stores the data. Any object can
play the role of model. The view renders the model into a specified format, typically
something that is suitable for interaction with the end user. For instance, if the model
stores information about bank accounts, a certain view may display only the number
of accounts and the total of the account balances. The controller captures user input
and when necessary, issues method calls on the model to modify the stored data.
When the model changes, the view responds by appropriately modifying the display.

In a typical application, the model changes only when user input causes the con-
troller to inform the model of the changes. The view must be notified when the
model changes. Instance variables in the controller refer to the model and the view.
Moreover, the view must communicate with the model, so it has an instance variable
that points to the model object. Both the controller and the view communicate with
the user through the UI. This means that some components of the UI are used by
the controller to receive input; others are used by the view to appropriately display
the model and some can serve both purposes (e.g., a panel can display a figure and
also accept points as input through mouseclicks). It is important to distinguish the UI
from the rest of the system: beginners often mistake the UI for the view. This is easy
error to make for two reasons. In most systems, due to the nature of the desired look
and feel and the technologies available, there is a single window in which the entire

Fig. 11.1 The
model–view–controller
architecture

https://hemanthrajhemu.github.io

11.2 The MVC Architectural Pattern 325

application is housed. This means that there has to be a common subsystem that
provides the functionality needed both for the view and the user interface. The other
source of potential confusion is that the UI presents to the user an image of how the
system looks, and this can be mistakenly construed as the view. This interface must
include components that are in fact part of the controller (e.g., buttons for giving
commands). When we talk of MVC in the abstract sense, we are dealing with the
architecture of the system that lies behind the UI; both the view and the controller
are subsystems at the same level of abstraction that employ components of the UI
to accomplish their tasks. From a practical standpoint, however, we have a situation
where the view and the UI are contained in a common subsystem. For the purpose of
designing our system, we shall refer to this common subsystem as the view. The view
subsystem is therefore responsible for all the look and feel issues, whether they arise
from a human–computer interaction perspective (e.g., kinds of buttons being used)
or from issues relating to howwe render the model. Figure11.2 shows howwemight
present the MVC architecture while accounting for these practical considerations.

User-generated events may cause a controller to change the model, or view, or
both. For example, suppose that the model stored the text that is being edited by the
end-user. When the user deletes or adds text, the controller captures the changes and
notifies the model. The view, which observes the model, then refreshes its display,
with the result that the end-user sees the changes he/she made to the data. In this
case, user-input caused a change to both the model and the view.

On the other hand, consider a user scrolling the data. Since no changes are made
to the data itself, the model does not change and need not be notified. But the view
now needs to display previously-hidden data, which makes it necessary for the view
to contact the model and retrieve information.

More than one view–controller pair may be associated with a model. Whenever
user input causes one of the controllers to notify changes to the model, all associated
views are automatically updated.

It could also be the case that the model is changed not via one of the controllers,
but through some other mechanism. In this case, the model must notify all associated
views of the changes.

Fig. 11.2 An alternate view of the the MVC architecture

https://hemanthrajhemu.github.io

326 11 Interactive Systems and the MVC Architecture

The view–model relationship is that of a subject–observer. The model, as the
subject, maintains references to all of the views that are interested in observing it.
Whenever an action that changes the model occurs, the model automatically notifies
all of these views. The views then refresh their displays. The guiding principle here
is that each view is a faithful rendering of the model.

11.2.1 Examples

Suppose that in the library system we have a GUI screen using which users can place
holds on books. Another GUI screen allows a library staff member to add copies of
books. Suppose that a user views the number of copies, number of holds on a book
and is about to place a hold on the book. At the same time, a library staff member
views the book record and adds a copy. Information from the same model (book) is
now displayed in different formats in the two screens.

A second example is that of a mail sever. A user logs into the server and looks at
the messages in the mailbox. In a second window, the user logs in again to the same
mail server and composes a message. The two screens form two separate views of
the same model.

Suppose that we have a graph-plot of pairs of (x, y) values. The collection of
data points constitutes the model. The graph-viewing software provides the user
with several output formats—bar graphs, line graphs, pie charts, etc. When the user
changes formats, the view changes without any change to the model.

11.2.2 Implementation

As with any software architecture, the designer needs to have a clear idea about
how the responsibilities are to be shared between the subsystems. This task can be
simplified if the role of each subsystem is clearly defined.

• The view is responsible for all the presentation issues.
• The model holds the application object.
• The controller takes care of the response strategy.

The definition for the model will be as follows:

public class Model extends Observable {
// code
public void changeData() {

// code to update data
setChanged();
notifyObservers(changeInfo);

}
}

https://hemanthrajhemu.github.io

11.2 The MVC Architectural Pattern 327

Each of the views is an Observer and implements the update method.

public class View implements Observer {
// code
public void update(Observable model, Object data) {

// refresh view using data
}

}

If a view is no longer interested in the model, it can be deleted from the list of
observers.

Since the controllers react to user input, they may send messages directly to the
views asking them to refresh their displays.

For each feature, we start with a detailed list of specifications, stated clearly
enough so that they can be classified as belonging to one of the three categories. In
general, there is always an initiation step for each operation; the manner in which
the user is to be shown the feature and the manner in which it is invoked are part
of the presentation. What the system should do when the request is made is a part
of the response strategy, and the controller manages this part of the show. This
strategy may involve interacting with the user in tandem with making changes to the
application object. What is needed from the user is part of the response strategy, but
how the system communicates with the user is a presentation issue. Changes to the
application object are made by invoking the methods of model. As the application
object is modified, the display needs to be modified to reflect the changes. Modifying
the display is again a matter for presentation.

Clearly, there is a lot of entanglement here between the three parts, and it is a
challenge to keep everything separate. The controller invokes the methods provided
by the model so that the separation is relatively easy to implement. There can be
confusion around drawing a line between the responsibilities of the view and the
controller for reasons explained earlier. Likewise, keeping the business logic away
from the display (or model–view separation) can be tricky in situations where there
is a close relationship between the stored data and the methods for rendering it. As
we design and implement a case-study in the following pages, we make decisions as
various situations arise. Although the philosophy behind this architecture is easily
stated, the details are best explained by example.

Thismeans that it is not always possible to have a clean division of the components
such that some components are designated for data input and the rest are for data
display. Therefore, it is quite difficult to decide which components belong to the
controller and which ones are part of the view. Surely, the view has to display data
and, in general, some of its components end up as mechanisms for user input.

The approach we use to resolve this is to create a UI with functionality to serve the
purpose of both the view and the controller. Display components will be available
to the view, which invokes the appropriate display commands. Components which
capture events generated by user inputs are configured to pass on the message to
the appropriate subsystem; note that events for some operations (like scrolling) are
handled by the view, whereas others (like add, delete) are sent to the controller.

https://hemanthrajhemu.github.io

328 11 Interactive Systems and the MVC Architecture

11.2.3 Benefits of the MVC Pattern

1. Cohesive modules: Instead of putting unrelated code (display and data) in the
same module, we separate the functionality so that each module is cohesive.

2. Flexibility: The model is unaware of the exact nature of the view or controller it
is working with. It is simply an observable. This adds flexibility.

3. Low coupling: Modularity of the design improves the chances that components
can be swapped in and out as the user or programmer desires. This also promotes
parallel development, easier debugging, and maintenance.

4. Adaptable modules: Components can be changed with less interference to the
rest of the system.

5. Distributed systems: Since the modules are separated, it is possible that the three
subsystems are geographically separated.

11.3 Analysing a Simple Drawing Program

We now apply the MVC architectural pattern to the process of designing a simple
program that allows us to create and label figures. The purpose behind this exercise
is twofold:

• To demonstrate how to design with an architecture in mind Designing with an
architecture in mind requires that we start with a high-level decomposition of
responsibilities across the subsystems. The subsystems are specified by the archi-
tecture. The designer gets to decide which classes to create for each subsystem,
but the the responsibilities associated with these classes must be consistent with
the purpose of the subsystem.

• To understand how the MVC architecture is employedWe shall follow the architec-
ture somewhat strictly, i.e., we will try to have three clearly delineated subsystems
for Model, View, and Controller. Later on, we will explore and discuss variations
on this theme.

As always, our design begins with the process of collecting requirements.

11.3.1 Specifying the Requirements

Our initial wish-list calls for software that can do the following.

1. Draw lines and circles.
2. Place labels at various points on the figure; the labels are strings. A separate

command allows the user to select the font and font size.
3. Save the completed figure to a file. We can open a file containing a figure and

edit it.
4. Backtrack our drawing process by undoing recent operations.

https://hemanthrajhemu.github.io

11.3 Analysing a Simple Drawing Program 329

Compared to the kinds of drawing programs we have on the market, this looks too
trivial! Nonetheless, it is sufficient to show how the responsibilities can be divided
so that the MVC pattern can be applied. What we shall also see, later on, is how new
features can be added without disrupting the existing classes.

In order to attain this functionality, the software will interact with the user. We
need to specify exactly how this interaction will take place. It should, of course, be
user-friendly, fast, etc., but as in earlier examples, these non-functional requirements
will not be the focus of our attention. Without more ado, let us adopt the following
‘look and feel:’

• The software will have a simple framewith a display panel onwhich the figure will
be displayed, and a command panel containing the buttons. There will be buttons
for each operation, which are labeled likeDraw Line, Draw Circle, Add Label, etc. The
system will listen to mouse-clicks which will be employed by the user to specify
points on the display panel.

• The display panel will have a cross-hair cursor for specifying points and
a_ (underscore) for showing the character insertion point for labels. The default
cursor will be an arrow.

• The cursor changes when an operation is selected from the command menu.When
an operation is completed, the cursor goes back to the default state.

• To draw a line, the user will specify the end points of the line with mouse-clicks.
To draw a circle, the user will specify two diametrically opposite points on the
perimeter. For convenient reference, the center of each circle will be marked with a
black square. To create a label, the starting point will be specified by amouse-click.

11.3.2 Defining the Use Cases

We can nowwrite the detailed use cases for each operation. The first one, for drawing
a line, is shown in Table11.1.

Table 11.1 Use-case table for Drawing a line

Actions performed by the actor Responses from the system

1. The user clicks on the Draw Line button in the
command panel

2. The system changes the cursor to a cross-hair

3. The user clicks first on one end point and
then on the other end point of the line to be
drawn

4. The system adds a line segment with the two
specified end points to the figure being created.
The cursor changes to the default

https://hemanthrajhemu.github.io

330 11 Interactive Systems and the MVC Architecture

Table 11.2 Use-case table for Adding a Label

Actions performed by the actor Responses from the system

1. The user clicks on the Add Label button in the
command panel

2. The system changes the cursor to a
cross-hair cursor

3. The user clicks at the left end point of the
intended label

4. The system places a_ at the clicked location

5. The system waits for the user response

5. The user types a character or clicks the
mouse at another location

6. If the character is not a carriage return the
system displays the typed character followed
by a_, and the user continues with Step 5; in
case of a mouse-click, it goes to Step 4;
otherwise it goes to the default state

The use case for drawing a circle can be done analogously.
To give the system better usability, we allow for multiple labels to be added with

the same command. To start the process of adding labels, the user clicks on the
command button. This is followed by a mouse-click on the drawing panel, following
which the user types in the desired label. After typing in a label, a user can either click
on another point to create another label, or type a carriage return, which returns the
system to the default state. These details are spelled out in the use case in Table11.2.

The system will ignore almost all non-printable characters. The exceptions are
the Enter (terminate the operation) and Backspace (delete the most-recently entered
character) keys. A label may contain zero or more characters.

We also have use cases for operations that do not change the displayed object. An
example of this would be when the user changes the font, shown in Table11.3.

The requirements call for the ability to save the drawing andopen and edit the saved
drawings. The use cases for saving, closing and opening files are left as exercises.
In order to allow for editing we need at least the following two basic operations:
selection and deletion. The use case Select an Item is detailed in Table11.4.

There are some details here that need to be fleshed out in later stages. We have
not specified how the system would indicate the change to the selection mode. We
could do this by changing the cursor or altering the display in some other way. This
use case requires that the display should indicate which items have been selected.
This can be done by drawing these items in a different colour.

It is possible that the user’s click does not fall on any item; in that case, the system
simply ignores the mouseclick and returns to the default mode.

https://hemanthrajhemu.github.io

11.3 Analysing a Simple Drawing Program 331

Table 11.3 Use-case table for Change Font

Actions performed by the actor Responses from the system

1. The user clicks on the Change Font button in
the command panel

2. The system displays a list of all the fonts
available

3. The user clicks on the desired font

4. The system changes to the specified font and
displays a message to that effect

Table 11.4 Use-case table for Select an Item

Actions performed by the actor Responses from the system

1. The user clicks on the Select button in the
command panel

2. The system changes the display to the
selection mode

3. The user clicks the mouse on the drawing

4. If the click falls on an item, the system adds
the item to its collection of selected items and
updates the display to reflect the addition. The
system returns the display to the default mode

Deletion will be done by having a button in the GUI that the user can click;
whenever this button is clicked, all the selected items are deleted. The use case for
this is left as an exercise.

The reader would note that this system is restrictive in many ways. This has been
done for simplicity and will not in any way detract from the design experience. In
fact, it will highlight the extendability of the design when we extend the functionality
with very little disturbance to the existing code.

11.4 Designing the System

The process of designing this system is somewhat different from our earlier case
studies owing to the fact that we have selected an architecture. Our architecture
specifies three principal subsystems, viz., the Model, the View and the Controller.
We have a broad idea of what roles each of these play, and our first step is to define
these roles in the context of our problem. As we do this, we look at the individual use
cases and decide how the responsibilities are divided across the three subsystems.
Once this is taken care of,we look into the details of designing each of the subsystems.

https://hemanthrajhemu.github.io

332 11 Interactive Systems and the MVC Architecture

11.4.1 Defining the Model

Our next step is to definewhat kind of an object we are creating. This is relatively sim-
ple for our problem; we keep a collection of line, circle, and label objects. Each line
is represented by the end points, and each circle is represented by the X-coordinates
of the leftmost and rightmost points and the Y -coordinates of the top and bottom
points on the perimeter (see Fig. 11.3).

For a label, the model stores the coordinate’s starting position, the text, and the
style and size of the characters in the string. The collection is accessed by the view
when the figure is to be rendered on the screen. The model also provides mech-
anisms to access and modify its collection objects. These would be methods like
addItem(Item), getItems(), etc.

11.4.2 Defining the Controller

The controller is the subsystem that orchestrates the whole show and the definition
of its role is thus critical. When the user attempts to execute an operation, the input
is received by the view. The view then communicates this to the controller. This
communication can be effected by invoking the public methods of the controller. Let
us examine in detail the various implementation steps for the processes described in
the use cases.

Drawing a Line

1. The user starts by clicking the Draw line button, and in response, the system
changes the cursor. Clearly, changing the cursor should be a responsibility of the
view, since that is where we define the look and feel. This would imply that the
view system (or some part thereof) listen to the button click. The click indicates
that the user has initiated an operation that would change the model. Since such
operations have to be orchestrated through the controller, it is appropriate that the

Fig. 11.3 Representing a circle and a label

https://hemanthrajhemu.github.io

11.4 Designing the System 333

controller be informed. The controller creates a line object (with both endpoints
unspecified).

2. The user clicks on the display panel to indicate the first end point of the line. We
now need to designate a listener for the mouse clicks. This listener will extract
the coordinates from the event and take the necessary action. Both the view and
the controller are aware of the fact that a line drawing operation has been initi-
ated. The question then is, which of these subsystems should be responding to
the mouse-click? Having the controller listen directly to the mouse-clicks seems
to be more efficient, since that will reduce the number of method invocations.
However there are several reasons why this is not a good choice. First, the meth-
ods/interfaces (e.g., MouseListener in Java) to be implemented depend on
the manner in which the view is being implemented. This means that the con-
troller is not independent of the view, thus hurting reuse. A second reason is that
we can have multiple ways to input the points. For instance, when trying to draw
a precise figure, a user may prefer to specify the points as coordinates through
some kind of dialog, instead of clicking the mouse. These accommodations are
part of the look and feel, and do not belong in the controller. Finally, we have
the problem of reading and interpreting the input. In our particular situation,
this manifests itself as the process of mapping device coordinates to the image
coordinates. Most of the graphical display tools available nowadays use a coor-
dinate system where the origin corresponds to the top-left corner of the display
rectangle, with X coordinates increasing from left to right and Y coordinates
increasing from top to bottom (also known as device coordinates). Programs that
generate and use graphics often prefer the standard Cartesian coordinate system.
Thus we might have a situation where the model is being created with Cartesian
coordinates, whereas mouse clicks and graphical output must use device coordi-
nates and points have to be mapped from one system to the other. The conversion
of Cartesian coordinates to device coordinates is best done in the view since it
knows and is responsible for the nature and format of the output (points specified
as device coordinates). The reverse operation of converting device coordinates of
input points to Cartesian coordinates must also, therefore, be done by the view,
which means that the view must capture the input. Therefore, although a perfor-
mance penalty is incurred, we favour the implementation where the mouse-click
is listened to in the view. The view then communicates these coordinates to the
controller, after performing any transformation or mapping that may be needed.
At this point we need to decide how the system would behave during the period
between the clicks. For instance, should the point for the first click be highlighted
in any way? Since the use case does not specify anything, we can ignore this issue
for the time being, i.e., no change happens until both end points are clicked.

3. The user clicks on the second point. Once again, the view listens to the click and
communicates this to the controller. On receiving these coordinates, the controller
recognises that the line drawing is complete and updates the line object.

4. Finally, the model notifies the view that it has changed. The view then redraws
the display panel to show the modified figure.

https://hemanthrajhemu.github.io

334 11 Interactive Systems and the MVC Architecture

Fig. 11.4 Sequence of operations for drawing a line

This sequence of operations across the three subsystems can be captured by a high-
level sequence diagram as shown in Fig. 11.4. Note that unlike the sequence diagrams
in earlier chapters, this does not spell out all the classes involved or the names of the
methods invoked.

Drawing a Circle

The actions for drawing a circle are similar. However, we now have some additional
processing to be done, i.e., the given points on the diameter must be converted to the
the four integer values, as explained in Fig. 11.3. Note that this requires a mapping
to convert the input to the form required by the model. This can be performed in the
controller, since these representations are equivalent.

Adding a Label

This operation is somewhat different due to the fact that the amount of data is not
fixed. The steps are as follows:

1. The user starts by clicking the Add Label button. In response, the system changes
the mouse-cursor, which, as before is the responsibility of the view.

2. The user clicks the mouse, and the system acknowledges the receipt of the mouse
click by placing a_ at the location. This would result in changing what the drawing
looks like. As decided earlier, we will maintain the property that the view is a
faithful rendering of the model. The view therefore notifies the controller that
the operation has been initiated, and the controller modifies the model. One issue

https://hemanthrajhemu.github.io

11.4 Designing the System 335

that we have to resolve is that of assigning the appropriate size and style to the
characters in the label. To implement this, we have to address the following:

• Which subsystem ‘remembers’ the current style and size? Since the user cannot
be expected to specify the size and style with each character, these have to be
stored somewhere. For our situation, we shall assume that these are stored in
the view and passed on to the controller when the label construction operation
is initiated.

• When do the changes to size and style take effect? To simplify our system, we
assume that these will take effect for the next label that is created. What this
means is that the style and size have to be uniform for any given label, and if a
change is made to any of these while we are in the process of creating a label,
these changes will not take immediate effect.

3. The user types in a character.Once again, the view listens to and gets the input from
the keyboard, which is communicated to the controller. Once again the controller
changes the model, which notifies the view.

4. The user clicks the mouse or enters a carriage-return. This is appropriately inter-
preted by the view. In both cases, the view informs the controller that the addition
of the label is complete. In case of a mouse click, the controller is also notified
that a new operation for adding a label has been initiated.

This sequence of steps is explained in Fig. 11.5. Note that the view interprets the key-
strokes: as per our specifications ordinary text is passed on directly to the controller,
control characters are ignored, carriage-return is translated into a command, etc.
All this is part of the way in which the system interacts with the user, and therefore
belongs to the view.

Dealing with the Environmental Variables

Most interactive systems need to remember the values of certain parameters to
make the system user-friendly. For instance, a word-processing system remem-
bers the size and font of the characters so that the user does not have to specify
these with every operation. We refer to these parameters as environmental
variables. In our example, for creating a label, we choose to store these in the
view, and this has some consequences for the behaviour of the system.

Consider a document creation system that has Times-Roman as the default
font. When the system starts up, the font parameter stores the value ‘Times-
Roman’. If the user selects a different font, say Helvetica, then this parameter
is changed and any following text input is displayed in Helvetica. The font para-
meter could be stored in the model or in the view. If we store this in the model,
then the font information does not have to be sent by the view to the controller,
along with the text. In addition, this would result in storing the font parameter
when the figure is saved to a file.

https://hemanthrajhemu.github.io

336 11 Interactive Systems and the MVC Architecture

Now consider what happens when the file is retrieved at some later time.
The font parameter would be set to Helvetica, and this font would apply to all
the text input. On the other hand, if the font type is stored in the view, storing
and retrieving would set the font back to Times-Roman (the default). Clearly,
this is a choice that has to be made when the behaviour of the system is being
decided.

Fig. 11.5 Sequence of operations for adding a label

https://hemanthrajhemu.github.io

11.4 Designing the System 337

Sharing Responsibilities Between the View and the Controller

When we employ the MVC architecture, there is often a gray area between
the responsibilities of the controller and those of the view, particularly for the
kind of software discussed in this case-study. Issues that fall in this area can
be confusing to the beginner, particularly since widely varying opinions have
been expressed. Some of these issues have come up in this section and need
clarification.
Accepting user input In our approach above, all user input is received by
the view. Indeed, the view is the only mechanism through which the user can
interact and the view parses all the input that comes in. The idea here is that
the system as a whole be ‘UI agnostic’, i.e., the design of the system does not
depend on how the UI has been implemented.

Consider the situation where the user gives a command. This is done by
a button click. It is tempting to let the controller, or one of its components,
listen to the click and take action. However, this creates problems if the UI is
changed so that the same commands can instead be given by keystrokes. In such
a situation, a change in the UI, or even in the look and feel, can force changes in
the controller. In addition, there could be situations where the same operation
can be initiated in multiple ways. If the controller has to accommodate all of
these, it adds to the complexity of the controller and causes tight coupling.

Once an operation has been initiated, we have the issue of accepting the
data. Once again, while some designers have argued that the data be received
in the controller, this approach is fraught with problems. The data could be in
one of several formats. For instance, a UI designer might want to accommodate
for users to type in coordinate locations instead of clicking with the mouse.
(This could be important for drawing precise geometric figures.) Having the
controller deal with multiple formats is not desirable. A second, more serious
issue is that when the data needs some ‘correction’ to adjust for the display. For
instance, consider a situation where the figure is being drawn with Cartesian
coordinates due to the nature of the application. The mouse-click specifies
the value in coordinates with reference to the object that is being used for the
display (in Java, this would be the JPanel, or a JScrollPane), which will
have to bemapped to the Cartesian values. Doing this mapping in the controller
would mean exposing the controller to all the details of the components used
by the view. The important thing to keep in mind is that the view is providing
the user with several input mechanisms, and therefore should be responsible
for receiving and interpreting the data. The task of accepting and standardising
user input is therefore the responsibility of the view.

https://hemanthrajhemu.github.io

338 11 Interactive Systems and the MVC Architecture

Processing and Storing the input Once the standardised data is available, it
is incorporated into the model. All data is received in conjunction with some
operation, and hence the details of how the data is to be used to change the
model are part of the operation. This activity is independent of the UI, implying
that this would be the responsibility of the controller.

11.4.3 Selection and Deletion

The software allows us to delete lines, circles, or labels by selecting the item and
then invoking the delete operation. These shall be treated as independent oper-
ations since selection can also serve other purposes. Also, we can invoke selection
repeatedly so that multiple items can be selected at any given time.

When an item is selected, it is displayed in red, as opposed to black. The selection
is done by clicking with the arrow (default) cursor. Lines are selected by clicking on
one end point, circles are selected by clicking on the center, and labels are selected
by clicking on the label.

The steps involved in implementing this are as follows:

1. The user gives the command through a button click. This is followed by a mouse
click to specify the item. Both of these are detected in the view and communicated
to the controller.

2. In order to decide what action the controller must take, we need to figure out how
the system will keep track of the selected items. Since the view is responsible
for how these will be displayed (in red, for instance) the view must be able to
recognise these as selected when updating the display. Since the view gets the
items from themodel, it would seem appropriate that themodel have amechanism
to flag the selected items. This can be done by having a tag field for each item,
or simply by moving the selected items to a separate container. We shall use the
latter.

3. The next step is to iterate through the (unselected) items in the model to find
the item (if any) that contains the point. Since the model is to be used strictly
as a repository for the data, the task of iterating through the items is done in
the controller, which then invokes the methods of the model to mark the item as
selected.

4. Model notifies view, which renders the unselected items in the default colour
(black) and the selected items in red. View gets an enumeration of the two lists
separately and uses the appropriate colour for each. Note that model only stores
a separate list of the selected items. It is the view that decides how the two lists
are to be rendered.

https://hemanthrajhemu.github.io

11.4 Designing the System 339

Deletion is a simpler operation. The button click is heard in the view and passed on
to the controller, which simply requests the model to delete all selected items.

11.4.4 Saving and Retrieving the Drawing

The use cases for the processes of saving and retrieving are simply described: the
user requests a save/retrieve operation, the system asks for a file name which the user
provides and the system completes the task. This activity can be partitioned between
our subsystems as follows:

1. The view receives the initial request from the user and then prompts the user to
input a file name.

2. The view then invokes the appropriate method of the controller, passing the file
name as a parameter.

3. The controller first takes care of any clean-up operation that may be required.
For instance, if our specifications require that all items be unselected before the
drawing is saved, or some default values of environment variables be restored,
this must be done at the stage. The controller then invokes the appropriate method
in the model, passing the file name as a parameter.

4. The model serializes the relevant objects to the specified file.

This completes the first step of distributing the responsibilities across the three sub-
systems. Note that unlike the earlier case studies, we did not look for classes and
methods and try to create a class interaction diagram right away. This would be fairly
typical when we are designing a larger software system with some advance notice
about the kind of architecture being employed. As we progress through the details,
we might also realise that our partitioning of responsibilities across the subsystems
may have to shift a little due to other considerations. This is not unusual, since the
architecture only gives us broad guidelines, and not a detailed design.

11.5 Design of the Subsystems

The next step of the process is to design the individual subsystems. In this stage, the
classes and their responsibilities are identified and we get a more detailed picture
of how the required functionality is to be achieved. Since the model should remain
independent of the ‘look-and-feel’ of the system and should remain stable, it is
appropriate that we design it first.

https://hemanthrajhemu.github.io

340 11 Interactive Systems and the MVC Architecture

11.5.1 Design of the Model Subsystem

Consider the basic structure of the model and the items stored therein. From
Sect. 11.3, we know that themodel should havemethods for supporting the following
operations:

1. Adding an item
2. Removing an item
3. Marking an item as selected
4. Unselecting an item
5. Getting an enumeration of selected items
6. Getting an enumeration of unselected items
7. Deleting selected items
8. Saving the drawing
9. Retrieving the drawing

Based on the above list, it is straightforward to identify the methods. The class
diagram is shown in Fig. 11.6. The class Item represents a shape such as line or
label and enables uniform treatment of all shapes within a drawing.

Since the methods, getItems() and getSelectedItems() return an enu-
meration of a set of items, we need polymorphic containers in the model. The view
uses these methods to get the objects from the model as an enumeration of the items

Fig. 11.6 Class diagram for
model

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 341

stored and draws each one on the display panel. The model must also keep track of
the view, so it needs a field for that purpose.

The method updateView is used by the controller to alert the model that the
display must be refreshed. It is also invoked by methods within the model whenever
the model realises that its data has changed. This method invokes a method in the
view to refresh the display.

11.5.2 Design of Item and Its Subclasses

Clearly, Item will have several subclasses, one for each shape. Each subclass will
store attributes that are relevant to the corresponding shape.

Rendering the items A tricky issue regarding the design is how the items should
be rendered. Rendering is the process by which the data stored in the model is
displayed by the view. Regardless of how we implement this, the actual details of
how the drawing is done are dependent on the following two parameters:

• The technology and tools that are used in creating the UI For instance, we are using
the Java’s Swing package, which means that our drawing panel is a JPanel and
the drawing methods will have to be invoked on the associated Graphics object.

• The item that is stored If a line is stored by its equation, the code for drawing it
would be very different from the line that is stored as two end points.

The technology and tools are known to the author of the view, whereas the structure
of the item is known to the author of the items. Since the needed information is in
two different classes, we need to decide which class will have the responsibility for
implementing the rendering. We have the following options:

Option 1 Let us say that the view is responsible for rendering, i.e., there is code in
the view that accesses the fields of each item and then draws them. Since the model
is storing these items in a polymorphic container, the view would have to query the
type of each item returned by the enumeration in order to choose the appropriate
method(s).

Option 2 If the item were responsible, each item would have a render method
that accesses the fields and draws the item. The problem with this is that the way an
object is to be rendered often depends on the tools that we have at our disposal. For
instance, consider the problem of rendering a circle: a circle is almost always drawn
as a sequence of short line segments. If the only method given in the toolkit is that for
drawing lines, the circle will have to be decomposed into straight lines. In addition
to the set of tools, there are other specific features that the technology has. Using the
Swing package in Java, for instance, implies that all the drawing is done by invoking
the methods on the Graphics object associated with the drawing panel.

https://hemanthrajhemu.github.io

342 11 Interactive Systems and the MVC Architecture

Fig. 11.7 The item class and its subclasses

At this point it appears that we are stuck between two bad choices! However, a
closer look at the first option reveals a fairly serious problem: we are querying each
object in the collection to apply the right methods. This is very much at odds with
the object-oriented philosophy, i.e., the methods should be packed with the data that
is being queried. This really means that the render method for each item should
be stored in the item itself, which is in fact the approach of the second option. This
simplifies our task somewhat, so we can focus on the task of fixing the shortcomings
of the second option.

The structure of the abstract Item class and its subclasses are shown in Fig. 11.7.

Catering to Multiple UI Technologies

Swing is just one package for drawing. Before it was developed, there was (and still
is) the AWT (Abstract Windowing Toolkit) package available to Java programmers,
and it is conceivable that there may appear some other drawing toolkits. Let us
assume that we have available two new toolkits, which are called, for want of better
names, HardUI and EasyUI. Essentially, what we want is that each item has to be
customised for each kind of UI, which boils down to the task of having a different
render method for each UI. One way to accomplish this is to use inheritance.

To adapt the design to take care of the new situation, we have the Circle
class implement most of the functionality for circle, except those that depend on
the UI technology. We extend Circle to implement the SwingCircle class.
Similar extensions are now needed for handling the new technologies, HardUI and
EasyUI. Each of the three classes has code to draw a circle using the appropriate
UI technology. The idea is shown in Fig. 11.8.

In each case, the rendermethod will decompose the circle into smaller compo-
nents as needed, and invoke the methods available in the UI to render each compo-
nent. In addition, each method would have to get any other contextual information.
For instance, with the Swing package, the render method would get the graphics
object from the view and invoke the drawOval method. The code for this could
look something like this:

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 343

Fig. 11.8 Catering to multiple UI technologies

public class SwingCircle extends Circle {
// circle class for SwingUI
public void render() {

Graphics g = (View.getInstance()).getGraphics();
g.drawOval(/* parameters */);

}
}

The actual parameters for drawOval would depend on any mapping needed, but
would be computed using quantities stored in the Circle object. In addition to
the Graphics object, we may need several other pieces of information from the
context, such as the size of the drawing area, etc. Themodel could potentially employ
several types of items, each of which has a corresponding abstract class.

Clearly, we need abstract classes for implementing the technology-independent
parts of lines (Line) and labels (Label). They are extended by classes such as
SwingLabel, SwingLine, EasyLabel, etc. This extension adds another six
classes. Each abstract class ends up with as many subclasses as the number of UIs
that we have to accommodate.

This solution has some drawbacks. The number of classes needed to accommodate
such a solution is given by:

Number of types of items × Number of UI packages

As is evident from the pictorial view of the resulting hierarchy (see Fig. 11.9), this
causes an unacceptable explosion in the number of classes.

https://hemanthrajhemu.github.io

344 11 Interactive Systems and the MVC Architecture

Fig. 11.9 Class explosion due to multiple UI implementations

This causes an unacceptable explosion in the number of classes.
Next, consider the situation where items are being created in the controller. Some

kind of conditional will be needed to decide which concrete class should be instan-
tiated, and this requires the code in the controller to be aware of the UI package that
we are using.

A third and more subtle point is that of software upgrades. Suppose we create
a version of our drawing program that supports the HardUI package and we use
that to create a figure. All the items created in the model will belong to the HardUI
subclasses, and canbeusedonlywith a systemwhere theHardUIpackage is available.
If a later version of the software does not support HardUI (or we move the files to
a system that does not support it), we cannot access the old files anymore. If the
objects created in the model were independent of the type of UI, this problem could
be avoided.

Can all these problems be circumvented? What we have here are two subsystems
viz., the model and the view, each of which has its own classification viz., the types
of items and the types of UIs. We are creating objects that account for both of these
variations. Since the Item subclasses are being created in the model, the types of
items are an internal variation. On the other hand, the subclasses of Circle, Line,
andLabel (such asHardCircle) are an external variation. The standard approach
for this is to factor out the external variations and keep them as a separate hierarchy,
and then set up a bridge between the two hierarchies. This standard approach is
therefore called the bridge pattern.

We already have the hierarchy that captures the variation in the items. We need a
second hierarchy to capture the variation in the drawing methods, due to the varia-
tion in the UIs. The hierarchy of the UIs has an interface UIContext and as many
concrete implementations as the number of different UIs we need. Figure11.10
describes the interaction diagram between the classes and visually represents the
bridge between the two hierarchies.

Since the only variation introduced in the items due to the different UIs is the
manner inwhich the itemswere drawn, this behaviour is captured in theUIContext
interface as shown in Fig. 11.11.

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 345

Fig. 11.10 Interaction diagram for the bridge pattern

Fig. 11.11 UIContext
interface

Using the Bridge Pattern

The intent of the bridge pattern is as follows: Decouple an abstraction from
its implementation so that two can vary independently. In our example, the
abstraction is the abstract class Item. The rendermethod of this abstraction
has different implementations for different UIs. Using inheritance to allow for
the different implementations has the following drawbacks:

• The abstractions and implementations cannot be modified and reused inde-
pendently.

• If the variations in the implementation are introduced from two independent
sources, keeping them in the same hierarchy could have a multiplicative
effect on the number of concrete classes.

The bridge pattern takes care of these problems avoiding a permanent binding
between the two. This gives our design the following desirable properties:

• Both abstraction and implementation are independently extensible (UICon-
text and Items change independently).

• Changes in the implementation do not affect the clients (if the SwingUI is
changed, no other class is affected).

https://hemanthrajhemu.github.io

346 11 Interactive Systems and the MVC Architecture

• Allows the implementation to be completely hidden from clients (in our
case-study, the controller does not know anything about how the variations
in the rendering come into play).

• Reduces the number of classes.
• Multiple classes can share the same representation. (Recall our discussion
of how going to a new versions can make old documents unusable.)

One of the guiding principles of object-oriented design1 states:
Favour object composition over class inheritance.

This principle is usually applied in the context that object composition allows
us to achieve reuse by assembling existing components and get the needed
functionality. The effectiveness of the bridge pattern can also be related back to
this idea. If several aspects of the implementation (each of which is represented
by some abstract method) of an abstraction have to be varied independently,
the abstraction itself can be viewed as a composition of all the aspects of the
implementation. The bridge pattern says that in such a case, having the abstract
class as a composition of hierarchies that represent each of these aspects of the
implementation is a definite improvement over relying entirely on inheritance.
The flip side of this pattern, as often happens with applying object oriented
principles, is that we lose some performance due to the indirection.

Note that the total number of classes is now reduced to

Number of types of items + Number of UI packages

Since we have only one concrete class for each item, the creation process is simple.
Finally, by factoring out the rendermethod, we are no longer concerned with what
kind of UI is being used to create the figure, or what UI will be used to edit it at a
later stage. Our software for the model is thus ‘completely’ reusable.

As is often the case in the object-oriented design, one price we pay is through
a loss of performance. In this case, this is seen in the increased number of method
calls. Every time we invoke the render method, we have to get the model and the
UIContext, in addition to invoking the drawing method.

Reflecting on the design The UIContext interface has a separate method for
drawing each of the shapes, thereby establishing a one-to-one mapping with the
shapes (circle, line, label). In general, such a one-to-onemapping is neither necessary
nor realistic. Assume that we want to start supporting a new shape, say Triangle,
with the obvious semantics, in our drawing program. This is clearly an example of
a change that one should expect in a drawing program and, within reason, it should

1GoF, p. 127

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 347

impact as few interfaces and classes as possible. The class Triangle can then be
written as below.

public class Triangle extends Item {
private Line line1;
private Line line2;
private Line line3;
// Fields, constructor, and other methods
public void render() {

uiContext.draw(line1);
uiContext.draw(line2);
uiContext.draw(line3);

}
}

Similarly, we could support arbitrary polygons.
This demonstrates a couple of things. For one, it justifies the use of the bridge

pattern in our design.We are varying the Item hierarchy while requiring no changes
at all to the UIContext hierarchy. In addition, it shows that the methods of
UIContext can be quite ‘general purpose’ and not tied exclusively to one spe-
cific shape.

Suppose we restrict UIContext to the following:

public interface UIContext {
public void draw(Point point1, Point point2); // for Line
public void draw(String string, RenderInformation information);

// for Label
}

As the reader might guess, draw with the two Point parameters renders a line
connecting the given points. The other drawmethod draws a sequence of characters
with information such as the font and font size specified in an as yet unimplemented
class named RenderInformation. Clearly, the Line class’s render method
can call the first drawmethod of UIContext and the label can be drawn by calling
the second draw method. We do not require any additional functionality, since any
shape can be drawn by decomposing it into a large number of lines.2 Since there is
no method to draw a circle, the Circle class must repeatedly invoke the first draw
method to render the circle.

Employing option 1 Assume that rather than assigning the responsibility of draw-
ing an Item object to the object itself, we have the view draw all the items.
This could be accomplished by having methods such as draw(Line line) and
draw(Circle circle) in the view subsystem. Every viewwill potentially have
a different implementation of these methods. To render the items, a reference to the
current view is obtained and the appropriate draw method is then called on that
object.

While the methods that result from employing Option 1 are essentially the same
as we get using the bridge pattern, there is a difference in that the bridge pattern
employs a different class for each UI technology whereas Option 1 employs a set of
draw methods for each view.

2This is in fact exactly how most curve drawing algorithms are implemented.

https://hemanthrajhemu.github.io

348 11 Interactive Systems and the MVC Architecture

11.5.3 Design of the Controller Subsystem

Unlike the view, which by definition could be implemented in multiple ways, we
structure the controller so that it is not tied to a specific view and is unique to the
drawing program.

The view receives details of a shape (type, location, content, etc.) via mouse clicks
and key strokes. As it receives the input, the view communicates that to the controller
through method calls. This is accomplished by having the fields for the following
purposes.

1. For remembering the model;
2. To store the current line, label, or circle being created. Since we have three shapes,

this would mean having three fields.3

When the view receives a button click to create a line, it calls the controller method
makeLine. To reduce coupling between the controller and the view, we should
allow the view to invoke this method at any time: before receiving any points, after
receiving the first point, or after receiving both points. For this, the controller has
three versions of the makeLine method and keeps track of the number of points
independently of the view.

The execution of makeLine causes the line to be part of the model. The view
can set the endpoints of the line via the setLinePoint method.

The approach to add a label is similar to the one for adding a line. For a label,
remember that by pressing the backspace the user can delete a character, so we
provide a method removeCharacter for this purpose.

The controller also supplies amethod (selectItem) that the view can call when
it receives the command to select an item. The controller searches through the entire
list of unselected items and determines if one of them is selected, and if so, it moves
the item from the list of unselected items to the list of selected items.

The rest of the methods are for deleting selected items and for storing and retriev-
ing the drawing and are fairly obvious. The class diagram is shown in Fig. 11.12.

To implement the saving and retrieval of files, the only objects to be serialized
are the list(s) of the Item objects, which is a straightforward process. However, one
of our stated goals is that of allowing a file to be retrievable even if the software has
been modified so that we have a different version of the view, or if new features are
added. This means that in the new version of the software the concrete UIContext
may be different from the one that was used to create the items in the serialized list.
One solution to this could be to set uiContext to null in all the objects being
stored to disk and then reset these when the objects are read from disc. This solution
is inelegant and some what worrisome in that the objects are being modified when
saved and retrieved.

This is a reasonwhywehavemadeItem an abstract class (instead of an interface).
This enables us to store UIContext as a static field in this class, along with the

3We leave the circle implementation as an exercise, so we end up having only two fields in our
design.

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 349

Fig. 11.12 Controller class diagram

static method setUIContext to modify it. The UIContext object is thus not a
part of the object that is saved. This is consistent with the basic idea of the Bridge
pattern, which calls for separation between the items and the manner in which they
are rendered.

11.5.4 Design of the View Subsystem

The separation of concerns inherent in theMVC pattern makes the view largely inde-
pendent of the other subsystems. Nonetheless, its design is affected by the controller
and the model in two important ways:

1. Whenever the model changes, the view must refresh the display, for which the
view must provide a mechanism.

2. The view employs a specific technology for constructing the UI. The correspond-
ing implementation of UIContext must be made available to Item.

https://hemanthrajhemu.github.io

350 11 Interactive Systems and the MVC Architecture

The first requirement is easily met by making the view implement the Observer
interface; the update method in the View class, shown in the class diagram in
Fig. 11.13, can be invoked for this purpose.

The issue regarding UIContext needs more consideration. The view consists of
a drawing panel, which extends JPanel and needs to be updated using the appro-
priate instance of UIContext. A major question that arises is as to how and when
this variable is to be set in Item. This can be achieved by having a public method,
say setUIContext, in the model that in turn invokes the setUIContext on
Item.

However, the time when we have to ensure that we are using the right instance of
UIContext is just before a drawing is rendered by the view. Also, it is the view
that knows which specific instance of UIContext is to be used in conjunction
with itself. A logical way of doing this, therefore, would be to keep track of the
appropriate UIContext in the view and invoke the setUIContext method in
the model just before refreshing the panel that displays the drawing. In the Swing
package, repainting is effected in the paintComponent method.

Withmultiple views, invoking thesetUIContextmethod is problematic. Con-
sider: more than one view might have scheduled repainting the screen, which would
cause all of them to be executing paintComponent (or similar drawing method).
If one of the views updates the UIContext field in the model while another is in the
middle of painting the screen, chaos would result. This can be overcome by viewing
the repainting code as a critical section. For details, please see Sect. 11.11.5.

Accepting input We have already decided that the user will issue commands by
clicking on buttons. In the current implementation, we will assume that coordinate
information (endpoints of lines, starting point of labels, etc.) will be specified by

Fig. 11.13 Basic structure of the view class

https://hemanthrajhemu.github.io

11.5 Design of the Subsystems 351

Fig. 11.14 Organisation of the classes to add labels

clicking on the panel. To catch these clicks, we need a class that acts as a mouse
listener, which in Java demands the implementation of theMouseListener4 inter-
face.

Commands to create labels, circles, and lines all require mouse listeners. Since
the behaviour of the mouse listener is dependent on the command, we know from
previous examples in the book that a truly object-oriented design warrants a separate
class for capturing the mouse clicks for each command. Since there is a one-to-one
correspondence between the mouse listeners and the drawing commands, we have
the following structure:

1. For each drawing command, we create a separate class that extends JButton.
For creating labels, for instance, we have a class called LabelButton. Every
button is its own listener.

2. For each class in (1) above, we create a mouse listener. These listeners invoke
methods in the controller to initiate operations.

3. Each mouse listener (in (2) above) is declared as an inner class of the correspond-
ing button class. This is because the different mouse listeners are independent
and need not be known to each other.

The idea is captured in Fig. 11.14. The class MouseHandler extends the Java class
MouseAdapter and is responsible for keeping track of mouse movements and
clicks and invoking the appropriate controller methods to set up the label. In addition
to capturing mouse clicks, the addition of labels requires the capturing of keystrokes.
The class KeyHandler accomplishes this task by extending KeyAdapter.

4The reader is asked to study the documentation on this and other related interfaces and classes.

https://hemanthrajhemu.github.io

352 11 Interactive Systems and the MVC Architecture

In another implementation, the view may choose to have other listeners that keep
track of events like resising the window, zooming-in, etc. These do not affect the
model and can be handled by redrawing the figure.

If the user abandons a particular drawing operation, we could be in a tricky
situation where there is more than one MouseHandler object receiving mouse
clicks and performing conflicting operations such as one object attempting to create
a line and another trying to add a label. To prevent this, we have two mechanisms in
place.

1. The KeyAdapter class also implements FocusListener to know when key
strokes cease to be directed to this class.

2. The drawing panel ensures that there is at most one listener listening to mouse
clicks, key strokes, etc. This is accomplished by overriding methods such as
addMouseListener and addKeyListener.

11.6 Getting into the Implementation

11.6.1 Item and Its Subclasses

This class Item is abstract and its implementation is as follows:

import java.io.*;
import java.awt.*;
public abstract class Item implements Serializable {

protected static UIContext uiContext;
public static void setUIContext(UIContext uiContext) {

Item.uiContext = uiContext;
}
public abstract boolean includes(Point point);

protected double distance(Point point1, Point point2) {
double xDifference = point1.getX() - point2.getX();
double yDifference = point1.getY() - point2.getY();
return ((double) (Math.sqrt(xDifference * xDifference +

yDifference * yDifference)));
}
public void render() {

uiContext.draw(this);
}

}

The UIContext and its significance were discussed earlier in the context of using
the bridge pattern. The includes method is used to check if a given point selects
the item.

The Line class looks something like this:

public class Line extends Item {
private Point point1;
private Point point2;
public Line(Point point1, Point point2) {

https://hemanthrajhemu.github.io

11.6 Getting into the Implementation 353

this.point1 = point1;
this.point2 = point2;

}
public Line(Point point1) {

this.point1 = point1;
}
public Line() {
}
public boolean includes(Point point) {

return ((distance(point, point1) < 10.0) || (distance(point, point2)
< 10.0));

}
public void render() {

uiContext.draw(this);
}
// setters and getters for the two points

}

The class provides three constructors. A client may thus construct a Line object
without knowing either endpoint, or by specifying one point, or after gathering both
endpoints.

Unlike HardUI and EasyUI, which are ‘imaginary’ UI technologies, we can
readily construct an implementation of UIContext for the Java Swing technology.

public class SwingUI implements UIContext {
private Graphics g;
// Any other fields to hold context variables
public void setGraphics(Graphics graphics) {

g = graphics;
}
// any other methods to set context variables
public void draw(Circle circle) {

g.drawOval(/* parameters */);
}
public void draw(Line line) {

g.drawLine(/* parameters */);
}
public void draw(Label label){

g.drawString(/* parameters */);
}
public void draw(Item item) {

// error message
}

}

As was the case earlier, draw needs information from both the UI and the item. The
UI information is obtained within the context object and the item is passed in as a
reference. The only difference is that instead of doing all this in the rendermethod
of Item, we invoke the appropriate draw method on the UI object with which the
view has been configured.

https://hemanthrajhemu.github.io

354 11 Interactive Systems and the MVC Architecture

11.6.2 Implementation of the Model Class

The class maintains itemList and selectedList, which respectively store the
items created but not selected, and the items selected. The constructor initialises
these containers.

public class Model extends Observable {
private Vector itemList;
private Vector selectedList;
public Model() {

itemList = new Vector();
selectedList = new Vector();

}
// other methods

}

The setUIContext method in the model in turn invokes the setUIContext
on Item.

public static void setUIContext(UIContext uiContext) {
Model.uiContext = uiContext;
Item.setUIContext(uiContext);

}

As an Observable, the model notifies all of the views when it needs to inform
them of changes. We have seen that this approach allows us to change UIContext
dynamically, and also supports the displaying of multiple views simultaneously,
where each view is using a different UIContext.

At themoment, we handle the drawing of items (including a possibly ‘incomplete’
one), especially labels, by having a method updateView in the model, which is
called by the controller at appropriate moments, for example after each character is
read in from the keyboard. The method simply asks that the view be refreshed.

public void updateView() {
setChanged();
notifyObservers(null);

}

The addItem method is simple: it just stores the item in itemList and redraws
the screen.

public void addItem(Item item) {
itemList.add(item);
updateView();

}

The class also provides a method to delete an item.

public void removeItem(Item item) {
itemList.remove(item);
updateView();

}

When an item is selected by the user, the model marks it as selected by transferring
the item from itemList to selectedList as below.

https://hemanthrajhemu.github.io

11.6 Getting into the Implementation 355

public void markSelected(Item item) {
if (itemList.contains(item)) {

itemList.remove(item);
selectedList.add(item);
updateView();

}
}

Selected items are deleted using the deleteSelectedItems.

public void deleteSelectedItems() {
selectedList.removeAllElements();
updateView();

}

ThegetItemsmethod is used by the controller to determinewhich item is selected.
The view uses the same method to render the items.

public Enumeration getItems() {
return itemList.elements();

}

11.6.3 Implementation of the Controller Class

The classmust keep track of the current shape being created, and this is accomplished
by having the following fields within the class.

private Line line;
private Label label;

When the view receives a button click to create a line, it calls one of the following
controller methods. The controller supplies three versions of the makeLinemethod
and keeps track of the number of points independently of the view.

public void makeLine() {
makeLine(null, null);
pointCount = 0;

}
public void makeLine(Point point) {

makeLine(point, null);
pointCount = 1;

}
public void makeLine(Point point1, Point point2) {

line = new Line(point1, point2);
pointCount = 2;
model.addItem(line);

}

The variables pointCount and model are both fields within the Controller
class that respectively keep track of the number of points received and the instance
of the Model class.

The execution of makeLine causes the line to be part of the model. The view
can set the endpoints of the line via the following method.

https://hemanthrajhemu.github.io

356 11 Interactive Systems and the MVC Architecture

public void setLinePoint(Point point) {
if (++pointCount == 1) {

line.setPoint1(point);
} else if (pointCount == 2) {

pointCount = 0;
line.setPoint2(point);

}
model.updateView();

}

After it receives each end-point, the controller calls the model’s updateView
method to inform it that the view should be updated.

The approaches to draw a circle and add a label are similar. For a label, remember
that by pressing the backspace the user can delete a character. Sowe provide amethod
removeCharacter for this purpose.

The following method is called by the view when it receives the command to
select an item. The controller searches through the entire list of unselected items and
determines if one of them is selected, and if so, it moves the item from the list of
unselected items to the list of selected items.

public void selectItem(Point point) {
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {

Item item = (Item)(enumeration.nextElement());
if (item.includes(point)) {

model.markSelected(item);
break;

}
}

}

11.6.4 Implementation of the View Class

The view maintains two panels: one for the buttons and the other for drawing the
items.

public class View extends JFrame implements Observer {
private JPanel drawingPanel;
private JPanel buttonPanel;
// JButton references for buttons such as draw line, delete, etc.
private class DrawingPanel extends JPanel {

// code to redraw the drawing and manage the listeners
}
public View() {

// code to create the buttons and panels and put them in the JFrame
}
public void update(Observable model, Object dummy) {

drawingPanel.repaint();
}

}

The code to set up the panels and buttons is quite straightforward, so we do not dwell
upon that.

https://hemanthrajhemu.github.io

11.6 Getting into the Implementation 357

The DrawingPanel class overrides the paintComponent method, which
is called by the system whenever the screen is to be updated. The method displays
all unselected items by first obtaining an enumeration of unselected items from the
model and calling the render method on each. Then it changes the colour to red
and draws the selected items.

public void paintComponent(Graphics g) {
model.setUI(NewSwingUI.getInstance());
super.paintComponent(g);
(NewSwingUI.getInstance()).setGraphics(g);
g.setColor(Color.BLUE);
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();
}
g.setColor(Color.RED);
enumeration = model.getSelectedItems();
while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();
}

}

The DrawingPanel class also overrides the addMouseListener, addKey-
Listener, and addFocusListener methods. This is to ensure that there is at
most one listener for each type of event on the drawing panel.

private MouseListener currentMouseListener;
public void addMouseListener(MouseListener newListener) {

removeMouseListener(currentMouseListener);
currentMouseListener = newListener;
super.addMouseListener(newListener);

}

Similarly, we ensure that there is just one listener for events related to the keyboard.
Although the various button classes are alike in many respects, some are more

complicated than others. One of the more complicated ones is LabelButton,
which is responsible for handling label creation requests. Constructors ofmost button
classes get a reference to the view, and the ones that need to access the drawing panel
also get a reference to the panel.

public class LabelButton extends JButton implements ActionListener {
protected JPanel drawingPanel;
protected View view;
private KeyHandler keyHandler;
private MouseHandler mouseHandler;
private Controller controller;
public LabelButton(Controller controller, View jFrame, JPanel jPanel) {

super("Label");
this.controller = controller;
keyHandler = new KeyHandler();
addActionListener(this);
view = jFrame;
drawingPanel = jPanel;

}
public void actionPerformed(ActionEvent event) {

drawingPanel.addMouseListener(mouseHandler = new MouseHandler());

https://hemanthrajhemu.github.io

358 11 Interactive Systems and the MVC Architecture

}
private class MouseHandler extends MouseAdapter {

// details not shown
}
private class KeyHandler extends KeyAdapter implements FocusListener {

// details not shown
}

}

When this button is clicked, an instance of MouseHandler is created, and it
becomes the sole listener of mouse clicks. MouseHandler overrides the
mouseClickedmethod to determine the starting point of the label. Besides asking
the controller to set up a Label object with the given starting point, the code makes
the drawing panel receive further button clicks and keyboard events. Also note that
the KeyHandler is a FocusListener as well, which lets it knowwhen it longer
receives keyboard input.

public void mouseClicked(MouseEvent event) {
view.setCursor(new Cursor(Cursor.TEXT_CURSOR));
Controller.instance().makeLabel(event.getPoint());
drawingPanel.requestFocusInWindow();
drawingPanel.addKeyListener(keyHandler);
drawingPanel.addFocusListener(keyHandler);

}

In its keyTyped method, KeyHandler transmits all printable characters to the
Label object via the controller. The keyPressed method distinguishes between
the enter and backspace keys. For the former, it stops listening to mouse clicks and
keyboard events. If the backspace is pressed, the label is made to delete the last typed
character.

public void keyTyped(KeyEvent event) {
char character = event.getKeyChar();
if (character >= 32 && character <= 126) {

Controller.instance().addCharacter(event.getKeyChar());
}

}
public void keyPressed(KeyEvent event) {

if (event.getKeyCode() == KeyEvent.VK_ENTER) {
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
drawingPanel.removeMouseListener(mouseHandler);
drawingPanel.removeKeyListener(keyHandler);
drawingPanel.repaint();

} else if (event.getKeyCode() == KeyEvent.VK_BACK_SPACE) {
Controller.instance().removeCharacter();

}
}

If the user terminates label creation by clicking on a button, as opposed to hitting the
Enter key, the system executes the focusLost method of KeyHandler, which
properly ends the command.

public void focusLost(FocusEvent event) {
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
drawingPanel.removeMouseListener(mouseHandler);

https://hemanthrajhemu.github.io

11.6 Getting into the Implementation 359

drawingPanel.removeKeyListener(keyHandler);
drawingPanel.repaint();

}

Finally, just before it refreshes the screen, the view sets up UIContext within the
model appropriately:

public void paintComponent(Graphics g) {
model.setUI(NewSwingUI.getInstance());
// rest of the code not shown

}

11.6.5 The Driver Program

The driver program sets up the model. In our implementation the controller is inde-
pendent of the UI technology, so it can work with any view. The view itself uses the
Swing package and is an observer of the model.

public class DrawingProgram {
public static void main(String[] args){

Model model = new Model();
Controller.setModel(model);
Controller controller = new Controller();
View.setController(controller);
View.setModel(model);
View view = new View();
model.addObserver(view);
view.show();

}
}

11.6.6 A Critique of Our Design

The partial design of the view and the model are quite robust. We have examined
some of the issues to be taken care of earlier on, and the implementation takes them
into consideration. The controller appears to be quite straightforward, and we simply
need to add methods to handle all the operations.

Let us see how the design stands up to the task of adding a new operation, say, to
draw a polygon.

1. We need to provide a new button which informs the user that the new operation
is available. We also should create a mouse handler to handle mouse clicks, etc.
These changes are relatively obvious and clearly unavoidable. Even then, note
that most of the classes in the view are left unchanged.

2. The model is not affected by adding new types of items, operations or new UIs.
3. The UIContext interface does not have to be necessarily extended when new

kinds of items are added. We refer the reader to the discussion in Sect. 11.5.2.

https://hemanthrajhemu.github.io

360 11 Interactive Systems and the MVC Architecture

4. The controller should have newmethods such asmakePolygon andaddPoint
ToPolygon. It is not clear that this change is not a consequence of some basic
flaw in our design. For instance, it might be possible to replace the methods
makeLine, makeCircle, etc. by a single method, say makeShape.

Thus one drawback to our approach is that we need to change the controller
class every time new operations are added or even if we change the way things are
implemented. In addition, the controller has all the implementation in one class,
which makes things complicated.

Amore tricky problem is that of implementing undo. Clearly some kind of a stack
would be needed to remember the operations that have been completed. When an
undo is requested, an element from the top of the stack is popped, and this element
has to be ‘decoded’ to find out what the last operation was. This would require
some kind of conditional, and the complexity of this method would increase with the
number of different kinds of operations that we implement. In earlier chapters we
have seen how such complexity can be reduced by replacing conditional logic with
polymorphism. In the next section we examine a pattern that can help us improve the
design of the controller.

11.7 Implementing the Undo Operation

In the context of implementing the undo operation, a few issues need to be high-
lighted.

• Single-level undo versus multiple-level undo A simple form of undo is when only
one operation (i.e., the most recent one) can be undone. This is relatively easy,
since we can afford to simply clone the model before each operation and restore
the clone to undo.

• Undo and redo are unlike the other operations If an undo operation is treated
the same as any other operation, then two successive undo operations cancel each
other out, since the second undo reverses the effect of the first undo and is thus
a redo. The undo (and redo) operations must therefore have a special status as
meta-operations if several operations must be undone.

• Not all things are undoable This can happen for two reasons. Some operations
like ‘print file’ are irreversible, and hence undoable. Other operations like ‘save to
disk’ may not be worth the trouble to undo, due to the overheads involved.

• Blocking further undo/redo operations It is easy to see that uncontrolled undo
and redo can result in meaningless requests. In general, it is safer to block redo
whenever a new command is executed. Consider a situation where we have the
sequence: Select(a), undo, Select(a), redo. The redo tries to mark a as selected,
and this could result in an exception depending on how things are implemented. A
more severe problem arises with Create Rectangle(r), Colour Rectangle(r, blue),
undo, Delete(r), redo. Here, the redo will attempt to colour a rectangle that does
not exist any more.

https://hemanthrajhemu.github.io

11.7 Implementing the Undo Operation 361

• Solution should be efficient This constraint rules out naive solutions like saving
the model to disk after each operation.

Keeping these issues in mind, a simple scheme for implementing undo could be
something like this:

1. Create a stack for storing the history of the operations.
2. For each operation, define a data class that will store the information necessary

to undo the operation.
3. Implement code so that whenever any operation is carried out, the relevant infor-

mation is packed into the associated data object and pushed onto the stack.
4. Implement an undomethod in the controller that simply pops the stack, decodes

the popped data object and invokes the appropriate method to extract the infor-
mation and perform the task of undoing the operation.

One obvious approach for implementing this is to define a class StackObject that
stores each object with an identifying String.

public class StackObject {
private String name;
private Object object;
public StackObject(String string, Object object) {

name = string;
this.object = object;

}
public String getName() {

return name;
}
public Object getObject() {

return object;
}

}

Each command has an associated object that stores the data needed to undo it. The
class corresponding to the operation of adding a line is shown below.

public class LineObject {
private Line line;
public Line getLine() {

return line;
}
public LineObject(Line line) {

this.line = line;
}

}

When the operation for adding a line is completed, the appropriate StackObject
instance is created and pushed onto the stack.

public class Controller {
private Stack history;
public void makeLine(Point point1, Point point2) {

Line line = new Line(point1, point2);
model.addItem(line);
history.push(new StackObject("line", new LineObject(line)));

https://hemanthrajhemu.github.io

362 11 Interactive Systems and the MVC Architecture

}
// other fields and methods

}

Decoding is simply a matter of popping the stack reading the String.

public void undo() {
StackObject undoObject = history.pop();
String name = undoObject.getName();
Object obj = undoObject.getObject();
if (name.equals("line")) {

undoLine((LineObject)obj);
} else if (name.equals("delete")) {

undoDelete((DeleteObject)obj);
} else if (name.equals("select")) {

undoSelect((SelectObject)obj);
}
// one else if for each command

}

Finally, undoing is simply a matter of retrieving the reference to and removing the
line form the model.

public class Controller {
public void undoLine(LineObject object){

Line line = object.getLine();
model.removeItem(line);

}
}

There are two obvious drawbacks with this approach:

1. The long conditional statement in the undo method of the controller.
2. The need to rewrite the controller whenever we make changes such as adding or

modifying the implementation of an operation.

The object-oriented approach for dealing with the first drawback is to subclass the
behaviour by creating an inheritance hierarchy and replace conditional logic with
polymorphism. (Recollect that this is accomplished by making the original method
abstract and moving each leg of the conditional to an overriding method in the
corresponding subclass.)

Let us refactor the code to accomplish this. Before replacing the conditional,
however, we see that undo in the controller is mostly working off the data stored in
StackObject and our first order of business is to extract and move this method.

public class Controller {
private Stack history;
public void undo() {

StackObject undoObject = history.pop();
undoObject.undo(this);

}
// other fields and methods

}

public class StackObject {
public void undo(Controller controller) {

https://hemanthrajhemu.github.io

11.7 Implementing the Undo Operation 363

Fig. 11.15 Representing the drawing of a line

String name = getName();
Object object = getObject();
if (name.equals("line")) {

controller.undoLine((LineObject)object);
} else if (name.equals("delete")) {

controller.undoDelete((DeleteObject)object);
} else if (name.equals("select")) {

controller.undoSelect((SelectObject)object);
}

}
// other fields and methods

}

Now our conditional is in StackObject and we are ready to subclass this behav-
iour. Since each kind of data object is associated with an operation, our hierarchy
will have a subclass corresponding to each operation. For example, to represent the
drawing of a line, we have the class LineObject as a subclass of StackObject
(Fig. 11.15).

This is a lot simpler and cleaner, although we have paid a price by increasing
the number of method calls. Note that we no longer ‘decode’ the stored objects and
therefore the name field is not required. The makeLine method is simplified, so it
just creates a LineObject and pushes it onto the stack.

public void makeLine(Point point1, Point point2) {
Line line = new Line(point1, point2);
model.addItem(line);
history.push(new LineObject(line));

}

In the next subsection, we look into creating a fully reusable controller.

https://hemanthrajhemu.github.io

364 11 Interactive Systems and the MVC Architecture

Fig. 11.16 The command
class

11.7.1 Employing the Command Pattern

The readermay have noticed a familiar pattern in the above code. In itsundomethod,
the controller passes itself as a reference to the undomethod of theStackObject.
In turn, each subclass of the StackObject (e.g., LineObject) passes itself as
reference when invoking the appropriate undo method of the controller. This is an
implementation of double dispatch that we used when employing the visitor pattern
and was wholly appropriate when introducing new functionality into an existing
hierarchy. In this context, however, we find that this results in unnecessarily moving
a lot of data around. One of the lasting lessons of the object-oriented experience is
the supremacy of data over process (The Law of Inversion), which we discussed in
Chap.8, which we can utilise in this problem by using the command pattern.

The intent of the command pattern is as follows (see foonote 1):

Encapsulate a request as an object, thereby letting you parametrise clients with different
requests, queue or log requests, and support undoable operations.

We have partially satisfied this intent in our scenario by associating an object with
each operation. For instance, whenever we execute an operation to create a line, a
LineObject is created and pushed onto the stack.Whatwe have failed to recognise
so far is that this object need not merely be a repository of associated data but can
also encapsulate the routines that need access to this data.

The command pattern provides us with a template to address this. The abstract
Command class has abstract methods to execute, undo and redo. See
Fig. 11.16.

The defaultundo andredomethods inCommand returnfalse, and these need
to be overridden as needed by the concrete command classes.

The mechanism is best explained via an example, for which we develop a some-
what simplified sequence diagram for the command to add a line (Fig. 11.17).5

Adding a line Since every command is represented by a Command object, the first
order of taskwhen theDraw Line command is issued is to instantiate aLineCommand
object. We assume that we do this after the user clicks the first endpoint although
there is no reason why it could not have been created immediately after receiving the

5The sequence diagram abstracts out the complexity of the multiple classes associated with the UI
into a single class called View.

https://hemanthrajhemu.github.io

11.7 Implementing the Undo Operation 365

Fig. 11.17 Sequence diagram for adding a line

command. In its constructor, LineCommand creates a Line object with one of its
endpoints specified.

The central idea behind the command pattern is to employ two stacks: one for
storing the commands that can be undone (history stack) and the other formaintaining
the commands that may be redone (redo stack). The class UndoManagermaintains
these stacks. (We refer to the corresponding object by the term undo manager.) The
undo manager plays the role of the controller, but we have given it a new name to
highlight its main function. We take the approach that as soon after the command
object is created, the view informs the undo manager, which is then expected to
initiate its bookkeeping operations. Similarly, when the view has received all of the
data needed to complete the command, it notifies the UndoManager once more.
The two methods beginCommand and endCommand are for these two purposes.

In the course of execution of the beginCommand method, the undo manager
ensures the the Line object gets added to the model. This way, should the view be
refreshed, the partial line will be shown on the screen.

When the command is completed and the endCommand method is executed,
the undo manager pushes the command onto the history stack. This way the latest
command is always at the top of this stack. To prevent inconsistencies of the kind
we described at the very beginning of this section, we clear the redo stack whenever
a new command is issued.

Assume that the user issues the sequence of commands:
Add Label (Label 1)

Draw Circle (Circle 1)

https://hemanthrajhemu.github.io

366 11 Interactive Systems and the MVC Architecture

Add Label (Label 2)

Draw Line (Line 1)

At this time, there are four Command objects, one for each of the above commands,
and they are on the history stack as in Fig. 11.18. The redo stack is empty: since no
commands have been undone, there is nothing to redo. The picture also shows the
collection object in the model storing the two Label objects, the Circle object,
and the Line object.

Undoing an operation Continuing with the above example, we now look at the
sequence of actions when the undo request is issued immediately after the line
(Line 1) has been completely drawn in the above sequence of commands. Obviously,
the user views the command as undone if the line disappears from the screen: for
this, the Line object must be removed from the collection. To be consistent with this
action and to allow redoing the operation, theLineCommand object must be popped
from the history stack and pushed onto the redo stack. The resulting configuration is
shown in Fig. 11.19.

Not every command is undoable. So the general rule is that when the undo oper-
ation is requested, if the top of the undo stack is a command that can be undone, the
command is undone and transferred to the redo stack.

The redo operation is simple enough: if the redo stack is not empty, the command
must be re-executed, and the top object in the redo stack must be transferred to

Fig. 11.18 Status of the stacks and the collection in the model

https://hemanthrajhemu.github.io

11.7 Implementing the Undo Operation 367

Fig. 11.19 Status of the stacks and the collection in the model after undo

the history stack. The redo involves updating the model: the redo method of the
Command object calls the execute method to do the necessary actions. For the
LineCommand object, this involves adding the line back to the model’s collection
object.

As we noted earlier, not every commandmay be undoable, or, at least, is not worth
the trouble. If an undoable operation is on the undo stack, the undo cannot proceed
beyond that operation although there might be undoable operations underneath it
in the stack. To get around this problem, we might choose to not push undoable
commands onto the stack. This can be accomplished by making the command itself
assume the responsibility for pushing onto the history stack. This can conveniently
be done in the class’s constructor.

A related issue concerns unfinished commands. We use the term incomplete com-
mand to refer to a command that has not yet been properly terminated. An incomplete
item is an item, such as a line or a label, that might not have proper values for every
field. We use the term complete item to refer to an item for which the user has sup-
plied (or the system has invented) all the input necessary for completely specifying
the item. For example, suppose a user clicks the ‘Create Line’ button and clicks one
point. Before clicking a second time to specify the second point, suppose the user
clicks the ‘Add Label’ button. The Create Line command is incomplete. Moreover,
the line is also incomplete at this stage, and it is already stored in the model, which
now ends up containing incomplete data. One could argue that it was the user’s fault,
but the program must tolerate such errors and it would be nice if there was a way to
fix this problem.

How should this be handled? We can suggest at least two ways:

https://hemanthrajhemu.github.io

368 11 Interactive Systems and the MVC Architecture

1. We could prevent the possibility of users aborting commands in the middle. A
popular approach is to disable all command buttons when a new command is
finished and leave them disabled until the command is completed. When the
command is completed, all of the buttons are enabled.

2. A second possibility is to handle this with an additional method in both the undo
manager and the command class.

The difficulty with the first approach is that the UI is responsible for ensuring data
consistency. The responsibility for ensuring that items are complete must rest with
the command classes and not with the user interface.

We proceedwith the second choice, forwhichwewill have the undomanager keep
the current command away from the history stack until the command itself ‘certifies’
that it is complete. For this purpose, every command class has an additional method,
end, which checks whether the item is complete and attempts to fill the missing
values if necessary. If there is not enough data to make the item complete, the method
returns a false value and the undomanager does not put the command on the stack.

The pseudo-code for the end method is as follows:

public boolean end() {
if item is incomplete

attempt to complete using data already received;
if cannot be completed

return false;
end if

end if
return true

}

The undo manager does not push a new command onto the stack until it is clear that
the item is complete.

We now explain the implementation of the above concepts.

11.7.2 Implementation

Subclasses of Command The concrete command classes (such as LineCommand)
store the associated data needed to undo and redo these operations. Just as the
makeLine method in the previous implementation had three versions, the
LineCommand class has three constructors, allowing some flexibility in the design
of the view.

The implementation of methods specific to the Command class are shown below.
The execute method simply adds the command to the model so the line will
be drawn. To undo the command, the Line object is removed from the model’s
collection. Finally, redo calls execute.

public void execute() {
model.addItem(line);

}
public boolean undo() {

https://hemanthrajhemu.github.io

11.7 Implementing the Undo Operation 369

model.removeItem(line);
return true;

}
public boolean redo() {

execute();
return true;

}

As explained earlier, the class has a method called end, which attempts to complete
an unfinished command. The situation is considered hopeless if both endpoints are
missing, so the object removes the line from the model (undoes the command) and
returns a false value. Otherwise, if the line is incomplete (has at least one endpoint
unspecified), the start and end points are considered the same. The implementation
is:

public boolean end() {
if (line.getPoint1() == null) {

undo();
return false;

}
if (line.getPoint2() == null) {

line.setPoint2(line.getPoint1());
}
return true;

}

UndoManager It declares two stacks for keeping track of the undo and redo oper-
ations: (history) and (redoStack). The current command is stored in a field
aptly named currentCommand.

public class UndoManager {
private Stack history;
private Stack redoStack;
private Command currentCommand;

}

If the command was not properly terminated, we arrange matters such that
currentCommand will not be null when a new command is issued. Recall that
when a new command is issued, the beginCommandmethod of the undo manager
is called. IfcurrentCommand is notnull at this time, the undomanager attempts
to complete it by calling the command’sendmethod. ThebeginCommandmethod
is implemented as below.

public void beginCommand(Command command) {
if (currentCommand != null) {

if (currentCommand.end()) {
history.push(currentCommand);

}
}
currentCommand = command;
redoStack.clear();
command.execute();

}

The undo and redo are straightforward operations.

https://hemanthrajhemu.github.io

370 11 Interactive Systems and the MVC Architecture

public void undo() {
if (!(history.empty())) {

Command command = (Command) (history.peek());
if (command.undo()) {

history.pop();
redoStack.push(command);

}
}

}

public void redo() {
if (!(redoStack.empty())) {

Command command = (Command)(redoStack.peek());
if (command.redo()) {

redoStack.pop();
history.push(command);

}
}

}

When a command is complete, the view calls the endCommand method of the
undo manager, which pushes currentCommand onto the history stack and sets
currentCommand to null.

public void endCommand(Command command) {
command.end();
history.push(command);
currentCommand = null;
model.updateView();

}

Handling the input The view declares one button class for each command (add
label, draw line, etc.). The class for handling line drawing is implemented as below.

public class LineButton extends JButton implements ActionListener {
// fields for view, drawing panel, handlers, etc.
public LineButton(UndoManager undoManager, View jFrame, JPanel jPanel) {

// store the parameters and create the mouse listener
}
public void actionPerformed(ActionEvent event) {

// change the cursor
drawingPanel.addMouseListener(mouseHandler);

}
private class MouseHandler extends MouseAdapter {

public void mouseClicked(MouseEvent event) {
if (first point) {

lineCommand = new LineCommand(event.getPoint());
UndoManager.instance().beginCommand(lineCommand);
} else if (second point) {
lineCommand.setLinePoint(event.getPoint());
drawingPanel.removeMouseListener(this);
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
UndoManager.instance().endCommand(lineCommand);

}
}

}
}

The above class thus directly creates the appropriate command object when a request
comes from a user.

https://hemanthrajhemu.github.io

11.8 Drawing Incomplete Items 371

11.8 Drawing Incomplete Items

Recall the terms incomplete item and complete item we introduced in the previous
section. There are a couple of reasons why in the drawing program we might wish
to distinguish between these two types of items.

1. Incomplete itemsmight be rendered differently fromcomplete items. For instance,
for a line, after the first click, the UI could track the mouse movement and draw
a line between the first click point and the current mouse location; this line keeps
shifting as the user moves the mouse. Likewise, if we were to extend the program
to include triangles, which need three clicks, one side may be displayed after two
clicks. Labels in construction must show the insertion point for the next character.

2. Some fields in an incomplete item might not have ‘proper’ values. Consequently,
rendering an incomplete item could be more tricky. An incomplete line, for
instance, might have one of the endpoints null. In such cases, it is inefficient
to use the same render method for both incomplete items and complete items
because that method will need to check whether the fields are valid and take
appropriate actions to handle these special cases. Since we ensure that there is at
most one incomplete item, this is not a sound approach.

We can easily distinguish between incomplete items and complete items by having
a field that identifies the type. The render method will behave differently based on
this field. The approach would be along the following lines.

public class Line {
private boolean incomplete = true;
public boolean isIncomplete() {

return incomplete;
}
// other fields and methods

}

public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {

if (line.isIncomplete()) {
draw incomplete line;

} else {
draw complete line;

}
}

}

In circumstances such as the above, where we have variant behaviour based on field
values, the object-oriented philosophy dictates subclassing, i.e., we treat the incom-
plete item as a different class of object with its own rendering method. We create
classes for incomplete items (such as IncompleteLabel) that are subclasses
of items (such as Label). Since the class IncompleteLabel is a subclass of
Label, the model is unaware of its existence. Once the object is created, the incom-
plete object can be removed from the model.

The details are as follows.

https://hemanthrajhemu.github.io

372 11 Interactive Systems and the MVC Architecture

import java.awt.*;
public class IncompleteLabel extends Label {

public IncompleteLabel(Point point) {
super(point);

}
public void render() {

// code for rendering IncompleteLabel
}
public boolean includes(Point point) {

return false;
}

}

One problem we face with the above approach is that UIContext must include
the method(s) for drawing the incomplete items (draw(IncompleteLabel
label), in our example). This suggests that UIContext needs to be modi-
fied. However, the manner in which incomplete items are rendered is an issue that
largely relates to the look and feel of the system. For instance, UIContext might
not have a method draw(IncompleteLine line) and creator of some view
(NewSwingUI, for instance) might wish to include that. In general, we would like
a solution that allows for a customised presentation which may require subclassing
the behaviour of some concrete items. This can be accomplished through RTTI. In
particular, the situation where the NewSwingUI wants its own method for drawing
an incomplete line is implemented as follows:

public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {

if (line instanceof IncompleteLine) {
this.draw((IncompleteLine) line);

} else {
//code to draw Line

}
}

}

Where Should We Employ RTTI?

The use of RTTI can be puzzling to a beginner. On the one hand its application
is actively discouraged; this attitude is fully justified since a novice developer
can feel tempted to employ RTTI and resolve problems that really need a
more thoughtful approach and a carefully designed hierarchy with appropriate
design patterns. On the other hand, there are situations where it is necessary
to check the type of an object at run time, as we have seen in Chaps. 5 and 10
and also in the case of the incomplete items in this chapter. In the examples
in the earlier chapters, the development of the solution naturally led to the
use of RTTI. In Chap.5, the only way to know the exact type of the class
that invoked the constructor was to invoke getClass().getName(). In
Chap.10, we had a situation where the expected behaviour was that the right

https://hemanthrajhemu.github.io

11.8 Drawing Incomplete Items 373

kind of listener would be passed as a parameter. If the expectation was met,
the downcast would succeed; if not, throwing the exception was the right thing
to do. In some situations, as with incomplete items in this chapter, it may not
be so clear. A simple thumb rule for resolving this conundrum is to examine
all the options that are available.

Consider what other choices we have for incorporating incomplete items.
One approach would be to define UIContext to contain draw methods for
all the incomplete items as well. This means that all concrete contexts must
implement (dummy, perhaps) draw methods for incomplete items. Apart from
the tedium of this and the fact that we are doubling the number of classes in the
basic system, we have a solution that does not really allow for flexibility for
the view to define the look and feel. We could conceivably have a system with
different kinds of incomplete labels, each associated with different processes
for label creation. With RTTI, we have a solution that allows for variability in
a manner that does not affect other parts of the implementation.

The LineCommand object creates an IncompleteLine and adds this to the
model. This new class is thus known only to the controller and NewSwingUI.
When the label creation is complete, the IncompleteLine object is removed
from the model and replaced with a Line object. This implementation therefore
gives a solution where variability is contained.

Finally, we examine item creation in this new context. Assume that the user
clicks on the ‘Add Label’ button. On the creation of the LabelCommand object,
an IncompleteLabel object is created and stored within the command object.
When label is completed, the end method of the command object is called, and
in this method, a Label object is created and data from the incomplete version is
copied to it. The IncompleteLabel object is deleted from the model and the
Label object takes its place. The relevant code from LabelCommand is shown
below.

public void end() {
model.removeItem(label);
String text = label.getText();
label = new Label(label.getStartingPoint());
for (int index = 0; index < text.length(); index++) {

label.addCharacter(text.charAt(index));
}
execute();

}

This completes the basic implementation of our simple graphical system. Note that
if any new operation has to be added, all we have to do is create new classes that
extend Command and Item, and modify the view to allow the user to invoke the
new operation. Modifying the view is simply a matter of defining a new class that
extends JButton and adding an instance of this class to the button panel. The
model, the view and the controller are essentially repositories for the items, buttons,
and commands respectively, and thus provide a framework for creating the specified
system.

https://hemanthrajhemu.github.io

374 11 Interactive Systems and the MVC Architecture

11.9 Adding a New Feature

Most interactive systems that are used to create graphical objects, allow users to
define new kinds of objects on the fly. A system for writing sheet music may allow a
user to define a sequence of notes as a group. Thiswould enable the user tomanipulate
these notes as a group, making copies of these as needed. In a system for drawing
electrical circuits, a set of components interconnected in a particular way could be
clustered together as a ‘sub-circuit’ that can then be treated as a single unit. In a
drawing program like the one we have created, a complex figure may be created as a
collection of lines and circles, which may have to be moved around a single unit. In
all these cases, the user-friendliness of the system would be considerably improved
if a feature is provided to enable such operations.

Let us examine how our system needs to be modified to accommodate this. The
process for creating such a ‘compound’ object would be as follows: The user would
select the items that have to be combined by clicking on them. The system would
then highlight the selected items. The user then requests the operation of combing
the selected items into a compound object, and the system combines them into one.

Which Subsystem ‘Owns’ a Class?

In our original approach to designing this system using the MVC architecture,
we were partitioning the responsibilities between the three subsystems. As
we looked into the finer details of the implementation, we encountered some
problems and found some suitable patterns that could improve our design. The
use of these patterns, however apparently ‘blurs’ some of the clear boundaries.

Consider for instance the bridge pattern. We created the UIContext
interface within the model to house the draw methods of all the items. The
model does not have the information, however, to create a concrete instance
of UIContext and this task is left to the View class. UIContext and its
implementing classes belong to the view subsystem.

The original controller was replaced by a collection of classes including
UndoManager and the various subclasses of Command, so they could be
considered belonging to the controller subsystem. The undo manager defines
the interface for the command but does not have any information on how each
individual command should receive and process input.

The reader should realise that the subsystems are only providing a context
within which the details can be fleshed out. The controller is providing a format
for the creation of commands and also a system that manages these commands.
When a command has to be added, a class is defined and the view ismodified to
allow for its invocation. Likewise the model provides a template for rendering
all the kinds of items, but a complete knowledge of the view is needed to
provide a concrete implementation.

https://hemanthrajhemu.github.io

11.9 Adding a New Feature 375

From a more practical view, it does not matter much whether we can label a
class as belonging to any specific subsystem.What we need to worry about are
properties such as modularity, proper assignment of responsibilities, cohesive
classes, low coupling between classes, ease of meeting changing requirements,
performance, and so on. The MVC paradigm provides the guidelines, and it is
up to the designer to make decisions that ensure these properties.

Once a compound object has been created, it can be treated as a any other object.
This process can be iterated, i.e., a compound object can be combined with other
objects (which could themselves be compound or simple objects) to create another
compound object. The system also allows the user to ‘breakdown’ a compound item
into its constituent items by first selecting the item(s) to be broken down and then
choosing the ‘decompose’ operation. Note that if a compound item is created by
combining two compound items, then decomposing it will give us back the two
original compound items. Finally, the system must have the ability to undo and redo
these operations.

Since we have to store a collection of items, an obvious approach to implementing
thiswould be to create a newkind of item thatmaintains a collection of the constituent
items. This would be a concrete class and would look like this:

public class CompoundItem {
List items;
public CompoundItem(/* parameters */) {

//instantiate lists
}
public Enumeration getItems() {

//returns an enumeration of the objects in Items
}
// other fields and methods

}

Since items consists of both simple items and compound items, it seems logical
that all entities stored in items are designated as belonging to the class Object.
The model would also have to be modified so that the container classes would hold
collections of type Object.

Consider now any class that examines at the collection of items in the model
(i.e., a ‘client’ class). One of these would be the SelectCommand. When a
SelectCommand object gets the coordinates of the mouse click, it iterates through
the collection in the model to determine the selected item. If the object is a simple
item, it would be cast as an Item and the includes method would be invoked;
if the object is a compound item, it would be cast as a CompoundItem and the
getItems method would be invoked to get an enumeration of the objects that
make up the compound item. Clearly, this is not the most desirable state of affairs
since the client method is querying the type of the object (which is akin to switching
on the fields of the object) to determine what operation is to be performed. Our stan-
dard approach in such situations is to create an inheritance hierarchy and use dynamic

https://hemanthrajhemu.github.io

376 11 Interactive Systems and the MVC Architecture

Fig. 11.20 Tree structure formed by compound items

binding. The dilemma here is that we have a two fundamentally different kinds of
entities: a simple item is a single item, whereas a compound item is a collection of
items. The composite pattern gives us an elegant solution to this problem.

The intent of the composite pattern is as follows (see footnote 1):

Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly.

A compound item is clearly a composition of simple items. Since each compound
item could itself consist of other compound items, we have the requisite tree structure
(see Fig. 11.20).

The class interaction diagram for the composite pattern is shown in Fig. 11.21.
Note that the definition of the compound item is recursive and may remind readers of
the recursive definition of a tree. Following this diagram, the class CompoundItem
is redefined as follows:

public class CompoundItem extends Item {
List items;
public CompoundItem(/* parameters */){

//instantiate lists
}
public void render(){

// iterates through items and renders each one.
}

https://hemanthrajhemu.github.io

11.9 Adding a New Feature 377

Fig. 11.21 Composite structure of the item hierarchy

public boolean includes(Point point) {
/* iterates through items and invokes includes on each item.

Returns true if any of the items returns true and false otherwise. */
}
public void addItem(Item item) {

// Adds item to items
}

// other fields and methods
}

Modifying the system to allow for creating compound objects is just like any of the
operations discussed earlier. The system already has an operation for selecting items.
Once that is complete, user chooses the ‘create composite’ operation. This would
require that a new class be defined (extending JButton) and that the view be
modified to add this button to the button panel. A new class, CompositeCommand
(extending Command) is defined. The execute method of this class removes all
the selected items from the Model and adds them to a new CompoundItem object,
which is then added to the Model. The view renders a CompoundItem exactly in
the same way as it renders any other instance of Item. Note also that the select
operation invokes the includes method on CompoundItem exactly as it would
on simple items.

11.10 Pattern-Based Solutions

As explained earlier a pattern is a solution template that addresses a recurring problem
in specific situations. In a general sense, these could apply to any domain. (A standard
opening in chess, for instance, can be looked at as a ‘chess pattern’.) In the context
of creating software, three kinds of patterns have been identified. At the highest
level, we have the architectural patterns. These typically partition a system into

https://hemanthrajhemu.github.io

378 11 Interactive Systems and the MVC Architecture

subsystems and broadly define the role that each subsystem plays and how they all
fit together. Architectural patterns have the following characteristics:

• They have evolved over time In the early years of software development, it was
not very clear to the designers how systems should be laid out. Over time, some
kind of categorisation emerged, of the kinds software systems that are needed. In
due course, it became clearer as to how these systems and the demands on them
change over their lifetime. This enabled practitioners to figure out what kind of
layout could alleviate some of the commonly encountered problems.

• A given pattern is usually applicable for a certain class of software system The
MVC pattern for instance, is well-suited for interactive systems, but might be a
poor fit for designing a payroll program that prints paychecks.

• The need for these is not obvious to the untrained eyeWhen a designer first encoun-
ters a new class of software, it is not very obvious what the architecture should
be. One reason for this is that the designer is not aware of how the requirements
might change over time, or what kind of modifications are likely to be needed.
It is therefore prudent to follow the dictates of the wisdom of past practitioners.
This is somewhat different from design patterns, which we are able to ‘derive’
by applying some of the well-established ‘axioms’ of object-oriented analysis and
design. (In case of ourMVC example, we did justify the choice of the architecture,
but this was done by demonstrating that it would be easier to add new operations
to the system. Such an understanding is usually something that is acquired over
the lifetime of a system.)

At the next level, we have the design patterns. These solve problems that could
appear in many kinds of software systems. Once the principles of object-oriented
analysis and design have been established it is easier to derive these. Examples of
these can be found throughout this text.

At the lowest level we have the patterns that are called idioms. Idioms are the
patterns of programming and are usually associated with specific languages. They
typically refer to the use of certain syntactic elements of the language. As program-
mers, we often find ourselves using the same code snippet every time we have to
accomplish a certain task. Sometimes,wemay save these as ‘macros’ to be copied and
pasted as needed thus enabling us to be more productive in terms of code-generation.
Idioms are something like these, but they are usually carefully designed to take the
language features (and quirks!) into account to make sure that the code is safe and
efficient. The following code, for instance, is commonly used to swap:

temp = a;
a = b;
b = temp;

In Perl,6 the list assignment syntax allows us to employ a more succinct expression:

($a, $b) = ($b, $a);

6A commonly used scripting language.

https://hemanthrajhemu.github.io

11.10 Pattern-Based Solutions 379

This would be an example of an idiom for Perl. In addition to safety and efficiency,
the familiarity of the code snippet makes the code more readable and reduces the
need for comments. Typical Perl programmers might be more comfortable with the
second whereas a Java programmer would prefer the first.

Not all idioms are without conflict. There are two possible idioms for an infinite
loop:

for (;;) {
// some code
}
while (true) {
// some code
}

It has been argued that the first one should be preferred for efficiency, since no
expression evaluation is involved at the end of each iteration. However, with the
availability of optimising compilers and increasing hardware capacity nowadays,
some programmers are making a case for the second one based on readability and
elegance.

Familiarity with and acceptance of established patterns is clearly a must for suc-
cess in any domain of activity. Most of our focus in our case studies has therefore
been to convince the student of their usefulness by showing how they provide elegant
solutions to naturally arising design problems. However, as mentioned earlier, it is
much more difficult for a beginner to grasp the significance of architectural patterns
in this manner.

11.10.1 Examples of Architectural Patterns

The Repository

This architecture is characterised by the presence of a single data structure called
the central repository. Subsystems access and modify the data stored in this. An
example of such a system could be software used for managing an airline. The
subsystems in this case could be the ones for managing reservations, scheduling
staff, and scheduling aircraft. All of these would access a central data repository
that holds information about aircraft, staff, and passengers. These would be inter-
related, since a choice of an aircraft could likely influence the choice of staff and
be influenced by the volume of passenger traffic. In such systems, the control flow
can be dictated by the central repository (changes in the data characteristics could
trigger some operations), or from one of the subsystems. Another application of such
a system could be for managing a large bank. The account information would have
to be centrally located and could be accessed and modified from several peripheral
locations. A software development system or a compiler could also employ such an
architecture by having a centralised parse-tree or symbol table.

https://hemanthrajhemu.github.io

380 11 Interactive Systems and the MVC Architecture

The Client-Server

In such a layout, there is a central subsystem known as a server and several smaller
subsystems known as clients which are typically quite similar. There is a fair amount
of independence in the control flow, and each subsystem may be using a differ-
ent thread. Synchronisation techniques are often employed to manage requests and
transmit results.

The world-wide-web is probably the best example of such an architecture. The
browsers running on PCs are like clients and the sites they access play the role
of servers. The server could also be housing a database and the clients could be
processes that are querying and updating the database. A variant/generalisation of
this is the peer-to-peer architecture where the client/server role of the subsystems
are interchangeable. These variants are typically hard to design due to the possibility
of deadlocks and a myriad of other problems that can complicate the flow of control.

The Pipe and Filter

The system in this case is made up of filters, i.e., subsystems that process data,
and pipes, which can be used to interconnect the filters. The filters are completely
mutually independent and are aware only of the input data that comes through a pipe,
i.e., the filter knows the form and content of the data that came in, not how it was
generated. This kind of architecture produces a system that is very flexible and can
be dynamically reconfigured. In their simplest form, the pipes could all be identical,
and each filter could be performing a fixed task on data input stream. An example
of this would be that of processing incoming/outgoing data packets over a computer
network. Each ‘layer’ would be like a filter that adds to, subtracts from or modifies
the packet and sends it forward.

TheUnix operating system is amore sophisticated version of such an architecture,
and allows the user to create more complex operations by linking together simpler
ones. In its most general form, one could have pipes that ‘reformat’ the data, so that
any sequence of filters could be used.

11.11 Discussion and Further Reading

Software architectures and design patterns bear some similarity in that they both
present efficient solutions to commonly occurring problems. The process of learning
how to apply these are however very different. It is possible (and perhaps pedagog-
ically preferable) to ‘discover’ design patterns by critically examining our designs
and refactoring them. Such a process does not lend itself well to the task of learning
about architectures due to the complexity of the problem we are encountering. The
software designer’s best bet is to learn about commonly used architectures in the
given problem domain and adapt them to the current needs [1].

In this chapter and the previous one, we introduced design patterns by coming up
some ‘reasonable’ design and then critically examining it using our knowledge of the

https://hemanthrajhemu.github.io

11.11 Discussion and Further Reading 381

principles of object-oriented analysis and design. This process is not very different
from that of refactoring to introduce patterns into existing code. The process for
refactoring to introduce patterns has been well-studied and cataloged [2, 3].

11.11.1 Separating the View and the Controller

When studying the MVC architecture, we often hear the phrase ‘model–view sepa-
ration’, which refers to the idea that we keep the reality and representation distinct
from each other. In our case-study, we have done this by having the model manage
a list of items, and leaving all other responsibilities to other subsystems.

The separation between view and controller is less clear. In our implementation,
we have chosen to make the knowledge of concrete command classes available to
the classes that receive the user request. This makes for a clean implementation,
since the request is immediately packed into an object that can be managed by the
controller. The literature does mention other of ways of implementing the command
pattern, which are based on the notion that the command object must be created
in the controller subsystem. One approach that has been suggested is to allow the
requests for operations to be received in a class in the controller. This has the draw-
back that the controller must implement methods (like ActionListener) that are
really dependent on the view implementation, thus causing tight coupling. Another
approach is to capture the request as a string (see [4]), which is then parsed in a
command factory to generate the command object. This results in an unnecessary
loss of performance.

All of this underscores the fact that the view and controller are not easily and
clearly separable in every context. One obvious question that arises is: Why not move
the controller operations into the view? This has led to a variant of the MVC, called
the ‘document-view’ architecture, where the document holds theModel and the view
handles the functions of the controller as well.

11.11.2 The Space Overhead for the Command Pattern

One of the drawbacks of the command pattern is that it places a large demand on
the memory resources, which in turn has a serious effect on runtime. Some systems
restrict the number of levels of undo and redo to some manageable number to avoid
this problem, but this solution may not always be acceptable.

Another approach that has been proposed is that each command be a singleton that
keeps its own history and redoStack objects. No instances of command are
created at the time of invocation, but the controller pushes a reference to the singleton
command object into its own history stack. The invoked command creates the data
object necessary to undo the operation and pushes it into its own history stack.
This approach is particularly beneficial if we gowith a Document–View architecture.

https://hemanthrajhemu.github.io

382 11 Interactive Systems and the MVC Architecture

11.11.3 How to Store the Items

Themanner inwhich items are stored in themodel can affect the time it takes to render
the items and thus affect performance. Consider the problem of rendering a curve that
is specified by user as a collection of ‘control points’. If the constructor decomposed
the curve into a collection of line segments, then the process of rendering would
be to simply draw each line segment. On the other hand, if the model stored only
the control points, rendering (i.e., the corresponding draw method in the concrete
UIContext) would have to compute all the line segments and then draw them.
In the first case we are creating a large number of objects and storing these in the
model. The rendering could be slowed down because of the large number of objects
that have to be accessed. In the second, rendering may be delayed by the amount
of computation. In general, memory access involves a much greater overhead than
computation, and therefore one would expect the second approach to give better
runtime performance.

11.11.4 Exercising Caution When Allowing Undo

Implementing the undo operation can be quite tricky. The process of executing a
command could involve the methods of several classes and care must be taken to
ensure that these are correctly reversible. A full treatment of this is beyond the scope
of this text, but we can highlight a few of these issues.

What Should be Saved to Undo an Operation?

Wemust keep in mind that what we are undoing is the consequences of the operation
on the entire system. Consider the process of undoing the creation of a line. The only
input to the operation are the two end points, and elementary mathematics tells us
that we do not need any other information to define a line. However, this information
is not sufficient for us to undo the effects of this operation. The consequence to the
system is that the a line object is added to the model, and what we need to store
is a reference to this object. The model also must allow for a specified item to be
removed; if this were not possible, the operation of removing a line would not be
undoable.

Designing and Implementing with Undo in Mind

The manner in which responsibilities are divided between the model and the con-
troller and the public methods that are implemented can affect the ease of undo
operations. Since our Line object is created in the controller, it is easy to store this
in the command object and then use the reference to remove the object when undo-
ing. If the model took the end points and invoked the constructor, we would need
some additional machinery to implement undo. Likewise, our model has a method
to remove a specified item, which is effectively an ‘undo’ of the operation that adds

https://hemanthrajhemu.github.io

11.11 Discussion and Further Reading 383

an item. If the methods invoked by the command object on other subsystems cannot
be easily reversed, it may not be feasible to undo the operation.

11.11.5 Synchronising Updates

We have already alluded to the problem that could occur when multiple views con-
currently update the UIContext field in the model. This is a well known problem
in operating systems and the reader is referred to standard texts in the field [5] for a
detailed description.

One possible solution is to use binary semaphores. For this, we first create the
following class.

public class Synchroniser {
private boolean drawing;
public synchronised void beginDrawing() {

try {
while (drawing) {

wait();
}

} catch (InterruptedException ie) {
}
drawing = true;

}
public synchronised void endDrawing() {

drawing = false;
notifyAll();

}
}

Assume that the class is made a singleton. When the view is ready to start draw-
ing, which would be at the very beginning of the paintComponent method in
our example code, it invokes the beginDrawing method. After completing the
drawing, that is, just before leaving the paintComponentmethod in our case, the
view invokes endDrawing. The beginDrawing and endDrawing methods
together ensures several desirable properties, including the following: at most one
view is painting at any given time and every view gets a chance to paint, eventually.

Another solution employs monitors. Please see Silberschatz [5] for a description.

Projects

1. Creating a simple spreadsheet. The sheet will display a simple grid and allow for
data and formulae to be entered into the boxes. The following features will be
available:

• Allow for a column to be widened. This will be done by user selecting a column
and activating the operation from the menu

• Automatic evaluation and re-evaluation of formulae
• Drawing a graph using data from two columns

https://hemanthrajhemu.github.io

384 11 Interactive Systems and the MVC Architecture

2. Implement the drawing program described in this chapter using the Document–
View architecture. Implement each command as a singleton that keeps its own
stack. What pros and cons do you see for this approach?

3. Create a simple graphical toy that consists of a circle, triangles and rectangles. All
these shapes will be filled, and represent a 2-dimensional ball and 2-dimensional
triangular and rectangular blocks. Amenuwill allow the user to create new blocks,
change the colour of an existing shape, move the shapes, increase the size of the
ball, rotate the blocks or drop the ball. When the ball is dropped, it will fall
vertically and thereafter behave in accordance with the idealised laws of physics,
with a coefficient of restitution of 0.5 (half the kinetic energy is lost whenever the
ball collides with a block or a boundary). The blocks do not move when hit by the
ball. There will be a designated threshold so that when the ball’s velocity drops
below this threshold, it will be assumed to have stopped.

11.12 Exercises

1. Modify the drawing program so that whenever a delete operation is invoked, a
confirmation request is made by the system.

2. During the rendering process, the view invokes the render() method on the
item, which then invokes the draw method on the UIContext. Since the
concrete UIContext is decided by the view, can we modify the implementation
to have the view directly invoke draw? What changes would be needed to do
this? What are the pros and cons of this approach?

3. Modify the line drawing operation so that multiple lines can be created with one
request.

4. Some drawing systems allow for lines of varying thickness. How would such a
feature be implemented?

5. Write a formal use case for the decompose operation and implement it.
6. Modify the circle drawing operation so that the first click specifies the centre.

After that, a ‘circle of variable radius’ is drawn such that centre is on the first
click and the current cursor position lies on the boundary.When the second point
is clicked, a circle is drawn with first mouse click as centre and second mouse
click on the circle boundary.

7. A line can be specified by two points or by an equation. Consider a systemwhere
an ‘origin’ can be specified by amouse click. After this is done, a line is specified
by an equation of the form ax + by + c = 0 (the input would specify a, b and
c). The line specified by this equation is drawn with reference to the current
location of the origin. Note that this line would span the entire drawing panel.
How would you implement such an operation?

8. Modify the line drawing operation so that the user has an option to cancel the
command at any timebefore it is completed. Thiswould involve adding a ‘cancel’
operation to our button panel.

https://hemanthrajhemu.github.io

11.12 Exercises 385

9. Add an operation for drawing a triangle that allows for undoing individual mouse
clicks. The triangle will be specified by mouse clicks on the three vertices.

10. (Drawing a closed cubic curve.) The B-spline is a popular cubic curve, since
it makes it very easy to draw a smooth curve consisting of many segments.
Implement this feature as follows: (i) the user clicks on a succession of points,
terminating by clicking on the first point again; (ii) after 4 clicks, the first piece of
the curve appears; (iii) an additional piece is rendered at each subsequent click.
The curve is drawn using the mouse click locations as ‘control points’. Four
control points are used to generate each section of the curve, with the first four
generating the first section, clicks 2, 3, 4 and 5 generating the next section and
so on. For any four control points, P0, P1, P2 and P3, the curve can be generated
by the parametric equation:

B(t) = 1

6
(−P0 + 3P1 − 3P2 + P3)t

3 + 1

2
(P0 − 2P1 + P2)t

2

+ 1

2
(−P0 + P2)t + 1

6
(P0 + 4P1 + P2) (11.1)

The parameter t varies between 0 and 1, and is incremented in small steps, with
one intermediate curve point being generated at each step. The curve itself is
drawn as a series of line segments, each segment connecting the curve points
generated by successive increments.

11. Implement the command that allows the user to select the font and font size; the
code should also let the user boldface, underline, and italicise labels.

12. Re-implement the view subsystem using the state pattern.
13. Implement the following functionality in the drawing program: the user should

be able to select a single figure by clicking the mouse on the figure or select
multiple figures by holding the control key while clicking; it should then be
possible to move the selected item(s). The operation should be undoable.

14. Implement the ability to draw polygons in the drawing program.
15. In the drawing program, implement the functionality to create rectangles and

load images into these rectangles. The command should be undoable.

References

1. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns, vol. 1 (Wiley, New York, 2001)

2. M. Fowler, Refactoring: Improving the Design of Existing Code (Addison-Wesley, Reading,
1999)

3. M. Fowler, K. Scott, UML Distilled (Addison-Wesley Longman, Reading, 1997)
4. M. Grand, Patterns in Java: Catalogue of Reusable Design Patterns Illustrated with UML, vol. 1

(Wiley, New York, 2002)
5. A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts (Wiley, New York, 2006)

https://hemanthrajhemu.github.io

