

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to
Embedded Systems

Shibu KV

Technical Architect

Mobility & Embedded Systems Practice

Infosys Technologies Ltd.,

Trivandrum Unit, Kerala

Me
Graw
Hill
Education

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices
New Delhi New York St Louis San Francisco Auckland Bogota Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

https://hemanthrajhemu.github.io

Contents

Keywords 221

Objective Questions 222

Review Questions 223

Lab Assignments 224

Part 2
Design and Development of Embedded Product

8. Embedded Hardware Design and Development
8.1 Analog Electronic Components 229

8.2 Digital Electronic Components 230

813 VLSI and Integrated Circuit Design 243

8.4 Electronic Design Automation (EDA) Tools 248

8.5 How to use the OrCAD EDA Tool? 249

8.6 Schematic Design using Oread Capture CIS 249

8.7 The PCB Layout Design 267

8.8 Printed Circuit Board (PCB) Fabrication 288

Summary 294

Keywords 294

Objective Questions 296

Review Questions 298

Lab Assignments 299

9. Embedded Firmware Design and Development
9.1 Embedded Firmware Design Approaches 303

9.2 Embedded Firmware Development Languages 306

9.3 Programming in Embedded C 318

Summary 371

Keywords 3 72

Objective Questions 373

Review Questions 378

Lab Assignments 380

10. Real-Time Operating System (RTOS) based Embedded System Design
10.1 Operating System Basics 382

.10.2 Types of Operating Systems 386

10.3 Tasks, Process and Threads 390

10.4 Multiprocessing and Multitasking 402

10.5 Task Scheduling 404

10.6 Threads, Processes and Scheduling: Putting them Altogether 422

10.7 Task Communication 426

10.8 Task Synchronisation 442

10.9 Device Drivers 476

10.10 How to Choose an RTOS 478

Summary 480

Keywords 481

Objective Questions 483

https://hemanthrajhemu.github.io

Contents

Review Questions 492

Lab Assignments 496

11. An Introduction to Embedded System Design with
VxWorks and MicroC/OS-II RTOS
11.1 VxWorks 499

11.2 MicroC/OS-II 514

Summary 541

Keywords 542

Objective Questions 543

Review Questions 544

Lab Assignments 546

12. Integration and Testing of Embedded Hardware and Firmware
12.1 Integration of Hardware and Firmware 549

12.2 Board Power Up 553

Summary 554

Keywords 554

Review Questions 555

13. The Embedded System Development Environment
13.1 The Integrated Development Environment (IDE) 55 7
1-3.2 Types of Files Generated on Cross-compilation 588

13.3 Disassembler/Decompiler 597

13.4 Simulators, Emulators and Debugging 598

13.5 Target Hardware Debugging 606

13.6 Boundary Scan 608

Summary 610

Keywords 611

Objective Questions 612

Review Questions 612

Lab Assignments 613

14. Product Enclosure Design and Development
14.1 Product Enclosure Design Tools 616

14.2 Product Enclosure Development Techniques 616

14.3 Summary 618

Summary 618

Keywords 619

Objective Questions 620

Review Questions 620

15. The Embedded Product Development Life Cycle (EDLC)
15.1 What is EDLC? 622
15.2 Why EDLC 422
15.3 Objectives of EDLC 622
15.4 Different Phases of EDLC 625

498

548

556

615

621

https://hemanthrajhemu.github.io

|V Learn the basics of an operating system and the need for an operating system

}V- Learn the internals of Real-Time Operating System and the fundamentals of RTOS based embedded firm ware design

■/ Learn the basic kernel services of an operating system ' —

|V Learn about the classification of operating systems • X

byi Learn about the different real-time kernels and the features that make a kernel Real-Time

V Learn about tasks, processes and threads in the operating system context .

W* Learn about the structure of a process, the different states of a process, process life cycle and process management

■ / Learn the concept of multithreading, thread standards and thread scheduling

/ Understand the difference between multiprocessing and multitasking,

— S Learn about the different types of multitasking (Co-operative, Preemptive and Non-preemptive)

\ / Learn about the FCFS/FIFO, LCFS/LIFO, SJF and priority based task/process scheduling ■
/ Learn about the shortest remaining time (SRT), Round Robin and priority based preemptive task/process scheduling

rS: Learn about the different Inter Process Communication (IPC) mechanisms used by tasks/process to communicate

« and co-.operate each other in a multitasking environment

S Learn the different types of shared memory techniques (Pipes, memory mapped object, etc.) for IPC

/ Learn the different types of message passing techniques (Message queue, mailbox, signals, etc.) for IPC

S Learn the RPC based Inter Process Communication

S Learn the need for task synchronisation in a multitasking environment

S Learn the different issues related to the accessing of a shared resource by multiple processes concurrently

S Learn about 'Racing', 'Starvation', 'Livelock', 'Deadlock', 'Dining Philosopher's Problem', 'Producer-Consumer/Bound¬

ed Buffer Problem', 'Readers-Writers Problem' and 'Priority Inversion'

S Learn about the ‘Priority Inheritance' and 'Priority Ceiling' based Priority avoidance mechanisms

S Learn the need for task synchronisation and the different mechanisms for task synchronisation in a multitasking

environment

S Learn about mutual exclusion and the different policies for mutual exclusion implementation

- S Learn about semaphores, different types of semaphores, mutex, critical section objects and events for task synchro¬

nisation

S Learn about device drivers, their role in an operating system based embedded system design, the structure of a

device driver, and interrupt handling inside device drivers

S Understand the different functional and nonfunctional requirements that need to be addressed in the selection of

a Real-Time Operating System

https://hemanthrajhemu.github.io

Introduction to Embedded Systems 382

In the previous chapter, we discussed about the Super loop based task execution model for firmware

execution. The super loop executes the tasks sequentially in the order in which the tasks are listed

within the loop. Here every task is repeated at regular intervals and the task execution is non-real time.

As the number of task-increases, the time intervals at which a task gets serviced also increases. If some

of the tasks involve waiting for external events or I/O device usage, the task execution time also gets

pushed off in accordance with the ‘wait’ time consumed by the task. The priority in which a task is to

be executed is fixed and is determined by the task placement within the loop, in a super loop based ex¬

ecution. This type of firmware execution is suited for embedded devices where response time for a task

is not time critical. Typical examples are electronic toys and video gaming devices. Here any response

delay is acceptable and it will not create any operational issues or potential hazards. Whereas certain

applications demand time critical response to tasks/events and any delay in the response may become

catastrophic. Flight Control systems, Air bag control and Anti Locking Brake (ABS) systems for ve¬

hicles, Nuclear monitoring devices, etc. are typical examples of applications/devices demanding time

critical task response.

How the increasing need for time critical response for tasks/events is addressed in embedded applica¬

tions? Well the answer is

1. Assign priority to tasks and execute the high priority task when the task is ready to execute.

2. Dynamically change the priorities of tasks if required on a need basis.

3. Schedule the execution of tasks based on the priorities.

4. Switch the execution of task when a task is waiting for an external event or a system resource

including I/O device operation.

The introduction of operating system based firmware execution in embedded devices can address

these needs to a greater extent.

10.1 OPERATING SYSTEM BASICS

The operating system acts as a bridge between the user applications/tasks and the underlying system

resources through a set of system functionalities and services. The OS manages the system resources

and makes them available to the user applications/tasks on a need basis. A normal computing system

is a collection of different I/O subsystems, working, and storage memory. The primary functions of an

operating system is

• Make the system convenient to use

• Organise and manage the system resources efficiently and correctly

Figure 10.1 gives an insight into the basic components of an operating system and their interfaces

with rest of the world.

10.1.1 The Kernel

The kernel is the core of the operating system and is responsible for managing the system resources and

the communication among the hardware and other system services. Kernel acts as the abstraction layer

between system resources and user applications. Kernel contains a set of system libraries and services.

For a general purpose OS, the kernel contains different services for handling the following.

Process Management Process management deals with managing the processes/tasks. Process man¬

agement includes setting up the memory space for the process, loading the process’s code into the mem¬

ory space, allocating system resources, scheduling and managing the execution of the process, setting

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

s—r—:-v - r * •• • *.}v v-k

[fig. 10.1J The Operating System Architecture

User Applications

' T ' ' ' ' " • ' , L '

Process management I •?

lme.manageraeni

tm
iJnaMying hardware

■ ~ ~ '•■••.•■■■-- ■'■*■- •

Application

programming

interface (API)

Device driver

interface

/ up and managing the Process Control Block (PCB), Inter Process Communication and synchronisation,
process termination/deletion, etc. We will look into the description of process and process management
in a later section of this chapter.

5.Primary Memory Management The term primary memory refers to the volatile memory (RAM)
_ where processes are loaded and variables and shared data associated with each process are stored. The

Memory Management Unit (MMU) of the kernel is responsible for
• Keeping track of which part of the memory area is currently used by which process
• Allocating and De-allocating memory space on a need basis (Dynamic memory allocation).

File System Management File is a collection of related information. A file could be a program
(source code or executable), text files, image files, word documents, audio/video files, etc. Each of these
files differ in the kind of information they hold and the way in which the information is stored. The
file operation is a useful service provided by the OS. The file system management service of Kernel is
responsible for

• The creation, deletion and alteration of files
• Creation, deletion and alteration of directories
• Saving of files in the secondary storage memory (e.g. Hard disk storage)
• Providing automatic allocation of file space based on the amount of free space available
• Providing a flexible naming convention for the files
The various file system management operations are OS dependent. For example, the kernel of Micro¬

soft® DOS OS supports a specific set of file system management operations and they are not the same
as the file system operations supported by UNIX Kernel.

I/O System (Device) Management Kernel is responsible for routing the I/O requests coming from
different user applications to the appropriate I/O devices of the system. In a well-structured OS, the
direct accessing of I/O devices are not allowed and the access to them are provided through a set of
Application Programming Interfaces (APIs) exposed by the kernel. The kernel maintains a list of all
the I/O devices of the system. This list may be available in advance, at the time of building the kernel.
Some kernels, dynamically updates the list of available devices as and when a new device is installed

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

(e.g. Windows XP kernel keeps the list updated when a new plug V play USB device is attached to
the system). The service ‘Device Manager’ (Name may vary across different OS kernels) of the kernel
is responsible for handling all I/O device related operations. The kernel talks to the I/O device through
a set of low-level systems calls, which are implemented in a service, called device drivers. The device
drivers are specific to a device or a class of devices. The Device Manager is responsible for

• Loading and unloading of device drivers
• Exchanging information and the system specific control signals to and from the device

Secondary Storage Management The secondary storage management deals with managing the
secondary storage memory devices, if any, connected to the system. Secondary memory is used as
backup medium for programs and data since the main memory is volatile. In most of the systems, the
secondary storage is kept in disks (Hard Disk). The secondary storage management service of kernel
deals with

• Disk storage allocation
• Disk scheduling (Time interval at which the disk is activated to backup data)
• Free Disk space management

Protection Systems Most of the modem operating systems are designed in such a way to support
multiple users with different levels of access permissions (e.g. Windows XP with user permissions like
‘Administrator’, ‘Standard’, ‘Restricted’, etc.). Protection deals with implementing the security policies
to restrict the access to both user and system resources by different applications or processes or users.
In multiuser supported operating systems, one user may not be allowed to view or modify the whole/
portions of another user’s data or profile details. In addition, some application may not be granted with
permission to make use of some of the system resources. This kind of protection is provided by the
protection services running within the kernel.

Interrupt Handler Kernel provides handler mechanism for all extemal/intemal interrupts generated
by the. system.

These are some of the important services offered by the kernel of an operating system. It does not
mean that a kernel contains no more than components/services explained above. Depending on the type
of the operating system, a kernel may contain lesser number of components/services or more number
of components/services. In addition to the components/services listed above, many operating systems
offer a number of add-on system components/services to the kernel. Network communication, network
management, user-interface graphics, timer services (delays, timeouts, etc.), error handler, database
management, etc. are examples for such components/services. Kernel exposes the interface to the vari¬
ous kernel applications/services, hosted by kernel, to the user applications through a set of standard
Application Programming Interfaces (APIs). User applications can avail these API calls to access the
various kernel application/services.

10.1.1.1 Kernel Space and User Space As we discussed in the earlier section, the applications/
services are classified into two categories, namely: user applications and kernel applications. The pro¬
gram code corresponding to the kernel applications/services are kept in a contiguous area (OS de¬
pendent) of primary (working) memory and is protected from the un-authorised access by user pro¬
grams/applications. The memory space at which the kernel code is located is known as ‘Kernel Space'.

Similarly, all user applications are loaded to a specific area of primary memory and this memory area
is referred as ‘User Space'. User space is the memory area where user applications are loaded and ex¬
ecuted. The partitioning of memory into kernel and user space is purely Operating System dependent.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Some OS implements this kind of partitioning and protection whereas some OS do not segregate the
kernel and user application code storage into two separate areas. In an operating system with virtual

- memory support, the user applications are loaded into its corresponding virtual memory space with
demand paging technique; Meaning, the entire code for the user application need not be loaded to the
main (primary) memory at once; instead the user application code is split into different pages and these
pages are loaded into and out of the main memory area on a need basis. The act of loading the code into

.... .and out of the main memory is termed as ‘Swapping’. Swapping happens between the main (primary)
memory and secondary storage memory. Each process run in its own virtual memory space and are not
allowed accessing the memory space corresponding to another processes, unless explicitly requested by
the process. Each process will have certain privilege levels on accessing the memory of other processes
and based on the privilege settings, processes can request kernel-to map another process’s memory to its

Town or share through some other mechanism. Most of the operating systems keep the kernel application
code in main memory and it is not swapped out into the secondary memory.

10.1.1.2 Monolithic Kernel and Microkernel As we know, the kernel forms the heart of an op-
' erating system. Different approaches are adopted for building an Operating System kernel. Based on the

kernel design, kernels can be classified into ‘Monolithic’ and ‘Micro’.

Monolithic Kernel In monolithic kernel architecture, all kernel services run in the kernel space.
; Here all kernel modules run within the same memory space under a single kernel thread. The tight inter¬

nal integration of kernel modules in monolithic kernel architecture allows the effective utilisation of the .
low-level features of the underlying system. The major drawback of monolithic kernel is that any error
or failure in any one of the kernel modules leads to the crashing of the entire kernel application. LINUX,
SOLARIS, MS-DOS kernels are examples of monolithic kernel. The architecture representation of a
monolithic kernel is given in Fig. 10.2. —

Microkernel The microkernel design incorporates only the essential set of,Operating System ser¬
vices into the kernel. The rest of the Operating System services are implemented in programs known
as ‘Servers’ which runs in user space. This provides a’highly modular design and OS-neutral abstrac¬
tion to the kernel. Memory management, process management, timer systems and interrupt handlers

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Servers (kernel

services running

in user space) :
Applications

i ®itsem<^11ike;meW6ry '

/. .-managemept, process.;

^manfetjjai^fesy§ytn,(et

are the essential services, which forms the part of
the microkernel. Mach, QNX, Minix 3 kernels are
examples for microkernel. The architecture repre¬
sentation of a microkernel is shown in Fig. 10.3.

Microkernel based design approach offers the
following benefits

• Robustness: If a problem is encountered in
any of the services, which runs as ‘Server’
application, the same can be reconfigured
and re-started without the need for re-start-
ing the entire OS. Thus, this approach is
highly useful for systems, which demands
high ‘availability’. Refer Chapter 3 to get
an understanding of ‘availability’. Since the
services which run as ‘Servers' are running
on a different memory space, the chances
of corruption of kernel services are ideally

- zero.
• Configurability: Any services, which run as ‘Server’ application can be changed without the need

to restart the whole system. This makes the system dynamically configurable.

Depending on the type of kernel and kernel services, purpose and type of computing systems where the
OS is deployed and the responsiveness to applications, Operating Systems are classified into different
types.

10.2.1 General Purpose Operating System (GPOS)

The operating systems, which are deployed in general computing systems, are referred as General Pur¬

pose Operating Systems (GPOS). The kernel of such an OS is more generalised and it contains all kinds
of services required for executing generic applications. General-purpose operating systems are often
quite non-deterministic in behaviour. Their services can inject random delays into application software
and may cause slow responsiveness of an application at unexpected times. GPOS are usually deployed
in computing systems where deterministic behaviour is not an important criterion. Personal Computer/
Desktop system is a typical example for a system where GPOSs are deployed. Windows XP/MS-DOS
etc. are examples for General Purpose Operating Systems.

10.2.2 Real-Time Operating System (RTOS)
/ i >

There is no universal definition available for the term ‘Real-Time’ when it is used in conjunction with
operating systems. What ‘Real-Time’ means inOperating System context is still a debatable topic and
there are many definitions available. In a broad sense, ‘Real-Time’ implies deterministic timing behav¬
iour. Deterministic timing behaviour in RTQS context means the OS services consumes only known and
expected amounts of time regardless the number of services. A Real-Time Operating System or RTOS
implements policies and rules concerning time-critical allocation of a system’s resources. The RTOS

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

decides which applications should run in which order and how much time needs to be allocated for each
application. Predictable performance is the hallmark of a well-designed RTOS. This is best achieved
by the consistent application of policies and rules. Policies guide the design of an RTOS. Rules imple¬
ment those policies and resolve policy conflicts. Windows CE, QNX, VxWorks MicroC/OS-II, etc. are
examples of Real-Time Operating Systems (RTOS).

10.2.2.1 The Real-Time Kernel The kernel of a Real-Time Operating System is referred as Real.
Time kernel. In complement to the conventional OS kernel, the Real-Time kernel is highly specialised
and it contains only the minimal set of services required for running the user applications/tasks. The
basic functions of a Real-Time kernel are listed below:

• Task/Process management
• Task/Process scheduling
• Task/Process synchronisation
• Error/Exception handling
• Memory management
• Interrupt handling
• Time management

Task/Process management Deals with setting up the memory space for the tasks, loading the
task’s code into the memory space, allocating system resources, setting up a Task Control Block (TCB)
for the task and task/process termination/deletion. A Task Control Block (TCB) is used for holding the
information corresponding to a task. TCB usually contains the following set of information.

Task ID: Task Identification Number

Task State: The current state of the task (e.g. State = ‘Ready’ for a task which is ready to execute)

Task Type: Task type. Indicates what is the type for this task. The task can be a hard real time or soft real
time or background task.

Task Priority: Task priority (e.g. Task priority = 1 for task with priority - 1)

Task Context Pointer: Context pointer. Pointer for context saving

Task Memory Pointers: Pointers to the code memory, data memory and stack memory for the task

Task System Resource Pointers: Pointers to system resources (semaphores, mutex, etc.) used by the task

Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks)

Other Parameters Other relevant task parameters
The parameters and implementation of the TCB is kernel dependent. The TCB parameters vary across

different kernels, based on the task management implementation. Task management service utilises the
TCB of a task in the following way

• Creates a TCB for a task on creating a task
• Delete/remove the TCB of a task when the task is terminated or deleted
• Reads the TCB to get the state of a task
• Update the TCB with updated parameters on need basis (e.g. on a context switch)
• Modify the TCB to change the priority of the task dynamically

Task/Process Scheduling Deals with sharing the jZlPU among various tasks/processes. A kernel
application called ‘Scheduler’ handles the task scheduling. Scheduler is nothing but an algorithm imple¬
mentation, which performs the efficient and optimal scheduling of tasks to provide a deterministic
behaviour. We will discuss the various types of scheduling in a later section of this chapter.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Task/Process Synchronisation Deals with synchronising the concurrent access of a resource,
which is shared across multiple tasks and the communication between various tasks. We will discuss
the various synchronisation techniques and inter task /process communication in a later section of this
chapter.

Error/Exception Handling Deals with registering and handling the errors occurred/exceptions
raised during the execution of tasks. Insufficient memory, timeouts, deadlocks, deadline missing, bus
error, divide by zero, unknown instruction execution, etc. are examples of errors/exceptions. Errors/Ex¬
ceptions can happen at the kernel level services or at task level. Deadlock is an example for kernel level
exception, whereas timeout is an example for a task level exception. The OS kernel gives the informa¬
tion about the error in the form of a system call (API). GetLastError() API provided by Windows CE
RTOS is an example for such a system call. Watchdog timer is a mechanism for handling the timeouts
for tasks. Certain tasks may involve the waiting of external events from devices. These tasks will wait
infinitely when the external device is not responding and the task will generate a hang-up behaviour. In
order to avoid these types of scenarios, a proper timeout mechanism should be implemented. A watch¬
dog is normally used in such situations. The watchdog will be loaded with the maximum expected wait
time for the event and if the event is not triggered within this wait time, the same is informed to the task
and the task is timed out. If the event happens before the timeout, the watchdog is resetted.

Memory Management Compared to the General Purpose Operating Systems, the memory manage¬
ment function of an RTOS kernel is slightly different. In general, the memory allocation time increases
depending on the size of the block of memory needs to be allocated and the state of the allocated
memory block (initialised memory block consumes more allocation time than un-initialised memory
block). Since predictable timing and deterministic behaviour are the primary focus of an RTOS, RTOS
achieves this by compromising the effectiveness of memory allocation. RTOS makes use of ‘block'

based memory allocation technique, instead of the usual dynamic memory allocation techniques used
by the GPOS^RTOS kernel uses blocks of fixed size of dynamic memory and the block is allocated for
a task on a need basis. The blocks are stored in a ‘'Free Buffer Queue'. To achieve predictable timing
and avoid the timing overheads, most of the RTOS kernels allow tasks to access any of the memory
block's without any memory protection. RTOS kernels assume that the whole design is proven correct
and protection is unnecessary. Some commercial RTOS kernels allow memory protection as optional
and the kernel enters a fail-safe mode when an illegal memory access occurs.

A few RTOS kernels implement Virtual Memoryt concept for memory allocation if the system sup¬
ports secondary memory storage (like HDD and FLASH memory). In the ‘block' based memory al¬
location, a block of fixed memory is always allocated for tasks on need basis and it is taken as a unit.
Hence, there will not be any memory fragmentation issues. The memory allocation can be implemented
as constant functions and thereby it consumes fixed amount of time for memory allocation. This leaves
the deterministic behaviour of the RTOS kernel untouched. The ‘block' memory concept avoids the
garbage collection overhead also. (We will explore this technique under the MicroC/OS-II kernel in a

t Virtual Memory is an imaginary memory supported by certain operating systems. Virtual memory expands the address space avail¬

able to a task beyond the actual physical memory (RAM) supported by the system. Virtual memory is implemented with the help of a

Memory Management Unit (MMU) and ‘memory paging’. The program Memory for a task can be viewed as different pages and the

page corresponding to a piece of codethat needs to be executed is loaded into.the main physical memory (RAM). When a memory page

is no longer required, it is moved, out to, secondary storage memory and another page which contains the code snippet to be executed is

loaded into the main memory. This memory movement technique is known as. demand paging. The MMU handles the demand paging

and converts the virtual address of a location in a pageto corresponding physical address in the RAM.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

latter chapter).The ‘block’ based memory allocation achieves deterministic behaviour with the trade-of
limited choice of memory chunk size and suboptimal memory usage.

Interrupt Handling Deals with the handling of various types of interrupts. Interrupts provide Real-
Time behaviour to systems. Interrupts inform the processor that an external device or an associated
task requires immediate attention of the CPU. Interrupts can be either Synchronous or Asynchronous.

Interrupts which occurs in sync with the currently executing task is known as Synchronous interrupts.
Usually the software interrupts fall under the Synchronous Interrupt category. Divide by zero, memory
segmentation error, etc. are examples of synchronous interrupts. For synchronous interrupts, the inter¬
rupt handler runs in the same context of the interrupting task. Asynchronous interrupts are interrupts,
which occurs at any point of execution of any task, and are not in sync with the currently executing task.
The interrupts generated by external devices (by asserting the interrupt line of the processor/controller
to which the interrupt line of the device is connected) connected to the processor/controller, timer over¬
flow interrupts, serial data reception/ transmission interrupts, etc. are examples for asynchronous inter¬
rupts. For asynchronous interrupts, the interrupt handler is usually written as separate task (Depends
on OS kernel implementation) and it runs in a different context. Hence, a context switch happens while
handling the asynchronous interrupts. Priority levels can be assigned to the interrupts and each inter¬
rupts can be enabled or disabled individually. Most of the RTOS kernel implements ‘Nested Interrupts’

architecture. Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service Routine
(ISR), servicing an interrupt, by a high priority interrupt.

/

Time Management Accurate time management is essential for providing precise time reference for
all applications. The time reference to kernel is provided by a high-resolution Real-Time Clock (RTC)
hardware chip (hardware timer). The hardware timer is programmed to interrupt the processor/control¬
ler at a fixed rate. This timer interrupt is referred as ‘Timer tick’. The ‘Timer tick’ is taken as the timing
reference by the kernel. The ‘Timer tick’ interval may vary depending on the hardware timer. Usually
the ‘Timer tick’ varies in the microseconds range. The time parameters for tasks are expressed as the
multiples of the ‘Timer tick'.

The System time is updated based on the ‘Timer tick’. If the System time register is 32 bits wide and the
‘ Timer tick’ interval is 1 microsecond, the System time register will reset in

232 * 10-6/ (24 * 60 * 60) = 49700 Days = ~ 0.0497 Days =1.19 Hours

If the ‘Timer tick’ interval is 1 millisecond, the system time register will reset in

232 * 10-3 / (24 * 60 * 60) = 497 Days = 49.7 Days = ~ 50 Days

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The ‘Timer tick’ interrupt
can be utilised for implementing the following actions.

• Save the current context (Context of the currently executing task).
• Increment the System time register by one. Generate timing error and reset the System time regis¬

ter if the timer tick count is greater than the maximum range available for System time register.
• Update the timers implemented in kernel (Increment or decrement the timer registers for each

timer depending on the count direction setting for each register. Increment registers with count di¬
rection setting = ‘count up’ and decrement registers with count direction setting = ‘count down’).

• Activate the periodic tasks, which are in the idle state.
• Invoke the scheduler and schedule the tasks again based on the scheduling algorithm.
• Delete all the terminated tasks and their associated data structures (TCBs)
• Load the context for the first task in the ready queue. Due to the re-scheduling, the ready task might

be changed to a new one from the task, which was preempted by the ‘Timer Interrupt’ task. \

i

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Apart from these basic fruitions, some RTOS provide other functionalities also (Examples are file
management and network functions). Some RTOS kernel provides options for selecting the required
kernel functions at the time of building a kernel. The user can pick the required functions from the set
of available functions and compile the same to generate the kernel binary. Windows CE is a typical ex¬
ample for such an RTOS. While building the target, the user can select the required components for the
kernel. j

10.2.2.2 Hard Real-Time Real-Time Operating Systems that strictly adhere to the timing con¬
straints for a task is referred as ‘Hard Real-Time’ systems. A Hard Real-Time system must meet the
deadlines for a task without any slippage. Missing any deadline may produce catastrophic results for
Hard Real-Time Systems], including permanent data lose and irrecoverable damages to the systemAisers.
Hard Real-Time systems emphasise the principle ‘A late answer is a wrong answer’. A system can have
several such tasks and the key to their correct operation lies in scheduling them so that they meet their
time constraints. Air bag control systems and Anti-loci^ Brake Systems (ABS) of vehicles are typical
examples for Hard Real-Time Systems. The Air bag control system should be into action and deploy the
air bags when the vehicle meets a severe accident. Ideally speaking, the time for triggering the air bag
deployment task, when an accident is sensed by the Air bag control system, should be zero and the air
bags should be deployed exactly within the time frame, which is predefined for the air bag deployment
task. Any delay in the deployment of the air bags makes the life of the passengers under threat. When
the air bag deployment task is triggered, the currently executing task must be pre-empted, the air bag
deployment task should be brought into execution, and the necessary I/O systems should be made read¬
ily available for the air bag deployment task. To meet the strict deadline, the time between the air bag
deployment event triggering and start of the air bag deployment task execution should be minimum, ide¬
ally zero. As a mle of thumb, Hard Real-Time Systems does not implement the virtual memory model
for handling the memory. This eliminates the delay in swapping in and out the code corresponding to the
task to and from the primary memory. In general, the presence of Human in the loop (HITL) for tasks
introduces unexpected delays in the task execution. Most of the Hard Real-Time Systems are automatic
and does not contain a ‘human in the loop’.

10.2.2.3 Soft Real-Time Real-Time Operating System that does not guarantee meeting deadlines,
but offer the best effort to meet the deadline are referred as ‘Soft Real-Time’ systems. Missing deadlines
for tasks are acceptable for a Soft Real-time system if the frequency of deadline missing is within the
compliance limit of the Quality of Service (QoS). A Soft Real-Time system emphasises the principle ‘A

late answer is an acceptable answer, but it could have done bit faster'. Soft Real-Time systems most of¬
ten have a ‘human in the loop (HITLf. Automatic Teller Machine (ATM) is a typical example for Soft-
Real-Time System. If the ATM takes a few seconds more than the ideal operation time, nothing fatal
happens. An audio-video playback system is another example for Soft Real-Time system. No potential
damage arises if a sample comes late by fraction of a second, for playback.

10,3 TASKS, PROCESS AND THREADS

The term ‘task' refers to something that needs to be done. In our day-to-day life, we are bound to the
execution of a number of tasks. The task can be the one assigned by our managers or the one assigned by
our professors/teachers or the one related to our personal or family needs. In addition, we will have an
order of priority and schedule/timeline for executing these tasks. In the operating system context, a task
is defined as the program in execution and the related information maintained by the operating system

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

for the program. Task is also known as ‘ Job’ in the operating system context. A program or part of it in
execution is also called a ‘Process'. The terms ‘Task', ‘Job' and ‘Process' refer to the same entity in the
operating system context and most often they are used interchangeably.

10.3.1 Process

A ‘Process' is a program, or part of it, in execution. Process is also known as an instance of a program in
execution. Multiple instances of the same program can execute simultaneously. A process requires vari¬
ous system resources like CPU for executing the process; memory for storing the code corresponding to
the process and associated variables, I/O devices for information exchange, etc. A process is sequential
in execution.

10.3.1.1 The Structure of a Process The concept of ‘Process' leads to concurrent execution
(pseudo parallelism) of tasks and thereby the efficient utilisation of the CPU-and other system resources.
Concurrent execution is achieved through the sharing of CPU among the processes. A process mimics
a processor in properties and holds a set of registers, process status, a Program Counter (PC) to point to
the next executable instruction of the process, a stack for holding the local variables associated with the
process and the code corresponding to the process. This can be visualised as shown in Fig. 10.4.

I Fig. lO.'P Structure of a Process

A process which inherits all the properties of the CPU can be considered as a virtual processor, await¬
ing its turn to have its properties switched into the physical processor. When the process gets its turn, its
registers arid the program counter register becomes mapped to the physical registers of the CPU. From
a memory perspective, the memory occuoied by the process is segregated into three regions, namely,
Stack memory, Data memory and Code memory (Fig. 10.5).

The ‘Stack’ memory holds all temporary data such as variables local to the process. Data memory
holds all global data for the process. The code memory contains the program code (instructions) cor¬
responding to the process. On loading a process into the main memory, a specific area of memory is
allocated for the process. The stack memory usually starts (OS Kernel implementation dependent) at

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the highest memory address from the memory area allocated for
the process. Say for example, the memory map of the memory area
allocated for the process is 2048 to 2100, the stack memory starts at
address 2100 and grows downwards to accommodate the variables
local to the process.

ID. 3.1.2 Process States and State Transition The creation
of a process to its termination is not a single step operation. The
process traverses through a series of states during its transition from
the newly created state to the terminated state. The cycle through
which a process changes its state from ‘newly created’ to ‘execu¬

tion completed' is known as ‘Process Life Cycle'. The various states
through which a process traverses through during a Process Life
Cycle indicates the current status of the process with respect to time
and also provides information on what it is allowed to do next. Fig¬
ure 10.6 represents the various states associated with a process.

The state at which a process is being created is referred as
‘Created State’. The Operating System recognises a process in the
‘‘Created State' but no resources are allocated to
the process. The state, where a process is incept¬
ed into the memory and awaiting the processor
time for execution, is known as ‘Ready State'.

At this stage, the process is placed in the ‘Ready

list' queue maintained by the OS. The state where
in the source code instructions corresponding to
the process is being executed is called ‘Running

State'. Running state is the state at which the
process execution happens. ‘Blocked State/Wait

State' refers to a state where a running process
is temporarily suspended from execution and
does not have immediate access to resources. The
blocked state might be invoked by various condi¬
tions like: the process enters a wait state for an
event to occur (e.g. Waiting for user inputs such
as keyboard input) or waiting for getting access
to a shared resource (will be discussed at a later
section of this chapter). A state where the process
completes its execution is known as ‘Completed

State'. The transition of a process from one state
to another is known as ‘State transition'. When a
process changes its state from Ready to running
or from running to blocked or terminated or from
blocked to running, the CPU allocation for the
process may also change.

It should be noted that the state representation
for a process/task mentioned here is a generic rep-

Incepted into memory

Running

Execution Completion

S
ch

ed
u

led
 fo

r

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

resentation. The states associated with a task may be known with a different name or there may be more
or less number of states than the one explained here under different OS kernel. For example, under
VxWorks’ kernel, the tasks may be in either one or a specific combination of the states READY, PEND,
DELAY and SUSPEND. The PEND state represents a state where the task/process is blocked on wait¬
ing for I/O or system resource. The DELAY state represents a state in which the task/process is sleeping
and the SUSPEND state represents a state where a task/process is temporarily suspended from execu¬
tion and not available for execution. Under MicroC/OS-II kernel, the tasks may be in one of the states,
DORMANT, READY, RUNNING, WAITING or INTERRUPTED. The DORMANT state represents
the ‘Created’ state and WAITING state represents the state in which a process waits for shared resource
or I/O access. We will discuss about the states and state transition for tasks under VxWorks and uC/OS-
II kernel in a later chapter.

10.3..1.3 Process Management Process management deals with the creation of a process, setting
up the memory space for the process, loading the process’s code into the memory space, allocating sys¬
tem resources, setting up a Process Control Block (PCB) for the process and process termination/dele¬
tion. For more details on Process Management, refer to the section ‘Task/Process management’ given
under the topic ‘The Real-Time Kernel’ of this chapter.

10.3.2 Threads

A thread is the primitive that can execute code.
A thread is a single sequential flow of control
within a process. ‘Thread’ is also known as light¬
weight process. A process can have many threads
of execution. Different threads, which are part of
a process, share the same address space; meaning
they share the data memory, code memory and
heap memory area. Threads maintain their own
thread status (CPU register values), Program
Counter (PC) and stack. The memory model for
a process and its associated threads are given in
Fig. 10.7.

10.3.2.1 The Concept of Multithreading A process/task in embedded application may be a com¬
plex or lengthy one and it may contain various suboperations like getting input from I/O devices con¬
nected to the processor, performing some internal calculations/operations, updating some I/O devices
etc. If all the subfunctions of a task are executed in sequence, the CPU utilisation may not be efficient.
For example, if the process is waiting for a user input, the CPU enters the wait state for the event, and
the process execution also enters a wait state. Instead of this single sequential execution of the whole
process, if the task/process is split into different threads carrying out the different subfunctionalities of
the process, the CPU can be effectively utilised and when the thread corresponding to the I/O opera¬
tion enters the wait state, another threads which do not require the I/O event for their operation can be
switched into execution. This leads to more speedy execution of the process and the efficient utilisation
of the processor time and resources. The multithreaded architecture of a process can be better visualised
with the thread-process diagralm. shown in Fig. 10.8.

■ Stack memory for Thread 1
>

iFljFf viiilM
Slack mereon for Thread 2

Stack Memory

for Process

■:?' A A A X ;V 1 - : X V ■ ■/

<
y .y ; , . A v ■ y ,

Data memory for process

Code memory for process

(Fig. IO.7] Memory organisation of a Process and its

associated Threads

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Task/Process

Code memory

Data memory

Stack

Registers Registers Registers

TbrCaj 3 Thread 2 Thread 1

int. ChildThread.2

(void)' - ' '
int ChildThread 1
(void)

■void main (void.)

'//Or e at a ~ych i 1 d
thread 1
CreateThread (NULL,
;i000, (LPTHREAD^STA

. RTJROUTINE).^ _
■ChildThread 1, NULL ,.-r

//Create child
ttfo?ead*2m

100 0, .{LPTHR$AD_STA

rt^routine),.' %
ChildThread 2 * NUIrL'

| 0 /j5dw/lireadID)'; ■

//Do something

PO
wit
dar
PO

*

3

| VC

ere
ere
the
a v

Thi
(ne

bio

ne i

Iti

S
Wr

5 ti

s
• /

;
r&'str'x

s

Process with multi-threads

If the process is split into multiple threads, which executes a portion of the process, there will be a

main thread and rest of the threads will be created within the main thread. Use of multiple threads to

execute a process brings the following advantage.

• Better memory utilisation. Multiple threads of the same process share the address space for data

memory. This also reduces the complexity of inter thread communication since variables can be

shared across the threads.

• Since the process is split into different threads, when one thread enters a wait state, the CPU can

be utilised by other threads of the process that do not require the event, which the other thread is

waiting, for processing. This speeds up the execution of the process.

• Efficient CPU utilisation. The CPU is engaged all time.

N!
if

'
fey
||

10.3.2.2 Thread Standards Thread standards deal with the different standards available for thread

creation and management. These standards are utilised by the operating systems for thread creation and

thread management. It is a set of thread class libraries. The commonly available thread class libraries

are explained below.

|1

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design
, -n

, \

POSIX Threads: POSIX stands for Portable Operating System Interface. The POSIX.4 standard deals
with the Real-Time extensions and POSIX.4a standard deals with thread extensions. The POSIX stan¬
dard library for thread creation and management is ' Pthreads'. ‘P threads' library defines the set of
POSIX thread creation and management functions in ‘C’ language.

The primitive

;■ int pthread_create(pthreadyt.*new_thread_ID, const pthread_attr_t *attribute,

void * (*stnr: function)(void *), void *arguments);
W&..: ...

creates a new thread for running the function start_ function. Here pthreadj is the handle to the newly
created thread and pthread_attrj is the data type for holding the thread attributes, 'start Junction’ is
the function the thread is going to execute and arguments is the arguments for 'start Junction’ (It is
a void * in the above example). On successful creation of a Pthread, p threadjreateQ associates the
Thread Control Block (TCB) corresponding to the newly created thread to the variable of type pthreadj

(newjhreadJD in our example).
The primitive

hint pthread_j.oin (pthread_t new_thread,void * *thread_status);

blocks the current thread and waits until the completion of the ^thread pointed by it (In this example
newjhread) 1

All the POSIX ‘thread calls’ returns an integer. A return value of zero indicates the success of the call.
It is always good to check the return value of each call.

Write a multithreaded application to print “Hello I’m in main thread” from the main thread and “Hello I’m in new thread”

5 times each, using the pthread_createQ andpthreadJoinQ POSIX primitives.

||//Asrsume's the application is running op an OS where POSIX*,library is

^//available '• . .V ; . . " . ' - '*• ’ c y-%• ■■ J
' iinclude <pthread.h> , ,

;finclude <stbiib.h> '

' Iinclude <stdio.h>
~J /**********•******************* i-kick *********************************

.. ' *r, „ - ■* .
WljNew thread function for printing "Hello I'm in new thread"

1‘troid *ne-w_thread (void *thread_args)

10 " ' '

J int i, j;

(.•' for (j= 0; j .< 5; j++)

11, 1
;v: printf("Hello I'm in new threadin'').;

u //Wait1for some' time. Do nothing

fj/ //The fallowing line o'f. code can be replaced with

ft //OS supported delay function like sleep (), delay !) etc... '

$f' for (i= 0; i < 10000; i+f) ;,

1; 1 ■ ; . _ ■ ; ..
W- return NULL; ‘

I • -/f - '

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

//***********■***

//Start of main thread “ ' ' I

■ int; main (■ void) « • %t* V- , . pi„ v | ...

{ - . ■- .. ‘

int i, j;

pthread L tcb;

//Create the new thread for'executing ncw_thread function

If (pthrjepd_create (Stclg, NULL, new_thread, NULL)T ,

. //New thread creation failed

. , printf ("Error in creating new threadin'') ;

return -1;

f} i S SIS 5 S;l v

■ for (j= 0; j < 5; j++‘) * ** ^

printf ("Hello I'm in main threadin'') ;

//Wail for some Lime. Do nothing

//The following line of code can be replaced with ’■ 5

//OS • supported delay function like sleep!) , : delay letc&. 1 f-ftipi.

• ■fo'rj ;i= }Cji i"?<; i0Q00;;- T++r~.

if (pthread join (tcb, NULL))- v. - •*. V

{ • ~ ”Y ■ ; ”; 5 ' "T/- “

//Thread join failed

printf ("Error in. Thread joinin''') ;

return -1-;

return 1; ' 1 "" ' . ’ ' " " - j.'’"v (■

} ■ \ , s
You can compile this application using the gcc compiler. Examine the output to figure out the thread execution switch¬

ing. The lines printed will give an idea of the order in which the thread execution is switched between. The pthreadJoin

call forces the main thread to wait until the completion of the thread tcb, if the main thread finishes the execution first.

The termination of a thread can happen in different ways. The thread can terminate either by completing its execu¬

tion (natural termination) or by a forced termination. In a natural termination, the thread completes its execution and

returns back to the main thread through a simple return or by executing the pthread_exit() call. Forced termination

can be achieved by the call pthread_cancel() or through the termination of the main thread with exit or exec functions.

pthread_cancel() call is used by a thread to terminate another thread.

pthread exit() call is used by a thread to explicitly exit after it completes its work and is no longer required to exist.

If the main thread finishes before the threads it has created, and exits with pthread exit(), the other threads continue to

execute. Tf the main thread uses exit call to exit the thread, all threads created by the main thread is terminated forcefully.

Exiting a thread with the call pthread_exit() will not perform a cleanup. It will not close any files opened by the thread

and files will remain in the open status even after the thread terminates. Calling pthreadJoin at the end of the main thread

is the best way to achieve synchronisation and proper cleanup. The main thread, after finishing its task waits for the

completion of other threads, which were joined to it using the pthread Join call. With a pthread Join call, the main thread

waits other threads, which were joined to it, and finally merges to the single main thread. If a new thread spawned by the

main thread is still not joined to the main thread, it will be counted against the system’s maximum thread limit. Improper

cleanup will lead to the failure of new thread creation.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Win32 Threads Win32 threads are the threads supported by various flavours of Windows Operating
Systems. The Win32 Application Programming Interface (Win32 API) libraries provide the standard set
of Win32 thread creation and management functions. Win32 threads are created with the API

HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttribut.es, DWORD dwStack-

^ Size, LPTHREAD__START__ROUTINE IpStartAddress, LPVOID IpParameter, DWORD dwCre-

i. ationFlags, LPDWORD lpThreadld

The parameter IpThreadAttributes defines the security attributes for .the thread and dwStackSize de¬
fines the stack size for the thread. These" two parameters are not supported by the Windows CE Real-
Time Operating Systems and it should be kept as NULL and 0 respectively in a CreateThread API Call.
The other parameters are

IpStartAddress: Pointer to the function which is to be executed by the thread.

IpParameter: Parameter specifying an application-defined value that is passed to the thread routine.

dwCreationFlags: Defines the state of the thread when it is created. Usually it is kept as 0 or CRE-
ATE_SUSPENDED implying the thread is created and kept at the suspended state.

lpThreadld: Pointer to a DWORD that receives the identifier for the thread.
On successful creation of the thread, CreateThread returns the handle to the thread and the thread identi¬
fier.

The A¥lGetCurrentThread(void)rttumst\\ehand\eofthQC\mQntthrea.dd.ndGetCurrentThreadId(void)

returns its ID. GetThreadPriority (HANDLE hTbread) API returns an integer value representing the cur¬
rent priority of the thread whose handle is passed as hThread. Threads are always created with normal
priority (THREAD_PRIORITY_NORMAL. Refer MSDN documentation for the different thread pri¬
orities and their meaning). SetThreadPriority (HANDLE hThread, int nPriority) API is used for setting
the priority of a thread. The first parameter to this function represents the thread handle and the second
one the thread priority.

For Win32 threads, the normal thread termination happens when an exception occurs in the thread,
or when the thread’s execution is completed or when the primary thread or the process to which the
thread is associated is terminated. A thread can exit itself by calling the ExitThread (DWORD dwEx-

itCode) API. The parameter dwExitCode sets the exit code for thread termination. Calling ExitThread

API frees all the resources utilised by the thread. The exit code of a thread can be checked by other
threads by calling the GetExitCodeThread (HANDLE hThread, LPDWORD IpExitCode). Terminate-

Thread (HANDLE hThread, DWORD dwExitCode) API is used for terminating a thread from another
thread. The handle hThread indicates which thread is to be terminated and dwExitCode sets the exit code
for the thread. This API will not execute the thread termination and clean up code and may not free the
resources occupied by the thread. TerminateThread is a potentially dangerous call and it should not be
used in normal conditions as a mechanism for terminating a thread. Use this call only as a final choice.
SuspendThread(HANDLE hThread) API can be used for suspending a thread from execution provided
the handle hThread possesses THREAD SUSPEND RESUME access right. If the SuspendThread API
call succeeds, the thread stops executing and increments its internal suspend count. The thread becomes
suspended if its suspend count is greater than zero. The SuspendThread function is primarily designed
for use by debuggers. One must be cautious in using this API for the reason it may cause deadlock condi¬
tion if the thread is suspended at a stage where it acquired a mutex or shared resource and another thread
tries to access the same. The ResumeThread(HANDLE hThread) API is used for resuming a suspended
thread. The ResumeThread API checks the suspend count of the specified thread. A suspend count of

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

zero indicates that the specified thread is not currently in the suspended mode. If the count is not zero,

the count is decremented by one and if the resulting count value is zero, the thread is resumed. The

API Sleep (DWORD dwMilliseconds) can be used for suspending a thread for the duration specified in

milliseconds by the Sleep function. The Sleep call is initiated by the thread.

Example 2
... " j

Write a multithreaded application using Win32 APIs to set up a counter in the main thread and secondary thread to count

from 0 to 10 and print the counts from both the threads. Put a delay of 500 ms in between the successive printing in both

the threads.

^include "windows. h" s TfJ .y

#include "stdio.h" • .
.//*t»*j****)!*******»*U *(*«>» <*itiM-****r)t**************<*****fr*****r ' ' ,-Tf.w ' A, /f" A 4- V ^ / ** *„ 1 !•-?- f. v/
//Child thread ’ ’ -

&***•*•* *% ****** **'* ******** ****** * * *•* *'**■* *****/ * *;*\r <* dWi^V

void ChildThread(void) -
' {

, L char- :i/:.,'A.; S/x....... .t »r,-y AAAA>..

for (i=0;i<=10;++i) . - - 1-
AA" AyAA ":A;. ' •; Dv .A. Ai,

1 f \ .?* ^ \ > ■f1 \ t ' i ' & S * * «"'■* A|$ >. V ♦ -if ^

printf ("Executing Child Thread:Counter- = *'%d\n"f i)“; ' _ * >

Sieep (500) ? - f?

//***^*********************^*****.****.**^*************************

//Primary thread; 5 ; ’ 1 i f Ai-4 - • ~ -
//********** * * * ******* ******* ******************* '*.*.*"* if**.*-* *:*.* *,* **

• .. . • * •' .■ . A* ■ A" • , ■ »■ A--' a ;

int main (-int argc, char* argv[‘.) : -

HANDLE hThread;. . • .• , , ■ t •" A /y.^aAIA

DWORD dwThreadID; , ' , ./,//

char i;

hThread=CreateThread(NULL,1000,(LPTHREAD“START_ROUTINE)

ChildThread, NULL, 0, SdwThrpadlD);

if(hThread==NULL)

1
printf("Thread Creation Failed\nError No:

%d\n",GetLastError());

return 1;

1
for(i=0;i<=10;++i)

1
printf("Executing Main Thread: Counter = %d\n",i);

Sleep (500);

1 ' ;
return 0;

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

To execute this program, create a new Win32 Con¬

sole Application using Microsoft Visual C++ and add

the above piece of code to it and compile. The output

obtained on running this application on a machine with

Windows XP operating system is given in Fig. 10.9.

If you examine the output, you can see the switching

between main and child threads. The output need not be

the same always. The output is purely dependent on the

scheduling policies implemented by the windows op¬

erating system for thread scheduling. You may get the

same output or a different output each time yoti run the

application.

Java Threads Java threads are the threads

supported by Java programming Language.

The java thread class ‘ Thread’ is defined in the

package ‘java.lang’. This package needs to be

imported for using the thread creation functions ,-N

supported by the Java thread class. There are (Wr10-9.) ap^hcltion1 GWin32 Multithreaded
two ways of creating threads in Java: Either by

extending the base ‘Thread’ class or by implementing an interface. Extending the thread class allows

inheriting the methods and variables of the parent class (Thread class) only whereas interface allows a

way to achieve the requirements for a set of classes. The following piece of code illustrates the imple¬

mentation of Java threads with extending the thread base class ‘ Thread’.

-import java.lang,*;. . , v ‘n - \ ;
public class MyThread extends Thread

life' •.*!?*"
m public void'.run () .

m { r "-KK'lffyx V; -
N,w,‘ * System.out.println ("Hello from MyThread!");

•+ 1

public static void main (String args[])

I c'T "D:\VCTATtiread\DebugUhreacf.exe''

Executing Ha in Thread!: Counter O
Executing Child Thread: Counter - 0
Executing ffetin Tlsread; Counter 3.
Executing Child Thread: Counter - 1
Executing Main Thread: Counter ” 2
Executing Child Thread: Counter 2

! Executing Child 1/ii'sad: Counter - 3
Executing Maxa Th-'-ead: Counter - -~y

r; • j - V'’\r TV-. Counter a <s
•7W>. .. . : ., Mr ''ount1'.: as J

:til li>!l kit; Id. ■■ Cov.rj'Ff Y L’

F.Vr i :ui i l«* t tiii.li ihre.-id: Counter “ u

<:>■ :i» l L.j. > \A J h:i.y.'i}. Counter ru f‘
Hr* i.?» T'hi.v- rv’i *. Counter S! •V.

[!!>••• .!»’/ Qri.'i*! TbrtW’.rb Counter
,-T

Exe-ul: in<; Ma.in 1 }«*'<■•. :>a: Counter-. - • T
Ex (5 >:.«(: i nq Slain Tin-ea.d' Counter- -• «
Exceut:! mi Chi. Ifl Coun C-xv =- si

Exectil ;ng Jin in ihvi :■*'}. t Counter' :::
Exct. ul inn Child Thread. Counter V
ExeOTtL i.Hff Ha in Thread: Counter “ i

Chi ld f hrurni r Coun tf. s: i

Frci':? n,») y fcoy to t.».,nl:inue„

(new MyThread.()). start ();

The above piece of code creates a new class MyThread by extending the base class Thread. It also

overrides the run() method inherited from the base class with its own run() method. The run() method

of MyThread implements all the task for the MyThread thread. The method startQ moves the thread to

a pool of threads waiting for their turn to be picked up for execution by the scheduler. The thread is said

to be in the "Ready’ state at this stage. The scheduler picks the threads for execution from the pool based

on the thread priorities.

jbE.g. MyThread.start () ;

The output of the above piece of code when executed on Windows XP platform is given in

Fig. 10.10.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

C:\5YSRQ0Tteystem 32temd. exe

SD:\Jaua!!oine\,ji'ai.5.8 .jLiSbin>jawa HyTbread
Hello from %T bread?

[D:\JayaHoine\jrel .0

[Fig. IO.IO] Output of the Java Multithreaded application

Invoking the static method yieldQ voluntarily, give up the execution of the thread and the thread is
moved to the pool of threads waiting to get their turn for execution, i.e. the thread enters the ‘Ready’
state.'

E.g. MyThread.yield(); -

The static method sleepQ forces the thread to sleep for the duration mentioned by the sleep call, i.e.
the thread enters the ‘Suspend’ mode. Once the sleep period is expired, the thread is moved to the pool
of threads waiting to get their turn for execution, i.e. the thread enters the ‘Ready’ state. The method
sleep() only guarantees that the thread will sleep for the minimum period mentioned by the argument to
the call. It will not guarantee anything on the resume of the thread after the sleep period. It is dependent
on the scheduler.

• E.r*g. .MyThread.sleep (100)Sleep for 100 milliseconds.

Calling a thread Object’s waitQ method causes the thread object to wait. The thread will remain in the
‘-Wait’ state until another thread invokes the notify() or notifyAll() method of the thread object which is
waiting. The thread enters the ‘Blocked’ state when waiting for input from I/O devices or waiting for
object lock in case of accessing shared resources. The thread is moved to the ‘Ready’ state on receiving
the I/O input or on acquiring the object lock. The thread enters the ‘Finished/Dead’ state on completion
of the task assigned to it or when the stopQ method is explicitly invoked. The thread may also enter this
state if it is terminated by an unrecoverable error condition.

For more information on Java threads, visit Sun Micro System’s tutorial on Threads, available at
http ://j ava. sun, com/ tutori al/applet/overview/threads. html

Summary So far we discussed about the various thread classes available for creation and manage¬
ment of threads in a multithreaded system in a General Purpose Operating System’s perspective. From
an RTOS perspective, POSIX threads and Win32 threads are the most commonly used thread class
libraries for thread creation and management. Many non-standard, proprietary thread classes are also
used by some proprietary RTOS. Portable threads (Pth), a very portable POSIX/ANSI-C based library
from GNU, may be the “next generation” threads library. Pth provides non-preemptive priority based
scheduling for multiple threads inside event driven applications. Visit http://www,gnu,org/software/pth/
for more details on GNU Portable threads.

10.3.2.3 Thread Pre-emption Thread pre-emption is the act of pre-empting the currently running
thread (stopping the currently running thread temporarily). Thread pre-emption ability is solely depen¬
dent on the Operating System. Thread pre-emption is performed for sharing the CPU time among all
the threads. The execution switching among threads are known as ‘ Thread context switching'. Thread
context switching is dependent on the Operating system’s scheduler and the type of the thread. When
we say ‘Thread’ , it falls into any one of the following types. https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

User Level Thread User level threads do not have kemel/Operating System support and they exist
solely in the rqnning process. Even if a process contains multiple user level threads, the OS treats it as
single thread and will not switch the execution among the different threads of it. It is the responsibility
of the process to schedule each thread as and when required. In summary, user level threads of a process
are non-preemptive at thread level from OS perspective.

Kernel/System Level Thread Kernel level threads are individual units of execution, which the OS
treats as separate threads. The OS interrupts the execution of the currently running kernel thread and
switches the execution to another kernel thread based on the scheduling policies implemented by the
OS. In summary kernel level threads are pre-emptive.

For user level threads, the execution switching (thread context switching) happens only when the
currently executing user level thread is voluntarily blocked. Hence, no OS intervention and system calls
are involved in the context switching of user level threads. This makes context switching of user level
threads very fast. On the other hand, kernel level threads involve lots of kernel overhead and involve
system calls for context switching. However, kernel threads maintain a clear layer of abstraction and
allow threads to use system calls independently. There are many ways for binding user level threads
with system/kemel level threads. The following section gives an overview of various thread binding
models.

Many-to-One Model Here many user level threads are mapped to a single kernel thread. In this
model, the kernel treats all user level threads as single thread and the execution switching among the
user level threads happens when a currently executing user level thread voluntarily blocks itself or relin¬
quishes the CPU. Solaris Green threads and GNU Portable Threads are examples for this. The ‘PThread’
example given under the POSIX thread library section is an illustrative example for application with
Many-to-One thread model.

One-to-One Model In One-to-One model, each user level thread is bonded to a kernel/system level
thread. Windows XP/NT/2000 and Linux threads are examples for One-to-One thread models. The
modified1 PThread' example given under the 'ThreadPre-emption' section is an illustrative example for
application with One-to-One thread model.

Many-to-Many Model In this model many user level threads are allowed to be mapped to many
kernel threads. Windows NT/2000 with ThreadFibre package is an example for this.

10.3.2.4 Thread v/s Process I hope, by now you got a reasonably good knowledge of process and
threads. Now let us summarise the properties of process and threads.

https://hemanthrajhemu.github.io

402

The terms multiprocessing and multitasking are a little confusing and sounds alike. In the operating sys¬
tem context multiprocessing describes the ability to execute multiple processes simultaneously. Systems
which are capable of performing multiprocessing, are.known as multiprocessor systems. Multiprocessor

systems possess multiple CPUs and can execute multiple processes simultaneously.
The ability of the operating system to have multiple programs in memory, which are ready for execu¬

tion, is referred as multiprogramming. In a uniprocessor system, it is not possible to execute multiple
processes simultaneously. However, it is possible for a uniprocessor system to achieve some degree of
pseudo parallelism in the execution of multiple processes by switching the execution among different
processes. The ability of an operating system to hold multiple processes in memory and switch the
processor (CPU) from executing one process to another process is known as multitasking. Multitasking
creates the illusion of multiple tasks executing in parallel. Multitasking involves the switching of CPU
from executing one task to another. In an earlier section ‘The Structure of a Process' of this chapter, we
learned that a Process is identical to the physical processor in the sense it has own register set which mir¬
rors the CPU registers, stack and Program Counter (PC). Hence, a ‘process' is considered as a ‘ Virtual

processor', awaiting its turn to have its properties switched into the physical processor. In a multitasking
environment, when task/process switching happens, the virtual processor (task/process) gets its proper¬
ties converted into that of the physical processor. The switching of the virtual processor to physical pro¬
cessor is controlled by the scheduler of the OS kernel. Whenever a CPU switching happens, the current
context of execution should be saved to retrieve it at a later point of time when the CPU executes the
process, which is interrupted currently due to execution switching. The context saving and retrieval is
essential for resuming a process exactly from the point where it was interrupted due to CPU switching.
The act of switching CPU among the processes or changing the current execution context is known as
‘ Context switching'. The act of saving the current context which contains the context details (Register
details, memory details, system resource usage details, execution details, etc.) for the currently running
process at the time of CPU switching is known as ‘ Context saving'. The process of retrieving the saved
context details for a process, which is going to be executed due to CPU switching, is known as ‘Con¬

text retrieval'. Multitasking involves ‘Context switching’ (Fig. 10.11), ‘Context saving' and ‘Context

retrieval'.

Toss juggling - The skilful object manipulation game is a classic real world example for the multitask¬
ing illusion. The juggler uses a number of objects (balls, rings, etc.) and throws them up and catches
them. At any point of time, he throws only one ball and catches only one per hand. However, the speed at
which he is switching the balls for throwing and catching creates the illusion, he is throwing and catch¬
ing multiple balls or using more than two hands © simultaneously, to the spectators.

https://hemanthrajhemu.github.io

10.4.1 Types of Multitasking

As we discussed earlier, multitasking involves-the switching of execution among multiple tasks. De¬
pending on how the switching act is implemented, multitasking can be classified into different types.
The following section describes the various types of multitasking existing in the Operating System’s
context.

10.4.1.1 Co-operative Multitasking Co-operative multitasking is the most primitive form of
multitasking in which a task/process gets, a chance to execute only when the currently executing task/
process voluntarily relinquishes the CPU. In this method, any task/process can hold the CPU as much
time as it wants. Since this type of implementation involves the mercy of the tasks each other for getting
the CPU time for execution, it is known as co-operative multitasking. If the currently executing task is
non-cooperative, the other tasks may have to wait for a long time to get the CPU.

10.4.1.2 *Preemptive Multitasking Preemptive multitasking ensures that every task/process gets a
chance to execute. When and how much time a process gets is dependent on the implementation of the
preemptive scheduling. As the name indicates, in preemptive multitasking, the currently running task/
process is preempted to give a chance to other tasks/process to execute. The preemption of task may be
based on time slots or task/process priority.

10.4.1.3 Non -preemp tive Multitasking In non-preemptivemultitasking, the process/task, which is
currently given the CPU time, is allowed to execute until it terminates (enters the ‘ Completed’ state) or enters
the ‘Blocked/Wait’ state, waiting for an I/O or system resource. The co-operative and non-preemptive multi¬
tasking differs in their behaviour when they are in the ‘Blocked/Wait’ state. In co-operative multitasking, the
currently executing process/task need not relinquish the CPU when it enters the ‘Blocked/Waif state,

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

waiting for an I/O, or a shared resource access or an event to occur whereas in non-preemptive multi¬
tasking the currently executing task relinquishes the CPU when it waits for an I/O or system resource
or an event to occur.

ctsm •

10.5 TASK SCHEDULING

As we already discussed, multitasking involves the execution switching among the different tasks.
There should be some mechanism in place to share the CPU among the different tasks and to decide
which process/task is to be executed at a given point of time. Determining which task/process is to be
executed at a given point of time is known as task/process scheduling. Task scheduling forms the basis
of multitasking. Scheduling policies forms the guidelines for determining which task is to be executed
when. The scheduling policies are implemented in an algorithm and it is run by the kernel as a service.
The kernel service/application, which implements the scheduling algorithm, is known as ‘Scheduler',
The process scheduling decision may take place when a process switches its state to

1. ‘Ready' state from ‘Running' state
2. ‘Blocked/Waif state from ‘Running’ state
3. 'Ready' state from ‘Blocked/Waif state
4. 'Completed' state
A process switches to 'Ready' state from the ‘Running' state when it is preempted. Hence, the type

of scheduling in scenario 1 is pre-emptive. When a high priority process in the ‘Blocked/Wait' state
completes its I/O and switches to the 'Ready' state, the scheduler picks it for execution if the scheduling
policy used is priority based preemptive. This is indicated by scenario 3. In preemptive/non-preemptive
multitasking, the process relinquishes the CPU when it enters the'Blocked/Wait' state or the ‘Com¬

pleted' state and switching of the CPU happens at this stage. Scheduling under scenario 2 can be either
preemptive or non-preemptive. Scheduling under scenario 4 can be preemptive, non-preemptive or co¬
operative.

The selection of a scheduling criterion/algorithm should consider the following factors:

CPU Utilisation: The scheduling algorithm should always make the CPU utilisation high. CPU utilisa¬
tion is a direct measure of how much percentage of the CPU is being utilised.

Throughput: This gives an indication of the number of processes executed per unit of time. The
throughput for a good scheduler should always be higher.

Turnaround Time: It is the amount of time taken by a process for completing its execution. It includes
the time spent by the process for waiting for the main memory, time spent in the ready queue, time spent
on completing the I/O operations, and the time spent in execution. The turnaround time should be a
minimal for a good scheduling algorithm..

Waiting Time: It is the amount of time spent by a process in the 'Ready' queue waiting to get the CPU
time for execution. The waiting time should be minimal for a good scheduling algorithm.

Response Time: It is the time elapsed between the submission of a process and the first response. For a
good scheduling algorithm, the response time should be as least as possible.

To summarise, a good scheduling algorithm has high CPU .utilisation, minimum Turn Around
Time (TAT), maximum throughput and least response time. • - vc - 1 •

The Operating System maintains various queues'! in connection with the CPU scheduling, and a pro¬
cess passes through these queues during the course of its admittance to execution completion.

t Queue is a special kind of arrangement of a collection of objects. In the operating system context queue is considered as a buffer.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

The various queues maintained by OS in association with CPU scheduling are:

Job Queue: Job queue contains all the processes in the system

Ready Queue: Contains all the processes, which are ready for execution and waiting for CPU to get
their turn for execution. The Ready queue is empty when there is no process ready for running.

Device Queue: Contains the set of processes, which are waiting for an I/O device.
A process migrates through all these queues during its journey from ‘Admitted’ to ‘ Completed’ stage.

The following diagrammatic representation (Fig. 10.12) illustrates the transition of a process through
the various queues.

Device Queue

Illustration of process transition through various queues

Based on the scheduling algorithm used, the scheduling can be classified into the following
categories.

10.5.1 Non-preemptive Scheduling

Non-preemptive scheduling is employed in systems, which implement non-preemptive multitasking
model. In this scheduling type, the currently executing task/process is allowed to run until it terminates
or enters the ‘Waif state waiting for an I/O or system resource. The various types of non-preemptive
scheduling adopted in task/process scheduling are listed below.

10.5.1.1 First-Come-First-Served (FCFS)/FIFO Scheduling As the name indicates, the First-
Come-First-Served (FCFS) scheduling algorithm allocates CPU time to the processes based on the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

order in which they enter the ‘Ready ’ queue. The first entered process is serviced first. It is same as any
real world application where queue systems are used; e.g. Ticketing reservation system where people
need to stand in a queue and the first person standing in the queue is serviced first. FCFS scheduling is
also known as First In First Out (FIFO) where the process which is put first into the ‘Ready’ queue is
serviced first.

Three-processes with process IDs PI, P2, P3 with estimated completion time 10, 5,7 milliseconds respectively inters the

ready queue together in the order PI, P2, P3. Calculate the waiting time and Turn Around Time (TAT) for each process

and the average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes).

The sequence of execution of the processes by the CPU is represented as

<--10--5—-7-►

Assuming the CPU is readily available at the time of arrival of PI, PI starts executing without any waiting in the 1Ready’

queue. Hence the waiting time for PI is zero. The waiting time for all processes are given as

Waiting Time for PI = 0 ms (PI starts executing first).

Waiting Time for P2 = 10 ms (P2 starts executing after completing PI)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

— = (Waiting time for (P1+P2+P3)) / 3

= (0+10+15)/3 = 25/3

= 8.33 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 15 ms (-Do-)

Turn Around Time (TAT) for P3 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (10+15+22)/3 =47/3

= 15.66 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

Average Execution Time = (Execution time for all processes)/No. of processes

= (Execution time for (Pl+P2+P3))/3

= (10+5+7)/3 = 22/3

= 7.33

Average Turn Around Time = Average waiting time + Average execution time

= 8.33 + 7.33

= 15.66 milliseconds

https://hemanthrajhemu.github.io

fr
fa

jj
u
jg

fj
jj

ti
b
tf

 at
ie

6

Real-Time Operating System (RTOS) based Embedded System Design

^Example 2

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around

Time (Assuming there is no I/O waiting for the processes) for the above example if the process enters the ‘Ready’ queue

together in the order P2, PI, P3.

The sequence of execution of the processes by the CPU is represented as

r.- T2 '|- c , PI/ \ : ’

05 15 22

◄-5--10--7-►

Assuming the CPU is readily available at the time of arrival of P2, P2 starts executing without any waiting in the ‘Ready'

queue. Hence the waiting time for P2 is zero. The waiting time for all processes is given as

Waiting Time for P2 = 0 ms (P2 starts executing first)

Waiting Time for PI = 5 ms (PI starts executing after completing P2)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P2 and PI)

. Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P2+P1+P3)) / 3

= (0+5+15)/3 = 20/3
= 6.66 milliseconds

- Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready'Queue + Execution Time)

- Turn Around Time (TAT) for PI = 15 ms (-Do-) ■ ’V-
~ Turn Around Time (TAT) for P3 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P2+P1+P3)) / 3

= (5+15+22)/3 = 42/3

= 14 milliseconds

The Average waiting time and Turn Around Time (TAT) depends on the order in which the processes enter the ‘Ready'

queue, regardless there estimated completion time.

From the above two examples it is clear that the Average waiting time and Turn Around Time im¬
prove if the process with shortest execution completion time is scheduled first.

The major drawback of FCFS algorithm is that it favours monopoly of process. A process, which
does not contain any I/O operation, continues its execution until it finishes its task. If the process con¬
tains any I/O operation, the CPU is relinquished by the process. In general, FCFS favours CPU bound
processes and I/O bound processes may have to wait until the completion of CPU bound process, if the
currently executing process is a CPU bound process. This leads to poor device utilisation. The average
waiting time is not minimal for FCFS scheduling algorithm.

10.5.1.2 Last-Come-First Served (LCFS)/LIFO Scheduling The Last-Come-First Served
(LCFS) scheduling algorithm also allocates CPU time to the processes based on the order in which
they are entered in the ‘Ready’ queue. The last entered process is serviced first. LCFS scheduling is
also known as Last In First Out (LIFO) where the process, which is put last into the ‘Ready' queue, is
serviced first.

.'.y, '-

Example 1

Three processes with process IDs PI, P2, P3 with estimated completion time 10,5,7 milliseconds respectively enters the

: ready queue together in the order PJ, P2, P3 (Assume only P1 is present in the ‘Ready' queue when the scheduler picks

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

it up and P2, P3 entered ‘Ready’ queue after that). Now a new process P4 with estimated completion time 6 ms enters

the ‘Ready’ queue after 5 ms of scheduling P1. Calculate the waiting time and Turn Around Time (TAT) for each process

and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes). Assume all the

processes contain only CPU operation and no I/O! operations are involved.

Initially there is only PI available in the Ready queue and the scheduling sequence will be PI, P3, P2. P4 enters the

queue during the execution of PI and becomes the last process entered the ‘Ready’ queue. Now the order of execution

changes to PI, P4, P3, and P2 as given below.

The waiting time for all the processes is given as

Waiting Time for PI = 0 ms (PI starts executing first)

Waiting Time for P4 = 5 ms (P4 starts-executing after completing PI. But P4 arrived after 5 ms of execution of P1. Hence

its waiting time = Execution start time - Arrival Time =10-5 = 5)

Waiting Time for P3 = 16 ms (P3 starts executing after completing PI and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing PI, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (0 + 5 + 16 + 23)/4 = 44/4

= 11 milliseconds

Turn Around Time (TAT) for PI = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution Time = (Execution Start Time

-Arrival Time) + Estimated Execution Time = (10 - 5) + 6 = 5 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P4+P3+P2)) / 4

= (10+ll+23+28)/4 = 72/4

= 18 milliseconds

LCFS scheduling is not optimal and it also possesses the same drawback as that of FCFS algorithm.

10.5.1.3 Shortest Job First (SJF) Scheduling Shortest Job First (SJF) scheduling algorithm ‘sorts
the ‘Ready’ queue’ each time a process relinquishes the CPU (either the process terminates or enters
the ‘ Waif state waiting for I/O or system resource) to pick the process with shortest (least) estimated
completion/run time. In SJF, the process with the shortest estimated run time is scheduled first, followed
by the next shortest process, and so on.

Three processes with process IDs PI, P2, P3 with estimated completion time 10, 5,7 milliseconds respectively enters the

ready queue together. Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting

time and Turn Around Time (Assuming there is no I/O waiting for the processes) in SJF algorithm.

The scheduler sorts the ‘Ready’ queue based on the shortest estimated completion time and schedules the process with

the least estimated completion time first and the next least one as second, and so on. The order in which the processes are

scheduled for execution is represented as

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

§§l§§

r-

P3 ’ - ' * " PI
Vjt'iv ‘w&ww.? ■ - F/k'-y1 t5 ? 7 7

- ''%'i* k i-

0 5 12 22

◄ — 5—-7--10-►

The estimated execution time of P2 is the least (5 ms) followed by P3 (7 ms) and PI (10 ms).

The waiting time for all processes are given as

Waiting Time for P2 = 0 ms (P2 starts executing first)

Waiting Time for P3 = 5 ms (P3 starts executing after completing P2)

Waiting Time for PI = 12 ms (PI starts executing after completing P2 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P2+P3+P1)) / 3

= (0+5+12)/3 = 17/3

= 5.66 milliseconds

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 12 ms (-Do-)

Turn Around Time (TAT) for P1 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P2+P3+P1)) / 3

= (5+12+22)/3 = 39/3

= 13 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

The average Execution time = (Execution time for all processes)/No. of processes

= (Execution time for (P1+P2+P3))/3

= (10+5+7)/3 =2273 = 7.33

Average Turn Around Time = Average Waiting time + Average Execution time

= 5.66 + 7.33

= 13 milliseconds

From this example, it is clear that the average waiting time and turn around time is much improved with the SJF schedul¬

ing for the same processes when compared to the FCFS algorithm.

r—— ---—

Example 2
v' : ' — —■ *

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around

Time for the above example if a new process P4 with estimated completion time 2 ms enters the ‘Ready’ queue after 2 ms

of execution of P2. Assume all the processes contain only CPU operation and no I/O operations are involved.

At the beginning, there are only three processes (PI, P2 and P3) available in the ‘Ready’ queue and the SJF scheduler

picks up the process with the least execution completion time (In this example P2 with execution completion time 5 ms)

for scheduling. The execution sequence diagram for this is same as that of Example 1.

Now process P4 with estimated execution completion time 2 ms enters the ‘Ready’ queue after 2 ms of start of execu¬

tion of P2. Since the SJF algorithm is non-preemptive and process P2 does not contain any I/O operations, P2 continues

its execution. After 5 ms of scheduling, P2 terminates and now the scheduler again sorts the ‘Ready’ queue for process

with least execution completion time. Since the execution completion time for P4 (2 ms) is less than that of P3 (7 ms),

which was supposed to be run after the completion of P2 as per the ‘Ready’ queue available at the beginning of execu¬

tion scheduling, P4 is picked up for executing. Due to the arrival of the process P4 with execution time 2 ms, the ‘Ready’

queue is re-sorted in the order P2, P4, P3, PI. At the beginning it was P2, P3, PI. The execution sequence now changes

as per the following diagram

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

n j H ; • Pi A X’AA+uT :

0 5 7 14 24

< _ 5 __ _7 — —- -10 — -►

The waiting time for all the processes are given as

Waiting time for P2 = 0 ms (P2 starts executing first)

Waiting time for P4 = 3 ms (P4 starts executing after completing P2. But P4 arrived after 2 ms of execution of P2. Hence

its waiting time = Execution start time - Arrival Time = 5-2 = 3)

Waiting time for P3 = 7 ms (P3 starts executing after completing P2 and P4)

Waiting time for PI = 14 ms (PI starts executing after completing P2, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P2+P4+P3+P1)) / 4

= (0 + 3 + 7 + 14)/4 = 24/4

= 6 milliseconds

(Time spent in Ready Queue + Execution Time)

(Time spent in Ready Queue + Execution Time = (Execution Start Time

- Arrival Time) + Estimated Execution Time = (5 - 2) +2 = 3+2)

(Time spent in Ready Queue + Execution Time)

(Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 5 ms

Turn Around Time (TAT) for P4 = 5 ms

Turn Around Time (TAT) for P3 = 14 ms

Turn Around Time (TAT) for P1 = 24 ms

Average Turn Around Time = (Turn Around Time for all Processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (5+5+14+24)/4 = 48/4

= 12 milliseconds /

The average waiting time for a given set of process is minimal in SJF scheduling and so it is optimal
compared to other non-preemptive scheduling like FCFS. The major drawback of SJF algorithm is that
a process whose estimated execution completion time is high may not get a chance to execute if more
and more processes with least estimated execution time enters the ‘Ready' queue before the process
with longest estimated execution time started its execution (In non-preemptive SJF). This condition is
known as 'Starvation'. Another drawback of SJF is that it is difficult to know in advance the next short¬
est process in the ‘Ready' queue for scheduling since new processes with different estimated execution
time keep entering the 'Ready' queue at any point of time.

10.5.1.4 Priority Based Scheduling The Turn Around Time (TAT) and waiting time for processes
in non-preemptive scheduling varies with the type of scheduling algorithm. Priority based non-preemptive
scheduling algorithm ensures that a process with high priority is serviced at the earliest compared to other
low priority processes in the ‘Ready’ queue. The priority of a task/process can be indicated through various
mechanisms. The Shortest Job First (SJF) algorithm can be viewed as a priority based scheduling where each
task is prioritised in the order of the time required to complete the task. The lower the time required for com¬
pleting a process the higher+s its priority in SJF algorithm. Another way of priority assigning is associating a
priority to the task/process it fhe time of creation of the task/process. The priority is a number ranging from 0
to the maximum priority supported by the OS. The maximum level of priority is OS dependent. For Example,
Windows CE supports 256 levels of priority (0 to 255 priority numbers). While creating the process/task, the
priority can be assigned to it. The priority number associated with a task/process is the direct indication of its
priority. The priority variation from high to low is represented by numbers from 0 to the maximum priority or
by numbers from maximum priority to 0. For Windows CE operating system a priority numbef 0 indicates the
highest priority and 255 indicates the lowest priority. This convention need not be universal and it depends on

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

the kernel level implementation of the priority structure. The non-preemptive priority based scheduler sorts
the ‘Ready’ queue based on priority and picks the process with the highest level of priority for execution.

Example 1

Three processes with process IDs PI, P2, P3 with estimated completion time 10, 5, 7 milliseconds and priorities 0, 3,

2 {i0—highest priority, 3—lowest priority) respectively enters the ready queue together. Calculate the waiting time and

Turn Around Time (TAT) for each process and the Average waiting time and Turn Around Time (Assuming there is no

I/O waiting for the processes) in priority based scheduling algorithm.

The scheduler sorts the ‘Ready' queue based on the priority and schedules the process with the highest priority (PI

with priority number 0) first and the next high priority process (P3 with priority number 2) as second, and so on. The order

in which the processes are scheduled for execution is represented as

The waiting time for all the processes are given as

:Waiting time for PI = 0 ms (PI starts executing first)

Waiting time for P3 = 10 ms (P3 starts executing after completing PI)

Waiting time for P2 = 17 ms (P2 starts executing after completing PI and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P3+P2)) / 3

= (0+10+17)/3 = 27/3

= 9 milliseconds

Turn Around Time (TAT) for PI = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 17 ms (-Do-)

Turn Around Time (TAT) for P2 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P3+P2)) / 3

= (10+17+22)/3 = 49/3

= 16.33 milliseconds

Example 2

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around

Time for the above example if a new process P4 with estimated completion time 6 ms and priority 1 enters the ‘Ready’

queue after 5 ms of execution of PI. Assume all the p vosses contain only CPU operation and no I/O operations are

involved.

At the beginning, there are only three processes (PI, P2 and P3) available in the ‘Ready' queue and the scheduler

picks up the process with the highest priority (In this example PI with priority 0) for scheduling. The execution sequence

diagram for this is same as that of Example 1. Now process P4 with estimated execution completion time 6 ms and

priority 1 enters the ‘Ready' queue after 5 ms of execution of PI. Since the scheduling algorithm is non-preemptive and

process PI does not contain any I/O operations, PI continues its execution. After 10 ms of scheduling, Rluterminates and

now the scheduler again sorts thq‘Ready' queue for process, with highest priority. Since the priority fhnP4 (priority 1)

is higher than that of P3 (priority 2), which was supposed to be run after the completion of PI as per the-‘Ready' queue

available at the beginning of execution scheduling, P4 is picked up for executing. Due to the arrival of the process P4 with

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

priority 1, the ‘Ready’ queue is resorted in the order PI, P4, P3, P2. At the beginning it was PI, P3, P2. The execution

sequence now changes as per the following diagram

0 10 16 23 28

The waiting time for all the processes are given as

Waiting time for PI = 0 ms (PI starts executing first)

Waiting time for P4 = 5 ms (P4 starts executing after completing PI. But P4 arrived after 5 ms of execution of PI. Hence

its waiting time = Execution start time - Arrival Time = 10-5 = 5)

Waiting time for P3 = 16 ms (P3 starts executing after completing PI and P4)

Waiting time for P2 = 23 ms (P2 starts executing after completing PI, P4 and P3)

Average waiting time, = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (0 + 5 + 16 + 23)/4 = 44/4

= 11 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution

Time = (Execution Start Time - Arrival Time) + Estimated Execution

Time = (10-5)+ 6 = 5+ 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P2 + P4 + P3 + Pl))/4

= (10 + 11 +23 + 28)/4 = 72/4

= 18 milliseconds

Similar to SIF scheduling algorithm, non-preemptive priority based algorithm also possess the draw¬
back of ‘Starvation' where a process whose priority is low may not get a chance to execute if more and
more processes with higher priorities enter the ‘Ready’ queue before the process with lower priority
started its execution. ‘Starvation' can be effectively tackled in priority based non-preemptive scheduling
by dynamically raising the priority of the low priority Task/process which is under starvation (waiting
in the ready queue for a longer time for getting the CPU'time). The technique of gradually raising the
priority of processes which are waiting in the ‘Ready ’ queue as time progresses, for preventing ‘Star\>a-

tion’, is known as ‘Aging’.

10.5.2 Preemptive Scheduling

Preemptive scheduling is employed in systems, which implements preemptive multitasking model. In
preemptive scheduling, every task in the ‘Ready’ queue gets a chance to execute. When and how of¬
ten each process gets a chance to execute (gets the CPU time) is dependent on the type of preemptive
scheduling algorithm used for scheduling the processes. In this kind of scheduling, the scheduler can
preempt (stop temporarily) the currently executing task/process and select another task from the ‘Ready'

queue for execution. When to pre-empt a task and which task is to be picked up from the ‘Ready’ queue
for execution after preempting the current task is purely dependent on the scheduling algorithm. A task
which is preempted by the scheduler is moved to the ‘Ready’ queue. The act of moving a ‘Running

process/task into the ‘Ready’ queue by the scheduler, without the processes requesting for it is known as

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

‘Preemption’. Preemptive scheduling can be implemented in different approaches. The two important
approaches adopted in preemptive scheduling are time-based preemption and priority-based preemption.
The various types of preemptive scheduling adapted in task/process scheduling are explained below, i

10.5.2.1 Preemptive SJF Scheduling/Shortest Remaining Time (SRT) The non-preemptive
SJF scheduling algorithm sorts the ‘Ready’ queue only after completing the execution.of the current
process or when the process enters ‘Wait’ state, whereas the preemptive SJF scheduling.algorithm sorts
the ‘Ready’ queue when a new process enters the ‘Ready’ queue and checks whether the execution time
of the new process is shorter than the remaining of the total estimated time for the currently executing
process. If the execution time of the new process is less, the currently executing process is preempted
and the new process is scheduled for execution. Thus preemptive SJF scheduling always compares the
execution completion time (It is same as the remaining time for the new process) of a new process en¬
tered the ‘Ready’ queue with the remaining time for completion of the currently executing process and
schedules the process with shortest remaining time for execution. Preemptive SJF scheduling is also
known as Shortest Remaining Time (SRT) scheduling.

Now let us solve Example 2 given under the Non-preemptive SJF scheduling for preemptive SJF
scheduling. The problem statement and solution is explained in the following example.

Example 1

Three processes with process IDs PI, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively enters

the ready queue together. A new process P4 with estimated completion time 2 ms enters the ‘Ready’ queue after-2 ms.

Assume all the processes contain only CPU operation and no I/O operations are involved.

At the beginning, there are only three processes (PI, P2 and P3) available in the 1 Ready’ queue and the SRT scheduler

picks up the process with the shortest remaining time for execution completion (In this example, P2 with remaining time —

5 ms) for scheduling. The execution sequence diagram for this is same as that of example 1 under non-preemptive SJF

scheduling.

Now process P4 with estimated execution completion time 2 ms enters the ’Ready’ queue after 2 ms of start of execu¬

tion of P2. Since the SRT algorithm is preemptive, the remaining time for completion of process P2 is checked with the

remaining time for completion of process P4. The remaining time for completion of P2 is 3 ms which is greater than that

of the remaining time for completion of the newly entered process P4 (2 ms). Hence P2 is preempted and P4 is scheduled

for execution. P4 continues its execution to finish since there is no new process entered in the ‘Ready’ queue during its

execution. After 2 ms of scheduling P4 terminates and now the scheduler again sorts the ’Ready’ queue based on the re¬

maining time for completion of the processes present in the ‘Ready’ queue. Since the remaining time for P2 (3 ms), which

is preempted by P4 is less than that of the remaining time for other processes in the ‘Ready’ queue, P2 is scheduled for

execution. Due to the arrival of the process P4 with execution time 2 ms, the ’Ready’ queue is re-sorted in the order P2,

P4, P2, P3, PI. At the beginning it was P2, P3, PI. The execution sequence now changes as per the following diagram

0 2 4 7 14 24

■42X2X-3-K-7--10-►

The waiting time for all the processes are given as

Waiting time for P2 = 0 ms + (4 - 2) ms = 2 ms (P2 starts executing first and is interrupted by P4 and has to wait till the

completion of P4 to get the next CPU slot)

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Waiting time for P4 = 0 ms (P4 starts executing by preempting P2 since the execution time for completion of P4 (2 ms) is

less than that of the Remaining time for execution completion of P2 (Here it is 3 ms))

Waiting time for P3 = 7 ms (P3 starts executing after completing P4 and P2)

Waiting time for PI = 14 ms (PI starts executing after completing P4, P2 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P4+P2+P3 +P1)) / 4

= (0 + 2 + 7 + 14)/4 = 23/4

, = 5.75 millisecond^'

Turn Around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 2 ms (Time spent in Ready Queue + Execution Time = (Execution Start Time

-Arrival Time) + Estimated Execution Time = (2 - 2) + 2)

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (7+2+14+24)/4 = 47/4

= 11.75 milliseconds

Now let’s compare the Average Waiting time and Average Turn Around Time with that of the Average waiting time and

Average Turn Around Time for non-preemptive SJF scheduling (Refer to Example 2 given under the section Non-pre-

emptive SJF scheduling) 7

Average Waiting Time in non-preemptive SJF scheduling = 6 ms

Average Waiting Time in preemptive SJF scheduling = 5.75 ms

Average Turn Around Time in non-preemptive SJF scheduling = 12 ms

Average Turn Around Time in preemptive SJF scheduling = 11.75 ms

This reveals that the Average waiting Time and Turn Around Time (TAT) improves significantly with preemptive SJF

scheduling.

10.5.2.2 Round Robin (RR) Scheduling The term Round Robin is very popular among the sports
andgames activities. You might have heard about ‘Round Robin’ league or ‘Knock out’ league associ¬
ated with any football or cjricket tournament. In the ‘Round Robin’ league each team in a group gets an
equal chance to'play against the rest of the teams in the same group whereas in the ‘Knock out’ league
the losing team in a match moves out of the tournament ©.

In the process scheduling context also, ‘Round Robin’ brings the same message “Equal chance to
all”. In Round Robin scheduling, each process in the ‘Ready’ queue is executed for a pre-defined time
slot. The execution starts with picking up the first process in the ‘Ready’ queue (see Fig. 10.13). It is
executed for a pre-defined time and when the pre-defined time elapses or the process completes (before
the pre-defined time slice), the next process in the ‘Ready’ queue is selected for execution. This is re¬
peated for all the processes in the ‘Ready’ queue. Once each process in the ‘Ready’ queue is executed for
the pre-defined time period, the scheduler comes back and picks the first process in the ‘Ready’ queue
again for execution. The sequence is repeated. This reveals that the Round Robin scheduling is similar
to the FCFS scheduling and the only difference is that a time slice based preemption is added to switch
the execution between the processes in the ‘Ready’ queue. The ‘Ready’ queue can be considered as a
circular queue in which the scheduler picks up the first process for execution and moves to the next till
the end of the queue and then comes back to the beginning of the queue to pick up the first process.

The time slice is provided by the timer tick feature of the time management unit of the OS kernel (Re¬
fer the Time management section under the subtopic ‘ The Real-Time kernel for more details on Timer
tick). Time slice is kernel dependent and it varies in the order of a few microseconds to milliseconds.
Certain OS kernels may allow the time slice as user configurable. Round Robin scheduling ensures that

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

every process gets a fixed amount of GPU time for execution. When the process gets its fixed time for
execution is determined by the FCFS policy (That is, a process entering the Ready queue first gets its
fixed execution time first and so on...). If a process terminates before the elapse of the time slice, the
process releases the CPU voluntarily and the next process in the queue is scheduled for execution by
the scheduler. The implementation of RR scheduling is kernel dependent. The following code snippet
illustrates the RR scheduling implementation for RTX51 Tiny OS, an 8bit OS for 8051 microcontroller

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

RTX51 defines the tasks as simple C functions with void return type and void argument list. Thq attri¬
bute jask_ is used for declaring a function as task. The general form of declaring a task is

- ; . a void func (void) ;_tas.k_ tasked «** ,» * ,

where func is the name of the task and taskjd is the ID of the task. RTX51 supports up to 16 tasks and
so taskjd varies from 0 to 15. All tasks should be implemented as endless loops.

The two tasks in this program are counter loops. RTX51 Tiny starts executing task 0 which is the
function named jobO. This function creates another task called job 1. After jobO executes for its time
slice, RTX51 Tiny switches to jobl. After job 1 executes for its time slice, RTX51 Tiny switches back to
jobO. This process is repeated forever.

Now let’s check how the RTX51 Tiny RR Scheduling can be implemented in an embedded device (A
smart card reader) which addresses the following requirements.-

• Check the presence of a card
• Process the data received from the card
• Update the Display
• Check the serial port for command/data
• Process the data received from serial port

These four requirements can be considered as four tasks. Implement them as four RTX51 tasks as ex¬
plained below.

'void check_card_ task (void)' _task__ 1 f'X/jAA VvXC Ay. AA-A 3Ai.A-A.'AAci ■iAyT

I . :S~ :-:-k ■ ; . ■v-.'.'W,:V,; ■■,...■■ . .., . ’ 1
. ■ ■ . ■ . • ■ • . . ' - .’ ■ ..'-'V ■

'/*-This task checks for the presence of a ca-rd

/■* Implement the necessary functionality here *AyA ;; ;:AXA

■ y ■ 'djfkjjfjk TAA'A AAA") AAiA djc AAAi '■ At ’ --A Al ;. XT At A; • X; TiA j
void process ■card (task (void) .3 task 2 - — ht-TA XT. At- .AAvi ,.:VAXA

■■ ■ v iy l * >, .■ .■ . ■ ■ - ■■ *-- >. ‘ f, -•
{ tA ■
/* This task processes the data received -from the card ■*/>■

implement the necessary functionality here */
t AA'XAit;;.;,, ,y ,,C,.yy ■ y. y ■ ;■ V* .y ■

void check:serial io task (void) task 3
''jf j -, \J . ~ ~ “ '

,/* This task checks for serial I/O */

/*..Implement the• necessary functionality here :*/v

T : ^ ; V. A ■ . .y ,
void pro'’dess_:s'erial_data_task. (void) _task_ A

"{ "" "V' • V;';vr: '.VA til 'WMWfXWjjdM,
/*• This task processes the ..data received from the serial port/*/ Ai ■ -..

/* Implement the necessary functionality here.*/ . v 3 v; . ''i;’:

) '

Now the tasks are created. Next step is scheduling the tasks. The following code snippet illustrates
the scheduling of tasks.

3 W ip ,

void startujyytask (void) lytaykAXA XA XT X-A, -■ -
T
os_create_task (1); /* Create'-check^_ca'rdAtask Task */

os create task (2); /’ Create process card task Task */■
p.s_create_,tas.k (3) ; y /*

H

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

os_create_ta.sk (4); , /* Create serial_data_task Task */

oS_dclete task (0) ; - /* Delete the Startup Task '*'/ 3 o " 7'- ' ’

The os_createJask (task_ID) RTX51 Tiny kernel call puts the task with task ID taskJD in the
‘Ready’ state. All the ready tasks begin their execution at the next available opportunity. RTX51 Tiny
does not have a main () function to begin the code execution; instead it starts with executing task 0. Task
0 is used for creating other tasks. Once all the tasks are created, task 0 is stopped and removed from the
task list with the osjdeletejask kernel call. The RR scheduler selects each task based on the time slice
and continues the execution. If we observe the tasks we can see that there is no point in executing the
task process_cardjask (Task 2) without detecting a card and executing the task process_serial_data_

task (Task 4) without receiving some data in the serial port. In summary task 2 needs to be executed only
when task 1 reports the presence of a card and task 4 needs to be executed only when task 3 reports the
arrival of data at serial port. So these tasks (tasks 2 and 4) need to be put in the ‘Ready’ state only on
satisfying these conditions. Till then these tasks can be put in the ‘Wait’ state so that the RR scheduler
will not pick them for scheduling and the RR scheduling is effectively utilised among the other tasks.
This can be achieved by implementing the wait and notify mechanism in the related tasks. Task 2 can
be coded in a way that it waits for the card present event and task 1 signals the event ‘card detected’. In
a similar fashion Task 4 can be coded in such a way that it waits for the serial data received event and
task 3 signals the reception of serial data on receiving serial data from serial port. The following code
snippet explains the same.

void check_card_task (void) ,._:;ask_ 1 -I -t ■ • .■ r-..

/* This-task checks for the presence of a card */ / . 7?' ' 7.

i ”■ Implement: the necessary functionality here */.

5 s?vY; a-■ ’•yV.- •7^: v
’ //Function for.checking the,presence of card and .card reading

.7 “1 ho ■’ Attv u- A „ >7 '" -sj-.j u.' :

if (card is present) ■
//Signal card detected to task 2

os_send_signal (2)

1 ”
1

void process_card_task (void) _task_ 2

{
/* This task processes the data received from the card */

/* Implement the necessary functionality here */

while (1)

t. ' , /
//Function for checking the signaling of card -/present event

os_waitl (K_SIG); \.

//Process card data /

https://hemanthrajhemu.github.io

Wj* K 7V

ft&ggH

IIP •'-/■/pi
4J. ;-> *-*a£J

.A-wP/IiP-C

V-C1 - ^P'^ .-- f i*>i.!^,--i

i - -'.) '.ultliS- *1 Jtr'.t:

■"r A*-. -';V ''■'/.*#' ; ■:-v:: ■ ,//.Xh

,?-^y;v«f

.void check_serial_io_task (void) _tas

/*' This task checks for serial I/O */

7* Implement the necessary functional

while (1)/ . *r ^ ^ f

void pro'cess_s6rial

/* This' task processes the data re

/* Implement the necessary func.tio

while (1) . '■■■■.,

//Function for checking .(the

os waitl(K SIG); ,
—, • r~ • '

//Process card .data
’■ A:-/• v 77-A A ■••:-A A- A if:

} .

The os_send_signal (Task ID) kernel call sends a signal to task Task ID. If the specified task is already
waiting for a signal, this function call readies the task for execution but does not start it. The osjwaitl

(event) kernel call halts the current task and waits for an event to occur. The event argument specifies the
event to wait for and may have only the value K_SIG which waits for a signal. RTX51 uses the Timer
0 of 8051 for time slice generation. The time slice can be configured by the user by changing the time
slice related parameters in the RTX51 Tiny OS configuration file CONF_TNY.A51 file which is located
in the \KEIL\C51\RTXTINY2\ folder. Configuration options in CONFJNY.A51 allow users to:

• Specify the Timer Tick Interrupt Register Bank.
• Specify the Timer Tick Interval (in 8051 machine cycles).
• Specify user code to execute in the Timer Tick Interrupt.
• Specify the Round-Robin Timeout.
• Enable or disable Round-Robin Task Switching.
• Specify that your application includes long duration interrupts.
• Specify whether or not code banking is used.
• Define the top of the RTX51 Tiny stack.
• Specify the minimum stack space required.
• Specify code to execute in the event of a stack error.
• Define idle task operations.
The RTX51 kernel provides a set of task management functions for managing the tasks. At any point

of time each RTX51 task is exactly in any one of the following state.

Introduction to Embedded Systems

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Refer the documentation available with RTX51 Tiny OS for more information on the various RTX51
task management kernel functions and their usage.

RR scheduling with interrupts is a good choice for the design of comparatively less complex Real-

Time Embedded Systems. In this approach, the tasks which require less Real-Time attention can be sched¬
uled with Round Robin scheduling and the tasks which require Real-Time attention can be scheduled
through Interrupt Service Routines. RTX51 Tiny supports Interrupts with RR scheduling. For RTX51
the time slice for RR scheduling is provided by the Timer interrupt and if the interrupt is of high prior¬
ity than that of the timer interrupt and if its service time (ISR) is longer than the timer tick interval, the
RTX51 timer interrupt may be interrupted by the ISR and it may be reentered by a subsequent RX51
Tiny timer interrupt. Hence proper care must be taken to limit the ISR time within the timer tick interval
or to protect the timer tick interrupt code from reentrancy. Otherwise unexpected results may occur.
The limitations of RR with interrupt generic approach are the limited number of interrupts supported by
embedded processors and the interrupt latency happening due to the context switching overhead.

RR can also be used as technique for resolving the priority in scheduling among the tasks with same
level of priority. We will discuss about how RR scheduling can be used for resolving the priority among
equal tasks under the VxWorks kernel in a later chapter.

Three processes with process IDs PI, P2, P3 with estimated completion time 6,4,2 milliseconds respectively, enters the

ready queue together in the order PI, P2, P3. Calculate the waiting time and Turn Around Time (TAT) for each process

and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in RR algo¬

rithm with Time slice = 2 ms.
/

The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks up the first process PI from the ‘Ready’

queue and executes it for the time slice 2 ms. When the time slice is expired, PI is preempted and P2 is scheduled for

execution. The Time slice expires after 2ms of execution of P2. Now P2 is preempted and P3 is picked up for execution.

P3 completes its execution within the time slice and the scheduler 'picks P1 again for execution for the next time slice.

This procedure is repeated till all the processes are serviced. The order in which the processes are scheduled for execution
> /
is represented as

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The waiting time for all the processes are given as

Waiting time for PI = 0 + (6 - 2) + (10 -8) = 0 + 4 + 2 = 6ms

'(PI starts pxecuting first and waits for two time slices to get execution back and again 1 time

slice for getting CPU time)

Waiting time for P2 = (2 - 0) + (8 - 4) = 2 + 4 = 6 ms

(P2 starts executing after PI executes for 1 time slice and waits for two time slices to get the CPU

time)

Waiting time for P3 = (4 - 0) = 4 ms

' (P3 starts executing after completing the first time slices for PI and P2 and completes its execu¬

tion in a single time slice)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (PI + P2 + P3)) / 3

= (6 + 6 + 4)/3 = 16/3

= 5.33 milliseconds !

Turn Around Time (TAT) for PI = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (PI + P2 + P3))/3

= (12 + 10 + 6)/3 = 28/3

= 9.33 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

Average Execution time = (Execution time for all the process)/No. of processes

= (Execution time for (PI + P2 + P3))/3

= (6 + 4 + 2)/3 = 12/3

= 4

Average Turn Around Time = Average Waiting time + Average Execution time

= 5.33 + 4

= 9.33 milliseconds

RR scheduling involves lot of overhead in maintaining the time slice information for evejy process
which is currently being executed.

10.5.2.3 Priority Based Scheduling Priority based preemptive scheduling algorithm is same as
that of the non-preemptive priority based scheduling except for the switching of execution between
tasks. In preemptive scheduling, any high priority process entering the ‘Ready’ queue is immediately
scheduled for execution whereas in the non-preemptive scheduling any high priority process entering
the ‘Ready’ queue is scheduled only after the currently executing process completes its execution or
only when it voluntarily relinquishes the CPU. The priority ofV task/process in preemptive scheduling
is indicated in the same way as that of the mechanism adopted for non-preemptive multitasking. Refer
the non-preemptive priority based scheduling discussed, in an earlier section of this chapter for more
details.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Example 1

Three processes with process IDs PI, P2, P3 with estimated completion time 10, 5, 7 milliseconds and priorities 1, 3, 2

(0—highest priority, 3—lowest priority) respectively enters the ready queue together. A new process P4 with estimated

completion time 6 ms and priority 0 enters the ‘Ready’ queue after 5 ms of start of execution of PI. Assume all the pro¬

cesses contain only CPU operation and no I/O operations are involved.

At the beginning, there are only three processes (PI, P2 and P3) available in the ‘Ready’ queue and the scheduler picks

up the process with the highest priority (In this example P1. with priority 1) for scheduling.

Now process P4 with estimated execution completion time 6 ms and priority 0 enters the ‘Ready’ queue after 5 ms of

start of execution of P1. Since the scheduling algorithm is preemptive, P1 is preempted by P4 and P4 runs to completion.

After 6 ms of scheduling, P4 terminates and now the scheduler again sorts the ‘Ready’ queue for process with highest

priority. Since the priority for PI (priority 1), which is preempted by P4 is higher than that of P3 (priority 2) and P2

((priority 3), PI is again picked up for execution by the scheduler. Due to the arrival of the process P4 with priority 0, the

‘Ready’ queue is resorted in the order PI, P4, PI, P3, P2. At the beginning it was PI, P3, P2. The execution sequence now

changes as per the following diagram

m|HH9@| QQ++UA' +1 rA'A
• t

-Lb- i-i-T-S F • "-Rfiii

■+ y q [111 1

0 ' 5 11 16 23 28

◄-5-— -6- -►-* -5- —— —7- -5-►

The waiting time for all the processes are given as

Waiting time for PI = 0 + (11 - 5) = 0 + 6 = 6 ms

(PI starts-executing first and gets preempted by P4 after 5 ms and again gets the CPU time after

completion of P4)

Waiting time for P4 = 0 ms

(P4 starts executing immediately on entering the ‘Ready’ queue, by preempting PI)

Waiting time for P3 = 16 ms (P3 starts executing after completing PI and P4)

Waiting time for P2 = 23 ms (P2 starts executing after completing PI, P4 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (6 + 0 + 16 + 23)/4 = 45/4

= 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 6 ms

(Time spent in Ready Queue + Execution Time = (Execution Start Time - Arrival Time) + Esti¬

mated Execution Time = (5 - 5) + 6 = 0 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ifis (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2 + P4 + P3 + PI)) / 4

= (16 + 6 + 23 + 28)/4 = 73/4

= 18.25 milliseconds

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Priority based preemptive scheduling gives Real-Time attention to high priority tasks. Thus priority
based preemptive scheduling is adopted in systems which demands ‘Real-Time’ behaviour. Most of
the RTOSs make use of the preemptive priority based scheduling algorithm for process scheduling.
Preemptive priority based scheduling also possesses the same drawback of non-preemptive priority
based scheduling-1 Starvation'. This can be eliminated by the 1 Aging' technique. Refer the section Non-
preemptive priority based scheduling for more details on ‘Starvation’ and '’Aging'.

10.6 THREADS, PROCESSES AND SCHEDULING: PUTTING
THEM ALTOGETHER

So far we discussed about threads, processes and process/thread scheduling. Now let us have a look at
how these entities are addressed in a real world implementation. Let’s examine the following pieces of
code.

//Process 1 ; . c : v/V . ' • • ;:UT

t include <windows.n> -V- .• V""i :’Xy}
• ' - j. Y v* * ■s I'.. f; .T"; AY yNL.:-, i LvJ-5. y \h , .. ,, //

tinclude <stdio.h> , - V y/4%

//Thread for executing: Task. "■ ’ " /‘“Til

void Task (void) { - • . v h ‘ \ >

while (1) - • ■ ■' .*

//Perform some task

//Task execution time is 15 units of execution

//Sleep for- 17.5 units bf execution. .. ,

Sleep (17.5); //Parameter given. i;s not in. milliseconds

//Repeat task

}

1 ■ _ . v
//***•***V ** *******************
//Main Thread.
//**

void main(void) {

DWORD id;

HANDLE hThread;

//Create thread with normal priority
//******************************■***********************************•*

hThread = CreateThread(NULL,0,

(LPTHREAD_START_ROUTINE)Task,

(LPVOID) 0, 0, &id);

if (NULL==hThread)

{//Thread Creation failed. Exit process

printf ("Creating thread failed: Error Code =

%d",GetLastError()) ;

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

return;

}

WaitForSingleOb j.ect (hThread, INFINITE) ;

return.;--

//Process 2 s> / _ /./ ‘/T/*// .

linclude <windows.h>' r,.\; .. ' • •• • ‘ > dp - •

#include“*<stdio.h> '?/ y

.. ~ _ -■ «, i-wiiS'", r".-? - ‘ t i- j~/"> "• v .

'//Thread for executing Task ^ ' -’fp

hy.gid,v'jt.ask'(vc)id,)tj/. •;» < ,• . .>•:< •/ •% 7 F- •• -fc■, f 1%' ■■..•f'-ft-r
ly^b!l^yll):-irrR^dS'W<i / -Ay :.>;4 //.///-;,.!■ 3//-rr. ■- ’/:> P -by/j’Sk- yyA■ //

/./Perform some task / ./ /' A'/,/.-,.. y / W V ,/

..///Task .execution time is 10 . units .of execution ,.. ■ ' ,» ,' ,. V ’;■>,< 'V'" \ V, >. <•,»/;!
/./Sleep for 5 units of execution ” / //.' //‘A/ // ' '/ '''//“■• ■‘

Sleep (5) ; //Parameter given is not in mi 1 '..iseconds *1 ' yl A

- //Repeat .‘task - • - ' " A' * ' it _>■ ■ -•

■ ' ;v' t'/'f:ffV/• .f ’ n" '

t Rj y’rkfc * * * k * * * ** * * k * k k k * k * * * * *. * Tt ** k * ■* * * 1 * * A * k k k k k k k kkk kk k k k kkkkkkkkkk

i’ //Mair. Threaa. ’ 'I-"--/ \ '. ’; \ ; A'-- /1,A 1 * . ■ . " ..
\ "11 **;;*.* ****** ****** ******************** ** * * ******** *.* * * * * * * *,** * * * *.*.* *
. void main (void) { , . •

ft/ " -■ DWORD id; .

, ■ ■ HANDLE ,■ hThread;

i//Create thread with ,above.normal priority
//**

hThread = CreateThread(NULL,0,

(LPTHREAD_START_ROUTINE)Task,

(LPVOID) 0, CREATE_SUSPENDED, &id) ;

if (NULL==hThread)

{//Thread Creation failed. Exit process

printf ("Creating thread failed: Error Code =

%d",GetLastError());

return;

k/'XT' t

SetThreadPriority(hThread,THREAD_PRIORITY_ABOVE_NORMAL);

ResumeThread(hThread);

WaitForSingleObject(hThread, INFINITE);

return;

The first piece of code represents a process (Process 1) with priority normal and it performs a task

which requires 7.5 units of execution time. After performing this task, the process sleeps for 17.5 units

of execution time and this is repeated forever. The second piece of code represents a process (Process

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

2) with priority above normal and it performs a task which requires 10 units of execution time. After
performing this task, the process sleeps for 5 units of execution time and this is repeated forever. Process
2 is of higher priority compared to process 1, since its priority is above ‘Normal’.

Now let us examine what happens if these processes are executed on a Real-Time kernel with pre¬
emptive priority based scheduling policy. Imagine Process 1 and Process 2 are ready for execution. Both
of them enters the ‘Ready’ queue and the scheduler picks up Process 2 for execution since it is of higher
priority (Assuming there is no other process running/ready for execution, when both the processes are
‘Ready’ for execution) compared to Process 1. Process 2 starts executing and runs until it executes the
Sleep instruction (i.e. after 10 Units of execution time). When the Sleep instruction is executed, Process 2
enters the wait state. Since Process 1 is waiting for its turn in the ‘Ready’ queue, the scheduler picks up
it for execution, resulting in a context switch. The Process Control Block (PCB) of Process 2 is updated
with the values of the Program Counter (PC), stack pointer, etc. at the time of context switch. The esti¬
mated task execution time for Process 1 is 7.5 units of execution time and the sleeping time for Process
2 is 5 units of execution. After 5 units of execution time, Process 2 enters the ‘Ready’ state and moves
to the ‘Ready’ queue. Since it is of higher priority compared to the running process, the running process
(Process 1) is pre-empted and Process 2 is scheduled for execution. Process 1 is moved to the ‘Ready’
queue, resulting in context switching. The Process Control Block of Process 1 is updated with the cur¬
rent values of the Program Counter (PC), Stack pointer, etc. when the context switch is happened. The
Program Counter (PC), Stack pointer, etc. for Process 2 is loaded with the values stored in the Process
Control Block (PCB) of Process 2 and Process 2 continues its execution form where it was stopped ear¬
lier. Process 2 executes the Sleep instmction after 10 units of execution time and enters the wait state.
At this point Process 1 is waiting in the ‘Ready’ queue and it requires 2.5 units of execution time for
completing the task associated with it (The total time for completing the task is 7.5 units of time, out
of this it has already completed 5 units of execution when Process 2 was in the wait state). The sched¬
uler schedules Process 1 for execution. The Program Counter (PC), Stack pointer, etc. for Process 1 is
loaded with the values stored in the Process Control Block (PCB) of Process 1 and Process 1 continues
its execution form where it was stopped earlier. After 2.5 units of execution time, Process 1 executes the
Sleep instmction and enters the wait state. Process 2 is already in the wait state and the scheduler finds
no other process for scheduling. In order to keep the CPU always busy, the scheduler runs a dummy
process (task) called ‘IDLE PROCESS (TASK)’. The ‘IDLE PROCESS (TASKV executes some dummy
task and keeps the CPU engaged. The execution diagram depicted in Fig. 10.24 explains the sequence
of operations.

The implementation of the ‘IDLE PROCESS (TASK)’ is dependent on the kernel and a typical imple¬
mentation for a desktop OS may look like. It is simply an endless loop.

void Idle_Process (void)

{
//Simply wait.

//Do nothing...

While (1);' . f

1

The Real-Time kernels deployed in embedded systems, where operating power is a big constraint
(like systems which are battery powered); the ''IDLE TASK’ is used for putting the CPU into IDLE mode
for saving the power. A typical example is the RTX51 Tjny Real-Time kernel, where the ‘IDLE TASK'
sets the 8051 CPU to IDLE mode, a power saving mode. In the ‘IDLE5 mode, the program execution is

https://hemanthrajhemu.github.io

halted and all peripherals and the interrupt system continues its operation. Once the CPU is put into the
‘IDLE’ mode, it domes out of this mode when an Interrupt occurs or when the RTX51 Tiny Timer Tick
Interrupt (The timer interrupt used for task scheduling in Round robin scheduling) occurs. It should be
noted that the ‘IDLE PROCESS (TASK)’ execution is not pre-emptive priority scheduling specific, it is
applicable to all types of scheduling policies which demand 100% CPU utilisation/CPU power saving.

Back to the desktop OS environment, let’s analyse the process, threads and scheduling in the Win¬
dows desktop environment. Windows provide a utility called task manager for monitoring the different
process running on the system and the resources use'd by each process. A snapshot of the process details
returned by the task manager for Windows XP kernel is shown in Fig. 10.15. It should be noted that
this snapshot is purely machine dependent and it varies with the number of processes running on the
machine.

‘Image Name’ represents the name of the process. ‘PID* represents the Process Identification Number
(Process ID). As mentioned in the Threads and Process’ section, when a process is created an ID is
associated to it. CPU usage gives the % of CPU utilised by the process during an interval. ‘ CPU Time’
gives the total CPU time used by a process after its commencement. ‘Mem Usage’ represents the total
main memory" in kilobytes, used by the process. ‘ VMSize’ represents the total virtual memory (paged
memory), in kilobytes, used by a process. ‘Paged Pool’ represents the paged memory, in kilobytes, cur¬
rently used by the system. ‘NP Pool’ is the non-paged pool or system memory used by a process. The
non-paged memory is not swapped to the secondary storage disk. ‘Base PrV ^presents the priority of

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

‘Conmit Charge: 773M / 1995M

['Fig. 10.15] Windows XP task manager for monitoring process and resource usage

the process. As mentioned in an earlier section, a process may contain multiple threads. The ‘ Threads'
section gives the number of threads present in a process. ‘Handles’ reflects the number of object handles
owned by the process. This value is the reflection of the object handles present in the process’s object
table. ‘User Objects' reflects the number of objects active in the user mode for a process. Use ‘Ctrl'
+ ‘Alt' + 'Del' key for accessing the task manager and select the ‘ View’ -> ‘Select Columns’ option to
select the different monitoring parameters for a process.

10.7 TASK COMMUNICATION __

In a multitasking system, multiple tasks/processes mn concurrently (in pseudo parallelism) and each
process may or may not interact between. Based on the degree of interaction, the processes running on
an OS are classified as ;

Co-operating Processes: In the co-operating interaction model one process requires the inputs from
other processes to complete its execution. https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Competing Processes: The competing processes do not share anything among themselves but they
share the system resources. The competing processes compete for the system resources such as file,
display device, etc.

Co-operating processes exchanges information and communicate through the following methods.

Co-operation through Sharing: The co-operating process exchange data through some shared
resources.

Co-operation through Communication: No data is shared between the processes. But they commu¬
nicate for synchronisation.

The mechanism through which processes/tasks communicate each other is known as Inter Pro¬
cess/Task Communication (IPC). Inter Process Communication is essential for process co-ordination.
The various types of Inter Process Communication (IPC) mechanisms adopted by process are kernel
(Operating System) dependent. Some of the important IPC mechanisms adopted by various kernels are
explained below.

10.7.1 Shared Memory

Processes share some area of the memory to com- R
municate among them (Fig. 10.16). Information I
to be communicated by the process is written to !

the shared memory area. Other processes which concept ol Shared Memory

require this information can read the same from v-- y
the shared memory area. It is same as the real world example where ‘Notice Board’ is used by corporate
to publish the public information among the employees (The only exception is; only corporate have the
right to modify theinformation published on the Notice board and employees are given ‘Read’ only ac¬
cess, meaning it is only a one way channel).

The implementation of shared memory concept is kernel dependent. Different mechanisms are ad¬
opted by different kernels for implementing this. A few among them are:

10.7.1.1 Pipes ‘Pipe’ is a section of the shared memory used by processes for communicating. Pipes
follow the client-servert architecture. A process which creates a pipe is known as a pipe server and a
process which connects to a pipe is known as pipe client. A pipe can be considered as a conduit for
information flow and has two conceptual ends. It can be unidirectional, allowing information flow in
one direction or bidirectional allowing bi-directional information flow. A unidirectional pipe allows the
process connecting at one end of the pipe to write to the pipe and the process connected at the other end
of the pipe to read the data, whereas a bi-directional pipe allows both reading and writing at one end.
The unidirectional pipe can be visualised as

- j
tClient Server is a software architecture containing a client application and a server application. The application which sends request is

known as client and the application which receives the request process it and sends a response back to the client is known as server. A

server is canable of receiving request from multinkxlien!&. .

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The implementation of ‘Pipes’ is also OS dependent. Microsoft® Windows Desktop Operating
Systems support two types of ‘Pipes’ for Inter Process Communication. They are:

Anonymous Pipes: The anonymous pipes are unnamed, unidirectional pipes used for data transfer
between two processes.

Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for data exchange between
processes. Like anonymous pipes, the process which creates the named pipe is known as pipe server. A
process which connects to the named pipe is known as pipe client. With named pipes, any process can
act as both client and server allowing point-to-point communication. Named pipes can be used for com¬
municating between processes running on the same machine or between processes running on different
machines connected to a network.

Please refer to the Online Learning Centre for details on the Pipe implementation under Windows
Operating Systems.

Under VxWorks kernel, pipe is a special implementation of message queues. We will discuss the
same in a latter chapter.

10.7.1.2 Memory Mapped Objects Memory mapped object is a shared memory technique ad¬
opted by certain Real-Time Operating Systems for allocating a shared block of memory which can be
accessed by multiple process simultaneously (of course certain synchronisation techniques should be
applied to prevent inconsistent results). In this approach a mapping object is created and physical stor¬
age for it is reserved and committed. A process can map the entire committed physical area or a block
of it to its virtual address space. All read and write operation to this virtual address space by a process is
directed to its committed physical area. Any process which wants to share data with other processes can
map the physical memory area of the mapped object to its virtual memory space and use it for sharing
the data.

Windows CE 5.0 RTOS uses the memory mapped object based shared memory technique for Inter
Process Communication (Fig. 10.18). The CreateFileMapping (HANDLE hFile, LPSECURITY_ATTRI-
BUTES IpFileMappingAttributes, DWORD flProtect, DWORD dwMaximumSizeHigh, DWORD dw-
MaximumSizeLow, LPCTSTR IpName) system call is used for sharing the memory. This API call is used
for creating a mapping from a file. In order to create the mapping from the system paging memory, the
handle parameter should be passed as INVALID_HANDLE_VALUE (-1). The IpFileMappingAttributes
parameter represents the security attributes and it must be NULL. The flProtect parameter represents the
read write access for the shared memory area. A value of PAGEjREAD ONLY makes the shared memory
read only whereas the value PAGEJREADWRITE gives read-write access to the shared memory. The
parameter dwMaximumSizeHigh specifies the higher order 32 bits of the maximum size of the memory
mapped object and dwMaximumSizeLow specifies the lower order 32 bits of the maximum size of the
memory mapped object. The parameter IpName points to a null terminated string specifying the name of
the memory mapped object. The memory mapped object is created as unnamed object if the parameter
IpName is NULL. If IpName specifies the name of an existing memory mapped object, the function re¬
turns the handle of the existing memory mapped object to the caller process. The memory mapped object
can be shared between the processes by either passing the handle of the object or by passing its name.
If the handle of the memory mapped object created by a process is passed to another process for shared
access, there is a possibility of closing the handle by the process which created the handle while it is in
use by another process. This will throw OS level exceptions. If the name of the memory object is passed
for shared access among processes, processes can use this name for creating a shared memory object
which will open the shared memory object already existing with the given name. The OS will maintain a

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

0X6000 8000

(Arbitrary location)

0X6000 0000

(Arbitrary location)

Process 1

hPIFileMap =

CreateFileMapping

(HANDLE)-1,

NULL,

PAGEREADWRITE,

0,0x8000,

"memorymapobject");

hPlMapView = Map View OfFile

(hPIFileMap,

FILE_MAP^ WRITE,

0,0, 0);

Process l's Virtual Memory

space

The memory mapped object is

mapped into Process 1 's virtual

address space

Process 2

hP2FileMap =

CreateFileMapping

(HANDLE) -1,

NULL,

PAGE_READWRITE,

0,0x8000,

"memoryniapobj ect");

hP2MapView = Map View OfFile

(hPIFileMap,

FILE_MAP_WR1TE,

0,0,0);

Process 2's Virtual Memory

space

The memory mapped object is

mapped into Process 2's virtual

address space

0X6000 8000

(Arbitrary location)

0X6000 0000

(Arbitrary location)

[Fig.T0.18) Concept of memory mapped object

usage count for the named object and it is incremented each time when a process creates/opens a memory
mapped object with existing name. This will prevent the destruction of a shared memory object by one
process while it is being accessed by another process. Hence passing the name of the memory mapped
object is strongly recommended for memory mapped object based inter process communication. The
MapViewOfFile (HANDLE hFileMappingObject DWORD dwDesiredAccess, DWORD dwFileOffs-
etHigh, DWORD dwFileOffsetLow, DWORD dwNumberOfBytesToMap) system call maps aview of the
memory mapped object to the address space of the calling process. The parameter hFileMappingObject
specifies the handle to an existing memory mapped object. The dwDesiredAccess parameter represents
the read write access for the mapped view area. A value of FILE MAP WRITE makes the view access
read-write, provided the memory mapped object hFileMappingObject is created with read-write ac¬
cess, whereas the value FILE_MAPJREAD gives read only access to the shared memory, provided the
memory mapped object hFileMappingObject is created with read-write/read only access. The parameter
dwFileOffsetHigh specifies the higher order 32 bits and dwFileOffsetLow specifies the lower order 32
bits of the memory offset where mapping is to begin from the memory mapped object. A value of ‘0’
for both of these maps the view from the beginning memory area of the memory object. dwNumberOf¬
BytesToMap specifies the number of bytes of the memory object to map. If dwNumberOfBytesToMap
is zero, the entire memory area owned by the memory mapped object is mapped. On successful execu¬
tion, MapViewOfFile call returns the starting address of the mapped view. If the function fails it returns
NULL. A mapped view of the memory mapped object is unmapped by the API call UnmapViewOfFile
(LPCVOID IpBaseAddress). The IpBaseAddress parameter specifies a pointer to the base address of
the mapped view of a memory object that is to be unmapped. This value must be identical to the value
returned by a previous call to the MapViewOfFile function. Calling UnmapViewOfFile cleans up the
committed physical storage in a process’s virtual address space. In other words, it frees the virtual ad¬
dress space of the mapping object. Under Windows NT/XP OS, a process can open an existing memory
mapped object by calling the API OpenFileMapping(DWORD dwDesiredAccess, BOOL blnheritHan-
dle, LPCTSTR IpName). The parameter dwDesiredAccess specifies the read write access permissions foi

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the memory mapped object. A value of FILE JAAP_ALL_ACCESSprovides read-write access, whereas
the value FILE JAAP_READ allocates only read access and FILEJAAPJWR1TE allocates write only
access. The parameter blnheritHandle specifies the handle inheritance. If this parameter is TRUE, the
calling process inherits the handle of the existing object, otherwise not. The parameter IpName specifies
the name of the existing memory mapped object which needs to be opened. Windows CE 5.0 does not
support handle inheritance and hence the API call OpenFileMapping is not supported.

The following sample code illustrates the creation and accessing of memory mapped objects across
multiple processes. The first piece of code illustrates the creation of a memory mapped object with name
“memorymappedobject” and prints the address of the memory location where the memory is mapped
within the virtual address space of Process 1.

#include <stdio.h> J ' ■ ' I'JJ"
#include <windo.ws . h> - i" j ; ■ - .*
1/ ******************** * .* ******** *.* * * * * ■* .* ****** ** * *-**:* * * * * ***** ***** *-*
//Process 1: Creates the memory mapped object and maps it to-

//Process l's Virtual. Addresp space A " ", - . .
/ / *************** *•■*■*.* ************ ** *'* ******* ** * ***** * ********* *******
void main () { ‘ '

//Define . the handle / to -Memory mapped Object -'*PV

HANDLE hFiieMap; ■. * y . ' ’.. y

.//Define the handle to. the view of-Memory mapped Object

LPTSTR hMapViev;; : .-r y, y.:.
■ ' print! (" / / ********* ********************* * * * ********* * ** *\n");

printf f"" ; ; Process l\n") ? 4 .. /
p r i n t E ("//************* ** * * *■* * ** * * *V*.* * * * * * * * * * ***** *1* * * \nn);

//Create an 8 KB memory mapped object

hFiieMap = Create-FileMappirig ((HANDLE) -1,

NULL, .// default security attributes'*

BAGE_READWRITE, // Read-Write Access

0, //Higher order 32 bits of the memory mapping object

0x2000, //Lower order 32 bits of the memory mapping object

TEXT("memorymappedobject")); // Memory mapped object name

if (NULL == hFiieMap)

printf ("Memory mapped Object Creation Failed: Error Code: %d\n", GetLastError

0);
//Memory mapped Object Creation failed. Return

return;

1

//Map the memory mapped object to Process l's address space

hMapView= (LPTSTR) MapViewOfFile(hFiieMap,

FILE_MAP_WRITE,

0, //Map the entire view

0,
0) ;

if (NULL == hMapView)

https://hemanthrajhemu.github.io

Real-Time Operating System (.RTOS) based Embedded System Design

{
printf ("Mapping of Memory mapped view Failed: Error Code:

%d\n", GetLastError ());

//Memory mapped view Creation failed. Return

return;

}
else , , _ - - .: . •: ■

r ■ * / "r:h.., .

//Successfully created the memory mapped view.

■ v ' . .//Print the start address of the mapped view ■ , \\ v-

printf ("The memory is mapped to the virtua.l address starting

at 0x%08x\n", hMapView); .; X ’ '.;

//.Wait for user ,input--to exit.. Run Process 2 -before providing

//user input', ~ s. ' . -X . - .
printf ("Pressiany key-to terminate Process 1"); • ■
getchar();

//Unmap the.,view. , , . - .
(JnmapVicwOf File (hMapView) ; . • ■ . "■ ,

/■/close memory .mapped object handle . f . X X .'.

CloseHandle'(:hFiieMap) ; 7 - ■’ - " • • r-. •• .

return;

-}

The piece of code given below corresponds to Process 2. It illustrates the accessing of an existing

memory mapped object (memory mapped object with name “memorymappedobject/lcreated by Process

1) and prints the address of the memory location where the memory is mapped within the virtual address

space of Process 2. To demonstrate the application, the program corresponding to Process 1 should be

executed first and the program corresponding to Process 2 should be executed following Process 1.

finclude <stdio.h>

#include <windows.h>
yy** *■*-* **********************

//Process 2: Opens the memory mapped object created by Process 1

//Maps the object to Process 2's virtual address space.
y y ********************************** *********************************
void main() {

//Define the handle for the Memory mapped Object

HANDLE hChildFileMap;

//Define the handle for the view of Memory mapped Object

LPTSTR hChildMapView;

printf (V/**\n");

printf (" Process 2\n");

printf(V/**\n">;

//Create an 8 KB memory mapped object

hChildFileMap = Creat^FileMapping(INVALID_HANDLE_VALUE,

NUL-L, // default security attributes

PAGE_READWRITE, // Read-Write Access

0, //Higher order 32 bits of the memory mapping object

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

0x2000, //Lower order 32 bits of the memory mapping object

TEXT("memorymappedobject")); // Memory mapped object name

if (NULL == hChildFileMap || INVALID_HANDLE_VALUE == hChildFileMap)

{
printf ("Memory mapped Object Creation Failed: Error Code: %d\n",

GetLastError ());

//Memory mapped Object Creation failed. Return

return;

else . ' t ‘ -■ /

if (ERROR JVLREApY_EXISTS == GetLastError (j) p \ .

//A memory mappec object with giver, name, exists already.

printf ("The named memory mapped object is already •

existing\n"j ; - . ..='i: >>>/■-•, p’,/// , -..A'

//Map the memory mapped object to Process*2' s- address, space

hChildMapView-(LPTSTR)MapViewOfFile(hChildFileMap,

FIiK_MA?_ WRITE, //Pead-Wr: t.e access- '/• - ■
0, //Map the entire '-view - -v

if (NULL == hChildMapyiew) • ‘ r.

{ , : .J , , '.' ^ " it‘ ' _ , .

printf ("Mapping of Memory mapped view Failed: Error Code: %d\n", GetLastError;,'

()); ’ ■ '■ ; “ % •’ ■ • ■ ■ /V' ■■

//Memory mapped view Creation failed. Return

return;
\»

}

else

{
//Successfully created the memory mapped view.

//Print the start address of the mapped view

printf ("The memory mapped view starts at memory location 0x%08x\n", hChild¬

MapView) ;

}

//Unmap the view

UnmapViewOfFile(hChildMapView);

//Close memory mapped object handle

CloseHandle(hChildFileMap);

return;

https://hemanthrajhemu.github.io

.onsume\Dubug\t<jnsumc4»ie' al2<i C:\Program Files .Microsoft Visual Studio \MyProject5\c

Process 1 .

Die rienury is napped to the virtual address starting at 8x80340808
Press any key to terninate Process i

//***

The output of the above programs when run in the sequence, Process 1 is executed first and Process
2 is executed while Process 1 waits for the user input from the keyboard, is given in Fig. 10.19.

The Memory mapped object is mapped to the Virtual

address 0x00340000 of both the Processes

10.7.2 Message Passing

Message passing’is an (a)synchronous information exchange mechanism used for Inter Process/Thread

Eig.T0.19j Output of Win32; memory mapped object illustration program

This reveals that using memory mapped objects with same name across multiple processes running
on the same system maps the object to the same virtual address space of the processes.

Reading and writing to a memory mapped area is same as any read write operation using pointers.
The pointer returned by the API call MapViewOfFile can be used for this. The exercise of Read and
Write operation is left to the readers. Proper care should be taken to avoid any conflicts that may arise
due to the simultaneous read/write access of the shared memory area by multiple processes. This can be
handled by applying various synchronisation techniques like events, mutex, semaphore, etc.

For using a memory mapped object across multiple threads of a process, it is not required for all
the threads of the process to create/open the memory mapped object and map it to the thread’s virtual
address space. Since the thread’s address space is part of the process’s virtual address space, which
contains the thread, only one thread, preferably the parent thread (main thread) is required to create the
memory mapped object and map it to the process’s virtual address space. The thread which creates the
memory mapped object can share the pointer to the mapped memory area as global pointer and other
threads of the process can use this pointer for reading and writing to the mapped memory area. If one
thread of a process tries to create a memory mapped object with the same name as that of an existing
mapping object, which is created by another thread of the same process, a new view of the mapping
object is created at a different virtual address of the process. This is same as one process trying to create
two views of the same memory mapped object©.

SF SSt.ScrSSit MtH PUSS S!I
Process 2

//KXKXHXX-XX^XK>^HXX->^K*tXX-XHXXXK»<XX.XHXXXKHX.XX>tiKX-X>^MK>i->-}.>M-X-X-X-XXX-H>.-XX^XHMX-XK

The named neraory Rapped object is already existing
The rnerwini napped eieu starts at Denary location 0x09340008
Press any key to continue

Real-Time Operating System (RTOS) based Embedded System Design

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Communication. The major difference between shared memory and message passing technique is that,
through shared memory lots of data can be shared whereas only limited amount of info/data is passed
through message passing. Also message passing is relatively fast and free from the synchronisation
overheads compared to shared memory. Based on the message passing operation between the processes,
message passing is classified into

10.7.2.1 Message Queue Usually the process which wants to talk to another process posts the
message to a First-In-First-Out (FIFO) queue called ‘Message queue’, which stores the messages tem¬
porarily in a system defined memory object, to pass it to the desired process (Fig. 10.20). Messages are
sent and received through send (Name of the process to which the message is to besent,-mess age) and
receive (Name of the process from which the message is to be received, message) methods. The mes¬
sages are exchanged through a message queue. The implementation of the message queue, send and re¬
ceive methods are OS kernel dependent. The Windows XP OS kernel maintains a single system message
queue and one process/thread (Process and threads are used interchangeably here, since thread is the
basic unit of process in windows) specific’message queue. A thread which wants to communicate with
another thread posts the message to the system message queue. The kernel picks up the message from
the system message queue one at a time and examines the message for finding the destination thread and
then posts the message to the message queue of the corresponding thread. For posting a message to a
thread’s message queue, the kernel fills a message structure MSG and copies it to the message'queue of
the thread. The message structure MSG contains the handle of the process/thread for which the message
is intended, the message parameters, the time at which the message is posted, etc. A thread can simply
post a message to another thread and can continue its operation or it may wait for a response from the
thread to which the message is posted. The messaging mechanism is classified into synchronous and
asynchronous based on the behaviour of the message posting thread. In asynchronous messaging, the
message posting thread just posts the message to the queue and it will not wait for an acceptance (return)
from the thread to which the message is posted, whereas in synchronous messaging, the thread which
posts a message enters waiting state and waits for the message result from the thread to which the mes¬
sage is posted. The thread which invoked the send message becomes blocked and the scheduler will not
pick it up for scheduling. The PostMessage (HWND hWnd, UINTMsg, WPARAMwParam, LPARAM

(Fig. 10.20 Concept of message queue based indirect messaging for IPC

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

IParam) or PostThreadMessage (DWORD idThread, UINTMsg, WPARAMwParam, LPARAMIParam)
API is used by a thread in Windows for posting a message to its own message queue or to the message
queue of another thread. The PostMessage API does not always guarantee the posting of messages to
message queue. The PostMessage API will not post a message to the message queue when the mes¬
sage queue is full. Hence it is recommended to check the return value of PostMessage API to confirm
the posting of message. The SendMessage (HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
IParam) API call sends a message to the thread specified by the handle hWnd and waits for the callee
thread to process the message. The thread which calls the SendMessage API enters waiting state and
waits for the message result from the thread to which the message is posted. The thread which invoked
the SendMessage API call becomes blocked and the scheduler will not pick it up for scheduling.

The Windows CE operating system supports a special Point-to-Point Message queue implementa¬
tion. The OS maintains a First In First Out (FIFO) buffer for storing the messages and each process can
access this buffer for reading and writing messages. The OS also maintains a special queue, with single
message storing capacity, for storing high priority messages (Alert messages). The creation and usage
of message queues under Windows CE OS is explained below.

The CreateMsgQueue(LPCWSTR IpszName, LPMSGQUEUEOPTIONS IpOptions) API call creates
a message queue or opens a named message queue and returns a read only or write only handle to the
message queue. A process can use this handle for reading or writing a message from/to of the message
queue pointed by the handle. The parameter IpszName specifies the name of the message queue. If this
parameter is NULL, an unnamed message queue is created. Processes can use the handle returned by the
API call if the message queue is created without any name. If the message queue is created as named
message queue, other processes can use the name of the message queue for opening the named message
queue created by a process. Calling the CreateMsgQueue API with an existing named message queue
as parameter returns a handle to the existing message queue. Under the Desktop Windows Operating
Systems (Windows 9x/XP/NT/2K), each object type (viz. mutex, semaphores, events, memory maps,
watchdog timers and message queues) share the same namespace and the same name is not allowed for
creating any of this. Windows CE kernel maintains separate namespace for each and supports the same
name across different objects. The IpOptions parameter points to a MSGQUEUEOPTIONS structure
that sets the properties of the message queue. The member details of the MSGQUEUEOPTIONS struc¬
ture is explained below.

typedef MSGQUEUEOPTIONS_OS{

DWORD dwSize;

DWORD dwFlags;

DWORD dwMaxMessages;

DWORD cbMaxMessage;

BOOL bReadAccess;

} MSGQUEUEOPTIONS, FAR* LPMSGQUEUEOPTIONS, *PMSGQUEUEOPTIONS;

The members of the structure are listed below.

Description - . r ■ •. -- ife

Specifies the size of the structure in bytes

Describes the behaviour of the message queue. Set to MSGQUEUE_NOPRECOMMIT to

allocate message buffers on demand.and to free the message buffers after they are read, or set

to MSGQTEl.l’. ALLOW BROKEN to enable a read or write operation to complete even if

there is no corresponding writer or reader present. - 'v ' : ‘ '

Member

dwSize

dwFlags

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

dwMaxMessages Specifies the maximum number of messages to queue at any point of time. Set this value to zero

-rypU'-y -* ■ to specify ho limit on the number of messages to queue at any point of time.

bReadAccess Specifies the Read Write access to the message queue. Set to TRUE to request read access to

the queue. Set to FALSE to request write access to the queue.

On successful execution, the Create MsgQueue API call returns a ‘Read Only’ or ‘Write Only’ handle
to the specified queue based on the bReadAccess member of the MSGQUEUEOPTIONS structure IpOp-
tions. If the queue with specified name already exists, a new handle, which points to the existing queue,
is created and a following call to GetLastError returns ERROR_ALREADY_EXISTS. If the function
fails it returns NULL. A single call to the CreateMsgQueue creates the queue for either ‘read’ or ‘write’
access. The CreateMsgQueue API should be called twice with the bReadAccess member of the MS¬
GQUEUEOPTIONS structure IpOptions set to TRUE and FALSE respectively in successive calls for
obtaining ‘Read only’ and ‘Write only’ handles to the specified message queue. The handle returning
by CreateMsgQueue API call is an event handle and, if it is a ‘Read Only’ access handle, it is signalled
by the message queue if a new message is placed in the queue. The signal is reset on reading the mes¬
sage by ReadMsgQueue API call. A ‘Write Only’ access handle to the message queue is signalled when
the queue is no longer full, i.e. when there is room for accommodating new messages. Processes can
monitor the handles with the help of the wait functions, viz. WaitForSingleObject or WaitForMulti-
pleObjects, supported by Windows CE. The OpenMsgQueue(HANDLE hSrcProc, HANDLE hMsgQ,
LPMSGQUEUEOPTlONS IpOptions) API call opens an existing named or unnamed message queue.
The parameter hSrcProc specifies the process handle of the process that owns the message queue and
hMsgQ specifies the handle of the existing message queue (Handle to the message queue returned by
the CreateMsgQueue function). As in the case of CreateMsgQueue, the IpOptions parameter points to a
MSGQUEUEOPTIONS structure that sets the properties of the message queue. On successful execution
the OpenMsgQueue API call returns a handle to the message queue and NULL if it fails. Normally the
OpenMsgQueue API is used for opening an unnamed message queue. The WriteMsgQueue(HANDLE
hMsgQ, LPVOID IpBuffer, DWORD cbDataSize, DWORD dwTimeout, DWORD dwFlags) API call is
used for writing a single message to the message queue pointed by the handle hMsgQ. IpBuffer points to
a buffer that contains the message to be written to the message queue. The parameter cbDataSize speci¬
fies the number of bytes stored in the buffer pointed by IpBuffer, which forms a message. The parameter
dwTimeout specifies the timeout interval in milliseconds for the message writing operation. A value of
zero specifies the write operation to return immediately without blocking if the write operation cannot
succeed. If the parameter is set to INFINITE, the write operation will block until it succeeds or the mes¬
sage queue signals the ‘write only’ handle indicating the availability of space for posting a message.
The dwFlags parameter sets the priority of the message. If it is set to MSGQUEUEJMSGALERT, the
message is posted to the queue as high priority or alert message. The Alert message is always placed in
the front of the message queue. This function returns TRUE if it succeeds and FALSE otherwise.

The ReadMsgQueue(HANDLE hMsgQ, LPVOID IpBuffer, DWORD cbBufferSize, LPDWORD
IpNumberOfBytesRead, DWORD dwTimeout, DWORD*pdwFlags) API reads a single message from
the message queue. The parameter hMsgQ specifies a handle to the message queue from which the
message needs to be read. IpBuffer points to a buffer for storing the message read from the queue. The
parameter cbBufferSize specifies the size of the buffer pointed by IpBuffer, in bytes. IpNumberOfBytes¬
Read specifies the number of bytes stored in the buffer. This is same as the number of bytes present in

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

the message which is read from the message queue. dwTimeout specifies the timeout interval in mil¬
liseconds for the message reading operation. The timeout values and their meaning are same as that of
the write message timeout parameter. The dwFlags parameter indicates the priority of the message. If
the message read from the message queue is a high priority message (alert message), dwFlags is set
to MSGQUEUE_MSGALERT. The function returns TRUE if it succeeds and FALSE otherwise. The
GetMsgQueuelnfo (HANDLE hMsgQ, LPMSGQUEUEINFO Iplnfo) API call returns the information
about a message queue specified by the handle hMsgQ. The message information is returned in a MS-
GQUEUEINFO structure pointed by Iplnfo. The details of the MSG.QUEUEINFO structure is explained
below.

f typo del MSG.QUEUEINFO {

I!',, DWORD dwSize;

k, DWORD, .dwFlags;

|p DWORD. dwMaxMessages;

fp; DWORD. cbMaxMessage;

y DWORD dwCurrent. Me s sage s;

V DWORD dwMaxQueueMessages;

| WORD wNumReaders;

I"'’ WORD wNumWriters;

i:} MSGQUEUEINFO, *PMSGQUEUEINFO, FAR* LPMSGQUEUEINFO;
< ..

The member variable details are listed below.

i Member

DwSize '

dwF'ags

dwMaxMessages

(cbMaxMessage -Ty;:
'Sr,-*' MAv'.TAyA A T

dwCurrentMessages

dwMaxQueueMessages

wNumReaders

wNumWriters Specifies the number of writers (processes which opened the message queue for writing)

subscribed to the message queue for writing.

The GetMsgQueuelnfo API call returns TRUE if it succeeds and FALSE otherwise. The
CloseMsgQueue(HANDLE hMsgQ) API call closes a message queue specified by the handle hMsgQ.
If a process holds a ‘read only’ and ‘write only’ handle to the message queue, both should be closed for
closing the message queue.

‘Message queue’ is the primary inter-task communication mechanism under VxWorks kernel. Mes¬
sage queues support two-way communication of messages of variable length. The two-way messaging

Description

Specifies the size of the buffer passed in. J|.

Describes the behaviour of the message queue.Tt retrieves WHMSGOUEUEOPTIOKS.

dwFlags passed when the message queue is created with CreateMsgQueue API call.

Specifies the maximum number of messages to queue .at any point of time. This reflects

the MSGQUEUEOPTIONS. dwMaxMessages. value passed when the message queue is

created with CreateMsgQueue API call.

. Specifies the maximum number of bytes in each message. This reflects the

;' MSGQUEUEOPTIONS.cbMaxMessage value passed when the message queue is created
\\'W CreateMsgQueue API call. r 'iwgp- f-y- * w

Specifies the number of messages currently existing in the specified message queue.

Specifies maximum number of messages that have ever been in the queue at one time.

Specifies the number of readers (processes which opened the message queue for reading)

subscribed to the message queue for reading.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

between tasks can be implemented using one message queue for incoming messages and another one
for outgoing messages. Messaging mechanism can be used for task-to task and task to Interrupt Service
Routine (ISR) communication. We will discuss about the VxWorks’ message queue implementation in
a separate chapter.

10.7.2.2 Mailbox Mailbox is an alternate form of ‘Message queues’ and it is used in certain Real-
Time Operating Systems for IPC. Mailbox technique for IPC in RTOS is usually used for one way mes¬
saging. The task/thread which wants to send a message to other tasks/threads creates a mailbox for post¬
ing the messages. The threads which are interested in receiving the messages posted to the mailbox by
the mailbox creator thread can subscribe to the mailbox. The thread which creates the mailbox is known
as ‘mailbox server’ and the threads which subscribe to the mailbox are known as ‘mailbox clients’.
The mailbox server posts messages to the mailbox and notifies it to the clients which are subscribed to
the mailbox. The clients read the message from the mailbox on receiving the notification. The mailbox
creation, subscription, message reading and writing are achieved through OS kernel provided API calls.
Mailbox and message queues are same in functionality. The only difference is in the number of mes¬
sages supported by them. Both of them are used for passing data in the form of message(s) from a task
to another task(s). Mailbox is used for exchanging a single message between two tasks or between an In¬
terrupt Service Routine (ISR) and a task. Mailbox associates a pointer pointing to the mailbox and a wait
list to hold the tasks waiting for a message to
appear in the mailbox. The implementation
of mailbox is OS kernel dependent. The Mi-
croC/OS-II implements mailbox as a mecha¬
nism for inter-task communication. We will
discuss about the mailbox based IPC imple¬
mentation under MicroC/OS-II in a latter
chapter. Figure 10.21 given below illustrates
the mailbox based IPC technique.

r-t-

3
O

10.7.2.3 Signalling Signalling is a prim¬
itive way of communication between process¬
es/threads. Signals are used for asynchronous
notifications where one process/thread fires
a signal, indicating the occurrence of a sce¬
nario which the other process(es)/thread(s)
is waiting. Signals are not queued and they
do not carry any data. The communication
mechanisms used in RTX51 Tiny OS is an
example for Signalling. The osjend_signal
kernel call under RTX 51 sends a signal from
one task to a specified task. Similarly the
osjvait, kernel call waits for a specified sig¬
nal. Refer to the topic ‘Round Robin Sched¬
uling’ under the section ‘Priority based
scheduling’ for more details on Signalling in
RTX51 Tiny OS. The VxWorks RTOS kernel
also implements ‘signals’ for inter process

(Tig. 10.2l) Concept of Mailbox based indirect messaging

for IPC

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

communication. Whenever a specified signal occurs it is handled in a signal handler associated with the
signal. We will discuss about the signal based IPC mechanism for VxWorks’ kernel in a later chapter.

10.7.3 Remote Procedure Call (RPC) and Sockets

Remote Procedure Call or RPC (Fig. 10.22) is the Inter Process Communication (IPC) mechanism used
by a process to call a procedure of another process running on the same CPU or on a different CPU
which is interconnected in a network. In the object oriented language terminology RPC is also known
as Remote Invocation or Remote Method Invocation (RMI). RPC is mainly used for distributed appli¬
cations like client-server applications. With RPC it is possible to communicate over a heterogeneous
network (i.e. Network where Client and server applications are running on different Operating systems).
The CPU/process containing the procedure which needs to be invoked remotely is known as server. The
CPU/process which initiates an RPC request is known as client.

Processes running on same CPU

Concept of Remote Procedure Call (RPC) for IPC

It is possible to implement RPC communication with different invocation interfaces. In order to
make the RPC communication compatible across all platfonns it should stick on to certain standard
formats. Interface Definition Language (IDL) defines the interfaces for RPC. Microsoft Interface Defi¬
nition Language (MIDL) is the IDL implementation from Microsoft for all Microsoft platfonns. The
RPC communication can be either Synchronous (Blocking) or Asynchronous (Non-blocking). In the
Synchronous communication, the process which calls the remote procedure is blocked until it receives
a response back from the other process. In asynchronous RPC calls, the calling process continues its
execution while the remote process performs the execution of the procedure. The result from the remote
procedure is returned back to the caller through mechanisms like callback functions.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

On security front, RPC employs authentication mechanisms to protect the systems against vulner¬
abilities. The client applications (processes) should authenticate themselves with the server for getting
access. Authentication mechanisms like IDs, public key cryptography (like DES, 3DES), etc. are used
by the client for authentication. Without authentication, any client can access the remote procedure. This
may lead to potential security risks.

Sockets are used for RPC communication. Socket is a logical endpoint in a two-way communication

link between two applications running on a network. A port number is associated with a socket so that

the network layer of the communication channel can deliver the data to the designated application.

Sockets are of different types, namely, Internet sockets (INET), UNIX sockets, etc. The INET socket
works on internet communication protocol TCP/IP, UDP, etc. are the communication protocols used by
INET sockets. INET sockets are classified into:

1. Stream sockets
2. Datagram sockets
Stream sockets are connection oriented and they use TCP to establish a reliable connection. On the

other hand, Datagram sockets rely on UDP for establishing a connection. The UDP connection is unre¬
liable when compared to TCP. The client-server communication model uses a socket at the client side
and a socket at the server side. A port number is assigned to both of these sockets. The client and server
should be aware of the port number associated with the socket. In order to start the communication, the
client needs to send a connection request to the server at the specified port number. The client should
be aware of the name of the server along with its port number. The server always listens to the specified
port number on the network. Upon receiving a connection request from the client, based on the success
of authentication, the server grants the connection request and a communication channel is established
between the client and server. The client uses the host name and port number of server for sending re¬
quests and server uses the client’s name and port number for sending responses.

If the client and server applications (both processes) are running on the same CPU, both can use the
same host name and port number for communication. The physical communication link between the
client and server uses network interfaces like Ethernet or Wi-Fi for data communication. The underlying
implementation of socket is OS kernel dependent. Different types of OSs provide different socket inter¬
faces. The following sample code illustrates the usage of socket for creating a client application under
Windows OS. Winsock (Windows Socket 2) is the library implementing socket functions for Win32.

#include <stdio.h> . ! •

♦include "winsock2.h" 1

//Specify the server address

#define SERVER "172.168.0.1"

//Spegify the server port

♦define PORT 5000

int buflength = 100;

char *sendbuf = "Hi from Client";

char buffer [buflength] ;

void main() {
/ J ************************ ~k-k ******-k ***********-k* ± ic ******* *

\ // Initialize -Winsock . •• As4
1 WSADATA wsaData; ' -

if (WSAStartup(MAKEWORD(2,2), SwsaData) == NO_ERRQR)

printf ("Winsock Initialisation succeeded... \-n") ;

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

else

{

printf("Winsock Initialisation failed.An");

return; ■

} ■
//******** ********** ***************************************
// Create a SOCKET for connecting to server

’ SOCKET My Socket; .'(' 1'’ *"/ C.

MySocket = socket(AF_INET, 50CK_STREAMr; IPPROTOJTCP) ; ../.

d^if“|(Hpb.cket == INVALID_SOCKET) ~ ' • * ' "/"■%

printf (''Socket Creation failed...\n") ; • , . :;t\A - :,VX

■ WSACleanup () ; ' .

.return; • . .f 7 ■ - - '-~

clse • f ■ \ "> ■ v-~ ... "s' ,M

" { ' ■' ■/ -w • ■ r

printf ("Successfully created the socket...\n"); :.v
//********************* i **.*■* *<* * * * * * * * * t**#..* • •{ • ,
//. Set the .Socket type, (IP address and port, of the server

sockaddr_.i.n ServerParams; t<~.~ ■ t-.-_A (... J . v >■-t ;
ServerParams.s: n la.mi.y -- AF_!KEI; , •

ServerParams< sm_addr. s_addr.. = met_aadr (SERVER) ;

ServerParams.sin_pert = htdns (PORT); .
J *■*■•*-* *v*Vr *'* ^ *.* ****-&★ ***** **'**** ■*•';*

it Connect to server.

- ■if (connect { MySocket; ; (SOCKADDR*)'■-& ServerParamssizeof (ServerParams) ’)

ft •■== SOCKET ERROR) - if*

wprintf (■ ".Connecting to Server ,failed..An"); ._ . !

WSACleanup() ; ■ f ;. - ... ■■
. return;

printf("Successfully Connected to the server..An");

//***

// Send command to server

if (send(MySocket, sendbuf, (int)strlen(sendbuf), 0)

== SOCKET_ERROR) {

printf ("Sending data to server failed..An") ;

closesocket(MySocket);

WSACleanup();

return;

else

I
printf ("Successfully sent command to server...\n") ;

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

j /***■*. ******** *x * x *******x***x***x*******>t***x*x*********x*

// Receive a data packet a i"

if (recv (MySocket, recvbuf, recvbuflen, 0) > 0)

printf ("Successfully Received a byte...\n -

The received byte is %s\n", recvbuf); „

else ',.\:;Uy ■ . „, , ,
■ printf ("No response from server.An") ; i-i.!TAT, -

y j k * k -k * x * ***** A * A* * * * A -V XXX* - « n i n . *. •• 4 , x A A * * A .A * • * XXX* -k k k k y. V'.ddC

’ closesocket

WSACleanupO ;

return.

ocket (MySocket) ; . . ' ... • .

anup () ;
.V' ' ^ ;v ' c - ' .

pSfeftsi s » i - • 0 & i . . s.t IS. • k m ms » v v > s * , - , „ , , 1 - . ^ 1 •. . .*>/.'« ■ ‘ -1 *, y s ‘ »
t J. fj '*>'» >• f *■<»¥ * 's <■ , * ,, V1'' *« iU * _ 1- ^ 5 ^ A>{V/ I * »/•“ * A-r-'»i>

vA J- ^ * A ” N i / is (>Vv V> ** / xx,x_ 'W&v< /<. i ' .• j'-i-i’ ' ‘‘f

f0£;

The above application tries to connect to a server machine with IP address 172.168.0.1 and port num¬
ber 5000. Change the values of SERVER and PORT to connect to a machine with different IP address
and port number. If the connection is success, it sends the data “Hi from Client” to the server and waits
for a response from the server and finally terminates the connection.

Under Windows, the socket function library Winsock should be initiated before using the socket
related functions. The function WSAStartup performs this initiation. The socketQ function call creates
a socket. The socket type, connection type and protocols for communication are the parameters for
socket creation. Here the socket type is INET (AFJNET) and connection type is stream socket (SOCK_

STREAM). The protocol selected for communication is TCP/IP (IP PROTO_TCP). After creating the
socket it is connected to a server, For connecting to server, the server address and port number should be
indicated in the connection request. The sockaddrjn structure specifies the socket type, IP address and
port of the server to be connected to. The connect () function connects the socket with a specified server.
If the server grants the connection request, the connect () function returns success. The sendQ function
is used for sending data to a server. It takes the socket name and data to be sent as parameters. Data from
server is received using the function call recvQ. It takes the socket name and details of buffer to hold the
received data as parameters. The TCP/IP network stack expects network byte order (Big Endian: Higher
order byte of the data is stored in lower memory address location) for data. The function htonsQ con¬
verts the byte order of an unsigned short integer to the network order. The closesocketQ function closes
the socket connection. On the server side, the server creates a socket using the function socket() and
binds the socket with a port using the bind() function. It listens to the port bonded to the socket for any
incoming connection request. The function listenQ performs this. Upon receiving a connection request,
the server accepts it. The function accept() performs the accepting operation. Now the connectivity is
established. Server can receive and transmit data using the function calls recvQ and sendQ respectively.
The implementation of the server application is left to the readers as an exercise.

10.8 TASK SYNCHRONISATION

In a multitasking environment, multiple processes run concurrently (in pseudo parallelism) and share the
system resources. Apart from this, each process has its own boundary wall and they communicate with

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

each other with different 1PC mechanisms including shared memory and variables. Imagine a situation
where two processes try to access display hardware connected to the system or two processes try to ac¬
cess a shared memory area where one process tries to write to a memory location when the other process
is trying to read from this. What could be the result in these scenarios? Obviously unexpected results.
How these issues can be addressed? The solution is, make each process aware of the access of a shared
resource either directly or indirectly. The act of making processes aware of the access of shared resources
by each process to avoid conflicts is known as ‘ Task/Process Synchronisation'. Various synchronisation
issues may arise in a multitasking environment if processes are not synchronised properly. The following
sections describe the major task communication synchronisation issues observed in multitasking and the
commonly adopted synchronisation techniques to overcome these issues.

10.8.1 Task Communication/Synchronisation Issues

10.8.1.1 Racing Let us have a look at the following piece of code:

^include <windows.h> . ,..... . ■.«■ 'ftp/..

5 #include < s tdio.h>

//counter is an integei variable and Buffer is a.byte array shared

. //between two processes Process A and Process B '

char--Buffer [10] = {1,2,3,4,5,6,7,8,9,10};

/short int counter = 0;

// Process A ''

^jypid,rProc.ess^AiHypid]{ <■ i pft-

.int i; ■/ iftftJ,/ . , vft. y. ft'"/ ' fW ,,.
for (i =0; i<5; i++) "ft ' ft” ft •’ ”■ /ftftft

pqStV’T'f'-1'"ftv ;iV ’ ' *4' ‘ ’ft;,...ft- !ft„. \ftft 1 ' •'*• * r. ■ .‘p ft'

if' (Buffer [i] >';0) ' ' ' ftftft

' " ■ counter++; ftr: .ft ' r /• h < ft:' ftft/ . ftftift
' pm * \'' -1 ft ■’ . ^ '? ; , -■■■ *♦■!**. f"" v V ’i'i - ■ , ft

I ^ ’

// 'Process B

void ProcessB(void) {

, Tnt j;

for (j =5; j<10; j++)

{ *
if (Buffer[j] > 0)

counter++;

"ft

1 s

//Main Thread.

. int main (.) {

DWORD id; .

https://hemanthrajhemu.github.io

From a programmer perspective the value of counter will be 10 at the end of execution of processes
A & B. But ‘it need not be always’ in a real world execution of this piece of code under a multitasking
kernel. The results depend on the process scheduling policies adopted by the OS kernel. Now let’s dig
into the piece of code illustrated above. The program statement counter++; looks like a single statement
from a high level programming language (‘C’ language) perspective. The low level implementation of
this statement is dependent on the underlying processor instruction set and the (cross) compiler in use.
The low level implementation of the high level program statement counter++; under Windows XP op¬
erating system running on an Intel Centrino Duo processor is given below, The code snippet is compiled
with Microsoft Visual Studio 6.0 compiler.

mov eax,dword ptr [ebp-4];Load counter

add eax,lIncrement Accumulator by 1

mov dword ptr [ebp-4],eax /Store count

At the processor instruction level, the value of the variable counter is loaded to the Accumulator

register (EAX register). The memory variable counter is represented using a pointer. The base pointer
register (EBP register) is used for pointing to the memory variable counter. After loading the contents
of the variable counter to the Accumulator, the Accumulator content is incremented by one using the

add instruction. Finally the content of Accumulator is loaded to the memory location which repre¬
sents the variable counter. Both the processes Process A and Process B contain the program statement

counter++; Translating this into the machine instruction.

.. ., , •* i
m Accumulator . ,

nov dword ptr [ebp-4],eax mov dword ptr [ebp-41,eax

fcilKsiiA

Imagine a situation where a process switching (context switching) happens from Process A to Process

B when Process A is executing the counter++; statement. Process A accomplishes the counter++; state¬
ment through three different low level instmctions. Now imagine that the process switching happened at
the point where Process A executed the low level instruction, ‘mov eax,dword ptr [ebp-4]’ and is about

to execute the next instruction ‘add eax,l’. The scenario is illustrated in Fig. 10.23.
Process B increments the shared variable ‘counter’ in the middle of the operation where Process A

tries to increment it. When Process A gets the CPU time for execution, it starts from the point where
it got interrupted (If Process B is also using the same registers eax and ebp for executing counter++;

https://hemanthrajhemu.github.io

instruction, the original content of these registers will be saved as part of the context saving and it will
be retrieved back as part of context retrieval, when process A gets the CPU for execution. Hence the
content of eax and ebp remains intact irrespective of context switching). Though the variable counter is
incremented by Process B, Process A is unaware of it and it increments the variable with the old value.
This leads to the loss of one increment for the variable counter. This problem occurs due to non-atomic!
operation on variables. This issue wouldn’t have been occurred if the underlying actions corresponding
to the program statement counter++; is finished in a single CPU execution cycle. The best way to avoid
this situation is make the access and modification of shared variables mutually exclusive; meaning when
one process accesses a shared variable, prevent the
other processes from accessing it. We will discuss
this technique in more detail under the topic ‘ Task

Synchronisation techniques' in a later section of
this chapter.

To summarise, Racing or Race condition is the
situation in which multiple processes compete
(race) each other to access and manipulate shared
data concurrently. In a Race condition the final val¬
ue of the shared data depends on the process which
acted on the data finally.

10.8.1.2 Deadlock A race condition produces
incorrect results whereas a deadlock condition cre¬
ates a situation where none of the processes are able
to make any progress in their execution, resulting
in a set of deadlocked processes. A situation very
similar to our traffic jam issues in a junction as il¬
lustrated in Fig. 10.24.

/

t Atomic Operation: Operations which are non-interruptible.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

In its simplest form ‘deadlock’ is the con¬
dition in which a process is waiting for a re¬
source held by another process which is wait¬
ing for a resource held by the first process
(Fig. 10.25). To elaborate: Process A holds
a resource x and it wants a resource y held
by Process B. Process B is currently holding
resource y and it wants the resource x which
is currently held by Process A. Both hold the
respective resources and they compete each
other to get the resource held by the respective processes. The result of the competition is ‘deadlock’.
None of the competing process will be able-to access the resources held by other processes since they
are locked by the respective processes (If a mutual exclusion policy is implemented for shared resource
access, the resource is locked by the process which is currently accessing it).

The different conditions favouring a deadlock situation are listed below.

Mutual Exclusion: The criteria that only one process can hold a resource at a time. Meaning processes
should access shared resources with mutual exclusion. Typical example is the accessing of display

hardware in an embedded device.

Hold and Wait: The condition in which a process holds a shared resource by acquiring the lock control¬
ling the shared access and waiting for additional resources held by other processes.

No Resource Preemption: The criteria that Operating system cannot take back a resource from a
process which is currently holding it and the resource can only be released voluntarily by the process

holding it. _

Circular Wait: A process is waiting for a resource which is currently held by another process which in

turn is waiting for a resource held by the first process. In general, there exists a set of waiting process

P0, PI ... Pn with P0 is waiting for a resource held by PI and PI is waiting for a resource held by PO,
..., ?n is waiting for a resource held by P0 and P0 is waiting for a resource held by Pn and so on... This

forms a circular wait queue.

‘Deadlock’ is a result of the combined occurrence of these four conditions listed above. These condi¬

tions are first described by E. G. Coffman in 1971 and it is popularly known as Coffman conditions.

Deadlock Handling A smart OS may foresee the deadlock condition and will act proactively to
avoid such a situation. Now if a deadlock occurred, how the OS responds to it? The reaction to deadlock

condition by OS is nonuniform. The OS may adopt any of the following techniques to detect and prevent

deadlock conditions.

Ignore Deadlocks: Always assume that the system design is deadlock free. This is acceptable for the

reason the cost of removing a deadlock is large compared to the chance of happening a deadlock. UNIX
is an example for an OS following this principle. A life critical system cannot pretend that it is deadlock

free for any reason.

Detect and Recover: This approach suggests the detection of a deadlock situation and recovery from
it. This is similar to the deadlock condition that may arise at a traffic junction. When the vehicles from

different directions compete to cross the junction, deadlock (traffic jam) condition is resulted. Once a

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

deadlock (traffic jam) is happened at the junction, the only solution is to back up the vehicles from one

direction and allow the vehicles from opposite direction to cross the junction. If the traffic is too high,
lots of vehicles may have to be backed up to resolve the traffic jam. This technique is also known as
‘back up cars’ technique (Fig. 10.26).

Operating systems keep a resource graph in their memory. The resource graph is updated on each
resource request and release. A deadlock condition can be detected by analysing the resource graph by
graph analyser algorithms. Once a deadlock condition is detected, the system can terminate a process or
preempt the resource to break the deadlocking cycle.

Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the Operating
System. It is similar to the traffic light mechanism at junctions to avoid the traffic jams.

Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions favouring
the deadlock situation.

• Ensure that a process does not hold any other resources when it requests a resource. This can be
achieved by implementing the following set of rules/guidelines in allocating resources to pro¬
cesses.

1. A process must request all its required resource and the resources should be allocated before
the process begins its execution.

2. Grant resource allocation requests from processes only if the process does not hold a resource
currently.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

• Ensure that resource preemption (resource releasing) is possible at operating system level. This

can be achieved by implementing the following set of rules/guidelines in resources allocation and

releasing.

1. Release all the resources currently held by a process if a request made by the process for a new

resource is not able to fulfil immediately.

2. Add the resources which are preempted (released) to a resource list describing the resources

which the process requires to complete its execution.

3. Reschedule the process for execution only when the process gets its old resources and the new

resource which is requested by the process.

Imposing these criterions may introduce negative impacts like low resource utilisation and starvation

of processes.

Livelock The Livelock condition is similar to the deadlock condition except that a process in livelock

condition changes its state with time. While in deadlock a process enters in wait state for a resource and

continues in that state forever without making any progress in the execution, in a livelock condition a

process always does something but is unable to make any progress in the execution completion. The

livelock condition is better explained with the real world example, two people attempting to cross each

other in a narrow corridor. Both the persons move towards each side of the corridor to allow the opposite

person to cross. Since the corridor is narrow, none of them are able to cross each other. Here both of the

persons perform some action but still they are unable to achieve their target, cross each other. We will

make the livelock, the scenario more clear in a later section-The Dining Philosophers ’Problem, of this

chapter.

Starvation In the multitasking context, starvation is the condition in which a process does not get

the resources required to continue its execution for a long time. As time progresses the process starves

on resource. Starvation may arise due to various conditions like byproduct of preventive measures of

deadlock, scheduling policies favouring high priority tasks and tasks with shortest execution time, etc.

1Q.8.1.3 The Dining Philosophers’ Problem The ‘Dining philosophers ’problem’ is an interest¬

ing example for synchronisation issues in resource utilisation. The terms ‘dining’, ‘philosophers’, etc.

may sound awkward in the operating system context, but it is the best way to explain technical things

abstractly using non-technical terms. Now coming to the problem definition:

Five philosophers (It can be V. The number 5 is taken for illustration) are sitting around a round

table, involved in eating and brainstorming (Fig. 10.37). At any point of time each philosopher will be

in any one of the three states: eating, hungry or brainstorming. (While eating the philosopher is not in¬

volved in brainstorming and while brainstorming the philosopher is not involved in eating). For eating,

each philosopher requires 2 forks. There are only 5 forks available on the dining table (V for V number

of philosophers) and they are arranged in a fashion one fork in between two philosophers. The philoso¬

pher can only use the forks on his/her immediate left and right that too in the order pickup the left fork

first and then the right fork. Analyse the situation and explain the possible outcomes of this scenario.

Let’s analyse the various scenarios that may occur in this situation.

Scenario 1: All the philosophers involve in brainstorming together and try to eat together. Each philoso¬

pher picks up the left fork and is unable to proceed since two forks are required for eating the spaghetti

present in the plate. Philosopher 1 thinks that Philosopher 2 sitting to the right of him/her will put the

fork down and waits for it. Philosopher 2 thinks that Philosopher 3 sitting to the right of him/her will

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

fog. 10.27] Visualisation of the ‘Dining Philosophers problem’

put the fork down and waits for it, and so on. This forms a circular chairmf un-granted requests. If the
philosophers continue in this state waiting for the fork from the philosopher sitting to the right of each,
they will not make any progress in eating and this will result in starvation of the philosophers and
deadlock.

Scenario 2: All the philosophers start brainstorming together. One of the philosophers is hungry and he/
she picks up the left fork. When the philosopher is about to pick up the right fork, the philosopher sitting,
to his right also become hungry and tries to grab the left fork which is the right fork of his neighbouring
philosopher who is trying to lift it, resulting in a ‘Race condition’..

Scenario 3: All the philosophers involve in brainstorming together and try to eat together. Each philoso¬
pher picks up the left fork and is unable to proceed, since two forks are required for eating the spaghetti
present in the plate. Each of them anticipates that the adjacently sitting philosopher will put his/her fork
down and waits for a fixed duration arid after this puts the fork down. Each of them again tries to lift the
fork after a fixed duration of time. Since all philosophers are trying to lift the fork at the same time, none
of them will be able to grab two forks. This condition leads to livelock and starvation of philosophers,
where each philosopher tries to do something, but they are unable to make any progress in achieving
the target.

Figure 10.28 illustrates these scenarios.
Solution: We need to find out alternative solutions to avoid tht deadlock, livelock, racing and starva¬

tion condition that may arise due to the concurrent access of forks by philosophers. This situation can be
handled in many ways by allocating the forks in different allocation techniques including Round Robin
allocation, FIFO allocation, etc. But The requirement is that the solution should be optimal, avoiding

\

https://hemanthrajhemu.github.io

The ‘Real Problems’ in the‘Dining Philosophers problem' (a) Starvation and Deadlock (b) Racing

(c) Livelock and Starvation

deadlock and starvation of the philosophers and allowing maximum number of philosophers to eat at a
time. One solution that we could think of is:

• Imposing rules in accessing the forks by philosophers, like: The philosophers should put down the
fork he/she already have in hand (left fork) after waiting for a fixed duration for the second fork
(right fork) and should wait for a fixed time before making the next attempt.

This solution works fine to some extent, but, if all the philosophers try to lift the forks at the same
time, a livelock situation is resulted. , . '

Another solution which gives maximum concurrency that can be thought of is each philosopher ac¬
quires a semaphore (mutex) before picking up any fork. When a philosopher feels hungry he/she checks
whether the philosopher sitting to the left and right of him is already using the fork, by checking the state

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

of the associated semaphore. If the forks are in use by the neighbouring philosophers, the philosopher
waits till the forks are available. A philosopher when finished eating puts the forks down and informs
the philosophers sitting to his/her left and right, who are hungry (waiting for the forks), by signalling
the semaphores associated with the forks. We will discuss about semaphores and mutexes at a latter sec¬
tion of this chapter. In the operating system context, the dining philosophers represent the processes and
forks represent the resources. The dining philosophers’ problem is an analogy of processes competing
for shared resources and the different problems like racing, deadlock, starvation and Iivelock arising
from the competition.

10.8.1.4 Producer-Consumer/Bounded Buffer Problem Producer-Consumer problem is a
common data sharing problem where two processes concurrently access a shared buffer with fixed size.
A thread/process which produces data is called ‘Producer thread/process’ and a thread/process which
consumes the data produced by a producer thread/process is known as ‘Consumer thread/process\

Imagine a situation where the producer thread keeps on producing data and puts it into the buffer and the
consumer thread keeps on consuming the data from the buffer and there is no synchronisation between
the two. There may be chances where in which the producer produces data at a faster rate than the rate at
which it is consumed by the consumer. This will lead to ‘buffer overrun’ where the producer tries to put
data to a full buffer. If the consumer consumes data at a faster rate than the rate at which it is produced
by the producer, it will lead to the situation '‘buffer under-run’ in which the consumer tries to read from
an empty buffer. Both of these conditions will lead to inaccurate data and data loss. The following code
snippet illustrates the producer-consumer problem

\ iinclude’ <windows.h> .

1 1! inc Lucie Cstdio. h> ' ' V . , "* ’ W-

: fi define N 20 //Define buffer size as 20 ' . , •./ - ... , J" , '
Ifirit buffet [N]; /‘/'Shared-buffer for producer '& consumer . b >- ..■* ' y:

i / /. ********* t ***** ^ * ** *•* * * * *** ******* * * ** •*. * ** **** ** * * * ****** .** * * ** * * -- K

■ IJ/./Producer thread "" A ■■
i void producer ythread (void) { ■ ■ /"* r." / •

St.' int x; ^

while(true) {

for(x=0;x<N;x++)

1
//Fill buffer with random data

buffer[x]= rand()%1000;

printf("Produced : Buffer [%d] = %4d\n", x,

buffer[x]);

Sleep(25);

\~j /***
if’/

p//Consumer thread

pdoid consumer_thread(void). {

fc' int y=0,value; 'v

I while(true) {

for (y=0;y<N;y++)
i \

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

{
value=buffer[y];

printf("Consumed : Buffer [%d] = %4d\n", y, value);

Sleep(20);

}

■}

}
//***
//Main Thread

int main. ()

f '
DWORD thread_id;

/'/Create Producer thread

GreateThread(NULL, 0, "

(LPTHRKAD START ROUTINE) producer_t.hread,

' NULL,0,&thread_id);

//-Create Consumer thread

CreateThread (NULL,.0,

(LPTHREAD_START_ROUTJ.NE) co.nsumer_thread,

,»• NULL,0,&thread_id);

//Wait for some time and exit

Sleep(500);

return 0;

}

Here the ‘producer thread’ produces random numbers and puts it in a buffer of size 20. If the ‘producer

thread’ fills the buffer fully it re-starts the filling of the buffer from the bottom. The ‘consumer thread’

consumes the data produced by the ‘producer thread’. For consuming the data, the ‘consumer thread’

reads the buffer which is shared with the ‘producer thread’. Once the ‘consumer thread’ consumes all the

data, it starts consuming the data from the bottom of the buffer. These two threads run independently and

are scheduled for execution based on the scheduling policies adopted by the OS. The different situations

that may arise based on the scheduling of the ‘producer thread’ and ‘consumer thread’ is listed below.

1. ‘Producer thread’ is scheduled more frequently than the ‘consumer thread’: There are chances for

overwriting the data in the buffer by the ‘producer thread’. This leads to inaccurate data.

2. Consumer thread’ is scheduled more frequently than the ‘producer thread’: There are chances for

reading the old data in the buffer again by the ‘consumer thread’. This will also lead to inaccurate

data.

The output of the above program when executed on a Windows XP machine is shown in Fig. 10.29.

The output shows that the consumer thread runs faster than the producer thread and most often leads

to buffer under-run and thereby inaccurate data.

Note

It should be noted that the scheduling of the threads ‘producerJhredd' and1 consumer Jhread' is OS
kernel scheduling policy dependent and you may not get the same output all the time when you run

this piece of code in Windows XP.

The producer-consumer problem can be rectified in various methods. One simple solution is the

‘sleep and wake-up'. The ‘sleep and wake-up' can be implemented in various process synchronisation

techniques like semaphores, mutex, monitors, etc. We will discuss it in a latter section of this chapter. https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

"C:\Prograni Files\Microsoft Visual Stutfio\MyProjects\consuite\Defiugtcdftumerefe“

Produced Buffer [0] = 41
Consumed Buffer L0] = 41
Consumed Buffer II] = 0
Produced Buffer Li 3 = 467
Consumed Buffer [2 3 = 8
Produced Buffer [23 = 334
Consumed Buffer [33 = 8
Produced Buffer [33 = 588
Consumed Buffer [43 = 8
Produced Buffer [43 = 169
Consumed Buffer [5 3 - 0
Consumed Buffer [fi] = 0
Produced Buffer 153 = 724
Consumed Buffer m = 0
Produced Buffer E6 3 = 478
Consumed Buffer, E8 3 - 8
Produced Buffer [73 = 358
Consumed Buffer [93 = 8
Produced Buffer [8 3 = 962
Consumed Buffer [10] = 8
.Consumed Buffer Ell 3 = 8
Produced Buffer [93 = ■ 464

fConsumed Buffer [12 3 = 0
Produced Buffer £101 = 705
Consumed Buffer [13 3 = 0
Produced Buffer [113 = 145
Consumed Buffer El 43 = 8
(Produced Buffer £12 3 = 281
Consumed Buffer [15 3 = 8
Consumed Buffer [163 = 8
|Produced Buffer [133 = 827
Consumed Buffer [173 = 8

1 Produced Buffer [143 = 961

,10.29] Output of Win32 program illustrating producer consumer problem

10.8.1.5 Readers-Writers Problem The Readers-Writers problem is a common issue observed
in processes competing for limited shared resources. The Readers-Writers problem is characterised by
multiple processes trying to read and write shared data concurrently. A typical real-world example for
the Readers-Writers problem is the banking system where one process tries to read the account informa¬
tion like available balance and the other process tries to update the available balance for that account.
This may result in inconsistent results. If multiple processes try to read a shared data concurrently it
may not create any impacts, whereas when multiple processes try to write and read concurrently it will
definitely create inconsistent results. Proper synchronisation techniques should be applied to avoid the
readers-writers problem. We will discuss about the various synchronisation techniques in a later section
of this chapter.

10.8.1.6 Priority Inversion Priority inversion is the byproduct of the combination of blocking
based (lock based) process synchronisation and pre-emptive priority scheduling. ‘Priority inversion’’

is the condition in which a high priority task needs to wait for a low priority task to release a resource
which is shared between the high priority task and the low priority task, and a medium priority task
which doesn’t require the shared resource continue its execution by preempting the low priority task
(Fig. 10.30). Priority based preemptive scheduling technique ensures that a high priority task is always
executed first, whereas the lock based process synchronisation mechanism (like mutex, semaphore, etc.)
ensures that a process will not access a shared resource, which is currently in use by another process.
The synchronisation technique is only interested in avoiding conflicts that may arise due to the concur¬
rent access of the shared resources and not at all bothered about the priority of the process which tries to
access the shared resource. In fact, the priority based preemption and lock based synchronisation are the
two contradicting OS primitives. Priority inversion is better explained with the following scenario:

Let Process A, Process B and Process C be three processes with priorities High, Medium and Low re¬
spectively. Process A and Process C share a variable ‘X’ and the access to this variable is synchronised

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Process A
(High Priority)

Process B
(Med Priority)

, Process C

(Low Priority)

(; .j Running

(Fig. 10.30) Priority Inversion Problem

through a mutual exclusion mechanism like Binary Semaphore S. Imagine a situation where Process C

is ready and is picked up for execution by the scheduler and ‘Process C’ tries to access the shared vari¬

able ‘X’. ‘Process C’ acquires the ‘Semaphore S’ to indicate the other processes that it is accessing the

shared variable ‘X’. Immediately after ‘Process C’ acquires the ‘Semaphore S’, ‘Process B’ enters the

‘Ready’ state. Since ‘Process B’ is of higher priority compared to ‘Process C’, ‘Process C’ is preempted

and ‘Process B’ starts executing. Now imagine ‘Process A’ enters the ‘Ready’ state at this stage. Since

‘Process A’ is of higher priority than ‘Process B’, ‘Process B’ is preempted and ‘Process A’ is scheduled

for execution. ‘Process A’ involves accessing of shared variable ‘X’ which is currently being accessed

by ‘Process C’. Since ‘Process C’ acquired the semaphore for signalling the access of the shared variable

‘X’, ‘Process A’ will not be able to access it. Thus ‘Process A’ is put into blocked state (This condition

is called Pending on resource). Now ‘Process B’ gets the CPU and it continues its execution until it

relinquishes the CPU voluntarily or enters a wait state or preempted by another high priority task. The

highest priority process ‘Process A’ has to wait till ‘Process C’ gets a chance to execute and release the

semaphore. This produces unwanted delay in the execution of the high priority task which is supposed

to be executed immediately when it was ‘Ready’.

, Priority inversion may be sporadic in nature but can lead to potential damages as a result of missing

critical deadlines. Literally speaking, priority inversion ‘inverts’ the priority of a high priorityytask with

that of a low priority task. Proper workaround mechanism should be adopted for handling the priority

inversion problem. The commonly adopted priority inversion workarounds are:

Priority Inheritance: A low-priority task that is currently accessing (by holding the lock) a shared

resource requested by a high-priority task temporarily ‘ inherits’ the priority of that high-priority task,

from the moment the high-priority task raises the request. Boosting the priority of the low priority task

to that of the priority of the task which requested the shared resource holding by the low priority task

eliminates the preemption of the low priority task by other tasks whose priority are below that of the

task requested the shared resource and thereby reduces the delay in waiting to get the resource requested

by the high priority task. The priority of the low priority task which is temporarily boosted to high is

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

brought to the original value when it releases the shared resource. Implementation of Priority inheri¬
tance workaround in the priority inversion problem discussed for Process A, Process B and Process C
example will change the execution sequence as shown in Fig. 10.31.

Process A

(High Priority)

Process B
(Med Priority)

Process C

(Low Priority)

(Fig. 10.31] Handling Priority Inversion Problem with Priority Inheritance

Priority inheritance is only a work around and it will not eliminate the delay in waiting the high prior¬
ity task to get the resource from the low priority task. The only thing is that it helps the low priority task
to continue its execution and release the shared resource as soon as possible. The moment, at which the
low priority task releases the shared resource, the high priority task kicks the low priority task out and
grabs the CPU - A true form of selfishness©. Priority inheritance handles priority inversion at the cost
of run-time overhead at scheduler. It imposes the overhead of checking the priorities of all tasks which
tries to access shared resources and adjust the priorities dynamically.

Priority Ceiling: In ‘Priority Ceiling’, a priority is associated with each shared resource. The priority
associated to each resource is the priority of the highest priority task which uses this shared resource.
This priority level is called ‘ceiling priority’. Whenever a task accesses a shared resource, the scheduler
elevates the priority of the task to that of the ceiling priority of the resource. If the task which accesses
the shared resource is a low priority task, its priority is temporarily boosted to the priority of the high¬
est priority task to which the resource is also shared. This eliminates the pre-emption of the task by
other medium priority tasks leading to priority inversion. The priority of the task is brought back to the
original level once the task completes the accessing of the shared resource. ‘Priority Ceiling’ brings
the added advantage of sharing resources without the need for synchronisation techniques like locks.
Since the priority of the task accessing a shared resource is boosted to the highest priority of the task
among which the resource is shared, the concurrent access of shared resource is automatically handled.

. Another advantage of ‘Priority Ceiling’ technique is that all the overheads are at compile time instead of

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

run-time. Implementation of ‘priority ceiling’ workaround in the priority inversion problem discussed
for Process A, Process B and Process C example will change the execution sequence as shown in
Fig. 10.32.

Process A
(High Priority)

Process B
(Med Priority)

Process C
(Low Priority)

Jhe biggest drawback of ‘Priority Ceiling’ is that it may produce hidden priority inversion. With ‘Pri¬
ority Ceiling’ technique, the priority of a task is always elevated no matter another task wants the shared
resources. This unnecessary priority elevation always boosts the priority of a low priority task to that of
the highest priority tasks among which the resource is shared and other tasks with priorities higher than
that of the low priority task is not allowed to preempt the low priority task when it is accessing a shared
resource. This always gives the low priority task the luxury of running at high priority when accessing
shared resources©.

10.8.2 Task Synchronisation Techniques

So far we discussed about the various task/process synchronisation issues encountered in multitasking
systems due to concurrent resource access. Now let’s have a discussion on the various techniques used
for synchronisation in concurrent access in multitasking. Process/Task synchronisation is essential for

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock, etc.) in a multitasking
environment.

2. Ensuring proper sequence of operation across processes. The producer consumer problem is a
typical example for processes requiring proper sequence of operation. In producer consumer prob¬
lem, accessing the shared buffer by different processes is not the issue, the issue is the writing
process should write to the shared buffer only if the buffer is not full and the consumer thread

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

should not read from the buffer if it is empty. Hence proper synchronisation should be provided to
implement this sequence of operations.

3. Communicating between processes.
The code memory area which holds the program instructions (piece of code) for accessing a shared

resource (like shared memory, shared variables, etc.) is known as ‘critical section’. In order to synchro¬
nise the access to shared resources, the access to the critical section should be exclusive. The exclusive
access to critical section of code is provided through mutual exclusion mechanism. Let us have a look
at how mutual exclusion is important in concurrent access. Consider two processes Process A and Pro¬

cess B running on a multitasking system. Process A is currently running and it enters its critical section.
Before Process A completes its operation in the critical section, the scheduler preempts Process A and
schedules Process B for execution (Process B is of higher priority compared to Process A). Process B

also contains the access to the critical section which is already in use by Process A. If Process B contin¬
ues its execution and enters the critical section which is already in use by Process A, a racing condition
will be resulted. A mutual exclusion policy enforces mutually exclusive access of critical sections.

Mutual exclusions can be enforced in different ways. Mutual exclusion blocks a process. Based on
the behaviour of the blocked process, mutual exclusion methods can be classified into two categories. In
the following section we will discuss them in detail.

10.8.2.1 Mutual Exclusion through Busy Waiting/Spin Lock ‘Busy waiting’ is the simplest
method for enforcing mutual exclusion. The following code snippet illustrates how ‘Busy waiting’
enforces mutual exclusion.

//Inside parent thread/main thread corresponding to a process’

. bool bFlag; //Global declaration of lock Variable.

'bFlag= FALSE; //Initialise the lock to indicate'it is available. . , ;

//...:.
//Inside the child threads/threads ,of a process '

while (bFlag == TRUE); //Check the lock for availability

' bFlag=TRUE; //Lock"is available. Acquire the lock

• //Rest of the: source,code dealing with shared resource access

The ‘Busy waiting’ technique uses a lock variable for implementing mutual exclusion. Each process/
thread checks this lock variable before entering the critical section. The lock is set to by a process/
thread if the process/thread is already in its critical section; otherwise the lock is set to l0\ The major
challenge in implementing the lock variable based synchronisation is the non-availability of a single
atomic instruction! which combines the reading, comparing and setting of the lock variable. Most of¬
ten the three different operations related to the locks, viz. the operation of Reading the lock variable,
checking its present value and setting it are achieved with multiple low level instructions. The low/level
implementation of these operations are dependent on the underlying processor instruction set and the
(cross) compiler in use. The low level implementation of the ‘Busy waiting’ code snippet, which we
discussed earlier, under Windows XP operating system running on an Intel Centrino Duo processor is
given below. The code snippet is compiled with Microsoft Visual Studio 6.0 compiler.

I

■">-D:\Examples\counter.cpp.----

;vl: . #include <stdio.h> . V. !

i-2-i finclude <windows.h> ” •* i
i ■ /

t Atomic Instruction: Instruction whose execution is uninterruptible.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

run-time. Implementation of ‘priority ceiling’ workaround in the priority inversion problem discussed
for Process A, Process B and Process C example will change the execution sequence as shown in
Fig. 10.32.

Process A

(High Priority)

Process B
(Med Priority)

Process C
(Low Priority)

A

O
Ph

oo
^ to Yi • r-t

O O
'C £ Oh

3 ■"*
cr ■o «
o c w a ~
u ^ S
w -a

« ‘C '

> oo

3

&i
s o>

pd r - p.
•s s
E rid

8 I
Ph

3 bO
O C <D
d 3
€ “
s »
« i
Cx, to

° s
m 3
c/i O
C/5 Vh
a> cl, o
O Ih
P,

| ■ | Waiting

hggtjij Running

[.Fig. ;10.32] Handling Priority Inversion Problem with Priority Ceiling

/'he biggest drawback of ‘Priority Ceiling’ is that it may produce hidden priority inversion. With ‘Pri¬
ority Ceiling’ technique, the priority of a task is always elevated no matter another task wants the shared
resources. This unnecessary priority elevation always boosts the priority of a low priority task to that of
the highest priority tasks among which the resource is shared and other tasks with priorities higher than
that of the low priority task is not allowed to preempt the low priority task when it is accessing a shared
resource. This always gives the low priority task the luxury of running at high priority when accessing
shared resources©.

10.8.2 Task Synchronisation Techniques

So far we discussed about the various task/process synchronisation issues encountered in multitasking
systems due to concurrent resource access. Now let’s have a discussion on the various techniques used
for synchronisation in concurrent access in multitasking. Process/Task synchronisation is essential for

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock, etc.) in a multitasking
environment.

2. Ensuring proper sequence of operation across processes. The producer consumer problem is a
typical example for processes requiring proper sequence of operation. In producer consumer prob¬
lem, accessing the shared buffer by different processes is not the issue, the issue is the writing
process should write to the shared buffer only if the buffer is not full and the consumer thread

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

should not read from the buffer if it is empty. Hence proper synchronisation should be provided to
implement this sequence of operations.

3. Communicating between processes.
The code memory area which holds the program instmctions (piece of code) for accessing a shared

resource (like shared memory, shared variables, etc.) is known as 1critical section'. In order to synchro¬
nise the access to shared resources, the access to the critical section should be exclusive. The exclusive
access to critical section of code is provided through mutual exclusion mechanism. Let us have a look
at how mutual exclusion is important in concurrent access. Consider two processes Process A and Pro¬

cess B running on a multitasking system. Process A is currently running and it enters its critical section.
Before Process A completes its operation in the critical section, the scheduler preempts Process A and
schedules Process B for execution (Process B is of higher priority compared to Process A). Process B

also contains the access to the critical section which is already in use by Process A. If Process B contin¬
ues its execution and enters the critical section which is already in use by Process A, a racing condition
will be resulted. A mutual exclusion policy enforces mutually exclusive access of critical sections.

Mutual exclusions can be enforced in different ways. Mutual exclusion blocks a process. Based on
the behaviour of the blocked process, mutual exclusion methods can be classified into two categories. In
the following section we will discuss them in detail.

10.8.2.1 Mutual Exclusion through Busy Waiting/Spin Lock ‘Busy waiting1 is the simplest
method for enforcing mutual exclusion. The following code snippet illustrates how ‘Busy waiting’
enforces mutual exclusion.

//Inside parent 'thread/main thread corresponding to a process

bool bFlag; //Global declaration of lock-Variable./ ' ;T I

'bFlag= FALSE; //Initialise the lock to indicate it is available,

/Inside '.the;; chi Id threads/threads 70 f'

while(bFlag == TRUE); //Check the lock for availability

- -bF,lag=TRUE;. //Lock is available.Acquire the lock W - -y t '

//Rest. of-the source code dealing with shaped resource access ' ■

/ - ^ .

ft S ^ ;
mmm

is

The ‘Busy waiting’ technique uses a lock variable for implementing mutual exclusion. Each process/
thread checks this lock variable before entering the critical section. The lock is set to 7’ by a process/
thread if the process/thread is already in its critical section; otherwise the lock is set to ‘ O’. The major
challenge in implementing the lock variable based synchronisation is the non-availability &f a single
atomic instruction! which combines the reading, comparing and setting of the lock variable. Most of¬
ten the three different operations related to the locks, viz. the operation of Reading the lock variable,
checking its present value and setting it are achieved with multiple low level instmctions. The low/level
implementation of these operations are dependent on the underlying processor instruction set and the
(cross) compiler in use. The low level implementation of the ‘Busy waiting’ code snippet, which we
discussed earlier, under Windows XP operating system running on an Intel Centrino Duo processor is
given below. The code snippet is compiled with Microsoft Visual Studio 6.0 compiler.

I

D: \Examples\counter. epp .--—---— ---v---R-----—

• .# include <stdio.h>. " . , , A A,.' -

2: finclude /windows,.h> . : / * -f <

t Atomic Instruction: Instruction whose execution is uninterruptible.

https://hemanthrajhemu.github.io

iHk wfKlMHSBn
Introduction to Embedded

3:

4: int main()

5: {

/'/Code .memory Opcode Operand

00401010' push ebp-

004010.11 . mov ebp,esp

00401013 sub esp,44h

00401016 , push , .u-: ebx ; .

004010.17 push esi s

00401018 , „ push ; edi id N

00401019 ■ . lea . edi,[ebp-44h]

00401 QIC mov< ecx,llh, -

00401021 1 . ’ .pov.i - J - eax,OCCCCCCCCh

00401026 I'’ T'l/ieprfdtbs dword ptr .[edi]

7: bool bFlag; //Global declaration of Lock Variable^4

8: •> ; bFlag=r FALSE; '//Initialise the -lock to” indicate it is //available,

00401028 mov byte, ptr [ebp-4] ,Of f’ ■ ift:fTSC3'/

9: //........1;.....1—.•••... • •..*

10: "'‘‘//Inside the child threads/ threads of a process ■■■’•. I > *"

41: while(bFlag == TRUE); //Check the lock for- availability ' ' a

00.40102C mov eax,dword ptr [ebp-4]

0040102F and eax,OFFh

00401034 cmp eax,1

00401037 jne main+2Bh (0040103b)

00401039 Imp * ' ■ main+lCh (0040102c)-

12: bFlag=TRUE.; JJLock is available. Acquire the lock

0040103B mov byte ptr [ebp-4] , 1 w; N.-'/

The assembly language instructions reveals that the two high level instructions (while(bFlag==false);

and bFlag=true;), corresponding to the operation of reading the lock variable, checking its present

value and setting it is implemented in the processor level using six low level instructions. Imagine a

situation where ‘Process 1’ read the lock variable and tested it and found that the lock is available and

it is about to set the lock for acquiring the critical section (Fig. 10.33). But just before ‘Process 1’ sets

the lock variable, ‘Process 2’ preempts ‘Process 1’ and starts executing. ‘Process 2’ contains a critical

section code and it tests the lock variable for its availability. Since ‘Process 1 ’ was unable to set the lock

variable, its state is still ‘O’ and ‘Process 2’ sets it and acquires the critical section. Now the scheduler

preempts ‘Process 2’ and schedules ‘Process 1’before ‘Process 2’ leaves the critical section. Remember,

‘Process 1 ’ was preempted at a point just before setting the lock variable (‘Process 1’ has already tested

the lock variable just before it is preempted and found that the lock is available). Now ‘Process 1’ sets

the lock variable and enters the critical section©. It violates the mutual exclusion policy and may pro¬

duce unpredicted results.

The above issue can be effectively tackled by combining the actions of reading the lock variable,

testing its state and setting the lock into a single step. This can be achieved with the combined hardware

and software support. Most of the processors support a single instruction ‘ Test and Set Lock (TSL)’ for

testing and setting the lock variable. The ‘Test and Set Lock (TSL)' instruction call copies the value of

the lock variable and sets it to a nonzero value. It should be noted that the implementation and usage of

https://hemanthrajhemu.github.io

‘Test and Set Lock (TSL)’ instruction is processor architecture dependent. The Intel 486 and the above
family of processors support the ‘ Test and Set Lock (TSL)’ instruction with a special instruction CMPX¬

CHG—Compare and Exchange. The usage of CMPXCHG instmction is given below.

IvA-A •••*<. GMgXCHG dest,src r •'

This instruction compares the Accumulator (EAX register) with ‘dest’.. If the Accumulator and ‘dest’
contents are equal, ‘dest’ is loaded with ‘src’. If not, the Accumulator is loaded with ‘dest’. Executing
this instruction changes the six status bits of the Program Control and Status register EFLAGS. The
destination (‘dest’) can be a register or a memory location. The source (‘src’) is always a register. From
a programmer’s perspective the operation of CMPXCHG instruction can be viewed as:

. i|fif (accumulator == destination)

fei: ■ :• 1 *. -
• ZF -1; //Set the Zero Flag of EFLAGS Register

, ■ ■ destination ^source;’” ' v ’ ;

else
}

{
ZF = 0; //Reset the Zq-rg;.F-lag of EFLAGS Register

accumulator '= destination;'*

} 1

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

The process/thread checks the lock variable to see whether its state is ‘O’ and sets its state to ‘ 1 ’ if its
state is ‘O’, for acquiring the lock. To implement this at the 486 processor level, load the accumulator
with ‘0’ and a general purpose register with 11 ’ and compare the memory location holding the lock vari¬
able with accumulator using CMPXCHG instruction. This instmction makes the accessing, testing and
modification of the lock variable a single atomic instmction. How the CMPXCHG instmction support
provided by the Intel® family of processors (486 and above) is made available to processes/threads is
OS kernel implementation dependent. Let us see how this feature is implemented by Windows Operat¬
ing systems. Windows CE/Windows XP kernels support the compare and exchange hardware feature
provided by Intel® family of processors, through the API call InterlockedCompareExchange (LPLONG

Destination, LONG Exchange, LONG Comperand). The variable Destination is the long pointer to the
destination variable. The Destination variable should be of type llong\ The variable Exchange rep¬
resents the exchange value. The value of Destination variable is replaced with the value of Exchange

variable. The variable Comperand specifies the value which needs to be compared with the value of
Destination variable. The function returns the initial value of the variable 'Destination'. The following
code snippet illustrates the usage of this API call for thread/process synchronisation.

//Inside parent thread/J'main -thread .corresponding. to a'process

long bFlag; //Global ..declaration of lock Variable.

bFlag=0; '././Initialise the„lock. t,o indicate it .is available. :

. //..:...1;....r...4....
//Inside the child threads/ -threads of a process

//.Check the lock fpr availability & aqguire the lock if available

while - (InterlockedCompareExchange (ScbFlag, 1,,, 0) — 1) ;

//Rest of the source code dealing with shared resource access

The InterlockedCompareExchange function is implemented as ‘Compiler intrinsic function'. The
‘code for Compiler intrinsic functions' are inserted inline while compiling the code. This avoids the
function call overhead and makes use of the built-in knowledge of the optimisation technique for intrin¬
sic functions. The compiler can be instmcted to use the intrinsic implementation for a function using
the compiler directive hpragma intrinsic (intrinsic-function-name). A sample implementation of the
InterlockedCompareExchange interlocked intrinsic function for Windows XP OS is given below.

♦include "stdafx.h"

♦include <intrin.h>

♦include <windows.h>

long bFlag; //Global declaration of lock Variable.

//Declare InterlockedCompareExchange as intrinsic function

♦pragma intrinsic(_InterlockedCompareExchange)

void child_thread(void)

{
//Inside the child thread of a process

//Check the lock for availability & acquire the lock if available.

//The lock can be set by any other threads

while (^InterlockedCompareExchange (&bFlag, 1, 0) == 1);

//Rest of the source code dealing with shared resource access

//...
return;

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

int _tmain(int argc, _TCHAR* argv[])

i\{ ... ■
//Inside parent thread/ main thread corresponding to a process

DWORD thresd_id;

/"//.Define .handle to the child .thread. ?

' HANDLE tThread; .' ,.

//Initialize the lock to indicate it is available. . A/A'’

bFiag =0; - .

//Create child thread ’

tThread = CreateThread (NULL,0,

’ i LPTHREAD_START-p_ROUTINE) child_thread,

NULL, 0, & thread id)'; ' ' > W

/ if (NULL== tThread) ‘ "Ft--.vV ■ t - * ' • A

i'/p- ’-f ' A:.''..-.es-'/ jfo ■'* *' t.?/' V

////Child thread Creation failed. ■ ,; Vv../; ■ v Art//A.

printf ("Creation of Child thread failed, Error Code =

. %d", GetLastE.rror ()) ; . ■■ --..j: ' .. . , -.-5

• 'return -1; . - u ■„ , , :. > '..Jy,

i .:v,.// • ,.'s. - a ■/

//Wait for the completion of the child'thread;

f WaitForSingleOhjebt'ptThread, INFINITE)
fjreturn 0;. ^ • '•/ ■ y%

*

Note: Visual Studio 2005 or a later version of the compiler, which supports interlocked intrinsic

functions, is required for compiling this application. The assembly code generated for the intrinsic

interlocked function while (JnterlockedCompareExchange (&bFlag, 1, 0) == 1); when compiledus-

ing Visual Studio 2005 compiler, on Windows XP platform with Service Pack 2 running on an Intel®

Centrino® Duo processor is given below. It clearly depicts the usage of the cmpxchg instruction

//Inside the child threads/ threads of a process

//Check the lock for availability & acquire the lock if available.

//The lock can be set by any other threads

while (_InterlockedCompareExchange (&bFlag, 1, 0) == 1);

0 0 4113 DE • mov ecx, 1

004113E3_ mov edx,offset bFiag (417178h)

004113E8 xor eax,eax

004113EA lock cmpxchg dword ptr [edx], ecx

004113EE emp eax., 1

004113.F1 jne child thread+35h (4113F5h)

004113F3 jmp child thread+lEh (4113DEh)

//Rest of the source code dealing with shared resource access

//..

The Intel 486 and above family 6f processors provide hardware level support for atomic execution of

increment and decrement operations also. The XADD low level instruction implements atomic execu¬

tion of increment and decrement operations. Windows CE/XP kernel makes these features available to

the users through a set of Interlocked function API calls. The API call Interlockedlncrement (LPLONG

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

IpAddend) increments the value of the variable pointed by IpAddend and the API InterlockedDecrement

(LPLONG IpAddend) decrements the value of the variable pointed by IpAddend.

The lock based mutual exclusion implementation always checks the state of a lock and waits till the
lock is available. This keeps the processes/threads always busy and forces the processes/threads to wait
for the availability of the lock for proceeding further. Hence this synchronisation mechanism is popu¬
larly known as ‘Busy waiting’. The ‘Busy waiting’ technique can also be visualised as a lock around
which the process/thread spins, checking for its availability. Spin locks are useful in handling scenarios
where the processes/threads are likely to be blocked for a shorter period of time on waiting the lock, as
they avoid OS overheads on context saving and process re-scheduling. Another drawback of Spin lock
based synchronisation is that if the lock is being held for a long time by a process and if it is preempted
by the OS, the other threads waiting for this lock may have to spin a longer time for getting it. The ‘Busy

waiting’ mechanism keeps the process/threads always active, performing a task which is not useful and
leads to the wastage of processor time and high power consumption.

The interlocked operations are the most efficient synchronisation primitives when compared to the
classic lock based synchronisation mechanism. Interlocked function based synchronisation technique
brings the following value adds.

• The interlocked operation is free from waiting. Unlike the mutex, semaphore and critical section
synchronisation objects which may require waiting on the object, if they are not available at the
time of request, the interlocked function simply performs the operation and returns immediately.
This avoids the blocking of the thread which calls the interlocked function.

• The interlocked function call is directly converted to a processor specific instruction and there is
no user mode to kernel mode transition as in the case of mutex, semaphore and critical section
objects. This avoids the user mode to kernel mode transition delay and thereby increases the over¬
all performance.

The types of interlocked operations supported by an OS are underlying processor hardware depen¬
dent and so they are limited in functionality. Normally the bit manipulation (Boolean) operations are not
supported by interlocked functions. Also the interlocked operations are limited to integer or pointer vari¬
ables only. This limits the possibility of extending the interlocked functions to variables of other types.
Under windows operating systems, each process has its own virtual address space and so the interlocked
functions can only be used for synchronising the access to a variable that is shared by multiple threads of
a process (Multiple threads of a process share the same address, space) (Intra Process Synchronisation).
The interlocked functions can be extended for synchronising the access of the variables shared across
multiple processes if the variable is kept in shared memory.

10.8.2.2 Mutual Exclusion through Sleep &Wakeup The ‘Busy waiting’ mutual exclusion en¬
forcement mechanism used by processes makes, the CPU always busy by checking the lock to see
whether they can proceed. This results in the wastage of CPU time and leads to high power consump¬
tion. This is not affordable in embedded systems powered on battery, since it affects the battery backup
time of the device. An alternative to ‘busy waiting’ is the ‘Sleep & Wakeup' mechanism. When a process
is not allowed to access the critical section, which is currently being locked by another process, the
process undergoes ‘Sleep' and enters the ‘blocked" state. The process which is blocked on waiting for
access to the critical section is awakened by the process which currently owns the critical section. The
process which owns the critical section sends a wakeup message to the process, which is sleeping as a
result of waiting for the access to the critical section, when the process leaves the critical section. The
‘Sleep & Wakeup’ policy for mutual exclusion can be implemented in different ways. Implementation of

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

this policy is OS kernel dependent. The following section describes the important techniques for ‘Sleep

& Wakeup' policy implementation for mutual exclusion by Windows XP/CE OS kernels.

Semaphore Semaphore is a sleep and wakeup based mutual exclusion implementation for shared
resource access. Semaphore is a system resource and the process which wants to access the shared
resource can first acquire this system object to indicate the other processes which wants the shared
resource that the shared resource is currently acquired by it. The resources which are shared among a
process can be either for exclusive use by a process or for using by a number of processes at a time. The
display device of an embedded system is a typical example for the shared resource which needs exclu¬
sive access by a process. The Hard disk (secondary storage) of a system is a typical example for sharing
the resource among a limited number of multiple processes. Various processes can access the different
sectors of the hard-disk concurrently. Based on the implementation of the sharing limitation of the
shared resource, semaphores are classified into two; namely ‘Binary Semaphore’ and ‘Counting Sema¬

phore’. The binary semaphore provides exclusive access to shared resource by allocating the resource to
a single process at a time and not allowing the other processes to access it when it is being owned by a
process. The implementation of binary semaphore is OS kernel dependent. Under certain OS kernel it is
referred as mutex. Unlike a binary semaphore, the ‘ Counting Semaphore’ limits the access of resources
by a fixed number of processes/threads. ‘Counting Semaphore’ maintains a count between zero and a

the availability to other users booked the Room

Leaving critical section. Release the Semaphore object.

Wakeup the Sleeping Processes

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

value. It limits the usage of the resource to the maximum value of the count supported by it. The state of
the counting semaphore object is set to ‘signalled’ when the count of the object is greater than zero. The
count associated with a ‘Semaphore object’ is decremented by one when a process/thread acquires it and
the count is incremented by one when a process/thread releases the ‘Semaphore object'. The state of the
‘Semaphore object’ is set to non-signalled when the semaphore is acquired by the maximum number of
processes/threads that the semaphore can support (i.e. when the count associated with the ‘Semaphore

object’ becomes zero). A real world example for the counting semaphore concept is the dormitory sys¬
tem for accommodation (Fig. 10.34). A dormitory contains a fixed number of beds (say 5) and at any
point of time it can be shared by the maximum number of users supported by the dormitory. If a person
wants to avail the dormitory facility, he/she can contact the dormitory caretaker for checking the avail¬
ability. If beds are available in the dorm the caretaker will hand over the keys to the user. If beds are not
available currently, the user can register his/her name to get notifications when a slot is available. Those
who are availing the dormitory shares the dorm facilities like TV, telephone, toilet, etc. When a dorm
user vacates, he/she gives the keys back to the caretaker. The caretaker informs the users, who booked
in advance, about the dorm availability.

The creation and usage of ‘counting semaphore object’ is OS kernel dependent. Let us have a look at
how we can implement semaphore based synchronisation for the ‘Racing’ problem we discussed in the
beginning, under the Windows kernel. The following code snippet explains the same.

finclude <scdio.h> :. mAf

*finclude <windows.h>

■^define..MAX_SEMAPHORE_COUNT 1 //Make the semaphore object for //exclusive

use

#define thread count ‘2 //fio.of Child Threads 'Xl-

74**.**?**** ********** ****.************************************ ********
/■/ counter' is an integer variable and Buffer1 is a byte array shared //between,

two threads Process_A and Processes .• ’ 1 -

char Buffer[10] =••{1>2,3,4,5,6,7,8,9,10};

shdrt int ..counter ■= 0; ’ . < " \

//Define the handle to Semaphore object -i

HANDLE hSemaphore; . ' Lk-
//**•********^ -S.I-
// Child Thread 1 I

void Process_A (void) {

int i;

for (i =0; i<5; i++)

{

if (Bufferfi] > 0)

//Wait for the signaling of Semaphore object

WaitForSingleObject(hSemaphore,INFINITE);

-//Semaphore is acquired

counter++;

printf("Process A : Counter = %d\n",counter);

//Release the.Semaphore Object

if (!ReleaseSemaphore(

hSemaphore, // handle to semaphore

https://hemanthrajhemu.github.io

. ai
Real-Time Operatingjlystem (RTOS) based Embedded System Design

1, // increase count by one

NULL)} // not interested in previous count

{ - ■ ' a '
//Semaphore Release failed.. Print Error code &

return. . .

printf("Release Semaphore .Failed with Error Code:

%d\h", GetLastError O) ; '-... T; ' Ld'iy ,.

return; ■> r.; ■■ • k

1
.} '■ .dpi... i-g pF.iV f V | - /

return; -It • • , d . .r . ; j/cd-p Li d: „,/?■ -

‘I’.'/* *f .*/**** * * * * * * * ******** *:** ******** * ** * * *** * * * ** ************ ** * * ** *
(/./■ Child Thread 2 '■ v-. ‘ , y; - '*/ ">■: -p' l V. ..

void Pr.oc.ess_B (void) {

int. j; /.x ,*■ -h; .,

;; -for (j =5; j<10; j++) . - d/N:.:;, * 'r/!i /

if {Buffer -j] >0) >_ ■ 'i ,?■ ,d . •

,/ //Wait for the signalling .of .Sd.maphbre...object

;/ • ■ WaitForSlngleObject (hSemaphore, INFINITE) ;

2 ‘ • /./Semaphore is acquired ,

i counter++; ' ' . •• , ’ -

h printf("Process B : Counter = %d\n", counter);

‘ - //Release Semaphore

if (iReleaseSe.maphore (

hSemaphore, // handle to semaphore

1/ // increase count by one

NULL)) // not interested in previous count

{
//Semaphore Release failed. Print Error code &

//return.

printf("Release Semaphore Failed Error Code: %d\n",

GetLastError());

return;

return;

*v'V!
• WAr-.

//****************■*:**********************************•*:***************

// Main Thread

void main() (

//Define HANDLE for child threads

HANDLE child threads[thread count];

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

DWORD thread_id;

,■int i;

.//Create Semaphore object

hSemaphore ■= C-reateSemaphore (

NULL/ *...// default security attributes

MAX_SEMAPHORE_COUNT, //.-.initial . count .‘..Create as signaled

*0.' KAX_SEMA?HORE_COUNT, // maximum count

"Semaphore"); // Semaphore object with name "Semaphore"

if (NULL == hSemaipho1re)~ ' / 5t Ay ■’ ' ■ • 'r,\

c- 5 print-f ("Semaphore Object Creation Failed: Error Code": %a",

L 'GetlLa'sjtEiscb^l'J) v : - - - .lyr - • >
t ” //Seffiaphdrei^Sj^fcr.Crea'ii'on f^il^:dv;-'-Rjetii.rn -; ■ ~

: 'return;.’'” ■ &F fc|r* *' t V‘ :

/./C-rea'td .Child /thread if. . - i;. ter,- ,l ..\..r »y:. :• y ;

child_threads-[.0]= »CreateThread (NULL, 0, • ' ,

7 ■ -y ... (LPTHREAD_START_ROUTINE)Process_A,

y ' L (LPVOID) 0,0/&thread_id) ; _ '

/^Create Chi Id-(thread 2 - * * - yh' „ 5< * y* V'. - ., * 4

child threads[1]=• .U . • CreateThread (NULL, 0, i ;

'(LE^MEjlboSTART_ROUTINEj Process_B,-

(LPVOID) 0,0, Sthread id); ; - / ^

//Check the success of creation of child threads ;,Vv». .. LTyC" -A-
.‘ „ . , • s‘ >' ■j'Z. ; V■' 'O yy u 'A* y

for (1=0; i<threadycount;, yt "'1/ - - TAy-AAy; yy' *L

if(NULL==child threads[i])

//Child thread creation failed.

printf ("Child thread Creation failed with Error Code: %d",

GetLastError ());

return;

}
// Wait for the termination of child threads

WaitForMultipleObjects(thread_count, child_threads, TRUE,

INFINITE)-;

//Close handles of child threads

for(i=0; i < thread_count; i++)

CloseHandle(child_threads[i]);

//Close Semaphore object handle

CloseHandle(hSemaphore);

return;

}

Please refer io the Online Learning Centre for details on the various Win32 APIs used, in the program
for counting semaphore creation, acquiring, signalling, and releasing. The VxWorks and MicroC/OS-II

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Real-Time kernels also implements the Counting semaphore based task synchronisation/shared resource
access. We will discuss them in detail in a later chapter.

Counting Semaphores are similar to Binary Semaphores in operation. The only difference between
Counting Semaphore and Binary Semaphore is that Binary Semaphore can only be used for exclu¬
sive access, whereas Counting Semaphores can be used for both exclusive access (by restricting the
maximum count value associated with the semaphore object to one (1) at the time of creation of the
semaphore object) and limited access (by restricting the maximum count value associated with the
semaphore object to the limited number at the time of creation of the semaphore object).

Binary Semaphore (Mutex) Binary Semaphore (Mutex) is a synchronisation object provided by OS
for process/thread synchronisation. Any process/thread can create a ‘mutex object’ and other processes/
threads of the system can use this ‘mutex object’ for synchronising the access to critical sections. Only
one process/thread can own the ‘mutex object’ at a time. The state of a mutex object is set to signalled
when it is not owned by any process/thread, and set to non-signalled when it is owned by any process/
thread. A real world example for the mutex concept is the hotel accommodation system (lodging system)
Fig. 10.35. The rooms in a hotel are shared for the public. Any user who pays and follows the norms of
the hotel can avail the rooms for accommodation. A person wants to avail the hotel room facility can
contact the hotel reception for checking the room availability (see Fig. 10.35). If room is available the
receptionist will handover the room key to the user. If room is not available currently, the user can book

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the room to get notifications when a room is available. When a person gets a room he/she is granted the

exclusive access to the room facilities like TV, telephone, toilet, etc. When a user vacates the room, he/

she gives the keys back to the receptionist. The receptionist informs the users, who booked in advance,

about the room’s availability.

Let’s see how we can implement mutual exclusion with mutex object in the ‘Racing’ problem ex¬

ample given under the section ‘Racing’, under Windows kernel.

’#include <stdioth>.

K#include <windows.. h:>, . -'-r/uW

#define thread_count 2 , , , • //No.of Child Threads
; //************+********************** ^e*.*.* **.**.*******.************* **

//counter is an integer variable and Buffer is a byte array shared

i / /between' two ' ’ “» U
; //threads Process_A and Proce;ss_B / " ■ '' j -T; '‘ .“ '

char Buffer[10] = {1,2,3,4)5,6,7,8,9,10}; ' -

short int counter = 0;

/'/Define the-.handle to Mutex Object

HANDLE hMutex; . ,P/J/fiV 5 fij .
'i&k>icZ'k*k kkkk kkk. kk'k *,*-*.;* * * * * k kkk kkkk k. kkkk jck kk.^'k k kkk:k k *** * * kkk kk kk kk k W....t> 5,|

// Child Thread 1

void Process_A (void) { • / • ' vy ycT _ . ■_ - 'fifi/T

j/int i; | fi„./.s., .# r. ' , • . ’ • •' ’ j|f§!

fe../f dr’”fi(i =0r'-ikSL'iTTf-ttvt. ./T! v ' ././,/;///;:

f , :i.f • (Buffer'll ■]* > 0) ■' . O’ •*- ■/ </ '-y/y r...'.... \\

//Wait 'for. .signalling olT the Mutex object ’ \ •'

" r WaitFor.SingleObject (hMutex, INFINITE) ; \

//Mutex is acquired • ' <■y <%*•■ ■ . '-:,v-y

counter*!;;-! / nf - ■ ■
printf("Process A : Counter’= %d\n",counter); '

//Release the Mutex Object

if (IReleaseMutex(hMutex)) // handle to Mutex Object

1
//Mutex object Releasing failed. Print Error code & return,

printf("Release Mutex Failed with Error Code: %d\n",

GetLastError ())';

return;

}

}
}

return;

}
yy***
// Child Thread 2

void Process B(void) {

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

for (j =5; j <10; j++)

if (Buffer [j] >0)

{ = ' '

://Wait for signalling of the Mutex object

WaitForSingfeObject(hMutex, INFINITE}.,* . /

//Mutex object is acquired .. „ /. _

cour.t.er+ + ; . . . ; ’/. V’- ? ■ .:lr •

f fprihtf'(l\Pr.Qce.ss, Jb-.:'./Counter •= %d\n",counter) ;

/ //Release .Mutex object

if .(!ReleaseMutex(hMutex)) // handle .to Mutex Object

//Mute'X>object .R'elease/failed./Print Error code & return:

printf("Release Mutex Failed;with Error Code: %d\n",'*

GetLastErfor ()) ; \ *" ; ' , ,/"'■"/% («. -
return; ’ v'' <■ ’ "v “:y. t ■ -•■■ j",

, , &S&; ..

■; return; _ > j V-"',/ J| ■ v/jr-L-is • ...

//. Mam Thread s- .. • . t .. 1 ■ r jg/ . ' ■ ■"

".void'main (j { •. S' -A

//Define. HANDLE for child threads .

HANDLE child_threads[thread_count];

DWORD t’hread_id; ' " J *’

int i;

//Create Mutex object

hMutex = CreateMutex(

NULL, // default security attributes

FALSE, // Not initial ownership

"Mutex"); // Mutex object with name "Mutex"

if (NULL == hMutex)

{

printf ("Mutex Object Creation Failed: Error Code: %d",

GetLastError ());

//Mutex Object Creation failed. Return

return;

//Create Child thread 1

child_threads[0]= CreateThread(NULL, 0,

(L PTHREAD_START_ROUTINE)Process_A,

(LPVOID)0,0,&thread id) ;

i

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

//Create Child, thread 2

c.hild_t.hrearis [I]. CreatcTaread (NULL, 0,.y
(LPTHREAD_START_ROUTINE)Process_B

(LPVOID)0,0,&thread_id);

/'/Check the success of creation of child threads’ , ■
for (i=0; fcthread-count; i-H) ! .W . - -i ’ ,

child threads[i])

// Wait for th<

WaitForMultipleObjects(thread_count,:child_threads^ TRUE

INFINITE) ; . ;v . , -:i. ,:■ ;.Ar.A;.W':T'. ■ ■
//'Close child thread handles) •/ ;

. ■ for-(i=0; i < thread count; • i++) : o

;.CloseHandle (child_threads [i]) ; ■;

//Close Mutex object handle • ■
Cl.oseHan.dle (hMutex) ;

return; , •> . r ■

Please refer to the Online Learning Centre for details on the various Win32 APIs used in the program
for mutex creation, acquiring, signalling, and releasing.

The mutual exclusion semaphore is a special implementation of the binary semaphore by certain
real-time operating systems like VxWorks and MicroC/OS-II to prevent priority inversion problems in
shared resource access. The mutual exclusion semaphore has an option to set the priority of a task own¬
ing it to the highest priority of the task which is being pended while attempting to acquire the semaphore
which is already in use by a low priority task. This ensures that the low priority task which is currently
holding the semaphore, when a high priority task is waiting for it, is not pre-empted by a medium prior¬
ity task. This is the mechanism supported by the mutual exclusion semaphore to prevent priority inver¬
sion.

VxWorks kernel also supports binary semaphores for synchronising shared resource access. We will
discuss about it in detail in a later chapter.

Critical Section Objects In Windows CE, the ‘Critical Section objecf is same as the ‘mutex object’

except that ‘Critical Section objecf can only be used by the threads of a single process (Intra process).
The piece of code which needs to be made as ‘Critical Section’ is placed at the ‘ Critical Section' area
by the process. The memory area which is to be used as the ‘Critical Section’ is allocated by the pro¬
cess. The process creates a ‘Critical Section’ area by creating a variable of type CRITICAL ^SECTION.

The Critical Section’ must be initialised before the threads of a process can use it for getting exclusive
access. The InitializeCriticalSectionjLPCRITICAL SECTION IpCriticalSection) API initialises the
critical section pointed by the pointer IpCriticalSection to the critical section. Once the critical section

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

is initialized, all threads in the process can use it. Threads can use the API call EnterCriticalSection

(LPCRITICAL SECTION IpCriticalSection) for getting the exclusive ownership of the critical section

pointed by the pointer IpCriticalSection. Calling the EnterCriticalSectionQ API blocks the execution of

the caller thread if the critical section is already in use by other threads and the thread waits for the criti¬

cal section object. Threads which are blocked by the EnterCriticalSectionQ call, waiting on a critical

section are added to a wait queue and are woken when the critical section is available to the requested

thread. The API call TryEnterCriticalSection(LPCRITICAL_SECTION IpCriticalSection) attempts to

enter the critical section pointed by the pointer IpCriticalSection without blocking the caller thread. If

the critical section is not in use by any other thread, the calling thread gets the ownership of the criti¬

cal section. If the critical section is already in use by another thread, the TryEnterCriticalSectionQ call

indicates it to the caller thread by a specific return value and the thread resumes its execution. A thread

can release the exclusive ownership of a critical section by calling the API LeaveCriticalSection(LPCR¬

ITICAL _ SECTION IpCriticalSection). The threads of a process can use the API DeleteCriticalSection

(LPCRITICAL SECTION IpCriticalSection) to release all resources used by a critical section object

which was created by the process with the CRJIICAL_SECTION variable.

Now let’s have a look at the ‘Racing’ problem we discussed under the section ‘Racing’. The racing

condition can be eliminated by using a critical section object for synchronisation. The following code

snippet illustrates the same.

A#include <stdio,.h> c , v ■■ ...
it include Cwindows. h> • v./tyA‘ /

■ /./'**■*.** *■,*-*'* ** * * * * *■**.*.*■.* ****** ***** *.*■*•* * ** ******* * * * * * * * * * * ****** * * * * *

//counter is an integer variable and Buffer is a byte array shared
: //between'two threads
•char Buffer[10] = {.1,2,3,4,5*6,7,8,9,10}; .
short iht counter - 0; , ' - V.. y'A-' ' ,

l //Define _ the critical section. .- • •
" CRI T.I CAL_S ECTI ON CS; '

, y/y-k’-k ***** ********************* ***************** * * ********* **********
:./•/ Child Thread 1
void Process_A (void) {
dnt i ;

for (i =0; i<5; i++)

{
if (Buffer[i] > 0)

1
//Use critical sectibn object for synchronisation
EnterCriticalSection(&CS);
counter++;
LeaveCriticalSection(&CS);

1
printf("Process A : Counter = %d\n",counter);

1
, 1
vfj. / ***
i // Child Thread 2
r void Process B(void) {

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

int j;

for (j =5; j<10; j++)

{ V
if (Buffer[j j > 0)

l. ’ .. • •

■ //Use critical section object-!or'"synch'rcnisation

EnterCriticalSection(&CS) ;

countcr+i-; ... r ,,, ^ .. , / 1-

LeaveCriticalSection(&CS); , . ■ •

} ; ' ' ' .

printf("Process B : Counter = %d\n",counter);

int main/) {

DWORD , id; ^ H » . , .r ;„r..

/./Initialize critical -section object •. > -- '

InitiializeCrit-icalSecuion (&CS) ; -■> - ‘ - ?

CreateThread(NULL,0, , s -to

< : (TPTHREAD_START_ROUTINE)^Process_A/

,-\S (LPVQID) 0,0, &id) ;

CreateThread (NULL, 0, jv. r\ p'/K..' . ' ■ • .' •„
(LPT HREAQ_ START_ROUT INE) Process_B,

(LPVOID) 0,0, Lid) ; - ; H '/ ’ . "i
Sleep(100000);

return 0;

vj s i

Here the shared resource is the shared variable ‘counter’. The concurrent access to this variable by

the threads ‘Process_A’ and ‘ Process JB’ may create race condition and may produce incorrect results.

The critical section object ‘ CS’ holds the piece of code corresponding to the access of the shared vari¬

able ‘counter by each threads. This ensures that the memory area containing the low level instructions

corresponding to the high level instruction ‘counter++’ is accessed exclusively by threads ‘Process_A’

and ‘Process_B’ and avoids a race condition. The output of the abpve piece of code when executed on

Windows XP machine is given in Fig. 10.36.

The final value of ’counter’ is obtained as 10, which is the expected result for this piece of code.

If you observe this output window you can see that the text is not outputted to the o/p window in the

expected manner. The print/ () library routine used in this sample code is re-entrant and it can be pre¬

empted while in execution. That is why the outputting of text happened in a non expected way.

It should be noted that the scheduling of the threads ‘ Process_A' and ‘ Process _B’ is OS kernel sched¬

uling policy dependent and you may not get the same output all the time when you run this piece of:

code under Windows XP.

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

ca "C:\Program Files\Microsoft Visual Studio - MyPmjects\ iiSjx]
Process
Process
Process
Process
n Pi'ocesi
ter = 3

sProcesi
IProcesj

A : Counter = 1
ft Counter = i
B : Counter = 2
ft : Co uPPro e-ess B

; B : Counter = 4

B : Counter = 5
ft - Counter = 6
B : Counter = 7

Counter = 9
Counter = 10

Counter =

[Fig. 10.36) Output of the Win32 application resolving racing condition through critical section object

The critical section object makes the piece of code residing inside it non-reentrant. Now let’s try the

above piece of code by putting the printf () library routine in the critical section object.

^fnclude <stdio-.fi> . » ,, N. , . .%*£•.-y-| k;|

<windows. h> „.>£>„ ' f
//*** ******* ***********-«* ***************** *,*.*** **********************

p^.yKou'nter is an. integer variable and Buf fer , Is a; byte array shared *

yVbetween two threads Process'A and Process B ... ”• ’ ■::%$£<’! ip •’*'*»*.*•

'.char Buffer [10] ■ = {1,2,3,4,5,6,7,8,9,10}; ' ' "'y '£/; 7" ■

1 short int counter = 0; yf-V,- ,- J • ' \

jj//befine the'critical section :/ , •• '

®S|^%^»SECTION CS; • ;#N, ■
hiV Z * * * * * * * * ** *'* ***
fcffccKild Thread 1
tes'cV-'l-
' void Process A (void)

Mint i;

pi for (i =0; i<5;-i++)

p "
p if (Buffer[i] > 0)

//Use critical section object for synchronisation

EnterCriticalSection(&CS);

counter++;

printf("Process A : Counter = %d\n",counter);

LeaveCriticalSection(&CS);

}

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

ca "C:\Pfogram Files\Mirro>on VisJal'ffl ~

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter

// Child Thread 2

void Process 3(void) {

if (Buffer[j] > 0)

//Use. critical section object for synchror.isati'

EntcrCriticalSecticn (&CS);

counter++; Hlj * " ’

printf ("Process' B : Counter.

LeaveCriticalsection (&CS)

counter)

0m

//************

// Main Thread

int .main () {

DWORD., id

//Initialize critical section object

InitializeCriticalSection(&CS);

CreateThread(NULL,0,

(LPTHREAD_START_ROUTINE)Process_A

(LPVOID)0,0,&id);

CreateThread(NULL,0,

(LPTHREAD_START_ROUTINE) Process__B

(LPVOID)0,0,&id);

Sleep_(100000) ; |

return 0;

The output of the above piece of code when executed on a Windows XP machine is given below.

‘ig. 10.37j Output of the Win32 application resolving racing condition through critical section object

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Note ... '

It should be noted that the scheduling of the threads ‘Process_A ’ and ‘Process_B’ is OS kernel sched¬

uling policy dependent and you may not get the same output all the time when you nin tbis piftcp. of

code in Windows XP. The output of the above program when executed at three different instances of

time is given shown in Fig. 10.38. ’ ‘

aMtS
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

: Counter
: Counter
: Counter
: Counter
: Counter
■ ' Counter
; Counter
:■ Counter
: Counter
: Counter

Mm
:

m

RspiiiliiPfifiini

"C;\l^dgr^;Piies\Mici‘bsbft Visual

[Process ft .: C ounter
Process ft : C ounter
Process ft
Process A
Process A
Process B
Process B
Process B
Process B
Process B

Counter
Counter
Counter

^Counter
Counter
Counter

lijCounter = 9
:.li Counter = 10 la

(Fig. 10.38] Illustrati on of scheduler behaviour under Windows XP kernel

Events Event i> i i mhiomsation technique which uses the notification mechanism for

synchronisation M • > . cut!on wc may come across situations which demand the processes

to wait for a par ’ uic - ainm lor ns operations. A typical example of this is the producer consum¬

er threads, when fiu < .-Mm- . tin cad should wait for the consumer thread to produce the data and

producer thread 'nmnu >- m ' - me consumer thread to consume the data before producing fresh data.

If this sequence i- ms i. , u w ill end up m producer-consumer problem. Notification mechanism

is used for handi'.w m c, A \ \cm objects are used for implementing notification mechanisms.

https://hemanthrajhemu.github.io

ill
Introduction to Embedded Systems

A thread/process can wait for an event and another thread/process can set this event for processing by

the waiting thread/process. The creation and handling of event objects for notification is OS kernel

dependent. Please refer to the Online Learning Centre for information on the usage of ‘Events’ under

Windows Kernel for process/thread synchronisation.

The MicroC/OS-II kernel also uses ‘events’ for task synchronisation. We will discuss it in a later

chapter.

Device driver is a piece of software that acts as

a bridge between the operating system and the

hardware. In an operating system based prod¬

uct architecture, the user applications talk to the

Operating System kernel for all necessary infor¬

mation exchange including communication with

the hardware peripherals. The architecture of the

OS kernel will not allow direct device access from

the user application. All the device related access

should flow through the OS kernel and the OS ker¬

nel routes it to the concerned hardware peripheral.

OS provides interfaces in the form of Application

Programming Interfaces (APIs) for accessing the

hardware. The device driver abstracts the hard¬

ware from user applications. The topology of user

applications and hardware interaction in an RTOS

based system is depicted in Fig. 10.39.

Device drivers are responsible for initiating and managing the communication with the hardware

peripherals. They are responsible for establishing the connectivity, initialising the hardware (setting up

various registers of the hardware device) and transferring data. An embedded product may contain dif¬

ferent types of hardware components like Wi-Fi module, File systems, Storage device interface, etc. The

initialisation of these devices and the protocols required for communicating with these devices may be

different. All these requirements are implemented in drivers and a single driver will not be able to sat¬

isfy all these. Hence each hardware (more specifically each class of hardware) requires a unique driver

component.

Certain drivers come as part of the OS kernel and certain drivers need to be installed on the fly. For

example, the program storage memory for an embedded product, say NAND Flash memory requires a

NAND Flash driver to read and write data from/to it. This driver should come as part of the OS kernel

image. Certainly the OS will not contain the drivers for all devices and peripherals under the Sun. It

contains only the necessary drivers to communicate with the onboard devices (Hardware devices which

are part of the platform) and for certain set of devices supporting standard protocols and device class

(Say USB Mass storage device or HID devices like Mouse/keyboard). If an external device, whose

driver software is not available with OS kernel image, is connected to the embedded device (Say a

medical device with custom USB class implementation is connected to the USB port of the embedded

product), the OS prompts the user to instal its driver manually. Device drivers which are part of the OS

image are known as ‘Built-in drivers’ or ‘On-board drivers’. These drivers are loaded by the OS at the

■ ff'; ■Mfpftl
■' - ' ■ ■ ’ ■ '-A ."

j t-
STf- r : yi*--* — . ^ z * : ' — ui c

tAi.. * li. .k'fy'i u ..Jii*. 4;-yfil
| ' > - *

DiWkL1 .Oliver:*,

J
Li

kl
l

Haniwiire

Fig. 10.39j Role of Device driver in Embedded OS

based products

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

time of booting the device and are always kept in the RAM. Drivers which need to be installed for ac¬

cessing a device are known as ‘Installable drivers’. These drivers are loaded by the OS on a need basis.

Whenever the device is connected, the OS loads the corresponding driver to memory. When the device

is removed, the driver is unloaded from memory. The Operating system maintains a record of the drivers

corresponding to each hardware.

The implementation of driver is OS dependent. There is no universal implementation for a driver.

How the driver communicates with the kernel is dependent on the OS structure and implementation.,

Different Operating Systems follow different implementations.

It is very essential to know the hardware interfacing details like the memory address assigned to the

device, the Interrupt used, etc. of on-board peripherals for writing a driver for that peripheral. It varies

on the hardware design of the product. Some Real-Time operating systems like ‘Windows CE’ support

a layered architecture for the driver which separates out the low level implementation from the OS

specific interface. The low level implementation part is generally known as Platform Dependent Device

(PDD) layer. The OS specific interface part is known as Model Device Driver (MDD) or Logical Device

Driver (LDD). For a standard driver, for a specific operating system, the MDD/LDD always remains the

same and only the PDD part needs to be modified according to the target hardware for a particular class

of devices.

Most of the time, the hardware developer provides the implementation for all on board devices for

a specific OS along with the platform. The drivers are normally shipped in the form of Board Support

Package. The Board Support Package contains low level driver implementations for the onboard pe¬

ripherals and OEM Adaptation Layer (OAL) for accessing the various chip level functionalities and a

bootloader for loading the operating system. The OAL facilitates communication between the Operating

System (OS) and the target device and includes code to handle interrupts, timers, power management,

bus abstraction, generic I/O control codes (IOCTLs), etc. The driver files are usually in the form of a

dll file. Drivers can run on either user space or kernel space. Drivers which run in user space are known

as user mode drivers and the drivers which run in kernel space are known as kernel mode drivers. User

mode drivers are safer than kernel mode drivers. If an error or exception occurs in a user mode driver,

it won’t affect the services of the kernel. On the other hand, if an exception occurs in the kernel mode

driver, it may lead to the kernel crash. The way how a device driver is written and how the interrupts are

handled in it are operating system and target hardware specific. However regardless of the OS types, a

device driver implements the following: .

1. Device (Hardware) Initialisation and Interrupt configuration

2. Interrupt handling and processing

3. Client interfacing (Interfacing with user applications)

The Device (Hardware) initialisation part of the driver deals with configuring the different registers

of the device (target hardware). For example configuring the I/O port line of the processor as Input or

output line and setting its associated registers for building a General Purpose 10 (GPIO) driver. The

interrupt configuration part deals with configuring the interrupts that needs to be associated with the

hardware. In the case of the GPIO driver, if the intention is to generate an interrupt when the Input line

is asserted, we need to configure the interrupt associated with the I/O port by modifying its associated

registers. The basic Interrupt configuration involves the following.

1. Set the interrupt type (Edge Triggered (Rising/Failing) or Level Triggered (Low or High)), enable

the interrupts and set the interrupt priorities.

2. Bind the Interrupt with an Interrupt Request (IR.Q). The processor identifies an interrupt through

IRQ. These IRQs are generated by the Interrupt Controller. In order to identify an interrupt the

interrupt needs to be bonded to an IRQ.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

3. Register an Interrupt Service Routine (ISR) with an Interrupt Request (IRQ). ISR is the handler for

an Interrupt. In order to service an interrupt, an ISR should be associated with an IRQ. Registering

an ISR with an IRQ takes care of it.
With these the interrupt configuration is complete. If an interrupt occurs, depending on its priority, it

is serviced and the corresponding ISR is invoked. The processing part of an interrupt is handled in an

ISR. The whole interrupt processing can be done by the ISR itself or by invoking an Interrupt Service

Thread (1ST). The 1ST performs interrupt processing on behalf of the ISR. To make the ISR compact

and short, it is always advised to use an 1ST for interrupt processing. The intention of an interrupt is to

send or receive command or data to and from the hardware device and make the received data avail¬

able to user programs for application specific processing. Since interrupt processing happens at kernel

level, user applications may not have direct access.to the drivers to pass and receive data. Hence it is
the responsibility of the Interrupt processing routine or thread to inform the user applications that an

interrupt is occurred and data is available ,for further processing. The client interfacing part of the device

driver takes care of this. The client interfacing implementation makes use of the Inter Process commu¬

nication mechanisms supported by the embedded OS for communicating and synchronising with’user
applications and drivers. For example, to inform a user application that an interrupt is occurred and the
data received from the device is placed in a shared buffer, the client interfacing code can signal (or set)

an event. The user application creates the event, registers it and waits for the driver to signal it. The

driver can share the received data through shared memory techniques. IOCTLs, shared buffers, etc. can

be used for data sharing. The story line is incomplete without performing an interrupt done (Interrupt
processing completed) functionality in the driver. Whenever an interrupt is asserted, while vectoring to
its corresponding ISR, all interrupts of equal and low priorities are disabled. They are re-enable only on

executing the interrupt done function (Same as the Return from Interrupt RETI instruction execution
for 8051) by the driver. The interrupt done function can be invoked at the end of corresponding ISR or

1ST.
We will discuss more about device driver development in a dedicated book coming under this book-

series.

10.10 HOWTO CHOOSE AN RTOS

The decision of choosing an RTOS for an embedded design is very crucial. A lot of factors needs to be

analysed carefully before making a decision on the selection of an RTOS. These factors can be either

functional or non-functional. The following section gives a brief introduction to the important func¬

tional and non-functional requirements that needs to be analysed in the selection of an RTOS for an

embedded design.

10.10.1 Functional Requirements

Processor Support It is not necessary that all RTOS’s support all kinds of processor architecture. It

is essential to ensure the processor support by the RTOS.

Memory Requirements The OS requires ROM memory for holding the OS files and it is normally

stored in a non-volatile memory like FLASH. OS also requires working memory RAM for loading the

OS services. Since embedded systems are memory constrained, it is essential to evaluate the minimal

ROM and RAM requirements for the OS under consideration.

Real-time Capabilities It is not mandatory that the operating system for all embedded systems need

to be Real-time and all embedded Operating systems-are ‘Real-time'm behaviour. The task/process

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

scheduling policies plays an important role in the ‘Real-time’ behaviour of an OS. Analyse the real-time

capabilities of the OS under consideration and the standards met by the operating system for real-time

capabilities.

Kernel and Interrupt Latency The kernel of the OS may disable interrupts while executing certain

services and it may lead to interrupt latency. For an embedded system whose response requirements are

high, this latency should be minimal.

Inter Process Communication and Task Synchronisation The implementation of Inter Process

Communication and Synchronisation is OS kernel dependent. Certain kernels may provide a bunch of

options whereas others provide very limited options. Certain kernels implement policies for avoiding

priority inversion issues in resource sharing.

Modularisation Support Most of the operating systems provide a bunch of features. At times it may

not be necessary "for an embedded product for its functioning. It is very useful if the OS supports modu¬

larisation where in which the developer can choose the essential modules and re-compile the OS image

for functioning. Windows CE is an example for a highly modular operating system.

Support for Networking and Communication The OS kernel may provide stack implementation

and driver support for a bunch of communication interfaces and networking. Ensure that the OS under

consideration provides support for all the interfaces required by the embedded product.

Development Language Support Certain operating systems include the run time libraries required

for running applications written in languages like Java and C#. A Java Virtual Machine (JVM) custom¬

ised for the Operating System is essential for running java applications. Similarly the .NET Compact

Framework (.NETCF) is required for running Microsoft® .NET applications on top of the Operating

-System. The OS may include these components as built-in component, if riot, check the availability of

the same from a third party vendor for the OS under consideration.

10.10.2 Non-functional Requirements

Custom Developed or Off the Shelf Depending on the OS requirement, it is possible to go for

the complete development of an operating system suiting the embedded system needs or use an off

the shelf, readily available operating system, which is either a commercial product or an Open Source

product, which is in close match with the system requirements. Sometimes it may be possible to build

the required features-by customising an Open source OS. The decision on which to select is purely de¬

pendent on the development cost, licensing fees for the OS, development time and availability of skilled

resources.

Cost The total cost for developing or buying the OS and maintaining it in terms of commercial prod¬

uct and custom build needs to be evaluated before taking a decision on the selection of OS.

Development and Debugging Tools Availability The availability of development and debugging

tools is a critical decision making factor in the selection of an OS for embedded design. Certain Operat¬

ing Systems may be superior in performance, but the availability of tools for supporting the develop-!

ment may be limited. Explore the different tools available for the OS under consideration.

Ease of Use How easy it is to use a commercial RTOS is another important feature that needs to be

considered in the RTOS selection.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

After Sales For a commercial embedded RTOS, after sales in the form of e-mail, on-call services,

etc. for bug fixes, critical patch updates and support for production issues, etc. should be analysed thor¬

oughly.

®5 Summary

S The Operating System is responsible for making the system convenient to use, organise and manage system;,.

' . resources efficiently and properly. • - '>&$%■■■
S Process/Task management, Primary memory management, File system management, I/O system (Device) man¬

agement, Secondary Storage Management, protection implementation, Time management/interrupt handling,

...etc. are the important services handled by the OS kernel. • •• ...

■' v The core of the operating system is known, as kernel. Depending on the implementation of the different kernel

. services, the kernel is classified as Monolithic and Micro. User Space is the memory area in which user applica¬

tions are confined to run, whereas kemil space is the memory area reserved for kernel applications.^

X Operating systems with a generalised kernel are known as General Purpose Operating Systems (GPOS), whereas

operating systems with a specialised kernel with deterministic timing behaviour are known as Real-Time Operat-

. ingSystems.(RTOS). i

S In the operating system context a task/process is a program, or part of it, in execution. The process holds a set

of registers, process status, a Program Counter (PC) to point to the next executable instruction of the process, a

stack for holding the local variables associated with the process and the code, corresponding to the proceSshJH^I

•T The different states through which a process traverses through during its journey from the.newly created state to

finished state is knotvn as Process Life Cycle - • .
C Process management deals with the creation of a process, setting up the memory space for the process, loading

the process’s code into the memory space, allocating system resources, setting up a Process Control Block (PCB)

for the process and processfermination/deletion. f

S A thread is the primitive that can execute code. It is a single sequential flow of control within a process. A process

may contain multiple threads. The act of concurrent execution of multiple threads under an operating system is

known as multithreading. ' 'A- -'•*

S Thread standards are the different standards available for thread creation and management. POSIX, Win32, Java,

etc. are the commonly used thread creation and management libraries.

S -The ability of a system to execute multiple processes simultaneously is known as multiprocessing, whereas

the ability of an operating system to hold multiple processes in memory and switch the processor (CPU) from

executing one process to another process is known as multitasking. Multitasking involves Context Switching,

Context Saving and Context Retrieval.

'T Co-operative multitasking, Preemptive multitasking and Non-preemptive multitasking are the three important

types of multitasking which exist in the Operating system context.

C CPU utilisation, Throughput, Turn Around Time (TAT), Waiting Time and Response Time are the important

criterions that need to be considered for the selection of a scheduling algorithm for task scheduling.

U Job queue, Ready queue and Device queue are the important queues maintained by an operating system in as¬

sociation with CPU scheduling.

C First Come First Served (FCFS)/First in First Out (FIFO), Last Come First Served (LCFS)/Last in First Out

(LIFO), Shortest Job First (SJF), priority based scheduling, etc. are examples for Non-preemptive scheduling,

whereas Preemptive SJF Scheduling/Shortest Remaining Time (SRT), Round Robin (RR) scheduling and prior¬

ity based scheduling are examples for preemptive scheduling.

C -Processes in a multitasking system falls into either Co-operating or Competing. The co-operating processes share

data for communicating among the processes through Inter Process Communication (IPC), whereas, competing

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

processes do not share anything among themselves but they share the system resources like display devices,

keyboard, etc.

V Shared memory, message passing and Remote Procedure Calls (RPC) are the important IPC mechanisms through

which the co-operating processes communicate in an operating system environment. The implementation of the

IPC mechanism is OS kernel dependent.

S Racing, deadlock, livelbck, starvation, producer-consumer problem, Readers-Writers problem and priority inver¬

sion are some of the problems involved in shared resource access in task communication through sharing.

y The ‘Dining Philosophers’ ‘Problem’ is a real-life representation of the deadlock, starvation, livelock and ‘Rac¬

ing’ issues in shared resource access in operating system context.

y Priority inversion is the condition in which a medium priority task gets the CPU for execution, when a high

priority task needs to wait for a low priority task to release a resource which is shared between the high priority,

task and the low priority task.

y Priority inheritance and Priority ceiling are the two mechanisms for avoiding Priority Inversion in a multitask¬

ing environment.

y The act of preventing the access of a shared resource by a task/process when it is currently being held by another

task/process is known as mutual exclusion. Mutual exclusion can be implemented through either -busy waiting

{spin lock) or sleep and wakeup technique.

y Test-and Set, Flags, etc. are examples of Busy waiting based mutual exclusion implementation, whereas Sema¬

phores, mutex, Critical Section Objects and events are examples for Sleep and Wakeup based mutual exclusion.

y Binary semaphore implements exclusive shared resource access, whereas counting semaphore limits the concur¬

rent access to a shared resource, and mutual exclusion semaphore prevents priority inversion in shared resource

access.

y Device driver is a piece of software that acts as a bridge between the operating system and the hardware. Device

drivers are responsible for,initiating and managing the communication with the hardware peripherals.

y Various functional and non-functional requirements need to be evaluated before the selection of an RTOS for an

embedded design.

Operating System :

Kernel :

Kernel space :

User space :

Monolithic kernel

Microkernel :

Real-Time Operat- :

ing System (RTOS)

Scheduler :

Hard Real-Time :

Soft Real-Time

Task/Job/Process :

'I®' Keywords
c_ . __

A piece of software designed to manage and allocate system resources and execute other

pieces of the software

The core of the operating system which is responsible for managing the system resources

and the communication among the hardware and other system services

The primary memory area where the kernel applications are confined to run

The primary memory area where the user applications are confined to run

A kernel with all kernel seivices run in the kernel space under a single kernel thread

A kernel which incorporates only the essential services within the kernel space and the rest

is installed as loadable modules called servers

Operating system with a specialised kernel with a deterministic timing behaviour

OS kernel service which deals with the scheduling of processes/tasks

Real-time operating systems that strictly adhere to the timing constraints for a task

Real-time operating systems that does not guarantee meeting deadlines, but, offer the best

effort to meet the deadline

In the' operating system context a task/process is a prqgram, or part of it, in execution

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Process Life Cycle :

Thread :

Multiprocessing :

systems

Multitasking :

Context switching :

Co-operative multi- :

tasking

Preemptive multi¬

tasking

Non-preemptive ; :

multitasking

First Come First :

Served (FCFSj/First

in First Out (FIFO)

Last Come First :

Served (LCFS)ZLast

in .First Out (LIFO)

Shortest Job First

(SJF)

Priority based

Scheduling

Shortest Remaining :

Time (SRT)

Round Robin :

Co-operating pro- :

cesses

Inter Process/Task :

Communication

(IPC)

Shared memory :

Message passing :

Message queue :

Mailbox :

Signal :

Remote Procedure :

Call or RPC

Racing :

The different states through which a process traverses through during its journey from the

newly created state to completed state

The primitive that can execute code. It is a single sequential flow of control within a pro¬

cess

Systems which contain multiple CPUs and are capable of executing multiple processes si¬

multaneously

The ability of an operating system to hold multiple processes in memory and switch the

processor (CPU) from executing one process to another process

.The act of switching CPU among, the processes and changing the current execution context

.Multitasking model in which a task/process gets a chance when the currently executing task ;

relinquishes the CPU. voluntarily.. . 'f ", ' ' r

Multitasking model in which a currently running task/process is preempted to execute an- f

other task/process ' l'

Multitasking model in which .a task gets a chance to execute when the currently executing;!

task relinquishes the GPU or when it enters a wait state ' .; #p

Scheduling policy which sorts the Ready Queue with FCFS model and schedules the first

arrived process from the Ready queue for execution

Scheduling policy Which sorts the Ready Queue with LCFS model and schedules the last

arrived process from the Ready queue for execution • **

Scheduling policy which sorts the Ready queue with the order of the shortest execution time

for process and schedules the process with least estimated execution completion time from

the Ready queue for execution

Scheduling policy which sorts the Ready queue based on priority and schedules the process

with highest priority from the Ready queue for execution

Preemptive scheduling policy which sorts the Ready queue with the order of the shortest re¬

maining time for execution completion for process and schedules the process with the least

remaining time for estimated execution completion from the Ready queue for execution

Preemptive scheduling policy in which the currently running process is preempted based

on time slice

Processes which share data for communicating among them

Mechanism for communicating between co-operating processes of a system

A memory sharing mechanism used for inter process communication

IPC mechanism based on exchanging of messages between processes through a message

queue or mailbox

A queue for holding messages for exchanging between processes of a multitasking system

A special implementation of message queue under certain OS kernel, which supports only

a single message

A form of asynchronous message notification

The IPC mechanism used by a process to invoke a procedure of another process running on

the same CPU or on a different CPU which is interconnected in a network

The situation in which multiple processes compete (race) each other tp access and manipu¬

late shared data concurrently

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

Deadlock : A situation where none of the processes are able to make any progress in their execution
frnriirlitf riti riti WtvrWii /nrn/'poc :fc went ifiW'-THr vt [rXcrxiirr>a Kp 1 Ain / anAtWot- *%*-/%

•An^progress in

:PU or system resources required (■■

, livelock and racing issues in shared

_ Starvation - : The condition in which a process does not ;j

Dining Philosophers’: A real-life representation of the-deadlock, su

Problem resource access in operating system context

Producer-Consumer : A common data sharing problem where two

problem with fixed size
, r, A ' \ 17 V 1 A t ' l --UI ‘'l.1* MSS j U 'l ? Readers-Writers : A data sharing problem characteriSed-by mt|l

problem ' data cphcurjenlly^^^| g§ .

pprihrity inversion : The'conditionin whiQh,a medium priority |£ts

problem data concurrently

| Priority inheritance : A mechathsm^ijjjjpIqw-priprity task which is currency holding a re-
, i, iti

It r.y . highest priority task v. hich rises tire shared resource) and the priority of the task is temporar¬

ily '< ;'v ily boosted to the priority of the shared resource when the resource is being held by thefe|

\ for avoiding priority inversion , A -
.'"jirTT | /"D . p«m • I h fa lAntw/af'ntmdhlimtAdn l-M /yfln/A n nn ehUnn T fl a*-/Artn Inx r-ryiihl rtnihranOTuyl

i -Mutual Exclusion : The act of preventing the access of a'shared resource by a task/process when it is being held

Semaphore : A system resource for implementing mutual exclusion in shared resource access or for re-

Mutex * : The binary semaphore implementation for exclusive resource access under certain OS ker-

S nc! — • • ,

Device driver : A piece of software that acts as a bridge between the operating system and the hardware

®S Objective Questions
V - J

Operating System Basics
1. Which of the following is true about a kernel?

(a) The kernel is the core of the operating system

(b) It is responsible for managing the system resources and the communication among the hardware and other

system services

(c) It acts as the abstraction layer between system,resources and user applications.

(d) It contains a set of system libraries and services

(e) All of these

2. The user application and kernel interface is provided through

(a) System calls (b) Shared memory " Js§g? (d) None of these

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

3. The process management service of the kernel is responsible for

(a) Setting up the memory space for the process

(b) Allocating system resources

(c) Scheduling and managing the execution of the process

(d) Setting up and managing the Process Control Block (PCB), inter-process communication and synchronisa¬

tion

(e) All of these

4. The Memory Management Unit (MMU) of the kernel is responsible for

(a) Keeping track of which part of the memory area is currently used by which process

(b) Allocating and de-allocating memory space on a need basis (Dynamic memory allocation)

(c) Handling all virtual memory operations in a kernel with virtual memory support

(d) All of these

5. The memory area which holds the program code corresponding to the core OS applications/services is known as

■ (a) User space (b) Kernel space (c) Shared memory (d) All of these

6. Which of the following is true about Privilege separation?

(a) The user applications/processes runs at user space and kernel applications run at kernel space

(b) Each user application/process runs on its own virtual memory space

(c) A process is not allowed to access the memory space of another process directly

(d) All of these

7. Which of the following is true about monolithic kernel?

(a) All kernel services run in the kernel space under a single kernel thread.

(b) The tight internal integration of kernel modules in monolithic kernel architecture allows the effective utilisa¬

tion of the low-level features of the underlying system

(c) Error prone. Any error or failure in any one of the kernel modules may lead to the crashing of the entire

kernel

(d) All of these /

8. Which of the following is true about microkernel?

(a) The microkernel design incorporates only the essential set of operating system services into the kemel.-The

rest of the operating system services are implemented in programs known as ‘servers’ which runs in user

space.

(b) Highly modular and OS neutral

(c) Less Error prone. Any ‘Server’ where error occurs can be restarted without restarting the entire kgmel

(d) All of these

Real-Time Operating System (RTOS)

1. Which of the following is true for Real-Time Operating Systems (RTOSes)?

(a) Possess specialised kernel (b) Deterministic in behaviour

(c) Predictable performance (d) All of these

2. Which of the following is (are) example(s) for RTOS?

(a) Windows CE (b) Windows XP (c) Windows 2000 (d)

(e) (a) and (d)

3. Interrupts which occur in sync with the currently executing task are known as

(a) Asynchronous interrupts (b) Synchronous interrupts

(c) External interrupts (d) None of these

4. Which of the following is an example of a synchronous interrupt?

(a) TRAP (b) External interrupt (c) Divide by zero (d)

5. Which of the following is true about ‘Timer tick’ for RTOS?

(a) The high resolution hardware,timer interrupt is referred as ‘Timer tick’

(b) The ‘Timer tick’ is taken ds the timing reference by the kernel

(c) The time parameters for tisk^ are expressed as the multiples of the ‘Timer tick’

'• (d) All of these '

QNX

Timer interrupt

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

6. Which of the following is true about hard real-time systems?

(a) Strictly adhere to the timing constraints for a task

(b) Missing any deadline may produce catastrophic results

(c) Most of the hard real-time systems are automatic and may not contain a human in the loop

(d) May not implement virtual memory based memory management

(e) All of these.

7. Which of the following is true about soft real-time systems?

(a) Does not guarantee meeting deadlines, but offer the best effort to meet the deadline are referred

(b) Missing deadlines for tasks are acceptable

(c) Most of the soft real-time systems contain a human in the loop

(d) All of these

Tasks, Process and Threads

1. Which of the following is true about Process in the operating system context?

(a) A ‘Process' is a program, or part of it, in execution

(b) It can be an instance of a program in execution

(c) A process requires various system resources like CPU for executing the process, memory for storing the code

corresponding to the process and associated variables, I/O devices for information exchange, etc.

(d) A process is sequential in execution

(e) All of these

2. A process has

(a) Stack memory (b) Program memory (c) Working Registers (d) Data memory

(e) All of these

3. The ‘Stack’ memory of a process holds all temporary data such as variables local to the process. State ‘True’ or

‘False’

(a) True (b) False

4. The data memory of a process holds

(a) Local variables (b) Global variables (c) Program instructions (d) None of these

5. A process has its own memory space, when residing at the main memory. State ‘True’ or ‘False’

(a) True (b) False

6. A process when loaded to the memory is allocated a virtual memory space in the range 0x08000 to 0x08FF8. What

is the content of the Stack pointer of the process when it is created?

(a) 0x07FFF (b) 0x08000 (c) 0x08FF7 (d) 0x08FF8

7. What is the content of the program counter for the above example when the process is loaded for the first time?

(a) 0x07FFF (b) 0x08000 (c) 0x08FF7 (d) 0x08FF8

8. The state where a process is incepted into the memory and awaiting the processor time for execution, is known

as

(a) Created state (b) Blocked state (c) Ready state (d) Waiting state

(e) Completed state

9. The CPU allocation for a process may change when it changes its state from_?

(a) ‘Running’ to ‘Ready’ (b) ‘Ready’ to ‘Running’

(c) ‘Running’to‘Blocked’ (d) ‘Running’to‘Completed’

(e) All of these

10. Which of the following is true about threads?

(a) A,thread is the primitive that can execute code

(b) A thread is a single sequential flow of control within a process

(c) ‘ Thread’ is also known as lightweight process

(d) All of these (e) None of these

11. A process can have many threads of execution. State ‘True’ or ‘False’

(a) True (b) False

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

12. Different threads, which are part of a process, share the same address space. State ‘True’ or ‘False’

(a) True (b) False

13. Multiple threads of the same process share_?

(a) Data memory (b) Code memory

(c) Stack memory (d) All of these

(e) only (a) and (b)

14. Which of the following is true about multithreading?

(a) Better memory utilisation

(b) Better CPU utilisation

(c) Reduced complexity in inter-thread communication

(d) Faster process execution (e) All of these

15. Which of the following is a thread creation and management library?

(a) POSIX • ' (b) Win32

(c) Java Thread Library (d) All of these

16. Which of the following is the POSIX standard library for thread creation and management

(a) Pthreads (b) Threads (c) Jthreads (d) None of these

17. What happens when a thread object’s waitQ method is invoked in Java?

(a) Causes the thread object to wait

(b) The thread will remain in the ‘Wait’ state until another thread invokes the notifyO or notifyAllQ method of the

thread object which is waiting

(c) Both of these

(d) None of these

18. Which of the following is true about user level threads?

(a) Even if a process contains multiple user level threads, the OS treats it as a single thread

(b) The user level threads are executed non-preemptively in relation to each other

(c) User level threads follow co-operative execution model

(d) All of these —

19. Which of the following are the valid thread binding models for user level to kernel level thread binding?

(a) One to Many (b) Many to One (c) One to One (d) Many to Many

(e) All of these (f) only (b), (c) and (d)

20. If a thread expires, the stack memory allocated to it is reclaimed by the process to which the thread belongs. State

‘True’ or ‘False’

(a) True (b) False

Multiprocessing and Multitasking

1. Multitasking and multiprocessing refers to the same entity in the operating system context. State ‘True’ or ‘False’

(a) True (b) False

2. Multiprocessor systems contain

(a) Single CPU (b) Multiple CPUs (c) No CPU

3. The ability of the operating system to have multiple programs in memory, which are ready for execution, is re¬

ferred as

(a) Multitasking (b) Multiprocessing (c) Multiprogramming

4. In a multiprocessing system

(a) Only a single process can run at a time (b) Multiple processes can run simultaneously

(c) Multiple processes run in pseudo parallelism

5. In a multitasking system

(a) Only a single process can run at a time (b) Multiple processes can run simultaneously

(c) Multiple processes ran in pseudo parallelism (d) Only (a) and (c)

6. Multitasking involves

(a) CPU execution switching of processes (b) CPU halting (c) No CPU operation

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

7. Multitasking involves

(a) Context switching (b) Context saving (c) Context retrieval (d) All of these

(e) None of these

8. What are the different types of multitasking present in operating systems?

(a) Co-operative (b) Preemptive (c) Non-preemptive (d) All of these

9. In Co-operative multitasking, a process/task gets the CPU time when

(a) The currently executing task terminates its execution

(b) The currently executing task enters ‘Wait’ state

(c) The currently executing task relinquishes the CPU before terminating

(d) Never get a chance to execute (e) Either (a) or (c)

10. In Preemptive multitasking

(a) Each process gets an equal chance for execution

(b) The execution of a process is preempted based on the scheduling policy

(c) Both of these (d) None of these

11. In Non-preemptive multitasking, a process/task gets the CPU time when

(a) The currently executing task terminates its execution

(b) The currently executing task enters ‘Wait’ state

(c) The currently executing task relinquishes the CPU before terminating

(d) All of these

(e) None of these

12. MSDOS Operating System supports

(a) Single user process with single thread

(b) Single user process with multiple threads

(c) Multiple user process with single thread per process

(d) Multiple user process with multiple threads per process

Task Scheduling

1. Who determines which task/process is to be executed at a given point of time?

(a) Process manager (b) Context manager (c) Scheduler (d) None of these

2. Task scheduling is an essential part of multitasking.

(a) True (b) False

3. The process scheduling decision may take place when a process switches its state from

(a) ‘Running’to‘Ready’ (b) ‘Running’to‘Blocked’

(c) ‘Blocked’to‘Ready’ (d) ‘Running’to‘Completed’

(e) All of these

(f) Any one among (a) to (d) depending on the type of multitasking supported by OS

4. A process switched its state from ‘Running’ to ‘Ready’ due to scheduling act. What is the type of multitasking

supported by the OS?

(a) Co-operative (b) Preemptive (c) Non-preemptive (d) None of these

5. A process switched its state from ‘Running’ to ‘Wait’ due to scheduling act. What is the type of multitasking sup¬

ported by the OS?

(a) Co-operative (b) Preemptive (c) Non-preemptive (d) (b) or (c)

6. Which one of the following criteria plays an important role in the selection of a scheduling algorithm?

(a) CPU utilisation (b) Throughput (c) Turnaround time (d) Waiting time

(e) Response time (f) All of these

7. For a good scheduling algorithm, the CPU utilisation is

(a) High (b) Medium (c) Non-defined

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

8. Under the process scheduling context, ‘Throughput’ is

(a) The number of processes executed per unit of time

(b) The time taken by a process to complete its execution

(c) None of these

9. Under the process scheduling context, ‘Turnaround Time’ for a process is

(a) The time taken to complete its execution (b) The time spent in the ‘Ready’ queue

(c) The time spent on waiting on I/O (d) None of these

10. Turnaround Time (TAT) for a process includes

(a) The time spent for waiting for the main memory (b) The time spent in the ready queue

(c) The time spent on completing the I/O operations (d) The time spent in execution

(e) All of these

11. For a good scheduling algorithm, the Turn Around Time (TAT) for a process should be

(a) Minimum (b) Maximum (c) Average (d) Varying

12. Under the process scheduling context, ‘Waiting time’ for a process is

(a) The time spent in the ‘Ready queue’

(b) The time spent on I/O operation (time spent in wait state)

(c) Sum of (a) and (b)

(d) None of these

13. For a good scheduling algorithm, the waiting time for a process should be

(a) Minimum (b) Maximum (c) Average (d) Varying

14. Under the process scheduling context, ‘Response time’ for a process is

(a) The time spent in ‘Ready queue’

(b) The time between the submission of a process and the first response

(c) The time spent on I/O operation (time spent in wait state)

(d) None of these

15. For a good scheduling algorithm, the response time lor a process should be

(a). Maximum (b) Average (c) Least (d) Varying

16. What are the different queues associated with process scheduling?

(a) Ready Queue (b) Process Queue (c) Job Queue (d), Device Queue

(e) All of the Above (f) (a), (c) and (d)

17. The ‘Ready Queue’ contains

(a) All the processes present in the system (b) All the processes which are ‘Ready’ for execution

(c) The currently running processes (d) Processes which are waiting for I/O

18. Which among the following scheduling is (are) Non-preemptive scheduling

(a) First In First Out (FIFO/FCFS) (b) Last In First Out (LIFO/LCFS)

(c) Shortest Job First (SJF) (d) All of these

(e) None of these

19. Which of the following is true about FCFS scheduling

(a) Favours CPU bound processes (b) The device utilisation is poor

(c) Both of these (d) None of these

20. The average waiting time for a given set of process is_in SJF scheduling compared to FIFO scheduling

(a) Minimal (b) Maximum (c) Average

21. Which among the following scheduling is (are) preemptive scheduling

(a) Shortest Remaining Time First (SRT) (b) Preemptive Priority based

(c) Round Robin (RR) (d) All of these

(e) None of these

22. The Shortest Job First (SJF) algorithm is a priority based scheduling. State ‘True’ or ‘False’

(a) True (b) False

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

23. Which among the following is true about preemptive scheduling

(a) A process is moved to the ‘Ready’ state from ‘Running’ state (preempted) without getting an explicit request

from the process

(b) A process is moved to the ‘Ready’ state from ‘Running’ state (preempted) on receiving an explicit request

from the process

(c) A process is moved to the ‘Wait’ state from the ‘Running’ state without getting an explicit request from the

process

(d) None of these

24. Which of the following scheduling technique(s) possess the drawback of ‘Starvation’

(a) Round Robin (b) Priority based preemptive

(c) Shortest Job First (SJF) (d) (b) and (c)

(e) None of these

25. Starvation describes the condition in which

(a) A process is ready to execute and is waiting in the ‘Ready’ queue for a long time and is unable to get the CPU

time due to various reasons

(b) A process is waiting for a shared resource for a long time, and is unable to get it for various reasons.

(c) Both of the above

(d) None of these

26. Which of the scheduling policy offers equal opportunity for execution for all processes?

(a) Priority based scheduling (b) Round Robin (RR).scheduling

(c) Shortest Job First (SJF) * (d) All of these

(e) None of these

27. Round Robin (RR) scheduling commonly uses which one of the following policies for sorting the ‘Ready’

queue?

(a) Priority (b) FCFS (FIFO) '(c) LIFO (d) SRT

(e) SJF

28. Which among the following is used for avoiding ‘Starvation’ ofprocesses in priority based scheduling?

(a) Priority Inversion (b) Aging (c) Priority Ceiling (d) All of these

29. Which of the following is true about ‘Aging’'

(a) Changes the priority of a process at run time

(b) Raises the priority of a process temporarily

(c) It is a technique used for avoiding ‘Starvation’ of processes

(d) All of these

(e) None of these

30. Which is the most commonly used scheduling policy in Real-Time Operating Systems?

(a) Round Robin (RR) (b) Priority based preemptive

(c) Priority based non-preemptive

(d) Shortest Job First (SJF)

31. In the process scheduling context, the IDLE TASK is executed for

(a) To handle system interrupts

(b) To keep the CPU always engaged or to keep the CPU in idle mode depending on the system design

(c) To keep track of the resource usage by a process

(d) All of these

Task Communication and Synchronisation

1. Processes use IPC mechanisms for

(a) Communicating between process (b) Synchronising the access of shared resource

(c) Both of these (d) None of these

2. Which of the following techniques is used by operating systems for inter pfocess cpmmunication?

(a) Shared memory (b) Messaging (c) Signalling (d) All of these

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

3. Under Windows Operating system, the input and output buffer memory for a named pipe is allocated in

(a) Non-paged system memory (b) Paged system memory

(c) Virtual memory (d) None of the above

4. Which among the following techniques is used for sharing data between processes?

(a) Semaphores (b) Shared memory (c) Messages d) (b) and (c)

5. Which among the following is a shared memory technique for IPC?

(a) Pipes (b) Memory mapped Object

(c) Message blocks (d) Events (e) (a) and (b)

6. Which of the following is best advised for sharing a memory mapped object between processes under windows

kernel?

(a) Passing the handle of the shared memory object (b) Passing the name of the memory mapped object

(c) None of these

7. Why is message passing relatively fast compared to shared memory based IPC?

(a) Message passing is relatively free from synchronisation overheads

(b) Message passing does not involve any OS intervention

(c) All of these

(d) None of these

8. In asynchronous messaging, the message posting thread just posts the message to the queue and will not wait for

an acceptance (return) from the thread to which the message is posted. State ‘True’ or ‘False’

(a) True " (b) False

9. Which of the following is a blocking message passing call in Windows? \

(a) PostMessage (b) PostThreadMessage (c) SendMessage (d) All of these

(e) None of these

10. Under Windows operating system, the message is passed through_for Inter Process Communication

(IPC) between processes?

(a) Message structure (b) Memory mapped object

(c) Semaphore (d) All of these _

11. Which of the following is true about ‘ Signals’ for Inter Process Communication?

(a) Signals are used for'asynchronous notifications (b) Signals are not queued

(c) Signals do not carry any data (d) All of these

12. Which of the following is true about Racing or Race conditiorp.

(a) It is the condition in which multiple processes compete (race) each other to access and manipulate shared data

concurrently

(b) In a race condition the final value of the shared data depends on the process which acted on the data finally

(c) Racing will not occur if the shared data access is atomic

(d) All of these

13. Which of the following is tme about deadlock?

(a) Deadlock is the condition in which a process is waiting for a resource held by another process which is wait¬

ing for a resource held by the first process

(b) Is the situation in which none of the competing process will be able to access the resources held by other

processes since they are locked by the respective processes

(c) Is a result of chain of circular wait

(d) All of these

14. What are the conditions favouring deadlock in multitasking?

(a) Mutual Exclusion (b) Hold and Wait .(c) No kernel resource preemption at kernel level

(d) Chain of circular waits (e) All of these

15. Livelock describes the situation where

(a) A process waits on a resource is not blocked on it and it makes frequent attempts to acquire the resource. But.

unable to acquire it since it is held by other process

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

(b) A process waiting in the ‘Ready’ queue is unable to get the CPU time for execution

(c) Both of these

(d) None of these

16. Priority inversion is

(a) The Condition in which a high priority task needs to wait for a low priority task to release a resource which is

shared between the high priority task and the low priority task

(b) The act of increasing the priority of a process dynamically •

(c) The act of decreasing the priority of a process dynamically

(d) All of these

17. Which of the following is true about Priority' inheritance?

(a) A low priority task which currently holds a shared resource requested by a high priority task temporarily

inherits the priority of the high priority task

(b) The priority of the low priority task which is temporarily boosted to high is brought to the original value when

it releases the shared resource

(c) All of these

(d) None of these

18. Which of the following is true about Priority Ceiling based Priority inversion handling?

(a) A priority is associated with each shared resource

(b) The priority associated to each resource is the priority of the highest priority task which uses this shared

resource

(c) Whenever a task accesses a shared resource, the scheduler elevates the priority of the task to that of the ceiling

priority of the resource

(d) The priority of the task is brought back to the original level once the task completes the accessing of the

shared resource

(e) All of these

19. Process/Task synchronisation is essential for?

(a) Avoiding conflicts in resource access in multitasking environment

(b) Ensuring proper sequence of operation across processes.

(c) Communicating between processes

(d) All of these

(e) None of these

20. Which of the following is true about Critical Section!
(a) It is the code memory area which holds the program instructions (piece of code) for accessing a shared

resource

(b) The access to the critical section should be exclusive

(c) All of these

(d) None of these

21. Which of the following is true about mutual exclusion?

(a) Mutual exclusion enforces mutually exclusive access of resources by processes

(b) Mutual exclusion may lead to deadlock

(c) Both of these

(d) None of these

22. Which of the following is an example of mutual exclusion enforcing policy?.

(a) Busy Waiting (Spin lock) (b) Sleep & Wake up

(c)„ Both of these (d) None of these

23. Which of the following is true about lock based synchronisation mechanism?

(a) It is CPU intensive

(b) Locks are useful in handling situations where the processes js likely to be blocked for a shorter period of time

on waiting the lock ■

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

(c) If the lock is being held for a long time by a process and if it is preempted by the OS, the other threads waiting

for this lock may have to spin a longer time for getting

(d) All of these

(e) None of these

24. Which of the following synchronisation techniques follow the ‘Sleep & Wake-up' mechanism for mutual exclu¬

sion?

(a) Mutex (b) Semaphore (c) Critical Section (d) Spin lock

(e) (a), (b) and (c)

25. Which of the following is true about mutex objects for IPC synchronisation under Windows OS?

(a) Only one process/thread can own the ‘mutex object’ at a time

(b) The state of a mutex object is set to non-signalled when it is not owned by any process/thread, and set to

signalled when it is owned by any process/thread

(c) The state of a mutex object is set to signalled when it is not owned by any process/thread, and set to non-sig¬

nalled when it is owned by any process/thread

(d) Both (a) & (b) (e) Both (a) & (c)

26. Which of the following is (are) the wait functions provided by windows for synchronisation purpose?

(a) WaitForSingleObject (b) WaitForMultipleObjects

(c) Sleep (d) Both (a) and (b)

27. Which of the following is true about Critical Section object?

(a) It can only be used by the threads of a single process (Intra process)

(b) The ‘Critical Section’ must be initialised before the threads of a process can use it

(c) Accessing Critical Section blocks the execution of the caller thread if the critical section is already in use by

other threads

(d) Threads which are blocked by the Critical Section access call, waiting on a critical section, are added to a wait

queue and are woken when the Critical Section is available to the requested thread

(e) All of these _

28. Which of the following is a non-blocking Critical Section accessing call under windows?

(a) EnterCriticalSection (b) TryEnterCriticalSection

(c) Both of these (d) None of these

29. The Critical Section object makes the piece of code residing inside it_?

(a) Non-reentrant (b) Re-entrant (c) Thread safe (d) Both (a) and (c)

30. Which of the following synchronisation techniques is exclusively used for synchronising the access of shared

• resources by the threads of a process (Intra Process Synchronisation) under Windows kernel?

(a) Mutex object (b) Critical Section object (c) Interlocked functions

(d) Both (c) and (d)

C~ ;-
Review Questions

L.

Operating System Basics

1. What is an Operating System? Where is it used and what are its primary functions?

2. What is kernel? What are the different functions handled by a general purpose kernel?

3. What is kernel space and user space? How is kernel space and user space interfaced?

4. What is monolithic and microkernel? Which one is widely uteed in real-time 'operating systems?

5. What is the difference between a General Purpose kernel and a Real-Time kernel? Give an example for both.
i

Real-Time Operating System (RTOS)

1. Explain the basic functions of a real-time kernel?

2. What is task control block (TCB)? Explain the structure, of TCB https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design'

3. Explain the difference between the memory management of general purpose kernel and real-time kernel.

4. What is virtual memory? What are the advantages and disadvantages, of virtual memory?

5. Explain how ‘accurate time management’ is achieved in real-time kernel

6. What is the difference between ‘Hard’ and ‘Soft’ real-time systems? Give an example for ‘Hard’ and ‘Soft’ Real-

Time kernels

Tasks, Process and Threads

1. Explain Task in the operating system context

2. What is Process in the operating system context?

3. Explain the memory architecture of a process

4. What is Process Life Cycle ?

5. Explain the various activities involved in the creation of process and threads

6. What is Process Control Block (PCB)‘l Explain the structure of PCB

7. Explain Process Management in the Operating System Context

8. What is Thread in the operating system context?

9. Explain how Threads and Processes are related? What are common to Process and Threads?

10. Explain the memory model of a‘thread’.

11. Explain the Concept of ‘multithreading’. What are the advantages of multithreading?

12. Explain how multithreading can improve the performance of an application with an illustrative example

13. Why is thread creation faster than process creation?

14. Explain the commonly used thread standards for thread creation and management by different operating systems

15. Explain Thread context switch and the various activities performed in thread context switching for user level and

kernel level threads

16. What all information is held by the thread control data structure of a user/kemel thread?

17. What are the differences between user level and kernel level threads?

18. What are the advantages and disadvantages of using user level threads?

19. Explain the different thread binding models for user and kernel level threads

20. Compare threads and processes in detail

Multiprocessing and Multitasking

L Explain multiprocessing, multitasking and multiprogramming

2. Explain context switching, context saving and context retrieval

3. What all activities are involved in context switching?

4. Explain the different multitasking models in the operating system context

Task Scheduling

1. What is task scheduling in the operating system context?

2. Explain the various factors to be considered for the selection of a scheduling criteria

3. Explain the different queues associated with process scheduling

4. Explain the different types of non-preemptive scheduling algorithms. State the merits and de-merits of each

5. Explain the different types of preemptive scheduling algorithms. State the merits and de-merits of each

6. Explain Round Robin (RR) process scheduling with interrupts

7. Explain staiyation in the process scheduling context. Explain how starvation can be effectively tackled?

./ 8. What is IDLEPROCESS? What is the significance of IDLEPROCESS in the process scheduling context?

9. Three processes with process IDs PI, P2, P3 with estimated completion time 5, 10, 7 milliseconds respectively

enters the ready queue together in the order PI, P2, P3. Process P4 with estimated execution completion time 2

milliseconds enters the ready queue after 5 milliseconds. Calculate the waiting time and Turn Around Time (TAT)

! for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the

processes) in the FIFO scheduling

10. Three processes with process IDs PI, P2, P3 with estimated completion time 12, 10, 2 milliseconds respectively

enters the ready queue together in the order P2, P3, PI. Process P4 with estimated execution completion time

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

4 milliseconds enters the Ready queue after 8 milliseconds. Calculate the waiting time and Turn Around Time

(TAT) for each process and the average waiting time and Turn Around Time (Assuming there is no I/O waiting for

the processes) in the FIFO scheduling

11. Three processes with process IDs PI, P2, P3 with estimated completion time 8, 4, 7 milliseconds respectively

_ enters the ready queue together in the order P3, PI, P2. PI contains an I/O waiting time of 2 milliseconds when it

completes 4 milliseconds of its execution. P2 and P3 do not contain any I/O waiting. Calculate the waiting time

and Turn Around Time (TAT) for each process and the average waiting time and Turn Around Time in the LIFO

scheduling. All the estimated execution completion time is excluding I/O wait time

12. Three processes with process IDs PI, P2, P3 with estimated completion time .12, 10, 2 milliseconds respectively

enters the ready queue together in the order P2, P3, PI. Process P4 with estimated execution completion time 4

milliseconds enters the Ready queue after 8 milliseconds. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the

processes) in the LIFO scheduling

13. Three processes with process IDs PI, P2, P3 with estimated completion time 6, 8, 2 milliseconds respectively

enters the ready queue together. Process P4 with estimated execution completion time 4 milliseconds enters the

Ready queue after 1 millisecond. Calculate the waiting time and Turn Around Time (TAT) for each process and

the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in the non-

preemptive SJF scheduling

14. Three processes with process IDs PI, P2, P3 with estimated completion time 4,6, 5 milliseconds and priorities 1,

0,3 (0—highest priority, 3 lowest priority) respectively enters the ready queue together. Calculate the waiting time

and Turn Around Time (TAT) for each process and the average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes) in non-preemptive priority based scheduling algorithm

15. Three processes with process IDs PI, P2, P3 with estimated completion time 4, 6, 5 milliseconds and priorities

1, 0, 3 (0—highest priority, 3 lowest priority) respectively enters the ready queue together. Process P4 with es ¬

timated execution completion time 6 milliseconds and priority 2 enters the ‘Ready’ queue after 5 milliseconds.

Calculate the waiting time and Turn Around Time (TAT) for each process and the average waiting time and Turn

Around Time (Assuming there is no I/O waiting for the processes) in non-preemptive priority based scheduling

algorithm

16. Three processes with process IDs PI, P2, P3 with estimated completion time 8,4, 7 milliseconds respectively en¬

ters the ready queue together. PI contains an I/O waiting time of 2 milliseconds when it completes 4 milliseconds

of its execution. P2 and P3 do not contain any I/O waiting. Calculate the waiting time and Turn Around Time (TAT)

for each process and the average waiting time and Turn Around Time in the SRT scheduling. All the estimated

execution completion time is excluding I/O waiting time

17. Three processes with process IDs PI, P2, P3 with estimated completion time 12, 10, 6 milliseconds respectively

enters the ready queue together. Process P4 with estimated execution completion time 2 milliseconds enters the

Ready queue after 3 milliseconds. Calculate the waiting time and Turn Around Time (TAT) for each process and

the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in the SRT

scheduling

18. Three processes with process IDs PI, P2, P3 with estimated completion time 10,14,20 milliseconds respectively,

enters the ready queue together in the order P3, P2, PL Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the

processes) in RR algorithm with Time slice = 2 ms

19. Three processes with process IDs P-1, P2, P3 with estimated completion time 12, 10, 12 milliseconds respectively

enters the ready queue together in the order P2, P3, PL Process P4 with estimated execution completion time 4

milliseconds enters the Ready queue after 8 milliseconds. Calculate the waiting time and Turn Around Time (TAT)

for each'process and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the

processes) in RR algorithm with Time slice = 4 ms

20. Three processes with process IDs PI, P2, P3 with estimated completion time 4,6, 5 milliseconds and priorities 1,

0, 3 (0—highest priority, 3 lowest priority) .respectively enters the ready queue together. Calculate the waiting time

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

(

and Turn Around Time (TAT) for each process and the average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes) in preemptive priority based scheduling algorithm

21. Three processes with process IDs PI, P2, P3 with estimated completion time 6, 2, 4 milliseconds respectively,

enters the ready queue together in the order PI, P3, P2. Process P4 with estimated execution time 4 milliseconds

entered the ‘Ready’ queue 3 milliseconds later the start of execution of PI. Calculate the waiting time and Turn

Around Time (TAT) for each process and the Average waiting time and Turn Around Time (Assuming there is no

I/O waiting for the processes) in RR algorithm with Time slice = 2 ms

Task Communication and Synchronisation

1. Explain the various process interaction models in detail.

2. What is Inter Process Communication (IPC)? Give an overview of different IPC mechanisms adopted by various

operating systems.

3. Explain how multiple processes in a system co-operate.

4. Explain how multiple threads of a process co-operate.

5. Explain the shared memory based IPC.

6. Explain the concept of memory mapped objects for IPC.

7. Explain the handle sharing and name sharing based memory mapped object technique for IPC under Windows

Operating System.

8. Explain the message passing technique for IPC. What are the merits and de-merits of message based IPC?

■9. Explain the synchronous and asynchronous messaging mechanisms for IPC under Windows kernel.

10. Explain Race condition in detail, in relation to the shared resource access.

11. What is deadlock? What are the different conditions favouring deadlock?

12. Explain by Coffman conditions'?

13. Explain the different methods of handling deadlocks.

14. Explain livelock in the resource sharing context.

15. Explain starvation in the resource sharing context.

16. Explain the Dining Philosophers problem in the process synchronisation context.

17. Explain the Produces-consumer problem in the inter process communication context.

18. Explain bounded-buffer problem in the interprocess communication context.
19. Explain buffer overrun and buffer under-run.

20. What is priority inversion? What are the different techniques adopted for handling priority inversion?

21. What are the merits and de-merits of priority ceiling?

22. Explain the different task-communication synchronisation issues encountered in Interprocess Communication

23. What is task (process) synchronisation? What is the role of process synchronisation in IPC?

24. What is mutual exclusion in the process synchronisation context? Explain the different mechanisms for mutual

exclusion

25. What are the merits and de-merits of busy-waiting (spinlock) based mutual exclusion?

26. Explain the Test and Set Lock (TSL) based mutual exclusion technique. Explain how TSL is implemented in Intel

family of processors

27. Explain the interlockedfunctions for lock based mutual exclusion under Windows OS

28. Explain the advantages and limitations of interlocked function based synchronisation under Windows

29. Explain the sleep & wakeup mechanism for mutual exclusion

30. What are the merits and de-merits of sleep & wakeup mechanism based mutual exclusion?

31. What is mutex?

32. Explain the mutex based process synchronisation under Windows OS

33. What is semaphore? Explain the different types of semaphores. Where is it used?

34. What is binary semaphore? Where is it used?

35. What is the difference between mutex and semaphore?

36. What is the difference between semaphore and binary semaphore?

37. What is the difference between mutex and binary semaphore?

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

38. Explain

39. Explain

40. What is

41. Explain

fast?

42. Explain

43. Explain

44. Explain

45. What is

46. Explain

47. Explain

RTOS.

the semaphore based process synchronisation under Windows OS

the critical section problem?

critical section? What are the different techniques for controlling access to critical section?

the critical section object for process synchronisation. Why is critical section object based synchronisation

the critical section object based process synchronisation under Windows OS.

the Event based synchronisation mechanism for IPC.

the Event object based synchronisation mechanism for IPC under Windows OS.

a device driver? Explain its role in the OS context,

the architecture of device drivers.

the different functional and non-functional requirements that needs to be evaluated in the selection of an

PflHlIp m wHHm

igel 'l’m in thread

Lab Assignments

Write a.multithreaded Win32 console application satisfying: • . , •

(a) The main,thread of the application creates a child thread with i

r ofa buffer holding the data “Data passed from Main.thread!’.

(b) The main thread sleeps for 10 seconds after creating thc.child

...(c) The child thread retrieves the message from the memory loca

the retrieved data to the console and sleeps for 10ft millisecoh

(d) Use appropriate error handling mechanisms w

Write a multithreaded Win32 console application for creating^

Each thread prints the message “I’m in thread thread no” .(pfeMp

is created. It varies from 0 to n - 1) and sleeps for 50 mijlisecondsa

the child tlircads, wait for the completion of the execution-oftchil

are completed their execution. ,

Write a multithreaded application using ‘PThreads’ for creating 2n)snu

The application should receive V as command line, parameter. Each

thread no” (‘thread.no’ is the number passed to the thread when it is created. It varies from 0 to « -1) and sleeps

for 1 second and then quits. The main thread, after creating the.child-threads, wait for the completion of the ex¬

ecution of child threads and quits when all the child threads are completed their execution. Compile and execute

the application in Linux. T •’ •' ' ...

Write a multithreaded application in Win32 satisfying the following:

(a) . Two.childthreads.are created with normal priprify-u- ^fjy^' . cs

(b) Thread 1 retrieves and prints its priority and sleeps forSOO milliseconds and then: quits .,,, , s

(c) Thread 2 prints the priority of thread 1 and raises its priority to above normal and retrieves the new priority

of thread 1, prints it and then quits . , . r

(d) The main thread waits for the completion of both the child threads and then terminates.

Write a Win32 console application illustrating the usage of anonymous pipes for data sharing between a parent

and child thread of a process. The application should satisfy the following conditions:

(a) The main thread of the process creates an anonymous pipe with size 512KB and assigns the handle of the

pipe to a global handle -

(b) The main thread creates an event object “synchronise” with state non-signalled and a child thread with name

‘childjhread!. . .

(c) The main thread waits for the signalling pf the event’.object “synchronise” and reads data from the anony¬

mous pipe when the event is signalled and prints the data read from the pipe on the console window. ,■

https://hemanthrajhemu.github.io

Real-Time Operating System (RTOS) based Embedded System Design

(d) The main thread waits for the execution completion of the child thread and quits when the child thread

. completes its execution.

(e) The child thread writes the data “Hi from child thread” to the anonymous pipe and sets the event object

“synchronise” and sleeps'for 500 milliseconds and then quits. ■
Compile and execute the application using Visual Studio under Windows XP/NT OS. g

6. Write a Win3 2 console application (Process!) illustrating the creation of a memory mapped object of size 512KB,

• with name “mysharedobject”. Create an event object with name "synchronise” with,state non-signalled. Read

the memory mapped object when the event is signalled and display the contents on the console window. Create

a second console application (Process 2) for opening the memory mapped object with name “mysharedobject”

and event object with name “synchronise”. Write the message “Message from Process 2” to the memory mapped

object and set the event object “synchronise”. Use appropriate-error handling mechanisms wherever possible.

Compile both the applications using Visual Studio and execute them in the order Process 1 followed by Process
2 under Windows XP/NT OS. - - ' ■ W

7. Write a multithreaded Win32 console application where:

J ’' - (a) The main thread creates a child thread with default stack size and name ‘Child_Thread\

(b) The main thread sends user defined messages and the message ‘ WM_QUIT’ randomly to the child thread.

(c) The child thread processes the message posted by the main thread and quits when it receives the ‘WM_

QUIT’message. .. ■ . . ,<r - • •<•:,- , . •.> . ^ r:.,.

(d) The main thread checks the termination of the child thread and quits when the child thread completes its

execution. - :

(e) The main thread continues sending random messages to the child thread till the WMyQUIT message is sent

to child thread. . ,, > . , ., • - .»

(f) The messaging mechanism between the main thread and child thread is synchronous.

- Compile the application using Visual Studio and execute it under Windows XP/NT OS.

8. Write a Win32 console application illustrating the usage of anonymous pipes for data sharing between a parent

and child processes using handle inheritance mechanism. Compile and execute the application using Visual Stu¬

dio under Windows XP/NT OS.

9. Write a Win32 console application for creating an anonymous pipe with 512 bytes of size and pass the ‘Read

handle’ of the pipe to a second process (another Win32 console application) using a memory mapped object. The

first process writes a message “Hi from Pipe Server”. The second process reads the data written by the pipe server

to the pipe and displays it on the console window. Use event object for indicating the availability of data on the

pipe and mutex objects for synchronising the access to the pipe.

10. Write a multithreaded Win32 Process addressing:

(a) The main thread of the process creates an unnamed memory mapped object with size IK and shares the

handle of the memory mapped object with other threads of the process

(b) The main thread writes the message “Hi from main thread” and informs the availability of data to the child

thread by signalling an event object

(c) The main thread waits for the execution completion of the child thread after writing the message to the

memory mapped area and quits when the child thread completes its execution

(d) The child thread reads the data from the memory mapped area and prints it on the console window whefr the

event object is signalled by the main thread

(e) The read write access to the memory mapped area is synchronised using a mutex object

11. Write a multithreaded application using Java thread library satisfying:

(a) The first thread prints “Hello I’m going to the wait queue” and enters wait state by invoking the wait

method.

(b) The second thread sleeps for 500 milliseconds and then prints “Hello I’m going to invoke first thread” and

invokes the first thread. , (

(c) The first thread prints “Hello I’m invoked by the second thread” when invoked by the second thread.

https://hemanthrajhemu.github.io

Integration and Testing of Embedded
Hardware and Firmware

LEARNING OBJECTIVES
^ f \ ^ ^ ^ ^ y . Tv■" ^ » (t"1 ? $•'*.**’* ^ ^f Xyt'iPv $ fr~-% ' * /* tT - ' s a ^ < •'*

•/ Learn about the different techniques for embedding firmw are into hardware ' : - ; •, ;

•K - Learn about the steps involved in the Out of system Programming

S Learn about the In System Programming (ISP) jo; firmware embedding

S. Learn about the In Application Programming (IAP)) for dieting an area of the program storage memory for updating

•=■ configuration data, tables, etc. x ' ': \^ ’ < ‘ *.
v Learn the technique used for embedding Gs image and applications into the program storage memory of an embed¬

ded device ' . - . .

^ Know the various things to be taken care.in the 'board bring up'' .

Integration testing of the embedded hardware and firmware is the immediate step following the embed¬

ded hardware and firmware development. Embedded hardware and firmware are developed in various

steps as described in the earlier chapters. The final embedded hardware constitute of a PCB with all

necessary components affixed to it as per the original schematic diagram. Embedded firmware repre¬

sents the control algorithm and configuration data necessary to implement the product requirements on

the product. Embedded firmware will be in a target processor/controller understandable format called

machine language (sequence of Is and Os-Binary). The target embedded hardware without embedding

the firmware is a dumb device and cannot function properly. If you power up the hardware without

embedding the firmware, the device may behave in an unpredicted manner. As described in the earlier

chapters, both embedded hardware and firmware should be independently tested (Unit Tested) to ensure

their proper functioning. Functioning of individual hardware sections can be done by writing small utili¬

ties which checks the operation of the specified part. As far as the embedded firmware is concerned, its

targeted functionalities can easily be checked by the simulator environment provided by the embedded

firmware development tool’s IDE. By simulating the firmware, the memory contents, register details,

status of various flags and registers can easily be monitored and it gives an approximate picture of

“What happens inside the processor/controller and what are the states of various peripherals” when the

firmware is running on the target hardware. The IDE gives necessary support for simulating the various

inputs required from the external world, like inputting data on ports, generating an interrupt condition,

https://hemanthrajhemu.github.io

Integration and Testing of Embedded Hardware and Firmware

etc. This really helps in debugging the functioning of the firmware without dumping the firmware in a
real target board.

12.1 INTEGRATION OF HARDWARE AND FIRMWARE
«v.k-'v v-,' . ? j- , ' ■* *"*' f fit"*# *> * ~ t o v A- , Wt

Integration of hardware and firmware deals with the embedding of firmware into the target hardware
board. It is the process of ‘Embedding Intelligence' to the product. The embedded processors/control¬
lers used in the target board may or may not have built in code memory. For non-operating system based
embedded products, if the processor/controller contains internal memory and the total size of the firm¬
ware is fitting into the code memory area, the code memory is downloaded into the target controller/pro-'
cessor. If the processor/controller does not support built in code memory or the size of the firmware is
exceeding the memory size supported by the target processor/controller, an external dedicated EPROM/
FLASH memory chip is used for holding the firmware. This chip is interfaced to the processor/control¬
ler. (The type of firmware storage, either processor storage or external storage is decided at the time of
hardware design by taking the firmware complexity into consideration). A variety of techniques are used
for embedding the firmware into the target board. The commonly used firmware embedding techniques
for a non-OS based embedded system are explained below. The non-OS based embedded systems store
the firmware either in the onchip processor/controller memory or offchip memory (FLASH/NVRAM,
etc.).

12.1.1 Out-of-Circuit Programming

Out-of-circuit programming is performed outside
the target board. The processor or memory chip into
which the firmware needs to be embedded is taken
out of the target board and it is programmed with
the help of a programming device (Fig. 12.1). The
programming device is a dedicated unit which con¬
tains the necessary hardware circuit to generate the
programming signals. Most of the programmer de¬
vices available in the market are capable of program¬
ming different family of devices with different pin
outs (Pin counts). The programmer contains a ZIF
socket with locking pin to hold the device to be pro¬
grammed. The programming device will be under the
control of a utility program running on a PC. Usually
the programmer is interfaced to the PC through RS-
232C/USB/Parallel Port Interface. The commands

'ig. 12. lj Firmware Embedding Tool-Device
Programmer: LabTool-48UXP)
(Courtesy of Burn Technology Limited

www.burntec.com &Advantech Equipment Corp

www.aec.com.tw ■)

to control the programmer are sent from the utility program to the programmer through the interface
(Fig. 12.2).

The sequence of operations for embedding the firmware with a programmer is listed below.
1. Connect the programming device to the specified port of PC (USB/COM port/parallel port)
2. Power up the device (Most of the programmers incorporate LED to indicate Device power up.

Ensure that the power indication LED is ON)
3. Execute the programming utility on the PC and ensure proper connectivity is established between

PC and programmer. In case of error,'turn off device power and try connecting it again

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

RS-232/USB cable

(rig/1212] Interfacing of Device Programmer with PC

4. Unlock the ZIF socket by turning the lock pin
5. Insert the device to be programmed into the open socket as per the insert diagram shown on the

programmer
6. Lock the ZIF socket
7. Select the device name from the list of supported devices
8. Load the hex file which is to be embedded into the device
9. Program the device by ‘Program’ option of utility program

10. Wait till the completion of programming operation (Till busy LED of programmer is off)
11. Ensure that programming is successful by checking the status LED on the programmer (Usually

‘Green’ for success and ‘Red’ for error condition) or by noticing the feedback from the utility
program

12. Unlock the ZIF socket'and take the device out of programmer
Now the firmware is successfully embedded into the device. Insert the device into the board, power

up the board and test it for the required functionalities. It is to be noted that the most of programmers
support only Dual Inline Package (DIP) chips, since its ZIF socket is designed to accommodate only
DIP chips. Hence programming of chips with other packages is not possible with the current setup.
Adaptor sockets which convert a non-DIP package to DIP socket can be used for programming such
chips. One side of the Adaptor socket contains a DIP interface and the other side acts as a holder for
holding the chip with a non-DIP package (say VQFP). Option for setting firmware protection will be
available on the programming utility. If you really want the firmware to be protected against unwanted
external access, and if the device is supporting memory protection, enable the memory protection on
the utility before programming the device. The programmer usually erases the existing content of the
chip before programming the chip. Only EEPROM and FLASH memory chips are erasable by the pro¬
grammer. Some old embedded systems may be built around UVEPROM chips and such chips should be
erased using a separate ‘UV Chip Eraser’ before programming.

The major drawback of out-of-circuit programming is the high development time. Whenever the
firmware is changed, the chip should be taken out of the development board for re-programming. This
is tedious and prone to .chip damages due to frequent insertion and removal. Better use a socket on the

aboard side to hold the chip till the firmware modifications are over. The programmer facilitates program¬
ming of only one chip at a time and it is not suitable for batch production. Using a ‘Gang Programmer’

https://hemanthrajhemu.github.io

Integration and Testing of Embedded Hardware and Firmware

resolves this issue to certain extent. A gang programmer is similar to an ordinary programmer except
that it contains multiple ZIF sockets (4 to 8) and capable of programming multiple devices at a time.
But it is bit expensive compared to an ordinary programmer. Another big drawback of this programming
technique is that once the product is deployed in the market in a production environment, it is very dif¬
ficult to upgrade the firmware.

The out-of-system programming technique is used for firmware integration for low end embedded
products which runs without an operating system. Out-of-circuit programming is commonly used for
development of low volume products and Proof of Concept (PoC) product Development.

12.1.2 In System Programming (ISP)

With ISP, programming is done ''within the system’, meaning the firmware is embedded into the target
device without removing it from the target board. It is the most flexible and easy way of firmware em¬
bedding. The only pre-requisite is that the target device must have an ISP support. Apart from the target
board, PC, ISP cable and ISP utility, no other additional hardware is required for ISP. Chips supporting
ISP generates the necessary programming signals internally, using the chip’s supply voltage. The target
board can be interfaced to the utility program running on PC through Serial Port/Parallel Port/USB. The
communication between the target device and ISP utility will be in a serial format. The serial protocols
used for ISP may be ‘Joint Test Action Group (JTAG)’ or ‘ Serial Peripheral Interface (SPI)’ or any other
proprietary protocol. In order to perform-ISP'operations the target device (in most cases the target device
is a microcontroller/microprocessor) should be,powered up in a special 'ISP mode". ISP mode allows
the device to communicate with an external hostihrough a serial interface, such as a PC or terminal.
The device receives commands and data from the hosfrerases and reprograms code memory according
to the received command. Once the ISP operations are completed, the device is re-configured so that it
will operate normally by applying a reset or a re-power up.

12.1.2.1 In System Programming with SPI Protocol Devices with SPI In System Programming
support contains a built-in SPI interface and the on-chip EEPROM or FLASH memory is programmed
through this interface. The primary I/O lines involved in SPI - In System Programming are listed be¬
low.

MO SI - Master Out Slave In
MISO - Master In Slave Out
SCK-System Clock
RST - Reset of Target Device
GND - Ground of Target Device
PC acts as the master and target device acts as the slave in ISP. The program data is sent to the MOSI

pin of target device and the device acknowledgement is originated from the MISO pin of the device.
SCK pin acts as the clock for data transfer. A utility program can be developed on the PC side to generate
the above signal lines. Since the target device works under a supply voltage less than 5V (TTL/CMOS),
it is better to connect these lines of the target device with the parallel port of the PC. Since Parallel port
operations are also at 5V logic, no need for any other intermediate hardware for signal conversion.
The pins of parallel port to which the ISP pins of device needs to be connected are dependent on the
program, which is used for generating these signals, or you can fix these lines first and then write the
program according to the pin inter-connection assignments. Standard SPI-ISP utilities are feely avail¬
able on the internet and there is no need for going for writing own program. What you need to do is just
connect the pins as mentioned by the program requirement. As mentioned earlier, for ISP operations, the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

target device needs to be powered up in a pre-defined sequence. The power up sequence for In System
Programming for Atmel’s AT89S series microcontroller family is listed below.

1. Apply supply voltage between VCC and GND pins of target chip.
2. Set RST pin to “HIGH” state.
3. If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 24 MHz clock to

XTAL1 pin and wait for at least 10 milliseconds.
4. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/

PI.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU
clock at XTAL1 divided by 40.

5. The Code or Data array is programmed one byte at a time by supplying the address and data to¬
gether with the appropriate Write instruction. The selected memory location is first erased before
the new data is written. The write cycle is self-timed and typically takes less than 2.5 ms at 5 V.

6. Any memory location can be verified by using the Read instruction, which returns the content at
the selected address at serial output MISO/P1.6.

7. After successfully programming the device, set RST pin low or turn off the chip power supply and
turn it ON to commence the normal operation.

Note ■ ' ■ '
This sequence is applicable only to Atmel AT89S Senes microcontroller and it need not be the same
for other series or family of microcontroller/'! SP device. Please refer to the datasheet of the device
which needs to be programmed using ISP technique for the sequence of operations

The key player behind ISP is a factory programmed memory (ROM) called ‘Boot ROM. The Boot
ROM normally resides at the top end of code memory space and it varies in the order of a few Kilo Bytes
(For a controller with 64K code memory space and IK Boot ROM, the Boot ROM resides at memory
location FC00H to FFFFH). It contains a set of Low-level Instruction APIs and these APIs allow the
processor/controller to perform the FLASH memory programming, erasing and Reading operations.
The contents of the Boot ROM are provided by the chip manufacturer and the same is masked into every
■device. The Boot ROM for different family or series devices is different. By default the Reset vector
starts the code memory execution at location 0000H. If the ISP mode is enabled through the special ISP
Power up sequence, the execution will start at the Boot ROM vector location. In System Programming
technique is the best advised programming technique for development work since the effort required to
re-program the device in case of firmware modification is very little. Firmware upgrades for products
supporting ISP is quite simple.

12.1.3 In Application Programming (IAP)

In Application Programming (IAP) is a technique used by the firmware running on the target deyice for
modifying a selected portion of the code memory. It is not a technique for first time embedding of user
written firmware. It modifies the program code memory under the control of the embedded application.
Updating calibration data, look-up tables, etc., which are stored in code memory, are typical examples
of IAP. The Boot ROM resident API instructions which perform various functions such as programming,
erasing, and reading the Flash memory during ISP-mode, are made available to the end-user written
firmware for IAP. Thus it is possible for an end-user application to perform operations on the Flash
memory. A common entry point to these API routines is provided for interfacing them to the end-user’s
application. Functions are performed by setting up specific registers as required by a specific operation

https://hemanthrajhemu.github.io

Integration and Testing of Embedded Hardware and Firmware

and performing a call to the common entry point. Like any other subroutine call, after completion of
the function, control will return to the end-user’s code. The Boot ROM is shadowed with the user code
memory in its address range. This shadowing is controlled by a status bit. When this status bit is set,
accesses to the internal code memory in this address range will be from the Boot ROM. When cleared,
accesses will be from the user’s code memory. Hence the user should set the status bit prior to calling the
common entry point for IAP operations (The LAP technique described here is for PHILIPS’ 89C51RX
series microcontroller. Though the underlying principle in IAP is the same, the shadowing technique
used for switching access between Boot ROM and code memory may be different for other family of.
devices).

12.1.4 Use of Factory Programmed Chip

It is possible to embed the firmware into the target processor/controller memory at the time of chip
fabrication itself. Such chips are known as ‘Factory programmed chips'. Once the firmware design is
over and the firmware achieved operational stability, the firmware files can be sent to the chip fabrica¬
tor to embed it into the code memory. Factory programmed chips are convenient for mass production
applications and it greatly reduces the product development time. It is not recommended to use factory
programmed chips for development purpose where the firmware undergoes frequent changes. Factory
programmed ICs are bit expensive.

12.1.5 Firmware Loading for Operating System Based Devices

The OS based embedded systems are programmed using the In System Programming (ISP) technique.
OS based embedded systems contain a special piece of code called ‘Boot loader’ program which takes
control of the OS and application firmware embedding and copying of the OS image to the RAM of the
system for execution. The ‘Boot loader' for such embedded systems comes as pre-loaded or it can be
loaded to the memory using the various interface supported like JTAG. The bootloader contains neces¬
sary driver initialisation implementation for initialising the supported interfaces like UART, TCP/IP
etc. Bootloader implements menu options for selecting the source for OS image to load (Typical menu
item examples are 1. Load from FLASH ROM, Load from Network, Load through UART etc). In case
of the network based loading, the bootloader broadcasts the target’s presence over the network and the
host machine on which the OS image resides can identify the target device by capturing this message.
Once a communication link is established between the host and target machine, the OS image can be
directly downloaded to the FLASH memory of the target device. We will discuss about the role of'Boot
loader', ‘Boot loader' development and embedding, firmware and OS embedding and bootifig process
for an OS based embedded system in detail in a dedicated book coming under this series. Please be
patient till then.

12.2 BOARD POWER UP___

Now the firmware is embedded into the target board using one of the programming techniques described
above. ‘What Next?’ The answer is power up the board. You may be expecting the device functioning
exactly in a way as you designed. But in real scenario it need not be and if the board functions well in
the first attempt itself you are very lucky. Sometimes the first power up may end up in a messy explosion
leaving the smell of burned components behind. It may happen due to various reasons, like Proper care
was not taken in applying the power and power applied in reverse polarity (+ve of supply connected to

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

-ve of the target board and vice versa), components were not placed in the correct polarity order (E.g.
a capacitor on the target board is connected to the board with +ve terminal to -ve of the board and vice
versa), etc... etc ...I would like to share a very interesting incident which happened in my development

career during the power up of a new board. Though the board was well checked and extreme care was

taken in applying the power, when I powered the board after embedding the firmware, 1 heard an explo¬

sion followed by the burning of a capacitor on the target board and I really struggled hard to stop the

fire from spreading by a strong puff of air—It is not a joke, It’s a true incident. The reason was very
simple, the power applied to the board was °V and the filter capacitor placed at the regulator IC input
side was with a rating of 6V (220MFD/6A Since the capacitor voltage rating was below the input
supply, the dielectric of capacitor got burned. Be' cautious: Before you power up the board make sure
everything is intact. We will discuss about the various tools used for troubleshooting the target hardware
in a later chapter.

Summary
l _

S Integration of hardware add firmware deals with the embedding of firmware into the target hardware board.

A For non-operating system based embedded products, if the processor/controller contains internal memory and

the total size of the firmware is fitting into the code memory area, the code memory is downloaded into the target

controller/processor. If the processor/controller does not support built-in code memory or the size of the firmware

is exceeding the memory size supported by the target processor/contfoller, the firmware is held in an external

dedicated EPROM/FLASH memory chip' • “ v r,y~ J ” ;!-' v y .

S Out-of-circuit programming and In System Programming (ISP) are the two different methods for embedding

firmware into a non Operating System based product A - \ .

v' In the out-of-circuit programming, the device is removed from the target board and is programmed using a

" ‘Device Programmer’, whereas in the In System Programming technique, the firmware is embedded into the

controller memoty/prograip.memory chip without removing the chip from the target board

A JTACr, SPI, etc. are the commonly used serial protocols for transferring the embedded firmware into the target

device

A In Application Programming (IAP) is a technique used by the firmware running on the target device for modifying

a selected portion of the code memory. It is not a technique for first time embedding of user written firmware. It

modifies the program code memory under the control of the embedded application

A IAP is normally used for updating calibration data, look-up tables, etc. which are stored in code memory

A Factory programmed chip embeds firmware into the chip at the time of chip fabrication

A In System Programming (ISP) is used for embedding the OS impge and application program into the non-volatile

storage memory of the embedded product. The bootloader program running in the target device implements the

necessary routine for embedding the OS image into the non-volatile memory and booting the system

JTAG

In System Programming (ISP)

Serial Peripheral Interface (SPI)

W1 Keywords

An Interface for hardware troubleshooting like boundary, scan testing

Firmware embedding technique in which the firmware ikembedded into the

program memory without removing the chip from: the target board

Serial interface for connecting devices

https://hemanthrajhemu.github.io

Integration and Testing of Embedded Hardware and Firmware

Review Questions

1. Explain the different techniques for embedding the firmware into the target board for a non-OS based embedded

system

2. Explain the major drawbacks of out-of-circuit programming

3. Explain the firmware embedding process for OS based embedded products

4. What is the difference between In System Programming (ISP) and In Application Programming (IAP)?

https://hemanthrajhemu.github.io

■V

- '

, ;.■ -, »: -■.. . ,;- \

ff:M ' -:

MbmSbI SSfS
The Embedded System Development
Environment

LEARNING OBJECTIVES

S Learn about the different entities of the embedded system development environment w-A

S Learn about the Integrated Development Environments (IDEs) for embedded firmware development and debugging
V Learn the usage of p'/ision 3 IDE from Kell software (www.keil.com) tor embedded firmware development, simulation

and debugging for 8051 family of microcontrollers
/ Familiarise with the different IDEs for firmware development for different family of processors/controllers and

Embedded Operating Systems ■ -

/ learn about the different types of files (List File, Preprocessor output file, Object File, Map File, Hex File, etc.) gen¬
erated during the cross compilation of a source file written in high level language like Embedded C and during the
cross assembling of a source file written in Assembly language f ■>

S learn about disassembler and decompiler, and their role in embedded, firmware development
S Learn.about Simulators, In Circuit Emulators (ICE), and Debuggers and their role in embedded firmware debugging
S Learn about the different tools and techniques used for embedded hardware debugging
S Learn the use of magnifying glass, multimeter, CRO, logic analyser and function generator in embedded hardware

debugging
S Learn about the boundary scanning technique for testing the interconnection among the various chips in a complex

hardware board

This chapter is designed to give you an insight into the embedded-system development environment.
The various tools used and the various steps followed in embedded system development are explained
here. It is a summary of the various design and development phases we discussed so far and an intro¬
duction to the various design/development/debug tools employed in embedded system development. A
typical embedded system development environment is illustrated in Fig. 13.1.

As illustrated in the figure, the development environment consists of a Development Computer (PC)
or Host, which acts as the heart of the development environment, Integrated Development Environ¬
ment (IDE) Tool for embedded firmware development and debugging, Electronic Design Automation
(EDA) Tool for Embedded Hardware design, An emulator hardware for debugging the target board,
Signal sources (like Function generator) for simulating the inputs to the target board, Target hardware

https://hemanthrajhemu.github.io

The Embedded System Development Environment

In system programming (ISP) interface (Serial/USB/Parallel/TCP-IP)

PCB fabrication

files

Hardware debugging tools

[Fig. 13. l] The Embedded System Development Environment

debugging tools (Digital CRO, Multimeter, Logic Analyser, etc.) and the target hardware. The Inte¬
grated Development Environment (IDE) and Electronic Design Automation (EDA) tools are selected
based on the target hardware development requirement and they are supplied as Installable files in CDs
by vendors. These tools need to be installed on the host PC used for development activities. These tools
can be either freeware or licensed copy or evaluation versions. Licensed versions of the tools are fully
featured and folly functional whereas trial versions fall into two categories, tools with limited features,
and foil featured copies with limited period of usage.

13.1 THE INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

In embedded system development context, Integrated Development Environment (IDE) stands for an
integrated environment for developing and debugging the target processor specific embedded firmware.
IDE is a software package which bundles a ‘Text Editor (Source Code Editor)’, ‘Cross-compiler (for

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

cross platform development and compiler for same platform development)’, ‘Linker’ and a ‘Debugger’.
Some IDEs may provide interface to target board emulators, Target processor’s/controller’s Flash mem¬
ory programmer, etc. and incorporate other software development utilities like ‘Version Control Tool’,
‘Help File for the Development Language’, etc. IDEs can be either command line based or GUI based.
Command line based IDEs may include little or less GUI support. The old version of TURBO C IDE for
developing applications in C/C++ for x86 processor on Windows platform is an example for a generic
IDE with command line interface. GUI based IDEs provide a Visual Development Environment with
mouse click support for each action. Such IDEs are generally known as Visual IDEs. Visual IDEs are
very helpful in firmware development. A typical example for a Visual IDE is Microsoft® Visual Studio
for developing Visual C++ and Visual Basic programs. Other examples are NetBeans and Eclipse.

IDEs used in embedded firmware development are slightly different from the generic IDEs used
for high level language based development for desktop applications. In Embedded Applications, the
IDE is either supplied by the target processor/controller manufacturer or by third party vendors or as
Open Source. MPLAB is an IDE tool supplied by microchip for developing embedded firmware using
their PIC family of microcontrollers. Keil pVision3 (spelt as micro vision three) from Keil software is
an example for a third party IDE, which is used for developing embedded firmware for 8051 family
microcontrollers. CodeWarrior by Metrowerks is an example of IDE for ARM family of processors.
It should be noted that in embedded firmware development applications each IDE is designed for a
specific family of controllers/processors and it may not be possible to develop firmware for all family
of controllers/processors using a single IDE (as of now there is no known IDE with support for all fam¬
ily of processors/controllers). However there is a rapid move happening towards the open source IDE,
Eclipse for embedded development. Most of the proccessor/control manufacturers and third party IDE
providers are trying to build the IDE around the popular Eclipse open source IDE. This may lead to a
single IDE based on Eclipse for embedded system development in the near future. Since this book is
primarily focusing on 8051 based embedded firmware development, the IDE chosen for demonstration
is Keil (iVision3. A demo version of the tool for Microsoft Windows OS based development is avail¬
able for free download from the Keil Software website. Please instal the same on your machine before
proceeding to the next sections.

13.1.1 The Keil |jVision3 IDE for 8051

Keil pVision3 is a licensed IDE tool from Keil Software (www.keil.com'). an ARM company, for 8051

family microcontroller based embedded firmware development. To start with the IDE (after installing
the demo tool) execute the program Uv3.exe (or the short cut ‘Keil pVision3 ’ from desktop or ‘All Pro¬
grams’ tab from ‘Start Menu’ - For Host machine with Microsoft® Windows Operating System). The
IDE view is shown in Fig. 13.2.

The IDE looks very similar to the Microsoft® Visual Studio IDE and it contains various menu op¬
tions, a project window showing files, Register view, Books and Functions Tab and an output window.
To start a new project, go to the ‘Project’ tab on the menu, select ‘New Project’ option. Give a name
to your workspace in the ‘‘File Name’ section of the ‘ Create New Project’ Pop-up dialog Box (Let it be
‘sample’). Choose the directory to save the project from the pop-up dialog. The default extension of a
project workspace file is .uv2. On clicking the ‘‘Save’ button of the ‘ Create New Project’ pop-up dialog,
a device selection dialog as shown in Fig. 13.3 appears on the screen.

This Dialog Box lists out all the vendors (manufacturers) for 8051 family microcontroller, supported
by IDE. Choose the manufacturer of the chip for your design (Let it be ‘Atmel’ for our design). Atmel
itself manufactures a variety of 8051 flavours. Choose the exact part number of the device used as the

https://hemanthrajhemu.github.io

BHBBI

Output Window

Build A Command A find in Res

K? pVision3

Text Editor Window Project Window

FigSJp Keil |iyisi6rt3 Integrated Development Environment (IDE)

Cancel

.•"13.31 Target CPU Vendor selection for Keil |iVision3 IDE

Analog Devices

0-^ AnchoiChips

IS- ^ Atmel Wireless 4 uC

E-^ Cast, Inc

Chipcon

IB ^ CML Microcircuits

Cybernetic Micro Systems

s ^ CybraTech

The Embedded System Development Environment

Select Device for Target Target 1

https://hemanthrajhemu.github.io

Introduction to Embedded Systems !
i
J }
{

target processor for the design, by expanding the vendor node. It will list out all supported CPUs by
the selected vendor under the vendor node. On selecting the target processor’s exact part number, the
vendor name, device name and tool set supported for the device is displayed on the appropriate fields of J
the dialog box along with a small description of the target processor under the Description column on I
the right side of the pop-up dialog as shown below. Press ‘OK’ to proceed after selecting the target CPU i
(Let it be ‘AT89C51 ’ for our design). I

Select Device for Target Target-1

Vendor: - /ttmet

Device: AT89C51

Toolset: C51

1“ Use Extended linker (LX51) instead of B!

Assemble!

•Data base Description «S a 7 D. ' -V

8051-based Fullty Static 24MHz CMOS contrail^with 32 I/O Lines,

2 Tntere/Cbuntere. S lntemjpts/2 Priority LevelsJ UART, V A
Three-Level Program Memory Lobk, 4K Bytes Flash Memory.

128 Bytes Ori-chip,RAM ;■ •.'‘SpSI

Cancel

13.5) Startup file addition to the project

Target CPU selection for Keil uVision3 IDE

Once the target processor is selected, the IDE automatically adds the required startup code for the
firmware and it prompts you whether the standard startup code needs to be added to the project (Fig.
13.5). Press ‘Yes’ to proceed. The startup code contains the required default initialisation like stack
pointer setting and initialisation, memory clearing, etc. On cross-compiling, the code generated for
the startup file is placed on top of the code generated for the function mainQ. Hence the reset vector

AT83/8SC5132
Q AT33EB5114
□ AT87F51
0 AT87F51RC
G ATS7F52
□ AT87F55WD
G AT88C1Q51
□ AT89C1051U

I O ATSSC2051
G AT89C4051

Q BB
I G AT3X5115
1-0 AT89C5131

jjyisipn3

https://hemanthrajhemu.github.io

The Embedded System Development Environment

(OOOOH) always starts with the execution of startup code before the main code. For more details on
the contents and code of startup file please go through the pVision help files which is listed under the
‘Books'1 section of the project workspace window.

A ‘Target’ group with the name ‘ Target! ’ is automatically generated mider the ‘Files’ section of the
project Window. ‘TargetP contains a ‘Source Group’ with the name ‘Source GroupP and the startup
file (STARTUP.A51) is kept under this group (Fig. 13.6). All these groups are generated automatically.
If you want you can rename these groups by clicking the respective group names.

H1 i 1 >\ SH|\ Build A Command A, Find in

Startup file added to the project

Ef sample - jjVislor; 3

B'-jSJ Target 1

(EJ'-gg 'S&ce|nwip^;;
i.[2 STARTUP.A51

I Li!_jjj

Unknown Target

You can see that similar to the Visual Studio IDE’s ‘Project Window’ for VC++ development, Keil
IDE’s ‘Project Window’ also contains multiple tabs. They are the ‘Files’ tab, which gives the file details
for the current project, ‘Regs’ tab, giving the Register details while debugging the source code, ‘Books’

tab showing all the available help and documentation files supplied by the IDE, ‘Functions’ tab lists out
the functions present in a ‘C’ source file and finally a ‘Templates’ tab which generate automatic code
framework (function body) for if, if else, switch case etc and code documentation template (Header).
These steps create a project workspace. To start with the firmware development we need to create a
source file and then add that source file to the ‘Source Group’ of the ‘Target’. Click on the ‘File’ tab on
the menu tool of the IDE and select the option ‘New’. A blank text editor will be visible on the IDE to
the right of the ‘Project Window’. Start writing the code on the text editor as per your design (Refer to

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the Keil help file for using Keil supported specific Embedded C instructions for 8051 family). You can
write the program in ANSI C and 8051 specific codes (like Port Access, bit manipulation instruction
etc) using Keil specific Embedded C codes. For using the Keil specific Embedded code, you need to add
the specific header file to the text editor using the Mnclude compiler directive. For example, #include

<reg51.h> is the header file including all the target processor specific declarations for 8051 family pro¬
cessors for Keil C51 Compiler. Standard ‘C’ programs (Desktop applications) calls the library routines
for accessing the I/O and they are defined in the stdio.h file, whereas these library files cannot be used as
such for embedded application development since the I/O medium is not a graphic console as in the C
language based development on DOS Operating system and they are re-defined for the target processor
I/Os for the cross compilers by the cross compiler developer. If you open the stdio.h file by ANSI C and
Keil for its IDE, you can find that the implementation of I/O related functions (e.g.printf()) are entirely
different. •

The difference in the implementation is explained with typical stdio.h function-printfQ (e.g.
printf(“Hello World\n ”)). With ANSI C & DOS the function outputs the string Hello World to the DOS
console whereas with the C51 cross-compiler, the same function outputs the string Hello World to the
serial port of the device with the default settings. Coming back to the firmware development, let’s follow
the universal unwritten law of first ‘C’ program- The “Hello World' program. Write a simple ‘C’ code to
print the string Hello world.

sample - pVision3 - [D:\KE!L\sampfe\sample,c3

i iB.ni jHai^SiWPal

1 i:- 1 i H ^ Hi
l.. .

\ Build /, Command)\ Find in Files /

Unknown Target |L;3C'.T ' j

[Fig. 13.7 j Writing the first Embedded C code

https://hemanthrajhemu.github.io

The Embedded System Development Environment

The code is written in the text editor which appears within the IDE on selecting the ‘New’ tab from
the ‘File’ Menu. Write the code in C language syntax (Fig. 13.7). Add the necessary header files. You
can make use of the standard template files available under the ‘ Templates’ tab of the ‘Project Window’

for adding functions, loops, conditional instmctions, etc. for writing the code. Once you are done with
the code, save it with extension .c in a desired folder (Preferably in the current project directory). Let the
name of the file be ‘sample.c’. At the moment you save the program with extension .c, all the keywords
(like #include, int, void, etc.) appear in a different colour and the title bar of the IDE displays the name
of the current .c file along with its path. By now we have created a ‘c’ source file. Next step is adding the
created source file to the project. For this, right click on the ‘Source Group’ from the ‘Project Window’'

and select the option ‘AddFiles to Group ‘Source Group”. Choose the file ‘sample.c’ from the file se¬
lection Dialog Box and press 1Add’ button and exit the file selection dialog by pressing ‘Close’ button.
Now the file is added to the target project (Fig. 13.8). You can see the file in the ‘Project Window’ under
‘Files’ tab beneath the ‘Source Group’.

If you are following the modular programming technique, you may have different source files for
performing an intended operation. Add all those files to the project as described above. It should be
noted that function mainQ is the only entry point and only one ‘.c’ file among the files added to the
project is allowed to contain the function mainQ. If more than one file contains a function with the name
mainQ, compilation will end up in error. The next step is configuring the target. To configure the target,

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

go to ‘Project’ tab on the Menu and select ‘Options for Target’. The configuration window as shown in
Fig. 13.9 is displayed.

Device Target | Output J listing j | $151 Locate j 8L51 Misc] Debug j Utilities]

tod AT89C51- s'-

/:Memoiy Model: (Small.'variablesin DATA

■Code Rom Size: i|lage:64Kprogram

Operating system:'; None

f” Code Banking r ‘is: TcTiory ^.pe'uppor

■JTpSflV&addfei^ellenliBiysIjRin inteitipti Bank fires W

Defaults

Target Configuration

The target configuration window is a tabbed dialog box. The device is already configured at the time
of creating a new project by selecting the target device (e.g. Atmel AT89C51). If you want to check it,
select the ‘Device’ tab and verify the same. Select ‘Target’ tab and configure the following. Give the
clock frequency for which the system is designed, e.g. 6MHz, 11.0592MHz, 12MHz, 24MHz, etc. This
has nothing to do with the firmware creation but it is veiy essential while debugging the firmware to note
the execution time since execution time is dependent on the clock frequency. If the system is designed
to make use of the processor resident code memory, select the option Use On-chip ROM (For AT89C51
On-chip ROM is 4K only; 0x0000 to OxOFFF). If external code memory is used, enter the start address
and size of the code memory at the Off-chip Code memory column (e.g. Eprom Start: 0x0000 and Size
OxOFFF). The working memory (data memory or RAM) can also be either internal or external to the
processor. If it is external, enter the memory map starting address of the external memory along with
the size of external memory in the ‘Off-chip Xdata memory section (e.g. Ram Start: 0x8000 and Size Ox
1000). Select the memory model for the target. Memory model refers to the data memory. Keil supports
three types of data memory model; internal data memory (Small), external data memory in paged mode
(Compact) and external data memory in non-paged mode (Large). Now select the Code memory size.

https://hemanthrajhemu.github.io

Options for Target Target 1

'•KJX

(♦ Create Executable:

; F Debug Infoimatii

F Create HEX File

C Create lijraiy: As;

Cancel

The Embedded System Development Environment

Code memory model is also classified into three; namely, Small (code less than 2K bytes), Compact (2K
bytes functions and 64K bytes code memory) and Large (Plain 64K bytes memory). Choose the type
depending on your target application and target hardware design. If your design is for an RTOS based
system, select the supported RTOS by the IDE. Keil supports two 8 bit RTOS namely, RTX51 Tiny and
RTX51 Full. Choose none for a non RTOS based design.

Move to the next Tab, ‘Output\ The output tab holds the settings for output file generation from the
source code (Fig. 13.10). The source file can either be converted into an executable machine code or a
library file.

Output File creation settings

You can select one of the output settings (viz. executable binary file (hex) or library file (lib)). For
executable file, tick the ‘Create Hex File’ option and select the target processor specific hex file format.
Depending on the target processor architecture the hex file format may vary, e.g. Intel Hex file and
Motorola hex file. For 8051, only one choice is available and it is Intel hex File HEX-80. The list files
section coming under the tab ‘Listing’ tells what all listing files should be created during cross-compila¬
tion process (Fig. 13.11).

‘C57’ tab settings are used for cross compiler directives and settings like/Pre-processor symbols,
code optimisation settings, type of optimisation (viz. code optimised for execution speed and code
optimised for size), include file’s path settings, etc. The lA5V tab settings are used for assembler direc-

Mer Make --

F Beep When Complete

r Run User-Program#!:

V Run User Program #2: Browse...

Defaults

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

List File generation settings

tives and settings like conditional assembly control symbols, include file’s path settings etc. Another
important option is ‘‘Debug'. The ‘Debug' tab is used for configuring the firmware debugging. ‘Debug'

supports both simulation type firmware debugging and debugging the application while it is running on
the target hardware (Fig. 13.12).

You can either select the Simulator based firmware debugging or a target firmware level debugging
from the ‘Debug' option. If the Simulator is selected, the firmware need not be downloaded into the
target machine. The IDE provides an application firmware debugging environment by simulating the
target hardware in a software environment. It is most suitable for offline analysis and rapid code devel¬
opments. If target level debugging is selected, the binary file created by the cross-compilation process
needs to be downloaded into the target hardware and the debugging is done by single stepping the
firmware, A physical link should be established between the target hardware and the PC on which the
IDE is running for target level debugging. Target level hardware debugging is achieved using the Keil
supported monitor programs or through an emulator interface. Select the same from the Drop-down list.
Normally the link between target hardware and IDE is established through a Serial interface. Use the
settings tab to configure the Serial interface. Select the ‘Comm Port' to which the target device is con¬
nected and the baudrate for communication (Fig. 13.13).

If the Debug mode is configured to use the Target level debugging using any one of the monitor
program or the emulator interface supported by the Keil IDE, the created binary file is downloaded into https://hemanthrajhemu.github.io

The Embedded System Development Environment

Options for Target Target T ;

Device j Target j Output | Listing j C51 j A51 j BL51 Locate j BL51 Wise W>ug j Ulities |

'(• Use Simulator

r Lrnit Speed to Real-Time

Settings

P Load AppLckion at Startup. P Run to mainQ

tnttalization Fiie: .

,1 3,31

F Use: | Keil ISD51 In-System Debugger .t| Settings •

f Restore-Debug Session Settings

1 - /-K;Toolbox

P Watchpoints & PA - '

- p .Memory Display... ■■■■'•

CPU DLL: Parameter: -

1S8051.DLL

Dialog DLL: ; 'Parameter;

'pi DP51.DLL-

P Load

Imtializatic

:C~2
-Restore

-|Keil ISD51 in-System Debugger

MON3SO: Dallas Contiguous Mode l r&M

LPC900 EPM Emu!ator/Programmer[.
ST-uPSD ULlNK Dover
Infineon XC800 ULlNK Driver

AD! Monitor Driver
Infineon DAS Client for XC800
uwog —;—

J isCj
1

P Breakpoints • P Toolbox A _

17 Wrfchpoints . '

F Memory Dsplay

Dover DLL: Parameter:-!* -Arc
S8051.DLL

M

Dialog DLL: Parareter

Itp5i.dll pi

cleaned j Help : J

Firmware debugging options

Device] Target] Outpi

<• Use Simulator

P” Limit Speed to Reaj

17 Load Application atj

Initialization File:

Restore Debug Sessi|

|7 Breakpoints

17 Watchpoints 8

17 Memory Display!

CPU DLL.

S8051 DLL

Dialog DLL:

Target Setup

Comm Port Settings •

Port: [COMI

Baudrate: } 9SOO

RTS: Active

f:.
I Settings :

117 Run to main(l

-Cache Options-

F Cache DATA (SFR)

F Cache IDATA

F Cache XDATA

F Cache CODE

-Stop Program Execution with —

V Serial Interrupt

Parai

Paral

r- M onitor-51 Identification -

- iidonitor-51 not connected!

I i

OK Cancel

j Caned Defaults | OK Help

Tig. 13.131 Target hardware debug serial link configuration

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the target board using the configured serial connection and the firmware execution occurs in real time.
The firmware is single stepped (Executing instruction-by-instruction) within the target processor and
the monitor program running on the target device reflects the various register and memory contents in
the IDE using the serial interface.

The ‘ Utilities' tab is used for configuring the flash memory programming of the target processor/con¬
trollers from the Keil IDE (Fig. 13.14). You can use either Keil IDE supported programming drivers or
a third party tool for programming the target system’s FLASH memory. For making use of Keil IDE
provided flash memory programming drivers, select the option ' Use Target Driver for Flash Program¬

ming’ and choose a driver from the drop-down list. To use third party programming tools, select the
option ‘ Use External Tool for Flash Programming' and specify the third party tool to be used by giving
the path in the ‘Command' column and specify the arguments (if any) in the ‘Arguments' tab to invoke
the third party application.

Options for Target Target 1

LPCSOO EPM Emulator/Programmef

C Use External Tool for Hash Programming

Arguments':

13.14| Target Flash Memory Programming configuration

With this we are done with the writing of our first simple Embedded C program and configuring the
target controller for running it. The next step is the conversion of the firmware written in Embedded C
to machine language corresponding to the target processor/controller. This step is called cross-compila¬
tion. Go to ‘Project' tab in the menu and select ‘Rebuild all target files'. This cross-compiles all the files
within the target group (for modular programs there may be multiple source files) and link the object
codes created by each file to generate the final binary. The output of cross-compilation for the “Hello

World" application is given in Fig. 13.15.

https://hemanthrajhemu.github.io

The Embedded System Development Environment

(Fig. 13.15J Conversion of the Embedded C program to 8051 Machine code

You can see the cross-compilation step & linking in the o/p window along with cross-compilation er¬
ror history. Now perform a 'Build Target’ operation. This links all the object files created (in a multi-file
system where each source files are cross-compiled separately) (Fig. 13.16).

X
5?

■AL:

; m
c
£
'5

• £
T3
O

Build target 'Target 1' i

compiling sample.c... * _
linking. . . Hfj

Program Size: data = 30.1 xdata=0 code=1078 fpl

creating hex file from "sample"... pf|

"sample" - 0 Error(s), 0 Warning (s). ■|l||

\i\i\ 1W 1\ Build j\ Command \ Ftnd in Files ,/ y * j | > | : ■
-*.-•**, -. ; - V-.: •.y. ■.T---'

I Unknown Taigei il |i_:3 C:1 ^5

[Fig. 13.16 Linking of all object Files

In a multi source file project (source group containing multiple .c files) each file can be separately
cross-compiled by selecting the ‘ Translate current file' option. This is known as Selective Compila¬
tion. Remember this generates the object file for the current file only and it needs to be combined with
object files generated for other files, by using ‘Build Target’ option for creating the final executable
(Fig. 13.17). Selective compilation is very helpful in a multifile project where a modified file only needs
to be re-compiled and it saves the time in re-compiling all the files present in the target group.

compiling sample.c...
sample.c - 0 Error(s), 0 Warning(s).

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

See the difference between the three; selective compilation cross-compiles a selected source file and
creates a re-locatable object file corresponding to it, whereas ‘Build Target’ performs the linking of
different re-locatable object files and generates an absolute object file and finally creates a binary file.
‘Rebuild all target file’ creates re-locatable object files by cross-compiling all source files and links all
object files to generate the absolute object file and finally generates the binary file. If there is any error
in the compilation, it is displayed on the output window along with the line number of code where the
error is occurred. So it is easy to trace the code to find out the error part in the code. The error is listed
out in the output window along with line number and error description. On clicking the error description
at the output window, the line of code generated the error is highlighted with a bold arrow. One example
of error code is given below. In the “Hello World” example, the include file is commented and the code
while compiling will generate the error indicating print/function is not defined. Have a look at the same
(Fig. 13.18).

Build target 'Target 1'
compiling sample.c...

gllSAMPLE.C(5): warning C206: 'printf: missing function-prototype
SAMPLE.C(5): error C267: 1printf : requires .AMSI-style prototype
Target not created Error Descriotion

t:5C:l

j. 13.18] Compilation Error Example

13.1.1.1 Debugging with Keil fjVision3 IDE Debugging firmware is the process of monitoring
the program flow, various registers and memory contents while the firmware is executed. You can de¬
bug the firmware in two methods. The first method is by using breakpoints and simulator (a software
tool which simulates the functionalities of the target processor). The second method is hardware level
debugging.

https://hemanthrajhemu.github.io

The Embedded System Development Environment

For simulator-based debugging, select the option ‘ Use Simulator’ from the ‘Debug’ tab of the

‘ Options for Target’ as illustrated in a previous section on debug. Insert a ‘ Breakpoint’ in the code line

of the source program where debugging needs to be started. Breakpoints can be inserted by right click¬

ing on the desired source code line and by selecting the ‘Insert/Remove Breakpoint' option. It can also

be inserted by using the ‘Debug’ tab present in the menu of the IDE (Not the debug tab of Options for

Target Pop-up dialog). It toggles the breakpoint (if the breakpoint is already inserted, it is removed and

if not a breakpoint is added). The breakpoint breaks the firmware execution at the selected point and

further execution requires user interaction. After a break, the code can be executed by single stepping or

by a complete run again. For the above ‘Hello World’ example, we are going to debug the firmware at

the source code lineprintf and a breakpoint is inserted as shown in Fig. 13.19.

i/- sample • pVision3 - [D:\KEIL\sampte\sampte, cj

mm

mm

ifpip
□•••<§§ Source Group i

|.[|| STARTUP.A51

EE~ © sample.c

Q2l H}

If compiling sample.c...
fy linking . . .
| Program Size: da.ta = 30.1 xdata=0 code = 1078
1 creating hex file from "sample"...
5 "sample" - 0 Error(s), 0 Warning(s).

Pig. 13.1@] Breakpoint insertion and debugging

The ‘breakpoint’ is distinguishable with a special visible mark. All debug related actions are grouped

within the ‘Debug’ tab of the IDE menu. Each debug instruction has a hot key (e.g. Ctrl+F5 for start and

stop of debugging) associated with it. Identify the hotkey and use it or use mouse to activate the debug

related action each time from the debug menu. To start debugging, select the option ‘Start/Stop Debug

Session (Ctrl+F5)’ from the ‘Debug’ menu. If you set the option ‘Go till mainQ’ on the ‘Debug’ tab of

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

‘Options for Targetthe application runs till the code memory where the main() function starts. If this
option is not selected, the execution breaks at the Reset vector (0x0000) itself. Both of these options
are shown below. Note that while debugging, the project window tab automatically selects the ‘Regs'

tab and shows the various register contents in this window when the program is at the break stage. You
can switch the project window in between the ‘Files' section and "Regs' section to find out the changes
happening to various registers on executing each line of code (Fig. 13.20).

| Project Workspace 3: i nt main(void)
C:0x0C2A 7BFF MOV R3,#0xFF
C:0x0C2C 7A0C MOV .R2,#0x0C
C:0x0C2E 7911 MOV Rl,#0xll
C: 0x0C30 020862 LJMP PRINTF(C:086
C: 0x0C33 00 NOP'
C:0x0C34 00 NOP
C: 0x0C35 00 NOP

Register view

"U ->7

Firmware execution breaks at function main (void)

C:0x0000 v) ' 020C1E V ' L JM
0:0x0003 00 NOP
C:0x0004 00 NOP
0:0x0005 00 NOP
0:0x0006 00 NOP
0:0x0007 00 NOP
0:0x0008 00 NOP
0:0x0009 00 NOP

jg4 Disassembly

C: OCIE

Firmware execution breaks at Reset vector (0x0000)

?ig. 13.20) Firmware execution Break options

If you observe these two figures you can see that code memory execution starts at location 0x0000
and the firmware corresponding to the function main is located at 0x0C2A and it is not the first execut¬
able code. Before executing main () some other code placed at location OxOClE (jump from the reset
vector to location OxOClE) is executed. The code at this memory location is the code memory generated
for the startup file. Startup file code is always executed before entering the function main. It should be
noted that the code memory location mentioned here for function main is not always fixed. It varies
depending on the changes made to the startup file. From this breakpoint you can go to the breakpoint
you set in the code memory either by single stepping (‘Step' command (FII)) or by a run to the next
breakpoint (‘Go' command (F5)).

https://hemanthrajhemu.github.io

The Embedded System Development Environment

;TTS#include Otdio. h> ffl 3: int main(void)
V2M JjC: 0x0C2A 7BFF MOV R3,#0xFF

WM int main(void) 2:0x0C2C 7A0C MOV R2,#0x0C
iiiiit gC:0x0C2E 7911 MOV R1,#0x11

128 fprintf("Hello World\n"); ||C:0xOC30 020862 LJMP PRINTF(C:0862)
G 1> §|C:0x0C33 00 NOP
7 J:QxOC34 00 NOP

SSI 1 i§C:0x0C35 00 NOP

(Fig. 13.21J Source Code and corresponding Disassembly View

By default, the text editor window in debug mode contains two tabs, namely Source code view tab
and Disassembly tab. The Source code and corresponding Disassembly view is shown in Fig. 13.21.
While debugging the firmware you can switch the view between Assembly code and original source
code lines by selecting the corresponding tab. This switches the view between the original source code
and the corresponding Assembly code for it. The Disassembly view disappears temporarily if you click
the ‘Disassembly Window’ option under the ‘ View’ tab of the IDE menu. To enable Disassembly View
click again on the ‘Disassembly Window’ option under the ‘ View’ tab of the IDE menu (Fig. 13.22).

(Fig. 13.22] Workbook Mode for Source - Disassembly CodeView

During debugging the content of various CPU and general purpose registers are displayed under the
‘Regs’ tab of the project Window. Apart from this you can inspect the data memory and code memory
by invoking the ‘Memoiy Window’ under the ‘ View’ tab of the IDE menu (Fig. 13.23).

For viewing the Data memory, use the Prefix ‘D:’ before the address and type it at the Address edit
box and press enter (For example, for viewing the data memory starting from 0x00, type D:0x00 at the
Address box and press enter). You can edit the content of the desired data memory by right clicking
on the current contents pointed by the address or just by a double click on the current content. Code
memory can also be inspected and modified in a similar way to the Data memory. The only difference
is instead of D: use ‘C:’ (D stands for Data and C stands for Code) (Fig. 13.24).

Similar to other Desktop application development IDEs, this also provides option for viewing local
variables and call stack details. Invoke ‘ Watch & Call Stack Window’ from the 'View’ tab of the IDE
menu (Fig. 13.25).

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Type start address here

0:0x0000
C:0x0006
C: 0x0000
0:0x0012
a

02 OC IE 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

1 ■ n-,nn i p.- nn nn nr -in nn nn_-ll
mmt Memory#! Memory #2 A;Memoi

|D: 0x00: 00 00 00 00 00 00 00
0:0x07: 00 00 00 00 00 00 00 Ilf
0:OxOE: 00 00 00 00 00 00 00
D:0xl5: 00 00 00 00 00 00 00 if
D.fly-in. nn nn nn nn nn nn nn jlalf
N j i I ► j>if\Memory#! y\ Memory#2 Memo1 <y

(Tig. 13.23) Memory Window for memory inspection in firmware debugging

Address: D:0x00

D: 0x00 IT
D: 0x07 0
D: OxOE ■
D: 0x15
n • Qt, i n n
MM

1

Decimal

•I Unsigned

Signed

Asa!

Float

Double

Modify Memory t D:QxQ3

[Fig. 13.24) Memory modification while debugging

Locals A Watch #1 A Watdv#2 A Call Stack /

[pig. 13.25) Watch and Call Stack Window for Debugging

The local variables can be viewed in the ‘Locals’ section of ‘ Watch and call Stack Window’ whereas
users can add other variables to the ‘Watch’ window to get their yalues. ‘Call Stack’ gives the ‘Callee-
Caller’ details for subroutine calls. Invoking ‘Symbol Window’ urider the ‘View’ tab of IDE menu while
debugging, displays the list of ‘Publics’, ‘Locals’ and ‘Lines’ used by the application, in the disassembly

https://hemanthrajhemu.github.io

The Embedded System Development Environment

window (Assembly code). Selecting ‘Publics' shows the different variables and functions present in
the Assembly code along with their ‘Address’, ‘Name’ and ‘Type’. Address can either be Data memory
address or Code memory address. ‘Type’ indicates whether it is a variable or a function. The different
variables supported are ‘unsigned char (uchar)’, ‘signed char (chary, bit, unsigned integer (uint), signed
int (inf), etc. Figure 13.26 shows the Symbols Window displaying the various symbols used in Assem¬
bly for our sample application.

Symbols

Same

?_PRINTF5177BYTE
?_PRINTF?BYTE
?_SPRINTF5177BYTE
? SPRINTF7BYTE

D:0x08
D:0x08
D:0x08
D:0x08
D: OxE 0
OxDO.G
D:0xE0
D:0xF0
C:0x03C7
C:0x0378
C:0x035F
C:0x03A5
rmmR7

uchar
uchar
function
function
function
function
ft iriohnn

C7CCASE
C7CLD0PTR
C7CLDPTR
C7CSTPTR
ropi nnnATA

Symbols Window showing the various symbols used in Assembly

Activating the "Code Coverage’ option under the "View' tab of the IDE menu when the execution
is at halted stage, gives the details of instructions in each function/module and how many of them are
executed till execution break. Figure 13.27 illustrates the same.

13.1.1.2 Simulating Peripherals and Interrupts with Keil pVision3 IDE Embedded systems
are designed to interact with real world and the actions performed by them may depend on the inputs
from various sensors connected to the processor/controller of the embedded system. By a mere software
simulation of the firmware, we can only inspect the memory, register contents, etc. of the processor and
cannot infer anything on the real-time performance of the system since the inputs provided by the sen¬
sors are real-time and dynamic. To a certain extent, we can simulate these inputs using the simulator
support provided by the IDE. Keil provides extensive support for simulating various peripherals like;
ports, memory mapped I/O, etc. and Interrupts (External, Timer and Serial interrupts). The main limita¬
tion of simulation is that we can simulate it with only known values (in a real application the simulated
value may not be the real input) and also it is difficult to predict the real-time behaviour of the system

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

based on these simulations. In our “Hello World’ application, if we debug the application by placing a
breakpoint at the ‘printf function, in the source code window you can observe that the ‘print/ function
is not getting completed on single stepping and it gives you the feeling that the firmware is hang up
somewhere. If you are single stepping (using Fll) the firmware from the beginning, in the disassembly
window you can see that for the code corresponding to printf, the application is looping inside another
function called ‘putchar’, which checks a bit TI (Transmit Interrupt) and loops till it is asserted high
(Fig. 13.28). As we mentioned earlier, the printf function is outputting the data to the Serial port. As
long as the Transmit Interrupt is not asserted, the firmware control is looped there and it generates an
application hang-up behaviour. If you are not able to view the point where the firmware loops in the
Disassembly window, invoke ‘Stop Running’ from ‘Debug’ tab of IDE menu. The firmware execution
will be stopped and in the disassembly window you can see the exact point where the application was
looping.

https://hemanthrajhemu.github.io

The Embedded System Development Environment

We can simulate the Transmit Interrupt ‘ TV using the simulator support provided by Keil. If you have
already stopped the execution, continue the code execution by invoking ‘Go’ option from ‘Debug1 tab
or by pressing ‘F5’ key. Now select ‘Interrupt' option from the ‘Peripherals’ tab of the IDE menu. The
interrupt simulation window will pop-up. Select the ‘Serial Xmif interrupt and enable the Global Inter¬
rupt Enable (EA) as well as Transmit Interrupt (77) (Fig. 13.29).-

1 P3.2/lnt0 0003H 0 0 0 0 if
I Timer 0 000BH 0 0 0 1
1 P3.3/lnt1 0013H 0 0 0 0

1 I'mer I 001BH 0 0 0
| Serial Rev. 0023H 0 • 0 0
s SerialXmit. 0023H if k o 011

.
• v v.*pt-S/P: iXn -V -

F.EA
- : ' x. ,

Selected Interrupt——

* ^ 5 RJf r;ES ilffi* |0 }• 1

[Fig.;|6,29j Serial Transmit Interrupt Simulation

You can simulate any other interrupt listed in the interrupt system in a similar fashion. On enabling
TI, firmware execution comes out of the infinite loop and dumps the string “Hello World” to the serial
port. The output of ‘Hello World’ application is shown in Fig. 13.30. You can capture whatever data go¬
ing through the serial port while simulation. For this invoke ‘Serial Window #1’ from the ‘View’ tab of
the IDE menu.

»•*?*

pt
5 I printf ("Hello WorId\n"

Si >

£ Disassembly -mix
3: int main(void)

C:0x0C2A 7BFF MOV

Serial#!

R3„#0xFF

13.30) Output of‘Hello World’ Application at Serial Port

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

To simulate the Ports and their status, select '1/O-Ports' from the ‘Peripherals' tab of IDE menu

(Fig. 13.31).

(Fig. 13.3 P Simulation of Ports and Port Pins

The first value (E.g. PO: OxFF) simulates the contents of Port 0 Special Function Register. In order to
make the port pins as input pins the port pin’s corresponding SFR bit should be .set as 1. With the SFR
bit set to 1, the state of the corresponding port pin can be changed to either logic 1 or logic 0. To output
logic 0 to a port pin, clear the corresponding SFR bit and for outputting logic 1, set the corresponding
port bit in the SFR bit. In the above example, if Port 0 is viewed as an output port, the port will be out-
putting all Is. If it is treated as an input port, the value inputted will be OxOF (whichlslhe state of the
port pins). Serial Port and Timers can also be simulated by selecting the respective commands from the
‘Peripherals’ tab of the IDE menu. It is left for the readers for experimenting. The 'Reset CPlf option
available under the 4Peripherals' tab is used for resetting the firmware execution. Resetting the CPU
while debugging brings the program execution to the reset vector (0x0000).

| Ji Projsd WoHcspats: C ~ - |[
HgTOxOROQ 020C1E . LJlvt? ' C:0C1E

B~iHprget 1 pC: 0x0003 00 NOP
S-^§3 Source Group 1 EC: 0x0004 00 NOP

[1] STARTUP.A51 KG: 0x0005 00 NOP
A- [Tj sample.c Be:0x0006 00 NOP

||C:0x0007 00 NOP
IpC:0x0008 00 NOP
SC:0x0009 00 NOP
jc-.OxOOOA 00 NOP
||C:OxOOOB 00 NOP
jfc:OxOOOC 00 NOP 81 ■

dfci 1
/

... — J
1 n to. *{} i ^ |=| sample.c Disassembly ^ Serial #1

~ t ' “

[Fig. 13.32j Resetting CPU while Debug in progress

https://hemanthrajhemu.github.io

The Embedded System Development Environment

Generating precise delays in software for super loop based embedded applications are often quite
difficult and there are no standard functions available for generating precise delays. If the ‘C’ program
is running on DOS platform, there is a standard function ‘delay()’ available which generates delay with
multiples of millisecond. There are no such standard functions available for generating delays in non-op¬
erating system based embedded programming. The only way of generating delays is writing a loop and
set its parameters according to the clock frequency used. Often we need to do a trial and error method to
finetune the parameters depending on the crystal used. The ‘Performance analyser’ support by the Keil
IDE helps in calculating the time consumed by a function. To activate this, select1 Performance Anaty^ —
ser...’ from the ‘Debug’ tab of the IDE menu while debugging is on, before entering the function whose
execution time needs to be calculated. A Performance analyser set up for selected function is shown in
Fig. .13.33,

[pig. 13.33] Performance Analyser setup for selected function

The various functions available on the current module is listed on the right side of the ‘Setup Per¬

formance analyser window under the ‘Function symbolssection. Double clicking on the function of
interest displays the same on the ‘Define Performance Analyser Range:’ Click the ‘Define’ button to add
it to the analyser. Invoke the ‘Performance analyser window’ from the ‘ View’ tab of the IDE menu. A
new tab with name ‘Performance...’ will be added to the text editor window. Now execute the function
whose execution time is to be analysed by single step (Fll) or by giving a step Over (F10) command.
Select the tab ‘Performance...’ and click on the function name for which the analysis is perfomied.
The time taken for executing the function is displayed at the ‘total time’ display window. This gives a
rough estimate on the execution time of the function (Fig. 13.34). Note that in addition to this time, the
time taken for calling this function also needs to be taken into account. Moreover, all these calculations
are based on the target clock frequency set on the target options. We will discuss the same for a new
function for generating milliseconds delay added to our program ‘Hello World’ application. The main

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

|, Project Workspace „ - - xj,
D% 10 20 30 40 50 . 60 70 ‘80 : 90 1fl0%

Fr Target 1
F! (0 Source Group 1

h g] STARTUP.A51

;£• jfj sample_dd;c

<unsperified>:

main:
PRINTF: p

PUTCHAR: • .ij
Sb

min time: max time; avg time: total time: Z count: ' ' : f- ~

0 000000 0 000000 0 009983 , 0009383i|100 0 |j | * X A

fffl] m ftj ♦o|^| [=) sample_del c | Disassembly |=ri

Total execution time = 0.9983 ms

§Pg.!3.34) Execution time from Performance Analyzer

function calls the delay routine delay_ms() before executing the print/function. To verify that this func¬
tion is taking 1 millisecond time to finish execution with parameter 1, add the function to the perfor¬
mance-analyser as mentioned above. Invoke the performance analyser and execute the function. Switch
view to ‘Performance... ’ tab and observe the execution time. The complete source code for including
delay is given below.

' -..lA-ncliide Kstdi-o. h-> •• . ‘ • , ... * • •

,//Function Prototype for milliseconds delay

void delay_ms (int);

int main(void) ‘ ’ ■ 7,

I ^ . :

//Calling 1 milli second delay

delay ms (1); ’ •

printf("Hello World\n");

1 . '
/./###
//'Function for generating milli seconds delay

//Assumes clock frequency=24MHz

i

void delayjms (int n)

M-- . .
...int j,. k;

for (j-C; j<r.; j++) • -

:;j;. "v’ ■ • - ■ « . J
for (k=C; k<247; k++);

It should be noted that generating highly precise delay is very difficult and there may be a tolerance
of +/- fraction of millisecond^ in the delay. Also the delay is purely dependent on the system clock https://hemanthrajhemu.github.io

The Embedded System Development Environment

frequency. In a real world scenario, the stability of the clock is expressed in terms of +/- some parts per
million (ppm) of the fundamental frequency. Any change in the target clock frequency needs the re-tun¬
ing of the code to bring it back to the desired tolerance level. Precise time delay can be generated using
the hardware timer unit of the microcontroller.

13.1.1.3 Target Level Firmware Debugging with Keil fjVision3 IDE Simulation based de¬
bugging technique lacks real-time behaviour and various input conditions needs to be simulated using
the IDE support for debugging the firmware. Target level hardware debugging involves debugging the
firmware which is embedded in the target board. This technique is also known as In Circuit -Debug¬
ging/ Emulation (ICD/E). For performing target level debugging with Keil, the target board should be
connected to the development machine through a serial interface. The IDE debug settings should be
modified to activate target level debugging. Select the ‘Debug’ option from ‘ Options for Target’ and
change ‘Use Simulator’ to ‘'Used selected debug support from a list of available target debug supports
(Fig. 13.35).

Select the target supported debug option from the drivers available on the drop-down list and config¬
ure the serial link properties using the ‘Settings’ tab. Keil supports two types of target level debugging,
namely ‘Monitor program based debugging’ and ‘Emulator based debugging’. For Monitor program
based debugging, the target processor should have Keil IDE supported monitor program installed and
the target hardware should be configured to run the monitor program. Debug instructions from the IDE
communicates with the monitor program running on the target processor and it returns the debug infor¬
mation to the IDE using the configured serial link. For Emulator based debugging, Keil IDE acts as an

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

interface between a Reil supported third party Emulator hardware and the target board. The Serial link
should be connected to the emulator hardware and other end of the emulator hardware should be inter¬
faced to the target hardware using any ICE supported interfaces like JTAG, BDM or pin-to-pin socket
(For JTAG/BDM interface, target processor/controller should have this support at processor/controller
side. If not, pin-to-pin socket is used)/

13.1.1.4 Writing ISR in Embedded C using the pVision3 IDE The C51 cross-compiler from
Keil supports the implementation of Interrupt Service Routines (ISRs) in Embedded C. The general
form of writing an Interrupt Service Routine in C for C51 cross-compiler is illustrated below.

: :Void 'ISR'_Name \ (void) interrupt'yJNTR_.NQ- 'using .REGyBANK

IIIIS
-TV/Body of ISR

I 1 * I
The attribute interrupt informs the cross compiler that the function with given name (Here ISR

Name) is an Interrupt Service Routine. The attribute INTR_NO indicates the interrupt number for an
interrupt. It is essential for placing the ISR generated assembly code at the Interrupt Vector for the cor¬
responding interrupt. Keil supports 32 ISRs for interrupt numbers 0 to 31. The interrupt number 0 cor¬
responds to External Interrupt 0,1 corresponds to Timer 0 Interrupt, 2 correspond^ to External Interrupt
1, 3 corresponds to Timer 1 Interrupt, 4 corresponds to Serial Interrupt and so on. The keyword using

specifies the Register bank mentioned in the attribute REG_BANK for the registers R0 to R7 inside the
ISR. It is an optional attribute and if it is not mentioned in the ISR implementation, the current register
bank in use by the controller is used by the ISR for the registers R0 to R7. The value of REG_BANK can
vary from 0 to 3, representing register banks 0 to 3. With the attribute interrupt, the C51 cross compiler
automatically generates the interrupt vector and entry and exit code for the specified interrupt routine.
The contents of the Accumulator, B register, DPH, DPL, and PSW are Pushed to the stack as and when
required, at the time of entering the ISR and are retrieved at the time of leaving the ISR. If the register
bank is not specified in the ISR implementation, all the working registers which are modified inside the
ISR is pushed to the stack and poped while returning from ISR. It should be noted that the ISR neither
takes any parameter nor return any. The following piece of code illustrates the implementation of the
Serial Interrupt ISR for 8051 using C51 cross compiler.

^include <reg51.h> //Keil C51 Header file

//ISR for handling Serial Interrupts. Interrupt number = 4

//Interrupt Vector at 0023H. Use Register Bank 1

void Serial_ISR (void) interrupt 4 using 1

{ /
if (TI) //Check transmit Interrupt (TI) Flag

{
//Transmit Interrupt Handler

}
else

//Receive Interrupt Handler

}

}

https://hemanthrajhemu.github.io

The Embedded System Development Environment

13.1.1.5 Assembly Based Firmware Development with pVision3 IDE Apart from Embedded
C based development, Keil IDE also supports Assembly language based firmware development. The
steps involved in creating a project for writing assembly instructions are same as that of Embedded C
based development. The only difference is that there is no need to include the standard startup file at
the time of creating a project. Select the option ‘No’ to the query ‘Copy standard 8051 startup Code to

Project Folder and add File to Project?' while creating a new project (Refer to Sectiojp. 13.1.1 for details
on creating a new project). Since we are not using the IDE supplied startup code, thd^ctions performed
by startup code (mainly initialisation of stack pointer), should be written by the programmer before the
start of the main program in the assembly file. Create a new file and start writing AsseniSly instructions
in the file. Save the file with extension \src’ and add the file to the ‘Source Group’ of the target as il¬
lustrated in embedded C based development (Section 13.1.1). A program written in Assembly Language
corresponding to the “Hello World” program written in Embedded C is illustrated below.

ORG ‘ Q0C0K~

,JMP MAIN . ;'j ■ - '

ORG , 0C03H ; External Interrupt 0 .Handler

„ 1 1 - Reti ' ■ ’

QRG V 000BH .. .§• " ; T.imerO Interrupt Handler
* • ? 3 * \ . - RET-l - ’ " ' : i

ORG u ■GC13H ; External 'Interrupt 1 -Handler-'

RETI

■ORG. - 001BK ; Timerl Incorrupt Handler . -

''RETI (..

ORG 0023H ; Serial Interrupt Handler

, RETI

ORG 0100H

MAIN: MOV SP, #50H ; Initialise stack pointer

; #########I####################################### ### #######.#########
; 8051 Serial Routine Parameter settings

MOV SCON, #'50h ; Configure Serial Communication

f Register.

MOV TMOD, #21h ; Baud Generation Settings

MOV TH1, #0FDH ; Re-Load Value for TIMER 1 in Auto

; Re-Load

MOV TLl, #0FDH ; 9600 baud

MOV A, PCON

ANL A, #7FH

MOV PCON, A

SETB TR1 ; Start Timerl

;###########.###
OUT_TEXT: CALL ,TEXT_OUT

JMP OUT_TEXT

;##

; Text -outputting Routine

; Same as printf 0 in Embedded C

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

TEXT_OUT: MOV DPTR, fi :1ELL0_W0RT..D

SERIAL_CUT: C'LR TI ; Clear Transmit Interrupt

v" ;r' , * , clr a , . : vv- V' ;
•' ■ ' -MOVC'A, 0A+DPTR A] .

CLINE A, t'V, FOLLOW ' •'

Send new line 'Character MOV SBUF

JNB Tl,

RET

.SBUF,; A ‘

JNB -TI, 1

FOLLOW:MOV .

Wait till Transmi

«dmg next Mm

1 * - 'INC DPTR

'"JMP SERIAL_OUT

Store the string "Hello World" in program memory

HELLO WORLD

'Hello World\

END

Compile this source code using the same compile options illustrated for Embedded C based develop¬
ment. Here also you can have multiple source (.sre) files. Add all source files to the ‘Source Group’ and
compile the program. The Assembly program is written to store the string “Hello World” in the code
memory and it is retrieved from the code memory for sending to the serial port. The string can also be
storedrin the data memory and retrieve it from there for sending to the serial port. In that case the storage
memory for the string “Hello World’ (12 bytes with string termination character ‘V) in the code memory
will be released and the same will occupy in the data memory. Figure 13.36 shows the assembling of
source code written in assembly language.

If you observe the output window while compiling, you can see that the source code is ‘assembled

instead of ‘compiling’. Why this strange thing happens? - The answer is conversion of program writ¬
ten in assembly language to object code is carried out by the utility ‘Assembler’. Assembler is same as
compiler in functioning but the input is different. You can debug this application usinp the simulator in
a similar way as that of debugging the ‘C’ source code. On debugging the assembly code you can view
the output on the ‘Serial Window’ and it is exactly the same as the output produced by the “Hello World’

Application written in Embedded C.
Now let’s have a comparison between the application written in Embedded C and Assembly Lan¬

guage for outputting the string “Hello World” to the Serial port. Read carefully.

Ql. How many lines of code you wrote for the program “Hello World”?
Embedded C: Only a single line of Code excluding the framework of main
Assembly: More than 25 lines

Q2. How many registers of the target processor you are familiar with for writing the “Hello
World” program?
Embedded C: None
Assembly: Almost all

https://hemanthrajhemu.github.io

The Embedded System Development Environment

E.sampie_asm - pVis.ion3 - [D:\KEIL\sample\sample_asm\Mniple_asm.src]

[=1 Rle Edit View 'Y&6]ect Debugy Flash -'Peripherals Tools SVCSVWridow: 'Hdp

« ^s'JTarget 1
Project Workspace v x (j" •'."ni ■<* a-i.*~Ta
;•••» _ ;— _ _ -..! | U l > ?rr? rrrr f<rrf?T

0§ Target 1 1. 1 v 02 ; 5 car 3 of Ms in Program

interrupt: G Handler

»;0i ;f;i A’. XJL&.

402 ; szsrz

C»fet ;iSi **#-£#*$****#;

:'\04';yORG OOOOH

LJMP MAIN

•jg-OS-:: ORG 0003H

Cfa,> f iCx terns.

-• RETI

4P3 ORG 0003.4

iiiD ; ^

§ lamplejasm I

Build target 'Target 1
assembling sample_asm.src...
linking . . . 4—

Program Size: data=8.Qxdata=0 code=321
"sample_asm" - 0 BrrorTsTr~8--Waiau ng_fst .

•jI < j »j H|\ Build AlCoiwnand »A Find.inF3es /

, • ■■ - - ■ ^Simulation

_ Code size =321 bytes

— Data memory usage = 8 bytes

I ■ _ 1 _ ILlL
"\> SriL:52C:l3 V

'■ J

13.361 Assembling of source code written in Assembly Language

E sample_asm - pVisfon3

Rle Edit ;:Vjew ^Project Debug . Rash Peripherals :£oote -..SVCS ..-'Window..;:Hep

- “*fc -- c.3. . «\ t K <ft| “

t* ^..QS i & i[@ , E IS . 'A E H J, ..rr- -fV' .

& 1r© ft w i? is, $ it h± | ms?
! Project Workspace » x

! F Target 1

j £3 Source Group I

Bj sample_asm.sr

13.3?) Debugging the Source code written in Assembly Language for outputting the text “Hello World" to

serial port

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Q3. How many Assembly Instructions of the target processor you are familiar with for writing
the “Hello World” program?
Embedded C: None
Assembly: Almost all

Q4. What is the code size for the “Hello World” program written in?
Embedded C: 1078 bytes
Assembly: 321 bytes

Q5. What is the data memory size for the “Hello World” Program written in?
Embedded C: 30 bytes + 1 bit
Assembly: 8 bytes Minimum and 21 Bytes Maximum (If the “Hello World” string is stored in Data

memory)
1 Summary

1. Compared to Assembly programming, Embedded C requires lesser number of lines of code to
implement a task

2. Embedded C programmers require less or little knowledge on the internals of the target processor
whereas Assembly programmers require thorough knowledge of the internals of the processor

3. Embedded C programmers need not be aware of the instruction set of the target processor whereas
Assembly language programmers should be well versed in the same.

4. The Code memory usage by programs written in Assembly is optimal compared to the one written
in Embedded C

5. The Data memory usage by programs written in Assembly is optimal compared to the one written
in Embedded C

13.1.1.6 Flash Memory Programming with Keil gVision3 IDE Once the firmware starts func¬
tioning properly, after the modifications following debug and simulation, the next step is embedding the

| firmware into the target processor/controller. As mentioned in a previous chapter, firmware can be em-
j bedded using various techniques like Out of System Programming, In System Programming (ISP), etc.
j Keil IDE provides an In System Programming (ISP) support which is selected at the time of configuring
! the ‘Options for Target’. It can be either Keil provided flash programming driver or any third party tool
■ which can be invoked from the IDE. The flash programming makes use of the serial connection estab¬

lished between the Host PC and the target board. The target processor should contain a bootloader or a
monitor program which can understand the flash memory programming related commands sent from the
IDE. Cross-compile all the source files within the module, link them and generate the binary code using
‘Rebuild all target files' option. Download the generated binary file to the target processor’s/controller’s
memory by invoking ‘Flash Download’ option from the ‘Project’ tab of the IDE menu. The target board
should be powered and interfaced with the host PC where the IDE is running and the connection should
be configured properly.

13.1.1.7 Summary of usage of Keil (jVision3 IDE So far we discussed about IDE and how IDE
is helpful in Embedded application development and debugging. Our discussion was focusing only on
8051 family 8bit microcontroller firmware application development using Keil pVision3 IDE. Though
the discussion was specific to Kefi IDE, I believe it was capable of givingyou the basic fundas of IDEs
and how the IDE is used in embedded system development. The hot khy usage, GUI details and func¬
tions offered by different IDEs are totally different. Illustrating all IDEs is out' of scope of this book and
also there is nb common IDE supporting multiple family devices that can b^ used for illustrating the
same. Users are requested to go through the respective manuals of the IDE thpy are Rising for firmware
development. Also, IDEs undergo rapid changes by adding new features, functions, etc. and whatever https://hemanthrajhemu.github.io

The Embedded System Development Environment

we discussed here need not be the same after three months or six months or one year, in terms of fea¬
tures, UI, hot keys, menu options, etc. When I started the work of this book, the IDE offered from Keil
was Keil pVision2 and at the time of finishing this work, the latest IDE available from Keil is Keil pVi-
sion3. It incorporated lots of new features and changes compared to the old IDE. Users are requested
to visit the web site wwwrkeil.com to get the latest updates on the new versions of the IDE. You can
directly download the trial version of the IDE from the above site.

13.1.2 An Overview of IDEs for Embedded System Development

The table shown below gives an overview of the Integrated Development Environments (IDEs) used for
developing embedded systems for various processors/Real-time operating systems.

Processor Family/ IE

RTfjS

8051 Kc Keil Micro Vision ■,, * -v

8051

8051' - ■, ^ TAR Embedded Workbench

ror so5i
PIC MPLAB

PIC ' . ;iAR Embedded Workbench

| yry'y/ . | :'forPrc;;:V(;/;y;yy||
AYR AYR Studio AVR32 Studio

Real View MDK '

IAR Embedded Workbench

for ARM

Code Warrior

Sourcery G++

Siipplier/Remarks , .iwr

a /' ; t , ^

Keil Software. An ARM Company. ., - ;

www.keil.com • • -

'aisonhnce ■ . ■ . , ,. . . ; + y
p://www raisonance.eom/products/info/RlDE.ph.p ~~ \;u-

SPJ Embedded Technologies ;.A

http://www.spisystems.com/sc51 .htm A -

IAR Systems A ; "" ' y

http://www.iar.eom/websitel/l .0.1 0/244/1/mdex.php ’ "

Microchip Technology Inc . f «‘;/y

http://www.microchip.com/ V aaa

IAR Systems A- y _ : -

mi

’r

Infineon Family DAvE

http://www.iar.eom/websitel/l.0.l.0/214/1/index.php ■

Atmel Corporation yy%yfjyy

http://www.atmel.com/dvn/Products/tools card.asp?tool_ -

.id -2725 ~~ '

Keil Software. An ARM Company ’

http ://www.keil .com/arm/ i ‘ L

IAR Systems

http://www.iar.eom/websitel/l.0.l.0/68/l/index.php

Frecscale Semiconductor

http://www.fteescale.com/

CodeSourcery

http://www.codesourcerv.com/gnu_toolchains/sgpp

It is a complete software development environment based f

on the GNU Tool chain. Sourcery G++ includes the GNU ,

C and C++ compilers, the Eclipse IDE. Supports ARM®,

ColdFire®, fido™, MIPS®, Power Architecture™,

Stellari^®, x86 ~y

Infineon Technologies. For the 8.16 and 32 bit Infineon

processors/controllers. V v

http://www.infineon.com''

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Eclipse Ganymede Macraigor Systems. Eclipse based GNU tool suite. \

http://www.macraigor.com/Eclipse/index.htm

Macraigor Systems. Eclipse based GNU tool suite. . i'

http://www.macraigcr.com/Eclipse/uidex.htm ■

IDE for STMicroelectronics processor/controller products.

http://wv^^v.st.bdfnymcu/c6ntentid-44.htrnl

ST Family ST Visual Develop

TI Family of DSP Code Composer Studio Texas Instruments

http://www.ti .com/

;\yin£l River Workbench Wihd River Systems,

www.windriver.com

Vx Works RTOS

3rd Party Tools Green Hills Software Supports a variety of family of

processors. Visit ■
www.ghs.com for more details

And.... The list continues. There are thousands of IDEs available in the market as either commercial or
non-commercial and as either Open source tools or proprietary tools. Listing all of them is out of the
scope of this book. The intention is to just make the readers familiar with some of the popular IDEs for
some commonly used processors/controllers and RTOSs for embedded development.

13.2 TYPES OF FILES GENERATED ON CROSS-COMPILATION

Cross-compilation is the process of converting a source code written in high level language (like ‘Em¬
bedded C’) to a target processor/controller understandable machine code (e.g. ARM processor or 8051

microcontroller specific machine code). The conversion of the code is done by software running on a
processor/controller (e.g. x86 processor based PC) which is different from the target processor. The
software performing this operation is referred as the ‘Cross-compiler’. In a single word cross-compila¬
tion is the process of cross platform software/firmware development. Cross assembling is similar to
cross-compiling; the only difference is that the code written in a target processor/controller specific
Assembly code is converted into its corresponding machine code. The application converting Assembly
instruction to target processor/controller specific machine code is known as cross-assembler. Cross-
compilation/cross-assembling is carried out in different steps and the process generates various types of
intermediate files. Almost all compilers provide the option to select whatever intermediate files needs
to be retained after cross-compilation. The various files generated during the cross-compilation/cross-
assembling process are:

List File (.1st), Hex File (.hex), Pre-processor Outputfile, Map File (File extension linker dependent),

Object File (obj)

https://hemanthrajhemu.github.io

The Embedded System Development Environment

13.2.1 List File (.LSTFile)

Listing file is generated during the cross-compilation process and it contains an abundance of informa¬
tion about the cross compilation process, like cross compiler details, formatted source text (‘C’ code),
assembly code generated from the source file, symbol tables, errors and warnings detected during the
cross-compilation process. The type of information contained in the list file is cross-compiler specific.
As an example let’s consider the cross-compilation process of the file sample.c given as the first illus¬
trative embedded C program under Keil pVision3 IDE discussion. The ‘listfile’ generated contains the
following sections.

Page Header A header on each page of the listing file which indicates the compiler version number,
source file name, date, time, and page number.

C51 COMPILER V8.02 SAMPLE !Q.5/23Z2006: 11: 29 :58 PAGE 1

Command Line Represents the entire command line that was used for invoking the compiler.

C51 COMPILER 98.02, COMPILATION OF MODULE .SAMPLE / A;/.
■ A- ' = A A*AA' - ^ .V'-'' A \ -3' ' 'A " -A"- ' , - ■ ■

OBJECT MODULE PLACED IN sample.OBJ .

COMPILER INVOKED BY: C: \Keil\C51\BIN\C5X.S^^^®p^^^^&^^P^^lj^lwEND
'f n ~ , >V - ~ A. A "f -w ' a ^ ' '“**•*'' Y'-S' ^ aW

LCpDEl-LI ST INCLUDE SYMBOLS • ' '

Source Code The source code listing outputs the line number as well as the source code on that line.
Special cross compiler directives can be used to include or exclude the conditional codes (code in #if
blocks) in the source code listings. Apart from the source code lines, the list file will include the com¬
ments in the source file and depending on the list file generation settings the entire contents of all include
files may also be included. Special cross compiler directives can be used to include the entire contents
of the include file in the list file.

line level source
1 //Sample.c for printing Hello World!
2 //Written by xyz
3 #include <stdio.h>
1 =i /*-

2 =1 STDIO.H
3 =1
4 =1 Prototypes for standard I/O functions.
5 =1 Copyright © 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.
6 =1 All rights reserved.
7 =i -*/

8 =1
9 =1 #ifiidef_STDIO_H_
10 _1 — i #define_STDIO
11 =1
12 =1 #ifndef EOF
13 =1 #define EOF -1
14 -l #endif
15 =1
16 -l #ifndefNULL

https://hemanthrajhemu.github.io

T iL Introduction to Embedded Systems

17 =1 #define NULL ((void *) 0)
18 =1 #endif
19 =1
20 =1 #ifhdef SIZE! T
21 =1 #define _SIZE_T
22 =1 typedef unsigned int sizet;
23 =1 #endif
24 =1
25 =1 #pragma SAVE
26 =1 #pragma REGPARMS
27 =1 extern char _getkey (void);
28 =1 extern char getchar (void);
29 =1 extern char ungetchar (char);
30 =1 extern char putchar (char);
31 =1 extern int printf1 (const char *,...);
32 =1 extern int sprintf (char *, const char *,
33 =1 extern int vprintf (const char *, char *);
34 =1 extern int vsprintf (char *, const char *,
35 =1 extern char *gets (char *, int n);
36 =1 extern int scanf (const char *,...);
37 =1 extern int sscanf (char *, const char
38 =1 extern int puts (const char *);
39 =1
40— =1 #pragma RESTORE
41 =1
42 =1 #endif
43
4

=1

5 void main()
6 {'
7 1 printf(“Hello World!\n”);
8 1 }

9

Assembly Listing Assembly listing contains the assembly code generated by the cross compiler for
the ‘C’ source code. Assembly code generated can be excluded from the list file by using special com¬
piler directives.

ASSEMBLY LISTING OF GENERATED OBJECT CODE
; FUNCTION main (BEGIN)

; SOURCE LINE #5
; SOURCE LINE #6
; SOURCE LINE # 7

0000 7BFF MOV R3,#0FFH
0002 7A00 R MOV R2, #HIGH ?SC_0

https://hemanthrajhemu.github.io

The Embedded System Development Environment

0004 7900 R MOV R1,#LOW?SC_0
0006 020000 E LJMP _printf

; FUNCTION main (END)

Symbol Listing The symbol listing contains symbolic information about the various symbols present
in the cross compiled source file. Symbol listing contains the sections symbol name (NAME) symbol
classification (CLASS (Special Function Register (SFR), structure, typedef, static, public, auto, extern,
etc.)), memory space (MSPACE (code memory or data memory)), data type (TYPE'(int, char, Procedure
call, etc.)), offset ((OFFSET from code memory start address)) and size in bytes (SIZE). Symbol listing
in list file output can be turned on or off by cross-compiler directives.

NAME CLASS MSPACE TYPE OFFSET

size t TYPEDEF U INT
main.... .. .PUBLIC ‘ CODE PROC 0000H
printf... .. .EXTERN CODE PROC

Module Information The module information provides the size of initialised and un-initialised
memory areas defined by the source file
MODULE INFORMATION: STATIC OVERLAYABLE

CODE SIZE = 9
CONSTANT SIZE - 14
XDATA SIZE - —- - '
PDATASIZE
DATA SIZE
IDATASIZE = —- —- 1
BIT SIZE

END OF MODULE INFORMATION.

Warnings and Errors Warnings and Errors section of list file records the errors encountered or any
statement that may create issues in application (warnings), during cross compilation. The warning lev¬
els can be configured before cross compilation. You can ignore certain warnings, e.g. a local variable is
declared within a function and it is not used anywhere in the program. Certain warnings require prompt
attention.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ‘ERROR.(S)

List file is a very useful tool for application debugging in case of any cross compilation issues.

13.2.2 Preprocessor Output File

The preprocessor output file generated during cross-compilation contains the preprocessor output for
the preprocessor instructions used in the source file. Preprocessor output file is used for verifying the
operation of macros and conditional preprocessor directives. The preprocessor output file is a valid C
source file. File extension of preprocessor output file is cross compiler dependent.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

13.2.3 Object File (.OBJFile)

Cross-compiling/assembling each source module (written in C/Assembly) converts the various Embed¬
ded C/Assembly instmctions and other directives present in the module to an object (.OBJ) file. The
format (internal representation) of the .OBJ file is cross compiler dependent. OMF51 or OMF2 are the
two objects file formats supported by C51 cross compiler. The object file is a specially formatted file
with data records for symbolic information, object code, debugging information, library references, etc.
The list of some of the details stored in an object file is given below.

1. Reserved memory for global variables.
2. Public symbol (variable and function) names.
3. External symbol (variable and function) references.
4. Library files with which to link.
5. Debugging information to help synchronise source lines with object code.
The object code present in the object file are not absolute, meaning, the code is not allocated fixed

memory location in code memory. It is the responsibility of the linker/locater to assign an absolute
memory location to the object code. During cross-compilation process, the cross compiler sets the ad¬
dress of references to external variables and functions as 0. The external references are resolved by the
linker during the linking process. Hence it is obvious that the code generated by the cross-compiler is
not executable without linking it for resolving external references.

13.2.4 Map File (.MAP)

As mentioned above, the cross-compiler converts each source code module into a re-locatable object
(OBJ) file. Cross-compiling each source code module generates its own list file. In a project with mul¬
tiple source files, the cross-compilation of each module generates a corresponding object file. The object
files so created are re-locatable codes, meaning their location in the code memory is not fixed. It is the
responsibility of a linker to link all these object files. The locater is responsible for locating absolute
address to each module in the code memory. Linking and locating of re-locatable object files will also
generate a list file called ‘linker list file’ or ‘map file’. Map file contains information about the link/locate
process and is composed of a number of sections. The different sections listed in a map file are cross
compiler dependent. The information generally held by map files is listed below. It is not necessary that
the map files generated by all linkers/locaters should contain all these information. Some may contain
less information compared to this or others may contain more information than given in this. It all de¬
pends on the linker/locater.

Page Header A header on each page of the linker listing (MAP) file which indicates the linker ver¬
sion number, date, time, and page number.

e.g. BL51 LINKER/LOCATER V3.62 02/29/2004 09:59:51 PAGE 1

Command Line Represents the entire command line that was used for invoking the linker,

e.g. BL51 BANKED LINKER/LOCATER V6.00, INVOKED BY: , L-

C:\KEIL\C51\BIN\BL51.EXE STARTUP.obj, sample.obj TO sample ■

https://hemanthrajhemu.github.io

The Embedded System Development Environment

CPU Details Details about the target CPU and rhemory model (internal data memory, external data
memory, paged data memory, etc.) come under this category.

e.g. . MEMORY MODEL: SMALL'/' ' .. /' ' '

Input Modules This section includes the names of all object modules, and library files and modules
that are included in the linking process. This section can be checked for ensuring all the required mod¬
ules are lined in the linking process
e.g.

mi
STP.

„ , V * .a- t / t
• ’ ■ . ' /

; ' :• .//.:• ■ : v ' ‘ '* r ■/. ' ' : ' :

: C:\KEIL\C51\LIB\C51S.LIB (PRINTF)) /.##/, .

..n:\KEIL\C51\LIB\C51S.LIB (?C?CI, DPTR)/.

if#/

Memory Map Memory map lists the starting address, length, relocation type and name of each

segment in the program.

e-g.

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* * * * * * ****** data m e m ory **************

REG OOOOH 0008H ABSOLUTE “REG BANK 0”

DATA 0008H 0014H UNIT _DATA_GROL#

001CH 0004H *** GAP ***

BIT 0020H.0 0001H.1 UNIT _BIT_GROUP

0021H.1 0000H.7 *** gap ***

IDATA 0022H 0001H UNIT 7STACK
* * * * * * * ***** G 0 D E MEMORY **************

CODE OOOOH 0003H ABSOLUTE

0003H 07FDH *** gap ***

CODE 0800H 035CH UNIT ?PR?PRINTF?PRINTF

CODE 0B5CH 008EH UNIT ?C?LIB CODE

CODE OBEAH 0027H UNIT ?PR?PUTCHAR?PUTCHAR

CODE 0C11H OOOEH UNIT ?CO?SAMPLE

CODE 0C1FH 000CH UNIT ?C C51 STARTUP

CODE 0C2BH 0009H UNIT 7PR7MAIN7SAMPLE

Symbol Table It contains the value, type and name for all symbols from the different input

modules

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

e.g.

SYMBOL TABLE OF MODULE: sample (?C_STARTUP)

VALUE TYPE NAME

MODULE ?C STARTUP
C:0C1FH SEGMENT ?C C51 STARTUP
I:0022H SEGMENT 7STACK
C:0000H PUBLIC ?C STARTUP
D:00E0H SYMBOL ACC
D:OOFOH SYMBOL B
D:0083H SYMBOL DPH
D:0082H SYMBOL DPL

Inter Module Cross Reference The cross reference listing includes the section name, memory type
and the name of the modules in which it is defined and all modules in which it is accessed.

e-g-
NAME.USAGE MODULE NAMES

7C7CCASE. .CODE; 7C7CCASE PRINTF
7C7CLDOPTR.... .CODE; 7C7CLDOPTR PRINTF
7C7CLDPTR. .CODE; 7C7CLDPTR PRINTF
7C7CSTPTR. .CODE; 7C7CSTPTR PRINTF
7C7PLDIIDATA... .CODE; 7C7PLDIIDATA PRINTF

Program Size Program size information contain the size of various memory areas as well as constant
and code space for the entire application

e.g. Program Size: data=30.1 xdala=0 code-1079

Warnings and Errors Errors and warnings generated while linking a program are written to this
section. It is very useful in debugging link errors.'

e.g. LINK/LOCATE RUN COMPLETE. 0 WARNING (S) , 0 ERROR (S)

NB: The file extension for MAP files generated by different linkers!heaters need not be the same.
It varies across linker!locater in use. For example the map file generated for BL51 Linker/locater is
with extension .M51

13.2.5 HEX File (.HEX)

Hex file is the binary executable file created from the source code. The absolute object file created by the
linker/locater is converted into processor understandable binary code. The utility used for converting an
object file to a hex file is known as Object to Hex file converter. Hex files embed the machine code in
a particular format. The format of Hex file varies across the family of processors/controllers. Intel HEX

and Motorola HEX are the two commonly used hex file formats in embedded applications. Intel HEX
file is an ASCII text file in which the HEX data is represented in ASCII format in lines. The lines in an

https://hemanthrajhemu.github.io

The Embedded System Development Environment

Intel HEX file are corresponding to a HEX Record. Each record is made up of hexadecimal numbers that
represent machine-language code and/or constant data. Individual records are terminated with a carriage
return and a linefeed. Intel HEX file is used for transferring the program and data to a ROM or EPROM
which is used as code memory storage.

13.2.5.1 Intel HEX File Format As mentioned, Intel HEX file is composed of a number of HEX
records. Each record is made up of five fields arranged in the following format:

:llaaaattdd...cc

Each group of letters corresponds to a different field, and each letter represents a single hexadecimal
digit. Each field is composed of at least two hexadecimal digits (which make up a byte) as described
below:

An extract from the Intel hex file generated for “Hello World” application example is given below.

03000000020C1FDO
OCOC1F00787FE4F6D8FD758121020C2BD3
0E0C110048656C6C6F20576F726C64210A008E
090C2B0O7BFF7A0C7911020862CA
1(3080000E517240BF8E605172278083007027 80B65
10081000E475F001120BB4020B5C2000EB7F2ED2CA
10082000008018EF540F2490D43440D4FF30040BD0
10083000EF24BFB41A0050032461FEE518600215CD
1008400018051BE51B7002051A30070D7808E475C2
100BFA00B8130CC2983098FDA899C298B811F6306B
070C0A0099FDC299F5992242
0000000IFF

Let’s analyse the first record

1 1 a a a a t t • d d d d d d c c

0 3 0 0 0 0 0 0 0 2 0 C 1 F D 0

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

: field indicates the start of a new record. 03 (//) gives the number of data bytes in the record. For this

record,1//’ is 03 and the number of data bytes in the corresponding record is 03. The start address (aaaa)

of data in the record is 0000H. The record type byte (tt) for this record is 00 and it indicates that this

record is a data record. The data for the above record is 02, 0C and IF. They are supposed to place at

three consecutive memory locations in the EEPROM with starting address 0000H. The arrangement is

given below.

Memory AddressiD Hex ... DataioHex

0O00H 02

000,H 0C —

If you are familiar with 8051 Machine code you can easily identify that 02 is the machine code for

the instruction LJMP and the next two bytes represent the 16bit address of the location to which the

jump is intended. Obviously the instmction is LJMP 0C1F. The last two digits (cc) of the record holds

the checksum of the values present in the record. The checksum is calculated by adding all the bytes in

the record and then taking modulo 256 of the result. The resultant is 2’s complemented and represented

as checksum in the record field. Above example it is OxDO. Intel hex files end with an end of file record

indicating the end of records in the hex file. Let’s examine the end of record structure.

1 1 a a a , a' t ' t , ' c c

0 0 0 > 0 0 0 0] FF

End of record also starts with the start of record symbol Since End of record does not contain any

data bytes, field 7/’ will be 00. The field ‘aaaa’ is not significant since the number of data bytes are

zero. Field 7/’ will hold the value 01 to indicate that this record is an End of record. Field ‘cc’ holds the

checksum of all the bytes present in the record and it is calculated as 2’s complement of Modulo 256 of

(0 + 0 + 0 + l) = 0xFF

13.2.5.2 Motorola HEX File Format Similar to the Intel HEX file, Motorola HEX file is also an

ASCII text file where the HEX data is represented in ASCII format in lines. The lines in Motorola HEX

file represent a HEX Record. Each record is made up of hexadecimal numbers that represent machine-

language code and/or constant data. The general form of Motorola Hex record is given below.

- • S0R> i+T KT Length Start Address Data/Code Checksum

In other words it can be represented as Stllaaaaddddd...cc

The fields of the record are explained below.

Field

SOR

0: Header. Indicates tt

1: Data Record with 1

2: Data record with 2-

9: End of File Record

Description

Stands for Start of record. The ASCII Character. ‘S’ is used as the Start of Record. Every

record begins with the character‘S’

Stands for Record type. The character11’ represents the type o

There are different meanings for the record depending on the value of

https://hemanthrajhemu.github.io

The Embedded System Development Environment

Stii-cl? fir i! * “• ~r. t i router i tine re\>_m. riLl' jgtMtypE'# idri~ --H

iC«iha. u^lwts. u* aianticr^i! ca'a'C'hb bwte Hit. nep^^r^ <u*w oitd

Le - E -“ 1 T': ^ -aSakiu $&. inks, Yduicg fl U ■ -r.4 ^ -■; r

NtartAddiS-ss waitis Asrirrs? Eric* ffrahrtertiegtf g ffitrfai^scky^ jgj| ifflEillliililEifililtt tiamt -

< 'ndeDits (dii): Dahl ticld ite,! reprcjiedti^'nfic fo^‘pf:tpta^A :rcconj ca?, jayr. liLmlxt 3>f dsUifiyMis.. jlte

? JsKjnibcr /of j|a;fe ,'E;:viA^'iii'. ■th=e-vtiLBST.J>£.r.i;:s^cGLiVfiB;'-.by't-;rW

■ 7 A:‘;j.T-:.‘:Jr-;jr sfi m: a si *_■_.? 1 j ' ;N\ : ’■'&[!:.] :--S£

I -«ngth (Iff.

Typical example of a Motorola Hex File format is given below.

S011000064656D6F5F68637331322E616273E5
S11311000002000800082629001853812341001812
S9030000FC

You can see that each Record starts with the ASCII character ‘S’. For the first record, the value for
field Y is 0 and it implies that this record is the first record in the hex file (Header Record). The second
record is a data record. The field lf for second record is 1. Number of character pairs held by second
record is 0x13 (19 in decimal). Out of this two character pairs are used for holding the start address
and one character pair for holding the checksum. Rest 16 bytes are the data bytes. The start address for
placing the data bytes is 0x1100. The data bytes that are going to be placed in 16 consecutive memory
locations starting from address 0x1100 are 0x00, 0x02, 0x00, 0x08, 0x00, 0x08, 0x26, 0x29, 0x00,
0x18, 0x53, 0x81, 0x23,0x41, 0x00 and 0x18. The last two digits (here 0x12) represent the checksum
of the record. Checksum is calculated as the least significant byte of the one’s complement of the sum of
the values represented by the pairs of characters making up the record length, address, and data fields.
The third record represents the End of File record. The value for field Y for this record is 9 and it is an
indicative of End of Hex file. Number of character pairs held by this record is 03; two for address and
one for the checksum. The address is insignificant here since the record does not contain any values to
dump into memory. Only one End of File Record is allowed per file and it must be the last line of the
file.

13.3 DISASSEMBLER/DECOMPILER _

Disassembler is a utility program which converts machine codes into target processor specific Assembly
codes/instractions. The process of converting machine codes into Assembly code is known as ‘Disas¬
sembling’. In operation, disassembling is complementary to assembling/cross-assembling. Decompiler
is the utility program for translating machine codes into corresponding high level language instructions.
Decompiler performs the reverse operation of compiler/cross-compiler. The disassemblers/decompilers
for different family of processors/controllers are different. Disassemblers/Decompilers are deployed in
reverse engineering. Reverse engineering is the process of revealing the technology behind the working
of a product. Reverse engineering in Embedded Product development is employed to find out the secret
behind the working of popular proprietary products. Disassemblers/decompilers help the reverse-engi¬
neering process by translating the embedded firmware into Assembly/high level language instructions.

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Disassemblers/Decompilers are powerful tools for analysing the presence of malicious codes (virus
information) in an executable image. Disassemblers/Decompilers are available as either freeware tools
readily available for free download from internet or as commercial tools. It is not possible for a disas¬
sembler/decompiler to generate an exact replica of the original assembly code/high level source code
in terms of the symbolic constants and comments used. However disassemblers/decompilers generate
a source code which is somewhat matching to the original source code from which the binary code is
generated.

13.4 SIMULATORS, EMULATORS AMD DEBUGGING 1 4, f 3 V pSI 8 i

Simulators and emulators are two important tools used in embedded system development. Both the
terms sound alike and are little confusing. Simulator is a software tool used for simulating the various
conditions for checking the functionality of the application firmware. The Integrated Development En¬
vironment (IDE) itself will be providing simulator support and they help in debugging the firmware for
checking its required functionality. In certain scenarios, simulator refers to a soft model (GUI model)
of the embedded product. For example, if the product under development is a handheld device, to test
the functionalities of the various menu and user interfaces, a soft form model of the product with all UI
as given in the end product can be developed in software. Soft phone is an example for such a simulator.
Emulator is hardware device which emulates the functionalities of the target device and allows real time
debugging of the embedded firmware in a hardware environment.

13.4.1 Simulators

In a previous section of this chapter, describing the Integrated Development Environment, we discussed
about simulators for embedded firmware debugging. Simulators simulate the target hardware and the
firmware execution can be inspected using simulators. The features of simulator based debugging are
listed below.

1. Purely software based
2. Doesn’t require a real target system
3. Very primitive (Lack of featured I/O support. Everything is a simulated one)
4. Lack of Real-time behaviour

13.4.1.1 Advantages of Simulator Based Debugging Simulator based debugging techniques
are simple and straightforward. The maj or advantages of simulator based firmware debugging techniques
are explained below.

No Need for Original Target Board Simulator based debugging technique is purely software ori¬
ented. IDE’s software support simulates the CPU of the target board. User only needs to know about the
memory map of various devices within the target board and the firmware should be written on the basis
of it. Since the real hardware is not required, firmware development can start well in advance immedi¬
ately after the device interface and memory maps are finalised. This saves development time.

Simulate I/O Peripherals Simulator provides the option to simulate various I/O peripherals. Us¬
ing simulator’s I/O support you can edit the values for I/O registers and can be used as the input/output
value in the firmware execution. Hence it eliminates the need for connecting I/O devices for debugging
the firmware.

https://hemanthrajhemu.github.io

The Embedded System Development Environment

Simulates Abnormal Conditions With simulator’s simulation support you can input any desired
value for any parameter during debugging the firmware and can observe the control flow of firmware. It
really helps the developer in simulating abnormal operational environment for firmware and helps the
firmware developer to study the behaviour of the firmware under abnormal input conditions.

13.4.1.2 Limitations of Simulator based Debugging Though simulation based firmware de¬
bugging technique is very helpful in embedded applications, they possess certain limitations and we
cannot fully rely upon the simulator-based firmware debugging. Some of the limitations of simulator-
based debugging are explained below.

Deviation from Real Behaviour Simulation-based firmware debugging is always carried out in a
development environment where the developer may not be able to debug the firmware under all possible
combinations of input. Under certain operating conditions we may get some particular result and it need
not be the same when the-firmware runs in a production environment.

Lack of real timeliness The major limitation of simulator based debugging is that it is not real-time
in behaviour. The debugging is developer driven and it is no way capable of creating a real time behav¬
iour. Moreover in a real application the I/O condition may be varying or unpredictable. Simulation goes
for simulating those conditions for known values.

13.4.2 Emulators and Debuggers

What is debugging and why debugging is required? Debugging in embedded application is the process
of diagnosing the firmware execution, monitoring the target processor’s registers and memory while the
firmware is running and checking the signals from various buses of the embedded hardware. Debugging
process in embedded application is broadly classified into two, namely; hardware debugging and firm¬
ware debugging. Hardware debugging deals with the monitoring of various bus signals and checking
the status lines of the target hardware. The various tools used for hardware debugging will be explain¬
ing in detail in a later section of this chapter. Firmware debugging deals with examining the firmware
execution, execution flow, changes to various CPU registers and status registers on execution of the
firmware to ensure that the finnware is running as per the design. This section deals with the debugging
of firmware.

Why is debugging required? Well the counter question why you go for diagnosis when you are ill
answers this query. Firmware debugging is performed to figure out the bug or the error in the firmware
which creates the unexpected behaviour. Finnware is analogous to the human body in the sense it is
widespread and/or modular. Any abnormalities in any area of the body may lead to sickness. How is
the region causing illness identified correctly when you are sick? If we look back to the 1900s, where
no sophisticated diagnostic techniques were available, only a skilled doctor was capable of identifying
the root cause of illness, that too with his solid experience. Now, with latest technologies, the scenario
is totally changed. Sophisticated diagnostic techniques provide offline diagnosis like Computerized
Tomography (CT), MRI and ultrasound scans and online diagnosis like micro camera based imaging
techniques. With the intrusion of a micro camera into the body, the doctors can view the internals of the
body in real time.

During the early days of embedded system development, there were no debug tools available and
the only way was “Burn the code in an EEPROM and pray for its proper functioning”. If the firmware
does not crash, the product works fine. If the product crashes, the developer is unlucky and he needs
to sit back and rework on the firmware till the product functions in the expected way. Most of the time

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

the developer had to seek the help of an expert to figure out the exact problem creator. As technology
has achieved a new dimension from the early days of embedded system development, various types of
debugging techniques are available today. The following section describes the improvements over firm¬
ware debugging starting from the most primitive type of debugging to the most sophisticated On Chip
Debugging (OCD).

13.4.2.1 Incremental EEPROM Burning Technique This is the most primitive type of firmware
debugging technique where the code is separated into different functional code units. Instead of burning
the entire code into the EEPROM chip at once, the code is burned in incremental order, where the code
corresponding to all functionalities are separately coded, cross-compiled and burned into the chip one
by one. The code will incorporate some indication support like lighting up an “LED (every embedded
product contains at least one LED). If not, you should include provision for at least one LED in the
target board at the hardware design time such that it can be used for debugging purpose)” or activate a
“BUZZER (In a system with BUZZER support)” if the code is functioning in the expected way. If the
first functionality is found working perfectly on the target board with the corresponding code burned
into the EEPRO'M, go for burning the code corresponding to the next functionality and check whether
it is working. Repeat this process till all functionalities are covered. Please ensure that before entering
into one level up, the previous level has delivered a correct result. If the code corresponding to any
functionality is found not giving the expected result, fix it by modifying the code and then only go for
adding the next functionality for burning into the EEPROM. After you found all functionalities working
properly, combine the entire source for all functionalities together, re-compile and bum the code for the
total system functioning.

Obviously it is a time-consuming process. But remember it is a onetime process and once you test
the firmware in an incremental model you can go for mass production. In incremental firmware burning
technique we are not doing any debugging but observing the status_of firmware execution as a debug
method. The very common mistake committed by firmware developers in developing non-operating
system-based embedded application is burning the entire code altogether and fed up with debugging
the code. Please don’t adopt this approach. Even though you need to spend some additional time on
incremental burning approach, you will never lose in the process and will never mess up with debug¬
ging the code. You will be able to figure out at least ‘on which point of firmware execution the issue
is arising’-“A stitch in time saves nine”. Incremental firmware burning technique is widely adopted
in small, simple system developments and in product development where time is not a big constraint
(e.g. R&D projects). It is also very useful in product development environments where no other debug
tools are available.

13.4.2.2 Inline BreakpoinVBased Firmware Debugging Inline breakpoint based debugging is
another primitive method of firmware debugging. Within the firmware where you want to ensure that
firmware execution is reaching up to a specified point, insert an inline debug code immediately after
the point. The debug code is a printfQ function which prints a string given as per the firmware. You can
insert debug codes {printfQ) commands at each point where you want to ensure the firmware execution
is covering that point. Cross-compile the source code with the debug codes embedded within it. Bum
the corresponding hex file into the EEPROM. You can view the printfQ generated data on the ‘Hyper-
Terminal-—A communication facility available with the Windows OS coming under the Communica¬
tions section of Start Menu’ of the Development PC. Configure the serial communication settings of
the ‘HyperTerminaT connection to the same as that of the serial communication settings configured in
the firmware (Say Baudrate = 9600; Parity = None; Stop Bit = 1; Flow Control = None); Connect the

https://hemanthrajhemu.github.io

The Embedded System Development Environment

target board’s serial port (COM) to the development PC’s COM Port using an RS232 Cable. Power up
the target board. Depending on the execution flow of firmware and the inline debug codes inserted in the
firmware, you can view the debug information on the 'HyperTerminal’. Typical usage of inline debug
codes and the debug info retrieved on the HyperTerminal is illustrated below.

//First Inline Debug Code >

printf ("Starting Configuration...\n");

Configurations.\
* v*• y V| ,V

//Inline Debug code ensuring execution of Configuration se

printf ("End of Configuration...\n") ;
' _ Jr /ri i T* /■ *. t-i printf ("Beginning

Code\segrnentl.... * _ ;

T of .Firmware v •;;

if;, Stt'.' si:
, yzC&S ■’■■■ Vi- if tit

Ccide segment!.,.* ■ , - ■
^ & ~ "S ^ l * - / y.® C f *

//Inline Debug code ensuring execution

printf ("End of Code segment l...\n") ;

Code’ segment2.... : ■ f ‘

r ' ') t :

, » ^ f ,

//Inline Debug code ensuring- execution of Code Segment 2 1

print! ("End of Code segment 2,..\n") ; -

If the firmware is error free and the execution occurs properly, you will get all the debug messages on
the HyperTerminal. Based on this debug info you can check the firmware for errors (Fig. 13.38).

;;> Traget Debug - HyperTerminal

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

13.4.2.3 Monitor Program Based Firmware Debugging Monitor program based firmware de¬
bugging is the first adopted invasive method for firmware debugging (Fig. 13.39). In this approach a
monitor program which acts as a supervisor is developed. The monitor program controls the download¬
ing of user code into the code memory, inspects and modifies register/memory locations; allows single
stepping of source code, etc. The monitor program implements jfie debug functions as per a pre-defined
command set from the debug application interface. The monitor program always listens to the serial port
of the target device and according to the command received from the serial interface it performs com¬
mand specific actions like firmware downloading, memoiy inspection/modification, firmware single
stepping and sends the debug information (various register and memory contents) back to the main de¬
bug program running on the development PC, etc. The first step in any monitor program development is
determining a set of commands for performing various operations like firmware downloading, memory/
register inspection/modification, single stepping, etc. Once the commands for each operation is fixed,
write the code for.performing the actions corresponding to these commands. As mentioned earlier, the
commands may be received through any of the external interface of the target processor (e.g. RS-232C
serial interface/parallel interface/USB, etc.). The monitor program should query this interface to get
commands or should handle the command reception if the data reception is implemented through inter¬
rupts. On receiving a command, examine it and perfonn the action corresponding to it. The entire code
stuff handling the command reception and corresponding action implementation is known as the “moni¬
tor program”. The most common type of interface used between target board and debug application is
RS-232C Serial interface. After the successful completion of the ‘monitor program’ development, it is
compiled and burned into the FLASH memory or ROM of the target board. The code memory contain¬
ing the monitor program is known as the ‘Monitor ROM.

Target CPU

Target board

Von-Neumann RAM

(Fig. 13.39) Monitor Program Based Target Firmware Debug Setup

The monitor program contains the following set of minimal features.
1. Command set interface to establish communication with the debugging application
2. Firmware download option to code memory
3. Examine and modify processor registers and working memory (RAM)
4. Single step program execution
5. Set breakpoints in firmware execution
6. Send debug information to debug application running on host machine

https://hemanthrajhemu.github.io

The Embedded System Development Environment

The monitor program usually resides at the reset vector (code memory 0000H) of the target proces¬
sor. The monitor program is commonly employed in development boards and the development board
supplier provides the monitor program, in the form of a ROM chip. The actual code memory is down¬
loaded into a RAM chip which is interfaced to the processor in the Von-Neumann architecture model.
The Von-Neumann architecture model is achieved by ANDing the PSEN\ and RD\ signals of the target
processor (In case of 8051) and connecting the output of AND Gate to the Output Enable . (RD\) pin
of RAM chip. WR\ signal of the target processor is interfaced to The WR\ signal of the Von Neumann
RAM. Monitor ROM size varies in the range of a few kilo bytes (Usually 4K). An address decoder
circuit maps the address range allocated to the monitor ROM and activates the Chip Select (CSV) of
the ROM if the address is within the range specified for the Monitor ROM. A user program is normally
loaded at locations0x4000 or 0x8000. The address decoder circuit ensures the enabling of the RAM'
chip (CSV) when the address range is outside that allocated to the ROM monitor. Though there are two
memory chips (Monitor ROM Chip and Von-Neumann RAM), the total memory, map available for both
of them will be 64K for a processor/controller with 16bit address space and the memory decoder ,units
take care of avoiding conflicts in accessing both. While developing user program for monitor &OM-
based systems, special care should be taken to offset the user code and handling the interrupt vectors.
The target development IDE will help in resolving this. During firmware execution and single stepping,
the user code may have to be altered and hence the firmware is always downloaded into a Von-Neumann
RAM in monitor ROM-based debugging systems. Monitor ROM-based debugging is suitable only for
development work and it is not a good choice for mass produced systems. The major drawbacks of
monitor based debugging system are

1. The entire memory map is converted into a Von-Neumann model and it is shared between the
monitor ROM, monitor program data memory, monitor program trace buffer, user written firm¬
ware and external user memory. For 8051, the original Harvard architecture supports 64K code
memory and 64K external data memory (Total 128K memory map). Going for a monitor based
debugging shrinks the total available memory to 64K Von-Neumann memory and it needs to ac¬
commodate all kinds of memory requirement (Monitor Code, monitor data, trace buffer memory,
User code and External User data memory).

2. The communication link between the debug application running on Development PC and monitor
program residing in the target system is achieved through a serial link and usually the controller’s
On-chip UART is used for establishing this link. Hence one serial port of the target processor be¬
comes dedicated for the monitor application and it cannot be used for any other device interfacing.
Wastage of a serial port! It is a serious issue in controllers or processors with single UART.

13.4.2.4 In Circuit Emulator (ICE) Based Firmware Debugging The terms ‘Simulator’ and
‘Emulator’ are little bit confusing and sounds similar. Though their basic functionality is the same
- “Debug the target firmware”, the way in which they achieve this functionality is totally different. As
mentioned before, ‘Simulator’ is a software application that precisely duplicates (mimics) the target CPU
and simulates the various features and instructions supported by the target CPU, whereas an ‘Emulator’
is a self-contained hardware device which emulates the target CPU. The emulator hardware contains
necessary emulation logic and it is hooked to the debugging application running on the development PC
on one end and connects to the target board through some interface on the other end. In summary, the
simulator ‘simulates’ the target board CPU and the emulator ‘emulates’ the target board CPU-

There is a scope change that has happened to the definition of an emulator. In olden days emulators
were defined as special hardware devices used for emulating the functionality of a processor/controller

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

and performing various debug operations like halt firmware execution, set breakpoints, get or set inter¬
nal RAM/CPU register, etc. Nowadays pure software applications which perform the functioning of a
hardware emulator is also called as ‘Emulators’ (though they are ‘Simulators’ in operation). The emula¬
tor application for emulating the operation of a PDA phone for application development is an example
of a ‘Software Emulator’. A hardware emulator is controlled by a debugger application running on the
development PC. The debugger application may be part of the Integrated Development Environment
(IDE) or a third party supplied tool. Most of the IDEs incorporate debugger support for some of the
emulators commonly available in the market. The emulators for different families of processors/con¬
trollers are different. Figure 13.40 illustrates the different subsystems and interfaces of an ‘Emulator’
device.

Debugger application RS-232/USB cable Emulator POD

(Fig. 13.40) In

The Emulator POD forms the heart of any emulator system and it contains the following functional
units.

Emulation Device Emulation device is a replica of the target CPU which receives various signals
from the target board through a device adaptor connected to the target board and performs the execution
of firmware under the control of debug commands from the debug application. The emulation device
can be either a standard chip same as the target processor (e.g. AT89C51) or a Programmable Logic
Device (PLD) configured to function as the target CPU. If a standard chip is used as the emulation de¬
vice, the emulation will provide real-time execution behaviour. At the same time the emulator becomes
dedicated to that particular device and cannot be re-used for the derivatives of the same chip. PLD-based
emulators can easily be re-configured to use with derivatives of the target CPU under consideration. By
simply loading the configuration file of the derivative processor/controller, the PLD gets re-configured
and it functions as the derivative device. A major drawback of PLD-based emulator is the accuracy of
replication of target CPU functionalities. PLD-based emulator logic is easy to implement for simple
target CPUs but for complex target CPUs it is quite difficult.

Emulation Memory It is the Random Access Memory (RAM) incorporated in the Emulator device.
It acts as a replacement to the target board’s EEPROM where the code is supposed to be downloaded
after each firmware modification. Hence the original EEPROM memory is emulated by the RAM of
emulator. This is known as ‘ ROM Emulation’. ROM emulation eliminates the hassles of ROM burning
and it offers the benefit of infinite number of reprogrammings (Most of the EEPROM chips available

https://hemanthrajhemu.github.io

The Embedded System Development Environment

in the market supports only 100 to 1000 re-program cycles). Emulation memory also acts as a trace
buffer in debugging. Trace buffer is a memory pool holding the instructions executed/registers modi¬
fied/related data by the processor while debugging. The trace buffer size is emulator dependent and the
trace buffer holds the recent trace information when the buffer overflows. The common features of trace
buffer memory and trace buffer data viewing are listed below:

• Trace buffer records each bus cycle in frames
• Trace data can be viewed in the debugger application as Assembly/Source code
• Trace buffering canbedone on the basis of a Trace trigger (Event)
• Trace buffer can also- record signals from target board other than CPU signals (Emulator depen¬

dent)
• Trace data is a-very useful information in firmware debugging

Emulator Control Logic Emulator control logic is the logic circuits used for implementing complex
hardware breakpoints, trace buffer trigger detection, trace buffer control, etc. Emulator control logic
circuits are also used for implementing logic analyser functions in advanced emulator devices. The
‘Emulator POD5 is connected to the target board through a ‘Device adaptor’ and signal cable.

Device Adaptors Device adaptors act as an interface between the target board and emulator POD.
Device adaptors are normally pin-to-pin compatible sockets which can be inserted/plugged into the
target board for routing the various signals from the pins assigned for the target processor. The device
adaptor is usually connected to the emulator POD using ribbon cables. The adaptor type varies depend¬
ing on the target processor’s chip package. DIP, PLCC, etc. are some commonly used adaptors.

The above-mentioned emulators are almost dedicated ones, meaning they are built for emulating a
specific target processor and have little or less support for emulating the derivatives of the target proces¬
sor for which the emulator is built. This type/of emulators usually combines the entire emulation control
logic and emulation device (if present) in a single board. They are known as ‘Debug Board Modules

(DBMs)\ An alternative method of emulator design supports emulation of a variety of target proces¬
sors. Here the emulator hardware is partitioned into two, namely, 'Base Terminal’ and ‘Probe Card’.
The Base terminal contains all the emulator hardware and emulation control logic except the emulation
chip (Target board CPU’s replica). The base terminal is connected to the Development PC for establish¬
ing communication with the debug application. The emulation chip (Same chip as the target CPU) is
mounted on a separate PCB and it is connected to the base terminal through a ribbon cable. The ‘Probe

Card’ board contains the device adaptor sockets to plug the board into the target development board.
The board containing the emulation chip is known as the ‘Probe Card'. For emulating different target
CPUs the ‘Probe Card’ will be different and the base tenninal remains the same. The manufacturer of
the emulator supplies ‘Probe Card’ for different CPUs. Though these emulators are capable of emulat¬
ing different CPUs, the cost for ‘Probe Cards' is very high. Communication link between the emulator
base unit/ Emulator POD and debug application is established through a Serial/Parallel/USB interface.
Debug commands and debug information are sent to and from the emulator using this interface.

13.4.2.5 On Chip Firmware Debugging (OCD) Advances in semiconductor technology has
brought out new dimensions to target firmware debugging. Today almost all processors/controllers in¬
corporate built in debug modules called On Chip Debug (OCD) support. Though OCD adds silicon
complexity and cost factor, from a developer perspective it is a very good feature supporting fast and
efficient firmware debugging. The On Chip Debug facilities integrated to the processor/controller are
chip vendor dependent and most of them are proprietary technologies like Background Debug Mode

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

(BDM), OnCE, etc. Some vendors add ‘on chip software debug support’ through JTAG (Joint Test Ac¬
tion Group) port. Processors/controllers with OCD support incorporate a dedicated debug module to the
existing architecture. Usually the on-chip debugger provides the means to set simple breakpoints, query
the internal state of the chip and single step through code. OCD module implements dedicated registers
for controlling debugging. An On Chip Debugger can be enabled by setting the OCD enable bit (The bit
name and register holding the bit varies across vendors). Debug related registers are used for debugger
control (Enable/disable single stepping, Freeze execution, etc.) and breakpoint address setting. BDM
and JTAG are the two commonly used interfaces to communicate between the Debug application run¬
ning on Development PC and OCD module of target'CPU. Some interface logic in the form of hardware
will be implemented between the CPU OCD interface and the host PC to capture the debug information
from the target CPU and sending it to the debugger application running on the host PC. The interface
between the hardware and PC may be Serial/Parallel/USB. The following section will give you a brief
introduction about Background Debug Mode (BDM) and JTAG interface used in On Chip Debugging.

Background Debug Mode (BDM) interface is a proprietary On Chip Debug solution from Motorola.
BDM defines the communication interface between the chip resident debug core and host PC where the
BDM compatible remote debugger is running. BDM makes use of 10 or 26 pin connector to connect
to the target board. Serial data in (DSI), Serial data out (DSO) and Serial clock (DSCLK) are the three
major signal lines used in BDM. DSI sends debug commands serially to the target processor from the
remote debugger application and DSO sends the debug response to the debugger from the processor.
Synchronisation of serial transmission is done by the serial clock DSCLK generated by the debugger
application. Debugging is controlled by BDM specific debug commands. The debug commands are usih
ally 17-bit wide. 16 bits are used for representing the command and 1 bit for status/control.

Chips with JTAG debug interface contain a built-in JTAG port for communicating with the remote
debugger application. JTAG is the acronym for Joint.Test Action Group. JTAG is the alternate nappe for
IEEE 1149.1 standard. Like BDM, JTAG is also a serial interfacerThe signal lines of JTAG protocol are
explained below.

Test Data In (TDI): It is used for sending debug commands serially from remote debugger to the target
processor.

Test Data Out (TDO): Transmit debug response to the remote debugger from target CPU.

Test Clock (TCK): Synchronises the serial data transfer.

Test Mode Select (TMS): Sets the mode of testing.

Test Reset (TRST): It is an optional signal line used for resetting the target CPU.
The serial data transfer rate for JTAG debugging is chip dependent. It is usually within the range of

10 to 1000 MHz.

13.5 TARGET HARDWARE DEBUGGING ___

Even though the firmware is bug free and everything is intact in the board, your embedded product
need not function as per the expected behaviour in the first pttem.pt for various hardware related reasons
like dry soldering of components, missing connections in the PCB due to any un-noticed errors in the
PCB layout design, misplaced components, signal corruption due to noise, etc. The only way to sbrt out
these issues and figure out the real problem creator is debugging the target board. Hardware debugging
is not similar to firmware debugging. Hardware debugging involves the monitoring of various signals

https://hemanthrajhemu.github.io

The Embedded System Development Environment

of the target board (address/data lines, port pins, etc.), checking the inter, connection among various
components, circuit continuity checking, etc. The various hardware debugging tools used in Embedded
Product Development are explained below.

\

13.5.1 Magnifying Glass (Lens)

You might have noticed watch repairer wearing a small magnifying glass while engaged in repairing a
watch. They use the magnifying glass to view the minute components inside the watch in an enlarged
manner so that they can easily work with them. Similar to a watch repairer, magnifying glass is the pri¬
mary hardware debugging tool for an embedded hardware debugging professional. A magnifying glass
is a powerful visual inspection tool. With a magnifying glass (lens), the surface of the target board can
be examined thoroughly for dry soldering of components, missing components, improper placement of
components, improper soldering, track (PCB connection) damage, short of tracks, etc. Nowadays high
quality magnifying stations are available for visual inspection. The magnifying station incorporates
magnifying glasses attached to a stand with CFL tubes for providing proper illumination for inspection.
The station usually incorporates multiple magnifying lenses. The main lens acts as a visual inspection
tool for the entire hardware board whereas the other small lens within the station is used for magnifying
a relatively small area of the board which requires thorough inspection.

13.5.2 Multimeter

I believe the name of the instrument itself is sufficient to give an outline of its usage. A multimeter is
used for measuring various electrical quantities like voltage (Both AC and DC), current (DC as well as
AC), resistance, capacitance, continuity checking, transistor checking, cathode and anode identification
of diode, etc. Any multimeter will work over a specific range for each measurement. A multimeter is the
most valuable tool in the toolkit of an embedded hardware developer. It is the primary debugging tool
for physical contact based hardware debugging and almost all developers start debugging the hardware
with it. In embedded hardware debugging it is mainly used for checking the circuit continuity between
different points on the board, measuring the supply voltage, checking the signal value, polarity, etc.
Both analog and digital versions of a multimeter are available. The digital version is preferred over
analog the one for various reasons like readability, accuracy, etc. Fluke, Rishab, Philips, etc. are the
manufacturers of commonly available high quality digital multimeters.

13.5.3 Digital CRO

Cathode Ray Oscilloscope (CRO) is a little more sophisticated tool compared to a multimeter. You might
have studied the operation and use of a CRO in your basic electronics lab. Just to refresh your brain,
CRO is used for wavefomi capturing and analysis, measurement of signal strength, etc. By connecting
the point under observation on the target board to the Channels of the Oscilloscope, the waveforms can
be captured and analysed for expected behaviour. CRO is a very good tool in analysing interference
noise in the power supply line and other signal lines. Monitoring the crystal oscillator signal from the
target board is a typical example of the usage of CRO for waveform capturing and analysis in target
board debugging. CROs are available in both analog and digital versions. Though Digital CROs are
costly, featurewise they are best suited for target board debugging applications. Digital CROs are avail¬
able for high frequency support and they also incorporate modem techniques for recording waveform
over a period of time, capturing waves on the basis of a configurable event (trigger) from the target board

https://hemanthrajhemu.github.io

Introduction to Embedded Systems 608

(e.g. High to low transition of a port pin of the target processor). Most of the modem digital CROs con¬
tain more than one channel and it is easy to capture and analyse various signals from the target board
using multiple channels simultaneously. Various measurements like phase, amplitude, etc. is also pos¬
sible with CROs. Tektronix, Agilent, Philips, etc. are the manufacturers of high precision good quality
digital CROs.

13.5.4 Logic Analyser

A logic analyser is the big brother of digital CRO. Logic analyser is used for capturing digital data (logic
1 and 0) from a digital circuitry whereas CRO is employed in capturing all kinds of waves including
logic signals. Another major limitation of CRO is that the total number of logic signals/waveforms that
can be captured with a CRO is limited to the number of channels. A logic analyser contains special con¬
nectors and clips which can be attached to the target board for capturing digital data. In target board de¬
bugging applications, a logic analyser captures the states of various port pins, address bus and data bus
of the target processor/controller, etc. Logic analysers give an exact reflection of what happens when
a particular line of firmware is running. This is achieved by capturing the address line logic and data
line logic of target hardware. Most modem logic analysers contain provisions for storing captured data,
selecting a desired region of the captured waveform, zooming selected region of the captured waveform,
etc. Tektronix, Agilent, etc. are the giants in the logic analyser market.

13.5.5 Function Generator

Function generator is not a debugging tool. It is an input signal simulator tool. A function generator is
capable of producing various periodic waveforms like sine wave, square wave, saw-tooth wave, etc.
with different frequencies and amplitude. Sometimes the target board may require some kind of periodic
waveform with a particular frequency as input to some part of the board. Thus, in a debugging environ¬
ment, the function generator serves the purpose of generating and supplying required signals.

13.6 BOUNDARY SCAN

As the complexity of the hardware increase, the number of chips present in the board and the intercon¬
nection among them may also increase. The device packages used in the PCB become miniature to
reduce the total board space occupied by them and multiple layers may be required to route the inter¬
connections among the chips. With miniature device packages and multiple layers for the PCB it will be
very difficult to debug the hardware using magnifying glass, multimeter, etc. to check the interconnec¬
tion among the various chips. Boundary scan is a technique used for testing the interconnection among
the various chips, which support JTAG interface, present in the board. Chips which support boundary
scan associate a boundary scan cell with each pin of the device. A JTAG port which contains the five
signal lines namely TDI, TDO, TCK, TRST and TMS form the Test Access Port (TAP) for a JTAG sup¬
ported chip. Each device will have its own TAP. The PCB also contains a TAP for connecting the JTAG
signal lines to the external world. A boundary scan path is formed inside the board by interconnecting
the devices through JTAG signal lines. The TDI pin of the TAP of the PCB is connected to the TDI pin of
the first device. The TDO pin of the first device is connected to the TDI pin of the second device. In this
way all devices are interconnected and the TDO pin of the last JTAG device is connected to the TDO
pin of the TAP of the PCB. The clock line TCK and the Test Mode Select (TMS) line of the devices are

https://hemanthrajhemu.github.io

The Embedded System Development Environment

connected to the clock line and Test mode select line of the Test Access Port of the PCB respectively.
This forms a boundary scan path. Figure 13.41 illustrates the same.

Boundary Scan Cells Boundary Scan Path

As mentioned earlier, each pin of the device associates a boundary scan cell with it. The boundary
scan cell is'a multipurpose memory cell. The boundary scan cell associated with the input pins of an IC
is known as ‘input cells’ and the boundary scan cells associated with the output pins of an IC is known as
‘output cells’. The boundary scan cells can be used for capturing the input pin signal state and passing it
to the internal circuitry, capturing the signals from the internal circuitry and passing it to the output pin,
and shifting the data received from the Test Data In pin of the TAP. The boundary scan cells associated
with the pins are interconnected and they form a chain from the TDI pin of the device to its TDO pin.
The boundary scan cells can be operated in Normal, Capture, Update and Shift modes. In the Normal
mode, the input of the boundary scan cell appears directly at its output. In the Capture mode, the bound¬
ary scan cell associated with each input pin of the chip captures the signal from the respective pins to the
cell and the boundary scan cell associated with each output pin of the chip captures the signal from the
internal circuitry. In the Update mode, the boundary scan cell associated with each input pin of the chip
passes the already captured data to the internal circuitry and the boundary scan cell associated with each
output pin of the chip passes the already captured data to the respective output pin. In the shift mode,
data is shifted from TDI pin to TDO pin of the device through the boundary scan cells. ICs support¬
ing boundary scan contain additional boundary scan related registers for facilitating the boundary scan
operation. Instruction Register, Bypass Register, Identification Register, etc. are examples of boundary
scan related registers. The Instruction Register is used for holding and processing the instruction re:
ceived over the TAP. The bypass register is used for bypassing the boundary scan path of the device and
directly interconnecting the TDI pin of the device to its TDO. It disconnects a device from the bound¬
ary scan path. Different instructions are used for testing the interconnections and the functioning of the

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

chip. Extest, Bypass, Sample and Preload, Intest, etc. are examples for instructions for different types
of boundary scan tests, whereas the instruction Runbist is used for performing a self test On the internal
functioning of the chip. The Runbist instruction produces a pass/fail result.

Boundary Scan Description Language (BSDL) is used for implementing boundary scan tests us¬
ing JTAG. BSDL is a subset of VHDL and it describes the JTAG implementation in a device. BSDL
provides information on how boundary scan is implemented in an integrated chip. The BSDL file (File
which describes the boundary scan implementation for a device in . bsd format) for a JTAG compli¬
ant device is supplied the device manufacturers or it can be downloaded from internet repository. The
BSDL file is used as the input to a Boundary Scan Tool for generating boundary scan test cases for a
PCB. Automated tools are available for boundary scan test implementation from multiple vendors. The
ScanExpress™ Boundary Scan (JTAG) product from Corelis Inc. (www.corelis.comJ is a popular tool
for boundary scan test implementation.

/ Integrated Development Environment (IDE) is an integrated environment for developing and debugging the

target processor specific embedded firmware. IDE is a software package which bundles a ‘Text Editor (Source

Code Editor)’, ‘Cross-compiler,(for cross platform development and compiler'forsame platform development)’,

‘Linker’and a‘Debugger’- ; . - -v- x. • |

F Keil pVisionJ is a licensed IDE tool from Keil Software iwww.keil.com). an ARM company, for 8051 family

‘ microcontroller based embedded firmware development •--v -.

F List File (.1st), Pre-processor Output file, Map File (File extension linker dependent), Object File (.obj), Hex File

(.hex), etc. are the files generated during the cross-compilation process of a source file

F Hex file is the binary executable file created from the source code. The absolute object file created by the litiker/

locater is Converted into processor understandable binary code. Object to Hexfile1 converter is the'utili^pragmtg>:

. for converting hit ^object file to a hex file ' ! r % >* tTA

F Intel HEX and Motorola HEX are the two commonly used Ilex file formats in embedded applications - f ||

F Disassembler is a utility program which converts machine codes into target processor specific Assembly codes/

instructions. Disassembling is the process of converting machine codes into Assembly code

F Decompiler is the utility program for translating machine codes into corresponding high level language

instructions ;A

F Simulator is a software application that precisely duplicates (mimics) the target CPU and simulates the, various

features and instructions supported by the target CPU r ■
F Emulator is a self-contained hardware device which emulates the target CPU. Emulator hardware contains

necessary emulation logic and it is hooked to the debugging application running on the development PC on ofte

end and connects to the target board through some interface on the other end

F Incremental EEPROM Burning technique. Inline breakpoint based Firmware Debugging, Monitor Program

based Firmware Debugging, In Circuit Emulator (ICE) based Firmware Debugging and On Chip Firmware

Debugging (OCD) are the techniques used for debugging embedded firmware on the target hardware /< d •

F Background Debug Mode (BDM) Interface and JTAG are the two commonly used interfaces for On Chip

Firmware Debugging (OCD) ... be

F Magnifying glass, Multimeter, Cathode Ray Oscilloscope (CRO), Logic Analyser and Function generator'arglhet

commonly used hardware debugging tools . - -i,

F 'Boundary scan is a technique for testing.the interconnection among the various chips, which.supportboufid^;':

scanning, in a complex board containing too many interconnections and multiple planes for routing

F Boundary Scan Description Language (BSDL) is a language similar to VHDL, which describes the boundary

https://hemanthrajhemu.github.io

The Embedded System Development Environment

scan implementation of a device and is used for implementing boundary scan tests using JTAG. BSDL file is ,

a file containing the boundary scan description for a device in boundary scan description language, which is

supplied as input to a Boundary scan tool for generating the boundary scan test cases

Integrated Development

Environment (IDE)

Kell p Vision!

Listing file (.LST File)

Object File (.OBJ File)

Map file

Hex file

Intel HEX

Motorola HEX

Disassembler

Decompiler

Simulator

Monitor Program

fW Keywords

A, software' package which bundles a ‘Text Editor (Source Code Editb?)’|§

‘Cross-compiler (for cross platform development and compiler for same

platform development)’, ‘Linker’ and a ‘Debugger’

A licensed IDE tool from Keil Software (www.keil.com). an ARM company,

fpr.8051 family microcontroller based embedded firmware development/^.-

File generated during cross compilation of rr fource code and it contains

information about the cross compilation process, like cross compiler details,

formatted source text (‘C’ code), assembly code generated from the sopree.

file, symbol tables, errors and warnings detected during the cross-compilation

process, etc. v .* .,.

A specially formatted file with data records for symbolic information,'object

code, debugging information, library references, etc. generated during the

cross-compilation of a source file .a ■„ f y ' {S|§|H€

File generated during cross-compilation process and it contains information

about the link/locate process. " ' ■-* / V

The binary executable file created from the source code SS*§|

HEX file representation format ,

HEX file representation format !)„"■

Utility program which converts machine codes into target processor specific

Assembly codes/instructions.

Utility program for translating machine codes into corresponding high level

language instructions

Software application that precisely duplicates (mimics) the target CPU and

simulates the various features and instructions supported by the target CPU

Program which acts as a supervisor and controls the downloading of user

code into the code memory, inspects and modifies register/memory locations,

allows single stepping of source code, etc.

In Circuit Emulator (ICE) :

Debug Board Module (DBM) :

Background Debug Mode (BDM) :

JTAG :

Boundary Scan :

Boundary Scan Description :

Language (BSDL)

A hardware device for emulating the target CPU for debug purpose

ICE device which contains the emulation control logic and emulation chip in

a single hardware unit and is designed for a particular family of device

A proprietary serial interface from Motorola for On Chip Debugging

A serial interface for target board diagnostics and debugging

A target hardware debug method for checking the interconnections among

the various chips of a complex board

A language similar to VHDL, which describes the boundary scan

implementation of a JTAG supported device

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

Objective Questions]

1 Which of the following intermediate file, generated during cross-compilation of an Embedded C file holds the

assembly code generated corresponding to the c source code.

(a) List File (b) Preprocessor output file (c) Object file (d) Map file

2 Which of the following detail(s) is(are) kept in an object file generated during the process of cross-compiling an

Embedded C file.

(a) Variable and function names (b) Variable and function reference

(c) Reserved memory for global variables (d) All of these

(e) None of these

3 Which of the following intermediate file, generated during the cross-compilation of an Embedded C files holds the

information about the link/locate process for the multiple object modules of the project?

(a) List file (b) Preprocessor output file (c) Object file (d) Map file

4 Which of the following file generated during the cross-compilation process of an Embedded C project holds the

machine code corresponding to the target processor?

(a) List file (b) Preprocessor output file (c) Object file (d) Map file

5 Examine the following Intel HEX Record

:03000000020C1FD0

This record is ?

(a) a Data Record (b) an End of File Record (c) a Segment Address Record

(d) an Extended Linear Address record

6 Examine the following Intel HEX record

:03000000020C1FDO

What is the number of data bytes in this record?

(a) 0 (b) 3 (c) 2 (d) 20

7 Examine the following Intel HEX record

: 03000000020C1FDO

What is the start address of the data bytes in this record?

(a) 0x0000 (b) 0x3000 (c) OxlFDO (d) 0x20Cl

8 Examine the following Intel HEX Record

:03000000020C1FDO

Which all are the data bytes present in this record?

(a) 03,00,00 (b) 02, 0C, IF (c) 0C, IF, DO (d) 00,00,20

9 The program that converts machine codes into target processor specific Assembly code is known as

(a) Disassembler (b) Assembler (c) Cross-compiler (d) Decompiler

10 Which of the following is true about a simulator used in embedded software debugging?

(a) It is a software tool (b) It requires target hardware for simulation

(c) It doesn’t require target hardware for simulation (d) (a) and (b) (e) (a) and (c)

11 Which of the following is an example for on chip firmware debugging?

(a) OnCE (b) BDM (c) All of these

Review Questions

1 Explain the various elements of an embedded system development environment.

2 Explain the role of Integrated Developmeni'Envirohment (IDE) for Embedded Software Development.

https://hemanthrajhemu.github.io

The Embedded System Development Environment

3 What are the different files generated during the cross-compilation of an Embedded C file? Explain them in

detail.

4 Explain the various details held by a List file generated during the process of cross-compiling an Embedded C

project.

5 Explain the various details held by a Map file generated during the process of cross-compiling an Embedded C

project.

6 Explain the various details stored in an Object file generated during the cross-compilation of an Embedded C file.

7 Explain the difference between Intel Hex and Motorola Hex file format.

8 Explain the format of Hex records in an Intel Hex File.

9 Explain the format of Hex records in a Motorola Hex File.

10 What is the difference between an assembler and a disassembler? State their use in Embedded Application

development.

11 What is a decompiler?

12 What is the difference between a simulator and an emulator?

13 Explain the advantages and limitations of simulator based debugging.

14 What are the different techniques available for embedded firmware debugging? Explain them in detail.

15 What is a Monitor program? Explain its role in embedded firmware debugging?

16 What is ROM emulation! Explain In Circuit Emulator (ICE) based debugging in detail.

17 Explain On Chip Debugging (OCD).

18 Explain the different tools used for hardware debugging.

19 Explain the Boundary Scan based hardware debugging in detail.

Lab Assignments

reen and Red LEDs alte th a delay o

ca
„ r

tion separately t<
jir.

ir delay generation usi

ts :equ A ssembly Language

https://hemanthrajhemu.github.io

Introduction to Embedded Systems

https://hemanthrajhemu.github.io

