

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to
Embedded Systems

Shibu KV

Technical Architect

Mobility & Embedded Systems Practice

Infosys Technologies Ltd.,

Trivandrum Unit, Kerala

Me
Graw
Hill
Education

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices
New Delhi New York St Louis San Francisco Auckland Bogota Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

https://hemanthrajhemu.github.io

Preface

Acknowledgements

Part 1
Embedded System: Understanding the Basic Concepts

1. Introduction to Embedded Systems
1.1 What is an Embedded System? 4

1.2 Embedded Systems vs. General Computing Systems 4

1.3 Ehstory of Embedded Systems 5

1.4 Classification of Embedded Systems 6
1.5 Major Application Areas of Embedded Systems 7

1.6 Purpose of Embedded Systems 8
1.7 ‘ Smart’ Running Shoes from Adidas—The Innovative Bonding of

Lifestyle with Embedded Technology 11

Summary 13

Keywords 13

Objective Questions 14

Review Questions 14

2. The Typical Embedded System
2.1 Core of the Embedded System 17

2.2 Memory 28

2.3 Sensors and Actuators 35

2.4 Communication Interface 45

2.5 Embedded Firmware 59

2.6 Other System Components 60

2.7 PCB and Passive Components 64

Summary 64

Keywords 65

https://hemanthrajhemu.github.io

d

3,

Introduction to Embedded Systems

v LEARNING OBJECTIVES

ossification pf
e domains and arec

S Understand the different pu
/ Analysis of a real life examp

m
« -V :• S, " 1 - 1 * S ' > ‘ 1 U V? .

•. - -.' .■■■•....■■ -: : v.; • ' . .. - .' ■ -,:.. - • ';. .

nplexity and the era in which they evolved

ending of embedded technology with human life

Our day-to-day life is becoming-more and more dependent on “embedded systems” and digital
techniques. Embedded technologies are bonding into our daily activities even without our knowledge.
Do you know the fact that the refrigerator, washing machine, microwave oven, air conditioner, televi¬
sion, DVD players, and music systems that we use in our home are built around an embedded system?
You may be traveling by a.‘Honda’ or a ‘Toyota’ or a ‘Ford’ vehicle, but have you ever thought of the
genius players working behind the special features and security systems offered by the vehicle to you? It
is nothing but an intelligent embedded system. In your vehicle itself the presence of specialised embed¬
ded systems vary from intelligent head lamp controllers, engine controllers and ignition control systems
to complex air bag control systems to protect you in case of a severe accident. People experience the
power of embedded systems and enjoy the features and comfort provided by them. Most of us are to¬
tally unaware or ignorant of the intelligent embedded systems giving us so much comfort and security.
Embedded systems are like reliable servants-they don’t like to reveal their identity and neither they
complain about their workloads to their owners or bosses. They are always sitting in a hidden place and
are dedicated to their assigned task till their last breath. This book gives you an overview of embedded
systems, the various steps involved in their design and development,alpd the major domains where they
are deployed.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

1.1 WHAT IS AN EMBEDDED SYSTEM?_,,

An embedded system is an electronic/electro-mechanical system designed to perform a specific function
and is a combination of both hardware and firmware (software).

Every embedded system is unique, and the hardware as well as the firmware is highly specialised to
the application domain. Embedded systems are becoming an inevitable part of any product or equip¬
ment in all fields including household appliances, telecommunications, medical equipment, industrial
control, consumer products, etc.

1.2 EMBEDDED SYSTEMS vs. GENERAL COMPUTING SYSTEMS

The computing revolution began with the general purpose computing requirements. Later it was realised
that the general computing requirements are not sufficient for the embedded computing requirements.
The embedded computing requirements demand ‘something special’ in terms of response to stimuli,
meeting the computational deadlines, power efficiency, limited memory availability, etc. Let’s take the
case of your personal computer, which may be either a desktop PC or a laptop PC or a palmtop PC. It
is built around a general purpose processor like an Intel® Centrino or a Duo/Quadt core or an AMD
Turion™ processor and is designed to support a set of multiple peripherals like multiple USB 2.0
ports, Wi-Fi, ethemet, video port, IEEE1394, SD/CF/MMC external interfaces, Bluetooth, etc and with
additional interfaces like a CD read/writer, on-board Hard Disk Drive (HDD), gigabytes of RAM, etc.
You can load any supported operating system (like Windows® XP/Vista/7, or Red Hat Linux/Ubuntu
Linux, UNIX etc) into the hard disk of your PC. You can write or purchase a multitude of applications
for your PC and can use your PC for running a large number of applications (like printing your dear’s
photo using a printer device connected to the PC and printer software, creating a document using Micro¬
soft® Office Word tool, etc.) Now let us think about the DVD player you use for playing DVD movies.
Is it possible for you to change the operating system of your DVD? Is it possible for you to write an ap¬
plication and download it to your DVD player for executing? Is it possible for you to add a printer soft¬
ware to your DVD player and connect a printer to your DVD player to take a printout? Is it possible for
you to change the functioning of your DVD player to a television by changing the embedded software?
The answers to all these questions are ‘NO’. Can you see any general purpose interface like Bluetooth or
Wi-Fi on your DVD player? Of course ‘NO’. The only interface you can find out on the DVD player
is the interface for connecting the DVD player with the display screen and one for controlling the
DVD player through a remote (May be an IR or any other specific wireless interface). Indeed your
DVD player is an embedded system designed specifically for decoding digital video and generat¬
ing a video signal as output to your TV or any other display screen which supports the display inter¬
face supported by the DVD Player. Let us summarise our findings from the comparison of embedded
system and general purpose computing system with the help of a table:

General Pnipose CompolitigJSyiitclih^', W1 ‘ Embedded System,

A system which is a combination of a generic hardware A system which is a combination of special purpose

and a General Purpose Operating System for executing a hardware .and embedded OS for executing a specific set

variety of applications ,of applications

Contains a General Purpose Operating System (GPOS) May or may hot contain an operating : system; for

:;r . > functioning -- ' A "'*? ***’

tThe illustration given here is based on the processor details available till Dec 2008. Since processor technology is undergoing rapid

changes, the processor names mentioned here may not be relevant in future.

https://hemanthrajhemu.github.io

Wcwiftvi

>k-:d ti't (>:■ •ietcnariurti ;< *-*iv.utk>n hcbavf.'u tatecatirw N*ha^>w !-, tk^roir.i^i^ tv certafi. typo .-t

embedded systems -d;c 'Hard Refit Tmio’ kystenfs

However, the demarcation between desktop systems and embedded systems in certain areas of
embedded applications are shrinking in certain contexts. Smart phones are typical examples of this.
Nowadays smart phones are available with RAM up to 256 MB and users can extend most of their
desktop applications to the smart phones and it waives the clause “Embedded systems are designed for
a specific application” from the characteristics of the embedded system for the mobile embedded device
category. However, smart phones come with a built-in operating system and it is not modifiable by the
end user. It makes the clause: “The firmware of the embedded system is unalterable by the end user”,
still a valid clause in the mobile embedded device category.

RY OF EMBEDDED SYS'

Embedded systems were in existence even before the IT revolution. In the olden days embedded systems
were built around the old vacuum tube and transistor technologies and the embedded algorithm was
developed in low level languages. Advances in semiconductor and nano-technology and IT revolution
gave way to the development of miniature embedded systems. The first recognised modem embedded
system is the Apollo Guidance Computer (AGC) developed by the MIT Instrumentation Laboratory for
the lunar expedition. They ran the inertial guidance systems of both the Command Module (CM) and.
the Lunar Excursion Module (LEM). The Command Module was designed to encircle the moon while
the Lunar Module and its crew were designed to go down to the moon surface and land there safely. The
Lunar Module featured in total 18 engines. There were 16 reaction control thrusters, a descent engine
and an ascent engine. The descent engine was ‘designed to’ provide thrust to the lunar module out of
the lunar orbit and land it safely on the moon. MIT’s original design was based on 4K words of fixed
memory (Read Only Memory) and 256 words of erasable memory (Random Access Memory). By June
1963, the figures reached 10K of fixed and IK of erasable memory. The final configuration was 36K
words of fixed memory and 2K words of erasable memory. The clock frequency of the. first microchip
proto model used in AGC was 1.024 MHz and it was derived from a 2.048 MHz crystal clock. The
computing unit of AGC consisted of approximately 11 instructions and 16 bit word logic. Around 5000
ICs (3-input NOR gates, RTL logic) supplied by Fairchild Semiconductor were used in this design. The
user interface unit of AGC is known as DSKY (display/keyboard). DSKY looked like a calculator type
keypad with an array of numerals. It was used for inputting the commands to the module numerically.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The first mass-produced embedded system was the guidance computer for the Minuteman-I mis¬
sile in 1961. It was the ‘Autonetics D-l7 guidance computer, built using discrete transistor logic and a
hard-disk for main memory. The first integrated circuit was produced in September 1958 but comput¬
ers using them didn’t begin to appear until 1963. Some of their early uses were in embedded systems,
notably used by NASA for the Apollo Guidance Computer and by the US military in the Minuteman-II
intercontinental ballistic missile.

It is possible to have a multitude of classifications for embedded systems, based on different criteria.
Some of the criteria used in the classification of embedded systems are:

1. Based on generation
2. Complexity and performance requirements
3. Based on deterministic behaviour
4. Based on triggering.

The classification based on deterministic system behaviour is applicable for ‘Real Time’ systems.
The application/task execution behaviour for an embedded system can be either deterministic or non-
deterministic. Based on the execution behaviour, Real Time embedded systems are classified into Hard

and Soft. We will discuss about hard and soft real time systems in a later chapter. Embedded Systems
which are ‘Reactive’ in nature (Like process control systems in industrial control applications) can be
classified based on the trigger. Reactive systems can be either event triggered or time triggered.

1.4.1 Classification Based on Generation

This classification is based on the order in which the embedded processing systems evolved from the
first version to where they are today. As per this criterion, embedded systems can be classified into:

1.4.1.1 First Generation The early embedded systems were built around 8bit microprocessors
like 8085 and Z80, and 4bit microcontrollers. Simple in hardware circuits with firmware developed in
Assembly code. Digital telephone keypads, stepper motor control units etc. are examples of this.

1.4.1.2 Second Generation These are embedded systems built around 16bit microprocessors and
8 or 16 bit microcontrollers, following the first generation embedded systems. The instruction set for
the second generation processors/controllers were much more complex and powerful than the first gen¬
eration processors/controllers. Some of the second generation embedded systems contained embedded
operating systems for their operation. Data Acquisition Systems, SCADA systems, etc. are examples of
second generation embedded systems.

1.4.1.3 Third Generation With advances in processor technology, embedded system developers
started making use of powerful 32bit processors and 16bit microcontrollers for their design. A new con¬
cept of application and domain specific processors/controllers like Digital Signal Processors (DSP) and
Application Specific Integrated Circuits (ASICs) came into the picture. The instruction set of processors
became more complex and powerful and the concept of instruction pipelining also evolved. The proces¬
sor market was flooded with different types of processors from different vendors. Processors like Intel
Pentium, Motorola 68K, etc. gained attention in high performance embedded requirements. Dedicated
embedded real time and general purpose operating systems entered into the embedded market. Embed¬
ded systems spread its ground to areas like robotics, media, industrial process control, networking, etc.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

1.4.1.4 Fourth Generation The advent of System on Chips (SoC), reconfigurable processors and
multicore processors are bringing high performance, tight integration and miniaturisation into the em¬
bedded device market. The SoC technique implements a total system on a chip by integrating different
functionalities with a processor core on an integrated circuit. We will discuss about SoCs in a later chap¬
ter. The fourth generation embedded systems are making use of high performance real time embedded
operating systems for their functioning. Smart phone devices, mobile internet devices (MIDs), etc. are
examples of fourth generation embedded systems.

1.4.1.5 What Next? The processor and embedded market is highly dynamic and demanding. So
‘what will be the next smart move in the next embedded generation?’ Let’s wait and see.

1.4.2 Classification Based on Complexity and Performance

This classification is based on the complexity and system performance requirements. According to this
classification, embedded systems can be grouped into:

1.4.2.1 Small-Scale Embedded Systems Embedded systems which are simple in application
needs and where the performance requirements are not time critical fall under this category. An elec¬
tronic toy is a typical example of a small-scale embedded system. Small-scale embedded systems are
usually built around low performance and low cost 8 or 16 bit microprocessors/microcontroliers. A
small-scale embedded system may or may not contain an operating system for its functioning.

1.4.2.2 Medium-Scale Embedded Systems Embedded systems which are slightly complex
in hardware and firmware (software) requirements fall under this category. Medium-scale embedded
systems are usually built around medium performance, low cost 16 or 32 bit microprocessors/microcon¬
trollers or digital signal processors. They usually contain an embedded operating system (either general,
purpose or real time operating system) for functioning.

1.4.2.3 Large-Scale Embedded Systems/Complex Systems Embedded systems which
involve highly complex hardware and firmware requirements fall under this category. They are em¬
ployed in mission critical applications demanding high performance. Such systems are commonly built
around high performance 32 or 64 bit RISC processors/controllers or Reconfigurable System on Chip
(RSoC) or multi-core processors and programmable logic devices. They may contain multiple proces¬
sors/controllers and co-units/hardware accelerators for offloading the processing requirements from the
main processor of the system. Decoding/encoding of media, cryptographic function implementation,
etc. are examples for processing requirements which can be implemented using a co-processor/hard-
ware accelerator. Complex embedded systems usually contain a-high performance Real Time Operating
System (RTOS) for task scheduling, prioritization and management:

1.5 MAJOR APPLICATION AREAS OF EMBEDDED SYSTEMS_

We are living in a world where embedded systems play a vital role in our day-to-day life, starting from
home to the computer industry, where most of .the people find their job for a livelihood. Embedded
technology has acquired a new dimension from its first generation model, the Apollo guidance computer,
to the latest radio navigation system combined with in-car entertainment technology and the micropro¬
cessor based “Smart” running shoes launched by Adidas in April 2005. The application areas and the
products in the embedded domain are countless. A few of the important domains and products are listed

below:

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

1. Consumer electronics: Camcorders, cameras, etc.
2. Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.
3. Home automation and security systems: Air conditioners, sprinklers, intruder detection alarms,

closed circuit television cameras, fire alanns, etc.
4. Automotive industry: Anti-lock breaking systems (ABS), engine control, ignition systems,

automatic navigation systems, etc.
5. Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.
6. Computer peripherals: Printers, scanners, fax machines, etc.
7. Computer networking systems: Network routers, switches, hubs, firewalls, etc.
8. Healthcare: Different kinds of scanners, EEG, ECG'machines etc.
9. Measurement & Instrumentation: Digital multi meters, digital CROs, logic analyzers PLC

systems, etc.
10. Banking & Retail: Automatic teller machines (ATM) and currency counters, point of sales (POS)
11. Card Readers: Barcode, smart card readers, hand held devices, etc.

1.6 PURPOSE OF EMBEDDED SYSTEMS

As mentioned in the previous section, embedded systems are used in various domains like consumer
electronics, home automation, telecommunications, automotive industry, healthcare, control & instru¬
mentation, retail and banking applications, etc. Within the domain itself, according to the application
usage context, they may have different functionalities. Each embedded system is designed to serve-the
purpose of any one or a combination of the following tasks:

1. Data collection/Storage/Representation
2. Data communication _
3. Data (signal) processing
4. Monitoring
5. Control
6. Application specific user interface

1.6.1 Data Collection/Storage/Representation

Embedded systems designed for the purpose of data collection performs acquisition of data from the
external world. Data collection is usually done for storage, analysis, manipulation and transmission.
The term “data” refers all kinds of information, viz. text, voice, image, video, electrical signals and any
other measurable quantities. Data can be either analog (continuous) or digital (discrete). Embedded sys¬
tems with analog data capturing techniques collect data directly in the form of analog signals whereas
embedded systems with digital data collection mechanism converts the analog signal to corresponding
digital signal using analog to digital (A/D) converters and then collects the binary equivalent of the
analog data. If the data is digital, it can be directly captured without any additional interface by digital
embedded systems.

The collected data may be stored directly in the system or maybe transmitted to some other systems
or it may be processed by the system or it may be deleted instantly after giving a meaningful representa¬
tion. These actions are purely dependent on the purpose for which the embedded system is designed.
Embedded systems designed for pure measurement applications without storage, used in control and

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

instrumentation domain, collects data and gives a meaningful representation of the collected data by
means of graphical representation or quantity value and deletes the collected data when new data arrives
at the data collection terminal. Analog and digital CROs without storage memory are typical examples
of this. Any measuring equipment used in the medical domain for monitoring without storage function¬
ality also comes under this category.

Some embedded systems store the collected data for processing and analysis. Such systems incor¬
porate a built-in/plug-in storage memory for storing the captured data. Some of them give the user a
meaningful representation of the collected data
by visual (graphical/quantitative) or audible
means using display units [Liquid Crystal Dis¬
play (LCD), Light Emitting Diode (LED), etc.]
buzzers, alarms, etc. Examples are: measuring
instruments with storage memory and monitor¬
ing instruments with storage memory used in
medical applications. Certain embedded systems
store the data and will not give a representation
of the same to the user, whereas the data is used
for internal processing.

A digital camera is a typical example of an
. embedded system with data collection/storage/
representation of data. Images are captured and
the captured image may be stored within the
memory of the camera. The captured image can
also be presented to the user through a graphic
LCD unit.

(Fig. l.l] A digital camera for image capturing/ <

storage/display
(Photo courtesy of Casio-Model EXIL1M ex-Z850

(wwwi casio. com))

1.6.2 Data Communication

Embedded data communication systems are deployed in
applications ranging from complex satellite communi¬
cation systems to simple home networking systems. As
mentioned earlier in this chapter, the data collected by an
embedded terminal may require transferring of the same
to some other system located remotely. The transmission
is achieved either by a wire-line medium or by a wire¬
less medium. Wire-line medium was the most common
choice in all olden days embedded systems. As technolo¬
gy is changing, wireless medium is becoming the de-facto
standard for data communication in embedded systems.
A wireless medium offers cheaper connectivity solutions
and make the communication link free from the hassle of
wire bundles. Data can eithet be transmitted by analog
means or by digital means. Modem industry trends are
settling towards digital communication.

The data collecting embedded terminal itself can
incorporate data communication units like wireless

('Fig. 1.2) A wireless network router for data

communication
(Photo courtesy of Linksys

(wvnv.Hnksys.com). A division of CISCO

system) https://hemanthrajhemu.github.io

Introduction to Embedded Systems

1.6.3 Data (Signal) Processing

As mentioned earlier, the data (voice, image, video, elec¬
trical signals and other measurable quantities) collected
by embedded systems may be used for various kinds of
data processing. Embedded systems with signal process¬
ing functionalities are employed in applications demand¬
ing signal processing like speech coding, synthesis, audio
video codec, transmission applications, etc.

A digital hearing aid is a typical example of an embed¬
ded system employing data processing. Digital hearing aid
improves the hearing capacity of hearing impaired persons.

modules (Bluetooth, ZigBee, Wi-Fi, EDGE, GPRS, etc.) or wire-line modules (RS-232C, USB, TCP/IP,
PS2, etc.). Certain embedded systems act as a dedicated transmission unit between the sending and
receiving terminal's, offering sophisticated functionalities like data packetizing, encrypting and decrypt¬
ing. Network hubs, routers, switches, etc. are typical examples of dedicated data transmission embedded
systems. They act as mediators in data communication and provide various features like data security,
monitoring etc.

1.6.4 Monitoring [‘Fig-1-3) A digital hearing aid employing

(Siemens TRIANO 3 Digital hearing:aid;l- i '

Siemens Audiology Copyright© 2005). ^ •

Embedded systems falling under this category are spe¬
cifically designed for monitoring purpose. Almost all
embedded products coming under the medical domain are
with monitoring functions only. They are used for determining the state of some variables using input
sensors. They cannot impose control over variables. A very good example is the electro cardiogram
(ECG) machine for monitoring the heartbeat of a patient. The machine is intended to do the monitoring
of the heartbeat. It cannot impose control over the
heartbeat. The sensors used in ECG are the different
electrodes connected to the patient’s body.

Some other examples of embedded systems with
monitoring function are measuring instruments like
digital CRO, digital multimeters, logic analyzers,
etc. used in Control & Instrumentation applications.
They are used for knowing (monitoring) the status
of some variables like current, voltage, etc. They
cannot control the variables in turn.

1.6.5 Control

"T.!fg~ w o'
• 23 ‘•. n;-

.' 03

1.w3-7
..•U—'

Sis
m

Embedded systems with control functionalities
impose control over some variables according to the
changes in input variables. A system with control
functionality contains both sensors and actuators.
Sensors are connected to the input port for capturing

[Fig. 1.4) A patient monitoring system for

monitoring heartbeat
(Photo courtesy of Philips Medical Systems

(www.medicalphilips.com/))

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the changes in environmental variable or measuring variable. The actuators connected to the output port

are controlled according to the changes in input variable to put an impact on the controlling variable to
bring the controlled variable to the specified range.

Air conditioner system used in our home to control the room temperature to a specified limit is a typi¬
cal example for embedded system for control purpose. An airconditioner contains a room temperature¬

sensing element (sensor) which may be a therm¬

istor and a handheld unit for setting up (feeding)

the desired temperature. The handheld unit may
be connected to the central embedded unit resid¬

ing inside the airconditioner through a wireless link

or through a wired link. The air compressor unit

acts as the actuator. The compressor is controlled
according to the current room temperature and the

desired temperature set by the end user.

Here the input variable is the current room tem¬

perature and the controlled variable is also the room
temperature. The controlling variable is cool air flow by the compressor unit. If the controlled variable

and input variable are not at the same value, the controlling variable tries to equalise them through

taking actions on the cool air flow.

ESG21HR1A

[Fig. l.s) “An Airconditioner for controlling room

temperature. Embedded System with

Control functionality” ^ ° “
(Photo courtesy cf Electrolux Corporation _

(www.electrblux.com/au))

1.6.6 Application Specific User Interface

These are embedded systems with application-specific user
interfaces like buttons, switches, keypad, lights, bells, display
units, etc. Mobile phone is an example for this. In mobile phone
the user interface is provided through the keypad, graphic LCD
module, system speaker, vibration alert, etc.

1.2 ‘SMART’RUNNING SHOES FROM
ADIDAS—THE INNOVATIVE BOND-

;#« n - ••• ■ q® - -

ING OF LIFESTYLE WITH EMBEDDED
*. ■■ <'.' ■- . i"- 7®' ,.® ■ ®®®v

TECHNOLOGY
.

After three years of extensive research work, Adidas launched
the “Smart” running shoes in the market inApril 2005. The term
“Smart Shoe” may sound gimmicky. But adaptive cushioning
provided by the shoe makes sense, and the design engineer¬
ing behind the shoes is very impressive. The shoe constantly
adapts its shock-absorbing characterises to customize its value/
to the individual runner, depending oh the running style, pace,
body weight, and running surface. The shoe uses a magnetic
sensing system to measure cushioning level, which is adjusted
via a digital signal processing unit that controls a motor-driven
cable system.

| Fig. 1.6 An embedded system with

an application-specific user

interface
(Photo courtesy of Nokia

Mobile Handsets (www.nokia.com))

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

A hall effect sensor is positioned at the top of the “cushioning element”, and the magnet is placed at
the bottom of the element. As the cushioning compresses on each impact, the sensor measures the dis¬
tance from top to bottom of mid-sole (accurate to 0.1 mm). About 1000 readings per second are taken
and relayed to the shoe’s microprocessor. The Microprocessor (MPU) is positioned under the arch of
the shoe. It runs an algorithm that compares the compression messages received from the sensor to a
preset range of proper cushioning levels, so it understands if the shoe is too soft or too firm. Then the
MPU sends a command to a micro motor, housed in the mid-foot. The micro motor turns a lead screw
to lengthen or shorten a cable secured to the walls of a plastic-cushioning element. When the cable is
shortened, the cushioning element is pulled taut and compresses very little. A longer cable allows for
a more cushioned feel. A replaceable 3-V battery powers the motor and lasts for about 100 hours of
running.

The Portland, Ore-based Adidas Innovation Team that developed the shoe was led by Christian
DiBenedetto. It also included electromechanical engineer Mark Oleson, as well as a footwear developer
and two industrial designers. Oleson explains that the teain chose a magnetic sensor because it could
measure the amount of compression in addition to the time it took to reach full compression. Gather¬
ing sensor data, he says, meant little without building a comparative “running context”. So one of the
first steps in developing the MPU algorithms was building this database. Runners wore test shoes that
gathered information about various compression levels during a run. Then the runners were interviewed
to learn their thoughts about the different cushion
levels. “When the two matched up, that helped
validate our sensor,” says Oleson.

Adaptations in the cushioning element account
for the change of running surface and pace of the
runner, and they’re made gradually over an aver¬
age of four running steps. The goal is for the run¬
ner not to feel any sudden changes. Adaptations
are made during the “swing” phase rather than the
“stance” phase of the stride (i.e. when the foot is
off the ground). If the shoe’s owner prefers a more
cushioned or a firmer “ride,” adjustments can be
made via “+” and buttons that also activate the
intelligent functions of the shoe.

LED indicators confirm when the electronics
are turned on (The lights do not remain on when
the shoes are in use). If the shoes aren’t turned on,
they operate like old-fashioned “manual” running
shoes. The shoes turn off if their owner is either
inactive or at a walking pace for 10 minutes.

Source Electronic Design
www.electronicdesign.com/Articles/Index.
cfm?AD=l&ArticleID=10113

Electronics-enabled “Smart” running

shoes from Adidas

Re-printed with permission (Photo courtesy of Adidas - Salomon AC

(www.adidas.com))

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

~ Summary

V An embedded system is an Electronic/Electro-mechanicaLsystem designed to perform a specific function and is

a combination of both hardware and firmware (Software). :f' A A ; E •'

A A general, purpose computing system is a combination of generic ■ hardware and general purpose operating

system for executing a variety of applications, whereas an embedded system is a combination of special purpose

hardware-and embedded OS/firmware for executing a specific set of applications. g':;, (U '.l-

S Based on the complexity and performance requirements, embedded systems are classified into small-scale,

medium-scale and large-scale/complex.

V The presence of embedded systems vary from simple-electronic toys to complex flight and missile control

systems. . ?■. - -" , * - k ,Vj- ■
V Embedded systems are designed to serve the purpose of any one or a combination of data collection/storage/

representation, data communication, data (signal) processing, monitoring, control or application specific user

interface. !: -

Keywords

Embedded system

Microprocessor

Microcontroller

Sensor

Actuator

Buzzer

Operating system

Electro Cardiogram

(ECG)

SCADA

An electronie/electro-mechanical system which is designed to perform a specific function and

is a combination of both hardware and firmware ‘ . , ' '

A silicon chip representing a Central Processing Unit (CPI!) .

A highly integrated chip that contains a CPU, scratchpad RAM. special and general purpose

register arrays and integrated peripherals

Digital Signal Processor is a powerful special purpose 8/16/32 bit microprocessor designed

specifically to meet the computational demands and power constraints V: •;

Application Specific Integrated Circuit is a microchip designed to perform a specific or unique

application

A transducer device that converts energy from one form to another for any measurement or

control purpose

A form of transducer device (mechanical or electrical) which converts signals to correspond¬

ing physical action (motion) •

Light Emitting Diode. An output device producing visual indication in the form of light in

accordance with current flow

Apiezo-electric device for generating audio indication. It contains a piezo-electric diaphragm

which produces audible sound in response to the voltage applied to it

A piece of software designed to manage and allocate system resources and execute other

pieces of software

An embedded device for heartbeat monitoring

Supervisory Control and Data Acquisition System. A data acquisition system used in indus¬

trial control applications

Random Access memory. Volatile memory

: Analog to Digital Converter. An integrated circuit which converts analog signals to digital

form

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Bluetooth : A low cost, low power, short range wireless technology for data and voice communication

' : ^beless'Eidelity is'the popular wireless communication technique for networked communis

cation of devices

Objective Questions

1. Embedded systems are

(a) General purpose (b) Special purpose

2. Embedded system is

(a) An electronic system • (b) A pure mechanic,

(c) An electro-mechanical system (d) (a) or (c)

3. Which of the following is not hue about embedded systems?

(a) Built around specialised hardware (b) Always contain a

(c) Execution behaviour may be deterministic (d) All of these

(e) None of these

4. Which of the following is not an example of a ‘Small-scale Embedded System’?

(b) A pure mechanical system

(d) (a)or(c)

(b) Always contain an operating system

(d) All of these

(a) Electronic Barbie doll (b) Simple calculator

(c) Cell phone (d) Electronic toy car

5. The first recognised modem embedded system is

(a) Apple Computer (b) Apollo Guidance Computer (AGC)

(c) Calculator (d) Radio Navigation System

6. The first mass produced embedded system is

(a) Minuteman-I (b) Minuteman-II

(c) Autonetics D-17 (d) Apollo Guidance Computer (AGC)

7. Which of the following is (are) an intended purpose(s) of embedded systems?

(a) Data collection (b) Data processing (c) Data communication

(d) All of these (e) None of these

8. Which of the following is an (are) example(s) of embedded system for data communication?

(a) USB Mass storage device (b) Network router

(c) Digital camera (d) Music player

(e) All of these (f) None of these

9. A digital multi meter is an example of an embedded system for

(a) Data communication (b) Monitoring (c) Control (d) All of

(e) None of these

10. Which of the.following is an (are) example(s) of an embedded system for signal processing?

(a) Apple iPOD (media player device) (b) SanDisk USB mass storage device

(c) Both (a) and (b) (d) None of these

(d) All of these

1. What is an embedded system? Explain the different applications of embedded systems.

2. Explain the various purposes of embedded systems in detail with illustrative examples.

3. Explain the different classifications of embedded systems. Give an example for each.

https://hemanthrajhemu.github.io

The Typical Embedded System

' LEARNING OBJECTIVES

/ Learn the building blocks of a typical Embedded System •> ' ;V:F,f1 .■
; [earn about General-Purpose Processors (GPPs), Application Specific Instruction Set Processors (ASIPs), Micropro-

cessdrs, Microcontrollers, Digital Signal Processors, RISC & CISC processors,- Harvard and-Von-Neumann Processor
Architecture, Big-endian v/s Little endian processors, Load Store:operation and Instruction pipelining

PS Learn about different PLDs like Complex Programmable Logic Devices (CPLDs), Field Programmable Gate Arrays
(FPGAs), etc. . ' i ifcP,

f** Learn about the different memory technologies and memory types used in^embedded system development ,

✓ learn about Masked ROM (MROM), PROM, OTP, EPROM, EL PROM and FLASH memory for embedded firmware storage
■ / Learn about Serial Access Memory (SAM), Static Random'Access Memory (SRAM), Dynamic Random Access Memory

(DRAM) and Nonvolatile SRAM (NVRAM)
S Understand the'different factors to be considered in the selection of memory for embedded systems
/ Understand the role of sensors, actuators and their interfacing with the I/O subsystems of an embedded system
/ Learn about the interfacing of LEDs, 7-segment LED Displays, Piezo Buzzer, Stepper Motor,- Relays, Optocouplers,

Matrix keyboard, Push button switches, Programmable Peripheral Interface Device (e.g. 8255 PPI), etc.-with the
I/O subsystem of the embedded system \

M Learn about the different communication interfaces of an embedded system
S Understand the various chip level communication interfaces like I2C, SPI, UART, 1-wire, parallel bus, etc.
M Understand the different wired and wireless external communication interfaces like RS-232C, RS-485, Parallel Port,

USB, IEEE1394, Infrared (IrDA), Bluetooth, Wi-Fi, ZigBee, GPRS, etc.
Z Know what embedded firmware is and its role in embedded systems
Z Understand the different system components like Reset Circuit, Brown-out protection circuit, Oscillator Unit, Real-

Time Clock (RTC) and Watchdog Timer unit
■M Understand the role of PCB in embedded systems

A typical embedded system (Fig. 2.1) contains a single chip controller, which acts as the master brain
of the system. The controller can be a Microprocessor' (e.g. Intel 8085) or a microcontroller (e.g. Atmel
AT89C51) or a Field Programmable Gate Array (FPGA) device (e.g. Xilinx Spartan) or a Digital Signal
Processor (DSP) (e.g. Blackfin® Processors from Analog Devices) or an Application Specific Integrated

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

FPGA/ASIC/DSP/SoC
Microprocessor/controller

Embedded
Firmware

Real World

['Fig -2, l) Elements of an embedded system

Circuit (ASIC)/Application Specific Standard Product (ASSP) (e.g. ADE7760 Single Phase Energy
Metreing IC from) Analog Devices for energy metering applications).

Embedded hardware/software systems are basically designed to regulate a physical variable or to ma¬
nipulate the state of some devices by sending some control signals to the Actuators or devices connected
to the O/p ports of the system, in response to the input signals provided by the end users or Sensors
which are connected to the input ports. Hence an embedded system can be viewed as a reactive system.
The control is achieved by processing the information coming from the sensors and user interfaces, and
controlling some actuators that regulate the physical variable.

Key boards, push button switches, etc. are examples for common user interface input devices where¬
as LEDs, liquid crystal displays, piezoelectric buzzers, etc. are examples for common user interface
output devices for a typical embedded system. It should be noted that it is not necessary that all embed¬
ded systems should incorporate these I/O user interfaces. It solely depends on the type of the application
for which the embedded system is designed. For example, if the embedded system is designed for any
handheld application, such as a mobile handset application, then the system should contain user inter¬
faces like a keyboard for performing input operations and display unit for providing users the status of
various activities in progress.

Some embedded systems do not require any manual intervention for their operation. They automati¬
cally sense the variations in the input parameters in accordance with the changes in the real world, to
which they are interacting through the sensors which are connected to the input port of the system. The

https://hemanthrajhemu.github.io

The Typical Embedded System

sensor information is passed to the processor after signal conditioning and digitisation. Upon receiving
the sensor data the processor or brain of the embedded system performs some pre-defined operations
with the help of the firmware embedded in the system and sends some actuating signals to the actua¬
tor connected to the output port of the embedded system, which in turn acts on the controlling variable
to bring the controlled variable to the desired level to make the embedded system work in the desired
manner.

The Memory of the system is responsible for holding the control algorithm and other important con¬
figuration details. For most of embedded systems, the memory for storing the algorithm or configuration
data is of fixed type, which is a kind of Read Only Memory (ROM) and it is not available for the end
user for modifications, which means the memory is protected from unwanted user interaction by imple¬
menting some kind of memory protection mechanism. The most common types of memories used in
embedded systems for control algorithm storage are OTP, PROM, UVEPROM, EEPROM and FLASH.
Depending on the control application, the memory size may vary from a few bytes to megabytes. We
will discuss them in detail in the coming sections. Sometimes the system requires temporary memory
for performing arithmetic operations or control algorithm execution and this type of memory is known
as “working memory”. Random Access Memory (RAM) is used in most of the systems as the working
memory. Various types of RAM like SRAM, DRAM and NVRAM are used for this purpose. The size
of the RAM also varies from a few bytes to kilobytes or megabytes depending on the application. The
details given under the section “Memory” will give you a more detailed description of the working
memory.

An embedded system without a control algorithm implemented memory is just like a new bom baby.
It is having all the peripherals but is not capable of making any decision depending on the situational as
well as real world changes. Ihe only difference is that the memory of a new bom baby is self-adaptive,
meaning that the baby will tiy to learn from the surroundings and from the mistakes committed. For
embedded systems it is the responsibility of the designer to impart intelligence to the system.

In a controller-based embedded system, the controller may contain internal memory for storing the
control algorithm and it may be an EEPROM or FLASH memory varying from a few kilobytes to mega¬
bytes. Such controllers are called controllers with on-chip ROM, e.g. Atmel AT89C51. Some controllers
may not contain on-chip memory and they require an external (off-chip) memory for holding the control
algorithm, e.g. Intel 8031 AH.

2.1 CORE OFTHE EMBEDDED SYSTEM_

Embedded systems are domain and application specific and are built around a central core. The core of
the embedded system falls into any one of the following categories:

1. General Purpose and Domain Specific Processors
1.1 Microprocessors
1.2 Microcontrollers
1.3 Digital Signal Processors

2. Application Specific Integrated Circuits (ASICs)
3. Programmable Logic Devices (PLDs)
4. Commercial off-the-shelf Components (COTS)
If you examine any embedded system you will find that it is built around any of the core units men¬

tioned above.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.1.1 General Purpose and Domain Specific Processors

Almost 80% of the embedded systems are processor/controller based. The processor may be a micro¬
processor or a microcontroller or a digital signal processor, depending on the domain and application.
Most of the embedded systems in the industrial control and monitoring applications make use of the
commonly available microprocessors or microcontrollers whereas domains which require signal
processing such as speech coding, speech recognition, etc. make use of special kind of digital signal
processors supplied by manufacturers like, Analog Devices, Texas Instruments, etc.

2.1.1.1 Microprocessors A Microprocessor is a silicon chip representing a central processing unit
(CPU), which is capable of performing arithmetic as well as logical operations according to a pre-de-
fined set of instructions, which is specific to the manufacturer. In general the CPU contains the Arith¬
metic and Logic Unit (ALU), control unit and working registers. A microprocessor is a dependent unit
and it requires the combination of other hardware like memory, timer unit, and interrupt controller, etc.
for proper functioning. Intel claims the credit for developing the first microprocessor unit Intel 4004,

a 4bit processor which was released in November 1971. It featured IK data memory, a 12bit program
counter and 4K program memory, sixteen 4bit general purpose registers and 46 instructions. It ran at a
clock speed of 740 kHz. It was designed for olden day’s calculators. In 1972,14 more instructions were
added to the 4004 instruction set and the program space is upgraded to 8K. Also interrupt capabilities
were added to it and it is renamed as Intel 4040. It was quickly replaced in April 1972 by Intel 8008

which was similar to Intel 4040, the only difference was that its program counter was 14 bits wide and
the 8008 served as a terminal controller. In April 1974 Intel launched the first 8 bit processor, the Intel

8080, with 16bit address bus and program counter and seven 8bit registers (A-E,H,L: BC, DE, and HL
pairs formed the 16bit register for this processor). Intel 8080 was the most commonly used processors
for industrial control and other embedded applications in the 1975s. Since the processor required other
hardware components as mentioned earlier for its proper functioning, the systems made out of it were
bulky and were lacking compactness.

Immediately after the release of Intel 8080, Motorola also entered the market with their processor,
Motorola 6800 with a different architecture and instruction set compared to 8080.

In 1976 Intel came up with the upgraded version of 8080-Intel 8085, with two newly added instruc¬
tions, three interrupt pins and serial I/O. Clock generator and bus controller circuits were built-m and
the power supply part was modified to a single +5 V supply.

In July 1976 Zilog entered the microprocessor market with its Z80 processor as competitor to Intel.

Actually it was designed by an ex-Intel designer, Frederico Faggin and it was an improved version of
Intel’s 8080 processor, maintaining the original 8080 architecture and instruction set with an 8bit data
bus and a 16bit address bus and was capable of executing all instructions of 8080..It included 80 more
new instructions and it brought out the concept of register banking by doubling the register set. Z80 also
included two sets of index registers for flexible design.

Technical advances in the field of semiconductor industry brought a new dimension to the micro¬
processor market and twentieth century witnessed a fast growth in, processor technology. 16, 32 and
64 bit processors came into the place of conventional 8bit processors. The initial 2 MHz clock is now
an old story. Today processors with clock speeds up to 2.4 GHz are available in the market. More and
more competitors entered into the processor market offering high speed, high performance and low cost
processors for customer design needs.

Intel, AMD, Freescale, IBM, TI, Cyrix, Hitachi, NEC, LSI Logic, etc. are the key players in the
processor market. Intel still leads the market with cutting edge technologies in the processor industry.

https://hemanthrajhemu.github.io

The Typical Embedded System

Different instruction set and system architecture are available for the design of a microprocessor.
Harvard and Von-Neumann are the two common system architectures for processor design. Processors
based on Harvard architecture contains separate buses for program memory and data memory, whereas
processors based on Von-Neumann architecture shares a single system bus for program and data memo¬
ry. We will discuss more about these architectures later, under a separate topic. Reduced Instruction Set
Computing (RISC) and Complex Instruction Set Computing (CISC) are the two common Instruction
Set Architectures (ISA) available for processor design. We will discuss the same under-a separate topic
in this section..

2.1.1.2 General Purpose Processor (GPP) vs. Application-Specific Instruction Set Processor
(ASIP) A General Purpose Processor or GPP is a processor designed for general computational tasks.
The processor running inside your laptop or desktop (Pentium 4/AMD Athlon, etc.) is a typical ex¬
ample for general purpose processor. They are produced in large volumes and targeting the general
market. Due to the high volume production, the per unit cost for a chip is low compared to ASIC or
other specific ICs. A typical general purpose processor contains an Arithmetic and Logic Unit (ALU)
and Control Unit (CU). On the other hand, Application Specific Instruction Set Processors (ASIPs)
are processors with architecture and instruction set optimised to specific-domain/application require¬
ments like network processing, automotive, telecom, media applications, digital signal processing, con¬
trol applications, etc. ASIPs fill the architectural spectmm between general purpose processors and
Application Specific Integrated Circuits (ASICs). The need for an ASIP arises when the traditional
general purpose processor are unable to meet the increasing application needs. Most of the embedded
systems are built around application specific instruction set processors. Some microcontrollers (like
automotive AVR, USB AVR from Atmel), system on chips, digital signal processors, etc. are examples
for application specific instruction set processors (ASIPs). ASIPs incorporate a processor and on-chip
peripherals, demanded by the application requirement, program and data memory.

2.1.1.3 Microcon trollers A Microcontroller is a highly integrated chip that contains a CPU, scratch
pad RAM, special and general purpose register arrays, on chip ROM/FLASH memory for program stor¬
age, timer and interrupt control units and dedicated I/O ports. Microcontrollers can be considered as a
super set of microprocessors. Since a microcontroller contains all the necessary functional blocks for
independent working, they found greater place in the embedded domain in place of microprocessors.
Apart from this, they are cheap, cost effective and are readily available in the market.

Texas Instrument’s TMS1000 is considered as the world’s first microcontroller. We cannot say it as a
fully functional microcontroller when we compare it with modem microcontrollers. TI followed Intel’s
4004/4040, 4 bit processor design and added some amount of RAM, program storage memory (ROM)
and I/O support on a single chip, there by eliminated the requirement of multiple hardware chips for
self-functioning. Provision to add custom instructions to the CPU was another innovative feature of
TMS 1000. TMS 1000 was released in 1974.

In 1977 Intel entered the microcontroller market with a family of controllers coming under one
umbrella named MCS-48™ family. The processors came under this family were /8038HL, 8039HL,

8040AHL, 8048H, 8049H and 8050AH. Intel 8048 is recognised as Intel’s first microcontroller and it
was the most prominent member in the MCS-48™^ family. It was used in the original IBM PC key¬
board. The inspiration behind 8048 was Fairchild’s F8 microprocessor and Intel’s goal of developing a
low cost and small size processor. The design of 8048 adopted a tme Harvard architecture where pro¬
gram and data memory shared the same address bus and is differentiated by the related control signals.

^MCS-48™ is a trade mark owned by Intel

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Eventually Intel came out with its most fruitful design in the 8bit microcontroller domain-the 8051

family and its derivatives. It is the most popular and powerful 8bit microcontroller ever built. It was
developed in the 1980s and was put under the family MCS-51. Almost 75% of the microcontrollers
used in the embedded domain were 8051 family based controllers during the 1980—90s. 8051 proces¬
sor cores are used in more than 100 devices by more than 20 independent manufacturers like Maxim,
Philips, Atmel, etc. under the license from Intel. Due to the low cost, wide availability, memory efficient
instruction set, mature development tools and Boolean processing (bit manipulation operation) capabil¬

ity, 8051 family derivative microcontrollers are much used in high-volume consumer electronic de'vices,
entertainment industry7 and other gadgets where cost-cutting is essential.

Another important family of microcontrollers used in industrial control and embedded applications is
the PIC family micro controllers from Microchip Technologies (It will be discussed in detail in a later
section of this book) . It is a high performance RISC microcontroller complementing the CISC (complex
instruction set computing) features of 8051. The terms RISC and CISC will be explained in detail in a
separate heading.

Some embedded system applications require only 8bit controllers whereas some embedded applica¬
tions requiring superior performance and computational needs demand 16/32bit microcontrollers. Infi¬
neon, Freescale, Philips, Atmel, Maxim, Microchip etc. are the key suppliers of 16bit microcontrollers.
Philips tried to extend the 8051 family microcontrollers to use for 16bit applications by developing the
Philips XA (extended Architecture) microcontroller series.

8bit microcontrollers are commonly used in embedded systems where the processing power is not
a big constraint. As mentioned earlier, more than 20 companies are producing different flavours of the
8051 family microcontroller. They try to add more and more functionalities like built in SPI, I2C serial
buses, USB controller, ADC, Networking capability, etc. So the competitive market is driving towards
a one-stop solution chip in microcontroller domain. High processing speed microcontroller families
like ARM11 series are also available in the market, which provides solution to applications requiring
hardware acceleration and high processing capability.

Freescale, NEC, Zilog, Hitachi, Mitsubishi, Infineon, ST Micro Electronics, National, Texas Instru¬
ments, Toshiba, Philips, Microchip, Analog Devices, Daewoo, Intel, Maxim, Sharp, Silicon Laborato¬
ries, TDK, Triscend, Winbond, Atmel, etc. are the key players in the microcontroller market. Of these
Atmel has got speciaLsignificance. They are the manufacturers of a variety of Flash memory based

microcontrollers. They also provide In-System Programmability (which will be discussed in detail in a
later section of this book) for the controller. The Flash memory technique helps in fast reprogramming
of the chip and thereby reduces the product development time. Atmel also provides another special fam¬
ily of microcontroller called AVR (it will be discussed in detail in a later chapter), an 8bit RISC Flash
microcontroller, fast enough to execute powerful instructions in a single clock cycle and provide the
latitude you need to optimise power consumption.

The instruction set architecture of a microcontroller can be either RISC or CISC. Microcontrollers
are designed for either general purpose application requirement (general purpose controller) or domain-
specific application requirement (application specific instruction set processor). The Intel 8051 micro¬

controller is a typical example for a general purpose microcontroller, whereas the automotive AVR
microcontroller family from Atmel Corporation is a typical example for ASIP specifically designed for
the automotive domain.

2.1,1.4 Microprocessor vs Microcontroller The following table summarises the differences
between a microcontroller and microprocessor.

https://hemanthrajhemu.github.io

The Typical Embedded System

Microprocessor Microcontroller

A silicon chip representing a central processing A microcontrailer is a highly integrated chip that
unit (CPU), which is capable of performing arith- contains a GPU, scratchpad RAM, special and
metic as well as logical operations according to a general purpose register arrays, on chip ROM/
pre-defmed set of instructions -•» '■ FLASH memory, for program storage, timer and

; - , interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the combina- It is a self-contained Unit and it doesn't require
tiod of other chips ‘like timers, program and dataexternal‘interrupt controller, timer, U ART, etc; for
memory chips, interrupt controllers, etc. for tune- its functioning
tioning . 7: 7j\.v Z . ■ V jr77::b;
Most of the time general purpose in design and Mostly application-oriented or domain-specific
operation

Targeted for high end market where performance Targeted for embedded market where perfor
is important; W W.tSrg W'CfZib" ' mance is not so critical (At present this demarca-

! ~£~ , v ’ . tion is invalid) !

2.1.1.5 Digital Signal Processors Digital Signal Processors (DSPs) are powerful special purpose
8/16/32 bit microprocessors designed specifically to meet the computational demands and power con¬
straints of today’s embedded audio, video, and communications applications. Digital signal processors
are 2 to 3 times faster than the general purpose microprocessors in signal processing applications. This
is because of the architectural difference between the two. DSPs implement algorithms in hardware
which speeds up the execution whereas general purpose processors implement the algorithm in firm¬
ware and the speed of execution depends primarily on the clock for the processors. In general, DSP can
be viewed as a microchip designed for performing high speed computational operations for ‘addition’,
‘subtraction’, ‘multiplication’ and ‘division’. A typical digital signal processor incorporates the follow¬
ing key units:

Program Memory Memory for storing the program required by DSP to process the data

Data Memory Working memory for storing temporary variables and data/signal to be processed.

Computational Engine Perfonus the signal processing in accordance with the stored program
memory. Computational Engine incorporates many specialised arithmetic units and each of them oper¬
ates simultaneously to increase the execution speed. It also incorporates multiple hardware shifters for
shifting operands and thereby saves execution time.

I/O Unit Acts as an interface between the outside world and DSP. It is responsible for capturing sig¬
nals to be processed and delivering the processed signals.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Audio video signal processing, telecommunication and multimedia applications are typical examples
where DSP is employed. Digital signal processing employs a large amount of real-time calculations.
Sum of products (SOP) calculation, convolution, fast fourier transform (FFT), discrete fourier transfonn
(DFT), etc, are some of the operations performed by digital signal processors.

B lack fin®+ processors from Analog Devices is an example of DSP which delivers breakthrough
signal-processing performance and power efficiency while also offering a full 32-bit RISC MCU pro¬
gramming model. Blackfin processors present high-performance, homogeneous software targets, which
allows flexible resource allocation between hard real-tftne signal processing tasks and non real-time
control tasks. System control tasks can often run in the shadow of demanding signal processing and
multimedia tasks.

2.1.1.6 RISC vs. CISC Processors/Controllers The term RISC stands for Reduced Instruction
Set Computing. As the name implies, all RISC processors/controllers possess lesser number of instruc¬
tions, typically in the range of 30 to 40. CISC stands for Complex Instruction Set Computing. From
the definition itself it is clear that the instruction set is complex and instructions are high in number.
From a programmers point of view RISC processors are comfortable since s/he needs to learn only a
few instructions, whereas for a CISC processor s/he needs to learn more number of instructions and
should understand the context of usage of each instruction (This scenario is explained on the basis of
a programmer following Assembly Language coding. For a programmer following C coding it doesn’t
matter since the cross-compiler is responsible for the conversion of the high level language instructions
to machine dependent code). Atmel AVR microcontroller is an example for a RISC processor and its in¬
struction set contains only 32 instructions. The original version of 8051 microcontroller (e.g. AT89C51)
is a CISC controller and its instruction set contains 255 instructions. Remember it is not the number of
instructions that determines whether a processor/controller is CISC or RISC. There are some other fac¬
tors like pipelining features, instruction set type, etc. for determining the RISC/CISC criteria. Some of
the important criteria are listed below:

’ %'A r. - rase *i i -
Lesserjiumber of instructions , ;

Instruction pipelining and increased executions--

£,l mm
Greater number of Instructions

s? „ v . a ft* i
fjenerally no instruction pipe mm

Orthogonal instruction set (Allows each instruction to Non-orthogonal instruction-set (All instructions are not

operate on any register and use any addressing mode). allowed to operate on any register and use any addressing

mode. It is instruction-specific) ’ ■ \ ” v

Operations are performed on registers only, the only Operations are .'performed on registers or memory
■: ,, i ' ■■ ■ ' .' , ~ - • ■ ■ - . . ■ ■ . . ' : - : - ' ' ■ - . ■ ■■■■ I V- . . ■ \. v

memory operations are load and store depending on the instruction

A large number of registers are available ' Limited number of general purpose registers.

Programmer needs to write more code to execute a task Instructions are like macros in C language. A programmer

since the instructions are simpler ones

Single, fixed length instructions

Less silicon usage and pin count

With Harvard Architecture

: :.can achieve the desired functionality with a single

instruction which in turn provides the effect of using more

simpler single instructions in RISC'; f

Variable length instructions ■ .'r’-y-- • '

More silicon usage since more additional decoder logic is

required to implement the con^h^^tJ®ftion decoding.

Can be Harvard or Von-Neumann Architecture

I hope now you are clear about the terms RISC and CISC in the processor technology. Isn’t it?

^Blackfin® is a Registered trademark of Analog Devices Inc.

https://hemanthrajhemu.github.io

The Typical Embedded System

2.1.1.7 Harvard vs. Von-Neumann Processor/Controller Architecture The terms Harvard
and Von-Neumann refers to the processor architecture design.

Microprocessors/controllers based on the Von-Neumann architecture shares a single common bus

for fetching both instructions and data. Program instructions and data are stored in a common main

memory. Von-Neumann architecture based processors/controllers first fetch an instruction and then

fetch the data to support the instruction from code memory. The two separate fetches slows down the
controller’s operation. Von-Neumann architecture is also referred as Princeton architecture, since it was
developed by the Princeton University.

Microprocessors/controllers based on the Harvard architecture will have separate data bus and in¬
struction bus. This allows the data transfer and program fetching to occur simultaneously oh both buses.

With Harvard architecture, the data memory, can be read and written while the program memory is being

accessed. These separated data memory and code memory buses allow one instruction to execute while

the next instruction is fetched (“pre-fetching”). The pre-fetch theoretically allows much faster execution

than Von-Neumann architecture. Since some additional hardware logic is required for the generation of

control signals for this type of operation it adds silicon complexity to the system. Figure 2.2 explains the

Harvard and Von-Neumann architecture concept.

[Fig. 2.2] Harvard vs Von-Neumann architecture

The following table highlights the differences between Harvard and Von-Neumann architecture

-hitpptnrp Von-Neumann A) chitccturc

Single shared bus for instruction and data fetching

,

Han ai d Architects |

Separate buses for instruction and data fetching

Easier to pipeline, so high performance can be achieved Low performance compared to Harvard architecture

Comparatively high cost Cheaper / : ' y "■ ^ ; ^ ? - .

No, memory alignment problems - Allows scli. modifying codes' , 'A ./

Since data memory and program memory are stored Since data memory and program memory are stored

physically in different locations, ho chances for accidental physically in the same chip, Chances for accidental

corruption of program memory corruption of program memory

2.1.1.8 Big-Endian vs. Little-Endian Processors/Controllers Endianness specifies the order

in which the data is stored in the memory by processor operations in a multi byte system (Processors

whose word size is greater than one byte). Suppose the word length is two byte then data can be stored

in memory in two different ways:
1. Higher order of data byte at the higher memory and lower order of data byte at location just below

the higher memory.
2. Lower order of data byte at the higher memory and higher order of data byte at location just below

the higher memory.

^Self-modifying code is a code/instruction which modifies itself while execution.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Little-endian (Fig. 2.3) means the lower-order byte of the data is stored in memory at the lowest ad¬
dress, and the higher-order byte at the highest address. (The little end comes first.) For example, a 4 byte
long integer Byte3 Byte2 Bytel ByteO will be stored in the memory as shown below:

Base Address + 0 Byte O ; - - Byi.cs1 0x20000 (Base Address)

i '■ "r' -

Base Address + 1 Byte 1 L" .e l 0x20001 (Base Address + 1)

Base Address + 2
BiliaiiljM

Byte 2 0x20002 (Base Address + 2)

Base Address + 3

|pjm^ sjp |-
■

Byte 3 T ■ _■ 0x20003 (Base Address + 3)

Fig. 2.3) Little-Endian operation

Big-endian (Fig. 2.4) means the higher-order byte of the data is stored in memory at the lowest address,

and the lower-order byte at the highest address. (The big end comes first.) For example, a 4 byte long

integer Byte3 Byte2 Bytel ByteO will be stored in the memory as follows^:

0x20000 (Base Address)

0x20001 (Base Address + 1)

0x20002 (Base Address + 2)

0x20003 (Base Address + 3)

[Fig. 2.4) Big-Endian operation

Base Address + 0

Base Address + 1

Base Address + 2

fi'.V '

msam
B- ' I ':

Base Address + 3 Byte 0 . Hyv''

2.1.1.9 Load Store Operation and Instruction Pipelining As mentioned earlier, the RISC pro¬

cessor instruction set is orthogonal, meaning it operates on registers. The memory access related opera¬

tions are perforated by the special instructions load and store. If the operand is specified as memory

location, the content of it is loaded to a register using the load instmction. The instruction store stores

data from a specified register to a specified memory location. The concept of Load Store Architecture
)s illustrated with the following example:

Suppose x, y and z are memory locations and we want to add the contents of x and y and store the

result in location z. Under the load store architecture the same is achieved with 4 instructions as shown

in Fig. 2.5.

The first instruction load Rl, x loads the register R1 with the content of memory location x, the sec¬

ond instruction load R2,y loads the register R2 with the content of memory location y. The instruction

% Note that the base address is chosen arbitrarily as 0x20000

https://hemanthrajhemu.github.io

The Typical Embedded System

load Rl, x -> ®

load R2,y -—► ©

add R3, Rl, R2-* (3)

store R3, z -► (4)

add R3, Rl, R2 adds the content of registers Rl and R2 and stores the result in register R3. The next
instruction store R3,z stores the content of register R3 in memory location z.

The conventional instruction execution by the processor follows the fetch-decode-execute sequence.
Where the ‘fetch’ part fetches the instruction from program memory or code memory and the decode
part decodes the instruction to generate the necessary control signals. The execute stage reads the oper¬
ands, perform ALU operations and stores the result. In conventional program execution, the fetch and
decode operations are performed in sequence. For simplicity let’s consider decode and execution togeth¬
er. During the decode operation the memory address bus is available and if it is possible to effectively
utilise it for an instruction fetch, the processing speed can be increased. In its simplest form instruction
pipelining refers to the overlapped execution of instructions. Under normal program execution flow it
is meaningful to fetch the next instmction to execute, while the decoding and execution of the current
instmction is in progress. If the current instmction in progress is a program control flow transfer instruc¬
tion like jump or call instmction, there is no meaning in fetching the instmction following the current
instmction. In such cases the instmction fetched is flushed and a new instmction fetch is performed to
fetch the instmction. Whenever the current instmction is executing the program counter will be loaded
with the address of the next instmction. In case of jump or branch instmction, the new location is known
only after completion of the jump or branch instmction. Depending on the stages involved in an instmc¬
tion (fetch, read register and decode, execute instmction, access an operand in data memory, write back
the result to register, etc.), there can be multiple levels of instmction pipelining. Figure 2.6 illustrates the
concept of Instmction pipelining for single stage pipelining.

Clock pulses Clock pulses Clock pulses

_TLTL _T
Machine cycle 1 Machine cycle 2 Machine cycle 3

Fetch (PC)

Execute (PC -1) Fetch (PC +1)

Execute(PC) Fetch (PC + 2)

PC: Program Counter Execute (PC + .1)

(Fig. 2.6) The single-stage pipelining concept

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.1.2 Application Specific Integrated Circuits (ASICs)

Application Specific Integrated Circuit (ASIC) is a microchip designed to perform a specific or unique
application. It is used as replacement to conventional general purpose logic chips. It integrates several
functions into a single chip and there by reduces the system development cost. Most of the ASICs are
proprietary products. As a single chip, ASIC consumes a very small area in the total system and thereby
helps in the design of smaller systems with high capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by using the com¬
ponents from a re-usable ‘building block’ library of components for a particular customer application.
ASIC based systems are profitable only for large volume commercial productions. Fabrication of ASICs
requires a non-refundable initial investment for the process technology and configuration expenses. This
investment is known as Non-Recurring Engineering Charge (NRE) and it is a one time investment.

If the Non-Recurring Engineering Charges (NRE) is borne by a third party and the Application
Specific Integrated Circuit (ASIC) is made openly available in the market, the ASIC is referred as
Application Specific Standard Product (ASSP). The ASSP is marketed to multiple customers just as a
general-purpose product is, but to a smaller number of customers since it is for a specific application.
“The ADE7760 Energy Metre ASIC developed by Analog Devices for Energy metreing applications is
a typical example for ASSP”.

Since Application Specific Integrated Circuits (ASICs) are proprietary products, the developers of
such chips may not be interested in revealing the internal details of it and hence it is very difficult to
point out an example of it. Moreover it will create legal disputes if an illustration of such an ASIC prod¬
uct is given without getting prior permission from the manufacturer of the ASIC. For the time being,
let us forget about it. We will come back to it in another part of this book series (Namely, Designing
Advanced Embedded Systems).

2.1.3 Programmable Logic Devices

Logic devices provide specific functions, including device-to-device interfacing, data communication,
signal processing, data display, timing and control operations, and almost every other function a system
must perform. Logic devices can be classified into two broad categories-fixed and programmable. As
the name indicates, the circuits in a fixed logic device are permanent, they perform one function or set
of functions-once manufactured, they cannot be changed. On the other hand, Programmable Logic
Devices (PLDs) offer customers a wide range of logic capacity, features, speed, and voltage characteris-
tics-and these devices can be re-configured to perform any number of functions at any time.

With programmable logic devices, designers use inexpensive software tools to quickly develop, sim¬
ulate, and test their designs. Then, a design can be quickly programmed into a device, and immediately
tested in a live circuit. The PLD that is used for this prototyping is the exact same PLD that will be used
in the final production of a piece of end equipment, such as a network router, a DSL modem, a DVD
player, or an automotive navigation system. There are no NRE costs and the final design is completed
much faster than that of a custom, fixed logic device. Another key benefit of using PLDs is that dur¬
ing the design phase-customers can change the circuitry as often as they want until the design operates
to their satisfaction. That’s because PLDs are based on re-writable memory technology-to change the
design, the device is simply reprogrammed. Once the design is final, customers can go into immediate
production by simply programming as many PLDs as they need with the final software design file.

2.1.3.1 CPLDs and FPGAs The two major types of programmable logic devices are Field Program¬
mable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs). Of the two, FPGAs

https://hemanthrajhemu.github.io

The Typical Embedded System

offer the highest amount of logic density, the most features, and the highest performance. The largest
FPGA now shipping, part of the Xilinx Virtex™^ line of devices, provides eight million “system gates”
(the relative density of logic). These advanced devices also offer features such as built-in hardwired
processors (such as the IBM power PC), substantial amounts of memory, clock management systems,
and support for many of the latest, very fast device-to-device signaling technologies. FPGAs are used
in a wide variety of applications ranging from data processing and storage, to instrumentation, telecom¬
munications, and digital signal processing.

CPLDs, by contrast, offer much smaller amounts of logic-up to about 10,000 gates. But CPLDs offer
very predictable timing characteristics and are therefore ideal for critical control applications. CPLDs
such as the Xilinx CoolRunner™^ series also require extremely low amounts of power and are very in¬
expensive, making them ideal for cost-sensitive, battery-operated, portable applications such as mobile
phones and digital handheld assistants.

Advantages of PLD Programmable logic devices offer a number of important advantages over fixed
logic devices, including:

• PLDs offer customers much more flexibility during the design cycle because design iterations are
simply a matter of changing the programming file, and the results of design changes can be seen
immediately in working parts.

• PLDs do not require long lead times for prototypes or production parts-the PLDs are already on a
distributor’s shelf and ready for shipment.

• PLDs do not require customers to pay for large NRE costs and purchase expensive mask sets-PLD
suppliers incur those costs when they design their programmable devices and are able to amortize
those costs over the multi-year lifespan of a given line of PLDs.

• PLDs allow customers to order just the number of parts they need, when they need them, allowing
them to control inventory. Customers who use fixed logic devices often end up with-excess inven¬
tory which must be scrapped, or if demand for their product surges, they may be caught short of
parts and face production delays.

• PLDs can be reprogrammed even after a piece of equipment is shipped to a customer. In fact,
thanks to programmable logic devices, a number of equipment manufacturers now tout the ability
to add new features or upgrade products that already are in the field. To do this, they simply upload
a new programming file to the PLD, via the Internet, creating-new hardware logic in the system.

Over the last few years programmable logic suppliers have made such phenomenal technical ad¬
vances that PLDs are now seen as the logic solution of choice from many designers. One reason for
this is that PLD suppliers such as Xilinx are “fabless” companies; instead of owning chip manufactur¬
ing foundries, Xilinx outsource that job to partners like Toshiba and UMC, whose chief occupation is
making chips. This strategy allows Xilinx to focus on designing new product architectures, software
tools, and intellectual property cores while having access to the most advanced semiconductor process
technologies. Advanced process technologies help PLDs in a number of key areas: faster performance,
integration of more features, reduced power consumption, and lower cost.

FPGAs are especially popular for prototyping ASIC designs where the designer can test his design by
downloading the design file into an FPGA device. Once the design is set, hardwired chips are produced
for faster performance.

Just a few years ago, for example, the largest FPGA was measured in tens of thousands of system
gates and operated at 40 MHz. Older FPGAs also were relatively expensive, costing often more than
$150 for the most advanced parts at the time. Today, however, FPGAs with advanced features offer

t Virtex™ and CoolRunner™ are the registered trademarks of Xilinx Inc.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems 28

millions of gates of logic capacity, operate at 300 MHz, can cost less than $10, and offer a new level of
integrated functions such as processors and memory.

2.1.4 Commercial Off-the-Shelf Components (COTS)

A Commercial Off-the-Shelf (COTS) product is one which is used ‘as-is\ COTS products are designed
in such a way to provide easy integration and interoperability with existing system components. The
COTS component itself may be developed around a general purpose or domain specific processor or
an Application Specific Integrated circuit or a programmable logic device. Typical examples of COTS .
hardware unit are remote controlled toy car control units including the RT circuitry part, high perfor¬
mance, high frequency microwave electronics (2-200 GHz), high bandwidth analog-to-digital convert¬
ers, devices and components for operation at very high temperatures, electro-optic IR imaging arrays,
UV/IR detectors, etc. The major advantage of using COTS is that they are readily available in the
market, are cheap and a developer can cut down his/her development time to a great extent. This in turn
reduces the time to market your embedded systems.

The TCP/IP plug-in module available from various
manufactures like ‘WIZnet’, ‘Freescale’, ‘Dynalog’, etc.
are very good examples of COTS product (Fig. 2.7). This
network plug-in module gives the TCP/IP connectivity to
the system you are developing. There is no need to design
this module yourself and write the firmware for the TCP/
IP protocol and data transfer. Everything will be read¬
ily supplied by the COTS manufacturer. What you need
to do is identify the COTS for your system and give the
plug-in option on your board according to the hardware _
plug-in connections given in the specifications of the lFig'2'7) ^e^™PIeofa P9T^Pro<luctfor

COTS. Though multiple vendors supply COTS for the rwL< nIwioap!^Mod^Mesy
same application, the major problem faced by the end- of wtznet http://www.wiznet.co.h-/en/)

user is that there are no operational and manufacturing
standards. A Commercial off-the-shelf (COTS) component manufactured by a vendor need not have
hardware plug-in and firmware interface compatibility with one manufactured by a second -vendor for
the same application. This restricts the end-user to stick to a particular vendor for a particular COTS.
This greatly affects the product design.

The major drawback of using COTS components in embedded design is that the manufacturer of the
COTS component may withdraw the product or discontinue the production of the COTS at any time if
a rapid change in technology occurs, and this will adversely affect a commercial manufacturer of the
embedded system which makes use of the specific COTS product.

2.2 MEMORY_ , / - w__

Memory is an important part of a processor/controller based embedded systems. Some of the proces¬
sors/controllers contain built in memory and this memory is referred as on-chip memory. Others do
not contain any memory inside the chip and requires external memory to be connected with the control¬
ler/processor to store the control algorithm. It is called off-chip memory. Also some working memory
is required for holding data temporarily during certain operations. This section deals with the different
types of memory used in embedded system applications.

https://hemanthrajhemu.github.io

The Typical Embedded System

2.2.1 Program Storage Memory (ROM)

The program memory or code storage memory of an embedded system stores the program instructions
and it can be classified into different types as per the block diagram representation given in Fig. 2.8.

(iFigfo) Classification of Program Memory (ROM)

The code memory retains its contents even after the power to it is; turned off. It is generally known as
non-volatile storage memory. Depending on the fabrication, erasing and programming techniques they
are classified into the following types.

2.2.1.1 Masked ROM (MROM) Masked ROM is a one-time programmable device. Masked ROM
makes use of the hardwired technology for storing data. The device is factory programmed by masking
and metallisation process at the time of production itself, according to the data provided by the end user.
The primary advantage of this is low cost for high volume production. They are the least expensive type
of solid state memory. Different mechanisms are used for the masking process of the ROM, like

1. Creation of an enhancement or depletion mode transistor through channel implant.
2. By creating the memory cell either using a standard transistor or a high threshold transistor. In the

high threshold mode, the supply voltage required to turn ON the transistor is above the normal
ROM IC operating voltage. This ensures that the transistor is always off and the memory cell
stores always logic 0.

Masked ROM is a good candidate for storing the embedded firmware for low cost embedded devices.
Once the design is proven and the firmware requirements are tested and frozen, the binary data (The
firmware cross compiled/assembled to. target processor specific machine code) corresponding to it can
be given to the MROM fabricator. The limitation with MROM based firmware storage is the inability to
modify the device firmware against firmware upgrades. Since the MROM is permanent in bit storage, it
is not possible to alter the bit information.

2.2.1.2 Programmable Read Only Memory (PROM) / (OTP) Unlike Masked ROM Memory,
One Time Programmable Memory (OTP) or PROM is not pre-programmed by the manufacturer. The
end user is responsible for programming these devices. This memory has nichrome or polysilicon wires
arranged in a matrix. These wires can be functionally viewed as fuses. It is programmed by a PROM
programmer which selectively bums the fuses according to the bit pattern to be stored. Fuses which are
not blown/burned represents a logic “1” whereas fuses which are blown/bumed represents a logic “0”.
The default state is logic “1”. OTP is widely used for commercial production of embedded systems
whose proto-typed versions are proven and the code is finalised. It is a low cost solution for commercial
production. OTPs cannot be reprogrammed.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.2.1.3 Erasable Programmable Read Only Memory (EPROM) OTPs are not useful and
worth for development purpose. During the development phase the code is subject to continuous chang¬
es and using an OTP each time to load the code is not economical. Erasable Programmable Read Only
Memory (EPROM) gives the flexibility to re-program the same chip. EPROM stores the bit information
by charging the floating gate of an FET. Bit information is stored by using an EPROM programmer,
which applies high voltage to charge the floating gate. EPROM contains a quartz crystal window for
erasing the stored information. If the. window is exposed to ultraviolet rays for a fixed duration, the
entire memory will be erased. Even though the EPROM chip is flexible in terms of re-programmability, i

it needs to be taken out of the circuit board and put in a UV eraser device for 20 to 30 minutes. So it is
a tedious and time-consuming process.

2.2.1 A Electrically Erasable Programmable Read Only Memory (EEPROM) As the name
indicates, the information contained in the EEPROM memory can be altered by using electrical signals
at the register/Byte level. They can be erased and reprogrammed in-circuit. These chips include a chip
erase mode and in this mode they can be erased in a few milliseconds. It provides greater flexibility for
system design. The only limitation is their capacity is limited when compared with the standard ROM
(A few kilobytes).

2.2.1.5 FLASH FLASH is the latest ROM technology and is the most popular ROM technology used
in today’s embedded designs. FLASH memory is a variation of EEPROM technology. It combines the
re-programmability of EEPROM and the high capacity of standard ROMs. FLASH memory is organ¬
ised as sectors (blocks) or pages. FLASH memory stores information in an array of floating gate MOS-
FET transistors. The erasing of memory can be done at sector level or page level without affecting the
other sectors or pages. Each sector/page should be erased before re-programming. The typical erasable
capacity' of FLASH is 1000 cycles. W27C512 from WINBOND (www.winbond.coml is an example of
64KB FLASH memory.

2.2.1.6 NVRAM Non-volatile RAM is a random access memory with battery backup. It contains 5

static RAM based memory and a minute battery for providing supply to the memory in the absence of
external power supply. The memory and battery are packed together in a single package. The life span
of NVRAM is expected to be around 10 years. DS1644 from Maxim/Dallas is an example of 32KB i
NVRAM.

2.2.2 Read-Write Memory/Random Access Memory (RAM)

RAM is the data memory or working memory of the controller/processor. Cofftroller/processor can
read from it and write to it. RAM is volatile, meaning when the power is turned off, all the contents
are destroyed. RAM is a direct access memory, meaning we can access the desired memory location
directly without the need for traversing through the entire memory locations to reach the desired
memory position (i.e. random access of memory location). This is in contrast to the Sequential Access
Memory (SAM), where the desired memory location is accessed by either traversing through the entire
memory or through a ‘seek’ method. Magnetic tapes, CD ROMs, etc. are examples of sequential access
memories. RAM generally falls into three categories: Static RAM (SRAM), dynamic RAM (DRAM)
and non-volatile RAM (NVRAM) (Fig. 2.9).

2.2.2.1 Static RAM (SRAM) Static RAM stores data in the form of voltage. They are made up of
flip-flops. Static RAM is the fastest form of RAM available. In typical implementation, an SRAM cell
(bit) is realised using six transistors (or 6 MOSFETs). Four of the transistors are used for building the

https://hemanthrajhemu.github.io

The Typical Embedded System

latch (flip-flop) part of the memory cell and two for controlling the access. SRAM is fast in operation
due to its resistive networking and switching capabilities. In its simplest representation an SRAM cell
can be visualised as shown in Fig. 2.10:

This implementation in its simpler form can be
visualised as two-cross coupled inverters with read/
write control through transistors. The four transis¬
tors in the middle form the cross-coupled inverters.
This can he visualised as shown in Fig. 2.11.

From the SRAM implementation diagram, it is
clear that access to the memory cell is controlled
by the line Word Line, which controls the access
transistors (MOSFETs) Q5 and Q6. The access tran¬
sistors control the connection to bit lines B & BY In

Write control Read control

order to write a value to the memory cell, apply the desired value to the bit control lines (For writing 1,
make B = 1 and B\ =0; For writing 0, make B = 0 and B\ =1) and assert the Word Line (Make Word line

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

high). This operation latches the bit written in the flip-flop. For reading the content of the memory cell,
assert both B and B\ bit lines to 1 and set the Word line to 1.

The major limitations of SRAM are low capacity and high cost. Since a minimum of six transistors
are required to build a single memory cell, imagine how many memory cells we can fabricate on a sili¬
con wafer.

2.2.2.2 Dynamic RAM (DRAM) DynamicRAM stores data
in the form of charge. They are made up of MOS transistor
gates. The advantages of DRAM are its high density and low
cost compared to SRAM. The disadvantage is that since the
information is stored as charge it gets leaked off with time and
to prevent this they need to be refreshed periodically. Special
circuits called DRAM controllers are used for the refreshing
operation. The refresh operation is done periodically in milli¬
seconds interval. Figure 2.12 illustrates the typical implementa¬
tion of a DRAM cell.

The MOSFET acts as the gate for the incoming and outgo¬
ing data whereas the capacitor acts as the bit storage unit. Table
given below summarises the relative merits and demerits of
SRAM and DRAM technology.

Bit line B

[Fig. 2.12) DRAM cell implementation

SRAM cell .

Made up of 6 CMOS transistors (MOSFET)

Doesn't require refreshing | |jj

Low capacity (Less dense) .

More expensive: ; ..A) ' \

Fast in operation.Typical access time is 10ns

DRAM cell A .V-.
- .. _ - -L>s ..- -w... 1

Made up of a MOSFET and a capacitor
jHaiji ■ ■ ■ „ , > . . . '■ ■ • ■

? Requires refreshing
A‘. . T?.

; / ■ . , ‘ "•'1, • V. ■ '

High capacity (Highly dense)

Slow in operation due to refresh requirements. Typical

access time is 60ns. Write operation is faster than read

operation.

2.2.2.3 NVRAM Non-volatile RAM is a random access memory with battery backup. It contains
static RAM based memory and'a minute battery for providing supply to the memory in the absence
of external power supply. The memory and battery are packed together in a single package. NVRAM
is used for the non-volatile storage of results of operations or for setting up of flags, etc. The life span
of NVRAM islexpected to be around 10 years. DS1744 from Maxim/Dallas is an example for 32KB
NVRAM.

2.2.3 Memory According to the Type of Interface

The interface (connection) of memory with the processor/controller can be of various types. It may be
a parallel interface [The parallel data lines (D0-D7) for an 8 bit processor/controller will be connected
to D0-D7 of the memory] or the interface may be a serial interface like I2C (Pronounced as I Square C.
It is a 2 line serial interface) or it may be an SPI (Serial peripheral interface, 2+n line interface where
n stands for the total number of SPI bus devices in the system). It can also be of a single wire intercon¬
nection (like Dallas 1-Wire interface). Serial interface is commonly used for data storage memory like
EEPROM. The memory density of a serial memory is usually expressed in terms of kilobits, whereas

https://hemanthrajhemu.github.io

The Typical Embedded System

that of a parallel interface memory is expressed in terms of kilobytes. Atmel Corporations AT24C512
is an example for serial memory with capacity 512 kilobits and 2-wire interface. Please refer to the
section ‘Communication Interface’ for more details on I2C, SPI and 1-Wire Bus.

2.2.4 Memory Shadowing

Generally the execution of a program or a configuration from a Read Only Memory (ROM) is very slow
(120 to 200 ns) compared to the execution from a random access memory (40 to 70 ns). From the tim¬
ing parameters it is obvious that RAM access is about three times as fast as ROM access. Shadowing
of memory is a technique adopted to solve the execution speed problem in processor-based systems.
In computer systems and video systems there will be a configuration holding ROM called Basic Input
Output Configuration ROM or simply BIOS. In personal computer systems BIOS stores the hardware
configuration information like the address assigned for various serial ports and other non-plug V play
devices, etc. Usually it is read and the system is configured according to it during system boot up and
it is time consuming. Now the manufactures included a RAM behind the logical layer of BIOS at its
same address as a shadow to the BIOS and the first step that happens during the boot up is copying the
BIOS to the shadowed RAM and write protecting the RAM then disabling the BIOS reading. You may
be thinking that what a stupid idea it is and why both RAM and ROM are needed for holding the same
data. The answer is: RAM is volatile and it cannot hold the configuration data which is copied from the
BIOS when the power supply is switched off. Only a ROM can hold it permanently. But for high system
performance it should be accessed from a RAM instead of accessing from a ROM.

2.2.5 Memory Selection for Embedded Systems

Embedded systems require a program memory for holding the control algorithm (For a super-loop based
design) or embedded OS and the applications designed to mn on top of it (for OS based designs), data
memory for holding variables and temporary data during task execution, and memory for holding non¬
volatile data (like configuration data, look up table etc) which are modifiable by the application (Unlike
program memory, which is non-volatile as well unalterable by the end user). The memory requirement
for an embedded system in terms of RAM and ROM (EEPROM/FLASH/NVRAM) is solely dependent
on the type of the embedded system and the applications for which it is designed. There is no hard and
fast rule for calculating the memory requirements. Lot of factors need to be considered when selecting
the type and size of memory for embedded system. For example, if the embedded system is designed
using SoC or a microcontroller with on-chip RAM and ROM (FLASH/EEPROM), depending on the ap¬
plication need the on-chip memory may be sufficient for designing the total system. As a rule of thumb,
identify your system requirement and based on the type of processor (SoC or microcontroller with on-
chip memory) used for the design, take a decision on whether the on-chip memory is sufficient or exter¬
nal memory is required. Let’s consider a simple electronic toy design as an example. As the complexity
of requirements are less and data memory requirement are minimal, we can think of a microcontroller
with a few bytes of internal RAM, a few bytes or kilobytes (depending on the number of tasks and the
complexity of tasks) of FLASH memory and a few bytes of EEPROM (if required) for designing the
system. Hence there is no need for external memory at all. A PIC microcontroller device which satisfies
the I/O and memory requirements can be used in this case. If the embedded design is based on an RTOS,
the RTOS requires certain amount of RAM for its execution and ROM for storing the RTOS image
(Image is the common name given for the binary data generated by the compilation of all RTOS source
files). Normally the binary code for RTOS kernel containing all the services is stored in a non-volatile
memory (Like FLASH) as either compressed or non-compressed data. During boot-up of the device,

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the RTOS files are copied from the program storage memory, decompressed if required and then loaded
to the RAM for execution. The supplier of the RTOS usually gives a rough estimate on the run time
RAM requirements and program memory' requirements for the RTOS. On top of this add the RAM
requirements for executing user tasks and ROM for storing user applications. On a safer side, always
add a buffer value to the total estimated RAM and ROM size requirements. A smart phone device with
Windows mobile operating system is a typical example for embedded device with OS. Say 64MB RAM
and 128MB ROM are the minimum requirements for miming the Windows mobile device, indeed you
need extra RAM and ROM for running user applications. So while building the system, count the
memory for that also and arrive at a value which is always at the safer side, so that you won’t end up in
a situation where you don’t have sufficient memory to install and run user applications. There are two
parameters for representing a memory. The first one is the size of the memory chip (Memory density
expressed in terms of number of memory bytes per chip). There is no option to get a memory chip with
the exact required number of bytes. Memory chips come in standard sizes like 512bytes, 1024bytes
(1 kilobyte), 2048bytes (2 kilobytes), 4Kb,f 8Kb, 16Kb, 32Kb, 64Kb, 128Kb, 256Kb, 512Kb, 1024Kb
(1 megabytes), etc. Suppose your embedded application requires only 750 bytes of RAM, you don’t
have the option of getting a memory chip with size 750 bytes, the only option left with is to choose
the memory chip with a size closer to the size needed. Here 1024 bytes is the least possible option. We
cannot go for 512 bytes, because the minimum requirement is 750 bytes. While you select a memory
size, always keep in mind the address range supported by your processor. For example, for a processor/
controller with 16 bit address bus, the maximum number of memory locations that can be addressed is
216 = 65536 bytes = 64Kb. Hence it is meaningless to select a 128Kb memory chip for a processor with
16bit wide address bus. Also, the entire memory range supported by the processor/controller may not
be available to the memory chip alone. It may be shared between I/O, other ICs and memory. Suppose
the address bus is 16bit wide and only the lower 32Kb address range is assigned to the memory chip,
the memory size maximum required is 32Kb only. It is not worth to use a memory chip with size 64Kb
in such a situation. The second parameter that needs to be considered in selecting a memory is the word
size of the memory. The word size refers to the number of memory bits that can be read/write together
at a time. 4, 8, 12, 16, 24, 32, etc. are the word sizes supported by memory chips. Ensure that the word
size supported by the memory chip matches with the data bus width of the processor/controller.

FLASH memory is the popular choice for ROM (program storage memory) in embedded applica¬
tions. It is a powerful and cost-effective solid-state storage technology for mobile electronics devices
and other consumer applications. FLASH memory comes in two major variants, namely, NAND and
NOR FLASH. NAND FLASH is a high-density low cost non-volatile storage memory.' On the other
hand, NOR FLASH is less dense and slightly expensive. But it supports the Execute in Place (XIP)
technique for program execution. The XIP technology allows the execution of code memory from ROM
itself without the need for copying it to the RAM as in the case of conventional execution method. It is
a good practice to use a combination of NOR and NAND memory for’storage memory requirements,
where NAND can be used for storing the program code and or data like the data captured in a camera
device. NAND FLASH doesn’t support XIP and if NAND FLASH is used for storing program code, a
DRAM can be used for copying and executing the program code. NOR FLASH supports XIP and it can
be used as the memory for bootloader or for even storing the complete program code.

The EEPROM data storage memory is available as either serial interface or parallel interface chip. If
the processor/controller of the device supports serial interface and the amount of data to write and read
to and from the device is less, it is better to have a serial EEPROM.chip. The serial EEPROM saves the
address space of the total system. The memory capacity of the serial EEPROM is usually expressed in

fKb—Kilobytes

https://hemanthrajhemu.github.io

The Typical Embedded System

bits or kilobits. 512 bits, lKbits, 2Kbits, 4Kbits, etc. are examples for serial EEPROM memory repre¬
sentation. For embedded systems with low power requirements like portable devices, choose low power
memory devices. Certain embedded devices may be targeted for operating at extreme environmental
conditions like high temperature, high humid area, etc. Select an industrial grade memory chip in place
of the commercial grade chip for such devices.

2.3 SENSORS AND ACTUATORS__

At the very beginning of this chapter it is already mentioned that an embedded system is in constant
interaction with the Real world and the controlling/monitoring functions executed by the embedded
system is achieved in accordance with the changes happening to the Real world. The changes in sys¬
tem environment or variables are detected by the sensors connected to the input port of the embedded
system. If the embedded system is designed for any controlling purpose, the system will produce some
changes in the controlling variable to bring the controlled variable to the desired value. It is achieved
through an actuator connected to the output port of the embedded system. If the embedded system is
designed for monitoring purpose only, then there is no need for including an actuator in the system. For
example, take the case of an ECG machine. It is designed to monitor the heart beat status of a patient
and it cannot impose a control over the patient’s heart beat and its order. The sensors used here are the
different electrode sets connected to the body of the patient. The variations are captured and presented
to the user (may be a doctor) through a visual display or some printed chart.

2.3.1 Sensors

A sensoris a transducer device that converts energy from one form to another for any measurement or

control purpose. This is what I “by-hearted” during my engineering degree from the transducers paper.
If we look back to the “Smart” running shoe example given at the end of Chapter 1, we can identify

that the sensor which measures the distance between the cushion and magnet in the smart running shoe
is a magnetic hall effect sensor (Please refer back).

2.3.2 Actuators

Actuator is a form of transducer device (mechanical or electrical) which converts signals to correspond¬
ing physical action (motion).. Actuator acts as an output device.

Looking back to the “Smart” running shoe example given at the end of Chapter 1, we can see that the
actuator used for adjusting the position of the cushioning element is a micro stepper motor (Please refer
back).

2.3.3 The I/O Subsystem

The I/O subsystem of the embedded system facilitates the interaction of the embedded system with the
external world. As mentioned earlier the interaction happens through the sensors and actuators connect¬
ed to the input and output ports respectively of the embedded system. The sensors may not be directly
interfaced to the input ports, instead they may be interfaced through signal conditioning and translating
systems like ADC, optocouplers, etc. This section illustrates some of the sensors and actuators used in
embedded systems and the I/O systems to facilitate the interaction of embedded systems with external
world.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.3.3.1 Light Emitting Diode (LED) Light Emitting Diode (LED) is an important output device
for visual indication in any embedded system. LED can be used as an indicator for the status of various
signals or situations. Typical examples are indicating the presence of power conditions like ‘Device
ON’, ‘Battery low’ or ‘Charging of battery’ for a battery operated handheld
embedded devices.

Light Emitting Diode is a p-n junction diode (Refer Analog Electron¬
ics fundamentals to refresh your memory for p-n junction diode ©) and it
contains an anode and a cathode. For proper functioning of the LED, the
anode of it should be connected to +ve terminal of the supply voltage and
cathode to the -ve terminal of supply voltage. The current flowing through
the LED must be limited to a value below the maximum current that it can
conduct. A resister is used in series between the power supply and the LED
to limit the current through the LED. The ideal LED interfacing circuit is
shown in Fig. 2.13.

LEDs can be interfaced to the port pin of a processor/controller in two ways. In the first method, the
anode is directly connected to the port pin and the port pin drives the LED. In this approach the port pin
‘sources’ current to the LED when the port pin is at logic High (Logic ‘1’). In the second method, the
cathode of the LED is connected to the port pin of the processor/controller and the anode to the sup¬
ply voltage through a current limiting resistor. The LED is turned on when the port pin is at logic Low
(Logic ‘0’). Here the port pin ‘sinks’ current. If the LED is directly connected to the port pin, depending
on the maximum current that a port pin can source, the brightness of LED may not be to the required
level. In the second approach, the current is directly sourced by the power supply and the port pin acts
as the sink for current. Here we will get the required brightness for the LED.

2.3.3.2 7-Segment LED Display The 7-segment
LED display is an output device for displaying alpha
numeric characters. It contains 8 light-emitting diode
(LED) segments arranged in a special form. Out of the 8
LED segments, 7 are used for displaying alpha numeric
characters and 1 is used for representing ‘decimal point’
in decimal number display. Figure 2.14 explains the ar¬
rangement of LED segments in a 7-segment LED display.

The LED segments are named A to G and the deci¬
mal point LED segment is named as DR The LED seg¬
ments A to G and DP should be lit accordingly to display
numbers and characters. For example, for displaying the
number 4, the segments F, G, B and C are lit, For dis¬
playing 3, the segments A, B, C, D, G and DP are lit. For
displaying the character ‘d’, the segments B, C, D, E and G are lit. All these 8 LED segments need to
be connected to one port of the processor/controller for displaying alpha numeric digits. The 7-segment
LED displays are available in two different configurations, namely; Common Anode and Common
Cathode. In the common anode configuration, the anodes of the 8 segments are connected commonly
whereas in the common cathode configuration, the 8 LED segments share a common cathode line.
Figure 2.15 illustrates the Common Anode and Cathode configurations.

Based on the configuration of the 7-segment LED unit, the LED segment’s anode or cathode is con¬
nected to the port of the processor/controller in the order ‘A’ segment to the least significant port pin and
DP segment to the most significant port pin.

https://hemanthrajhemu.github.io

The Typical Embedded System

Common Anode LED Display Cathode

Common Cathode LED Display

(Tig. 2.15] Common anode and cathode configurations Of a 7-segment LED Display

The current flow through each of the LED segments should be limited to the maximum value sup¬
ported by the LED display unit. The typical value for the current falls within the range of 20mA. The
current through each segment can be limited by connecting a current limiting resistor to the anode or
cathode of each segment. The value for the current limiting resistors can be calculated using the current
value from the electrical parameter listing of the LED display.

For common cathode configurations, the anode of each LED segment is connected to the port pins of
the port to which the display is interfaced. The anode of the common anode LED display is connected to
the 5V supply voltage through a current limiting resistor and the cathode of each LED segment is con¬
nected to the respective port pin lines. For an LED segment to lit in the Common anode LED configura¬
tion, the port pin to which the cathode of the LED segment is
connected should be set at logic 0.

7-segment LED display is a popular choice for low cost
embedded applications like, Public telephone call monitoring
devices, point of sale terminals, etc.

2.3.3.3 Optocoupler Optocoupler is a solid state device
to isolate two parts of a circuit. Optocoupler combines an LED
and a photo-transistor in a single housing (package). Figure
2.16 illustrates the functioning of an optocoupler device.

In electronic circuits, an optocoupler is used for suppressing interference in data communication,
circuit isolation, high voltage separation, simultaneous separation and signal intensification, etc.
Optocouplers can be used in either input circuits or in output circuits. Figure 2.17 illustrates the usage

I/O interface
X LED

Photp-transiStCr

I/O interface

.2.16] An optocoupler device

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

of optocoupler in input circuit and output circuit of an embedded system with a microcontroller as the
system core.

Optocoupler is available as ICs from different semiconductor manufacturers. The MCT2MIC from
Fairchild semiconductor (http://www.fairchildsemi.com/) is an example for optocoupler IC.

2.3.3.4 Stepper Motor A stepper motor is an electro-mechanical device which generates discrete
displacement (motion) in response, to dc electrical signals. It differs from the normal dc motor in its
operation. The dc motor produces continuous rotation on applying dc voltage whereas a stepper motor
produces discrete rotation in response to the dc voltage applied to it. Stepper motors are widely used in
industrial embedded applications, consumer electronic products and robotics control systems. The paper
feed mechanism of a printer/fax makes use of stepper motors for its functioning.

Based on the coil winding arrangements, a two-phase stepper motor is classified into two. They are:
1. Unipolar
2. Bipolar

1. Unipolar A unipolar stepper motor contains two windings per
phase. The direction of rotation (clockwise or anticlockwise) of a
stepper motor is controlled by changing the direction of current
flow. Current in one direction flows through one coil and in the op¬
posite direction flows through the other coil. It is easy to shift the
direction of rotation by just switching the terminals to which the
coils are connected. Figure 2.18 illustrates the working of a two-
phase unipolar stepper motor.

The coils are represented as A, B, C and D. Coils A and C carry
current in opposite directions for phase 1 (only one of them will be
carrying current at a time). Similarly, B and D carry current in opposite directions for phase 2 (only one
of them will be carrying current at a time).

2. Bipolar A bipolar stepper motor contains single winding per phase. For reversing the motor rota¬
tion the current flow through the windings is reversed dynamically. It requires complex circuitry for
current flow reversal. The stator winding details for a two phase unipolar stepper motor is shown in
Fig. 2.19.

The stepping of stepper motor can be implemented in different ways by changing the sequence of ac¬
tivation of the stator windings. The different stepping modes supported by stepper motor are explained
below.

Full Step. In the full step mode both the phases are energised simultaneously. The coils A, B, C and D
are energised in the following order:

Step Coil A Coil B Coil C r CgiiD

1 H H • L *L

2 L H 11

3 L ; ' L H ' " H

'4 Hf r-£,J L £ tr -L Si ■ H

It should be noted that out of the two windings, only one winding of a phase is energised at a time.

https://hemanthrajhemu.github.io

The Typical Embedded System

A C B D

I Fig. 2.19j Stator Winding details for a 2 Phase unipolar stepper motor

Wave Step In the wave step mode only one phase is energised at a time and each coils of the phase is
energised alternatively. The coils A, B, C and D are energised in the following order:

Half Step It uses the combination of wave and lull step. It has the highest torque and stability. The
coil energising sequence for half step is given below.

' Step - Coil A CoilB CoilC CoilD

AAT ' H L L L

K ,;^s| H L L ■

t !...<•% : ,i? 1. l

4 fljg " - ^ >o-,
ii W§| Jg. - fig PI

5 .|5 Jgi IT' : m
Ipfee

J A' ’ : ■
Igtrf ..AL ;r!:' i - . -H»r*

i m, i
| fSs?
HW-'' H V A:' E' I

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The rotation of the stepper motor can be reversed by reversing the order in which the coil is
energised.

Two-phase unipolar stepper motors are the popular choice for embedded applications. The current
requirement for stepper motor is little high and hence the port pins of a microcontroller/processor may'
not be able to drive themj directly. Also the supply voltage required to operate stepper motor varies
normally in the range 5V to 24 V. Depending on the current and voltage requirements, special driving
circuits are required to interface the stepper motor with microcontroller/processors. Commercial off-
the-shelf stepper motor driver ICs are available in the market and they can be directly interfaced to the
microcontroller port. ULN2803 is an octal peripheral driver array available from ON semiconductors
and ST microelectronics for driving a 5V stepper motor. Simple driving circuit can also be built using
transistors.

The following circuit diagram (Fig. 2.20) illustrates the interfacing of a stepper motor through a
driver circuit connected to the port pins of a microcontroller/processor.

[Fig. 2.20] Interfacing of stepper motor through driver circuit

2.3.3.5 Relay Relay is an electro-mechanical device. In embedded application, the ‘Relay’ unit acts
as dynamic path selectors for signals and power. The ‘Relay’ unit contains a relay coil made up of in¬
sulated wire on a metal core and a metal armature with one or more contacts.

‘Relay’ works on electromagnetic principle. When a voltage is applied to the relay coil, current flows
through the coil, which in turn generates a magnetic field. The magnetic field attracts the armature core
and moves the contact point. The movement of the contact point changes the power/signal flow path.
‘Relays’ are available in different configurations. Figure 2.21 given below illustrates the widely used
relay configurations for embedded applications.

Single pole single

throw normally

open

Single pole single Single pole double

throw normally throw

closed

[Fig. 2.21J Relay configurations

https://hemanthrajhemu.github.io

The Typical Embedded System

The Single Pole Single Throw configuration has only one path for information flow. The path is
either open or closed in normal condition. For normally Open Single Pole Single Throw relay, the cir¬
cuit is normally open and it becomes closed when the relay is energised. For normally closed Single
Pole Single Throw configuration, the circuit is normally closed and it becomes open when the relay is
energised. For Single Pole Double Throw Relay, there are two paths for information flow and they are
selected by energising or de-energising the relay.

The Relay is normally controlled using a relay driver circuit connected to the port pin of the proces¬
sor/controller. A transistor is used for building the relay driver circuit. Figure 2.22 illustrates the same.

' Fig. 2.22J Transistor based Relay driving circuit

A free-wheeling diode is used for free-wheeling the voltage produced in the opposite direction
when the relay coil is de-energised. The freewheeling diode is essential for protecting the relay and the
transistor. .

Most of the industrial relays are bulky and requires high voltage to operate. Special relays called
‘Reed’ relays are available for embedded application requiring switching of low voltage DC signals.

2.3.3.6 Piezo Buzzer Piezo buzzer is a piezoelectric device for generating audio indications in em¬
bedded application. A piezoelectric buzzer contains a piezoelectric diaphragm which produces audible
sound in response to the voltage applied to it. Piezoelectric buzzers are available in two types. ‘Self-
driving’ and ‘External driving’. The ‘Self-driving’ circuit contains all the necessary components to gen¬
erate sound at a predefined tone. It will generate a tone on applying the voltage. External driving piezo
buzzers supports the generation of different tones. The tone can be varied by applying a variable pulse
train to the piezoelectric buzzer. A piezo buzzer can be directly interfaced to the port pin of the proces¬
sor/control. Depending on the driving current requirements, the piezo buzzer can also be interfaced
using a transistor based driver circuit as in the case of a ‘Relay’.

2.3.3.7 Push Button Switch It is an input device. Push button switch comes in two configurations,
namely ‘Push to Make’ and ‘Push to Break’. In the ‘Push to Make’ configuration, the switch is normally
in the open state and it makes a circuit contact when it is pushed or pressed. In the ‘Push to Break’ con¬
figuration, the switch is normally in the closed state and it breaks the circuit contact when it is pushed
or pressed. The push button stays in the ‘closed’ (For Push to Make type) or ‘open’ (For Push to Break
type) state as long as it is kept in the pushed state and it breaks/makes the circuit connection when it

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

is released. Push button is used for generating a mo¬
mentary pulse. In embedded application push button
is generally used as reset and start switch and pulse
generator. The Push button is normally connected to
the port pin of the host processor/controller. Depend¬
ing on the way in which the push button interfaced to
the controller, it can generate either a ‘HIGH’ pulse or
a ‘LOW’ pulse. Figure 2.23 illustrates how the push
button can be used for generating ‘LOW’ and ‘HIGH’
pulses.

2.3.3.8 Keyboard Keyboard is an input device
for user interfacing. If the number of keys required
is very limited, push button switches-can.be used and
they can be directly interfaced to the port pins for
reading. However, there may be situations demanding a large number of keys for user input (e.g. PDA
device with alpha-numeric keypad for user data entry). In such situations it may not be possible to inter¬
face each keys to a port pin due to the limitation in the number of general purpose port pins available for
the processor/controller in use and moreover it is wastage of port pins. Matrix keyboard is an optimum
solution for handling large key requirements. It greatly reduces the number of interface connections. For
example, for interfacing 16 keys, in the direct interfacing technique 16 port pins are required, whereas in
the matrix keyboard only 8 lines are required. The 16 keys are arranged in a 4 column x 4 Row matrix.
Figure 2.24 illustrates the connection of keys in a matrix keyboard.

In a matrix keyboard, the keys are arranged in matrix fashion (i.e. they are connected in a row and
column style). For detecting a key press,-the keyboard uses the scanning technique, where each row of
the matrix is pulled low and the columns are read. After reading the status of each columns correspond¬
ing to a row, the row is pulled high and the next row is pulled low and the status of the columns are read.
This process is repeated until the scanning for all rows are completed. When a row is pulled low and if
a key connected to the row is pressed, reading the column to which the key is connected will give logic
0. Since keys are mechanical devices, there is a possibility for de-bounce issues, which may give mul¬
tiple key press effect for a single key press. To prevent this, a proper key de-bouncing technique should
be applied. Hardware key de-bouncer circuits and software key de-bounce techniques are the key de¬
bouncing techniques available. The software key de-bouncing technique doesn’t require any additional
hardware and is easy to implement. In the software de-bouncing technique, on detecting a key-press,
the key is read again after a de-bounce delay. If the key press is a genuine one, the state of the key will
remain as ‘pressed’ on the second read also. Pull-up resistors are connected to the column lines to limit
the current that flows to the Row line on a key press.

2.3.3.9 Programmable Peripheral Interface (PP1) Programmable Peripheral Interface (PPI)
devices are used for extending the I/O capabilities of processors/controllers. Most of the processors/
controllers provide very limited number of I/O and data ports and at times it may require more number
of I/O ports than the one supported by the controller/processor. A programmable peripheral interface
device expands the I/O capabilities of the processor/controller. 8255A is a popular PPI device for 8bit
processors/controllers. 8255A supports 24 I/O pins and these I/O pins can be grouped as either three
8-bit parallel ports (Port A, Port B and Port C) or two 8bit parallel ports (Port A and Port B) with Port C
in any one of the following configurations:

Vcc Vcc

Port pin

j—

W
‘LOW’ Pulse generator

Port pin
Jr~

‘HIGH’ Pulse generator

(Tig. 2.23j Push button switch configurations

https://hemanthrajhemu.github.io

The Typical Embedded System 43

To microcontroller /processor port

.2.24' Matrix keyboard Interfacing

1. As 8 individual I/O pins
2. Two 4bit ports namely Port CupPER (Cy) and Port CL0WER (CL)
This is configured by manipulating the control register of 8255A. The control register holds the con

figuration for Port A, Port B and Port C. The bit details of control register is given below:

The table given below explains the meaning and use of each bit.

Bit Description '

Port C Lower (CL) I/O mode selector
DO = 1; Sets CL as input port /
DO - 0; Sets CL as output port

AA.::

|4 f|kiDi¥:| 1 Setsj^ortEkas^^mp^port
fe/A-:ADISets DorfB as outbut d()

https://hemanthrajhemu.github.io

ictions

Interfacing of 8255 with an 8 bit microcontroller

The ports of 8255 can be configured for different modes of operation by the processor/controller.

ode selector for port C]■ v
D7 r-: 1; I/O mode. Tf . .
D7 = 0; Bit set/reset (BSR) mode. Functions as the control/status fines for ports A and B.
The bits of port C can be set or reset just as if they were output ports. .

Please refer to the 8255A datasheet available at http://www.intersil.com/data/fn/fn2969.pdf for more
details about the different operating modes of 8255.

Figure 2.25 illustrates the generic interfacing of a 8255A device with an 8bit processor/controller
with 16bit address bus (Lower order Address bus is multiplexed with data bus).

Processor/
Controller

Data bus port ■
Data bus D0....D7

82C55A'":

D0....D7
Pins 34 to 27

AO Pin 9,
A1 Pin 8 PA0....PA7

Port A ,
- A2....A7 PB0....PB7

Higher ordef *
Address bus

Port B m

Address bus Address! -
(A8....A15) decoder F

CS\ Pin 6
PC0....PC7

RD\

WR\
RESET OUT

RD\ Pin 5
WR\ Pin 36
RESET Pin 35

https://hemanthrajhemu.github.io

The Typical Embedded System

2.4 COMMUNICATION INTERFACE

Communication interface is essential for communicating with various subsystems of the embedded
system and with the external world. For an embedded product, the communication interface can be
viewed in two different perspectives; namely; Device/board level communication interface (Onboard
Communication Interface) and Product level communication, interface (External Communication Inter¬
face). Embedded product is a combination of different types of components (chips/devices) arranged on
a printed circuit board (PCB). The communication channel which interconnects the various components
within an embedded product is referred as device/board level communication interface (onboard com¬
munication interface). Serial interfaces like I2C, SPI, UART, 1-Wire, etc and parallel bus interface, ptz

examples of ‘Onboard Communication Interface’.
Some embedded systems are self-contained units and they don’t require any interaction and data

transfer with other sub-systems or external world. On the other hand, certain embedded systems may be
a part of a large distributed system and they require interaction and data transfer between various devic¬
es and sub-modules. The ‘Product level communication interface’ (External Communication Interface.)
is responsible for data transfer between the embedded system and other devices or modules. The exter¬
nal communication interface can be either a wired media or a wireless media and it can be a serial or a
parallel interface. Infrared (IR), Bluetooth (BT), Wireless LAN (Wi-Fi), Radio Frequency waves (RF),
GPRS, etc. are examples for wireless communication interface. RS-232C/RS-422/RS-485, USB, Eth¬
ernet IEEE 1394 port, Parallel port, CF-II interface, SDIO, PCMCIA, etc. are examples for wired inter¬
faces. It is not mandatory that an embedded system should contain an external communication interface.
Mobile communication equipment is an example for embedded system with external communication
interface.

The following section gives you an overview of the various ‘Onboard’ mid ‘External’ communica¬
tion interfaces for an embedded product. We will discuss about the various physical interface, firmware
requirements and initialisation and communication sequence for these interfaces in a dedicated book
titled ‘Device Interfacing’, which is planned under this series.

2.4.1 Onboard Communication Interfaces

Onboard Communication Interface refers to the different communication channels/buses for intercon¬
necting the various integrated circuits and other peripherals within the embedded system. The following
section gives an overview of the various interfaces for onboard communication.

2.4.1.1 Inter Integrated Circuit (I2C) Bus The Inter Integrated Circuit Bus (I2C-Pronounccd
T square C’) is a synchronous bi-directional half duplex (one-directional communication at a given
point of time) two wire serial interface bus. The concept of I2C bus was developed by ‘Philips semi¬
conductors’ in the early 1980s. The original intention of I2C was to provide an easy way of connection
between a microprocessor/microcontroller system and the peripheral chips in television sets. The I2C
bus comprise of two bus lines, namely; Serial Clock-SCL and Serial Data-SDA. SCL line is respon¬
sible for generating synchronisation clock pulses and SDA is responsible for transmitting the serial data
across devices. I2C bus is a shared bus system to which many number of I2C devices can be connected.
Devices connected to the I2C bus can act as either ‘Master’ device or ‘Slave’ device. The ‘Master’
device is responsible for controlling the communication by initiating/terminating data transfer, sending
data and generating necessary synchronisation clock pulses. ‘Slave’ devices wait for the commands

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

from the master and respond upon receiving the commands. ‘Master’ and ‘Slave’ devices can act as
either transmitter or receiver. Regardless whether a master is acting as transmitter or receiver, the syn¬
chronisation clock signal is generated by the ‘Master’ device only. I2C supports multi masters on the
same bus. The following bus interface diagram shown in Fig. 2.26 illustrates the connection of master
and slave devices on the I2C bus.

SCL SDA Vcc

[Fig. 2.26) 12CBusl

SJ
I2C bus

The I2C bus interface is built around an input buffer and an open drain or collector transistor. When
the bus is in the idle state, the open drain/collector transistor will be in the floating state and the output
lines (SDA and SCL) switch to the ‘High Impedance’ state. For proper operation of the bus, both the bus
lines should be pulled to the supply voltage (+5V for TTL family and +3.3V for CMOS family:devices)
using pull-up resistors. The typical value of resistors used in pull-up is 2.2K. With pull-up resistors, the
output lines of the bus in the idle state will be ‘HIGH’.

The address of a I2C device is assigned by hardwiring the address lines of the device to the desired
logic level. The address to various I2C devices in an embedded device is assigned and hardwired at the
time of designing the embedded hardware. The sequence of operations for communicating with an I2C
slave device is listed below:

1. The master device pulls the clock line (SCL) of the bus to ‘HIGH’
2. The master device pulls the data line (SDA) ‘LOW’, when the SCL line is at logic ‘HIGH’ (This

is the ‘Start’ condition for data transfer)
3. The master device sends the address (7 bit or 10 bit wide) of the ‘slave’ device to which it wants

to communicate, over the SDA line. Clock pulses are generated at the SCL line for synchronising
the bit reception by the slave device. The MSB of the data is always transmitted first. The data in
the bus is valid during the ‘HIGH’ period of the clock signal

https://hemanthrajhemu.github.io

The Typical Embedded System

4. The master device sends the Read or Write bit (Bit value = 1 Read operation; Bit value = 0 Write
operation) according to the requirement

5. The master device waits for the acknowledgement bit from the slave device whose address is sent
on the bus along with the Read/Write operation command. Slave devices connected to the bus
compares the address received with the address assigned to them

6. The slave device with the address requested by the master device responds by sending an ac¬
knowledge bit (Bit value = 1) over the SDA line

7. Upon receiving the acknowledge bit, the Master device sends the 8bit data to the slave device over
SDA line, if the requested operation is ‘Write to device’. If the requested operation is ‘Read from
device’, the slave device sends data to the master over the SDA line

8. The master device waits for the acknowledgement bit from the device upon byte transfer complete
for a write operation and sends an acknowledge bit to the Slave device for a read operation

9. The master device terminates the transfer by pulling the SDA line ‘HIGH’ when the clock line
SCL is at logic ‘HIGH’ (Indicating the ‘STOP’ condition)

I2C bus supports three different data rates. They are: Standard mode (Data rate up to lOOkbits/sec
(100 kbps)), Fast mode (Data rate up to 400kbits/sec (400 kbps)) and High speed mode (Data rate up to
3.4Mbits/sec (3.4 Mbps)). The first generation I2C devices were designed to support data rates only up
to 100kbps. The new generation I2C devices are designed to operate at data rates up to 3.4Mbits/sec.

2.4.1.2 Serial Peripheral Interface (SPI) Bus The Serial Peripheral Interface Bus (SPI) is a syn¬
chronous bi-directional full duplex four-wire serial interface bus. The concept of SPI was introduced by
Motorola. SPI is a single master multi-slave system. It is possible to have a system where more than one
SPI device can be master, provided the condition only one master device is active at any given point of
time, is satisfied. SPI requires four signal lines for communication. They are:

Master Out Slave In (MOSI):

Master In Slave Out (MISO):

Serial Clock (SCLK):
Slave Select (SS):

Signal line carrying the data from master to slave device. It is
also known as Slave Input/Slave Data In (SI/SDI)
Signal line carrying the data from slave to master device. It is
also known as Slave Output (SO/SDO)
Signal line carrying the clock signals
Signal line for slave device select. It is an active low signal

The bus interface diagram shown in Fig. 2.27 illustrates the connection of master and slave devices
on the SPI bus.

The master device is responsible for generating the clock signal. It selects the required slave device
by asserting the corresponding slave device’s slave select signal ‘LOW’. The data out line (MISO) of all
the slave devices when not selected floats at high impedance state.

The serial data transmission through SPI bus is fully configurable. SPI devices contain a certain set
of registers for holding these configurations. The serial peripheral control register holds the various con¬
figuration parameters like master/slave selection for the device, baudrate selection for communication,
clock signal control, etc. The status register holds the status of various conditions for transmission and
reception.

SPI works on the principle of ‘Shift Register’. The master and slave devices contain a special shift
register for the data to transmit or receive. The size of the shift register is device dependent. Normally
it is a multiple of 8. During transmission from the master to slave, the data in the master’s shift register
is shifted out to the MOSI pin and it enters the shift register of the slave device through the MOSI pin
of the slave device. At the same time the shifted out data bit from the slave device’s shift register enters

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

SSI

M1S0

MOS!

MISQ
ss\

MISQ
ss\

SCL

MOSI

SCL'

SPIbus

SPI bus interfacing

the shift register of the master device through MISO pin. In summary, the shift registers of ‘master’ and

‘slave’ devices form a circular buffer. For some devices, the decision on whether the LS/MS bit of data

needs to be sent out first is configurable through configuration register (e.g. LSBF bit of the SPI control

register for Motorola’s 68HC12 controller).

When compared to I2C, SPI bus is most suitable for applications requiring transfer of data in ‘streams’.

The only limitation is SPI doesn’t support an acknowledgement mechanism.

2.4.1.3 Universal Asynchronous Receiver Transmitter (UART) Universal Asynchronous Re¬

ceiver Transmitter (UART) based data transmission is an asynchronous form of serial data transmission.

UART based serial data transmission doesn’t require a clock signal to synchronise the transmitting end

arid receiving end for transmission. Instead it relies upon the pre-defined agreement between the trans¬

mitting device and receiving device. The serial communication settings (Baudrate, number of bits per

byte, parity, number of start bits and stop bit and flow control) for both transmitter and receiver should

be set as identical. The start and stop of communication is indicated through inserting special bits in the

data stream. While sending a byte of data, a start bit is added first and a stop bit is added at the end of

the bit stream. The least significant bit of the data byte follows the ‘start’ bit.

The ‘start’ bit informs the receiver that a data byte is about to arrive. The receiver device starts polling

its ‘receive line’ as per the baudrate settings. If the baudrate is A’ bits per second, the time slot available

for one bit is llx seconds. The receiver unit polls the receiver line at exactly half of the time slot avail¬

able for the bit. If parity is enabled for communication, the UART of the transmitting device adds a par¬

ity bit (bit value is 1 for odd number of Is in the transmitted bit stream and 0 for even number of Is). The

UART of the receiving device calculates the parity of the bits recei ved and compares it with the received

parity bit for error checking. The UART of the receiving device discards the ‘Start’, ‘Stop’ and ‘Parity’

MOSI SCL MISO

MOSI

https://hemanthrajhemu.github.io

The Typical Embedded System

A-,/".1,•/- .. * A>\ U, ' ... „ : x- ; v ■

UART TXD
■TXD- ,

- , UART :. t;
' : ■ - ' DC

rp>

1
. /

bit from the received bit stream and converts
the received serial bit data to a word (In the
case of 8 bifs/byte, the byte is formed with the
received 8 bits with the first received bit as the
LSB and last received data bit as MSB).

For proper communication, the ‘Transmit
line’ of the sending device should be con¬
nected to the ‘Receive line’ of the receiving
device. Figure 2.28 illustrates the same.

In addition to the serial data transmission
function, UART provides hardware handshak¬
ing signal support for controlling the serial
data flow. UART chips are available from dif¬
ferent semiconductor manufacturers. National
Semiconductor’s 8250 UART chip is considered as the standard setting UART. It was used in the origi¬
nal IBM PC.

Nowadays most of the microprocessors/controllers are available with integrated UART functionality
and they provide built-in instruction support for serial data transmission and reception.

TXD: Transmitter line
RXD: Receiver line

[Fig. 2,28) UART Interfacing

2.4.1.4 1-Wire Interface 1-wire interface is an asynchronous half-duplex communication protocol
developed by Maxim Dallas Semiconductor (http://www.maxim-ic.comT It is also known as Dallas
1-Wire® protocol. It makes use of only a single signal line (wire) called DQ for communication and
follows the master-slave communication model. One of the key feature of 1-wire bus is that it allows
power to be sent along the signal wire as well. Thel2C slave devices incorporate internal capacitor
(typically of the order of 800 pF) to power the device from the signal line. The 1-wire interface supports
a single master and one or more slave devices on the bus. The bus interface diagram shown in Fig. 2.29
illustrates the connection of master and slave devices on the 1-wire bus.

Vcc

(Fig. 2.29 1-Wire Interface bus

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Every 1-wire device contains a globally unique 64bit identification number stored within it. This
unique identification number can be used for addressing individual devices present on the bus in case
there are multiple slave devices connected to the 1 -wire bus. The identifier has three parts: an 8bit family
code, a 48bit serial number and an 8bit CRC computed from the first 56 bits. The sequence of operation
for communicating with a 1-wire slave device is listed below.

1. The master device sends a ‘Reset’ pulse on the 1-wire bus.
2. The slave device(s) present on the bus respond with a ‘Presence’ pulse.
3. The master device sends a ROM command (Net Address Command followed by the 64bit address

of the device). This addresses the slave device(s) to which it wants to initiate a communication.
4. The master device sends a read/write fimction command to read/write the internal memory or

register of the slave device.
5. The master initiates a Read data/Write data from the device or to the device
All communication over the 1-wire bus is master initiated. The communication over the 1-wire bus is

divided into timeslots of 60 microseconds. The ‘Reset’ pulse occupies 8 time slots. For starting-a com¬
munication, the master asserts the reset pulse by pulling the 1-wire bus ‘LOW’ for at least 8 time slots
(480us). If a ‘slave’ device is present on the bus and is ready for communication it should respond to the
master with a ‘Presence’ pulse, within 60ps of the release of the ‘Reset’ pulse by the master. The slave
device(s) responds with a ‘Presence’ pulse by pulling the 1-wire bus ‘LOW’ for a minimum of 1 time
slot (60|is). For writing a bit value of 1 on the 1-wire bus, the bus master pulls the bus for 1 to 15lis and
then releases the bus for the rest of the time slot. A bit value of ‘0’ is written on the bus by master pulling
the bus for a minimum of 1 time slot (60ps) and a maximum of 2 time slots (120|is). To Read a bit from
the slave device, the master pulls the bus ‘LOW’ for 1 to 15qs. If the slave wants to send a bit value ‘1’
in response to the read request from the master, it simply releases the bus for the rest of the time slot. If
the slave wants to send a bit value ‘O’, it pulls the bus ‘LOW’ for the rest of the time slot.

2.4.1.5 Parallel Interface The on-board parallel interface is normally used for communicating with
peripheral devices which are memory mapped to the host of the system. The host processor/controller
of the embedded system contains a parallel bus and the device which supports parallel bus can directly
connect to this bus system. The communication through the parallel bus is controlled by the control sig¬
nal interface between the device and the host. The ‘Control Signals’ for communication includes ‘Read/
Write’ signal and device select signal. The device normally contains a device select line and the device
becomes active only when this line is asserted by the host processor. The direction of data transfer (Host
to Device or Device to Host) can be controlled through the control signal lines for ‘Read’ and ‘Write’.
Only the host processor has control over the ‘Read’ and ‘Write’ control signals. The device is normally
memory mapped to the host processor and a range of address is assigned to it. An address decoder circuit
is used for generating the chip select signal for the device. When the address selected by the processor
is within the range assigned for the device, the decoder circuit activates the chip select line and thereby
the device becomes active. The processor then can read or write from or to the device by asserting the
corresponding control line (RD\ and WR\ respectively). Strict timing characteristics are followed for
parallel communication. As mentioned earlier, parallel communication is host processor initiated. If a
device wants to initiate the communication, it can inform the same to the processor through interrupts.
For this, the interrupt line of the device is connected to the interrupt line of the processor and the cor¬
responding interrupt is enabled in the host processor. The width of the parallel interface is determined
by the data bus width of the host processor. It can be 4bit, 8bit, 16bit, 32bit or 64bit etc. The bus width
supported by the device should be same as that of the host processor. The bus interface diagram shown
in Fig. 2.30 illustrates the interfacing of devices through parallel interface.

https://hemanthrajhemu.github.io

2.4.2 External Communication Interfaces

The External Communication Interface refers to the different communication channels/buses used by
the embedded system to communicate with the external world. The following section gives an overview
of the various interfaces for external communication.

2.4.2.1 RS-232 C & RS-485 RS-232 C (Recommended Standard number 232, revision C from the
Electronic Industry Association) is a legacy, full duplex, wired, asynchronous serial communication
interface. The RS-232 interface is developed by the Electronics Industries Association (EIA) during the
early 1960s. RS-232 extends the UART communication signals for external data communication.

UART uses the standard TTL/CMOS logic (Logic ‘High’ corresponds to bit value 1 and Logic ‘Low’
corresponds to bit value 0) for bit transmission whereas-RS-232 follows the EIA standard for bit trans¬
mission. As per the EIA standard, a logic ‘0’ is represented with voltage between +3 and +25V and a
logic ‘ 1’ is represented with voltage between -3 and -25V. In EIA standard, logic ‘0’ is known as ‘Space’
and logic ‘1 ’ as ‘Mark’. The RS-232 interface defines various handshaking and control signals for com¬
munication apart from the ‘Transmit’ and.‘Receive’ signal lines for data communication. RS-232. sup¬
ports two different types of connectors, namely; DB-9: 9-Pin comiector and DB-25: 25-Pin connector.
Figure 2.31 illustrates the connector details for DB-9 and DB-25.

https://hemanthrajhemu.github.io

t
!

K21. Introduction to Embedded Systems
VMS

The pin details for the two connectors are explained in the following table:

Pin Name Pin no: (For DB-9 Pin no: (For DB-25 • . Description

:Sj. > Connector);' ' 55 ' Connector) - ” ' - '’' .y-L-L ‘CL2:''-:Lv:^-x-Lyy*cLy.L'LL: L

TXD 3 2 Transmit Pin for Transmitting Serial Data

RXD 2 xNf-r 3 Receive Pin for Receiving Serial Data - ■L'L

RTS 7 4 Request to send.

CTS EL h. «- . g 5 . ; Clear To Send

DSR,- ... IceLL- Luv; L:- 6 Data Set Ready ■■

GND . -X - Signal Ground.
•• ■LL-'<L:L •

DCD ‘ 1 ‘ 8 Data Carrier Detect, * 4-s

DTR | . ” 4 Li. L: 20
s3 ■» » . sc .-'7 ; P{’<'h&s>sN•

Data Terminal Ready t x- m
' D tss,

RI 9 ; 22 Ring Indicator

FG
y • 2 .-a ■ yu;

* s1' h » ' * 'it: “,•£ - - |gg -yi
frame Ground ; • > L ' x"

; • - . yvXLLLL

SDCD 12 Secondary DCD

'SCTS
Lit'll • ’£■"/* .ipr °

s»> Lk „ * j, 13 Secondary CTS.,

STXD > 14 Secondary TXD
< S<>> * ’i ,

TC
L ZL T i *1?^:;; } - 1,“

L 15 fjgj r Transmission Signal Element Timing L -.Lx >1 r r. J % * :

SRXD 16 Secondary RXD.

RC 17 Receiver Signal Element Timing

SRTS 19 Secondary RTS

21 :F y Signal Quality detector ‘ ,, y , ’ .-

NC 9 No Connection

NC V 10 No Connection p-L. c X ;/ !=‘‘' L tL$y y :

NC 11 No Connection
1

NC tff' ; 5 18 No Connection

NC 23 No Connection j

NC
v‘s ' U

24 No Connection

NC 25 No Connection

RS-232 is a point-to-point communication interface and the devices involved in RS-232 communica¬
tion are called ‘Data Terminal Equipment (DTE)’ and ‘Data Communication Equipment (DCE)’. If no
data flow control is required, only TXD and RXD signal lines and ground line (GND) are required for
data transmission and reception. The RXD pin of DCE should be connected to the TXD pin of DTE and
vice versa for proper data transmission.

If hardware data flow control is required for serial transmission, various control signal lines of the
RS-232 connection are used appropriately. The control signals are implemented mainly for modem
communication and some of them may not be relevant for other type of devices. The Request To Send
(RTS) and Clear To Send (CTS) signals co-ordinate the communication between DTE and DCE. When¬
ever the DTE has a data to send, it activates the RTS line and if the DCE is ready to accept the data, it
activates the CTS line.

https://hemanthrajhemu.github.io

The Typical Embedded System

The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to accept data. The Data
Set Ready (DSR) is activated by DCE when it is ready for establishing a communication link. DTR
should be in the activated state before the activation of DSR.

The Data Carrier Detect (DCD) control signal is used by the DCE to indicate the DTE that a good
signal is being received.

Ring Indicator (RI) is a modem specific signal line for indicating an incoming call on the telephone
line.

The 25 pin DB connector contains two sets of signal lines for transmit, receive and control lines.
Nowadays DB-25 connector is obsolete and most of the desktop systems are available with DB-9 con¬
nectors only.

As per the EIA standard RS-232 C supports baudrates up to 20Kbps (Upper limit 19.2 Kbps) The com¬
monly used baudrates by devices are 300bps, 1200bps, 2400bps, 9600bps, 11.52Kbps and 19.2Kbps.
9600 is the popular baudrate setting used for PC communication. The maximum operating distance sup¬
ported by RS-232 is 50 feet at the highest supported baudrate.

Embedded devices contain a UART for serial communication and they generate signal levels con¬
forming to TTL/CMOS logic. A level translator IC like MAX 232 from Maxim Dallas semiconductor
is used for converting the signal lines from the UART to RS-232 signal lines for communication. On
the receiving side the received data is converted back to digital logic level by a converter IC. Converter
chips contain converters for both transmitter and receiver.

Though RS-232 was the most popular communication interface during the olden days, the advent of
other communication techniques like Bluetooth, USB, Firewire, etc are pushing down RS-232 from the
scenes. Still RS-232 is popular in certain legacy industrial applications.

RS-232 supports only point-to-point communication and not suitable for multi-drop communication.
It uses single ended, data transfer technique for signal transmission and thereby more susceptible to
noise and it greatly reduces the operating distance.

RS-422 is another serial interface standard from EIA for differential data communication. It supports
data rates up to 100Kbps and distance up to 400 ft. The same RS-232 connector is used at the device
end and an RS-232 to RS-422 converter is plugged in the transmission line. At the receiver end the
conversion from RS-422 to RS-232 is performed. RS-422 supports multi-drop communication with one
transmitter device and receiver devices up to 10.

RS-485 is the enhanced version of RS-422 and it supports multi-drop communication with up to 32
transmitting devices (drivers) and 32 receiving devices on the bus. The communication between devices
in the bus uses the ‘addressing’ mechanism to identify slave devices.

2.4.2.2 Universal Serial Bus (USB) Universal Serial Bus (USB) is a wired high speed serial bus
for data communication. The first version of USB (USB 1.0) was released in 1995 and was created by
the USB core group members consisting of Intel, Microsoft, IBM, Compaq, Digital and Northern Tele¬
com. The USB communication system follows a star topology with a USB host at the centre and one
or more USB peripheral devices/USB hosts connected to it. A USB host can support connections up to
127, including slave peripheral devices and other USB hosts. Figure 2.32 illustrates the star topology
for USB device connection.

USB transmits data in packet format. Each data packet has a standard format. The USB communica¬
tion is a host initiated one. The USB host contains a host controller which is responsible for controlling
the data communication, including establishing connectivity with USB slave devices, packetizing and
formatting the data. There are different standards for implementing the USB Host Control interface;
namely Open Host Control Interface (OHCI) and Universal Host Control Interface (UHCI).

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The physical connection between a USB peripheral de¬
vice and master device is established with a USB cable.
The USB cable supports communication distance of up to
5 metres. The USB standard uses two different types of
connector at the ends of the USB cable for connecting the
USB peripheral device and host device. ‘Type A’ connector
is used for upstream connection (connection with host) and
Type B connector is used for downstream connection(con-
nection with slave device). The USB connector present in
desktop PCs or laptops are examples for ‘Type A’ USB
connector. Both Type A and Type B connectors contain 4
pins for communication. The Pin details for the connectors
are listed in the table given below.

USB uses differential signals for data transmission. It
improves the noise immunity. USB interface has the ability to supply power to the connecting devices.
Two connection lines (Ground and Power) of the USB interface are dedicated for carrying power. It can
supply power up to 500 mA at 5 V. It is sufficient to operate low power devices. Mini and Micro USB
connectors are available for small form factor devices like7 portable media players.

Each USB device contains a Product ID (PID) and a Vendor ID (VID). The PID and VID are embed¬
ded into the USB chip by the USB device manufacturer. The VID for a device is supplied by the USB
standards forum. PID and VID are essential for loading the drivers corresponding to a USB device for
communication.

USB supports four different types of data transfers, namely; Control, Bulk, Isochronous and Inter¬
rupt. Control transfer is used by USB system software to query, configure and issue commands to the
USB device. Bulk transfer is used for sending a block of data to a device. Bulk transfer supports error
checking and correction. Transferring data to a printer is an example for bulk transfer. Isochronous data
transfer is used for real-time data communication. In Isochronous transfer, data is transmitted as streams
in real-time. Isochronous transfer doesn’t support error checking and re-transmission of data in case of
any transmission loss. All streaming devices like audio devices and medical equipment for data collec¬
tion make use of the isochronous transfer. Interrupt transfer is used for transferring small amount of
data. Interrupt transfer mechanism makes use of polling technique to see whether the USB device has
any data to send. The frequency of polling is determined by the USB device and it varies from 1 to 255
milliseconds. Devices like Mouse and Keyboard, which transmits fewer amounts of data, uses Interrupt
transfer.

USB.ORG Cwww.usb.org) is the standards body for defining and controlling the standards for USB
communication. Presently USB supports four different data rates namely; Low Speed (1.5Mbps), Full
Speed (12Mbp's), High Speed (480Mbps) and Super Speed (4.8Gbps). The Low Speed and Full Speed
specifications are defined by USB 1.0 and the High Speed specification is defined by USB 2.0, USB 3.0

Peripheral
device 2

Peripheral USB host Peripheral
device 1 (Hub) device 3

device 4 device 5

Fig. 2.32) USB Device Connection topology

https://hemanthrajhemu.github.io

The Typical Embedded System

defines the specifications for Super Speed. USB 3.0 is expected to be in action by year 2009. There is a
move happening towards wireless USB for data transmission using Ultra Wide Band (UWB) technol¬
ogy. Some laptops are already available in the market with wireless USB support.

2.4.2.3 IEEE 1394 (Firewire) IEEE 1394 is a wired, isochronous high speed serial communica¬
tion bus. It is also known as High Performance Serial Bus (HPSB). The research on 1394 was started
by Apple Inc. in 1985 and the standard for this was coined by IEEE. The implementation of it is avail¬
able from, various players with different names. Apple Inc’s (www.apple.com) implementation of 1394
protocol is popularly known as Firewire. i.LINK is the 1394 implementation from Sony Corporation
(www.sony.net') and Lynx is the implementation from Texas Instruments (www.ti.com). 1394 supports
peer-to-peer connection and point-to-multipoint communication allowing 63 devices to be comiected
on the bus in a tree topology. 1394 is a wired serial interface and it can support a cable length of up to
15 feet for interconnection.

The 1394 standard has evolved a lot from the first version IEEE 1394-1995 released in 1995 to the
recent version IEEE 1394-2008 released in June 2008. The 1394 standard supports a data rate of 400
to 3200Mbits/second. The IEEE 1394 uses differential data transfer (The information is sent using dif¬
ferential signals through a pair of twisted cables. It increases the noise immunity) and the interface cable
supports 3 types of connectors, namely; 4-pin connector, 6-pin connector (alpha connector) and 9 pin
connector (beta connector). The 6 and 9 pin comiectors carry power also to support external devices
(In case an embedded device is connected to a PC through an IEEE 1394 cable with 6 or 9 pin connec¬
tor interface, it can operate from the power available through the connector.) It can supply unregulated
power in the range of 24 to 30V. (The Apple implementation is for battery operated devices and it can
supply a voltage in the range 9 to 12V.) The table given below illustrates the pin details for 4, 6 and 9
pin connectors.

TPB- T 1 3 l Differential Signal line for Signal line B

„ TPB+ A ■ : . . "I 2 w : 4 v ■ VA
.»■> Xirtw.tr.'A•".V" ;$

' 2 'A
’_A..

Differential Signal line fof Signal line B

TPA- ~ 3 5 3 Differential Signal line for Signal line A

■ - ? 'A ‘6 ;v; • AUggEl Differential Signal line: for Signal line A

TPA(S)
\ «- *

. 5 Shield for the differential signal line A.

Normally grounded

TPB(S) v"?' % • A 1 9 Shield for the differential,.signal .line B.
q > ./'A,* .Atu A-'- 'A '«

: *:v ' Normally grounded)!;

NC 7 No connection

There are two differential data transfer lines A and B per connector. In a 1394 cable, normally the dif¬
ferential lines of A are comiected to B (TPA+ to TPB+ and TPA-to TPB-) and vice versa.

1394 is a popular communication interface for connecting embedded devices like Digital Camera,
Camcorder, Scanners to desktop computers for data transfer and storage.

Unlike USB interface (Except USB OTG), IEEE 1394 doesn’t require a host for communicating
between devices. For example, you can directly connect a scanner with a printer for printing. The data-

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

rate supported by 1394 is far higher than the one supported by USB2.0 interface. The 1394 hardware
implementation is much costlier than USB implementation.

2.4.2.4 Infrared (IrDA) Infrared (IrDA) is a serial, half duplex, line of sight based wireless tech¬
nology for data communication between devices. It is in use from the olden days of communication
and you may be very familiar with it. The remote control of your TV, VCD player, etc. works on In¬
frared data communication principle. Infrared communication technique uses infrared waves of the
electromagnetic spectrum for transmitting the data. IrDA supports point-point and point-to-multipoint
communication, provided all devices involved in the communication are within the line of sight. The
typical communication range for IrDA lies in the range 10 cm to 1 m. The range can be increased by
increasing the transmitting power of the IR device. IR supports data rates ranging from 9600bits/second
to 16Mbps. Depending on the speed of data transmission IR is classified into Serial IR (SIR), Medium
IR (MIR), Fast IR (FIR), Very Fast IR (VFIR) and Ultra Fast IR (UFIR). SIR supports transmission
rates ranging from 9600bps to 115.2kbps. MIR supports data rates of 0.576Mbps and 1.152Mbps. FIR
supports data rates up to 4Mbps. VFIR is designed to support high data rates up to 16Mbps. The UFIR
specs are under development and it is targeting a,data rate up to 100Mbps.

IrDA communication involves a transmitter unit for transmitting the data over IR and a receiver
for receiving the data. Infrared Light Emitting Diode (LED) is the IR source for transmitter and at the

receiving end a photodiode acts as the receiver. Both transmitter and receiver unit will be present in
each device supporting IrDA communication for bidirectional data transfer. Such IR units are known as
‘Transceiver’. Certain devices like a TV remote control always require unidirectional communication
and so they contain either the transmitter or receiver unit (The remote control unit contains the transmit¬
ter unit and TV contains the receiver unit).

‘Infra-red Data Association’ (IrDA - http://www.irda.org/) is the regulatory body responsible for de¬
fining and licensing the specifications for IR data communication. IrDA communication has two es¬
sential parts; a physical link part and a protocol part. The physical link is responsible for the physical
transmission of data between devices supporting IR communication and protocol part is responsible
for defining the rules of communication. The physical link works on the wireless principle making use
of Infrared for communication. The IrDA specifications include the standard for both physical link and

protocol layer.
The IrDA control protocol contains implementations for Physical Layer (PHY), Media Access Con¬

trol (MAC) and Logical Link Control (LLC). The Physical Layer defines the physical characteristics of
communication like range, data rates, power, etc.

IrDA is a popular interface for file exchange and data transfer in low cost devices. IrDA .was the

prominent communication channel in mobile phones before Bluetooth’s existence. Even now most of
the mobile phone devices support IrDA.

2.4.2.5 Bluetooth (BT) Bluetooth is a low cost, low power, short range wireless technology for data

and voice communication. Bluetooth was first proposed by ‘Ericsson’ in 1994. Bluetooth operates at
2.4GHz of the Radio Frequency spectrum and uses the Frequency Hopping Spread Spectrum (FHSS)
technique for communication. Literally it supports a data rate of up to 1Mbps and a range of approxi¬
mately 30 feet for data communication. Like IrDA, Bluetooth communication also has two essential

parts; a physical link part and a protocol part. The physical link is responsible for the physical trans¬
mission of data between devices supporting Bluetooth communication and protocol part is responsible

https://hemanthrajhemu.github.io

The Typical Embedded System

for defining the rules of communication. The physical link works on the wireless principle making use
of RF waves for communication. Bluetooth enabled devices essentially contain a Bluetooth wireless
radio for the transmission and reception of data. The rules governing the Bluetooth communication is
implemented in the ‘Bluetooth protocol stack’. The Bluetooth communication IC holds the stack. Each
Bluetooth device will have a 48 bit unique identification number. Bluetooth communication follows
packet based data transfer.

Bluetooth supports point-to-point (device to device) and point-to-multipoint (device to multiple
device broadcasting) wireless communication. The point-to-point communication follows the master-
slave relationship. A Bluetooth device can function as either master or slave. When a network is formed
with one Bluetooth device as master and more than one device as slaves, it is called a Piconet. A Piconet
supports a maximum of seven slave devices.

Bluetooth is the favourite choice for short range data communication in handheld embedded devices.
Bluetooth technology is very popular among cell phone users as they are the easiest communication
channel for transferring ringtones, music files, pictures, media files, etc. between neighbouring Blue¬
tooth enabled phones.

The Bluetooth standard specifies the minimum requirements that a Bluetooth device must support

for a specific usage scenario. The Generic Access Profile (GAP) defines the requirements for detecting
a Bluetooth device and establishing a connection with it. All other specific usage profiles are based on
GAP. Serial Port Profile (SPP) for serial data communication, File Transfer Profile (FTP) for file transfer
between devices, Human Interface Device (HID) for supporting human interface devices like keyboard
and mouse are examples for Bluetooth profiles.

The specifications for Bluetooth communication is defined and licensed by the standards body ‘Blue¬
tooth Special Interest Group (SIG)\ For more information, please visit the website www.bluetooth.org.

2.4.2.6 Wi-Fi Wi-Fi or Wireless Fidelity is the popular wireless communication technique for net¬
worked communication of devices. Wi-Fi follows the IEEE 802.11 standard. Wi-Fi is intended for net¬
work communication and it supports Internet Protocol (IP) based communication. It is essential to have
device identities in a multipoint communication to address specific devices for data communication. In
an IP based communication each device is identified by an IP address, which is unique to each device on
the network. Wi-Fi based communications require an intermediate agent called Wi-Fi router/Wireless
Access point to manage the communications. The Wi-Fi router is responsible for restricting the access to
a network, assigning IP address to devices on the network, routing data packets to the intended devices
on the network. Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving data in

the form of radio signals through an antenna. The hardware part of it is known as Wi-Fi Radio.
Wi-Fi operates at 2.4GHz or 5GHz of radio spectrum and they co-exist with other ISM band devices

like Bluetooth. Figure 2.33 illustrates the typical interfacing of devices in a Wi-Fi network.
For communicating with devices over a Wi-Fi network, the device when its Wi-Fi radio is turned

ON, searches the available Wi-Fi network in its vicinity and lists out the Service Set Identifier (SSID) of
the available networks. If the network is security enabled, a password may be required to connect to a

particular SSID. Wi-Fi employs different security mechanisms like Wired Equivalency Privacy (WEP)
Wireless Protected Access (WPA), etc. for securing the data communication.

Wi-Fi supports data rates ranging from 1Mbps to 150Mbps (Growing towards higher rates as technol¬
ogy progresses) depending on the standards (802.11 a/b/g/n) and access/modulation method. Depending
On the type of antenna and usage location (indoor/outdoor), Wi-Fi offers a range of 100 to 300 feet.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

/ \

\

Device 1

(Fig. 2.331

I
M

Device 2
Device 3

Wi-Fi network

2.4.2.7 ZigBee ZigBee is a low power, Wi-Fi router

low cost, wireless network communication
protocol based on the IEEE 802.15.4-2006
standard. ZigBee is targeted for low pow¬
er, low data rate and secure applications
for Wireless Personal Area Networking
(WPAN). The ZigBee specifications support
a robust mesh network containing multiple
nodes. This networking strategy makes the
network reliable by permitting messages to
travel through a number of different paths to _
get from one node to another. USk I

ZigBee operates worldwide at the unli¬
censed bands of Radio spectrum, mainly at
2.400 to 2.484 GHz, 902 to 928 MHz and
868.0 to 868.6 MHz. ZigBee Supports an
operating distance of up to 100 metres and a
data rate of 20 to 250Kbps.

In the ZigBee terminology, each ZigBee
device falls under any one of the following ZigBee device category.
ZigBee Coordinator (ZC)/Network Coordinator: The ZigBee coordinator acts as the root of the Zig¬
Bee network. The ZC is responsible for initiating the ZigBee network and it has the capability to store
information about the network.
ZigBee Router (ZR)/Full function Device (FFD): Responsible for passing information from device to
another device or to another ZR.
ZigBee End Device (ZED)/Reduced Function Device (RFD): End device containing ZigBee func¬
tionality for data communication. It can talk only with a ZR or ZC and doesn’t have the capability to act
as a mediator for transferring data from one device to another.

The diagram shown in Fig. 2.34 gives an overview of ZC, ZED ZED

ZED and ZR in a ZigBee network.
ZigBee is primarily targeting application areas like home

& industrial automation, energy management, home control/
security, medical/patient tracking, logistics & asset tracking
and sensor networks & active RFID. Automatic Meter Reading
(AMR), smoke detectors, wireless telemetry, HVAC control,
heating control, lighting controls, environmental controls, etc.
are examples for applications which can make use of the Zig¬
Bee technology.

The specifications for ZigBee is developed and managed by [Fig. 2.34) A ZigBee network model

the ZigBee alliance (www.zigbee.org). a non-profit consortium
of leading semiconductor manufacturers, technology providers, OEMs and end-users worldwide.

2.4.2.8 General Packet Radio Service (GPRS) General Packet Radio Service (GPRS) is a com¬
munication technique for transferring data over a mobile communication network like GSM. Data is
sent as packets in GPRS communication. The transmitting device splits the data into several related
packets. At the receiving end the data is re-constructed by combining the received data packets. GPRS

https://hemanthrajhemu.github.io

The Typical Embedded System

supports a theoretical maximum transfer rate of 171.2kbps. In GPRS communication, the radio channel
is concurrently shared between several users instead of dedicating a radio channel to a cell phone user.
The GPRS communication divides the channel into 8 timeslots and transmits data over the available
channel. GPRS supports Internet Protocol (IP), Point to Point Protocol (PPP) and X.25 protocols for
communication.

GPRS is mainly used by mobile enabled embedded devices for data communication. The device
should support the necessary GPRS hardware like GPRS modem and GPRS radio. To accomplish
GPRS based communication, the carrier network also should have support for GPRS communication.
GPRS is an old technology and it is being replaced by new generation data communication techniques
like EDGE, High Speed Downlink Packet Access (HSDPA), etc. which offers higher bandwidths for
communication.

2.5 EMBEDDED FIRMWARE

Embedded firmware refers to the control algorithm (Program instructions) and or the configuration
settings that an embedded system developer dumps into the code (Program) memory of the embedded
system. It is an un-avoidable part of an embedded system. There are various methods available for de¬
veloping the embedded firmware. They are listed below. “

1. Write the program in high level languages like Embedded C/C++ using an Integrated Develop¬
ment Environment (The IDE will contain an editor, compiler, linker, debugger, simulator, etc.
IDEs are different for different family of processors/controllers. For example, Keil micro vision3
IDE is used for all family members of 8051 microcontroller, since it contains the generic 8051
compiler C51).

2. Write the program in Assembly language using the instructions supported by your application’s
target processor/controller.

The instruction set for each family of processor/controller is different and the program written in
either of the methods given above should be converted into a processor understandable machine code
before loading it into the program memory.

The process of converting the program written in either a high level language or processor/controller
specific Assembly code to machine readable binary code is called ‘HEX File Creation1. The methods
used for ‘HEX File Creation ’ is different depending on the programming techniques used. If the pro¬
gram is written in Embedded C/C++ using an IDE, the cross compiler included in the IDE converts it
into corresponding processor/controller understandable ‘HEXFile’. If you are following the Assembly
language based programming technique (method 2), you can use the utilities supplied by the proces¬
sor/controller vendors to convert the source code into ‘HEXFile'. Also third party tools are available,
which may be of free of cost, for this conversion.

For a beginner in the embedded software field, it is strongly recommended to use the high level lan¬
guage based development technique. The reasons for this being: writing codes in a high level language
is easy, the code written in high level language is highly portable which means you can use the same
code to run on different processor/controller with little or less modification. The only thing you need to
do is re-compile the program with the required processor’s IDE, after replacing the include files for that
particular processor. Also the programs written in high level languages are not developer dependent.
Any skilled programmer can trace out the functionalities of the program by just having a look at the pro¬
gram. It will be much easier if the source code contains necessary comments and documentation lines.
It is very easy to debug and the overall system development time will be reduced to a greater extent.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The embedded software development process in assembly language is tedious and time consuming.
The developer needs to know about all the instruction sets of the processor/controller or at least s/he
should carry an instruction set reference manual with her/him. A programmer using assembly language
technique writes the program according to his/her view and taste. Often he/she may be writing a method
or functionality which can be achieved through a single instruction as an experienced person’s point of
view, by two or three instructions in his/her own style. So the program will be highly dependent on the
developer. It is very difficult for a second person to understand the code written in Assembly even if it
is well documented.

We will discuss both approaches of embedded software development in a later chapter dealing with
design of embedded-firmware, in detail. Two types of control algorithm design exist in embedded firm¬
ware development. The first type of control algorithm development is known as the infinite loop or
‘super loop’ based approach, where the control flow runs from top to bottom and then jumps back to
the top of the program in a conventional procedure. It is similar to the while (1) {}; based technique
in C. The second method deals with splitting the functions to be executed into tasks and running these
tasks using a scheduler which is part of a General Purpose or Real Time Embedded Operating System
(GPOS/RTOS). We will discuss both of these approaches in separate chapters of this book.

2,6 OTHER SYSTEM COMPONENTS

The other system components refer to the components/circuits/ICs which are necessary for the proper
functioning of the embedded system. Some of these circuits may be essential for the proper function¬
ing of the processor/controller and firmware execution. Watchdog timer, Reset IC (or passive circuit),
brown-out protection IC (or passive circuit), etc. are examples of circuits/ICs which are essential for
the proper functioning of the processor/controllers. Some of the controllers or SoCs integrate these
components within a single IC and doesn’t require such components externally connected to the chip
for proper functioning. Depending on the system requirement, the embedded system may include other
integrated circuits for performing specific functions, level translator ICs for interfacing circuits with
different logic levels, etc. The following section explains the essential circuits for the proper functioning
of the processor/controller of the embedded system.

2.6.1 Reset Circuit

The reset circuit is essential to ensure that the device is not operating at a voltage level where the device
is not guaranteed to operate, during system power ON. The reset signal brings the internal registers and
the different hardware systems of the processor/controller to a known state and starts the firmware exe¬
cution from the reset vector (Normally from vector address 0x0000 for conventional processors/control¬
lers. The reset vector can be relocated to an address for processors/controllers supporting bootloader).
The reset signal can be either active high (The processor undergoes reset when the reset pin of the pro¬
cessor is at logic high) or active low (The processor undergoes reset when the reset pin of the processor
is at logic low). Since the processor operation is synchronised to a clock signal, the reset pulse should
be wide enough to give time for the clock oscillator to stabilise before the internal reset state starts.
The reset signal to the processor can be applied at power ON through an external passive reset circuit
comprising a Capacitor and Resistor or through a standard Reset IC like MAAS 10 from Maxim Dallas
(www.maxim-ic.com). Select the reset IC based on the type of reset signal and logic level (CMOS/TTL)
supported by the processor/controller in use. Some microprocessors/controllers contain built-in internal

https://hemanthrajhemu.github.io

The Typical Embedded System

reset circuitry and they don’t require external reset circuitry. Figure 2.35 illustrates a resistor capacitor
based passive reset circuit for active high and low configurations. The reset pulse width can be adjusted
by changing the resistance value R and capacitance value C.

2.6.2 Brown-out Protection Circuit

Reset pulse

Active low

Brown-out protection circuit prevents the processor/controller
from unexpected program execution behaviour when the sup¬
ply voltage to the processor/controller falls below a specified
voltage. It is essential for battery powered devices since there
are greater chances for the battery voltage to drop below the
required threshold. The processor behaviour may not be pre- R2

dictable if the supply voltage falls below the recommended op¬
erating voltage. It may lead to situations like data corruption. A
brown-out protection circuit holds the processor/controller in
reset state, when the operating voltage falls below the thresh- Dz
old, until it rises above the threshold voltage. Certain proces¬
sors/controllers support built in brown-out protection circuit
which monitors the supply voltage internally. If the proees-
sor/controller doesn’t integrate a built-in brown-out protection

circuit, the same can be implemented using external passive (Fig.2.36) Brown-out protection circuit

circuits or supervisor ICs. Figure 2.36 illustrates a brown-out with Active low output

circuit implementation using Zener diode and transistor for
processor/controller with active low Reset logic.

The Zener diode Dz and transistor Q forms the heart of this circuit. The transistor conducts always
when the supply voltage Vcc is greater than that of the sum of VBE and V7 (Zener voltage). The transistor
stops conducting when the supply voltage falls below the sum of VBE and Fz. Select the Zener diode
with required voltage for setting the low threshold value for Fee. The values of Rl, R2, and R3 can
be selected based on the electrical characteristics (Absolute maximum current and voltage ratings) of
the transistor in use. Microprocessor Supervisor ICs like DS1232 from Maxim Dallas (www.maxim-
jc.com) also provides Brown-out protection.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.6.3 Oscillator Unit

A microprocessor/microcontroller is a digital device made up of digital combinational and sequential
circuits. The instruction execution of a microprocessor/controller occurs in sync with a clock signal. It is
analogous to the heartbeat of a living being which synchronises the execution of life. For a living being,
the heart is responsible for the generation of the beat whereas the oscillator unit of the embedded system
is responsible for generating the precise clock for the processor. Certain processors/controllers integrate
a built-in oscillator unit and simply require an external ceramic resonator/quartz crystal for producing
the necessary clock signals. Quartz crystals and ceramic resonators are equivalent in operation, however
they possess physical difference. A quartz crystal is normally mounted in a hermetically sealed metal
case with two leads protruding out of the case. Certain devices may not contain a built-in oscillator unit
and require the clock pulses to be generated and supplied externally. Quartz crystal Oscillators are avail¬
able in the form chips and they can be used for generating the clock pulses in such a cases. The speed
of operation of a processor is primarily dependent on the clock frequency. However we cannot increase
the clock frequency blindly for increasing the speed of execution. The logical circuits lying inside the
processor always have an upper threshold value for the maximum clock at which the system can run,
beyond which the system becomes unstable and non functional. The total system power consumption
is directly proportional to the clock frequency. The power consumption increases with increase in clock
frequency. The accuracy of program execution depends on the accuracy of the clock signal. The accu¬
racy of the crystal oscillator or ceramic resonator is normally expressed in terms of +/-ppm (Parts per
million). Figure 2.37 illustrates the usage of quartz crystal/ceramic resonator and external oscillator chip
for clock generation.

Quartz crystal
resonator

C: Capacitor
Y : Resonator

X7

L!1 =j=c
Y

Y7

Microcontroller

Oscillator
Unit

jpViP1:05;

Crystal oscillator

nJ1 Clock input pin

Oscillator 3 j
.unit: |

(Fig. 2.37) Oscillator circuitry using quartz crystal and quartz crystal oscillator

2.6.4 Real-Time Clock (RTC)

Real-Time Clock (RTC) is a system component responsible for keeping track of time. RTC holds infor¬
mation like current time (In hours, minutes and seconds) in 12 hour/24 hour format, date, month, year,
day of the week, etc. and supplies timing reference to the system. RTC is intended to function even in
the absence of power. RTCs are available in the form of Integrated Circuits from different semiconduc¬
tor manufacturers like Maxim/Dallas, ST Microelectronics etc. The RTC chip contains a microchip for
holding the time and date related information and backup battery cell for functioning in the absence of
power, in a single IC package. The RTC chip is interfaced to the processor or controller of the embedded
system. For Operating System based embedded devices, a timing reference is essential for synchronising

https://hemanthrajhemu.github.io

The Typical Embedded System

the operations of the OS kernel. The RTC can interrupt the OS kernel by asserting the interrupt line
of the processor/controller to which the RTC interrupt line is connected. The OS kernel identifies the
interrupt in terms of the Interrupt Request (IRQ) number generated by an interrupt controller. One IRQ
can be assigned to the RTC interrupt and the kernel can perform necessary operations like system date
time updation, managing software timers etc when an RTC timer tick interrupt occurs. The RTC can be
configured to interrupt the processor at predefined intervals or to interrupt the processor when the RTC
register reaches a specified value (used as alarm interrupt).

2.6.5 Watchdog Timer

In desktop Windows systems, if we feel our application is behaving in an abnormal way or if the system
hangs up, we have the ‘Ctrl + Alt + Del’ to come out of the situation. What if it happens to our embed¬
ded system? Do we really have a ‘Ctrl + Alt + Del’ to take control of the situation? Of course not ©, but
we have a watchdog to monitor the firmware execution and reset the system processor/microcontroller
when the program execution hangs up. A watchdog timer, or simply a watchdog, is a hardware timer for
monitoring the firmware execution. Depending on the internal implementation, the watchdog timer in¬
crements or decrements a free running counter with each clock pulse and generates a reset signal to reset
the processor if the count reaches zero for a down counting watchdog, or the highest count value for an
upcounting watchdog. If the \yatchdog counter is in the enabled state, the firmware can write a zero (for
upcounting watchdog implementation) to it before starting the execution of a piece of code (subroutine
or portion of code which is susceptible to execution hang up) and the watchdog will start counting. If the
firmware execution doesn’t complete due to malfunctioning, within the time required by the watchdog
to reach the maximum count, the counter will generate a reset pulse and this will reset the processor
(if it is connected to the reset line of the processor). If the firmware execution completes before the
expiration of the watchdog timer you can reset the count by writing a 0 (for an upcounting watchdog

' timer) to the watchdog timer register. Most of the processors implement watchdog as a built-in compo¬
nent and provides status register to control the watchdog timer (like enabling and disabling watchdog
functioning) and watchdog timer register for writing the count value. If the processor/controller doesn’t
contain a built in watchdog timer, the same can be implemented using an external watchdog timer IC
circuit. The external watchdog timer uses hardware logic for enabling/disabling, resetting the watch¬
dog count, etc instead of the firmware based ‘writing’ to the status and watchdog timer register. The
Microprocessor supervisor IC DS1232 integrates a hardware watchdog timer in it. In modem systems
running on embedded operating systems, the watchdog can be implemented in such a way that when
a watchdog timeout occurs, an interrupt is generated instead of resetting the processor. The intemipt
handler for this handles the situation in an appropriate fashion. Figure 2.38 illustrates the implementa-

(F^3g) Watchdog timer for firmware execution supervision https://hemanthrajhemu.github.io

Introduction to Embedded Systems

tion of an external watchdog timer based microprocessor supervisor circuit for a small scale embedded
system.

2.7 PCB AND PASSIVE COMPONENTS

Printed Circuit Board (PCB) is the backbone of every embedded system. After finalising the components
and the inter-connection among them, a schematic design is created and according to the schematic the
PCB is fabricated. This will be described in detail in a chapter dedicated for “Embedded Hardware
Design and Development”. PCB acts as a platform for mounting all the necessary components as per
the design requirement. Also it acts as a platform for testing your embedded firmware. Apart from the
above-mentioned important subsystems of an embedded system, you can find some passive electronic
components like resistor, capacitor, diodes, etc. on your board. They are the co-workers of various
chips contained in your embedded hardware. They are very essential for the proper functioning of your
embedded system. For example for providing a regulated ripple-free supply voltage to the system, a
regulator IC and spike suppressor filter capacitors are very essential.

Summary
l —

K The core of an embedded system is usually built around a commercial off-the-shelf component or an application ■
specific integrated circuit (ASIC) or a general purpose processor .like a .microprocessor or microcontroller or .

application -specific instruction set processors (ASH’ like DSP, Microcontroller, etc.) or a Programmable Logic

Device (PLD) or a System on Chip (SdC) ‘" _ . , \

K Processors/controllers support either Reduced Instruction Set Computing (RISC) or Complex Instruction Set

•*"' Computing (CISC) - *.' " : ' "’A, **

S Microprocessors/controllers based on the Harvard architecture will have separate data bus and instruction-bus,

whereas Mlcroprocessors/contrdllers based on the Von-Neumann architecture shares a single common bus for

fetching both instructions and data - ' A ‘ ‘ ’ ’ VJpA

■S The Big-endian processors store the higher-order byte of the data in memory at the lowest address, whereas

Little-endian processors store the lower-order byte of data in memory at the lowest address

Field Programmable Gate Arrays (FPGAs). and Complex Programmable Logic Devices (CPLDs) are the two

major types of programmable logic devices-

The Read Only Memory (ROM) is a non-volatile memory for storing the firmware and embedded OS files.

MROM, PROM (OTP), EPROM, EEPROM and FLASH are the commonly used firmware storage memory

■S Random.Access Memory (RAM) is a volatile memory for temporary data storage. RAM can be either Static

RAM (SRAM) or Dynamic RAM (DRAM). SRAM is made up of flip-flops, whereas DRAM is made up of MOS

Transistor and Capacitor

S The sensors connected to the input port of an embedded system senses the changes in input variables and the

actuators connected at the output port of an embedded system controls some variables in accordance with changes

in input

K Light Emitting Diode (LED), 7-Segment LED displays, Liquid Crystal Display (LCD), Piezo Buzzer, Speaker,

Optocoupler, Stepper Motor, Digital to Analog Converters (DAC), Relays etc are examples for output devices of

an embedded system

/ Keyboard, Touch screen, Push Button switches, Optocoupler, Analog to Digital Converter (ADC) etc are

examples for Input devices in an embedded system

/

https://hemanthrajhemu.github.io

The Typical Embedded System

Z The Programmable Peripheral Interface (PPI) device extends the I/O capabilities of the processor used in

embedded system

Z I2C, SPI, UART, 1-Wire, Parallel bus etc are examples for onboard communication interface and RS-232C,

RS-485, USB, IEEE1394 (FireWire), Wi-Fi, ZigBee, Infrared (EDA), Bluetooth, GPRS, etc. are examples for

external communication interface

Z The control algorithm for the embedded device is known as Embedded Firmware. Embedded firmware can be

developed on top .of an embedded operating system or without an operating system

Z The reset circuit ensures that the device is not operating at a voltage level where the device is not guaranteed

to operate, during system power ON. The reset signal brings the internal registers and the different hardware

systems of the processor/controller to .a known state and starts the firmware execution from the-reset vector /

Z The brown-out protection circuit prevents the processor/controller: from unexpected program execution behaviour

when the supply voltage to the processor/controller falls below a specified voltage •

/ The oscillator unit generates clock signals for synchronising the operations of the processor

Z The time keeping activity for the embedded system is performed by the Real Time Clock (RTC) of the system.

RTC holds current time, date, month, year, day of the week, etc.

Z The watchdog timer monitors the firmware execution and resets the processor or generates an Interrupt in case

the execution time for a task is exceeding the maximum allowed limit

Z Printed circuit board or PCB acts as a platform for mounting all the necessary hardware components as per the

design requfrement.

— I
Keywords

COTS

ASIC

ASSP

Microprocessor

GPP

ASIP

Microcontroller

DSP

RISC

CISC

Harvard

Architecture

Von-Neumann

Architecture

Big-Endian

Little-Endian

: Commercial-off-the-Shelf. Commercially available ready to use Component

: Application Specific Integrated Circuit is a microchip designed to perform a specific or unique

application

: Application Specific Standard Product—An ASIC marketed to multiple customers just as a

general-purpose product is, but to a smaller number of customers

: A silicon chip representing a Central Processing Unit (CPU)

: General Purpose Processor or GPP is a processor designed for general computational tasks

: Application Specific Instruction Set processors are processors with architecture and instruction

set optimized to specific domain/application requirements

: A highly integrated chip that contains a CPU, scratchpad RAM, Special and General purpose

Register Arrays and Integrated peripherals

: Digital Signal Processor is a powerful special purpose 8/16/32 bit microprocessors designed

specifically to meet the computational demands and power constraints

: Reduced Instruction Set Computing. Refers to processors with Reduced and Orthogonal

Instruction Set

: Refers to processors with Complex Instruction Set Computing

: A type of processor architecture with separate buses for program instiuction and data

fetch

: A type of processor architecture with a shared single common bus for fetching both

instructions and data

: Refers to processors which store the higher-order byte of the data in memory at the lowest

address

: Refers to processors which store the lower-order byte of the data in memory at the lowest

address

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

FPGA

MROM

OTP

EPROM

EEPROM

FLASH

RAM

SRAM.

DRAM
NVRAM

ADC

LED

7-Segment

LED Display

Optocoupler

Stepper motor

Relay

Piezo Buzzer

Push Button

switch

PPI

I2C

SPI

UART

1-Wire interface

RS-232 C

RS-485

USB

IEEE 1394

Firewire

: Field Programmable Gate Array Device. A programmable logic device with reconfigurable

function. Popular for prototyping ASIC designs

: Masked ROM is a one-time programmable memory, which uses the hardwired technology for

storing data

: One Time Programmable Read Only Memory made up of nichrome or polysilicon wires

arranged in a matrix

: Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by exposing.to

UV light >v • ■ $£0

: Electrically Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by
. applying.electrical signals, ; • . ■ . ■

: Electrically Erasable Programmable Read Only Memory. Same as EEPROM but wit)yit|gli|

capacity and support for block level memory erasing ; . .. ;

: Random Access memory. Volatile memory . - . '■ i ' :

: Static RAM. A type of RAM, made up of flip-flops ;

Dynamic RAM. A type of RAM, made up of MOS Transistor and Capacitor ,.

: Non-volatile SRAM. Battery-backed SRAM ' •.

; Analog to Digital Converter. An integrated circuit which converts analog signals to digital

form - -vv A

: Light Emitting Diode. An output device which produces visual indication in the form of light in)

accordance with current flow " tv ■
: The 7-segment LED display is an output device for displaying alpha numeric characters.

It contains 8 light-emitting diode (LED) segments arranged in a special form *

: A solid state device to isolate two parts of a circuit. Optocoupler combines an LED and a photo¬

transistor in a single housing (package) •'

:. An electro-mechanical device which generates discrete displacement (motion) in response to dc

electrical signals - X

: An electro-mechanical device which acts as dynamic path selector for signals and power -J.

: A piezo-electric device for generating audio indication. It contains a piezo-electric diaphragm

whichproduces audible sound in response to the voltage applied to it

: A mechanical device for electric circuit ‘make’ and ‘break’ operation

: Programmable Peripheral Interface is a device for extending the I/O capabilities of processors/

controllers

: The Inter Integrated Circuit Bus (I2C-Pronounced ‘I square C’) is a synchronous bi-directional

half duplex two wire serial interface bus.

: The Serial Peripheral Interface BusTSPI) is a synchronous bi-directional full duplex four wire

serial interface bus

: The Universal Asynchronous Receiver Transmitter is an asynchronous communication

implementation standard

: An asynchronous half-duplex communication protocol developed by Maxim Dallas

Semiconductor. It is also known as Dallas 1 -Wire® protocol.

: Recommended Standard, number 232, revision C from the Electronic Industry Association, is a

legacy, full duplex, wired, asynchronous serial communication'interface

: The enhanced version of RS-232, which supports multi-drop,’communication with up to 32

transmitting devices (drivers) and 32 receiving devices on the bus

: Universal Serial Bus is a wired high speed serial bus for data communication

: A wired, isochronous high speed serial communication bus ;

: The Apple Inc.’s implementation of the 1394 protocol , ' /

https://hemanthrajhemu.github.io

gCH Objective Questions)

1. Embedded hardware/software systems are basically designed to _

(a) Regulate a physical variable (b) Change the state of some devices

(c) Measure/Read the state of a variable/device (d) Any/All of these

2. Little Endian processors

(a) Store the lower-order byte of the data at the lowest address and the higher-order byte of the data at the highest

address of memory

(b) Store the higher-order byte of the data at the lowest address and the lower-order byte of the data at the highest

address of memory

(c) Store both higher order and lower order byte of the data at the same address of memory

(d) None of these

3. An integer variable with value 255 is stored in memory location at 0x8000. The processor word length is 8 bits

and the processor is a big endian processor. The size of integer is considered as 4 bytes in the system. What is the

value held by the memory location 0x8000?

(a) OxFF (b) 0x00 (c) 0x01 (d) None of these

4. The instruction set of RISC processor is

(a) Simple and lesser in number (b) Complex and lesser in number

(c) Simple and larger in number (d) Complex and larger in number

5. Which of the following is true about CISC processors?

(a) The instruction set is non-orthogonal

(b) The number of general purpose registers is limited

(c) Instructions are like macros in C language

(d) Variable length Instructions

(e) All of these

(f) None of these

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

6. Which of the following processor architecture supports easier instruction pipelining?

(a) Harvard (b) Von Neumann (c) Both of them (d) None of these

7. Microprocessors/controllers based on the Harvard architecture will have separate data bus and instruction bus.

This allows the data transfer and program fetching to occur simultaneously on both buses. State True or False

(a) True (b) False

8. Which of the following is one-time programmable memory?

(a) SRAM (b) PROM (c) FLASH (d) NVRAM

9. Which of the following memory type is best suited for development purpose?

(a) EEPROM (b) FLASH (c) UVEPROM

(d) OTP (e) (a)or(b) " -

10. EEPROM memory is alterable at byte level. State True or False

(a) True (b) False

11. Non-volatile RAM is a Random Access Memory with battery backup. State True or False

(a) True (b) False

12. Execution of program from ROM is faster than the execution from RAM. State True or False

(a) True (b) False

13. Dynamic RAM stores data in the form of voltage. State True or False

(a) True (b) False

14. The control algorithm (Program instructions) and or the configuration settings that are kept in the code (Program)

memory of the embedded system are known as Embedded Software. State True or False

(a) True (b) False

15. Which of the following is an example for Wireless Communication interface?

(a) RS-232C (b) Wi-Fi (c) Bluetooth

(d) EEE1394 ■ - (e) both (b) and (c)

16. Which of the following is (are) examples for Application Specific Instruction set Processor(s)

(a) Intel Centrino (b) Atmel Automotive AVR

(c) AMD Turion (d) Microchip CAN PIC (e) All of these (f) both (b) and (d)

17. How many memory cells are present in 1Kb RAM

(a) 1024 (b) 8192 (c) 512 (d) 4096

(e) None of these

18. Which of the following memory supports Execute in Place (XIP)?i

(a) EEPROM (b) NOR FLASH (c) NAND FLASH

(d) both (b) and (c) (e) None of these

19. How many memory cells are present in 1Kb Serial EEPROM

(a) 1024 (b) 8192 (c) 512 (d) 4096

(e) None of these

20. Which of the following is (are) example(s) for the input subsystem of an embedded system dealing with digital

data?

(a) ADC (b) Optocoupler (c) DAC (d) All of them

(e) only (a) and (b)

21. Which of the following is (are) example(s) for the output subsystem of an embedded system dealing with digital

data?

(a) LED (b) Optocoupler (c) Stepper Motor (d) All of these

(e) only (a) and (c)

22. Which of the following is true about optocouplers

(a) Optocoupler acts as an input device only , ,

(b) Optocoupler acts as an output device only

(c) Optocoupler can be used in both input and output circuitry

(d) None of these

https://hemanthrajhemu.github.io

The Typical Embedded System

23. Which of the following is true about a unipolar stepper motor

(a) Contains only a single winding per stator phase (b) Contains two windings per stator phase

(c) Contains four windings per stator phase (d) None of these

24. Which of the following is (are) true about normally open single pole relays?

(a) The circuit remains open when the relay is not energised

(b) The circuit remains closed when the relay is energised

(c) There are two output paths

(d) Both (a) and (b) (e) None of these

25. What is the minimum number I/O line required to interface a 16-Key matrix keyboard?

(a) 16 ' (b) 8 (c) 4 (d) 9

26. Which is the optimal row-column configuration for a 24 key matrix keyboard?

(a) 6x4 (b) 8x3 (c) 12x2 (d) 5x5

27 Which of the following is an example for on-board interface in the embedded system context?

(a) I2C (b) Bluetooth (c) SPI (d) All of them

(e) Only (a) and (c) 1

28. What is the minimum number of interface lines required for implementing I2C interface?

(a) f (b) 2 (c) 3 (d) 4

29. What is the minimum number of interface lines required for implementing SPI interface?

(a) 2 (b) 3 (c) 4 (d) 5

30. Which of the following are synchronous serial interface?

(a) I2C (b) SPI (c) UART (d) AlUoTthese

(e)~ Only (a) and (b)

31. RS-232 is a synchronous serial interface. State True or False

(a) TrUe (b) False

32. What is the maximum number of USB devices that can be connected to a USB host?

(a). Unlimited (by 128 (c) 127 (d) None of these

33. In the ZigBee network, which of the following ZigBee entity stores the information about the network?

(a) ZigBee Coordinator (b) ZigBee Router

(c) ZigBee Reduced Function Device (d) All of them

34. What is the theoretical maximum data rate supported by GPRS

(a) 8Mbps (b) 12Mbps (c) 100Kbps (d) 171.2Kbps

35. GPRS communication divides the radio channel into _timeslots

(a) 2 • (b) 3 (c) 5 (d) 8

Review Questions)

1. Explain the components of a typical embedded system in detail

2. Which are the components used as the core of an embedded system? Explain the merits, drawbacks, if any, and the

applications/domains where they are commonly used

3. What is Application Specific Integrated Circuit (ASIC)? Explain the role of ASIC in Embedded System design?

4. What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard

Product (ASSP)?

5. What is the difference between microprocessor and microcontroller? Explain the role of microprocessors and'

controllers in embedded system design?

6. What is Digital Signal Processor (DSP)? Explain the role of DSP in embedded system design?

7. What is the difference between RISC and CISC processors? Give an example for each.

/ https://hemanthrajhemu.github.io

Introduction to Embedded Systems

8. What is processor architecture? What are the different processor architectures available for processor/controller

design? Give an example for each.

9. What is the difference between big-endian and little-endian processors? Give an example of each.

10. What is Programmable Logic Device (PLD)? What are the different types of PLDs? Explain the role of PLDs in

Embedded System design.

11. What is the difference between PLD and ASIC?

12. What are the advantages of PLD over fixed logic device?

13. What are the different types of memories used in Embedded System design? Explain the role of each.

14. What are the different types of memories used for Program storage in Embedded System Design?

15. What is the difference between Masked ROM and OTP?

16. What is the difference between PROM and EPROM?

17. What are the advantages of FLASH over other program storage memory in Embedded System design?

18. What is the difference between RAM and ROM?

19. What are the different types of RAM used for Embedded System design?

20. What is memory shadowing? What is its advantage?

21. What is Sensor? Explain its role in Embedded System Design? Illustrate with an example.

22. What is Actuator? Explain its role in Embedded System Design? Illustrate with an example.

23. What is Embedded Firmware? What are the different approaches available for Embedded Firmware development?

24. What is the difference between General Purpose Processor (GPP) and Application Specific Instruction Set

Processor (ASIP). Give an example for both.

25. Explain the concept of Load Store architecture and instruction pipelining.

26. Explain the operation of Static RAM (SRAM) cell.

27. Explain the merits and limitations of SRAM and DRAM as Random Access Memory.

28. Explain the difference between Serial Access Memory (SAM) and Random Access Memory (RAM). Give an

example for both.

29. Explain the different factors that needs to be considered in the selection of memory for Embedded Systems.

30. Explain the different types of FLASH memory and their relative merits and de-merits.

31. Explain the different Input and output subsystems of Embedded Systems.

32. What is stepper motor? How is it different from ordinary dc motor?

33. Explain the role of Stepper motor in embedded applications with examples.

34. Explain the different step modes for stepper motor.

35. What is Relay? What are the different types of relays available? Explain the role of relay in embedded

applications.

36. Explain the operation of the transistor based Relay driver circuit.

37. Explain the operation of a Matrix Keyboard.

38. What is Programmable Peripheral Interface (PPI) Device? Explain the interfacing of 8255 PPI with an 8bit

microprocessor/controller.

39. Explain the different on-board communication interfaces in brief.

40. Explain the-different external communication interfaces in brief.

41. Explain the sequence of operation for communicating with an I2C slave device.

42. Explain the difference between I2C and SPI communication interface.

43. Explain the sequence of operation for communicating with a 1-Wire slave device.

44. Explain the RS-232 C serial interface in detail.

45. Explain the merits and limitations of Parallel port over Serial RS-232 interface.

46. Explain the merits and limitations of IEEE1394 interface over USB,

47. Compare the operation of ZigBee and Wi-Fi network.

48. Explain the role of Reset circuit in Embedded System.

49. Explain the role of Real Time Clock (RTC) in Embedded System.

50. Explain the role of Watchdog-Timer in Embedded System.

X https://hemanthrajhemu.github.io

The Typical Embedded System

Is below 4,7;

https://hemanthrajhemu.github.io

