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CHAPTER

9
Signaling over Fading Channels 

9.1 Introduction

In Chapters 7 and 8 we studied signaling over AWGN and band-limited channels, respec-
tively. In this chapter we go on to study a more complicated communications environment,
namely a fading channel, which is at the very core of ever-expanding wireless communica-
tions. Fading refers to the fact that even though the distance separating a mobile receiver
from the transmitter is essentially constant, a relatively small movement of the receiver
away from the transmitter could result in a significant change in the received power. The
physical phenomenon responsible for fading is multipath, which means that the transmitted
signal reaches the mobile receiver via multiple paths with varying spatio-temporal charac-
teristics, hence the challenging nature of the wireless channel for reliable communication.

This chapter consists of three related parts:
First we study signaling over a fading channel by characterizing its statistical behavior

in temporal as well as spacial terms. This statistical characterization is carried out from
three different perspectives: physical, mathematical, and computational, each of which
enriches our understanding of the multipath phenomenon in its own way. This first part of
the chapter finishes with: 

• BER comparison of different modulation schemes for AWGN and Rayleigh fading
channels.

• Graphical display of how different fading channels compare to a corresponding
AWGN channel using binary PSK.

This evaluation then prompts the issue of how to combat the degrading effect of multipath
and thereby realize reliable communication over a fading channel. Indeed, the second part
of the chapter is devoted to this important practical issue. Specifically, we study the use of
space diversity, which can be one of three kinds:

1. Diversity-on-receive, which involves the use of a single transmitter and multiple
receivers, with each receiver having its own antenna.

2. Diversity-on-transmit, which involves the use of multiple transmitting antennas and
a single receiver.

3. Multiple-input, multiple-output (MIMO) antenna system, which includes diversity
on receive and diversity on transmit in a combined manner.

The use of diversity-on-receive techniques is of long standing in the study of radio
communications. On the other hand, diversity-on-transmit and MIMO antenna systems are
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502 Chapter 9 Signaling over Fading Channels

of recent origin. The study of diversity is closely related to that of information capacity,
the evaluation of which is also given special attention in the latter part of the chapter.

For the third and final part of the chapter, we study spread-spectrum signals, which
provide the basis of another novel way of thinking about how to mitigate the degrading
effects of the multipath phenomenon. In more specific terms, the use of spread-spectrum
signaling leads to the formulation of code-division multiple access, a topic that was
covered briefly in the introductory Chapter 1.

9.2 Propagation Effects

The major propagation problems1 encountered in the use of mobile radio in built-up areas
are due to the fact that the antenna of a mobile unit may lie well below the surrounding
buildings. Simply put, there is no “line-of-sight” path to the base station. Instead, radio
propagation takes place mainly by way of scattering from the surfaces of the surrounding
buildings and by diffraction over and/or around them, as illustrated in Figure 9.1. The
important point to note from Figure 9.1 is that energy reaches the receiving antenna via
more than one path. Accordingly, we speak of a multipath phenomenon, in that the various
incoming radio waves reach their destination from different directions and with different
time delays. 

To understand the nature of the multipath phenomenon, consider first a “static”
multipath environment involving a stationary receiver and a transmitted signal that
consists of a narrowband signal (e.g., unmodulated sinusoidal carrier). Let it be assumed
that two attenuated versions of the transmitted signal arrive sequentially at the receiver.
The effect of the differential time delay is to introduce a relative phase shift between any
two components of the received signal. We may then identify one of two extreme cases
that can arise:

• The relative phase shift is zero, in which case the two components add
constructively, as illustrated in Figure 9.2a.

• The relative phase shift is 180, in which case the two components add destructively,
as illustrated in Figure 9.2b. 

Figure 9.1
Illustrating the mechanism of radio 
propagation in urban areas. 
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9.2 Propagation Effects 503

We may also use phasors to demonstrate the constructive and destructive effects of
multipath, as shown in Figures 9.3a and 9.3b, respectively. Note that, in the static
multipath environment described herein, the amplitude of the received signal does not vary
with time.

Consider next a “dynamic” multipath environment in which the receiver is in motion and
two versions of the transmitted narrowband signal reach the receiver via paths of different

Figure 9.2 (a) Constructive and (b) destructive forms of the multipath 
phenomenon for sinusoidal signals. 

Figure 9.3 Phasor representations of (a) constructive and (b) destructive forms of multipath. 
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504 Chapter 9 Signaling over Fading Channels

lengths. Owing to motion of the receiver, there is a continuous change in the length of each
propagation path. Hence, the relative phase shift between the two components of the
received signal is a function of spatial location of the receiver. As the receiver moves, we
now find that the received amplitude (envelope) is no longer constant, as was the case in a
static environment; rather, it varies with distance, as illustrated in Figure 9.4. At the top of
this figure, we have also included the phasor relationships for two components of the
received signal at various locations of the receiver. Figure 9.4 shows that there is
constructive addition at some locations and almost complete cancellation at some other
locations. This physical phenomenon is referred to as fast fading. 

In a mobile radio environment encountered in practice, there may of course be a
multitude of propagation paths with different lengths and their contributions to the received
signal could combine in a variety of ways. The net result is that the envelope of the received
signal varies with location in a complicated fashion, as shown by the experimental record of
received signal envelope in an urban area that is presented in Figure 9.5. This figure clearly
displays the fading nature of the received signal. The received signal envelope in Figure 9.5
is measured in dBm. The unit dBm is defined as 10 log10(PP0), with P denoting the power
being measured and P0 = 1 mW as the frame of reference. In the case of Figure 9.5, P is the
instantaneous power in the received signal envelope. 

Signal fading is essentially a spatial phenomenon that manifests itself in the time
domain as the receiver moves. These variations can be related to the motion of the receiver
as follows. Consider the situation illustrated in Figure 9.6, where the receiver is assumed
to be moving along the line AA with a constant velocity . It is also assumed that the
received signal is due to a radio wave from a scatterer labelled S. Let t denote the time
taken for the receiver to move from point A to A. Using the notation described in Figure
9.6, the incremental change in the path length of the radio wave is deduced to be

(9.1)

Figure 9.4
Illustrating how the envelope fades as 
two incoming signals combine with 
different phases.
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9.2 Propagation Effects 505

where  is the spatial angle subtended between the incoming radio wave and the direction
of motion of the receiver. Correspondingly, the change in the phase angle of the received
signal at point A with respect to that at point A is given by

 

where  is the radio wavelength. The apparent change in frequency, or the Doppler shift, is
therefore defined by

(9.2)

The Doppler shift  is positive (resulting in an increase in frequency) when the radio
waves arrive from ahead of the mobile unit and it is negative when the radio waves arrive
from behind the mobile unit.

Figure 9.5 Experimental record of received signal envelope in an urban area. 
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506 Chapter 9 Signaling over Fading Channels

9.3 Jakes Model

To illustrate fast fading due to a moving receiver, consider a dynamic multipath
environment that involves N iid fixed scatterers surrounding such a receiver. Let the
transmitted signal be the complex sinusoidal function of unit amplitude and frequency fc,
as shown by

Then, the composite signal observed at the moving receiver, including relative effects of a
Doppler shift, is given by

where the amplitude An is contributed by the nth scatterer,  is the corresponding Doppler
shift, and  is some random phase. The complex envelope of the received signal is time
varying, as shown by 

(9.3)

Correspondingly, the autocorrelation function of the complex envelope  is defined by

(9.4)

where � is the expectation operator with respect to time t and the asterisk in 
denotes complex conjugation. Inserting (9.3) in (9.4) leads to a double summation, one
indexed by n and the other indexed by m. Then, simplifying the result under the iid
assumption, the autocorrelation function  reduces to

  (9.5)

At this point in the discussion, we make two observations:

1. The effects of small changes in distances between the moving receiver and the nth
scatterer are small enough for all n for us to write

(9.6)

where n = 1, 2, , N.

2. The Doppler shift  is proportional to the cosine of the angle  subtended
between the incoming radio wave from the nth scatterer and the direction of motion
of the receiver in Figure 9.6, which follows from (9.2).

We may therefore write

(9.7)

s t  exp j2fct =

x0 t  An exp j2 fc n+ t jn+ 
n 1=

N

=

n
n

x̃0 t  An exp j2nt jn+ 
n 1=

N

=

x̃0 t 

Rx̃0
t  � x̃0* t x̃0 t +  =

x̃0* t 

Rx̃0
 

Rx̃0
 

� An
2

exp j2n   if m n=
n 1=

N



0 if m n







=

� An
2 exp j2n   � An

2 � exp j2n  =

n ψn

n max ψn ncos 1 2  N  = =
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9.3 Jakes Model 507

where  is the maximum Doppler shift that occurs when the incoming radio waves
propogate in the same direction as the motion of the receiver. Accordingly, using (9.6) and
(9.7) in (9.5), we may write

(9.8)

where the multiplying factor

(9.9)

is the average signal power at the receiver input. 
We now make two final assumptions:

1. All the radio waves arrive at the receiver from a horizontal direction (Clarke, 1968).

2. The multipath is uniformly distributed over the range , as shown by the
probability density function (Jakes, 1974):

(9.10)

Under these two assumptions, the remaining expectation in (9.8) becomes independent of
n and with it, that equation simplifies further as follows:

The definite integral inside the brackets of this equation is recognized as the Bessel
function of the first kind of order zero,2 see Appendix C. By definition, for some argument
x, we have

(9.11)

We may therefore express the autocorrelation function of the complex signal  at the
input of the moving receiver in the compact form

(9.12)

The model described by the autocorrelation function of (9.12) is called the Jakes model.
Figure 9.7a shows a plot of the autocorrelation  according to this model.

max
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
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508 Chapter 9 Signaling over Fading Channels

According to the Wiener–Khintchine relations for a weakly (wide-sense) stationary
process (discussed in Chapter 4), the autocorrelaton function and power spectrum form a
Fourier-transform pair. Specifically, we may write

(9.13)

At first sight, it might seem that a closed form solution of this transformation is
mathematically intractable; in reality, however, the exact solution is given in (Jakes, 1974):

(9.14)

Figure 9.7
(a) Autocorrelation of the complex envelope of 
the received signal according to the Jakes model. 
(b) Power spectrum of the fading process for the 
Jakes model. 
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9.3 Jakes Model 509

and with it the model bears his name. Figure 9.7b plots the power spectrum in (9.14)
versus the Doppler shift  for . This idealized graph has the shape of a “bathtub,”
exhibiting two symmetric integrable singularities at the end points . 

EXAMPLE 1 Jakes Model Implemented as a FIR Filter

The objective of this example is to compute a FIR (TDL) filter that models the power
spectrum of (9.14). To this end, we make use of the following relationships in light of
material covered in Chapter 4 on stochastic processes:

1. The autocorrelation function and power spectrum of a weakly stationary process
form a Fourier-transform pair, as already mentioned.

2. In terms of stochastic processes, the input–output behavior of a linear system, in the
frequency domain, is described by

(9.15)

where H( f ) is the transfer function of the system, SX( f ) is the power spectrum of the
input process X(t), and SY(t) is the power spectrum of the output process Y(t), both
being weakly stationary.

3. If the input process X(t) is Gaussian, then the output process Y(t) is also Gaussian.

4. If the input X(t) is uncorrelated, then the ouput Y(t) will be correlated due to
dispersive behavior of the system.

The issue at hand is to find the H( f ) required to produce the desired power spectrum of
(9.14) using a white noise process of spectral density N0 2 as the input process X(t). Then,
given the SY( f ) and setting the constant K = N02, we may solve (9.15) for H( f ), obtaining

(9.16)

In other words, H( f ) is proportional to the square root of S( f ). (From a practical
perspective, the constant K is determined by truncating the power-delay profile, an issue
deferred to Section 9.14.)

In light of (9.14) and (9.16), we may now say that the H( f ) representing the desired
Jakes FIR filter is given by (ignoring the constant K)

(9.17)

where . Given this formula, we may then use inverse Fourier transformation
to compute the corresponding impulse response of the Jakes FIR filter.

However, before proceeding further, an important aspect of using Jakes model to
simulate a fading channel is to pay particular attention to the following point:

The sampling rate of the input signal applied to the Jakes model and the 
sampled values of the fading process are highly different.

To be specific, the former is a multiple of the symbol rate and the latter is a multiple of the
Doppler bandwidth, . In other words, the sampling rate is much larger than . It
follows therefore that a multiple sampling rate with interpolation must be used in the

P0 1=
 max=

SY f  H f  2
SX f =

H f 
SY f 

K
------------=

H f  1 f
2

– 
1 4–

for 1 f 1 –
0 otherwise




=

f  max=

max max
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510 Chapter 9 Signaling over Fading Channels

simulation; the need for interpolation is to go from a discrete spectrum to its continuous
version.

With this point in mind, a 512-point inverse FFT algorithm is applied to the transfer
function of (9.17) for the following set of specifications: 

maximum Doppler shift, 

sampling frequency, 

We thus obtain the discrete-time version of the truncated impulse response hn of the Jakes
FIR filter plotted in Figure 9.8a.

Having computed hn, we may go on to use the FFT algorithm to compute the
corresponding transfer function H( f ) of the Jakes FIR filter; the result of this computation
is plotted in Figure 9.8b, which has a bathtub-like shape of its own, as expected.

EXAMPLE 2 Illustrative Generation of Fading Process Using the Jakes FIR Filter

To expand the practical utility of the Jakes FIR filter computed in Example 1 to simulate
the fading process, the next thing we do is to pass a complex white noise process through
the filter, with the noise having uncorrelated samples. Figure 9.9a displays the power

max 100 Hz=

fs 16max=

Figure 9.8  Jakes FIR filter. (a) Discrete impulse response. (b) Interpolated power spectral 
density (PSD).
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9.4 Statistical Characterization of Wideband Wireless Channels 511

spectrum of the resulting stochastic process at the filter output. Figure 9.9b shows the
envelope of the output process, plotted on a logarithmic scale. This plot is typical of a
fading correlated signal. 

9.4 Statistical Characterization of Wideband Wireless Channels 

Physical characterization of the multipath environment described in Section 9.3 is
appropriate for narrowband mobile radio transmissions where the signal bandwidth is
small compared with the reciprocal of the spread in propagation path delays. 

However, in real-life situations, we find that the signals radiated in a mobile radio
environment occupy a wide bandwidth, such that statistical characterization of the wireless
channel requires more detailed mathematical considerations, which is the objective of this
section. To this end, we follow the complex notations described in Chapter 2 to simplify
the analysis.

To be specific, we may express the transmitted band-pass signal as follows:

(9.18)

where  is the complex (low-pass) envelope of x(t) and fc is the carrier frequency. Since
the channel is time varying due to multipath effects, the impulse response of the channel is

Figure 9.9 Jakes FIR filter driven by white Gaussian noise. (a) Output power spectrum. (b) Envelope 
of the output process.
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512 Chapter 9 Signaling over Fading Channels

delay dependent and, therefore, a time-varying function. Let the impulse response of the
channel be expressed as

(9.19)

where  is the complex low-pass impulse response of the channel and  is a delay
variable. The complex low-pass impulse response  is called the delay-spread
function of the channel. Correspondingly, the complex low-pass envelope of the channel
output, namely , is defined by the convolution integral

(9.20)

where the scaling factor 12 is the result of using complex notation; see Chapter 2 for
details. To be generic, the  in Section 9.2 has been changed to .

In general, the behavior of a mobile radio channel can be described only in statistical
terms. For analytic purposes and mathematical tractability, the delay-spread function

 is modeled as a zero-mean complex-valued Gaussian process. Then, at any time t
the envelope  is Rayleigh distributed and the channel is therefore referred to as a
Rayleigh fading channel. When, however, the mobile radio environment includes fixed
scatterers, we are no longer justified in using a zero-mean model to describe the delay-
spread function . In such a case, it is more appropriate to use a Rician distribution
to describe the envelope  and the channel is referred to as a Rician fading channel.
The Rayleigh and Rician distributions for a real-valued stochastic process were considered
in Chapter 3. In the discussion presented in this chapter we focus largely, but not
completely, on a Rayleigh fading channel.

Multipath Correlation Function of the Channel

The time-varying transfer function of the channel is defined as the Fourier transform of the
delay-spread function  with respect to the delay variable , as shown by

(9.21)

where f denotes the frequency variable. The time-varying transfer function  may be
viewed as a frequency transmission characteristic of the channel. 

For a mathematically tractable statistical characterization of the channel, we make two
assumptions motivated by physical considerations; hence the practical importance of the
model resulting from these two assumptions.

ASSUMPTION 1  Wide-Sense Stationarity

With interest confined to fast fading in the short term, it is reasonable to assume 
that the complex impulse response  is wide-sense stationary. 

As explained in Chapter 4, a stochastic process is said to be wide-sense (i.e., weakly)
stationary if its mean is time independent and its autocorrelation function is dependent
only on the difference between two time instants at which the process is observed. In what
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9.4 Statistical Characterization of Wideband Wireless Channels 513

follows we use the “wide-sense stationary” terminology because of its common use in the
wireless literature. 

In the context of the discussion presented herein, this first assumption means that

• The expectation of  with respect to time t is dependent only on the delay .
• Insofar as time t is concerned, the expectation of the product 

is dependent only on the time difference .

Because Fourier transformation is a linear operation, it follows that if the complex delay-
spread function  is a zero-mean Gaussian wide-sense stationary process, then the
complex time-varying transfer function  has similar statistics.

ASSUMPTION 2  Uncorrelated Scattering

The channel is said to be an uncorrelated scattering channel, when contributions 
from two or more scatterers with different propagation delays are uncorrelated.

In other words, the second-order expectation with respect to time t satisfies the 
requirement

where  is a Dirac-delta function defined in the delay domain. That is, the
autocorrelation function of  is nonzero only when .

In the literature on statistical characterization of wireless channels, wide-sense
stationarity is abbreviated as WSS and uncorrelated scattering is abbreviated as US. Thus,
when both Assumptions 1 and 2 are satisfied simultaneously, the resulting channel model
is said to be the WSSUS model.

Consider then the correlation function3 of the delay-spread function . Since
 is complex valued, we use the following definition for the correlation function:

 (9.22)

where � is the statistical expectation operator, the asterisk denotes complex conjugation, 1
and 2 are propagation delays of the two paths involved in the calculation, and t1 and t2 are
the times at which the outputs of the two paths are observed. Under the combined WSSUS
channel model, we may reformulate the correlation function in (9.22) as shown by

(9.23)

where t is the difference between the observation times t1 and t2 and (1–2) is the delta
function in the -domain. Thus, using  in place of 1 for mathematical convenience, the
function in the second line of (9.23) is redefined as

(9.24)

The function  is called the multipath correlation profile of the channel. This new
correlation function  provides a statistical measure of the extent to which the
signal is distorted in the time domain as a result of transmission through the channel.
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514 Chapter 9 Signaling over Fading Channels

Spaced-Frequency, Spaced-Time Correlation Function of 
the Channel

Consider next statistical characterization of the channel in terms of the complex time-
varying transfer function . Following a formulation similar to that described in
(9.22), the correlation function of  is defined by

 (9.25)

where f1 and f2 represent two frequencies in the spectrum of the transmitted signal. The
correlation function  provides a statistical measure of the extent to which
the signal is distorted in the frequency-domain by transmission through the channel. From
(9.21), (9.22), and (9.25), it is apparent that the correlation functions  and

 form a two-dimensional Fourier-transform pair, defined as follows:

(9.26)

Invoking wide-sense stationarity in the time domain, we may reformulate (9.25) as

(9.27)

Equation (9.27) suggests that the correlation function  may be measured by
using pairs of spaced tones to carry out cross-correlation measurements on the resulting
channel outputs. Such a measurement presumes stationarity in the time domain. If we also
assume stationarity in the frequency domain, we may go one step further and write

(9.28)

The new correlation function , introduced in the first line of (9.28), is in fact the
Fourier transform of the multipath correlation profile  with respect to the delay-
time variable , as shown by

(9.29)

The new function  is called the spaced-frequency, spaced-time correlation
function of the channel, where the double use of “spaced” accounts for  and .

Scattering Function of the Channel

Finally, we introduce another new function denoted by S( ) that forms a Fourier-
transform pair with the multipath correlation profile  with respect to the variable
t; that is, by definition, we have

(9.30)

for the Fourier transform and

(9.31)

for the inverse Fourier transform. 
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9.4 Statistical Characterization of Wideband Wireless Channels 515

The function S( ) may also be defined in terms of  by applying a form of
double Fourier transformation: 

A Fourier transform with respect to the time variable t and an inverse Fourier 
transform with respect to the frequency variable f. 

That is to say,

(9.32)

Figure 9.10 displays the functional relationships between the three important functions:
, , and S() in terms of the Fourier transform and its inverse.

The function S( ) is called the scattering function of the channel. For a physical
interpretation of it, consider the transmission of a single tone of frequency  relative to
the carrier. The complex envelope of the resulting filter output is

(9.33)

The correlation function of  is given by

(9.34)

where, in the last line, we made use of (9.28). Putting f = 0 in (9.29) and then using
(9.31), we may write

(9.35)

Hence, we may view the integral inside the square brackets in (9.35), namely

Figure 9.10 Functional relationships between the multipath correlation profile , the 
spaced-frequency spaced-time correlation function , and the scattering function S( ).
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t ỹ t t+   j2f t �
˜

H̃* f  t; H̃* f  t t+;  exp=

j2f t r
H̃

0 t; exp=

r
H̃

0 t;  r
h̃
 t;  d

–



=

S  ;  d
–



 j2t exp d
–



=

S  ;  d
–





FΔ t[•]

FΔ t [•]:

F     [•]–1

F  [•]

Fourier transform with respect to delay  

Inverse Fourier transform with respect to frequency increment Δ f 

Inverse Fourier transform with respect to Doppler shift   

Fourier transform with respect to time increment Δ t 

–1FΔ f [•]

–1FΔ f [•]:

~~

Spaced-frequency
Spaced-time

Correlation function
r
H

(Δ f; Δ t)

Multipath
autocorrelation

profile
r
h

(  ;Δ t)

Scattering
function
S (  ;  )τ ν

ν

τ

τ

τ

ν

F  [•]:τ

F     [•]:–1
ν

r
h̃
 ; t 

r
H̃
f t; 

Haykin_ch09_pp3.fm  Page 515  Friday, January 4, 2013  4:58 PM

https://hemanthrajhemu.github.io



516 Chapter 9 Signaling over Fading Channels

as the power spectral density of the channel output relative to the frequency  of the
transmitted tone with the Doppler shift  acting as the frequency variable. Generalizing
this result, we may now make the statement:

The scattering function S(; ) provides a statistical measure of the output 
power of the channel, expressed as a function of the time delay  and the 
Doppler shift .

Power-Delay Profile

We continue statistical characterization of the wireless channel by putting t = 0 in (9.24)
to obtain

(9.36)

The function  describes the intensity (averaged over the fading fluctuations) of the
scattering process at propagation delay  for the WSSUS channel. Accordingly,  is
called the power-delay profile of the channel. In any event, this profile provides an estimate
of the average multipath power expressed as a function of the delay variable .

The power-delay profile may also be defined in terms of the scattering function S()
by averaging it over all potentially possible Doppler shifts. Specifically, setting t = 0 in
(9.31) and then using the first line of (9.36), we obtain

(9.37)

Figure 9.11 shows an example of the power-delay profile that depicts a typical plot of the
power spectral density versus excess delay;4 the excess delay is measured with respect to
the time delay for the shortest echo path. The “threshold level” K included in Figure 9.11
defines the power level below which the receiver fails to operate satisfactorily.

Figure 9.11 Example of a power-delay profile for a mobile radio channel. 
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9.4 Statistical Characterization of Wideband Wireless Channels 517

Central Moments of 

To characterize the power-delay profile of a WSSUS channel in statistical terms, we begin
with the moment of order zero; that is, the integrated power averaged over the delay
variable , as shown by

(9.38)

The average delay, normalized with respect to Pav, is defined in terms of the first-order
moment by the formula

(9.39)

Correspondingly, the second-order central moment, normalized with respect to Pav, is
defined by the root-mean-square (RMS) formula

(9.40)

The new parameter  is called the delay spread, which has acquired a special stature
among the parameters used to characterize the WSSUS channel. 

From Chapter 2 on the representation of signals in a linear environment, we recall that
the duration of a signal in the time domain is inversely related to the bandwidth of the
signal in the frequency domain. Building on this time–frequency relationship, we may
define the coherence bandwidth Bcoherence of a WSSUS channel as follows:

(9.41)

In words:

The coherence bandwidth of the WSSUS channel is that band of frequencies for 
which the frequency response of the channel is strongly correlated. 

This statement is intuitively satisfying.

Doppler Power Spectrum

Consider next the issue of relating Doppler effects to time variations of the channel. In
direct contrast to the power-delay profile, this time we set f = 0, which corresponds to the
transmission of a single tone (of some appropriate frequency) over the channel. Under this
condition, the spaced-frequency, spaced-time correlation function of the channel,
described in (9.29), reduces to . Hence, evaluating the Fourier transform of this
function with respect to the time variable t, we may write

(9.42)

The function  defines the power spectrum of the channel output expressed as a
function of the Doppler shift ; it is therefore called the Doppler power spectrum of the
channel. 
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518 Chapter 9 Signaling over Fading Channels

The Doppler-power spectrum of (9.42) may be interpreted in two insightful ways
(Molisch, 2011):

1. The Doppler spectrum describes the frequency dispersion of a wireless channel,
which results in the occurrence of transmission errors in narrowband mobile
wireless communication systems.

2. The Doppler spectrum provides a measure of temporal variability of the channel,
which, in mathematical terms, is described by the channel’s correlation function

 for .

As such, we may view the Doppler-power spectrum as another important statistical
characterization of WSSUS channels.

The Doppler power spectrum may also be defined in terms of the scattering function by
averaging it over all possible propagation delays, as shown by

(9.43)

Typically, the Doppler shift  assumes positive and negative values with almost equal
likelihood. The mean Doppler shift is therefore effectively zero. The square root of the
second moment of the Doppler spectrum is thus defined by

(9.44)

The parameter  provides a measure of the width of the Doppler spectrum; therefore, it is
called the Doppler spread of the channel. 

Another useful parameter that is often used in radio propagation measurements is the
fade rate of the channel. For a Rayleigh fading channel, the average fade rate is related to
the Doppler spread  by the empirical rule:

 crossings per second (9.45)

As the name implies, the fade rate provides a measure of the rapidity of the channel fading
phenomenon.

Some typical values encountered in a mobile radio environment are as follows:

• the delay spread  amounts to about 20 s;
• the Doppler spread  due to the motion of a vehicle may typically occupy the range

40–100 Hz, but sometimes may well exceed 100 Hz.

One other parameter directly related to the Doppler spread is the coherence time of the
channel. Here again, as with coherence bandwidth discussed previously, we may invoke
the inverse time–frequency relationship to say that the coherence time of a multipath
wireless channel is inversely proportional to the Doppler spread, as shown by

(9.46)
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9.4 Statistical Characterization of Wideband Wireless Channels 519

where  is the maximum Doppler shift due to motion of the mobile unit. In words:

The coherence time of the channel is that duration for which the time response 
of the channel is strongly correlated.

Here again, this statement is intuitively satisfying.

Classification of Multipath Channels

The particular form of fading experienced by a multipath channel depends on whether the
channel characterization is viewed in the frequency domain or the time domain:

1. When the channel is viewed in the frequency domain, the parameter of concern is
the channel’s coherence bandwidth Bcoherence, which is a measure of the
transmission bandwidth for which signal distortion across the channel becomes
noticeable. A multipath channel is said to be frequency selective if the coherence
bandwidth of the channel is small compared with the bandwidth of the transmitted
signal. In such a situation, the channel has a filtering effect, in that two sinusoidal
components with a frequency separation greater than the channel’s coherence
bandwidth are treated differently. If, however, the coherence bandwidth of the
channel is large compared with the transmitted signal bandwidth, the fading is said
to be frequency nonselective, or frequency flat.

2. When the channel is viewed in the time domain, the parameter of concern is the
coherence time coherence, which provides a measure of the transmitted signal
duration for which distortion across the channel becomes noticeable. The fading is
said to be time selective if the coherence time of the channel is small compared with
the duration of the received signal (i.e., the time for which the signal is in flight). For

max

Figure 9.12
Illustrating the four classes of multipath channels: 
c = coherence time, Bc = coherence bandwidth. 0
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520 Chapter 9 Signaling over Fading Channels

digital transmission, the received signal’s duration is taken as the symbol duration
plus the channel’s delay spread. If, however, the channel’s coherence time is large
compared with the received signal duration, then the fading is said to be time
nonselective, or time flat, in the sense that the channel appears to the transmitted
signal as time invariant.

In light of this discussion, we may classify multipath channels as follows:

• Flat-flat channel, which is flat in both frequency and time.
• Frequency-flat channel, which is flat in frequency only.
• Time-flat channel, which is flat in time only.
• Completely non-flat channel, which is flat neither in frequency nor in time; such a

channel is also referred to as a doubly spread channel.

The classification of multipath channels, based on this approach, is shown in Figure 9.12.
The forbidden area, shown shaded in this figure, follows from the inverse relationship that
exists between bandwidth and time duration.

9.5 FIR Modeling of Doubly Spread Channels

In Section 9.4, statistical analysis of the doubly spread channel was carried out by focusing
on two complex low-pass entities, namely the impulse response  and the correspond-
ing transfer function . Therein, mathematical simplification was accomplished by
disposing of the midband frequency fc of the actual band-pass character of the doubly
spread channel. Despite this simplification, the analytic approach used in Section 9.4 is
highly demanding in mathematical terms. In this section, we will take an “approximate”
approach based on the use of a FIR filter to model the doubly spread channel.5 From an
engineering perspective. this new approach has a great deal of practical merit. 

To begin, we use the convolution integral to describe the input–output relationship of
the system, as shown in (9.20), reproduced here for convenience of presentation

(9.47)

where  is the complex low-pass input signal applied to the channel and  is the
resulting complex low-pass output signal. Although this integral can be formulated in
another equivalent way, the choice made in (9.47) befits modeling of a time-varying FIR
system, as we will see momentarily. Speaking of the input signal , we assume that its
Fourier transform satisfies the condition

(9.48)

where 2W denotes the original input band-pass signal’s bandwidth centered around the
midband frequency fc. With FIR filtering in mind, it is logical to expand the delayed input
signal  using the sampling theorem, discussed in Chapter 6. Specifically, we write

(9.49)
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ỹ t  1
2
--- h̃  t;  x̃ t –  d

–



=

x̃ t  ỹ t 
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9.5 FIR Modeling of Doubly Spread Channels 521

where Ts is the sampling period of the FIR filter chosen in accordance with the sampling
theorem as follows:

(9.50)

The sinc function in (9.49) is defined by

(9.51)

From the standpoint of the sampling theorem we could set 1 Ts = 2W, but the choice made
in (9.50) gives us more practical flexibility.

In (9.49) it is important to note that we have done the following:

• Dependence on the coordinate functions under the summation has been put on the
delay variable  in the sinc function.

• Dependence on the time-varying FIR coefficients has been put on time t.

This separation of variables is the key to the FIR modeling of a linear time-varying
system. Note also that the sinc functions under the summation in (9.49) are orthogonal but
not normalized.

Thus, substituting (9.49) into (9.47) and interchanging the order of integration and
summation, which is permitted as we are dealing with a linear system, we get

(9.52)

To simplify matters, we now introduce the complex tap-coefficients6 , defined in
terms of the complex impulse response as follows:

(9.53)

Accordingly, we may rewrite (9.52) in the much simplified summation form:

(9.54)

Examining (9.54) for insight, we may make our first observation:

The uniformly sampled functions  are generated as tap-inputs by 
passing the complex low-pass input signal  through a TDL filter whose taps 
are spaced T seconds apart.

Turning next to (9.53) for insight, refer to Figure 9.13, where this equation is sketched for
three different settings of the function ; the area shaded in the figure
refers to the complex impulse response  that is assumed to be causal and occupying
a finite duration. In light of the three different sketches shown in Figure 9.13, we may
make our second observation.

1
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522 Chapter 9 Signaling over Fading Channels

Assuming that the integral in (9.53) is dominated by the mainlobe of the sinc 
function, the complex time-varying tap-coefficient  is essentially zero for 
negative values of discrete time n and all positive values of n greater than .

In accordance with these two observations, we may approximate (9.54) as follows:

(9.55)

where K is the number of taps.
Equation (9.55) defines a complex FIR model for the representation of a complex low-pass

time-varying system characterized by the complex impulse response . Figure 9.14
depicts a block diagram representation of this model, based on (9.55).

Figure 9.13 Illustrating the way in which location of the sinc 
weighting function shows up for varying n.
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9.5 FIR Modeling of Doubly Spread Channels 523

Some Practical Matters

To model the doubly spread channel by means of a FIR filter in accordance with (9.55),
we need to know the sampling rate 1Ts and the number of taps K in this equation. To
satisfy these two practical requirements, we offer the following empirical points:

1. The sampling rate of the FIR filter, 1Ts, is much higher than the maximum Doppler
bandwidth of the channel, max; typically, we find that 1Ts is eight to sixteen times

max. Hence, knowing max, we may determine a desirable value of the sampling
rate 1Ts.

2. The number of taps K in (9.55) may be determined by truncating the power-delay
profile  of the channel. Specifically, given a measurement of this profile, a
suitable value of K is determined by choosing a threshold level below which the
receiver fails to operate satisfactorily, as illustrated in Figure 9.11.

Generation of the Tap-Coefficients

To generate the tap-coefficients , we may use the scheme shown in Figure 9.15 that
involves the following (Jeruchim et al., 2000):

1. A complex white Gaussian process of zero mean and unit variance is used as the
input.

2. A complex low-pass filter of transfer function  is chosen in such a way that it
produces the desired Doppler power spectrum  where we have used f in place
of the Doppler shift  for convenience of presentation. In other words, we may set

Figure 9.14 Complex FIR model of a complex low-pass time-varying channel.
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524 Chapter 9 Signaling over Fading Channels

(9.56)

where, in the second line,  denotes the power spectral density of the white
noise process, which is equal to unity by assumption.

3. The filter is designed in such a way that its output  has a normalized power of
unity.

4. The static gain, denoted by , accounts for different variances of the different
tap-coefficients.

EXAMPLE 3 Rayleigh Processes

For complex FIR modeling of a time-varying Rayleigh fading channel, we may use zero-
mean complex Gaussian processes to represent the time-varying tap-coefficients ,
which, in turn, means that the complex impulse response of the channel  is also a
zero-mean Gaussian process in the variable t.

Moreover, under the assumption of a WSSUS channel, the tap-coefficients  for
varying n will be uncorrelated. The power spectral density of each tap-coefficient is
specified by the Doppler spectrum. In particular, the variance  of the nth weight
function is approximately given by

(9.57)

where Ts is the sampling period of the FIR and  is a discrete version of the power-
delay profile, .

EXAMPLE 4 Rician–Jakes Doppler Spectrum Model

The Jakes model, discussed in Example 1, is well suited for describing the Doppler
spectrum for a dense-scattering environment, exemplified by an urban area. However, in a
rural environment, there is a high likelihood for the presence of one strong “direct line-of-
sight” path, for which the FIR-based Rician model is an appropriate candidate. In such an
environment, we may use the Rician–Jakes Doppler spectrum that has the following form
(Tranter et al., 2004): 

(9.58)

where  is the maximum magnitude of the Doppler shift. This partially empirical for-
mula, plotted in Figure 9.16, consists of two components: the FIR Jakes filter of Example 1,
and two delta functions at  representing a direct-line-of sight signal received.

Typically, the sequence defined by  decreases with n in an approximate
exponential manner, eventually reaching a neglibly small value at some time . This
exponential approximation of the power-delay profile has been validated experimentally
by many measurements; see Note 4. In any event, the number of taps in the FIR filter, K, is
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9.6 Comparison of Modulation Schemes: Effects of Flat Fading 525

approximately defined by the ratio . The point made here on the number of taps
K substantiates what has been made previously on Jakes model in Example 1 and in point
2 under Some Practical Matters in this section.

9.6 Comparison of Modulation Schemes: Effects of Flat Fading 

We bring this first part of the chapter to an end by presenting the effects of flat fading on
the behavior of different modulation schemes for wireless communications. 

In Chapter 7 we studied the subject of signaling over AWGN channels using different
modulation schemes and evaluated their performance under two different receiver condi-
tions: coherence and noncoherence. For the purpose of comparison, we have reproduced the
BER for a selected number of those modulation schemes in AWGN in Table 9.1.

Figure 9.16
Illustrating the Rician–Jakes 
Doppler spectrum of (9.58).

–0.7 0 0.7
f

Sd( f )

–νmax νmax νmaxνmax

Tmax Ts

Table 9.1 Formulas for the BER of coherent and noncoherent digital receivers

BER

Signaling scheme AWGN channel Flat Rayleigh fading channel

(a) Binary PSK, QPSK, MSK
     using coherent detection

(b) Binary FSK
      using coherent detection

(c) Binary DPSK

(d) Binary FSK
      using noncoherent detection

Eb: transmitted energy per bit; N0 2: power spectral density of channel noise;

0: mean value of the received energy per bit-to-noise spectral density ratio.
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526 Chapter 9 Signaling over Fading Channels

Table 9.1 also includes the exact formulas for the BER for a flat Rayleigh fading
channel, where the parameter

(9.59)

is the mean value of the received signal energy per bit-to-noise spectral density ratio. In
(9.59), the expectation �[2] is the mean value of the Rayleigh-distributed random
variable  characterizing the channel. The derivations of the fading-channel formulas
listed in the last column of Table 9.1 are addressed in Problems 9.1 and 9.2.

Comparing the formulas for a flat Rayleigh fading channel with the formulas for their
AWGN (i.e., nonfading) channel counterparts, we find that the Rayleigh fading process
results in a severe degradation in the noise performance of a wireless communication
receiver with the degradation measured in terms of decibels of additional mean SNR
spectral density ratio. In particular, the asymptotic decrease in the BER with  follows an
inverse law. This form of asymptotic behavior is dramatically different from the case of a
nonfading channel, for which the asymptotic decrease in the BER with  follows an
exponential law.

In graphical terms, Figure 9.17 plots the formulas under part a of Table 9.1 compared
with the BERs of binary PSK over the AWGN and Rayleigh fading channels. The figure
also includes corresponding plots for the Rician fading channel with different values of the
Rice factor K, discussed in Chapter 4. We see that as K increases from zero to infinity, the
behavior of the receiver varies all the way from the Rayleigh channel to the AWGN

Figure 9.17 Comparison of performance of coherently detected binary PSK over 
different fading channels.
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9.7 Diversity Techniques 527

channel. The results plotted in Figure 9.17 for the Rician channel were obtained using
simulations (Haykin and Moher, 2005). From Figure 9.17 we see that, as matters stand, we
have a serious problem caused by channel fading. For example, at an SNR of 20 dB and
the presence of Rayleigh fading, the use of binary PSK results in a BER of about 310–2,
which is not good enough for the transmission of speech or digital data over the wireless
channel.

9.7 Diversity Techniques

Up to now, we have emphasized the multipath fading phenomenon as an inherent
characteristic of a wireless channel, which indeed it is. Given this physical reality, how,
then, do we make the communication process across the wireless channel into a reliable
operation? The answer to this fundamental question lies in the use of diversity, which may
be viewed as a form of redundancy in a spatial context. In particular, if several replicas of
the information-bearing signal can be transmitted simultaneously over independently
fading channels, then there is a good likelihood that at least one of the received signals will
not be severely degraded by channel fading. There are several methods for making such a
provision. In the context of the material covered in this book, we identify three approaches
to diversity:

1. Frequency diversity, in which the information-bearing signal is transmitted using
several carriers that are spaced sufficiently apart from each other to provide
independently fading versions of the signal. This may be accomplished by choosing
a frequency spacing equal to or larger than the coherence bandwidth of the channel.

2. Time diversity, in which the same information-bearing signal is transmitted in
different time slots, with the interval between successive time slots being equal to or
greater than the coherence time of the channel. We can still get some diversity if the
interval is less than the coherence time of the channel, but at the expense of
degraded performance. In any event, time diversity may be likened to the use of a
repetition code for error-control coding.

3. Space diversity, in which multiple transmit or receive antennas, or both, are used
with the spacing between adjacent antennas being chosen so as to ensure the
independence of possible fading events occurring in the channel. 

Among these three kinds of diversity, space diversity is the subject of interest in the
second part of this chapter. Depending on which end of the wireless link is equipped with
multiple antennas, we may identify three different forms of space diversity:

1. Receive diversity, which involves the use of a single transmit antenna and multiple
receive antennas. 

2. Transmit diversity, which involves the use of multiple transmit antennas and a single
receive antenna.

3. Diversity on both transmit and receive, which combines the use of multiple antennas
at both the transmitter and receiver. 

Receive diversity is the oldest one of the three, with the other two being of more recent
origin. In what follows, we will study these three different forms of diversity in this order.
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528 Chapter 9 Signaling over Fading Channels

9.8 “Space Diversity-on-Receive” Systems

In “space diversity on receive,” multiple receiving antennas are used with the spacing
between adjacent antennas being chosen so that their respective outputs are essentially
independent of each other. This requirement may be satisfied by spacing the adjacent
receiving antennas by as much as 10 to 20 radio wavelengths or less apart from each other.
Typically, an elemental spacing of several radio wavelengths is deemed to be adequate for
space diversity on receive. The much larger spacing is needed for elevated base stations,
for which the angle spread of the incoming radio waves is small; note that the spatial
coherence distance is inversely proportional to the angle spread. Through the use of
diversity on receive as described here, we create a corresponding set of fading channels
that are essentially independent. The issue then becomes that of combining the outputs of
these statistically independent fading channels in accordance with a criterion that will
provide improved receiver performance. In this section, we describe three different
diversity-combining systems that do share a common feature: they all involve the use of
linear receivers; hence the relative ease of their mathematical tractability.

Selection Combining

The block diagram of Figure 9.18 depicts a diversity-combining structure that consists of
two functional blocks: Nr linear receivers and a logic circuit. This diversity system is said
to be of a selection combining kind, in that given the Nr receiver outputs produced by a
common transmitted signal, the logic circuit selects the particular receiver output with the
largest SNR as the received signal. In conceptual terms, selection combining is the
simplest form of space-diversity-on-receive system.

To describe the benefit of selection combining in statistical terms, we assume that the
wireless communication channel is described by a frequency-flat, slowly fading Rayleigh
channel. The implications of this assumption are threefold:

1. The frequency-flat assumption means that all the frequency components constituting
the transmitted signal experience the same random attenuation and phase shift.

2. The slow-fading assumption means that fading remains essentially unchanged
during the transmission of each symbol.

3. The fading phenomenon is described by the Rayleigh distribution.

Let  denote the complex envelope of the modulated signal transmitted during the
symbol interval 0  t  T. Then, in light of the assumed channel, the complex envelope of
the received signal of the kth diversity branch is defined by

(9.60)

where, for the kth diversity branch, the fading is represented by the multiplicative term
 and the additive channel noise is denoted by . With the fading assumed

to be slowly varying relative to the symbol duration T, we should be able to estimate and then
remove the unknown phase shift k at each diversity branch with sufficient accuracy, in
which case (9.60) simplifies to

(9.61)

s̃ t 

x̃k t  k jk s̃ t exp w̃k t += 0 t T 
k 1 2  Nr  =

k jk exp w̃k t 

x̃k t  ks̃ t  w̃k t  0 t T 
k 1 2  Nr  =

+
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9.8 “Space Diversity-on-Receive” Systems 529

The signal component of  is  and the noise component is . The average
SNR at the output of the kth receiver is therefore

Ordinarily, the mean-square value of  is the same for all k. Accordingly, we may
express the (SNR)k as

 (9.62)

where E is the symbol energy and N02 is the noise spectral density. For binary data, E
equals the transmitted signal energy per bit Eb.

Let k denote the instantaneous SNR measured at the output of the kth receiver during
the transmission of a given symbol. Then, replacing the mean-square value �[|k|

2] by the
instantaneous value |k|

2 in (9.62), we may write

(9.63)

Under the assumption that the random amplitude k is Rayleigh distributed, the squared
amplitude  will be exponentially distributed7 (i.e., chi-squared with two degrees of
freedom, discussed in Appendix A). If we further assume that the average SNR over the
short-term fading is the same, namely av, for all the Nr diversity branches, then we may
express the probability density functions of the random variables  pertaining to the
individual branches as follows:

(9.64)

Figure 9.18 Block diagram of selection combiner, using Nr receive antennas. 
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530 Chapter 9 Signaling over Fading Channels

For some SNR , the associated cumulative distributions of the individual branches are
described by

(9.65)

for k = 1, 2,, Nr. Since, by design, the Nr diversity branches are essentially statistically
independent, the probability that all the diversity branches have an SNR less than the
threshold  is the product of the individual probabilities that k <  for all k; thus, using
(9.64) in (9.65), we write

(9.66)

for k = 1, 2, , Nr; note that the probability in (9.66) decreases with increasing Nr.
The cumulative distribution function of (9.66) is the same as the cumulative

distribution function of the random variable  described by the sample value

(9.67)

which is less than the threshold  if, and only if, the individual SNRs  are all
less than . Indeed, the cumulative distribution function of the selection combiner (i.e., the
probability that all of the Nr diversity branches have an SNR less than ) is given by

(9.68)

By definition, the probability density function  is the derivative of the cumulative
distribution function  with respect to the argument sc. Hence, differentiating
(9.68) with respect to sc yields

(9.69)

For convenience of graphical presentation, we use the scaled probability density function
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9.8 “Space Diversity-on-Receive” Systems 531

where the sample value x of the normalized variable X is defined by

Figure 9.19 plots fX(x) versus x for varying number of receive-diversity branches Nr under
the assumption that the short-term SNRs for all the Nr branches share the common value
av. From this figure we make two observations:

1. As the number of diversity branches Nr is increased, the probability density function
fX(x) of the normalized random variable  progressively moves to the
right.

2. The probability density function fX(x) becomes more and more symmetrical and,
therefore, Gaussian as Nr is increased.

Stated in another way, a frequency-flat, slowly fading Rayleigh channel is modified through
the use of selection combining into a Gaussian channel provided that the number of diversity
channels Nr is sufficiently large. Realizing that a Gaussian channel is a digital communica-
tion theorist’s dream, we now see the practical benefit of using selection combining.

According to the theory described herein, the selection-combining procedure requires
that we monitor the receiver outputs in a continuous manner and, at each instant of time,
select the receiver with the strongest signal (i.e., the largest instantaneous SNR). From a
practical perspective, such a selective procedure is rather cumbersome. We may overcome

Figure 9.19 Normalized probability density function  
for a varying number Nr of receive antennas. 
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532 Chapter 9 Signaling over Fading Channels

this practical difficulty by adopting a scanning version of the selection-combining
procedure:

• Start the procedure by selecting the receiver with the strongest output signal.
• Maintain using the output of this particular receiver as the combiner’s output so long

as its instantaneous SNR does not drop below a prescribed threshold.
• As soon as the instantaneous SNR of the combiner falls below the threshold, select a

new receiver that offers the strongest output signal and continue the procedure.

This technique has a performance very similar to the nonscanning version of selective
diversity.

EXAMPLE 5 Outage Probability of Selection Combiner

The outage probability of a diversity combiner is defined as the percentage of time the
instantaneous output SNR of the combiner is below some prescribed level for a specified
number of branches. Using the cumulative distribution function of (9.68), Figure 9.20
plots the outage curves for the selection combiner with Nr as the running parameter. The
horizontal axis of the figure represents the instantaneous output SNR of the combiner
relative to 0 dB (i.e., the 50-percentile point for Nr = 1) and the vertical axis represents the
outage probability, expressed as a percentage. From the figure we observe the following: 

The fading depth introduced through the use of space diversity on receive 
diminishes rapidly with the increase in the number of diversity branches.       

Figure 9.20
Outage probability for 
selector combining for a 
varying number Nr of 
receive antennas. 
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9.8 “Space Diversity-on-Receive” Systems 533

Maximal-Ratio Combining

The selection-combining technique just described is relatively straightforward to
implement. However, from a performance point of view, it is not optimum, in that it
ignores the information available from all the diversity branches except for the particular
branch that produces the largest instantaneous power of its own demodulated signal.

This limitation of the selection combiner is mitigated by the maximal-ratio combiner,8

the composition of which is described by the block diagram of Figure 9.21 that consists of
Nr linear receivers followed by a linear combiner. Using the complex envelope of the
received signal at the kth diversity branch given in (9.60), the corresponding complex
envelope of the linear combiner output is defined by

(9.70)

where the ak are complex weighting parameters that characterize the linear combiner.
These parameters are changed from instant to instant in accordance with signal variations
in the Nr diversity branches over the short-term fading process. The requirement is to
design the linear combiner so as to maximize the output SNR of the combiner at each
instant of time. From (9.70), we note the following two points:

1. The complex envelope of the output signal equals the first expression

.

2. The complex envelope of the output noise equals the second expression .

Figure 9.21 Block diagram of maximal-ratio combiner using Nr receive antennas. 
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534 Chapter 9 Signaling over Fading Channels

Assuming that the  are mutually independent for k = 1, 2, , Nr, the output SNR of
the linear combiner is therefore given by

(9.71)

where EN0 is the symbol energy-to-noise spectral density ratio.
Let c denote the instantaneous output SNR of the linear combiner. Then, using the two

terms

  and  

as the instantaneous values of the expectations in the numerator and denominator of
(9.71), respectively, we may write

(9.72)

The requirement is to maximize c with respect to the ak. This maximization may be
carried out by following the standard differentiation procedure, recognizing that the
weighting parameters ak are complex. However, we choose to follow a simpler procedure
based on the Schwarz inequality, which was discussed in Chapter 7.
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9.8 “Space Diversity-on-Receive” Systems 535

Let ak and bk denote any two complex numbers for k = 1, 2, , Nr. According to the
Schwarz inequality for complex parameters, we have

(9.73)

which holds with equality for , where c is some arbitrary complex constant and
the asterisk denotes complex conjugation.

Thus, applying the Schwarz inequality to the instantaneous output SNR of (9.72), with
ak left intact and bk set equal to , we obtain

Canceling common terms in the numerator and denominator, we readily obtain

(9.74)

Equation (9.74) proves that, in general,  cannot exceed , where  is as defined in
(9.63). The equality in (9.74) holds for

   (9.75)

where c is some arbitrary complex constant. 
Equation (9.75) defines the complex weighting parameters of the maximal-ratio

combiner. Based on this equation, we may state that the optimal weighting factor ak for the
kth diversity branch has a magnitude proportional to the signal amplitude k and a phase
that cancels the signal phase k to within some value that is identical for all the Nr diversity
branches. The phase alignment just described has an important implication: it permits the
fully coherent addition of the Nr receiver outputs by the linear combiner.

Equation (9.74) with the equality sign defines the instantaneous output SNR of the
maximal-ratio combiner, which is written as

(9.76)

According to (9.62), (EN0)  is the instantaneous output SNR of the kth diversity
branch. Hence, the maximal-ratio combiner produces an instantaneous output SNR that is
the sum of the instantaneous SNRs of the individual branches; that is,

(9.77)
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536 Chapter 9 Signaling over Fading Channels

The term “maximal-ratio combiner” has been coined to describe the combiner of Figure
9.21 that produces the optimum result given in (9.77). Indeed, we deduce from this result
that the instantaneous output SNR of the maximal-ratio combiner can be large even when
the SNRs of the individual branches are small. Since the instantaneous SNR produced by
the selection combiner is simply the largest among the Nr terms of (9.77), it follows that:

The selection combiner is clearly inferior in performance to the maximal-ratio 
combiner.

The maximal SNR mrc is the sample value of a random variable denoted by . According to
(9.76),  is equal to the sum of Nr exponentially distributed random variables for a
frequency-flat, slowly fading Rayleigh channel. From Appendix A, the probability density
function of such a sum is known to be chi-square with 2Nr degrees of freedom; that is,

(9.78)

Note that for Nr = 1, (9.69) and (9.78) assume the same value, which is to be expected.
Figure 9.22 plots the scaled probability density function, , versus

the normalized variable  for varying Nr. Based on this figure, we may make

Figure 9.22 Normalized probability density function  for a 
varying number of Nr receive antennas. 
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9.8 “Space Diversity-on-Receive” Systems 537

observations similar to those for the selection combiner, except for the fact that for any Nr
we find that the scaled probability density function for the maximal-ratio combiner is
radically different from its counterpart for the selection combiner.

EXAMPLE 6 Outage Probability for Maximal-Ratio Combiner

The cumulative distribution function for the maximal-ratio combiner is defined by

(9.79)

where the probability density function  is itself defined by (9.78). Using (9.79),
Figure 9.23 plots the outage probability for the maximal-ratio combiner with Nr as a running
parameter. Comparing this figure with that of Figure 9.20 for selection combining, we see
that the outage-probability curves for these two diversity techniques are superficially similar.
The diversity gain, defined as the EN0 saving at a given BER, provides a measure of the
effectiveness of a diversity technique on an outage-probability basis. 

Figure 9.23 Outage probability of maximal-ratio combiner for a varying number Nr of 
receiver antennas. 
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538 Chapter 9 Signaling over Fading Channels

Equal-Gain Combining

In a theoretical context, the maximal-ratio combiner is the optimum among linear diversity
combining techniques, optimum in the sense that it produces the largest possible value of
instantaneous output SNR. However, in practical terms, there are three important issues to
keep in mind:9

1. Significant instrumentation is needed to adjust the complex weighting parameters of
the maximal-ratio combiner to their exact values, in accordance with (9.75).

2. The additional improvement in output SNR gained by the maximal-ratio combiner
over the selection combiner is not that large, and it is quite likely that the additional
improvement in receiver performance is lost in not being able to achieve the exact
setting of the maximal-ratio combiner.

3. So long as a linear combiner uses the diversity branch with the strongest signal, then
other details of the combiner may result in a minor improvement in overall receiver
performance.

Issue 3 points to formulation of the so-called equal-gain combiner, in which all the
complex weighting parameters ak have their phase angles set opposite to those of their
respective multipath branches in accordance with (9.75). But, unlike the ak in the
maximal-ratio combiner, their magnitudes are set equal to some constant value, unity for
convenience of use.

9.9 “Space Diversity-on-Transmit” Systems

In the wireless communications literature, space diversity-on-receive techniques are
commonly referred to as orthogonal space–time block codes (Tarokh et al., 1999). This
terminology is justified on the following grounds:

1. The transmitted symbols form an orthogonal set.

2. The transmission of incoming data streams is carried out on a block-by-block basis.

3. Space and time constitute the coordinates of each transmitted block of symbols.

In a generic sense, Figure 9.24 presents the baseband diagram of a space–time block
encoder, which consists of two functional units: mapper and block encoder. The mapper
takes the incoming binary data stream {bk}, where bk = 1, and generates a new sequence
of blocks with each block made up of multiple symbols that are complex. For example, the
mapper may be in the form of an M-ary PSK or M-ary QAM message constellation, which
are illustrated for M = 16 in the signal-space diagrams of Figure 9.25. All the symbols in a
particular column of the transmission matrix are pulse-shaped (in accordance with the

Figure 9.24 Block diagram of orthogonal space–time block encoder. 
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9.9 “Space Diversity-on-Transmit” Systems 539

criteria described in Chapter 8) and then modulated into a form suitable for simultaneous
transmission over the channel by the transmit antennas. The pulse shaper and modulator
are not shown in Figure 9.24 as the basic issue of interest is that of baseband data
transmission with emphasis on the formulation of space–time block codes. The block
encoder converts each block of complex symbols produced by the mapper into an l-by-Nt
transmission matrix S, where l and Nt are respectively the temporal dimension and spatial
dimension of the transmission matrix. The individual elements of the transmission
matrix S are made up of linear combinations of  and , where the  are complex
symbols and the  are their complex conjugates. 

EXAMPLE 7 Quadriphase Shift Keying 

As a simple example, consider the map portrayed by the QPSK, M = 4. This map is
described in Table 9.2, where E is the transmitted signal energy per symbol.

The input dibits (pairs of binary bits) are Gray encoded, wherein only one bit is flipped
as we move from one symbol to the next. (Gray encoding was discussed in Section 7.6
under “Quadriphase Shift Keying”.) The mapped signal points lie on a circle of radius 
centered at the origin of the signal-space diagram. 

Figure 9.25 (a) Signal constellation of 16-PSK. (b) Signal constellation of 16-QAM. 
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540 Chapter 9 Signaling over Fading Channels

Alamouti Code

Example 6 is illustrative of the Alamouti code, which is one of the first space–time block
codes involving the use of two transmit antennas and one signal receive antenna (Alamouti,
1998). Figure 9.26 shows a baseband block diagram of this highly popular spatial code. 

Let  and  denote the complex symbols produced by the code’s mapper, which are
to be transmitted over the multipath wireless channel by two transmit antennas. Signal
transmission over the channel proceeds as follows:

1. At some arbitrary time t, antenna 1 transmits  and simultaneously antenna 2
transmits .

2. At time t + T, where T is the symbol duration, signal transmission is switched to 
transmitted by antenna 1 and simultaneously  is transmitted by antenna 2.

The resulting two-by-two space–time block code is written in matrix form as follows:

(9.80)
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Figure 9.26 Block diagram of 
the transceiver (transmitter 
and receiver) for the Alamouti 
code. Note that t > t to allow 
for propagation delay. 
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9.9 “Space Diversity-on-Transmit” Systems 541

This transmission matrix is a complex-orthogonal matrix (quaternion) in that it satisfies
the condition for orthogonality in both the spatial and temporal senses. To demonstrate
this important property of the Alamouti, let 

   (9.81)

denote the Hermitian transpose of S, which involves both transposition and complex
conjugation. To demonstrate orthogonality in the spatial sense, we multiply the code
matrix S by its Hermitian transpose  on the right, obtaining

(9.82)

Since the right-hand side of (9.81) is real valued, it follows that the alternative matrix
product , viewed in the temporal sense, yields exactly the same result. That is,

(9.83)

where I is the two-by-two identity matrix. 
In light of (9.80) and (9.83), we may now summarize three important properties of the

Alamouti code:

 PROPERTY 1 Unitarity (Complex Orthogonality)

The Alamouti code is an orthogonal space–time block code, in that its transmission matrix
is a unitary matrix with the sum term  being merely a scaling factor.

As a consequence of this property, the Alamouti code achieves full diversity.

PROPERTY 2 Full-Rate Complex Code

The Alamouti code (with two transmit antennas) is the only complex space–time block
code with a code rate of unity in existence. 

Hence, for any signal constellation, full diversity of the code is achieved at the full
transmission rate.
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542 Chapter 9 Signaling over Fading Channels

PROPERTY 3 Linearity

The Alamouti code is linear in the transmitted symbols. 

We may therefore expand the transmission matrix S of the code as a linear combination of
the transmitted symbols and their complex conjugates, as shown by

(9.84)

where the four constituent matrices are themselves defined as follows:

In words, the Alamouti code is the only two-dimensional space–time code, the
transmission matrix of which can be decomposed into the form described in (9.84).

Receiver Considerations of the Alamouti Code
The discussion presented thus far has focused on the Alamouti code viewed from the
transmitter’s perspective. We turn next to the design of the receiver for decoding the code.

To this end, we assume that the channel is frequency-flat and slowly time varying, such

that the complex multiplicative distribution introduced by the channel at time t is essentially

the same as that at time t + T, where T is the symbol duration. As before, the multiplicative

distortion is denoted by  where we now have k = 1, 2, as indicated in Figure 9.25.

Thus, with the symbols  and  transmitted simultaneously at time t, the complex

received signal at some time , allowing for propagation delay, is described by

(9.85)

where  is the complex channel noise at time . Next, with the symbols  and 
transmitted simultaneously at time t + T, the corresponding complex signal received at
time  is

(9.86)

where  is the second complex channel noise at time . To be more precise, the
noise terms  and  are circularly-symmetric complex-valued uncorrelated Gaussian
random variables of zero mean and equal variance.

In the course of time from  to , the channel estimator in the receiver has

sufficient time to produce estimates of the multiplicative distortion represented by 
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9.9 “Space Diversity-on-Transmit” Systems 543

for k = 1, 2. Hereafter, we assume that these two estimates are accurate enough for them to

be treated as essentially exact; in other words, the receiver has knowledge of both 

and . Accordingly, we may formulate the combination of two variables,  in (9.85)

and the complex conjugate of  in (9.86), in matrix form as follows:

(9.87)

The nice thing about this equation is that the original complex signals s1 and s2 appear as
the vector of two unknowns. It is with this goal in mind that  and  were used for the
elements of the two-by-one received signal vector , in the manner shown on the right-
hand side of (9.87).

According to (9.87), the channel matrix of the transmit diversity in Figure 9.25 is
defined by

(9.88)

In a manner similar to the signal-transmission matrix , we find that the channel matrix H
is also a unitary matrix, as shown by

(9.89)

where, as before, I is the identity matrix and the sum term  is merely a scaling
factor. 

Using the definition of (9.88) for the channel matrix, we may rewrite (9.87) in the
compact matrix form

(9.90)
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544 Chapter 9 Signaling over Fading Channels

is the additive complex channel noise vector. Note that the column vector  in (9.91) is the
same as the first row vector in the matrix  of (9.80).

We have now reached a point where we have to address the fundamental issue in
designing the receiver:

How do we decode the Alamouti code, given the received signal vector ?

To this end, we introduce a new complex two-by-one vector , defined as the matrix
product of the received signal vector  and the Hermition transpose of the channel matrix
H normalized with respect to the reciprocal sum term ; that is,

(9.93)

Substituting (9.90) into (9.93) and then making use of the unitarity property of the channel
matrix described in (9.89), we obtain the mathematical basis for decoding of the Alamouti
code:

(9.94)

where  is a modified form of the complex channel noise , as shown by

(9.95)

Substituting (9.88) and (9.92) into (9.95), the expanded form of the complex noise vector
 is defined as follows:

(9.96)

Hence, we may go on to simply write

(9.97)

Examination of (9.97) leads us to make the following statement insofar as the receiver is
concerned:

The space–time channel is decoupled into a pair of scalar channels that are 
statistically independent of each other:

1. The complex symbol  at the output of the kth space–time channel is identical to
the complex symbol transmitted by the kth antenna for k = 1, 2; the decoupling
shown clearly in (9.97) is attributed to complex orthogonality of the Alamouti code.

2. Assuming that the original channel noise  is white Gaussian, then this
statistical characterization is maintained in the modified noise  appearing at
the output of the kth space–time channel for k = 1, 2; this maintenance is
attributed to the processing performed in the receiver.
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ṽ 1
1

2 2
2+

------------------- 
 H†w̃=

ṽ
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9.9 “Space Diversity-on-Transmit” Systems 545

This twofold statement hinges on the premise that the receiver has knowledge of the
channel matrix H.

Moreover, with two transmit antennas and one receive antenna, the Alamouti code
achieves the same level of diversity as a corresponding system with one transmit antenna
and two receive antennas. It is in this sense that a wireless communication system based
on the Alamouti code is said to enjoy a two-level diversity gain.

Maximum Likelihood Decoding

Figure 9.27 illustrates the signal-space diagram of an Alamouti-encoded system based on
the QPSK constellation. The complex Gaussian noise clouds centered on the four signal
points and with decreasing intensity illustrate the effects of complex noise term  on the
linear combiner output .

In effect, the picture portrayed in Figure 9.27 is the graphical representation of (9.94) over
two successive symbol transmissions at times t and t + T, repeated a large number of times.

Suppose that the two signal constellations in the top half of the signal-space diagram in
Figure 9.27 represent the pair of symbols transmitted at time t, for which we write

Figure 9.27 Signal-space diagram for Alamouti code, using the 
QPSK signal constellation. The signal points  and  and the 
corresponding linear normalized combiner outputs  and  are 
displayed in the top half of the figure.
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546 Chapter 9 Signaling over Fading Channels

Then, the remaining two signal constellations positioned in the right half of Figure 9.27
represent the other pair of symbols transmitted at t + T, for which we write

On this basis, we may now invoke the maximum likelihood decoding rule, discussed in
Chapter 7, to make the three-fold statement:

1. Compute the composite squared Euclidean distance metric 

produced by sending signal vectors  and , respectively. 

2. Do this computation for all four possible signal pairs in the QPSK constellation. 

3. Hence, the ML decoder selects the pair of signals for which the metric is the 
smallest. 

The metric’s component  in part 1 of this statement is illustrated in Figure 9.27.

9.10 “Multiple-Input, Multiple-Output” Systems: Basic 
Considerations

In Sections 9.8 and 9.9, we studied space-diversity wireless communication systems
employing either multiple receive or multiple transmit antennas to combat the multipath
fading problem. In effect, fading was treated as a source that degrades performance, neces-
sitating the use of space diversity on receive or transmit to mitigate it. In this section, we
discuss MIMO wireless communication, which distinguishes itself in the following ways:10

1. The fading phenomenon is viewed not as a nuisance but rather as an environmental
source of enrichment to be exploited.

2. Space diversity at both the transmit and receive ends of the wireless communication
link may provide the basis for a significant increase in channel capacity. 

3. Unlike conventional techniques, the increase in channel capacity is achieved by
increasing computational complexity while maintaining the primary communication
resources (i.e., total transmit power and channel bandwidth) fixed.

Coantenna Interference

Figure 9.28 shows the block diagram of a MIMO wireless link. The signals transmitted by
the Nt transmit antennas over the wireless channel are all chosen to lie inside a common
frequency band. Naturally, the transmitted signals are scattered differently by the channel.
Moreover, owing to multiple signal transmissions, the system experiences a spatial form
of signal-dependent interference, called coantenna interference (CAI). 

Figure 9.29 illustrates the effect of CAI for one, two, and eight simultaneous
transmissions and a single receive antenna (i.e., Nt = 1, 2, 8 and Nr = 1) using binary PSK;
the transmitted binary PSK signals used in the simulation resulting in this figure were
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ỹt T+   s̃t T+–

2
+

s̃t s̃t T+

yt
˜ s̃t–

2

Haykin_ch09_pp3.fm  Page 546  Tuesday, January 8, 2013  11:16 AM

https://hemanthrajhemu.github.io



9.10 “Multiple-Input, Multiple-Output” Systems: Basic Considerations 547

different but they all had the same average power and occupied the same bandwidth.
(Sellathurai and Haykin, 2008). Figure 9.29 clearly shows the difficulty that arises due to
CAI when the number of transmit antennas Nt is large. In particular, with eight
simultaneous signal transmissions, the eye pattern of the received signal is practically
closed. The challenge for the receiver is how to mitigate the CAI problem and thereby
make it possible to provide increased spectral efficiency.

In a theoretical context, the spectral efficiency of a communication system is intimately
linked to the channel capacity of the system. To proceed with evaluation of the channel
capacity of MIMO wireless communication, we begin by formulating a baseband channel
model for the system as described next.

Basic Baseband Channel Model

Consider a MIMO narrowband wireless communication system built around a flat-fading
channel, with Nt transmit antennas and Nr receive antennas. The antenna configuration is
hereafter referred to as the pair (Nt, Nr). For a statistical analysis of the MIMO system in
what follows, we use baseband representations of the transmitted and received signals as
well as the channel. In particular, we introduce the following notation:

• The spatial parameter

(9.98)

defines new degrees of freedom introduced into the wireless communication system
by using a MIMO channel with Nt transmit antennas and Nr receive antennas.

• The Nt-by-1 vector

(9.99)

Figure 9.28 Block diagram of MIMO wireless link with Nt transmit antennas and Nr 
receive antennas. 
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548 Chapter 9 Signaling over Fading Channels

Figure 9.29 Effect of coantenna interference on the eye 
diagram for one receive antenna and different numbers 
of transmit antennas. (a) Nt = 1, (b) Nt = 2, (c) Nt = 8. 
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9.10 “Multiple-Input, Multiple-Output” Systems: Basic Considerations 549

denotes the complex signal vector transmitted by the Nt antennas at discrete time n.
The symbols constituting the vector  are assumed to have zero mean and
common variance . The total transmit power is fixed at the value

 (9.100)

For P to be maintained constant, the variance  (i.e., power radiated by each
transmit antenna) must be inversely proportional to Nt.

• For a flat-fading Rayleigh distributing channel, we may use  to denote the
sampled complex gain of the channel coupling transmit antenna k to receive antenna
i at discrete time n, where i = 1, 2, , Nr and k = 1, 2, , Nt. We may thus express
the Nr-by-Nt complex channel matrix as

(9.101)

• The system of equations

 (9.102)

defines the complex signal received at the ith antenna due to the transmitted symbol
 radiated by the kth antenna. The term  denotes the additive complex

channel noise perturbing . Let the Nr-by-1 vector

(9.103)

denote the complex received signal vector and the Nr-by-1 vector

(9.104)

denote the complex channel noise vector. We may then rewrite the system of
equations (9.102) in the compact matrix form

(9.105)

Equation (9.105) describes the basic complex channel model for MIMO wireless
communications, assuming the use of a flat-fading channel. The equation describes the
input–output behavior of the channel at discrete time n. To simplify the exposition,
hereafter we suppress the dependence on time n by simply writing

(9.106)
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550 Chapter 9 Signaling over Fading Channels

where it is understood that all four vector/matrix terms of the equation, s, H, w, and x, are
in actual fact dependent on the discrete time n. Figure 9.30 shows the basic channel model
of (9.106).

For mathematical tractability, we assume a Gaussian model made up of three elements:

1. Nt symbols, which constitute the transmitted signal vector  drawn from a white
complex Gaussian codebook; that is, the symbols  are iid complex
Gaussian random variables with zero mean and common variance . Hence, the
correlation matrix of the transmitted signal vector s is defined by

(9.107)

where  is the Nt-by-Nt identity matrix.

2. Nt  Nr elements of the channel matrix H, which are also drawn from an ensemble of
iid complex random variables with zero mean and unit variance, as shown by the
complex distribution

(9.108)

where 𝒩(...) denotes a real Gaussian distribution. On this basis, we find that the
amplitude component hik is Rayleigh distributed. It is in this sense that we
sometimes speak of the MIMO channel as a rich Rayleigh scattering environment.
By the same token, we also find that the squared amplitude component, namely
|hik|

2, is a chi-squared random variable with the mean

(9.109)

(The chi-squared distribution is discussed in Appendix A.)

3. Nr elements of the channel noise vector w, which are iid complex Gaussian random
variables with zero mean and common variance ; that is, the correlation matrix
of the noise vector w is given by

(9.110)

where  is the Nr-by-Nr identity matrix.

Figure 9.30 Depiction of the basic channel model of (9.106). 
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9.11 MIMO Capacity for Channel Known at the Receiver 551

In light of (9.100) and the assumption that hik is a standard Gaussian random variable with
zero mean and unit variance, the average SNR at each receiver input of the MIMO channel
is given by

(9.111)

which is, for a prescribed noise variance , fixed once the total transmit power P is fixed.
Note also that, first, all the Nt transmitted signals occupy a common channel bandwidth
and, second, the average SNR  is independent of Nr.

The idealized Gaussian model just described of a MIMO wireless communication
system is applicable to indoor local area networks and other wireless environments, where
the extent of user-terminal mobilities is limited.11

9.11 MIMO Capacity for Channel Known at the Receiver

With the basic complex channel model of Figure 9.30 at our disposal, we are now ready to
focus attention on the primary issue of interest: the channel capacity of a MIMO wireless
link. In what follows, two special cases will be considered: the first case, entitled “ergodic
capacity,” assumes that the MIMO channel is weakly (wide-sense) stationary and, therefore,
ergodic. The second case, entitled “outage capacity,” considers a nonergodic MIMO channel
under the assumption of quasi-stationarity from one burst of data transmission to the next.

Ergodic Capacity

According to Shannon’s information capacity law discussed in Chapter 5, the capacity of a
real AWGN channel, subject to the constraint of a fixed transmit power P, is defined by

(9.112)

where B is the channel bandwidth and  is the noise variance measured over the
bandwidth B. Given a time-invariant channel, (9.112) defines the maximum data rate that
can be transmitted over the channel with an arbitrarily small probability of error being
incurred as a result of the transmission. With the channel used K times for the transmission
of K symbols in T seconds, the transmission capacity per unit time is K T times the
formula for C given in (9.112). Recognizing that K = 2BT in accordance with the sampling
theorem discussed in Chapter 6, we may express the information capacity of the AWGN
channel in the equivalent form

(9.113)

Note that one bit per second per hertz corresponds to one bit per transmission.
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552 Chapter 9 Signaling over Fading Channels

With wireless communications as the medium of interest, consider next the case of a
complex flat-fading channel with the receiver having perfect knowledge of the channel
state. The capacity of such a channel is given by

(9.114)

where the expectation is taken over the gain of the channel  and the channel is assumed
to be stationary and ergodic. In recognition of this assumption, C is commonly referred to
as the ergodic capacity of the flat-fading channel and the channel coding is applied across
fading intervals (i.e., over an “ergodic” interval of channel variation with time).

It is important to note that the scaling factor of 1 2 is missing from the capacity
formula of (9.114). The reason for this omission is that this equation refers to a complex
baseband channel, whereas (9.113) refers to a real channel. The fading channel covered by
(9.114) operates on a complex signal, namely a signal with in-phase and quadrature
components. Therefore, such a complex channel is equivalent to two real channels with
equal capacities and operating in parallel; hence the result presented in (9.114).

Equation (9.114) applies to the simple case of a single-input, single-output (SISO)
flat-fading channel. Generalizing this formula to the case of a multiple-input, multiple-
output MIMO flat-fading channel governed by the Gaussian model described in Figure
9.30, we find that the ergodic capacity of the MIMO channel is given by the following
formula:12

(9.115)

which is subject to the constraint

  

where P is the constant transmit power and  denotes the trace of the enclosed
matrix. The expectation in (9.115) is over the random channel matrix H, and the
superscript dagger notes Hermitian transposition; Rs and Rw are respectively the
correlation matrices of the transmitted signal vector s and channel noise vector w. A
detailed derivation of (9.115) is presented in Appendix E.

In general, it is difficult to evaluate (9.115) except for a Gaussian model. In particular,
substituting (9.107) and (9.110) into (9.115) and simplifying yields

(9.116)

Next, invoking the definition of the average SNR  introduced in (9.111), we may rewrite
(9.116) in the equivalent form

(9.117)
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9.11 MIMO Capacity for Channel Known at the Receiver 553

Equation (9.117), defining the ergodic capacity of a MIMO flat-fading channel, involves
the determinant of an Nr-by-Nr sum matrix (inside the braces) followed by the logarithm to
base 2. It is for this reason that this equation is referred to as the log-det capacity formula
for a Gaussian MIMO channel.

As indicated in (9.117), the log-det capacity formula therein assumes that Nt  Nr for the
matrix product  to be of full rank. The alternative case, Nr  Nt makes the Nt-by-Nt
matrix product  to be of full rank, in which case the log-det capacity formula of the
MIMO link takes the form

(9.118)

where, as before, the expectation is taken over the channel matrix H.
Despite the apparent differences between (9.117) and (9.118), they are equivalent in

that either one of them applies to all {Nr, Nt} antenna configurations. The two formulas
differentiate themselves only when the full-rank issue is of concern.

Clearly, the capacity formula of (9.114), pertaining to a complex, flat-fading link with a
single antenna at both ends of the link, is a special case of the log-det capacity formula.
Specifically, for Nt = Nr = 1 (i.e., no spatial diversity), , and H = h (with
dependence on discrete-time n suppressed, (9.116) reduces to that of (9.114).

Another insightful result that follows from the log-det capacity formula is that if
Nt = Nr = N, then, as N approaches infinity, the capacity C defined in (9.117) grows
asymptotically (at least) linearly with N; that is,

 (9.119)

In words, the asymptotic formula of (9.119) may be stated as follows:

The ergodic capacity of a MIMO flat-fading wireless link with an equal number 
of transmit and receive antennas N grows roughly proportionately with N.

What this statement teaches us is that, by increasing computational complexity resulting
from the use of multiple antennas at both the transmit and receive ends of a wireless link,
we are able to increase the spectral efficiency of the link in a far greater manner than is
possible by conventional means (e.g., increasing the transmit SNR). The potential for this
very sizable increase in the spectral efficiency of a MIMO wireless communication system
is attributed to the key parameter

N = min{Nt, Nr} 

which defines the number of degrees of freedom provided by the system.

Two Other Special Cases of the Log-Det Formula: Capacities of 
Receive and Transmit Diversity Links

Naturally, the log-det capacity formula for the channel capacity of an Nt, Nr wireless link
includes the channel capacities of receive and transmit diversity links as special cases:
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554 Chapter 9 Signaling over Fading Channels

1. Diversity-on-receive channel. The log-det capacity formula (9.118) applies to this
case. Specifically, for Nt = 1, the channel matrix H reduces to a column vector and
with it (9.118) reduces to

(9.120)

Compared with the channel capacity of (9.114), for an SISO fading channel with
, the squared channel gain |h|2 is replaced by the sum of squared

magnitudes |hi|
2, i = 1, 2, , Nr. Equation (9.120) expresses the ergodic capacity

due to the linear combination of the receive-antenna outputs, which is designed to
maximize the information contained in the Nr received signals about the transmitted
signal. This is simply a restatement of the maximal-ratio combining principle
discussed in Section 9.8.

2. Diversity-on-transmit channel. The log-det capacity formula of (9.117) applies to
this second case. Specifically, for Nr = 1, the channel matrix H reduces to a row
vector, and with it (9.117) reduces to

(9.121)

where the matrix product HH† is replaced by the sum of squared magnitudes |hk|
2,

k = 1, 2, , Nt. Compared with case 1 on receive diversity, the capacity of the
diversity-on-transmit channel is reduced because the total transmit power is being
held constant, independent of the number of Nt transmit antennas. 

Outage Capacity

To realize the log-det capacity formula of (9.117), the MIMO channel must be described
by an ergodic process. In practice, however, the MIMO wireless channel is often
nonergodic and the requirement is to operate the channel under delay constraints. The
issue of interest is then summed up as follows:

How much information can be transmitted across a nonergodic channel, 
particularly if the channel code is long enough to see just one random 
channel matrix?

In the situation described here, the rate of reliable information transmission (i.e., the strict
Shannon-sense capacity) is zero, since for any positive rate there exists a nonzero
probability that the channel would not support such a rate.

To get around this serious difficulty, the notion of outage is introduced into
characterization of the MIMO link. (Outage was discussed previously in the context of
diversity on receive in Section 9.8.) Specifically, we offer the following definition: 

The outage probability of a MIMO link is defined as the probability for which 
the link is in a state of outage (i.e., failure) for data transmitted across the link at 
a certain rate R, measured in bits per second per hertz. 
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9.11 MIMO Capacity for Channel Known at the Receiver 555

To proceed on this probabilistic basis, it is customary to operate the MIMO link by
transmitting data in the form of bursts or frames and invoke a quasi-stationary model
governed by four points:

1. The burst is long enough to accommodate the transmission of a large number of
symbols, which, in turn, permits the use of an idealized infinite-time horizon basic to
information theory.

2. Yet, the burst is short enough to treat the wireless link as quasi-stationary during
each burst; the slow variation is used to justify the assumption that the receiver has
perfect knowledge of the channel state. 

3. The channel matrix is permitted to change, from burst k to the next burst k + 1,
thereby accounting for statistical variations of the link.

4. Different realizations of the transmitted signal vector s are drawn from a white
Gaussian codebook; that is, the correlation matrix of s is defined by (9.107).

Points 1 and 4 pertain to signal transmission, whereas points 2 and 3 pertain to the MIMO
channel itself.

To proceed with the evaluation of outage probability under this model, we first note
that, in light of the log-det capacity formula (9.117), we may view the random variable

(9.122)

as the expression for a “sample realization” of the MIMO link. In other words, with the
random-channel matrix Hk varying from one burst to the next, Ck will itself vary in a
corresponding way. A consequence of this random behavior is that, occasionally, a sample
drawn from the cumulative distribution function of the MIMO link results in a value for Ck
that is inadequate to support reliable communication over the link. In this kind of situation
the link is said to be in an outage state. Correspondingly, for a given transmission strategy,
we define the outage probability at rate R as

(9.123)

Equivalently, we may write

(9.124)

On this basis, we may offer the following definition: 

The outage capacity of the MIMO link is the maximum bit rate that can be 
maintained across the link for all bursts of data transmissions (i.e., all possible 
channel states) for a prescribed outage probability. 

By the very nature of it, the study of outage capacity can only be conducted using Monte
Carlo simulation. 

Channel Known at the Transmitter

The log-det capacity formula of (9.117) is based on the premise that the transmitter has no
knowledge of the channel state. Knowledge of the channel state, however, can be made
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556 Chapter 9 Signaling over Fading Channels

available to the transmitter by first estimating the channel matrix H at the receiver and
then sending this estimate to the transmitter via a feedback channel. In such a scenario, the
capacity is optimized over the correlation matrix of the transmitted signal vector s, subject
to the power constraint; that is, the trace of this correlation matrix is less than or equal to
the constant transmit power P. Naturally, formulation of the log-det capacity formula of a
MIMO channel for which the channel is known in both the transmitter and receiver is
more challenging than when it is only known to the receiver. For details of this
formulation, the reader is referred to Appendix E.

9.12 Orthogonal Frequency Division Multiplexing

In Chapter 8 we introduced the DMT method as one discrete form of multichannel
modulation for signaling over band-limited channels. Orthogonal frequency division
multiplexing (OFDM)13 is another clearly related form of multifrequency modulation.

OFDM is particularly well suited for high data-rate transmission over delay-dispersive
channels. In its own way, OFDM solves the problem by following the engineering
paradigm of “divide and conquer.” Specifically, a large number of closely spaced
orthogonal subcarriers (tones) is used to support the transmission. Correspondingly, the
incoming data stream is divided into a number of low data-rate substreams, one for each
carrier, with the subchannels so formed operating in parallel. For the modulation process,
a modulation scheme such as QPSK is used. 

What we have just briefly described here is essentially the same as the procedure used
in DMT modulation. In other words, the underlying mathematical theory of DMT
described in Chapter 8 applies equally well to OFDM, except for the fact that the signal
constellation encoder does not include the use of loading for bit allocation. In addition,
two other changes have to be made in the implementation of OFDM:

1. In the transmitter, an upconverter is included after the digital-to-analog converter to
appropriately translate the transmitted frequency, so as to facilitate propogation of
the transmitted signal over the radio channel.

2. In the receiver, a downconverter is included before the analog-to-digital converter to
undo the frequency translation that was performed by the upconverter in the
transmitter.

Figure 9.31 shows the block diagram of an OFDM system, the components of which are
configured to accommodate the transmission of a binary data stream at 36 Mbit/s as an
illustrative example. Parts a and b of the figure depict the transmitter and receiver of the
system, respectively. Specifically, pertinent values of data carrier rates as well as sub-
carrier frequencies at the various functional blocks are included in part a of the figure
dealing with the transmitter. One last comment is in order: the front end of the transmitter
and the back end of the receiver are allocated to forward error-correction encoding and
decoding, respectively, for improved reliability of the system. (Error-control coding of the
forward error-correction variety is discussed in Chapter 10.)

The Peak-to-Average Power Ratio Problem

A compelling practical importance of OFDM to wireless communications is attributed to
the computational benefits brought about by the FFT algorithm that plays a key role in its
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9.13 Spread Spectrum Signals 557

implementation. However, OFDM suffers from the so-called PAPR problem. This
problem arises due to the statistical probabilities of a large number of independent
subchannels in the OFDM becoming superimposed on each other in some unknown
fashion, thereby resulting in high peaks. For a detailed account of the PAPR problem and
how to mitigate it, the reader is referred to Appendix G.

9.13 Spread Spectrum Signals

In previous sections of this chapter we described different methods for mitigating the
effect of multipath interference in signaling over fading channels. In this section of the
chapter, we describe another novel way of thinking about wireless communications, which
is based on a class of signals called spread spectrum signals.14

A signal is said to belong to this class of signals if it satisfies the following two
requirements:

1. Spreading. Given an information-bearing signal, spreading of the signal is
accomplished in the transmitter by means of an independent spreading signal, such
that the resulting spread spectrum signal occupies a bandwidth much larger than the
bandwidth of the original information-bearing signal: the larger the better.

2. Despreading. Given a noisy version of the transmitted spread spectrum signal,
despreading (i.e., recovering the original information-bearing signal) is achieved by
correlating the received signal with a synchronized replica of the spreading signal in
the receiver.

Figure 9.31 Block diagram of the typical implementation of an OFDM, illustrating the transmission 
of binary data at 36 Mbit/s. 
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558 Chapter 9 Signaling over Fading Channels

In effect, the information-bearing signal is spread (increased) in bandwidth before its
transmission over the channel, and the received signal at the channel output is despread
(i.e., decreased) in bandwidth by the same amount.

To explain the rationale of spread spectrum signals, consider, first, a scenario where
there are no interfering signals at the channel output whatsoever. In this idealized scenario,
an exact replica of the original information-bearing signal is reproduced at the receiver
output; this recovery follows from the combined action of spreading and despreading, in
that order. We may thus say that the receiver performance is transparent with respect to
the combined spreading–despreading process.

Consider, next, a practical scenario where an additive narrowband interference is
introduced at the receiver input. Since the interfering signal is introduced into the
communication system after transmission of the information-bearing signal, its bandwidth
is increased by the spreading signal in the receiver, with the result that its power spectral
density is correspondingly reduced. Typically, at its output end, the receiver includes a
filter whose bandwidth-occupancy matches that of the information-bearing signal.
Consequently, the average power of the interfering signal is reduced, and the output SNR
of the receiver is increased; hence, there is practical benefit in improved SNR to be gained
from using the spread spectrum technique when there is an interfering signal (e.g., due to
multipath) to deal with. Of course, this benefit is obtained at the expense of increased
channel bandwidth.

Classification of Spread Spectrum Signals

Depending on how the use of spread spectrum signals is carried out, we may classify them
as follows:

1. Direct Sequence-Spread Spectrum

One method of spreading the bandwidth of an information-bearing signal is to use
the so-called direct sequence-spread spectrum (DS-SS), wherein a pseudo-noise
(PN) sequence is employed as the spreading sequence (signal). The PN sequence is
a periodic binary sequence with noise-like properties, details of which are
presented in Appendix J. The baseband modulated signal, representative of the
DS-SS method, is obtained by multiplying the information-bearing signal by the
PN sequence, whereby each information bit is chopped into a number of small
time increments, called chips. The second stage of modulation is aimed at
conversion of the baseband DS-SS signal into a form suitable for transmission over
a wireless channel, which is accomplished by using M-ary PSK, discussed in
Chapter 7. The family of spread spectrum systems so formed is referred to simply
as DS/MPSK systems, a distinct characteristic of which is that spreading of the
transmission bandwidth takes place instantaneously. Moreover, the signal-
processing capability of these systems to combat the effect of interferers,
commonly referred to as jammers be they friendly or unfriendly, is a function of
the PN sequence length. Unfortunately, this capability is limited by physical
considerations of the PN-sequence generator.

2. Frequency Hop-Spread Spectrum

To overcome the physical limitations of DS/MPSK systems, we may resort to
alternative methods. One such method is to force the jammer to occupy a wider
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9.13 Spread Spectrum Signals 559

spectrum by randomly hopping the input data-modulated carrier from one frequency
to the next. In effect, the spectrum of the transmitter signal is spread sequentially
rather than instantaneously; the term sequentially refers to the pseudo-randomly
ordered sequence of frequency hops. This second type of spread spectrum in which
the carrier hops randomly from one frequency to another is called frequency hop-
spread spectrum. A commonly used modulation format used herein is that of M-ary
FSK, which was also discussed in Chapter 7. The combination of the two
modulation techniques, namely frequency hopping and M-ary FSK, is referred to
simply as FH/MFSK. Since frequency-hopping does not cover over the entire spread
spectrum instantaneously, we are led to consider the rate at which the hops occur. In
this context, we may go on to identify two basic kinds of frequency hopping, which
are the converse of each other, as summarized here:

• First, slow-frequency hopping, in which the symbol rate of the M-ary FSK signal,
denoted by Rs, is an integer multiple of the hop rate, denoted by Rh; that is, several
symbols of the input data sequence are transmitted for each frequency hop.

• Second, fast-frequency hopping, in which the hop rate Rh is an integer multiple of
the M-ary FSK symbol rate Rs; that is, the carrier frequency will change (i.e.,
hop) several times during the transmission of one input-data symbol.

The spread spectrum technique of the FH variety is particularly attractive for
military applications. But, compared with the alternative spread spectrum technique,
DS/MPSK, the commercial use of FH/MFSK is insignificant, which is especially so
in regard to fast frequency hopping. The limiting factor behind this statement is the
expense involved in the employment of frequency synthesizers, which are basic to
the implementation of FH/MFSK systems. Accordingly, the FH/MFSK will not be
considered further.

Processing Gain of the DS/BPSK

Before closing this section on spread spectrum signals, it is informative to expand on the
improvement in SNR gained at the receiver output, mentioned earlier on. To this end,
consider the simple case of the DS/BPSK, in which the binary PSK, representing the
second stage of modulation in the transmitter, is coherent; that is, the receiver is
synchronized with the transmitter in all of its features. In Problem 9.34, it is shown that the
processing gain of a spread spectrum signal compared to its unspread version is

(9.125)

where Tb is the bit duration and Tc is the chip duration. With PG expressed in decibels, in
Problem 9.34 it is also shown that 

10 log10 (SNR)O = 10 log10 (SNR)I + 10 log10 (PG) dB (9.126)

where (SNR)I and (SNR)O are the input SNR and output SNR, respectively. Furthermore,
recognizing that the ratio TbTc is equal to the number of chips contained in a single bit
duration, it follows that the processing gain realized by the use of DS/BPSK increases
with increasing length of a single period of the PN sequence, which was emphasized
previously.

PG
Tb

Tc
-----=
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560 Chapter 9 Signaling over Fading Channels

9.14 Code-Division Multiple Access

Modern wireless networks are commonly of a multiuser type, in that the multiple
communication links within the network are shared among multiple users. Specifically,
each individual user is permitted to share the available radio resources (i.e., time and
frequency) with other users in the network and do so in an independent manner.

Stated in another way, a multiple access technique permits the radio resources to be
shared among multiple users seeking to communicate with each other. In the context of
time and frequency domains, we recall from Chapter 1 that frequency-division multiple
access (FDMA) and time-division multiple access (TDMA) techniques allocate the radio
resources of a wireless channel through the use of disjointedness (i.e., orthogonality) in
frequency and time, respectively. On the other hand, the code-division multiple access
(CDMA) technique, building on spread spectrum signals and benefiting from their
attributes, provides an alternative to the traditional techniques of FDMA and TDMA; it
does so by not requiring the bandwidth allocation of FDMA nor the time synchronization
needed in TDMA. Rather, CDMA operates on the following principle:

The users of a common wireless channel are permitted access to the channel 
through the assignment of a spreading code to each individual user under the 
umbrella of spread spectrum modulation.

This statement is testimony to what we said in the first paragraph of Section 9.13, namely
that spread spectrum signals provide a novel way of thinking about wireless
communications.

To elaborate on the way in which CDMA distinguishes itself from FDMA and TDMA
in graphical terms, consider Figure 9.32. Parts a and b of the figure depict the ways in
which the radio resources are distributed in FDMA and TDMA, respectively. To be
specific:

• In FDMA, the channel bandwidth B is divided equally among a total number of K
users, with each user being allotted a subband of width B/K and having the whole
time resource T at its disposal.

• In TDMA, the time resource T is divided equally among the K users, with each user
having total access to the frequency resource, namely the total channel bandwidth B,
but for only T/K in each time frame.

In a way, we may therefore think of FDMA and TDMA as the dual of each other.
Turning next to Figure 9.32c, we see that CDMA operates in a manner entirely

different from both FDMA and TDMA. Graphically, we see that each CDMA user has full
access to the entire radio resources at every point in time from one frame to the next.
Nevertheless, for the full utilization of radio resources to be achievable, it is necessary that
the spreading codes assigned to all the K users form an orthogonal set. 

In other words, orthogonality is a common requirement to the FDMA, TDMA, and
CDMA, each in its own specific way. However, this requirement is easier to implement
practically in FDMA and TDMA than it is in CDMA.

In an ideal CDMA system, to satisfy the orthogonality requirement, the cross-
correlation between any two users of the system must be zero. Correspondingly, for this
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9.14 Code-Division Multiple Access 561

ideal condition to be satisfied, we require that the cross-correlation function between the
spreading sequences (codes) assigned to any two CDMA users of the system must be zero
for all cyclic shifts in time. Unfortunately, ordinary PN sequences do not satisfy the
orthogonality requirement because of their relatively poor cross-correlation properties. 

Accordingly, we have to look to alternative spreading codes to satisfy the orthogonality
requirements. Fortunately, such an endeavor is mathematically feasible, depending on
whether synchrony of the CDMA receiver to its transmitter is required or not. In what
follows, we describe the use of Walsh–Hadamard sequences for the synchronous case and
Gold sequences for the asynchronous case. 

Walsh–Hadamard Sequences

Consider the case of a CDMA system, for which synchronization among users of the
system is permissible. Under this condition, perfect orthogonality of two spreading
signals, cj(t) and ck(t), respectively assigned to users j and k for different time offsets,
namely

(9.127)

reduces to 

(9.128)

where the asterisk denotes complex conjugation. It turns out that, for the special case
described in (9.128), the orthogonality requirement can be satisfied exactly, and the
resulting sequences are known as the Walsh–Hadamard sequences (codes).15

Figure 9.32 Resource distribution in (a) FDMA, (b) TDMA, and (c) CDMA. This figure shows the 
essence of multiple access as in Figure 1.2 with a difference: Figure 9.32 is quantitative in its 
description of multiple-access techniques.
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562 Chapter 9 Signaling over Fading Channels

To construct a Walsh–Hadamard sequence, we begin with a 2  2 matrix, denoted by
H2, for which the inner product of its two rows (or two columns) is zero. For example, we
may choose the matrix 

(9.129)

the two rows of which are indeed orthogonal to each other. To go on and construct a
Walsh–Hadamard sequence of length 4 using H2, we construct the Kronecker product of
H2 with itself, as shown by 

H4 = H2  H2 (9.130)

To explain what we mean by the Kronecker product in a generic sense, let A = {ajk} and
B = (bjk} denote m  m and n  n matrices, respectively.16 Then, we may introduce the
following rule:

The Kronecker product of the two matrices A and B is made up of an mn  mn 
matrix, which is obtained from the matrix A by replacing its element ajk in 
matrix A with the scaled matrix ajk B.

EXAMPLE 8 Construction of Hadamard–Walsh H4 from H2 

For the example of (9.129) on matrix H2, applying the Kronecker product rule, we may
express the H4 of (9.130) as follows:

(9.131)

The four rows (and columns) of H4 defined in (9.131) are indeed orthogonal to each other.
Carrying on in this manner, we may go on to construct the Hadamard–Walsh sequences

H6, H8, and so on.

In practical terms, a synchronous CDMA system is achievable provided that a single
transmitter (e.g., the base station of a cellular network) transmits individual data streams
simultaneously, with each data stream being addressed to a specific CDMA user (e.g.,
mobile unit).

Gold Sequences

Whereas Walsh–Hadamard sequences are well suited for synchronous CDMA, Gold
sequences, on the other hand, are well suited for applications in asynchronous CDMA;
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therein, time- and phase-shifts between individual user signals, measured with respect to
the base station in a cellular network, occur in a random manner; hence the adoption of
asynchrony.

Gold sequences constitute a special class of maximal-length sequences, the generation
of which is embodied in Gold’s theorem, stated as follows:17

Let g1(X) and g2(X) be a preferred pair of primitive polynomials of degree n 
whose corresponding linear feedback shift registers generate maximal-length 
sequences of period 2n – 1 and whose cross-correlation function has a 
magnitude less then or equal to 

(9.132)

or

(9.133)

Then, the linear feedback shift register corresponding to the product polynomial 
g1(X) g2(X) will generage 2n + 1 different sequences, with each sequence 
having a period of 2n = 1 and the cross-correlation between any pair of such 
sequences satisfying the preceding condition.

To understand Gold’s theorem, we need to define what we mean by a primitive
polynomial. Consider a polynomial g(X) defined over a binary field (i.e., a finite set of two
elements, 0 and 1, which is governed by the rules of binary arithmetic). The polynomial
g(X) is said to be an irreducible polynomial if it cannot be factored using any polynomials
from the binary field. An irreducible polynomial g(X) of degree m is said to be a primitive
polynomial if the smallest integer m for which the polynomial g(X) divides the factor
Xn + 1 is n = 2m – 1. The topic of primitive polynomials is discussed in Chapter 10 on
error-control coding.

EXAMPLE 9 Correlation Properties of Gold Codes

As an illustrative example, consider Gold sequences with period 27 – 1 = 127. To generate such
a sequence for n = 7 we need a preferred pair of PN sequences that satisfy (9.132) (n odd), as
shown by 

This requirement is satisfied by the Gold-sequence generator shown in Figure 9.33 that
involves the modulo-2 addition of these two sequences. According to Gold’s theorem,
there are a total of

sequences that satisfy (9.132). The cross-correlation between any pair of such sequences is
shown in Figure 9.34, which is indeed in full accord with Gold’s theorem. In particular,
the magnitude of the cross-correlation is less than or equal to 17.
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564 Chapter 9 Signaling over Fading Channels

9.15 The RAKE Receiver and Multipath Diversity

A discussion of wireless communications using CDMA would be incomplete without a
description of the RAKE receiver.18 The RAKE receiver was originally developed in the
1950s as a diversity receiver designed expressly to equalize the effect of multipath. First,
and foremost, it is recognized that useful information about the transmitted signal is
contained in the multipath component of the received signal. Thus, taking the viewpoint

Figure 9.33 Generator for a Gold sequence of period 27 – 1 = 127.

Figure 9.34 Cross-correlation function R12 of a pair of Gold sequences based on the two PN 
sequences [7,4] and [7,6,5,4].
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9.15 The RAKE Receiver and Multipath Diversity 565

that multipath may be approximated as a linear combination of differently delayed echoes,
as shown in the maximal ratio combiner of Figure 9.21, the RAKE receiver seeks to
combat the effect of multipath by using a correlation method to detect the echo signals
individually and then adding them algebraically. In this way, intersymbol interference due
to multipath is dealt with by reinserting different delays into the detected echoes so that
they perform a constructive rather than destructive role. 

Figure 9.35 shows the basic idea behind the RAKE receiver. The receiver consists of a
number of correlators connected in parallel and operating in a synchronous fashion with
each other. Each correlator has two inputs: (1) a delayed version of the received signal and
(2) a replica of the PN sequence used as the spreading code to generate the spread
spectrum-modulated signal at the transmitter. In effect, the PN sequence acts as a
reference signal. Let the nominal bandwidth of the PN sequence be denoted as W = 1Tc,
where Tc is the chip duration. From the discussion on PN sequences presented in
Appendix J, we find that the autocorrelation function of a PN sequence has a single peak
of width 1W, and it disappears toward zero elsewhere inside one period of the PN
sequence (i.e., one symbol period). Thus, we need only make the bandwidth W of the PN
sequence sufficiently large to identify the significant echoes in the received signal. To be
sure that the correlator outputs all add constructively, two other operations are performed
in the receiver by the functional blocks labeled “phase and gain adjustors”:

1. An appropriate delay is introduced into each correlator output, so that the phase
angles of the correlator outputs are in agreement with each other.

2. The correlator outputs are weighted so that the correlators responding to strong
paths in the multipath environment have their contributions accentuated, while the
correlators not synchronizing with any significant path are correspondingly
suppressed.

Figure 9.35 Block diagram of the RAKE receiver for CDMA over multipath channels.
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566 Chapter 9 Signaling over Fading Channels

The weighting coefficients ak are computed in accordance with the maximal ratio
combining principle, discussed in Section 9.8. Specifically, we recall that the SNR of a
weighted sum, where each element of the sum consists of a signal plus additive noise of
fixed power, is maximized when the amplitude weighting is performed in proportion to the
pertinent signal strength. That is, the linear combiner output is

(9.134)

where zk(t) is the phase-compensated output of the kth correlator and M is the number of
correlators in the receiver. Provided that we use enough correlators in the receiver to span
a region of delays sufficiently wide to encompass all the significant echoes that are likely
to occur in the multipath environment, the output y(t) behaves essentially as though there
was a single propagation path between the transmitter and receiver rather than a series of
multiple paths spread in time.

To simplify the presentation, the receiver of Figure 9.35 assumes the use of binary PSK in
performing spread spectrum modulation at the transmitter. Thus, the final operation per-
formed in Figure 9.35 is that of integrating the linear combiner output y(t) over the bit dura-
tion Tb and then determining whether binary symbol 1 or 0 was transmitted in that bit interval.

The RAKE receiver derives its name from the fact that the bank of parallel correlators
has an appearance similar to the fingers of a rake; see Figure 9.36. Because spread
spectrum modulation is basic to the operation of CDMA wireless communications, it is
natural for the RAKE receiver to be central to the design of the receiver used in this type of
multiuser radio communication.

9.16 Summary and Discussion

In this chapter we discussed the topic of signaling over fading channels, which is at the
heart of wireless communications. There are three major sources of signal degradation in
wireless communications:

• co-channel interference,
• fading, and
• delay spread.

The latter two are by-products of the multipath phenomenon. A common characteristic of
these channel impairments is that they are all signal-dependent phenomena. As it is with
intersymbol interference that characterizes signaling over band-limited channels discussed
in Chapter 8, the degrading effects of interference and multipath in wireless
communications cannot be combated by simply increasing the transmitted signal, which is
what is done when noise is the only source of channel impairment as discussed in Chapter 7.

To combat the effects of multipath and interference, we require the use of specialized
techniques that are tailor-made for wireless communications. These specialized techniques
include space diversity, which occupied much of the material presented in this chapter.

Figure 9.36
Picture of a rake, symbolizing the bank of correlators.

y t  akzk t 
k 1=

M
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. . .
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9.16 Summary and Discussion 567

We discussed different forms of space diversity, the main idea behind which is that two
or more propagation paths connecting the receiver to the transmitter are better than a
single propagation path. In historical terms, the first form of space diversity used to
mitigate the multipath fading problem was that of receive diversity, involving a single
transmit antenna and multiple receive antennas. Under receive diversity, we discussed the
selection combiner, maximal-ratio combiner, and equal-gain combiner:

• The selection combiner is the simplest form of receive diversity. It operates on the
principle that it is possible to select, among Nr receive-diversity branches, a
particular branch with the largest output SNR; the branch so selected defines the
desired received signal. 

• The maximal-ratio combiner is more powerful than the selection combiner by virtue
of the fact that it exploits the full information content of all the Nr receive-diversity
branches about the transmitted signal of interest; it is characterized by a set of Nr
receive-complex weighting factors that are chosen to maximize the output SNR of
the combiner. 

• The equal-gain combiner is a simplified version of the maximal-ratio combiner.

We also discussed diversity-on-transmit techniques, which may be viewed as the dual of
their respective diversity-on-receive techniques. Much of the discussion here focused on
the Alamouti code, which is simple to design, yet powerful in performance, in that it
realizes a two-level diversity gain: in other terms of performance, the Alamouti code is
equivalent to a linear diversity-on-receive system with a single antenna and two receive
antennas.

By far, the most powerful form of space diversity is the use of multiple antennas at both
the transmit and receive ends of the wireless link. The resulting configuration is referred to
as a MIMO wireless communication system, which includes the receive diversity and
transmit diversity as special cases. The novel feature of the MIMO system is that, in a rich
scattering environment, it can provide a high spectral efficiency, which may be simply
explained as follows. The signals transmitted simultaneously by the transmit antennas
arrive at the input of each receive antenna in an uncorrelated manner due to the rich
scattering mechanism of the channel. The net result is a spectacular increase in the spectral
efficiency of the wireless link. Most importantly, the spectral efficiency increases roughly
linearly with the number of transmit or receive antennas, whichever is the smaller one of
the two. This important result assumes that the receiver has knowledge of the channel
state. The spectral efficiency of the MIMO system can be further enhanced by including a
feedback channel from the transmitter to the receiver, whereby the channel state is also
made available to the transmitter and with it the transmitter is enabled to exercise control
over the transmitted signal.

Multiple Access Considerations

An issue of paramount practical importance in wireless communications is that of multiple
access to the wireless channel, in the context of which the following two approaches are
considered to be the dominant ones:

1. Orthogonal frequency division multiple access (OFDMA), which is the multi-user
version of OFDM that was discussed in Section 9.12. In OFDMA multiple access is
accomplished through the assignment of subchannels (subcarriers) to individual users.
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568 Chapter 9 Signaling over Fading Channels

Naturally, OFDMA inherits the distinctive features of OFDM. In particular, OFDMA
is well suited for high data-rate transmissions over delay-dispersive channels, realized
by exploiting the principle of “divide and conquer.” Accordingly, OFDMA is
computationally efficient in using the FFT algorithm. Moreover, OFDMA lends itself
to the combined use of MIMO, hence the ability to improve spectral efficiency and
take advantage of channel flexibility. 

2. Code-division multiple access (CDMA), which distinguishes itself by exploiting the
underlying principle of spread spectrum signals, discussed in Section 9.13. To be
specific, through the combined process of spectrum spreading in the transmitter and
corresponding spectrum despreading in the receiver, a certain amount of processing
gain is obtained, hence the ability of CDMA users to occupy the same channel
bandwidth. Moreover, CDMA provides a flexible procedure for the allocation of
resources (i.e., PN codes) among a multiplicity of active users. Last but by no means
least, in using the RAKE, viewed as an adaptive TDL filter, CDMA is enabled to
match the receiver input to the channel output by adjusting tap delays as well as tap
weights, thereby enhancing receiver performance in the presence of multipath.

To conclude, OFDMA and CDMA provide two different approaches for the multiple
access of active users to wireless channels, each one of which builds on its own distinctive
features.

Problems

Effect of Flat Fading on the BER of Digital Communications Receivers

9.1 Derive the BER formulas listed in the right-hand side of Table 9.2 for the following signaling
schemes over flat fading channels:

a. Binary PSK using coherent detection

b. Binary FSK using coherent detection

c. Binary DPSK

d. Binary FSK using noncoherent detection

9.2 Using the formulas derived in Problem 9.1, plot the BER charts for the schemes described therein.

Selective Channels

9.3 Consider a time-selective channel, for which the modulated received signal is defined by

where m(t) is the message signal,  is the result of angle modulation; the amplitude  and
phase  are contributed by the nth path, where n = 1, 2, , N.

a. Using complex notation, show that the received signal is described as follows:

where

What is the formula for ?

x t  n t m t  2fct  t  n t + + cos
n 1=

N

=

 t  n t 
n t 

x̃ t  ̃ t s̃ t =

̃ t  ̃n t 
n 1=

N

=

s̃ t 
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b. Show that the delay-spread function of the multipath channel is described by

where  is the Dirac delta function in the -domain. Hence, justify the statement that the
channel described in this problem is a time-selective channel.

c. Let  and  denote the Fourier transforms of  and , respectively. What then is

the Fourier transform of ?

d. Using the result of part c, justify the statement that the multipath channel described herein can be
approximately frequency-flat. What is the condition that would satisfy this description?

9.4 In this problem, we consider a multipath channel embodying large-scale effects. Specifically, using
complex notation, the received signal at the channel output is described by

where  and  denote the amplitude and time delay associated with the lth path in the channel for
l = 1, 2, , L. Note that  is assumed to be constant for all l.

a. Show that the delay-spread function of the channel is described by

where  is the Dirac delta function expressed in the -domain.

b. This channel is said to be time-nonselective. Why?

c. The channel does exhibit a frequency-dependent behavior. To illustrate this behavior, consider
the following delay-spread function:

where  is the time delay produced by the second path in the channel. Plot the magnitude
(amplitude) response of the channel for the following specifications:

i.

ii.

iii.

where . Comment on your results.

9.5 Expanding on the multipath channel considered in Problem 9.4, a more interesting case is
characterized by the scenario in which the received signal at the channel output is described as follows:

where the amplitude  and time delay  for the lth path are both time dependent for 

l = 1, 2, , L. 

a. Show that the delay-spread function of the multipath channel described herein is given by

where  is the Dirac delta function in the -domain. This channel is said to exhibit both
large- and small-scale effects. Why?

b. The channel is also said to be both time selective and frequency selective. Why?
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570 Chapter 9 Signaling over Fading Channels

c. To illustrate the point made under b, consider the following channel description:

where  and  are both Rayleigh processes. 

For selected ,  and , do the following:

i. At each time t = 0, compute the Fourier transform of .

ii. Hence, plot the magnitude spectrum of the channel, that is, , expressed as a
function of both time t and frequency f.

Comment on the results so obtained.

9.6 Consider a multipath channel where the delay-spread function is described by

where the scattering processes attributed to the time-varying amplitude  and fixed delay  are
uncorrelated for l = 1, 2, , L.

a. Determine the correlation function of the channel, namely .

b. With a Jakes model for the scattering process described in (9.12), find the corresponding formula
for the correlation function of the channel under part a of the problem.

c. Hence, justify the statement that the multipath channel described in this problem fits a WSSUS
model.

9.7 Revisit the Jakes model for a fast fading channel described in (9.12). Let the coherence time be
defined as that range of values  over which the correlation function defined in (9.12) is greater
than 0.5.

For some prescribed maximum Doppler shift , find the coherence time of the channel.

9.8 Consider a multipath channel for which the delay-spread function is given by

where the amplitude  is time varying but the time delay  is fixed. As in Problem 9.4, the
scattering processes are described by the Jakes model in (9.12). Determine the power-delay profile
of the channel, .

9.9 In real-life situations, the wireless channel is nonstationary due to the presence of moving objects of
different kinds and other physical elements that can significantly affect radio propagation. Naturally,
different types of wireless channels have different degrees of nonstationarity.

Even though many wireless communication channels are indeed highly nonstationary, the WSSUS
model described in Section 9.4 still provides a reasonably accurate account of the statistical
characteristics of the channel. Elaborate on this statement.

“Space Diversity-on-Receive” Systems

9.10 Following the material presented on Rayleigh fading in Chapter 4, derive the probability density
function of (9.64).

9.11 A receive-diversity system uses a selection combiner with two diversity paths. The outage occurs
when the instantaneous SNR  drops below 0.25av, where av is the average SNR. 

Determine the probability of outage experienced by the receiver.
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9.12 The average SNR in a selection combiner is 20 dB. Compute the probability that the instantaneous
SNR of the selection combiner drops below  = 10 dB for the following number of receive antennas:

a. Nr = 1

b. Nr = 2

c. Nr = 3

d. Nr = 4.

Comment on your results.

9.13 Repeat Problem 9.12 for  = 15 dB.

9.14 In Section 9.8 we derived the optimum values of (9.75) for complex weighting factors of the
maximal-ratio combiner using the Cauchy–Schwartz inequality. 

This problem addresses the same issue, but this time we use the standard maximization procedure.
To simplify matters, the number of diversity paths Nr is restricted to two, with the complex
weighting parameters denoted by a1 and a2. Let

The complex derivative with respect to ak is defined by

Applying this formula to the combiner’s output SNR c of (9.71), derive the optimum  in (9.75).

9.15 As discussed in Section 9.8, an equal-gain combiner is a special form of the maximal-ratio combiner
for which the weighting factors are all equal. For convenience of presentation, the weighting
parameters are set to unity. 

Assuming that the instantaneous SNR  is small compared with the average SNR , derive an
approximate formula for the probability density function of the random variable  represented by
the sample .

9.16 Compare the performances of the following linear “diversity-on-receive” techniques:

a. Selection combiner.

b. Maximal-ratio combiner.

c. Equal-gain combiner.

Base the comparison on signal-to-noise improvement, expressed in decibels for the following
number of diversity branches: Nr = 2, 3, 4, 5, 6.

9.17 Show that the maximum-likelihood decision rule for the maximal-ratio combiner may be formulated
in the following two equivalent forms:

a. If

then choose symbol si over sk.

b. If, by the same token, 

then choose symbol si over sk. Here, d2(y1,si) denotes the squared Euclidean distance between 
the signal points y1 and si.

9.18 It may be argued that, in a rather loose sense, transmit-diversity and receive-diversity antenna
configurations are the dual of each other, as illustrated in Figure P9.18. 
a. Taking a general viewpoint, justify the mathematical basis for this duality.

ak xk jyk k 1 2=+=


ak

*
--------

1
2
--- 

xk
-------- j


yk
--------+ 

  k 1 2==

mrc

 av




1
2 2

2+  si
2 y1si

– y1
si–  1

2 2
2+  sk

2 y1sk
– y1sk–  k i

1
2 2

2
1–+  si

2
d

2
y1 si +  1

2 2
2

1–+  sk
2

d
2

y1 sk +  k i

Haykin_ch09_pp3.fm  Page 571  Friday, January 4, 2013  4:58 PM

https://hemanthrajhemu.github.io



572 Chapter 9 Signaling over Fading Channels

b. However, we may cite the example of frequency-division diplexing (FDD) for which, in a strict
sense, we find that the duality depicted in Figure P9.18 is violated. How is it possible for the
violation to arise in this example?

“Space Diversity-on-Transmit” Systems

9.19 Show that the two-by-two channel matrix in (9.88), defined in terms of the multiplicative fading

factors    and , is a unitary matrix, as shown by

9.20 Derive the formula for the average probability of symbol error incurred by the Alamouti code. 

9.21 Figure P9.22 shows the extension of orthogonal space–time codes to the Alamouti code, using two
antennas on both transmit and receive. The sequence of signal encoding and transmissions is
identical to that of the single-receiver case of Figure 9.18. Part a of the table below defines the
channels between the transmit and receive antennas. Part b of the table defines the outputs of the
receive antennas at times  and , where T is the symbol duration.  
a. Derive expressions for the received signals , and , including the respective additive

noise components expressed in terms of the transmitted symbols.

b. Derive expressions for the line of combined outputs in terms of the received signals.

c. Derive the maximum-likelihood decision rule for the estimates  and . 

9.22 This problem explores a new interpretation of the Alamouti code. Let

Figure P9.18
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where  and  are both real numbers. The complex entry  in the 2-by-2 Alamouti code is
represented by the 2-by-2 real orthogonal matrix

Likewise, the complex-conjugated entry  is represented by the 2-by-2 real orthogonal matrix

a. Show that the 2-by-2 complex Alamouti code S is equivalent to the 4-by-4 real transmission
matrix

Figure P9.22
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574 Chapter 9 Signaling over Fading Channels

b. Show that S4 is an orthogonal matrix.

c. What is the advantage of the complex code S over the real code S4?

9.23 For two transmit antennas and simple receive antenna, the Alamouti code is said to be the only
optimal space–time block. Using the log-det formula of (9.117), justify this statement.

9.24 Show that the channel capacity of the Alamouti code is equal to the sum of the channel capacities of
two SISO systems with each one of them operating at half the original bit rate.

MIMO Wireless Communications

9.25 Show that, at high SNRs, the capacity gain of a MIMO wireless communication system with the
channel state known to the receiver is N = min{Nt,Nr} bits per second per hertz for every 3 dB
increase in SNR.

9.26 To calculate the outage probability of MIMO systems, we use the complementary cumulative distri-
bution function of the random channel matrix H rather than the cumulative probability function itself. 

Explain this rationale for calculating the outage probability.

9.27 Equation (9.120) defines the formula for the channel capacity of diversity-on-receive channel.

In Section 9.8 we pointed out that the selection combiner is a special case of the maximal-ratio
combiner. Using (9.120), formulate an expression for the channel capacity of wireless diversity
using the selection combiner.

9.28 For the special case of a MIMO system having Nt = Nr = N, show that the ergodic capacity of the
system scales linearly, rather than logarithmically, with increasing SNR as N approaches infinity.

9.29 In this problem we continue with the solution to Problem 9.28, namely

            as 

where Nt = Nr = N and  is the average eigenvalue of the matrix produced . What is
the value of the constant?

a. Justify the asymptotic result given in (9.119); that is,

b. What conclusion can you draw from this asymptotic result?

9.30 Suppose that an additive, temporally stationary, Gaussian interference v(t) corrupts the basic
complex channel model of (9.105). The interference v(t) has zero mean and correlation matrix Rv.
Evaluate the effect of the interference v(t) on the ergodic capacity of the MIMO link.

9.31 Consider a MIMO link for which the channel may be considered to be essentially “constant for k
users of the channel.”

a. Starting with the basic channel model of (9.105), formulate the input–output relationship of this
link with the input being described by the Nr-by-k matrix

b. How is the log-det capacity formula of the link correspondingly modified?

9.32 In a MIMO channel, the ability to exploit space-division multiple-access techniques for spectrally
efficient wireless communications is determined by the rank of the complex channel matrix H. (The
rank of a matrix is defined by the number of independent columns in the matrix.) For a given (Nt, Nr)
antenna configuration, it is desirable that the rank of H equal the minimum one of Nt transmit and Nr
receive antennas, for it is only then that we are able to exploit the full potential of the MIMO antenna

C
av

2elog
------------- 
   N 

av HH† H†H=

C
N
---- constant

S s1 s2  sk   =

Haykin_ch09_pp3.fm  Page 574  Friday, January 4, 2013  4:58 PM

https://hemanthrajhemu.github.io



Notes 575

configuration. Under special conditions, however, the rank of the channel matrix H is reduced to
unity, in which case the scattering (fading) energy flow across the MIMO link is effectively confined
to a very narrow pipe, and with it, the channel capacity is severely degraded.

Under the special conditions just described, a physical phenomenon known as the keyhole channel or
pinhole channel is known to arise. Using a propagation layout of the MIMO link, describe how this
phenomenon can be explained.

OFDMA and CDMA

9.33 Parts a and b of Figure 9.31 show the block diagrams of the transmitter and receiver of an OFDM
system, formulated on the basis of digital signal processing. It is informative to construct an analog
interpretation of the OFDM system, which is the objective of this problem.

a. Construct the analog interpretations of parts a and b in Figure 9.31.

b. With this construction at hand, compare the advantages and disadvantages of the digital and
analog implementations of OFDM.

9.34 Figure P9.34 depicts the model of a DS/BPSK system, where the order of spectrum spreading and
BPSK in the actual system has been interchanged; this is feasible because both operations are linear.
For system analysis, we build on signal-space theoretic ideas of Chapter 7, using this model and
assuming the presence of a jammer at the receiver input. Thus, whereas signal-space representation of
the transmitted signal, x(t), is one-dimensional, that of the jammer, j(t), is two-dimensional.

a. Derive the processing gain formula of (9.125).

b. Next, ignoring the benefit gained from coherent detection, derive the SNR formula of (9.126).

Notes

1. Local propagation effects are discussed in Chapter 1 of the classic book by Jakes (1974). For a
comprehensive treatment of this subject, see the books by Parsons (2000) and Molisch (2011).

2. Bessel functions are discussed in Appendix C.

3. To be precise, we should use the terminology “autocorrelation” function rather then “correlation”
function as we did in Section 9.3. However, to be consistent with the literature, hereafter we use the
terminology “correlation function” for the sake of simplicity.

4. On the basis of many measurements, the power-delay profile may be approximated by the one-
sided exponential functions (Molisch, 2011):

For a more generic model, the power-delay profile is viewed as the sum of several one-sided
exponential functions representing multiple clusters of interacting objects, as shown by

Figure P9.34
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where Pi, , and  are respectively the power, delay, and delay spread of the ith cluster.

5. The approximate approach described in Section 9.5 follows Van Trees (1971).

6. The complex tap-coefficient  is also referred to as the tap-gain or tap-weight.

7. The chi-squared distribution with two degrees of freedom is described in Appendix A.

8. The term “maximal-ratio combiner” was coined in a classic paper on linear diversity combining
techniques by Brennan (1959).

9. The three-point exposition presented in this section on maximal-ratio combining follows the
chapter by Stein in Schwartz et al. (1966: 653–654).

10. The idea of MIMO for wireless communications was first described in the literature by Foschini
(1996). In the same year, Teletar (1996) derived the capacity of multi-antenna Gaussian channels in
a technical report.

11. As a result of experimental measurements, the model is known to be decidedly non-Gaussian
owing to the impulsive nature of human-made electromagnetic interference and natural noise.

12. Detailed derivation of the ergodic capacity in (9.115) is presented in Appendix E.

13. The idea of OFDM has a long history, dating back to Chang (1966). Then, Weinstein and Ebert
(1971) used the FFT algorithm and guard intervals for the first digital implementation of OFDM.
The first use of OFDM for mobile communications is credited to Cemini (1985).

In the meantime, OFDM has developed into an indispensable tool for broadband wireless
communications and digital audio broadcasting.

14. The literature on spread spectrum communications is enormous. For classic papers on spread
spectrum communications, see the following two:

• The paper by Scholtz (1982) describes the origins of spread spectrum communications.

• The paper by Pickholtz, et al. (1982) addresses the fundamentals of spread spectrum
communications.

15. The Walsh–Hadamard sequences (codes) are named in honor of two pioneering contributions:

• Joseph L. Walsh (1923) for finding a new set of orthogonal functions with entries .

• Jacques Hadamard (1893) for finding a new set of square matrices also with entries , which
had all their rows (and columns) orthogonal.

For more detailed treatments of these two papers, see Harmuth (1970), and Seberry and Yamada
(1992), respectively.

16. To be rigorous mathematically, we should speak of the matrices A and B to be over the Galois
field, GF(2). To explain, for any prime p, there exists a finite field of p elements, denoted by GF(P).
For any positive integer b, we may expand the finite field GF(p) to a field of pb elements, which is
called an extension field of GF(p) and denoted by GF(pb). Finite fields are also called Galois fields in
honor of their discoverer.

Thus, for the example of (9.129), we have a Galois field of p = 2 and thus write GF(2).
Correspondingly, for the H4 in (9.130) we have the Galois field GF(22) = GF(4)

17. The original papers on Gold sequences are Gold (1967, 1968). A detailed discussion of Gold
sequences is presented in Holmes (1982).

18. The classic paper on the RAKE receiver is due to Price and Green (1958). For a good treatment
of the RAKE receiver, more detailed than that presented in Section 9.15, see Chapter 5 in the book
by Haykin and Mohr (2005). For application of the RAKE receiver in CDMA, see the book by
Viterbi (1995).
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