

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to
Embedded Systems

Shibu KV

Technical Architect

Mobility & Embedded Systems Practice

Infosys Technologies Ltd.,

Trivandrum Unit, Kerala

Me
Graw
Hill
Education

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices
New Delhi New York St Louis San Francisco Auckland Bogota Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

https://hemanthrajhemu.github.io

Contents

Objective Questions 67

Review Questions 69

Lab Assignments 71

Characteristics and Quality Attributes of Embedded Systems
3.1 Characteristics of an Embedded System 72

3.2 Quality Attributes of Embedded Systems 74
Summary 79

Keywords 79

Objective Questionsi 80

Review Questions 81 .

Embedded Systems—Application- and Domain-Specific
4.1 Washing Machine—Application-Specific Embedded System 83

4.2 Automotive - Domain-Specific Examples of Embedded System 85

Summary 89

Keywords 90

Objective Questions 90

Review Questions 91

Designing Embedded Systems with 8bit Microcontrollers—8051

5.1 Factors to be Considered in Selecting a Controller 93

5.2 Why 8051 Microcontroller 94

5.3 Designing with 8051 94

5.4 The 8052 Microcontroller 155

5.5 8051/52 Variants 155

Summary 156

Keywords 157

Objective Questions 158

Review Questions 161

Lab Assignments 162

Programming the 8051 Microcontroller
6.1 Different Addressing Modes Supported by 8051 165

6.2 The 8051 Instruction Set 171

Summary 196

Keywords 197

Objective Questions 197

Review Questions 202

Lab Assignments 203

Hardware Software Co-Design and Program Modelling
7.1 Fundamental Issues in Hardware Software Co-Design 205

7.2 Computational Models in Embedded Design 207

7.3 Introduction to Unified Modelling Language (UML) 214

7.4 Hardware Software Trade-offs 219

Summary 220

https://hemanthrajhemu.github.io

Contents

Keywords 221

Objective Questions 222

Review Questions 223

Lab Assignments 224

Part 2
Design and Development of Embedded Product

8. Embedded Hardware Design and Development
8.1 Analog Electronic Components 229

8.2 Digital Electronic Components 230

813 VLSI and Integrated Circuit Design 243

8.4 Electronic Design Automation (EDA) Tools 248

8.5 How to use the OrCAD EDA Tool? 249

8.6 Schematic Design using Oread Capture CIS 249

8.7 The PCB Layout Design 267

8.8 Printed Circuit Board (PCB) Fabrication 288

Summary 294

Keywords 294

Objective Questions 296

Review Questions 298

Lab Assignments 299

9. Embedded Firmware Design and Development
9.1 Embedded Firmware Design Approaches 303

9.2 Embedded Firmware Development Languages 306

9.3 Programming in Embedded C 318

Summary 371

Keywords 3 72

Objective Questions 373

Review Questions 378

Lab Assignments 380

10. Real-Time Operating System (RTOS) based Embedded System Design
10.1 Operating System Basics 382

.10.2 Types of Operating Systems 386

10.3 Tasks, Process and Threads 390

10.4 Multiprocessing and Multitasking 402

10.5 Task Scheduling 404

10.6 Threads, Processes and Scheduling: Putting them Altogether 422

10.7 Task Communication 426

10.8 Task Synchronisation 442

10.9 Device Drivers 476

10.10 How to Choose an RTOS 478

Summary 480

Keywords 481

Objective Questions 483

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes
of Embedded Systems

LEARNING OBJECTIVES

✓ Learn the characteristics describing an embedded system ,

/, Learn the non-functional requirements that needs to be addressed m the design of an embedded system

/ fearn the important quality attributes of the embedded system that needs to be addressed for the operational mode

■ (online mode) of the system. This includes: Response, throughput; Reliability; Maintainability, Security, Safety,

etc. ' -■ ' *" v ■

S ■Learn the important qualify attributes of the embedded system that needs to be addressed for the non-operational

mode (offline mode) of the system. This includes Testability, Debug-ability, Evolvability, ‘Portability, Time to proto-,

type and market, Per unit cost and revenue, etc. - '* VJc

S Understand the Product Life Cycle (PLC) ... „• ™-

No matter whether it is an embedded or a non-embedded system, there will be a set of characteristics
describing the system. The non-functional aspects that need to be addressed in embedded system design
are commonly referred as quality attributes. Whenever you design an embedded system, the design
should take into consideration of both the functional and non-functional aspects. The following topics
give an overview of the characteristics and quality attributes of an embedded system.

3.1 CHARACTERISTICS OF AN EMBEDDED SYSTEM_

Unlike general purpose computing systems, embedded systems possess certain specific characteristics
* and these characteristics are unique to each embedded system. Some of the important characteristics of

an embedded system are:
1. Application and domain specific
2. Reactive and Real Time
3. Operates in harsh environments
4. Distributed
5. Small size and weight
6. Power concerns

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes of Embedded Systems

3.1.1 Application and Domain Specific

If you closely observe any embedded system, you will find that each embedded system is having certain

functions to perform and they are developed in such a manner to do the intended functions only. They

cannot be used for any other purpose. It is the major criterion which distinguishes an embedded system

from a general purpose system. For example, you cannot replace the embedded control unit of your mi¬

crowave oven with your air conditioner’s embedded control unit, because the embedded control units of

microwave oven and airconditioner are specifically designed to perform certain specific tasks. Also you

cannot replace an embedded control unit developed for a particular domain say telecom with another

control unit designed to serve another domain like consumer electronics.

3.1.2 Reactive and Real Time

As mentioned earlier, embedded systems are in constant interaction with the Real world through sen¬

sors and user-defined input devices which are connected to the input port of the system. Any changes

happening in the Real world (which is called an Event) are captured by the sensors or input devices in

Real Time and the control algorithm running inside the unit reacts in a designed manner to bring the

controlled output variables to the desired level. The event may be a periodic one or an unpredicted one.

If the event is an unpredicted one then such systems should be designed in such a way that it should be

scheduled to capture the events without missing them. Embedded systems produce changes in output in

response to the changes in the input. So they are generally referred as Reactive Systems.

Real Time System operation means the timing behaviour of the system should be deterministic;

meaning the system should respond to requests or tasks.in a known amount of time. A Real Time system

should not miss any deadlines for tasks or operations. It is not necessary that all embedded systems

should be Real Time in operations. Embedded applications or systems which are mission critical, like

flight control systems, Antilock Brake Systems (ABS), etc. are examples of Real Time systems. The

design of an embedded Real time system should take the Worst case scenario into consideration.

3.1.3 Operates in Harsh Environment

It is not necessary that all embedded systems should be deployed in controlled environments. The en¬

vironment in which the embedded system deployed may be a dusty one or a high temperature zone or

an area subject to vibrations and shock. Systems placed in such areas should be capable to withstand

all these adverse operating conditions. The design should take care of the operating conditions of the

area where the system is going to implement. For example, if the system needs to be deployed in a high

temperature zone, then all the components used in the system should be of high temperature grade. Here

we cannot go for a compromise in cost. Also proper shock absorption techniques should be provided to

systems which are going to be commissioned in places subject to high shock. Power supply fluctuations,

corrosion and component aging, etc. are the other factors that need to be taken into consideration for

embedded systems to work in harsh environments.

3.1.4 Distributed

The tepi distributed means that embedded systems may be a part of larger systems. Many numbers of

such distributed embedded systems form a single large embedded control unit. An automatic vending

macl/ine is a typical example for this. The vending machine contains a card reader (for pre-paid vend¬

ing systems), a vending unit, etc. Each of them are independent embedded units but they work together

https://hemanthrajhemu.github.io

Introduction to Embedded Systems 74

to perform the overall vending function. Another example is the Automatic Teller Machine (ATM).
An ATM contains a card reader embedded unit, responsible for reading and validating the user’s ATM
card, transaction unit for performing transactions, a currency counter for dispatching/vending currency
to the authorised person and a printer unit for printing the transaction details. We can visualise theie as
independent embedded systems. But they work together to achieve a common goal.

Another typical example of a distributed embedded system is the Supervisory Control And Data
Acquisition (SCADA) system used in Control & Instrumentation applications, which contains physi¬
cally distributed individual embedded control units connected to a supervisory module.

3.1.5 Small Size and Weight

Product aesthetics is an important factor in choosing a product. For example, when you plan to buy a
new mobile phone, you may make a comparative study on the pros and corns of the products available in
the market. Definitely the product aesthetics (size, weight, shape, style, etc.) will be one of the deciding
factors to choose a product. People believe in the phrase “Small is beautiful”. Moreover it is convenient
to handle a compact device than a bulky product. In embedded domain also compactness is a significant
deciding factor. Most of the application demands small sized and low weight products.

)

3.1.6 Power Concerns

Power management is another important factor that needs to be considered in designing embedded
systems. Embedded systems should be designed in such a way as to minimise the heat dissipation by the
system. The production of high amount of heat demands cooling requirements like cooling fans which
in turn occupies additional space and make the system bulky. Nowadays ultra low power components
are available in the market. Select the design according to the low power components like low dropout
regulators, and controllers/processors with power saving modes. Also power management is a critical
constraint in battery operated application. The more the power consumption the less is the battery life.

3.2 QUALITY ATTRIBUTES OF EMBEDDED SYSTEMS ;

Quality attributes are the non-functional requirements that need to be documented properly in any sys¬
tem design. If the quality attributes are more concrete and measurable it will give a positive impact on
the system development process and the end product. The various quality attributes that needs to be
addressed in any embedded system development are broadly classified into two, namely ‘Operational
Quality Attributes’ and ‘Non-Operational Quality Attributes’.

3.2.1 Operational Quality Attributes

The operational quality attributes represent the relevant quality attributes related to the embedded sys¬
tem when it is in the operational mode or ‘online’ mode. The important quality attributes coming under
this category are listed below:

1. Response
2. Throughput
3. Reliability
4. Maintainability
5. Security
6. Safety

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes of Embedded Systems

3.2.1.1 Response Response is a measure of quickness of the system. It gives you an idea about
how fast your system is tracking the changes in input variables. Most of the embedded systems demand
fast response which should be almost Real Time. For example, an embedded system deployed in flight
control application should respond in a Real Time manner. Any response delay in the system will cre¬
ate potential damages to the safety of the flight as well as the passengers. It is not necessary that all
embedded systems should be Real Time in response. For example, the response time requirement for
an electronic toy is not at all time-critical. There is no specific deadline that this system should respond
within this particular timeline.

3.2.1.2 Throughput Throughput deals with the efficiency of a system. In general it can be defined

as the rate of production or operation of a defined process over a stated period of time. The rates can be

expressed in terms of units of products, batches produced, or any other meaningful measurements. In

the case of a Card Reader, throughput means how many transactions the Reader can perform in a minute

or in an hour orin a day. Throughput is generally measured in terms of ‘Benchmark’. A ‘Benchmark’ is
a reference point by which something can be measured. Benchmark can be a set of performance criteria

that a product is expected to meet or a standard product that can be used for comparing other products

of the same product line.

3.2.1.3 Reliability Reliability is a measure of how much % you can rely upon the proper function¬

ing of the system or what is the % susceptibility of the system to failures.
Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are the terms used in de¬

fining system reliability. MTBF gives the frequency of failures in hours/weeks/months. MTTR specifies
how long the system is allowed to be out of order following a failure. For an embedded system with
critical application need, it should be of the order of minutes.

3.2.1.4 Maintainability Maintainability deals with support and maintenance to the end user or cli¬

ent in case of technical issues and product failures or on the basis of a routine system checkup. Reliability

and maintainability are considered as two complementary disciplines. A more reliable system means a
system with less corrective maintainability requirements and vice versa. As the reliability of the system

increases, the chances of failure and non-functioning also reduces, thereby the need for maintainabil¬

ity is also reduced. Maintainability is closely related to the system availability. Maintainability can be

broadly classified into two categories, namely, ‘Scheduled or Periodic Maintenance (preventive mainte¬

nance)’ and ‘Maintenance to unexpected failures (corrective maintenance)’. Some embedded products
may use consumable components or may contain components which are subject to wear and tear and

they should be replaced on a periodic basis. The period may be based on the total hours of the system us¬

age or the total output the system delivered. A printer is a typical example for illustrating the two types of

maintainability. An inkjet printer uses ink cartridges, which are consumable components and as per the

printer manufacturer the end user should replace the cartridge after each V number of printouts to get

quality prints. This is an example for ‘Scheduled or Periodic maintenance’. If the paper feeding part

of the printer fails the printer fails to print and it requires immediate repairs to rectify this problem. This

is an example of ‘Maintenance to unexpected failure’. In both of the maintenances (scheduled and

repair), the printer needs to be brought offline and during this time it will not be available for the user.

Hence it is obvious that maintainability is simply an indication of the availability of the product for use.

In any embedded system design, the ideal value for availability is expressed as

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

A{ = MTBF/(MTBF + MTTR)

where A{ = Availability in the ideal condition, MTBF = Mean Time Between Failures, and MTTR =
Mean Time To Repair

3.2.1.5 Security Confidentiality, ‘Integrity’, and ‘Availability’ (The tenn ‘Availability’ mentioned
here is not related to the term ‘Availability’ mentioned under the ‘Maintainability’ section) are the three
major measures of information security. Confidentiality deals with the protection of data and application
from unauthorised disclosure. Integrity deals with the protection of data and application from unautho¬
rised modification. Availability deals with protection of data and application from- unauthorized users.
A very good example of the ‘Security’ aspect in an embedded product is a Personal Digital Assistant
(PDA). The PDA can be either a shared resource (e.g. PDAs used in LAB setups) or an individual
one. If it is a shared one there should be some mechanism in the form of a user name and password to
access into a particular person’s profile-This is an example of ‘Availability’. Also all data and applica¬
tions present in the PDA need not be accessible to all users. Some of them are specifically accessible to
administrators only. For achieving this, Administrator and user levels of security should be implemented
-An example of Confidentiality. Some data present in the PDA may be visible to all users but there may
not be necessary permissions to alter the data by the users. That is Read Only access is allocated to all
users-An example of Integrity.

3.2.1.6 Safety ‘Safety’ and ‘Security’ are two confusing tenns. Sometimes you may feel both of
them as a single attribute. But they represent two unique aspects in quality attributes. Safety deals with
the possible damages that can happen to the operators, public and the environment due to the breakdown
of an embedded system or due to the emission of radioactive or hazardous materials from'the embedded
products. The breakdown of an embedded system may occur due to a hardware failure or a firmware
failure. Safety analysis is a must in product engineering to evaluate the anticipated damages and deter¬
mine the best course of action to bring down the consequences of the damages to an acceptable level.
As stated before, some of the safety threats are sudden (like product breakdown) and some of them are
gradual (like hazardous emissions from the product).

3.2.2 Non-Operational Quality Attributes

The quality attributes that needs to be addressed for the product ‘not5 on the basis of operational aspects
are grouped under this category. The important quality attributes coming under this category are listed
below.

1. Testability & Debug-ability
2. Evolvability
3. Portability
4. Time to prototype and market

. 5. Per unit and total cost.

3.2.2.1 Testability & Debug-ability Testability deals with how easily one can test his/her design,
application and by which means he/she can test it. For an embedded product, testability is applicable
to both the embedded hardware and firmware. Embedded hardware testing ensures that the peripherals
and the total hardware functions in the desired mamier, whereas firmware testing ensures that the firm¬
ware is functioning in the expected way. Debug-ability is a means of debugging the product as such for
figuring out the probable sources that create unexpected behaviour in the total system. Debug-ability

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes of Embedded Systems

has two aspects in the embedded system development context, namely, hardware level debugging and
firmware level debugging. Hardware debugging is used for figuring out the issues created by hardware
problems whereas firmware debugging is employed to figure out the probable errors that appear as a
result of flaws in the firmware.

3.2.2.2 Evolvability Evolvability is a term which is closely related to Biology. '-Evolvability is
referred as the non-heritable variation. For an embedded system, .the quality attribute ‘Evolvability’
refers to the ease with which the embedded product (including firmware and hardware) can be modified
to take advantage of new firmware or hardware technologies.

3.2.2.3 Portability Portability is a measure of‘system independence’. An embedded product is said
to be portable if the product is capable of functioning ‘as such’ in various environments, target proces¬
sors/controllers and embedded operating systems. The ease with which an embedded product can' be
ported on to a new platform is a direct measure of the re-work required. A standard embedded product
should always be flexible and portable. In embedded products, the term ‘porting’ represents the migra¬
tion of the embedded firmware written for one target processor (e.g. Intel x86) to a different target pro¬
cessor (say Hitachi SH3 processor). If the firmware is written in a high level language like ‘C’ with little
target processor-specific functions (operating system extensions or compiler specific utilities), it is very
easy to port the firmware for the new processor by replacing those ‘target processor-specific functions’

! with the ones for the new target processor and re-compiling the program for the new target processor-
, specific settings. Re-compiling the program for the new target processor generates the new target pro-
| cessor-specific machine codes. If the firmware is written in Assembly Language for a particular family

of processor (say x86 family), it will be very difficult to translate the assembly language instructions to
the new target processor specific language and so the portability is poor.

— If you look into various programming languages for application development for desktop applica¬
tions, you will see that certain applications developed on certain languages run only on specific operat¬
ing systems and some of them run independent of the desktop operating systems. For example, applica¬
tions developed using Microsoft technologies (e.g. Microsoft Visual C++ using Visual studio) is capable
of running only on Microsoft platforms and will not function on other operating systems; whereas
applications developed using ‘Java’ from Sun Microsystems works on any operating system that
supports Java standards.

3.2.2.4 Time-to-Prototype and Market Time-to-market is the time elapsed between the concep¬
tualisation of a product and the time at which the product is ready for selling (for commercial product)
or use (for non-commercial products). The commercial embedded product market is highly competitive
and time to market the product is a critical factor in the success of a commercial embedded product.
There may be multiple players in the embedded industry who develop products of the same category
(like mobile phone, portable media players, etc.). If you come up with a new design and if it takes long
time to develop and market it, the competitor product may take advantage of it with their product. Also,
embedded technology is one where rapid technology change is happening. If you start your design by
making use of a new technology and if it takes long time to develop and market the product, by the
time you market the product, the technology might have superseded with a new technology. Product
prototyping helps a lot in reducing time-to-market. Whenever you have a product idea, you may not be
certain about the feasibility of the idea. Prototyping is an informal kind of rapid product development in
which the important features of the product under consideration are developed. The time to prototype is
also another critical factor. If the prototype is developed faster, the actual estimated development time

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

can be brought down significantly. In order to shorten the time to prototype, make use of all possible
options like the use of off-the-shelf components, re-usable assets, etc.

3'.2.2.5 Per Unit Cost and Revenue Cost is a factor which is closely monitored by both end user
(those who buy the product) and product manufacturer (those who build the product). Cost is a highly
sensitive factor for commercial products. Any failure to position the cost of a commercial product at a
nominal rate, may lead to the failure of the product in the market. Proper market study and cost benefit
analysis should be carried out before taking a decision on the per-unit cost of the embedded product:
From a designer/product development company perspective the ultimate aim of a product is to generate
marginal profit. So the budget and total system cost should be properly balanced to provide a marginal
profit. Every embedded product has a product life cycle which starts with the design and development
phase. The product idea generation, prototyping, Roadmap definition, actual product design and devel¬
opment are the activities carried out during this phase. During the design and development phase there
is only investment and no returns. Once the product is ready to sell, it is introduced to the market. This
stage is known as the Product Introduction stage. During the initial period the sale£ and revenue will
be low. There won’t be much competition and the product sales and revenue increases with time. In the
growth phase, the product grabs high market share. During the maturity phase, the growth and sales will
be steady and the revenue reaches at its peak. The Product Retirement/Decline phase starts with the drop
in sales volume, market share and revenue. The decline happens due to various reasons like competition
from similar product with enhanced features or technology changes, etc. At some point of the decline
stage, the manufacturer announces discontinuing of the product. The different stages of the embedded
products life cycle-revenue, unit cost and profit in each stage-are represented in the following Product
Life-cycle graph.

[Fig. 3,l] Product life cycle (PLC) curve

From the graph, it is clear that the total revenue increases from the product introduction stage to the
product maturity stage. The revenue peaks at the maturity stage and starts falling in the decline/retire¬
ment stage. The unit cost is very high during the introductory stage (a typical example is cell phone; if

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes of Embedded Systems

you buy a new model of cell phone during its launch time, the price will be high and you will get the
same model with a very reduced price after three or four months of its launching). The profit increases
with increase in sales and attains a steady value and then falls with a dip in sales. You can see a negative
value for profit during the initial period. It is because during the product development phase there is only
investment and no returns. Profit occurs only when the total returns exceed the investment and operating
cost.

Summary

S There exists a set of characteristics which are unique to each embedded system. T

C limbedded systems arc application and domain specific.

V Quality attributes of a system represents the non-function il requirements that need to be documented properly in

any system design. ..

* The operational quality attributes of an embedded system refers to the fron^functiom1 ie |iiiiemenls that needs

to be considered for the operational"mode of the system Response, Throughput,' Ke'i'bility M.muainability,"

Security^Safetyreternre-examples of operational quality attributes.

C .1 he non-operational quality attfibut.es of an embedded system refers to the non-functional refinements that

needs to be Considered for the non-operational mode of the system. Testability, debug-ability, evolvability,

portability, time-to-prototype and market, per unit cost arid revenue, etc. are examples of nb^aj^mW^HlBP^

attributes. ... _

y The product life cycle curve (PLC) is the graphical representation of the unit cost, product sales and profit with -

respect to the various life cycle stages of the product starting from conception to disposal. ; _ .

‘ ^ For a commercial embedded product, the unit cost is peak at the introductory stage and it falls in the. maturityr

stage.' c.# . •
f The revenue of a commercial embedded product is at the peak during the maturity stage .'

Keywords

Quality attributes

Reactive system

Real-Time system

Response

Throughput

Reliability

MTBF

MTTR

Time-to-prototype

Product life-cycle (PLC)

Product life cycle curve

The non-functional requirements that need to be addressed in any system design

An embedded system which produces changes in output in response to the changes in

input

A system which adheres to strict timing behaviour and responds to. requests in a known

amount of time.

It is a measure of quickness of the system

The rate of production or operation of a defined process over a stated period of time

It is a measure of how much\% one can rely upon the proper functioning of a system

Mean Time Between Failures-The frequency of failures in hours/weeks/months

Mean Time To Repair-Specifies how long the system is allowed to be out of ordef.fol-

lowing a failure

A measure of the time required to prototype a design

The representation of the different stages of a product from its conception to disposal

The graphical representation- of the unit cost, product sales and profit with respect to the

various life cycle stages of the product starting from conception to disposal

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Objective Questions

2.

Embedded systems are application and domain specific. State True or False

(a) True (b) False

Which of the following is true about Embedded Systems?

6.

7.

8.

9.

10.

11.

(a) Reactive and Real Time (b) Distributed

(d) All of these (e) None of these

Which of the following is a distributed embedded system?

12.

13.

(c) Operates in harsh environment

(a) Cell phone

(e) None of these

Quality attributes of an embedded system are

(a) Functional requirements

(c) Both

Response is a measure of

(a) Quickness of the system ,

(c) Both

Throughput of an embedded system is a measure of

(a) The efficiency of the system

(c) Both

Benchmark is

(a) A reference point

(c) (a) or(b)

(b) Notebook Computer (c) SCADA system (d) All of these

(b) Non-functional requirements

(d) None of these

(b) How fast the system tracks changes in Input

(d) None of these

(b) The output over a stated period of time

(d) None of these

(b) A set of performance criteria

(d) None of these

Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) defines the reliability of an embedded

system. State Tme or False

(a) Tme (b) False

MTBF gives the frequency of failures of an embedded system. State Tme or False

(a) Tme (b) False

Which of the following is tme about the quality attribute ‘maintainability’?

(a) The corrective maintainability requirement for a highly reliable embedded system is very less

(b) Availability of an embedded system is directly related to the maintainability of the system

(c) Both of these

(d) None of these ,

The Mean Time Between Failure (MTBF) for an embedded product is very high. This means:

(a) The product is highly reliable

(b) The availability of the product is very high

(c) The preventive maintenance requirement for the product is very less

(d) All of these

(e) None of these

The Mean Time Between Failure (MTBF) of an embedded product is 4 months and the Mean Time To Repair

-'(MTTR) of the product is 2 weeks. What is the availability of the product?

(a) 100% (b) 50% (c) 89% (d) 10%

Which of the following are the three measures of information security in embedded systems?

(a) Confidentiality, secrecy, integrity (b) Confidentiality, integrity, availability

(c) Confidentiality, transparency, availability (d) Integrity, transparency, availability

https://hemanthrajhemu.github.io

Characteristics and Quality Attributes of Embedded Systems

14. You are working on a mission critical embedded system development project for a client and the client and your

company has signed a Non Disclosure Agreement (NDA) on the disclosure of the project-related information. You

share the details of the project you are working with your friend. Which aspect of Information security you are

violating here?

(a) Integrity (b) Confidentiality (c) Availability (d) None of these

15. Which of the following is an example of ‘gradual’ safety threat from an embedded system?

UV emission from the embedded product

None of these

.(b) Functional requirements

(d) (a) and (c)

(a) Product blast due to overheating of the battery (b)

(c) Both of these (d)

16. Non operational quality attributes are

(a) Non-functional requirements

(c) Quality attributes for an offline product

(e) None of these’

17. Which of the following is (are) an operational quality attribute?

(a) Testability (b) Safety (c) Debug-ability • (d) Portability

(e) All of these

18. Which of the following is (are) non-operational quality attribute?

(a) Reliability (b) Safety (c) Maintainability (d) Portability

(e) All of these (f) None of these

19. In the Information security context, Confidentiality deals with the protection of data and application from unautho¬

rised disclosure. State True or False

(a) True (b) False

20. What are the two different aspects of debug-ability in the embedded system development context?

(a) Hardware & Firmware debug-ability (b) Firmware & Software debug-ability

(c) None of these

21. For an embedded system, the quality attribute ‘Evolvability’ refers to

(a) The upgradability of the product (b) JThe modifiability of the product

(c) Both of these (d) None of these

22. Portability is a measure of ‘system independence’. State True or False

(a) True (b) False

23. For a commercial embedded product the unit cost is high during

(a) Product launching (b) Product maturity

(c) Product growth (d) Product discontinuing

24. For a commercial embedded product the sales volume, is high during

(a) Product launching (b) Product maturity

(c) Product growth (d) Product discontinuing

iYI Review Questions

1. Explain the different characteristics of embedded systems in detail.

2. Explain quality attribute in the embedded system development context? What are the different Quality attributes

to be considered in an embedded system design,

3. What is operational quality attribute? Explain the important operational quality attributes to be considered in any

embedded system design.

4. What is non-operational quality attribute? Explain the important non-operational quality attributes to be consid¬

ered in any embedded system design.

5. Explain the quality attribute Response in the embedded system design context.

6. Explain the quality attribute Throughput in the embedded system design context.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

7. Explain the quality attribute Reliability in the embedded system design context.

8. Explain the quality attribute Maintainability in the embedded system design context.

9. The availability of an embedded product is 90%. The Mean Time Between Failure (MTBF) of the product is 30

days. What is the Mean Time To Repair (MTTR) in days/hours for the product?

10. Explain the quality attribute Information Security in the embedded system design context.

11. Explain the quality attribute Safety in the embedded system design context.

12. Explain the significance of the quality attributes Testability and Debug-ability in the embedded system design

context.

13. Explain the quality attribute Portability in the embedded system design context.

14. Explain Time-to-marketl What is its significance in'product development?

15. Explain Time-to-prototypel What is its significance in product development?

16. Explain the Product Life-cycle curve of an embedded product development.

https://hemanthrajhemu.github.io

fm
• is

Embedded Systems—Application-
and Domain-Specific

LEARNING OBJECTIVES

/ Illustrate the domain and application specific aspect of embedded systems with examples f:

/ Know the presence of embedded systems, in automotive industry ^ t&5A- T VT*' .

✓ Learn about High Speed Electronic Control Units (HECUs) and Low Speed Electronic Control Units (LECUs) employed

in automotive applications

•K Learn about the Controller Area Network (CAN), Local Interconnect Network (LIN) and Media Oriented System

Transport (MOST) communication buses used in automotive applications

V Know.the semiconductor chip providers, tools and platform -providers and solution providers for automotive

embedded applications fiiJ:'- r

As mentioned in the previous chapter on the characteristics of embedded systems, embedded systems
are application and domain specific, meaning; they are specifically built for certain applications in cer¬
tain domains like consumer electronics, telecom, automotive, industrial control, etc. In general purpose
computing, it is possible to replace a system with another system which is closely matching with the
existing system, whereas it is not the case with embedded systems. Embedded systems are highly spe¬
cialised in functioning and are dedicated for a specific application. Hence it is not possible to replace
an embedded system developed for a specific application in a specific domain with another embedded
system designed for some other application in some other domain. The following sections are intended
to give the readers some idea on the application and domain specific characteristics of embedded
systems.

4.1 WASHING MACHINE—APPLICATION-SPECIFIC EMBEDDED
SYSTEM

People experience the power of embedded systems and enjoy the features and comfort provided by
them, but they are totally unaware or ignorant of the intelligent embedded players working behind the
products providing enhanced features and comfort. Washing machine is a typical example of an embed¬
ded system providing extensive support in home automation applications (Fig. 4.1).

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

1

As mentioned in an earlier chapter, an embedded
system contains sensors, actuators, control unit and ap¬
plication-specific user interfaces like keyboards, display
units, etc. You can see all these components in a washing
machine if you have a closer look at it. Some of them are
visible and some of them may be invisible to you.

The actuator part of the washing machine consists of
a motorised agitator, tumble tub, water drawing pump
and inlet valve to control the flow of water into the unit.
The sensor part consists of the water temperature sen¬
sor, level sensor, etc. The control part contains a micro¬
processor/controller based board with interfaces to the
sensors and actuators. The sensor data is fed back to the
control unit and the-control unit generates the necessary
actuator outputs. The control unit also provides connec¬
tivity to user interfaces like keypad for setting the wash¬
ing time, selecting the type of material to be washed
like light, medium, heavy duty, etc. User feedback is
reflected through the display unit and LEDs connected
to the control board. The functional block diagram of a
washing machine is shown in Fig. 4.2.

(Fig. 4. I.] Washing Machine - Typical example

of an embedded system

(PlrY.c courtesy of Electrolux Corporation ; .

(wvm. clectrolux.com/a u)) -

(Fig. 4.2) Washing machine - Functional block diagram

Picture not to scale
I

https://hemanthrajhemu.github.io

Embedded Systems—Application- and Domain-Specific

Washing machine comes in two models, namely, top loading and front loading machines. In top load¬
ing models the agitator of the machine twists back and forth and pulls the cloth down to the bottom of
the tub. On reaching the bottom of the tub the clothes work their way back up to the top of the tub where
the agitator grabs them again and repeats the mechanism. In the front loading machines, the clothes are
tumbled and plunged into the water over and over again. This is the first phase of washing.

In the second phase of washing, water is pumped out from the tub and the inner tub uses centrifugal
force to wring out more water from the clothes by spinning at several hundred Rotations Per Minute
(RPM). This is called a ‘Spin Phase’. If you look into the keyboard panel of your washing machine you
can see three buttons namely* Wash, Spin and Rinse. You can use these buttons to configure the washing
stages. As you can see from the picture, the inner tub of the machine contains a number of holes and
during the spin cycle the inner tub spins, and forces the water out through these holes to the stationary
outer tub from which it is drained off through the outlet pipe.

It is to be noted that the design of washing machines may vary from manufacturer to manufacturer,
but the general principle underlying in the working of the washing machine remains the same. The basic
controls consist of a timer, cycle selector mechanism, water temperature selector, load size selector and
start button. The mechanism includes the motor, transmission, clutch, pump, agitator, inner tub, outer
tub and water inlet valve. Water inlet valve connects to the water supply line using at home and regulates
the flow of water into the tub.

The integrated control panel consists of a microprocessor/controller based board with I/O interfaces
and a control algorithm running in it. Input interface includes the keyboard which consists of wash type
selector namely* Wash, Spin and Rinse, cloth type selector namely* Light, Medium, Heavy duty and
washing time setting, etc. The output interface consists of LED/LCD displays, status indication LEDs,
etc. connected to the I/O bus of the controller. It is to be noted that this interface may vary from manu¬
facturer to manufacturer and model to model. The other types of I/O interfaces which are invisible to the
end user are different kinds of sensor interfaces, namely, water temperature sensor, water level sensor,
etc. and actuator interface including motor control for agitator and tub movement control, inlet water
flow control, etc.

4.2 AUTOMOTIVE -DOMAIN-SPECIFIC EXAMPLES OF
■ EMBEDDED SYSTEM - ; . - - • - ; - " - A • •__

The major application domains of embedded systems are consumer, industrial, automotive, telecom,
etc., of which telecom and automotive industry holds a big market share.

Figure 4.3 gives an overview of the various types of electronic control units employed in automotive
applications.

4.2.1 Inner Workings of Automotive Embedded Systems

Automotive embedded systems are the one where electronics take control over the mechanical systems.
The presence of automotive embedded system in a vehicle varies from simple mirror and wiper con¬
trols to complex air bag controller and antilock brake systems (ABS). Automotive embedded systems
are normally built around microcontrollers or DSPs or a hybrid of the two and are generally known as
Electronic Control Units (ECUs). The number of embedded controllers in an ordinary vehicle varies

‘Name may vary depending on the manufacturer.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2.

13. Airbag control

14. Power steering 12 Seat control

Engine control

15. Air conditioner

1. Instrumentation

11. Miror control

10. Power windows

8. Supension control

3. Fan control
7. Wiper control

6. ABS control

4. Fuel injection control

| Fig. 4.3*] Embedded system in the automotive domain
. (Photo courtesy of Honda Shi Car India (www.hondacarindia. com))

from 20 to 40 whereas a luxury vehicle like Mercedes S and BMW 7 may contain 75 to 100 numbers of
embedded controllers. Government regulations on fuel economy, environmental factors and emission
standards and increasing customer demands on safety, comfort and infotainment forces the automotive
manufactures to opt for sophisticated embedded control units within the vehicle. The first embedded
system used in automotive application was the microprocessor based fuel injection system introduced
by Volkswagen 1600 in 1968.

The various types of electronic'control units (ECUs) used in the automotive embedded industry can
be broadly classified into two-High-speed embedded control units and Low-speed embedded control
units.

4.2.1.1 High-speed Electronic Control Units (HECUs) High-speed electronic control units
(HECUs) are deployed in critical control units requiring fast response. They include fuel injection
systems, antilock brake systems, engine control, electronic throttle, steering controls, transmission
control unit and central control unit.

4.2.1.2 Low-speed Electronic Control Units (LECUs) Low-Speed Electronic Control
Units (LECUs) are deployed in applications where response time is not so critical. They generally
are built around low cost microprocessors/microcontrollers and digital signal processors. Audio con¬
trollers, passenger and driver door locks, door glass controls (power windows), wiper control, mirror
control, seat control systems, head lamp and tail lamp controls, sun roof control unit etc. are examples
of LECUs.

https://hemanthrajhemu.github.io

Embedded Systems—Application- and Domain-Specific

4.2.2 Automotive Communication Buses

Automotive applications make use of serial buses for communication, which greatly reduces the amount
of wiring required inside a vehicle. The following section will give you an overview of the different
types of serial interface buses deployed in automotive embedded applications.

4.2.2.1 Controller Area Network (CAN) The GAN bus was originally proposed by Robert Bosch,
pioneer in the Automotive embedded solution providers. It supports medium speed (ISOl 1519-class B
with data rates up to 125 Kbps) and high speed (ISOl 1898 class C with data rates up to 1Mbps) data
transfer. CAN is an event-driven protocol interface with, support for error handling in data transmission.
It is generally employed in safety system like airbag control; power train systems like engine control and
Antilock Brake System (ABS); and navigation systems like GPS. The protocol format and interface ap¬
plication development for CAN bus will be explained in detail in another volume of this book series.

4.2.2.2 Local Interconnect Network (LIN) LIN bus is a single master multiple slave (up to 16
independent slave nodes) communication interface. LIN is a low speed, single wire communication
interface with support for data rates up to 20 Kbps and is used for sensor/actuator interfacing. LIN bus
follows the master communication triggering technique to eliminate the possible bus arbitration prob¬
lem that can occur by the simultaneous talking of different slave nodes connected to a single interface
bus. LIN bus is employed in applications like mirror controls, fan controls, seat positioning controls,
window controls, and position controls where response time is not a critical issue.

4.2.2.3 Media-Oriented System Transport (MOST) Bus The Media-oriented system transport
(MOST) is targeted for automotive audio/video equipment interfacing, used primarily in European cars.
A MOST bus is a multimedia fibre-optic point-to-point network implemented in a star, ring or daisy-
chained topology over optical fibre cables. The MOST bus-specifications define the physical (electrical
and optical parameters) layer as well as the application layer, network layer, and media access control.
MOST bus is an optical fibre cable connected between the Electrical Optical Converter (EOC) and
Optical Electrical Converter (OEC), which would translate into the optical cable MOST bus.

4.2.3 Key Players of the Automotive Embedded Market

The key players of the automotive embedded market can be visualised in three verticals namely, silicon
providers, solution providers and tools and platform providers.

4.2.3.1 Silicon Providers Silicon providers are responsible for providing the necessary chips which
are used in the control application development. The chip may be a standard product like microcon¬
troller or DSP or ADC/D AC chips. Some applications may require specific chips and they are manufac¬
tured as Application Specific Integrated Chip (ASIC). The leading silicon providers in the automotive
industry are:

Analog Devices (www.analog.com): Provider of world class digital signal processing chips, precision
analog microcontrollers, programmable inclinometer/accelerometer, LED drivers, etc. for automotive
signal processing applications, driver assistance systems, audio system, GPS/Navigation system, etc.

Xilinx (www.xilinx.com): Supplier of high performance FPGAs, CPLDs and automotive specific IP
cores for GPS navigation systems, driver information systems, distance control, collision avoidance,
rear, shat entertainment, adaptive cruise control, voice recognition, etc.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Atmel (www.atmel.com): Supplier of cost-effective high-density Flash controllers and memories. At-
mel provides a series of high performance microcontrollers, namely, ARM®1, AVR®2, and 80C51. A
wide range of Application Specific Standard Products (ASSPs) for chassis, body electronics, security,
safety and car infotainment and automotive networking products for CAN, LIN and FlexRay are also
supplied by Atmel.

Maxim/Dallas (www.maxim-ic.com): Supplier of world class analog, digital and mixed signal products
(Microcontrollers, ADC/DAC, amplifiers, comparators, regulators, etc), RF components, etc. for all
kinds of automotive solutions. 1

NXP semiconductor (www.nxp.com): Supplier of 8/16/32 Flash microcontrollers.

Renesas (www.renesas.com): Provider of high speed microcontrollers and Large Scale Integration (LSI)
technology for car navigation systems accommodating three transfer speeds: high, medium and low.

Texas Instruments (www.ti.com): Supplier of microcontrollers, digital signal processors and automo¬
tive communication control chips for Local Inter Connect (LIN) bus products. ' 1

Fujitsu (www.fmal.fujitsu.com): Supplier of fingerprint sensors for security applications, graphic dis¬
play controller for instmmentation application, AGPS/GPS for vehicle navigation system and different
types of microcontrollers for automotive control applications.

Infineon (www.infineon.com): Supplier of high performance microcontrollers and customised applica¬
tion specific chips.

NEC (www.nec.co.jp): Provider of high performance microcontrollers.
There are lots of other silicon manufactures which provides various automotive support systems like

power supply, sensors/actuators, optoelectronics, etc. Describing all of them is out of the scope of this
book. Readers are requested to use the Internet for finding more information on them.

4.2.3.2 Tools and Platform Providers Tools and platform providers are manufacturers and suppli¬
ers of various kinds of development tools and Real Time Embedded Operating Systems for developing
and debugging different control unit related applications. Tools fall into two categories, namely embed¬
ded software application development tools and embedded hardware development tools. Sometimes the
silicon suppliers provide the development suite for application development using their chip. Some third
party suppliers may also provide development kits and libraries. Some of the leading suppliers of tools
and platforms in automotive embedded applications are listed below.

ENEA (www.enea.com): Enea Embedded Technology is the developer of the OSE Real-Time operat¬
ing system. The OSE RTOS supports both CPU and DSP and has also been specially developed to sup¬
port multi-core and fault-tolerant system development.

The Math Works (www.mathworks.com): It is the world’s leading developer and supplier of technical
software. It offers a wide range of tools, consultancy and training for numeric computation, visualisa¬
tion, modelling and simulation across many different industries. MathWork’s breakthrough product is
MATLAB-a high-level programming language and environment for technical computation and numeri¬
cal analysis. Together MATLAB, SIMULINK, Stateflow and Real-Time Workshop provide top quality
tools for data analysis, test & measurement, application development and deployment, image processing
and development of dynamic and reactive systems for DSP and control applications.

1 ARM® is the registered trademark of ARM Holdings.

2 AVR® is the registered trademark of Atmel Corporation.

https://hemanthrajhemu.github.io

Embedded Systems—Application- and Domain-Specific

Keil Software (www.keil.com): The Integrated Development Environment Keil Microvision from Keil
software is a powerful embedded software design tool for 8051 & Cl66 family of microcontrollers.

Lauterbach (http://www.lauterbach.com/): It is the world’s number one supplier of debug tools, pro¬
viding support for processors from multiple silicon vendors in the automotive market.

ARTiSAN (www.artisansw.com): Is the leading supplier of collaborative modelling tools for require¬
ment analysis, specification, design and development of complex applications.

Microsoft (www.microsoft.com): It is a platform provider for automotive embedded applications.
Microsoft’s WindowsCE is a powerful RTOS platform for automotive applications. Automotive features
are included in the new WinCE Version for providing support for automotive application developers.

4.2.3.3 Solution Providers Solution providers supply OEM and complete solution for automotive
applications making use of the chips, platforms and different development tools. The major players of
this domain are listed below.

Bosch Automotive (www.boschindia.com): Bosch is providing complete automotive solution ranging
from body electronics, diesel engine control, gasoline engine control, powertrain systems, safety systems,
in-car navigation systems and infotainment systems.

DENSO Automotive (www.globaldensoproducts.com): Denso is an Original Equipment Manufacturer
(OEM) and solution provider for engine management, climate control, body electronics, driving control
& safety, hybrid vehicles, embedded infotainment and communications.

Infosys Technologies (www.infosys.com): Infosys is a solution provider for automotive embedded hard¬
ware and software. Infosys provides the competitive edge in integrating technology change through cost-
effective solutions.

Delphi (www.delphi.com): Delphi is the complete solution provider for engine control, safety, infotain¬
ment, etc., and OEM for spark plugs, bearings, etc.

.and many more. The list is incomplete. Describing all providers is out of the scope of this book.

Summary
_

V Embedded systems designed for a particular application for a specific domain cannot be replaced with another

embedded system designed for another application for a different domain

S Consumer, industrial, automotive, telecom, etc. are the major application domains of embedded systems. Tele¬

com and automotive industry are the two segments holding a big market share of embedded systems

J Automotive embedded systems are normally built around microcontrollers or DSPs or a hybrid of the two and

are generally known as Electronic Control Units (ECUs)

^ High speed Electronic Control Units (HECUs) are deployed in critical control units requiring fast response, like

fuel injection systems, antilock brake system, etc.

V Low speed Electronic Control Units (LECUs) are deployed in applications where response time is not so critical.

They are generally built around low cost microprocessors/microcontrollers and digital signal processors. Audio

controllers, passenger and driver door locks, door glass controls, etc., are examples for LECUs.

S- Automotive applications use serial buses for communication. Controller Area Network (CAN), Local Intercon¬

nect Network (LIN), Media Oriented System Transport (MOST) bus, etc. are the important automotive commu¬

nication buses.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

V CAN is an event driven serial protocol interface with support for error handling in data transmission. It is gener¬

ally employed in safety system like airbag control, powertrain systems like engine control and Antilock Brake

| Systems^ABS),

V LIN bus is a single master multiple slave, (up to 16 independent slave nodes) communication interface: LIN is

a low speed, single wire communication interface with support for data rates up to 20Kbps and is used for sen-

sor/actuator interfacing.

v The Media Oriented System Transport (MOST) bus is targeted for automotive audio video equipment interfac¬

ing. MOST bus is a multimedia fibre-optic point-to-point network implemented in a star, ring or daisy-chained

topology over optical tibiss cables1

■ ■S- The key players of the automotive embedded market can be classified into ‘Silicon Providers’, ‘Tools and Plat-

’ >~f 'll'6 a

:A

JEGU : Electronic Control Unit. The generic term for the embedded control units in automotiye ^pli^ation |pf';

HECl1: High-speed Electronic Control Unit. The high-speed embedded control unit deployed in automotive appli¬

cations '

LECU : Low-speed Electronic Control Unit. The low-speed embedded control unit deployed in automotive applica¬

tions , • . , - . ‘I |ft

CAN : Controller Area Network. An event driven serial protocol interface used primarily for automotive applica-

i i $ fcK'ck® **»- »Y f \ <t ** ^ ~ ^ ^ ^ > «■* I'l^S ^ ’ft

LIN : Local Interconnect Network. A single master multiple,slave, low speed serial bus used in automotive ap¬

plication ' ■*■■ ■'■ .A ’

MUST: Media. Oriented System Transport Bus. A multimedia fibre-optic point-to-point network.implemented in a

star, rihg or daisy-chained topology over optical fibres cables ' ■ ■'

Objective Questions

1. In Automotive systems, High-speed Electronic Control Units (HECUs) are deployed in

(a) Fuel injectipn systems (b) Antilock brake systems

(c) Power windows (d) Wiper control (e) Only (a) and (b)

2. In Automotive systems, Low speed electronic control units (LECUs) are deployed in

(a) Electronic throttle (b) Steering controls (c) Transmission control (d) Mirror control

3. The first embedded system used in automotive application is the microprocessor based fuel injection system intro¬

duced by_in 1968

(a) BMW (b) Volkswagen 1600 (c) Benz E Class (d) KIA

4. CAN bus is an event driven protocol for communication. State True or False

(a) True (b) False

5. Which of the following serial bus is (are) used for communication in Automotive Embedded Applications?

(a) Controller Area Network (CAN) (b) Local Interc

(c) Media Oriented System Transport (MOST) bus (d) All of these

6. Which of the following is true about LIN bus?

(a) Single master multiple slave interface (b) Low speed :

(c) Used for sensor/actuator interfacing (d) All of these

(b) Local Interconnect Network (LIN)

(d) All of these (e) None of these

(b) Low speed serial bus

(d) All of these (e) None of these

https://hemanthrajhemu.github.io

Embedded Systems—Application- and Domain-Specific

7. Which of the following is true about MOST bus?

(a) Used for automotive audio video system interfacing

(b) It is a fibre optic point-to-point network

(c) It is implemented in star, ring or daisy-chained topology

(d) All of these (e) None of these

8 . Which of the following is (are) example(s) of Silicon providers for automotive applications?

(a) Maxim/Dallas (b) Analog Devices (c) Xilinx (d) Atmel

(e) All of these (f) None of these

Review Questions

1. Explain the role of embedded systems in automotive domain.

2. Explain the different electronic control units (ECUs) used in automotive systems.

3. Explain the different communication buses used in automotive application.

4. Give an overview of the different market players of the automotive embedded application domain.

https://hemanthrajhemu.github.io

LEARNING OBJECTIVES

A Learn about the co-design approach for embedded hardware and firmware development ' ■■■-■■

S Know the fundamental issues in model, architecture and language selection for hardware software co-design and

partitioning the system requirements into hardware and software (firmware)

V Loom about the different computational models used in Embedded System design

/ Learn about Data Flow Graphs (DEC) Model, Control Data Flow Graph lCDFG), State Machine Model, Sequential

Program Model, Concurrent/Communicating Model and Object Oriented Model for embedded design

A Learn about Unified Modelling Language (UML) for system modelling, the building blocks of UML, different types of

/ diagrams supported by UML for requirements modelling and design' "• f i.

A Learn about the different tools for UML modelling

A Learn about the trade-offs like performance, cost, etc. to be considered in the partitioning of a system requirement

into either hardware or software ■ ■m-.rg4.erMm

In the traditional embedded system development approach, the hardware software partitioning is done

at an early stage and engineers from the software group take care of the software architecture develop¬

ment and implementation, whereas engineers from the hardware group are responsible for building the

hardware required for the product. There is less interaction between the two teams and the development

happens either serially or in parallel. Once the hardware and software are ready, the integration is per¬

formed. The increasing competition in the commercial market and need for reduced ‘time-to-market’

the product calls for a novel approach for embedded system design in which the hardware and software

are co-developed instead of independently developing both.

During the co-design process, the product requirements captured from the customer are converted

into system level needs or processing requirements. At this point of time it is not segregated as either

hardware requirement or software requirement, instead it is specified as functional requirement. The

system level processing requirements are then transferred into functions which can be simulated and

verified against performance and functionality. The Architecture design follows the system design. The

partition of system level processing requirements into hardware and software takes place during the ar¬

chitecture design phase. Each system level processing requirement is mapped as either hardware and/or

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

software requirement. The partitioning is performed based on the hardware-software trade-offs. We will
discuss the various hardware software tradeoffs in hardware software co-design in a separate topic. The
architectural design results in the detailed behavioural description of the hardware requirement and the
definition of the software required for the hardware. The processing requirement behaviour is usually
captured using computational models and ultimately the models representing the software processing
requirements are translated into firmware implementation using programming languages.

The hardware software co-design is a problem statement and when we try to solve this problem state¬
ment in real life we may come across multiple issues in the design. The following section illustrates
some of the fundamental issues in hardware software co-design.

Selecting the model In hardware software co-design, models are used for capturing and describing
the system characteristics. A model is a formal system consisting of objects and composition rules. It is
hard to make a decision on which model should be followed in a particular system design. Most often
designers switch between a variety of models from the requirements specification to the implementation
aspect of the system design. The reason being, the objective varies with each phase; for example at the
specification stage, only the functionality of the system is in focus and not the implementation informa¬
tion. When the design moves to the implementation aspect, the information about the system compo¬
nents is revealed and the designer has to switch to a model capable of capturing the system’s structure.
We will discuss about the different models in a later section of this chapter.

Selecting the Architecture A model only captures the system characteristics and does not provide
information on ‘how the system can be manufactured?’'. The architecture specifies how _a .system is
going to implement in terms of the number and types of different components and the interconnec¬
tion among them. Controller architecture, Datapath Architecture, Complex Instmction Set Computing
(CISC), Reduced Instmction Set Computing (RISC), Very Long Instmction Word Computing (VLIW),
Single Instmction Multiple Data (SIMD), Multiple Instmction Multiple Data (MIMD), etc. are the
commonly used architectures in system design. Some of them fall into Application Specific Architec¬
ture Class (like controller architecture), while others fall into either general purpose architecture class
(CISC, RISC, etc.) or Parallel processing class (like VLIW, SIMD, MIMD, etc.).

The controller architecture implements the finite state machine model (which we will discuss in a
later section) using a state register and two combinational circuits (we will discuss about combinational
circuits in a later chapter). The state register holds the present state and the combinational circuits imple¬
ment the logic for next state and output.

The datapath architecture is best suited for implementing the data flow graph model where the out¬
put is generated as a result of a set of predefined computations on the input data. A datapath represents
a channel between the input and output and in datapath architecture the datapath may contain registers,
counters, register files, memories and ports along with high speed arithmetic units. Ports connect the
datapath to multjple buses. Most of the time the arithmetic units are connected in parallel with pipelin¬
ing support for bringing high performance.

The Finite State Machine Datapath (FSMD) architecture combines the controller architecture with
datapath architecture. It implements a controller with datapath. The controller generates the control in¬
put whereas the datapath processes the data. The datapath contains two types of I/O ports, out of which
one acts as the control port for receiving/sending the .control signals from/to the controller unit and the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

second I/O port interfaces the datapath with' external world for data input and data output. Normally the
datapath is implemented in a chip and the I/O pins of the chip acts as the data input output ports for the
chip resident data path.

The Complex Instruction Set Computing (CISC) architecture uses an instruction set representing
complex operations. It is possible for a CISC instruction set to perform a large complex operation (e.g.
Reading a register value and comparing it with a given value and then transfer the program execution
to a new address location (The CJNE instruction for 8051 ISA)) with a single instruction. The use of a
single complex instruction in place of multiple simple instructions greatly reduces the program memory
access and program memory size requirement. However it requires additional silicon for implementing
microcode decoder for decoding the CISC instruction. The datapath for the . CISC processor is com¬
plex. On the other hand, Reduced Instruction Set Computing (RISC) architecture uses instruction set
representing simple operations and it requires the execution of multiple RISC instructions to perform a
complex operation. The data path of RISC architecture contains a large register file for storing the op¬
erands and output. RISC instruction set is designed to operate on registers. RISC architecture supports
extensive pipelining.

The Very Long Instruction Word (VLIW) architecture implements multiple functional units (ALUs,
multipliers, etc.) in the datapath. The VLIW instruction packages one standard instruction per functional
unit of the datapath.

Parallel processing architecture implements multiple concurrent Processing Elements (PEs) and
each processing element may associate a datapath containing register and local memory. Single Instruc¬
tion Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) architectures are examples
for parallel processing architecture. In SIMD architecture, a single instruction is executed in parallel
with the help of the Processing Elements. The scheduling of the instruction execution and controlling of
each PE is performed through a single controller. The SIMD architecture forms the basis of re-configu¬
rable processor (We will discuss about re-configurable processors in a later chapter). On the other hand,
the processing elements of the MIMD architecture execute different instructions at a given point of time.
The MIMD architecture forms the basis of multiprocessor systems. The PEs in a multiprocessor system
communicates through mechanisms like shared memory and message passing.

Selecting the language A programming language captures a ‘Computational Model’ and maps it
into architecture. There is no hard and fast rule to specify this language should be used for capturing
this model. A model can be captured using multiple programming languages like C, C++, C#, Java, etc.
for software implementations and languages like VHDL, System C, Verilog, etc. for hardware imple¬
mentations. On the other hand, a single language can be used for capturing a variety of models. Certain
languages are good in capturing certain computational model. For example, C++ is a good candidate
for capturing an object oriented model. The only pre-requisite in selecting a programming language for
capturing a model is that the language should capture the model easily.

Partitioning System Requirements into hardware and software So far we discussed about the
models for capturing the system requirements and the architecture for implementing the system. From
an implementation perspective, it may be possible to implement the system requirements in either hard¬
ware or software (firmware). It is a tough decision making task to figure out which one to opt. Various
hardware software trade-offs are used for making a decision on the hardware-software partitioning. We
will discuss them in detail in a later section of this chapter.

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

COMPUTATIONAL MODELS IN EMBEDDED DESIGN

Data Flow Graph (DFG) model, State Machine model, Concurrent Process model, Sequential Program
model, Object Oriented model, etc. are the commonly used computational models in embedded system
design. The following sections give an overview of these models.

7.2.1 Data Flow Graph/Diagram (DFG) Model

The Data Flow Graph (DFG) model translates the data processing requirements into a data flow graph.
The Data Flow Graph (DFG) model is a data driven model in which the program execution is deter¬
mined by data. This model emphasises on the data and operations on the data which transforms the
input data to output data. Indeed Data Flow Graph
(DFG) is a visual model in which the operation on
the data (process) is represented using a block (circle)
and data flow is represented using arrows. An inward
arrow to the process (circle) represents input data and
an outward arrow from the process (circle) represents
output data in DFG notation.

Embedded applications which are computational
intensive and data driven are modeled using the DFG
model. DSP applications are typical examples for
it. Now let’s have a look at the implementation of a
DFG. Suppose one of the functions in our application
contains the computational requirement x = a + b; and ,_m ,,
y = x - c. Figure 7.1 illustrates the implementation of (UlnLjJ Oita flow graph (DFq)modei

a DFG model for implementing these requirements.
In a DFG model, a data path is the data flow path from input to output. A DFG model is said to be

acyclic DFG (ADFG) if it doesn’t contain multiple values for the input variable and multiple output val¬
ues for a given set of input(s). Feedback inputs (Output is fed back to Input), events, etc. are examples
for non-acyclic inputs. A DFG model translates the program as a single sequential process execution.

7.2.2 Control Data Flow Graph/Diagram (CDFG)

We have seen that the DFG model is a data driven model in which the execution is controlled by data
and it doesn’t involve any control operations (conditionals). The Control DFG (CDFG) model is used
for modelling applications involving conditional program execution. CDFG models contains both data
operations and control operations. The CDFG uses Data Flow Graph (DFG) as element and conditional
(constructs) as decision makers. CDFG contains both data flow nodes and decision nodes, whereas DFG
contains only data flow nodes. Let us have a look at the implementation of the CDFG for the following
requirement.

If flag = 1 ,x = a + b\ els ey = a-b;

This requirement contains a decision making process. The CDFG model for the same is given in
Fig. 7.2.

The control node is represented by a ‘Diamond’ block which is the decision making element in a
normal flow chart based design. CDFG translates the requirement, which is modeled to a concurrent
process model. The decision on which process is to be executed is determined by the control node.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

A real world example for modelling the embedded ap¬
plication using CDFG is the capturing and saving of the
image to a format set by the user in a digital still camera
where everything is data driven starting from the Analog
Front End which converts the CCD sensor generated ana¬
log signal to Digital Signal and the task which stores the
data from ADC to a frame buffer for the use of a media
processor which performs various operations like, auto
correction, white balance adjusting, etc. The decision on,
in which format the image is stored (formats like JPEG,
TIFF, BMP, etc.) is controlled by the camera settings, con¬
figured by the user.

7.2.3 State Machine Model

The State Machine model is used for modelling reactive
or event-driven embedded systems whose processing
behaviour are dependent on state transitions. Embedded
systems used in the control and industrial applications are
typical examples for event driven systems. The State Machine model describes the system behaviour
with ‘States’, ‘Events’, ‘Actions’ and ‘Transitions’. State is a representation of a current situation. An
event is an input to the state. The event acts as stimuli for state transition. Transition is the movement
from one state to another. Action is an activity to be performed by the state machine.

A Finite State Machine (FSM) model is one in which the number of states are finite. In other words
the system is described using a finite number of possible states. As an example let us consider the de¬
sign of an embedded system for driver/passenger ‘Seat Belt Warning’ in an automotive using the FSM
model. The system requirements are captured as.

1. When the vehicle ignition is turned on and the seat belt is not fastened within 10 seconds of igni¬
tion ON, the system generates an alarm signal for 5 seconds.

2. The Alarm is turned off when the alarm time (5 seconds) expires or if the driver/passenger fastens
the belt or if the ignition switch is turned off, whichever happens first.

Here the states are ‘Alarm Off’, ‘Waiting’ and ‘Alarm On’ and the events are ‘Ignition Key ON’,
‘Ignition Key OFF’, ‘Timer Expire’, ‘Alarm Time Expire’ and ‘Seat Belt ON’. Using the FSM, the sys¬
tem requirements can be modeled as given in Fig. 7.3.

The ‘Ignition Key ON’ event triggers the 10 second timer and transitions the state to ‘Waiting’. If a
‘Seat Belt ON’ br ‘Ignition Key OFF’ event occurs during the wait state, the state transitions into ‘Alarm
Off’. When the wait timer expires in the waiting state, the event ‘Timer Expire’ is generated and it tran¬
sitions the state to ‘Alarm On’ from the ‘Waiting’ state. The ‘Alarm On’ state continues until a ‘Seat Belt
ON’ or ‘Ignition Key OFF’ event or ‘Alarm Time Expire’ event, whichever occurs first. The occurrence
of any of these events transitions the state to ‘Alarm Off’. The wait state is implemented using a timer.
The timer also has certain set of states and events for state transitions. Using the FSM model, the timer
can be modeled as shown in Fig. 7.4.

As seen from the FSM, the timer state can be either ‘IDLE’ or ‘READY’ or ‘RUNNING’. During
the normal condition when the timer is not running, it is said to be in the ‘IDLE’ state. The timer is said
to be in the ‘READY’ state when the timer is loaded with the count corresponding to the required time

(Fig.7.2} Control Data How Graph (CDFG)
--- Model -- -

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

(Fig. 7.4) FSM Model for timer

delay. The timer remains in the ‘READY’ state until a ‘Start Timer’ event occurs. The timer changes
its state to ‘RUNNING’ from the ‘READY’ state on receiving a ‘Start Timer’ event and remains in the
‘RUNNING’ state until the timer count expires or a ‘Stop Timer’ even occurs. The timer state changes
to ‘IDLE’ from ‘RUNNING’ on receiving a ‘Stop Timer’ or ‘Timer Expire’ event.

Example 1

Design an automatic tea/coffee vending machine based on FSM model for the following requirement.

The tea/coffee vending is initiated by user inserting a 5 rupee coin. After inserting the coin, the user can either select

‘Coffee’ or ‘Tea’ or press ‘Cancel’ to cancel the order and take back the coin.

The FSM representation for the above requirement is given in Fig. 7.5.

In its simplest representation, it contains four states namely; ‘Wait for coin’ ‘Wait for User Input’, ‘Dispense Tea’ and

‘Dispense Coffee’. The event ‘Insert Coin’ (5 rupee coin insertion), transitions the state to ‘Wait for User Input’. The

system stays in this state until a user input is received from the buttons ‘Cancel’, ‘Tea’ or ‘Coffee’ (Tea and Coffee are

the drink select button). If the event triggered in ‘Wait State’ is ‘Cancel’ button press, the coin is pushed out and the state

transitions to ‘Wait for Coin’. If the event received in the ‘Wait State’ is either ‘Tea’ button press, or ‘Coffee’ button press,

the state changes to ‘Dispense Tea’ and ‘Dispense Coffee’ respectively. Once the coffee/tea vending is over, the respective

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

states transitions back to the ‘Wait for Coin’ state. A few modifications like adding a timeout for the ‘Wait State’ (Cur¬

rently the ‘Wait State’ is infinite; it can be re-designed to a timeout based ‘Wait State’. If no user input is received within

the timeout period, the coin is returned back and the state automatically transitions to ‘Wait for Coin’ on the timeout

event) and capturing another events like, ‘Water not available’, ‘Tea/Coffee Mix not available’ and changing the state to

an ‘Error State’ can be added to enhance this design. It is left to the readers as exercise.

Example 2

Design a coin operated public telephone unit based on FSM model for the following requirements.

1. The calling process is initiated by lifting the receiver (off-hook) of the telephone unit

2. After lifting the phone the user needs to insert a 1 rupee coin to make the call.

3. If the line is busy, the coin is returned on placing the receiver back on the hook (on-hook)

4. If the line is through, the user is allowed to talk till 60 seconds and at the end of 45th second, prompt for inserting

another 1 rupee coin for continuing the call is initiated

5. If the user doesn’t insert another 1 rupee coin, the call is terminated on completing the 60 seconds time slot.

6. The system is ready to accept new call request when the receiver is placed back on the hook (on-hook)

7. The system goes to the ‘Out of Order’ state when there is a line fault.

The FSM model shown in Fig. 7.6, is a simple representation and it doesn’t take care of scenarios like, user doesn’t

insert a coin within the specified time after lifting the receiver, user inserts coins other than a one rupee etc. Handling

these scenarios is left to the readers as exercise.

Most of the time state machine model translates the requirements into sequence driven program and it is difficult to

implement concurrent processing with FSM. This limitation is addressed by the Hierarchical/Concurrent Finite State

Machine model (HCFSM). The HCFSM is an extension of the FSM for supporting concurrency and hierarchy. HCFSM

extends the conventional state diagrams by the AND, OR decomposition of States together with inter level transitions

and a broadcast mechanism for communicating between concurrent processes. HCFSM uses statecharts for capturing the

states, transitions, events and actions. The Harel Stateehart, UML State diagram, etc. are examples for popular statecharts

used for the HCFSM modelling of embedded systems. In statecharts, the state is usually represented using geometric

shapes like rounded rectangle, rectangle, ellipse, circle, etc. The Harel Stateehart uses a rounded rectangle for represent¬

ing state. Arrows are used for representing the state transition and they are marked with the event associated with the state

transition. Sometimes an optional parenthesized condition is also labeled with the arrow. The condition specifies on what

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

basis the state transition happens at the occurrence of the specified event. Lots of design tools are available for state ma¬

chine and statechart based system modelling. The IAR visualSTATE (http://www.iar.eom/websitel/l.0.l.0/371/l/index.

php) from IAR systems is a popular visual modelling tool for embedded applications.

7.2.4 Sequential Program Model*

In the sequential programming Model, the functions or processing requirements are executed in se¬
quence. It is same as the conventional procedural programming. Here the program instructions are
iterated and executed conditionally and the data gets transformed through a series of operations. FSMs
are good choice for sequential program modelling. Another important tool used for modelling sequen¬
tial program is Flow Charts. The FSM approach represents the states, events, transitions and actions,
whereas the Flow Chart models the execution flow. The execution of functions in a sequential program
model for the ‘Seat Belt Warning’ system is illustrated below.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

#define NO 0 . s / TlUdC
void seat_i>elt__warnf)>' :

{ .

wait_10sec (); t ■'% « t Y *j
if (check_ignition_key()==ON)

:_seat_belt () =

>0==NO)); ' j

■ . • ' '■

Figure 7.7 illustrates the flow chart approach for model¬
ling the ‘Seat Belt Warning’ system explained in the FSM
modelling section.

7.2.5 Concurrent/Communicating
Process Model

The concurrent or communicating process model models
concurrently executing tasks/processes. So far we discussed
about the sequential execution of software programs. It
is easier to implement certain requirements in concur¬
rent processing model than the conventional sequential
execution. Sequential execution leads to a single sequen¬
tial execution of task and thereby leads to poor processor
utilisation, when the task involves I/O waiting, sleeping
for specified duration etc. If the task is split into multiple
subtasks, it is possible to tackle the CPU usage effectively,
when the subtask under execution goes to a wait or sleep
mode, by switching the task execution. However, concur¬
rent processing model requires additional overheads in
task scheduling, task synchronisation and communication.
As an example for the concurrent processing model let us
examine how we can implement the ‘Seat Belt Warning’
system in concurrent processing model. We can split the
tasks into:

1. Timer task for waiting 10 seconds (wait timer task)
2. Task for checking the ignition key status (ignition

key status monitoring task)
3. Task for checking the seat belt status (seat belt status

monitoring task)

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

4. Task for starting and stopping the alarm (alarm control task)
5. Alarm timer task for waiting 5 seconds (alarm timer task)

We have five tasks here and we cannot execute them randomly or sequentially. We need to synchro¬
nise their execution through some mechanism. We need to start the alarm only after the expiration of
the 10 seconds wait timer and that too only if the seat belt is OFF and the ignition key is ON. Hence
the alarm control task is executed only when the wait timer is expired and if the ignition key is in the
ON state and seat belt is in the OFF state. Here we will use events to indicate these scenarios. The
wait timerexpire event is associated with1 the timer task event and it will be in the reset state initially
and it is set when the timer expires. Similarly, events ignition on and ignition jff are associated with
the task ignition key status monitoring and the events seatJbelt_on and seat_belt_off are associated with
the task seat belt status morning. The events ignition j)jf and ignition on are set and reset respectively
when the ignition key status is OFF and reset and set respectively when the ignition key status is ON, by
the ignition key status monitorihg task. Similarly the events seat_belt_off and seat_belt_on are set and
reset respectively when the seat belt status is OFF and reset and set respectively when thje seat belt status
is ON, by the seat belt status monitoring task. The events alarm Jimer jtart and alarm Jimer_expire are
associated with the alarm timer task. The alarm Jimer jtart event will be in the reset state initially and
it is set by the alarm control taskwhen the alarm is started. The alarm Jimer expire event will be in the

^eseFstateTnitialfy-and4tisj£t whe|i ,the alarm timer expires. The alarm control task waits for the signal¬
ing of the event wait Jimer expire^ and starts the alarm timer and alarm if both the events ignition on

and seat helt off are in the set state when the event wait Jimer^expire signals. If not the alarm control
task simply completes its execution and returns. In case the alarm is started, the alarm control task waits
for the signalling of any one of the events alarm timer expire or ignition off or seat belt on. Upon
signalling any one of thlese events, the alarm is stopped and the alarm control task simply completes its
execution and returns. Figure 7.8 illustrates the same.

It should be noted that the method explained here is just one way of implementing a concurrent mod¬
el for the ‘Seat Belt Warning’ system. The intention is just to make the readers familiar with the concept
of multi tasking and task communication/synchronisation. There may be other ways to model the same
requirements. It is left to the readers as exercise. The concurrent processing model is commonly used
for the modelling of‘Real Time’ systems. Various techniques like ‘Shared memory’, ‘Message Passing’,
‘Events’, etc. are used for communication and synchronising between concurrently executing processes.
We will discuss these techniques in a later chapter.

7.2.6 Object-Oriented Model

The object-oriented model is an object based model for modelling system requirements. It disseminates
a complex software requirement into simple well defined pieces called objects. Object-oriented model
brings re-usability, maintainability and productivity in system design. In the object-oriented modelling,
object is an entity used for representing or modelling a particular piece of the system. Each object is
characterised by a set of unique behaviour and state. A class is an abstract description of a set of objects
and itxan be considered as a ‘blueprint’ of an object. A class represents the state of an object through
member variables and object behaviour through member functions. The member variables and member
functions of a class can be private, public or protected. Private member variables and functions are
accessible only within the class, whereas public variables and functions are accessible within the class
as well as outside the class. The protected variables and functions are protected from external access.
However classes derived from a parent class can also access the protected member functions and
variables. The concept of object and class brings abstraction, hiding,and protection.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Create and initialize events

wcntMmer/exnire. ignition_on, ignition off,

1 '

seat beltjm, seat belt off,

altimfimtirjtart, alarm timer expire . ;
■ . ft -■■■/■' _ " ; A, X- ‘ Vt/ fX

Create laak Wait Timer ■

Create'task:/g«/rw« Key Status Monitor :

Create task',Seat Belt Status Monitor , ; : 4 ~: :

Createjask’'Alarm Control 7 ;)■-.■.■■■■

CreateitaikAlarm Timer : ■

Wff it Tim er Ta

//Signal ^abdimfrjrwire^.
Set Event wait_timer_expire; -

Wml&M

\,Set hv.ent ignijiq

Set Event ignition off;-

Preset Event ignition on; it ignition on;
• vl ;

Alarm Control Task . ’ s
Wait for the signalling
waitJimer expire
if (ignition on c£<£

{ ... , % ■ ,
Start Alarm!);
Set Event alarmjstart;- x r -
Wait for the signalling of
alarm Jimer^expire or < -——

‘ ignition_ofjior seat_be.lt__on;
Stop AlarmQ;

Ignition Seat belt Status Monitor

Task
while/]) {
if (Seat Belt ON) - ’*

{ ‘

Set Event seat beltjm; f /’?'%/<
Reset Event seatfbeltjff; ;■'
}
else
{
Set Event seatjbeltjrff;
Reset Event seatjbelt on; 7- ;

}
}

Wmm.m

et Event alarm/timer,_expire,

^ Fig. 7.8) (a) Tasks for ‘Seat Belt Warning System’ (b) Concurrent processing Program model for ‘Seat Belt
Warning System’ 'h' i ' *£*••■<’ fv

7.3 * INTRODUCTIQNTO UNIFIED MODELLING LANGPflGE (PML) .

Unified Modelling Language (UML) is a visual modelling language for Object Oriented Design (OOD).
UML helps in all phases of system design through a set of unique diagrams for requirements capturing,
designing and deployment. https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

Z.3.1 UML Building Blocks

‘Things’, ‘Relationships’ and ‘Diagrams’ are the fundamental building blocks of UML.

7,3.1.1 Things A ‘Thing’ is an abstraction of the UML model. The ‘Things’ in UML are classified
into:

Structural things: Represents mostly the static parts of a UML model. They are also known as ‘classi¬
fiers’. Class, interface, use case, use case realisation (collaboration), active class, component and node
are the structural things in UML.

Behavioural things: Represents mostly the dynamic parts of a UML model. Interaction, state machine
and activity are the behavioural things in UML.

Grouping things: Are the organisational parts of a UML model. Package and sub-system are the group¬
ing things in UML.

Annotational things: Are the explanatory parts of a UML model. Note is the Annotational thing in

UML.
The table given below gives a snapshot of various structural, behavioural, grouping and Annotational

things in UML.

L Thing

Structural

Sllenient ' Description

Glass k A template describing a set of objects which, share

the same attributes, relationships, operations and

semantics. It can be considered as a blueprint of

Active Class Class presenting a thread of cc

U-. . It can initiate control activi

represented in the same way a

| Identifier

I Variables

Methods

I Identifier

. . ; ■ . .. L;

- : : . ' “ -V l S \ '<

Interface Acollection of externally visible operations whic

specify a service of a class. It is represent

circle attached to the class

Use case Defines a set of sequence of actions. I;

represented with an ellipse indicating

Collaboration Interaction diagram specifying the collaboration , ^

(Use case of different use cases. It is normally represented A

Realisation) with a dotted ellipse indicating the name.

Component Physical packaging of
1 f ' U-v/; 1 d A' A A ^ !■ A- ■'t

Node A computational resource existing at run

Represented using a cube with name.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

Represents a'relationship in .which on

fli:h* j ... n - -rr.iA v n I

Ucp-mdent dement

j»j|lijjs yelatisH^tp^5«£w?«jft pkii titfrrteh

j J. 11 jBaAift tsl[iftA,J;fe.,fcfa8ifflitf.lsp£e f.

(a) (b)

Fig. 7.10 (a) Alarm is a special type of Audio Visual Indicator (Generalisation), (b) Alarm is a part of Warning

System (Aggregation.) • -

7.3.1.3 UML Diagrams UML Diagrams give a pictorial representation of the static aspects, behav¬
ioural aspects and organisation and management of different modules (classes, packages, etc.) of the
system. UML diagrams are grouped into Static Diagrams and Behavioural Diagrams.

Static Diagrams Diagram representing the static (structural) aspects of the system. Class Dia¬
gram, Object Diagram, Component Diagram, Package Diagram, Composite Structure Diagram and
Deployment Diagram falls under this category. The table given below gives a snapshot of various static
diagrams.

. • ;eDrese
Eir.-CtC. : ..r rePrcse

rial -representation of a set of objects and. their relationships. It

striiiSturaf organisation between objectsU

‘ Component diagram ' " It is a pictorial representation of the implementation view of a system. It comprises
V - ' Yn^roiool -nu^bormrr rtf' oIopopp utifl inthrfdoop) rolnfiAnckmo dn^ mjLZS. r ? ’ .v components (physical packaging of classes and interfaces), relationships and

■ ' ^ . associations among the components. ' .
... V” „ „ *r fU

igepiagramTi^rife

Deployment diagram .r It is a pictorial representation ofthe configuration of mn time processing nodes and

LI ”, the components associated with them:

Behavioural Diagrams These are diagrams representing the dynamic (behavioural) aspects of the
system. Use Case Diagram (Fig. 7.11), Sequence Diagram (Fig. 7.12), State Diagram, Communication

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

« Seat Belt
Enable or ■

^Disable Alanny

Use case

Ignition Key

Fig. 7.11] Use Case diagram for seat belt warning system

3 OFF

Ignition Key

I 1 Trgger

Seat Belt

2 Timeout

Alarm

- V
Wait Timer —

)
— Alarm

Alarm

Timer

5 Trigger

6 Timeout

Fig. 7,12j Sequence diagram for one possible sequence for the seat belt warning system

Diagram, Activity Diagram, Timing Diagram and Interaction Overview Diagram are the behavioural di¬
agrams in UML model. The table given below gives a snapshot of the important behavioural diagrams.

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

liagram

A diagram . showing the states, transitions, events and activities sit

machine'representatioh. Best smtedTormpdellingTeactive system!

It is a special type of state chart diagram showing activity to activity transition in

place of state transition. It emphasises on the flow control among objects.''6'

7.3.2 The UMLTools

The tools for building UML based models and diagrams are1 available from different vendors. Some of
them are commercial and some of them are either free or open source. The table given below gives a
summary of the popular UML modelling tools.

Some of the tools generate the skeletal code (stub) for the classes and application in programming lan¬
guages like C++, C#, Java, etc.

7.4 HARDWARE SOFTWARE TRADE-OFFS

Certain system level processing requirements may be possible to develop in either hardware or soft¬
ware. The decision on which one to opt is based on the trade-offs and actual system requirement. For
example, if the embedded system under consideration involves some multimedia codec! requirement.
The media codec can be developed in either software, or using dedicated hardware chip (like ASIC or
ASSP). Here the trade-off is performance and re-configurability. A codec developed in hardware may be
much more efficient, optimised with low processing and power requirements. It is possible to develop
the same codec in software using algorithm. But the software implementation need not be optimised for
performance, speed and power efficiency. On the other hand, a codec developed in software is re-usable
and re-configurable. With certain modification it can be configured for other codec implementations,
whereas a codec developed in a fixed hardware (like ASIC/ASSP) is fixed and it cannot be changed.

Memory size is another important hardware software trade-off. Evaluate how much memory is re¬
quired if the system requirement under consideration is implemented in software (firmware). Embedded
systems are highly memory constrained and embedded designers don’t have the luxury of using lavish

t Eclipse is an open source Integrated Development Environment (IDE). Visit www.eclipse.org for more details.

* Multimedia codec is a compression and de-compression algorithmic- compressing and de-compression of raw data media files (audio

and video data)

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

memory for implementing requirements. On the other hand, evaluate the gate count required (Normally
hardware chips are implemented using logic gates and the density of the chip is expressed in terms of the
number of gates used in the design (millions of gates ©)), if the required feature is going to implement
in hardware.

Effort required in terms of man hours, if the required feature is going to build in either software or
custom hardware implementation using VHDL or any other hardware description languages and the cost
for each are another important hardware-software trade-off in any embedded system development.

To summarise, the important hardware-software trade-offs in embedded system design are
1. Processing speed and performance
2. Frequency of change (Re-configurability)
3. Memory size and gate count
4. Reliability
5. Man hours (Effort) and cost

Summary

S Model selection! Architecture selection, Language selection, Hardware Software partitioning, etc. areysonuTdf

-- the main points in the hardware-software co-design ; : •' .

S A model captures and describes the system characteristics; The architecture specifies how a system is going-fo

implement in terms of the number and types of different components and the interconnection among them

wUcGontroller architecture, Datapath architecture. Complex Instruction Set Computing (CISC), Reo^^^Mtruc-

, ftipn(Set Computing (RISC), Very long Instruction,Word Computing (VLIW), Single Instruction Mjiluple Data

(SIMD), Multiple Instruction Multiple Data (MIV1D), etc. are the commonly used architectures in system desigtp.f

S Data Flow Graph (DFG) Model, State Machine Model, Concurrent Process Model, Sequential Programmbtlel,

Object Oriented model, etc. are the commonly used computational models in embedded system design ••

S A programming language captures a ‘Computational Model’ and maps it into architecture. A modpL^inybe,

captured using multiple programming languages like C, C++, C#, Java, etc. for software implementations ;and

languages like VHDL, System C, Verilpg, etc. for hardware implementations ' * ^

S The Hierarchical. Concurrent Finite State Machine Model (HCFSM) is an extension of the FSM for supporting

concurrency and hierarchy. HCFSM extends the conventional state diagrams by the AND. OR decomposition of

States together with inter level transitions and a broadcast mechanism for communicating between concurrent ■:

processes .MMy -

S HCFSM uses statecharts for capturing the states, transitions, events and actions. The Hard Statechart, IJML State

diagram, etc. are examples for popular statecharts for the HCFSM modelling of embedded systems

S In the sequential model, the functions or processing requirements are executed in sequence. It is same as the

conventional procedural programming
S The concurrent or communicating process model models concurrently executing tasks/procesSes

S The object oriented model is an object based model for modelling system requirements

S Unified Modelling Language (UML) is a visual modelling language for Object Oriented Design (OOD). Things,

Relationships and Diagrams are the fundamental building blocks of UML -.i-R

S UML diagrams give a pictorial representation of the static aspects, behavioural aspects and organisation and

management of different modules. Static Diagrams, Object diagram, Usecase diagram, Sequence diagram, Stat¬

echart diagram etc. are the different UML diagrams

S Hardware-Software trade-offs are the parameters used in the decision making of partitioning a system require¬

ment into either hardware or software. Processing speed, performance, frequency of changes, memory size and

gate count requirements, reliability, effort, cost, etc. are examples for hardware-software trade-offs

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

Hardware-Software Co-design : The modem approach for the interactive ‘together’ design of hardware and

firmware for embedded systems

Controller Architecture : Architecture implementing the Finite State Machine model using a state

v- " ■ -r ■- register and two combinational circuits ■-^r-'rp

Datapath Architecture Datapath : Architecture implementing the Data Flow Graph model \ | T;jp

: A thannel between the input and output. The datapath may Contain-regC'

.• isters, counters, register files, memories and ports along with high speed '

; * arithmetic units A

Finite State Machine Datapath Architecture combining the .controller architecture with datapath architec-

1 (FSMI)) Architecture ' ' :ture : --

Complex Instruction Set Computing Architecture which uses instruction set representing complex operations

(CISC)Architecture - •' 4 ■ ’ . ' - y

Reduced Instruction Set Computing : Architecture which uses instruction set representing simple operatiohsfe?‘,;:>‘,

(RISC) Architecture

Very Long Instruction Word : Architecture implementing multiple functional units (ALUs, multipliers, :

(VLIW) Architecture etc.) in the datapath ,

Parallel Processing Architecture : Architecture implementing multiple concurrent Processing Elements '

(pes) ., '; . . ’ ../‘ it

Single Instruction Multiple Data ,: Architecture in which a single instruction is executed in parallel with the

(SIMD) Architecture help of the processing elements " _

.;MIMD Architecture : Architecture in which the processing elements execute different instruc-f

tions at a given point of time

Programming Language : An entity for capturing a ‘Computational Model’ and maps it into archi¬

tecture

Data Flow Graph (DFG) Model : A data driven model in which the program execution is determined by

data

Control DFG (CDFG) Model : Amodel containing both data operations and control operations. The CDFG

uses Data Flow Graph (DFG) as element and conditional (constructs) as

decision makers

State Machine Model : Amodel describing the system behaviour with ‘States’, ‘Events’, ‘Actions’

and ‘Transitions’

Statechart : An entity for capturing the states, transitions, events and actions

Harel Statechart : A type of statechart

Finite State Machine (FSM) Model : A state machine model with finite number of states

Hierarchical/Concurrent Finite : An extension of the FSM for supporting concurrency and hierarchy

State Machine Model (HCFSM)

Sequential Model : Model for capturing sequential processing requirements

Concurrent or Communicating : Model for capturing concurrently executing tasks/process requirements

Process Model

Object Oriented Model : Object based model for modelling system requirements

Unified Modelling Language (UML) : A visual modelling language for Object Oriented Design

UML Diagram : Diagram giving a pictorial representation of the static aspects, behavioural

aspects and organisation and management of different modules

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Static Diagram ;

Behavioural Diagram

UML diagram representing the static (structural) aspects of the system

UML diagram representing the dynamic (behavioural) aspects of the

system

_ • . _ • - ■ . ■ -wvV • ' - e
oftware trade-offs < : The parameters us

1
d 11 Objective Questions

1. Which of the following programming model is best suited for modelling a data driven embedded system

(a) State Machine (b) Data Flow Graph .(c) Harel Statechart Model

(d) None of fhese

2. Which of the following programming model is best suited for modelling a Digital Signal Processing (DSP) embed¬

ded system

(a) Finite State Machine (b) Data Flow Graph (c) Object Oriented Model

(d) UML

3. Which of the following architecture is best suited for implementing a Digital Signal Processing (DSP) embedded

system

(a) Controller Architecture (b) CISC (c) Datapath Architecture (d) None of these

4. Which of the following is a multiprocessor architecture?

(a) SIMD (b) MIMD (c) VLIW (d) All

(e) (a) and (b) (f) (b) and (c)

5. Which of the following model is best suited for modelling a reactive embedded system?

(a) Finite State Machine (FSM) (b) DFG (c) Control DFG

(d) Object Oriented Model

6. Which of the following models is best suited for modelling a reactive real time embedded system?

(a) Finite State Machine (b) DFG (c) Control DFG

(d) Hierarchical/Concurrent Finite State Machine Model

7. Which of the following model is best suited for modelling an embedded system demanding multitasking capabili¬

ties with data sharing?

(a) Finite State Machine (b) DFG (c) Control DFG

(d) Communicating Process Model

8. Which of the following is a hardware description language?

(a) C (b) System C (c) VHDL (d) C++

(e) (b) and (c)

https://hemanthrajhemu.github.io

Hardware Software Co-Design and Program Modelling

9. Which of the following is a structural thing in UML?

(a) Class (b) Interaction (c) State Machine (d) Activity

(e) None of these

10. Which of the following is a behavioural thing in UML?

(a) Class (b) Interface (c) State Machine (d) Component

(e) None of these

11. Which of the following is not a static diagram in UML?

(a) Class Diagram (b) Object Diagram (c) Use case Diagram (d) Component Diagram

(e) None of these

12. Which of the following is not a behavioural diagram in UML?

(a) State Diagram (b) Object Diagram (c) Use case Diagram (d) Sequence Diagram

(e) None of these

13. Which of the following UML diagrams is best suited for Requirements Capturing?

(a) State Diagram (b) Use case Diagram (c) Object Diagram (d) Sequence Diagram

(e) None of these

14. Which of the following UML diagram represents object interactions with respect to time?

(a) State Diagram (b) Sequence Diagram (c) Object Diagram (d) Use case Diagram

(e) None of these

15. Which of the following UML interaction diagram(s) emphasises on structural organisation of objects?

(a) Collaboration Diagram (b) Sequence Diagram (c) State Diagram (d) Use case Diagram

(e) None of these

16. Which of the following is (are) trade-offs in hardware software partitioning?

(a) Processing speed (b) Memory requirement (c) Cost (d) All of these

(e) None of these

1. What is hardware software co-design? Explain the fundamental issues in hardware software co-design

2. Explain the difference between SIMD, MIMD and VLIW architecture

3. What is Computational model? Explain its role in hardware software co-design

4. Explain the different computational models in embedded system design

5. What is the difference between Data Flow Graph (DFG) and Control Data Flow Graph (CDFG) model? Explain

their significance in embedded system design

6. What is State and State Machine? Explain the role of State Machine in embedded system design

7. What is the difference between Finite State Machine Model (FSM) and Hierarchical/Concurrent Finite State

Machine Model (HCFSM)?

8. What is ‘Statechart’? Explain its role in embedded system design

9. Explain the ‘SequentiaF Program model with an example

10. Explain the ‘Concurrent/Communicating’ program model. Explain its role in ‘Real Time’ system design

11. Explain the ‘Object-Oriented’ program model for embedded system design. Under which circumstances an Object-

Oriented model is considered as the best suited model for embedded system design?

12. Explain the role of programming languages in system design

13. What are the building blocks of UML? Explain in detail.

14. Explain the different types of UML diagrams and their significance in each stage of the system development life

cycle

15. Explain the important hardware software ‘trade-offs’ in hardware software partitioning?

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

lor thftJlK iitltr cticnv.t -m

r^,= i;.- a

is .printed arul Lhe

https://hemanthrajhemu.github.io

Embedded Firmware Design and
Development

LEARNING OBJECTIVES

■/■ blk ImJLl £ JLLmL im nQ „™„™ u.

V - Learn the varii line executable

J . a: '

merit ■
v' Learn about the'fundamentals of embedded firmware design using Embedded V
S Learn the similarities and differences, between conventional ^' programming and T programming for Embedded .

application development •
■ri Learn the difference between native and cross-platform development
S Learn about Keywords and Identifiers, Data types, Storage Classes, Arithmetic and Logic Operations, Relational

Operations, Branching Instructions, Looping Instructions, Arrays and Pointers, Characters and Strings, Functions,
Function Pointers, Structures and Unions, Preprocessors and Macros, Constant Declarations, Volatile Variables, Delay
generation and Infinite loops, Bit manipulation operations, Coding InterrupbService Routines, Recursive and Reen-.
trant functions, and Dynamic memory allocation in Embedded C

The embedded firmware is responsible for controlling the various peripherals of the embedded hard¬

ware and generating response in accordance with the functional requirements mentioned in the require¬

ments for the particular embedded product. Finnware is considered as the master brain of the embedded

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

system. Imparting intelligence to an Embedded system is a one time process and it can happen at any

stage, it can be immediately after the fabrication of the embedded hardware or at a later stage. Once

intelligence is imparted to the embedded product, by embedding the firmware in the hardware, the

product starts functioning properly and will continue serving the assigned task till hardware breakdown

occurs or a corruption in embedded firmware occurs. In case of hardware breakdown, the damaged

component may need to be replaced by a new component and for firmware corruptions the firmware

should be re-loaded, to bring back the embedded product to the normal functioning. Coming back to the

newborn baby example, the newborn baby is very adaptive in terms of intelligence, meaning it leams

from mistakes and updates its memory each time a mistake or a deviation in expected behaviour occurs,

whereas most of the embedded systems are less adaptive or non-adaptive. For most of the embedded

products the embedded firmware is stored at a permanent memory (ROM) and they are nonalterable by

end users. Some of the embedded products used in the Control and Instrumentation domain are adap¬

tive. This adaptability is achieved by making use configurable parameters which are stored in the alter¬

able permanent memory area (like NVRAM/FLASH). The parameters get updated in accordance with

the deviations from expected behaviour and the firmware makes use of these parameters for creating the

response next time for similar variations.

Designing embedded firmware requires understanding of the particular embedded product hardware,

like various component interfacing, memory map details, I/O port details, configuration and register de¬

tails of various hardware chips used and some programming language (either target processor/controller

specific low level assembly language or a high level language like C/C++/JAVA).

Embedded firmware development process starts with the conversion of the firmware requirements

into a program model using modelling tools like UML or flow chart based representation. The UML

diagrams or flow chart gives a diagrammatic representation of the decision items to be taken and the

tasks to heqperformed (Fig. 9.1). Once the program model is created, the next step is the implementa¬

tion of the tasks and actions by capturing the model using a language which is understandable by the

target processor/controller. The following sections are designed to give an overview of the various steps

involved in the embedded firmware design and development.

(1.1 EMBEDDED FIRMWARE DESIGN APPROACHES . ■

The firmware design approaches for embedded product is purely dependent on the complexity of the

functions to be performed, the speed of operation required, etc. Two basic approaches are used for Em¬

bedded firmware design. They are ‘ Conventional Procedural Based Firmware Design’ and ‘Embedded

Operating System (OS) Based Design’. The conventional procedural based design is also known as

‘Super Loop Model'. We will discuss each of them in detail in the following sections.

9.1.1 The Super Loop Based Approach

The Super Loop based firmware development approach is adopted for applications that are not time

critical and where the response time is not so important (embedded systems where missing deadlines

are acceptable). It is very similar to a conventional procedural programming where the code is executed

task by task. The task listed at the top of the program code is executed first and the tasks just below the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

top are executed after completing the first task. This is a true procedural one.-In a multiple task based
system, each task is executed in serial in this approach. The firmware execution flow for this will be

1. Configure the common parameters and perform initialisation for various hardware components
memory, registers, etc.

2. Start the first task and execute it
3. Execute the second task
4. Execute the next task

■5. :•
6. : ' •

7. Execute the last defined task
8. Jump back to the first task and follow the same flow

From the firmware execution sequence, it is obvious that the order in which the tasks to be executed
are fixed and they are hard coded in the code itself. Also the operation is an infinite loop based approach.
We can visualise the operational sequence listed above in terms of a ‘C’ program code as

■voxel main

Configuratio:

Initializat.
V r .* fca* MX , -'A if $'i\

while (1)

Task h ()

Almost all tasks in embedded applications are non-ending, and are repeated infinitely throughout the
operation. From the above ‘C’ code you can see that the tasks 1 to n are performed one after another and
when the last task (n{h task) is executed, the firmware execution is again re-directed to Task 1 and it is
repeated forever in the loop. This repetition is achieved by using an infinite loop. Here the while (1) {}
loop. This approach is also referred as ‘Super loop based Approach'.

Since the tasks are running inside an infinite loop, the only way to come out of the loop is either
a\hardware reset or an interrupt assertion. A hardware reset brings the program execution back to the
main lodp. Whereas an interrupt request suspends-the task execution temporarily and performs the cor¬
responding interrupt routine and on completion of the interrupt routine it restarts the task execution from
the point where it got interrupted.

The ‘Super loop based design' doesn’t require an operating system, since there is no need for sched¬
uling which task is to be executed and assigning priority to each task. In a super loop based design, the
priorities are fixed and the order in which the tasks to be executed are also fixed. Hence the code for
performing these tasks will be residing in the code memory without an operating system image.

This type of design is deployed in low-cost embedded products and products where response time
is not time critical. Some embedded products demands this type of approach if some tasks itself are
sequential. For example, reading/writing data to and from a card using a card reader requires a sequence
of operations like checking the presence of card, authenticating the operation, reading/writing, etc. it

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

should strictly follow a specified sequence and the combination of these series of tasks constitutes a
• single task-namely data readAvrite. There is no rise in putting the sub-tasks into independent tasks and

running them parallel. It won’t work at all. j
Atypical example of a ‘Super loop based’ product is an electronic video game toy containing keypad

and display unit. The program running inside the product may be designed in such a way that it reads-the
keys to detect whether the user has given any input and if any key press is detected the graphic display
is updated. The keyboard scanning and display updating happens at a reasonably high rate. Even if the
application misses a key press, it won’t create any critical issues; rather it will be treated as a bug in the

I firmware ©. It is not economical to embed an OS into low cost products and it is an utter waste to do so
if the response requirements are not cmcial.

. The ‘Super loop based design’ is simple and straight forward without any OS related overheads.
" The major drawback of this approach is that any failure in any part of a single task will affect the total
f system. If the program hangs up at some point while executing a task, it will remain there forever and
5 ultimately the product stops functioning. There are remedial measures for overcoming this. Use of

Hardware and software Watch Dog Timers (WDTs) helps in coming out from the loop when an unex-
j pected failure.occurs or when the processor hangs up. This, in turn, may cause additional hardware cost

and firmware overheads.
| i Another major drawback of .the ‘Super loop’ design approach is the lack of real timeliness. If the
| ■ number of tasks to be executed within an application increases, the time at which each task is repeated
§ also increases. This brings the probability of missing out some events. For example in a system with
1 Keypads, according to the ‘Super loop design’, there will be a task for monitoring the keypad connected
I I/O lines and this need not be the task running while you press the keys (That is key pressing event may
‘I not be in sync with the keypad press monitoring task within the firmware). In order to identify the key
j press, you may have to press the keys for a sufficiently long time till the keypad status monitoring task

' is executed internally by the firmware. This will really lead to the lack of real timeliness. There are cor-
i rective measures for this also. The best advised option in use interrupts for external events requiring real

time attention. Advances in processor technology brings out low cost high speed processors/controllers,
i use of such processors in super loop design greatly reduces the time required to service different tasks

and thereby are capable of providing a nearly real time attention to external events.
Throughout this book under the title ‘Embedded Firmware Design and Development’, we will be

discussing only the ‘Super loop based design'. Again the discussion is narrowed to super loop based
firmware development for 8051 controller.

9.1.2 The Embedded Operating System (OS) Based Approach
\

The Operating System (OS) based approach contains operating systems, which can be either a General
Purpose Operating System (GPOS) or a Real Time Operating System (RTOS) to host the user written
application firmware. The General Purpose OS (GPOS) based design is very similar to a conventional
PC based application development where the device contains an operating system (Windows/Unix/
Linux, etc. for Desktop PCs) and you will be creating and running user applications on top of it. Ex¬
ample of a GPOS used in embedded product development is Microsoft® Windows XP Embedded.
Examples of Embedded products using Microsoft® Windows XP OS are Personal Digital Assistants

; (PDAs), Hand held devices/Portable devices and Point of Sale (PoS) terminals. Use of GPOS in embed¬
ded products merges the demarcation of Embedded Systems and general computing systems in terms
of OS. For Developing applications on top of the OS, the OS supported APIs are used. Similar to the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

different hardware specific drivers, OS based applications also require ‘Driver software’ for different
hardware present on the board to communicate with them.

Real Time Operating System (RTOS) based design approach is employed in embedded products
demanding Real-time response. RTOS respond in a timely and predictable manner to events. Real Time
operating system contains a Real Time kernel responsible for performing pre-emptive multitasking,
scheduler for scheduling tasks, multiple threads, etc. A Real Time Operating System (RTOS) allows
flexible scheduling of system resources like the CPU and memory and offers some way to communicate
between tasks. We will discuss the basics of RTOS based system design in a later chapter titled 'Design¬

ing with Real Time Operating Systems (RTOSf.

‘Windows CE\ ‘pSOS’, ‘Vx Works’, ‘ThreacDC, ‘ MicroC/OS-IP, ‘Embedded Linux’, ‘Symbian’ etc
are examples of RTOS employed in embedded product development. Mobile phones, PDAs (Based on
Windows CE/Windows Mobile Platforms), handheld devices, etc. are examples of ‘Embedded Prod¬
ucts’ based on RTOS. Most of the mobile phones are built around the popular RTOS ‘Symbian’.

9.2 EMBEDDED FIRMWARE DEVELOPMENT LANGUAGES

As mentioned in Chapter 2, you can use either a target processor/controller specific language (Gener¬
ally known as Assembly language or low level language) or a target processor/controller independent
language (Like C, C++, JAVA, etc. commonly known as High Level Language) or a combination of
Assembly and High level Language. We will discuss where each of the approach is used and the relative
merits and de-merits of each, in the following sections.

9.2.1 Assembly Language based Development

‘Assembly language’ is the human readable notation of ‘machine language’, whereas ‘machine lan¬

guage’ is a processor understandable language. Processors deal only with binaries (Is and Os). Machine
language is a binary representation and it consists of Is and Os. Machine language is made readable by
using specific symbols called ‘mnemonics’. Hence machine language can be considered as an interface
between processor and programmer. Assembly language and machine languages are processor/control¬
ler dependent and an assembly program written for one processor/controller family will not work with
others.

Assembly language programming is the task of writing processor specific machine code in mne¬

monic form, converting the mnemonics into actual processor instructions (machine language) and

associated data using an assembler.

Assembly Language program was the most common type of programming adopted in the beginning
of software revolution. If we look back to the history of programming, we can see that a large number of
programs were written entirely in assembly language. Even in the 1990s, the majority of console video
games were written in assembly language, including most popular games written for the Sega Genesis
and the Super Nintendo Entertainment System. The popular arcade game NBA Jam released in 1993
was also coded entirely using the assembly language.

Even today also almost all low level, system related, programming is carried out using assembly
language. Some Operating System dependent tasks require low-level languages. In particular, assembly
language is often used in writing the low level interaction between the operating system and the hard¬
ware, for instance in device drivers.

The general format of an assembly language instruction is an Opcode followed by Operands. The
Opcode tells the processor/controller what to do and the Operands provide jhe data and information

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

required to perform the action specified by the opcode. It is not necessary that all opcode should have
Operands following them. Some of the Opcode implicitly contains the operand and in such situation no
operand is required. The operand may be a single operand, dual operand or more. We will analyse each
of them with the 8051 ASM instructions as an example.

HlOV A, #30

This instruction mnemonic moves decimal value 30 to the 8051 Accumulator register. Here MOV A

is the Opcode and 30 is the operand (single operand). The same instruction when written in machine
language will look like

01110100 00011110

t where the first 8 bit binary value 01110100 represents the opcode MOV A and the second 8 bit binary
value 00011110 represents the operand 30.

„ The mnemonic INC A is an example for instruction holding operand implicitly in the Opcode. The
machine language representation of the same is 00000100. This instruction increments the 8051 Accu¬
mulator register content by 1.

The mnemonic MOV A, #30 explained above is an example for single operand instruction.
UMP 16bit address is an example for dual operand instruction. The machine language for the same

is

p'O0000010 addr_bitl5 to addr_bit 8 addr_bit7 to addr_bit Op- ' ::-:v

The first binary data is the representation of the LJMP machine code. The first operand that imme¬
diately follows the opcode represents the bits 8 to 15 of the 16bit address to which the jump is required
and the second operand represents the bits 0 to 7 of the address to which the jump is targeted.

Assembly language instructions are written one per line. A machine code program thus consists of
a sequence of assembly language instructions, where each statement contains a mnemonic (Opcode +
Operand). Each line of an assembly language program is split into four fields as given below

LABEL OPCODE OPERAND COMMENTS

LABEL is an optional field. A ‘LABEL’ is an identifier used extensively in programs to reduce the reli¬
ance on programmers for remembering where data or code is located. LABEL is commonly used for
representing

• A memory location, address of a program, sub-routine, code portion, etc.
• The maximum length of a label differs between assemblers. Assemblers insist strict formats for

labelling. Labels are always suffixed by a colon and begin with a valid character. Labels can con¬
tain number from 0 to 9 and special character (underscore).

Labels are used for representing subroutine names and jump locations in Assembly language
programming. It is to be noted that ‘LABEL’ is not a mandatory field; it is optional only.

The sample code given below using 8051 Assembly language illustrates the structured assembly
language programming.

.;#!########.###########################ft##############################

, SUBROUTINE FOR GENERATING DELAY

DELAY PARAMETR PASSED THROUGH. REGISTER R1

; RETURN VALUE NONE

PA REGISTERS USED: R0, Rl

Pi#############-#-##########t#####.#####################################

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

M&V , , i:i;.*R0¥v|'2S^-• :;g '; Load Register RO with 255 - ...

• - vDJNZ RELAX-•Dec.rjamenfc #1 .and' lopp...till :..

T**£ .p/-,,;.:;" !fl.wr P;,, C;... ©L ' ,-.
RET . •; Return to calling program : 'V

The Assembly program contains a main routine which starts at address OOOOH and it may or may not

contain subroutines. The example given above is a subroutine, where in the main program the subrou¬

tine is invoked by the Assembly instruction

LCALL DELAY

i RO,. #255r

Executing this instruction transfers the program flow to the memory address referenced by the ‘LA¬
BEL’ DELAY.

It is a good practice to provide comments to your subroutines before the beginning of it by indicating
the purpose of that subroutine, what the input parameters are and how they are passed to the subroutines,
which are the return values, how they are returned to the calling function, etc. While assembling the
code a informs the assembler that the rest of the part coming in a line after the symbol is comments
and simply ignore it. Each Assembly instruction should be written in a separate line. Unlike C and other
high level languages, more than one ASM code lines are not allowed in a single line.

In the above example the LABEL DELAY represents the reference to the start of the subroutine
DELAY. You can directly replace this LABEL by putting the desired address first and then writing the
Assembly code for the routine as given below.

ORG 0100H

Load Register RO with 5OH

:-Decrement5'Rl; and loop Ail

Return to calling progr-afti.

MOV RO, 1255 v

DJNZ(Rl, 010OH

RET % Y.

The advantage of using a label is that the required address is calculated by the assembler at the
time of assembling the program and it replaces the Label. Hence even if you add some code above the
LABEL ‘DELAY’ at a later stage, it won’t create any issues like code overlapping, whereas in the sec¬
ond method where you are implicitly telling the assembler that this subroutine should start at the speci¬
fied address (in the above example 0100H). If the code written above this subroutine itself is crossing
the 0100H mark of the program memory, it will be over written by the subroutine code and it will gener¬
ate unexpected results©. Hence for safety don’t assign any address by yourself, let us refer the required
address by using labels and let the assembler handle the responsibility for finding out the address where
the code can be placed. In the above example you can find out that the label DELAY is used for calling
the subroutine as well as looping (using jumping instruction based on decision-DJNZ). You can also use
the normal jump instruction to jump to the label by calling LJMP DELAY

The statement ORG 0100H in the above example is not an assembly language instruction; it is an
assembler directive instruction. It tells the assembler that the Instructions from here onward should be
placed at location starting from 0100H. The Assembler directive instructions are known as ‘pseudo-
ops’. They are used for

1. Detemiining the start address of the program (e.g. ORG OOOOH)
2. Determining the entry address of the program (e.g. ORG 0100H)
3. Reserving memory for data variables, arrays and structures (e.g. var EQU 70H
4. Initialising variable values (e.g. val DATA 12H)

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

The EQU directive is used for allocating memory to a variable and DATA directive is used for initial¬
ising a variable with data. No machine codes are generated for the ‘pseudo-ops’.

Till now we discussed about Assembly language and how it is used for writing programs. Now let us
have a look at how assembly programs are organised and how they are translated into machine readable
codes.

The Assembly language program written in assembly code is saved as .asm (Assembly file) file or
' ap .src (source) file. Any text editor like ‘notepad’ or ‘WordPad’ from Microsoft® or the text editor

provided by an Integrated Development (IDE) tool can be used for writing the assembly instructions.
r Similar to ‘C’ and other high level language programming, you can have multiple source files called
modules in assembly language programming. Each module is represented by an '.asm' or ‘.src' file
similar to the ‘.c' files in C programming. This approach is known as ‘Modular Programming’. Modular
'programming is employed when the program is too complex or too big. In ‘Modular Programming’, the
entire code is divided into submodules and each module is made re-usable. Modular Programs are usu¬
ally easy to code, debug and alter. Conversion of the assembly language to machine language is carried
out by a sequence of operations, as illustrated below.

9.2.1.1 Source File to Object File Translation Translation of assembly code to machine code is
performed by assembler. The assemblers for different target machines are different and it is common
that assemblers from multiple vendors are available in the market for the same target machines. Some
target processor’s/controller’s assembler may be proprietary and is supplied by a single vendor only.

I Some assemblers are freely available in the internet for downloading. Some"assemblers are commercial
’ and requires licence from the vendor. A51 Macro Assembler from Keil software is a popular assembler
/ for the 8051 family microcontroller. The various steps involved in the conversion of a program written

in assembly language to corresponding binary file/machine language is illustrated in Fig. 9.1.

Library Files

Source File 1

(.asm or .src file)

(Module-1) ,

Module Assembler

H wmmmm

Object File 1 ,

Source File 2 . §

(.asm or src file) —

(Module-2)

.Module Assembler Object Flip 2

..V ye-C;;Vv:;

" •• " "v.,?;-. .v.

Object to Hex File _

Converter:.:,>,..v Si
Absolute Object File v S-

.: ' • v, ■' yy / ' $5
■ ■ ■> .. ' • ‘ ■ ■■ i'ifc1#
■■ 4 ** • •'

-A

Lmker/ •* ,
Locater. - . • ■_

Machine Code

(Hex File)

.9.1 Assembly language to machine language conversion process

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Each source module is written in Assembly and is stored as .src file or .asm file. Each file can be

assembled separately to examine the syntax errors and incorrect assembly instructions. On successful

assembling of each .src/.asm file a corresponding object file is created with extension ‘.obf. The object

file does not contain the absolute address of where the generated code needs to be placed on the program

memory and hence it is called a re-locatable segment. It can be placed at any code memory location and

it is the responsibility of the linker/locater to assign absolute address for this module. Absolute address

allocation is done at the absolute object file creation stage. Each module can share variables and subrou¬

tines (functions) among them. Exporting a variable/fiinction from a module (making a variable/function

from a module available to all other modules) is done by declaring that variable/function as PUBLIC in

the source module.

Importing a variable or function from a module (taking a variable or function from any one of other

modules) is done by declaring that variable or function as EXTRN (EXTERN) in the module where it

is going to be accessed. The ''PUBLIC Keyword informs the assembler that the variables or functions

declared as ‘PUBLIC needs to be exported. Similarly the ‘EXTRNT Keyword tells the assembler that

the variables or functions declared as ‘EXTRNT needs to be imported from some other modules. While

assembling a module, on seeing variables/functions with keyword ‘EXTRN’, the assembler understands

that these variables or functions come from an external module and it proceeds assembling the entire

module without throwing any errors, though the assembler cannot find the definition of-the variables

and implementation of the functions. Corresponding to a variable or function declared as ‘PUBLIC’ in a

module, there can be one or more modules using these variables or functions using 1EXTRIP keyword.

For all those modules using variables or functions with ‘EXTRIP keyword, there should be one and

only one module which exports those variables or functions with ‘PUBLIC keyword. If more than one

module in a project tries to export variables or functions with the same name using ‘PUBLIC keyword,-

it will generate ‘linker’ errors.

Illustrative example for A51 Assembler-Usage of ‘PUBLIC’ for importing variables with same name

on different modules. The target application (Simulator) contains three modules namely ASAMPLE1.

A51, ASAMPLE2.A51 and ASAMPLE3.A51 (The file extension . A51 is the .asm extension specific

to A51 assembler). The modules ASAMPLE2.A51 and ASAMPLE3.A51 contain a function named

PUTCHAR. Both of these modules try to export this function by declaring the function as ‘PUBLIC’ in

the respective modules. While linking the modules, the linker identifies that two modules are exporting

the function with name PUTCHAR. This confuses the linker and it throws the error ‘MULTIPLE PUB¬

LIC DEFINITIONS’.
0

Build target 'Simulator'

assembling ASAMPLE1.A51...

assembling ASAM.PLE2 . A51 . . .

assembling ASAMPLE3,A51... '

linking ■ . „ .

*** ERROR LI04: MULTIPLE PUBLIC DEFINITIONS

SYMBOL:. PUTCHAR r “V •

MODULE: ASAMPLE3.obj (CHAR 10)

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

If a variable or function declared as ‘EXTRFT in one or two modules, there should be one module
defining these variables or functions and exporting them using ‘PUBLIC keyword. If no modules in a
project export the variables or functions which are declared as ‘EXTRN in other modules, it will gener¬
ate ‘linker’ warnings or errors depending on the error level/waming level settings of the linker.

Illustrative example for A51 Assembler-Usage of EXTRN without variables exported. The target
application (Simulator) contains three modules, namely, ASAMPLE1 .A51, ASAMPLE2.A51 and ASAM-
PLE3.A51 (The file extension .A51 is the .asm extension specific to A51 assembler). The modules
ASAMPLE 1.A51 imports a function named PUTCRLF which is declared as ‘EXTRN in the current
module and it expects any of the other two modules to export it using the keyword 'PUBLIC. But none
of the other modules export this function by declaring the function as ‘PUBLIC in the respective mod¬
ules. While linking the modules, the linker identifies that there is no function exporting for this function.
The linker generates a warning or error message ‘ UNRESOLVED EXTERNAL SYMBOL’ depending on
the linker ‘level’ settings.

(*** WARNING LI: UNRESOLVED EXTERNAL SYMBOL . . ■ - .

,put_crlf

' MODULE: ASAMPLE1. obj (SAMPLE)

9.2.1.2 Library File Creation and Usage Libraries are specially formatted, ordered program col¬
lections of object modules that may be used by the linker at a later time. When the linker processes a li¬
brary, only those object modules in the library that are necessary to create the program are used. Library
files are generated with extension ‘.lib’. Library file is some kind of source code hiding technique. If you
don’t want to reveal the source code behind the various functions you have written in your program and
at the same time you want them to be distributed to application developers for making use of them in
their applications, you can supply them as library files and give them the details of the public functions
available from the library (function name, function input/output, etc). For using a library file in a project,
add the library to the project.

If you are using a commercial version of the assembler/compiler suite for your development, the ven¬
dor of the utility may provide you pre-written library files for performing multiplication, floating point
arithmetic, etc. as an add-on utility or as a bonus©.

‘LIB5F from Keil Software is an example for a library creator and it is used for creating library files
for A51 Assembler/C51 Compiler for 8051 specific controller.

9.2.1.3 Linker and Locater Linker and Locater is another software utility responsible for “linking
the various object modules in a multi-module project and assigning absolute address to each module”.
Linker generates an absolute object module by extracting the object modules from the library, if any
and those obj files created by the assembler, which is generated by assembling the individual modules
of a project. It is the responsibility of the linker to link any external dependent variables or functions
declared on various modules and resolve the external dependencies among the modules. An absolute
object file or module does not contain any re-locatable code or data. All code and data reside at fixed
memory locations. The absolute object file is used for creating hex files for dumping into the code
memory of the processor/controller.

‘BL5F from Keil Software is an example_for a Linker & Locater for A51 Assembler/C51 Compiler
for 8051 specific controller.

9.2.1.4 Object to Hex File Converter This is the final stage in the conversion of Assembly lan¬
guage (mnemonics) to machine understandable language (machine code). Hex File is the representa-

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

tion of the machine code and the hex file is dumped into the code memory of the processor/controller.
The hex file representation varies depending on the target processor/controller make. For Intel proces¬
sors/controllers the target hex file format will be ‘Intel HEX’ and for Motorola, the hex file should be
in ‘Motorola HEX’ format. HEX files are ASCII files that contain a hexadecimal representation of
target application. Hex file is created from the final ‘Absolute Object File’ using the Object to Hex File
Converter utility.

‘OH5T from Keil software is an example for Object to Hex File Converter utility for A51 Assembler/
C51 Compiler for 8051 specific controller.

9.2.1.5 Advantages gfAssembly Language Based Development Assembly Language based
development was (is©) the most common technique adopted from the beginning of embedded technol¬
ogy development. Thorough understanding of the processor architecture, memory organisation, register
sets and mnemonics is very essential for Assembly Language based development. If you master .one pro¬
cessor architecture and its assembly instructions, you can make the processor as flexible as a gymnast.
The major advantages of Assembly Language based development is listed below.

Efficient Code Memory and Data Memory Usage (Memory Optimisation) Since the devel¬
oper is well versed with the target processor architecture and memory organisation, optimised code
can be written for performing operations. This leads to less utilisation of code memory and efficient
utilisation of data memory. Remember memory is a primary concern in any embedded product (Though
silicon is cheaper and new memory techniques make memory less costly, external memory operations
impact directly on system performance).

High Performance Optimised code not only improves the code memory usage but also improves the
total system performance. Through effective assembly coding, optimum performance can be achieved
for a target application.

Low Level Hardware Access Most of the code for low level programming like accessing external
device specific registers from the operating system kernel, device drivers, and low level interrupt rou¬
tines, etc. are making use of direct assembly coding since low level device specific operation support is
not commonly available with most of the high-level language cross compilers.

Code Reverse Engineering Reverse engineering is the process of understanding the technology be¬
hind a product by extracting the information from a finished product. Reverse engineering is performed
by ‘hawkers’ to reveal the technology behind ‘Proprietary Products’. Though most of the products
employ code memory protection, if it may be possible to break the memory protection and read the code
memory, it can easily be converted into assembly code using a dis-assembler program for the target
machine.

9.2.1.6 Drawbacks of Assembly Language Based Development Every technology has its
own pros and cons. From certain technology aspects assembly language development is the most ef¬
ficient technique. But it is having the following technical limitations also.

High Development Time Assembly language is much harder to program than high level languages.
The developer must pay attention to more details and must have thorough knowledge of the architecture,
memory organisation and register details of the target processor in use. Learning the inner details of the
processor and its assembly instructions is highly time consuming and it creates a delay impact in product
development. One probable solution for this is use a readily available developer who is well versed in

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

s.
3

ie

m

the target processor architecture assembly instructions. Also more lines of assembly code are required
for performing an action which can be done with a single instruction in a high-level language like ‘C\

Developer Dependency There is no common written rule for developing assembly language based
applications whereas all high level languages instruct certain set of mles for application development. In
assembly language programming, the developers will have the freedom to choose the different memory
location and registers. Also the programming approach varies from developer to developer depending
on his/her taste. For example moving data from a memory location to accumulator can be achieved
through different approaches. If the approach done by a developer is not documented properly at the
development stage, he/she may not be able to recollect why this approach is followed at a later stage or
when a new developer is instructed to analyse this code, he/she also may not be able to understand what
is done and why it is done. Hence upgrading an assembly program or modifying it on a later stage is
very difficult. Well documenting the assembly code is a solution for reducing the developer dependency
in assembly language programming. If the code is too large and complex, documenting all lines of code
may not be productive.

Non-Portable Target applications written in assembly instructions are valid only for that particular
family of processors (e.g. Application written for Intel x86 family of processors) and cannot be re-used
for another target processors/controllers (Say ARM 11 family of processors). If the target processor/con¬
troller changes, a complete re-writing of the application using the assembly instructions for the new
target processor/controller is required. This is the major drawback of assembly language programming
and it makes the assembly language applications non-portable.

“Though Assembly Language programming possesses lots of drawback, as a developer, from my

personal experience I prefer assembly language based development. Once you master the internals

of a processor/controller, you can really perform magic with the processor/controller and can extract

the maximum out of it ”

9.2.2 High Level Language Based Development

As we have seen in the earlier section, Assembly language based programming is highly time consum¬
ing, tedious and requires skilled programmers with sound knowledge of the target processor architec¬
ture. Also applications developed in Assembly language are non-portable. Here comes the role of high
level languages. Any high level language (like C, C++ or Java) with a supported cross compiler (for
converting the application developed in high level language to target processor specific assembly code
-We will discuss cross-compilers in detail in a later section) for the target processor can be used for em¬
bedded firmware development. The most commonly used high level language for embedded firmware
application development is ‘C’. You may be thinking why ‘C is used as the popular embedded firmware
development language. The answer is “C is the well defined, easy to use high level language with exten¬
sive cross platform development tool support”. Nowadays Cross-compilers for C++ is also emerging
out and embedded developers are making use of C++ for embedded application development.

The various steps involved in high level language based embedded firmware development is same as
that of assembly language based development except that the conversion of source file written in high
level language to object file is done by a cross-compiler, whereas in Assembly language based develop¬
ment it is carried out by an assembler. The various steps involved in the conversion of a program written
in high level language to corresponding binary file/machine language is illustrated in Fig. 9.2.

The program written in any of the high level language is saved with the corresponding language ex¬
tension (.c for C, .cpp for C++ etc). Any text editor like ‘notepad’ or ‘ WordPad’ from Microsoft® or the

2

https://hemanthrajhemu.github.io

Machine Code
(Hex File)

[Fig. 9.2 j High level language to machine language conversion process

text editor provided by an Integrated Development (IDE) tool supporting the high level language in use
can be used for writing the program. Most of the high level languages support modular programming
approach and hence you can have multiple source files called modules written in corresponding high
level language. The source files corresponding to each module is represented by a file with correspond¬
ing language extension. Translation of high level source code to executable object code is done by a
cross-compiler. The cross-compilers for different high level languages for the same target processor are
different. It should be noted that each high level language should have a cross-compiler for convert¬
ing the high level source code into the target processor machine code. Without cross-compiler support
a high level language cannot be used for embedded firmware development. C51 Cross-compiler from
Keil software is an example for Cross-compiler. C51 is a popular cross-compiler available for ‘C’ lan¬
guage for the 8051 family of micro controller. Conversion of each module’s source code to correspond¬
ing object file is performed by the cross compiler. Rest of the steps involved in the conversion of high
level language to target processor’s machine code are same as that of the steps involved in assembly
language based development.

As an example of high level language based embedded firmware development, we will discuss how
‘Embedded C’ is used for embedded firmware development, in a later section of this chapter.

9.2.2.1 Advantages of High Level Language Based Development

Reduced Development Time Developer requires less or little knowledge on the internal hardware
details and architecture of the target processor/controller. Bare minimal knowledge of the memory or¬
ganisation and register details of the target processor in use and syntax of the high level language are

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

the only pre-requisites for high level language based firmware development. Rest of the things will be
taken care of by the cross-compiler used for the high level language. Thus the ramp up time required by
the developer in understanding the target hardware and target machine’s assembly instructions is waived
off by the cross compiler and it reduces the development time by significant reduction in developer ef¬
fort. High level language based development also refines the scope of embedded firmware development
from a team of specialised architects to anyone knowing the syntax of the language and willing to put
little effort on understanding the minimal hardware details. With high level language, each task can be
accomplished by lesser number of lines of code compared to the target processor/controller specific As¬
sembly language based development.

Developer Independency The syntax used by most of the high level languages are universal and
a-program written in the high level language can easily be understood by a second person knowing the
syntax of the language. Certain instructions may require little knowledge of the target hardware details
like register set, memory map etc. Apart from these, the high level language based firmware develop¬
ment makes the firmware, developer independent. High level languages always instruct certain set of
rules for writing the code and commenting the piece of code. If the developer strictly adheres to the
rules, the firmware will be 100% developer independent.

Portability Target applications written in high level languages are converted to target processor/con¬
troller understandable format (machine codes) by a cross-compiler. An application written in high level
language for a particular target processor can easily be converted to another target processor/controller
specific application, with little or less effort by simply re-compiling/little code modification followed by
re-compiling the application for the required target processor/controller, provided, the cross-compiler
has support for the processor/controller selected. This makes applications written in high level language
highly portable. Little effort may be required in the existing code to replace the target processor specific
header files with new header files, register definitions with new ones, etc. This is the major flexibility
offered by high level language based design.

9.2.2.2 Limitations of High Level Language Based Development The merits offered by high
level language based design take advantage over its limitations. Some cross-compilers available for high
level languages may not be so efficient in generating optimised target processor specific instructions.
Target images created by such compilers may be messy and non-optimised in terms of performance as
well as code size. For example, the task achieved by cross-compiler generated machine instructions
from a high level language may be achieved through a lesser number of instructions if the same task is
hand coded using target processor specific machine codes. The time required to execute a task also in¬
creases with the number of instructions. However modern cross-compilers are tending to adopt designs
incorporating optimisation techniques for both code size and performance. High level language based
code snippets may not be efficient in accessing low level hardware where hardware access timing is
critical (of the order of nano or micro seconds).

The investment required for high level language based development tools (Integrated Development
Environment incorporating cross-compiler) is high compared to Assembly Language based firmware
development tools.

9.2.3 Mixing Assembly and High Level Language

Certain embedded firmware development situations may demand the mixing of high level language
with Assembly and vice versa. High level language and assembly languages are usually mixed in three

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

ways; namely, mixing Assembly Language with High Level Language, mixing High Level Language
with Assembly and In-line Assembly programming.

9.2.3.1 Mixing Assembly with High level language (e.g. Assembly Language with ‘C’) As¬
sembly routines are mixed with ‘C’ in situations where the entire program is written in ‘C’ and the cross
compiler in use do not have a built in support for implementing certain features like Interrupt Service
Routine functions (ISR) or if the programmer wants to take advantage of the speed and optimised
code offered by machine code generated by hand written assembly rather than cross compiler gener¬
ated machine code. When accessing certain low level hardware, the timing specifications may be very
critical and a cross compiler generated binary may not be able to offer the required time specifications
accurately. Writing the hardware/peripheral access routine in processor/controller specific Assembly
language and invoking it from ‘C’ is the most advised method to handle such situations.

Mixing ‘C’ and Assembly is little complicated in the sense—the programmer must be aware of how
parameters are passed from the ‘C’ routine to Assembly and values are returned from assembly routine
to ‘C’ and how ‘Assembly routine’ is invoked from the ‘C’ code.

Passing parameter to the assembly routine and returning values from the assembly routine to the
caller ‘C’ function and the method of invoking the assembly routine from ‘C’ code is cross compiler
dependent. There is no universal written rule for this. You must get these informations from the docu¬
mentation of the cross compiler you are using. Different cross compilers implement these features in
different ways depending on the general purpose registers and the memory supported by the target
processor/controller. Let’s examine this by taking Keil C51 cross compiler for 8051 controller. The ob¬
jective of this example is to give an idea on how C51 cross compiler performs the mixing of Assembly
code with ‘C’.

1. Write a simple function in C that passes parameters and returns values the way you want your
assembly routine to. _

2. Use the SRC directive (#PRAGMA SRC at the top of the file) so that the C compiler generates an
.SRC file instead of an .ORJfile.

3. Compile the C file. Since the SRC directive is specified, the .SRC file is generated. The .SRC file
contains the assembly code generated for the C code you wrote.

4. Rename the .SRC file to A51 file.
5. Edit the .A51 file and insert the assembly code you want to execute in the body of the assembly

function shell included in the .A51 file.
As an example consider the following sample code (Extracted from Keil C51 documentation)

Ipragma SRC

unsigned char my_assembly_func (unsigned-int argument)

{

return (argument + 1); // Insert dummy lines to access all args and

// retvals

This C function on cross compilation generates the following assembly SRC file.

NAME TESTCODE

?PR?_my_assembly_func?TESTCODE

PUBLIC _my_assembly_func

; #pragma SRC

; unsigned char my_assembly_func (

SEGMENT CODE

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

RSEG ?PR?_my_assembly_func?TESTC.ODE

USING 0

Assembly--funo.:

'‘'J-- Variable 'argument7040/ assigned to-Register 'R6/R7'

^"SOURCE LINE # 2 ' ' ‘

; . unsigned int argument)

H SOURCE LINE # 4): .y '.

A; (return (argument + 1)

{ / and retvals

j, ; SOURCE LINE

Iff ' MOV : A A;-r? -. ”

j|f INC ' Tt -A,. 1

MOV-V R7 •
llWYl'A- Tv nACti
{©S&k It v~

■7'■giS'F'®-

»|0URGE LINE . § ... 6.vv.".

. a;lL args.

|j|£Q'0O,l': | j. « . ■ . - . . ,, , ‘“'-I V' ; , ■ , • . f i -:i

1^5... ft ><.. v?; 4 ■; •-

i0;.,’.END OF. _my_assen'ibly_fur.c ... AT.
. END ...

The special compiler directive SRC generates the Assembly code corresponding to the ‘C’ function
and each lines of the source code is converted to the corresponding Assembly instruction. You can easily
identify the Assembly code generated for each line of the source code since it is implicitly mentioned in
the generated .SRC file. By inspecting this code segments you can find out which registers are used for
holding the variables of the ‘C’ function and you can modify the source code by adding the assembly
routine you want.

9.2.3.2 Mixing High level language with Assembly (e.g. ‘C’ with Assembly Language)
Mixing the code written in a high level language like ‘C’ and Assembly language is useful in the
following scenarios:

1. The source code is already available in Assembly language and a routine written in a high level
language like ‘C’ needs to be included to the existing code.

2. The entire source code is planned in Assembly code for various reasons like optimised code,
optimal performance, efficient code memory utilisation and proven expertise in handling the As¬
sembly, etc. But some portions of the code may be very difficult and tedious to code in Assembly.
For example 16bit multiplication and division in 8051 Assembly Language.

3. To include built in library functions written in ‘C’ language provided by the cross compiler. For
example Built in Graphics library functions and String operations supported by ‘C\

Most often the functions written in ‘C’ use parameter passing to the function and returns value/s to
the calling functions. The major question that needs to be addressed in mixing a ‘C’ function with As¬
sembly is that how the parameters are passed to the function and how values are returned from the func¬
tion and how the function is invoked from the assembly language environment. Parameters are passed
to the function and values are returned from the function using CPU registers, stack memory and fixed
memory. Its implementation is cross compiler dependent and it varies across cross compilers. A typical
example is given below for the Keil C51 cross compiler

C51 allows passing of a maximum of three arguments through general purpose registers R2 to R7.
If the three arguments are cASr variables, they are passed to dhe function using registers R7, R6 and R5

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

respectively. If the parameters are int values, they are passed using register pairs (R7, R6), (R5, R4) and
(R3, R2). If the number of arguments is greater than three, the first three arguments are passed through
registers and rest is passed through fixed memory locations. Refer to C51 documentation for more
details. Return values are usually passed through general purpose registers. R7 is used for returning
char value and register pair (R7, R6) is used for returning int value. The ‘C’ subroutine can be in¬
voked from the assembly program using the subroutine call Assembly instruction (Again cross compiler
dependent).

E.g. LCALL _Cfunction

Where Cfunction is a function written in ‘C’. The prefix __ informs the cross compiler that the parameters
to the function are passed through registers. If the function is invoked without the _ prefix., it is under¬
stood that the parameters are passed through fixed memory locations.

9.2.3.3 Inline Assembly Inline assembly is another technique for inserting target processor/con¬
troller specific Assembly instructions at any location of a source code written in high level language
‘C\ This avoids the delay in calling an assembly routine front a ‘C’ code (If the Assembly instructions
to be inserted are put in a subroutine as mentioned in the section mixing assembly with ‘C’). Special
keywords are used to indicate that the start and end of Assembly instructions. The keywords are cross-
compiler specific. C51 uses the keywords #pragma asm and Opragma endasm to indicate a block of
code written in assembly.

E.g. ^pragma asm
■MOV A, #1311 '■ -A/! - rvv’

■ Ipragraa .endasm- - ‘ ” '

Important Note:
The examples used for illustration throughout the section Mixing Assembly & High Level Language
is Keil C51 cross compiler specific. The operation is cross compiler dependent and it varies from cross
compiler to cross compiler. The intention of the author is just to give an overall idea about the mixing
of Assembly code and High level language ‘C’in writing embedded programs. Readers are advised to
go through the documentation of the cross compiler they are using for understanding the procedure
adoptedfor the cross compiler in use.

9.3 PROGRAMMING IN EMBEDDED C_

Whenever the conventional ‘C’ Language and its extensions are used for programming embedded sys¬
tems, it is referred as ‘Embedded C programming. Programming in ‘Embedded C’ is quite different
from conventional Desktop application development using ‘C’ language for a particular OS platform.
Desktop computers contain working memory in the range of Megabytes (Nowadays Giga bytes) and
storage memory in the range of Giga bytes. For a desktop application developer, the resources available
are surplus in quantity and s/he can be very lavish in the usage of RAM and ROM and no restrictions are
imposed at all. This is not the case for embedded application developers. Almost all embedded systems
are limited in both storage and working memory resources. Embedded application developers should
be aware of this fact and should develop applications in the best possible way which optimises the code
memory and working memory usage as well as performance. In other words, the hands of an embedded
application developer are always tied up in the memory usage context©.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

9.3.1 ‘C’ v/s. ‘Embedded C’

‘C’ is a well structured, well defined and standardised general purpose programming language with
extensive bit manipulation support. ‘C’ offers a combination of the features of high level language and
assembly and helps in hardware access programming (system level programming) as well as business
package developments (Application developments like pay roll systems, banking applications, etc). The
conventional ‘C’ language follows ANSI standard and it incorporates various library files for different
operating systems. A platform (operating system) specific application, known as, compiler is used for
the conversion of programs written in ‘C’ to the target processor (on which the OS is running) specific
binary files. Hence it is a platform specific development.

Embedded ‘C’ can be considered as a subset of conventional ‘C’ language. Embedded ‘C’ supports
all ‘C’ instructions and incorporates a few target processor specific functions/instructions. It should be
noted that the standard ANSI ‘C’ library implementation is always tailored to the target processor/con¬
troller library files in Embedded ‘C’. The implementation of target processor/controller specific func¬
tions/instructions depends upon the processor/controller as well as the supported cross-compiler for the
particular Embedded ‘C’ language. A software program called ‘Cross-compiler’ is used for the conver¬
sion of programs written in Embedded ‘C’ to target processor/controller specific instructions (machine
language).

9.3.2 Compiler vs. Cross-Compiler

Compiler is a software tool that converts a source code written in a high level language on top of a
particular operating system running on a specific target processor architecture (e.g. Intel x86/Pentium).
Here the operating system, the compiler program and the application making use of the source code
mn on the same target processor. The source code is Converted to the target processor specific machine
instructions. The development is platform specific (OS as well as target processor on which the OS is
running). Compilers are generally termed as ‘Native Compilers'. A native compiler generates machine
code for the same machine (processor) on which it is running.

Cross-compilers are the software tools used in cross-platform development applications. In cross¬
platform development, the compiler running on a particular target processor/OS converts the source
code to machine code for a target processor whose architecture and instmction set is different from
the processor on which the compiler is running or for an operating system which is different from the
current development environment OS. Embedded system development is a typical example for cross-
platform development where embedded firmware is developed on a machine with Intel/AMD or any
other target processors and the same is converted into machine code for any other target processor ar¬
chitecture (e.g. 8051, PIC, ARM etc). Keil C51 is an example for cross-compiler. The term ‘Compiler’
is used interchangeably with ‘Cross-compiler’ in embedded firmware applications. Whenever you see
the term ‘Compiler’ related to any embedded firmware application, please understand that it is referring
the cross-compiler.

9.3.3 Using ‘C5 in ‘Embedded C’

The author takes the privilege of assuming the readers are familiar with ‘C’ programming. Teaching ‘C’
is not in the scope of this book. If you are not familiar with ‘C’ language syntax and ‘C’ programming
technique, please get a handle on the same before you proceed. Readers are advised to go through books
by ‘Brian W. Kemighan and Dennis M. Ritchie (K&R)’ or ‘E. Balagurusamy’ on ‘C’ programming.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

This section is intended only for giving readers a basic idea on how ‘C’ Language is used in embedded
firmware development.

Let us brash up whatever we learned in conventional ‘C’ programming. Remember we will only go
through the peripheral aspects and will not go in deep.

9.3.3.1 Keywords and Identifiers Keywords are the reserved names used by the ‘C’ language. All
keywords have a fixed meaning in the ‘C’ language context and they are not allowed for programmers
for naming their own variables or functions. ANSI ‘C* supports 32 keywords and they are listed below.
All ‘C’ supported keywords should be written in ‘lowercase’ letters.

. auto Double int struct £-«,
....v.•• ~., ■- y-y —

break else long

case enum ppp; register typcdeL'1

char extern return union)y

continue, .. for signed.

default - goto s sizeof ') . volatile-‘ |?

do if static

Identifiers are user defined names and labels. Identifiers can contain letters of English alphabet (both
upper and lower case) and numbers. The starting character of an identifier should be a letter. The only
special character allowed in identifier is underscore (_).

9.3.3.2 Data Types Data type represents the type of data held by a variable. The various datatypes
supported, their storage space (bits) and storage capacity for ‘C’ language are tabulated below.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

The data type size and range given above is for an ordinary ‘C’ compiler for 32 bit platform. It should
be noted that the storage size may vary for data type depending on the cross-compiler in use for embed¬
ded applications.

Since memory is a big constraint in embedded applications, select the optimum data type for a vari¬
able. For example if the variable is expected to be within the range 0 to 255, declare the same as an
‘unsigned char' or ‘unsigned short inf data type instead of declaring it as ‘inf or ‘unsigned inf. This
will definitely save considerable amount of memory.

9.3.3.3 Storage Class Keywords related to storage class provide information on the scope (vis¬
ibility or accessibility) and life time (existence) of a variable. ‘C’ supports four types of storage classes
and they are listed below.

■ Storage class Meaning C.oniineiits

auto Variables declared inside a function. Default - Scope and accessibility is restricted within the function
^4 storage class 1s.^uto where the variable -is - declared. No initialization

^ Contains random values at the time of creation

in the CPU register >of-' Sam

and all files in a multiple file program

processor

.
static Local variable with life time same as that of Retains the value throughout the program. By default

V. the program initialises to zero on variable creation. Accessibility

FT •. depends on where the variable is declared

extern Variables accessible to all functions in a file; Can be modified by any function within a file or across

. and all files in a multiple file program ' multiple' files (variable needs to be exported by one file

f y v - ■ ■ : L : : v. and imported by other files using the same)

- Apart from these four storage classes, ‘C’ literally supports storage class 'global'. An ‘auto or static’
variable declared in the public space of a file (declared before the implementation of all functions in¬
cluding main in a file) is accessible to all functions within that file. There is no explicit storage class for
‘global'. The way of declaration of a variable determines whether it is global or not.

9.3.3.4 Arithmetic Operations The list of arithmetic operators supported by ‘C’ are listed below

| Operator Operation Comments

+ Addition Adds variables or numbers

iifgCW - Subtraction Subtracts variables or numbers

* multiplication multiplies variables or numbers

F0k, ' / Division Divides variables or numbers :

% Remainder Finds the remainder of a division

9.3.3.5 Logical Operations Logical operations are usually performed for decision making and
program control transfer. The list of logical operations supported by ‘C’ are listed below

Operator Operation. Comments

&& Logical AND Performs logical AND operation. Output is true (logic 1) if both operands (left to

and right to of && operator) are true • .

|| , Logical OR Performs logical OR operation. Output is true tiogic 11 ii either operand ('operands

to left or right of || operator) is triie ;
I >

! Logical NOT Performs logical Negation. Operand is complemented (logic 0 becomes 1 and vice

versa) https://hemanthrajhemu.github.io

Introduction to Embedded Systems

9.3.3.6 Relational Operations Relational operations are normally performed for decision making

and program control transfer on the basis of comparison. Relational operations supported by ‘C’ are

listed below.

Operator .,Oiperagon.;rt; •. Comments..v.

< less than Checks whether the operand on the left side of ‘<’operator is less than the operand

on the right side. If yes return logic one, else return logic zero

> greater than Checks whether the operand on the left side of *>’ operator is greater than the

- ■ " ■ operand on the right side. If yes return logic one, else retuni logic zero

<= ■ , less than or Checks whether the operand on the left side of ■<=’ operator is less than or equal to
equal to . . the operand on the right side. If yes return logic one, else return logic zero

Checks whether the operand on the left side of ‘>=’ operator is greater than or equal

. to the operand on the right side. If yes return logic one, else return logic zero ' ’ -:
, ' .. • ; t s-!' \>pEiy' ,c '& ■ I .. . , • v V.;3V--'rtpW

Checks equality Checks whether the'operand on.the leftside of ‘—’operator is equal to.the operand

on the right side. If yes return logic one, else return logic zero -

. != Checks Checks whether the operand on the left side of'!=’operator is not equal

: non-equality operand on the right side. If yes return logic one, else return logic zero '

9.3.3.7 Branching Instructions Branching instructions change the program execution flow condi¬
tionally or unconditionally. Conditional branching depends on certain conditions and if the conditions
are met, the program execution is diverted accordingly. Unconditional branching instructions divert
program execution unconditionally.

Commonly used conditional branching instructions are listed below

Conditional branching

instruction

//if statement

if (expression)

{
statement;

statement2;

statement 3;

' *.5

//'if else statement

if (expression)

{
ifjstatementl

if_statement2;

Explanation

Evaluates the expression first and if it is true executes the statements given within

the { } braces and continue execution of statements following the closing curly

brace (}). Skips the execution of the statements within the curly brace { } if the

expression is false and continue execution of the statements following the closing

curly brace (}).

One way branching

Evaluates the expression first and if it is true executes the statements given wi|h|nj

the {,} braces following if (expression) and continue execution of the statements

following the closing curly brace (}) of else block. Executes the statements within1

the curly brace { } following :he else, if the expression is false and continue

execution of statements following the closing.curly brace (}) of e'se.

else statement!;

https://hemanthrajhemu.github.io

1 »H
wzm

“xpressiomand. case values should be integers, vain

match found, executes the statement following the
T-T rtA VMot/'I'l IyuiVi/1! iXvartTitrvn .flia /Irtf-Vitlt /-\nil,! ■

condition

//Conditional operator

// ?expl : exp2 JJsedfbr assigning a value depending on the (expression), (expression) is calculated

first and if it is greater than 0. evaluates exp 1 and returns it as a result of operation

else evaluate exp2 and returns it as result. The return value is assigned to some

variable.

(expression) ?expl: exp2

It is a combination of if else with assignment statement.

Used for two way branching

can be written using conditional

operator as

a=(x>y)7 1:0

inst&ctidh.

goto is generally used to come out of deeply nested, loops in abnormal conditions

or errors.

9.3.3.8 Looping Instructions Looping instructions are used for executing a particular block of

code repeatedly till a condition is met or wait till an event is fired. Embedded programming often uses

the looping instructions for checking the status of certain I/'o ports, registers, etc. and also for pro¬

ducing delays. Certain devices allow write/read operations to and from some registers of the device

only when the device is ready and the device ready is normally indicated by a status register or by

setting/clearing certain bits of status registers. Hence the program should keep on reading the status

register till the device ready indication comes. The reading operation forms a loop. The looping instruc¬

tions supported by ‘C’ are listed below.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Looping instruction

//while statement
while (expression)
/
i

body of while loop

Explanation

Entry controlled loop statement.

The expression is evaluated first and if it is true the body of the loop is entered and

executed. Execution of ‘body of while loop’ is repeated till the expression becomes ’

false.

// do while loop

do . . \

i

body of do loop

The ‘body of the loop’ is executed at least once. At the end ol each execution of the

‘body of the loop', the While condition (expression) is evaluated and if

loop is repeated, else loop is terminated,

while (expression);

//for loop

for (initialisation; test for
condition; update variable)

{
body of for loop

Entry controlled loop. Enters and executes the ‘body of loop’ only if the test for

condition is true, for loop contains a loop control variable which may be initialised .

within the initialisation part of the loop. Multiple variables can be initialised with

V operator.

//exiting from loop

break;

goto label

//skipping portion of a loop

while (expression)

if (condition);

continue;

Loops can be exited in two ways. First one is normal exit where loop is exited w
the expression/test for condition becomes false/Second one isfiffc;
and goto statements are Used forforced exit. ; y
break exits from the innermost loop in a deeply nested loop, wher
the program flow to a defined label. ,

Certain situation demands the skipping of a portion of a loop for some conditions.
The ‘continue’ statement used inside a loop will skip the rest of the portion following

it and will transfer the program control to the beginning of the loop.

/'/for loop with skipping

//do while with skipping

do

{

if (condition)

continue;

for (initialisation; test for condition; update variable)

g - .s •

if (condition) _ ■]/ l "

continue; ! ■< ■ " ..

while (expression);

i

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Every ‘for’ loop can be replaced by a ‘ while’ loop with a counter.

Let’s consider a typical example for a looping instruction in embedded C application. I have a device
which is memory mapped to the processor and I’m supposed to read the various registers of it (except
status register) only after the contents of its status register, which is memory mapped at 0x3000 shows
device is ready (say value 0x01 means device is ready). I can achieve this by different ways as given
below.

//using while loop

char *status_reg = (char *) 0x3000; //Declares memory mapped register

while (*status_reg!=0x01); //Wait till status_reg = 0x01

//###

//using do while Loop
//###

char *status_reg = (char*) 0x3000;

do

{

} while (*status_reg!=0x01); Loop till statusj-eg = 0x01

//###

//using for loop

char *status_reg = (char*) 0x3000;

for (;(*status reg!=0x01););

The instruction char *status_reg = (char*) 0x3000; declares status_reg as a character pointer point¬
ing to location 0x3000. The character pointer is used since the external device’s register is only 8bit
wide. We will discuss the pointer based memory mapping technique in a later section. In order to avoid
compiler optimisation, the pointer should be declared as volatile pointer. We will discuss the same also
in another section.

9.3.3.9 Arrays and Pointers Array is a collection of related elements (data types). Arrays are usu-
ally declared with data type of array, name of the array and the number of related elements to be placed
in the array. For example the following array declaration

char ,'arr [5] ;

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

declares a character array with name ‘arr’ and reserves space for 5 character elements in the memory as
in Fig. 9.31.

Contents of each memory location1

0x8000 0x8001 0x8002 0x8003 0x8004

Address of the memory location where the array elements are stored ^

f Fig. 9.dj Array representation in memory

The elements of an array are accessed by using the array index or subscript. The index of the first
element is ‘O’. For the above example the first element is accessed by arr[0], second element by arr[l],
and so on. In the above example, the array starts at mem- r~ ; v—-
ory location 0x8000 (arbitrary value taken for illustra- :;
tion) and the address of the first element is 0x8000. The &arr[°] • ^
‘ address of operator (&) returns the address of the mem- -:—
ory location where the variable is stored. Hence &arr[0]
will return 0x8000 and &arr[l] will return 0x8001, etc. arrfO]^'*'
The name of the array itself with no index (subscript)
always returns the address of the first element. If we ex- . .
amine the first element arr[0] of the above array, we can (K%.9:4J addt6ss “d c“'“>
see that the variable arr[0] is allocated a memory loca-
tion 0x8000 and the contents of that memory location
holds the value for arr[0] (Fig. 9.4).

Anays can be initialised by two methods. The first method is initialising the entire array at the time
of array declaration itself. Second method is selective initialisation where any member can be initialised
or altered with a value.

//Initialization of array at the time of declaration

unsigned char arr[5] = {5, 10, 20, 3, 2}; , ;

unsigned char arr[] = {5, 10,. 20, 3, 2); = . . , *

j, 9.4) Array element address and content
relationship

//Selective initialization

unsigned char arr[5];.

arr[0] = 5;

arr[l], = 10;

arr. [2] = 20;

arr[3] = 3;

arr[4] = 2;

t Arbitrary value taken for illustration. https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

A few important points on Arrays
1. The ‘sizeof()’ operator returns the size of an array as the number ofbytes. E.g. ‘sizeof (arr) ' in the

above example returns 5. If arr[] is declared as an integer array and if the byte size for integer is
4, executing the ‘sizeof (arr•)' instruction for the above example returns 20 (5 x 4).

2. The ‘sizeof()’ operator when used for retrieving the size of an array which is passed as parameter
to a function will only give the size of the data type of the array.

m' Hi ‘ . ' . . • ; I 1
void test,{char *p); //Function declaration_

char arr [5] = {5, 10, 20, :3,--2); //Array data type; char

void main , (

h'" test (arr);

B'-fr void test (char *p) ' -

if- , {• / • ' -

pnntf ("%d", sizeof (*p.)) ;

This code snippet will print ‘1’ as the output, though the user expects 5 (size of arr) as output. The.

output is equivalent to sizeof (char), size of the data type of the array.
3. Use the syntax ‘extern array type array name [f to access an array which is declared outside the

current file. For example ‘extern char arr[f for accessing the array larr[f declared in another

file
4. Arrays.are not equivalent to pointers. But the expression ‘array name’ is equivalent to a pointer, of

type specified by the array, to the first element of an array, e.g. ‘arr’ illustrated for sizeof () opera¬
tor is equivalent to a character pointer pointing to the first element of array ‘arr'.

5. Array subscripting is commutative in ‘C’ language and ‘arr[k]' is same as ‘*((arr)+(k)f where
‘arr[k]' is the content of klh element of array ‘arr' and ‘(arr)' is the starting address of the array arr

and k is the index of the array or offset address for the ‘k,h' element from the base address of array.
‘ *((arr) + (k))' is the content of array for the index k.

Pointers Pointer is a flexible at the same time most dangerous feature, capable of creating potential

damages leading to firmware crash, if not used properly. Pointer is a memory pointing based technique

for variable access and modification. Pointers aref very helpful in

1. Accessing and modifying variables

2. Increasing speed of execution

3. Accessing contents within a block of memory

4. Passing variables to functions by eliminating the use of a local copy of variables

5. Dynamic memory allocation (Will be discussed later)
To understand the pointer concept, let us have a look at the data memory organisation of a proces¬

sor. For a processor/controller with 128 bytes user programmable internal RAM (e.g. AT89C51), the

memory is organised as

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

If we declare a character variable, say char input, the compiler assigns a memory location to the
variable anywhere within the internal memory 0x00 to 0x7F. The allocation is left to compiler’s choice
unless specified explicitly (Let it be 0x45 for our example). If we assign a value (say 10) to the variable
input (input=10), the memory cell representing the variable input is loaded with 10.

The contents of memory location 0x45 (representing the variable input) can be accessed and modi¬
fied by using a pointer of type same as the variable (char for the variable input in the example). It is
accomplished by the following method.

char 'input; '//■Declaring -input as character variable

char *p; //Declaring a character pointer p (*...denotes--p is-a pointer)

p = £ input //Assigns' the address of input as content to p

The same is diagrammatically represented as

The compiler assigns a memory to the character pointer variable lp\ Let it be 0x00 (Arbitrary value
chosen for illustration) and the memory location holds the memory address of variable input (0x45)

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

as content. In ‘C’ the address assignment to pointer is done using the address of operator or it can
be done using explicitly by giving a specific address. The pointer feature in ‘C’ is same as the indirect
addressing technique used in 8051 Assembly instructions. The code snippet

MOV RO, #4.5H • ■
MOV A,@R0 ; RO & R1 are the-indirect addressing registers.

is an example for 8bit memory pointer usage in 8051 Assembly and the code snippet

is an example for 16bit memory pointer operation. The general form of declaring a pointer in ‘C’ is

ftdata type ^pointer; //'data -type' is - the,.standard' data type date

* A'C //int, char, float etc... supported- by 'C' language. ~;5-

The * (asterisk) symbol informs the compiler that the variable pointer is a pointer variable. Like any
other variables, pointers can also be initialised in its declaration itself.

char x, y;^ .

The contents pointed by a pointer is modified/retrieved by using * as prefix to the pointer.

char x=5, y=56;

char rptr=&x;: //per holds address cf x

//x- = y v. AA-T

Pointer Arithmetic and Relational Operations ‘C’language supports the following Arithmetic
and relational operations on pointers.

1. Addition of integer with pointer, e.g. ptr+2 (It should be noted that the pointer is advanced forward
by the storage length supported by the compiler for the data type of the pointer multiplied by the
integer. For example for integer pointer where storage size of int = 4, the above addition advances
the pointer by 4 x 2 = 8)

2. Subtraction of integer from pointer, e.g. ptr-2 (Above mle is applicable)
3. Incremental operation of pointer, e.g. ++ptr and ptr++ (Depending on the type of pointer, the ++

increment context varies). For a character pointer ++ operator increments the pointer by 1 and for
an integer pointer the pointer is incremented by the storage size of the integer supported by the
compiler (e.g. pointer ++ results in pointer + 4 if the size for integer supported by compiler is 4)

4. Decrement operation of pointer, e.g. —ptr and ptr— (Context mle for decrement operation is
same as that of incremental operation)

5. Subtraction of pointers, e.g. ptrl- ptr2
6. Comparison of two pointers using relational operators, e'.g. ptrl > ptr2, ptrl < ptr2, ptrl = = ptr2,

ptrl! = ptr2 etc (Comparison of pointers of same type only will give meaningful results)

iiAddition of two pointers, say ptrl + ptr2 is illegal
2, Multiplication and division operations involving p

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

A few important points on Pointers

1. The instruction *ptr++ increments only the pointer not the content pointed by the pointer ‘ptf and
*ptr— decrements the pointer not the contents pointed by the pointer ‘ptf

2. The instruction (*ptr) ++ increments the content pointed by the pointer ‘ptf and not the pointer
‘ptf. (*ptr)— decrements the content pointed by the pointer ‘ptf and not the pointer ‘ptf

3. A type-casted pointer cannot be used in an assignment expression and cannot be incremented or
decremented, e.g. ((int *ptr))++; will not work in the expected way

4. ‘Null Pointer’ is a pointer holding a special value called ‘NULL' which is not the address of any
variable or function or the start address of the allocated memory block in dynamic memory alloca¬
tions

5. Pointers of each type can have a related null pointer viz. there can be character type null pointer,
integer type null pointer, etc.

6. ‘NULL' is a preprocessor macro which is literally defined as zero or ((void *) 0). #define NULL 0
or #define NULL ((void *) 0)

7. ‘NULL' is a constant zero and both can be used interchangeably as Null pointer constants
8. A ‘NULL' pointer can be checked by the operator if (). See the following example

if . (ptr): -//ptr is a pointer declared

printf ("ptr is not a NULL, pointer") f :v..

else • A V f • •• • J tf- *.«**
pr^nt^f .X''vpLr„ is a NU.LJi pointer") / „ ...

The statement if (ptr) is converted to if (ptr! =0) by the (cross) compiler. Alternatively you can
directly use the statement if (ptr! =0) in your program to check the ‘NULL’ pointer.

9. Null pointer is a ‘C’ language concept and whose internal value does not matter to us. ‘NULL'
always guarantee a ‘0’ to you but Null pointer need not be.

Pointers and Arrays—'Are they related? Arrays are not equivalent to pointers and vice versa. But
the expression array ‘name []’ is equivalent to a pointer, of type specified by the array, to the first ele¬
ment of an array, e.g. for the character array ‘char arr[5J\ ‘arr[]' is equivalent to a character pointer
pointing to the first element of array ‘arr ’ (This feature is referred to as ‘equivalence of pointers and

arrays'). You can achieve the array features like accessing and modifying members of an array using a
pointer and pointer increment/decrement operators. Arrays and pointer declarations are interchangeable
when they are used as parameters to functions. Point 2 discussed under the section ‘A few important
points on Arrays’ for sizeofQ operator usage explains this feature also.

9.3.3.10 Characters and Strings Character is a one byte data type and it can hold values ranging
from 0 to 255 (unsigned character) or -128 to +127 (signed character). The term character literally refers
to the alpha numeric characters (English alphabet A to Z (both small letters and capital letters) and num¬
ber representation from ‘0’ to ‘9’) and special characters like *, ?,!, etc. An integer value ranging from
0 to 255 stored in a memory location can be viewed in different ways. For example, the hexadecimal
number 0x30 when represented as a character will give the character ‘0’ and if it is viewed as a decimal
number it will give 48. String is an array of characters. A group of characters defined within a double
quote represents a constant string.

‘FT is an example for a character, whereas “Hello" is an example for a string. String always termi¬
nates with a ‘\0’ character. The ‘\0’ character indicates the string termination. Whenever you declare a
string using a character array, allocate space for the null terminator ‘\0’;in the array length.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

.or char name [6] = {'S', 'H', 'I', 'B', 'U', '\0'•

String operations are very important in embedded product applications. Many of the embedded prod¬
ucts contain visual indicators in the form of alpha numeric displays and are used for displaying text.
Though the conventional alpha numeric displays are giving way to graphic displays, they are deployed
widely in low cost embedded products. The various operations performed on character strings are ex¬
plained below.

: Input & Output operations Conventional ‘C’ programs running on Desktop machines make use
of the standard string inputting (,scanfQ) and string outputting (printfQ) functions from the platform
specific I/O library. Standard keyboard and monitor are used as the input and output media for desktop
application. This is not the case for embedded systems. Embedded systems are compact and they need,
not contain a standard keyboard or monitor screen for I/O functions. Instead they incorporate applica¬
tion specific keyboard and display units (Alpha numeric/graphic) as user interfaces. The standard string
input instruction supported by ‘C’ language is scanf() and a code snippet illustrating its usage is given
below.

A standard ANSI C compiler converts this code according to the platform supported I/O library files
and waits for inputting a string from the keyboard. The scanf function terminates when a white space
(blank, tab, carriage return, etc) is encountered in the input string. Implementation of the scanfQ func¬
tion is (cross) compiler dependent. For example, for 8051 microcontroller all I/O operations are sup¬
posed to be executed by the serial interface and the C51 cross compiler implements therscanfQ function
in such a way to expect and receive a character/string (according to the scanf usage context (character if
first parameter to scanfQ is “%c” and string if first parameter is “%s”)) from the serial port.

printfQ is the standard string output instruction supported by ‘C’ language. A code snippet illustrating
the usage of printf() is given below.

.char, name [] = "SHIBU";

; pr.intf ("%'s", name) ;

Similar to scanfQ function, the standard ANSI C compiler converts this code according to the plat¬
form supported I/O library files and displays the string in a console window displayed on the monitor.
Implementation of printfQ function is also (cross) compiler specific. For 8051 microcontroller the C51
cross compiler implements the printfQ function in such a way to send a character/string (according to
the printf usage context (character if first parameter to printfQ is “%c” and string if first parameter is
“%s”)) to the serial port.

String Concatenation Concatenation literally means ‘joining together'. String concatenation refers
to the joining of two or more strings together to form a single string. ‘C’ supports built in functions for
string operations. To make use of the built in string operation functions, include the header file ‘string.

h' to your \c’ file. ‘strcatQ’ is the function used for concatenating two strings. The syntax of ‘strcatQ’
is illustrated below.

, strcat (strl, str2.) ; //'strl\ and 'str-2' are the strings to

IpC. r. ' ; -- • //be coiieatenated.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

On executing the above instruction the null character (‘\0’) from the end of ‘strl’ is removed and
lstr2’ is appended to ‘strl'. The string ‘stiN remains unchanged. As a precautionary measure, ensure
that strl (first parameter of A treat ()’ function) is declared with enough size to hold the concatenated
string. ‘strcatQ’ can also be used for appending a constant string to a string variable.

E.g. streat(strl, "Hello!");

Note:

1., Addition of two strings, say strl;
2. Addition of a string variable, say

str2 is not allowed .
strl, with a constant string, say Hello” is not allowed

String Comparison Comparison of strings can be performed by using the ‘strcmpQ' function sup¬
ported by the string operation library file. Syntax of strcmpQ’ is illustrated below.

stremp (strl, str2); //strl and str2 are two character strings

If the two strings which are passed as arguments to ‘strcmpQ ’ function are equal, the return value of
‘strcmpQ’ will be zero. If the two strings are not equal and if the ASCII value of the first non-match¬
ing character in the string strl is greater than that of the corresponding character for the second string
str2, the return value will be greater than zero. If the ASCII value of first non-matching character in
the string strl is less than that of the corresponding character for the second string str2, the return value
will be less than zero. ‘strcmpQ' function is used for comparing two string variables, string variable and
constant string or two constant strings.

E.g. char strl [] = "Hello world";

char str.2 [] = "Hello World!" ;

int n; _ ' .
n= stremp(strl, str2);

Executing this code snippet assigns a value which is greater than zero to n. (since ASCII value of V
is greater than that of ‘ IT). n= strcmp(str2, strl); will assign a value which is less than zero to n. (since
ASCII value of ‘ W is less than that of ‘w’).

The function stricmpQ is another version of strcmpQ. The difference between the two is, stricmpQ

is not case sensitive. There won’t be any differentiation between upper and lowercase letters when
stricmpQ is used for comparison. If stricmpQ is used for comparing the two strings strl and str2 in the
above example, the return value of the function striemp (strl, str2) will be zero.

Note:
1. Comparison of two string variables using e= =’ operator is invalid, e.g. if (strl =- str2) is

invalid
2. Comparison of a string variable and a string constant using ‘= =’ operator is also invalid, e.g. if

(strl == “Hello ”) is invalid

Finding String length String length refers to the number of characters except the null terminator
character ‘\0’ present in a string. Stringdength can be obtained by using a counter combined with a
search operation for the ‘\0’ character. ‘C’ supplies a ready to use string function strlenQ for determining
the length of a string. Its syntax is explained below.

\

strlen (strl); //where strl is a character string

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Slfevg. char strl [] = Hello World!
msf'-
jgfjfefe. - int n;

^ n = §trlen (strl);

Executing this code snippet assigns the numeric value 12 to integer variable V.

Copying Strings strcpy() function is the ‘C’ supported string operation function for copying a string
to another string. Syntax of strcpy() function is

lllSr. . strcpy (strl, str2); //strl, str2 ar.e character strings . .. ■

This function assigns the contents of str2 to strl. The original content of strl is overwritten by the
contents of str2. str2 remains unchanged. The size of the character array which is passed as the first
argument the strcpy() function should be large enough to hold the copied string. strcpyQ function can
also be used to assign constant string to string variables.

A few important points on Characters and Strings

1. The function strcat() is used for concatenating two string variables or string variable and string
constants. Characters cannot be appended to a string variable using strcatQ function. For example
street (strl, ‘A’) may not give the expected result. The same can be achieved by streat (strl,

“A”)

2. Strings are-character arrays and they cannot be assigned directly to a character array (except the
initialisation of arrays using string constants at the time of declaring character arrays)

//###################### #################.###,####*####€## ##:###
E.g. unsigned char strl (] = 'Hello"; // is valid;

unsigned 'char strl [6];

strl= "Hello"; //is invalid.

3. Whenever a character array is declared to hold a string, allocate size for the null terminator
character ‘\0’ also in the character array

9.3.3.11 Functions Functions are the basic building blocks of modular programs. A function is a
self-contained and re-usable code snippet intended to perform a particular task. ‘Embedded C supports
two different types of functions namely, library functions and user defined functions.

Library functions are the built in functions which is either part of the standard ‘Embedded C’ library
or user created library files. ‘C’ provides extensive built in library file support and the library files are
categorised into various types like I/O library functions, string operation library functions, memory
allocation library functions etc. printfQ, scanf (), etc. are examples of I/O library functions. strcpy(),

strcmp(), etc. are examples for string operations library functions. mallocQ, callocQ etc are examples
of memory allocation library functions supported by ‘C’. All library functions supported by a particular
library is implemented and exported in the same. A corresponding header (‘.A’) file for the library file
provides information about the various functions available to user in a library file. Users should include
the header file corresponding to a particular library file for calling the functions from that library in the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

‘C’ source file. For example, if a programmer wants to use the standard I/O library function printfQ in
the source file, the header file corresponding to the I/O library file (“stdio.h” meant for standard i/o)
should be included in the ‘c’ source code using the #include preprocessor directive.

“string.h” is the header file corresponding to the built in library functions for string operations and
“malloc.h” is the header file for memory allocation library' functions. Readers are requested to get info
on header files for other required libraries from the standard ANSI library. As mentioned earlier, the
standard ‘C’ library function implementation may be tailored-by cross-compilers, keeping the function
name and parameter list unchanged depending on Embedded ‘C’ application requirements. printfQ

function implemented by C51 cross compiler for 8051 microcontroller is a typical example. The library
functions are standardised functions and they have a unique style of naming convention and arguments.
Users should strictly follow-it while using library functions.

User defined functions are programmer created functions for various reasons like modularity, easy
understanding of code, code reusability, etc. The generic syntax for a function definition (implementa¬
tion) is illustrated below.

Return- type

' ' { ^

f ufac^lpn ;-nam,e';(argumen t^rd:st:r)c

//Function -Sbo&y- *(Declarations & statements)*; . „ t
f ’• , - > * - ' - *

//Return 'statfi’ment ' y • * g#; r - |
s mi sm ‘!

Return type of a function tells—what is the data type of the value returning by the function on com¬
pletion of its execution. The return type can be any of the data type supported by ‘C’ language, viz. int,

char, float, long, etc. void is the return type for functions which do not return anything. Function name
is the name by which a function is identified. For user defined functions users can give any name of their
interest. For library functions the function name for doing certain operations is fixed and the user should
use those standard function names. Parameters are the list of arguments to be passed to the function for
processing. Parameters are the inputs to the functions. If a function accepts multiple parameters, each
of them are separated using ’ in the argument list. Arguments to functions are passed by two means,
namely, pass by value and pass by reference. Pass by value method passes the variables to the function
using local copies whereas in pass by reference variables are passed to the function using pointers. In
addition to the above-mentioned attributes, a function definition may optionally specify the function’s
linkage also. The linkage of the function can be either ‘ external’ or ‘ internal’.

The task to be executed by the function is implemented within the body of the function. In certain
situations, you may have a single source (‘.c’) file containing the entire variable list, user defined func¬
tions, function mainQ, etc. There are two methods for writing user defined functions if the source code
is a single ‘.c’ file. The first method is writing all user defined functions on top of the main function and
other user defined functions calling the user defined function.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Int xyz (int i)

{

void abc (void)

{

m t ' xyz (a)

A.r- f-.
% -^v.. % v «>: ,c

vo-ict main ^0

•?$a >;> -v'A
-Vi'-:

,v»-?«.V.6r^|sS|if ...

abc () ;

If you are writing the user defined functions after the entry' function main() and calling the same
inside main, you should specify the function prototype (function declaration) of each user defined func¬
tions before the function mainQ. Otherwise the compiler assumes that the user defined function is an ex¬
tern function returning integer value and if you define the function after main() without using a function
declaration/prototype, compiler will generate error complaining the user defined function is redefining
(Compiler already assumed the function which is used inside main() without a function prototype as
an extern function returning an integer value). The function declaration informs the compiler about the
format and existence of a function prior to its use. Implicit declaration of functions is not allowed: every
function must be explicitly declared before it is called. The general form of function declaration is

f. 'Linkage (Type. Return, type function name (arguments); • ’ ; ‘ T

T. E. g. static int add (int a, inb.bT;"ffye&inTi.A tT '-- / . , . "■■■.4*

The ‘Linkage Type’ specifies the linkage for the function. It can be either ‘external’ or ‘internal’. The
‘static’ keyword for the ‘Linkage Type’ specifies the linkage of the function as internal whereas the ‘ex¬

tern’ ‘Linkage Type' specifies ‘external’ linkage for the function. It is not mandatory to specify the name
of the argument along with its type in the argument list of the function declaration. The declarations can
simply specify the types of parameters in the argument list. This is called function prototyping. A func¬
tion prototype consists of the function return type, the name of the function, and the parameter list. The
usage is illustrated below.

static int add(int, int);

Let us have a look at the examples for the different scenarios explained above on user defined func¬
tions.

;'/^##;fr########
.•(//Example for Source code with function prototype for user defined-

7s//‘functions; Source file test.c’

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

♦include <stdio.h>

//function prototype for user defined function test

void test (void) ;

void main ()

test (); //Calling user defined function from main

//Implementation of user defined function test, after function main

void test (void) 1 ■ t vf,) Zc-' ,.r.

priritf ('"Hello World ! ")ZZ' . YY 1 '„,Y --

return; ,. ~ ; •■./ „c.-v’v7: ■ "■ 1“’"'. - *Y;'! \-|Y

//Example for Source code without!function prototype for user defined

•//functions. Source .file te'st.c (> j d-»» • • YY.',. Y . ;• » •>

I include <st.dio.h> •; Y:\ >. --y. f . •_ ■,
/function prototype for user defined''function test not, declared ...

. . void_ mai n () . ■* „ . , ,r , ;... ;

test (); //Calling.user defined function from main

} " ' ", " -l ■ ... '

//Implementation of user defined function test after function main

void test (void) ’ ", t* ..." %

{

printf ("Hello World!");)

return; i

Compiler Output:

Compiling...
test.c

test.c(5): warning c4013: ‘test’ undefined; assuming extern returning int
test.c(9): error C2371: ‘test’: redefinition; different basic types Error executing cl.exe.
test.exe-1 error(s), 1 waming(s)

There is another convenient method for declaring variables and functions involved in a source file.

This technique is a header (‘./?’) file and source (\c) file based approach. In this approach, correspond¬

ing to each ‘c’ source file there will be a header file with same name (not necessarily) as that of the ‘c’

source file. All functions and global/extern variables for the source file are declared in the header file

instead of declaring the same in the corresponding source file. Include the header file where the func¬

tions are declared to the source file using the “ttinclude” pre-processor directive. Functions declared in

a file can be either global (extern access) in scope or static in scope depending on the declaration of the

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

function. By default all functions are global in scope (accessible from outside the file where the func¬
tion is declared). If you want to limit the scope (accessibility) of the function within the file where it is
declared, use the keyword ‘static’ before the return type in the function declaration.

9.3.3.12 Function Pointers A function pointer is a pointer variable pointing to a function. When
an application is compiled, the functions which are part of the application are also get converted into
corresponding processor/compiler specific codes. When the application is loaded in primary memory
for execution, the code corresponding to the function is also loaded into the memory and it resides at a
memory address provided by the application loader. The function name-maps to an address where the
first instruction (machine code) of the function is present. A function pointer points to this address.

The general form of declaration of a function pointer is given below.

; , return type (xpoi nter_ name) (argument .listj ' TV ' : ‘ v ■

where, 1 return _type' represents the return type of the function, ‘pointer jiame’ represents the name of
the pointer and ‘argument list’ represents the data type of the arguments of the function. If the function
contains multiple arguments, the data types are separated using V- Typical declarations of function
pointer are given below.

//Function pointer-to. a function returning int and takes no parameter Vy

int (*fptr)(); ' ,

'//Function pointer to a function returning int and takes 1 parameter

int (*fptr) (int) ' ■■

The parentheses () around the function pointer variable differentiates it as a function pointer variable.
If no parentheses are used, the declaration will look like

i.nt *fptr.(); > t/:'yv, •. -yn —

The cross compiler interprets it as a function declaration for function with name ‘fptr' whose argu¬
ment list is void and return value is a pointer to an integer. Now we have declared a function pointer, the
next step is ‘How to assign a function to a function pointer?’.

Let us assume that there is a function with signature

int functionl(void);

and a function pointer with declaration

int (*fptr) () ;

We can assign the address of the function 'functionl () ’ to our function pointer variable fptr' with the
following assignment statement:

fptr = Sfunctionl;

The operator gets the address of function functionl’ and it is assigned to the pointer variable
fptr’ with the assignment operator ‘=\ The address of operator is optional when the name of the
function is used. Hence the assignment operation can be re-written as:

fptr = functionl;

Once the address of the right sort of function is assigned to the function pointer, the function can be
invoked by any one of the following methods.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

(*fptr)();

fptr();

Function pointers can also be declared using typedef. Declaration and usage of a function pointer

with typedef is illustrated below.

//Function pointer to a function returning int and takes no parameter

typedef ir.t (*fur.optr) () ; •

. funcptr fptr; . ’ /, "7 ' f '

The following sample code illustrates the declaration, definition and usage of function pointer.

#include,kstdlp.h> 7... ' 7
void square(int x); t ,, -

void main () : “ : /

//Declare a function pointer ..." <

void (*fptr) (int); . '
' 1 <■'• /is 7’. _ ' ' 7” ’ W-sA»,.v . V y

//Define the function pointier to fu.nct:ion square _ ;

7 =; square;, - c ■•»■■■■ ■- t y-t7V’■ 7 tr

//Style 1: Invoke the Functwon through function-.pointer

i; ' fptr (2() ; '777/ ../7 - (/: 7 !7'i '37

' 7 //Styife'2: Invoke the function through function-pointer

■ 7fptr\ (2) ; - - '■ / ■ • •. :.

//Function for printing the square of a number

void square(int x)

printf("Square of %d = %d\ri", x, x * x) ;

} '

Function pointer is a helpful feature in late binding. Based on the situational need in the application

you can invoke the required function by binding the function with the right sort of function pointer (The

function signature and function pointer signature should be matching). This reduces the^ usage of‘if’

and ‘switch - case’ statements with function names. Function pointers are extremely useful for handling

situations which demand passing of a function as argument to another function. Function pointers are

often used within functions where the function should be able to work with a number of functions whose

names are not known until the program is running. A typical example for this is callback functions,

which requires the information about the function which needs to be called. The following sample piece

of code illustrates the usage of function pointer as parameter to a function.

♦include <stdio.h>

//###

//Function prototype declaration

void square(int x);

void cube(int x) ;

void power(void (*fptr) (int), int x);

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

i void main()

| {

//Declare a function pointer

void (*fptr) (int);

//Define the function pointer to function square

* fp'tr = square;

/ //Invoke the function 'square7 through function pointer

power (fptr,2);

f, ' //Define the function pointer to .function cube .

|r‘ fptr = cube; ' V" r,, ' "yy,

b //Invoke the function 'cube' through :function pointer . A4r

power (fptr,/.); - ' " , A- -* A-A' 'hi V , .it

I,, //######.############### # #.# # # # # # # #############■### ##.#;#
••//Interface function for invoking functions through -function pointer •.d

void power (void (*fptr) (int), int x)

(. '■ . •

fptr(x); "* ' .

}
//##-##.#######################
//Function for printing the square of a number

void square(int x)

{ _ -

princf("Square of %d = %d\n", x, x*x);

}

//###
//Function for printing the third power (cube) of a number

void cube(int x)

{
printf("Cube of %d = %d\n", x, x*x*x);

}

Arra/s of Function Pointers An aray of function pointers holds pointers to functions with same

type of signature. This offers the flexibility to select a function using an index. Arrays of function point¬

ers can be defined using either direct function pointers or the ‘typedef qualifier.

//Declare an array of pointers to functions, which returns int and

//takes no parameters, using direct function pointer declaration

int (*fnptrarr[5])();

//Declare and initialise an array of pointers to functions, which

//return int and takes no parameters, using direct function pointer-

//declaration

int (*fnptrarr[])()= {/*initialisation*/};

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

o

//Declare and initialize to 'NULL' an array of pointers to functions,

//which return int and takes no parameters, using direct function

//pointer declaration

int (*fnptrarr [5]) ()= {NULL};

//Declare an array of pointers to functions, which returns int and

//takes no parameters,, using typedef function pointer declaration

typedef-int (*fncptr) () ;

fncprf fnptrarr[5]) ();

//Dec 1 are and initialize an array :of pointers1 to functions, which

//return int" and takes no .parameters, using typedef function pointer-/

//declaration ’it'j;-. ? - ■ •

typedef int (*fnicptr) ();

fncpti f r.ptrarr [] '()=, {/^initialisation*/};

//Declare and initialise to 'NULL' an array of pointers to functions,

//which return int and takes no parameters, using typedef function

//pointer declaration

typedef int (*fncptr). () ; - 1

fncptr fnptrarr[5]()= {NULL};

The following piece of code illustrates the usage of function pointer arrays:

{{include <stdio.h> ' -

//###!#### ###############################■##########-########## ########

//Function prototype definition

void-square (int x) ; ‘

void cube(int x);

void main()

1
//Declare a function pointer array of size 2 and initialize

void (*fptr[2]) (int)= {NULL};

//Define the function pointer 0 to function square

fptr[0] = square;

//Invoke the function square

fptr[0] (2);

* //Define the function pointer 1 to function cube

fptr[l] = cube;

//Invoke the function cube through function pointer

fptr [1] (2) ;

}
//###

//Function for printing the square of a number

void square(int x)

printf("Square of %d = %d\n", x, x*x);

}

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

|€#####«#######*#####.###.################»#*##;####«##

^/Function for’ pointing the' third power (cube) of a number x
5_ A v" ~ 7* w= T w 1 A1 ■- T ' f ^ 5’', O-s \r j.- .. ■» -*-> - = *•* "■*»» Ai-v>:Sr* ~•' ■-

AvoicL-cube(int x) - ■ x

printf ('v0ube of'

9.3.3.13 Structures and Unions ‘structure’is a variable holding a collection of data types (int,
float, char, long etc). The data types can be either unique or distinct. The tag ‘struct’ is used for declaring
a structure. The general form of a structure declaration is given below.

■ t' ■’ sf-fuct*1 r:t%-thhiStbhan!e@a;yffh)ft!p;:§fpliS

f '{ ■ h
-

/, /tiic)J ldicirion
po t ,* ■ %. Chv. Vr * tT '",1^ T T - -• - S' , ~ x '-f " A,(- Eypffr-J* 'tx&scp- A ^

//variable 2 to declaration

ft V t; .;//„.. .. i .V;;. .; ; ||

struct jiame- is the name of the structure and the choice of the name is left to the programmer.
Let us examine the details kept in an employee record for an employee in the employee database of

an organisation as example. A typical employee record contains information like ‘Employee Name',

‘Employee Code’, and ‘Date of Birth’. This information can be represented in ‘C’ using a structure as
given below.

Instruct employee t *•

h{..;
char emp_iiame [20]; // Allowed maximum length for name

int emp__code; - ;x ;x xLx

char DOB [10];// DD-MM-YYYY Format (10*'charaqterfpidg;
WiiM,

Hence in ‘C’, the employee record is represented by two string variables (character arrays) and an
integer variable. Since these three variables are relevant to each employee, they are grouped together
in the form of a structure. Literally structure can be viewed as a collection of related data. The above
structure declaration does not allocate memory for the variables declared inside the structure. It’s a mere
representation of the data inside a structure. To allocate memory for the structure we need to create a ’
variable of the structure. The structure variable creation is illustrated below.

.struct employee emp.1;

Keyword ‘struct’ informs the compiler that the variable ‘empU is a structure of type ‘employee’. The
name of the structure is referred as ‘structure tag’ and the variables declared inside the structure are
called ‘structure elements'. The definition of the structure variable only allocates the memory for the
different elements and will not initialise the members. The members need to be initialised explicitly.
Members of the structure variable can be initialised altogether at the time of declaration of the structure
variable itself or can be initialised (modified) independently using the V operator (member operator).

Struct employee empi- {"SKIBU'K V", 42170, "11-11-1977'"}; - ■

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

This statement declares a structure variable with name ‘empl ’ of type employee and each elements
of the structure is initialised as

emp_name = "SHIBU K V"

emp _ccde = 42170

DOB= "11-11-1977"

It should be noted that the variables should be initialised in the order as per their declaration in the
structure variable. The selective method of initialisation/modification is used for initialising /modifying
each element independently.

E.g; -struct, employee ern.pl ; .' . V'

empl .emp_c.ode = 4217.0';;.;.-- "'vf' Tf r 'fy T T

All members of a structure, except character string variables can be assigned values using V Opera¬
tor and assignment (“=’) operator (character strings are character arrays and character arrays cannot be
initialised altogether using the assignment operator). Character string variables can be assigned using
string copy function (strcpy).

strcpy (enpl. emp _narr.e, "SHIBU F. V") ;- : . /

strcpy (empl . DOB, "It -1 1-1 977") ; ■■ •; : fy ■■ ■'"t

Declaration of a structure variable requires the keyword ‘structure’ as the first word and it may sound
awkward from a programmer point of view. This can be eliminated by using ‘ typedef in defining the
structure. The above ‘employee’ structure example can be re-written using typedef as

typedef struct •' ; ^ '• *■ ■ - * ... \

char enp_ name [20] ;// .Allowed maximum length fifor name = 20 :

int emp code; - v , ■ ' .

char DOB [10]; // DD-MM-YYYY Format (10 character)

} employee; " \ • ' • Nx

employee empl; //No need tq add struct before employee

This approach eliminates the need for adding the keyword ‘struct’ each time a structure variable is
.‘declared.

Structure operations The following table lists the various operations supported by structures

Operator Operation Example

= (Assignment)
Assigns the values of one structure to

another structure of same type

employee empl ,emp2;

emp 1 .emp_code = 42170;

strcpy(emp 1. empjiame,“SHIBU”);

strcpyfemp 1 .DOB “11/11/1977”);

emp2=empl;

employee empl,emp2:

emp 1 ,emp_code = 4217

strcpy(emp! .emp_name,“SH

strcpy(emp l.DOB,“l 1/11/1'

TT, if(emp2^=empl) -

members

iructures else return 0

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Compare individual members of

two structures of same type for non

equality. Return 1 if all members are

not identical in both structures else

" - - ' return 0 ’

, employee cmpl,emp2;

-empl.emp_code = 42170; >

strcpy(emp 1 :emp_namc,”SHIBU”);

strcpy(empl DOB,“11/11/1977”);
- ■ if (emp2!=empl)

1 • (Checking the equality of all

members of two structures)

Note: ■ • -

1. The assignment and comparison operation is valid only if both structure variables are of the sametypefyy

2. Some compilers may not support the direct assignment and comparison operation. In such situation the

1 ■ individual members of structure should be assigned or compared separately..- .• :* T ‘ '"Af-
Structure pointers Structure pointers are pointers to structures. It is easy to modify the memory held
by structure variables if pointers are used. Functions with structure variable as parameter-is a very good
example for it. The structure variable can be passed to the function by two methods; either as a copy of
the structure variable (pass by value) or as a pointer to a structure variable (pass by reference/address).
Pass by value method is slower in operation compared to pass by pointers since the execution time for
copying the structure parameter also needs to be accounted. Pass by pointers is also helpful if the struc¬
ture which is given as input parameter to a function need to be modified and returned on execution of
the calling function. Structure pointers can be declared by prefixing the structure variable name with
The following structure pointer declaration illustrates the same.

Instruct -employee. *empl; .//structure defined using the structure tag

i employee *empl,\ //structure defined with typedefi structure

For structure variables declared as pointers to a structure, the member selection of the structure is per¬
formed using the ‘ -> ’ operator.

- E.g. struct employee. *empl, emp2;

empl = &emp2; //Obtain a pointer

empl-^ emp_code = 4217-0.;

strepy (empl->DOB, "11-11-1977") ;

Structure pointers at absolute address Most of the time structures are used in Embedded C ap¬
plications for representing the memory locations or registers of chip whose memory address is fixed at
the time of hardware designing. Typical example is a Real Time Clock (RTC) which is memory mapped
at a specific address and the memory address of the registers of the RTC is also fixed. If we use a struc¬
ture to define the different registers of the RTC, the structure should be placed at an absolute address
corresponding to the memory mapped address of the first register given as the member variable of the
structure. Consider the structure describing RTC registers.

typedef struct

{
:■ //RTC Control register (8bit) memory mapped at 0x4000

unsigned char control;

..//RTC Seconds register (8bi.t) memory mapped at 0x4001

unsigned char seconds; ' - -

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

‘ > 'ivnuttrs Utilist'ery ...

z1 ;^-':'-=-.^■ v,:^- =-'=::?k;';-;^^x:^= ^:r>.- '::?!■#

ti i'$TJ-bdj ppzbyi:yyi |tg T::/i|b if.).; ;:Tqg]urjF m§;ppka-:y TU:§;Q j}| :-;■ ;.' f - IryPuk

liillllllllillH!lllllllllillliSl.';fR ff 1/1 t
ipl-Mli!

/ /J

■_1 L_ 1_[i- 3--?:^ p- ^ r ^ ’

pte- .-..j -- - - - - - - ■ - - - --6 ' u ‘

111 '

miuigned chft R. yh5l r - -IO ¥ ■ '-'-

: STC;: V -f id -- M ■■ ? i ■- jy if

To read and write to these hardware registers using structure member variable manipulation, we need
to place the RTC structure variable at the absolute address 0x4000, which is the address of the RTC
hardware register, represented by the first member of structure RTC.

The implementation of structures using pointers to absolute memory location is cross-compiler de¬
pendent. Desktop applications may not give permission to explicitly place structures or pointers at
an absolute address since we are not sure about the address allocated to general purpose RAM by the
linker. Any attempt to explicitly allocate a structure at an absolute address may result in access violation

exception. More over there is no need for a general purpose application to explicitly place structure or
pointers at an absolute address, whereas embedded systems most often requires it if different hardware
registers are memory mapped to the processor/controller memory map. The C51 cross compiler for
8051 microcontroller supports a specific Embedded C keyword ‘xdata’ for external memory access and
the structure absolute memory placement can be done using the following method.

; RTC xciata *rtcgregisters = (wold xdata *); 0xd000; '

Structure Arrays In the above employee record example, three important data is associated with each
employee, namely; employee name (emp_name), employee code (emp_code) and Date of Birth (DOB).
This information is held together as a structure for associating the same with an employee. Suppose the
organisation contains 100 employees then we need 100 such structures to hold the data related to the
100 employees. This is achieved by array of structures. For the above employee structure example a
structure array with 100 structure variables can be declared as

struct employee emp [10.0]; .//structure declared using struct keyword

■ . >• or . >/ ..A-..yu yyMrSp' , g ';;g A' jbi" -

employee emp [100]; //structure declared using typedef struct

emp [0] holds the structure variable data for the first employee and emp [99] holds the structure variable
data corresponding to the 100th employee. The variables corresponding to each structure in an array can
be initialised altogether at the time of defining the structure array or can be initialised/modified using the
corresponding array subscript for the structure and the Operator as explained below.

typedef: struct..R R%-.g:gv,;: r,R:.A; futUfsA-T : Tu

char emp_name [20]; // Allowed maximum length for.name =20

inf emp.code;

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

y.,. char DOB [10]; // DD-MM-YYYY Format (10 character)

p|'V } employee; • '

\ * •' . ^ ; r

^//Initialisation at the time of defining variable ./• „ ,.=• V

j. employee., emp -2F3J . =|.. {..{" y‘-.Q,l~8=8^.''^LEK2, "2 0-01-1976"},
H''SMITH", 3, "07-05-2 985";/; • 2 ‘ ' .."'2 ^ . V ' V. .

t //Selective initialization ' •>- V

■ emp [0].emp_code = 1; ■/-./"Jl-’l/ .-VA'/v ■ NiL VT'f / c

- strcpy (emp [0];^emp_name, "JOHN");

strepy - (emp [6] .DOB,,: "01-0 1938") ; iV- * . ' 'V:'2L;LMR: ■ ‘;V~

Structure in Embedded ‘C’ programming Simple stracture variables and array of structures are
widely used in ‘embedded ‘C’ based firmware development. Structures and structure arrays are used for
holding various configuration data, exchanging information between Interrupt Service Routine (ISR)
and application etc. A typical example for the structure usage is for holding the various register configu¬
ration data for setting up a particular baudrate for serial communication.'An array of such configuration
data holding structures can be used for setting different baudrates according to user needs. It is interest¬
ing to note that more than 90% of the embedded C programmers.usex typedef to define the structures
with meaningful names.

Structure padding (Packed structure) Structure variables are always stored in the memory of the
target system with structure member variables in the same order as they are declared in the structure
definition. But it is not necessary that the variables should be placed in continuous physical memory
locations. The choice on this is left to the compiler/cro'ss-compiler. For multi byte processors (proces¬
sors with word length greater than 1 byte (8 bits)), if the structure elements are arranged in memory in
such a way that they can be accessed with lesser number of memory fetches, it definitely speeds up the
operation. The process of arranging the structure elements in memory in a way facilitating increased
execution speed is called structure padding. As an example consider the following structure:

llfc;' 'typedef struct ; 1V- ‘ • C V '• '
. { " " ' '•

A; char x; ' ' ^ f.

int y; : ■ ■
} exmpl;

Let us assume that the storage space for ‘inf is 4 bytes (32 bits) and for ‘char' it is 1 byte (8 bits) for the
target embedded system under consideration. Suppose the target processor for embedded application,
where the above structure is making use is with a 4 byte (32 bit) data bus and the memory is byte acces¬
sible. Every memory fetch operation retrieves four bytes from the memory locations 4x, 4x + 1, 4x + 2
and 4x +3, where x = 0,1,2, etc. for successive memory read operations. Hence a 4 byte (32 bit) variable
can be fully retrieved in a single memory fetch if it is stored at memory locations with starting address
4x (x = 0, 1, 2, etc.). If it is stored at any other memory location, two memory fetches are required to
retrieve the variable and hence the speed of operation is reduced by a factor of 2.

Let us analyse the various possibilities of storing the above structure within the memory.
Method-1 member variables of structure stored in consecutive data memory locations.
In this model the member variables are stored in consecutive data memory locations (Note: the

member variable storage need not start at the address mentioned here, the address given here is only

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Memory

Address
4x + 3 4x + 2 4x+ 1 4x

Data
Byte 2 of

exmpl. y

Byte 1 of

exmpl.y

Byte 0 of

exmpl.y
exmpl.x

Data
Byte 3 of

exmpl.y

Memory.

Address
4(x + 1) + 3 4(x+ 1) + 2 4(x +1) + 1 4(x + 1)

fFig. 9.8^] Memory representation for structure without padding

for illustration) and if we want to access the character variable exmpl.x of structure exmpl, it can be
achieved with a single memory fetch. But accessing the integer member variable exmpl.y requires two
memory fetches.

Method-2 member variables of structure stored in data memory with padding
In this approach, a structure variable with storage size same as that of the word length (or an integer

multiple of word length) of the processor is always placed at memory locations with starting address as
multiple of the word length so that the variable can be retrieved with a single data memory fetch. The
memory locations coming in between the first variable and the second variable of the structure are filled
with extra bytes by the compiler and these bytes are called ‘padding bytes’ (Fig. 9.9). The structure pad¬
ding technique is solely dependent on the cross-compiler in use. You can turn ON or OFF the padding of
structure by using the cross-compiler supported padding settings. Structure padding is applicable only
for processors with word size more than 8bit (1 byte). It is not applicable to processors/controllers with
8bit bus architecture. —

Memory

Address 4x + 3 4x + 2 4x + 1 4x

Data 1 -Padding ,

;v . ; ■ r ; ,;.SS

Padding rV
" * C I ~ **

' Padding ; $ exmpl.x

Data
Byte 3 of

exmpl.y

Byte 2 of

exmpl.y

Byte 1 of

exmpl.y

Byte 0 of

exmpl.y

Memory

Address
4(x + 1) + 3 4(x + 1) + 2 4(x + 1) + 1 4(x+ 1)

(Fig. 9.9) Memory representation for structure with padding

Structure and Bit Selds Bit field is a useful feature supported by structures for bit manipulation
operation and flag settings in embedded applications. Most of the processors/controllers used in embed¬
ded application development provides extensive Boolean (bit) operation support and a similar support
in the firmware environment can directly be used to explore the Boolean processing capability of the
target device.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

For most of the application development scenarios we use integer and character to hold data items
even though the variable is expected to vary in a range far below the upper limit of the data type used
for holding the variable. A typical example is flags. Flags are used for indicating a ‘TRUE’ or ‘FALSE’
condition. Practically this can be done using a single bit and the two states of the bit (1 and 0) can be
used for representing ‘TRUE’ or ‘FALSE’ condition. Unfortunately CC’ does not support a built in data
type for holding a single bit and it forces us to use the minimum sized data type (quite often char (8bit
data type) and short int) for representing the flag. This will definitely lead to the wastage of memory.
Since memory is a big constraint in embedded applications we cannot tolerate the memory wastage. ‘C’
indirectly supports bit data types through ‘Bit fields' of structures. Structure bit fields can be directly ac¬
cessed and manipulated. Aset of bits in the structure bit field forms a ‘char’ or ‘int’ variable. The general
fomiat of declaration of bit fields within structure is illustrated below.

-: scruet: . struct_name ■ >:: ■ -.p - - »

j? , _ data..type, (char or int) b.tt_var]_name : b.it_si,ze,

§| - • , , • * bit_var 2_narne’: bit_size, ; - . t ■

Eit__ya-r n_name

} ; , , ,
‘struct name' represents the name of the bit field structure. ‘data type’ is the data type which will be

formed by packing several bits. Only character (char) and integer (int/short int) data types are allowed

in bit field structures in Embedded C applications. Some compilers may not support the ‘char’ data type.

Flowever our illustrative cross-compiler C51 supports ‘char’ data type as data type. ‘bit_yar l_name’

denotes the bit variable and cbit_size’ gives the number of bits required by the variable lbit_var Ijiame ’

and so. The operator ‘:’ associates the number of bits required with the bit variable. Bit variables that are

packed to form a data type should be separated inside the structure using ‘,’ operator. A real picture of

bit fields in structures for embedded applications can be provided by the Program Status Word (PSW)

register representation of 8051 controller. The PSW register of 8051 is bit addressable and its bit level

representation is given below.

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.l PSW.O

CY AC F0 RSI RSO OV P

Using structure and bit fields the same can be represented as

struct PSW

{ ..
char P:l, /* Bit 0 of PSW : Parity Flag */

:1, /* Bit 1 of PSW : Unused V

OV:l, /* Bit 2 of PSW : Overflow Flag */

RS0:1, /* Bit 3 of PSW : Register Bank Select 0 bit */

RSI :li /* Bit 4 of PSW : Register Bank Select 1 bit */

F0:1, /* Bit 5 of PSW: User definable Flag */

1 : AC :1, /* Bit 6 of PSW : Auxiliary Carry> Flag */:

C:l; /* Bit 7 of PSW : Carry Flag */

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

/fNote that the operator is used after the last bit field to y • i - ...

indicate end of bit field*/ \ / fT..*. A c . •? ■! t ■ y

In the above structure declaration, each bit field variable is defined with a name and an associated

bit size representation. If some of the bits are unused in a packed fashion, the same can be skipped by

merely giving the number of bytes to be skipped without giving a name for that bit variables. In the

above example Bit 1 of PSW is skipped since it is an unused bit in the PSW register.

It should be noted that the total number of bits used by the bit field variables defined for a specific

data type should not exceed the maximum number of allocated bits for that specific data type. In the

above example the bit field data type is ‘char ’ (8 bits) and 7 bit field variables each of size 1 are declared

and one bit variable is declared as unused bit. Hence the total number of bits consumed by all the bit

variables including the non declared bit variable sums to 8, which is same as the bit size for the data

type ‘char ’. The internal representation of structure bit fields depends on the size supported by the cross-

compiler data type (char/int) and the ordering of bits in memory. Some processors/controllers store the

bits from left to right while others store from right to left (Here comes the significance of endianness).

Unions Union is a concept derived from structure and union declarations follow the same syntax

as that of structures (structure tag is replaced by union tag). Though union looks similar to structure

in declaration, it differs from structure in the memory allocation technique for the member variables.

Whenever a union variable is created, memory is allocated only to the member variable of union requir¬

ing the maximum storage size. But for structures, memory is allocated to each member variables. This

helps in efficient data memory usage. Even if a union variable contains different member variables of

different data types, existence is only for a single variable at a time. The size of a union returns the stor¬

age size of its member variable occupying the maximum storage size. The syntax for declaring union

is given below

union union_name

{• :
//variable 1 declaration

//variable 2 to declaration

//variable n declaration

or

typedef union

{
//variable 1 declaration

//variable.2 to declaration

//.
//variable n declaration

Union name;

'union jiame’ is the name of the union and programmers can use any name according to their program¬

ming style. As an illustrative example let’s declare a union variable consisting of an integer member

variable and a character member variable.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Uk typedef union >s ^ r; vizi... ‘ ■ '■
V''r‘: v '■' :nv.,4: ; •- "<&'>*'■ '-T's--. - » -

t*a \W- M-y-- /-■■'>■'<■.< ■ ■ " '5“,;; "..■:-■••/,;■;■ ■ -it s S\— ;</ ;• i ', {■-. -. ' iv .< -. ,**v =.

fj§ int y; //Integer variable ’ .

f ’ char z; //Character variable ’

1 ' jSexample? '* "’••
1 :(.?/■ ...■*VU --p y y-yyy^y- V^yv*pv:;fvr.:is . X :•"■,■.? - .:.

^gjt^mple ^exl; ' •» 4 -

Assuming the storage location required for ‘ int’ as 4 bytes and for ‘char' as 1 byte, the memory allocated
to the union variable exl will be as shown below

Memory .
Address 4x + 3 4x + 2 4x + 1

p exi.z-
4x 1

Data
Byte 3 of

exl.y

Byte 2 of

exl.y

Byte 1 of

exl.y

Byte 0 of

exl.y

x =1, 2, 3... etc <-exl.x-!-►

(Tig. 9.10) Memory representation for union

Note: The start address is chosen arbitrarily for illustration, it can be any data memory. It is obvious from the figure

that by using union the same physical address can be accessed with different data type references. Hence union is

a convenient way of ‘variant access’.

In Embedded C applications, union may be used for fast accessing of individual bytes of ‘long’ or
‘int’ variables, eliminating the need for masking the other bytes of ‘long’ or ‘int’ variables which are of
no interest, for checking some conditions. Typical example is extracting the individual bytes of 16 or 32
bit counters.

A few important points on Structure and Union

1. The offsetofQ macro returns the offset of a member variable (in bytes) from the beginning of its
parent structure. The usage is offsetof (structName, memberName); where ‘structName’ is the
name of the parent structure and ‘memberName’ is the name of the member in the parent data
structure whose offset is to be determined. For using this macro use the header file ‘stddef.h’

2. If you declare a structure just before the main () function in your source file, ensure that the struc¬
ture is terminated with the structure definition termination indicator Otherwise function main
() will be treated as a structure and the application may crash with exceptions.

3. A union variable can be initialised at the time of creation with the first member variable value
only.

9.3.3.14 Pre-processors and Macros Pre-processor in ‘C’ is compiler/cross-compiler directives
used by compiler/cross-compiler to filter the source code before compilation/cross-compilation. The
pre-processor directives are mere directions to the compilers/cross compilers on how the source file
should be compiled/cross compiled. No executable code is generated for pre-processor directives on
compilation. They are same as pseudo ops in assembly language. Pre-processors are very useful for
selecting target processor/controller dependent pieces of code for different target systems and allow a
single source code to be compiled and run on several different target boards. The syntax for pre-proces¬
sor direct’-"u is different from the «vnta.x of T/ language. Each nre-nrocessor directive starts with the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

‘#’ symbol and ends without a semicolon (;). Pre-processor directives are normally placed before the
entry point function mainQ in a source file. Pre-processor directives are grouped into three categories;
namely

1. File inclusion pre-processor directives
2. Compile control pre-processor directives
3. Macro substitution pre-processor directives

File inclusion pre processor directives The file inclusion pre processor directives include external
files containing macro definitions, function declarations, constant definitions etc to the current source
file. ‘^include’ is the pre processor directive used for file inclusion. ‘Mnclude’ pre processor instruc¬
tion reads the entire contents of the file specified by the ‘ #include’ directive and inserts it to the current
source file at a location where the ‘Mnclude’ statement is invoked. This is generally used for reading
header files for library functions and user defined header files or source files. Header files contain de¬
tails of functions and types used within the library and user created files. They must be included before
the program uses the library functions and other user defined functions. Library header file names are
always enclosed in angle brackets, < >. This instructs the pre-processor to look the standard include
directory for the header file, which needs to be inserted to the current source file.

e.g. Mnclude <stdio.h> is the directive to insert the standard library file ‘stdio.hThis file is available
in the standard include directory of the development environment. (Normally inside the folder ‘inc’).

If the file to be included is given in double quotes (“ ”), the pre-processor searches the file first in the
current directory where the current source code file is present and if not found will search the standard
include directory. Usually user defined files kept in the project folder are included using this technique.
E.g. #include “constants.h” where ‘constants’ is a user defined header file with name constant's.h, kept
in the local project folder. An include file can include another include file in it (Nesting of include files).
An include file is not allowed to include the same file itself. Source files (.c) file can also be used as
include files.

\

Compile control pre-processor directives Compile control pre-processor directives are used for
controlling the compilation process such as skipping compilation of a portion of code, adding debug
features, etc. The conditional control pre-processor directives are similar to the conditional statement if
else in ‘C\ Mfdef, Mfndef Uelse, ttendif thindef, etc are the compile control pre-processor directives.

Mfdef uses a name as argument and returns true if the argument (name) is already defined. #define is
used for defining the argument (name).
ttelse is used for two way branching when combined with Mfdef (same as if else in ‘C’).
Hendif is used for indicating the end of a block following Mfdef or Uelse

Usage of Mfdef Uelse and Uendif is given below,

tifdef

#else (optional)

fendif "•'■■■ '■

The pre-processor directive Mfndef is complementary to Mfdef It is used for checking whether an
argument (e.g. macro) is not defined. Pre-processor directive #undef is used for disabling the definition
of the argument or macro if it is defined. It is complementary to Mefine. Pre-processor directives are
a powerful option in source code debugging. If you want to ensure the execution of a code block, for

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

debug purpose you can define a debug variable and define it. Within the code wherever you want to en¬
sure the execution, use the ttifdef and dendif pre-processors. The argument to #ifdef should be the debug
variable. Insert a printfQ function within the #ifdef ttendif block. If no debugging is required comment
or remove the definition of debug variable.

E.g.

The Uerror pre-processor directive The ikrror pre-processor generates error message in case of
an error and stops the compilation on accounting an error condition. The syntax of ikrror directive is
given below

{ ' terror error message

Macro substitution pre-processor directives Macros are a means of creating portable inline code.
‘Inline’ means wherever the macro is called in a source file it is replaced directly with the code defined
by the macro. In-line code improves the performance in terms of execution speed. Macros are similar to

S' subroutines in functioning but they differ in the way in which they are coded in the source code. Func¬
tions are normally written only once with arguments. Whenever a function needs to be executed, a call
to the function code is made with the required parameters at the point where it needs to be invoked. If a

—macro is used instead of functions, the compiler inserts the code for macro wherever it is called. From
a code size viewpoint macros are non-optimised compared to functions. Macros are generally used for
coding small functions requiring execution without latency. The ‘#define’ pre-processor directive is
used for coding macros. Macros can be either simple definitions or functions with arguments.

tidefine PI 3.1415 is an example for a simple macro definition.

Macro definition can contain arithmetic operations also. Proper care should be taken in giving right
syntax while defining macros, keeping an eye on their usage in the source code. Consider the following
example

#define A 12+25

tdefine B 45-10

Suppose the source contains a statement multiplier = A *B; the pre-processor directly replaces the mac¬
ros A and B and the statement becomes

multiplier = 12+25*45-10;

Due to the operator precedence criteria, this won’t give the expected result. Expected result can be ob¬
tained by a simple re-writing of the macro with necessary parentheses as illustrated below.

gA # define A (12+25)

#define B (45-10)

Proper care should be given to parentheses the macro arguments. As mentioned earlier macros can also
be defined with arguments. Consider the following example

define DEBUG 1

,3/,JInside code block

gfifdef DEBUG

fprintf ("Debug. Enabled") ;

EfendifT

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

♦ define CIRCLE_ AREA (a) (3.14 * a*a)

This defines a macro for calculating the area of a circle. It takes an argument and returns the area. It
should be noted that there is no space between the name of the macro (macro identifier) and the left
bracket parenthesis.

Suppose the source code contains a statement like area=CIRCLE_AREA(5); it will be replaced as

. • : area = (3.14*5*5);

Suppose the call is like this, area=CIRCLE_AREA(2+5); thejpre-processor will translate the same as

. ;■ v • •, ^ ^3Tl4ti2.+5*'2+5)' ■ ' - . i ,/ V C i .

Will it produce the expected result? Obviously no. This shortcoming in macro definition can be elimi¬
nated by using parenthesis to each occurrence of the argument. Hence the ideal solution will be;

. . Idcfine CIRCLEj\RF.A (a) (3.14 *(a)*(a}) ", l,. T 1 U .4:'

9.3.3.15 Constant Declarations in Embedded ‘C’ In embedded applications the qualifier (key¬
word) ‘const’ represents a ‘Read only’ variable. Use of the keyword ‘const’ in front of a variable declares
that the value of the variable cannot be altered by the program. This is a kind of defensive programming
in which any attempt to modify a variable declared as ‘const’ is reported as an access violation by the
cross-compiler. The different types of constant variables used in embedded ‘C’ application are explained
below.

Constant data Constant data informs that the data held by a variable is always constant and can¬
not be modified by the application. Constants used as scaling variables, ratio factors, various scientific
computing constants (e.g. Plank’s constant), etc. are represented as constant data. The general form of
declaring a constant variable kTgiven below.

const data type variable name;, ’

or

data type const variable name;

‘const’ is the keyword informing compiler/cross compiler that the variable is constant, ‘data type’ gives
the data type of the variable. It can be ‘int’, ‘char’, ‘float’, etc. ‘variable name’ is the constant variable.

E.g. const float PI = 3.1417;

float const PI = 3.1417;

Both of these statements declare PI as floating point constant and assign the value 3.1417 to it.
Constant variable can also be defined using the Mefme pre-processor directive as given below.

♦ define PI 3.1417

/*No assignment using = operator and no at end*/

The difference between both approaches is that the first one defines a constant of a particular data
type (int, char, float, etc.) whereas in the second method the constant is represented using a mere symbol
(text) and there is no implicit declaration about the data type of the constant. Both approaches are used
in declaring constants in embedded C applications. The choice is left to the programmer.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Pointer to constant data Pointer to constant data is a pointer which points to a data which is read
only. The pointer pointing to the data can be changed but the data is non-modifiable. Example of pointer
to constant data

const int* x; . //Integer po1nrer x to constant data

jj§; • int const* x 7/Same meaning as above definition"

Constant pointer to data Constant pointer has significant importance in Embedded C applications.
An embedded system under consideration may have various external chips like, data memory, Real
Time Clock (RTC), etc interfaced to the target processor/controller, using memory mapped technique.
The range of address assigned to each chips and their registers are dependent on the hardware design. At
the time of designing the hardware itself, address ranges are allocated to the different chips and the tar¬
get hardware is developed according to these address allocations. For example, assume we have an RTC
chip which is memory mapped at address range 0x3000 to 0x3010 and the memory mapped address
of register holding the time information is at 0x3007. This memory address is fixed and to get the time
information we have to look at the register residing at location 0x3007. But the content of the register
located at address 0x3007 is subject to change according to the change in time. We can access this data
using a constant pointer. The declaration of a constant pointer is given below.

|fe ..Constant character pointer x .go (:cbnStafit^v=itiable Mata 4 \v .

jphhblTconst x; ’-ApJiiA Tv'-il.'; IV • A- v.. '• .. iJ/S ■■ v

tilf *-’• ‘ "'.-'t'.*' .. -"Ai ’..try--'-, ‘ . ■

fi/TExplicit deciaratl on of. character pointer pointing to 8b: t memory Location,
,• , • *" J s..i\is* *X« 4' /, ^ -5>‘ > >,-’k .7 ‘ ,"w- >/" '

mapped at location 0x3007; RTC .example illustrated above*/ .

• char * const x- (char*) 0x3007; " "*J: • . .

Constant pointer to constant data , Constant pointers pointing to constant data are widely used in
embedded programming applications. Typical uses are reading configuration data held at ROM chips
which are memory mapped at a specified address range, Read only status registers of different chips,
memory mapped at a fixed address. Syntax of declaring a constant pointer to constant data is given
below.

r/*Constant character pointer x pointing to constant data*/

•.-const char *const x;

/char const* const x; //Equivalent to above declaration

/*Explicit declaration of constant character pointer* pointing to constant

.'data/

char const* const x = (char*) 0x3007;

9.3.3.16 The ‘Volatile’Type Qualifier in Embedded ‘C’ The keyword ‘volatile’ prefixed with
any variable as qualifier informs the crqss-compiler that the value of the variable is subject to change at
any point of time (subject to asynchronous modification) other than the current statement of code where
the control is at present.

Examples of variables which are subject to asynchronous modifications are
1. Variables common to Interrupt Service Routines (ISR) and other functions of a file
2. Memoiy mapped hardware registers

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

3. Variables shared by different threads in a multi threaded application (Not applicable to Super loop
Firmware development approach)

The volatile’ keyword informs the cross-compiler that the variable with ‘volatile’ qualifier is subject
to asynchronous change and there by the cross compiler turns off any optimisation (assumptions on the
variable) for these variables. The general form of declaring a volatile variable is given below.

-• - vo 1 ati le.. data type va ri abl e name:; or ■. j- .

data type volatileyva-plphle •name'.;,.

‘data type’ refers to the data type of the variable. It can be int, char, float, etc. ‘variable name’ is the user
defined name for the volatile variable of the specified type.

■■ ■ E.g. volatile unsigned char x; t , • ■ - . /

y ; . - unsigned char volatile x; :l" - ■■ ■ "■ ■

What is the catch in using ‘volatile’ variable? Let’s examine the following code snippet.

//Declare a memory mapped register

char* status__reg = (char*) 0x3000; , -

while (*status_reg!=0x01); //Wait till statusyreg =-0x01-

On cross-compiling the code snippet, the cross-compiler converts the code to a read operation from
the memory location mapped at address 0x3000 and it will assume that there is no point where the vari¬
able is going to modify (sort of over smartness) and may keep the data in a register to speed up the exe¬
cution. The actual intention of the programmer, with the above code snippet is to read a memory mapped
hardware status register and halt the execution of the rest of the code till the status register shows a ready
status. Unfortunately the program will not produce the expected result due to the oversmartness of the
cross-compiler in optimising the code for execution speed. Re-writing the code as given below serves
the intended purpose.

//Declares (volatile variable.

volatile char *stat.us reg = (char *) 0x3000;

while (*status_reg!=0x01) ; //Wait till status__reg '= 0x01

In embedded applications all memory mapped device registers which are subject to asynchronous
modifications (e.g. status, control and general purpose registers of memory mapped external devices)
should be declared with ‘volatile’ keyword to inform the cross-compiler that the variables represent¬
ing these registers/locations are subject to asynchronous changes and do not optimise them. Another
area which needs utmost care in embedded applications is variables shared between ISR and functions
(variables which can be modified by both Interrupt Sub Routines and functions). These include structure!
variable, union variable and other ordinary variables. To avoid unexpected behaviour of the application!
always declare such variables using ‘volatile’ keyword.

The ‘constant volatile’Variable Some variables used in embedded applications can be both ‘con¬

stant’ and ‘volatile’. A ‘Read only’ status register of a memory mapped device is a typical example for
this. From a user point of view the ‘Read only’ status registers can only be read but cannot modify.
Hence it is a constant variable. From the device point the contents can be modified at any time by the
device. So it is a volatile variable. Typical declarations are given ahead.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

^yolatile const int a; .//Constant volatile integer

; volatile const int* a; ..//.Pointer, to a. Constant ..volatile integer

Volatile pointer Volatile pointers is subject to change at any point after they are initialised. Typi¬
cal examples are pointer to arrays or buffers modifiable by Interrupt Service Routines and pointers in
dynamic memory allocation. Pointers used in dynamic memory allocation can be modified by the real-

locQ function. The general form of declaration of a volatile pointer to a non-volatile variable is given
below.

|.ata type* volatile variable name; . a v

.g. unsigned char* volatile a; . ' ' iwm..,

Volatile pointer to a volatile variable is declared with the following syntax.

|| Ifc data type volatile-* yolatxle^variable name; ‘ - •• > „ ,'Vj
yelg> . .unsigned char volatile* volatile a;: ; ' /-

9.3.3.17 Delay Generation and Infinite Loops in Embedded C Almost every embedded ap¬
plication involves delay programming. Embedded applications employ delay programming for waiting
for a fixed time interval till a device is ready, for inserting delay between displays updating to give the
user sufficient time to view the contents displayed, delays involved in bit transmission and reception in
asynchronous serial transmissions like I2C, 1-Wire data transfer, delay for key de-bouncing etc. Some
delay requirements in embedded application may be critical, meaning delay accuracy should be within
a very narrow tolerance band. Typical example is delay used in bit data transmission. If the delay em¬
ployed is not accurate, the bits may lost while transmission or reception. Certain delay requirements in
embedded application may not be much critical, e.g. display updating delay.

It is easy to code delays in desktop applications under DOS or Windows operating systems. The li¬
brary function delayQ in DOS and Sleep () in Windows provides delays in milliseconds with reasonable
accuracy. Coding delay routines in embedded applications is bit difficult. The major reason is delay is
dependent on target system’s clock frequency. So we need to have a trial and error approach to code de¬
lays demanding reasonably good accuracy. Refer to the code snippet given for ‘Performance Analyser’
in Chapter 14 for getting a handle on how to code delay routine in embedded applications using IDEs.
Delay codes are generally non-portable. Delay routine requires a complete re-work if the target clock
frequency is changed. Normally ‘for loops' are used for coding delays. Infinite loops are created using
various loop control instructions like while (), do while (), for and goto labels. The super loop created
by while (1) instruction in a traditional super loop based embedded firmware design is a typical example
for infinite loop in embedded application development.

Infinite loop using while The following code snippet illustrates ‘ while’ for infinite loop implemen¬
tation.

while (1)

{

1

Infinite loop using do while
z. 1

i

do
i

{ '

} while (1) ;

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Infinite loop using for

for Ur
■¥ .«.vv a.

{ :?t *1
* }

Infinite loop using goto ‘goto’ when combined with a ‘label’ can create infinite loops.

label; to be repeated .

//.
. : -

\ -V -.goto'-label; .
=•. - -

Which technique is the best? According to all experienced Embedded ‘C’ programmers while()

loop is the best choice for creating infinite loops. There is no technical reason for this. The clean syntax
of while loop entitles it for the same. The syntax offor loop for infinite loop is little puzzling and it is
not capable of conveying its intended use. ‘goto’ is the favorite choice of programmers migrating from
Assembly to Embedded C ©.

break; statement is used for coming out of an infinite loop. You may think why we implement an in¬
finite loop and then quitting it? Answer - There may be instructions checking some condition inside the
infinite loop. If the condition is met the program control may have to transfer to some other location.

9.3.3.18 Bit Manipulation Operations Though Embedded ‘C’ does not support a built in Boolean
variable (Bit variable) for holding a ‘TRUE (Logic 1)’ or ‘FALSE (Logic 0)’ condition, it provides ex¬
tensive support for Bit manipulation operations. Boolean variables required in embedded application are
quite often stored as variables with least storage memory requirement (obviously char variable). Indeed
it is wastage of memory if the application contains large number of Boolean variables and each variable
is stored as a char variable. Only one bit (Least Significant bit) in a char variable is used for storing
Boolean information. Rest 7 bits are left unused. This will definitely lead to serious memory bottle
neck. Considerable amount of memory can be saved if different Boolean variables in an application are
packed into a single variable in ‘C’ which requires less memory storage bytes. A character variable can
accommodate 8 Boolean variables. If the Boolean variables are packed for saving memory, depending
upon the program requirement each variable may have to be extracted and some manipulation (setting,
clearing, inverting, etc.) needs to be performed on the bits. The following Bit manipulation operations
are employed for the same.

Bitwise AND Operator ‘&’ performs Bitwise AND operations. Please note that the Bitwise AND
operator is entirely different from the Logical AND operator The ‘&’ operator acts on indi¬
vidual bits of the operands. Bitwise AND operations are usually performed for selective clearing of bits
and testing the present state of a bit (Bitwise ANDing with ‘ 1 ’).

Bitwise OR Operator ‘| ’ performs Bitwise OR operations. Logical OR operator ‘||’ is in no way relat¬
ed to the Bitwise OR operator ‘| \ Bitwise OR operation is performed on individual bits of the operands.
Bitwise OR operation is usually performed for selectively setting of bits and testing the current state of
a bit (Bitwise ORing with ‘0’).

Bitwise Exclusive OR- XOR Bitwise XOR operator ‘A’ acts on individual operand bits and performs
an ‘Excusive OR’ operation on the bits. Bitwise XOR operation is used for toggling bits in embedded
applications.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Bitwise NOT Bitwise NOT operations negates (inverts) the state of a bit. The operator (tilde) is
used as the Bitwise NOT operator in C.

Setting and Clearing and Bits Setting the value of a bit to ‘1’ is achieved by a Bitwise OR opera¬
tion. For example consider a character variable (8bit variable) flag. The following instruction sets its 0th
bit always 1.

ry flag = flag 1; ' t. __

Brief explanation about the above operation is given below.
Using 8 bits, 1 is represented as 00000001. Upon a Bitwise OR each bit is ORed with the corresponding
bit of the operand as illustrated below.

Bit 0 of flag
Bit 1 of flag
Bit 2 of flag
Bit 3 of flag
Bit 4 of flag
Bit 5 of flag
Bit 6 of flag
Bit 7 of flag

is ORed with
is ORed with
is ORed with
is ORed with
is ORed with
is ORed with
is ORed with
is ORed with

1 and Resulting o/p bit=l
0 and Resulting o/p bit:
0 and Resulting o/p bit
0 and Resulting o/p bit
0 and Resulting o/p bit
0 and Resulting o/p bit
0 and Resulting o/p bit
0 and Resulting o/p bit

Bit 1 of flag
Bit 2 of flag
Bit 3 of flag

: Bit 4 of flag
: Bit 5 of flag
: Bit 6 of flag
: Bit 7 of flag

Bitwise OR operation combined with left shift operation of ‘ V is used for selectively setting any bit in
a variable. For example the following operation will set bit 6 of char variable flag.

-.//Sets 6th bit,of/flag. Bit numbering starts with 0.

Re-writing the above code for a neat syntax will give

flag (1«6) ; Zfla!g | {1<< 6)

The same can also be achieved by bitwise ORing the variable flag with a mask with 6th bit ‘ U and all
other bits ‘O’, i.e. mask with 01000000 in Binary representation and 0x40 in hex representation.

flag |= 0x40; //Equivalent to flag = flag | (1«6) ;

Clearing a desired bit is achieved by Bitwise ANDing the bit with ‘O’. Bitwise AND operation combined
with left shifting of ‘ 1 ’ can be used for clearing any desired bit in a variable.

/Example:

;/; • flag &= ~ (1«6);

The above instruction will clear the 6th bit of the character variable flag. The operation is illustrated
below.

Execution of (1«6) shifts ‘ 1 ’ to six positions left and the resulting output in binary will be 01000000.
Inverting this using the Bitwise NOT operation (~ (1 «6)) inverts the bits and give 10111111 as output.
When flag is Bitwise ANDed with 10111111, the 6th bit offlag is cleared (set to ‘0’) and all other bits of
flag remain unchanged.

From the above illustration it can be inferred that the same operation can also be achieved by a direct
Bitwise ANDing of the variable flag and a mask with binary representation 10111111 or hex representa¬
tion OxBF.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems 358

/: 'OxSf',;/”//Equivalent to flag = flag & ~(1<<6); u .

Shifting the mask ‘ 1’ for setting or clearing a desired bit works perfectly, if the operand on which these
operations are performed is 8bit wide. If the operand is greater than 8 bits in size, care should be taken
to adjust the mask as wide as the operand. As an example let us assume flag as a 32bit operand. For
clearing the 6th bit offlag as illustrated in the previous example, the mask 1 should be re-written as ‘ 1L’
and the instruction becomes

flag &= ~ (1L«6)

Toggling Bits
Toggling a bit is performed to negate (toggle) the current state of a bit. If current state of a specified bit
is ‘ 1 ’, after toggling it becomes ‘0’ and vice versa. Toggling is also known as inverting bits. The Bitwise
XOR operator is used for toggling the state of a desired bit in an operand.

flag A--(1«6); //Toggle bit 6 of flag .

The above instruction toggles bit 6 offlag.

Adding ‘V to the desired bit position (In the above example 0x40 for 6th bit) will also toggle the current

state of the desired bit. This approach has the following drawback. If the current state of the bit which

is to be inverted is ‘V, adding aT to that bit position inverts the state of that bit and at the same time

a carry is generated and it is propagated to the next most significant bit (MSB) and change the status of

some of the other bits falling to the left of the bit which is toggled.

Extracting and Inserting Bits
Quite often it is meaningful to store related information as the bits of a single variable instead of saving
them as separate variables. This saves considerable amount of memory in an embedded system where
data memory is a big bottleneck. Typical scenario in embedded applications where information can be
stored using the bits of single variable is, information provided by Real Time Clock (RTC). RTC chip
provides various data like current date/month/year, day of the week, current time in hours/minutes/
seconds, etc. If an application demands the storage of all these information in the data memory of the
embedded system for some reason, it can be achieved in two ways;

1. Use separate variables for storing each data (date, month, year, etc.)
2. Club the related data and-store them as the bits of a single variable
As an example assume that we need to store the date information of the RTC in the data memory in

D/M/Y format. Where ‘D’ stands for date varying from 1 to 31, ‘M’ stands for month varying from 1
to 12 and ‘Y’ stands for year varying from 0 to 99. If we follow the first approach we need 3 character
variables to store the date information separately. In the second approach, we need only 5 bits for date
(With 5 bits we can represent 0 to 25 -1 numbers (0 to 31), 4 bits for month and 7 bits for year. Hence
the total number of bits required to represent the date information is 16. All these bits can be fitted into
a 16 bit variable as shown in Fig. 9.11.

-Bit 9 to 15

115

*j<— Bit 5 to 8

9

Bit 0 to 4

J 01

Year (0 to 99) Month (1 to 12) Date (1 to 31)

(Fig. 9.11| Packed Bits for data representation

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Suppose this is arranged in a 16bit integer variable date, for any calculation requiring ‘Year’, ‘Month’
or ‘Date’, each should be extracted from the single variable date. The following code snippet illustrates
the extraction of ‘Year’

tyV :'char year = (date»9) & 0x7F;

(date»9) shifts the contents 9 bits to the left and now ‘Year’ is stored in the variable date in bits 0 to
6 (including both). The contents of other bits (7 to 15) are not relevant to us and we need only th£ first
7 bits (0 to 6) for getting the ‘Year’ value. ANDing with the mask 0x7F (01111111 in Binary) retains
the contents of bits 0 to 6 and now the variable year contains the ‘Year’ value extracted from variable
'date'.

Similar to the extracting of bits, we may have to insert bits to change the value of certain data. In the
above example if the program is written in such a way that after each 1 minute, the RTC’s year register is
read and the contents of bit fields 9 to 15 in variable 'date' needs to be updated with the new value. This
can be achieved by inserting the bits corresponding to the data into the desired bit position. Following
code snippet illustrates the updating of ‘Year’ value for the above example. To set the new ‘Year’ value
to the variable 'date' all the corresponding bits in the variable for ‘Year’ should be cleared first. It is il¬
lustrated below.

:■ date = date •& ~ (0x7F<<9) ; ‘ . . :,

The mask for 7 bits is 0x7F (01111111 in Binary). Shifting the mask 9 times left aligns the mask to
that of the bits for storing ‘Year’. The ~ operator inverts the 7 bits aligning to the bits corresponding to
‘Year’. Bitwise ANDing with this negated mask clears the current bits for ‘Year’ in the variable 'date'.

Now shift the new value which needs to be put at the.‘Year’ location, 9 times for bitwise alignment for
the bits corresponding to ‘Year’. Bitwise OR the bit aligned new value with the 'date' variable whose
bits corresponding to ‘Year’ is already cleared. The following instruction performs this.

■ date'] = (new_year «9) ; ■

where ‘new_year’ is the new value for ‘Year’.
In order to ensure the inserted bits are not exceeding the number of bits assigned for the particular

bit variable, bitwise AND the new value with the mask corresponding to the number of bits allocated to
the corresponding variable (Above example 7 bits for ‘Year’ and the mask is 0x7F). Hence the above
instruction can be written more precisely as

date |= (newyear & 0x7 F) «9;

If all the bits corresponding to the bit field to be modified are not set to zero prior to Bitwise ORing

with the new value, any existing bit with value T will remain as such and expected result will not be

obtained.

Testing Bits So far we discussed the Bitwise operators for changing the status of a selected bit. Bit¬
wise operators can also be used for checking the present status of a bit without modifying it for decision
making operations.

if (flag & (1«6)) //Checks whether 6th bit of flag is '1'

This instruction examines the status of the 6th bit of variable flag. The same can also be achieved by
using a constant bit mask as

if (flag & 0x40.) //Checks whether 6th bit of flag is- '1'

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

9.3.3.19 Coding Interrupt Service Routines (ISR) Interrupt is an event that stops the current
execution of a process (task) in the CPU and transfers the program execution to an address in code
memory where the service routine for the event is located. The event which stops the current execu¬
tion can be an internal event or an external event or a proper combination of the external and internal
event. Any trigger signal coming from an externally interfaced device demanding immediate attentions
is an example for external event whereas the trigger indicating the overflow of an internal timer is an
example for internal event. Reception of serial data through the serial line is a combination of internal
and external events. The number of interrupts supported, their priority levels, interrupt trigger type and
the structure of interrupts are processor/controller architecture dependent and it varies from processor
to processor. Interrupts are generally classified into two: Maskable Interrupts and Non-maskable Inter¬
rupts (NMI). Maskable interrupt can be ignored by the CPU if the interrupt is internally not enabled or
if the CPU is currently engaged in processing another interrupt which is at high priority. Non-maskable
interrupts are interrupts which require urgent attention and cannot be ignored by the CPU. Reset (RST)
interrupt and TRAP interrupt of 8085 processor are examples for Non-maskable interrupts.

Interrupts are considered as boon for programmers and their main motto is “give real time behav¬
iour to applications”. In a processor/controller based simple embedded system where the application is
designed in a super loop model, each interrupt supported by the processor/controller will have a fixed
memory location assigned in the code memory for writing its corresponding service routine and this
address is referred as Interrupt Vector Address. The vector address for each interrupt will be pre-de-
fined and the number of code memory bytes allocated for each Interrupt Service Routine, starting from
the Interrupt Vector Address may also be fixed. For example the interrupt vector address for interrupt
‘INTO’ of 8051 microcontroller is ‘0003H’ and the number of code memory bytes allowed for writing
its Service routine is 8 bytes.

The function written for serving an Interrupt is known as Interrupt Service Routine (ISR). ISR for
each interrupt may be different and they are placed at the Interrupt Vector Address of corresponding
Interrupt, ISR is essentially a function that takes no parameters and returns no results. But, unlike a
regular function, the ISR can be active at any time since the triggering of interrupts need not be in sync
with the internal program execution (e.g. An external device connected to the external interrupt line can
assert external interrupt at any time regardless at what stage the program execution is currently). Hence
.special care must be taken in writing these functions keeping in mind; they are not going to be executed
in a pre-defined order. What all special care should be taken in writing an ISR? The following section
answers this query.

Imagine a situation where the application is doing some operations and some registers are modified
and an interrupt is triggered in between the operation. Indeed the program flow is diverted to the Inter¬
rupt Service Routine, if the interrupt is an enabled interrupt and the operation in progress is not a service
routine of a high priority interrupt, and the ISR is executed. After completing the ISR, the program
flow is re-directed to the point where it got interrupted and the interrupted operation is continued. What
happens if the ISR modifies some of the registers used by the program? No doubt the application will
produce unexpected results and may go for a toss. How can this situation be tackled? Such a situation
can be avoided if the ISR is coded in such a way that it takes care of the following:

1. Save the current context (Important Registers which the ISR will modify)
2. Service the Interrupt
3. Retrieve the saved context (Retrieve the original contents of registers)
4. Return to the execution point where the execution is interrupted
Normal functions will not incorporate code for saving the current context before executing the func¬

tion and retrieve the saved context before exiting the function. ISR should incorporate code for perform-

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

ing these operations. Also it is known to the programmer at what point a normal function is going to be
invoked and the programmer can take necessary precautions before calling the function, it is not the case
for an ISR. Interrupt Service Routines can be coded either in Assembly language or High level language
in which the application is written. Assembly language is the best choice if the ISR code is very small
and the program itself is written in Assembly. Assembly code generates optimised code for ISR and user
will have a good control on deciding what all registers needs to be preserved from alteration. Most of
the modem cross-compilers provide extensive support for efficient and optimised ISR code. The way in
which a function is declared as ISR and what all context is saved within the function is cross-compiler
dependent.

Keil C51 Cross-complier for 8051 microcontroller implements the Interrupt Service Routine using
the keyword interrupt and its syntax is illustrated below.

■interrupt_name is the function name and programmers can choose any name according to his/her taste.
The attribute ‘interrupt’ instructs the cross compiler that the associated function is an interrupt service
routine. The interrupt attribute takes an argument x which is an integer constant in the range 0 to 31
(supporting 32 interrupts). This number is the interrupt number and it is essential for placing the gener¬
ated hex code corresponding to the ISR in the corresponding Interrupt Vector Address (e.g. For placing
the ISR code at code memory location 0003H for Interrupt 0 - External Interrupt 0 for 8051 microcon¬
troller). using is an optional keyword for indicating which register bank is used for the general purpose

' Registers R0 to R7 (For more details on register banks and general purpose registers, refer to the hard¬
ware description of 8051). The argument y for using attribute can take values from 0 to 3 (corresponding
to the register banks 0 to 3 of 8051). The interrupt attribute affects the object code of the function in the
following way:

1. If required, the contents of registers ACC, B, DPH, DPL, and PSW are saved on the stack at func¬
tion invocation time.

2. All working registers (R0 to R7) used in the interrupt function are stored on the stack if a register
bank is not specified with the using attribute.

3. The working registers and special registers that were saved on the stack are restored before exiting
the function.

4. The function is terminated by the 8051 RETI instmction.
Typical usage is illustrated below

void external_interruptO (void) interrupt 0 using 0

1
adc_control = *adc_control_reg //Read memory mapped ADC

; // control Register

If the cross-compiler you are using don’t have a built in support for writing ISRs, What shall you
do? Don’t be panic you can implement the ISR feature with little tricky coding. If the cross-compiler
provides support for mixing high level language-C andAsseihbly, write the ISR in Assembly and place
the ISR code at the corresponding Interrupt Vector address using the cross compiler’s support for plac¬
ing the code in an absolute address location of code memory (Using keywords like at. Refer to your

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

cross compiler’s documentation for getting the exact keyword). If the ISR is too complicated, you can
place the body of the ISR processing in a normal C function and call it from a simple assembly language
wrapper. The assembly language wrapper should be installed as the ISR function at the absolute address
corresponding to the Interrupt’s Vector Address. It is responsible for executing the current context sav¬
ing and retrieving instructions. Current context saving instructions are written on top of the call to the
‘C’ function and context retrieving instructions are written just below the ‘C’ function call. It is little
puzzling to find answers to the following questions in this approach.

1. Which registers must be saved and restored since we are not sure which registers are used by the
cross compiler for implementing the ‘C’ function?

2. How the assembly instructions can be interfaced with high-level language like ‘C’?

Answers to these questions are cross compiler dependent and you need to find the answer by referring
the documentation files of the cross-compiler in use. Context saving is done by ‘Pushing’ the registers
(using PUSH instructions) to stack and retrieving the saved context is done by ‘Poping’ (using POP
instructions) the pushed registers. Push and Pop operations usually follow the Last In First Out (LIFO)
method. While writing an ISR, always keep in mind that the primary aim of an interrupt is to provide
real time behaviour to the program. Saving the current context delays the execution of the original ISR
function and it creates Interrupt latency (Refer to the section on Interrupt Latency for more details) and
thereby adds lack of real time behaviour to an application. As a programmer, if you are responsible for
saving the current context by Pushing the registers, avoid Pushing the registers which are not used by
the ISR. If you deliberately avoid the saving of registers which are going to be modified by the ISR, your
application may go for a toss. Hence Context saving is an unavoidable evil in Interrupt driven program¬
ming. If you go for saving unused registers, it will increase interrupt latency as well as stack memory
usage. So always take a judicious decision on the context saving operation. If the cross compiler offers
the context saving operation by supporting ISR functions, always rely on it. Because most modem cross
compilers are smart and capable of taking a judicious decision on context saving. In case the cross com¬
piler is not supporting ISR function and as a programmer you are the one writing ISR functions either
in Assembly or by mixing ‘C’ and Assembly, ensure that the size of ISR is not crossing the size of code
memory bytes allowed for an Interrupt’s ISR (8 bytes for 8051). If it exceeds, it will overlap with the
location for the next interrupt and may create unexpected behaviour on servicing the Interrupt whose
Vector address got overlapped.

9.3.3.20 Recursive Functions A function which calls itself repeatedly is called a Recursive Func¬
tion. Using recursion, a complex problem is split into its single simplest form. The recursive function
only knows how to solve that simplest case. Recursive-functions are useful in evaluating certain types
of mathematical function, creating and accessing dynamic data structures such as linked lists or binary
trees. As an example let us consider the factorial calculation of a number.

By mathematical definition

n factorial - 1 x 2 x.(n - 2) x (n - 1) x n; where n= 1,2, etc... and 0 factorial = 1

Using ‘C’ the function for finding the factorial of a number V is written as

int factorial (int n)

{ ' .
int count;

int factorial®!; \\ \ A .
for (count-1; count<=n;| count! 1)1

factoria.1 *-ccunL; ' ! I

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

return factorial;

|v . >
This code is based on iteration. The iteration of calculating the repeated products is performed until

the count value exceeds the value of the number whose factorial is to be calculated. We can split up the
task performed inside the function as count * (count +1) till count is one short of the number whose
factorial is to be calculated. Using recursion we can re-write the above function as ■

Lnt; factorial (ini. n) ■' •;! < .

{- * 5 ' •'

if (n==0) t(« , V

“return 1;

;el>se •• % ;.yt

return .•(ri * f-actor i&i (nrl));

U' •; -.vU - ' '• / v. Hiu

'§**?&*ft\ «'lu/5't.iV-5$***

Here the function factorial (n) calls itself, with a changed version of the parameter for each call,
inside the same for calculating the factorial of a given number. The ‘if’ statement within the recursive
function forces the function to stop recursion when a certain criterion is met. Without an ‘if’ statement a
recursive function will never stop the recursion process. Recursive functions are very effective in imple¬
menting solutions expressed in terms of a successive application of the same solution to the solution
subsets. Recursion is a powerful at the same time most dangerous feature which may lead to application
crash. The local variables of a recursive function are stored in the stack memory and new copies of each
variable are created for successive recursive calls of the function. As the recursion goes in a deep level,
stack memory may overflow and the application may bounce.

Recursion vs. Iteration: A comparison Both recursion and iteration is used for implementing cer¬
tain operations which are self repetitive in some form.

• Recursion involves a lot of call stack overhead and function calls. Hence it is slower in operation
compared to the iterative method. Since recursion implements the functionality with repeated
self function calls, more stack memory is required for storing the local variables and the function
return address

• Recursion is the best method for implementing certain operations like certain mathematical opera¬
tion, creating and accessing of dynamic data structures such as linked lists or binary trees

• A recursive solution implementation can always be replaced by iteration. The process of convert¬
ing a recursive function to iterative method is called ‘unrolling’

Benefits of Recursion Recursion brings the following benefits in programming:
• Recursive code is very expressive compared to iterative code. It conveys the intended use.
• Recursion is the most appropriate method for certain operations like permutations, search trees,

sorting, etc.

Drawbacks of Recursion Though recursion is an effective technique in implementing solutions ex¬
pressed in terms of a successive application of the,same solution to the solution subsets, it possesses the
following drawbacks.

• Recursive operation is slow in operation due to call stack overheads. It involves lot of stack opera¬
tions like local variable storage and retrieval, return address storage and retrieval, etc.

• Debugging of recursive functions are not so easy compared to iterative code debugging

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

9.3.3.21 Re-entrant Functions Functions which can be shared safely with several processes
concurrently are called re-entrant functions. When a re-entrant function is executing, another process
can interrupt the execution and can execute the same re-entrant function. The “another process'’ re¬
ferred here can be a thread in a multithreaded application or can be an Interrupt Service Routine (ISR).
Re-entrant function is also referred as ‘pure’ function. Embedded applications extensively make use of
re-entrant functions. Interrupt Service Routines (ISR) in Super loop based firmware systems and threads
in RTOS based systems can change the program’s control flow to alter the current context at any time.
When an interrupt is asserted, the current operation is put on hold and the control is transferred to an¬
other function or task (ISR). Imagine a situation where an interrupt occurs while executing a function

x and the ISR also contain the task of executing the function x. What will happen? - Obviously the ISR
will modify the shared variables offunction x and when the control is switched back to the point where
the execution got interrupted, the function will resume its execution with the data which is modified by
the ISR. What will be the outcome of this action? - Unpredictable result causing data corruption and
potential disaster like application break-down. Why it happens so? Due to the corruption of shared data
in function which is unprotected. How this situation can be avoided? By carefully controlling the shar¬
ing of data in the function.

In embedded applications, a function/subroutine is considered re-entrant if and only if it satisfies the
following criteria.

1. The function should not hold static data over successive calls, or return a pointer to static data.
2. All shared variables within the function are used in an atomic way.
3. The function does not call any other non-reentrant functions within it.
4. The function does not make use of any hardware in a non-atomic way
Rule# 1 deals with variable usage and function return value for a reentrant function. In an operating

system based embedded system, the embedded application is managed by the operating system services
and the ‘memory manager ’ service of the OS kernel is responsible for allocating and de-allocating the
memory required by an application for its execution. The working memory required by an application is
divided into three groups namely; stack memory, heap memory and data memory (Refer to the Dynamic

Memory Allocation section of this chapter for more details). The life time of static variables is same as
that of the life time of the application to which it belongs and they are usually held in the data memory
area of the memory space allocated for the application. All static variables of a function are allocated
in the data memory area space of the application and each instance of the function shares this, whereas
local (auto) variables of a function are stored in the stack memory and each invocation of the function
creates independent copies of these variables in the stack memory. For a function to be reentrant, it
should not keep any data over successive invocations (the function should not contain any static stor¬
age). If a function needs some data to be kept over successive invocations, it shoulcl be provided through
the caller function instead of storing it in the function in the form of static, variables. If the function
returns a pointer to a static data, each invocation of the function makes use of this pointer for returning
the result. This can be tackled by using caller function provided storage for passing the data back to the
caller function. The ‘callee’ function needs to be modified accordingly to makemse of the caller function
provided storage for passing the data back to the caller.

Rule# 2 deals with ‘atomic’ operations. So what does ‘atomic’ mean in reentrancy context? Meaning
the operation cannot be interrupted. If an embedded application contains variables which are shared
between various threads of a multitasking system (Applicable to Operating System based embedded
systems) or between the application and ISR (In Non-RTOS based embedded systems), and if the
operation on the shared variable is non-atomic, there is a possibility for corruption of the variable due

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

to concurrent access of the variable by multiple threads or thread and ISR. As an example let us assume
that the variable counter is shared between multiple threads or between a thread and ISR, the instruction,

need not operate in an ‘atomic’ way on the variable counter. The compiler/cross-compiler in use con¬
verts this high level instmction into machine dependent code (machine language) and the objective of
incrementing the variable counter may be implemented using a nuimber of low level instructions by
the compiler/cross compiler. This violates the ‘atomic’ rule of operation. Imagine a situation where an
execution switch (context switch) happens when one thread is in the middle of executing the low level
instmctions corresponding to the high level instruction counter++, of the function and another thread
(which is currently in execution after the context switch) or an ISR calls the same function and executes
the instmction counter++, this will result in inconsistent result. Refer to the section ‘Racing’ under the
topic ‘ Task Synchronisation Issues' of the chapter ‘Designing with Real Time Operating Systems’ for
more details on this. Eliminating shared global variables and making them as variables local to the func¬
tion solves the problem of modification of shared variables by concurrent execution of the function.

Rule# 3 is selfexplanatory. If a re-entrant function calls another function which is non-reentrant, it
may create potential damages due to the unexpected modification of shared variables if any. What will
happen if a reentrant function calls a standard library function at run time? By default most of the run
time library is reentrant. If a standard library function is not reentrant the function will no longer be
reentrant.

Rule# 4 deals with the atomic way of accessing hardware devices. The term ‘atomic’ in hardware ac¬
cess refers to the number of steps involved in accessing a specific register of a hardware device. For the
hardware access to be atomic the number of steps involved in hardware access should be one. If access
is achieved through multiple steps, any interruption in between the steps may lead to erroneous results.
A typical example is accessing the hardware register of an I/O device mapped to the host CPU using
paged addressing technique. In order to Read/Write from/to any of the hardware registers of the device
a minimum of two steps is required. First write the page address, corresponding to the page in which
the hardware register belongs, to the page register and then read the register by giving the address of
the register within that page. Now imagine a situation where an interrupt occurs at the moment execut¬
ing the page setting instruction in progress. The ISR will be executed after finishing this instruction.
Suppose ISR also involves a Read/Write to another hardware register belonging to a different page.
Obviously it will modify the page register of the device with the required value. What will be its impact?
On finishing the ISR, the interrupted code will try to read the hardware register with the page address
which is modified by the ISR. This yields an erroneous result.

How to declare a function as Reentrant The way in which a function is declared reentrant is cross-
compiler dependent. For Keil C51 cross-compiler for 8051 controller, the keyword ‘reentrant’ added as
function attribute treats the function as reentrant. For each reentrant function, a reentrant stack area is
simulated in internal or external memory depending whether the data memory is internal or external to
the processor/controller. A typical reentrant function implementation for C51 cross-compiler for 8051

controller is given below.

.int ir.ultip.iy (char i, int b) reentrant

f.'is-,.. % Int x; - , , ;-T» .. --rtrr ;;

I LA.. .*» x - table Ui}; A< ,--v- • , j-. - n

■■■V‘S'5- return (x * b);

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The simulated stack used by reentrant functions has its own stack pointer which is independent of
the processor stack and stack pointer. For C51 cross compiler the simulated stack and stack pointers are
declared and initialised in the startup code in STARTUP.A51 which can be found in the LIB subdirec¬
tory. You must modify the startup code to specify which simulated stack(s) to initialize in order to use
re-entrant functions. You can also modify the starting address for the top of the simulated stack(s) in
the startup code. When calling a function with a re-entrant stack, the cross-compiler must know that the
function has a re-entrant stack. The cross-compiler figures this out from the function prototype which
should include the reentrant keyword (just like the function definition). The cross compiler must also
know which reentrant stack to stuff the arguments for it. For passing arguments, the cross-compiler gen¬
erates code that decrements the stack pointer and then “pushes” arguments onto the stack by storing the
argument indirectly through R0/R1 or DPTR (5057 specific registers). Calling reentrant function decre¬
ments the stack pointer (for local variables) and access arguments using the stack pointer plus an offset
(which corresponds to the number of bytes of local variables). On returning, reentrant function adjusts

. the stack pointer to the value before arguments were pushed. So the caller does not need to perform any
stack adjustment after calling a reentrant function.

Reentrant vs. Recursive Functions The terms Reentrant and Recursive may sound little confusing.
You may find some .amount of similarity among them and ultimately it can lead to the thought are Re¬
entrant functions and Recursive functions the same? The answer is—it depends on the usage context of
the function. It is not necessary that all recursive functions are reentrant. But a Reentrant function can
be invoked recursively by an application.

For 8051 Microcontroller, the internal data memory is very small in size (128 bytes) and the stack
as well user data memory is allocated within it. Normally all variables local to a function and function
arguments are stored in fixed memory locations of the user data memory and each invocation of the
function will access the fixed data memory and any recursive calls to the function use the same memory
locations. And, in this case, arguments and locals would get corrupted. Hence the scope for implement¬
ing recursive functions is limited. A reentrant function can be called recursively to a recursion level
dependent on the simulated stack size for the same reentrant function.

C51 Cross-compiler does not support recursive calls if the functions are non-reentrant.

9.3.3.22 Dynamic Memory Allocation Every embedded application, regardless of whether it is
running on an operating system based product or a non-operating system based product (Super loop
based firmware Architecture) contains different types of variables and they fall into any one of the fol¬
lowing storage types namely; static, auto, global or constant data. Regardless of the storage type each
variable requires memory locations to hold them physically. The storage type determines in which
area of the memory each variable needs to be kept. For an Assembly language programmer, handling
memory for different variables is quite difficult. S/he needs to assign a particular memory location for
each variable and should recollect where s/he kept the variable for operations involving that variable.

Certain category of embedded applications deal with fixed number of variables with fixed length and
certain other applications deal with variables with fixed memory length as well as variable with total
storage size determined only at the runtime of application (e.g. character array with variable size). If the
number of variables are fixed in an application and if it doesn’t require a variable size at run time, the
cross compiler can determine the storage memory required by the application well in advance at the run
time and can assign each variable an absolute address or relative (indirect) address within the data mem¬
ory. Here the memory required is fixed and allocation is done before the execution of the application.
This type of memory allocation is referred as ‘Static Memory Allocation'. The term ‘Static’ mentioned

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

.4

1

here refers 'fixed’ and it is no way related to the storage class static. As mentioned, some embedded
applications require data memory which is a combination of fixed memory (Number of variables and
variable size is known prior to cross compilation) and variable length data memory. As an example, let’s
take the scenario where an application deals with reading a stream of character data from an external en¬
vironment and the length of the stream is variable. It can vary between any numbers (say 1 to 100 bytes).
The application needs to store the data in data memory temporarily for some calculation and it can be
ignored after the calculation. This scenario can be handled in two ways in the application program. In
the first approach, allocate fixed memory with maximum size (say. 100 bytes) for storing the incoming
data bytes from the stream. In the second approach allocate memory at run .time of the application and
de-allocate (free) the memory once the data memory storage requirement is over. In the first approach
if the memory is allocated fixedly, it is locked forever, and cannot re-used by the application even if
there is no requirement for the allocated number of bytes and it will definitely create memory bottleneck
issues in embedded systems where memory is a big constraint. Hence it is not advised to go for fixed
memory allocations for applications demanding variable memory size at run time. Allocating memory
on demand and freeing the memory at run time is the most advised method for handling the stor¬
age of dynamic (changing) data and this memory allocation technique is known as ‘Dynamic Memory
Allocation

Dynamic memory allocation technique is employed in Operating System (OS) based embedded
systems. Operating system contains a ‘Memory Management Unit’ and it is responsible for handling
memory allocation related operations. The memory management unit allocates memory to hold the code
for the application and the variables associated with the application. The conceptual view of storage of
an application and the variables related to the application is represented in Fig. 9.12.

m

Dynamic Storage
Memory

Auto Variables

> 1
|

>

•

< 1
K 1

|

> 1

Free Memory >

Alterable Data

Constant Data >

Source Code

Stack

Heap

Static Storage
Memory

9.12) Static and Dynamic Memory Storage Allocation

i

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Memory manager allocates a memory segment to each application and the memory segment holds
the source code of the application as well as data related to the application. The actual program code
(executable machine code instructions) is stored at the lower address of the memory (at the beginning
address of the memory segment and stores upward). Constant data related to the application (e.'g. const
int x = 10;) is stored at the memory area just above the executable code. The alterable data (global and
static variables; e.g. static intj = 10; int k= 2; (global declaration), etc.) are stored at the ‘Alterable Data'
memory area. The size of the executable code, the number of constant data and alterable data in an ap¬
plication is always fixed and hence they occupy only a fixed portion of the memory segment. Memory
allocated for the executable code, constant data and alterable data together constitute the 'Static storage

memory (Fixed storage memory)'. The storage memory available within the memory segment exclud¬
ing the fixed memory is the ‘Dynamic storage memory'. Dynamic storage memory area is divided into
two separate entities namely 'stack' and 'heap'. 'Stack memory' normally starts at the high memory-
area (At the top address) of the memory segment and grows down. Within a memory segment, fixed
number of storage bytes are allocated to stack memory and the stack can grow up to this maximum al¬
located size. Stack memory is usually used for holding auto variables (variables local to a function),
function parameters and function return values. Depending upon the function calls/retum and auto vari¬
able storage, the size of the stack grows and shrinks dynamically. If at any point of execution the stack
memory exceeds the allocated maximum storage size, the application may crash and this condition is
called ‘Stack overflow'. The free memory region lying in between the stack and fixed memory area is
called 'heap'. Heap is the memory pool where storage for data is done dynamically as and when the
application demands. Heap is located immediately above the fixed memory area and it grows upward.
Any request for dynamic memory allocation by the program increases the size of heap (depending on
the availability of free memory within heap) and the free memory request decrements the size of heap

(size of already occupied memory within the heap area). Heap can be viewed as a ‘bank’ in real life,
application, where customers can demand for loan. Depending on the availability of money, bank may
allot loan to the customer and customer re-pays the loan to the bank when he/she is through with his/her
need. Bank uses the money repaid by a customer to allocate a loan to another customer—some kind of
rolling mechanism. ‘C’ language establishes the dynamic memory allocation technique through a set
of ‘Memory management library routines'. The most commonly used ‘C’ library functions for dynamic
memory allocation are ‘malloc’, ‘calloc’, ‘realloc’ and free'. The following sections illustrate the use of
these memory allocation library routines for allocating and de-allocating (freeing) memory-dynamically.

mallocO mallocQ function allocates a block of memory dynamically. The malloc() function reserves
a block of memory of size specified as parameter to the function, in the heap memory and returns a
pointer of type void. This can be assigned to a pointer of any valid type. The general form of using mal¬

locO function is given below.

pointer = (pointer Jiype *) malloc (no. of bytes);

where ‘pointer' is a pointer of type ‘pointerjype’. ‘pointerjype’ can be 'int', 'char', 'float' etc. mal¬

locO function returns a pointer of type ‘pointerjype’ to a block of memory with size 'no. of bytes’. A
typical example is given below.

ptr= (char *) malloc (.50) ; .

This instruction allocates 50 bytes (If there is 50 bytes of memory available in the heap area) and the
address of the first byte of the allocated memory in the heap area is assigned to the pointer ptr of type
char. It should be noted that the mallocQ function allocates only the requested number of bytes and it
i https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

will not allocate memory automatically for the units of the pointer in use. For example, if the program¬
mer wants to allocate memory for 100 integers dynamically, the following code

!?". x= (int‘*) .maloc (100);

will not allocate memory size for 100 integers, instead it allocates memory for just 100 bytes. In order
to make it reserving memory for 100 integer variables, the code should be re-written as

' x= (int': malloc (100 '* sizeof (int)) ;

mallocQ function can also be used for allocating memory for complex data types such as structure
pointers apart from the usual data types like ‘int’, ‘char’, ‘float’ etc. mallocQ allocates the requested
bytes of memory in heap in a continuous fashion and the allocation fails if there is no sufficient memory
available in continuous fashion for the requested number of bytes by the mallocQ functions. The return
value of mallocQ will be NULL (0) if it fails. Hence the return value of mallocQ should be checked to
ensure whether the memory allocation is successful before using the pointer returned by the mallocQ

function.

- E.g. int * ptr;

- ’ if ((ptr— (int *) malToc(50 * sizeof (int)))')

* ' printf ("Memory allocated successfully");

:■ ' / else

printf ("Memory allocation failed");

Remember mallocQ only allocates required bytes of memory and will not initialise the allocated

memory. The allocated memory contains random data.

callocO The library function callocQ allocates multiple blocks of storage bytes and initialises each
allocated byte to zero. Syntax of callocQ function, is illustrated below.

,. 'pointer- =%..,tpoinfcsr_dfype, 5*) ..caLLoc" fin|,> .si-zetof bl'p&kL* 1 . - . v* * *«

where ‘pointer’ is a pointer of type ‘pointer_type\ ‘pointer_type’ can be ‘int’, ‘char’, ‘float’ etc. V
stands for the number of blocks to be allocated and ‘size of block’ tells the size of bytes required per
block. The calloc(n, size of block) function allocates continuous memory for V number of blocks with
‘size of block’ number of bytes per block and returns a pointer of type ‘pointertype’ pointing to the first
byte of the allocated block of memory. A typical example is given below.

ptr= (char *) oalloc (5.0,1)';

Above instruction allocates 50 contiguous blocks of memory each of size one byte in the heap mem¬
ory and assign the address of the first byte of the allocated memory region to the character pointer ‘ptr'.

Since mallocQ is capable of allocating only fixed number of bytes in the heap area regardless of the
storage type, callocQ can be used for overcomming this limitation as discussed below.

ptr= (int *) calloc(50,sizeof(int));

This instruction allocates 50 blocks of memory, each block representing an integer variable and ini¬
tialises the allocated memory to zero. Similar to the mallocQ function, callocQ also returns a ‘NULL’
pointer if there is not enough space in the heap area for allocating storage for the requested number of
memory by the callocQ function. Hence it is advised to check the pointer to which the callocQ assigns

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the address of the first byte in the allocated memory area. If callocQ function fails, the return value will
be ‘NULL’ and the pointer also will be ‘NULL’. Checking the pointer for ‘NULL’ immediately after
assigning with pointer returned by callocQ function avoids possible errors and application crash.

Features provided by callocQ can be implemented using mallocQ function as

pointer = (pointer^ type *) malloc (n * size of block) ;

memset(pointer, 0, n * size of block);

For example

ptr= (int *) mall oc (10 *• sizeof (int)); ' - w- 'I’TU?

' ‘ memset (ptr,'“0, »n * size-of block) ;

The function memset (ptr, 0, n * size of. block) sets the memory block of size (n * size of block) with
starting address pointed by ‘ptr\ to zero.

free() The ‘C’ memory management library function free'Q is used for releasing or de-allocating the
memory allocated in the heap memory by mallocQ or callocQ functions. If memory is allocated dynami¬
cally, the programmer should release it if the dynamically allocated memory is no longer required for
any operation. Releasing the dynamically allocated memory makes it ready to use for other dynamic
allocations. The syntax offreeQ function is given below.

free (ptr)•„ ,

‘ptr’ is the valid pointer returned by the callocQ or mallocQ function on dynamic memory allocation.
Use of an invalid pointer with function freeQ may result in the unexpected behaviour of the application.

1. s The dynamic memory allocated using mallocQ or callocQ functions should be released (deallocated)

usingfreefj%nciioni \ "• ^

2. Any use of a pointer which refers to freed memory ifade results in abnormal behaviour of application:

3. If the parameter to free () function is not a valid pointer, the application behaviour may be

unexpected.

reallocQ reallocQ function is used for changing the size of allocated bytes in a dynamically allocated
memory block. You-may come across situations where the allocated memory is not sufficient to hold the
required data or it is surplus in terms of allocated memory bytes. Both of these situations are handled
using reallocQ function. The reallocQ function changes the size of the block of memory pointed to, by
the pointer parameter to the number of bytes specified by the-modified size parameter and it returns a
new pointer to the block. The pointer specified by the pointer parameter must have been created with
the malloc, calloc, or realloc subroutines and not been de-allocated with the free or realloc subroutines.
Function reallocQ may shift the position of the already allocated block depending on the new size, with
preserving the contents of the already allocated block and returns a pointer pointing to the first byte of
the re-allocated memory block. reallocQ returns a void pointer if there is sufficient memory available
for allocation, else return a ‘NULL’ pointer. Syntax of realloc is given below.

realloc (pointer, modified sizef-;

Example illustrating the use of reallocQ function is given below.

char *p;

p= (char*) malloc (10); //Allocate 10 bytes of memory

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

p= realloc(p,15); //Change the allocation to 15 bytes

realloc (p,0) is same as free(p), provided 'p' is a valid pointer.

4

?5 / Embedded firmware can be developed to run with the help of an embedded operating system or without an OS

The non-OS based embedded firmware execution runs the tasks in an infinite loop and this approaches known as

‘Super loop based’execution

/ / Low level language (Assembly code) or High Level language (C.CI + etc.) or a mix of both are used in embedded j

Y firmware development :i ■ : " •' ■ - ;

Y / In Assembly language based design, the firmware is developed using the Assembly language Instructions spe¬

cific to the target processor. The Assembly code is converted to machine specific code by an assembler.

b V In High Level language based design, the firmware is developed using High Level language like ‘C/C 1+’ and it

is converted to machine specific code by a compiler or cross-compiler

1 if?'®: Mixing of Assembly and High Level language can be done in three ways namely; mixing assembly routines with

a high level language like ‘C’, mixing high level language functions like ‘C’ functions with application written

f 7 in assembly code and invoking assembly instructions inline from the high level code f 11| .

| Y Embedded ‘C’ can be considered as a subset of conventional ‘C’ language. Embedded C supports almost all'

r - ‘C’ instructions and incorporates a few target processor specific functions/instructions. The standard ANSI 1C’ -

Y Y library implementation is always tailored to the ta^et^rpdesSQr/controller libraryiiles in Embedded C > Y

J;;;/ Compiler is a tool for native platform application development, whereas cross-compiler is a tool for cross plat-;*:

ClT form application development ' 4 ” “ f

Embedded ‘C’ supports all the keywords, identifiers and data types, storage classes, arithmetic and logical ppera-

|,r lions, array and branching instructions supported by standard ‘C’ ■ ■
:• V structure is a collection Of data types. Arrays of structures are helpful in holding configuration data in embedded

applications. The bitfieldfeature of structures helps in bit declaration and bit'manipulation in embedded applica¬

tions

Y Pre-processor in ‘C’ is compiler/cross-compiler directives used by compiler/cross-compiler to filter the source

code before compilation/cross-compilation. Preprocessor directives falls into one of the categories: file inclusion,

compile control and macro substitution

Y ‘Read only’ variable in embedded applications are represented with the keyword const. Pointer to constant data

is a pointer which points to a data which is read only. A constant pointer is a pointer to a fixed memory location.

Constant pointer to constant data is a pointer pointing to a fixed memory location which is read only

Y A variable or memory location in embedded application, which is subject to asynchronous modification should

be declared with the qualifier volatile to prevent the compiler optimisation on the variable

Y A constant volatile pointer represents a Read only register (memory location) of a memory mapped device hi

embedded application

Y while(l) {};do {fwhile (l)\for (;;){} are examples for infinite loop setting instructions in embedded ‘C’.

Y The ISR contains the code for saving the current context, code for performing the operation corresponding to

the interrupt, code for retrieving the saved context and code for informing the processor that the processing of

interrupt is completed

C Recursive function is a function which calls it repeatedly. Functions which can be shared safely with several

processes concurrently are called re-entrant function.

C Dynamic memory allocation is the technique for allocating memory on a need basis for tasks. mallocQ, callocQ,

reallocQ andfree() are the ‘C’ library routines for dynamic memory management

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Keywords

Super Loop Model

Assembly Language

Machine Language

Mnemonics

.Assembief,

; ■; :vt

Linker T he*

Hex File -

inline Assembly ;iv

Embedded C -'

Compiler

Cross-compiler

Function

Function Pointer

structure

structure Padding

Pre-processor

Macro

Dynamic Memory Allocation

Stack

Static Memory Area

An embedded firmware design model which executes tasks in an infinite loop

at a predefined order '% ■

The human readable notation of‘machine language’

Processor understandable language made up of Is and Os ,,

Symbols used in Assembly language for representing the machine language

A program to translate Assembly language program to ob

Specially formattedj; ordered program collections of obje

A software for linking the various object files of a project
.

ASCII representation of the machine code corresponding to

A technique for inserting assembly instructions in a C progra

■w

Heap Memory

‘C’ Language for embedded firmware development. It supports ‘C’ instructions

and incorporates a few target processor specific functions/instructions along

with tailoring of the standard library functions for the target embedded system -

A software tool that converts a source code written in a high level language

on top of a particular operating system running otfig

architecture I ’ , 1* \ ’
. ...

The software tools used in cross-platfonn development app

the application to a target processor specific code, which is different from the

processor architecture on which'the compiler is running

A self-contained and re-usable code snippet intended to perform ia particular '

task

Pointer variable pointing to a function

Variable holding a collection of data types (int, float, char, long, etc.) in C lan¬

guage \ ;

The act of arranging the structure elements in memory in a way facilitating

increased execution speed , .' Y'A

A derived form of structure, which allocates memory only to the member vari¬

able of union requiring the maximum storage size on declaring a mnion van-

able

A compiler/cross-compiler directives used by compiler/ cross-compiler to filter

the source code before compilation/cross-compilation in ‘C’ language

The ‘C’ pre-processor for creating portable inline code

A keyword used in ‘C’ language for informing the compiler/cross-compiler that

the variable is constant. It represents a ‘Read only’ variable

The technique for allocating memory on a need basis at run time

The memory area for storing local variables, function parameters and function

return values and program counter, in the memory model for an application/

task

The memory area holding the program code, constant variables, static and glob¬

al variables, in the memory model for an application/task

The free memory lying in between stack and static memory area, which is used

for dynamic memory allocation

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

Objective Questions

1. Which of the following is a processor understandable language?

(a) Assembly language (b) Machine language (c) High level language

2. Assembly language is the human readable notation of?

(a) Machine language (b) High level language (c) None of these

3. Consider the following piece of assembly code

ORG OOOOHf r ; ^

LJMP MATNjV r v r, ' “ -A;

Here ‘ORG' is a

(a) Pseudo-op (b) Label (c) Opcode (d) Operand

4. Translation of assembly code to machine code is performed by the

(a) Assembler (b) Compiler (c) Linker (d) Locater

5. A cross-compiler converts an embedded ‘C’ program to

(a) The machine code corresponding to the processor of the PC used for application development

(b) The machine code corresponding to a processor which is different from the processor of the PC used for

application development

6. ‘ptr’ is an integer pointer holding the address of qn integer variable say x which holds the value 10. Assume the

address of the integer variable x as 0xl2fF7c. What will be the output of the below piece of code? Assume the stor¬

age size of integer is 4

ptr+=2; .VpV.>yj'A

//Print %he address holding, hy the' pointer?

printf ("Ox%x\n", ptr);

(a) 0xl2ff7c (b) 0xl2ff7e (c) 0xl2ff84 (d) None

7. ‘ptr' is a char pointer holding the address of a char variable say x which holds the value 10. Assume the address

of the char variable x as 0xl2ff7c. What will be the output of the below piece of code?

//Print the address holding by the pointer

printf ("0x%k\n", ptr++); - r '

(a) 0xl2ff7c (b) 0xl2ff7d (c) 0xl2ff80 (d) None

8. ‘ptr' is a char pointer holding the address of a char variable say x which holds the value 10. Assume the address

of the char variable x as 0xl2ff7c. What will be the output of the below piece of code?

//Print the address halding by the pointer

printf("0x%x\n", ++ptr);

(a) 0xl2ff7c (b) 0xl2ff7d (c) 0xl2ff80 (d) None

9. ‘ptrF is a char pointer holding the address of the char variable say x which holds the value 10. ‘ptr2’ is a char

pointer holding the address of the char variable sayy which holds the value 20. Assume the address of char vari¬

able x as 0xl2ff7c and char variable y as 0xl2ff78. What will be the output of the following piece of code?

//Print, the address holding by the pointer '

printf'(''%:x\h"/ (ptr'+plr2));

(a) 30^ (b) 4 (c) Compile error (cannot add two pointers)

(d) 0x2(5fef4

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

10. ’’ptrl ’ is a char pointer holding the address of the char variable say x which holds the value 10.. Assume the address

of char variable x as 0x12ff7c. What will be the output of the following piece of code?

++*ptrl; ' *' ' f. ,

printf("%x\n", *ptrl); - - "A,..,. -.. v

(a) 0x0a (b) 0x0b (c) Oxl2ff7c (d) 0xl2ff7d

11. ‘ptrl ’ is a char pointer holding the address of the char variable say x which holds the value 10. Assume the address

of char variable x as 0xl2ff7c. What will be the output of the following piece of code?

++*.ptrl;. .
printf("%x\n", ptrl); : ~ ' ,

0) 0x0a (b) 0x0b (c) 0xl2ff7c (d) 0xl2ff7d

12. ‘ptrl ’ is a char pointer holding the address of the char variable say x which holds the value 10. Assume the address

of char variable x as 0xl2ff7c. What will be the output of the following piece of code?

*ptrl:++;
printf("%x\nf, *ptrl); ;

(a) 0x0b (b) The contents of memory location 0xl2fF7d (c) 0xl2ff7c

(d) 0xl2ff7d

13. ‘ptrl ’ is a char pointer holding the address of the char variable say x which holds the value 10. Assume the address

of char variable x as 0xl2ff7c. What will be the output of the following piece of code?

(c) 0xl2ff7c

*ptrl++; . • ; . gfep

printf ("%x\n", ptrl); , 1 . ; i

(a) 0x0b (b) The contents of memory location Ox 12fF7d

(d) 0xl2ff7d

14. Which of the following is the string termination character?

(a) ‘\n’ (b) At’ (c) AO’

15. What is the output of the following piece of code?

char name.[6] = {'H',' E',' L',' L',' O',' }

printf("%d",strlen(name)) ;

(a) 6 (b) 5 (c) 7

16. What is the output of the following piece of code?

char strl[] = "Hello " - '

char str2[] = "World!";

strl+= str2;

printf("%s\n",strl) ;

(c) 0xl2ff7c

(d) ‘\a’

(d) None of the above

(a) Hello (b) Hello World!

17. What is the output of the following piece of code?

char strl [] = "Hello world.!";

char str2 [] = "Hello World!" ;

int n;

n= stricmp(strl, str2);

printf("%d", n) ;

(c) Compile error (d) World!

(c) -1

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

18. What is the output of the following piece of code?

char strl[] = "Hello "

char str2[] = "World!";

strcpv (strl, sr.r2) ; ' . ■ . ,

printf("%s\n",strl);

(a) Hello (b) Hello World! (c) Compile error (d) World!

19. What is the output of the following piece of code?

char str.l[J = "Hello'" ’ "i 'i-.i- i

char str2:] = "World!"; . „ ' T; - "Ir’i. l •/ .

■ s-trl - str2; , ■ ' • “ ■ Xi fr'A

printf ("%s\n",strl) ; _■ ~'y- ”v-V 5 •' *

(a) Hello (b) Hello World! (c) Compile error (d) World!

20. Consider the following structure declaration

typedef struct

unsigned char command;;;-/'/ command to; pasS '-'to- device - W

unsigned;, char status; 1 ‘//status of command execution

unsigned char BytesToSend; //No . -of bytes to send

unsigned char BytesReCeiyed;! //No. of bytes received

} Info; ■ - - • < *r'”' liiygA. W". ■

Assuming the size of unsigned char as 1 byte, what will be the memory allocated for the structure?

_(a) 1 byte (b) 2 bytes (c) 4 bytes (d) 0 bytes

21. Consider the following structure declaration

typedef struct

unsigned char hour; // command to pass to device

unsigned char minute; //status of command execution

unsigned char seconds; //No. of bytes to send

}RTC_Time;

Assuming the size of unsigned char as 1 byte, what will be the output of the following piece of code when com¬

piled for Keil C51 cross compiler

static volatile RTC_Time xdata *current_time = (void xdata *) 0x7000;

void main ()

{
unsigned char test;

test = current_time->minute;

printf("%d", test);

}

(a) 0x7000 (b) 0x7001 (c) Content of memory location 0x7000

(d) Content of memory location 0x7001

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

22. Consider the following structure declaration

t-ypedef. struct ' ^dLi l -.' * '‘U- .•

. unsigned char hour; // Hour Reg value - •’ ; ; .

unsigned char minute; // Minute value ,.Y_ _

unsigned ena.i: .seconds; //■ ..Seconds value Jy.,.,

}RTC_Time; / ■ •

Assuming the size of unsigned char as 1 byte, what will be the output of the following piece of code when com

piled for Keil C51 cross compiler

What will be the output of the following piece of code? Assume the storage size of int as 2 and unsigned char as

1 —

un.ion_ichar int^char;

void nahn(void) > / ,

unsigned char test;

test = sizeof (.int_ch:ar)';"‘

printf("%d"ftest);

(a) 0 (b) 2 . (c) 3 (d) 5

24. The default initialiser for a union with static storage is the default for

(a) The first member variable

(b) The last member variable

(c) The member variable with the highest storage requirement

25. Which of the following is (are) True about pre-processor directives?

(a) compiler/cross-compiler directives

(b) executable code is generated for pre-processor directives on compilation

(c) No executable code is generated for pre-processor directives on compilation

(d) Start with # symbol (e) (a), (b) and. (d) (f) (a), (c) and (d)

26. The ‘C’ pre-processor directive instruction always ends with a semicolon (;). State ‘True’ or ‘False’

(a) True - (b) False

27. Which of the followingis the file inclusion pre-processor directive?

(a) #define (b) #include (c) #ifdef (d) None of these

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

28. Which of the following pre-processor directive is used for indicating the end of a block following tiifdef <

ttelsel

(a) #define (b) #undef (e) #endif

29. Which of the following preprocessor directive is used for coding macros?

(a) #ifdef (b) #define (c) #undef

30. What will be the output of the following piece of code?

#define A 2+8 - , «

Idefine B , 2+3 ; +, .

void main (void) V ' : :
' '' ^ .■(n ...rf ^ '• * . ' ' '.

Unsigned char result ft)

result = A/B ;

printf ("%d", result).;-

(d) #ifndef

(d) #endif

(a) 0

31. The instruction

const unsi

represents:

(a) Pointer to constant data

(c) Constant pointer to constant data

32. The instruction

unsigned char* cortse x; v"

represents:

(a) Pointer to constant data

(c) Constant pointer to constant data

33. The instruction

const unsigned"char* const x; i

represents:

(a) Pointer to constant data

(c) Constant pointer to constant data

34. The instruction

volatile unsigned char* x;

represents:

(a) Volatile pointer to data

(c) Volatile pointer to constant data

35. The instruction

volatile const unsigned char* x;

(b) Constant pointer to data

(d) None of these

(b) Constant pointer to data

(d) None of these

(b) Constant pointer to data

(d) None of these

(b) Pointer to volatile data

(d) None of these

represents:

(a) Volatile pointer to data (b) Pointer to volatile data

(c) Pointer to constant volatile data (d) None of these

36. The constant volatile variable in Embedded application represents a

(a) Write only memory location/register (b) Read only memory location/register

(c) Read/Write memory location/register

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

37. What will be the output of the following piece of code? Assume the data bus width of the controller on which the

program is executed as 8 bits.

void main (void) .. -.i

unsigned char flag = 0x00; - . ■ ' . -. - A d : ,

flag |= (1«7)

printf("%d", flag); , . ; •

(a) 0x00 (b) 0x70 (c) 0x80 (d) OxFF

38. The variable ‘x’ declared with the following code statement

const int x = 5; -. ’ ' :

(d) OxFF

will be stored in which section of the memory allocated to the program?

(a) Constant Data Memory (b) Heap Memory (c) Alterable Data Memory

(d) Stack Memory (e) Register , ' (

39. What will be the memory allocated on successful execution of the following memory allocation request? Assume

the size of int as 2 bytes

x = (mt *.) ir.all.oc (TOO) ; . A- c: ,iv; W- - :■.*?..&* ' ' W

(a) 2 Bytes (b) 100 Bytes (c) 200 Bytes (d) 4 Bytes

40. Which of the following memory management routine is used for changing the size of allocated bytes in a dynami¬

cally allocated memory block

(a) mallocQ (b) reallocQ (c) callocQ (d) freeQ

®5H Review Questions
l — - — __ -/

1. Explain the different ‘embedded firmware design’ approaches in detail

2. What is the difference between ‘Super loop’ based and ‘OS’ based embedded firmware design? Which one is the

better approach?

3. What is ‘Assembly Language’Programming?

4. Explain the format of assembly language instruction

5. What is ‘pseudo-ops’? What is the use of it in Assembly Language Programming?

6. Explain the various steps involved in the assembling of an assembly language program

7. What is relocatable code? Explain its significance in assembly programming

8. Explain ‘library file’ in assembly language context. What is the benefit of ‘library file’?

9. What is absolute object file?

10. Explain the advantages of ‘Assembly language’ based Embedded firmware development

11. Explain the limitations/drawbacks of ‘Assembly language’ based Embedded firmware development

12. What is the difference between compiler and cross-compiler?

13. Explain the ‘High Level language’ based ‘Embedded firmware’ development technique

14. Explain the advantages of ‘High Level language’ based ‘Embedded firmware’ development

15. Give examples for situations demanding mixing of assembly with ‘C’. Explain the techniques for mixing assembly

with ‘C’.

16. Give examples for situations demanding mixing of ‘!C’ with assembly. Explain the techniques for mixing ‘C’ with

assembly.

https://hemanthrajhemu.github.io

Embedded Firmware Design and Development

17. What is ‘inline Assembly’? How is it different from mixing assembly language with ‘C’?

18. What is ‘pointer’ in embedded C programming? Explain its role in embedded application development.

19. Explain the different arithmetic and relational operations supported by pointers

20. What is ‘NULL’ Pointer? Explain its significance in embedded C programming

21. Explain the similarities and differences between strings and character arrays

22. Explain function in the Embedded C programming context. Explain the generic syntax of function declaration and

implementation

23. What is static function? What is the difference between static and global functions?

24. Explain the similarities and differences between function prototype.and function declaration

25. What is function pointer? How is it related to function? Explain the use of function pointers

26. Explain structure in the ‘Embedded C’ programming context. Explain the significance of structure over normal

variables

27. Explain the declaration and initialisation of structure variables

28. Explain the different operations supported by structures

29. What is structure pointer? What is the advantage of using structure pointers?

30. Explain ‘structure placement at absolute memory location’ and its advantage in embedded application develop¬

ment. Will it be possible to place a structure at absolute memory location in desktop application development?

Explain

31. What is structure padding? What are the merits and demerits of structure padding?

32. What is bit field? How bit field is useful in variant data access?

33. Explain the use of offsetojl) macro in structure operations.

34. What is union? What is the difference between union and structure?

35. Explain how union is useful in variant data access.

36. Explain the use of union in ‘Embedded C’ applications

37. What is pre-processor directive? How is a pre-processor directive instruction differentiated from normal program

code?

38. What are the different types of pre-processor directives available in ‘Embedded C’? Explain them in detail

39. What is macro in ‘Embedded C’ programming?

40. What is the difference between macros and functions?

41. What are the merits and drawbacks of macros'?

42. Write a macro to multiply two numbers

43. Explain the different methods of ‘constant data' declaration in ‘Embedded C’. Explain the differences between the

methods.

44. Explain the difference between ‘pointer to constant data' and ‘constant pointer to data' in ‘Embedded C’

programming. Explain the syntax for declaring both.

45. What is constant pointer to constant datal Where is it used in embedded application development?

46. Explain the significance of ‘volatile’ type qualifier in Embedded C applications. Which all variables need to be

declared as ‘ volatile' variables in Embedded C application?

47. What is ‘pointer to constant volatile data’? What is the syntax for defining a ‘pointer to constant volatile data’?

What is its significance in embedded application development?

48. What is volatile pointer? Explain the usage of ‘ volatile pointer' in ‘Embedded C’ application

49. Explain the different techniques for delay generation in ‘Embedded C’ programming. What are the limitations of

delay programming for super loop based embedded applications?

50. Explain the different bit manipulation operations supported by ‘Embedded C’

51. What is Interrupf! Explain its properties? What is its role in embedded application development?

52. What is Interrupt Vector Address and Interrupt Service Routine (ISR)? How are they related?

53. What is the difference between Interrupt Service Routine and Normal Service Routine?

54. Explain context switching, context saving and context retrieval in relation to Interrupts and Interrupt Service

Routine (ISR)

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

55. What all precautionary measures need to be implemented in an Interrupt Service Routine (ISR)?

56. What is ‘recursion’? What is the difference between recursion and iteration? Which one is better?

57. What are the merits and drawbacks of ‘recursion’!

58. What is ‘reentrant’ function? What is its significance in embedded applications development?

59. What is the difference between ‘'recursive'’ and ‘reentrant’ function?

60. Explain the different criteria that need to be strictly met by a function to consider it as ‘reentrant’ function.

61. What is the difference between Static and Dynamic memory allocation?

62. Explain the different sections of a memory segment allocated to an application by the memory manager

63. Explain the different ‘Memory management library routines’ supported by C

64. Explain the difference between the library functions mallocQ and callocQ for dynamic memory allocation

Lab Assignments)

1 Write a‘C‘ program to create a ’reentrant’ function which removes the white spaces from a string which is 'sup¬

plied as input to the function and returns the new string without white spaces. The main ‘C’ function passes a

. string to the reentrant function and accepts the string with white spaces removed

2, Write a C program to place a character variable at memory location OxOGOFF and load it with O.xFE. Compile the

application using Microsoft Visual Studio compiler and rim,it on a desktop machine with Windows Operating

« i ;. L System. Record the output and explain th^reasonbehind the output behaviour

3. Write a small embedded C program to complement bit 5 (Assume bit numbering starts at 0) of the status register

s of a device, which is memory mapped to the CPU. The status register of the device is memory mapped at location

■ 0x3000. The data bus of the controller arid the status register of the device is 8bit wide 1

. 4. Write a small embedded C program to set bit 0 and clear bit 7 of the status register of a device, which is memory

"".' mapped to the CPU. The status register of the device is memory mapped at location 0x8000. The data bus of

the controller and the status register of the device is 8bil wide. The application should illustrate the usage of bit

manipulation operations. T

5. Write a small embedded C program to test the status of bit 5 of the status register and reset it if it is 1, of a device,

which is memory mapped to the CPU. The status register of the device is memory mapped at location 0x7000.

Ihe data bus of the controller and the status register of the device is 8bit wide. The application should illustrate

the usage of bit manipulation operations.

6. Write an ‘Embedded C’program for Keil C51 cross-compiler for transmitting a string data through the serial port

of 8051 microcontroller as per the following requirements

(a) Use structure to hold the communication parameters

(b) Use a structure array for holding the configurations corresponding to various baudrates (say 2400, 4800,

9600 and 195200)

(c) Write the code for sending a string to the serial port as function. The main routine invokes this function with

the string to send. Use polling of Transmit Interrupt for ensuring the sending of a character

https://hemanthrajhemu.github.io

