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323

CHAPTER

7
Signaling over AWGN Channels 

7.1 Introduction

Chapter 6 on the conversion of analog waveforms into coded pulses represents the
transition from analog communications to digital communications. This transition has
been empowered by several factors:

1. Ever-increasing advancement of digital silicon chips, digital signal processing, and
computers, which, in turn, has prompted further enhancement in digital silicon
chips, thereby repeating the cycle of improvement.

2. Improved reliability, which is afforded by digital communications to a much greater
extent than is possible with analog communications.

3. Broadened range of multiplexing of users, which is enabled by the use of digital
modulation techniques.

4. Communication networks, for which, in one form or another, the use of digital
communications is the preferred choice.

In light of these compelling factors, we may justifiably say that we live in a “digital
communications world.” For an illustrative example, consider the remote connection of
two digital computers, with one computer acting as the information source by calculating
digital outputs based on observations and inputs fed into it; the other computer acts as the
recipient of the information. The source output consists of a sequence of 1s and 0s, with
each binary symbol being emitted every Tb seconds. The transmitting part of the digital
communication system takes the 1s and 0s emitted by the source computer and encodes
them into distinct signals denoted by s1(t) and s2(t), respectively, which are suitable for
transmission over the analog channel. Both s1(t) and s2(t) are real-valued energy signals,
as shown by

(7.1)

With the analog channel represented by an AWGN model, depicted in Figure 7.1, the
received signal is defined by

(7.2)

where w(t) is the channel noise. The receiver has the task of observing the received signal
x(t) for a duration of Tb seconds and then making an estimate of the transmitted signal

Ei si
2

t  dt i 1 2=
0

Tb

=

x t  si t  w t ,+=
0 t Tb 

i 1 2=


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324 Chapter 7 Signaling over AWGN Channels

si(t), or equivalently the ith symbol, i = 1, 2. However, owing to the presence of channel
noise, the receiver will inevitably make occasional errors. The requirement, therefore, is to
design the receiver so as to minimize the average probability of symbol error, defined as

(7.3)

where 1 and 2 are the prior probabilities of transmitting symbols 1 and 0, respectively,
and  is the estimate of the symbol 1 or 0 sent by the source, which is computed by the
receiver. The  and  are conditional probabilities.

In minimizing the average probability of symbol error between the receiver output and
the symbol emitted by the source, the motivation is to make the digital communication
system as reliable as possible. To achieve this important design objective in a generic
setting that involves an M-ary alphabet whose symbols are denoted by m1, m2, , mM, we
have to understand two basic issues:

1. How to optimize the design of the receiver so as to minimize the average probability
of symbol error.

2. How to choose the set of signals s1(t), s2(t), , sM(t) for representing the symbols
m1, m2, , mM, respectively, since this choice affects the average probability of
symbol error.

The key question is how to develop this understanding in a principled as well as insightful
manner. The answer to this fundamental question is found in the geometric representation
of signals. 

7.2 Geometric Representation of Signals

The essence of geometric representation of signals1 is to represent any set of M energy
signals {si(t)} as linear combinations of N orthonormal basis functions, where N  M.
That is to say, given a set of real-valued energy signals, s1(t), s2(t), , sM(t), each of
duration T seconds, we write

(7.4)

where the coefficients of the expansion are defined by

(7.5)

Figure 7.1 AWGN model of a channel.

Transmitted
signal
si(t)

Received
signal

x(t)+

+

White Gaussian noise
w (t)

Σ

Pe 1�(m̂ 0 1 sent)= = + 2�(m̂ 1 0 sent)=

m̂
�(m̂ 0 1 sent)= �(m̂ 1 0 sent)=

si t  sijj t 
j 1=

N

= 0 t T 
i 1 2  M  =




sij si t j t  dt i 1 2  M  =

j 1 2  N  =



0

T

=
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7.2 Geometric Representaton of Signals 325

The real-valued basis functions 1(t), 2(t), , N(t) form an orthonormal set, by which
we mean

(7.6)

where ij is the Kronecker delta. The first condition of (7.6) states that each basis function
is normalized to have unit energy. The second condition states that the basis functions
1(t), 2(t), , N(t) are orthogonal with respect to each other over the interval 0  t  T.

For prescribed i, the set of coefficients  may be viewed as an N-dimensional
signal vector, denoted by si. The important point to note here is that the vector si bears a
one-to-one relationship with the transmitted signal si(t):

• Given the N elements of the vector si operating as input, we may use the scheme
shown in Figure 7.2a to generate the signal si(t), which follows directly from (7.4).
This figure consists of a bank of N multipliers with each multiplier having its own
basis function followed by a summer. The scheme of Figure 7.2a may be viewed as
a synthesizer.

• Conversely, given the signals si(t), i = 1, 2, , M, operating as input, we may use
the scheme shown in Figure 7.2b to calculate the coefficients si1, si2, , siN which
follows directly from (7.5). This second scheme consists of a bank of N product-
integrators or correlators with a common input, and with each one of them supplied
with its own basis function. The scheme of Figure 7.2b may be viewed as an
analyzer.

Figure 7.2 (a) Synthesizer for generating the signal si(t). (b) Analyzer for reconstructing the signal 
vector {si}. 

i t j t  dt
0
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326 Chapter 7 Signaling over AWGN Channels

Accordingly, we may state that each signal in the set {si(t)} is completely determined by
the signal vector 

(7.7)

Furthermore, if we conceptually extend our conventional notion of two- and three-
dimensional Euclidean spaces to an N-dimensional Euclidean space, we may visualize the
set of signal vectors {si |i = 1, 2, , M} as defining a corresponding set of M points in an
N-dimensional Euclidean space, with N mutually perpendicular axes labeled 1, 2, ,
N. This N-dimensional Euclidean space is called the signal space.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound theoretical and practical importance. It provides the mathematical basis for the
geometric representation of energy signals in a conceptually satisfying manner. This form
of representation is illustrated in Figure 7.3 for the case of a two-dimensional signal space
with three signals; that is, N = 2 and M = 3.

In an N-dimensional Euclidean space, we may define lengths of vectors and angles
between vectors. It is customary to denote the length (also called the absolute value or
norm) of a signal vector si by the symbol . The squared length of any signal vector si is
defined to be the inner product or dot product of si with itself, as shown by

Figure 7.3 Illustrating the geometric representation of signals for 
the case when N = 2 and M = 3.

3

2

1

–1

–2

–3

0–3 –2 –1 1 2 3
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 2φ

 1φ

si

si1

si2

⋮
siN

= i 1 2  M  =

si

Haykin_ch07_pp3.fm  Page 326  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io



7.2 Geometric Representaton of Signals 327

(7.8)

where sij is the jth element of si and the superscript T denotes matrix transposition.
There is an interesting relationship between the energy content of a signal and its

representation as a vector. By definition, the energy of a signal si(t) of duration T seconds is

(7.9)

Therefore, substituting (7.4) into (7.9), we get

Interchanging the order of summation and integration, which we can do because they are
both linear operations, and then rearranging terms we get

(7.10)

Since, by definition, the j(t) form an orthonormal set in accordance with the two
conditions of (7.6), we find that (7.10) reduces simply to

 (7.11)

Thus, (7.8) and (7.11) show that the energy of an energy signal si(t) is equal to the squared
length of the corresponding signal vector si(t).

In the case of a pair of signals si(t) and sk(t) represented by the signal vectors si and sk,
respectively, we may also show that

(7.12)

Equation (7.12) states: 

The inner product of the energy signals si(t) and sk(t) over the interval [0,T] is 
equal to the inner product of their respective vector representations si and sk.

Note that the inner product  is invariant to the choice of basis functions ,
in that it only depends on the components of the signals si(t) and sk(t) projected onto each
of the basis functions.

si
2

si
T

si=

sij
2

j 1=

N

 i 1 2  M  ==

Ei si
2

t  dt i 1 2  M  =
0

T

=

Ei sijj t 
j 1=

N

 sikk t 
k 1=

N

  dt
0

T

=

Ei sijsik j t k t  dt
0

T


k 1=

N


j 1=

N

=

Ei sij
2

j 1=

N

=

si
2

=

si t sk t  dt
0

T

 si
T

sk=

si
T

sk j t  
j 1=
N
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328 Chapter 7 Signaling over AWGN Channels

Yet another useful relation involving the vector representations of the energy signals
si(t) and sk(t) is described by

(7.13)

where  is the Euclidean distance dik between the points represented by the signal
vectors si and sk.

To complete the geometric representation of energy signals, we need to have a
representation for the angle ik subtended between two signal vectors si and sk. By
definition, the cosine of the angle ik is equal to the inner product of these two vectors
divided by the product of their individual norms, as shown by

(7.14)

The two vectors si and sk are thus orthogonal or perpendicular to each other if their inner
product  is zero, in which case ik = 90°; this condition is intuitively satisfying.

EXAMPLE 1 The Schwarz Inequality

Consider any pair of energy signals s1(t) and s2(t). The Schwarz inequality states

(7.15)

The equality holds if, and only if, s2(t) = cs1(t), where c is any constant.
To prove this important inequality, let s1(t) and s2(t) be expressed in terms of the pair of

orthonormal basis functions 1(t) and 2(t) as follows:

where 1(t) and 2(t) satisfy the orthonormality conditions over the time interval :

On this basis, we may represent the signals s1(t) and s2(t) by the following respective pair
of vectors, as illustrated in Figure 7.4:

si sk–
2

sij skj– 2

j 1=

N

=

si t  sk t – 2 dt
0

T

=

si sk–

ik cos
si

T
sk

si sk
------------------=

si
T

sk

s1 t s2 t  dt
–



 
 

2
s1

2
t  dt

–



 
  s2

2
t  dt

–



 
 

s1 t  s111 t  s122 t +=

s2 t  s211 t  s222 t +=

,– 

i t j t  dt
–



 ij
1 for j i=

0 otherwise



= =
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s11
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s22

=
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7.2 Geometric Representaton of Signals 329

From Figure 7.4 we readily see that the cosine of angle  subtended between the vectors s1
and s2 is

(7.16)

where we have made use of (7.14) and (7.12). Recognizing that |cos |   1, the Schwarz
inequality of (7.15) immediately follows from (7.16). Moreover, from the first line of
(7.16) we note that |cos |  = 1 if, and only if, s2 = cs1; that is, s2(t) = cs1(t), where c is an
arbitrary constant.

Proof of the Schwarz inequality, as presented here, applies to real-valued signals. It may
be readily extended to complex-valued signals, in which case (7.15) is reformulated as

(7.17)

where the asterisk denotes complex conjugation and the equality holds if, and only if,
s2(t) = cs1(t), where c is a constant.

Gram–Schmidt Orthogonalization Procedure

Having demonstrated the elegance of the geometric representation of energy signals with
an example, how do we justify it in mathematical terms? The answer to this question lies
in the Gram–Schmidt orthogonalization procedure, for which we need a complete
orthonormal set of basis functions. To proceed with the formulation of this procedure,
suppose we have a set of M energy signals denoted by s1(t), s2(t), , sM(t). Starting with
s1(t) chosen from this set arbitrarily, the first basis function is defined by

(7.18)

where E1 is the energy of the signal s1(t). 

Figure 7.4 Vector representations of signals s1(t) and s2(t), providing 
the background picture for proving the Schwarz inequality.
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330 Chapter 7 Signaling over AWGN Channels

Then, clearly, we have

where the coefficient  and 1(t) has unit energy as required.
Next, using the signal s2(t), we define the coefficient s21 as

We may thus introduce a new intermediate function

(7.19)

which is orthogonal to 1(t) over the interval 0  t  T by virtue of the definition of s21 and
the fact that the basis function 1(t) has unit energy. Now, we are ready to define the
second basis function as

(7.20)

Substituting (7.19) into (7.20) and simplifying, we get the desired result

(7.21)

where E2 is the energy of the signal s2(t). From (7.20) we readily see that

in which case (7.21) yields

That is to say, 1(t) and 2(t) form an orthonormal pair as required. 
Continuing the procedure in this fashion, we may, in general, define

(7.22)

where the coefficients sij are themselves defined by

For i = 1, the function gi(t) reduces to si(t).
Given the gi(t), we may now define the set of basis functions

(7.23)
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7.2 Geometric Representaton of Signals 331

which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

• The signals s1(t), s2(t), , sM(t) form a linearly independent set, in which case
N = M.

• The signals s1(t), s2(t), , sM(t) are not linearly independent, in which case N  M
and the intermediate function gi(t) is zero for i > N.

Note that the conventional Fourier series expansion of a periodic signal, discussed in
Chapter 2, may be viewed as a special case of the Gram–Schmidt orthogonalization
procedure. Moreover, the representation of a band-limited signal in terms of its samples
taken at the Nyquist rate, discussed in Chapter 6, may be viewed as another special case.
However, in saying what we have here, two important distinctions should be made:

1. The form of the basis functions 1(t), 2(t), , N(t) has not been specified. That is
to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram–Schmidt
orthogonalization procedure to be in terms of sinusoidal functions (as in the Fourier
series) or sinc functions of time (as in the sampling process).

2. The expansion of the signal si(t) in terms of a finite number of terms is not an
approximation wherein only the first N terms are significant; rather, it is an exact
expression, where N and only N terms are significant.

EXAMPLE 2 2B1Q Code

The 2B1Q code is the North American line code for a special class of modems called
digital subscriber lines. This code represents a quaternary PAM signal as shown in the
Gray-encoded alphabet of Table 7.1. The four possible signals s1(t), s2(t), s3(t), and s4(t)
are amplitude-scaled versions of a Nyquist pulse. Each signal represents a dibit (i.e., pair
of bits). The issue of interest is to find the vector representation of the 2B1Q code.  

This example is simple enough for us to solve it by inspection. Let 1(t) denote a pulse
normalized to have unit energy. The 1(t) so defined is the only basis function for the
vector representation of the 2B1Q code. Accordingly, the signal-space representation of
this code is as shown in Figure 7.5. It consists of four signal vectors s1, s2, s3, and s4,
which are located on the 1-axis in a symmetric manner about the origin. In this example,
we have M = 4 and N = 1.

Table 7.1 Amplitude levels of the 2B1Q code

Signal Amplitude Gray code

s1(t) –3 00

s2(t) –1 01

s3(t) +1 11

s4(t) +3 10
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332 Chapter 7 Signaling over AWGN Channels

We may generalize the result depicted in Figure 7.5 for the 2B1Q code as follows: the
signal-space diagram of an M-ary PAM signal, in general, is one-dimensional with M
signal points uniformly positioned on the only axis of the diagram.

7.3 Conversion of the Continuous AWGN Channel into a 
Vector Channel 

Suppose that the input to the bank of N product integrators or correlators in Figure 7.2b is
not the transmitted signal si(t) but rather the received signal x(t) defined in accordance
with the AWGN channel of Figure 7.1. That is to say,

(7.24)

where w(t) is a sample function of the white Gaussian noise process W(t) of zero mean and
power spectral density N02. Correspondingly, we find that the output of correlator j, say,
is the sample value of a random variable Xj, whose sample value is defined by

(7.25)

The first component, sij, is the deterministic component of xj due to the transmitted signal
si(t), as shown by

(7.26)

The second component, wj, is the sample value of a random variable Wj due to the channel
noise w(t), as shown by

(7.27)

Consider next a new stochastic process  whose sample function  is related to
the received signal x(t) as follows:

(7.28)

Figure 7.5 Signal-space representation of the 2B1Q code. 
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7.3 Conversion of the Continuous AWGN Channel into a Vector Channel 333

Substituting (7.24) and (7.25) into (7.28), and then using the expansion of (7.4), we get

(7.29)

The sample function , therefore, depends solely on the channel noise w(t). On the
basis of (7.28) and (7.29), we may thus express the received signal as

 (7.30)

Accordingly, we may view  as a remainder term that must be included on the right-
hand side of (7.30) to preserve equality. It is informative to contrast the expansion of the
received signal x(t) given in (7.30) with the corresponding expansion of the transmitted
signal si(t) given in (7.4): the expansion of (7.4), pertaining to the transmitter, is entirely
deterministic; on the other hand, the expansion of (7.30) is random (stochastic) due to the
channel noise at the receiver input.

Statistical Characterization of the Correlator Outputs

We now wish to develop a statistical characterization of the set of N correlator outputs. Let
X(t) denote the stochastic process, a sample function of which is represented by the
received signal x(t). Correspondingly, let Xj denote the random variable whose sample
value is represented by the correlator output xj, j = 1, 2, , N. According to the AWGN
model of Figure 7.1, the stochastic process X(t) is a Gaussian process. It follows,
therefore, that Xj is a Gaussian random variable for all j in accordance with Property 1 of a
Gaussian process (Chapter 4). Hence, Xj is characterized completely by its mean and
variance, which are determined next.

Let Wj denote the random variable represented by the sample value wj produced by the
jth correlator in response to the white Gaussian noise component w(t). The random
variable Wj has zero mean because the channel noise process W(t) represented by w(t) in
the AWGN model of Figure 7.1 has zero mean by definition. Consequently, the mean of Xj
depends only on sij, as shown by

(7.31)

x t  si t  w t  sij wj+ j t 
j 1=

N

–+=

w t  wjj t 
j 1=

N

–=

w t =

x t 

x t  xjj t  x t +
j 1=

N

=

xjj t  w t +
j 1=

N

=

w t 

Xj
� Xj =

� sij Wj+ =

sij � Wj +=

sij=
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334 Chapter 7 Signaling over AWGN Channels

To find the variance of Xj, we start with the definition

(7.32)

where the last line follows from (7.25) with xj and wj replaced by Xj and Wj, respectively.
According to (7.27), the random variable Wj is defined by

We may therefore expand (7.32) as 

(7.33)

Interchanging the order of integration and expectation, which we can do because they are
both linear operations, we obtain

(7.34)

where RW(t,u) is the autocorrelation function of the noise process W(t). Since this noise is
stationary, RW(t,u) depends only on the time difference t – u. Furthermore, since W(t) is
white with a constant power spectral density N02, we may express RW(t,u) as 

(7.35)

Therefore, substituting (7.35) into (7.34) and then using the sifting property of the delta
function (t), we get

Since the j(t) have unit energy, by definition, the expression for noise variance 
reduces to

(7.36)

This important result shows that all the correlator outputs, denoted by Xj with j = 1, 2, ,
N, have a variance equal to the power spectral density N02 of the noise process W(t).

Xj

2
var Xj =

� Xj sij– 2 =

� Wj
2 =

Wj W t j t  dt
0

T

=

Xj

2
� W t j t  dt W u j u  du

0

T


0

T

=

� j t j u W t W u  dt du
0

T


0

T

=

Xj

2 j t j u � W t W u   dt du
0

T


0

T

=

j t j u RW t u  dt du
0

T


0

T

=

RW t u 
N0

2
------ 
   t u– =

Xj

2 N0

2
------ j t j u  t u–  dt du

0

T


0

T

=

N0

2
------ j

2
t  dt

0

T

=

x
2

,j

Xj

2 N0

2
------ for all j=
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7.3 Conversion of the Continuous AWGN Channel into a Vector Channel 335

Moreover, since the basic functions j(t) form an orthonormal set, Xj and Xk are
mutually uncorrelated, as shown by

(7.37)

Since the Xj are Gaussian random variables, (7.37) implies that they are also statistically
independent in accordance with Property 4 of a Gaussian process (Chapter 4).

Define the vector of N random variables

(7.38)

whose elements are independent Gaussian random variables with mean values equal to sij
and variances equal to N02. Since the elements of the vector X are statistically
independent, we may express the conditional probability density function of the vector X,
given that the signal si(t) or the corresponding symbol mi was sent, as the product of the
conditional probability density functions of its individual elements; that is,

(7.39)

where the vector x and scalar xj are sample values of the random vector X and random
variable Xj, respectively. The vector x is called the observation vector; correspondingly, xj
is called an element of the observation vector. A channel that satisfies (7.39) is said to be a
memoryless channel.

Since each Xj is a Gaussian random variable with mean sij and variance N02, we have

(7.40)

cov XjXk  � Xj Xj
–  Xk Xk

–  =

� Xj sij–  Xk sik–  =

� WjWk =

� W t j t  dt W u k u  du
0

T


0

T

=

j t k u RW t u  dt du
0

T


0

T

=

N0

2
------ j t k u  t u–  dt du

0

T


0

T

=

N0

2
------ j t k u  dt

0

T

=

0 j k=

X

X1

X2

⋮
XN

=

fX x mi  fXj
j 1=

N

 xj mi  i 1 2  M  ==

fXj
xj mi  1

N0

-------------- 1
N0
------ xj sij– 2– 

j 1 2  N  =

i 1 2  M  =



exp=
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336 Chapter 7 Signaling over AWGN Channels

Therefore, substituting (7.40) into (7.39) yields

(7.41)

which completely characterizes the first term of (7.30). 
However, there remains the noise term  in (7.30) to be accounted for. Since the

noise process W(t) represented by w(t) is Gaussian with zero mean, it follows that the noise
process  represented by the sample function  is also a zero-mean Gaussian
process. Finally, we note that any random variable , say, derived from the noise
process  by sampling it at time tk, is in fact statistically independent of the random
variable Xj; that is to say: 

(7.42)

Since any random variable based on the remainder noise process  is independent of
the set of random variables {Xj} as well as the set of transmitted signals {si(t)}, (7.42)
states that the random variable  is irrelevant to the decision as to which particular
signal was actually transmitted. In other words, the correlator outputs determined by the
received signal x(t) are the only data that are useful for the decision-making process;
therefore, they represent sufficient statistics for the problem at hand. By definition,
sufficient statistics summarize the whole of the relevant information supplied by an
observation vector.

We may now summarize the results presented in this section by formulating the
theorem of irrelevance:

Insofar as signal detection in AWGN is concerned, only the projections of the 

noise onto the basis functions of the signal set  affect the sufficient 

statistics of the detection problem; the remainder of the noise is irrelevant.

Putting this theorem into a mathematical context, we may say that the AWGN channel
model of Figure 7.1a is equivalent to an N-dimensional vector channel described by the
equation

x = si + w, i = 1, 2, , M (7.43)

where the dimension N is the number of basis functions involved in formulating the signal
vector si for all i. The individual components of the signal vector si and the additive Gaussian
noise vector w are defined by (7.5) and (7.27), respectively. The theorem of irrelevance and
its mathematical description given in (7.43) are indeed basic to the understanding of the
signal-detection problem as described next. Just as importantly, (7.43) may be viewed as the
baseband version of the time-dependent received signal of (7.24).

Likelihood Function

The conditional probability density functions fX(x |mi), i = 1, 2, , M, provide the very
characterization of an AWGN channel. Their derivation leads to a functional dependence
on the observation vector x given the transmitted message symbol mi. However, at the

fX x mi  N0  N 2– 1
N0
------ xj sij– 2

j 1=

N

–  i 1 2  M  =exp=

w t 

W t  w t 
W tk 

W t 

� XjW tk   0=
j 1 2  N  =

0 tk T 



W t 

W tk 

si t  
i 1=
M
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7.4 Optimum Receivers Using Coherent Detection 337

receiver we have the exact opposite situation: we are given the observation vector x and
the requirement is to estimate the message symbol mi that is responsible for generating x.
To emphasize this latter viewpoint, we follow Chapter 3 by introducing the idea of a
likelihood function, denoted by l(mi) and defined by

(7.44)

However, tt is important to recall from Chapter 3 that although l(mi) and fX(x |mi) have
exactly the same mathematical form, their individual meanings are quite different.

In practice, we find it more convenient to work with the log-likelihood function,
denoted by L(mi) and defined by

(7.45)

where ln denotes the natural logarithm. The log-likelihood function bears a one-to-one
relationship to the likelihood function for two reasons:

1. By definition, a probability density function is always nonnegative. It follows,
therefore, that the likelihood function is likewise a nonnegative quantity.

2. The logarithmic function is a monotonically increasing function of its argument.

The use of (7.41) in (7.45) yields the log-likelihood function for an AWGN channel as

 (7.46)

where we have ignored the constant term –(N2)ln(N0) since it bears no relation
whatsoever to the message symbol mi. Recall that the sij, j = 1, 2, , N, are the elements
of the signal vector si representing the message symbol mi. With (7.46) at our disposal, we
are now ready to address the basic receiver design problem.

7.4 Optimum Receivers Using Coherent Detection 

Maximum Likelihood Decoding

Suppose that, in each time slot of duration T seconds, one of the M possible signals s1(t),
s2(t), , sM(t) is transmitted with equal probability, 1M. For geometric signal representa-
tion, the signal si(t), i = 1, 2, , M, is applied to a bank of correlators with a common input
and supplied with an appropriate set of N orthonormal basis functions, as depicted in Figure
7.2b. The resulting correlator outputs define the signal vector si. Since knowledge of the
signal vector si is as good as knowing the transmitted signal si(t) itself, and vice versa, we
may represent si(t) by a point in a Euclidean space of dimension N  M. We refer to this
point as the transmitted signal point, or message point for short. The set of message points
corresponding to the set of transmitted signals  is called a message constellation.

However, representation of the received signal x(t) is complicated by the presence of
additive noise w(t). We note that when the received signal x(t) is applied to the bank of N
correlators, the correlator outputs define the observation vector x. According to (7.43), the
vector x differs from the signal vector si by the noise vector w, whose orientation is
completely random, as it should be. 

l mi  fX x mi  i 1 2  M  = =

L mi  lln mi  i 1 2  M  = =

L mi  1
N0
------ xj sij– 2 i 1 2  M  =

j 1=

N

–=

si t  
i 1=
M
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338 Chapter 7 Signaling over AWGN Channels

The noise vector w is completely characterized by the channel noise w(t); the converse
of this statement, however, is not true, as explained previously. The noise vector w
represents that portion of the noise w(t) that will interfere with the detection process; the
remaining portion of this noise, denoted by , is tuned out by the bank of correlators
and, therefore, irrelevant.

Based on the observation vector x, we may represent the received signal x(t) by a point
in the same Euclidean space used to represent the transmitted signal. We refer to this
second point as the received signal point. Owing to the presence of noise, the received
signal point wanders about the message point in a completely random fashion, in the sense
that it may lie anywhere inside a Gaussian-distributed “cloud” centered on the message
point. This is illustrated in Figure 7.6a for the case of a three-dimensional signal space.
For a particular realization of the noise vector w (i.e., a particular point inside the random
cloud of Figure 7.6a) the relationship between the observation vector x and the signal
vector si is as illustrated in Figure 7.6b.

We are now ready to state the signal-detection problem:

Given the observation vector x, perform a mapping from x to an estimate  of 
the transmitted symbol, mi, in a way that would minimize the probability of 
error in the decision-making process.

Given the observation vector x, suppose that we make the decision . The
probability of error in this decision, which we denote by Pe(mi |x), is simply

(7.47)

The requirement is to minimize the average probability of error in mapping each given
observation vector x into a decision. On the basis of (7.47), we may, therefore, state the
optimum decision rule:

Set  if

 for all  and k = 1, 2, , M. (7.48)

Figure 7.6 Illustrating the effect of (a) noise perturbation on (b) the location of the received
signal point. 
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7.4 Optimum Receivers Using Coherent Detection 339

The decision rule described in (7.48) is referred to as the maximum a posteriori probability
(MAP) rule. Correspondingly, the system used to implement this rule is called a maximum
a posteriori decoder.

The requirement of (7.48) may be expressed more explicitly in terms of the prior
probabilities of the transmitted signals and the likelihood functions, using Bayes’ rule
discussed in Chapter 3. For the moment, ignoring possible ties in the decision-making
process, we may restate the MAP rule as follows:

Set  if

(7.49)

where k is the prior probability of transmitting symbol mk,  fX(x |mi) is the 
conditional probability density function of the random observation vector X 
given the transmission of symbol mk, and fX(x) is the unconditional probability 
density function of X. 

In (7.49), we now note the following points:

• the denominator term fX(x) is independent of the transmitted symbol;

• the prior probability k =  i when all the source symbols are transmitted with equal
probability; and

• the conditional probability density function fX(x |mk) bears a one-to-one relationship
to the log-likelihood function L(mk).

Accordingly, we may simply restate the decision rule of (7.49) in terms of L(mk) as
follows:

Set  if  is maximum for k = i. (7.50)

The decision rule of (7.50) is known as the maximum likelihood rule, discussed previously
in Chapter 3; the system used for its implementation is correspondingly referred to as the
maximum likelihood decoder. According to this decision rule, a maximum likelihood
decoder computes the log-likelihood functions as metrics for all the M possible message
symbols, compares them, and then decides in favor of the maximum. Thus, the maximum
likelihood decoder is a simplified version of the maximum a posteriori decoder, in that the
M message symbols are assumed to be equally likely.

It is useful to have a graphical interpretation of the maximum likelihood decision rule.
Let Z denote the N-dimensional space of all possible observation vectors x. We refer to
this space as the observation space. Because we have assumed that the decision rule must
say , where i = 1, 2, , M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z1, Z2, , ZM. Accordingly, we may
restate the decision rule of (7.50) as 

Observation vector x lies in region Zi if  is maximum for k = i. (7.51)

Aside from the boundaries between the decision regions Z1, Z2, , ZM, it is clear that this
set of regions covers the entire observation space. We now adopt the convention that all
ties are resolved at random; that is, the receiver simply makes a random guess.
Specifically, if the observation vector x falls on the boundary between any two decision

m̂ mi=

kfX x mi 
fX x 

--------------------------- is maximum for k i=

m̂ mi= L mk 

m̂ mi=

L mk 
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340 Chapter 7 Signaling over AWGN Channels

regions, Zi and Zk, say, the choice between the two possible decisions  and
 is resolved a priori by the flip of a fair coin. Clearly, the outcome of such an

event does not affect the ultimate value of the probability of error since, on this boundary,
the condition of (7.48) is satisfied with the equality sign.

The maximum likelihood decision rule of (7.50) or its geometric counterpart described
in (7.51) assumes that the channel noise w(t) is additive. We next specialize this rule for
the case when w(t) is both white and Gaussian.

From the log-likelihood function defined in (7.46) for an AWGN channel, we note that

L(mk) attains its maximum value when the summation term  is minimized by

the choice k = i. Accordingly, we may formulate the maximum likelihood decision rule for

an AWGN channel as

Observation vector x lies in region Zi if  is minimum for k = i. (7.52)

Note we have used “minimum” as the optimizing condition in (7.52) because the minus
sign in (7.46) has been ignored. Next, we note from the discussion presented in Section
7.2 that

(7.53)

where  is the Euclidean distance between the observation vector x at the receiver
input and the transmitted signal vector sk. Accordingly, we may restate the decision rule of
(7.53) as 

(7.54)

In words, (7.54) states that the maximum likelihood decision rule is simply to choose the
message point closest to the received signal point, which is intuitively satisfying.

In practice, the decision rule of (7.54) is simplified by expanding the summation on the
left-hand side of (7.53) as

(7.55)

The first summation term of this expansion is independent of the index k pertaining to the
transmitted signal vector sk and, therefore, may be ignored. The second summation term is
the inner product of the observation vector x and the transmitted signal vector sk. The third
summation term is the transmitted signal energy

 (7.56)
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7.4 Optimum Receivers Using Coherent Detection 341

Accordingly, we may reformulate the maximum-likelihood decision rule one last time:

 (7.57)

From (7.57) we infer that, for an AWGN channel, the M decision regions are bounded by
linear hyperplane boundaries. The example in Figure 7.7 illustrates this statement for
M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy E and equal probability.

Correlation Receiver

In light of the material just presented, the optimum receiver for an AWGN channel and for
the case when the transmitted signals s1(t), s2(t), , sM(t) are equally likely is called a
correlation receiver; it consists of two subsystems, which are detailed in Figure 7.8:

1. Detector (Figure 7.8a), which consists of M correlators supplied with a set of
orthonormal basis functions 1(t), 2(t), , N(t) that are generated locally; this
bank of correlators operates on the received signal x(t), 0  t  T, to produce the
observation vector x.

2. Maximum-likelihood decoder (Figure 7.8b), which operates on the observation
vector x to produce an estimate  of the transmitted symbol mi, i = 1, 2, , M, in
such a way that the average probability of symbol error is minimized. 

In accordance with the maximum likelihood decision rule of (7.57), the decoder multiplies
the N elements of the observation vector x by the corresponding N elements of each of the
M signal vectors s1, s2, , sM. Then, the resulting products are successively summed in
accumulators to form the corresponding set of inner products {xTsk|k = 1, 2, , M}.

Figure 7.7
Illustrating the partitioning of the 
observation space into decision regions 
for the case when N = 2 and M = 4; it is 
assumed that the M transmitted symbols 
are equally likely. 
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342 Chapter 7 Signaling over AWGN Channels

Next, the inner products are corrected for the fact that the transmitted signal energies may
be unequal. Finally, the largest one in the resulting set of numbers is selected, and an
appropriate decision on the transmitted message is thereby made.

Matched Filter Receiver

The detector shown in Figure 7.8a involves a set of correlators. Alternatively, we may use
a different but equivalent structure in place of the correlators. To explore this alternative
method of implementing the optimum receiver, consider a linear time-invariant filter with
impulse response hj(t). With the received signal x(t) operating as input, the resulting filter
output is defined by the convolution integral

Figure 7.8
(a) Detector or demodulator. (b) Signal 
transmission decoder. 
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7.4 Optimum Receivers Using Coherent Detection 343

To proceed further, we evaluate this integral over the duration of a transmitted symbol,
namely 0  t  T. With time t restricted in this manner, we may replace the variable  with
t and go on to write

(7.58)

Consider next a detector based on a bank of correlators. The output of the jth correlator is
defined by the first line of (7.25), reproduced here for convenience of representation:

(7.59)

For yj(T) to equal xj, we find from (7.58) and (7.59) that this condition is satisfied provided
that we choose

Equivalently, we may express the condition imposed on the desired impulse response of
the filter as

(7.60)

We may now generalize the condition described in (7.60) by stating:

Given a pulse signal (t) occupying the interval 0  t  T, a linear time-invariant 
filter is said to be matched to the signal (t) if its impulse response h(t) satisfies 
the condition

(7.61)

A time-invariant filter defined in this way is called a matched filter. Correspondingly, an
optimum receiver using matched filters in place of correlators is called a matched-filter
receiver. Such a receiver is depicted in Figure 7.9, shown below.

yj t  x  hj t –  d
–



=

yj T  x t hj T t–  dt
0

T

=

xj x t j t  dt
0

T

=

hj T t–  j t = for 0 t T  and j 1 2  M  =

hj t  j T t– = for 0 t T  and j 1 2  M  =

h t   T t–  for 0 t T =

Figure 7.9 Detector part of matched 
filter receiver; the signal transmission 
decoder is as shown in Figure 7.8(b). 
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344 Chapter 7 Signaling over AWGN Channels

7.5 Probability of Error

To complete the statistical characterization of the correlation receiver of Figure 7.8a or its
equivalent, the matched filter receiver of Figure 7.9, we need to evaluate its performance
in the presence of AWGN. To do so, suppose that the observation space Z is partitioned
into a set of regions, , in accordance with the maximum likelihood decision rule.
Suppose also that symbol mi (or, equivalently, signal vector si) is transmitted and an
observation vector x is received. Then, an error occurs whenever the received signal point
represented by x does not fall inside region Zi associated with the message point si.
Averaging over all possible transmitted symbols assumed to be equiprobable, we see that
the average probability of symbol error is

 (7.62)

where we have used the standard notation to denote the conditional probability of an
event. Since x is the sample value of random vector X, we may rewrite (7.62) in terms of
the likelihood function as follows, given that the message symbol mi is sent:

(7.63)

For an N-dimensional observation vector, the integral in (7.63) is likewise N-dimensional.

Invariance of the Probability of Error to Rotation

There is a uniqueness to the way in which the observation space Z is partitioned into the
set of regions Z1, Z2, , ZM in accordance with the maximum likelihood detection of a
signal in AWGN; that uniqueness is defined by the message constellation under study. In
particular, we may make the statement:

Changes in the orientation of the message constellation with respect to both the 
coordinate axes and origin of the signal space do not affect the probability of 
symbol error Pe defined in (7.63). 

This statement embodies the invariance property of the average probability of symbol
error Pe with respect to notation and translation, which is the result of two facts:

1. In maximum likelihood detection, the probability of symbol error Pe depends solely
on the relative Euclidean distance between a received signal point and message point
in the constellation.

2. The AWGN is spherically symmetric in all directions in the signal space.

Zi 
j 1=
M

Pe i�(x does not lie in Zi mi sent)
i 1=

M

=

1
M
----- � x does not lie in Zi mi sent  i 1 M=

i 1=

M

=

1
1
M
----- � x lies in Zi mi sent 

i 1=

M

–=

Pe 1
1
M
----- fX

Zi
 x mi  dx

i 1=

M

–=
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7.5 Probability of Error 345

To elaborate, consider first the invariance of Pe with respect to rotation. The effect of a
rotation applied to all the message points in a constellation is equivalent to multiplying the
N-dimensional signal vector si by an N-by-N orthonormal matrix denoted by Q for all i.
By definition, the matrix Q satisfies the condition

(7.64)

where the superscript T denotes matrix transposition and I is the identity matrix whose
diagonal elements are all unity and its off-diagonal elements are all zero. According to
(7.64), the inverse of the real-valued orthonormal matrix Q is equal to its own transpose.
Thus, in dealing with rotation, the message vector si is replaced by its rotated version

(7.65)

Correspondingly, the N-by-1 noise vector w is replaced by its rotated version

(7.66)

However, the statistical characteristics of the noise vector are unaffected by this rotation
for three reasons:

1. From Chapter 4 we recall that a linear combination of Gaussian random variables is
also Gaussian. Since the noise vector w is Gaussian, by assumption, then it follows
that the rotated noise vector wrotate is also Gaussian.

2. Since the noise vector w has zero mean, the rotated noise vector wrotate also has zero
mean, as shown by

(7.67)

3. The covariance matrix of the noise vector w is equal to (N02)I, where N02 is the
power spectral density of the AWGN w(t) and I is the identity matrix; that is

(7.68)

Hence, the covariance matrix of the rotated noise vector is

(7.69)

where, in the last two lines, we have made use of (7.68) and (7.64).
In light of these three reasons, we may, therefore, express the observation vector in the

rotated message constellation as
(7.70)

QQ
T

I=

si rotate Qsi i 1 2  M  ==

wrotate Qw=

� wrotate  � Qw =

Q� w =

0=

� ww
T 

N0

2
------I=

� wrotatewrotate
T  � Qw Qw T =

� Qww
T

Q
T =

Q� ww
T QT

=

N0

2
------QQ

T
=

N0

2
------I=

xrotate Qsi w i 1 2  M  =+=
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346 Chapter 7 Signaling over AWGN Channels

Using (7.65) and (7.70), we may now express the Euclidean distance between the rotated
vectors xrotate and srotate as

(7.71)

where, in the last line, we made use of (7.43).
We may, therefore, formally state the principle of rotational invariance:

If a message constellation is rotated by the transformation

si,rotate = Qsi, i = 1, 2, , M

where Q is an orthonormal matrix, then the probability of symbol error Pe 
incurred in maximum likelihood signal-detection over an AWGN channel is 
completely unchanged.

EXAMPLE 3 Illustration of Rotational Invariance

To illustrate the principle of rotational invariance, consider the signal constellation shown
in Figure 7.10a. The constellation is the same as that of Figure 7.10b, except for the fact
that it has been rotated through 45°. Although these two constellations do indeed look
different in a geometric sense, the principle of rotational invariance teaches us
immediately that the Pe is the same for both of them.

Invariance of the Probability to Translation

Consider next the invariance of Pe to translation. Suppose all the message points in a
signal constellation are translated by a constant vector amount a, as shown by

(7.72)

xrotate si rotate– Qsi w Qsi–+=

w=

x si– i 1 2  M  ==

Figure 7.10 A pair of signal constellations for illustrating the principle 
of rotational invariance. 
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7.5 Probability of Error 347

The observation vector is correspondingly translated by the same vector amount, as shown
by

(7.73)

From (7.72) and (7.73) we see that the translation a is common to both the translated signal
vector si and translated observation vector x. We, therefore, immediately deduce that

(7.74)

and thus formulate the principle of translational invariance:

If a signal constellation is translated by a constant vector amount, then the 
probability of symbol error Pe incurred in maximum likelihood signal detection 
over an AWGN channel is completely unchanged.

EXAMPLE 4 Translation of Signal Constellation

As an example, consider the two signal constellations shown in Figure 7.11, which pertain
to a pair of different four-level PAM signals. The constellation of Figure 7.11b is the same
as that of Figure 7.11a, except for a translation 32 to the right along the 1-axis. The
principle of translational invariance teaches us that the Pe is the same for both of these
signal constellations.

Union Bound on the Probability of Error

For AWGN channels, the formulation of the average probability of symbol error2 Pe is
conceptually straightforward, in that we simply substitute (7.41) into (7.63).
Unfortunately, however, numerical computation of the integral so obtained is impractical,
except in a few simple (nevertheless, important) cases. To overcome this computational
difficulty, we may resort to the use of bounds, which are usually adequate to predict the
SNR (within a decibel or so) required to maintain a prescribed error rate. The
approximation to the integral defining Pe is made by simplifying the integral or
simplifying the region of integration. In the following, we use the latter procedure to
develop a simple yet useful upper bound, called the union bound, as an approximation to
the average probability of symbol error for a set of M equally likely signals (symbols) in
an AWGN channel.

Let Aik, with (i,k) = 1, 2, , M, denote the event that the observation vector x is closer

to the signal vector sk than to si, when the symbol mi (message vector si) is sent. The

conditional probability of symbol error when symbol mi is sent, Pe(mi), is equal to the

xtranslate x a–=

xtranslate si translate– x si– for i 1 2  M  ==

Figure 7.11 A pair of signal constellations for illustrating the principle of translational invariance. 
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348 Chapter 7 Signaling over AWGN Channels

probability of the union of events, defined by the set . Probability theory

teaches us that the probability of a finite union of events is overbounded by the sum of the

probabilities of the constituent events. We may, therefore, write

(7.75)

EXAMPLE 5 Constellation of Four Message Points

To illustrate applicability of the union bound, consider Figure 7.12 for the case of M = 4.
Figure 7.12a shows the four message points and associated decision regions, with the
point s1 assumed to represent a transmitted symbol. Figure 7.12b shows the three
constituent signal-space descriptions where, in each case, the transmitted message point s1
and one other message point are retained. According to Figure 7.12a the conditional
probability of symbol error, Pe(mi), is equal to the probability that the observation vector x

Aik 
k 1=
k i

M

Pe mi  � Aik  i 1 2  M  =
k 1=
k i

M



Figure 7.12 Illustrating the union bound. (a) Constellation of four message points. (b) Three 
constellations with a common message point and one other message point x retained from the 
original constellation. 
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7.5 Probability of Error 349

lies in the shaded region of the two-dimensional signal-space diagram. Clearly, this
probability is less than the sum of the probabilities of the three individual events that x lies
in the shaded regions of the three constituent signal spaces depicted in Figure 7.12b.

Pairwise Error Probability

It is important to note that, in general, the probability �(Aik) is different from the
probability , which is the probability that the observation vector x is closer
to the signal vector sk (i.e., symbol mk) than every other when the vector si (i.e., symbol
mi) is sent. On the other hand, the probability �(Aik) depends on only two signal vectors,
si and sk. To emphasize this difference, we rewrite (7.75) by adopting pik in place of
�(Aik). We thus write

(7.76)

The probability pik is called the pairwise error probability, in that if a digital
communication system uses only a pair of signals, si and sk, then pik is the probability of
the receiver mistaking sk for si.

Consider then a simplified digital communication system that involves the use of two
equally likely messages represented by the vectors si and sk. Since white Gaussian noise is
identically distributed along any set of orthogonal axes, we may temporarily choose the
first axis in such a set as one that passes through the points si and sk; for three illustrative
examples, see Figure 7.12b. The corresponding decision boundary is represented by the
bisector that is perpendicular to the line joining the points si and sk. Accordingly, when the
vector si (i.e., symbol mi) is sent, and if the observation vector x lies on the side of the
bisector where sk lies, an error is made. The probability of this event is given by

(7.77)

where dik in the lower limit of the integral is the Euclidean distance between signal vectors
si and sk; that is,

(7.78)

To change the integral of (7.77) into a standard form, define a new integration variable

(7.79)

Equation (7.77) is then rewritten in the desired form

(7.80)

� m̂ mk mi= 

Pe mi  pik i 1 2  M  =

k 1=
k i

M



pik �(x is closer to skthan si when si is sent)=

1

N0

-------------- v
2

N0
------–

 
 
 

exp  dv
dik 2



=

dik si sk–=

z 2
N0
------v=

pik
1

2
---------- z

2

2
----– 

 exp  dz
dik 2N0



=
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350 Chapter 7 Signaling over AWGN Channels

The integral in (7.80) is the Q-function of (3.68) that was introduced in Chapter 3. In terms
of the Q-function, we may now express the probability pik in the compact form

(7.81)

Correspondingly, substituting (7.81) into (7.76), we write

(7.82)

The probability of symbol error, averaged over all the M symbols, is, therefore, over-
bounded as follows:

(7.83)

where  i is the probability of sending symbol mi.
There are two special forms of (7.83) that are noteworthy:

1. Suppose that the signal constellation is circularly symmetric about the origin. Then,
the conditional probability of error Pe(mi) is the same for all i, in which case (7.83)
reduces to

(7.84)

Figure 7.10 illustrates two examples of circularly symmetric signal constellations.

2. Define the minimum distance of a signal constellation dmin as the smallest Euclidean
distance between any two transmitted signal points in the constellation, as shown by

(7.85)

Then, recognizing that the Q-function is a monotonically decreasing function of its
argument, we have

(7.86)

Therefore, in general, we may simplify the bound on the average probability of
symbol error in (7.83) as

(7.87)

pik Q
dik

2N0

--------------
 
 
 

=

Pe mi  Q
dik

2N0

--------------
 
 
 

i 1 2  M  =
k 1=
k i

M



Pe iPe mi 
i 1=

M

=

iQ
dik

2N0

--------------
 
 
 

k 1=
k i

M


i=1

M



Pe Q
dik

2N0

--------------
 
 
 

for all i

k 1=
k i

M



dmin min
k i

= dik for all i and k

Q
dik

2N0

--------------
 
 
 

Q
dmin

2N0

--------------
 
 
 

for all i and k

Pe M 1– Q
dmin

2N0

--------------
 
 
 


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The Q-function in (7.87) is itself upper bounded as3

(7.88)

Accordingly, we may further simplify the bound on Pe in (7.87) as

(7.89)

In words, (7.89) states the following:

In an AWGN channel, the average probability of symbol error Pe 
decreases exponentially as the squared minimum distance, .

Bit Versus Symbol Error Probabilities

Thus far, the only figure of merit we have used to assess the noise performance of a digital
communication system in AWGN has been the average probability of symbol (word)
error. This figure of merit is the natural choice when messages of length m = log2 M are
transmitted, such as alphanumeric symbols. However, when the requirement is to transmit
binary data such as digital computer data, it is often more meaningful to use another figure
of merit called the BER. Although, in general, there are no unique relationships between
these two figures of merit, it is fortunate that such relationships can be derived for two
cases of practical interest, as discussed next.

Case 1: M-tuples Differing in Only a Single Bit

Suppose that it is possible to perform the mapping from binary to M-ary symbols in such a
way that the two binary M-tuples corresponding to any pair of adjacent symbols in the M-ary
modulation scheme differ in only one bit position. This mapping constraint is satisfied by
using a Gray code. When the probability of symbol error Pe is acceptably small, we find that
the probability of mistaking one symbol for either one of the two “nearest” symbols is
greater than any other kind of symbol error. Moreover, given a symbol error, the most
probable number of bit errors is one, subject to the aforementioned mapping constraint.
Since there are log2M bits per symbol, it follows that the average probability of symbol error
is related to the BER as follows:

(7.90)

where, in the first line,  is the symbol for “union” as used in set theory. We also note that

(7.91)

Q
dmin

2N0

--------------
 
 
  1

2
----------

dmin
2

4N0
----------–

 
 
 

exp

Pe
M 1–

2
-------------- 
  dmin

2

4N0
----------–

 
 
 

exp

dmin
2

Pe �( ith bit is in error  
i 1=

M2log

=

� ith bit is in error 
i 1=

M2log



M2 BER log=



Pe � ith bit is in error  BER=
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352 Chapter 7 Signaling over AWGN Channels

It follows, therefore, that the BER is bounded as follows:

(7.92)

Case 2: Number of Symbols Equal to Integer Power of 2

Suppose next M = 2K, where K is an integer. We assume that all symbol errors are equally
likely and occur with probability

where Pe is the average probability of symbol error. To find the probability that the ith bit
in a symbol is in error, we note that there are 2K – 1 cases of symbol error in which this
particular bit is changed and there are 2K – 1 cases in which it is not. Hence, the BER is

(7.93)

or, equivalently,

(7.94)

Note that, for large M, the BER approaches the limiting value of Pe2. Note also that the
bit errors are not independent in general.

7.6 Phase-Shift Keying Techniques Using Coherent Detection

With the background material on the coherent detection of signals in AWGN presented in
Sections 7.2–7.4 at our disposal, we are now ready to study specific passband data-
transmission systems. In this section, we focus on the family of phase-shift keying (PSK)
techniques, starting with the simplest member of the family discussed next.

Binary Phase-Shift Keying

In a binary PSK system, the pair of signals s1(t) and s2(t) used to represent binary symbols
1 and 0, respectively, is defined by

(7.95)

(7.96)

where Tb is the bit duration and Eb is the transmitted signal energy per bit. We find it con-
venient, although not necessary, to assume that each transmitted bit contains an integral
number of cycles of the carrier wave; that is, the carrier frequency fc is chosen equal to
ncTb for some fixed integer nc. A pair of sinusoidal waves that differ only in a relative
phase-shift of 180°, defined in (7.95) and (7.96), is referred to as an antipodal signal.

Pe

M2log
---------------- BER Pe 

Pe

M 1–
--------------
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2
K

1–
---------------=

BER
2

K 1–

2
K

1–
---------------

 
 
 

Pe=

BER
M 2
M 1–
-------------- 

 Pe=

s1 t 
2Eb

Tb
--------- 2fct  0 t Tb cos=

s2 t 
2Eb

Tb
--------- 2fct + cos

2Eb

Tb
--------- 2fct  0 t Tb cos–= =
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 353

Signal-Space Diagram of Binary PSK Signals
From this pair of equations it is clear that, in the case of binary PSK, there is only one
basis function of unit energy:

(7.97)

Then, we may respectively express the transmitted signals s1(t) and s2(t) in terms of 1(t) as 

(7.98)

 (7.99)

A binary PSK system is, therefore, characterized by having a signal space that is
one-dimensional (i.e., N = 1), with a signal constellation consisting of two message points
(i.e., M = 2). The respective coordinates of the two message points are

(7.100)

(7.101)

In words, the message point corresponding to s1(t) is located at  and the
message point corresponding to s2(t) is located at . Figure 7.13a displays the

1 t  2
Tb
----- 2fct  0 t Tb cos=

s1 t  Eb1 t  0 t Tb =

s2 t  Eb– 1 t  0 t Tb =

s11 s1 t 1 t  dt
0

Tb

=

+ Eb=

s21 s2 t 1 t  dt
0

Tb

=

Eb–=

s11 + Eb=
s21 Eb–=

Figure 7.13
(a) Signal-space diagram 
for coherent binary 
PSK system. (b) The 
waveforms depicting 
the transmitted signals 
s1(t) and s2(t), assuming 
nc = 2. 
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354 Chapter 7 Signaling over AWGN Channels

signal-space diagram for binary PSK and Figure 7.13b shows example waveforms of
antipodal signals representing s1(t) and s2(t). Note that the binary constellation of Figure
7.13 has minimum average energy.

Generation of a binary PSK signal follows readily from (7.97) to (7.99). Specifically, as
shown in the block diagram of Figure 7.14a, the generator (transmitter) consists of two
components:

1. Polar NRZ-level encoder, which represents symbols 1 and 0 of the incoming binary
sequence by amplitude levels  and , respectively.

2. Product modulator, which multiplies the output of the polar NRZ encoder by the
basis function 1(t); in effect, the sinusoidal 1(t) acts as the “carrier” of the binary
PSK signal.

Accordingly, binary PSK may be viewed as a special form of DSB-SC modulation that
was studied in Section 2.14.

Error Probability of Binary PSK Using Coherent Detection
To make an optimum decision on the received signal x(t) in favor of symbol 1 or symbol 0
(i.e., estimate the original binary sequence at the transmitter input), we assume that the
receiver has access to a locally generated replica of the basis function 1(t). In other
words, the receiver is synchronized with the transmitter, as shown in the block diagram of
Figure 7.14b. We may identify two basic components in the binary PSK receiver:

1. Correlator, which correlates the received signal x(t) with the basis function 1(t) on
a bit-by-bit basis.

2. Decision device, which compares the correlator output against a zero-threshold,
assuming that binary symbols 1 and 0 are equiprobable. If the threshold is exceeded,
a decision is made in favor of symbol 1; if not, the decision is made in favor of
symbol 0. Equality of the correlator with the zero-threshold is decided by the toss of
a fair coin (i.e., in a random manner).

With coherent detection in place, we may apply the decision rule of (7.54). Specifically,
we partition the signal space of Figure 7.13 into two regions:

• the set of points closest to message point 1 at ; and

• the set of points closest to message point 2 at .

This is accomplished by constructing the midpoint of the line joining these two message
points and then marking off the appropriate decision regions. In Figure 7.13, these two
decision regions are marked Z1 and Z2, according to the message point around which they
are constructed.

The decision rule is now simply to decide that signal s1(t) (i.e., binary symbol 1) was
transmitted if the received signal point falls in region Z1 and to decide that signal s2(t)
(i.e., binary symbol 0) was transmitted if the received signal point falls in region Z2. Two
kinds of erroneous decisions may, however, be made:

1. Error of the first kind. Signal s2(t) is transmitted but the noise is such that the received
signal point falls inside region Z1; so the receiver decides in favor of signal s1(t). 

2. Error of the second kind. Signal s1(t) is transmitted but the noise is such that the
received signal point falls inside region Z2; so the receiver decides in favor of signal s2(t).

+ Eb Eb–

+ Eb

Eb–
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 355

To calculate the probability of making an error of the first kind, we note from Figure 7.13a
that the decision region associated with symbol 1 or signal s1(t) is described by

where the observable element x1 is related to the received signal x(t) by

(7.102)

The conditional probability density function of random variable X1, given that symbol 0
(i.e., signal s2(t)) was transmitted, is defined by

(7.103)

Using (7.101) in this equation yields 

(7.104)

The conditional probability of the receiver deciding in favor of symbol 1, given that
symbol 0 was transmitted, is therefore

(7.105)

Putting

(7.106)

Figure 7.14 Block diagrams for (a) binary PSK transmitter and (b) coherent 
binary PSK receiver. 
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356 Chapter 7 Signaling over AWGN Channels

and changing the variable of integration from x1 to z, we may compactly rewrite (7.105) in
terms of the Q-function:

(7.107)

Using the formula of (3.68) in Chapter 3 for the Q-function in (7.107) we get

(7.108)

Consider next an error of the second kind. We note that the signal space of Figure 7.13a is
symmetric with respect to the origin. It follows, therefore, that p01, the conditional
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was
transmitted, also has the same value as in (7.108).

Thus, averaging the conditional error probabilities p10 and p01, we find that the average
probability of symbol error or, equivalently, the BER for binary PSK using coherent
detection and assuming equiprobable symbols is given by

(7.109)

As we increase the transmitted signal energy per bit Eb for a specified noise spectral
density N02, the message points corresponding to symbols 1 and 0 move further apart and
the average probability of error Pe is correspondingly reduced in accordance with (7.109),
which is intuitively satisfying.

Power Spectra of Binary PSK Signals
Examining (7.97) and (7.98), we see that a binary PSK wave is an example of DSB-SC
modulation that was discussed in Section 2.14. More specifically, it consists of an in-phase
component only. Let g(t) denote the underlying pulse-shaping function defined by

(7.110)

Depending on whether the transmitter input is binary symbol 1 or 0, the corresponding
transmitter output is +g(t) or –g(t), respectively. It is assumed that the incoming binary
sequence is random, with symbols 1 and 0 being equally likely and the symbols
transmitted during the different time slots being statistically independent. 

In Example 6 of Chapter 4, it was shown that the power spectral density of a random
binary wave so described is equal to the energy spectral density of the symbol shaping
function divided by the symbol duration. The energy spectral density of a Fourier-
transformable signal g(t) is defined as the squared magnitude of the signal’s Fourier
transform. For the binary PSK signal at hand, the baseband power spectral density is,
therefore, defined by
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 357

(7.111)

Examining (7.111), we may make the following observations on binary PSK:

1. The power spectral density SB(f) is symmetric about the vertical axis, as expected.

2. SB(f) goes through zero at multiples of the bit rate; that is, f = 1Tb, 2Tb, 
3. With sin2(Tb f) limited to a maximum value of unity, SB(f) falls off as the inverse

square of the frequency, f.

These three observations are all embodied in the plot of SB(f) versus f, presented in Figure 7.15.
Figure 7.15 also includes a plot of the baseband power spectral density of a binary

frequency-shift keying (FSK) signal, details of which are presented in Section 7.8.
Comparison of these two spectra is deferred to that section.

Quadriphase-Shift Keying

The provision of reliable performance, exemplified by a very low probability of error, is
one important goal in the design of a digital communication system. Another important
goal is the efficient utilization of channel bandwidth. In this subsection we study a
bandwidth-conserving modulation scheme known as quadriphase-shift keying (QPSK),
using coherent detection.

As with binary PSK, information about the message symbols in QPSK is contained in
the carrier phase. In particular, the phase of the carrier takes on one of four equally spaced

Figure 7.15 Power spectra of binary PSK and FSK signals. 
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358 Chapter 7 Signaling over AWGN Channels

values, such as 4, 34, 54, and 74. For this set of values, we may define the trans-
mitted signal as

(7.112)

where E is the transmitted signal energy per symbol and T is the symbol duration. The
carrier frequency fc equals nc/T for some fixed integer nc. Each possible value of the phase
corresponds to a unique dibit (i.e., pair of bits). Thus, for example, we may choose the
foregoing set of phase values to represent the Gray-encoded set of dibits, 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK Signals
Using a well-known trigonometric identity, we may expand (7.112) to redefine the
transmitted signal in the canonical form:

(7.113)

where i = 1, 2, 3, 4. Based on this representation, we make two observations:

1. There are two orthonormal basis functions, defined by a pair of quadrature carriers:

 (7.114)

  (7.115)

Figure 7.16
Signal-space diagram of 
QPSK system.
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 359

2. There are four message points, defined by the two-dimensional signal vector

(7.116)

Elements of the signal vectors, namely si1 and si2, have their values summarized in
Table 7.2; the first two columns give the associated dibit and phase of the QPSK signal.

Accordingly, a QPSK signal has a two-dimensional signal constellation (i.e., N = 2) and
four message points (i.e., M = 4) whose phase angles increase in a counterclockwise
direction, as illustrated in Figure 7.16. As with binary PSK, the QPSK signal has minimum
average energy. 

EXAMPLE 6 QPSK Waveforms

Figure 7.17 illustrates the sequences and waveforms involved in the generation of a QPSK
signal. The input binary sequence 01101000 is shown in Figure 7.17a. This sequence is
divided into two other sequences, consisting of odd- and even-numbered bits of the input
sequence. These two sequences are shown in the top lines of Figure 7.17b and c. The
waveforms representing the two components of the QPSK signal, namely si11(t) and
si22(t) are also shown in Figure 7.17b and c, respectively. These two waveforms may
individually be viewed as examples of a binary PSK signal. Adding them, we get the
QPSK waveform shown in Figure 7.17d.

To define the decision rule for the coherent detection of the transmitted data sequence,
we partition the signal space into four regions, in accordance with Table 7.2. The
individual regions are defined by the set of symbols closest to the message point
represented by message vectors s1, s2, s3, and s4. This is readily accomplished by
constructing the perpendicular bisectors of the square formed by joining the four message
points and then marking off the appropriate regions. We thus find that the decision regions

Table 7.2 Signal-space characterization of QPSK

Gray-encoded 
input dibit

Phase of 
QPSK signal 
(radians)

Coordinates of message points

 si1  si2

11 /4

01 3/4

00 5/4

10 7/4
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360 Chapter 7 Signaling over AWGN Channels

are quadrants whose vertices coincide with the origin. These regions are marked Z1, Z2,
Z3, and Z4 in Figure 7.17, according to the message point around which they are
constructed.

Generation and Coherent Detection of QPSK Signals
Expanding on the binary PSK transmitter of Figure 7.14a, we may build on (7.113) to
(7.115) to construct the QPSK transmitter shown in Figure 7.18a. A distinguishing feature
of the QPSK transmitter is the block labeled demultiplexer. The function of the
demultiplexer is to divide the binary wave produced by the polar NRZ-level encoder into
two separate binary waves, one of which represents the odd-numbered dibits in the
incoming binary sequence and the other represents the even-numbered dibits.
Accordingly, we may make the following statement:

The QPSK transmitter may be viewed as two binary PSK generators that work 
in parallel, each at a bit rate equal to one-half the bit rate of the original binary 
sequence at the QPSK transmitter input.

Figure 7.17 (a) Input binary sequence. (b) Odd-numbered dibits of input sequence and associated 
binary PSK signal. (c) Even-numbered dibits of input sequence and associated binary PSK signal. 
(d) QPSK waveform defined as s(t) = si1 1 (t) + si2 2 (t).
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 361

Expanding on the binary PSK receiver of Figure 7.14b, we find that the QPSK receiver is
structured in the form of an in-phase path and a quadrature path, working in parallel as
depicted in Figure 7.18b. The functional composition of the QPSK receiver is as follows:

1. Pair of correlators, which have a common input x(t). The two correlators are
supplied with a pair of locally generated orthonormal basis functions 1(t) and 2(t),
which means that the receiver is synchronized with the transmitter. The correlator
outputs, produced in response to the received signal x(t), are denoted by x1 and x2,
respectively.

2. Pair of decision devices, which act on the correlator outputs x1 and x2 by comparing
each one with a zero-threshold; here, it is assumed that the symbols 1 and 0 in the

Figure 7.18 Block diagram of (a) QPSK transmitter and (b) coherent QPSK receiver. 
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362 Chapter 7 Signaling over AWGN Channels

original binary stream at the transmitter input are equally likely. If x1 > 0, a decision
is made in favor of symbol 1 for the in-phase channel output; on the other hand, if
x1  0, then a decision is made in favor of symbol 0. Similar binary decisions are
made for the quadrature channel.

3.  Multiplexer, the function of which is to combine the two binary sequences produced
by the pair of decision devices. The resulting binary sequence so produced provides
an estimate of the original binary stream at the transmitter input.

Error Probability of QPSK
In a QPSK system operating on an AWGN channel, the received signal x(t) is defined by

(7.117)

where w(t) is the sample function of a white Gaussian noise process of zero mean and
power spectral density N02.

Referring to Figure 7.18a, we see that the two correlator outputs, x1 and x2, are
respectively defined as follows:

(7.118)

and

(7.119)

Thus, the observable elements x1 and x2 are sample values of independent Gaussian
random variables with mean values equal to  and , respectively, and with
a common variance equal to N02.

The decision rule is now simply to say that s1(t) was transmitted if the received signal
point associated with the observation vector x falls inside region Z1; say that s2(t) was
transmitted if the received signal point falls inside region Z2, and so on for the other two
regions Z3 and Z4. An erroneous decision will be made if, for example, signal s4(t) is
transmitted but the noise w(t) is such that the received signal point falls outside region Z4.

To calculate the average probability of symbol error, recall that a QPSK receiver is in
fact equivalent to two binary PSK receivers working in parallel and using two carriers that
are in phase quadrature. The in-phase channel x1 and the quadrature channel output x2
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 363

(i.e., the two elements of the observation vector x) may be viewed as the individual
outputs of two binary PSK receivers. Thus, according to (7.118) and (7.119), these two
binary PSK receivers are characterized as follows:

• signal energy per bit equal to E2, and
• noise spectral density equal to N02.

Hence, using (7.109) for the average probability of bit error of a coherent binary PSK
receiver, we may express the average probability of bit error in the in-phase and
quadrature paths of the coherent QPSK receiver as

(7.120)

where E is written in place of 2Eb. Another important point to note is that the bit errors in
the in-phase and quadrature paths of the QPSK receiver are statistically independent. The
decision device in the in-phase path accounts for one of the two bits constituting a symbol
(dibit) of the QPSK signal, and the decision device in the quadrature path takes care of the
other dibit. Accordingly, the average probability of a correct detection resulting from the
combined action of the two channels (paths) working together is

(7.121)

The average probability of symbol error for QPSK is therefore

(7.122)

In the region where (EN0) >> 1, we may ignore the quadratic term on the right-hand side of
(7.122), so the average probability of symbol error for the QPSK receiver is approximated as

(7.123)

Equation (7.123) may also be derived in another insightful way, using the signal-space
diagram of Figure 7.16. Since the four message points of this diagram are circularly
symmetric with respect to the origin, we may apply the approximate formula of (7.85)
based on the union bound. Consider, for example, message point m1 (corresponding to
dibit 10) chosen as the transmitted message point. The message points m2 and m4
(corresponding to dibits 00 and 11) are the closest to m1. From Figure 7.16 we readily find
that m1 is equidistant from m2 and m4 in a Euclidean sense, as shown by

Assuming that EN0 is large enough to ignore the contribution of the most distant message
point m3 (corresponding to dibit 01) relative to m1, we find that the use of (7.85) with the
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364 Chapter 7 Signaling over AWGN Channels

equality sign yields an approximate expression for Pe that is the same as that of (7.123).
Note that in mistaking either m2 or m4 for m1, a single bit error is made; on the other hand,
in mistaking m3 for m1, two bit errors are made. For a high enough EN0, the likelihood of
both bits of a symbol being in error is much less than a single bit, which is a further
justification for ignoring m3 in calculating Pe when m1 is sent.

In a QPSK system, we note that since there are two bits per symbol, the transmitted
signal energy per symbol is twice the signal energy per bit, as shown by

(7.124)

Thus, expressing the average probability of symbol error in terms of the ratio EbN0, we
may write

(7.125)

With Gray encoding used for the incoming symbols, we find from (7.120) and (7.124) that
the BER of QPSK is exactly

(7.126)

We may, therefore, state that a QPSK system achieves the same average probability of bit
error as a binary PSK system for the same bit rate and the same EbN0, but uses only half
the channel bandwidth. Stated in another way: 

For the same Eb/N0 and, therefore, the same average probability of bit error, a 
QPSK system transmits information at twice the bit rate of a binary PSK system 
for the same channel bandwidth. 

For a prescribed performance, QPSK uses channel bandwidth better than binary PSK,
which explains the preferred use of QPSK over binary PSK in practice.

Earlier we stated that the binary PSK may be viewed as a special case of DSB-SC
modulation. In a corresponding way, we may view the QPSK as a special case of the
quadrature amplitude modulation (QAM) in analog modulation theory.

Power Spectra of QPSK Signals
Assume that the binary wave at the modulator input is random with symbols 1 and 0 being
equally likely, and with the symbols transmitted during adjacent time slots being
statistically independent. We then make the following observations pertaining to the in-
phase and quadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval –Tb  t  Tb, the in-phase
component equals +g(t) or –g(t), and similarly for the quadrature component. The
g(t) denotes the symbol-shaping function defined by

(7.127)
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 365

Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc2(Tf).

2. The in-phase and quadrature components are statistically independent. Accordingly,
the baseband power spectral density of the QPSK signal equals the sum of the
individual power spectral densities of the in-phase and quadrature components, so
we may write

(7.128)

Figure 7.19 plots SB(f ), normalized with respect to 4Eb, versus the normalized frequency
Tb f. This figure also includes a plot of the baseband power spectral density of a certain
form of binary FSK called minimum shift keying, the evaluation of which is presented in
Section 7.8. Comparison of these two spectra is deferred to that section.

Offset QPSK

For a variation of the QPSK, consider the signal-space diagram of Figure 7.20a that
embodies all the possible phase transitions that can arise in the generation of a QPSK
signal. More specifically, examining the QPSK waveform illustrated in Figure 7.17 for
Example 6, we may make three observations:

1. The carrier phase changes by 180° whenever both the in-phase and quadrature
components of the QPSK signal change sign. An example of this situation is
illustrated in Figure 7.17 when the input binary sequence switches from dibit 01 to
dibit 10.

Figure 7.19 Power spectra of QPSK and MSK signals.
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366 Chapter 7 Signaling over AWGN Channels

2. The carrier phase changes by 90° whenever the in-phase or quadrature component
changes sign. An example of this second situation is illustrated in Figure 7.17 when
the input binary sequence switches from dibit 10 to dibit 00, during which the in-
phase component changes sign, whereas the quadrature component is unchanged.

3. The carrier phase is unchanged when neither the in-phase component nor the
quadrature component changes sign. This last situation is illustrated in Figure 7.17
when dibit 10 is transmitted in two successive symbol intervals.

Situation 1 and, to a much lesser extent, situation 2 can be of a particular concern when the
QPSK signal is filtered during the course of transmission, prior to detection. Specifically,
the 180° and 90° shifts in carrier phase can result in changes in the carrier amplitude (i.e.,
envelope of the QPSK signal) during the course of transmission over the channel, thereby
causing additional symbol errors on detection at the receiver.

To mitigate this shortcoming of QPSK, we need to reduce the extent of its amplitude
fluctuations. To this end, we may use offset QPSK.4 In this variant of QPSK, the bit stream
responsible for generating the quadrature component is delayed (i.e., offset) by half a
symbol interval with respect to the bit stream responsible for generating the in-phase
component. Specifically, the two basis functions of offset QPSK are defined by

(7.129)

and

(7.130)

The 1(t) of (7.129) is exactly the same as that of (7.114) for QPSK, but the 2(t) of
(7.130) is different from that of (7.115) for QPSK. Accordingly, unlike QPSK, the phase
transitions likely to occur in offset QPSK are confined to 90°, as indicated in the signal-
space diagram of Figure 7.20b. However, 90° phase transitions in offset QPSK occur
twice as frequently but with half the intensity encountered in QPSK. Since, in addition to
90° phase transitions, 180° phase transitions also occur in QPSK, we find that
amplitude fluctuations in offset QPSK due to filtering have a smaller amplitude than in the
case of QPSK.

Figure 7.20 Possible paths for switching between the message points 
in (a) QPSK and (b) offset QPSK.
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 367

Despite the delay T/2 applied to the basis function 2(t) in (7.130) compared with that
in (7.115) for QPSK, the offset QPSK has exactly the same probability of symbol error in
an AWGN channel as QPSK. The equivalence in noise performance between these PSK
schemes assumes the use of coherent detection at the receiver. The reason for the
equivalence is that the statistical independence of the in-phase and quadrature components
applies to both QPSK and offset QPSK. We may, therefore, say that Equation (7.123) for
the average probability of symbol error applies equally well to the offset QPSK.

M-ary PSK

QPSK is a special case of the generic form of PSK commonly referred to as M-ary PSK,
where the phase of the carrier takes on one of M possible values: i = 2(i – 1)M, where
i = 1, 2, , M. Accordingly, during each signaling interval of duration T, one of the M
possible signals

(7.131)

is sent, where E is the signal energy per symbol. The carrier frequency fc = ncT for some
fixed integer nc.

Each si(t) may be expanded in terms of the same two basis functions 1(t) and 2(t); the
signal constellation of M-ary PSK is, therefore, two-dimensional. The M message points
are equally spaced on a circle of radius  and center at the origin, as illustrated in Figure
7.21a for the case of octaphase-shift-keying (i.e., M = 8). 

From Figure 7.21a we see that the signal-space diagram is circularly symmetric. We
may, therefore, apply (7.85), based on the union bound, to develop an approximate formula
for the average probability of symbol error for M-ary PSK. Suppose that the transmitted
signal corresponds to the message point m1, whose coordinates along the 1- and 2-axes are

 and 0, respectively. Suppose that the ratio EN0 is large enough to consider the nearest
two message points, one on either side of m1, as potential candidates for being mistaken for
m1 due to channel noise. This is illustrated in Figure 7.21b for the case of M = 8. The
Euclidean distance for each of these two points from m1 is (for M = 8)

Hence, the use of (7.85) yields the average probability of symbol error for coherent M-ary
PSK as

(7.132)

where it is assumed that M  4. The approximation becomes extremely tight for fixed M, as
EN0 is increased. For M = 4, (7.132) reduces to the same form given in (7.123) for QPSK.

Power Spectra of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

(7.133)

si t  2E
T

------- 2fct
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M
------ i 1– + i 1 2  M  =cos=

E

+ E

d12 d18 2 E= =
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M
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 sin
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368 Chapter 7 Signaling over AWGN Channels

Figure 7.21  (a) Signal-space diagram for octaphase-shift keying (i.e., M = 8). The 
decision boundaries are shown as dashed lines. (b) Signal-space diagram illustrating 
the application of the union bound for octaphase-shift keying. 
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 369

where Tb is the bit duration. Proceeding in a manner similar to that described for a QPSK
signal, we may show that the baseband power spectral density of an M-ary PSK signal is
given by

(7.134)

Figure 7.22 is a plot of the normalized power spectral density SB(f)2Eb versus the
normalized frequency Tbf for three different values of M, namely M = 2, 4, 8. Equation
(7.134) includes (7.111) for M = 2 and (7.128) for M = 4 as two special cases.

The baseband power spectra of M-ary PSK signals plotted in Figure 7.22 possess a
main lobe bounded by well-defined spectral nulls (i.e., frequencies at which the power
spectral density is zero). In light of the discussion on the bandwidth of signals presented in
Chapter 2, we may use the main lobe as a basis for bandwidth assessment. Accordingly,
invoking the notion of null-to-null bandwidth, we may say that the spectral width of the
main lobe provides a simple, yet informative, measure for the bandwidth of M-ary PSK
signals. Most importantly, a large fraction of the average signal power is contained inside
the main lobe. On this basis, we may define the channel bandwidth required to pass M-ary
PSK signals through an analog channel as

(7.135)

where T is the symbol duration. But the symbol duration T is related to the bit duration Tb
by (7.133). Moreover, the bit rate Rb = 1Tb. Hence, we may redefine the channel
bandwidth of (7.135) in terms of the bit rate as

(7.136)

Figure 7.22 Power spectra of M-ary PSK signals for M = 2, 4, 8.
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370 Chapter 7 Signaling over AWGN Channels

Based on this formula, the bandwidth efficiency of M-ary PSK signals is given by

(7.137)

Table 7.3 gives the values of  calculated from (7.137) for varying M. In light of (7.132)
and Table 7.3, we now make the statement:

As the number of states in M-ary PSK is increased, the bandwidth efficiency is 
improved at the expense of error performance. 

However, note that if we are to ensure that there is no degradation in error performance,
we have to increase EbN0 to compensate for the increase in M.

7.7 M-ary Quadrature Amplitude Modulation

In an M-ary PSK system, the in-phase and quadrature components of the modulated signal
are interrelated in such a way that the envelope is constrained to remain constant. This
constraint manifests itself in a circular constellation for the message points, as illustrated
in Figure 7.21a. However, if this constraint is removed so as to permit the in-phase and
quadrature components to be independent, we get a new modulation scheme called M-ary
QAM. The QAM is a hybrid form of modulation, in that the carrier experiences amplitude
as well as phase-modulation.

In M-ary PAM, the signal-space diagram is one-dimensional. M-ary QAM is a two-
dimensional generalization of M-ary PAM, in that its formulation involves two orthogonal
passband basis functions:

(7.138)

Let dmin denote the minimum distance between any two message points in the QAM
constellation. Then, the projections of the ith message point on the 1- and 2-axes are
respectively defined by ai dmin2 and bi dmin2, where i = 1, 2, , M. With the separation
between two message points in the signal-space diagram being proportional to the square
root of energy, we may therefore set

(7.139)

Table 7.3 Bandwidth efficiency of M-ary PSK signals

M 2 4 8 16 32 64
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7.7 M-ary Quadrature Amplitude Modulation 371

where E0 is the energy of the message signal with the lowest amplitude. The transmitted
M-ary QAM signal for symbol k can now be defined in terms of E0:

(7.140)

The signal sk(t) involves two phase-quadrature carriers, each one of which is modulated by
a set of discrete amplitudes; hence the terminology “quadrature amplitude modulation.”

In M-ary QAM, the constellation of message points depends on the number of possible
symbols, M. In what follows, we consider the case of square constellations, for which the
number of bits per symbol is even.

QAM Square Constellations
With an even number of bits per symbol, we write

(7.141)

Under this condition, an M-ary QAM square constellation can always be viewed as the
Cartesian product of a one-dimensional L-ary PAM constellation with itself. By definition,
the Cartesian product of two sets of coordinates (representing a pair of one-dimensional
constellations) is made up of the set of all possible ordered pairs of coordinates with the
first coordinate in each such pair being taken from the first set involved in the product and
the second coordinate taken from the second set in the product.

Thus, the ordered pairs of coordinates naturally form a square matrix, as shown by

(7.142)

To calculate the probability of symbol error for this M-ary QAM, we exploit the following
property:

A QAM square constellation can be factored into the product of the 
corresponding L-ary PAM constellation with itself.

To exploit this statement, we may proceed in one of two ways:

Approach 1: We start with a signal constellation of the M-ary PAM for a prescribed M,
and then build on it to construct the corresponding signal constellation of the M-ary QAM.

Approach 2: We start with a signal constellation of the M-ary QAM, and then use it to
construct the corresponding orthogonal M-ary PAMS.

In the example to follow, we present a systematic procedure based on Approach 1.

EXAMPLE 7 M-ary QAM for M = 4

In Figure 7.23, we have constructed two signal constellations for the 4-ary PAM, one
vertically oriented along the 1-axis in part a of the figure, and the other horizontally

sk t 
2E0

T
---------ak 2fct 
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---------bk 2fct 

0 t T 
k 0 1 2 =



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ai bi 
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372 Chapter 7 Signaling over AWGN Channels

oriented along the 2-axis in part b of the figure. These two parts are spatially orthogonal
to each other, accounting for the two-dimensional structure of the M-ary QAM. In
developing this structure, the following points should be born in mind:

• The same binary sequence is used for both 4-ary PAM constellations.
• The Gray encoding rule is applied, which means that as we move from one

codeword to an adjacent one, only a single bit is changed.
• In constructing the 4-ary QAM constellation, we move from one quadrant to the

next in a counterclockwise direction.

With four quadrants constituting the 4-ary QAM, we proceed in four stages as follows:

Stage 1: First-quadrant constellation. Referring to Figure 7.23, we use the codewords
along the positive parts of the 2 and 1-axes, respectively, to write

Stage 2: Second-quadrant constellation. Following the same procedure as in Stage 1, we
write

11

10

Top to
bottom

10 11

Left to
right

 1110 1111

1010 1011

First quadrant

11

10

Top to
bottom

01 00

Left to
right

 1101 1100

1001 1000

Second quadrant

Figure 7.23
The two orthogonal constellations of the 
4-ary PAM. (a) Vertically oriented 
constellation. (b) Horizontally oriented 
constellation. As mentioned in the text, 
we move top-down along the 2-axis and 
from left to right along the 1-axis.
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7.7 M-ary Quadrature Amplitude Modulation 373

Stage 3: Third-quadrant constellation. Again, following the same procedure as before,
we next write

Stage 4: Fourth-quadrant constellation. Finally, we write

The final step is to piece together these four constituent 4-ary PAM constellations to
construct the 4-ary QAM constellations as described in Figure 7.24. The important point
to note here is that all the codewords in Figure 7.24 obey the Gray encoding rule, not only
within each quadrant but also as we move from one quadrant to the next.

Average Probability of Error
In light of the equivalence established between the M-ary QAM and M-ary PAM, we may
formulate the average probability of error of the M-ary QAM by proceeding as follows:

1. The probability of correct detection for M-ary QAM is written as

(7.143)

where  is the probability of symbol error for the L-ary PAM.
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Third quadrant

00
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bottom

10 11

Left to
right
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Figure 7.24
(a) Signal-space diagram of M-ary QAM for 
M = 16; the message points in each quadrant 
are identified with Gray-encoded quadbits. 
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374 Chapter 7 Signaling over AWGN Channels

2. With , the probability of symbol error  is itself defined by

 (7.144)

3. The probability of symbol error for M-ary QAM is given by

(7.145)

where it is assumed that  is small enough compared with unity to justify ignoring
the quadratic term.

Hence, using (7.143) and (7.144) in (7.145), we find that the probability of symbol error
for M-ary QAM is approximately given by

(7.146)

The transmitted energy in M-ary QAM is variable, in that its instantaneous value naturally
depends on the particular symbol transmitted. Therefore, it is more logical to express Pe in
terms of the average value of the transmitted energy rather than E0. Assuming that the L
amplitude levels of the in-phase or quadrature component of the M-ary QAM signal are
equally likely, we have

(7.147)

where the overall scaling factor 2 accounts for the equal contributions made by the in-phase
and quadrature components. The limits of the summation and the scaling factor 2 inside the
large parentheses account for the symmetric nature of the pertinent amplitude levels around
zero. Summing the series in (7.147), we get

(7.148)

    (7.149)

Accordingly, we may rewrite (7.146) in terms of Eav as

(7.150)

which is the desired result.
The case of M = 4 is of special interest. The signal constellation for this particular value

of M is the same as that for QPSK. Indeed, putting M = 4 in (7.150) and noting that, for
this special case, Eav equals E, where E is the energy per symbol, we find that the resulting
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 375

formula for the probability of symbol error becomes identical to that in (7.123) for QPSK;
and so it should.

7.8 Frequency-Shift Keying Techniques Using Coherent Detection 

M-ary PSK and M-ary QAM share a common property: both of them are examples of
linear modulation. In this section, we study a nonlinear method of modulation known as
FSK using coherent detection. We begin the study by considering the simple case of
binary FSK, for which M = 2. 

Binary FSK

In binary FSK, symbols 1 and 0 are distinguished from each other by transmitting one of
two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

(7.151)

where i = 1, 2 and Eb is the transmitted signal energy per bit; the transmitted frequency is
set at

(7.152)

Symbol 1 is represented by s1(t) and symbol 0 by s2(t). The FSK signal described here is
known as Sunde’s FSK. It is a continuous-phase signal, in the sense that phase continuity
is always maintained, including the inter-bit switching times. 

From (7.151) and (7.152), we observe directly that the signals s1(t) and s2(t) are
orthogonal, but not normalized to have unit energy. The most useful form for the set of
orthonormal basis functions is described by

(7.153)

where i = 1, 2. Correspondingly, the coefficient sij for where i = 1, 2 and j = 1, 2 is defined
by

(7.154)
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376 Chapter 7 Signaling over AWGN Channels

Carrying out the integration in (7.154), the formula for sij simplifies to

(7.155)

Thus, unlike binary PSK, binary FSK is characterized by having a signal-space diagram
that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2), as shown in
Figure 7.25. The two message points are defined by the vectors

(7.156)

sij
Eb, i j=

0, i j
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=

s1
Eb

0
=

Figure 7.25 Signal-space diagram for binary FSK system. The diagram also includes example 
waveforms of the two modulated signals s1(t) and s2(t). 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 377

and

(7.157)

The Euclidean distance  is equal to . Figure 7.25 also includes a couple of
waveforms representative of signals s1(t) and s2(t).

Generation and Coherent Detection of Binary FSK Signals
The block diagram of Figure 7.26a describes a scheme for generating the binary FSK
signal; it consists of two components:

1. On–off level encoder, the output of which is a constant amplitude of  in
response to input symbol 1 and zero in response to input symbol 0.

2. Pair of oscillators, whose frequencies f1 and f2 differ by an integer multiple of the
bit rate 1Tb in accordance with (7.152). The lower oscillator with frequency f2 is
preceded by an inverter. When in a signaling interval, the input symbol is 1, the
upper oscillator with frequency f1 is switched on and signal s1(t) is transmitted,
while the lower oscillator is switched off. On the other hand, when the input symbol
is 0, the upper oscillator is switched off, while the lower oscillator is switched on

Figure 7.26 Block diagram for (a) binary FSK transmitter and (b) coherent binary FSK receiver. 
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378 Chapter 7 Signaling over AWGN Channels

and signal s2(t) with frequency f2 is transmitted. With phase continuity as a
requirement, the two oscillators are synchronized with each other. Alternatively, we
may use a voltage-controlled oscillator, in which case phase continuity is
automatically satisfied.

To coherently detect the original binary sequence given the noisy received signal x(t), we
may use the receiver shown in Figure 7.26b. It consists of two correlators with a common
input, which are supplied with locally generated coherent reference signals 1(t) and 2(t).
The correlator outputs are then subtracted, one from the other; the resulting difference y is
then compared with a threshold of zero. If y  0, the receiver decides in favor of 1. On the
other hand, if y  0, it decides in favor of 0. If y is exactly zero, the receiver makes a
random guess (i.e., flip of a fair coin) in favor of 1 or 0.

Error Probability of Binary FSK
The observation vector x has two elements x1 and x2 that are defined by, respectively,

(7.158)

and

(7.159)

where x(t) is the received signal, whose form depends on which symbol was transmitted.
Given that symbol 1 was transmitted, x(t) equals s1(t) + w(t), where w(t) is the sample
function of a white Gaussian noise process of zero mean and power spectral density N02.
If, on the other hand, symbol 0 was transmitted, x(t) equals s2(t) + w(t).

Now, applying the decision rule of (7.57) assuming the use of coherent detection at the
receiver, we find that the observation space is partitioned into two decision regions,
labeled Z1 and Z2 in Figure 7.25. The decision boundary, separating region Z1 from region
Z2, is the perpendicular bisector of the line joining the two message points. The receiver
decides in favor of symbol 1 if the received signal point represented by the observation
vector x falls inside region Z1. This occurs when x1  x2. If, on the other hand, we have
x1  x2, the received signal point falls inside region Z2 and the receiver decides in favor of
symbol 0. On the decision boundary, we have x1 = x2, in which case the receiver makes a
random guess in favor of symbol 1 or 0.

To proceed further, we define a new Gaussian random variable Y whose sample value y
is equal to the difference between x1 and x2; that is,

(7.160)

The mean value of the random variable Y depends on which binary symbol was
transmitted. Given that symbol 1 was sent, the Gaussian random variables X1 and X2,
whose sample values are denoted by x1 and x2, have mean values equal to  and zero,
respectively. Correspondingly, the conditional mean of the random variable Y given that
symbol 1 was sent is

(7.161)

x1 x t 1 t  dt
0

Tb

=

x2 x t 2 t  dt
0

Tb
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y x1 x2–=
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 379

On the other hand, given that symbol 0 was sent, the random variables X1 and X2 have
mean values equal to zero and , respectively. Correspondingly, the conditional mean
of the random variable Y given that symbol 0 was sent is

(7.162)

The variance of the random variable Y is independent of which binary symbol was sent.
Since the random variables X1 and X2 are statistically independent, each with a variance
equal to N02, it follows that

(7.163)

Suppose we know that symbol 0 was sent. The conditional probability density function of
the random variable Y is then given by

(7.164)

Since the condition x1  x2 or, equivalently, y  0 corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error given
that symbol 0 was sent is

(7.165)

To put the integral in (7.165) in a standard form involving the Q-function, we set

(7.166)

Then, changing the variable of integration from y to z, we may rewrite (7.165) as 

(7.167)

Similarly, we may show the p01, the conditional probability of error given that symbol 1
was sent, has the same value as in (7.167). Accordingly, averaging p10 and p01 and
assuming equiprobable symbols, we find that the average probability of bit error or,
equivalently, the BER for binary FSK using coherent detection is 

(7.168)
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380 Chapter 7 Signaling over AWGN Channels

Comparing (7.108) and (7.168), we see that for a binary FSK receiver to maintain the
same BER as in a binary PSK receiver, the bit energy-to-noise density ratio, EbN0, has to
be doubled. This result is in perfect accord with the signal-space diagrams of Figures 7.13
and 7.25, where we see that in a binary PSK system the Euclidean distance between the
two message points is equal to , whereas in a binary FSK system the corresponding
distance is . For a prescribed Eb, the minimum distance dmin in binary PSK is,
therefore,  times that in binary FSK. Recall from (7.89) that the probability of error
decreases exponentially as ; hence the difference between (7.108) and (7.168).

Power Spectra of Binary FSK Signals
Consider the case of Sunde’s FSK, for which the two transmitted frequencies f1 and f2
differ by an amount equal to the bit rate 1Tb, and their arithmetic mean equals the nominal
carrier frequency fc; as mentioned previously, phase continuity is always maintained,
including inter-bit switching times. We may express this special binary FSK signal as a
frequency-modulated signal, defined by

(7.169)

Using a well-known trigonometric identity, we may reformulate s(t) in the expanded form

(7.170)

In the last line of (7.170), the plus sign corresponds to transmitting symbol 0 and the
minus sign corresponds to transmitting symbol 1. As before, we assume that the symbols 1
and 0 in the binary sequence applied to the modulator input are equally likely, and that the
symbols transmitted in adjacent time slots are statistically independent. Then, based on the
representation of (7.170), we may make two observations pertaining to the in-phase and
quadrature components of a binary FSK signal with continuous phase:

1. The in-phase component is completely independent of the input binary wave. It
equals  for all time t. The power spectral density of this
component, therefore, consists of two delta functions at  and weighted
by the factor Eb2Tb, and occurring at f = 12Tb.

2. The quadrature component is directly related to the input binary sequence. During
the signaling interval 0  t  Tb, it equals –g(t) when we have symbol 1 and +g(t)
when we have symbol 0, with g(t) denoting a symbol-shaping function defined by

(7.171)
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The energy spectral density of g(t) is defined by

(7.172)

The power spectral density of the quadrature component equals . It is also
apparent that the in-phase and quadrature components of the binary FSK signal are
independent of each other. Accordingly, the baseband power spectral density of Sunde’s
FSK signal equals the sum of the power spectral densities of these two components, as
shown by

(7.173)

From Chapter 4, we recall the following relationship between baseband modulated power
spectra:

(7.174)

where fc is the carrier frequency. Therefore, substituting (7.173) into (7.174), we find that
the power spectrum of the binary FSK signal contains two discrete frequency components,
one located at ( fc + 12Tb) = f1 and the other located at (fc – 12Tb) = f2, with their average
powers adding up to one-half the total power of the binary FSK signal. The presence of
these two discrete frequency components serves a useful purpose: it provides a practical
basis for synchronizing the receiver with the transmitter.

Examining (7.173), we may make the following statement:

The baseband power spectral density of a binary FSK signal with continuous 
phase ultimately falls off as the inverse fourth power of frequency. 

In Figure 7.15, we plotted the baseband power spectra of (7.111) and (7.173). (To simplify
matters, we have only plotted the results for positive frequencies.) In both cases, SB(f) is
shown normalized with respect to 2Eb, and the frequency is normalized with respect to the
bit rate Rb = 1Tb. The difference in the falloff rates of these spectra can be explained on
the basis of the pulse shape g(t). The smoother the pulse, the faster the drop of spectral
tails to zero. Thus, since binary FSK with continuous phase has a smoother pulse shape, it
has lower sidelobes than binary PSK does.

Suppose, next, the FSK signal exhibits phase discontinuity at the inter-bit switching
instants, which arises when the two oscillators supplying the basis functions with
frequencies f1 and f2 operate independently of each other. In this discontinuous scenario,
we find that power spectral density ultimately falls off as the inverse square of frequency.
Accordingly, we may state:

A binary FSK signal with continuous phase does not produce as much 
interference outside the signal band of interest as a corresponding FSK signal 
with discontinuous phase does. 
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382 Chapter 7 Signaling over AWGN Channels

The important point to take from this statement is summed up as follows: when
interference is an issue of practical concern, continuous FSK is preferred over its
discontinuous counterpart. However, this advantage of continuous FSK is gained at the
expense of increased system complexity.

Minimum Shift Keying

In the coherent detection of binary FSK signal, the phase information contained in the
received signal is not fully exploited, other than to provide for synchronization of the
receiver to the transmitter. We now show that by proper use of the continuous-phase
property when performing detection it is possible to improve the noise performance of the
receiver significantly. Here again, this improvement is achieved at the expense of
increased system complexity.

Consider a continuous-phase frequency-shift keying (CPFSK) signal, which is defined
for the signaling interval 0  t  Tb as follows:

(7.175)

where Eb is the transmitted signal energy per bit and Tb is the bit duration. The defining
equation (7.175) distinguishes itself from that of (7.151) in using the phase (0). This new
term, denoting the value of the phase at time t = 0, sums up the past history of the FM
process up to time t = 0. The frequencies f1 and f2 are sent in response to binary symbols 1
and 0, respectively, applied to the modulator input.

Another useful way of representing the CPFSK signal s(t) is to express it as a
conventional angle-modulated signal:

(7.176)

where (t) is the phase of s(t) at time t. When the phase (t) is a continuous function of
time, we find that the modulated signal s(t) is itself also continuous at all times, including
the inter-bit switching times. The phase (t) of a CPFSK signal increases or decreases
linearly with time during each bit duration of Tb seconds, as shown by

(7.177)

where the plus sign corresponds to sending symbol 1 and the minus sign corresponds to
sending symbol 0; the dimensionless parameter h is to be defined. Substituting (7.177)
into (7.176), and then comparing the angle of the cosine function with that of (7.175), we
deduce the following pair of relations:

(7.178)

s t 

2Eb

Tb
--------- 2f1t  0 + cos for symbol 1

2Eb

Tb
--------- 2f2t  0 + cos for symbol 0











=

s t 
2Eb

Tb
--------- 2fct  t + cos=

 t   0  h
Tb
------ 
  t 0 t Tb =

fc
h

2Tb
---------+ f1=

Haykin_ch07_pp3.fm  Page 382  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io



7.8 Frequency-Shift Keying Techniques Using Coherent Detection 383

(7.179)

Solving this pair of equations for fc and h, we get

(7.180)

and
(7.181)

The nominal carrier frequency fc is, therefore, the arithmetic mean of the transmitted
frequencies f1 and f2. The difference between the frequencies f1 and f2, normalized with
respect to the bit rate 1Tb, defines the dimensionless parameter h, which is referred to as
the deviation ratio.

Phase Trellis
From (7.177) we find that, at time t = Tb,

(7.182)

That is to say, sending symbol 1 increases the phase of a CPFSK signal s(t) by h radians,
whereas sending symbol 0 reduces it by an equal amount.

The variation of phase (t) with time t follows a path consisting of a sequence of
straight lines, the slopes of which represent frequency changes. Figure 7.27 depicts
possible paths starting from t = 0. A plot like that shown in this figure is called a phase
tree. The tree makes clear the transitions of phase across successive signaling intervals.
Moreover, it is evident from the figure that the phase of a CPFSK signal is an odd or even
multiple of h radians at odd or even multiples of the bit duration Tb, respectively.

Figure 7.27 Phase tree. 
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384 Chapter 7 Signaling over AWGN Channels

The phase tree described in Figure 7.27 is a manifestation of phase continuity, which is
an inherent characteristic of a CPFSK signal. To appreciate the notion of phase continuity,
let us go back for a moment to Sunde’s FSK, which is also a CPFSK signal as previously
described. In this case, the deviation ratio h is exactly unity. Hence, according to Figure
7.27, the phase change over one bit interval is  radians. But, a change of + radians is
exactly the same as a change of – radians, modulo 2. It follows, therefore, that in the
case of Sunde’s FSK there is no memory; that is, knowing which particular change
occurred in the previous signaling interval provides no help in the current signaling
interval.

In contrast, we have a completely different situation when the deviation ratio h is
assigned the special value of 12. We now find that the phase can take on only the two
values 2 at odd multiples of Tb, and only the two values 0 and  at even multiples of Tb,
as in Figure 7.28. This second graph is called a phase trellis, since a “trellis” is a treelike
structure with re-emerging branches. Each path from left to right through the trellis of
Figure 7.28 corresponds to a specific binary sequence at the transmitter input. For
example, the path shown in boldface in Figure 7.28 corresponds to the binary sequence
1101000 with (0) = 0. Henceforth, we focus on h = 12.

With h = 12, we find from (7.181) that the frequency deviation (i.e., the difference
between the two signaling frequencies f1 and f2) equals half the bit rate; hence the
following statement:

The frequency deviation h = 1/2 is the minimum frequency spacing that allows 
the two FSK signals representing symbols 1 and 0 to be coherently orthogonal.

In other words, symbols 1 and 0 do not interfere with one another in the process of
detection. It is for this reason that a CPFSK signal with a deviation ratio of one-half is
commonly referred to as minimum shift-keying (MSK).5

Signal-Space Diagram of MSK
Using a well-known trigonometric identity in (7.176), we may expand the CPFSK signal
s(t) in terms of its in-phase and quadrature components as 

(7.183)

Figure 7.28 Phase trellis; boldfaced path represents the sequence 1101000. 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 385

Consider, first, the in-phase component . With the deviation ratio h = 12,
we have from (7.177) that

(7.184)

where the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0.
A similar result holds for (t) in the interval –Tb  t  0, except that the algebraic sign is
not necessarily the same in both intervals. Since the phase (0) is 0 or  depending on the
past history of the modulation process, we find that in the interval –Tb  t  Tb, the polarity
of cos(t) depends only on (0), regardless of the sequence of 1s and 0s transmitted
before or after t = 0. Thus, for this time interval, the in-phase component consists of the
half-cycle cosine pulse: 

(7.185)

where the plus sign corresponds to (0) = 0 and the minus sign corresponds to (0) = . In
a similar way, we may show that, in the interval 0  t  2Tb, the quadrature component of
s(t) consists of the half-cycle sine pulse:

(7.186)

where the plus sign corresponds to (Tb) = 2 and the minus sign corresponds to
(Tb) = –2. From the discussion just presented, we see that the in-phase and quadrature
components of the MSK signal differ from each other in two important respects:

• they are in phase quadrature with respect to each other and
• the polarity of the in-phase component sI(t) depends on (0), whereas the polarity of

the quadrature component sQ(t) depends on (Tb).

Moreover, since the phase states (0) and (Tb) can each assume only one of two possible
values, any one of the following four possibilities can arise:

1. (0) = 0 and (Tb) = /2, which occur when sending symbol 1.

2. (0) =  and (Tb) = /2, which occur when sending symbol 0.

2Eb Tb  t cos

 t   0  
2Tb
--------- 0 t Tb =

sI t 
2Eb

Tb
---------  t cos=

2Eb

Tb
---------  0  

2Tb
---------t 
 coscos=

2Eb

Tb
---------


2Tb
---------t 

  Tb– t Tb cos=

sQ t 
2Eb

Tb
---------  t sin=

2Eb

Tb
---------  Tb  

2Tb
---------t 
 sinsin=

2Eb

Tb
---------


2Tb
---------t 
  0 t 2Tb sin=

Haykin_ch07_pp3.fm  Page 385  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io
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3. (0) =  and (Tb) = –/2 (or, equivalently, 3/2 modulo 2), which occur when
sending symbol 1.

4. (0) = 0 and (Tb) = –/2, which occur when sending symbol 0.

This fourfold scenario, in turn, means that the MSK signal itself can assume one of four
possible forms, depending on the values of the phase-state pair: (0) and (Tb).

Signal-Space Diagram
Examining the expansion of (7.183), we see that there are two orthonormal basis functions
1(t) and 2(t) characterizing the generation of MSK; they are defined by the following
pair of sinusoidally modulated quadrature carriers:

(7.187)

(7.188)

With the formulation of a signal-space diagram in mind, we rewrite (7.183) in the compact
form

(7.189)

where the coefficients s1 and s2 are related to the phase states (0) and (Tb), respectively.
To evaluate s1, we integrate the product s(t)1(t) with respect to time t between the limits –Tb
and Tb, obtaining

(7.190)

Similarly, to evaluate s2 we integrate the product s(t)2(t) with respect to time t between
the limits 0 and 2Tb, obtaining

(7.191)

Examining (7.190) and (7.191), we now make three observations:

1. Both integrals are evaluated for a time interval equal to twice the bit duration.

2. The lower and upper limits of the integral in (7.190) used to evaluate s1 are shifted
by the bit duration Tb with respect to those used to evaluate s2.

3. The time interval 0  t  Tb, for which the phase states (0) and (Tb) are defined, is
common to both integrals.

It follows, therefore, that the signal constellation for an MSK signal is two-dimensional
(i.e., N = 2), with four possible message points (i.e., M = 4), as illustrated in the signal-
space diagram of Figure 7.29. Moving in a counterclockwise direction, the coordinates of
the message points are as follows:
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, , and . 

The possible values of (0) and (Tb), corresponding to these four message points, are
also included in Figure 7.29. The signal-space diagram of MSK is thus similar to that of
QPSK in that both of them have four message points in a two-dimensional space.
However, they differ in a subtle way that should be carefully noted: 

• QPSK, moving from one message point to an adjacent one, is produced by sending a
two-bit symbol (i.e., dibit).

• MSK, on the other hand, moving from one message point to an adjacent one, is
produced by sending a binary symbol, 0 or 1. However, each symbol shows up in
two opposite quadrants, depending on the value of the phase-pair: (0) and (Tb).

Table 7.4 presents a summary of the values of (0) and (Tb), as well as the corresponding
values of s1 and s2 that are calculated for the time intervals –Tb  t  Tb and 0  t  2Tb,
respectively. The first column of this table indicates whether symbol 1 or symbol 0 was
sent in the interval 0  t  Tb. Note that the coordinates of the message points, s1 and s2,
have opposite signs when symbol 1 is sent in this interval, but the same sign when symbol
0 is sent. Accordingly, for a given input data sequence, we may use the entries of Table 7.4
to derive on a bit-by-bit basis the two sequences of coefficients required to scale 1(t) and
2(t), and thereby determine the MSK signal s(t).

Figure 7.29 Signal-space diagram for MSK system.
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388 Chapter 7 Signaling over AWGN Channels

EXAMPLE 8 MSK Waveforms

Figure 7.30 shows the sequences and waveforms involved in the generation of an MSK
signal for the binary sequence 1101000. The input binary sequence is shown in Figure 7.30a.
The two modulation frequencies are f1 = 5/4Tb and f2 = 3/4Tb. Assuming that at time t = 0

Table 7.4 Signal-space characterization of MSK

Transmitted binary symbol, 0  t  Tb

Phase states (rad) Coordinates of message points

(0) (Tb) s1 s2

0 0 –/2

1 –/2

0 +/2

1 0 +/2

+ Eb + Eb

 Eb– + Eb

 Eb– Eb–

+ Eb Eb–

Figure 7.30 (a) Input binary sequence. 
(b) Waveform of scaled time function 
s11(t). (c) Waveform of scaled time 
function s22(t). (d) Waveform of the 
MSK signal s(t) obtained by adding 
s11(t) and s22(t) on a bit-by-bit basis. 

0 2Tb 4Tb 6Tb

1 1 0 1 0 0 0Input binary sequence

Time scale

   (kTb)
Polarity of s1

s1 1(t )φ

0
+ – –

0
+

s (t )

θ

   (kTb)
Polarity of s2

s2 2(t )φ

/2
– – – +

θ /2 /2 /2–

t

t

t

(a)

(b)

(c)

(d)

π π

π π π π

Haykin_ch07_pp3.fm  Page 388  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io



7.8 Frequency-Shift Keying Techniques Using Coherent Detection 389

the phase (0) is zero, the sequence of phase states is as shown in Figure 7.30, modulo 2.
The polarities of the two sequences of factors used to scale the time functions 1(t) and 2(t)
are shown in the top lines of Figure 7.30b and c. These two sequences are offset relative to
each other by an interval equal to the bit duration Tb. The waveforms of the resulting two
components of s(t), namely, s11(t) and s22(t), are shown in Figure 7.30b and c. Adding
these two modulated waveforms, we get the desired MSK signal s(t) shown in Figure 7.30d.

Generation and Coherent Detection of MSK Signals

With h = 1/2, we may use the block diagram of Figure 7.31a to generate the MSK signal.
The advantage of this method of generating MSK signals is that the signal coherence and
deviation ratio are largely unaffected by variations in the input data rate. Two input sinu-
soidal waves, one of frequency fc = nc4Tb for some fixed integer nc and the other of
frequency 14Tb, are first applied to a product modulator. This modulator produces two
phase-coherent sinusoidal waves at frequencies f1 and f2, which are related to the carrier

Figure 7.31 Block diagrams for (a) MSK transmitter and (b) coherent MSK receiver. 
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390 Chapter 7 Signaling over AWGN Channels

frequency fc and the bit rate 1/Tb in accordance with (7.178) and (7.179) for deviation ratio
h = 12. These two sinusoidal waves are separated from each other by two narrowband fil-
ters, one centered at f1 and the other at f2. The resulting filter outputs are next linearly
combined to produce the pair of quadrature carriers or orthonormal basis functions 1(t)
and 2(t). Finally, 1(t) and 2(t) are multiplied with two binary waves a1(t) and a2(t), both
of which have a bit rate equal to 1/(2Tb). These two binary waves are extracted from the
incoming binary sequence in the manner described in Example 7.

Figure 7.31b shows the block diagram of the coherent MSK receiver. The received
signal x(t) is correlated with  1(t) and 2(t). In both cases, the integration interval is 2Tb
seconds, and the integration in the quadrature channel is delayed by Tb seconds with respect
to that in the in-phase channel. The resulting in-phase and quadrature channel correlator
outputs, x1 and x2, are each compared with a threshold of zero; estimates of the phase (0)
and (Tb) are then derived in the manner described previously. Finally, these phase
decisions are interleaved so as to estimate the original binary sequence at the transmitter
input with the minimum average probability of symbol error in an AWGN channel.

Error Probability of MSK

In the case of an AWGN channel, the received signal is given by

where s(t) is the transmitted MSK signal and w(t) is the sample function of a white
Gaussian noise process of zero mean and power spectral density N0/2. To decide whether
symbol 1 or symbol 0 was sent in the interval 0  t  Tb, say, we have to establish a
procedure for the use of x(t) to detect the phase states (0) and (Tb). 

For the optimum detection of (0), we project the received signal x(t) onto the
reference signal  over the interval –Tb  t  Tb, obtaining

(7.192)

where s1 is as defined by (7.190) and w1 is the sample value of a Gaussian random

variable of zero mean and variance N0/2. From the signal-space diagram of Figure 7.29,

we see that if x1 > 0, the receiver chooses the estimate . On the other hand, if

x1  0, it chooses the estimate .

Similarly, for the optimum detection of  (Tb), we project the received signal x(t) onto
the second reference signal 2(t) over the interval 0  t  2Tb, obtaining

(7.193)

where s2 is as defined by (7.191) and w2 is the sample value of another independent
Gaussian random variable of zero mean and variance N02. Referring again to the signal-
space diagram of Figure 7.29, we see that if x2  0, the receiver chooses the estimate

. If, however, , the receiver chooses the estimate . 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 391

To reconstruct the original binary sequence, we interleave the above two sets of phase
estimates in accordance with Table 7.4, by proceeding as follows:

• If estimates  and , or alternatively if 
and , then the receiver decides in favor of symbol 0.

• If, on the other hand, the estimates  and , or alternatively
if  and , then the receiver decides in favor of symbol 1.

Most importantly, examining the signal-space diagram of Figure 7.29, we see that the
coordinates of the four message points characterizing the MSK signal are identical to those
of the QPSK signal in Figure 7.16. Moreover, the zero-mean noise variables in (7.192) and
(7.193) have exactly the same variance as those for the QPSK signal in (7.118) and (7.119).
It follows, therefore, that the BER for the coherent detection of MSK signals is given by

(7.194)

which is the same as that of QPSK in (7.126). In both MSK and QPSK, this good
performance is the result of coherent detection being performed in the receiver on the
basis of observations over 2Tb seconds.

Power Spectra of MSK Signals

As with the binary FSK signal, we assume that the input binary wave is random, with
symbols 1 and 0 being equally likely and the symbols sent during adjacent time slots being
statistically independent. Under these assumptions, we make three observations:

1. Depending on the value of phase state  (0), the in-phase component equals +g(t) or
–g(t), where the pulse-shaping function

(7.195)

The energy spectral density of g(t) is

(7.196)

The power spectral density of the in-phase component equals .

2. Depending on the value of the phase state  (Tb), the quadrature component equals
+g(t) or –g(t), where we now have

(7.197)

Despite the difference in which the time interval over two adjacent time slots is
defined in (7.195) and (7.197), we get the same energy spectral density as in (7.196).
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392 Chapter 7 Signaling over AWGN Channels

Hence, the in-phase and quadrature components have the same power spectral
density.

3. The in-phase and quadrature components of the MSK signal are statistically
independent; it follows that the baseband power spectral density of s(t) is given by

(7.198)

A plot of the baseband power spectrum of (7.198) is included in Figure 7.19, where the
power spectrum is normalized with respect to 4Eb and the frequency f is normalized with
respect to the bit rate 1Tb. Figure 7.19 also includes the corresponding plot of (7.128) for
the QPSK signal. As stated previously, for f 1/Tb the baseband power spectral density of
the MSK signal falls off as the inverse fourth power of frequency, whereas in the case of
the QPSK signal it falls off as the inverse square of frequency. Accordingly, MSK does not
produce as much interference outside the signal band of interest as QPSK does. This is a
desirable characteristic of MSK, especially when the digital communication system
operates with a bandwidth limitation in an interfering environment.

Gaussian-Filtered MSK

From the detailed study of MSK just presented, we may summarize its desirable
properties:

• modulated signal with constant envelope;
• relatively narrow-bandwidth occupancy;
• coherent detection performance equivalent to that of QPSK.

However, the out-of-band spectral characteristics of MSK signals, as good as they are, still
do not satisfy the stringent requirements of certain applications such as wireless communi-
cations. To illustrate this limitation, we find from (7.198) that, at Tb f = 0.5, the baseband
power spectral density of the MSK signal drops by only 10 log109 = 9.54 dB below its mid-
band value. Hence, when the MSK signal is assigned a transmission bandwidth of 1Tb, the
adjacent channel interference of a wireless-communication system using MSK is not low
enough to satisfy the practical requirements of a multiuser-communications environment.

Recognizing that the MSK signal can be generated by direct FM of a voltage-controlled
oscillator, we may overcome this practical limitation of MSK by modifying its power
spectrum into a more compact form while maintaining the constant-envelope property of
the MSK signal. This modification can be achieved through the use of a premodulation
low-pass filter, hereafter referred to as a baseband pulse-shaping filter. Desirably, the
pulse-shaping filter should satisfy the following three conditions:

• frequency response with narrow bandwidth and sharp cutoff characteristics;
• impulse response with relatively low overshoot; and
• evolution of a phase trellis with the carrier phase of the modulated signal assuming

the two values /2 at odd multiples of the bit duration Tb and the two values 0 and
 at even multiples of Tb as in MSK.
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 393

The frequency-response condition is needed to suppress the high-frequency components
of the modified frequency-modulated signal. The impulse-response condition avoids
excessive deviations in the instantaneous frequency of the modified frequency-modulated
signal. Finally, the condition imposed on phase-trellis evolution ensures that the modified
frequency-modulated signal can be coherently detected in the same way as the MSK
signal, or it can be noncoherently detected as a simple binary FSK signal if so desired.

These three conditions can be satisfied by passing an NRZ-level-encoded binary data
stream through a baseband pulse-shaping filter whose impulse response (and, likewise, its
frequency response) is defined by a Gaussian function. The resulting method of binary
FM is naturally referred to as Gaussian-filtered minimum-shift keying (GMSK).6

Let W denote the 3 dB baseband bandwidth of the pulse-shaping filter. We may then
define the transfer function H(f) and impulse response h(t) of the pulse-shaping filter as:

(7.199)

and

(7.200)

where ln denotes the natural algorithm. The response of this Gaussian filter to a
rectangular pulse of unit amplitude and duration Tb, centered on the origin, is given by

(7.201)

The pulse response g(t) in (7.201) provides the basis for building the GMSK modulator, with
the dimensionless time–bandwidth product WTb playing the role of a design parameter.
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Figure 7.32
Frequency-shaping pulse g(t) of (7.201) 
shifted in time by 2.5Tb and truncated 
at 2.5Tb for varying time–bandwidth 
product WTb. 
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394 Chapter 7 Signaling over AWGN Channels

Unfortunately, the pulse response g(t) is noncausal and, therefore, not physically
realizable for real-time operation. Specifically, g(t) is nonzero for t  –Tb2, where t = –Tb2
is the time at which the input rectangular pulse (symmetrically positioned around the origin)
is applied to the Gaussian filter. For a causal response, g(t) must be truncated and shifted in
time. Figure 7.32 presents plots of g(t), which has been truncated at t = 2.5Tb and then
shifted in time by 2.5Tb. The plots shown here are for three different settings: WTb = 0.2,
0.25, and 0.3. Note that as WTb is reduced, the time spread of the frequency-shaping pulse is
correspondingly increased.

Figure 7.33 shows the machine-computed power spectra of MSK signals (expressed in
decibels) versus the normalized frequency difference (f – fc)Tb, where fc is the mid-band
frequency and Tb is the bit duration.7 The results plotted in Figure 7.33 are for varying
values of the time–bandwidth product WTb. From this figure we may make the following
observations:

• The curve for the limiting condition WTb  corresponds to the case of ordinary
MSK.

• When WTb is less than unity, increasingly more of the transmit power is
concentrated inside the passband of the GMSK signal.

An undesirable feature of GMSK is that the processing of NRZ binary data by a Gaussian
filter generates a modulating signal that is no longer confined to a single bit interval as in
ordinary MSK, which is readily apparent from Figure 7.33. Stated in another way, the tails
of the Gaussian impulse response of the pulse-shaping filter cause the modulating signal to
spread out to adjust symbol intervals. The net result is the generation of intersymbol
interference, the extent of which increases with decreasing WTb. In light of this discussion
and the various plots presented in Figure 7.33, we find that the value assigned to the time–
bandwidth product WTb offers a tradeoff between spectral compactness and system-
performance loss.

Figure 7.33 Power spectra of MSK and GMSK signals for varying 
time–bandwidth product. 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 395

To explore the issue of performance degradation resulting from the use of GMSK
compared with MSK, consider the coherent detection in the presence of AWGN.
Recognizing that GMSK is a special kind of binary FM, we may express its average
probability of symbol error Pe by the empirical formula

(7.202)

where, as before, Eb is the signal energy per bit and N0/2 is the noise spectral density. The
factor  is a constant whose value depends on the time–bandwidth product WTb. Comparing
(7.202) for GMSK with (7.194) for ordinary MSK, we may view 10 log10(2), expressed in
decibels, as a measure of performance degradation of GMSK compared with ordinary MSK.
Figure 7.34 shows the machine-computed value of 10 log10(2) versus WTb. For ordinary
MSK we have , in which case (7.202) with  = 2 assumes exactly the same form
as (7.194) and there is no degradation in performance, which is confirmed by Figure 7.34.
For GMSK with WTb = 0.3 we find from Figure 7.34 that there is a degradation in
performance of about 0.46dB, which corresponds to 2 = 0.9. This degradation in
performance is a small price to pay for the highly desirable spectral compactness of the
GMSK signal.

M-ary FSK

Consider next the M-ary version of FSK, for which the transmitted signals are defined by

(7.203)

where i = 1, 2, , M, and the carrier frequency fc = nc/(2T) for some fixed integer nc. The
transmitted symbols are of equal duration T and have equal energy E. Since the individual

Figure 7.34 Theoretical EbN0 degradation of GMSK for varying 
time–bandwidth product. 
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396 Chapter 7 Signaling over AWGN Channels

signal frequencies are separated by 1/(2T) Hz, the M-ary FSK signals in (7.203) constitute
an orthogonal set; that is,

(7.204)

Hence, we may use the transmitted signals si(t) themselves, except for energy
normalization, as a complete orthonormal set of basis functions, as shown by

(7.205)

Accordingly, the M-ary FSK is described by an M-dimensional signal-space diagram.
For the coherent detection of M-ary FSK signals, the optimum receiver consists of a

bank of M correlators or matched filters, with i(t) of (7.205) providing the basis
functions. At the sampling times t = kT, the receiver makes decisions based on the largest
matched filter output in accordance with the maximum likelihood decoding rule. An exact
formula for the probability of symbol error is, however, difficult to derive for a coherent
M-ary FSK system. Nevertheless, we may use the union bound of (7.88) to place an upper
bound on the average probability of symbol error for M-ary FSK. Specifically, since the
minimum distance dmin in M-ary FSK is , using (7.87) we get (assuming
equiprobable symbols)

(7.206)

For fixed M, this bound becomes increasingly tight as the ratio EN0 is increased. Indeed,
it becomes a good approximation to Pe for values of Pe  10–3. Moreover, for M = 2 (i.e.,
binary FSK), the bound of (7.202) becomes an equality; see (7.168).

Power Spectra of M-ary FSK Signals
The spectral analysis of M-ary FSK signals8 is much more complicated than that of M-ary
PSK signals. A case of particular interest occurs when the frequencies assigned to the
multilevels make the frequency spacing uniform and the frequency deviation h = 12. That
is, the M signal frequencies are separated by 1/2T, where T is the symbol duration. For
h = 12, the baseband power spectral density of M-ary FSK signals is plotted in Figure
7.35 for M = 2, 4, 8.  

Bandwidth Efficiency of M-ary FSK Signals
When the orthogonal signals of an M-ary FSK signal are detected coherently, the adjacent
signals need only be separated from each other by a frequency difference 12T so as to
maintain orthogonality. Hence, we may define the channel bandwidth required to transmit
M-ary FSK signals as

(7.207)

For multilevels with frequency assignments that make the frequency spacing uniform and
equal to 1/2T, the bandwidth B of (7.207) contains a large fraction of the signal power.
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 397

This is readily confirmed by looking at the baseband power spectral plots shown in Figure
7.36. From (7.133) we recall that the symbol period T is equal to . Hence, using

, we may redefine the channel bandwidth B for M-ary FSK signals as

 (7.208)

The bandwidth efficiency of M-ary signals is therefore

 (7.209)

Table 7.5 gives the values of  calculated from (7.207) for varying M.
Comparing Tables 7.3 and 7.5, we see that increasing the number of levels M tends to

increase the bandwidth efficiency of M-ary PSK signals, but it also tends to decrease the
bandwidth efficiency of M-ary FSK signals. In other words, M-ary PSK signals are
spectrally efficient, whereas M-ary FSK signals are spectrally inefficient.

Figure 7.35 Power spectra of M-ary PSK signals for M = 2, 4, 8.
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398 Chapter 7 Signaling over AWGN Channels

7.9 Comparison of M-ary PSK and M-ary FSK from an 
Information-Theoretic Viewpoint

Bandwidth efficiency, as just discussed, provides one way of contrasting the capabilities of
M-ary PSK and M-ary FSK. Another way of contrasting the capabilities of these two
generalized digital modulation schemes is to look at the bandwidth–power tradeoff viewed
in light of Shannon’s information capacity law, which was discussed previously in Chapter 5.

Consider, first, an M-ary PSK system that employs a nonorthogonal set of M phase-
shifted signals for the transmission of binary data over an AWGN channel. Referring back
to Section 7.6, recall that (7.137) defines the bandwidth efficiency of the M-ary PSK
system, using the null-to-null bandwidth. Based on this equation, Figure 7.36 plots the
operating points for different phase-level numbers M = 2, 4, 8, 16, 32, 64. Each point on
the operating curve corresponds to an average probability of symbol error Pe = 10–5; this
value of Pe is small enough to assume “error-free” transmission. Given this fixed value of
Pe, (7.132) for the coherent detection of M-ary PSK is used to calculate the symbol
energy-to-noise density ratio EN0 and, therefore, EbN0 for a prescribed M; Figure 7.36
also includes the capacity boundary for the ideal transmission system, computed in
accordance with (5.99). Figure 7.36 teaches us the following:

In M-ary PSK using coherent detection, increasing M improves the bandwidth 
efficiency, but the Eb/N0 required for the idealized condition of “error-free” 
transmission moves away from the Shannon limit as M is increased.

Consider next an M-ary FSK system that uses an orthogonal set of M frequency-shifted
signals for the transmission of binary data over an AWGN channel. As discussed in
Section 7.8, the separation between adjacent signal frequencies in the set is 12T, where T
is the symbol period. The bandwidth efficiency of M-ary FSK is defined in (7.209), the
formulation of which also invokes the null-to-null bandwidth. Using this equation, Figure
7.37 plots the operating points for different frequency-level numbers M = 2, 4, 8, 16, 32,
64 for the same average probability of symbol error, namely Pe = 10–5. Given this fixed
value of Pe, (7.206) is used to calculate the E/N0 and, therefore, Eb/N0 required for a
prescribed value of M. As in Figure 7.36 for M-ary PSK, Figure 7.37 for M-ary FSK also
includes the capacity boundary for the ideal condition of error-free transmission. Figure
7.37 shows that increasing M in M-ary FSK has the opposite effect to that in M-ary PSK.
In more specific terms, we may state the following:

In M-ary FSK, as the number of frequency-shift levels M is increased—which is 
equivalent to increased channel-bandwidth requirement—the operating point 
moves closer to the Shannon limit.

In other words, in an information-theoretic context, M-ary FSK behaves better than M-ary
PSK.

In the final analysis, the choice of M-ary PSK or M-ary FSK for binary data
transmission over an AWGN channel is determined by the design criterion of interest:
bandwidth efficiency or the Eb/N0 needed for reliable data transmission.
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7.9 Comparison of M-ary PSK and M-ary FSK from an Information-Theoretic Viewpoint 399

Figure 7.36 Comparison of M-ary PSK with the ideal system for Pe = 10–5. 

Figure 7.37 Comparison of M-ary FSK with the ideal system for Pe = 10–5. 
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400 Chapter 7 Signaling over AWGN Channels

7.10 Detection of Signals with Unknown Phase

Up to this point in the chapter we have assumed that the receiver is perfectly synchronized
to the transmitter and the only channel impairment is AWGN. In practice, however, it is
often found that, in addition to the uncertainty due to channel noise, there is also
uncertainty due to the randomness of certain signal parameters. The usual cause of this
uncertainty is distortion in the transmission medium. Perhaps the most common random
signal parameter is the carrier phase, which is especially true for narrowband signals. For
example, the transmission may take place over a multiplicity of paths of different and
variable length, or there may be rapidly varying delays in the propagating medium from
transmitter to receiver. These sources of uncertainty may cause the phase of the received
signal to change in a way that the receiver cannot follow. Synchronization with the phase
of the transmitted carrier is then too costly and the designer may simply choose to
disregard the phase information in the received signal at the expense of some degradation
in noise performance. A digital communication receiver with no provision made for
carrier phase recovery is said to be noncoherent.

Optimum Quadratic Receiver

Consider a binary communication system, in which the transmitted signal is defined by

(7.210)

where E is the signal energy, T is the duration of the signaling interval, and the carrier
frequency fi for symbol i is an integer multiple of 1/(2T). For reasons just mentioned, the
receiver operates noncoherently with respect to the transmitter, in which case the received
signal for an AWGN channel is written as

(7.211)

where  is the unknown carrier phase and, as before, w(t) is the sample function of a white
Gaussian noise process of zero mean and power spectral density N02. Assuming complete
lack of prior information about , we may treat it as the sample value of a random variable
with uniform distribution:

(7.212)

Such a distribution represents the worst-case scenario that could be encountered in
practice. The binary detection problem to be solved may now be stated as follows:

Given the received signal x(t) and confronted with the unknown carrier phase , 
design an optimum receiver for detecting symbol si represented by the signal 
component  that is contained in x(t).

Proceeding in a manner similar to that described in Section 7.4, we may formulate the
likelihood function of symbol si given the carrier phase  as

si t  2E
T

------- 2fit 
0 t T 
i 1 2=




cos=

x t  2E
T

------- 2fit +  w t +  for 0 t T  and i 1 2=cos=

f  
1

2
------ ,   –

0, otherwise





=

E 2T  2fit + cos
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7.10 Detection of Signals with Unknown Phase 401

(7.213)

To proceed further, we have to remove dependence of l(si()) on phase , which is
achieved by integrating it over all possible values of , as shown by

(7.214)

Using a well-known trigonometric formula, we may expand the cosine term in (7.214) as

Correspondingly, we may rewrite the integral in the exponent of (7.214) as

(7.215)

Define two new terms:

(7.216)

(7.217)

Then, we may go one step further and simplify the inner integral in (7.214) to

(7.218)

Accordingly, using (7.218) in (7.214), we obtain

(7.219)

where, in the last line, we have used the fact that the definite integral is unaffected by the
phase i.

l si    E
N0T
---------- x t  2fit +  dcos t

0

T

exp=

l si  l si   f   d
–



=

1
2
------ E

N0T
---------- x t  2fit + cos

0

T

  dexp
–



=

2fit + cos 2fit   2fit  sinsin–coscos=

x t  2fit +  dcos t
0

T

  x t  2fit cos  dt
0

T

cos=  x t  2fit sin  dt
0

T

sin–

i x t  2fit cos  dt
0

T


2

x t  2fit sin  dt
0

T


2

+
 
 
 

1 2

=

i

x t  2fit sin  dt
0

T



x t  2fit cos  dt
0

T


-------------------------------------------------1–tan=

x t  2fit + cos  dt
0

T

 i  i sin isin–coscos =

i  i+ cos=

l si  1
2
------ E

N0T
----------i  i+ cosexp  d

–



=

1
2
------ E

N0T
----------i cos 

 exp  d
+i–

+i

=

1
2
------ E

N0T
----------i cos 

 exp  d
–



=
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402 Chapter 7 Signaling over AWGN Channels

From Appendix C on Bessel functions, we recognize the integral of (7.219) as the
modified Bessel function of zero order, written in the compact form

(7.220)

Using this formula, we may correspondingly express the likelihood function for the
signal-detection problem described herein in the compact form

(7.221)

With binary transmission as the issue of interest, there are two hypotheses to be
considered: hypothesis H1, that signal s1(t) was sent, and hypothesis H2, that signal s2 was
sent. In light of (7.221), the binary-hypothesis test may now be formulated as follows:

The modified Bessel function I() is a monotonically increasing function of its argument.
Hence, we may simplify the hypothesis test by focusing on i for given E/N0T. For
convenience of implementation, however, the simplified hypothesis test is carried out in
terms of  rather than i; that is to say:

(7.222)

For obvious reasons, a receiver based on (7.222) is known as the quadratic receiver. In
light of the definition of i given in (7.216), the receiver structure for computing i is as
shown in Figure 7.38a. Since the test described in (7.222) is independent of the symbol
energy E, this hypothesis test is said to be uniformly most powerful with respect to E.

Two Equivalent Forms of the Quadratic Receiver

We next derive two equivalent forms of the quadrature receiver shown in Figure 7.38a.
The first form is obtained by replacing each correlator in this receiver with a
corresponding equivalent matched filter. We thus obtain the alternative form of quadrature
receiver shown in Figure 7.38b. In one branch of this receiver, we have a filter matched to
the signal cos(2fit) and in the other branch we have a filter matched to sin(2fit), both of
which are defined for the signaling interval   0  t  T. At time t = T, the filter outputs are
sampled, squared, and then added together.

To obtain the second equivalent form of the quadrature receiver, suppose we have a fil-
ter that is matched to s(t) = cos(2fit + ) for 0  t  T. The envelope of the matched filter
output is obviously unaffected by the value of phase . Therefore, we may simply choose a
matched filter with impulse response cos[2fi(T – t)], corresponding to  = 0. The output
of such a filter in response to the received signal x(t) is given by

(7.223)

I0
E

N0T
----------i 

  1
2
------ E

N0T
----------i cos 

 exp  d
–



=

l si  I0
E

N0T
----------i 

 =

I0
E

N0T
----------1 

 
H1><
H2

I0
E

N0T
----------2 

 

i
2

1
2

H1><
H2

2
2

y t  x   2fi T t– +  cos  d
0

T

=

2fi T t–   x   2fi cos  d 2fi T t–  sin x   2fi sin  d
0

T

–
0

T

cos=
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7.10 Detection of Signals with Unknown Phase 403

The envelope of the matched filter output is proportional to the square root of the sum of
the squares of the two definite integrals in (7.223). This envelope, evaluated at time t = T,
is, therefore, given by the following square root:

But this is just a repeat of the output of the quadrature receiver defined earlier. Therefore,
the output (at time T) of a filter matched to the signal cos(2fit + ) of arbitrary phase ,
followed by an envelope detector, is the same as the quadrature receiver’s output li. This
form of receiver is shown in Figure 7.38c. The combination of matched filter and envelope
detector shown in Figure 7.38c is called a noncoherent matched filter.

Figure 7.38 Noncoherent receivers: (a) quadrature receiver using correlators; 
(b) quadrature receiver using matched fiters; (c) noncoherent matched filter. 
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404 Chapter 7 Signaling over AWGN Channels

The need for an envelope detector following the matched filter in Figure 7.38c may also
be justified intuitively as follows. The output of a filter matched to a rectangular RF wave
reaches a positive peak at the sampling instant t = T. If, however, the phase of the filter is
not matched to that of the signal, the peak may occur at a time different from the sampling
instant. In actual fact, if the phases differ by 180°, we get a negative peak at the sampling
instant. Figure 7.39 illustrates the matched filter output for the two limiting conditions:
 = 0 and  = 180° for which the respective waveforms of the matched filter output are
displayed in parts a and b of the figure. To avoid poor sampling that arises in the absence
of prior information about the phase, it is reasonable to retain only the envelope of the
matched filter output, since it is completely independent of the phase mismatch .

7.11 Noncoherent Orthogonal Modulation Techniques 

With the noncoherent receiver structures of Figure 7.38 at our disposal, we may now
proceed to study the noise performance of noncoherent orthogonal modulation that
includes two noncoherent receivers as special cases: noncoherent binary FSK; and
differential PSK (called DPSK), which may be viewed as the noncoherent version of
binary PSK.

Consider a binary signaling scheme that involves the use of two orthogonal signals s1(t)
and s2(t), which have equal energy. During the signaling interval 0  t  T, where T may be

Figure 7.39 Output of matched filter for a rectangular RF wave: (a) ; (b) .
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7.11 Noncoherent Orthogonal Modulation Techniques 405

different from the bit duration Tb, one of these two signals is sent over an imperfect
channel that shifts the carrier phase by an unknown amount. Let g1(t) and g2(t) denote the
phase-shifted versions of s1(t) and s2(t) that result from this transmission, respectively. It is
assumed that the signals g1(t) and g2(t) remain orthogonal and have the same energy E,
regardless of the unknown carrier phase. We refer to such a signaling scheme as
noncoherent orthogonal modulation, hence the title of the section.

In addition to carrier-phase uncertainty, the channel also introduces AWGN w(t) of zero
mean and power spectral density N02, resulting in the received signal

(7.224)

To tackle the signal detection problem given x(t), we employ the generalized receiver
shown in Figure 7.39a, which consists of a pair of filters matched to the transmitted
signals s1(t) and s2(t). Because the carrier phase is unknown, the receiver relies on
amplitude as the only possible discriminant. Accordingly, the matched-filter outputs are
envelope-detected, sampled, and then compared with each other. If the upper path in
Figure 7.38a has an output amplitude l1 greater than the output amplitude l2 of the lower
path, the receiver decides in favor of s1(t); the l1 and l2 used here should not be confused
with the symbol l denoting the likelihood function in the preceding section. If the converse
is true, the receiver decides in favor of s2(t). When they are equal, the decision may be
made by flipping a fair coin (i.e., randomly). In any event, a decision error occurs when
the matched filter that rejects the signal component of the received signal x(t) has a larger
output amplitude (due to noise alone) than the matched filter that passes it.

From the discussion presented in Section 7.10 we note that a noncoherent matched
filter (constituting the upper or lower path in the receiver of Figure 7.40a), may be viewed
as being equivalent to a quadrature receiver. The quadrature receiver itself has two
channels. One version of the quadrature receiver is shown in Figure 7.40b. In the upper
path, called the in-phase path, the received signal x(t) is correlated with the function

, which represents a scaled version of the transmitted signal s1(t) or s2(t) with zero
carrier phase. In the lower path, called the quadrature path, on the other hand, x(t) is
correlated with another function , which represents the version of  that results
from shifting the carrier phase by –90°. The signals  and  are orthogonal to
each other.

In actual fact, the signal  is the Hilbert transform of ; the Hilbert transform
was discussed in Chapter 2. To illustrate the nature of this relationship, let

(7.225)

where m(t) is a band-limited message signal. Typically, the carrier frequency fi is greater than
the highest frequency component of m(t). Then the Hilbert transform  is defined by

(7.226)

for which reference should be made in Table 2.3 of Chapter 2. Since

x t 
g1 t  w t + s1 t  sent for 0 t T 

g2 t  w t + s2 t  sent for 0 t T 






=

i t 

̂ i t  i t 
i t  ̂ i t 

̂ i t  i t 

i t  m t  2fit cos=

i t 

̂ i t  m t  2fit sin=

2fit

2
---– 

 cos 2fit sin=
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406 Chapter 7 Signaling over AWGN Channels

we see that  is indeed obtained from  by shifting the carrier cos(2fit) by –90°.
An important property of Hilbert transformation is that a signal and its Hilbert transform are
orthogonal to each other. Thus,  and  are indeed orthogonal to each other, as
already stated.

The average probability of error for the noncoherent receiver of Figure 7.40a is given
by the simple formula

(7.227)

where E is the signal energy per symbol and N0/2 is the noise spectral density.

Derivation of Equation (7.227)

To derive Equation (7.227)9 we make use of the equivalence depicted in Figure 7.40. In
particular, we observe that, since the carrier phase is unknown, noise at the output of each

Figure 7.40 (a) Generalized binary receiver for noncoherent orthogonal modulation. (b) Quadrature 
receiver equivalent to either one of the two matched filters in (a); the index i = 1, 2. 
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7.11 Noncoherent Orthogonal Modulation Techniques 407

matched filter in Figure 7.40a has two degrees of freedom: in-phase and quadrature.
Accordingly, the noncoherent receiver of Figure 7.40a has a total of four noisy parameters
that are conditionally independent given the phase , and also identically distributed. These
four noisy parameters have sample values denoted by xI1, xQ1, and xI2, and xQ2; the first
two account for degrees of freedom associated with the upper path of Figure 7.40a, and the
latter two account for degrees of freedom associated with the lower path of the figure.

The receiver of Figure 7.40a has a symmetric structure, meaning that the probability of
choosing s2(t) given that s1(t) was transmitted is the same as the probability of choosing
s1(t) given that s2(t) was transmitted. In other words, the average probability of error may
be obtained by transmitting s1(t) and calculating the probability of choosing s2(t), or vice
versa; it is assumed that the original binary symbols and therefore s1(t) and s2(t) are
equiprobable.

Suppose that signal s1(t) is transmitted for the interval 0  t  T. An error occurs if the
channel noise w(t) is such that the output l2 of the lower path in Figure 7.40a is greater than
the output l1 of the upper path. Then, the receiver decides in favor of s2(t) rather than s1(t).
To calculate the probability of error so made, we must have the probability density function
of the random variable L2 (represented by sample value l2). Since the filter in the lower
path is matched to s2(t) and s2(t) is orthogonal to the transmitted signal s1(t), it follows that
the output of this matched filter is due to noise alone. Let xI2 and xQ2 denote the in-phase
and quadrature components of the matched filter output in the lower path of Figure 7.40a.
Then, from the equivalent structure depicted in this figure, we see that (for i = 2)

(7.228)

Figure 7.41a shows a geometric interpretation of this relation. The channel noise w(t) is
both white (with power spectral density N0/2) and Gaussian (with zero mean). Corre-
spondingly, we find that the random variables XI2 and XQ2 (represented by sample values
xI2 and xQ2) are both Gaussian distributed with zero mean and variance N0/2, given the
phase . Hence, we may write

(7.229)

Figure 7.41 Geometric interpretations of the two path outputs l1 and l2 
in the generalized non-coherent receiver.
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408 Chapter 7 Signaling over AWGN Channels

and

(7.230)

Next, we use the well-known property presented in Chapter 4 on stochastic processes: the
envelope of a Gaussian process represented in polar form is Rayleigh distributed and
independent of the phase  For the situation at hand, therefore, we may state that the
random variable L2 whose sample value l2 is related to xI2 and xQ2 by (7.228) has the
following probability density function:

(7.231)

Figure 7.42 shows a plot of this probability density function, where the shaded area
defines the conditional probability that l2 > l1. Hence, we have

(7.232)

Substituting (7.231) into (7.232) and integrating, we get

(7.233)

Consider next the output amplitude l1, pertaining to the upper path in Figure 7.40a. Since
the filter in this path is matched to s1(t) and it is assumed that s1(t) is transmitted, it follows
that l1 is due to signal plus noise. Let xI1 and xQ1 denote the components at the output of
the matched filter in the upper path of Figure 7.39a that are in phase and in quadrature
with respect to the received signal, respectively. Then, from the equivalent structure
depicted in Figure 7.40b, we see that, for i = 1,

(7.234)

fXQ2
xQ2  1

N0

--------------
xQ2

2

N0
---------–

 
 
 

exp=

fL2
l2 

2l2

N0
-------

l2
2

N0
------–

 
 
 

,exp l2 0

0, elsewhere







=

� l2 l1 l1  fL2
l2  dl2

l1



=

� l2 l1 l1 
l1
2

N0
------–

 
 
 

exp=

l1 xI1
2

xQ1
2

+=

Figure 7.42
Calculation of the conditional probability 
that l2 > l1, given l1. 0 l1 l2

Conditional
probability

of error

fL2
(l2)

Haykin_ch07_pp3.fm  Page 408  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io



7.11 Noncoherent Orthogonal Modulation Techniques 409

A geometric interpretation of li is presented in Figure 7.41b. Since a Fourier-transformable
signal and its Hilbert transform form an orthogonal pair, it follows that xI1 is due to signal
plus noise, whereas xQ1 is due to noise alone. This statement has two implications:

• The random variable XI1 represented by the sample value xI1 is Gaussian distributed
with mean  and variance N02, where E is the signal energy per symbol.

• The random variable XQ1 represented by the sample value xQ1 is Gaussian distrib-
uted with zero mean and variance N02. 

Hence, we may express the probability density functions of these two independent random
variables as 

(7.235)

and

(7.236)

respectively. Since the two random variables XI1 and XQ1 are statistically independent,
their joint probability density function is simply the product of the probability density
functions given in (7.235) and (7.236).

To find the average probability of error, we have to average the conditional probability
of error given in (7.233) over all possible values of l1. Naturally, this calculation requires
knowledge of the probability density function of random variables L1 represented by
sample value l1. The standard method is now to combine (7.235) and (7.236) to find the
probability density function of L1 due to signal plus noise. However, this leads to rather
complicated calculations involving the use of Bessel functions. This analytic difficulty
may be circumvented by the following approach. Given xI1 and xQ1, an error occurs when,
in Figure 7.40a, the lower path’s output amplitude l2 due to noise alone exceeds l1 due to
signal plus noise; squaring both sides of (7.234), we write

(7.237)

The probability of the occurrence just described is obtained by substituting (7.237) into
(7.233):

(7.238)

which is a probability of error conditioned on the output of the matched filter in the upper path
of Figure 7.40a taking on the sample values xI1 and xQ1. This conditional probability multi-
plied by the joint probability density function of the random variables XI1 and XQ1 is the
error-density given xI1 and xQ1. Since XI1 and XQ1 are statistically independent, their joint
probability density function equals the product of their individual probability density func-
tions. The resulting error-density is a complicated expression in xI1 and xQ1. However, the
average probability of error, which is the issue of interest, may be obtained in a relatively sim-
ple manner. We first use (7.234), (7.235), and (7.236) to evaluate the desired error-density as

(7.239)
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410 Chapter 7 Signaling over AWGN Channels

Completing the square in the exponent of (7.239) without the scaling factor –1/N0, we
may rewrite it as follows: 

(7.240)

Next, we substitute (7.240) into (7.239) and integrate the error-density over all possible
values of xI1 and xQ1, thereby obtaining the average probability of error:

(7.241)

We now use the following two identities:

(7.242)

and

(7.243)

The identity of (7.242) is obtained by considering a Gaussian-distributed variable with
mean  and variance N04 and recognizing the fact that the total area under the curve
of a random variable’s probability density function is unity. The identity of (7.243) follows
as a special case of (7.242). Thus, in light of these two identities, (7.241) reduces to 

which is the desired result presented previously as (7.227). With this formula at our
disposal, we are ready to consider noncoherent binary FSK and DPSK as special cases,
which we do next in that order.10

7.12 Binary Frequency-Shift Keying Using Noncoherent Detection 

In binary FSK, the transmitted signal is defined in (7.151) and repeated here for
convenience of presentation:

(7.244)

where Tb is the bit duration and the carrier frequency fi equals one of two possible values
f1 and f2; to ensure that the signals representing these two frequencies are orthogonal, we
choose fi = ni/Tb, where ni is an integer. The transmission of frequency f1 represents
symbol 1 and the transmission of frequency f2 represents symbol 0. For the noncoherent
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7.13 Differential Phase-Shift Keying 411

detection of this frequency-modulated signal, the receiver consists of a pair of matched
filters followed by envelope detectors, as in Figure 7.43. The filter in the upper path of the
receiver is matched to cos(2f1t) and the filter in the lower path is matched to cos(2f2t)
for the signaling interval 0  t  Tb. The resulting envelope detector outputs are sampled at
t = Tb and their values are compared. The envelope samples of the upper and lower paths
in Figure 7.43 are shown as l1 and l2. The receiver decides in favor of symbol 1 if l1 > l2
and in favor of symbol 0 if l1  l2. If l1 = l2, the receiver simply guesses randomly in favor
of symbol 1 or 0. 

The noncoherent binary FSK described herein is a special case of noncoherent
orthogonal modulation with T = Tb and E = Eb, where Eb is the signal energy per bit.
Hence, the BER for noncoherent binary FSK is

(7.245)

which follows directly from (7.227) as a special case of noncoherent orthogonal
modulation.

7.13 Differential Phase-Shift Keying

As remarked at the beginning of Section 7.9, we may view DPSK as the “noncoherent”
version of binary PSK. The distinguishing feature of DPSK is that it eliminates the need
for synchronizing the receiver to the transmitter by combining two basic operations at the
transmitter:

• differential encoding of the input binary sequence and
• PSK of the encoded sequence, 

from which the name of this new binary signaling scheme follows.

Figure 7.43 Noncoherent receiver for the detection of binary FSK signals. 
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412 Chapter 7 Signaling over AWGN Channels

Differential encoding starts with an arbitrary first bit, serving as the reference bit; to
this end, symbol 1 is used as the reference bit. Generation of the differentially encoded
sequence then proceeds in accordance with a two-part encoding rule as follows:

1. If the new bit at the transmitter input is 1, leave the differentially encoded symbol
unchanged with respect to the current bit.

2. If, on the other hand, the input bit is 0, change the differentially encoded symbol
with respect to the current bit.

The differentially encoded sequence, denoted by {dk}, is used to shift the sinusoidal
carrier phase by zero and 180o, representing symbols 1 and 0, respectively. Thus, in terms
of phase-shifts, the resulting DPSK signal follows the two-part rule:

1. To send symbol 1, the phase of the DPSK signal remains unchanged.

2. To send symbol 0, the phase of the DPSK signal is shifted by 180°.

EXAMPLE 9 Illustration of DPSK

Consider the input binary sequence, denoted , to be 10010011, which is used to
derive the generation of a DPSK signal. The differentially encoded process starts with the
reference bit 1. Let  denote the differentially encoded sequence starting in this
manner and  denote its delayed version by one bit. The complement of the
modulo-2 sum of  and  defines the desired , as illustrated in the top three
lines of Table 7.6. In the last line of this table, binary symbols 1 and 0 are represented by
phase-shifts of 1 and  radians. 

Error Probability of DPSK

Basically, the DPSK is also an example of noncoherent orthogonal modulation when its
behavior is considered over successive two-bit intervals; that is, 0  t  2Tb. To
elaborate, let the transmitted DPSK signal be  for the first-bit
interval 0  t  Tb, which corresponds to symbol 1. Suppose, then, the input symbol for
the second-bit interval Tb  t  2Tb is also symbol 1. According to part 1 of the DPSK
encoding rule, the carrier phase remains unchanged, thereby yielding the DPSK signal

Table 7.6 Illustrating the generation of DPSK signal

{bk} 1 0 0 1 0 0 1 1

{dk – 1} 1 1 0 1 1 0 1 1
reference

Differentially encoded sequence {dk} 1 1 0 1 1 0 1 1 1

Transmitted phase (radians) 0 0 0 0 0 0 0

bk 

dk 
dk 1– 

bk  dk 1–  dk 

 

2Eb Tb 2fct cos
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7.13 Differential Phase-Shift Keying 413

(7.246)

Suppose, next, the signaling over the two-bit interval changes such that the symbol at the
transmitter input for the second-bit interval Tb  t  2Tb is 0. Then, according to part 2 of
the DPSK encoding rule, the carrier phase is shifted by  radians (i.e., 180°), thereby
yielding the new DPSK signal

(7.247)

We now readily see from (7.246) and (7.247) that s1(t) and s2(t) are indeed orthogonal
over the two-bit interval 0  t  2Tb, which confirms that DPSK is indeed a special form of
noncoherent orthogonal modulation with one difference compared with the case of binary
FSK: for DPSK, we have T = 2Tb and E = 2Eb. Hence, using (7.227), we find that the BER
for DPSK is given by

(7.248)

According to this formula, DPSK provides a gain of 3 dB over binary FSK using
noncoherent detection for the same Eb/N0.

Generation of DPSK Signal

Figure 7.44 shows the block diagram of the DPSK transmitter. To be specific, the
transmitter consists of two functional blocks:

• Logic network and one-bit delay (storage) element, which are interconnected so as
to convert the raw input binary sequence {bk} into the differentially encoded
sequence {dk}.

• Binary PSK modulator, the output of which is the desired DPSK signal. 

Optimum Receiver for the Detection of DPSK

In the use of DPSK, the carrier phase is unknown, which complicates the received signal
x(t). To deal with the unknown phase  in the differentially coherent detection of the
DPSK signal in x(t), we equip the receiver with an in-phase and a quadrature path. We thus
have a signal-space diagram where the received signal points over the two-bit interval
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414 Chapter 7 Signaling over AWGN Channels

0  t  2Tb are defined by (Acos, Asin) and (–Acos, –Asin), where A denotes the
carrier amplitude.

This geometry of possible signals is illustrated in Figure 7.45. For the two-bit interval
0  t  2Tb, the receiver measures the coordinates , first, at time t = Tb and then
measures  at time t = 2Tb. The issue to be resolved is whether these two points map
to the same signal point or different ones. Recognizing that the vectors x0 and x1, with end
points  and , respectively, are points roughly in the same direction if their
inner product is positive, we may formulate the binary-hypothesis test with a question:

Is the inner product  positive or negative?

Expressing this statement in analytic terms, we may write

(7.249)

where the threshold is zero for equiprobable symbols.
We now note the following identity:

Figure 7.44 Block diagram of a DPSK transmitter. 

Figure 7.45 Signal-space diagram of received DPSK signal. 
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7.14 BER Comparison of Signaling Schemes over AWGN Channels 415

Hence, substituting this identity into (7.249), we get the equivalent test:

(7.250)

where the scaling factor 14 is ignored. In light of this equation, the question on the binary
hypothesis test for the detection of DPSK may now be restated as follows:

Given the current signal point  received in the time interval 

0 < t < 2Tb, is this point closer to the signal point  or its image 

 received in the next time interval Tb < t < 2Tb?

Thus, the optimum receiver11 for the detection of binary DPSK is as shown in Figure 7.46,
the formulation of which follows directly from the binary hypothesis test of (7.250). This
implementation is simple, in that it merely requires that sample values be stored. 

The receiver of Figure 7.46 is said to be optimum for two reasons:

1. In structural terms, the receiver avoids the use of fancy delay lines that could be
needed otherwise.

2. In operational terms, the receiver makes the decoding analysis straightforward to
handle, in that the two signals to be considered are orthogonal over the interval
[0,2Tb] in accordance with the formula of (7.227).

7.14 BER Comparison of Signaling Schemes over AWGN Channels

Much of the material covered in this chapter has been devoted to digital modulation
schemes operating over AWGN channels. In this section, we present a summary of the

Figure 7.46 Block diagram of a DPSK receiver. 

cos (2   fc t )

sin (2   fc t )

Decision
device

Tb

x(t)
Say 1 if y  > 0

0
dt�

Tb
dt�

–90°
phase
shifter

Delay
Tb 

Delay
Tb 

0

Say 0 if y  < 0

Threshold = 0

y

+

+

Quadrature channel

Σ

π

π

xI0
xI1

+ 2 xQ0
xQ1

+ 2 xI0
xI1

– 2– xQ0
xQ1

– 2–+
say 1
><

say 0
0

xI0
,xQ0

 
xI1

,xQ1
 

x– I1
, x– Q1

 

Haykin_ch07_pp3.fm  Page 415  Monday, November 26, 2012  1:16 PM

https://hemanthrajhemu.github.io



416 Chapter 7 Signaling over AWGN Channels

BERs of some popular digital modulation schemes, classified into two categories,
depending on the method of detection used in the receiver:

Class I: Coherent detection

• binary PSK: two symbols, single carrier

• binary FSK: two symbols, two carriers one for each symbol

• QPSK: four symbols, single carrier—the QPSK also includes the QAM, employing
four symbols as a special case

• MSK: four symbols, two carriers.

Class II: Noncoherent detection

• DPSK: two symbols, single carrier
• binary FSK: two symbols, two carriers.

Table 7.7 presents a summary of the formulas of the BERs of these schemes separated
under Classes I and II. All the formulas are defined in terms of the ratio of energy per bit
to the noise spectral density, EbN0, as summarized herein:

1. Under Class I, the formulas are expressed in terms of the Q-function. This function
is defined as the area under the tail end of the standard Gaussian distribution with
zero mean and unit variance; the lower limit in the integral defining the Q-function
is dependent solely on EbN0, scaled by the factor 2 for binary PSK, QPSK, and
MSK. Naturally, as this SNR ratio is increased, the area under the Q-function is
reduced and with it the BER is correspondingly reduced.

2. Under Class II, the formulas are expressed in terms of an exponential function,
where the negative exponent depends on the EbN0 ratio for DPSK and its scaled
version by the factor 1/2 for binary FSK. Here again, as the Eb/N0 is increased, the
BER is correspondingly reduced.

The performance curves of the digital modulation schemes listed in Table 7.7 are shown in
Figure 7.47 where the BER is plotted versus EbN0. As expected, the BERs for all the

Table 7.7 Formulas for the BER of digital modulation schemes 
employing two or four symbols

Signaling Scheme BER

I. Coherent detection

Binary PSK
QPSK
MSK

Binary FSK

II. Noncoherent detection

DPSK

Binary FSK

Q 2Eb N0

Q Eb N0

1
2
---exp Eb N0– 

1
2
---exp Eb 2N0– 
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7.14 BER Comparison of Signaling Schemes over AWGN Channels 417

schemes decrease monotonically with increasing EbN0, with all the graphs having a
similar shape in the form of a waterfall. Moreover, we can make the following
observations from Figure 7.47:

1. For any value of Eb/N0, the schemes using coherent detection produce a smaller
BER than those using noncoherent detection, which is intuitively satisfying.

2. PSK schemes employing two symbols, namely binary PSK with coherent detection
and DPSK with noncoherent detection, require an EbN0 that is 3 dB less than their
FSK counterpart to realize the same BER.

3. At high values of EbN0, DPSK and binary FSK using noncoherent detection
perform almost as well, to within about 1 dB of their respective counterparts using
coherent detection for the same BER.

Figure 7.47 Comparison of the noise performance of different PSK and FSK schemes. 
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418 Chapter 7 Signaling over AWGN Channels

4. Although under Class I the BER for binary PSK, QPSK, and MSK is governed by
the same formula, there are important differences between them:

• For the same channel bandwidth and BER, the QPSK accommodates the
transmission of binary data at twice the rate attainable with binary PSK; in other
words, QPSK is bandwidth conserving.

• When sensitivity to interfering signals is an issue of practical concern, as in
wireless communications, MSK is preferred over QPSK.                                                                   

7.15 Synchronization

The coherent reception of a digitally modulated signal, discussed in previous sections of
this chapter, requires that the receiver be synchronous with the transmitter. In this context,
we define the process of synchronization as follows:

Two sequences of related events performed separately, one in the transmitter 
and the other in the receiver, are said to be synchronous relative to each other 
when the events in one sequence and the corresponding events in the other 
occur simultaneously, except for some finite delay.

There are two basic modes of synchronization:

1. Carrier synchronization. When coherent detection is used in signaling over AWGN
channels via the modulation of a sinusoidal carrier, knowledge of both the frequency
and phase of the carrier is necessary. The process of estimating the carrier phase and
frequency is called carrier recovery or carrier synchronization; in what follows,
both terminologies are used interchangeably.

2. To perform demodulation, the receiver has to know the instants of time at which the
modulation in the transmitter changes its state. That is, the receiver has to know the
starting and finishing times of the individual symbols, so that it may determine when
to sample and when to quench the product-integrators. The estimation of these times is
called clock recovery or symbol synchronization; here again, both terminologies are
used interchangeably. 

We may classify synchronization schemes as follows, depending on whether some form of
aiding is used or not:

1. Data-aided synchronization. In data-aided synchronization schemes, a preamble is
transmitted along with the data-bearing signal in a time-multiplexed manner on a
periodic basis. The preamble contains information about the symbol timing, which
is extracted by appropriate processing of the channel output at the receiver. Such an
approach is commonly used in digital satellite and wireless communications, where
the motivation is to minimize the time required to synchronize the receiver to the
transmitter. Limitations of data-aided synchronization are twofold:

• reduced data-throughput efficiency, which is incurred by assigning a certain
portion of each transmitted frame to the preamble, and 

• reduced power efficiency, which results from the allocation of a certain fraction
of the transmitted power to the transmission of the preamble.
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7.16 Recursive Maximum Likelihood Estimation for Synchronization 419

2. Nondata-aided synchronization. In this second approach, the use of a preamble is
avoided and the receiver has the task of establishing synchronization by extracting
the necessary information from the noisy distorted modulated signal at the channel
output. Both throughput and power efficiency are thereby improved, but at the
expense of an increase in the time taken to establish synchronization.

In this section, the discussion is focused on nondata-aided forms of carrier and clock
recovery schemes. To be more specific, we adopt an algorithmic approach,12 which is so-
called on account of the fact that implementation of the sychronizer enables the receiver to
estimate the carrier phase and symbol timing in a recursive manner from one time instant
to another. The processing is performed on the baseband version of the received signal,
using discrete-time (digital) signal-processing algorithms.

Algorithmic Approach to Synchronization 

Maximum likelihood decoding played a key role in much of the material on signaling
techniques in AWGN channels presented in Sections 7.4 through 7.13. Maximum
likelihood parameter estimation plays a key role of its own in the algorithmic approach to
synchronization. Both of these methods were discussed previously in Chapter 3 on
probability theory and Bayesian inference. In this context, it may therefore be said that a
sense of continuity is being maintained throughout this chapter. 

Given the received signal, the maximum likelihood method is used to estimate two
parameters: carrier phase and symbol timing, both of which are, of course, unknown.
Here, we are assuming that knowledge of the carrier frequency is available at the receiver.

Moreover, in the algorithmic approach, the symbol-timing recovery is performed
before phase recovery. The rationale for proceeding in this way is that once we know the
envelope delay incurred by signal transmission through a dispersive channel, then one
sample per symbol at the matched filter output may be sufficient for estimating the
unknown carrier phase. Moreover, computational complexity of the receiver is minimized
by using synchronization algorithms that operate at the symbol rate 1/T.

In light of the remarks just made, we will develop the algorithmic approach to
synchronization by proceeding as follows:

1. Through processing the received signal corrupted by channel noise and channel
dispersion, the likelihood function is formulated. 

2. The likelihood function is maximized to recover the clock.

3. With clock recovery achieved, the next step is to maximize the likelihood function to
recover the carrier.

The derivations presented in this chapter focus on the QPSK signal. The resulting
formulas may be readily extended to binary PSK symbols as a special case and
generalized for M-ary PSK signals.

7.16 Recursive Maximum Likelihood Estimation for Synchronization

In the previous section, we remarked that, in algorithmic synchronization, estimation of
the two unknown parameters, namely carrier phase and symbol timing, is performed in a
recursive manner from one time instant to another. 
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420 Chapter 7 Signaling over AWGN Channels

In other words:

Discrete time is an essential dimension of recursive parameter estimation.

Moreover, the estimation is performed at time t = nT, where n is an integer and T is the
symbol duration. Equivalently, we may say that n = t/T denotes the normalized
(dimensionless) discrete time. 

One other important point to note: recursive estimation of the unknown parameter, be
that the carrier phase or symbol time, plays a key role in the synchronization process.
Specifically, it proceeds across discrete time in accordance with the following rule:

(7.251)

In other words, the recursive parameter estimation takes on the structure of an adaptive
filtering algorithm, in which the product of the step-size parameter and error signal
assumes the role of an algorithmic adjustment. 

In what follows, we derive adaptive filtering algorithms for estimating the unknown
synchronization parameters with the error signal being derived from the likelihood function.

Likelihood Functions

The idea of maximum likelihood parameter estimation based on continuous-time
waveforms was discussed in Chapter 3. To briefly review the material described therein,
consider a baseband signal defined by

where  is an unknown parameter and w(t) denotes an AWGN. Given a sample of the
signal x(t), the requirement is to estimate the parameter ; so, we say:

The most likely value of the estimate  is the particular  for which the 
likelihood function l( ) is a maximum. 

Note that we say “a maximum” rather than “the maximum” because it is possible for the
graph of l( ) plotted versus  to have multiple maxima. In any event, the likelihood
function given x, namely l( ), is defined as the probability density function  with
the roles of x and  interchanged, as shown by

where, for convenience of presentation, we have omitted the conditional dependence of 
on x in l( ). 

In the algorithmic synchronization procedures derived in this section, we will be
concerned only with cases in which the parameter  is a scalar. Such cases are referred to
as independent estimation. However, when we are confronted with the synchronization of a
digital communication receiver to its transmitter operating over a dispersive channel, we
have two unknown channel-related parameters to deal with: the phase (carrier) delay , and
the group (envelope) delay , both of which were discussed in Chapter 2. In the context of
these two parameters, when we speak of independent estimation for synchronization, we
mean that the two parameters  and  are considered individually rather than jointly.
Intuitively speaking, independent estimation is much easier to tackle and visualize than
joint estimation, and it may yield more robust estimates in general. 

Updated estimate
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  Old estimate
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  Step-size
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Let the transmitted signal for symbol i in the QPSK signal be defined by

(7.252)

where E is the signal energy per symbol, T is the symbol period, and  is the carrier
phase used for transmitting symbol i. For example, for the QPSK we have

Equivalently, we may write

(7.253)

where g(t) is the shaping pulse, namely a rectangular pulse of unit amplitude and duration
T. By definition, c affects the carrier and g affects the envelope. Accordingly, the
received signal at the channel output is given by

 (7.254)

where w(t) is the channel noise. The new term  introduced in (7.254) is an additive
carrier phase attributed to the phase delay  produced by the dispersive channel; it is
defined by

(7.255)

The minus sign is included in the right-hand side of (7.255) to be consistent with previous
notation used in dealing with signal detection.

Both the carrier phase  and group delay g are unknown. However, it is assumed that
they remain essentially constant over the observation interval 0  t  T0 or through the
transmission of a sequence made up of L0 = T0T symbols. 

With  used to account for the carrier delay , we may simplify matters by using 
in place of  for the group delay; that is, (7.254) is rewritten as

(7.256)

At the receiver, the orthogonal pair of basis functions for QPSK signals is defined by

(7.257)

(7.258)

Here, it is assumed that the receiver has perfect knowledge of the carrier frequency fc,
which is a reasonable assumption; otherwise, a carrier-frequency offset has to be included
that will complicate the analysis. 
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422 Chapter 7 Signaling over AWGN Channels

Accordingly, we may represent the received signal x(t) by the baseband vector

(7.259)

where

(7.260)

In a corresponding fashion, we may express the signal component of x( ) by the vector

(7.261)

where 

(7.262)

Assuming that fc is an integer multiple of the symbol rate 1/T, evaluation of the integral in
(7.262) shows that dependence of s1 and s2 on the group delay  is eliminated, as shown
by

(7.263)

(7.264)

We may thus expand on (7.259) to write

(7.265)

where

(7.266)

The two elements of the noise vector w are themselves defined by

(7.267)

The wk in (7.267) is the sample value of a Gaussian random variable W of zero mean and
variance N02, where N02 is the power spectral density of the channel noise w(t).
Dependence of the baseband signal vector x on delay  is inherited from (7.265).

The conditional probability density function of the random vector X, represented by the
sample x at the receiver input given transmission of the ith symbol, and occurrence of the
carrier phase  and group delay resulting from the dispersive channel, is defined by

(7.268)
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Setting  equal to zero, (7.268) reduces to

(7.269)

Equation (7.268) defines the probability density function of the random vector X in the
combined presence of signal and channel noise, whereas (7.269) defines the probability
density function of x in the presence of channel noise acting alone. Accordingly, we may
define the likelihood function for QPSK as the ratio of these two probability density
functions, as shown by

(7.270)

In QPSK, we have 

because all four message points lie on a circle of radius . Hence, ignoring the second
term in the exponent in (7.270), we may reduce the likelihood function to

(7.271)

Complex Terminology for Algorithmic Synchronization

Before proceeding with the derivations of adaptive filtering algorithms for recovery of the
clock and carrier, we find it instructive to reformulate the likelihood function of (7.271)
using complex terminology. Such a step is apropos given the fact that the received signal
vector as well as its contituent signal and noise vectors in (7.265) are all in their respective
baseband forms.

Specifically, the two-dimensional vector  is represented by the complex envelope
of the received signal

(7.272)

where . 
Correspondingly, the signal vector , comprising the pair of signal components

 and , is represented by the complex envelope of the transmitter signal
corrupted by carrier phase :

(7.273)

The new complex parameter  in (7.273) is a symbol indicator in the message
constellation of the QPSK; it is defined by

(7.274)
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424 Chapter 7 Signaling over AWGN Channels

Correspondingly, the complex experimental factor embodying the carrier phase  is
defined by

(7.275)

Both (7.274) and (7.275) follow from Euler’s formula.
With the complex representations of (7.272) to (7.275) at hand, we may now reformulate

the exponent of the likelihood function in (7.271) in the equivalent complex form:

(7.276)

where Re[.] denotes the real part of the complex expression inside the square brackets.
Hence, we may make the following statement:

The inner product of the two complex vectors  and  in (7.276) 
is replaced by  times the real part of the inner product of two complex 
variables:  and .

Two points are noteworthy here:

1. The complex envelope of the received signal is dependent on the group delay ,

hence . The product  is made up of the complex symbol indicator 

attributed to the QPSK signal generated in the transmitter and the exponential term

 attributed to phase distortion in the channel.

2. In complex variable theory, given a pair of complex terms  and , their

inner product could be defined as , as shown in (7.276).

The complex representation on the right-hand side of (7.276), expressed in Cartesian
form, is well suited for estimating the unknown phase . On the other hand, for estimating
the unknown group delay , we find it more convenient to use a polar representation for
the inner product of the two vectors  and , as shown by 

(7.277)

Indeed, it is a straightforward matter to show that the two complex representations on the
right-hand side of (7.276) and (7.277) are indeed equivalent. The reasons for why these
two representations befit the estimation of carrier phase  and group delay , respec-
tively, will become apparent in the next two subsections. 

Moreover, in light of what was said previously, estimation of the group delay should
precede that of the carrier phase. Accordingly, the next subsection is devoted to group-
delay estimation, followed by the sub-section devoted to carrier-phase estimation.

Recursive Estimation of the Group Delay

To begin the task of estimating the unknown group delay, first of all we have to remove
dependence of the likelihood function  on the unknown carrier phase  in
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7.16 Recursive Maximum Likelihood Estimation for Synchronization 425

(7.271). To do this, we will average the likelihood function over all possible values of 
inside the range . To this end,  is assumed to be uniformly distributed inside this
range, as shown by

 (7.278)

which is the worst possible situation that can arise in practice. Under this assumption, we
may thus express the average likelihood function as

(7.279)

where, in the last line, we used (7.271).
Examining the two alternative complex representations of the likelihood function’s

exponent given in (7.276) and (7.277), it is the latter that best suits solving the integration
in (7.279). Specifically, we may write

(7.280)

where, in the last line, we have made the substitution

We now invoke the definition of the modified Bessel function of zero order, as shown by
(see Appendix C)

(7.281)

Using this formula, we may, therefore, express the average likelihood function 
in (7.280) as follows:

(7.282)

where  is the complex envelope of the matched filter output in the receiver. By
definition, for QPSK we have
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426 Chapter 7 Signaling over AWGN Channels

It follows, therefore, that (7.282) reduces to

(7.283)

Here, it is important to note that, as a result of averaging the likelihood function over the
carrier phase , we have also removed dependence on the transmitted symbol  for
QPSK; this result is intuitively satisfying.

In any event, taking the natural logarithm of lav() in (7.283) to obtain the log-
likelihood function of , we write

(7.284)

where ln denotes the natural logarithm. To proceed further, we need to find a good
approximation for Lav(). To this end, we first note that the modified Bessel function I0(x)
may itself be expanded in a power series (see Appendix C):

where x stands for the product term . For small values of x, we may thus
approximate I0(x) as shown by

We may further simplify matters by using the approximation

(7.285)

For the problem at hand, small x corresponds to small SNR. Under this condition, we may
now approximate the log-likelihood function of (7.284) as follows:

(7.286)

With maximization of Lav() as the objective, we differentiate it with respect to the
envelope delay , obtaining

(7.287)

where  is the complex conjugate of  and  is its derivative with respect to .
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The formula in (7.287) is the result of operating on the received signal at the channel
output, , defined in (7.254) for a particular symbol of the QPSK signal defined in the
interval [ , T + ]. In the course of finding the baseband vector representation of the
received signal, namely , dependence on time t disappeared in (7.287).
Notwithstanding this point, the fact of the matter is the log-likelihood ratio  in
(7.287) pertains to some point in discrete time n = tT, and it changes with n. To go forward
with recursive estimation of the group delay , we must therefore bring discrete time n into
the procedure. To this end, n is assigned as a subscript to both  and  in (7.287).
Thus, with the recursive estimation of  following the format described in words in (7.251),
we may define the error signal needed for the recursive estimation of  (i.e., symbol-timing
recovery) as follows:

(7.288)

Let  denote the estimate of the unknown group delay  at discrete time n.
Correspondingly, we may introduce two definitions

(7.289)

and
(7.290)

Accordingly, we may reformulate the error signal en in (7.288) as follows:

(7.291)

Computation of the error signal en, therefore, requires the use of two filters:

1. Complex matched filter, which is used for generating .

2. Complex derivative matched filter, which is used for generating .

By design, the receiver is already equipped with the first filter. The second one is new. In
practice, the additional computational complexity due to the derivative matched filter is
found to be an undesireable requirement. To dispense with the need for it, we propose to
approximate the derivative using a finite difference, as shown by

 (7.292)

Note, however, that in using the finite-difference approximation of (7.292) we have
simplified computation of the derivative matched filter by doubling the symbol rate. It is
desirable to make one further modification to account for the fact that timing estimates are
updated at multiples of the symbol period T and the only available quantities are .
Consequently, we replace  by the current (updated estimate)  and replace 
by the old estimate . We may thus rewrite (7.292) as follows:

(7.293)

So, we finally redefine the error signal as follows:

(7.294)

where the scaling factor 1T is accounted for in what follows.

x t 
 
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
x̃*   x̃  




en Re x̃n
*  x̃n

   =

̂n

x̃n   x̃ nT ̂n+ =

x̃n   x̃ nT ̂n+ =

en Re x̃* nT ̂n+ x̃ nT ̂n+  =
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  

x̃ nT ̂n+  1
T
--- x̃ nT T

2
--- ̂n +1/2+ + 

  x̃ nT T
2
---– ̂n 1/2–+ 

 –
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428 Chapter 7 Signaling over AWGN Channels

Finally, building on the format of the recursive estimation procedure described in
(7.251), we may formulate the adaptive filtering algorithm for symbol timing recovery:

(7.295)

where we have the following:

• The  in (7.295) is the step-size parameter, in which the two scaling factors 
and 1/T are absorbed; the factor  was ignored in moving from (7.287) to
(7.288) and the factor 1/T was ignored from (7.293) to (7.294). 

• The error signal en is defined by (7.294). 
• The cn is a real number employed as control for the frequency of an oscillator,

referred to as a number-controlled oscillator (NCO). 

The closed-loop feedback system for implementing the timing-recovery algorithm of
(7.295) is shown in Figure 7.48. From a historical perspective, the scheme shown in this
figure is analogous to the continuous-time version of the traditional early–late gate
synchronizer widely used for timing recovery. In light of this analogy, the scheme of
Figure 7.48 is referred to as a recursive early–late delay (NDA-ELD) synchronizer. At
every recursion (i.e., time step), the synchronizer works on three successive samples of the
matched filter output, namely:

 and  

The first sample is early and the last one is late, both defined with respect to the middle one.

Recursive Estimation of the Carrier Phase

With estimation of the symbol time  taken care of, the next step is to estimate the carrier
phase . This estimation is also based on the likelihood function defined in (7.270), but

Figure 7.48 Nondata-aided early–late delay 
synchronizer for estimating the group delay. 

cn 1+ cn en n+ 0 1 2 3 ...   = =
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
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7.16 Recursive Maximum Likelihood Estimation for Synchronization 429

with a difference: this time we use the complex representation on the right-hand side of
(7.276) for the likelihood function’s exponent. Thus, the likelihood function of  is now
expressed as follows:

(7.296)

Taking the natural logorithm of both sides of (7.296), the log-likelihood function of  is,
therefore, given by

(7.297)

Here again, maximizing the estimate of the carrier phase  as the issue of interest, we
differentiate  with respect to , obtaining

The real-part operator Re[] is linear; therefore, we may interchange this operation with
the differentiation. Moreover, we have 

As a result of the differentiation, the argument  in (7.297) is multiplied by –j,
which, in turn, has the effect of replacing the real-part operator Re[.] by the corresponding
imaginary-part operator Im[.] Accordingly, we may express derivative of the log-likelihood
function in (7.297) with respect to  as follows:

(7.298)

With this equation at hand, we are now ready to formulate the adaptive filtering algorithm
for estimating the unknown carrier phase . To this end, we incorporate discrete-time n
into the recursive estimation procedure for clock recovery in a manner similar to what we
did for the group delay; specifically: 

1. With the argument of the imaginary-part operator in (7.298) playing the role of error
signal, we write:

(7.299)

where n denotes the normalized discrete-time.

2. The scaling factor  is absorbed in the new step-size parameter .

3. With  denoting the old estimate of the carrier phase  and  denoting its
updated value, the update rule for the estimation is defined as follows:

(7.300)

Equations (7.299) and (7.300) not only define the adaptive filtering algorithm for carrier-
phase estimation, but also they provide the basis for implementing the algorithm, as shown
in Figure 7.49. This figure may be viewed as a generalization of the well-known Costas loop
for the analog synchronization of linear quadrature-amplitude modulation schemes that


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430 Chapter 7 Signaling over AWGN Channels

involve the combined use of in-phase and quadrature components, of which the QPSK is a
special example. As such, we may refer to the closed-loop synchronization scheme of Figure
7.49 as the recursive Costas loop for phase synchronization.

The following points should be noted in Figure 7.49:

• The detector supplies an estimate of the symbol indicator  and, therefore, the
transmitted symbol, given the matched filter output.

• For the input , the look-up table in the figure supplies the value of the exponential

• The output of the error generator is the error signal en, defined in (7.299).
• The block labeled z–1 represents a unit-time delay.

The recursive Costas loop of Figure 7.49 uses a first-order digital filter. To improve the
tracking performance of this synchronization system, we may use a second-order digital
filter. Figure 7.50 shows an example of a second-order recursive filter made up of a
cascade of two first-order sections, with  as an adjustable loop parameter. An important
property of a second-order recursive filter used in the Costas loop for phase recovery is
that it will eventually lock onto the incoming carrier with no static error, provided that the
frequency error between the receiver and transmitter is initially small.

Convergence Considerations

The adaptive behavior of the filtering schemes in Figures 7.48 and 7.49 for group-delay
and carrier-phase estimation, respectively, is governed by how the step-size parameters

Figure 7.49 The recursive Costas loop for estimating the carrier phase. 

Figure 7.50 Second-order recursive filter. 
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7.17 Summary and Discussion 431

 are selected. The smaller we make  and, likewise, , the more refined will be
the trajectories resulting from application of the algorithms. However, this benefit is
attained at the cost of the number of recursions required for convergence of the algorithms.
On the other hand, if the step-size parameter  and  is assigned a large value, then the
trajectories may follow a zig-zag sort of path. Indeed, if  and  exceeds a certain critical
value of its own, it is quite possible for the algorithm to diverge, which means that the
synchronization schemes of Figures 7.48 and 7.49 may become unstable. So, from a
design perspective, the compromise choice between accuracy of estimation and speed of
convergence may require a detailed attention, both theoretical and experimental.

7.17 Summary and Discussion

The primary goal of the material presented in this chapter is the formulation of a
systematic procedure for the analysis and design of a digital communication receiver in
the presence of AWGN. The procedure, known as maximum likelihood detection, decides
which particular transmitted symbol is the most likely cause of the noisy signal observed
at the channel output. The approach that led to the formulation of the maximum likelihood
detector (receiver) is called signal-space analysis. The basic idea of the approach is to
represent each member of a set of transmitted signals by an N-dimensional vector, where
N is the number of orthonormal basis functions needed for a unique geometric
representation of the transmitted signals. The set of signal vectors so formed defines a
signal constellation in an N-dimensional signal space.

For a given signal constellation, the (average) probability of symbol error, Pe, incurred
in maximum likelihood signal detection over an AWGN channel is invariant to rotation of
the signal constellation as well as its translation. However, except for a few simple (but
important) cases, the numerical calculation of Pe is an impractical proposition. To
overcome this difficulty, the customary practice is to resort to the use of bounds that lend
themselves to computation in a straightforward manner. In this context, we described the
union bound that follows directly from the signal-space diagram. The union bound is
based on an intuitively satisfying idea: 

The probability of symbol error Pe is dominated by the nearest neighbors to the 
transmitted signal in the signal-space diagram.

The results obtained using the union bound are usually fairly accurate, particularly when
the SNR is high.

With the basic background theory on optimum receivers covered in the early part of
Chapter 7 at our disposal, formulas were derived for, or bounds on, the BER for some
important digital modulation techniques in an AWGN channel:

1. PSK, using coherent detection; it is represented by

• binary PSK;
• QPSK and its variants, namely, such as the offset QPSK; 
• coherent M-ary PSK, which includes binary PSK and QPSK as special cases with

M = 2 and M = 4, respectively. 

The DPSK may be viewed as the pseudo-noncoherent form of PSK.

 and   

 
 
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432 Chapter 7 Signaling over AWGN Channels

2. M-ary QAM, using coherent detection; this modulation scheme is a hybrid form of
modulation that combines amplitude and phase-shift keying. For M = 4, it includes
QPSK as a special case. 

3. FSK, using coherent detection; it is represented by

• binary FSK;
• MSK and its Gaussian variant known as GMSK;
• M-ary FSK.

4. Noncoherent detection schemes, involving the use of binary FSK and DPSK.

Irrespective of the digital modulation system of interest, synchronization of the receiver to
the transmitter is essential to the operation of the system. Symbol timing recovery is
required whether the receiver is coherent or not. If the receiver is coherent, we also require
provision for carrier recovery. In the latter part of the chapter we discussed nondata-aided
synchronizers to cater to these two requirements with emphasis on M-ary PSK,
exemplified by QPSK signals, in which the carrier is suppressed. The presentation focused
on recursive synchronization techniques that are naturally suited for the use of discrete-
time signal processing algorithms.

We conclude the discussion with some additional notes on the two adaptive filtering
algorithms described in Section 7.16 on estimating the unknown parameters: carrier phase
and group delay. In a computational context, these two algorithms are in the same class as
the celebrated least-mean-square (LMS) algorithm described by Widrow and Hoff over
50 years ago. The LMS algorithm is known for its computational efficiency, effectiveness
in performance, and robustness with respect to the nonstationary character of the
environment in which it is embedded. The two algorithmic phase and delay synchronizers
share the first two properties of the LMS algorithm; for a conjecture, it may well be they
are also robust when operating in a nonstationary communication environment.

Problems

Representation of Signals

7.1 In Chapter 6 we described line codes for pulse-code modulation. Referring to the material presented
therein, formulate the signal constellations for the following line codes:

a. unipolar nonreturn-to-zero code

b. polar nonreturn-to-zero code

c. unipolar return-to-zero code

d. manchester code.

7.2 An 8-level PAM signal is defined by

where Ai = 1, 3, 5, 7. Formulate the signal constellation of .

7.3 Figure P7.3 displays the waveforms of four signals s1(t), s2(t), s3(t), and s4(t). 
a. Using the Gram–Schmidt orthogonalization procedure, find an orthonormal basis for this set of

signals.

b. Construct the corresponding signal-space diagram.

si t  Ai rect t
T
--- 1

2
---– 

 =

si t  
i 1=
8
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Problems 433

 7.4 a. Using the Gram–Schmidt orthogonalization procedure, find a set of orthonormal basis functions
to represent the three signals s1(t), s2(t), and s3(t) shown in Figure P7.4.

b. Express each of these signals in terms of the set of basis functions found in part a.

7.5 An orthogonal set of signals is characterized by the property that the inner product of any pair of
signals in the set is zero. Figure P7.5 shows a pair of signals s1(t) and s2(t) that satisfy this definition.
Construct the signal constellation for this pair of signals.

7.6 A source of information emits a set of symbols denoted by . Two candidate modulation
schemes, namely pulse-duration modulation (PDM) and pulse-position modulation (PPM), are
considered for the electrical representation of this set of symbols. In PDM, the ith symbol is
represented by a pulse of unit amplitude and duration (i/M)T. On the other hand, in PPM, the ith
symbol is represented by a short pulse of unit amplitude and fixed duration, which is transmitted at
time t = (i/M)T. Show that PPM is the only one of the two that can produce an orthogonal set of
signals over the interval 0  t  T.

7.7 A set of 2M biorthogonal signals is obtained from a set of M ordinary orthogonal signals by
augmenting it with the negative of each signal in the set.

a. The extension of orthogonal to biorthogonal signals leaves the dimensionality of the signal space
unchanged. Explain how.

b. Construct the signal constellation for the biorthogonal signals corresponding to the pair of
orthogonal signals shown in Figure P7.5.
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434 Chapter 7 Signaling over AWGN Channels

 7.8 a. A pair of signals si(t) and sk(t) have a common duration T. Show that the inner product of this
pair of signals is given by

where si and sk are the vector representations of si(t) and sk(t), respectively.

b. As a follow-up to part a of the problem, show that

7.9 Consider a pair of complex-valued signals si(t) and sk(t) that are respectively represented by

where the basis functions 1(t) and 2(t) are both real valued, but the coefficients a11, a12, a21, and
a22 are complex valued. Prove the complex form of the Schwarz inequality:

where the asterisk denotes complex conjugation. When is this relation satisfied with the equality sign?

Stochastic Processes

7.10 Consider a stochastic process X(t) expanded in the form

where  is a remainder noise term. The  form an orthonormal set over the interval
0  t  T, and the random variable Xi is defined by

 

Let  denote a random variable obtained by observing  at time t = tk. Show that

7.11 Consider the optimum detection of the sinusoidal signal in AWGN:

a. Determine the correlator output assuming a noiseless input.

b. Determine the corresponding matched filter output, assuming that the filter includes a delay T to
make it causal.

c. Hence, show that these two outputs are exactly the same only at the time instant t = T.

Probability of Error

7.12 Figure P7.12 shows a pair of signals s1(t) and s2(t) that are orthogonal to each other over the
observation interval 0  t  3T. The received signal is defined by

si t sk t  dt
0

T

 si
Tsk=

si t  sk t – 2 dt
0

T
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2
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s2 t  = a211 t  a222 t +  t  –
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where w(t) is white Gaussian noise of zero mean and power spectral density N0/2. 
a. Design a receiver that decides in favor of signals s1(t) or s2(t), assuming that these two signals are

equiprobable.

b. Calculate the average probability of symbol error incurred by this receiver for E/N0 = 4, where E
is the signal energy. 

7.13 In the Manchester code discussed in Chapter 6, binary symbol 1 is represented by the doublet pulse
s(t) shown in Figure P7.13, and binary symbol 0 is represented by the negative of this pulse. Derive
the formula for the probability of error incurred by the maximum likelihood detection procedure
applied to this form of signaling over an AWGN channel. 

7.14 In the Bayes’ test, applied to a binary hypothesis-testing problem where we have to choose one of
two possible hypotheses H0 and H1, we minimize the risk  defined by

The parameters C00, C10, C11, and C01 denote the costs assigned to the four possible outcomes of the
experiment: the first subscript indicates the hypothesis chosen and the second the hypothesis that is
true. Assume that C10 > C00 and C01 > C11. The p0 and p1 denote the a priori probabilities of
hypotheses H0 and H1, respectively.

a. Given the observation vector x, show that the partitioning of the observation space so as to
minimize the risk  leads to the likelihood ratio test:

say H0 if 

say H1 if 

where  is the likelihood ratio defined by

x t  sk t  w t += 0 t 3T 
k 1 2=



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436 Chapter 7 Signaling over AWGN Channels

and  is the threshold of the test defined by

b. What are the cost values for which the Bayes’ criterion reduces to the minimum probability of
error criterion?

Principles of Rotational and Translational Invariance

7.15 Continuing with the four line codes considered in Problem 7.1, identify the line codes that have
minimum average energy and those that do not. Compare your answers with the observations made
on these line codes in Chapter 6.

7.16 Consider the two constellations shown in Figure 7.10. Determine the orthonormal matrix Q that
transforms the constellation shown in Figure 7.10a into the one shown in Figure 7.10b.

 7.17 a. The two signal constellations shown in Figure P7.17 exhibit the same average probability of
symbol error. Justify the validity of this statement. 

b. Which of these two constellations has minimum average energy? Justify your answer.

You may assume that the symbols pertaining to the message points displayed in Figure P7.17 are
equally likely.

7.18 Simplex (transorthogonal) signals are equally likely highly-correlated signals with the most negative
correlation that can be achieved with a set of M orthogonal signals. That is, the correlation
coefficient between any pair of signals in the set is defined by

One method of constructing simplex signals is to start with a set of M orthogonal signals each with
energy E and then apply the minimum energy translate.

Consider a set of three equally likely symbols whose signal constellation consists of the vertices of
an equilateral triangle. Show that these three symbols constitute a simplex code.

Amplitude-Shift Keying

7.19 In the on–off keying version of an ASK system, symbol1 is represented by transmitting a sinusoidal
carrier of amplitude , where Eb is the signal energy per bit and Tb is the bit duration.
Symbol 0 is represented by switching off the carrier. Assume that symbols 1 and 0 occur with equal
probability. 


p0 C10 C00– 
p1 C01 C11– 
----------------------------------=
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Problems 437

For an AWGN channel, determine the average probability of error for this ASK system under the
following scenarios:

a. Coherent detection.

b. Noncoherent detection, operating with a large value of bit energy-to-noise spectral density ratio
EbN0.

Note: when x is large, the modified Bessel function of the first kind of zero order may be
approximated as follows (see AppendixC):

Phase-Shift Keying

7.20 The PSK signal is applied to a correlator supplied with a phase reference that lies within  radians
of the exact carrier phase. Determine the effect of the phase error  on the average probability of
error of the system.

7.21 The signal component of a PSK system scheme using coherent detection is defined by

where 0  t  Tb, the plus sign corresponds to symbol 1, and the minus sign corresponds to symbol
0; the parameter k lies in the range 0  k  1. The first term of s(t) represents a carrier component
included for the purpose of synchronizing the receiver to the transmitter.

a. Draw a signal-space diagram for the scheme described here. What observations can you make
about this diagram?

b. Show that, in the presence of AWGN of zero mean and power spectral density N0/2, the average
probability of error is

where

c. Suppose that 10% of the transmitted signal power is allocated to the carrier component.
Determine the EbN0 required to realize Pe = 10–4.

d. Compare this value of EbN0 with that required for a binary PSK scheme using coherent
detection, with the same probability of error.

 7.22 a. Given the input binary sequence 1100100010, sketch the waveforms of the in-phase and
quadrature components of a modulated wave obtained using the QPSK based on the signal set of
Figure 7.16.

b. Sketch the QPSK waveform itself for the input binary sequence specified in part a.

7.23 Let PeI and PeQ denote the probabilities of symbol error for the in-phase and quadrature channels,
respectively, of a narrowband digital communication system. Show that the average probability of
symbol error for the overall system is given by

Pe = PeI + PeQ – PeIPeQ

7.24 Equation (7.132) is an approximate formula for the average probability of symbol error for M-ary
PSK using coherent detection. This formula was derived using the union bound in light of the signal-
space diagram of Figure 7.22b. Given that message point m1 was transmitted, show that the
approximation of (7.132) may be derived directly from Figure 7.22b.
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438 Chapter 7 Signaling over AWGN Channels

7.25 Find the power spectral density of an offset QPSK signal produced by a random binary sequence in
which symbols 1 and 0 (represented by 1) are equally likely and the symbols in different time slots
are statistically independent and identically distributed.

7.26 Vestigial sideband modulation (VSB), discussed in Chapter 2, offers another possible modulation
method for signaling over an AWGN channel.

a. In particular, a digital VSB transmission system may be viewed as a time-varying one-
dimensional system operating at a rate of 2/T dimensions per second, where T is the symbol
period. Justify the validity of this statement.

b. Show that digital VSB is indeed equivalent in performance to the offset QPSK.

Quadrature Amplitude Modulation

7.27 Referring back to Example 7, develop a systematic procedure for constructing M-ary QAM
constellations given the M-ary QAM constellation of Figure 7.24 for M = 16. In effect, this problem
addresses the opposite approach to that described in Example 7.

7.28 Figure P7.28 describes the block diagram of a generalized M-ary QAM modulator. Basically, the
modulator includes a mapper that produces a complex amplitude am input for m = 0, 1, 
The real and imaginary parts of am input the basis functions  and , respectively. The
modulator is generalized in that it embodies M-ary PSK and M-ary PAM as special cases.

a. Formulate the underlying mathematics of the modulator described in Figure P7.28.

b. Hence, show that M-ary PSK and M-ary PAM are indeed special cases of the M-ary QPSK
generated by the block diagram of Figure P7.28.

Frequency-Shift Keying

7.29 The signal vectors s1 and s2 are used to represent binary symbols 1 and 0, respectively, in a binary
FSK system using coherent detection. The receiver decides in favor of symbol1 when

where xTsi is the inner product of the observation vector x and the signal vector si, i = 1, 2. Show that
this decision rule is equivalent to the condition x1 > x2, where x1 and x2 are the two elements of the
observation vector x. Assume that the signal vectors s1 and s2 have equal energy.

7.30 An FSK system transmits binary data at the rate of  bits/s. During the course of
transmission, white Gaussian noise of zero mean and power spectral density 10–20 W/Hz is added to

1 t  2 t 

Figure P7.28

Input
m = 0, 1, …, M – 1

Output
sm(t)

ΣMapper

Re[am]

Im[am]

 1(t)φ

 2(t)φ

am

xTs1 xTs2

2.5 10
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the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is
1mV. Determine the average probability of symbol error for the following system configurations:

a. binary FSK using coherent detection;

b. MSK using coherent detection;

c. binary FSK using noncoherent detection.

7.31 In an FSK system using coherent detection, the signals s1(t) and s2(t) representing binary symbols 1
and 0, respectively, are defined by

 

Assuming that fc > f, show that the correlation coefficient of the signals s1(t) and s2(t) is
approximately given by

a. What is the minimum value of frequency shift f for which the signals s1(t) and s2(t) are
orthogonal?

b. What is the value of f that minimizes the average probability of symbol error?

c. For the value of f obtained in part c, determine the increase in EbN0 required so that this FSK
scheme has the same noise performance as a binary PSK scheme system, also using coherent
detection.

7.32 A binary FSK signal with discontinuous phase is defined by

where Eb is the signal energy per bit, Tb is the bit duration, and 1 and 2 are sample values of
uniformly distributed random variables over the interval 0 to 2. In effect, the two oscillators
supplying the transmitted frequencies fc  f /2 operate independently of each other. Assume that
fc >>f.

a. Evaluate the power spectral density of the FSK signal.

b. Show that, for frequencies far removed from the carrier frequency fc, the power spectral density
falls off as the inverse square of frequency. How does this result compare with a binary FSK
signal with continuous phase?

7.33 Set up a block diagram for the generation of Sunde’s FSK signal s(t) with continuous phase by using
the representation given in (7.170), which is reproduced here

7.34 Discuss the similarities between MSK and offset QPSK, and the features that distinguish them.

7.35 There are two ways of detecting an MSK signal. One way is to use a coherent receiver to take full
advantage of the phase information content of the MSK signal. Another way is to use a noncoherent
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440 Chapter 7 Signaling over AWGN Channels

receiver and disregard the phase information. The second method offers the advantage of simplicity
of implementation at the expense of a degraded noise performance. By how many decibels do we
have to increase the bit energy-to-noise density ratio EbN0 in the second method so as to realize the
same average probability of symbol error equal to 10–5?

 7.36 a. Sketch the waveforms of the in-phase and quadrature components of the MSK signal in response
to the input binary sequence 1100100010.

b. Sketch the MSK waveform itself for the binary sequence specified in part a.

7.37 An NRZ data stream of amplitude levels 1 is passed through a low-pass filter whose impulse
response is defined by the Gaussian function

where  is a design parameter defined in terms of the filter’s 3dB bandwidth by

a. Show that the transfer function of the filter is defined by

Hence, demonstrate that the 3dB bandwidth of the filter is indeed equal to W. You may use the
list of Fourier-transform pairs in Table 2.1.

b. Determine the response of the filter to a rectangular pulse of unit amplitude and duration T
centered on the origin.

7.38 Summarize the similarities and differences between the standard MSK and Gaussian filtered MSK
signals.

7.39 Summarize the basic similarities and differences between the standard MSK and QPSK.

Noncoherent Receivers

7.40 In Section 7.12 we derived the formula for the BER of binary FSK using noncoherent detection as a
special case of noncoherent orthogonal modulation. In this problem we revisit this issue. As before,
we assume that symbol 1 is represented by signal s1(t) and symbol 0 is represented by signal s2(t).
According to the material presented in Section 7.12, we note the following:

• The random variable L2 represented by the sample value l2 is Rayleigh distributed.

• The random variable L1 represented by the sample value l1 is Rician distributed.

The Rayleigh and Rician distributions were discussed in Chapter 4. Using the probability
distributions defined in that chapter, derive (7.245) for the BER of binary FSK, using noncoherent
detection.

7.41 Figure P7.41a shows a noncoherent receiver using a matched filter for the detection of a sinusoidal
signal of known frequency but random phase and under the assumption of AWGN. An alternative
implementation of this receiver is its mechanization in the frequency domain as a spectrum analyzer
receiver, as in Figure P7.41b, where the correlator computes the finite-time autocorrelation function
defined by

Show that the square-law envelope detector output sampled at time t = T in Figure P7.41a is twice
the spectral output of the Fourier transform sampled at frequency f = fc in Figure P7.41b.
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7.42 The binary sequence 1100100010 is applied to the DPSK transmitter of Figure 7.44.

a. Sketch the resulting waveform at the transmitter output.

b. Applying this waveform to the DPSK receiver of Figure 7.46, show that in the absence of noise
the original binary sequence is reconstructed at the receiver output.

Comparison of Digital Modulation Schemes Using a Single Carrier

7.43 Binary data are transmitted over a microwave link at the rate of 106 bits/s and the power spectral
density of the noise at the receiver input is 10–10 W/Hz. Find the average carrier power required to
maintain an average probability of error Pe  10–4 for the following schemes: 

a. Binary PSK using coherent detection;

b. DPSK.

7.44 The values of EbN0 required to realize an average probability of symbol error Pe = 10–4 for binary
PSK and binary FSK schemes are equal to 7.2 and 13.5, respectively. Using the approximation

determine the separation in the values of EbN0 for Pe = 10–4, using:

a. binary PSK using coherent detection and DPSK;

b. binary PSK and QPSK, both using coherent detection;

c. binary FSK using (i) coherent detection and (ii) noncoherent detection;

d. binary FSK and MSK, both using coherent detection.

7.45 In Section 7.14 we compared the noise performances of various digital modulation schemes under
the two classes of coherent and noncoherent detection; therein, we used the BER as the basis of
comparison. In this problem we take a different viewpoint and use the average probability of symbol
error Pe, to do the comparison. Plot Pe versus EbN0 for each of these schemes and comment on
your results.

Synchronization

7.46 Demonstrate the equivalence of the two complex representations given in (7.276) and (7.277), which
pertain to the likelihood function.

 7.47 a. In the recursive algorithm of (7.295) for symbol timing recovery, the control signals cn and cn + 1
are both dimensionless. Discuss the units in which the error signal en and step-size parameter 
are measured.

b. In the recursive algorithm of (7.300) for phase recovery, the old estimate  and the updated
estimate  of the carrier phase  are both measured in radians. Discuss the units in which the
error signal en and step-size parameter  are measured.

7.48 The binary PSK is a special case of QPSK. Using the adaptive filtering algorithms derived in Section
7.16 for estimating the group delay  and carrier phase , find the corresponding adaptive filtering
algorithms for binary PSK.

7.49 Repeat Problem 7.48, but this time find the adaptive filtering algorithms for M-ary PSK. 

Figure P7.41
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442 Chapter 7 Signaling over AWGN Channels

7.50 Suppose we transmit a sequence of L0 statistically independent symbols of a QPSK signal, as shown
by

where L0 is not to be confused with the symbol for average log-likelihood Lav. The channel output is
corrupted by AWGN of zero mean and power spectral density N02, carrier phase , and unknown
group delay .

a. Determine the likelihood function with respect to the group delay , assuming that  is uni-
formly distributed. 

b. Hence, formulate the maximum likelihood estimate of the group delay .

c. Compare this feedforward scheme of group-delay estimation with that provided by the NDA-
ELD synchronizer of Figure 7.48.

7.51 Repeat Problem 7.50, but this time do the following:

a. Determine the likelihood function with respect to the carrier phase , assuming that the group
delay  is known. 

b. Hence, formulate the maximum likelihood estimate of the carrier phase .

c. Compare this feedforward scheme of a carrier-phase estimation with the recursive Costas loop of
Figure 7.49.

7.52 In Section 7.16 we studied a nondata-aided scheme for carrier phase recovery, based on the log-
likelihood function of (7.296). In this problem we explore the use of this equation for data-aided
carrier phase recovery.

a. Consider a receiver designed for a linear modulation system. Given that the receiver has
knowledge of a preamble of length L0, show that the maximum likelihood estimate of the carrier
phase is defined by

where the preamble  is a known sequence of complex symbols and  is the
complex envelope of the corresponding received signal.

b. Using the result derived in part a, construct a block diagram for the maximum likelihood phase
estimator.

7.53 Figure P7.53 shows the block diagram of a phase-synchronization system. Determine the phase
estimate  of the unknown carrier phase in the received signal .
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Computer Experiments

 **7.54 In this computer-oriented problem, we study the operation of the NDA-ELD synchronizer for
symbol timing recovery by considering a coherent QPSK system with the following specifications:

• The channel response is described by a raised cosine pulse with rolloff factor = 0.5. 

• The recursive filter is a first-order digital filter with transfer function

where z–1 denotes unit delay,  is the step-size parameter, and A is a parameter, to be defined.

• The loop bandwidth BL is 2 of the symbol rate 1T, that is, BLT = 0.02.

With symbol timing recovery as the objective, a logical way to proceed is to plot the S-curve for the
NDA-ELD under the following conditions:

a. EbN0 = 10 dB

b. EbN0 = (i.e., noiseless channel).

For NDA-ELD, the scheme shown in Figure P7.54 is responsible for generating the S-curve that
plots the timing offset versus the discrete time n = tT. 

Using this scheme, plot the S-curves, and comment on the results obtained for parts a and b.

7.55 In this follow-up to the computer-oriented Problem 7.54, we study the recursive Costas loop for
phase recovery using the same system specifications described in Problem 7.54. This time, however,
we use the scheme of Figure P7.54 for measuring the S-curve to plot the phase error versus discrete-
time n = tT. 
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444 Chapter 7 Signaling over AWGN Channels

The plot is to be carried out under the following conditions:

a. EbN0 = 5 dB

b. EbN0 = 10 dB

c. EbN0 = 30 dB (i.e., practically noiseless channel)

Comment on the results obtained for these three conditions.

Notes

1. The geometric representation of signals was first developed by Kotel’nikov (1947) which is a
translation of the original doctoral dissertation presented in January 1947 before the Academic
Council of the Molotov Energy Institute in Moscow. In particular, see Part II of the book. This method
was subsequently brought to fuller fruition in the classic book by Wozencraft and Jacobs (1965). 

2. The classic reference for the union bound is Wozencraft and Jacobs (1965). 

3. Appendix C addresses the derivation of simple bounds on the Q-function. In (7.88), we have used
the following bound:

which becomes increasingly tight for large positive values of x.

4. For an early paper on the offset QPSK, see Gitlin and Ho (1975).

5. The MSK signal was first described in Doelz and Heald (1961). For a tutorial review of MSK and
comparison with QPSK, see Pasupathy (1979). Since the frequency spacing is only half as much as
the conventional spacing of 1/Tb that is used in the coherent detection of binary FSK signals, this
signaling scheme is also referred to as fast FSK; see deBuda (1972), who was not aware of the
Doelz–Heald patent.

6. For early discussions of GMSK, see Murota and Hirade (1981) and Ishizuke and Hirade (1980).

7. The analytical specification of the power spectral density of digital FM is difficult to handle,
except for the case of a rectangular shaped modulating pulse. The paper by Garrison (1975) presents
a procedure based on the selection of an appropriate duration-limited/level-quantized approximation
for the modulating pulse. The equations developed therein are particularly suitable for machine
computation of the power spectra of digital FM signals; see the book by Stüber (1996).

8. A detailed analysis of the spectra of M-ary FSK for an arbitrary value of frequency deviation is
presented in the paper by Anderson and Salz (1965). 

9. Readers who are not interested in the formal derivation of (7.227) may at this point wish to move
on to the treatment of noncoherent binary FSK (in Section 7.12) and DPSK (in Section 7.13), two
special cases of noncoherent orthogonal modulation, without loss of continuity.

10. The standard method of deriving the BER for noncoherent binary FSK, presented in
McDonough and Whalen (1995) and that for DPSK presented in Arthurs and Dym (1962), involves
the use of the Rician distribution. This distribution arises when the envelope of a sine wave plus
additive Gaussian noise is of interest; see Chapter 4 for a discussion of the Rician distribution. The
derivations presented herein avoid the complications encountered in the standard method.

11. The optimum receiver for differential phase-shift keying is discussed in Simon and Divsalar
(1992).

12. For detailed treatment of the algorithmic approach for solving the synchronization problem in
signaling over AWGN channels, the reader is referred to the books by Mengali and D’Andrea (1997)
and Meyer et al. (1998). For books on the traditional approach to synchronization, the reader is
referred to Lindsey and Simon (1973). 
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