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13

CHAPTER

2
Fourier Analysis of 
Signals and Systems

2.1 Introduction

The study of communication systems involves:

• the processing of a modulated message signal generated at the transmitter output so
as to facilitate its transportation across a physical channel and 

• subsequent processing of the received signal in the receiver so as to deliver an
estimate of the original message signal to a user at the receiver output. 

In this study, the representation of signals and systems features prominently. More
specifically, the Fourier transform plays a key role in this representation.

The Fourier transform provides the mathematical link between the time-domain
representation (i.e., waveform) of a signal and its frequency-domain description (i.e.,
spectrum). Most importantly, we can go back and forth between these two descriptions of
the signal with no loss of information. Indeed, we may invoke a similar transformation in
the representation of linear systems. In this latter case, the time-domain and frequency-
domain descriptions of a linear time-invariant system are defined in terms of its impulse
response and frequency response, respectively. 

In light of this background, it is in order that we begin a mathematical study of
communication systems by presenting a review of Fourier analysis. This review, in turn,
paves the way for the formulation of simplified representations of band-pass signals and
systems to which we resort in subsequent chapters. We begin the study by developing the
transition from the Fourier series representation of a periodic signal to the Fourier
transform representation of a nonperiodic signal; this we do in the next two sections.

2.2 The Fourier Series

Let  denote a periodic signal, where the subscript T0 denotes the duration of
periodicity. By using a Fourier series expansion of this signal, we are able to resolve it into
an infinite sum of sine and cosine terms, as shown by

(2.1)

gT0
t( )

gT0
t( ) a0 2 an 2πnf0t( ) bn 2πnf0t( )sin+cos[ ]

n 1=

∞

+=
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14 Chapter 2 Fourier Analysis of Signals and Systems

where 

(2.2)

is the fundamental frequency. The coefficients an and bn represent the amplitudes of the
cosine and sine terms, respectively. The quantity nf0 represents the nth harmonic of the
fundamental frequency f0. Each of the terms cos(2πnf0t) and sin(2πnf0t) is called a basis
function. These basis functions form an orthogonal set over the interval T0, in that they
satisfy three conditions:

(2.3)

(2.4)

(2.5)

To determine the coefficient a0, we integrate both sides of (2.1) over a complete period.
We thus find that a0 is the mean value of the periodic signal  over one period, as
shown by the time average

(2.6)

To determine the coefficient an, we multiply both sides of (2.1) by cos(2πnf0t) and
integrate over the interval –T0/2 to T0/2. Then, using (2.3) and (2.4), we find that

(2.7)

Similarly, we find that

 (2.8)

A basic question that arises at this point is the following: 

Given a periodic signal  of period T0, how do we know that the Fourier 
series expansion of (2.1) is convergent in that the infinite sum of terms in this 
expansion is exactly equal to ? 

To resolve this fundamental issue, we have to show that, for the coefficients a0, an, and bn

calculated in accordance with (2.6) to (2.8), this series will indeed converge to . In

general, for a periodic signal  of arbitrary waveform, there is no guarantee that the

series of (2.1) will converge to  or that the coefficients a0, an, and bn will even exist.

In a rigorous sense, we may say that a periodic signal  can be expanded in a Fourier

f0
1
T0
-----=

2πmf0t( ) 2πnf0t( )coscos dt
T0 2⁄–

T0 2⁄


T0 2,⁄ m n=

0, m n≠



=

2πmf0t( ) 2πnf0t( )sincos dt
T0 2⁄–

T0 2⁄

 0 for all m and n,=

2πmf0t( )sin 2πnf0t( )sin dt
T0 2⁄–

T0 2⁄


T0 2,⁄ m n=

0, m n≠



=

gT0
t( )

a0
1
T0
----- gT0

t( ) dt
T0 2⁄–

T0 2⁄

=

an
1
T0
----- gT0

t( ) 2πnf0t( )cos dt, n
T0 2⁄–

T0 2⁄

 1 2 …, ,= =

bn
1
T0
----- gT0

t( ) 2πnf0t( )sin dt, n
T0 2⁄–

T0 2⁄

 1 2 …, ,= =

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )
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2.2 The Fourier Series 15

series if the signal  satisfies the Dirichlet conditions:1

1. The function  is single valued within the interval T0.

2. The function  has at most a finite number of discontinuities in the interval T0.

3. The function  has a finite number of maxima and minima in the interval T0.

4. The function  is absolutely integrable; that is,

From an engineering perspective, however, it suffices to say that the Dirichlet conditions
are satisfied by the periodic signals encountered in communication systems. 

Complex Exponential Fourier Series

The Fourier series of (2.1) can be put into a much simpler and more elegant form with the
use of complex exponentials. We do this by substituting into (2.1) the exponential forms
for the cosine and sine, namely:

 where . We thus obtain

(2.9)

Let cn denote a complex coefficient related to an and bn by

(2.10)

Then, we may simplify (2.9) into 

(2.11)

where

              (2.12)

The series expansion of (2.11) is referred to as the complex exponential Fourier series.
The cn themselves are called the complex Fourier coefficients. 

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( ) dt ∞<

T0 2⁄–

T0 2⁄



2πnf0t( )cos
1
2
--- j2πnf0t( ) j2πnf0t–( )exp+exp[ ]=

2πnf0t( )sin
1
2j
----- j2πnf0t( ) j2πnf0t–( )exp–exp[ ]=

j 1–=

gT0
t( ) a0 an j– bn( ) j2πnf0t( ) an jbn+( ) j2πnf0t–( )exp+exp[ ]

n=1

∞

+=

cn

an jbn,– n 0>

a0, n 0=

an jbn,+ n 0<








=

gT0
t( ) cn j2πnf0t( )exp

n ∞–=

∞

=

cn
1
T0
----- gT0

t( ) j2πnf0t–( )exp dt, n 0 1 2 …,±,±,=
T0 2⁄–

T0 2⁄

=
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16 Chapter 2 Fourier Analysis of Signals and Systems

Given a periodic signal , (2.12) states that we may determine the 
complete set of complex Fourier coefficients. On the other hand, (2.11) states 
that, given this set of coefficients, we may reconstruct the original periodic 
signal  exactly. 

The integral on the right-hand side of (2.12) is said to be an inner product of the signal
 with the basis functions exp(–j2πnf0t), by whose linear combination all square

integrable functions can be expressed as in (2.11).
According to this representation, a periodic signal contains all frequencies (both

positive and negative) that are harmonically related to the fundamental frequency f0. The
presence of negative frequencies is simply a result of the fact that the mathematical model
of the signal as described by (2.11) requires the use of negative frequencies. Indeed, this
representation also requires the use of complex-valued basis functions, namely
exp(j2πnf0t), which have no physical meaning either. The reason for using complex-
valued basis functions and negative frequency components is merely to provide a compact
mathematical description of a periodic signal, which is well-suited for both theoretical and
practical work.

2.3 The Fourier Transform

In the previous section, we used the Fourier series to represent a periodic signal. We now
wish to develop a similar representation for a signal g(t) that is nonperiodic. In order to do
this, we first construct a periodic function  of period T0 in such a way that g(t)
defines exactly one cycle of this periodic function, as illustrated in Figure 2.1. In the limit,
we let the period T0 become infinitely large, so that we may express g(t) as

(2.13)

gT0
t( )

gT0
t( )

gT0
t( )

Figure 2.1 Illustrating the use of an arbitrarily defined function of time to 
construct a periodic waveform. (a) Arbitrarily defined function of time g(t). 
(b) Periodic waveform gT0

(t) based on g(t).

gT0
t( )

g t( ) gT0
t( )

T0 ∞→
lim=

–T0

g(t) 

gT0 
(t)

T00

0

(a)

(b)
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2.3 The Fourier Transform 17

Representing the periodic function  in terms of the complex exponential form of the
Fourier series, we write

 

where

Here, we have purposely replaced f0 with 1/T0 in the exponents. Define

and

We may then go on to modify the original Fourier series representation of  given in
(2.11) into a new form described by

(2.14)

where

(2.15)

Equations (2.14) and (2.15) apply to a periodic signal . What we would like to do
next is to go one step further and develop a corresponding pair of formulas that apply to a
nonperiodic signal g(t). To do this transition, we use the defining equation (2.13).
Specifically, two things happen:

1. The discrete frequency fn in (2.14) and (2.15) approaches the continuous frequency
variable f.

2. The discrete sum of (2.14) becomes an integral defining the area under the function
G(f)exp(j2πft), integrated with respect to time t.

Accordingly, piecing these points together, we may respectively rewrite the limiting forms
of (2.15) and (2.14) as 

(2.16)

and

(2.17)

gT0
t( )

gT0
t( ) cn

j2πnt
T0

-------------- 
 exp

n ∞–=

∞

=

cn
1
T0
----- gT0

t( ) j2πnt
T0

--------------– 
 exp dt

T0 2⁄–

T0 2⁄

=

Δf 1
T0
-----=

fn
n
T0
-----=

G fn( ) cnT0=

gT0
t( )

gT0
t( ) G fn( ) j2πfnt( )Δfexp

n ∞–=

∞

=

G fn( ) gT0
t( ) j2πfnt–( )exp  dt

T0 2⁄–

T0 2⁄

=

gT0
t( )

G f( ) g t( ) j2πft–( )exp dt
∞–

∞

=

g t( ) G f( ) j2πft( )exp df
∞–

∞

=
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18 Chapter 2 Fourier Analysis of Signals and Systems

In words, we may say:

• the Fourier transform of the nonperiodic signal g(t) is defined by (2.16); 
• given the Fourier transform G(f), the original signal g(t) is recovered exactly from

the inverse Fourier transform of (2.17). 

Figure 2.2 illustrates the interplay between these two formulas, where we see that the
frequency-domain description based on (2.16) plays the role of analysis and the time-
domain description based on (2.17) plays the role of synthesis. 

From a notational point of view, note that in (2.16) and (2.17) we have used a lowercase
letter to denote the time function and an uppercase letter to denote the corresponding
frequency function. Note also that these two equations are of identical mathematical form,
except for changes in the algebraic signs of the exponents. 

For the Fourier transform of a signal g(t) to exist, it is sufficient but not necessary that
the nonperiodic signal g(t) satisfies three Dirichlet’s conditions of its own:

1. The function g(t) is single valued, with a finite number of maxima and minima in
any finite time interval.

2. The function g(t) has a finite number of discontinuities in any finite time interval.

3. The function g(t) is absolutely integrable; that is,

In practice, we may safely ignore the question of the existence of the Fourier transform of
a time function g(t) when it is an accurately specified description of a physically realizable
signal. In other words, physical realizability is a sufficient condition for the existence of a
Fourier transform. Indeed, we may go one step further and state:

All energy signals are Fourier transformable. 

A signal g(t) is said to be an energy signal if the condition 

(2.18)

holds.2

Figure 2.2 Sketch of the interplay between the synthesis 
and analysis equations embodied in Fourier transformation. 

g t( ) dt ∞<
∞–

∞



g t( ) 2
dt ∞<

∞–

∞



Analysis equation:

Synthesis equation:

g (t) =  

Time-domain
description:

g(t )

Frequency-domain
description:

G(f )

G (f ) exp( j 2 ft )df
∞

–∞

G (f ) = g (t ) exp(– j 2 ft )dt
∞

–∞
π

π
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2.3 The Fourier Transform 19

The Fourier transform provides the mathematical tool for measuring the frequency
content, or spectrum, of a signal. For this reason, the terms Fourier transform and
spectrum are used interchangeably. Thus, given a signal g(t) with Fourier transform G(f),
we may refer to G(f) as the spectrum of the signal g(t). By the same token, we refer to
|G(f)| as the magnitude spectrum of the signal g(t), and refer to arg[G(f)] as its phase
spectrum. 

If the signal g(t) is real valued, then the magnitude spectrum of the signal is an even
function of frequency f, while the phase spectrum is an odd function of f. In such a case,
knowledge of the spectrum of the signal for positive frequencies uniquely defines the
spectrum for negative frequencies.

Notations

For convenience of presentation, it is customary to express (2.17) in the short-hand form

where F plays the role of an operator. In a corresponding way, (2.18) is expressed in the
short-hand form

where F–1 plays the role of an inverse operator.
The time function g(t) and the corresponding frequency function G(f) are said to

constitute a Fourier-transform pair. To emphasize this point, we write

where the top arrow indicates the forward transformation from g(t) to G(f) and the bottom
arrow indicates the inverse transformation. One other notation: the asterisk is used to
denote complex conjugation. 

Tables of Fourier Tranformations

To assist the user of this book, two tables of Fourier transformations are included:

1. Table 2.1 on page 23 summarizes the properties of Fourier transforms; proofs of
them are presented as end-of-chapter problems.

2. Table 2.2 on page 24 presents a list of Fourier-transform pairs, where the items
listed on the left-hand side of the table are time functions and those in the center
column are their Fourier transforms.

EXAMPLE 1 Binary Sequence for Energy Calculations

Consider the five-digit binary sequence 10010. This sequence is represented by two
different waveforms, one based on the rectangular function rect(t), and the other based on
the sinc function sinc(t). Despite this difference, both waveforms are denoted by g(t),
which implies they both have exactly the same total energy, to be demonstrated next. 

Case 1: rect(t) as the basis function.

Let binary symbol 1 be represented by +rect(t) and binary symbol 0 be represented by
−rect(t). Accordingly, the binary sequence 10010 is represented by the waveform

G f( ) F g t( )[ ]=

g t( ) F
1–

G f( )[ ]=

g t( ) ⇌ G f( )
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20 Chapter 2 Fourier Analysis of Signals and Systems

shown in Figure 2.3. From this figure, we readily see that, regardless of the
representation ±rect(t), each symbol contributes a single unit of energy; hence the total
energy for Case 1 is five units. 
Case 2: sinc(t) as the basis function.

Consider next the representation of symbol 1 by +sinc(t) and the representation of symbol
0 by −sinc(t), which do not interfere with each other in constructing the waveform for the
binary sequence 10010. Unfortunately, this time around, it is difficult to calculate the total
waveform energy in the time domain. To overcome this difficulty, we do the calculation in
the frequency domain.

To this end, in parts a and b of Figure 2.4, we display the waveform of the sinc function
in the time domain and its Fourier transform, respectively. On this basis, Figure 2.5
displays the frequency-domain representation of the binary sequence 10010, with part a of
the figure displaying the magnitude response , and part b displaying the
corresponding phrase response  expressed in radians. Then, applying
Rayleigh’s energy theorem, described in Property 14 in Table 2.2, to part a of Figure 2.5,
we readily find that the energy of the pulse, ±sinc(t), is equal to one unit, regardless of its
amplitude. The total energy of the sinc-based waveform representing the given binary
sequence is also exactly five units, confirming what was said at the beginning of this
example.

Figure 2.3 Waveform of binary sequence 10010, using rect(t) for symbol 1 
and –rect(t) for symbol 0. See Table 2.2 for the definition of rect(t).

Figure 2.4 (a) Sinc pulse g(t). (b) Fourier transform G(f).

Time t

Binary sequence
g(t)

1

–1.0

1.0

0 0 1 0

 – 1
2

1
2

5
2

7
2

9
2

3
2...

G f( )
arg G f( )[ ]

g
2W

0 0

(t

t

)

G(f

f

)

(a) (b)

3
2W

3
2W

1
2W

– –– 1
W

–W W1
W

1
2W

1
2W
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2.3 The Fourier Transform 21

Observations

1. The dual basis functions, rect(t) and sinc(t), are dilated to their simplest forms, each
of which has an energy of one unit, hence the equality of the results presented under
Cases 1 and 2.

2. Examining the waveform g(t) in Figure 2.3, we clearly see the discrimination
between binary symbols 1 and 0. On the other hand, it is the phase response

 in part b of Figure 2.5 that shows the discrimination between binary
symbols 1 and 0.  

EXAMPLE 2 Unit Gaussian Pulse

Typically, a pulse signal g(t) and its Fourier transform G(f) have different mathematical
forms. This observation is illustrated by the Fourier-transform pair studied in Example 1.
In this second example, we consider an exception to this observation. In particular, we use
the differentiation property of the Fourier transform to derive the particular form of a pulse
signal that has the same mathematical form as its own Fourier transform.

Let g(t) denote the pulse signal expressed as a function of time t and G(f) denote its
Fourier transform. Differentiating the Fourier transform formula of (2.6) with respect to
frequency f yields 

or, equivalently,

(2.19)

Figure 2.5 (a) Magnitude spectrum of the sequence 10010. (b) Phase spectrum 
of the sequence.

Binary sequence

Frequency, Hz

Magnitude
|G(f )|  

Phase
argG(f )
(radians) 

π

1

1.0

0

0

0 1 0

 –

 –

 –

1
2

1
2

1
2

3
2

5
2

7
2

9
2

1
2

3
2

5
2

7
2

9
2

(a)

(b)
0

arg G f( )[ ]

j2πtg t( )– ⇌ d
df
-----G f( )

2πtg t( ) ⇌ j
d
df
-----G f( )
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22 Chapter 2 Fourier Analysis of Signals and Systems

Use of the Fourier-transform property on differentiation in the time domain listed in Table
2.1 yields

(2.20)

Suppose we now impose the equality condition on the left-hand sides of (2.19) and (2.20): 

(2.21)

Then, in a corresponding way, it follows that the right-hand sides of these two equations
must (after canceling the common multiplying factor j) satisfy the condition

(2.22)

Equations (2.21) and (2.22) show that the pulse signal g(t) and its Fourier transform G(f)
have exactly the same mathematical form. In other words, provided that the pulse signal
g(t) satisfies the differential equation (2.21), then G(f) = g(f), where g(f) is obtained from
g(t) simply by substituting f for t. Solving (2.21) for g(t), we obtain

(2.23)

which has a bell-shaped waveform, as illustrated in Figure 2.6. Such a pulse is called a
Gaussian pulse, the name of which follows from the similarity of the function g(t) to the
Gaussian probability density function of probability theory, to be discussed in Chapter 3.
By applying the Fourier-transform property on the area under g(t) listed in Table 2.1, we
have

(2.24)

When the central ordinate and the area under the curve of a pulse are both unity, as in
(2.23) and (2.24), we say that the Gaussian pulse is a unit pulse. Therefore, we may state
that the unit Gaussian pulse is its own Fourier transform, as shown by

(2.25)

Figure 2.6 Gaussian pulse.

d
dt
-----g t( ) ⇌ j2πfG f( )

d
dt
-----g t( ) 2πtg t( )=

d
df
-----G f( ) 2πfG f( )=

g t( ) πt
2

–( )exp=

πt
2

–( )exp dt
∞–

∞

 1=

πt
2

–( )exp ⇌ πf
2

–( )exp

1.0

0–0.47 0.47

0.5

t

g( t )
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2.3 The Fourier Transform 23

Table 2.1 Fourier-transform theorems

Property Mathematical description

1. Linearity
where a and b are constants

2. Dilation  where a is a constant

3. Duality
If ,

then 

4. Time shifting

5. Frequency shifting

6. Area under g(t)

7. Area under G(f)

8. Differentiation in the time domain

9. Integration in the time domain

10. Conjugate functions
If ,

then 

11. Multiplication in the time domain

12. Convolution in the time domain

13. Correlation theorem

14. Rayleigh’s energy theorem

15. Parseval’s power theorem for 
periodic signal of period T0

ag1 t( ) bg2 t( )+ ⇌ aG1 f( ) bG2 f( )+

g at( ) ⇌ 1
a
-----G

f
a
--- 

 

g t( ) ⇌ G f( )
G t( ) ⇌ g f–( )

g t t0–( ) ⇌ G f( ) j2πft0–( )exp

g t( ) j2πf0t–( )exp ⇌ G f f0–( )

g t( )dt
∞–

∞

 G 0( )=

g 0( ) G f( )df
∞–

∞

=

d
dt
-----g t( ) ⇌ j2πfG f( )

g τ( )dτ
∞–

t

 ⇌ 1
j2πf
----------G f( ) G 0( )

2
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24 Chapter 2 Fourier Analysis of Signals and Systems

Table 2.2 Fourier-transform pairs and commonly used time functions

Time function Fourier transform Definitions

1.  Unit step function:

2.

3.

4.
Dirac delta function:

 for  and

5.

6.
Rectangular function:

7.

8. Signum function:

9.

10.

11. Sinc function:

12.

13. Gaussian function:

14.

15.

16.
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2.4 The Inverse Relationship between Time-Domain and Frequency-Domain Representations 25

2.4 The Inverse Relationship between Time-Domain and 
Frequency-Domain Representations

The time-domain and frequency-domain descriptions of a signal are inversely related. In
this context, we may make four important statements:

1. If the time-domain description of a signal is changed, the frequency-domain
description of the signal is changed in an inverse manner, and vice versa. This
inverse relationship prevents arbitrary specifications of a signal in both domains. In
other words: 

We may specify an arbitrary function of time or an arbitrary spectrum, but we 
cannot specify them both together.

2. If a signal is strictly limited in frequency, then the time-domain description of the
signal will trail on indefinitely, even though its amplitude may assume a
progressively smaller value. To be specific, we say:

A signal is strictly limited in frequency (i.e., strictly band limited) if its Fourier 
transform is exactly zero outside a finite band of frequencies. 

Consider, for example, the band-limited sinc pulse defined by

whose waveform and spectrum are respectively shown in Figure 2.4: part a shows
that the sinc pulse is asymptotically limited in time and part b of the figure shows
that the sinc pulse is indeed strictly band limited, thereby confirming statement 2.

3. In a dual manner to statement 2, we say:

If a signal is strictly limited in time (i.e., the signal is exactly zero outside a 
finite time interval), then the spectrum of the signal is infinite in extent, even 
though the magnitude spectrum may assume a progressively smaller value. 

This third statement is exemplified by a rectangular pulse, the waveform and
spectrum of which are defined in accordance with item 1 in Table 2.2. 

4. In light of the duality described under statements 2 and 3, we now make the final
statement:

A signal cannot be strictly limited in both time and frequency.

The Bandwidth Dilemma

The statements we have just made have an important bearing on the bandwidth of a signal,
which provides a measure of the extent of significant spectral content of the signal for
positive frequencies. When the signal is strictly band limited, the bandwidth is well
defined. For example, the sinc pulse sinc(2Wt) has a bandwidth equal to W. However,
when the signal is not strictly band limited, as is often the case, we encounter difficulty in
defining the bandwidth of the signal. The difficulty arises because the meaning of
“significant” attached to the spectral content of the signal is mathematically imprecise.
Consequently, there is no universally accepted definition of bandwidth. It is in this sense
that we speak of the “bandwidth dilemma.”

sinc t( ) πt( )sin
πt

------------------=
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26 Chapter 2 Fourier Analysis of Signals and Systems

Nevertheless, there are some commonly used definitions for bandwidth, as discussed
next. When the spectrum of a signal is symmetric with a main lobe bounded by well-
defined nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as
the basis for defining the bandwidth of the signal. Specifically: 

If a signal is low-pass (i.e., its spectral content is centered around the origin 
f = 0), the bandwidth is defined as one-half the total width of the main spectral 
lobe, since only one-half of this lobe lies inside the positive frequency region. 

For example, a rectangular pulse of duration T seconds has a main spectral lobe of total
width (2/T) hertz centered at the origin. Accordingly, we may define the bandwidth of this
rectangular pulse as (1/T) hertz. 

If, on the other hand, the signal is band-pass with main spectral lobes centered around
±fc, where fc is large enough, the bandwidth is defined as the width of the main lobe for
positive frequencies. This definition of bandwidth is called the null-to-null bandwidth.
Consider, for example, a radio-frequency (RF) pulse of duration T seconds and frequency
fc, shown in Figure 2.7. The spectrum of this pulse has main spectral lobes of width (2/T)
hertz centered around ±fc, where it is assumed that fc is large compared with (1/T). Hence,
we define the null-to-null bandwidth of the RF pulse of Figure 2.7 as (2/T) hertz.

On the basis of the definitions presented here, we may state that shifting the spectral
content of a low-pass signal by a sufficiently large frequency has the effect of doubling the
bandwidth of the signal; this frequency translation is attained by using the process of
modulation. Basically, the modulation moves the spectral content of the signal for negative
frequencies into the positive frequency region, whereupon the negative frequencies
become physically measurable.

Another popular definition of bandwidth is the 3 dB bandwidth. Specifically, if the
signal is low-pass, we say:

The 3 dB bandwidth of a low-pass signal is defined as the separation between 
zero frequency, where the magnitude spectrum attains its peak value, and the 
positive frequency at which the amplitude spectrum drops to  of its 
peak value.

Figure 2.7 Magnitude spectrum of the RF pulse, showing the null-to-null bandwidth to be 2/T, 
centered on the mid-band frequency fc.

1 2⁄

0
f

|G(f )|  

–fc fc

T
2

2
T

2
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2.4 The Inverse Relationship between Time-Domain and Frequency-Domain Representations 27

For example, the decaying exponential function exp(–at) has a 3 dB bandwidth of (a/2π)
hertz.

If, on the other hand, the signal is of a band-pass kind, centered at ±fc, the 3 dB
bandwidth is defined as the separation (along the positive frequency axis) between the two
frequencies at which the magnitude spectrum of the signal drops to of its peak value
at fc.

Regardless of whether we have a low-pass or band-pass signal, the 3 dB bandwidth has
the advantage that it can be read directly from a plot of the magnitude spectrum. However,
it has the disadvantage that it may be misleading if the magnitude spectrum has slowly
decreasing tails.

Time–Bandwidth Product

For any family of pulse signals that differ by a time-scaling factor, the product of the
signal’s duration and its bandwidth is always a constant, as shown by

duration × bandwidth = constant

This product is called the time–bandwidth product. The constancy of the time–bandwidth
product is another manifestation of the inverse relationship that exists between the time-
domain and frequency-domain descriptions of a signal. In particular, if the duration of a
pulse signal is decreased by reducing the time scale by a factor a, the frequency scale of
the signal’s spectrum, and therefore the bandwidth of the signal is increased by the same
factor a. This statement follows from the dilation property of the Fourier transform
(defined in Property 2 of Table 2.1). The time–bandwidth product of the signal is therefore
maintained constant. For example, a rectangular pulse of duration T seconds has a
bandwidth (defined on the basis of the positive-frequency part of the main lobe) equal to
(1/T) hertz; in this example, the time–bandwidth product of the pulse equals unity. 

The important point to take from this discussion is that whatever definitions we use for
the bandwidth and duration of a signal, the time–bandwidth product remains constant over
certain classes of pulse signals; the choice of particular definitions for bandwidth and
duration merely change the value of the constant.

Root-Mean-Square Definitions of Bandwidth and Duration

To put matters pertaining to the bandwidth and duration of a signal on a firm mathematical
basis, we first introduce the following definition for bandwidth:

The root-mean-square (rms) bandwidth is defined as the square root of the 
second moment of a normalized form of the squared magnitude spectrum of the 
signal about a suitably chosen frequency.

To be specific, we assume that the signal g(t) is of a low-pass kind, in which case the
second moment is taken about the origin f = 0. The squared magnitude spectrum of the
signal is denoted by |G(f)|2. To formulate a nonnegative function, the total area under
whose curve is unity, we use the normalizing function

1 2⁄

G f( ) 2
df

∞–

∞


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28 Chapter 2 Fourier Analysis of Signals and Systems

We thus mathematically define the rms bandwidth of a low-pass signal g(t) with Fourier
transform G(f) as

(2.26)

which describes the dispersion of the spectrum G(f) around f = 0. An attractive feature of
the rms bandwidth Wrms is that it lends itself readily to mathematical evaluation. But, it is
not as easily measurable in the laboratory.

In a manner corresponding to the rms bandwidth, the rms duration of the signal g(t) is
mathematically defined by

(2.27)

where it is assumed that the signal g(t) is centered around the origin t = 0. In Problem 2.7,
it is shown that, using the rms definitions of (2.26) and (2.27), the time–bandwidth product
takes the form

(2.28)

In Problem 2.7, it is also shown that the Gaussian pulse exp(–πt2) satisfies this condition
exactly with the equality sign. 

2.5 The Dirac Delta Function

Strictly speaking, the theory of the Fourier transform, presented in Section 2.3, is
applicable only to time functions that satisfy the Dirichlet conditions. As mentioned
previously, such functions naturally include energy signals. However, it would be highly
desirable to extend this theory in two ways:

1. To combine the Fourier series and Fourier transform into a unified theory, so that the
Fourier series may be treated as a special case of the Fourier transform.

2. To include power signals in the list of signals to which we may apply the Fourier
transform. A signal g(t) is said to be a power signal if the condition

  

holds, where T is the observation interval.

It turns out that both of these objectives can be met through the “proper use” of the Dirac
delta function, or unit impulse.
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f
2
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df
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∞
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2.5 The Dirac Delta Function 29

The Dirac delta function3 or just delta function, denoted by δ(t), is defined as having
zero amplitude everywhere except at t = 0, where it is infinitely large in such a way that it
contains unit area under its curve; that is,

(2.29)

and

(2.30)

An implication of this pair of relations is that the delta function δ(t) is an even function of
time t, centered at the origin t = 0. Perhaps, the simplest way of describing the Dirac delta
function is to view it as the rectangular pulse

whose duration is T and amplitude is 1/T, as illustrated in Figure 2.8. As T approaches
zero, the rectangular pulse g(t) approaches the Dirac delta function δ(t) in the limit.

For the delta function to have meaning, however, it has to appear as a factor in the
integrand of an integral with respect to time, and then, strictly speaking, only when the
other factor in the integrand is a continuous function of time. Let g(t) be such a function,
and consider the product of g(t) and the time-shifted delta function δ(t – t0). In light of the
two defining equations (2.29) and (2.30), we may express the integral of this product as 

(2.31)

The operation indicated on the left-hand side of this equation sifts out the value g(t0) of the
function g(t) at time t = t0, where . Accordingly, (2.31) is referred to as the
sifting property of the delta function. This property is sometimes used as the defining
equation of a delta function; in effect, it incorporates (2.29) and (2.30) into a single
relation.

Noting that the delta function δ(t) is an even function of t, we may rewrite (2.31) so as
to emphasize its resemblance to the convolution integral, as shown by

(2.32)

Figure 2.8 Illustrative example of the Dirac delta function as the 

limiting form of rectangular pulse  rect  as T approaches zero.
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30 Chapter 2 Fourier Analysis of Signals and Systems

In words, the convolution of any function with the delta function leaves that function
unchanged. We refer to this statement as the replication property of the delta function.

It is important to realize that no function in the ordinary sense has the two properties of
(2.29) and (2.30) or the equivalent sifting property of (2.31). However, we can imagine a
sequence of functions that have progressively taller and thinner peaks at t = 0, with the
area under the curve consistently remaining equal to unity; as this progression is being
performed, the value of the function tends to zero at every point except t = 0, where it
tends to infinity, as illustrated in Figure 2.8, for example. We may therefore say: 

The delta function may be viewed as the limiting form of a pulse of unit area as 
the duration of the pulse approaches zero. 

It is immaterial what sort of pulse shape is used, so long as it is symmetric with respect to
the origin; this symmetry is needed to maintain the “even” function property of the delta
function.

Two other points are noteworthy:

1. Applicability of the delta function is not confined to the time domain. Rather, it can
equally well be applied in the frequency domain; all that we have to do is to replace
time t by frequency f in the defining equations (2.29) and (2.30).

2. The area covered by the delta function defines its “strength.” As such, the units, in
terms of which the strength is measured, are determined by the specifications of the
two coordinates that define the delta function.

EXAMPLE 3 The Sinc Function as a Limiting Form of the Delta Function 
in the Time Domain

As another illustrative example, consider the scaled sinc function 2Wsinc(2Wt), whose
waveform covers an area equal to unity for all W.

Figure 2.9 displays the evolution of this time function toward the delta function as the
parameter W is varied in three stages: W = 1, W = 2, and W = 5. Referring back to Figure
2.4, we may infer that as the parameter W characterizing the sinc pulse is increased, the
amplitude of the pulse at time t = 0 increases linearly, while at the same time the duration
of the main lobe of the pulse decreases inversely. With this objective in mind, as the
parameter W is progressively increased, Figure 2.9 teaches us two important things:

1. The scaled sinc function becomes more like a delta function.

2. The constancy of the function’s spectrum is maintained at unity across an
increasingly wider frequency band, in accordance with the constraint that the area
under the function is to remain constant at unity; see Property 6 of Table 2.1 for a
validation of this point.

Based on the trend exhibited in Figure 2.9, we may write

(2.33)

which, in addition to the rectangular pulse considered in Figure 2.8, is another way of
realizing a delta function in the time domain.

δ t( ) 2W sinc
W ∞→

lim 2Wt( )=
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2.5 The Dirac Delta Function 31

Figure 2.9 Evolution of the sinc function 2W sinc(2Wt) toward the delta function as the 
parameter W progressively increases.
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32 Chapter 2 Fourier Analysis of Signals and Systems

EXAMPLE 4 Evolution of the Sum of Complex Exponentials toward the Delta Function in
the Frequency Domain

For yet another entirely different example, consider the infinite summation term

 over the interval . Using Euler’s formula

we may express the given summation as 

The imaginary part of the summation is zero for two reasons. First, sin(2πmf) is zero for
m = 0. Second, since sin(–2πmf) = –sin(2πmf), the remaining imaginary terms cancel
each other. Therefore,

 

Figure 2.10 plots this real-valued summation versus frequency f over the interval
for three ranges of m:

1. –5 ≤ m ≤ 5

2. –10 ≤ m ≤ 10

3. –20 ≤ m ≤ 20

Building on the results exhibited in Figure 2.10, we may go on to say 

(2.34)

which is one way of realizing a delta function in the frequency domain. Note that the area
under the summation term on the right-hand side of (2.34) is equal to unity; we say so
because

This result, formulated in the frequency domain, confirms (2.34) as one way of defining
the delta function δ( f ). 
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2.5 The Dirac Delta Function 33

Figure 2.10 Evolution of the sum of m complex exponentials toward a delta function in the 
frequency domain as m becomes increasingly larger.
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34 Chapter 2 Fourier Analysis of Signals and Systems

2.6 Fourier Transforms of Periodic Signals

We began the study of Fourier analysis by reviewing the Fourier series expansion of
periodic signals, which, in turn, paved the way for the formulation of the Fourier
transform. Now that we have equipped ourselves with the Dirac delta function, we would
like to revisit the Fourier series and show that it can indeed be treated as a special case of
the Fourier transform.

To this end, let g(t) be a pulse-like function, which equals a periodic signal  over
one period T0 of the signal and is zero elsewhere, as shown by

 (2.35)

The periodic signal  itself may be expressed in terms of the function g(t) as an
infinite summation, as shown by

(2.36)

In light of the definition of the pulselike function g(t) in (2.35), we may view this function
as a generating function, so called as it generates the periodic signal  in accordance
with (2.36).

 Clearly, the generating function g(t) is Fourier transformable; let G(f) denote its
Fourier transform. Correspondingly, let denote the Fourier transform of the
periodic signal . Hence, taking the Fourier transforms of both sides of (2.36) and
applying the time-shifting property of the Fourier transform (Property 4 of Table 2.1), we
may write

(2.37)

where we have taken G(f) outside the summation because it is independent of m.
In Example 4, we showed that

Let this result be expanded to cover the entire frequency range, as shown by 

(2.38)

Equation (2.38) (see Problem 2.8c) represents a Dirac comb, consisting of an infinite
sequence of uniformly spaced delta functions, as depicted in Figure 2.11.
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2.6 Fourier Transforms of Periodic Signals 35

Next, introducing the frequency-scaling factor f0 = 1/T0 into (2.38), we
correspondingly write

(2.39)

Hence, substituting (2.39) into the right-hand side of (2.37), we get

(2.40)

.
What we have to show next is that the inverse Fourier transform of  defined in (2.40)

is exactly the same as in the Fourier series formula of (2.14). Specifically, substituting (2.40)
into the inverse Fourier transform formula of (2.17), we get

        

Figure 2.11 (a) Dirac comb. (b) Spectrum of the Dirac comb.
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36 Chapter 2 Fourier Analysis of Signals and Systems

Interchanging the order of summation and integration, and then invoking the sifting
property of the Dirac delta function (this time in the frequency domain), we may go on to
write

which is an exact rewrite of (2.14) with . Equivalently, in light of (2.36), we may
formulate the Fourier transform pair

                                                                    (2.41)

 The result derived in (2.41) is one form of Poisson’s sum formula.
We have thus demonstrated that the Fourier series representation of a periodic signal is

embodied in the Fourier transformation of (2.16) and (2.17), provided, of course, we
permit the use of the Dirac delta function. In so doing, we have closed the “circle” by
going from the Fourier series to the Fourier transform, and then back to the Fourier series.

Consequences of Ideal Sampling

Consider a Fourier transformable pulselike signal g(t) with its Fourier transform denoted
by G(f). Setting fn = nf0 in (2.41) and using (2.38), we may express Poisson’s sum formula

(2.42)

where f0 = 1/T0. The summation on the left-hand side of this Fourier-transform pair is a
periodic signal with period T0. The summation on the right-hand side of the pair is a
uniformly sampled version of the spectrum G(f). We may therefore make the following
statement:

Uniform sampling of the spectrum G(f) in the frequency domain introduces 
periodicity of the function g(t) in the time domain.

Applying the duality property of the Fourier transform (Property 3 of Table 2.1) to (2.42),
we may also write

(2.43)

in light of which we may make the following dual statement:

Uniform sampling of the Fourier transformable function g(t) in the time domain 
introduces periodicity of the spectrum G(f) in the frequency domain.
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2.7 Transmission of Signals through Linear Time-Invariant Systems 37

2.7 Transmission of Signals through Linear Time-Invariant Systems 

A system refers to any physical entity that produces an output signal in response to an
input signal. It is customary to refer to the input signal as the excitation and to the output
signal as the response. In a linear system, the principle of superposition holds; that is, the
response of a linear system to a number of excitations applied simultaneously is equal to
the sum of the responses of the system when each excitation is applied individually.

In the time domain, a linear system is usually described in terms of its impulse
response, which is formally defined as follows:

The impulse response of a linear system is the response of the system (with zero 
initial conditions) to a unit impulse or delta function δ(t) applied to the input of 
the system at time t = 0. 

If the system is also time invariant, then the shape of the impulse response is the same no
matter when the unit impulse is applied to the system. Thus, with the unit impulse or delta
function applied to the system at time t = 0, the impulse response of a linear time-invariant
system is denoted by h(t). 

Suppose that a system described by the impulse response h(t) is subjected to an
arbitrary excitation x(t), as depicted in Figure 2.12. The resulting response of the system
y(t), is defined in terms of the impulse response h(t) by

(2.44)

which is called the convolution integral. Equivalently, we may write

(2.45)

Equations (2.44) and (2.45) state that convolution is commutative.
Examining the convolution integral of (2.44), we see that three different time scales are

involved: excitation time τ, response time t, and system-memory time t – τ. This relation is
the basis of time-domain analysis of linear time-invariant systems. According to (2.44),
the present value of the response of a linear time-invariant system is an integral over the
past history of the input signal, weighted according to the impulse response of the system.
Thus, the impulse response acts as a memory function of the system.

Causality and Stability

A linear system with impulse response h(t) is said to be causal if its impulse response h(t)
satisfies the condition

   for   t < 0

Figure 2.12 Illustrating the roles of excitation x(t), impulse response h(t), 
and response y(t) in the context of a linear time-invariant system.
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38 Chapter 2 Fourier Analysis of Signals and Systems

The essence of causality is that no response can appear at the output of the system before
an excitation is applied to its input. Causality is a necessary requirement for on-line
operation of the system. In other words, for a system operating in real time to be
physically realizable, it has to be causal.

Another important property of a linear system is stability. A necessary and sufficient
condition for the system to be stable is that its impulse response h(t) must satisfy the
inequality

This requirement follows from the commonly used criterion of bounded input–bounded
output. Basically, for the system to be stable, its impulse response must be absolutely
integrable.

Frequency Response

Let X(f), H(f), and Y(f) denote the Fourier transforms of the excitation x(t), impulse
response h(t), and response y(t), respectively. Then, applying Property 12 of the Fourier
transform in Table 2.1 to the convolution integral, be it written in the form of (2.44) or
(2.45), we get

(2.46)

Equivalently, we may write

(2.47)

The new frequency function H(f) is called the transfer function or frequency response of
the system; these two terms are used interchangeably. Based on (2.47), we may now
formally say:

The frequency response of a linear time-invariant system is defined as the ratio 
of the Fourier transform of the response of the system to the Fourier transform 
of the excitation applied to the system.

In general, the frequency response H(f) is a complex quantity, so we may express it in the form

(2.48)

where |H(f)| is called the magnitude response, and β(f) is the phase response, or simply
phase. When the impulse response of the system is real valued, the frequency response
exhibits conjugate symmetry, which means that

and

That is, the magnitude response |H(f)| of a linear system with real-valued impulse
response is an even function of frequency, whereas the phase β (f) is an odd function of
frequency.

In some applications it is preferable to work with the logarithm of H(f) expressed in
polar form, rather than with H(f) itself. Using ln to denote the natural logarithm, let

(2.49)

h t( ) dt ∞<
∞–

∞



Y f( ) H f( )X f( )=

H f( ) Y f( )
X f( )
----------=

H f( ) H f( ) jβ f( )[ ]exp=

H f( ) H f–( )=
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2.7 Transmission of Signals through Linear Time-Invariant Systems 39

where
(2.50)

The function α(f) is called the gain of the system; it is measured in nepers. The phase β(f)
is measured in radians. Equation (2.49) indicates that the gain α(f) and phase β(f) are,
respectively, the real and imaginary parts of the (natural) logarithm of the transfer function
H(f). The gain may also be expressed in decibels (dB) by using the definition

The two gain functions α(f) and  are related by

That is, 1 neper is equal to 8.69 dB.
As a means of specifying the constancy of the magnitude response |H(f)| or gain α(f)

of a system, we use the notion of bandwidth. In the case of a low-pass system, the
bandwidth is customarily defined as the frequency at which the magnitude response |H(f)|
is  times its value at zero frequency or, equivalently, the frequency at which the gain

 drops by 3 dB below its value at zero frequency, as illustrated in Figure 2.13a. In the
case of a band-pass system, the bandwidth is defined as the range of frequencies over
which the magnitude response |H(f)| remains within  times its value at the mid-band
frequency, as illustrated in Figure 2.13b.

Figure 2.13 Illustrating the definition of system bandwidth. (a) Low-pass system. 
(b) Band-pass system.
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40 Chapter 2 Fourier Analysis of Signals and Systems

Paley–Wiener Criterion: Another Way of Assessing Causality

A necessary and sufficient condition for a function α(f) to be the gain of a causal filter is
the convergence of the integral

(2.51)

This condition is known as the Paley–Wiener criterion.4 The criterion states that provided
the gain α(f) satisfies the condition of (2.51), then we may associate with this gain a
suitable phase β(f), such that the resulting filter has a causal impulse response that is zero
for negative time. In other words, the Paley–Wiener criterion is the frequency-domain
equivalent of the causality requirement. A system with a realizable gain characteristic may
have infinite attenuation for a discrete set of frequencies, but it cannot have infinite
attenuation over a band of frequencies; otherwise, the Paley–Wiener criterion is violated.

Finite-Duration Impulse Response (FIR) Filters

Consider next a linear time-invariant filter with impulse response h(t). We make two
assumptions:

1. Causality, which means that the impulse response h(t) is zero for t < 0.

2. Finite support, which means that the impulse response of the filter is of some finite
duration Tf, so that we may write h(t) = 0 for t ≥ Tf.

Under these two assumptions, we may express the filter output y(t) produced in response
to the input x(t) as

(2.52)

Let the input x(t), impulse response h(t), and output y(t) be uniformly sampled at the rate
(1/Δτ) samples per second, so that we may put

and

where k and n are integers and Δτ is the sampling period. Assuming that Δτ is small
enough for the product h(τ)x(t – τ) to remain essentially constant for kΔτ ≤τ ≤ (k + 1)Δτ
for all values of k and τ, we may approximate (2.52) by the convolution sum 

where N Δτ = Tf. To simplify the notations used in this summation formula, we introduce
three definitions:
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1 f
2
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2.7 Transmission of Signals through Linear Time-Invariant Systems 41

We may then rewrite the formula for y(nΔτ) in the compact form

(2.53)

Equation (2.53) may be realized using the structure shown in Figure 2.14, which consists
of a set of delay elements (each producing a delay of Δτ seconds), a set of multipliers
connected to the delay-line taps, a corresponding set of weights supplied to the
multipliers, and a summer for adding the multiplier outputs. The sequences xn and yn, for
integer values of n as described in (2.53), are referred to as the input and output sequences,
respectively.

In the digital signal-processing literature, the structure of Figure 2.14 is known as a
finite-duration impulse response (FIR) filter. This filter offers some highly desirable
practical features:

1. The filter is inherently stable, in the sense that a bounded input sequence produces a
bounded output sequence.

2. Depending on how the weights  are designated, the filter can perform the
function of a low-pass filter or band-pass filter. Moreover, the phase response of the
filter can be configured to be a linear function of frequency, which means that there
will be no delay distortion.

3. In a digital realization of the filter, the filter assumes a programmable form whereby
the application of the filter can be changed merely by making appropriate changes to
the weights, leaving the structure of the filter completely unchanged; this kind of
flexibility is not available with analog filters.

We will have more to say on the FIR filter in subsequent chapters of the book.

Figure 2.14 Tapped-delay-line (TDL) filter; also referred to as FIR filter.
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42 Chapter 2 Fourier Analysis of Signals and Systems

2.8 Hilbert Transform

The Fourier transform is particularly useful for evaluating the frequency content of an
energy signal or, in a limiting sense, that of a power signal. As such, it provides the
mathematical basis for analyzing and designing frequency-selective filters for the
separation of signals on the basis of their frequency content. Another method of separating
signals is based on phase selectivity, which uses phase shifts between the pertinent signals
to achieve the desired separation. A phase shift of special interest in this context is that of
±90°. In particular, when the phase angles of all components of a given signal are shifted
by ±90°, the resulting function of time is known as the Hilbert transform of the signal. The
Hilbert transform is called a quadrature filter; it is so called to emphasize its distinct
property of providing a ±90° phase shift.

To be specific, consider a Fourier transformable signal g(t) with its Fourier transform
denoted by G(f). The Hilbert transform of g(t), which we denote by , is defined by5

(2.54)

Table 2.3 Hilbert-transform pairs*

Time function Hilbert transform

1. m(t)cos(2πfct) m(t)sin(2πfct)

2. m(t)sin(2πfct) –m(t)cos(2πfct)

3. cos(2πfct) sin(2πfct)

4. sin(2πfct) –cos(2πfct)

5.

6. rect(t)

7. δ(t)

8.

9. –πδ(t)

Notes: δ(t) denotes Dirac delta function; rect(t) denotes rectangular function; ln denotes natural logarithm.
* In the first two pairs, it is assumed that m(t) is band limited to the interval –W ≤ f ≤ W, where W  < fc.
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2.8 Hilbert Transform 43

Clearly, Hilbert transformation is a linear operation. The inverse Hilbert transform, by
means of which the original signal g(t) is linearly recovered from , is defined by

(2.55)

The functions g(t) and  are said to constitute a Hilbert-transform pair. A short table of
Hilbert-transform pairs is given in Table 2.3 on page 42.

The definition of the Hilbert transform  given in (2.54) may be interpreted as the
convolution of g(t) with the time function 1/(πt). We know from the convolution theorem
listed in Table 2.1 that the convolution of two functions in the time domain is transformed
into the multiplication of their Fourier transforms in the frequency domain. 

For the time function 1/(πt), we have the Fourier-transform pair (see Property 14 in
Table 2.2)

where sgn(f) is the signum function, defined in the frequency domain as

(2.56)

It follows, therefore, that the Fourier transform  of  is given by

(2.57)

Equation (2.57) states that given a Fourier transformable signal g(t), we may obtain the
Fourier transform of its Hilbert transform  by passing g(t) through a linear time-
invariant system whose frequency response is equal to –jsgn(f). This system may be
considered as one that produces a phase shift of –90° for all positive frequencies of the input
signal and +90° degrees for all negative frequencies, as in Figure 2.15. The amplitudes of all
frequency components in the signal, however, are unaffected by transmission through the
device. Such an ideal system is referred to as a Hilbert transformer, or quadrature filter. 

Properties of the Hilbert Transform

The Hilbert transform differs from the Fourier transform in that it operates exclusively in
the time domain. It has a number of useful properties of its own, some of which are listed
next. The signal g(t) is assumed to be real valued, which is the usual domain of application
of the Hilbert transform. For this class of signals, the Hilbert transform has the following
properties.

PROPERTY 1 A signal g(t) and its Hilbert transform  have the same magnitude spectrum.

That is to say,
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Ĝ f( ) ĝ t( )
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44 Chapter 2 Fourier Analysis of Signals and Systems

PROPERTY 2 If  is the Hilbert transform of g(t), then the Hilbert transform of  is –g(t).

Another way of stating this property is to write

PROPERTY 3 A signal g(t) and its Hilbert transform  are orthogonal over the entire time interval 

.

In mathematical terms, the orthogonality of g(t) and  is described by

Proofs of these properties follow from (2.54), (2.55), and (2.57).

EXAMPLE 5 Hilbert Transform of Low-Pass Signal

Consider Figure 2.16a that depicts the Fourier transform of a low-pass signal g(t), whose
frequency content extends from –W to W. Applying the Hilbert transform to this signal
yields a new signal  whose Fourier transform, , is depicted in Figure 2.16b. This
figure illustrates that the frequency content of a Fourier transformable signal can be
radically changed as a result of Hilbert transformation.

Figure 2.15
(a) Magnitude response and 
(b) phase response of Hilbert 
transform.
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2.9 Pre-envelopes 45

2.9 Pre-envelopes

The Hilbert transform of a signal is defined for both positive and negative frequencies. In
light of the spectrum shaping illustrated in Example 5, a question that begs itself is: 

How can we modify the frequency content of a real-valued signal g(t) such that 
all negative frequency components are completely eliminated? 

The answer to this fundamental question lies in the idea of a complex-valued signal called
the pre-envelope6 of g(t), formally defined as

(2.58)

where  is the Hilbert transform of g(t). According to this definition, the given signal
g(t) is the real part of the pre-envelope g+(t), and the Hilbert transform  is the
imaginary part of the pre-envelope. An important feature of the pre-envelope g+(t) is the
behavior of its Fourier transform. Let G+(f) denote the Fourier transform of g+(t). Then,
using (2.57) and (2.58) we may write

(2.59)

Next, invoking the definition of the signum function given in (2.56), we may rewrite (2.59)
in the equivalent form 

(2.60)

Figure 2.16 Illustrating application of the Hilbert transform to a low-pass signal: 
(a) Spectrum of the signal g(t); (b) Spectrum of the Hilbert transform .
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ĝ t( )

g+ t( ) g t( ) jĝ t( )+=
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46 Chapter 2 Fourier Analysis of Signals and Systems

where G(0) is the value of G(f) at the origin f = 0. Equation (2.60) clearly shows that the
pre-envelope of the signal g(t) has no frequency content (i.e., its Fourier transform
vanishes) for all negative frequencies, and the question that was posed earlier has indeed
been answered. Note, however, in order to do this, we had to introduce the complex-valued
version of a real-valued signal as described in (2.58).

From the foregoing analysis it is apparent that for a given signal g(t) we may determine
its pre-envelope g+(t) in one of two equivalent procedures. 

1. Time-domain procedure. Given the signal g(t), we use (2.58) to compute the pre-
envelope g+(t).

2. Frequency-domain procedure. We first determine the Fourier transform G(f) of the
signal g(t), then use (2.60) to determine G+(f), and finally evaluate the inverse
Fourier transform of G+(f) to obtain

(2.61)

Depending on the description of the signal, procedure 1 may be easier than procedure 2, or
vice versa.

Equation (2.58) defines the pre-envelope g+(t) for positive frequencies. Symmetrically,
we may define the pre-envelope for negative frequencies as

(2.62)

The two pre-envelopes g+(t) and g–(t) are simply the complex conjugate of each other, as
shown by

(2.63)

where the asterisk denotes complex conjugation. The spectrum of the pre-envelope g+(t) is
nonzero only for positive frequencies; hence the use of a plus sign as the subscript. On the
other hand, the use of a minus sign as the subscript is intended to indicate that the
spectrum of the other pre-envelope g–(t) is nonzero only for negative frequencies, as
shown by the Fourier transform

(2.64)

Thus, the pre-envelope g+(t) and g–(t) constitute a complementary pair of complex-valued
signals. Note also that the sum of g+(t) and g–(t) is exactly twice the original signal g(t).

Given a real-valued signal, (2.60) teaches us that the pre-envelope g+(t) is uniquely
defined by the spectral content of the signal for positive frequencies. By the same token,
(2.64) teaches us that the other pre-envelope g–(t) is uniquely defined by the spectral
content of the signal for negative frequencies. Since g–(t) is simply the complex conjugate
of g+(t) as indicated in (2.63), we may now make the following statement:

The spectral content of a Fourier transformable real-valued signal for positive 
frequencies uniquely defines that signal.
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2.10 Complex Envelopes of Band-Pass Signals 47

In other words, given the spectral content of such a signal for positive frequencies, we may
uniquely define the spectral content of the signal for negative frequencies. Here then is the
mathematical justification for basing the bandwidth of a Fourier transformable signal on
its spectral content exclusively for positive frequencies, which is exactly what we did in
Section 2.4, dealing with bandwidth.

EXAMPLE 6 Pre-envelopes of Low-Pass Signal

Continuing with the low-pass signal g(t) considered in Example 5, Figure 2.17a and b depict
the corresponding spectra of the pre-envelope g+(t) and the second pre-envelope g–(t), both
of which belong to g(t). Whereas the spectrum of g(t) is defined for –W ≤ f ≤ W as in Figure
2.16a, we clearly see from Figure 2.17 that the spectral content of g+(t) is confined entirely
to 0 ≤ f ≤ W, and the spectral content of g–(t) is confined entirely to –W ≤ f ≤ 0.

Practical Importance of the Hilbert Transformation

An astute reader may see an analogy between the use of phasors and that of pre-envelopes.
In particular, just as the use of phasors simplifies the manipulations of alternating currents
and voltages in the study of circuit theory, so we find the pre-envelope simplifies the
analysis of band-pass signals and band-pass systems in signal theory. 

More specifically, by applying the concept of pre-envelope to a band-pass signal, the
signal is transformed into an equivalent low-pass representation. In a corresponding way, a
band-pass filter is transformed into its own equivalent low-pass representation. Both
transformations, rooted in the Hilbert transform, play a key role in the formulation of
modulated signals and their demodulation, as demonstrated in what follows in this and
subsequent chapters. 

2.10 Complex Envelopes of Band-Pass Signals

The idea of pre-envelopes introduced in Section 2.9 applies to any real-valued signal, be it
of a low-pass or band-pass kind; the only requirement is that the signal be Fourier
transformable. From this point on and for the rest of the chapter, we will restrict attention
to band-pass signals. Such signals are exemplified by signals modulated onto a sinusoidal

Figure 2.17  Another illustrative application of the Hilbert transform to a low-pass signal: 
(a) Spectrum of the pre-envelope g+(t); (b) Spectrum of the other pre-envelope g–(t).

(a) (b)

 2G(0)  2G(0)
 G+( f )  G–( f )

f f
 –W 0 W0

Haykin_ch02_pp3.fm  Page 47  Friday, November 16, 2012  9:24 AM

https://hemanthrajhemu.github.io



48 Chapter 2 Fourier Analysis of Signals and Systems

carrier. In a corresponding way, when it comes to systems we restrict attention to band-
pass systems. The primary reason for these restrictions is that the material so presented is
directly applicable to analog modulation theory, to be covered in Section 2.14, as well as
other digital modulation schemes covered in subsequent chapters of the book. With this
objective in mind and the desire to make a consistent use of notation with respect to
material to be presented in subsequent chapters, henceforth we will use s(t) to denote a
modulated signal. When such a signal is applied to the input of a band-pass system, such
as a communication channel, we will use x(t) to denote the resulting system (e.g., channel)
output. However, as before, we will use h(t) as the impulse response of the system.

To proceed then, let the band-pass signal of interest be denoted by s(t) and its Fourier
transform be denoted by S(f). We assume that the Fourier transform S(f) is essentially
confined to a band of frequencies of total extent 2W, centered about some frequency ±fc, as
illustrated in Figure 2.18a. We refer to fc as the carrier frequency; this terminology is

Figure 2.18 (a) Magnitude spectrum of band-pass signal s(t); (b) Magnitude spectrum of 
pre-envelope s+(t); (c) Magnitude spectrum of complex envelope .
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2.11 Canonical Representation of Band-Pass Signals 49

borrowed from modulation theory. In the majority of communication signals encountered
in practice, we find that the bandwidth 2W is small compared with fc, so we may refer to
the signal s(t) as a narrowband signal. However, a precise statement about how small the
bandwidth must be for the signal to be considered narrowband is not necessary for our
present discussion. Hereafter, the terms band-pass and narrowband are used
interchangeably.    

Let the pre-envelope of the narrowband signal s(t) be expressed in the form

(2.65)

We refer to  as the complex envelope of the band-pass signal s(t). Equation (2.65)
may be viewed as the basis of a definition for the complex envelope  in terms of the
pre-envelope s+(t). In light of the narrowband assumption imposed on the spectrum of
the band-pass signal s(t), we find that the spectrum of the pre-envelope s+(t) is limited
to the positive frequency band fc – W ≤ f ≤ fc + W, as illustrated in Figure 2.18b.
Therefore, applying the frequency-shifting property of the Fourier transform to (2.65),
we find that the spectrum of the complex envelope  is correspondingly limited to
the band –W ≤ f ≤ W and centered at the origin f = 0, as illustrated in Figure 2.18c. In
other words, the complex envelope  of the band-pass signal s(t) is a complex low-
pass signal. The essence of the mapping from the band-pass signal s(t) to the complex
low-pass signal  is summarized in the following threefold statement:

• The information content of a modulated signal s(t) is fully preserved in the complex
envelope .

• Analysis of the band-pass signal s(t) is complicated by the presence of the carrier
frequency fc; in contrast, the complex envelope  dispenses with fc, making its
analysis simpler to deal with.

• The use of  requires having to handle complex notations.

2.11 Canonical Representation of Band-Pass Signals 

By definition, the real part of the pre-envelope s+(t) is equal to the original band-pass
signal s(t). We may therefore express the band-pass signal s(t) in terms of its
corresponding complex envelope  as 

(2.66)

where the operator Re[.] denotes the real part of the quantity enclosed inside the square
brackets. Since, in general,  is a complex-valued quantity, we emphasize this property
by expressing it in the Cartesian form

(2.67)

where sI(t) and sQ(t) are both real-valued low-pass functions; their low-pass property is
inherited from the complex envelope . We may therefore use (2.67) in (2.66) to
express the original band-pass signal s(t) in the canonical or standard form

(2.68)

We refer to sI(t) as the in-phase component of the band-pass signal s(t) and refer to sQ(t) as
the quadrature-phase component or simply the quadrature component of the signal s(t).

s+ t( ) s̃ t( ) j2πfct( )exp=

s̃ t( )
s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )
s t( ) Re s̃ t( ) j2πfct( )exp[ ]=

s̃ t( )

s̃ t( ) sI t( ) jsQ t( )+=

s̃ t( )

s t( ) sI t( ) 2πfct( ) sQ t( ) 2πfct( )sin–cos=
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50 Chapter 2 Fourier Analysis of Signals and Systems

This nomenclature follows from the following observation: if cos(2πfct), the multiplying
factor of sI(t), is viewed as the reference sinusoidal carrier, then sin(2πfct), the multiplying
factor of sQ(t), is in phase quadrature with respect to cos(2πfct). 

According to (2.66), the complex envelope  may be pictured as a time-varying
phasor positioned at the origin of the (sI, sQ)-plane, as indicated in Figure 2.19a. With
time t varying continuously, the end of the phasor moves about in the plane. Figure 2.19b
depicts the phasor representation of the complex exponential exp(2πfct). In the definition
given in (2.66), the complex envelope  is multiplied by the complex exponential
exp(j2πfct). The angles of these two phasors, therefore, add and their lengths multiply, as
shown in Figure 2.19c. Moreover, in this latter figure, we show the (sI, sQ)-phase rotating
with an angular velocity equal to 2πfc radians per second. Thus, in the picture portrayed in
the figure, the phasor representing the complex envelope  moves in the (sI, sQ)-plane,
while at the very same time the plane itself rotates about the origin. The original band-pass
signal s(t) is the projection of this time-varying phasor on a fixed line representing the real
axis, as indicated in Figure 2.19c. 

Since both sI(t) and sQ(t) are low-pass signals limited to the band –W ≤ f ≤ W, they may
be extracted from the band-pass signal s(t) using the scheme shown in Figure 2.20a. Both
low-pass filters in this figure are designed identically, each with a bandwidth equal to W.

Figure 2.19 Illustrating an interpretation of the complex envelope  and its multiplication by 
exp(j2πfct).
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2.11 Canonical Representation of Band-Pass Signals 51

To reconstruct s(t) from its in-phase and quadrature components, we may use the scheme
shown in Figure 2.20b. In light of these statements, we may refer to the scheme in Figure
2.20a as an analyzer, in the sense that it extracts the in-phase and quadrature components,
sI(t) and sQ(t), from the band-pass signal s(t). By the same token, we may refer to the
second scheme in Figure 2.20b as a synthesizer, in the sense it reconstructs the band-pass
signal s(t) from its in-phase and quadrature components, sI(t) and sQ(t).

The two schemes shown in Figure 2.20 are basic to the study of linear modulation
schemes, be they of an analog or digital kind. Multiplication of the low-pass in-phase
component sI(t) by cos(2πfct) and multiplication of the quadrature component sQ(t) by
sin(2πfct) represent linear forms of modulation. Provided that the carrier frequency fc is
larger than the low-pass bandwidth W, the resulting band-pass function s(t) defined in
(2.68) is referred to as a passband signal waveform. Correspondingly, the mapping from
sI(t) and sQ(t) combined into s(t) is known as passband modulation.

Polar Representation of Band-Pass Signals

Equation (2.67) is the Cartesian form of defining the complex envelope  of the band-
pass signal s(t). Alternatively, we may define  in the polar form as 

(2.69)

where a(t) and φ(t) are both real-valued low-pass functions. Based on the polar
representation of (2.69), the original band-pass signal s(t) is itself defined by

(2.70)

We refer to a(t) as the natural envelope or simply the envelope of the band-pass signal s(t)
and refer to φ(t) as the phase of the signal. We now see why the term “pre-envelope” was
used in referring to (2.58), the formulation of which preceded that of (2.70).

Figure 2.20 (a) Scheme for deriving the in-phase and quadrature components of a band-pass 
signal g(t). (b) Scheme for reconstructing the band-pass signal from its in-phase and quadrature 
components.
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52 Chapter 2 Fourier Analysis of Signals and Systems

Relationship Between Cartesian and Polar Representations of 
Band-Pass Signal

The envelope a(t) and phase φ(t) of a band-pass signal s(t) are respectively related to the
in-phase and quadrature components sI(t) and sQ(t) as follows (see the time-varying
phasor representation of Figure 2.19a):

(2.71)

and

(2.72)

Conversely, we may write

(2.73)

and
(2.74)

Thus, both the in-phase and quadrature components of a band-pass signal contain
amplitude and phase information, both of which are uniquely defined for a prescribed
phase φ(t), modulo 2π.

2.12 Complex Low-Pass Representations of Band-Pass Systems

Now that we know how to handle the complex low-pass representation of band-pass
signals, it is logical that we develop a corresponding procedure for handling the
representation of linear time-invariant band-pass systems. Specifically, we wish to show
that the analysis of band-pass systems is greatly simplified by establishing an analogy,
more precisely an isomorphism, between band-pass and low-pass systems. For example,
this analogy would help us to facilitate the computer simulation of a wireless
communication channel driven by a sinusoidally modulated signal, which otherwise could
be a difficult proposition.

Consider a narrowband signal s(t), with its Fourier transform denoted by S(f). We
assume that the spectrum of the signal s(t) is limited to frequencies within ±W hertz of the
carrier frequency fc. We also assume that W < fc. Let the signal s(t) be applied to a linear
time-invariant band-pass system with impulse response h(t) and frequency response H(f).
We assume that the frequency response of the system is limited to frequencies within ±B
of the carrier frequency fc. The system bandwidth 2B is usually narrower than or equal to
the input signal bandwidth 2W. We wish to represent the band-pass impulse response h(t)
in terms of two quadrature components, denoted by hI(t) and hQ(t). In particular, by
analogy to the representation of band-pass signals, we express h(t) in the form

(2.75)

Correspondingly, we define the complex impulse response of the band-pass system as

(2.76)

a t( ) sI
2

t( ) sQ
2

t( )+=

φ t( )
sQ t( )
sI t( )
------------ 
 1–tan=

sI t( ) a t( ) φ t( )[ ]cos=

sQ t( ) a t( ) φ t( )[ ]sin=

h t( ) hI t( ) 2πfct( ) hQ t( ) 2πfct( )sin–cos=

h̃ t( ) hI t( ) jhQ t( )+=
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2.12 Complex Low-Pass Representations of Band-Pass Systems 53

Hence, following (2.66), we may express h(t) in terms of  as

(2.77)

Note that hI(t), hQ(t), and  are all low-pass functions, limited to the frequency band 
–B ≤ f ≤ B.

We may determine the complex impulse response  in terms of the in-phase and
quadrature components hI(t) and hQ(t) of the band-pass impulse response h(t) by building
on (2.76). Alternatively, we may determine it from the band-pass frequency response H(f)
in the following way. We first use (2.77) to write

 (2.78)

where  is the complex conjugate of ; the rationale for introducing the factor of 2
on the left-hand side of (2.78) follows from the fact that if we add a complex signal and its
complex conjugate, the sum adds up to twice the real part and the imaginary parts cancel.
Applying the Fourier transform to both sides of (2.78) and using the complex-conjugation
property of the Fourier transform, we get

 (2.79)

where  and . Equation (2.79) satisfies the requirement that
H*(f) = H(–f) for a real-valued impulse response h(t). Since  represents a low-pass
frequency response limited to | f | ≤ B with B < fc, we infer from (2.79) that

(2.80)

Equation (2.80) states:

For a specified band-pass frequency response H(f), we may determine the 
corresponding complex low-pass frequency response  by taking the part of 
H(f) defined for positive frequencies, shifting it to the origin, and scaling it by 
the factor 2. 

Having determined the complex frequency response , we decompose it into its in-
phase and quadrature components, as shown by

(2.81)

where the in-phase component is defined by

(2.82)

and the quadrature component is defined by

(2.83)

Finally, to determine the complex impulse response  of the band-pass system, we take
the inverse Fourier transform of , obtaining

(2.84)

which is the formula we have been seeking.
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54 Chapter 2 Fourier Analysis of Signals and Systems

2.13 Putting the Complex Representations of Band-Pass Signals 
and Systems All Together

Examining (2.66) and (2.77), we immediately see that these two equations share a
common multiplying factor: the exponential exp(j2πfct). In practical terms, the inclusion
of this factor accounts for a sinusoidal carrier of frequency fc, which facilitates
transmission of the modulated (band-pass) signal s(t) across a band-pass channel of
midband frequency fc. In analytic terms, however, the presence of this exponential factor
in both (2.66) and (2.77) complicates the analysis of the band-pass system driven by the
modulated signal s(t). This analysis can be simplified through the combined use of
complex low-pass equivalent representations of both the modulated signal s(t) and the
band-pass system characterized by the impulse response h(t). The simplification can be
carried out in the time domain or frequency domain, as discussed next.

The Time-Domain Procedure 

Equipped with the complex representations of band-pass signals and systems, we are
ready to derive an analytically efficient method for determining the output of a band-pass
system driven by a corresponding band-pass signal. To proceed with the derivation,
assume that S(f), denoting the spectrum of the input signal s(t), and H(f), denoting the
frequency response of the system, are both centered around the same frequency fc. In
practice, there is no need to consider a situation in which the carrier frequency of the input
signal is not aligned with the midband frequency of the band-pass system, since we have
considerable freedom in choosing the carrier or midband frequency. Thus, changing the
carrier frequency of the input signal by an amount Δfc, for example, simply corresponds to
absorbing (or removing) the factor exp(±j2πΔfct) in the complex envelope of the input
signal or the complex impulse response of the band-pass system. We are therefore justified
in proceeding on the assumption that S(f) and H(f) are both centered around the same
carrier frequency fc.

Let x(t) denote the output signal of the band-pass system produced in response to the
incoming band-pass signal s(t). Clearly, x(t) is also a band-pass signal, so we may
represent it in terms of its own low-pass complex envelope  as 

(2.85)

The output signal x(t) is related to the input signal s(t) and impulse response h(t) of the
system in the usual way by the convolution integral

(2.86)

In terms of pre-envelopes, we have h(t) = Re[h+(t)] and s(t) = Re[s+(t)]. We may therefore
rewrite (2.86) in terms of the pre-envelopes s+(t) and h+(t) as

(2.87)

x̃ t( )

x t( ) Re x̃ t( ) j2πfct( )exp[ ]=

x t( ) h τ( )s t τ–( ) dτ
∞–

∞

=

x t( ) Re h+ τ( )[ ]Re s+ t τ–( )[ ] dτ
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To proceed further, we make use of a basic property of pre-envelopes that is described by
the following relation:

(2.88)

where we have used τ as the integration variable to be consistent with that in (2.87); details
of (2.88) are presented in Problem 2.20. Next, from Fourier-transform theory we note that
using s(–τ) in place of s(τ) has the effect of removing the complex conjugation on the
right-hand side of (2.88). Hence, bearing in mind the algebraic difference between the
argument of s+(τ) in (2.88) and that of s+(t – τ) in (2.87), and using the relationship
between the pre-envelope and complex envelope of a band-pass signal, we may express
(2.87) in the equivalent form

(2.89)

Thus, comparing the right-hand sides of (2.85) and (2.89), we readily find that for a large
enough carrier frequency fc, the complex envelope  of the output signal is simply
defined in terms of the complex envelope  of the input signal and the complex impulse
response  of the band-pass system as follows:

(2.90)

This important relationship is the result of the isomorphism between a band-pass function
and the corresponding complex low-pass function, in light of which we may now make the
following summarizing statement:

Except for the scaling factor 1/2, the complex envelope  of the output 
signal of a band-pass system is obtained by convolving the complex impulse 
response  of the system with the complex envelope  of the input 
band-pass signal. 

In computational terms, the significance of this statement is profound. Specifically, in
dealing with band-pass signals and systems, we need only concern ourselves with the
functions , , and , representing the complex low-pass equivalents of the
excitation applied to the input of the system, the response produced at the output of the
system, and the impulse response of the system respectively, as illustrated in Figure 2.21.
The essence of the filtering process performed in the original system of Figure 2.21a is
completely retained in the complex low-pass equivalent representation depicted in Figure
2.21b.

The complex envelope  of the input band-pass signal and the complex impulse
response  of the band-pass system are defined in terms of their respective in-phase
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56 Chapter 2 Fourier Analysis of Signals and Systems

and quadrature components by (2.67) and (2.76), respectively. Substituting these relations
into (2.90), we get

(2.91)

where the symbol  denotes convolution. Because convolution is distributive, we may
rewrite (2.91) in the equivalent form

(2.92)

Let the complex envelope  of the response be defined in terms of its in-phase and
quadrature components as 

(2.93)

Then, comparing the real and imaginary parts in (2.92) and (2.93), we find that the in-
phase component xI(t) is defined by the relation

(2.94)

and its quadrature component xQ(t) is defined by the relation

(2.95)

Thus, for the purpose of evaluating the in-phase and quadrature components of the
complex envelope  of the system output, we may use the low-pass equivalent model
shown in Figure 2.22. All the signals and impulse responses shown in this model are real-
valued low-pass functions; hence a time-domain procedure for simplifying the analysis of
band-pass systems driven by band-pass signals.   

The Frequency-Domain Procedure 

Alternatively, Fourier-transforming the convolution integral of (2.90) and recognizing that
convolution in the time domain is changed into multiplication in the frequency domain, we
get

(2.96)

Figure 2.21
(a) Input–output description of a band-pass 
system; (b) Complex low-pass equivalent 
model of the band-pass system.
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2.13 Putting the Complex Representations of Band-Pass Signals and Systems All Together 57

where , and . The  is itself related to the
frequency response H(f) of the band-pass system by (2.80). Thus, assuming that H(f) is
known, we may use the frequency-domain procedure summarized in Table 2.4 for
computing the system output x(t) in response to the system input s(t).

In actual fact, the procedure of Table 2.4 is the frequency-domain representation of the
low-pass equivalent to the band-pass system, depicted in Figure 2.21b. In computational
terms, this procedure is of profound practical significance. We say so because its use
alleviates the analytic and computational difficulty encountered in having to include the
carrier frequency fc in the pertinent calculations. 

As discussed earlier in the chapter, the theoretical formulation of the low-pass
equivalent in Figure 2.21b is rooted in the Hilbert transformation, the evaluation of which
poses a practical problem of its own, because of the wideband 90o-phase shifter involved
in its theory. Fortunately, however, we do not need to invoke the Hilbert transform in
constructing the low-pass equivalent. This is indeed so, when a message signal modulated
onto a sinusoidal carrier is processed by a band-pass filter, as explained here:

1. Typically, the message signal is band limited for all practical purposes. Moreover,
the carrier frequency is larger than the highest frequency component of the signal;
the modulated signal is therefore a band-pass signal with a well-defined passband.
Hence, the in-phase and quadrature components of the modulated signal s(t),
represented respectively by sI(t) and sQ(t), are readily obtained from the canonical
representation of s(t), described in (2.68).

2. Given the well-defined frequency response H(f) of the band-pass system, we may
readily evaluate the corresponding complex low-pass frequency response ; see
(2.80). Hence, we may compute the system output x(t) produced in response to the
carrier-modulated input s(t) without invoking the Hilbert transform.  

Figure 2.22 Block diagram illustrating the relationship between the 
in-phase and quadrature components of the response of a band-pass 
filter and those of the input signal.

2xI (t)

hI (t)sI (t)

sQ (t)

hQ (t)

+

–

2xQ (t)

hQ (t)

hI (t)

+

+

s̃ t( ) ⇌ S̃ f( ), h̃ t( ) ⇌ H̃ f( ) x̃ t( ) ⇌ X̃ f( ) H̃ f( )

H̃ f( )

Haykin_ch02_pp3.fm  Page 57  Friday, November 16, 2012  9:24 AM

https://hemanthrajhemu.github.io



58 Chapter 2 Fourier Analysis of Signals and Systems

Procedure for Efficient Simulation of Communication Systems

To summarize, the frequency-domain procedure described in Table 2.4 is well suited for
the efficient simulation of communication systems on a computer for two reasons:

1. The low-pass equivalents of the incoming band-pass signal and the band-pass system
work by eliminating the exponential factor exp(j2πfct) from the computation without
loss of information.

2. The fast Fourier transform (FFT) algorithm, discussed later in the chapter, is used
for numerical computation of the Fourier transform. This algorithm is used twice in
Table 2.4, once in step 2 to perform Fourier transformation, and then again in step 4
to perform inverse Fourier transformation.

The procedure of this table, rooted largely in the frequency domain, assumes availability
of the band-pass system’s frequency response H(f). If, however, it is the system’s impulse
response h(t) that is known, then all we need is an additional step to Fourier transform h(t)
into H(f) before initiating the procedure of Table 2.4.

2.14 Linear Modulation Theory

The material presented in Sections 2.8–2.13 on the complex low-pass representation of
band-pass signals and systems is of profound importance in the study of communication
theory. In particular, we may use the canonical formula of (2.68) as the mathematical basis
for a unified treatment of linear modulation theory, which is the subject matter of this
section. 

Table 2.4 Procedure for the computational analysis of a band-pass system 
driven by a band-pass signal

Given the frequency response H(f) of a band-pass system, computation of the output 
signal x(t) of the system in response to an input band-pass signal s(t) is summarized as 
follows:

1. Use (2.80), namely , for f > 0 to determine .

2. Expressing the input band-pass signal s(t) in the canonical form of (2.68), evaluate 

the complex envelope  where sI(t) is the in-phase component 

of s(t) and sQ(t) is its quadrature component. Hence, compute the Fourier 

transform 

3. Using (2.96), compute , which defines the Fourier transform of 

the complex envelope  of the output signal x(t).

4. Compute the inverse Fourier transform of , yielding 

5. Use (2.85) to compute the desired output signal 

H̃ f fc–( ) 2H f( )= H̃ f( )

s̃ t( ) sI t( ) jsQ t( )+=

S̃ f( ) F s̃ t( )[ ]=

X̃ f( ) 1
2
---H̃ f( )S̃ f( )=

x̃ t( )

X̃ f( ) x̃ t( ) F
1–

X̃ f( )[ ]=

x t( ) Re x̃ t( ) j2πfct( )exp[ ]=
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2.14 Linear Modulation Theory 59

We start this treatment with a formal definition:

Modulation is a process by means of which one or more parameters of a 
sinusoidal carrier are varied in accordance with a message signal so as to 
facilitate transmission of that signal over a communication channel.

The message signal (e.g., voice, video, data sequence) is referred to as the modulating
signal, and the result of the modulation process is referred to as the modulated signal.
Naturally, in a communication system, modulation is performed in the transmitter. The
reverse of modulation, aimed at recovery of the original message signal in the receiver, is
called demodulation. 

Consider the block diagram of Figure 2.23, depicting a modulator, where m(t) is the
message signal, cos(2πfct) is the carrier, and s(t) is the modulated signal. To apply (2.68)
to this modulator, the in-phase component sI(t) in that equation is treated simply as a
scaled version of the message signal denoted by m(t). As for the quadrature component
sQ(t), it is defined by a spectrally shaped version of m(t) that is performed linearly. In such
a scenario, it follows that a modulated signal s(t) defined by (2.68) is a linear function of
the message signal m(t); hence the reference to this equation as the mathematical basis of
linear modulation theory.

To recover the original message signal m(t) from the modulated signal s(t), we may use
a demodulator, the block diagram of which is depicted in Figure 2.24. An elegant feature
of linear modulation theory is that demodulation of s(t) is also achieved using linear
operations. However, for linear demodulation of s(t) to be feasible, the locally generated
carrier in the demodulator of Figure 2.24 has to be synchronous with the original
sinusoidal carrier used in the modulator of Figure 2.23. Accordingly, we speak of
synchronous demodulation or coherent detection.

Figure 2.23 Block diagram of a modulator.

Figure 2.24 Block diagram of a demodulator.
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60 Chapter 2 Fourier Analysis of Signals and Systems

Depending on the spectral composition of the modulated signal, we have three kinds of
linear modulation in analog communications:

• double sideband-suppressed carrier (DSB-SC) modulation;
• vestigial sideband (VSB) modulation;
• single sideband (SSB) modulation.

These three methods of modulation are discussed in what follows and in this order.

DSB-SC Modulation

DSB-SC modulation is the simplest form of linear modulation, which is obtained by
setting

and

Accordingly, (2.68) is reduced to

(2.97)

the implementation of which simply requires a product modulator that multiplies the
message signal m(t) by the carrier , assumed to be of unit amplitude.

For a frequency-domain description of the DSB-SC-modulated signal defined in (2.97),
suppose that the message signal m(t) occupies the frequency band –W ≤ f ≤ W, as depicted
in Figure 2.25a; hereafter, W is referred to as the message bandwidth. Then, provided that
the carrier frequency satisfies the condition fc > W, we find that the spectrum of the DSB-
SC-modulated signal consists of an upper sideband and lower sideband, as depicted in
Figure 2.25b. Comparing the two parts of this figure, we immediately see that the channel
bandwidth, B, required to support the transmission of the DSB-SC-modulated signal from
the transmitter to the receiver is twice the message bandwidth.

Figure 2.25 (a) Message spectrum. (b) Spectrum of DSB-SC 
modulated wave s(t), assuming fc > W.
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2.14 Linear Modulation Theory 61

One other interesting point apparent from Figure 2.25b is that the spectrum of the DSB-SC
modulated signal is entirely void of delta functions. This statement is further testimony to the
fact that the carrier is suppressed from the generation of the modulated signal s(t) of (2.97).

Summarizing the useful features of DSB-SC modulation:

• suppression of the carrier, which results in saving of transmitted power;
• desirable spectral characteristics, which make it applicable to the modulation of

band-limited message signals;
• ease of synchronizing the receiver to the transmitter for coherent detection.

On the downside, DSB-SC modulation is wasteful of channel bandwidth. We say so for
the following reason. The two sidebands, constituting the spectral composition of the
modulated signal s(t), are actually the image of each other with respect to the carrier
frequency fc; hence, the transmission of either sideband is sufficient for transporting s(t)
across the channel. 

VSB Modulation

In VSB modulation, one sideband is partially suppressed and a vestige of the other
sideband is configured in such a way to compensate for the partial sideband suppression
by exploiting the fact that the two sidebands in DSB-SC modulation are the image of each
other. A popular method of achieving this design objective is to use the frequency
discrimination method. Specifically, a DSB-SC-modulated signal is first generated using a
product modulator, followed by a band-pass filter, as shown in Figure 2.26. The desired
spectral shaping is thereby realized through the appropriate design of the band-pass filter.

Suppose that a vestige of the lower sideband is to be transmitted. Then, the frequency
response of the band-pass filter, H( f ), takes the form shown in Figure 2.27; to simplify
matters, only the frequency response for positive frequencies is shown in the figure.
Examination of this figure reveals two characteristics of the band-pass filter:

1. Normalization of the frequency response, which means that

(2.98)

where fν is the vestigial bandwidth and the other parameters are as previously
defined.

2. Odd symmetry of the cutoff portion inside the transition interval fc – fν ≤ | f | ≤ fc + fν,
which means that values of the frequency response H(f) at any two frequencies
equally spaced above and below the carrier frequency add up to unity.

H f( )
1 for fc fν f fc W+<≤+

1
2
---   for  f fc=







=

Figure 2.26
Frequency-discrimination method 
for producing VSB modulation 
where the intermediate signal sI(t) 
is DSB-SC modulated.
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62 Chapter 2 Fourier Analysis of Signals and Systems

Consequently, we find that shifted versions of the frequency response H( f ) satisfy the
condition

  (2.99)

Outside the frequency band of interest defined by | f | ≥ fc + W, the frequency response
H( f ) can assume arbitrary values. We may thus express the channel bandwidth required
for the transmission of VSB-modulated signals as

(2.100)

With this background, we now address the issue of how to specify H( f ). We first use the
canonical formula of (2.68) to express the VSB-modulated signal s1(t), containing a
vestige of the lower sideband, as

(2.101)

where m(t) is the message signal, as before, and mQ(t) is the spectrally shaped version of
m(t); the reason for the factor 1/2 will become apparent later. Note that if mQ(t) is set equal
to zero, (2.101) reduces to DSB-SC modulation. It is therefore in the quadrature signal
mQ(t) that VSB modulation distinguishes itself from DSB-SC modulation. In particular,
the role of mQ(t) is to interfere with the message signal m(t) in such a way that power in
one of the sidebands of the VSB-modulated signal s(t) (e.g., the lower sideband in Figure
2.27) is appropriately reduced.

To determine mQ(t), we examine two different procedures: 

1. Phase-discrimination, which is rooted in the time-domain description of (2.101);
transforming this equation into the frequency domain, we obtain

(2.102)

where

2. Frequency-discrimination, which is structured in the manner described in Figure
2.26; passing the DSB-SC-modulated signal (i.e., the intermediate signal sI(t) in
Figure 2.26) through the band-pass filter, we write

(2.103)

Figure 2.27 Magnitude response of VSB filter; only the 
positive-frequency portion is shown
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2.14 Linear Modulation Theory 63

In both (2.102) and (2.103), the spectrum S1( f ) is defined in the frequency interval 

fc – W ≤ | f | ≤ fc + W

Equating the right-hand sides of these two equations, we get (after canceling common
terms)

(2.104)

Shifting both sides of (2.104) to the left by the amount fc, we get (after canceling common
terms)

(2.105)

where the terms  and  are ignored as they both lie outside the
interval – W ≤ | f | ≤ W. Next, shifting both sides of (2.104) by the amount fc, but this time
to the right, we get (after canceling common terms)

(2.106)

where, this time, the terms  and  are ignored as they both lie
outside the interval – W ≤ | f | ≤ W.

Given (2.105) and (2.106), all that remains to be done now is to follow two simple
steps:

1. Adding these two equations and then factoring out the common term M(f), we get
the condition of (2.99) previously imposed on H( f ); indeed, it is with this condition
in mind that we introduced the scaling factor 1/2 in (2.101).

2. Subtracting (2.105) from (2.106) and rearranging terms, we get the desired
relationship between MQ( f ) and M( f ):

(2.107)

Let HQ( f ) denote the frequency response of a quadrature filter that operates on the
message spectrum M( f ) to produce MQ( f ). In light of (2.107), we may readily define
HQ( f ) in terms of H( f ) as

(2.108)

Equation (2.108) provides the frequency-domain basis for the phase-discrimination
method for generating the VSB-modulated signal s1(t), where only a vestige of the lower
sideband is retained. With this equation at hand, it is instructive to plot the frequency
response HQ( f ). For the frequency interval –W ≤ f ≤ W, the term H(f – fc) is defined by the
response H( f ) for negative frequencies shifted to the right by fc, whereas the term H(f + fc)
is defined by the response H( f ) for positive frequencies shifted to the left by fc.
Accordingly, building on the positive frequency response plotted in Figure 2.27, we find
that the corresponding plot of HQ( f ) is shaped as shown in Figure 2.28.

1
2
--- M f fc–( ) M f fc+( )+[ ] 1

2j
----- MQ f fc–( ) MQ f fc+( )–[ ]–

M f fc–( ) M f fc+( )+[ ]H f( )=

1
2
---M f( ) 1

2j
----MQ f( )– M f( )H f fc+( ), W– f W≤ ≤=

M f 2fc+( ) MQ f 2fc+( )

1
2
---M f( ) 1

2j
----MQ f( )+ M f( )H f fc–( ), W– f W≤ ≤=

M f 2fc–( ) MQ f 2fc–( )

MQ f( ) j H[ f fc–( ) H f fc+( ) ]M f( )– , W– f W≤ ≤=

HQ f( )
MQ f( )
M f( )

---------------=

j H f fc–( ) H f fc+( )–[ ] W–, f W≤ ≤=

Haykin_ch02_pp3.fm  Page 63  Friday, November 16, 2012  9:24 AM

https://hemanthrajhemu.github.io



64 Chapter 2 Fourier Analysis of Signals and Systems

The discussion on VSB modulation has thus far focused on the case where a vestige of the
lower sideband is transmitted. For the alternative case when a vestige of the upper sideband
is transmitted, we find that the corresponding VSB-modulated wave is described by

(2.109)

where the quadrature signal  is constructed from the message signal m(t) in exactly
the same way as before.

Equations (2.101) and (2.109) are of the same mathematical form, except for an
algebraic difference; they may, therefore, be combined into the single formula

(2.110)

where the minus sign applies to a VSB-modulated signal containing a vestige of the lower
sideband and the plus sign applies to the alternative case when the modulated signal
contains a vestige of the upper sideband.

The formula of (2.110) for VSB modulation includes DSB-SC modulation as a special
case. Specifically, setting mQ(t) = 0, this formula reduces to that of (2.97) for DSB-SC
modulation, except for the trivial scaling factor of 1/2.

SSB Modulation

Next, considering SSB modulation, we may identify two choices:

1. The carrier and the lower sideband are both suppressed, leaving the upper sideband
for transmission in its full spectral content; this first SSB-modulated signal is
denoted by sUSB(t).

2. The carrier and the upper sideband are both suppressed, leaving the lower sideband
for transmission in its full spectral content; this second SSB-modulated signal is
denoted by sLSB(t).

The Fourier transforms of these two modulated signals are the image of each other with
respect to the carrier frequency fc, which, as mentioned previously, emphasizes that the
transmission of either sideband is actually sufficient for transporting the message signal
m(t) over the communication channel. In practical terms, both sUSB(t) and sLSB(t) require

Figure 2.28 Frequency response of the quadrature filter for 
producing the quadrature component of the VSB wave.
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2.14 Linear Modulation Theory 65

the smallest feasible channel bandwidth, B=W, without compromising the perfect
recovery of the message signal under noiseless conditions. It is for these reasons that we
say SSB modulation is the optimum form of linear modulation for analog
communications, preserving both the transmitted power and channel bandwidth in the best
manner possible.

SSB modulation may be viewed as a special case of VSB modulation. Specifically,
setting the vestigial bandwidth fν = 0, we find that the frequency response of the
quadrature filter plotted in Figure 2.28 takes the limiting form of the signum function
shown in Figure 2.29. In light of the material presented in (2.60) on Hilbert
transformation, we therefore find that for fν = 0 the quadrature component mQ(t) becomes
the Hilbert transform of the message signal m(t), denoted by . Accordingly, using

 in place of mQ(t) in (2.110) yields the SSB formula

(2.111)

where the minus sign applies to the SSB-modulated signal sUSB(t) and the plus sign
applies to the alternative SSB-modulated signal sLSB(t).

Unlike DSB-SC and VSB methods of modulation, SSB modulation is of limited
applicability. Specifically, we say:

For SSB modulation to be feasible in practical terms, the spectral content of the 
message signal m(t) must have an energy gap centered on the origin.

This requirement, illustrated in Figure 2.30, is imposed on the message signal m(t) so that
the band-pass filter in the frequency-discrimination method of Figure 2.26 has a finite
transition band for the filter to be physically realizable. With the transition band
separating the pass-band from the stop-band, it is only when the transition band is finite
that the undesired sideband can be suppressed. An example of message signals for which
the energy-gap requirement is satisfied is voice signals; for such signals, the energy gap is
about 600 Hz, extending from –300 to +300 Hz.

In contrast, the spectral contents of television signals and wideband data extend
practically to a few hertz, thereby ruling out the applicability of SSB modulation to this
second class of message signals. It is for this reason that VSB modulation is preferred over
SSB modulation for the transmission of wideband signals. 

Figure 2.29
Frequency response of the quadrature 
filter in SSB modulation.
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66 Chapter 2 Fourier Analysis of Signals and Systems

Summary of Linear Modulation Methods

Equation (2.97) for DSB-SC modulation, (2.110) for VSB modulation, and (2.111) for
SSB modulation are summarized in Table 2.5 as special cases of the canonical formula of
(2.68). Correspondingly, we may treat the time-domain generations of these three linearly
modulated signals as special cases of the “synthesizer” depicted in Figure 2.20b.  

2.15 Phase and Group Delays

A discussion of signal transmission through linear time-invariant systems is incomplete
without considering the phase and group delays involved in the signal transmission
process. 

Whenever a signal is transmitted through a dispersive system, exemplified by a
communication channel (or band-pass filter), some delay is introduced into the output
signal, the delay being measured with respect to the input signal. In an ideal channel, the
phase response varies linearly with frequency inside the passband of the channel, in which
case the filter introduces a constant delay equal to t0, where the parameter t0 controls the
slope of the linear phase response of the channel. Now, what if the phase response of the
channel is a nonlinear function of frequency, which is frequently the case in practice? The
purpose of this section is to address this practical issue.

Figure 2.30
Spectrum of a message signal m(t) with an 
energy gap centered around the origin.

|M( f )|

– fb fb
f

– fa fa0
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Table 2.5 Summary of linear modulation methods viewed as special cases of the 
canonical formula s(t) = sI(t)cos(2fct) – sQ(t)sin(2fct)

Type of modulation
In-phase 
component, sI(t)

Quadrature 
component, sQ(t) Comments

DSB-SC m(t) zero m(t) = message signal

VSB
Plus sign applies to using vestige of 
lower sideband and minus sign applies 
to using vestige of upper sideband

SSB
Plus sign applies to transmission of 
upper sideband and minus sign applies 
to transmission of lower sideband

1
2
---m t  1

2
---mQ t 

1
2
---m t  1

2
---m̂ t 
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2.15 Phase and Group Delays 67

To begin the discussion, suppose that a steady sinusoidal signal at frequency fc is
transmitted through a dispersive channel that has a phase-shift of β(fc) radians at that
frequency. By using two phasors to represent the input signal and the received signal, we
see that the received signal phasor lags the input signal phasor by β(fc) radians. The time
taken by the received signal phasor to sweep out this phase lag is simply equal to the ratio
β(fc)/(2πfc) seconds. This time is called the phase delay of the channel.

It is important to realize, however, that the phase delay is not necessarily the true signal
delay. This follows from the fact that a steady sinusoidal signal does not carry information,
so it would be incorrect to deduce from the above reasoning that the phase delay is the true
signal delay. To substantiate this statement, suppose that a slowly varying signal, over the
interval –(T/2) ≤ t ≤ (T/2), is multiplied by the carrier, so that the resulting modulated
signal consists of a narrow group of frequencies centered around the carrier frequency; the
DSB-SC waveform of Figure 2.31 illustrates such a modulated signal. When this
modulated signal is transmitted through a communication channel, we find that there is
indeed a delay between the envelope of the input signal and that of the received signal.
This delay, called the envelope or group delay of the channel, represents the true signal
delay insofar as the information-bearing signal is concerned.

Assume that the dispersive channel is described by the transfer function

(2.112)

where the amplitude K is a constant scaling factor and the phase β(f) is a nonlinear
function of frequency f; it is the nonlinearity of β(f) that is responsible for the dispersive

H f( ) K jβ f( )[ ]exp=

Figure 2.31 (a) Block diagram of product modulator; (b) Baseband signal; 
(c) DSB-SC modulated wave.
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68 Chapter 2 Fourier Analysis of Signals and Systems

nature of the channel. The input signal s(t) is assumed to be of the kind displayed in Figure
2.31; that is, the DSB-SC-modulated signal

(2.113)

where m(t) is the message signal, assumed to be of a low-pass kind and limited to the
frequency interval | f | ≤ W. Moreover, we assume that the carrier frequency fc > W. By
expanding the phase β(f) in a Taylor series about the point f = fc and retaining only the
first two terms, we may approximate β(f) as

(2.114)

Define two new terms:

(2.115)

and

(2.116)

Then, we may rewrite (2.114) in the equivalent form

(2.117)

Correspondingly, the transfer function of the channel takes the approximate form

(2.118)

Following the band-pass-to-low-pass transformation described in Section 2.12, in
particular using (2.80), we may replace the band-pass channel described by H(f) by an
equivalent low-pass filter whose transfer function is approximately given by

(2.119)

Correspondingly, using (2.67) we may replace the modulated signal s(t) of (2.113) by its
low-pass complex envelope, which, for the DSB-SC example at hand, is simply defined by 

(2.120)

Transforming  into the frequency domain, we may write

(2.121)

Therefore, in light of (2.96), the Fourier transform of the complex envelope of the signal
received at the channel output is given by 

(2.122)

We note that the multiplying factor  is a constant for fixed values of fc
and τp. We also note from the time-shifting property of the Fourier transform that the term

 represents the Fourier transform of the delayed signal m(t – τg).
Accordingly, the complex envelope of the channel output is

(2.123)
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Finally, using (2.66) we find that the actual channel output is itself given by 

(2.124)

Equation (2.124) reveals that, as a result of transmitting the modulated signal s(t) through
the dispersive channel, two different delay effects occur at the channel output:

1. The sinusoidal carrier wave cos(2πfct) is delayed by τp seconds; hence, τp
represents the phase delay; sometimes τp is referred to as the carrier delay.

2. The envelope m(t) is delayed by τg seconds; hence, τg represents the envelope or
group delay.

Note that τg is related to the slope of the phase β(f), measured at f = fc. Note also that
when the phase response β(f) varies linearly with frequency f and β(fc) is zero, the phase
delay and group delay assume a common value. It is only then that we can think of these
two delays being equal.

2.16 Numerical Computation of the Fourier Transform

The material presented in this chapter clearly testifies to the importance of the Fourier
transform as a theoretical tool for the representation of deterministic signals and linear
time-invariant systems, be they of the low-pass or band-pass kind. The importance of the
Fourier transform is further enhanced by the fact that there exists a class of algorithms
called FFT algorithms6 for numerical computation of the Fourier transform in an efficient
manner.

The FFT algorithm is derived from the discrete Fourier transform (DFT) in which, as
the name implies, both time and frequency are represented in discrete form. The DFT
provides an approximation to the Fourier transform. In order to properly represent the
information content of the original signal, we have to take special care in performing the
sampling operations involved in defining the DFT. A detailed treatment of the sampling
process is presented in Chapter 6. For the present, it suffices to say that, given a band-
limited signal, the sampling rate should be greater than twice the highest frequency
component of the input signal. Moreover, if the samples are uniformly spaced by Ts
seconds, the spectrum of the signal becomes periodic, repeating every fs = (1/Ts) hz in
accordance with (2.43). Let N denote the number of frequency samples contained in the
interval fs. Hence, the frequency resolution involved in numerical computation of the
Fourier transform is defined by

(2.125)

where T is the total duration of the signal.
Consider then a finite data sequence {g0, g1, ..., gN – 1}. For brevity, we refer to this

sequence as gn, in which the subscript is the time index n = 0, 1, ..., N – 1. Such a sequence
may represent the result of sampling an analog signal g(t) at times t = 0, Ts, ..., (N – 1)Ts,
where Ts is the sampling interval. The ordering of the data sequence defines the sample

x t( ) Re x̃ t( ) j2πfct( )exp[ ]=

Km t τg–( ) 2πfc t τp–( )[ ]cos=

Δf
fs

N
---- 1

NTs
--------- 1

T
---= = =
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70 Chapter 2 Fourier Analysis of Signals and Systems

time in that g0, g1, ..., gN – 1 denote samples of g(t) taken at times 0, Ts, ..., (N – 1)Ts,
respectively. Thus we have

(2.126)

We formally define the DFT of gn as

(2.127)

The sequence {G0, G1, ..., GN – 1} is called the transform sequence. For brevity, we refer
to this second sequence simply as Gk, in which the subscript is the frequency index k = 0,
1, ..., N – 1.

Correspondingly, we define the inverse discrete Fourier transform (IDFT) of Gk as

(2.128)

The DFT and the IDFT form a discrete transform pair. Specifically, given a data sequence
gn, we may use the DFT to compute the transform sequence Gk; and given the transform
sequence Gk, we may use the IDFT to recover the original data sequence gn. A distinctive
feature of the DFT is that, for the finite summations defined in (2.127) and (2.128), there is
no question of convergence.

When discussing the DFT (and algorithms for its computation), the words “sample”
and “point” are used interchangeably to refer to a sequence value. Also, it is common
practice to refer to a sequence of length N as an N-point sequence and to refer to the DFT
of a data sequence of length N as an N-point DFT.

Interpretation of the DFT and the IDFT

We may visualize the DFT process described in (2.127) as a collection of N complex
heterodyning and averaging operations, as shown in Figure 2.32a. We say that the
heterodyning is complex in that samples of the data sequence are multiplied by complex
exponential sequences. There is a total of N complex exponential sequences to be
considered, corresponding to the frequency index k = 0, 1, ..., N – 1. Their periods have
been selected in such a way that each complex exponential sequence has precisely an
integer number of cycles in the total interval 0 to N – 1. The zero-frequency response,
corresponding to k = 0, is the only exception.

For the interpretation of the IDFT process, described in (2.128), we may use the
scheme shown in Figure 2.32b. Here we have a collection of N complex signal generators,
each of which produces the complex exponential sequence

(2.129)

Thus, in reality, each complex signal generator consists of a pair of generators that output
a cosinusoidal and a sinusoidal sequence of k cycles per observation interval. The output

gn g nTs( )=

Gk gn
j2π
N

--------kn– 
  k 0 1 … N 1–, , ,=exp

n 0=

N 1–

=
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1
N
---- Gk

j2π
N

--------kn 
  n 0 1 … N 1–, , ,=exp
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N 1–

=

j2π
N
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 exp

2π
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2.16 Numerical Computation of the Fourier Transform 71

of each complex signal generator is weighted by the complex Fourier coefficient Gk. At
each time index n, an output is formed by summing the weighted complex generator
outputs.

It is noteworthy that although the DFT and the IDFT are similar in their mathematical
formulations, as described in (2.127) and (2.128), their interpretations as depicted in
Figure 2.32a and b are so completely different.

Figure 2.32 Interpretations of (a) the DFT and (b) the IDFT.
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72 Chapter 2 Fourier Analysis of Signals and Systems

Also, the addition of harmonically related periodic signals, involved in these two parts
of the figure, suggests that their outputs Gk and gn must be both periodic. Moreover, the
processors shown in Figure 2.32 are linear, suggesting that the DFT and IDFT are both
linear operations. This important property is also obvious from the defining equations
(2.127) and (2.128).

FFT Algorithms

In the DFT both the input and the output consist of sequences of numbers defined at
uniformly spaced points in time and frequency, respectively. This feature makes the DFT
ideally suited for direct numerical evaluation on a computer. Moreover, the computation
can be implemented most efficiently using a class of algorithms, collectively called FFT
algorithms. An algorithm refers to a “recipe” that can be written in the form of a computer
program.

FFT algorithms are efficient because they use a greatly reduced number of arithmetic
operations as compared with the brute force (i.e., direct) computation of the DFT.
Basically, an FFT algorithm attains its computational efficiency by following the
engineering strategy of “divide and conquer,” whereby the original DFT computation is
decomposed successively into smaller DFT computations. In this section, we describe one
version of a popular FFT algorithm, the development of which is based on such a strategy.

To proceed with the development, we first rewrite (2.127), defining the DFT of gn, in
the convenient mathematical form

 (2.130)

where we have introduced the complex parameter

(2.131)

From this definition, we readily see that

                   

That is, Wkn is periodic with period N. The periodicity of Wkn is a key feature in the
development of FFT algorithms.

Let N, the number of points in the data sequence, be an integer power of two, as shown
by

where L is an integer; the rationale for this choice is explained later. Since N is an even
integer, N/2 is an integer, and so we may divide the data sequence into the first half and
last half of the points. 

Gk gnW
kn

k, 0 1 … N 1–, , ,=
n 0=

N 1–

=

W j2π
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--------– 
 exp=
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2.16 Numerical Computation of the Fourier Transform 73

Thus, we may rewrite (2.130) as

 (2.132)

Since , we have

Accordingly, the factor WkN/2 in (2.132) takes on only one of two possible values, namely
+1 or –1, depending on whether the frequency index k is even or odd, respectively. These
two cases are considered in what follows.

First, let k be even, so that WkN/2 = 1. Also let

 

and define

(2.133)

Then, we may put (2.132) into the new form

 (2.134)

From the definition of W given in (2.131), we readily see that

Hence, we recognize the sum on the right-hand side of (2.134) as the (N/2)-point DFT of
the sequence xn.

Next, let k be odd so that WkN/2 = –1. Also, let
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74 Chapter 2 Fourier Analysis of Signals and Systems

and define
(2.135)

Then, we may put (2.132) into the corresponding form

 (2.136)

We recognize the sum on the right-hand side of (2.136) as the (N/2)-point DFT of the
sequence ynWn. The parameter Wn associated with yn is called the twiddle factor.

Equations (2.134) and (2.136) show that the even- and odd-valued samples of the
transform sequence Gk can be obtained from the (N/2)-point DFTs of the sequences xn and
ynWn, respectively. The sequences xn and yn are themselves related to the original data
sequence gn by (2.133) and (2.135), respectively. Thus, the problem of computing an
N-point DFT is reduced to that of computing two (N/2)-point DFTs. The procedure just
described is repeated a second time, whereby an (N/2)-point DFT is decomposed into two
(N/4)-point DFTs. The decomposition procedure is continued in this fashion until (after
L = log2N stages) we reach the trivial case of N single-point DFTs.

Figure 2.33 illustrates the computations involved in applying the formulas of (2.134)
and (2.136) to an eight-point data sequence; that is, N = 8. In constructing left-hand
portions of the figure, we have used signal-flow graph notation. A signal-flow graph
consists of an interconnection of nodes and branches. The direction of signal transmission
along a branch is indicated by an arrow. A branch multiplies the variable at a node (to
which it is connected) by the branch transmittance. A node sums the outputs of all
incoming branches. The convention used for branch transmittances in Figure 2.33 is as
follows. When no coefficient is indicated on a branch, the transmittance of that branch is
assumed to be unity. For other branches, the transmittance of a branch is indicated by –1 or
an integer power of W, placed alongside the arrow on the branch.

Thus, in Figure 2.33a the computation of an eight-point DFT is reduced to that of two
four-point DFTs. The procedure for the eight-point DFT may be mimicked to simplify the
computation of the four-point DFT. This is illustrated in Figure 2.33b, where the
computation of a four-point DFT is reduced to that of two two-point DFTs. Finally, the
computation of a two-point DFT is shown in Figure 2.33c.

Combining the ideas described in Figure 2.33, we obtain the complete signal-flow
graph of Figure 2.34 for the computation of the eight-point DFT. A repetitive structure,
called the butterfly with two inputs and two outputs, can be discerned in the FFT algorithm
of Figure 2.34. Examples of butterflies (for the three stages of the algorithm) are shown by
the bold-faced lines in Figure 2.34. 

For the general case of N = 2L, the algorithm requires L = log2N stages of computation.
Each stage requires (N/2) butterflies. Each butterfly involves one complex multiplication
and two complex additions (to be precise, one addition and one subtraction). Accordingly,
the FFT structure described here requires (N/2)log2N complex multiplications and Nlog2N
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2.16 Numerical Computation of the Fourier Transform 75

Figure 2.33 (a) Reduction of eight-point DFT into two four-point DFTs. (b) Reduction of four-point 
DFT into two two-point DFTs. (c) Trivial case of two-point DFT.

Transform sequence

Coefficients for
even frequencies

Data sequence

4-point
DFT

Transform sequence

Coefficients for
even frequencies

Data sequence

2-point
DFT

Transform sequenceData sequence

Coefficients for
odd frequencies

2-point
DFT

W 0

–1

–1

–1

–1

–1

–1

–1

W 1

W 2

W 0

W 1

W 3

Coefficients for
odd frequencies

4-point
DFT

(a)

(b)

(c)

g0 G0

G2

G4

G6

G0

G1

G2

G3

G1

G3

G5

G7

g1

g0 G0

G1
g1

g2

g3

g4

g5

g6

g7

g0

g1

g2

g3

Haykin_ch02_pp3.fm  Page 75  Friday, November 16, 2012  9:24 AM

https://hemanthrajhemu.github.io



76 Chapter 2 Fourier Analysis of Signals and Systems

complex additions; actually, the number of multiplications quoted is pessimistic, because
we may omit all twiddle factors W0 = 1 and WN/2 = –1, WN/4 = j, W3N/4 = –j. This
computational complexity is significantly smaller than that of the N2 complex
multiplications and N(N – 1) complex additions required for direct computation of the
DFT. The computational savings made possible by the FFT algorithm become more
substantial as we increase the data length N. For example, for N = 8192 = 211, the direct
approach requires approximately 630 times as many arithmetic operations as the FFT
algorithm, hence the popular use of the FFT algorithm in computing the DFT.

We may establish two other important features of the FFT algorithm by carefully
examining the signal-flow graph shown in Figure 2.34:

1. At each stage of the computation, the new set of N complex numbers resulting from
the computation can be stored in the same memory locations used to store the
previous set. This kind of computation is referred to as in-place computation.

Figure 2.34
Decimation-in-frequency 
FFT algorithm.
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2.16 Numerical Computation of the Fourier Transform 77

2. The samples of the transform sequence Gk are stored in a bit-reversed order. To
illustrate the meaning of this terminology, consider Table 2.6 constructed for the
case of N = 8. At the left of the table, we show the eight possible values of the
frequency index k (in their natural order) and their 3-bit binary representations. At
the right of the table, we show the corresponding bit-reversed binary representations
and indices. We observe that the bit-reversed indices in the rightmost column of
Table 2.6 appear in the same order as the indices at the output of the FFT algorithm
in Figure 2.34.

The FFT algorithm depicted in Figure 2.34 is referred to as a decimation-in-frequency
algorithm, because the transform (frequency) sequence Gk is divided successively into
smaller subsequences. In another popular FFT algorithm, called a decimation-in-time
algorithm, the data (time) sequence gn is divided successively into smaller subsequences.
Both algorithms have the same computational complexity. They differ from each other in
two respects. First, for decimation-in-frequency, the input is in natural order, whereas the
output is in bit-reversed order; the reverse is true for decimation-in-time. Second, the
butterfly for decimation-in-time is slightly different from that for decimation-in-
frequency. The reader is invited to derive the details of the decimation-in-time algorithm
using the divide-and-conquer strategy that led to the development of the algorithm
described in Figure 2.34.

In devising the FFT algorithm presented herein, we placed the factor 1N in the formula
for the forward DFT, as shown in (2.128). In some other FFT algorithms, location of the
factor 1N is reversed. In yet other formulations, the factor  is placed in the
formulas for both the forward and inverse DFTs for the sake of symmetry.  

Computation of the IDFT

The IDFT of the transform Gk is defined by (2.128). We may rewrite this equation in terms
of the complex parameter W as

 (2.137)

Table 2.6 Illustrating bit reversal

Frequency
index, k

Binary
representation

Bit-reversed
binary representation

Bit-reversed 
index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

1 N

gn
1
N
---- GkW

kn–
n 0 1  N 1–  =

k 0=

N 1–
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78 Chapter 2 Fourier Analysis of Signals and Systems

Taking the complex conjugate of (2.137) and multiplying by N, we get

(2.138)

The right-hand side of (2.138) is recognized as the N-point DFT of the complex-
conjugated sequence . Accordingly, (2.138) suggests that we may compute the desired
sequence gn using the scheme shown in Figure 2.35, based on an N-point FFT algorithm.
Thus, the same FFT algorithm can be used to handle the computation of both the IDFT
and the DFT.

2.17 Summary and Discussion

In this chapter we have described the Fourier transform as a fundamental tool for relating
the time-domain and frequency-domain descriptions of a deterministic signal. The signal
of interest may be an energy signal or a power signal. The Fourier transform includes the
exponential Fourier series as a special case, provided that we permit the use of the Dirac
delta function.

An inverse relationship exists between the time-domain and frequency-domain
descriptions of a signal. Whenever an operation is performed on the waveform of a signal
in the time domain, a corresponding modification is applied to the spectrum of the signal
in the frequency domain. An important consequence of this inverse relationship is the fact
that the time–bandwidth product of an energy signal is a constant; the definitions of signal
duration and bandwidth merely affect the value of the constant.

An important signal-processing operation frequently encountered in communication
systems is that of linear filtering. This operation involves the convolution of the input
signal with the impulse response of the filter or, equivalently, the multiplication of the
Fourier transform of the input signal by the transfer function (i.e., Fourier transform of the
impulse response) of the filter. Low-pass and band-pass filters represent two commonly
used types of filters. Band-pass filtering is usually more complicated than low-pass
filtering. However, through the combined use of a complex envelope for the representation
of an input band-pass signal and the complex impulse response for the representation of a
band-pass filter, we may formulate a complex low-pass equivalent for the band-pass
filtering problem and thereby replace a difficult problem with a much simpler one. It is
also important to note that there is no loss of information in establishing this equivalence.
A rigorous treatment of the concepts of complex envelope and complex impulse response
as presented in this chapter is rooted in Hilbert transformation.

The material on Fourier analysis, as presented in this chapter, deals with signals whose
waveforms can be nonperiodic or periodic, and whose spectra can be continuous or
discrete functions of frequency. In this sense, the material has general appeal.

Figure 2.35 Use of the FFT algorithm for computing the IDFT.
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Building on the canonical representation of a band-pass signal involving the in-phase
and quadrature components of the signal, we showed that this representation provides an
elegant way of describing the three basic forms of linear modulation, namely DSB-SC,
VSB, and SSB.

With the Fourier transform playing such a pervasive role in the study of signals and
linear systems, we finally described the FFT algorithm as an efficient tool for numerical
computation of the DFT that represents the uniformly sampled versions of the forward and
inverse forms of the ordinary Fourier transform.

Problems

The Fourier Transform

2.1 Prove the dilation property of the Fourier transform, listed as Property 2 in Table 2.1.

 2.2 a. Prove the duality property of the Fourier transform, listed as Property 3 in Table 2.1.

b. Prove the time-shifting property, listed as Property 4; and then use the duality property to prove
the frequency-shifting property, listed as Property 5 in the table.

c. Using the frequency-shifting property, determine the Fourier transform of the radio frequency RF
pulse

assuming that fc is larger than (1/T).

 2.3 a. Prove the multiplication-in-the-time-domain property of the Fourier transform, listed as Property
11 in Table 2.1.

b. Prove the convolution in the time-domain property, listed as Property 12.

c. Using the result obtained in part b, prove the correlation theorem, listed as Property 13.

2.4 Prove Rayleigh’s energy theorem listed as Property 14 in Table 2.1.

2.5 The following expression may be viewed as an approximate representation of a pulse with finite rise
time:

where it is assumed that T >> τ. Determine the Fourier transform of g(t). What happens to this
transform when we allow τ to become zero? Hint: Express g(t) as the superposition of two signals,
one corresponding to integration from t – T to 0, and the other from 0 to t + T.

2.6 The Fourier transform of a signal g(t) is denoted by G( f ). Prove the following properties of the
Fourier transform:

a. If a real signal g(t) is an even function of time t, the Fourier transform G( f ) is purely real. If a
real signal g(t) is an odd function of time t, the Fourier transform G( f ) is purely imaginary.

b.

where G(n)( f ) is the nth derivative of G( f ) with respect to f.

c.
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80 Chapter 2 Fourier Analysis of Signals and Systems

d. Assuming that both g1(t) and g2(t) are complex signals, show that:

and

 2.7 a. The root mean-square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by

where |G(f)|2 is the energy spectral density of the signal. Correspondingly, the root mean-square
(rms) duration of the signal is defined by

Using these definitions, show that

Assume that  faster than  as .

b. Consider a Gaussian pulse defined by

Show that for this signal the equality

is satisfied.

Hint: Use Schwarz’s inequality 

in which we set

and

2.8 The Dirac comb, formulated in the time domain, is defined by

where T0 is the period.
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Problems 81

a. Show that the Dirac comb is its own Fourier transform. That is, the Fourier transform of  is
also an infinitely long periodic train of delta functions, weighted by the factor f0 = (1/T0) and
regularly spaced by f0 along the frequency axis.

b. Hence, prove the pair of dual relations:

c. Finally, prove the validity of (2.38).

Signal Transmission through Linear Time-invariant Systems

2.9 The periodic signal

is applied to a linear system of impulse response h(t). Show that the average power of the signal y(t)
produced at the system output is defined by

where H(f) is the frequency response of the system, and f0 = 1/T0.

2.10 According to the bounded input–bounded output stability criterion, the impulse response h(t) of a
linear-invariant system must be absolutely integrable; that is,

Prove that this condition is both necessary and sufficient for stability of the system.

Hilbert Transform and Pre-envelopes 

2.11 Prove the three properties of the Hilbert transform itemized on pages 43 and 44.

2.12 Let  denote the Hilbert transform of g(t). Derive the set of Hilbert-transform pairs listed as
items 5 to 8 in Table 2.3.

2.13 Evaluate the inverse Fourier transform g(t) of the one-sided frequency function:

Show that g(t) is complex, and that its real and imaginary parts constitute a Hilbert-transform pair.

2.14 Let  denote the Hilbert transform of a Fourier transformable signal g(t). Show that  is
equal to the Hilbert transform of .
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82 Chapter 2 Fourier Analysis of Signals and Systems

2.15 In this problem, we revisit Problem 2.14, except that this time we use integration rather than

differentiation. Doing so, we find that, in general, the integral  is not equal to the Hilbert

transform of the integral .

a. Justify this statement.

b. Find the condition for which exact equality holds.

2.16 Determine the pre-envelope g+(t) corresponding to each of the following two signals:

a. g(t) = sinc(t)

b. g(t) = [1 + k cos(2πfmt)]cos(2πfct)

Complex Envelope

2.17 Show that the complex envelope of the sum of two narrowband signals (with the same carrier
frequency) is equal to the sum of their individual complex envelopes.

2.18 The definition of the complex envelope  of a band-pass signal given in (2.65) is based on the
pre-envelope s+(t) for positive frequencies. How is the complex envelope defined in terms of the pre-
envelope s–(t) for negative frequencies? Justify your answer.

2.19 Consider the signal

whose m(t) is a low-pass signal whose Fourier transform M(f) vanishes for | f | > W, and c(t) is a
high-pass signal whose Fourier transform C(f) vanishes for | f | < W. Show that the Hilbert transform
of s(t) is  = , where  is the Hilbert transform of c(t).

 2.20 a. Consider two real-valued signals s1(t) and s2(t) whose pre-envelopes are denoted by s1+(t) and
s2+(t), respectively. Show that

b. Suppose that s2(t) is replaced by s2(–t). Show that this modification has the effect of removing
the complex conjugation in the right-hand side of the formula given in part a.

c. Assuming that s(t) is a narrowband signal with complex envelope  and carrier frequency fc,
use the result of part a to show that

2.21 Let a narrow-band signal s(t) be expressed in the form

Using S+(f) to denote the Fourier transform of the pre-envelope of s+(t), show that the Fourier
transforms of the in-phase component sI(t) and quadrature component sQ(t) are given by

respectively, where the asterisk denotes complex conjugation.

2.22 The block diagram of Figure 2.20a illustrates a method for extracting the in-phase component sI(t)
and quadrature component sQ(t) of a narrowband signal s(t). Given that the spectrum of s(t) is
limited to the interval fc – W ≤ | f | fc + W, demonstrate the validity of this method. Hence, show that
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and

where SI(f), SQ(f), and S(f) are the Fourier transforms of sI(t), sQ(t), and s(t), respectively.

Low-Pass Equivalent Models of Band-Pass Systems

2.23 Equations (2.82) and (2.83) define the in-phase component  and the quadrature component
 of the frequency response  of the complex low-pass equivalent model of a band-pass

system of impulse response h(t). Prove the validity of these two equations.

2.24 Explain what happens to the low-pass equivalent model of Figure 2.21b when the amplitude
response of the corresponding bandpass filter has even symmetry and the phase response has odd
symmetry with respect to the mid-band frequency fc.

2.25 The rectangular RF pulse

is applied to a linear filter with impulse response

Assume that the frequency fc equals a large integer multiple of 1/T. Determine the response of the
filter and sketch it.

2.26 Figure P2.26 depicts the frequency response of an idealized band-pass filter in the receiver of a
communication system, namely H(f), which is characterized by a bandwidth of 2B centered on the
carrier frequency fc. The signal applied to the band-pass filter is described by the modulated sinc
function:

where  is frequency misalignment introduced due to the receiver’s imperfections, measured with
respect to the carrier .

a. Find the complex low-pass equivalent models of the signal x(t) and the frequency response H(f).
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
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84 Chapter 2 Fourier Analysis of Signals and Systems

b. Then, go on to find the complex low-pass response of the filter output, denoted by , which
includes distortion due to .

c. Building on the formula derived for  obtained in part b, explain how you would mitigate the
misalignment distortion in the receiver.

Nonlinear Modulations

2.27 In analog communications, amplitude modulation is defined by 

where  is the carrier, m(t) is the message signal, and ka is a constant called amplitude
sensitivity of the modulator. Assume that  for all time t. 

a. Justify the statement that, in a strict sense, sAM(t) violates the principle of superposition.

b. Formulate the complex envelope and its spectrum. 

c. Compare the result obtained in part b with the complex envelope of DSB-SC. Hence, comment
on the advantages and disadvantages of amplitude modulation.

2.28 Continuing on with analog communications, frequency modulation (FM) is defined by

where  is the carrier, m(t) is the message signal, and kf is a constant called the
frequency sensitivity of the modulator.

a. Show that frequency modulation is nonlinear in that it violates the principle of superposition.

b. Formulate the complex envelope of the FM signal, namely .

c. Consider the message signal to be in the form of a square wave as shown in Figure P2.28. The
modulation frequencies used for the positive and negative amplitudes of the square wave, namely
f1 and f2, are defined as follows: 

where Tb is the duration of each positive or negative amplitude in the square wave. Show that
under these conditions the complex envelope  maintains continuity for all time t,
including the switching times between positive and negative amplitudes.

d. Plot the real and imaginary parts of  for the following values:

Phase and Group Delays

2.29 The phase response of a band-pass communication channel is defined by.
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A sinusoidally modulated signal defined by

is transmitted through the channel; fc is the carrier frequency and fm is the modulation frequency. 

a. Determine the phase delay τp.
b. Determine the group delay τg.
c. Display the waveform produced at the channel output; hence, comment on the results obtained in

parts a and b.

Notes

1. For a proof of convergence of the Fourier series, see Kammler (2000).

2. If a time function g(t) is such that the value of the energy  is defined and finite, then
the Fourier transform G(f) of the function g(t) exists and 

This result is known as Plancherel’s theorem. For a proof of this theorem, see Titchmarsh (1950).

3. The notation δ(t) for a delta function was first introduced into quantum mechanics by Dirac. This
notation is now in general use in the signal processing literature. For detailed discussions of the delta
function, see Bracewell (1986).

In a rigorous sense, the Dirac delta function is a distribution, not a function; for a rigorous treatment
of the subject, see the book by Lighthill (1958).

4. The Paley–Wiener criterion is named in honor of the authors of the paper by Paley and Wiener
(1934). 

5. The integral in (2.54), defining the Hilbert transform of a signal, is an improper integral in that
the integrand has a singularity at τ = t. To avoid this singularity, the integration must be carried out in
a symmetrical manner about the point τ = t. For this purpose, we use the definition

where the symbol P denotes Cauchy’s principal value of the integral and is incrementally
small. For notational simplicity, the symbol P has been omitted from (2.54) and (2.55).

6. The complex representation of an arbitrary signal defined in (2.58) was first described by Gabor
(1946). Gabor used the term “analytic signal.” The term “pre-envelope” was used in Arens (1957)
and Dungundji (1958). For a review of the different envelopes, see the paper by Rice (1982).

7. The FFT is ubiquitous in that it is applicable to a great variety of unrelated fields. For a detailed
mathematical treatment of this widely used tool and its applications, the reader is referred to
Brigham (1988).

Figure P2.28
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267

CHAPTER

6
Conversion of Analog 
Waveforms into Coded Pulses

6.1 Introduction

In continuous-wave (CW) modulation, which was studied briefly in Chapter 2, some
parameter of a sinusoidal carrier wave is varied continuously in accordance with the
message signal. This is in direct contrast to pulse modulation, which we study in this
chapter. In pulse modulation, some parameter of a pulse train is varied in accordance with
the message signal. On this basis, we may distinguish two families of pulse modulation: 

1. Analog pulse modulation, in which a periodic pulse train is used as the carrier wave
and some characteristic feature of each pulse (e.g., amplitude, duration, or position)
is varied in a continuous manner in accordance with the corresponding sample value
of the message signal. Thus, in analog pulse modulation, information is transmitted
basically in analog form but the transmission takes place at discrete times. 

2. Digital pulse modulation, in which the message signal is represented in a form that
is discrete in both time and amplitude, thereby permitting transmission of the
message in digital form as a sequence of coded pulses; this form of signal
transmission has no CW counterpart.

The use of coded pulses for the transmission of analog information-bearing signals
represents a basic ingredient in digital communications. In this chapter, we focus attention
on digital pulse modulation, which, in basic terms, is described as the conversion of
analog waveforms into coded pulses. As such, the conversion may be viewed as the
transition from analog to digital communications. 

Three different kinds of digital pulse modulation are studied in the chapter:

1. Pulse-code modulation (PCM), which has emerged as the most favored scheme for
the digital transmission of analog information-bearing signals (e.g., voice and video
signals). The important advantages of PCM are summarized thus:

• robustness to channel noise and interference;
• efficient regeneration of the coded signal along the transmission path;
• efficient exchange of increased channel bandwidth for improved signal-to-

quantization noise ratio, obeying an exponential law;
• a uniform format for the transmission of different kinds of baseband signals,

hence their integration with other forms of digital data in a common network;
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268 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

• comparative ease with which message sources may be dropped or reinserted in a
multiplex system;

• secure communication through the use of special modulation schemes or
encryption.

These advantages, however, are attained at the cost of increased system complexity
and increased transmission bandwidth. Simply stated:

There is no free lunch.

For every gain we make, there is a price to pay.

2. Differential pulse-code modulation (DPCM), which exploits the use of lossy data
compression to remove the redundancy inherent in a message signal, such as voice or
video, so as to reduce the bit rate of the transmitted data without serious degradation
in overall system response. In effect, increased system complexity is traded off for
reduced bit rate, therefore reducing the bandwidth requirement of PCM.

3. Delta modulation (DM), which addresses another practical limitation of PCM: the
need for simplicity of implementation when it is a necessary requirement. DM
satisfies this requirement by intentionally “oversampling” the message signal. In
effect, increased transmission bandwidth is traded off for reduced system
complexity. DM may therefore be viewed as the dual of DPCM.

Although, indeed, these three methods of analog-to-digital conversion are quite different,
they do share two basic signal-processing operations, namely sampling and quantization:

• the process of sampling, followed by 
• pulse-amplitude modulation (PAM) and finally
• amplitude quantization 

are studied in what follows in this order.

6.2 Sampling Theory

The sampling process is usually described in the time domain. As such, it is an operation
that is basic to digital signal processing and digital communications. Through use of the
sampling process, an analog signal is converted into a corresponding sequence of samples
that are usually spaced uniformly in time. Clearly, for such a procedure to have practical
utility, it is necessary that we choose the sampling rate properly in relation to the bandwidth
of the message signal, so that the sequence of samples uniquely defines the original analog
signal. This is the essence of the sampling theorem, which is derived in what follows.

Frequency-Domain Description of Sampling

Consider an arbitrary signal g(t) of finite energy, which is specified for all time t. A
segment of the signal g(t) is shown in Figure 6.1a. Suppose that we sample the signal g(t)
instantaneously and at a uniform rate, once every Ts seconds. Consequently, we obtain an
infinite sequence of samples spaced Ts seconds apart and denoted by {g(nTs)}, where n
takes on all possible integer values, positive as well as negative. We refer to Ts as the
sampling period, and to its reciprocal fs = 1/Ts as the sampling rate. For obvious reasons,
this ideal form of sampling is called instantaneous sampling.
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6.2 Sampling Theory 269

Let g (t) denote the signal obtained by individually weighting the elements of a
periodic sequence of delta functions spaced Ts seconds apart by the sequence of numbers
{g(nTs)}, as shown by (see Figure 6.1b):

(6.1)

We refer to g (t) as the ideal sampled signal. The term  (t – nTs) represents a delta func-
tion positioned at time t = nTs. From the definition of the delta function, we recall from
Chapter 2 that such an idealized function has unit area. We may therefore view the multi-
plying factor g(nTs) in (6.1) as a “mass” assigned to the delta function  (t – nTs). A delta
function weighted in this manner is closely approximated by a rectangular pulse of dura-
tion t and amplitude g(nTs)/t; the smaller we make t the better the approximation will
be.

Referring to the table of Fourier-transform pairs in Table 2.2, we have

(6.2)

where G( f ) is the Fourier transform of the original signal g(t) and fs is the sampling rate.
Equation (6.2) states: 

The process of uniformly sampling a continuous-time signal of finite energy 
results in a periodic spectrum with a frequency equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled signal g(t) may
be obtained by taking the Fourier transform of both sides of (6.1) and noting that the
Fourier transform of the delta function  (t – nTs) is equal to exp(–j2nfTs). Letting G ( f )
denote the Fourier transform of g ( t), we may write

(6.3)

Equation (6.3) describes the discrete-time Fourier transform. It may be viewed as a
complex Fourier series representation of the periodic frequency function G ( f ), with the
sequence of samples {g(nTs)} defining the coefficients of the expansion.

Figure 6.1 The sampling process. (a) Analog signal. (b) Instantaneously sampled version of the 
analog signal.
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270 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The discussion presented thus far applies to any continuous-time signal g(t) of finite
energy and infinite duration. Suppose, however, that the signal g(t) is strictly band limited,
with no frequency components higher than W hertz. That is, the Fourier transform G( f ) of
the signal g(t) has the property that G( f ) is zero for | f | W, as illustrated in Figure 6.2a;
the shape of the spectrum shown in this figure is merely intended for the purpose of
illustration. Suppose also that we choose the sampling period Ts = 12W. Then the
corresponding spectrum G (f ) of the sampled signal g ( t) is as shown in Figure 6.2b.
Putting Ts = 1/2W in (6.3) yields

(6.4)

Isolating the term on the right-hand side of (6.2), corresponding to m = 0, we readily see
that the Fourier transform of g ( t) may also be expressed as

(6.5)

Suppose, now, we impose the following two conditions:

1. G( f ) = 0 for | f | W.

2. fs = 2W.

We may then reduce (6.5) to

(6.6)

Substituting (6.4) into (6.6), we may also write

(6.7)

Equation (6.7) is the desired formula for the frequency-domain description of sampling.
This formula reveals that if the sample values g(n/2W) of the signal g(t) are specified for
all n, then the Fourier transform G( f ) of that signal is uniquely determined. Because g(t) is
related to G( f ) by the inverse Fourier transform, it follows, therefore, that g(t) is itself
uniquely determined by the sample values g(n/2W) for . In other words, the
sequence {g(n/2W)} has all the information contained in the original signal g(t).

Figure 6.2 (a) Spectrum of a strictly band-limited signal g(t). (b) Spectrum of the sampled version 
of g(t) for a sampling period Ts = 1/2W.
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6.2 Sampling Theory 271

Consider next the problem of reconstructing the signal g(t) from the sequence of
sample values {g(n/2W)}. Substituting (6.7) in the formula for the inverse Fourier
transform 

and interchanging the order of summation and integration, which is permissible because
both operations are linear, we may go on to write

(6.8)

The definite integral in (6.8), including the multiplying factor 1/2W, is readily evaluated in
terms of the sinc function, as shown by

Accordingly, (6.8) reduces to the infinite-series expansion

(6.9)

Equation (6.9) is the desired reconstruction formula. This formula provides the basis for
reconstructing the original signal g(t) from the sequence of sample values {g(n/2W)}, with
the sinc function sinc(2Wt) playing the role of a basis function of the expansion. Each
sample, g(n/2W), is multiplied by a delayed version of the basis function, sinc(2Wt – n),
and all the resulting individual waveforms in the expansion are added to reconstruct the
original signal g(t).

The Sampling Theorem

Equipped with the frequency-domain description of sampling given in (6.7) and the
reconstruction formula of (6.9), we may now state the sampling theorem for strictly band-
limited signals of finite energy in two equivalent parts:

1. A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely described by specifying the values of the signal instants of
time separated by 1/2W seconds.

2. A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely recovered from a knowledge of its samples taken at the rate of
2W samples per second.

Part 1 of the theorem, following from (6.7), is performed in the transmitter. Part 2 of the
theorem, following from (6.9), is performed in the receiver. For a signal bandwidth of
W hertz, the sampling rate of 2W samples per second, for a signal bandwidth of W hertz, is
called the Nyquist rate; its reciprocal 1/2W (measured in seconds) is called the Nyquist
interval; see the classic paper (Nyquist, 1928b).
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272 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Aliasing Phenomenon

Derivation of the sampling theorem just described is based on the assumption that the
signal g(t) is strictly band limited. In practice, however, a message signal is not strictly band
limited, with the result that some degree of undersampling is encountered, as a consequence
of which aliasing is produced by the sampling process. Aliasing refers to the phenomenon
of a high-frequency component in the spectrum of the signal seemingly taking on the
identity of a lower frequency in the spectrum of its sampled version, as illustrated in Figure
6.3. The aliased spectrum, shown by the solid curve in Figure 6.3b, pertains to the
undersampled version of the message signal represented by the spectrum of Figure 6.3a.

To combat the effects of aliasing in practice, we may use two corrective measures:

1. Prior to sampling, a low-pass anti-aliasing filter is used to attenuate those high-
frequency components of the signal that are not essential to the information being
conveyed by the message signal g(t).

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect of
easing the design of the reconstruction filter used to recover the original signal from its
sampled version. Consider the example of a message signal that has been anti-alias (low-
pass) filtered, resulting in the spectrum shown in Figure 6.4a. The corresponding spectrum
of the instantaneously sampled version of the signal is shown in Figure 6.4b, assuming a
sampling rate higher than the Nyquist rate. According to Figure 6.4b, we readily see that
design of the reconstruction filter may be specified as follows:

• The reconstruction filter is low-pass with a passband extending from –W to W,
which is itself determined by the anti-aliasing filter.

• The reconstruction filter has a transition band extending (for positive frequencies)
from W to (fs – W), where fs is the sampling rate. 

Figure 6.3 (a) Spectrum of a signal. (b) Spectrum of an under-sampled version 
of the signal exhibiting the aliasing phenomenon. 
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6.2 Sampling Theory 273

EXAMPLE 1 Sampling of Voice Signals

As an illustrative example, consider the sampling of voice signals for waveform coding.
Typically, the frequency band, extending from 100 Hz to 3.1 kHz, is considered to be
adequate for telephonic communication. This limited frequency band is accomplished by
passing the voice signal through a low-pass filter with its cutoff frequency set at 3.1 kHz;
such a filter may be viewed as an anti-aliasing filter. With such a cutoff frequency, the
Nyquist rate is fs = 2 3.1 = 6.2 kHz. The standard sampling rate for the waveform coding
of voice signals is 8 kHz. Putting these numbers together, design specifications for the
reconstruction (low-pass) filter in the receiver are as follows:

Cutoff frequency 3.1 kHz

Transition band 6.2 to 8 kHz

Transition-band width 1.8 kHz. 

Figure 6.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum of 
instantaneously sampled version of the signal, assuming the use of a sampling rate greater than the 
Nyquist rate. (c) Magnitude response of reconstruction filter. 
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274 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

6.3 Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define PAM, which is the simplest and most basic form of analog pulse modulation. It is
formally defined as follows:

PAM is a linear modulation process where the amplitudes of regularly spaced 
pulses are varied in proportion to the corresponding sample values of a 
continuous message signal. 

The pulses themselves can be of a rectangular form or some other appropriate shape. 
The waveform of a PAM signal is illustrated in Figure 6.5. The dashed curve in this

figure depicts the waveform of a message signal m(t), and the sequence of amplitude-
modulated rectangular pulses shown as solid lines represents the corresponding PAM
signal s(t). There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal m(t) every Ts seconds, where the
sampling rate fs = 1Ts is chosen in accordance with the sampling theorem.

2. Lengthening the duration of each sample so obtained to some constant value T.

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is to
avoid the use of an excessive channel bandwidth, because bandwidth is inversely
proportional to pulse duration. However, care has to be exercised in how long we make the
sample duration T, as the following analysis reveals.

Let s(t) denote the sequence of flat-top pulses generated in the manner described in
Figure 6.5. We may express the PAM signal as a discrete convolution sum:

(6.10)

where Ts is the sampling period and m(nTs) is the sample value of m(t) obtained at time
t = nTs. The h(t) is a Fourier-transformal pulse. With spectral analysis of s(t) in mind, we
would like to recast (6.10) in the form of a convolution integral. To this end, we begin by
invoking the sifting property of a delta function (discussed in Chapter 2) to express the
delayed version of the pulse shape h(t) in (6.10) as

(6.11)

Figure 6.5  Flat-top samples, representing an analog signal. 
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6.3 Pulse-Amplitude Modulation 275

Hence, substituting (6.11) into (6.10), and interchanging the order of summation and
integration, we get

(6.12)

Referring to (6.1), we recognize that the expression inside the brackets in (6.12) is simply
the instantaneously sampled version of the message signal m(t), as shown by

(6.13)

Accordingly, substituting (6.13) into (6.12), we may reformulate the PAM signal s(t) in the
desired form

(6.14)

which is the convolution of the two time functions;  and .
The stage is now set for taking the Fourier transform of both sides of (6.14) and

recognizing that the convolution of two time functions is transformed into the
multiplication of their respective Fourier transforms; we get the simple result

(6.15)

where S( f ) = F[s(t)], M ( f ) = F[m ( t)], and H( f ) = F[h(t)]. Adapting (6.2) to the problem
at hand, we note that the Fourier transform M ( f ) is related to the Fourier transform M( f )
of the original message signal m(t) as follows:

(6.16)

where fs is the sampling rate. Therefore, the substitution of (6.16) into (6.15) yields the
desired formula for the Fourier transform of the PAM signal s(t), as shown by

(6.17)

Given this formula, how do we recover the original message signal m(t)? As a first step in
this reconstruction, we may pass s(t) through a low-pass filter whose frequency response is
defined in Figure 6.4c; here, it is assumed that the message signal is limited to bandwidth
W and the sampling rate fs is larger than the Nyquist rate 2W. Then, from (6.17) we find
that the spectrum of the resulting filter output is equal to M( f )H( f ). This output is
equivalent to passing the original message signal m(t) through another low-pass filter of
frequency response H( f ).

Equation (6.17) applies to any Fourier-transformable pulse shape h(t). 
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276 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Consider now the special case of a rectangular pulse of unit amplitude and duration T,
as shown in Figure 6.6a; specifically:

(6.18)

Correspondingly, the Fourier transform of h(t) is given by

(6.19)

which is plotted in Figure 6.6b. We therefore find from (6.17) that by using flat-top
samples to generate a PAM signal we have introduced amplitude distortion as well as a
delay of T/2. This effect is rather similar to the variation in transmission with frequency
that is caused by the finite size of the scanning aperture in television. Accordingly, the
distortion caused by the use of PAM to transmit an analog information-bearing signal is
referred to as the aperture effect.

To correct for this distortion, we connect an equalizer in cascade with the low-pass
reconstruction filter, as shown in Figure 6.7. The equalizer has the effect of decreasing the
in-band loss of the reconstruction filter as the frequency increases in such a manner as to
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Figure 6.6 (a) Rectangular pulse h(t). (b) Transfer function H( f ), made up of the magnitude |H( f )| 
and phase arg[H( f )].
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6.3 Pulse-Amplitude Modulation 277

compensate for the aperture effect. In light of (6.19), the magnitude response of the
equalizer should ideally be

The amount of equalization needed in practice is usually small. Indeed, for a duty cycle
defined by the ratio TTs  0.1, the amplitude distortion is less than 0.5%. In such a
situation, the need for equalization may be omitted altogether.

Practical Considerations

The transmission of a PAM signal imposes rather stringent requirements on the frequency
response of the channel, because of the relatively short duration of the transmitted pulses.
One other point that should be noted: relying on amplitude as the parameter subject to
modulation, the noise performance of a PAM system can never be better than baseband-
signal transmission. Accordingly, in practice, we find that for transmission over a
communication channel PAM is used only as the preliminary means of message
processing, whereafter the PAM signal is changed to some other more appropriate form of
pulse modulation.

With analog-to-digital conversion as the aim, what would be the appropriate form of
modulation to build on PAM? Basically, there are three potential candidates, each with its
own advantages and disadvantages, as summarized here:

1. PCM, which, as remarked previously in Section 6.1, is robust but demanding in both
transmission bandwidth and computational requirements. Indeed, PCM has
established itself as the standard method for the conversion of speech and video
signals into digital form.

2. DPCM, which provides a method for the reduction in transmission bandwidth but at
the expense of increased computational complexity.

3. DM, which is relatively simple to implement but requires a significant increase in
transmission bandwidth.

Before we go on, a comment on terminology is in order. The term “modulation” used
herein is a misnomer. In reality, PCM, DM, and DPCM are different forms of source
coding, with source coding being understood in the sense described in Chapter 5 on
information theory. Nevertheless, the terminologies used to describe them have become
embedded in the digital communications literature, so much so that we just have to live
with them.

Despite their basic differences, PCM, DPCM and DM do share an important feature:
the message signal is represented in discrete form in both time and amplitude. PAM takes
care of the discrete-time representation. As for the discrete-amplitude representation, we
resort to a process known as quantization, which is discussed next.

Figure 6.7 System for recovering message signal m(t) from PAM signal s(t). 
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278 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

6.4 Quantization and its Statistical Characterization

Typically, an analog message signal (e.g., voice) has a continuous range of amplitudes
and, therefore, its samples have a continuous amplitude range. In other words, within the
finite amplitude range of the signal, we find an infinite number of amplitude levels. In
actual fact, however, it is not necessary to transmit the exact amplitudes of the samples for
the following reason: any human sense (the ear or the eye) as ultimate receiver can detect
only finite intensity differences. This means that the message signal may be approximated
by a signal constructed of discrete amplitudes selected on a minimum error basis from an
available set. The existence of a finite number of discrete amplitude levels is a basic
condition of waveform coding exemplified by PCM. Clearly, if we assign the discrete
amplitude levels with sufficiently close spacing, then we may make the approximated
signal practically indistinguishable from the original message signal. For a formal
definition of amplitude quantization, or just quantization for short, we say:

Quantization is the process of transforming the sample amplitude m(nTs) of a 
message signal m(t) at time t = nTs into a discrete amplitude v(nTs) taken from a 
finite set of possible amplitudes. 

This definition assumes that the quantizer (i.e., the device performing the quantization
process) is memoryless and instantaneous, which means that the transformation at time
t = nTs is not affected by earlier or later samples of the message signal m(t). This simple
form of scalar quantization, though not optimum, is commonly used in practice.

When dealing with a memoryless quantizer, we may simplify the notation by dropping
the time index. Henceforth, the symbol mk is used in place of m(kTs), as indicated in the
block diagram of a quantizer shown in Figure 6.8a. Then, as shown in Figure 6.8b, the
signal amplitude m is specified by the index k if it lies inside the partition cell

(6.20)

where
(6.21)

and L is the total number of amplitude levels used in the quantizer. The discrete amplitudes
mk, k = 1, 2, , L, at the quantizer input are called decision levels or decision thresholds. At
the quantizer output, the index k is transformed into an amplitude vk that represents all ampli-
tudes of the cell Jk; the discrete amplitudes vk, k = 1, 2,, L, are called representation levels
or reconstruction levels. The spacing between two adjacent representation levels is called a
quantum or step-size. Thus, given a quantizer denoted by g(), the quantized output v equals
vk if the input sample m belongs to the interval Jk. In effect, the mapping (see Figure 6.8a)

(6.22)

defines the quantizer characteristic, described by a staircase function.

Jk: mk m mk+1  k 1 2  L  =

mk m kTs =

v g m =

Figure 6.8
Description of a 
memoryless quantizer. (a) (b)

Quantizer
g(.)

 

Continuous
sample  m

Discrete
sample v mk + 1 mk + 2mk – 1 vkmk

Jk

Haykin_ch06_pp3.fm  Page 278  Monday, November 26, 2012  1:00 PM

https://hemanthrajhemu.github.io



6.4 Quantization and its Statistical Characterization 279

Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the
representation levels are uniformly spaced; otherwise, the quantizer is nonuniform. In this
section, we consider only uniform quantizers; nonuniform quantizers are considered in
Section 6.5. The quantizer characteristic can also be of midtread or midrise type. Figure
6.9a shows the input–output characteristic of a uniform quantizer of the midtread type,
which is so called because the origin lies in the middle of a tread of the staircaselike graph.
Figure 6.9b shows the corresponding input–output characteristic of a uniform quantizer of
the midrise type, in which the origin lies in the middle of a rising part of the staircaselike
graph. Despite their different appearances, both the midtread and midrise types of uniform
quantizers illustrated in Figure 6.9 are symmetric about the origin.

Quantization Noise

Inevitably, the use of quantization introduces an error defined as the difference between
the continuous input sample m and the quantized output sample v. The error is called
quantization noise.1 Figure 6.10 illustrates a typical variation of quantization noise as a
function of time, assuming the use of a uniform quantizer of the midtread type.

Let the quantizer input m be the sample value of a zero-mean random variable M. (If
the input has a nonzero mean, we can always remove it by subtracting the mean from the
input and then adding it back after quantization.) A quantizer, denoted by g(), maps the
input random variable M of continuous amplitude into a discrete random variable V; their
respective sample values m and v are related by the nonlinear function g() in (6.22). Let
the quantization error be denoted by the random variable Q of sample value q. We may
thus write

(6.23)

or, correspondingly,
(6.24)

Figure 6.9 Two types of quantization: (a) midtread and (b) midrise. 
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280 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

With the input M having zero mean and the quantizer assumed to be symmetric as in
Figure 6.9, it follows that the quantizer output V and, therefore, the quantization error Q
will also have zero mean. Thus, for a partial statistical characterization of the quantizer in
terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider, then, an input m of continuous amplitude, which, symmetrically, occupies the
range [–mmax, mmax]. Assuming a uniform quantizer of the midrise type illustrated in
Figure 6.9b, we find that the step size of the quantizer is given by

(6.25)

where L is the total number of representation levels. For a uniform quantizer, the
quantization error Q will have its sample values bounded by –/2  q  /2. If the step size
 is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable and the interfering effect of the quantization error on the quantizer input is similar
to that of thermal noise, hence the reference to quantization error as quantization noise.
We may thus express the probability density function of the quantization noise as 

(6.26)

For this to be true, however, we must ensure that the incoming continuous sample does not
overload the quantizer. Then, with the mean of the quantization noise being zero, its
variance  is the same as the mean-square value; that is,

Figure 6.10
Illustration of the 
quantization process. 
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6.4 Quantization and its Statistical Characterization 281

(6.27)

Substituting (6.26) into (6.27), we get

(6.28)

Typically, the L-ary number k, denoting the kth representation level of the quantizer, is
transmitted to the receiver in binary form. Let R denote the number of bits per sample used
in the construction of the binary code. We may then write

(6.29)

or, equivalently,
(6.30)

Hence, substituting (6.29) into (6.25), we get the step size

(6.31)

Thus, the use of (6.31) in (6.28) yields

(6.32)

Let P denote the average power of the original message signal m(t). We may then express
the output signal-to-noise ratio of a uniform quantizer as

(6.33)

Equation (6.33) shows that the output signal-to-noise ratio of a uniform quantizer (SNR)O
increases exponentially with increasing number of bits per sample R, which is intuitively
satisfying. 

EXAMPLE 2 Sinusoidal Modulating Signal

Consider the special case of a full-load sinusoidal modulating signal of amplitude Am,
which utilizes all the representation levels provided. The average signal power is
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282 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The total range of the quantizer input is 2Am, because the modulating signal swings
between –Am and Am. We may, therefore, set mmax = Am, in which case the use of (6.32)
yields the average power (variance) of the quantization noise as

Thus, the output signal-to-noise of a uniform quantizer, for a full-load test tone, is 

(6.34)

Expressing the signal-to-noise (SNR) in decibels, we get

(6.35)

The corresponding values of signal-to-noise ratio for various values of L and R, are given in
Table 6.1. For sinusoidal modulation, this table provides a basis for making a quick estimate
of the number of bits per sample required for a desired output signal-to-noise ratio.

Conditions of Optimality of Scalar Quantizers

In designing a scalar quantizer, the challenge is how to select the representation levels and
surrounding partition cells so as to minimize the average quantization power for a fixed
number of representation levels.

To state the problem in mathematical terms: consider a message signal m(t) drawn from
a stationary process and whose dynamic range, denoted by –A  m  A, is partitioned into
a set of L cells, as depicted in Figure 6.11. The boundaries of the partition cells are defined
by a set of real numbers m1, m2, , mL – 1 that satisfy the following three conditions:

Table 6.1  Signal-to-(quantization) noise ratio for varying number of 
representation levels for sinusoidal modulation

No. of representation levels L No. of bits per sample R SNR (dB)
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6.4 Quantization and its Statistical Characterization 283

The kth partition cell is defined by (6.20), reproduced here for convenience:

Jk : mk < m < mk – 1 for k = 1, 2, , L (6.36)

Let the representation levels (i.e., quantization values) be denoted by vk, k = 1, 2, , L.
Then, assuming that d(m,vk) denotes a distortion measure for using vk to represent all
those values of the input m that lie inside the partition cell Jk, the goal is to find the two
sets  and  that minimize the average distortion

(6.37)

where fM(m) is the probability density function of the random variable M with sample
value m.

A commonly used distortion measure is defined by

(6.38)

in which case we speak of the mean-square distortion. In any event, the optimization problem
stated herein is nonlinear, defying an explicit, closed-form solution. To get around this diffi-
culty, we resort to an algorithmic approach for solving the problem in an iterative manner.

Structurally speaking, the quantizer consists of two components with interrelated
design parameters:

• An encoder characterized by the set of partition cells ; this is located in the
transmitter.

• A decoder characterized by the set of representation levels ; this is located
in the receiver.

Accordingly, we may identify two critically important conditions that provide the
mathematical basis for all algorithmic solutions to the optimum quantization problem.
One condition assumes that we are given a decoder and the problem is to find the optimum
encoder in the transmitter. The other condition assumes that we are given an encoder and
the problem is to find the optimum decoder in the receiver. Henceforth, these two
conditions are referred to as condition I and II, respectively.

Condition I: Optimality of the Encoder for a Given Decoder

The availability of a decoder means that we have a certain codebook in mind. Let the
codebook be defined by

(6.39)

Given the codebook 𝒞, the problem is to find the set of partition cells  that

minimizes the mean-square distortion D. That is, we wish to find the encoder defined by

the nonlinear mapping

 (6.40)

such that we have

(6.41)
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284 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

For the lower bound specified in (6.41) to be attained, we require that the nonlinear
mapping of (6.40) be satisfied only if the condition

 (6.42)

The necessary condition described in (6.42) for optimality of the encoder for a specified
codebook 𝒞  is recognized as the nearest-neighbor condition. In words, the nearest
neighbor condition requires that the partition cell Jk should embody all those values of the
input m that are closer to vk than any other element of the codebook 𝒞.  This optimality
condition is indeed intuitively satisfying.

Condition II: Optimality of the Decoder for a Given Encoder

Consider next the reverse situation to that described under condition I, which may be
stated as follows: optimize the codebook  for the decoder, given that the
set of partition cells characterizing the encoder is fixed. The criterion for
optimization is the average (mean-square) distortion:

(6.43)

The probability density function fM(m) is clearly independent of the codebook 𝒞. Hence,
differentiating D with respect to the representation level vk, we readily obtain

(6.44)

Setting  equal to zero and then solving for vk, we obtain the optimum value

(6.45)

The denominator in (6.45) is just the probability pk that the random variable M with
sample value m lies in the partition cell Jk, as shown by

(6.46)

Accordingly, we may interpret the optimality condition of (6.45) as choosing the
representation level vk to equal the conditional mean of the random variable M, given that
M lies in the partition cell Jk. We can thus formally state that the condition for optimality
of the decoder for a given encoder as follows:

(6.47)

where � is the expectation operator. Equation (6.47) is also intuitively satisfying.
Note that the nearest neighbor condition (I) for optimality of the encoder for a given

decoder was proved for a generic average distortion. However, the conditional mean
requirement (condition II) for optimality of the decoder for a given encoder was proved for

d m vk  d m vj  holds for all j k

𝒞 vk = Lk 1=
Jk 

k 1=
L

D m vk– 2fM m  dm
m Jk

k 1=

L

=

D
vk

------- 2 m vk– fM m  dm
m Jk

k 1=

L

–=

D/ vk

vk opt

mfM m  dm
m Jk

fM m  dm 
m Jk

----------------------------------------------=

pk � mk M mk 1+ =

fM m  dm
m Jk=

vk opt � M mk M mk 1+ =

Haykin_ch06_pp3.fm  Page 284  Monday, November 26, 2012  1:00 PM

https://hemanthrajhemu.github.io



6.5 Pulse-Code Modulation 285

the special case of a mean-square distortion. In any event, these two conditions are
necessary for optimality of a scalar quantizer. Basically, the algorithm for designing the
quantizer consists of alternately optimizing the encoder in accordance with condition I,
then optimizing the decoder in accordance with condition II, and continuing in this
manner until the average distortion D reaches a minimum. The optimum quantizer
designed in this manner is called the Lloyd–Max quantizer.2

6.5 Pulse-Code Modulation

With the material on sampling, PAM, and quantization presented in the preceding
sections, the stage is set for describing PCM, for which we offer the following definition:

PCM is a discrete-time, discrete-amplitude waveform-coding process, by means 
of which an analog signal is directly represented by a sequence of coded pulses.

Specifically, the transmitter consists of two components: a pulse-amplitude modulator followed
by an analog-to-digital (A/D) converter. The latter component itself embodies a quantizer
followed by an encoder. The receiver performs the inverse of these two operations: digital-to-
analog (D/A) conversion followed by pulse-amplitude demodulation. The communication
channel is responsible for transporting the encoded pulses from the transmitter to the receiver. 

Figure 6.12, a block diagram of the PCM, shows the transmitter, the transmission path
from the transmitter output to the receiver input, and the receiver.

It is important to realize, however, that once distortion in the form of quantization noise
is introduced into the encoded pulses, there is absolutely nothing that can be done at the
receiver to compensate for that distortion. The only design precaution that can be taken is
to choose a number of representation levels in the receiver that is large enough to ensure
that the quantization noise is imperceptible for human use at the receiver output.

Figure 6.12 Block diagram of PCM system. 
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286 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Sampling in the Transmitter

The incoming message signal is sampled with a train of rectangular pulses short enough to
closely approximate the instantaneous sampling process. To ensure perfect reconstruction of
the message signal at the receiver, the sampling rate must be greater than twice the highest
frequency component W of the message signal in accordance with the sampling theorem. In
practice, a low-pass anti-aliasing filter is used at the front end of the pulse-amplitude
modulator to exclude frequencies greater than W before sampling and which are of
negligible practical importance. Thus, the application of sampling permits the reduction of
the continuously varying message signal to a limited number of discrete values per second.

Quantization in the Transmitter

The PAM representation of the message signal is then quantized in the analog-to-digital
converter, thereby providing a new representation of the signal that is discrete in both time
and amplitude. The quantization process may follow a uniform law as described in Section
6.4. In telephonic communication, however, it is preferable to use a variable separation
between the representation levels for efficient utilization of the communication channel.
Consider, for example, the quantization of voice signals. Typically, we find that the range
of voltages covered by voice signals, from the peaks of loud talk to the weak passages of
weak talk, is on the order of 1000 to 1. By using a nonuniform quantizer with the feature
that the step size increases as the separation from the origin of the input–output amplitude
characteristic of the quantizer is increased, the large end-steps of the quantizer can take
care of possible excursions of the voice signal into the large amplitude ranges that occur
relatively infrequently. In other words, the weak passages needing more protection are
favored at the expense of the loud passages. In this way, a nearly uniform percentage
precision is achieved throughout the greater part of the amplitude range of the input signal.
The end result is that fewer steps are needed than would be the case if a uniform quantizer
were used; hence the improvement in channel utilization.

Assuming memoryless quantization, the use of a nonuniform quantizer is equivalent to
passing the message signal through a compressor and then applying the compressed signal
to a uniform quantizer, as illustrated in Figure 6.13a. A particular form of compression law
that is used in practice is the so-called -law,3 which is defined by

(6.48)

where ln, i.e., loge, denotes the natural logarithm, m and v are the input and output
voltages of the compressor, and  is a positive constant. It is assumed that m and,

v 1  m+ ln
1 + ln

------------------------------=

Figure 6.13
(a) Nonuniform quantization 
of the message signal in the 
transmitter. (b) Uniform 
quantization of the original 
message signal in the receiver. 
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6.5 Pulse-Code Modulation 287

therefore, v are scaled so that they both lie inside the interval [–1, 1]. The -law is plotted
for three different values of  in Figure 6.14a. The case of uniform quantization
corresponds to  = 0. For a given value of , the reciprocal slope of the compression curve
that defines the quantum steps is given by the derivative of the absolute value |m| with
respect to the corresponding absolute value |v |; that is,

(6.49)

From (6.49) it is apparent that the -law is neither strictly linear nor strictly logarithmic.
Rather, it is approximately linear at low input levels corresponding to |m|  1 and
approximately logarithmic at high input levels corresponding to |m|  1.

Another compression law that is used in practice is the so-called A-law, defined by

(6.50)

where A is another positive constant. Equation (6.50) is plotted in Figure 6.14b for varying
A. The case of uniform quantization corresponds to A = 1. The reciprocal slope of this
second compression curve is given by the derivative of |m| with respect to |v |, as shown by 

(6.51)

Figure 6.14
Compression laws: 
(a) µ-law; 
(b) A-law. 
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288 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

To restore the signal samples to their correct relative level, we must, of course, use a device
in the receiver with a characteristic complementary to the compressor. Such a device is
called an expander. Ideally, the compression and expansion laws are exactly the inverse of
each other. With this provision in place, we find that, except for the effect of quantization, the
expander output is equal to the compressor input. The cascade combination of a compressor
and an expander, depicted in Figure 6.13, is called a compander.

For both the -law and A-law, the dynamic range capability of the compander improves
with increasing  and A, respectively. The SNR for low-level signals increases at the expense
of the SNR for high-level signals. To accommodate these two conflicting requirements (i.e.,
a reasonable SNR for both low- and high-level signals), a compromise is usually made in
choosing the value of parameter  for the -law and parameter A for the A-law. The typical
values used in practice are  = 255 for the law and A = 87.6 for the A-law.4

Encoding in the Transmitter

Through the combined use of sampling and quantization, the specification of an analog
message signal becomes limited to a discrete set of values, but not in the form best suited
to transmission over a telephone line or radio link. To exploit the advantages of sampling
and quantizing for the purpose of making the transmitted signal more robust to noise,
interference, and other channel impairments, we require the use of an encoding process to
translate the discrete set of sample values to a more appropriate form of signal. Any plan
for representing each of this discrete set of values as a particular arrangement of discrete
events constitutes a code. Table 6.2 describes the one-to-one correspondence between
representation levels and codewords for a binary number system for R = 4 bits per sample.
Following the terminology of Chapter 5, the two symbols of a binary code are customarily
denoted as 0 and 1. In practice, the binary code is the preferred choice for encoding for the
following reason:

The maximum advantage over the effects of noise encountered in a communication 
system is obtained by using a binary code because a binary symbol withstands a 
relatively high level of noise and, furthermore, it is easy to regenerate. 

The last signal-processing operation in the transmitter is that of line coding, the purpose of
which is to represent each binary codeword by a sequence of pulses; for example,
symbol 1 is represented by the presence of a pulse and symbol 0 is represented by absence
of the pulse. Line codes are discussed in Section 6.10. Suppose that, in a binary code, each
codeword consists of R bits. Then, using such a code, we may represent a total of 2R

distinct numbers. For example, a sample quantized into one of 256 levels may be
represented by an 8-bit codeword.

Inverse Operations in the PCM Receiver

The first operation in the receiver of a PCM system is to regenerate (i.e., reshape and clean
up) the received pulses. These clean pulses are then regrouped into codewords and decoded
(i.e., mapped back) into a quantized pulse-amplitude modulated signal. The decoding
process involves generating a pulse the amplitude of which is the linear sum of all the pulses
in the codeword. Each pulse is weighted by its place value (20, 21, 22, , 2R – 1) in the code,
where R is the number of bits per sample. Note, however, that whereas the analog-to-digital
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6.5 Pulse-Code Modulation 289

converter in the transmitter involves both quantization and encoding, the digital-to-analog
converter in the receiver involves decoding only, as illustrated in Figure 6.12.

The final operation in the receiver is that of signal reconstruction. Specifically, an
estimate of the original message signal is produced by passing the decoder output through
a low-pass reconstruction filter whose cutoff frequency is equal to the message
bandwidth W. Assuming that the transmission link (connecting the receiver to the
transmitter) is error free, the reconstructed message signal includes no noise with the
exception of the initial distortion introduced by the quantization process.

PCM Regeneration along the Transmission Path

The most important feature of a PCM systems is its ability to control the effects of
distortion and noise produced by transmitting a PCM signal through the channel,
connecting the receiver to the transmitter. This capability is accomplished by
reconstructing the PCM signal through a chain of regenerative repeaters, located at
sufficiently close spacing along the transmission path.

Table 6.2 Binary number system for T = 4 bits/sample

Ordinal number of 
representation level

Level number expressed 
as sum of powers of 2

Binary 
number

0 0000

1  20 0001

2 21 0010

3 21 + 20 0011

4 22 0100

5 22 + 20 0101

6 22 + 21 0110

7 22 + 21 + 20 0111

8 23 1000

9 23   + 20 1001

10 23 + 21 1010

11 23 + 21 + 20 1011

12 23 + 22 1100

13 23 + 22  + 20 1101

14 23 + 22 + 21 1110

15 23 + 22 + 21 + 20 1111
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290 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

As illustrated in Figure 6.15, three basic functions are performed in a regenerative
repeater: equalization, timing, and decision making. The equalizer shapes the received
pulses so as to compensate for the effects of amplitude and phase distortions produced by
the non-ideal transmission characteristics of the channel. The timing circuitry provides a
periodic pulse train, derived from the received pulses, for sampling the equalized pulses at
the instants of time where the SNR ratio is a maximum. Each sample so extracted is com-
pared with a predetermined threshold in the decision-making device. In each bit interval, a
decision is then made on whether the received symbol is 1 or 0 by observing whether the
threshold is exceeded or not. If the threshold is exceeded, a clean new pulse representing
symbol 1 is transmitted to the next repeater; otherwise, another clean new pulse represent-
ing symbol 0 is transmitted. In this way, it is possible for the accumulation of distortion and
noise in a repeater span to be almost completely removed, provided that the disturbance is
not too large to cause an error in the decision-making process. Ideally, except for delay, the
regenerated signal is exactly the same as the signal originally transmitted. In practice, how-
ever, the regenerated signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the
regenerated signal.

2. If the spacing between received pulses deviates from its assigned value, a jitter is
introduced into the regenerated pulse position, thereby causing distortion.

The important point to take from this subsection on PCM is the fact that regeneration
along the transmission path is provided across the spacing between individual regenerative
repeaters (including the last stage of regeneration at the receiver input) provided that the
spacing is short enough. If the transmitted SNR ratio is high enough, then the regenerated
PCM data stream is the same as the transmitted PCM data stream, except for a practically
negligibly small bit error rate (BER). In other words, under these operating conditions,
performance degradation in the PCM system is essentially confined to quantization noise
in the transmitter.

6.6 Noise Considerations in PCM Systems

The performance of a PCM system is influenced by two major sources of noise:

1. Channel noise, which is introduced anywhere between the transmitter output and the
receiver input; channel noise is always present, once the equipment is switched on.

2. Quantization noise, which is introduced in the transmitter and is carried all the way
along to the receiver output; unlike channel noise, quantization noise is signal
dependent, in the sense that it disappears when the message signal is switched off.

Figure 6.15
Block diagram of 
regenerative repeater. 
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6.6 Noise Considerations in PCM Systems 291

Naturally, these two sources of noise appear simultaneously once the PCM system is in
operation. However, the traditional practice is to consider them separately, so that we may
develop insight into their individual effects on the system performance.

The main effect of channel noise is to introduce bit errors into the received signal. In
the case of a binary PCM system, the presence of a bit error causes symbol 1 to be
mistaken for symbol 0, or vice versa. Clearly, the more frequently bit errors occur, the
more dissimilar the receiver output becomes compared with the original message signal.
The fidelity of information transmission by PCM in the presence of channel noise may be
measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the
transmitted binary symbol on the average. The average probability of symbol error, also
referred to as the BER, assumes that all the bits in the original binary wave are of equal
importance. When, however, there is more interest in restructuring the analog waveform of
the original message signal, different symbol errors may be weighted differently; for
example, an error in the most significant bit in a codeword (representing a quantized
sample of the message signal) is more harmful than an error in the least significant bit.

To optimize system performance in the presence of channel noise, we need to minimize
the average probability of symbol error. For this evaluation, it is customary to model the
channel noise as an ideal additive white Gaussian noise (AWGN) channel. The effect of
channel noise can be made practically negligible by using an adequate signal energy-to-
noise density ratio through the provision of short-enough spacing between the regenerative
repeaters in the PCM system. In such a situation, the performance of the PCM system is
essentially limited by quantization noise acting alone.

From the discussion of quantization noise presented in Section 6.4, we recognize that
quantization noise is essentially under the designer’s control. It can be made negligibly
small through the use of an adequate number of representation levels in the quantizer and
the selection of a companding strategy matched to the characteristics of the type of
message signal being transmitted. We thus find that the use of PCM offers the possibility
of building a communication system that is rugged with respect to channel noise on a scale
that is beyond the capability of any analog communication system; hence its use as a
standard against which other waveform coders (e.g., DPCM and DM) are compared.

Error Threshold

The underlying theory of BER calculation in a PCM system is deferred to Chapter 8. For
the present, it suffices to say that the average probability of symbol error in a binary
encoded PCM receiver due to AWGN depends solely on EbN0, which is defined as the
ratio of the transmitted signal energy per bit Eb, to the noise spectral density N0. Note that
the ratio EbN0 is dimensionless even though the quantities Eb and N0 have different
physical meaning. In Table 6.3, we present a summary of this dependence for the case of a
binary PCM system, in which symbols 1 and 0 are represented by rectangular pulses of
equal but opposite amplitudes. The results presented in the last column of the table assume
a bit rate of 105 bits/s.

From Table 6.3 it is clear that there is an error threshold (at about 11 dB). For EbN0
below the error threshold the receiver performance involves significant numbers of errors,
and above it the effect of channel noise is practically negligible. In other words, provided
that the ratio EbN0 exceeds the error threshold, channel noise has virtually no effect on
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292 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

the receiver performance, which is precisely the goal of PCM. When, however, EbN0
drops below the error threshold, there is a sharp increase in the rate at which errors occur
in the receiver. Because decision errors result in the construction of incorrect codewords,
we find that when the errors are frequent, the reconstructed message at the receiver output
bears little resemblance to the original message signal.

An important characteristic of a PCM system is its ruggedness to interference, caused
by impulsive noise or cross-channel interference. The combined presence of channel noise
and interference causes the error threshold necessary for satisfactory operation of the PCM
system to increase. If, however, an adequate margin over the error threshold is provided in
the first place, the system can withstand the presence of relatively large amounts of
interference. In other words, a PCM system is robust with respect to channel noise and
interference, providing further confirmation to the point made in the previous section that
performance degradation in PCM is essentially confined to quantization noise in the
transmitter.

PCM Noise Performance Viewed in Light of the Information 
Capacity Law

Consider now a PCM system that is known to operate above the error threshold, in which
case we would be justified to ignore the effect of channel noise. In other words, the noise
performance of the PCM system is essentially determined by quantization noise acting
alone. Given such a scenario, how does the PCM system fare compared with the
information capacity law, derived in Chapter 5?

To address this question of practical importance, suppose that the system uses a
codeword consisting of n symbols with each symbol representing one of M possible
discrete amplitude levels; hence the reference to the system as an “M-ary” PCM system.
For this system to operate above the error threshold, there must be provision for a large
enough noise margin.

 For the PCM system to operate above the error threshold as proposed, the requirement
for a noise margin that is sufficiently large to maintain a negligible error rate due to
channel noise. This, in turn, means there must be a certain separation between the M
discrete amplitude levels. Call this separation c, where c is a constant and = N0B is the

Table 6.3 Influence of EbN0 on the probability of error

EbN0 (dB)
Probability of 
error Pe

For a bit rate of 105 bits/s,
this is about one error every

 4.3 10–2 10–3 s

8.4 10–4 10–1 s

10.6 10–6 10 s

12.0 10–8 20 min

13.0 10–10 1 day

14.0 10–12 3 months

2
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6.6 Noise Considerations in PCM Systems 293

noise variance measured in a channel bandwidth B. The number of amplitude levels M is
usually an integer power of 2. The average transmitted power will be least if the amplitude
range is symmetrical about zero. Then, the discrete amplitude levels, normalized with
respect to the separation c, will have the values 12, 32, , (M – 1)2. We assume
that these M different amplitude levels are equally likely. Accordingly, we find that the
average transmitted power is given by

 (6.52)

Suppose that the M-ary PCM system described herein is used to transmit a message signal
with its highest frequency component equal to W hertz. The signal is sampled at the
Nyquist rate of 2W samples per second. We assume that the system uses a quantizer of the
midrise type, with L equally likely representation levels. Hence, the probability of
occurrence of any one of the L representation levels is 1L. Correspondingly, the amount
of information carried by a single sample of the signal is log2 L bits. With a maximum
sampling rate of 2W samples per second, the maximum rate of information transmission of
the PCM system measured in bits per second is given by

 bits/s (6.53)

Since the PCM system uses a codeword consisting of n code elements with each one
having M possible discrete amplitude values, we have Mn different possible codewords.
For a unique encoding process, therefore, we require

(6.54)

Clearly, the rate of information transmission in the system is unaffected by the use of an
encoding process. We may, therefore, eliminate L between (6.53) and (6.54) to obtain

 bits/s (6.55)

Equation (6.52) defines the average transmitted power required to maintain an M-ary PCM
system operating above the error threshold. Hence, solving this equation for the number of
discrete amplitude levels, we may express the number M in terms of the average
transmitted power P and channel noise variance = N0B as follows:

(6.56)

Therefore, substituting (6.56) into (6.55), we obtain

(6.57)

The channel bandwidth B required to transmit a rectangular pulse of duration 1/(2nW),
representing a symbol in the codeword, is given by

(6.58)
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294 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

where  is a constant with a value lying between 1 and 2. Using the minimum possible
value  = 1, we find that the channel bandwidth B = nW. We may thus rewrite (6.57) as

 bits/s (6.59)

which defines the upper bound on the information capacity realizable by an M-ary PCM
system.

From Chapter 5 we recall that, in accordance with Shannon’s information capacity law,
the ideal transmission system is described by the formula

 bits/s (6.60)

The most interesting point derived from the comparison of (6.59) with (6.60) is the fact
that (6.59) is of the right mathematical form in an information-theoretic context. To be
more specific, we make the following statement: 

Power and bandwidth in a PCM system are exchanged on a logarithmic 
basis, and the information capacity of the system is proportional to the 
channel bandwidth B.

As a corollary, we may go on to state:

When the SNR ratio is high, the bandwidth-noise trade-off follows an 
exponential law in PCM.

From the study of noise in analog modulation systems,5 it is known that the use of
frequency modulation provides the best improvement in SNR ratio. To be specific, when
the carrier-to-noise ratio is high enough, the bandwidth-noise trade-off follows a square
law in frequency modulation (FM). Accordingly, in comparing the noise performance of
FM with that of PCM we make the concluding statement:

PCM is more efficient than FM in trading off an increase in bandwidth for 
improved noise performance.

Indeed, this statement is further testimony for the PCM being viewed as a standard for
waveform coding.

6.7 Prediction-Error Filtering for Redundancy Reduction

When a voice or video signal is sampled at a rate slightly higher than the Nyquist rate, as
usually done in PCM, the resulting sampled signal is found to exhibit a high degree of
correlation between adjacent samples. The meaning of this high correlation is that, in an
average sense, the signal does not change rapidly from one sample to the next. As a result,
the difference between adjacent samples has a variance that is smaller than the variance of
the original signal. When these highly correlated samples are encoded, as in the standard
PCM system, the resulting encoded signal contains redundant information. This kind of
signal structure means that symbols that are not absolutely essential to the transmission of
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6.7 Prediction-Error Filtering for Redundancy Reduction 295

information are generated as a result of the conventional encoding process described in
Section 6.5. By reducing this redundancy before encoding, we obtain a more efficient coded
signal, which is the basic idea behind DPCM. Discussion of this latter form of waveform
coding is deferred to the next section. In this section we discuss prediction-error filtering,
which provides a method for reduction and, therefore, improved waveform coding.

Theoretical Considerations

To elaborate, consider the block diagram of Figure 6.16a, which includes:

• a direct forward path from the input to the output;
• a predictor in the forward direction as well; and
• a comparator for computing the difference between the input signal and the

predictor output.

The difference signal, so computed, is called the prediction error. Correspondingly, a filter
that operates on the message signal to produce the prediction error, illustrated in Figure
6.16a, is called a prediction-error filter.

To simplify the presentation, let

(6.61)

denote a sample of the message signal m(t) taken at time t = nTs. Then, with  denoting
the corresponding predictor output, the prediction error is defined by 

(6.62)

where en is the amount by which the predictor fails to predict the input sample mn exactly.
In any case, the objective is to design the predictor so as to minimize the variance of the
prediction error en. In so doing, we effectively end up using a smaller number of bits to
represent en than the original message sample mn; hence, the need for a smaller
transmission bandwidth.

Figure 6.16 Block diagram of (a) prediction-error filter and (b) its inverse. 
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296 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The prediction-error filter operates on the message signal on a sample-by-sample basis
to produce the prediction error. With such an operation performed in the transmitter, how
do we recover the original message signal from the prediction error at the receiver? To
address this fundamental question in a simple-minded and yet practical way, we invoke the
use of linerarity. Let the operator L denote the action of the predictor, as shown by

(6.63)

Accordingly, we may rewrite (6.62) in operator form as follows:

 (6.64)

Under the assumption of linearity, we may invert (6.64) to recover the message sample
from the prediction error, as shown by

(6.65)

Equation (6.65) is immediately recognized as the equation of a feedback system, as
illustrated in Figure 6.16b. Most importantly, in functional terms, this feedback system
may be viewed as the inverse of prediction-error filtering.

Discrete-Time Structure for Prediction

To simplify the design of the linear predictor in Figure 6.16, we propose to use a discrete-time
structure in the form of a finite-duration impulse response (FIR) filter, which is well known in
the digital signal-processing literature. The FIR filter was briefly discussed in Chapter 2.

Figure 6.17 depicts an FIR filter, consisting of two functional components:

• a set of p unit-delay elements, each of which is represented by z–1; and
• a corresponding set of adders used to sum the scaled versions of the delayed inputs, 

mn – 1, mn – 2, , mn – p.

The overall linearly predicted output is thus defined by the convolution sum

(6.66)

where p is called the prediction order. Minimization of the prediction-error variance is
achieved by a proper choice of the FIR filter-coefficients as described next.

Figure 6.17 Block diagram of an FIR filter of order p. 
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6.7 Prediction-Error Filtering for Redundancy Reduction 297

First, however, we make the following assumption:

The message signal m(t) is drawn from a stationary stochastic processor M(t) 
with zero mean.

This assumption may be satisfied by processing the message signal on a block-by-block
basis, with each block being just long enough to satisfy the assumption in a pseudo-
stationary manner. For example, a block duration of 40 ms is considered to be adequate
for voice signals.

With the random variable Mn assumed to have zero mean, it follows that the variance of
the prediction error en is the same as its mean-square value. We may thus define

(6.67)

as the index of performance. Substituting (6.65) and (6.66) into (6.67) and then expanding
terms, the index of performance is expressed as follows:

(6.68)

Moreover, under the above assumption of pseudo-stationarity, we may go on to introduce
the following second-order statistical parameters for mn treated as a sample of the
stochastic process M(t) at t = nTs:

1. Variance

(6.69)

2. Autocorrelation function

(6.70)

Note that to simplify the notation in (6.67) to (6.70), we have applied the expectation
operator 𝔼 to samples rather than the corresponding random variables. 

In any event, using (6.69) and (6.70), we may reformulate the index of performance of
(6.68) in the new form involving statistical parameters:

(6.71)

Differentiating this index of performance with respect to the filter coefficients, setting the
resulting expression equal to zero, and then rearranging terms, we obtain the following
system of simultaneous equations:

(6.72)

where wo, j is the optimal value of the jth filter coefficient wj. This optimal set of equations
is the discrete-time version of the celebrated Wiener–Hopf equations for linear prediction.
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298 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

With compactness of mathematical exposition in mind, we find it convenient to
formulate the Wiener–Hopf equations in matrix form, as shown by

(6.73)

where

 (6.74)

is the p-by-1 optimum coefficient vector of the FIR predictor,

 (6.75)

is the p-by-1 autocorrelation vector of the original message signal, excluding the mean-
square value represented by RM, 0, and 

 (6.76)

is the p-by-y correlation matrix of the original message signal, including RM, 0.6

Careful examination of (6.76) reveals the Toeplitz property of the autocorrelation
matrix RM, which embodies two distinctive characteristics:

1. All the elements on the main diagonal of the matrix RM are equal to the mean-
square value or, equivalently under the zero-mean assumption, the variance of the
message sample mn, as shown by

2. The matrix is symmetric about the main diagonal. 

This Toeplitz property is a direct consequence of the assumption that message signal m(t)
is the sample function of a stationary stochastic process. From a practical perspective, the
Toeplitz property of the autocorrelation matrix RM is important in that all of its elements
are uniquely defined by the autocorrelation sequence . Moreover, from the
defining equation (6.75), it is clear that the autocorrelation vector rM is uniquely defined
by the autocorrelation sequence . We may therefore make the following
statement:

The p filter coefficients of the optimized linear predictor, configured in the form 
of an FIR filter, are uniquely defined by the variance  and the 
autocorrelation sequence , which pertain to the message signal 
m(t) drawn from a weakly stationary process.

Typically, we have
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6.7 Prediction-Error Filtering for Redundancy Reduction 299

Under this condition, we find that the autocorrelation matrix RM is also invertible; that is,
the inverse matrix  exists. We may therefore solve (6.73) for the unknown value of the
optimal coefficient vector wo using the formula7

(6.77)

Thus, given the variance  and autocorrelation sequence , we may uniquely
determine the optimized coefficient vector of the linear predictor, wo, defining an FIR
filter of order p; and with it our design objective is satisfied.

To complete the linear prediction theory presented herein, we need to find the
minimum mean-square value of prediction error, resulting from the use of the optimized
predictor. We do this by first reformulating (6.71) in the matrix form:

(6.78)

where the superscript T denotes matrix transposition,  is the inner product of the

p-by-1 vectors wo and rM, and the matrix product  is a quadratic form. Then,

substituting the optimum formula of (6.77) into (6.78), we find that the minimum mean-

square value of prediction error is given by

(6.79)

where we have used the property that the autocorrelation matrix of a weakly stationary
process is symmetric; that is, 

(6.80)

By definition, the quadratic form  is always positive. Accordingly, from (6.79)
it follows that the minimum value of the mean-square prediction error Jmin is always
smaller than the variance  of the zero-mean message sample mn that is being
predicted. Through the use of linear prediction as described herein, we have thus satisfied
the objective: 

To design a prediction-error filter the output of which has a smaller variance 
than the variance of the message sample applied to its input, we need to follow 
the optimum formula of (6.77).

This statement provides the rationale for going on to describe how the bandwidth
requirement of the standard PCM can be reduced through redundancy reduction. However,
before proceeding to do so, it is instructive that we consider an adaptive implementation of
the linear predictor.
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300 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Linear Adaptive Prediction

The use of (6.77) for calculating the optimum weight vector of a linear predictor requires
knowledge of the autocorrelation function Rm,k of the message signal sequence 
where p is the prediction order. What if knowledge of this sequence is not available? In
situations of this kind, which occur frequently in practice, we may resort to the use of an
adaptive predictor.

The predictor is said to be adaptive in the following sense:

• Computation of the tap weights wk, k = 1, 2, , p, proceeds in an iterative manner,
starting from some arbitrary initial values of the tap weights.

• The algorithm used to adjust the tap weights (from one iteration to the next) is “self-
designed,” operating solely on the basis of available data.

The aim of the algorithm is to find the minimum point of the bowl-shaped error surface
that describes the dependence of the cost function J on the tap weights. It is, therefore,
intuitively reasonable that successive adjustments to the tap weights of the predictor be
made in the direction of the steepest descent of the error surface; that is, in a direction
opposite to the gradient vector whose elements are defined by

(6.81)

This is indeed the idea behind the method of deepest descent. Let wk, n denote the value of
the kth tap weight at iteration n. Then, the updated value of this weight at iteration n + 1 is
defined by

(6.82)

where  is a step-size parameter that controls the speed of adaptation and the factor 1/2 is
included for convenience of presentation. Differentiating the cost function J of (6.68) with
respect to wk, we readily find that

(6.83)

From a practical perspective, the formula for the gradient gk in (6.83) could do with further
simplification that ignores the expectation operator. In effect, instantaneous values are
used as estimates of autocorrelation functions. The motivation for this simplification is to
permit the adaptive process to proceed forward on a step-by-step basis in a self-organized
manner. Clearly, by ignoring the expectation operator in (6.83), the gradient gk takes on a
time-dependent value, denoted by gk, n. We may thus write

(6.84)

where  is an estimate of the filter coefficient wj, n at time n. 
The stage is now set for substituting (6.84) into (6.82), where in the latter equation 

is substituted for wk, n; this change is made to account for dispensing with the expectation
operator:
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6.8 Differential Pulse-Code Modulation 301

(6.85)

where en is the new prediction error defined by 

(6.86)

Note that the current value of the message signal, mn, plays a role as the desired response
for predicting the value of mn given the past values of the message signal: mn – 1, mn – 2,
, mn – p.

In words, we may express the adaptive filtering algorithm of (6.85) as follows:

The algorithm just described is the popular least-mean-square (LMS) algorithm,
formulated for the purpose of linear prediction. The reason for popularity of this adaptive
filtering algorithm is the simplicity of its implementation. In particular, the computational
complexity of the algorithm, measured in terms of the number of additions and
multiplications, is linear in the prediction order p. Moreover, the algorithm is not only
computationally efficient but it is also effective in performance.

The LMS algorithm is a stochastic adaptive filtering algorithm, stochastic in the sense
that, starting from the initial condition defined by , it seeks to find the
minimum point of the error surface by following a zig-zag path. However, it never finds
this minimum point exactly. Rather, it continues to execute a random motion around the
minimum point of the error surface (Haykin, 2013).

6.8 Differential Pulse-Code Modulation

DPCM, the scheme to be considered for channel-bandwidth conservation, exploits the
idea of linear prediction theory with a practical difference:

In the transmitter, the linear prediction is performed on a quantized version 
of the message sample instead of the message sample itself, as illustrated in 
Figure 6.18.
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302 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The resulting process is referred to as differential quantization. The motivation behind the
use of differential quantization follows from two practical considerations:

1. Waveform encoding in the transmitter requires the use of quantization.

2. Waveform decoding in the receiver, therefore, has to process a quantized signal.

In order to cater to both requirements in such a way that the same structure is used for
predictors in both the transmitter and the receiver, the transmitter has to perform prediction-
error filtering on the quantized version of the message signal rather than the signal itself, as
shown in Figure 6.19a. Then, assuming a noise-free channel, the predictors in the transmitter
and receiver operate on exactly the same sequence of quantized message samples.

To demonstrate this highly desirable and distinctive characteristic of differential PCM,
we see from Figure 6.19a that

(6.87)

Figure 6.18 Block diagram of a differential quantizer. 

Figure 6.19 DPCM system: (a) transmitter; (b) receiver. 
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6.8 Differential Pulse-Code Modulation 303

where qn is the quantization noise produced by the quantizer operating on the prediction
error en. Moreover, from Figure 6.19a, we readily see that

(6.88)

where  is the predicted value of the original message sample mn; thus, (6.88) is in
perfect agreement with Figure 6.18. Hence, the use of (6.87) in (6.88) yields

(6.89)

We may now invoke (6.88) of linear prediction theory to rewrite (6.89) in the equivalent
form:

(6.90)

which describes a quantized version of the original message sample mn.
With the differential quantization scheme of Figure 6.19a at hand, we may now expand

on the structures of the transmitter and receiver of DPCM.

DPCM Transmitter

Operation of the DPCM transmitter proceeds as follows:

1. Given the predicted message sample , the comparator at the transmitter input
computes the prediction error en, which is quantized to produce the quantized
version of en in accordance with (6.87).

2. With  and eq, n at hand, the adder in the transmitter produces the quantized
version of the original message sample mn, namely mq, n, in accordance with (6.88).

3. The required one-step prediction  is produced by applying the sequence of
quantized samples  to a linear FIR predictor of order p.

This multistage operation is clearly cyclic, encompassing three steps that are repeated at
each time step n. Moreover, at each time step, the encoder operates on the quantized
prediction error eq, n to produce the DPCM-encoded version of the original message
sample mn. The DPCM code so produced is a lossy-compressed version of the PCM code;
it is “lossy” because of the prediction error.

DPCM Receiver

The structure of the receiver is much simpler than that of the transmitter, as depicted in
Figure 6.19b. Specifically, first, the decoder reconstructs the quantized version of the
prediction error, namely eq, n. An estimate of the original message sample mn is then
computed by applying the decoder output to the same predictor used in the transmitter of
Figure 6.19a. In the absence of channel noise, the encoded signal at the receiver input is
identical to the encoded signal at the transmitter output. Under this ideal condition, we
find that the corresponding receiver output is equal to mq, n, which differs from the original
signal sample mn only by the quantization error qn incurred as a result of quantizing the
prediction error en.

From the foregoing analysis, we thus observe that, in a noise-free environment, the
linear predictors in the transmitter and receiver of DPCM operate on the same sequence of
samples, mq, n. It is with this point in mind that a feedback path is appended to the
quantizer in the transmitter of Figure 6.19a.
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304 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Processing Gain

The output SNR of the DPCM system, shown in Figure 6.19, is, by definition,

(6.91)

where  is the variance of the original signal sample mn, assumed to be of zero mean,
and  is the variance of the quantization error qn, also of zero mean. We may rewrite
(6.91) as the product of two factors, as shown by

(6.92)

where, in the first line,  is the variance of the prediction error en. The factor (SNR)Q

introduced in the second line is the signal-to-quantization noise ratio, which is itself

defined by

(6.93)

The other factor Gp is the processing gain produced by the differential quantization
scheme; it is formally defined by

(6.94)

The quantity Gp, when it is greater than unity, represents a gain in signal-to-noise ratio,

which is due to the differential quantization scheme of Figure 6.19. Now, for a given

message signal, the variance  is fixed, so that Gp is maximized by minimizing the

variance  of the prediction error en. Accordingly, the objective in implementing the

DPCM should be to design the prediction filter so as to minimize the prediction-error

variance, .

In the case of voice signals, it is found that the optimum signal-to-quantization noise
advantage of the DPCM over the standard PCM is in the neighborhood of 4–11dB. Based
on experimental studies, it appears that the greatest improvement occurs in going from no
prediction to first-order prediction, with some additional gain resulting from increasing
the order p of the prediction filter up to 4 or 5, after which little additional gain is obtained.
Since 6 dB of quantization noise is equivalent to 1 bit per sample by virtue of the results
presented in Table 6.1 for sinusoidal modulation, the advantage of DPCM may also be
expressed in terms of bit rate. For a constant signal-to-quantization noise ratio, and
assuming a sampling rate of 8 kHz, the use of DPCM may provide a saving of about 8–
16 kHz (i.e., 1 to 2 bits per sample) compared with the standard PCM.
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6.9 Delta Modulation 305

6.9 Delta Modulation

In choosing DPCM for waveform coding, we are, in effect, economizing on transmission
bandwidth by increasing system complexity, compared with standard PCM. In other
words, DPCM exploits the complexity–bandwidth tradeoff. However, in practice, the need
may arise for reduced system complexity compared with the standard PCM. To achieve
this other objective, transmission bandwidth is traded off for reduced system complexity,
which is precisely the motivation behind DM. Thus, whereas DPCM exploits the
complexity–bandwidth tradeoff, DM exploits the bandwidth–complexity tradeoff. We may,
therefore, differentiate between the standard PCM, the DPCM, and the DM along the lines
described in Figure 6.20. With the bandwidth–complexity tradeoff being at the heart of
DM, the incoming message signal m(t) is oversampled, which requires the use of a
sampling rate higher than the Nyquist rate. Accordingly, the correlation between adjacent
samples of the message signal is purposely increased so as to permit the use of a simple
quantizing strategy for constructing the encoded signal.

DM Transmitter

In the DM transmitter, system complexity is reduced to the minimum possible by using the
combination of two strategies:

1. Single-bit quantizer, which is the simplest quantizing strategy; as depicted in Figure
6.21, the quantizer acts as a hard limiter with only two decision levels, namely, .

2. Single unit-delay element, which is the most primitive form of a predictor; in other
words, the only component retained in the FIR predictor of Figure 6.17 is the front-end
block labeled z–1, which acts as an accumulator.

Thus, replacing the multilevel quantizer and the FIR predictor in the DPCM transmitter of
Figure 6.19a in the manner described under points 1 and 2, respectively, we obtain the
block diagram of Figure 6.21a for the DM transmitter.

From this figure, we may express the equations underlying the operation of the DM
transmitter by the following set of equations (6.95)–(6.97):

 (6.95)

Figure 6.20 Illustrating the tradeoffs 
between standard PCM, DPCM, and DM. 
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306 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

(6.96)

(6.97)

According to (6.95) and (6.96), two possibilities may naturally occur:

1. The error signal en (i.e., the difference between the message sample mn and its

approximation ) is positive, in which case the approximation  is

increased by the amount ; in this first case, the encoder sends out symbol 1.

2. The error signal en is negative, in which case the approximation  is

reduced by the amount ; in this second case, the encoder sends out symbol 0.

From this description it is apparent that the delta modulator produces a staircase
approximation to the message signal, as illustrated in Figure 6.22a. Moreover, the rate of
data transmission in DM is equal to the sampling rate fs = 1Ts, as illustrated in the binary
sequence of Figure 6.22b.

Figure 6.21 DM system: (a) transmitter; (b) receiver. 
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6.9 Delta Modulation 307

DM Receiver

Following a procedure similar to the way in which we constructed the DM transmitter of
Figure 6.21a, we may construct the DM receiver of Figure 6.21b as a special case of the
DPCM receiver of Figure 6.19b. Working through the operation of the DM receiver, we
find that reconstruction of the staircase approximation to the original message signal is
achieved by passing the sequence of positive and negative pulses (representing symbols 1
and 0, respectively) through the block labeled “accumulator.” 

Under the assumption that the channel is distortionless, the accumulated output is the
desired mq,n given that the decoded channel output is eq,n. The out-of-band quantization
noise in the high-frequency staircase waveform in the accumulator output is suppressed by
passing it through a low-pass filter with a cutoff frequency equal to the message
bandwidth.

Quantization Errors in DM

DM is subject to two types of quantization error: slope overload distortion and granular
noise. We will discuss the case of slope overload distortion first.

Starting with (6.97), we observe that this equation is the digital equivalent of
integration, in the sense that it represents the accumulation of positive and negative
increments of magnitude . Moreover, denoting the quantization error applied to the
message sample mn by qn, we may express the quantized message sample as

(6.98)

With this expression for mq,n at hand, we find from (6.98) that the quantizer input is

(6.99)

Thus, except for the delayed quantization error qn –1 , the quantizer input is a first
backward difference of the original message sample. This difference may be viewed as a

Figure 6.22 Illustration of DM. 
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308 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

digital approximation to the quantizer input or, equivalently, as the inverse of the digital
integration process carried out in the DM transmitter. If, then, we consider the maximum
slope of the original message signal m(t), it is clear that in order for the sequence of
samples {mq,n} to increase as fast as the sequence of message samples {mn} in a region of
maximum slope of m(t), we require that the condition

(6.100)

be satisfied. Otherwise, we find that the step-size  is too small for the staircase
approximation mq(t) to follow a steep segment of the message signal m(t), with the result
that mq(t) falls behind m(t), as illustrated in Figure 6.23. This condition is called slope
overload, and the resulting quantization error is called slope-overload distortion (noise).
Note that since the maximum slope of the staircase approximation mq(t) is fixed by the
step size , increases and decreases in mq(t) tend to occur along straight lines. For this
reason, a delta modulator using a fixed step size is often referred to as a linear delta
modulator. 

In contrast to slope-overload distortion, granular noise occurs when the step size  is
too large relative to the local slope characteristics of the message signal m(t), thereby
causing the staircase approximation mq(t) to hunt around a relatively flat segment of m(t);
this phenomenon is also illustrated in the tail end of Figure 6.23. Granular noise is
analogous to quantization noise in a PCM system.

Adaptive DM

From the discussion just presented, it is appropriate that we need to have a large step size
to accommodate a wide dynamic range, whereas a small step size is required for the
accurate representation of relatively low-level signals. It is clear, therefore, that the choice
of the optimum step size that minimizes the mean-square value of the quantization error in
a linear delta modulator will be the result of a compromise between slope-overload
distortion and granular noise. To satisfy such a requirement, we need to make the delta
modulator “adaptive,” in the sense that the step size is made to vary in accordance with the
input signal. The step size is thereby made variable, such that it is enlarged during
intervals when the slope-overload distortion is dominant and reduced in value when the
granular (quantization) noise is dominant.

Figure 6.23 Illustration of the two different forms of quantization error in DM. 
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6.10 Line Codes 309

6.10 Line Codes

In this chapter, we have described three basic waveform-coding schemes: PCM, DPCM,
and DM. Naturally, they differ from each other in several ways: transmission–bandwidth
requirement, transmitter–receiver structural composition and complexity, and quantization
noise. Nevertheless, all three of them have a common need: line codes for electrical
representation of the encoded binary streams produced by their individual transmitters, so
as to facilitate transmission of the binary streams across the communication channel.

Figure 6.24 displays the waveforms of five important line codes for the example data
stream 01101001. Figure 6.25 displays their individual power spectra (for positive
frequencies) for randomly generated binary data, assuming that first, symbols 0 and 1 are
equiprobable, second, the average power is normalized to unity, and third, the frequency f
is normalized with respect to the bit rate 1Tb. In what follows, we describe the five line
codes involved in generating the coded waveforms of Figure 6.24. 

Figure 6.24 Line codes for the electrical representations of binary data: (a) unipolar 
nonreturn-to-zero (NRZ) signaling; (b) polar NRZ signaling; (c) unipolar return-to-zero 
(RZ) signaling; (d) bipolar RZ signaling; (e) split-phase or Manchester code. 
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310 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Figure 6.25 Power spectra of line codes: (a) unipolar NRZ signal; (b) polar NRZ signal; (c) unipolar 
RZ signal; (d) bipolar RZ signal; (e) Manchester-encoded signal. The frequency is normalized with 
respect to the bit rate 1Tb, and the average power is normalized to unity. 
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6.10 Line Codes 311

Unipolar NRZ Signaling

In this line code, symbol 1 is represented by transmitting a pulse of amplitude A for the
duration of the symbol, and symbol 0 is represented by switching off the pulse, as in
Figure 6.24a. The unipolar NRZ line code is also referred to as on–off signaling.
Disadvantages of on–off signaling are the waste of power due to the transmitted DC level
and the fact that the power spectrum of the transmitted signal does not approach zero at
zero frequency.

Polar NRZ Signaling

In this second line code, symbols 1 and 0 are represented by transmitting pulses of
amplitudes +A and –A, respectively, as illustrated in Figure 6.24b. The polar NRZ line
code is relatively easy to generate, but its disadvantage is that the power spectrum of the
signal is large near zero frequency.

Unipolar RZ Signaling

In this third line code, symbol 1 is represented by a rectangular pulse of amplitude A and
half-symbol width and symbol 0 is represented by transmitting no pulse, as illustrated in
Figure 6.24c. An attractive feature of the unipolar RZ line code is the presence of delta
functions at f = 0, 1Tb in the power spectrum of the transmitted signal; the delta
functions can be used for bit-timing recovery at the receiver. However, its disadvantage is
that it requires 3 dB more power than polar RZ signaling for the same probability of
symbol error.

Bipolar RZ Signaling

This line code uses three amplitude levels, as indicated in Figure 6.24(d). Specifically,
positive and negative pulses of equal amplitude (i.e., +A and –A) are used alternately for
symbol 1, with each pulse having a half-symbol width; no pulse is always used for symbol
0. A useful property of the bipolar RZ signaling is that the power spectrum of the
transmitted signal has no DC component and relatively insignificant low-frequency
components for the case when symbols 1 and 0 occur with equal probability. The bipolar
RZ line code is also called alternate mark inversion (AMI) signaling.

Split-Phase (Manchester Code)

In this final method of signaling, illustrated in Figure 6.24e, symbol 1 is represented by a
positive pulse of amplitude A followed by a negative pulse of amplitude –A, with both
pulses being half-symbol wide. For symbol 0, the polarities of these two pulses are
reversed. A unique property of the Manchester code is that it suppresses the DC
component and has relatively insignificant low-frequency components, regardless of the
signal statistics. This property is essential in some applications.
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312 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

6.11 Summary and Discussion

In this chapter we introduced two fundamental and complementary processes:

• Sampling, which operates in the time domain; the sampling process is the link
between an analog waveform and its discrete-time representation.

• Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-
limited signal with no frequency components higher than W Hz is represented uniquely by
a sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate of
2W samples per second. The quantization process exploits the fact that any human sense,
as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pulse modulation. The
distinguishing feature between them is that analog pulse modulation systems maintain a
continuous amplitude representation of the message signal, whereas digital pulse
modulation systems also employ quantization to provide a representation of the message
signal that is discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted
pulses, such as amplitude, duration, or position, in which case we speak of PAM, pulse-
duration modulation, or pulse-position modulation, respectively. In this chapter we
focused on PAM, as it is used in all forms of digital pulse modulation.

Digital pulse modulation systems transmit analog message signals as a sequence of
coded pulses, which is made possible through the combined use of sampling and
quantization. PCM is an important form of digital pulse modulation that is endowed with
some unique system advantages, which, in turn, have made it the standard method of
modulation for the transmission of such analog signals as voice and video signals. The
advantages of PCM include robustness to noise and interference, efficient regeneration of
the coded pulses along the transmission path, and a uniform format for different kinds of
baseband signals.

Indeed, it is because of this list of advantages unique to PCM that it has become the
method of choice for the construction of public switched telephone networks (PSTNs). In
this context, the reader should carefully note that the telephone channel viewed from the
PSTN by an Internet service provider, for example, is nonlinear due to the use of
companding and, most importantly, it is entirely digital. This observation has a significant
impact on the design of high-speed modems for communications between a computer user
and server, which will be discussed in Chapter 8.

DM and DPCM are two other useful forms of digital pulse modulation. The principal
advantage of DM is the simplicity of its circuitry, which is achieved at the expense of
increased transmission bandwidth. In contrast, DPCM employs increased circuit
complexity to reduce channel bandwidth. The improvement is achieved by using the idea
of prediction to reduce redundant symbols from an incoming data stream. A further
improvement in the operation of DPCM can be made through the use of adaptivity to
account for statistical variations in the input data. By so doing, bandwidth requirement
may be reduced significantly without serious degradation in system performance.8
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Problems

Sampling Process

6.1 In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular pulses c(t),
each of unit area. Given that the pulse repetition frequency of this periodic train is fs and the duration
of each rectangular pulse is T (with fsT  1), do the following:

a. Find the spectrum of the signal s(t) that results from the use of natural sampling; you may assume
that time t = 0 corresponds to the midpoint of a rectangular pulse in c(t).

b. Show that the original signal g(t) may be recovered exactly from its naturally sampled version,
provided that the conditions embodied in the sampling theorem are satisfied.

6.2 Specify the Nyquist rate and the Nyquist interval for each of the following signals:

a. g(t) = sinc(200t).

b. g(t) = sinc2(200t).

c. g(t) = sinc(200t) + sinc2(200t).

6.3 Discussion of the sampling theorem presented in Section 6.2 was confined to the time domain.
Describe how the sampling theorem can be applied in the frequency domain.

Pulse-Amplitude Modulation

6.4 Figure P6.4 shows the idealized spectrum of a message signal m(t). The signal is sampled at a rate
equal to 1 kHz using flat-top pulses, with each pulse being of unit amplitude and duration 0.1ms.
Determine and sketch the spectrum of the resulting PAM signal.

6.5 In this problem, we evaluate the equalization needed for the aperture effect in a PAM system. The
operating frequency f = fs2, which corresponds to the highest frequency component of the message
signal for a sampling rate equal to the Nyquist rate. Plot 1/sinc(0.5TTs) versus TTs, and hence find
the equalization needed when TTs = 0.1.

6.6 Consider a PAM wave transmitted through a channel with white Gaussian noise and minimum
bandwidth BT = 1/2Ts, where Ts is the sampling period. The noise is of zero mean and power
spectral density N02. The PAM signal uses a standard pulse g(t) with its Fourier transform defined
by

By considering a full-load sinusoidal modulating wave, show that PAM and baseband-signal
transmission have equal SNRs for the same average transmitted power.

6.7 Twenty-four voice signals are sampled uniformly and then time-division multiplexed (TDM). The
sampling operation uses flat-top samples with 1 s duration. The multiplexing operation includes

Figure P6.4
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314 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

provision for synchronization by adding an extra pulse of sufficient amplitude and also 1 s duration.
The highest frequency component of each voice signal is 3.4 kHz.

a. Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses of the
multiplexed signal.

b. Repeat your calculation assuming the use of Nyquist rate sampling.

6.8 Twelve different message signals, each with a bandwidth of 10 kHz, are to be multiplexed and
transmitted. Determine the minimum bandwidth required if the multiplexing/modulation method
used is time-division multiplexing (TDM), which was discussed in Chapter 1.

Pulse-Code Modulation

6.9 A speech signal has a total duration of 10 s. It is sampled at the rate of 8 kHz and then encoded. The
signal-to-(quantization) noise ratio is required to be 40 dB. Calculate the minimum storage capacity
needed to accommodate this digitized speech signal.

6.10 Consider a uniform quantizer characterized by the input-output relation illustrated in Figure 6.9a.
Assume that a Gaussian-distributed random variable with zero mean and unit variance is applied to
this quantizer input.

a. What is the probability that the amplitude of the input lies outside the range –4 to +4?

b. Using the result of part a, show that the output SNR of the quantizer is given by

where R is the number of bits per sample. Specifically, you may assume that the quantizer input
extends from –4 to 4. Compare the result of part b with that obtained in Example 2.

6.11 A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit rate of the
system is equal to 50  106 bits/s.

a. What is the maximum message bandwidth for which the system operates satisfactorily?

b. Determine the output signal-to-(quantization) noise when a full-load sinusoidal modulating wave
of frequency 1 MHz is applied to the input.

6.12 Show that with a nonuniform quantizer the mean-square value of the quantization error is

approximately equal to , where i is the ith step size and pi is the probability that the

input signal amplitude lies within the ith interval. Assume that the step size i is small compared

with the excursion of the input signal.

 6.13 a. A sinusoidal signal with an amplitude of 3.25 V is applied to a uniform quantizer of the midtread
type whose output takes on the values 0, 1, 2, 3 V. Sketch the waveform of the resulting
quantizer output for one complete cycle of the input.

b. Repeat this evaluation for the case when the quantizer is of the midrise type whose output takes
on the values 0.5, 1.5, 2.5, 3.5 V.

6.14 The signal

is transmitted using a 40-bit binary PCM system. The quantizer is of the midrise type, with a step
size of 1V. Sketch the resulting PCM wave for one complete cycle of the input. Assume a sampling
rate of four samples per second, with samples taken at t(s) = 1/8, 3/8, 5/8, 

6.15 Figure P6.15 shows a PCM signal in which the amplitude levels of +1V and –1V are used to
represent binary symbols 1 and 0, respectively. The codeword used consists of three bits. Find the
sampled version of an analog signal from which this PCM signal is derived.

SNR O 6R 7.2 dB–=

1 12 ii
2
pi

m t  (volts) 6 2t sin=

Haykin_ch06_pp3.fm  Page 314  Monday, November 26, 2012  1:00 PM

https://hemanthrajhemu.github.io



Problems 315

6.16 Consider a chain of (n – 1) regenerative repeaters, with a total of n sequential decisions made on a
binary PCM wave, including the final decision made at the receiver. Assume that any binary symbol
transmitted through the system has an independent probability p1 of being inverted by any repeater.
Let pn represent the probability that a binary symbol is in error after transmission through the
complete system.

a. Show that

b. If p1 is very small and n is not too large, what is the corresponding value of pn?

6.17 Discuss the basic issues involved in the design of a regenerative repeater for PCM.

Linear Prediction

6.18 A one-step linear predictor operates on the sampled version of a sinusoidal signal. The sampling rate
is equal to 10f0, where f0 is the frequency of the sinusoid. The predictor has a single coefficient
denoted by w1.

a. Determine the optimum value of w1 required to minimize the prediction-error variance.

b. Determine the minimum value of the prediction error variance.

6.19 A stationary process X(t) has the following values for its autocorrelation function:

a. Calculate the coefficients of an optimum linear predictor involving the use of three unit-time
delays.

b. Calculate the variance of the resulting prediction error.

6.20 Repeat the calculations of Problem 6.19, but this time use a linear predictor with two unit-time
delays. Compare the performance of this second optimum linear predictor with that considered in
Problem 6.19.

Differential Pulse-Code Modulation

6.21 A DPCM system uses a linear predictor with a single tap. The normalized autocorrelation function
of the input signal for a lag of one sampling interval is 0.75. The predictor is designed to minimize
the prediction-error variance. Determine the processing gain attained by the use of this predictor.

6.22 Calculate the improvement in processing gain of a DPCM system using the optimized three-tap
linear predictor. For this calculation, use the autocorrelation function values of the input signal
specified in Problem 6.19.

6.23 In this problem, we compare the performance of a DPCM system with that of an ordinary PCM
system using companding.
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316 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

For a sufficiently large number of representation levels, the signal-to-(quantization) noise ratio of
PCM systems, in general, is defined by

where 2n is the number of representation levels. For a companded PCM system using the -law, the
constant  is itself defined by

For a DPCM system, on the other hand, the constant  lies in the range –3 <  < 15 dBs. The
formulas quoted herein apply to telephone-quality speech signals.

Compare the performance of the DPCM system against that of the -companded PCM system with
 = 255 for each of the following scenarios:

a. The improvement in (SNR)O realized by DPCM over companded PCM for the same number of
bits per sample.

b. The reduction in the number of bits per sample required by DPCM, compared with the
companded PCM for the same (SNR)O.

6.24 In the DPCM system depicted in Figure P6.24, show that in the absence of channel noise, the
transmitting and receiving prediction filters operate on slightly different input signals.

6.25 Figure P6.25 depicts the block diagram of adaptive quantization for DPCM. The quantization is of a
backward estimation kind because samples of the quantization output and prediction errors are used
to continuously derive backward estimates of the variance of the message signal. This estimate
computed at time n is denoted by . Given this estimate, the step size is varied so as to match the
actual variance of the message sample mn, as shown by

where  is the estimate of the standard deviation and  is a constant. An attractive feature of the
adaptive scheme in Figure P6.25 is that samples of the quantization output and the prediction error
are used to compute the predictor’s coefficients. 
Modify the block diagram of the DPCM transmitter in Figure 6.19a so as to accommodate adaptive
prediction with backward estimation.

10 SNR 10 Olog  (dB)  6n+=

 (dB) 4.77 20  1 + log10log–
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Delta Modulation

6.26 Consider a test signal m(t) defined by a hyperbolic tangent function:

where A and  are constants. Determine the minimum step size  for DM of this signal, which is
required to avoid slope-overload distortion.

6.27 Consider a sine wave of frequency fm and amplitude Am, which is applied to a delta modulator of
step size . Show that slope-overload distortion will occur if

where Ts is the sampling period. What is the maximum power that may be transmitted without
slope-overload distortion?

6.28 A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz. The
specifications of the modulator are as follows:

• Sampling rate = 10fNyquist, where fNyquist is the Nyquist rate of the speech signal.

• Step size  = 100 mV.

The modulator is tested with a 1kHz sinusoidal signal. Determine the maximum amplitude of this
test signal required to avoid slope-overload distortion.

6.29 In this problem, we derive an empirical formula for the average signal-to-(quantization) noise ratio of
a DM system with a sinusoidal signal of amplitude A and frequency fm as the test signal. Assume that
the power spectral density of the granular noise generated by the system is governed by the formula

where fs is the sampling rate and  is the step size. (Note that this formula is basically the same as that
for the power spectral density of quantization noise in a PCM system with /2 for PCM being replaced
by  for DM.) The DM system is designed to handle analog message signals limited to bandwidth W.

a. Show that the average quantization noise power produced by the system is

where it is assumed that the step size  has been chosen in accordance with the formula used in
Problem 6.28 so as to avoid slope-overload distortion.

b. Hence, determine the signal-to-(quantization) noise ratio of the DM system for a sinusoidal input.

6.30 Consider a DM system designed to accommodate analog message signals limited to bandwidth
W = 5 kHz. A sinusoidal test signal of amplitude A = 1V and frequency fm = 1 kHz is applied to the
system. The sampling rate of the system is 50 kHz.

a. Calculate the step size  required to minimize slope overload distortion.

b. Calculate the signal-to-(quantization) noise ratio of the system for the specified sinusoidal test
signal.

For these calculations, use the formula derived in Problem 6.29.

6.31 Consider a low-pass signal with a bandwidth of 3 kHz. A linear DM system with step size  = 0.1V
is used to process this signal at a sampling rate 10 times the Nyquist rate.

a. Evaluate the maximum amplitude of a test sinusoidal signal of frequency 1kHz, which can be
processed by the system without slope-overload distortion.
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318 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

b. For the specifications given in part a, evaluate the output SNR under (i) prefiltered and (ii)
postfiltered conditions.

6.32 In the conventional form of DM, the quantizer input may be viewed as an approximate to the
derivative of the incoming message signal m(t). This behavior leads to a drawback of DM:
transmission disturbances (e.g., noise) result in an accumulation error in the demodulated signal.
This drawback can be overcome by integrating the message signal m(t) prior to DM, resulting in
three beneficial effects:

a. Low frequency content of m(t) is pre-emphasized. 

b. Correlation between adjacent samples of m(t) is increased, tending to improve overall system
performance by reducing the variance of the error signal at the quantizer input.

c. Design of the receiver is simplified. 

Such a DM scheme is called delta–sigma modulation.

Construct a block diagram of the delta–sigma modulation system in such a way that it provides an
interpretation of the system as a “smoothed” version of 1-bit PCM in the following composite sense:

• smoothness implies that the comparator output is integrated prior to quantization, and 

• 1-bit modulation merely restates that the quantizer consists of a hard limiter with only two
representation levels.

Explain how the receiver of the delta–sigma modulation system is simplified, compared with
conventional DM. 

Line Codes

6.33 In this problem, we derive the formulas used to compute the power spectra of Figure 6.25 for the five
line codes described in Section 6.10. In the case of each line code, the bit duration is Tb and the pulse
amplitude A is conditioned to normalize the average power of the line code to unity as indicated in Fig-
ure 6.25. Assume that the data stream is randomly generated and symbols 0 and 1 are equally likely.

Derive the power spectral densities of these line codes as summarized here:

a. Unipolar NRZ signals:

b. Polar NRZ signals:

c. Unipolar RZ signals:

d. Bipolar RZ signals:

e. Manchester-encoded signals:

Hence, confirm the spectral plots displayed in Figure 6.25.
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6.34 A randomly generated data stream consists of equiprobable binary symbols 0 and 1. It is encoded
into a polar NRZ waveform with each binary symbol being defined as follows:

a. Sketch the waveform so generated, assuming that the data stream is 00101110.

b. Derive an expression for the power spectral density of this signal and sketch it. 

c. Compare the power spectral density of this random waveform with that defined in part b of
Problem 6.33.

6.35 Given the data stream 1110010100, sketch the transmitted sequence of pulses for each of the
following line codes:

a. unipolar NRZ

b. polar NRZ

c. unipolar RZ

d. bipolar RZ

e. Manchester code.

Computer Experiments

 **6.36 A sinusoidal signal of frequency  is sampled at the rate of 8 kHz and then applied to
a sample-and-hold circuit to produce a flat-topped PAM signal s(t) with pulse duration T = 500 .

a. Compute the waveform of the PAM signal s(t).

b. Compute , denoting the magnitude spectrum of the PAM signal s(t).

c. Compute the envelope of . Hence confirm that the frequency at which this envelope goes
through zero for the first time is equal to (1T) = 20 kHz.

 **6.37 In this problem, we use computer simulation to compare the performance of a companded PCM
system using the -law against that of the corresponding system using a uniform quantizer. The
simulation is to be performed for a sinusoidal input signal of varying amplitude.

With a companded PCM system in mind, Table 6.4 describes the 15-segment pseudo-linear
characteristic that consists of 15 linear segments configured to approximate the logarithmic -law
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Table 6.4 The 15-segment companding characteristic (  = 255)

Linear segment 
number Step-size

Projections of segment end 
points onto the horizontal axis

0 2 ±31

1a, 1b 4 ±95

2a, 2b 8 ±223

3a, 3b 16 ±479

4a, 4b 32 ±991

5a, 5b 64 ±2015

6a, 6b 128 ±4063

7a, 7b 256 ±8159






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320 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

of (6.48), with  = 255. This approximation is constructed in such a way that the segment endpoints
in Table 6.4 lie on the compression curve computed from (6.48).

a. Using the -law described in Table 6.4, plot the output signal-to-noise ratio as a function of the
input signal-to-noise ratio, both ratios being expressed in decibels.

b. Compare the results of your computation in part (a) with a uniform quantizer having 256
representation levels.

 **6.38 In this experiment we study the linear adaptive prediction of a signal xn governed by the following
recursion:

where vn is drawn from a discrete–time white noise process of zero mean and unit variance. (A
process generated in this manner is referred to as an autoregressive process of order two.)
Specifically, the adaptive prediction is performed using the normalized LMS algorithm defined by 

where p is the prediction order and  is the normalized step-size parameter. The important point to
note here is that  is dimensionless and stability of the algorithm is assured by choosing it in
accordance with the formula

The algorithm is initiated by setting

The learning curve of the algorithm is defined as a plot of the mean-square error versus the number
of iterations n for specified parameter values, which is obtained by averaging the plot of  versus n
over a large number of different realizations of the algorithm.

a. Plot the learning curves for the adaptive prediction of xn for a fixed prediction order p = 5 and
three different values of step-size parameter:  = 0.0075, 0.05, and 0.5.

b. What observations can you make from the learning curves of part a?

 **6.39 In this problem, we study adaptive delta modulation, the underlying principle of which is two-fold:

1. If successive errors are of opposite polarity, then the delta modulator is operating in the granular
mode, in which case the step size is reduced.

2. If, on the other hand, the successive errors are of the same polarity, then the delta modulator is
operating in the slope-overload mode, in which case the step size is increased.

Parts a and b of Figure P6.39 depict the block diagrams of the transmitter and receiver of the
adaptive delta modulator, respectively, in which the step size, is increased or decreased by a factor
of 50% at each iteration of the adaptive process, as shown by:
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where n is the step size at iteration (time step) n of the adaptation algorithm, and mq,n is the 1-bit
quantizer output that equals .

Specifications: The input signal applied to the transmitter is sinusoidal as shown by 

where A = 10 and fm = fs 100 where fs is the sampling frequency; the step size ;
.

a. Using the above-described adaptation algorithm, use a computer to plot the resulting waveform
for one complete cycle of the sinusoidal modulating signal, and also display the coded modulator
output in the transmitter.

b. For the same specifications, repeat the computation using linear modulation.

c. Comment on the results obtained in parts a and b of the problem.
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322 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Notes

1. For an exhaustive study of quantization noise in signal processing and communications, see
Widrow and Kollar (2008).

2. The two necessary conditions of (3.42) and (3.47) for optimality of a scalar quantizer were
reported independently by Lloyd (1957) and Max (1960), hence the name “Lloyd–Max quantizer.”
The derivation of these two optimality conditions presented in this chapter follows the book by
Gersho and Gray (1992).

3. The -law is used in the USA, Canada, and Japan. On the other hand, in Europe, the A-law is
used for signal compression. 

4. In actual PCM systems, the companding circuitry does not produce an exact replica of the
nonlinear compression curves shown in Figure 6.14. Rather, it provides a piecewise linear
approximation to the desired curve. By using a large enough number of linear segments, the
approximation can approach the true compression curve very closely; for detailed discussion of this
issue, see Bellamy (1991).

5. For a discussion of noise in analog modulation systems with particular reference to FM, see
Chapter 4 of Communication Systems (Haykin, 2001).

6. To simplify notational matters, RM is used to denote the autocorrelation matrix in (6.70) rather
than RMM as in Chapter 4 on Stochastic Processes. To see the rationale for this simplification, the
reader is referred to (6.79) for simplicity. For the same reason, henceforth the practice adopted in this
chapter will be continued for the rest of the book, dealing with autocorrelation matrices and power
spectral density.

7. An optimum predictor that follows (6.77) is said to be a special case of the Wiener filter.

8. For a detailed discussion of adaptive DPCM involving the use of adaptive quantization with
forward estimation as well as backward estimation, the reader is referred to the classic book (Jayant
and Noll, 1984).
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