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CHAPTER

1
WHATIS ARTIFICIAL INTELLIGENCE?

 

There are three kinds of intelligence: one Kind understands things for itself, the other appreciates what
others can understand, the third understands neither for itself nor through others. This first Kind is

excellent, the secondgood, and the third Kind useless.

—Niccolo Machiavelli
(1469-1527), Italian diplomat, political philosopher,

musician, poet and playwright

What exactly is artificial intelligence? Although most attempts to define complex and widely used terms

precisely are exercises in futility, it is useful to draw at least an approximate boundary around the concept to
provide a perspective on the discussion that follows. To do this, we propose the following by no means

universally accepted definition. Artificial intelligence (AT) is the study of how to make computers do things

which, at the moment, people do better. This definition is, of course, somewhat ephemeral because ofits

reference to the current state of computer science. Andit fails to include some areas of potentially very large

impact, namely problems that cannot now be solved well by either computers or people. But it provides a

. good outline of what constitutes artificial intelligence, and it avoids the philosophical issues that dominate

attempts to define the meaning ofeitherartificial ot intelligence. Interestingly, though, it suggests a similarity

with philosophy at the same time it is avoiding it. Philosophy has always been the study of those branches of

knowledge that were so poorly understood that they had not yet become separate disciplines in their own

right. As fields stich as mathematics or physics became more advanced, they broke off from philosophy.

Perhaps if AI succeedsit can reduce itself to the empty set. As on date this has not happened. There are signs

which seem to suggest that the newer off-shoots of Al together with their real world applications are gradually

overshadowingit, As Al migrates to the real world we do not seem to be satisfied with just a computer playing

a chess game. Instead we wish a robot would sit opposite to us as an opponent, visualize the real board and

make the right moves in this physical world. Such notions seem to push the definitions of AI to a greater

extent. As we read on, there will be always that jurking feeling that the definitions propounded so far are not

adequate. Only what wefinally achieve in the future will help us propound an apt definition for AI! The

feeling of intelligence is a mirage, if you achieveit, it ceases to make you feel so. As somebody has aptly put

it — Al is Artificial Intelligence till it is achieved; after which the acronym reduces to Already Implemented.
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4 Artificial Intelligence
 

One must also appreciate the fact that comprehending the concept of AI also aids us in understanding how

natural intelligence works. Though a complete comprehensionof its working may remain a mirage, the very

attempt will definitely assist in unfolding mysteries one by one.

1.1 THE AI PROBLEMS

What then are some ofthe problems contained within Al? Much ofthe early work in the field focused on

formal tasks, such as game playing and theorem proving. Samuel wrote a checkers-playing program that not

only played games with opponentsbut also used its experience at those gamesto improveits later performance.

Chess also received a good deal of attention. The Logic Theorist was an early attempt to prove mathematical

theorems. It was able to prove several theorems from the first chapter of Whitehead and Russell's Principia

Mathematica. Gelernter’s theorem prover explored another area of mathematics: geometry. Game playing

and theorem proving share the property that people who do them well are considered to be displaying

intelligence. Despite this, it appeared initially that computers could perform well at those tasks simply by

being fast at exploring a large numberofsolution paths and then selecting the best one. It was thought thatthis

process required very little knowledge and could therefore be programmed easily. As we will see later, thisy

assumption turned out to be false since no computeris fast enough to overcome the combinatorial explosion

generated by most problems.

Anotherearly foray into AI focused on the sort of problem solving that we do every day when we decide

how to get to work in the morning, often called commonsense reasoning, \t includes reasoning about physical

objects and their relationships to each other (e.g., an object can be in only one piace at a time), as well as

reasoning about actions and their consequences (e.g., if you let go of something, it will fall to the floor and

maybe break). To investigate this sort of reasoning, Newell. Shaw, and Simon built the General Problem
Solver (GPS), which they applied to several commonsense tasks as well us to the problem of performing

symbolic manipulations of logical expressions. Again, no attempt was made to create a program with a large

amount of knowledge about a particular problem domain. Only simple tasks were selected.

As Al research progressed and techniques for handling larger amounts of world knowledge were developed,

some progress was made on the tasks just described and new tasks could reasonably be attempted. These

include perception (vision and speech), natural Janguage understanding, and problem solving in specialized

demains such as medical diagnosis and chemical analysis.

Perception of the world around us is crucial to our survival. Animals with much less intelligence than

people are capable of more sophisticated visual perception than are current machines. Perceptual tasks are

difficult because they involve analog (rather than digital) signals; the signals are typically very noisy and
usually a large number ofthings (some of which may be partially obscuring others) must be perceived at once.

The problems of perception are discussed in greater detail in Chapter 21.

The ability to use language to communicate a wide variety of ideas is perhaps the most importantthing that

separates humans from the other animals. The problem of understanding spoken language is a perceptual

problem andis hard to solve for the reasons just discussed. But suppose we simplify the problemby restricting

it to written language. This problem, usually referred to as natural language understanding, is still extremely

difficult. In order to understand sentences about a topic, it is necessary to know not only a lot about the

languageitself (its vocabulary and grammar) but also a good deal about the topic so that unstated assumptions

can be recognized. We discuss this problem again later in this chapter and then in more detail in Chapter 15.

In addition to these mundane tasks, many people can also perform one or maybe more specialized tasks in

which carefully acquired expertise is necessary. Examples of such tasks include engineering design, scientific

discovery, medical diagnosis, and financial planning. Programs that can solve problemsin these domainsalsofall

under the aegis of artificial intelligence. Figure |.1 lists some of the tasks that are the targets of work in AL
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A person who knows how to perform tasks from several of the categories shown in the figure learns the

necessary skills in a standard order. First, perceptual, linguistic, and commonsense skills are learned. Later

{and of course for some people, never) expert skills such as engineering, medicine, or finance are acquired. It

might seem to make sense then that the earlier skills are easier and thus more amenable io computerized

duplication than are the later, more specialized ones. For this reason, much of the initial Al work was

concentrated in those early areas. But it turns out that this naive assumption is not right. Although expert skills

require knowledge that many of us do not have, they often require much less knowledge than do the more

mundane skills and that knowledge is usually easier to represent and deal with inside programs.

Mundane Tasks

« Perception

- Vision

- Speech

« Natural language

- Understanding

- Generation

- Translation

« Commonsense reasoning

Robot control

Formal Tasks

e Games

- Chess

- Backgammon

~ Checkers -Go

e Mathematics

- Geometry

~ Logic

~ Integra] calculus

- Proving properties of programs

Expert Tasks

« Engineering

- Design

~ Fault finding

- Manufacturing planning
® Scientific analysis

Medical diagnosis

e Financial analysis

Fig.1.1 Some of the Task Domains ofArtificial Intelligence

Asa result, the problem areas where Al is now flourishing most as a practical discipline (as opposed to a

purely research one) are primarily the domains that require only specialized expertise without the assistance

of commonsense knowledge. There are now thousands of programs called expert systems in day-to-day

operation throughout all areas of industry and government. Each of these systems attempts to solve part, or

perhaps all, of a practical, significant problem that previously required scarce human expertise. In Chapter 20

we examine several of these systems and explore techniques for constructing them.
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6 Artificial Intelligence
 

Before embarking on a study of specific AI problems and solution techniques, it is important at least to

discuss, if not to answer, the following four questions:

1. What are our underlying assumptions aboutintelligence?

2. What kinds of techniques will be useful for solving AI problems?

3, At whatlevel of detail, if at all, are we trying to model humanintelligence?

4. How will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that is a survey of some Ai books

that may be of interest and a summary of the chapter.

1.22 THE UNDERLYING ASSUMPTION

At the heart of researchin artificial intelligence lies what Newell and Simon [1976] call the physical symbol

system hypothesis. They define a physical symbol system as follows:

A physical symbol system consists of a set of entities, called symbols, which are physical patterns that can occur as

componentsof anothertype of entity called an expression (or symbol structure). Thus, a symbol structure is composed

of a numberof instances {or tokens) of symbols related in some physical way (such as one token being next to

another). At any instant of time the system will contain a collection of these symbol structures. Besides these

structures, the system also contains a collection of processes that operate on expressions to produce other expressions:

processes of creation, modification, reproduction and destruction. A physical symbol system is a machine that

produces through time an evolving collection of symbolstructures. Such a system exists in a world of objects wider

than just these symbolic expressions themselves.

They then state the hypothesis as

The Physical Symbol System Hypothesis. A physical symbol system has the necessary and sufficient means for

general intelligent action.

This hypothesis is only a hypothesis. There appears to be no way to prove or disproveit on logical grounds.

So it must be subjected to empirical validation. We may find that it is false. We may find that the bulk of the

evidencesays thatit is true. But the only way to determineits truth is by experimentation.

Computers provide the perfect medium for this experimentation since they can be programmedto simulate

any physical symbol system welike. This ability of computers to serve as arbitrary symbol manipulators was

noticed very early in the history of computing. Lady Lovelace made the following observation about Babbage’s

proposed Analytical Engine in 1842.

The operating mechanism can even be thrown into action independently of any object to operate upon (although of

course no result could then be developed). Again, it might act upon other things besides numbers, were objects

found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and
which should be also susceptible of adaptations to the action of the operating notation and mechanism of the

engine. Supposing, for instance, that the fundamental relations of pitched soundsin the science of harmonyand of

musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and

scientific pieces of music of any degree of complexity or extent. [Lovelace, 1961]

As it has becomeincreasingly easy to build computing machines, so it has become increasingly possible to

conduct empirical investigations of the physical symboi system hypothesis. In each such investigation, a

particular task that might be regarded as requiring intelligence is selected. A program to perform the task is

proposed and then tested. Although we have not been completely successfulat creating programsthat perform
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all the selected tasks, most scientists believe that many of the problems that have been encountered will

ultimately prove to be surmountable by more sophisticated programs than we have yet produced.

Evidence in support of the physical symboi system hypothesis has come not only from areas such as game

playing, where one might most expectto find it, but also from areas such as visual perception, whereit is more

tempting to suspect the influence of subsymbolic processes. However, subsymbolic models (for example,

neural networks) are beginning to challenge symbolic ones at such low-level tasks. Such models are discussed

in Chapter 18. Whether certain subsymbolic models conflict with the physical symbol system hypothesisis a

topic still under debate (e.g., Smolensky [1988] }. And it is important to note that even the success of subsymbolic

systems is not necessarily evidence against the hypothesis.It is often possible to accomplish a task in more

than one way.

Oneinteresting attempt to reduce a particularly human activity, the understanding ofjokes, to a process of

symbol manipulation is provided in the book Mathematics and Humor[Paulos, 1980]. It is, of course, possible

that the hypothesis will turn out to be only partially true. Perhaps physica! symbol systems will prove able to

model some aspects of human intelligence and not others. Only time and effort wiil tell.

The importance ofthe physical symbol system hypothesis is twofold.It is a significant theory of the nature

of human intelligence and so is of great interest to psychologists. It also forms the basis of.the belief thatit is

possible to build programs that can perform intelligent tasks now performed by people. Our major concern

here is with the latter of these implications, although as wewill soon see, the two issues are not unrelated.

1.3 WHAT IS AN AI TECHNIQUE?

Artificial intelligence problems span a very broad spectrum. They appear to have very little in common
except that they are hard. Are there any techniquesthat are appropriate for the solution of a variety of these

problems? The answer to this question is yes, there are. What, then, if anything, can we say about those

techniques besides the fact that they manipulate symbols? How could wetell if those techniques might be

useful in solving other problems, perhaps ones not traditionally regarded as Al tasks? The rest of this book is

an attempt to answer those questions in detail. But before we begin examining closely the individual techniques,

it ts enlightening to take a broad look at them to see what properties they ought to possess.

Oneof the few hard and fast results to comeoutofthe first three decades of AI researchis that intelligence

requires knowledge. To compensate for its one overpowering asset, indispensability, knowledge possesses

some less desirable properties, including:

* It is voluminous.

« It is hard to characterize accurately.

e [tis constantly changing.
e lt differs from data by being organized in a way that correspondsto the waysit will be used.

So wheredoesthis leave us in our attempt to define AI techniques? We are forced to conclude that an AI

technique is a method that exploits knowledge that should be represented in such a waythat:

* The knowledge captures generalizations. In other words, it is not necessary to represent separately

each individual situation. Instead, situations that share important properties are grouped together. If

knowledge does not have this property, inordinate amounts of memory and updating wall be required.

So we usually call something without this property “data” rather than knowledge.

* It can be understood by people who mustprovide it. Although for many programs,the bulk of the data

can be acquired automatically (for example, by taking readings from a variety of instruments), in many

Al domains, most of the knowledge a program has mustultimately be provided by peopte in terms they

understand,
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* It can easily be modified to correct errors and to reflect changes in the world and in our world view.

« Ht can be used in a great many situations even if it is not totally accurate or complete.

e Tt can be used to help overcome its own sheer bulk by helping to narrow the range of possibilities that

must usually be considered.

Although AT techniques must be designed in keeping with these constraints imposed by AI problems, there

is some degree of independence between problems and problem-solving techniques.It is possible to solve AT

problems without using AI techniques (although, as we suggested above, those solutions are not likely to be

very good). And it is possible to appiy AI techniques to the solution of non-AI problems. Thisis likely to be

a goud thing to do for problems that possess many of the same characteristics as do AI problems. fn order to

iry to characterize AI techniques in as problem-independent a way as possible, let’s look at two very different

problems and a series of approaches for solving each of them.

1.3.1 Tic-Tac-Toe

In this section, we present a series of three programsto play tic-tac-toe. The programsin this series increase in:

* Their complexity

e Their use of generalizations

® The clarity of their knowledge

« The extensibility of their approach. Thus, they move toward being representations of what we call AI

techniques.

Program 1

Data Structures

Board A nine-element vector representing the board, where the elements of the vector correspond

to the board positions as follows:

1 2

4 5 6

7 8 9 ;

An element contains the value 0 if the corresponding square is blank, | if it is filled with

an X, or 2 if it is filled with an O.

Movetable A large vector of 19,683 elements (3°), each element of which is a nine-element vector.

The contents Of this vector are chosen specifically to allow the algorithm tc work.

an
d

The Algorithm

To make a move, do the following:

1. View the vector Board as a ternary (base three) number. Convert it to a decimal number.

2. Use the number computed in step 1 as an index into Movetable and access the vector stored there.

3. The vector selected in step 2 represents the way the board will look after the move that should be made.

So set Board equal to that vector.

Comments

This program is very efficient in terms of time. And, in theory, it could play an optimal gameof tic-tac-toe.

Butit has several disadvantages:
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@ It takes a lot of space to store the table that specifies the correct meve to make from esch boast

UOSiMGn,

= Someones will bave to do a bere? work snes thyme all the Crfries pe the mhovedble.

® liis very uiikely that all the sequured movetable entries can be detumined and enters wbaans

CITOPs,

@ Tf we want to extend the game. say to three dtmensions. we would have to start from scratch, and infact

this technique would ao fonger work at all, since 3° board positions would have to be stored. thas

overwhelming present computer memories.

The technique embodied in this program does nol appear to Meet any of our requirements for a good Al

technique. Lets sec if we can do better.

Data Structures

Board

Turn

The Algorithm

[ Program2

A nine-element vector representing the board, as described for Program (1. But uistoad of

using the numbers G1. or 2 im each element, we store 2 Gindicatiny blank). 3 ¢indiating Aa

or 5 Gindicating ©).

An integerindicating which move ofthe game is about to be played: | indicate: the fitsi

move, 9 the last.

The main algorithmuses three subprocedures:

Make 2

Posswin(p}

Grou}

Returns 5 if the center square of the boarel is blak, that is, if BowrdjS} 2 2. Otherves.

this function returns any blank noncorner square (2, 4, 6, or 8).

Returns 01f player p cannot win on his next move; otherwise, it returns the number at de

square that constitutes a winning move. This function will enable the program tuih iw

win and to block the opponent's win. Posswin operates by checking. one at adic, cael

ofthe rows, columns, and diagonals. Because of the way values are numbered. if cum tos:

an entire row(coiumm or diagonal) to see if itis a possible win by multiplying the alec:

ofits squares together. If the product ts [8 (4 x 3x 2). then X can win. H the product is 5!)

(3 x 5 2), then O can win. If we find a winning row, we determine which clivei

blink, and return the numberofthat square.

Makes a move in square #. This procedure sets Boardjn| to 3 if Tern is odd. ec 5 af Tus

is even. It also mercments Turn by one.

The algorithm has a built-in strategy for each move it may have to make. It makes the odd-mimbered

moves ifit is playing X, the even-numbered movesif it is playing O. The strategy for each tur is as dolls:

Turn=1]

Turn=2

Turn=3

Turn=4

Turn=5

Gol) (upper left corner).

Hf Board]5! is blank, Go(S), else Gof1),

If Board) 9} is blank, Gof9), else Gof3).

if Posswin(X) is not 0, then Go(Posswin(X)) fLe., black opponent’s win]. clse Gat Make2t.

If Posswin(X) is not 0 then Go(Posswin(X)) [ie.. win! else if PosswinfM) is not Oh cher

Go(PosswintQ)) fi.c.. block win, else if Board[7| is blank, then Gef7s. else Gotan,

|Here the program is trying to make a fork. }
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Turn=6 If Posswin(O} is not 0 then Go (Posswin(Q})). else if Posswin(X) is not 0, then

Go(Posswin(X)), else Go(Make2).

Turn=7 If Posswin(X) is not 0 then Go(Posswin(X}}. else if Posswin(Q) is not 0, then

Go(Posswin(O}). else go anywhere that is blank.

Turn=8 If Posswin(O) is not 0 then Go(Posswin(Q)), else if Posswin(X) is not 0, then

Go(Posswin(X», else go anywhere that is blank.

Tum=9 Same as Tum=7.

comments

This program is not quite as efficient in terms of time asthe first one since it has to check several conditions

before making each move. Butit is a lot more efficient in terms of space.It is also a Jot easier to understand the
program’s strategy or to change the strategy if desired. But the total strategy has still been figured out in

advance by the programmer. Any bugs in the programmer’s tic-tac-toe playing skill will show up in the

program’s play. And westi] cannot generalize any of the program’s knowledgeto a different domain, such as

three-dimensional tic-tac-toe.

Program 2’

This program is identical to Program 2 except for one change in the representation of the board. We again

represent the board as a nine-element vector, but this time we assign board positions to vector elements as

follows:

8 3 4

| 5 9

6 7 2

Notice that this mumbering of the board produces a magic square: al] the rows, columns, and diagonals sum

up to 15. This means that we can simplify the process of checking for a possible win. In addition to marking
the board as moves are made, we keep a list, for each player, of the squares in which he or she has played. To

check for a possible win for one player, we consider each pair of squares owned by that player and compute

the difference between 15 and the sum of the two squares. If this difference is not positive or if it is greater

than 9, then the original two squares were not collinear and so can be ignored. Otherwise, if the square

representing the difference is blank, a move there will produce a win. Since no player can have more than four

squares at a time, there will be many fewer squares examined using this scheme than there were using the

more straightforward approach of Program 2, This shows how the choice of representation can have a major

impact on the efficiency of a problem-solving program.

Comments

This comparison raises an interesting question about the relationship between the way people solve problems

and the way computers do. Why do people find the row-scan approach easier while the number-counting

approach is more efficient for a computer? We do not know enough about how people work to answer that
question completely. One part of the answeris that people are parallel processors and can look at several parts

of the board at once, whereas the conventional computer must look at the squares one at a time. Sometimes an

investigation of how people solve problems sheds great light on how computers should do so. At other times,
the differences in the hardware of the two seem so great that different strategies seem best. As we learn more

about problem solving both by people and by machines, we may know better whether the same representations

and algorithms are best for both people and machines. We will discuss this question further in Section 1.4,
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Data Structures

BoardPosition A structure containing a nine-elementvector representing the board,a list of board positions

that could result from the next move, and a numberrepresenting an estimate of how

likely the board position is to lead to an ultimate win for the player to move.

The Algorithm

To decide on the next move, look ahead at the board positions that result from each possible move. Decide

which position is best (as described below), make the move that leads to that position, and assign the rating of

that best move to the current position.
To decide which of a set of board positions is best, do the following for each of them:

|. See if it is a win. If so, call it the best by giving it the highest possible rating.

2. Otherwise, considerall the moves the opponent could make next. See which of them is worst for us (by

recursively calling this procedure). Assume the opponent will make that move. Whatever rating that

move has, assign it to the node we are considering.

3. The best node is then the one with the highestrating.

This algorithm will look ahead at various sequences of moves in order to find a sequence that leads to a

win. It attempts to maximize the likelihood of winning, while assuming that the opponent will try to minimize

that likelihood. This algorithm is called the minimax procedure, and it is discussed in detail in Chapter 12.

Comments

This program will require much more time than either of the others since it must search a tree representingall

possible move sequences before making each move. Butit is superior to the other programsin one very big

way: It could be extended to handle games more complicated than tic-tac-toe, for which the exhaustive

enumeration approach of the other programs would completely fall apart. It can also be augmented by a

variety of specific kinds of knowledge about games and howto play ther. For example, instead of considering

all possible next moves, it might consider only a subset of them that are determined, by some simple algorithm,

to be reasonable. And. instead of following each series of moves until one player wins, it could search for a

limited time and evaluate the merit of each resulting board position using somestatic function.

Program 3 is an example of the use of an Al technique. For very small problems,it is less efficient than a

variety of more direct methods. However, it can be used in situations where those methods wouldfail.

1.3.2 Question Answering

In this section we look at a series of programsthat read in English text and then answer questions, also stated

in English, about that text. This task differs from the last one in that it is more difficult now to state formally
and precisely what our problem is and what constitutes correct solutions to it. For example, suppose that the

input text were just the single sentence

Russia massed troops on the Czech border.

Then either of the following question-answering dialogues might occur (and in fact did occur with the

POLITICS program ]Carbonell, 19801):
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Dialogue 1

 

Qj. Whe did Russia do this?

AD Because Russa thought that it could take political control of Czechoslovakia oy sending troups.

O: What should the United States do?

A: The United States should intervene militarily.

mett,

Dialogue |

> Why did Russia do this?

Because Russia wanted to increaseits political influence over Czechoslovakia.

What should the United States do?

: The United States shoukd denounce the Russian action in the United Nations.P
O
s

In the POLITICS program, answers were constructed by considering hoth the input text and a separate

model of the beliefs and actions of various political entities, including Russia. When the madel is changed, a>.

it was between these two dialogues, the system's answers also change. In this example, the first dialogue was

produced when POLITICS was given a model that was intended to correspond to the beliefs of a typical

American conservative (circa J977). The second dialogue occurred when POLITICS was given a model that

was intended to correspond to the beliefs of a typical American liberal] (ol the same vintage).

The general point here is that defining what je means to produce a correct answerto a question may be very

hard. Usuatly. question-answering programs define what if means to be an answer by the procedure that is

used to compute the answer. Then their authors appeal to other people to aerce that the answers found bythe

program “make sense” and so to confirm the model of question answering defined in the program. This is not

completely satisfactory. but no better way of defining the problem has yet been found. For lack of a better

method. we will do the same here and illustrate three definitions of question answering, each with a

correspending program that implements the definition.

In order to be able to compare the three programs, we tlustrate all of them using the following text:

Mary went shopping fer a new coat. She found a red one she really liked. When she got it home, she discovered that

it went perfectly with her favorite dress.

We wil] also attempt to answer each of the following questions with each program:

Qi What did Mary go shopping for?
Q2: What did Mary find that she liked?
Q3: Did Mary buy anything?

Program 1

This program attempts to answer questions using the literal input text. !t simply matches text fragments in the

questions against the inputtext.

 

Data Structures

QuestionPattems A set of templates that match common question forms and produce patterns to be used to

match against inputs. Templates and patterns (which we call text patterns) are paired so

that if a template matches successfully against an input question then its associated text https://hemanthrajhemu.github.io
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patterns are used to try to find appropriate answersin the text. For example,if the template

- “Who did xy" matches an input question, then the text pattern “x y 2” is matched against

the input text and the value of = is given as the answer to the question.

Text The input text stored simply as a long character string.

Question The current question also stored as a character string,

The Algorithm

To answer a question, do the following:

1. Compare each element of QuestionPattems against the Question and use all those that match successfully

to generate a set of text patterns.
2. Pass each of these patterns through a substitution process that generates alternative forms of verbs so

that, for example, “go” in a question might match “went”in the text. This step generates a new, expanded

set of text patterns.

3. Apply each of these text patterns to Text, and collect all the resulting answers.

4. Reply with the set of answers just collected.

Examples

QI: The template “What did x v” matches this question and generates the text pattern “Mary go shopping

for z.” After the pattern-substitution step, this pattern is expanded to a set of patterns including

“Mary goes shopping for z,” and “Mary went shopping for z.” The latter pattern matches the input

text; the program, using a convention that variables match the longest possible string up to a sentence

delimiter (such as a period), assigns z the value, “a new coat,” which is given as the answer.

Q2: Unless the templateset is very large, allowing for the insertion of the object of “find” betweenit and

the modifying phrase “that she liked,” the insertion ofthe word “really” in the text, and the substitution

of “she” for “Mary,” this question is hot answerable, If all of these variations are accounted for and

the question can be answered, then the response is “a red one.”

Q3: Since no answerto this question is contained in the text, no answer will be found.

Comments

This approach is clearly inadequate to answer the kinds of questions people could answerafter reading a

simple text. Even its ability to answer the most direct questions is delicately dependent on the exact form in

which questions are stated and on the variations that were anticipated in the design of the templates and the

pattern substitutions that the system uses. In fact, the sheer inadequacy of this program to perform the task

may make you wonder how such an approach could even be proposed. This program is substantially farther

away from being useful than was the initial program we looked at for tic-tac-toe. Is this just a strawman

designed to make some other technique look good in comparison? In a way, yes, but it is worth mentioning

that the approachthat this program uses, namely matching patterns, performing simple text substitutions, and

then forming answers using-straightforward combinations of canned text and sentence fragments located by

the matcher, is the same approach that is used in one of the most famous “Al” programs ever written—

ELIZA, which we discuss in Section 6.4.3. But, as you read the rest of this sequence of programs,it should

become clear that what we mean by the term “artificial intelligence” does not include programs such asthis

except by a substantial stretching of definitions.

This program first converts the input text into a structured internal form that attempts to capture the meaning

of the sentences. It also converts questions into that form. It finds answers by matching structured forms

against each other.
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A description of the words, grammar, and appropriate semantic interpretations of a large

enough subset of English to account for the mput texts that the system will see. This

knowledge of English is used both to map input sentences into an internal, meaning-

oriented form ard to map from suchinterrtal forms back into English. The former process

is used when English text is being read; the latter is used to generate English answers

from the méaning-oriented form that constitutes the program’s knowledgebase.

The input text in character form.

A structured representation of the content of the imput text. This structure attempts to

capture the essential knowledge contained in the text, independently of the exact way

that the knowledge wasstated in English, Somethings that were not explicit in the English

text, such as the referents of pronouns, have been made explicit in this form. Representing

knowledge such as this is an important issue in the design of almost all AI programs.

Existing programs exploit a variety offrameworks for doing this. There are three important

families of such knowledge representation systems: production rules (of the form “if x

then y’), slot-and-filler structures, and statements in mathematical logic. We discussall

of these methods later in substantial detail, and we look at key questions that need to be

answeredin order to choose a method for a particular program’. For now though, wejust

pick one arbitranly. The one we’ve chosenis a slot-and-filler structure. For example, the

sentence “She found a red one she really liked,” might be represented as shown in

Fig. 1.2. Actually, this is a simplified description of the contents of the sentence. Notice

that it is not very explicit about temporal relationships (for example, events are just marked

as past tense) nor have we madeanyreal attempt to represent the meaning of the qualifier

“really.” It should, however, illustrate-the basic form that representations such as this

take. One of the key ideas in this sort of representation is that entities in the representation

derive their meaning from their connectionsto other entities. In the figure, only the entities

defined by the sentence are shown. Butotherentities, corresponding to concepts that the

program knew about before it read this sentence, also exist in the representation and can

be re- ferred to within these new structures. In this example, for instance, we refer to the

entities Mary, Coat (the general concept of a coat of which Thing/ is a specific instance),

Liking {the general concept of liking), and Finding (the general concept of finding).

Event 2

instance : Finding

tense: Past

agent : Mary

object: Thing!

Thing!

instance: Coat

color: Red

Event2

instance: Liking

tense : Past

modifier: Much

object: Thing!

Fig. 1.2 A Structured Representation of a Sentence
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InputQuestion The input question in character form.

StructQuestion A structured representation of the content of the user's question. The structure is the

same as the one used to represent the content of the input text.

The Algorithm

Convert the InputText into structured form using the knowledge contained in EnglishKnow. This may require
considering several different potential structures, for a variety of reasons, including the fact that English
words can be ambiguous, English grammatical structures can be ambiguous, and pronouns may have several

possible antecedents. Then, to answer a question, do the following:

1. Convert the question to structured form, again using the knowledge contained in EnglishKnow. Use

some special marker in the structure to indicate the part of the structure that should be returned as the

answer. This marker will often correspond to the occurrence of a question word (like “who” or “what’)

in the sentence. The exact way in which this marking gets done depends on the form chosen for

representing StructuredText. If a slot-and-filler structure, such as ours, is used, a special marker can be
placed in one or moreslots. If a logical system is used, however, markers wil] appear as variables in the

logical formulas that represent the question.

2. Match this structured form against StracturedText.

3. Return as the answerthose parts of the text that match the requested segment of the question.

Examples

Ql: This question is answered straightforwardly with, “a new coat”.

Q2: This onealso is answered successfully with, “a red coat”.

Q3: This one, though, cannot be answered, since there is no direct responseto it in the text.

Comments

This approach is substantially more meaning (knowledge)-based than that of the first program and so is more

effective. It can answer most questions to which replies are contained in the text. and it is muchlessbrittle

than the first program with respect to the exact formsofthe text and the questions. As we expect, based on our

experience with the pattem recognition andtic-tac-toe programs, the price we pay for this increased flexibility

is time spent searching the various knowledge bases(i.e., EnglishKnow, StricturedText),

One word of warning is appropriate here. The problem of producing a knowledge base for English that is
powerful enough to handle a wide range of English inputs is very difficult. It is discussed at greater length in

Chapter 15. In addition, it is now recognized that knowledge of English alone is not adequate in general to

enable a program to build the kind of structured representation shown here. Additional knowledge about the

world with which the text deals is often required to support lexical and syntactic disambiguation and the

correct assignment of antecedents to pronouns, among other things. For example,in the text

Mary walked up to the salesperson. She asked where the toy department was.

it is not possible to determine what the word “‘she” refers to without knowledge aboutthe roles of customers

and sales people in stores. To see this, contrast the correct antecedent of ‘she” in that text with the correct

antecedent for the first occurrence of “she” in the following example:

Mary walked up to the sales person. She asked her if she needed any help.

In the simple case illustrated in our coat-buying example,it is possible to derive correct answers to our first

two questions without any additional knowledge about stores or coats, and the fact that some such additional
information may be necessary to support question answering has already been illustrated by the failure ofthis
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program to find an answer to question 3. Thus we see that although extracting a structured representation of

the meaning of the input text is an improvement over the meaning-free approach of Program 1, it is by no

meanssufficient in general. So we need to look at an even more sophisticated G.c., knowledge-rich) approach,
which is what we do next.

This program converts the input text into a structured form that contains the meanings of the sentences in the

text, and then it combines that form with other structured forms that describe prior knowledge about the

objects and situations involved in the text. It answers questions using this augmented knowledge structure.

Data Structures

WorldModel

EnglishKnow

InputText

A structured representation of background world knowledge. This structure contains
knowledge about objects, actions and situations that are described in the input text. This

structure is used to construct IntegratedText from the input text. For example, Figure 1.3

showsan example of a structure that represents the system’s knowledge about shopping.

This kind of stored knowledge aboutstereotypical events is called a script and is discussed
in more detail in Section 10.2. The notation used here differs from the one normally used

in the literature for the sake of simplicity. The prime notation describes an object of the
same type as the unprimed symbol that may or may not refer to the identical object. In the

case of our text, for example, M is a coat and M’is a red coat, Branches in the figure

describe alternative paths through the script.

1. C enters L

2. C begins looking around
i
 

3. C looks rl a specific M 4. C looks for any interesting M

5.C asks§ for help

y
 
 

 

6.
L

7. C finds M’ 8. C fails to find M

9. C leaves L 10. C buys M’ 11. C leaves L 12. goto step 2

13. C leaves L

14. C takes M’

Fig. 1.3. A Shopping Script

Same as in Program 2.

The input text in character form.
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IntegratedText A structured representation of the knowledge contained in the in- put text (similar to the

- structured description of Program 2) but combined now with other background, related

knowledge.

InputQuestion The input question in character form.

StructQuestion A structured representation of the question.

The Algorithm

Convert the InputText into structured form using both the knowledge contained in EnglishKnow and that

contained in WorldModel. The number of possible structures will usually be greater now than it was in

Program 2 because so much more knowledge is being used. Sometimes, though,it may be possible to consider

fewer possibilities by using the additional knowledge to filter the alternatives.

Shopping Script:

roles: C (customer), S (salesperson)

props: M (merchandise), D (dollars)

Jocation: L (a store)

To answer a question, do the following:

1. Convert the question to structured form as in Program 2 but use WorldModel iT necessary to resolve
any ambiguities that may arise.

2. Match this structured form against IntegratedText.

3. Return as the answerthose parts of the text that match the requested segmentof the question.

Examples

Ql: Same as Program 2.

Q2: Sameas Program 2.

Q3: Now this question can be answered. The shoppingscript is instantiated for this text, and because of

the last sentence, the path through step 14 of the script is the one that is used in forming the

representation of this text. When the script is instantiated M’ is boundto the structure representing

the red coat (because the script says that M’ is what gets taken home andthe text says that a red coat

is what got taken home). After the script has been instantiated, IntegratedText contains several

events.that are taken from the script butthat are not described in the original text, including the event

“Mary buys a red coat” (from step I0 of the script). Thus, using the integrated text as the basis for

question answering allows the program to respond “She boughta red coat.”

Comments

This program is more powerful than either of the first two because it exploits more knowledge. Thus, like the

final program in eachofthe other two sequences we have examined,it is exploiting what we call Al techniques.

But, again, a few caveats are in order. Even the techniques we have exploited in this program are not adequate

for complete English question answering. The most important thing that is missing from this program is a

general reasoning (inference) mechanism to be used when the requested answer is not contained explicitly

even in IntegratedText, but that answer does follow logically from the knowledgethat is there. For example,

given the text

Saturday morning Mary went shopping. Her brother tried to cali her then, but he couldn’t get hold of her.

it should be possible to answer the question

https://hemanthrajhemu.github.io



18 Artificial Intelligence
 

Why couldn’t Mary’s brother reach her?

with the reply

Because she wasn’t home.

But to do so requires knowing that one cannot be at two places at once and then using that fact to conclude

that Mary could not have been home because she was shopping instead. Thus, although we avoided the

inference problem temporarily by building IntegratedText, which had some obvious inferences built intoit,

we cannot avoidit forever. It is simply not practical to anticipate all legitimate inferences.In later chapters, we

look at ways of providing a general inference mechanism that could be used to support a program such as the

last one in this series.

This limitation does not contradict the main point of this example though.In fact, it is additional evidence

for that point, namely, an effective question-answering procedure must be one based soundly on knowledge

and the computational use of that knowledge. The purpose of AI techniques is to support this effective use of

knowledge.

With the advent of the Internet and the vast amount of knowledge in the ever increasing websites and

associated pages, came the Web based Question Answering Systems. Try for instance the START natural

language question answering system (http://start.csail.mit.edu/). You will find that both the questions — What

is the capital ofIndia? and Is Dethi the capital ofIndia? yield the same answers, viz. New Dethiis the capital

ofindia. On the contrary the question — Are there wolves in Kerea? yields I don't know if there are wolves in

Korea. which looks quite natural.

1.3.3 Conclusion

We have just examined two series of programs to solve two very different problems. In each series, the final
program exemplifies what we mean by an AI technique. These two programsare slower to execute than the

earlier ones in their respective series, but they illustrate three important Al techniques:

#@ Search-—Provides a way of solving problems for which no more direct approachis available as well as

a framework into which any direct techniquesthat are available can be embedded..

* Use of Knowledge—-Provides a way of solving complex problems by exploiting the structures of the

objects that are involved.

e Abstraction—--Provides a way of separating important features and vanations from the many unimportant

ones that would otherwise overwhelm any process.

For the solution of hard problems, programs that exploit these techniques have several advantages over

those that do not. They are muchless fragile; they will not be thrown off completely hy a small perturbation
in their input. People can easily understand what the program’s knowledge is. And these techniques can work

for large problems where more direct methods break down.

WehavestiJ] not given a precise definition of an AI technique. It is probably not possible to do so. But we

have given some examples of what one is and what one is not. Throughout the rest of this book, we talk in

great detail about what one is The definition should then becomea bit clearer, or less necessary.

1.4 THE LEVEL OF THE MODEL

Before we set out to do something,it ts a good idea to decide exactly what we are trying to do. So we must ask

ourselves, “Whatis our goal in trying to produce programsthat do the intelligent things that people do?” Are

wetrying to produce programsthat do the tasks the same way people do? Or, are we attempting to produce
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programsthat simply do the tasks in whatever way appears easiest? There have been AI projects motivated by

each of these goals.

Efforts to build programs that perform tasks the way people do can be divided into two classes. Programs

in the first class attempt to solve problemsthat do notreally fit our detinition of an Al task. They are problems

that a computer could easily solve, although that easy solution would exploit mechanismsthat do not seem to

be available to people. A classical example of this class of program is the Elementary Perceiver and Memorizer

(EPAM)[Feigenbaum, 1963], which memorized associated pairs of nonsense syllables. Memorizing pairs of

nonsense syllables is easy for a computer. Simply input them.Toretrieve a response syllable given its associated

stimulus one, the computer just scans for the stimulus syllable and responds with the one stored next to it, But

this task is hard for people. EPAM simulated one way people might perform the task. It built a discrimination

net through which it could find images of the syllables it had seen. It also stored, with each stimulus image, a

cue that it could later pass through the discrimination net to try to find the correct response image. But it

stored as a cue only as much information about the response syllable as was necessary to avoid ambiguity at

the time the association was stored. This might be just the first letter, for example: But, of course, as the

discrimination net grew and more syllables were added, an old cue might no longerbe sufficient to identify a

response syllable uniquely. Thus EPAM,like people, sometimes“forgot” previously learned responses. Many

people regard programsin this first class to be uninteresting, and to some extent they are probably right.

These programs can, however, be useful tools for psychologists who wantto test theories of human performance.
The second class of programs that attempt to mode] human performanceare those that do thingsthatfail

more clearly within our definition of AJ tasks; they do things that are not trivial for the computer. There are

several reasons one might want to model human performanceat these sorts of tasks:

1. To test psychological theories of human performance. One example of a program that was written for

this reason is PARRY [Colby, 1975], which exploited a mode] of human paranoid behaviorto simulate

the conversational behavior of a paranoid person. The model was good enough that when several

psychologists were given the opportunity to converse with the program via a terminal, they diagnosed

its behavior as paranoid.

2. To enable computers to understand human reasoning. For example, for a computerto be able to read a

newspaper story and then answer a question, such as “Why did theterrorists kill the hostages?” its

program must be able to simulate the reasoning processes of people.

3. To enable people to understand computer reasoning. In many circumstances, people are reluctant to

tely on the output of a computer unless they can understand how the machine arrivedatits result. If the
computer’s reasoning process is similar to that of people, then producing an acceptable explanationis

much easier.

4. To exploit what knowledge we can glean from people. Since people are the best-known performers of
most of the tasks with which we are dealing, it makes a lot of sense to look to them for clues as to how

to proceed.

This last motivation is probably the most pervasive of the four. It motivated several very early systems that

attempted to produceintelligent behavior by imitating people at the level of individual neurons. For examples

of this, see the early theoretical work of McCulloch and Pitts [1943], the work on perceptrons, originally

developed by Frank Rosenblatt but best described in Perceptrons [Minsky and Papert, 1969] and Design for

a Brain [Ashby, 1952]. It proved impossible, however, to produce even minimally intelligent behavior with

such simple devices. One reason was that there were severe theoretical limitations to the particular neural, net

architecture that was being used, More recently, several new neural net architectures have been proposed.

These structures are not subject to the same theoretical limitations as were perceptrons. These new architectures

are loosely called connectionisi, and they have been used as a basis for several learning and problem-solving

programs. We have moreto say about them in Chapter 18. Also, we must consider that while human brains are
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highly parallel devices, most current computing systems are essentially serial engines. A highly successful

parallel technique may be computationally intractable on a serial computer. But recently, partly because of the

existence of the new familyof parallel cognitive models, as well as because of the general promise ofparallel

computing,there is now substantialinterest in the desigu of massively parallel machines to support Al programs.

Humancognitive theories have also influenced Alto look for higher-level(i.e., far above the neuron level)

theories that do not require massive parallelism for their implementation. An early example of this approach

can be seen in GPS, which are discussed in moredetail in Section 3.6. This same approach can also be seen in

much current work in natural language understanding. The failure of straightforward syntactic parsing

mechanisms to make much of a dent in the problem of interpreting English sentences has led many people

who are interested in natural language understanding by machine to look seriously for inspiration at what

little we know about how people interpret language. And when people who are trying to build programs to

analyze pictures discover that a filter function they have developed is very similar to what we think people

use, they take heart that perhaps they are on the right track.

As you can see, this last motivation pervades a great many areas of Al-research.In fact,it, in conjunction.with

the other motivations we mentioned, tends to make the distinction between the goal of simulating human

performance and the goal of building an intelligent program any way we can seem muchless different than

they at first appeared. In either case, what we really need is a good mdbdel of the processes involved in

intelligent reasoning. The field of cognitive science, in which psychologists, linguists, and computer scientists

all work together, has as its goal the discovery of such a model. For a good survey of the variety of approaches

contained within the field, see Norman [1981], Anderson [1985], and Gardner [1985].

1.5 CRITERIA FOR SUCCESS

One of the most important questions to answerin any scientific or engineering research project is “How will

we know if we have succeeded?” Artificial intelligence is no exception. How will we know if we have
constructed a machinethat is intelligent? That questionis at least as hard as the unanswerable question “What

is intelligence?” But can we do anything to measure our progress? -

In 1950, Alan Turing proposed the following method for determining whether a machine can think. His

method has since become known as the Turing Test. To conductthis test, we need two people and the machine

to be evaluated. One person plays the role of the interrogator, who is in a separate room from the computer

and the other person. The interrogator can ask questions of either the person or the computer by typing

questions and receiving typed responses. However, the interrogator knows them only as A and B and aimsto

determine which is the person and whichis the machine. The goal of the machine is to fool the interrogator

into believingthatit is the person. If the machine succeedsat this, then we will conclude that the machine can

think. The machine is allowed to do whatever it can to fool the interrogator. So, for example, if asked the

question “How muchis 12,324 times 73,9817?”it could wait several minutes and then respond with the wrong
answer [Turing, 1963].

The more serious issue, though, is the amount of knowledge that a machine would need to pass the Turing

test. Turing gives the following example of the sort of dialogue a machine would have to be capable of:

Interrogator: In the first line of your sonnet which reads “Shall 1 compare thee to a summer’s day,”

would not “a spring day” do as well or better?

A: Tt wouldn’t scan.

Interrogator: How about“a winter’s day.” That would scan all right.
A: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

A: In a way.
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Interrogator: Yet Christmas is a winter’s day, and 1 do not think Mr. Pickwick would mind the

- comparison.

AL I don’t think you're serious. By a winter’s day one means a typical winter’s day, rather

than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe none ever will. But

suppose we are willing to settle for less than a complete imitation of a person. Can we measure the achievement

of AI in more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a fairly precise measure of the

achievement of a program. For example, a program can acquire a chess rating in the same way as a human

player. The rating is based on the ratings of players whom the program can beat. Already programs have

acquired chess ratings higher than the vast majority of human players. For other problem domains, a ‘ess

precise measure of a program’s achievementis possible. For example, DENDRALis a program that analyzes

organic compounds to determine their structure. It is hard to gel a precise measure of DENDRAL’slevel of

achievernent compared to human chemists, but it has produced analyses that have been published as original

research results. Thusit is certainly performing competently.

In other technical domains,it is possible to comparethe timeit takes for a program to complete a task to the

time required by a person to do the same thing. For example, there are several programs in use by computer

companies to configure particular systems to customers’ needs (of which the pioneer was a program called

R1). These programs typically require minutes to perform tasks that previously required hours of a skilled

engineer’s time. Such programs are usually evaluated by looking at the bottom line— whether they save (or

make) money.

For many everyday tasks, though, it may be even harder to measure a program’s performance. Suppose,

for example, we ask a program to paraphrase a newspaper story. For problems such as this, the best test is

usually just whether the program responded in a way that a person could have.

If our goal in writing a program is to simulate human performanceat a task, then the measure of successis

the extent to which the program’s behavior correspondsto that performance, as measured by various kinds of

experiments and protocol analyses. In this we do not simply want a program that does as well as possible. We

wantone that fails when people do. Various techniques developed by psychologists for comparing individuals

and for testing models can be used to do this analysis.

Weare forced to conclude that the question of whether a machine has intelligence or can think is too

nebulous to answer precisely. But it is often possible to construct a computer program that meets some

performance standard for a particular task. That does not mean that the program does the task in the best

possible way. It means only that we understand at least one way of doing at least part of a task. When weset

out to design an AI program, we should attempt to specify as well as possible the criteria for success for that

particular program functioningin its restricted domain. For the moment, that is the best we can do.

1.6 SOME GENERAL REFERENCES

There are a great many sources of information aboutartificial intelligence. First, some survey books: The

broadest are the multi-volume Handbook of Artificial Intelligence [Barr et al.. 1981] and Encyclopedia of

Artificial Intelligence [Shapiro and Eckroth, 1987], both of which contain articles on each of the major topics

in the field. Four other books that provide good overviews of the field are Artificial Intelligence [Winston,

1984], Introduction to Artificial Intelligence [Charniak and McDermott, 1985], Logical Foundations ofArtificial
intelligence [Genesereth and Nilsson, 1987], and The Elements ofArtificial Intelligence [Tanimoto, 1987]. Of

more restricted scope is Principles ofArtificial Intelligence [Nilsson, 1980], which contains a formal treatment

of some general-purpose AI techniques.
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The history of research in artificial intelligence is a fascinating story, related by Pamela McCordiick [1979]

in her book Machines Who Think. Because almost all of what we call Al has been developed overthe last 30

years, McCorduck was able to conduct her research for the book by actually interviewing almost ali of the

people whose work was influential in forming the field.

Mostof the work conducted in Al has been originally reported in journal articles, conference proceedings,

or technical reports, But some of the most interesting of these papers have later appeared in special collections

published as books. Computers and Thought [Feigenbaum and Feldman, 1963} is a very early collection of

this sort. Later ones include Simon and Siklossy [1972], Schank and Colby [1973], Bobrow and Collins

[1975], Waterman and Hayes-Roth [1978], Findler [1979], Webber and Nilsson [1981], Halpern [1986],

Shrobe [1988], and several others that are mentioned in later chapters in connection with specific topics.For

newerAl paradigms the book Fundamentals ofthe NewArtificial Intelligence [Toshinori Munakata, 1998] is

a good one.

The major journal of AI researchis called simply Artificial Intelligence. In addition, Cognitive Science is

devoted to papers dealing with the overlapping areas of psychology, linguistics, and artificial intelligence. Al

Magazine is a more ephemeral, less technical magazine that is published by the American Association for

Artificial Intelligence (AAAI). IEEE Expert, IEEE Transactions on Systems, Man and Cybernetics, [EEE

Transactions on Neural Networks and several other journals publish papers on a broad spectrum of Al

application domains.

Since 1969, there has been a major Al conference,the International Joint Conference on Artificial Intelligence

(ICAI),held every two years. The proceedings of these conferences give a good picture of the work that was

taking place at the time. The other important AI conference, held three out of every four years starting in

1980, is sponsored by the AAAI, and its proceedings, too, are published.

In addition to these general references, there exists a whole array of papers and books describing individual

Al projects. Rather than trying to list them all here, they are referred to as appropriate throughout the rest of

this book.

1.7. ONE FINAL WORD AND BEYOND

What conclusions can we draw from this hurried introduction to the major questions of AI? The problemsare

varied, interesting, and hard. If we solve them, we will have useful programs and perhapsa better understanding

of human thought. We should do the best we can to set criteria so that we can tell if we have solved the

problems, and then we musttry to do so.

How actually to go about solving these problemsis the topic for the rest of this book. We need methodsto

help us solve AI’s serious dilemma:

1. An AI system must contain a lot of knowledgeif it is to handle anything but trivial toy problems.

2. But as the amount of knowledge grows, it becomes harder to access the appropriate things when

needed, so more knowledge must be added to help. But now there is even more knowledge to manage,

$0 more must be added, and so forth.

Our goal in AT is to construct working programsthat solve the problems weare interested in. Throughout

most of this book we focus on the design of representation mechanisms and algorithms that can be used by

programs to solve the problems. We do not spend much time discussing the programming process required to

tum these designs into working programs. In theory, it does not matter how this process is carried out, in what

language it is done, or on what machine the productis run. In practice, of course, it is often much easier to

produce a program using one system rather than another. Specifically, AI programs are easiest to build using

languages that have been designed to support symbolic rather than primarily numeric computation.
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For a variety of reasons, LISP has historically been the most commonly used language for AI programming.

We say little explicitly about LLSP in this book, although we occasionally rely on it as a notation. There used

to be several competing dialects of LISP, but Common Lisp is now accepted as a standard. If you are unfarniliar

with LISP, consult any of the following sources: LISP [Winston and Hom. 1989], Common Lisp [Hennessey.

1989], Common LiSPcraft [Wilensky, 1986], and Common Lisp: A Gentle Introduction to Symbolic

Computation [Touretzky, 1989a]. For acomplete descnption of CommonLisp, see Connon Lisp: The Reference

(Steele, 1990}.

Another language that is often used for AI programming is PROLOG, which is described in Chapter 25
And increasingly, as Al makes its way into the conventional programming world, AI systems are being

written in general purpose programming languages such as C. One reason for this is that AT programs are

ceasing to be standalone systems; instead, they are becoming components of larger systems, which may

include conventional programs and databases of various forms. Real code does not form a big part of this
book precisely becauseit is possible to implement the techniques we discuss in any of several languages and

it is important not to confuse the ideas with their specific implementations. But you should keep in mind as

you read the rest of this book that both the knowledge structures and the problem-solving strategies we

discuss must ultimately be coded and integrated into a working program. This process will definitely throw

more light into real world problems faced in the implementation of AI techniques.It is for this reason we have

introduced Prolog to ensure that you do not end up just reading and believing.

Al is still a young discipline possibly in the sense that little has been achieved as compared to what was

expected. However one must admit a lot more has been learnt aboutit. We have learnt many things, some of

which are presented in this book. Butit is still hard to know exactly the perspective from which those things

should be viewed. We cannotresist quoting an observation made by Lady Lovelace more than 100 years ago:

In considering any new subject, there is frequently a tendency, first, to overrate what we find to be already

interesting or remarkable; and, secondly, by a sort of natural reaction, to undervalue the true state of the case,

when we do discover that our notions have surpassed those that were really tenable. [Lovelace, 1961]

She was talking.about Babbage’s Analytical Engine. But she could have been describing artificial
intelligence.

While defining Al in terms of symbol processing it would only be right for us to inspect the problem of

Symbol Grounding [Stevan Harnad, 1990, The Symbol Grounding Problem, Physica, D42, 335-346] and not

forget about it while grasping any of the concepts discussed in this book. Harnad defines the symbol grounding

problem citing the example of the Chinese Room [Searle, 1980]. The basic assumption of symbolic AI is that

if a symbol system is able to exhibit behaviors which are indistinguishable from those made by a human

being, then it has a mind. Imagine such a system subjected to the Turing test in Chinese. If the system can

respond to all Chinese symbol string inputs in just the manner as a native Chinese speaker, then it means

(seems) that the system is able to comprehend the meaning of the Chinese symbols just the way we all

comprehend our native languages. Searle argues that this cannot be and poses the question —- If he (who

knows none of Chinese} is given the same strings and does exactly what the computer did (maybe execute the

program manually !), would he be understanding Chinese? The rhetoric only leads to one unambiguousinference

— The computer does not understand a thing. It is thus important to note that the symbols by themselves do
not have any intrinsic meaning (like the symbols in a book). They derive their meanings only when we read

and the brain comprehendsit. It goes to say that if the meaning of the symbols used in a symbol! system are

extrinsic, unlike the meanings in our heads, then the modelitself has no meaning. As the symbols themselves

have no meaning and depend on other symbols whose meanings are also extrinsic, we seem to be reasoning

around meaningless entities whichitself is a meaningless affair! This is the symbol grounding problem.

In the context of the meaninglessness of the use of symbols, Harnad provides a classic example of learning

Chinese. Assume you do not know Chinese and had to Jearn it using a Chinese to Chinese dictionary. You
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would compare character by character of a given word and find the corresponding word in the dictionary only

to find many more (meanings) written in the same language alongside, for which you would repeat the same

task. The process would put you on an endless merry-go-round.It would be only by translating it to a language

that you understand that your brain can finally perceive what it means. The Chinese symbols in the present
case are not grounded to its meaning. The moral of the exampleis simple — You cannot ground the meaning

of a symbol with other meaningless symbols. Harnad also cites that cryptologists are able to comprehend

ancient languages and symbols because their efforts are grounded in their real world domain knowledge as

also on some previous language that formsits basis.
Robots form the ultimate test-bed for Al. While AI researchers have brought forth a reasonably large

repository of techniques and programsthat are based on the symbol system, implementing them on robots

have posed several problems. Thoughthismay be beyond the scope of this book we must exercise caution

while implementing symbolic AI. For instance on board a robot a symbol ‘red’ has to be actually grounded to

some values reported by the camera or a colour sensor.

Finally one should not forget that research in Al is multidisciplinary. People have been using AI techniques
to reap benefits in a gamut of applications. Thereare still a lot more untrodden paths to be discovered. In the

quest to find better techniques, the reader is advised to give imagination a free run so that the marginal and the
peripherai are accommodated without losing the grounding of each symbol.

 

EXERCISES

1. Pick a specific topic within the scope of AI and use the sources described in this chapter to do a

preliminary literature search to determine whatthe current state of understandingofthat topic is. If you
cannotthink of a more novel topic, try one of the following: expert systems for some specific domain

(e.g., cancer therapy, computer design, financial planning), recognizing motion in images, using natural

(i.e., homanlike) methods for proving mathematical theorems, resolving pronominal referencesin natural

language texts, representing sequences of events in time, or designing 4 memory organization scheme

for knowledge in a computer system based on our knowledge of human memory organization.

2. Explore the spectrum from static to Al-based techniques for a problem other than the two discussed in

this chapter. Think of your own problem or use one of the following:

* Translating an English sentence into Japanese

* Teaching a child to subtract integers

* Discovering patterns in empirical data taken from scientific experiments, and suggesting further

experiments to find more patterns -
3. Imagine that you had been to an aquarium and seen ashark and an octopus. Describe these to a child

who has never seen one. What resources and mechanisms doesthe child use to comprehend the nature

of these marine animals?
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PROBLEMS, PROBLEM SPACES, AND SEARCH

 

les not that [im so smart, ttsjust that [stay withproblems longer.

~Albert Einstein
(1879 —1955), German-born theoretical physicist

In the last chapter, we gave a brief description of the kinds of problems with which AIis typicaliy concerned,

as well as a couple of examples of the techniques it offers to solve those problems. To build a system to solve
a particular problem, we need to do four things:

1, Define the problem precisely. This definition must include precise specifications of what the initial

situation (s) will be as well as what final situations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense impact on the appropriateness

of various possible techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply it (them) to the particular problem.

In this chapter and the next, we discuss the first two and the last of these issues. Then, in the chapters in

Part Il, we focus on the issue of knowledge representation.

2.1 - DEFINING THE PROBLEMASA STATE SPACE SEARCH

Suppose we start with the problem statement “Play chess”. Although there are a lot of people to whom we

could say that and reasonably expect that they will do as we intended, as our request now standsit is a very
incomplete statement of the problem we want solved. To build a program that could “Piay chess,” we would

first have to specify the starting position of the chess board, the mules that define the legal moves, and the

board positions that represent a win for oneside orthe other. In addition, we must make explicit the previously
implicit goal of not only playing a legal game of chess but also winning the game,if possible.

For the problem “Play chess,”it is fairly easy to provide a formal and complete problem description. The

starting position can be described as an 8 x § array where each position contains a symbol standing for the

appropriate piece in the official chess opening position. We can define as our goal any board position in which

the opponent does not have a legal move andhis or her king is under attack, The legal moves provide the way

of getting from the initial state to a goal state. They can be described easily as a set of miles consisting of two
parts: a left side that serves as a pattern to be matched against the current board position and a right side that

https://hemanthrajhemu.github.io



po

26 Artificial Intelligence
 

describes the change to be made to the board position to reflect the move. There are several ways in which

these rules can be written. For example, we could write a rule such as that shown in Fig. 2.1.
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White White

Fig. 2.1 One Legal Chess Move

However, if we write rules like the one above, we have to write a very large numberofthem since there has

to be a separate rule for each of the roughly 10!7° possible board positions. Using so many rules poses two
serious practical difficulties:

® No person could ever supply a complete set of such rules. It would take tuo long and could certainly

not be done without mistakes.

* No program could easily handle alli those rules. Although a hashing scheme could be used to find the

relevant rules for each move fairly quickly, just storing that many rules poses serious difficulties.

In order to minimize such problems, we should look for a way to write the rules describing the legal moves

in as general a way as possible. To do this, it is useful to introduce some convenient notation for describing
pattems and substitutions. For example, the rule described in Fig. 2.1, as well as manylike it, could be written

as shownin Fig. 2.2.! In general, the more succinctly we can describe the rules we need. the less work wewill

have to do to provide them and the more efficient the program that uses them can be.

White pawn at

Square(file e, rank 2)

AND move pawn from

Square(file e, rank 3) — Square(file e, rank 2)

is empty to Square(file e, rank 4)

AND

Square(file e, rank 4)

is empty

Fig. 2.2. Another Way to Describe Chess Moves

We have just defined the problem of playing chess as a problem of moving around in a slate space, where

each state corresponds to a legal position of the board. We can then play chess by starting at an initial state,

using a set of rules to move from onestate to another, and attempting to end up in one of a set of final states.

This state space representation seems natural for chess because the set of states, which correspondsto the set

of board positions, is artificial and well-organized. This same kind ofrepresentation is also useful for naturally

occurring, less well-structured problems, although it may be necessary to use more complex structures than a

'To be completely accurate, this rule should include a check for pinned pieces, which have been ignored here.
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matrix to describe an individual state. The state space representation formsthe basis of most of the AJ methods

we discuss here. Its structure corresponds to the structure of problem solving in two important ways:

e It allows for a formal definition of a problem as the need to convert some given situation into some

desired situation using a set of permissible operations.

e [t permits us to define the process of solving a particular problem as a combination ofknown techniques

(each represented as a rule defining a single step in the space) and search, the general technique of

exploring the space to try to find some path from the current state to a goal state. Search is 4 very

important process in the solution of hard problems for which no more direct techniques are available.

In order to show the generality of the state space representation, we use it to deseribe a problem very

different from that of chess.

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring

markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of

water into the 4-gallon jug?

The state space for this problem can be described as the set of ordered pairs of integers (x, y), such that + =

0.1, 2.3, or 4 and y = 0, 1, 2, or 3; x represents the number of gallons of water in the 4-gallon jug, and y

represents the quantity of water in the 3-gallon jug. The start state is (0, 0). The goal state is (2, n) for any

value of n (since the problem does not specify how many gallons need to be in the 3-gallon jug).

The operators” to be used to solve the problem can be described as shown in Fig, 2.3. As in the chess

problem, they are represented as rules whoseleft sides are matched against the current state and whose right

sides describe the new state that results from applying the rule, Notice that in order to describe the operators
completely, it was necessary to make explicit some assumptions not mentioned in the problem statement. We

have assumed that we can fill a jug from the pump, that we can pour water out of 4 jug onto the ground, that

we can pour water from one jug to another, and that there are no other measuring devices available. Additional

assumptions such as these are almost always required when converting from a typical problein statement

given in English to a formal representation of the problem suitable for use by 4 program.

To solve the water jug problem, all we need, in addition to the problem description given above, is a

control structure that loops through a simple cycle in which some rule whoseleft side matches the current

state is chosen, the appropriate change to the state is made as described in the corresponding right side, and

the resulting state is checked to see if it comespondsto a goal state. As long asit does not, the cycle continues.

Clearly the speed with which the problem gets solved depends on the mechanism that is used to select the next

operation to be performed. In Chapter 3, we discuss several ways of making that selection.

For the water jug problem, as with many others, there are several sequences of operators that solve the

problem. One such sequenceis shownin Fig. 2.4. Often, a problem contains the explicit or implied statement that

the shortest (or cheapest) such sequence be found.If present, this requirementwill have significant effect on the

choice of an appropriate mechanism to guide the search for a solution. We discuss this issue in Section 2.3.4,

Severalissuesthat often arise in converting an informal problem statementinto a formal problem description

are illustrated by this sample water jug problem. Thefirst of these issues concerns the role of the conditions

that occurin the left sides of the rules. Al! but one of the rules shown in Fig. 2.3 contain conditions that must

be satisfied before the operator described by the rule can be applied. For example,the first rule says, “If the 4-

gallon jug is not already full, fill it.” This rule could, however, have been written as, “Fill the 4-gallon jug,”

since it is physically possible tofill the jug even if it is already full. It is stupid to do so since no changein the

problem state results, but it is possible. By encodingin theleft sides of the rules constraints that are notstrictly

necessary but that restrict the application of the rules to states in which the rules are mostlikely to lead to a

solution, we can generally increase the efficiency of the problem-solving program that uses the rules.

* The word “operator” refers to some representation of an action. An operator usually includes information about what
must be true in the world before the action can take place, and how the world is changed by the action.
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(x, ¥)
ifx<4

(x, y)
ify <3

(x. ¥)
ifx>o0

wy)
ify >0

(x. ¥}
ifx>O

(x, ¥)
ify>0
(4, y)
ifx+y2>4andy>0

(x, y)
ifx+y23andx>0

(x, y)
ifx+y<4andy>0

(x, ¥)
ifx+yS3andx>0

(0, 2)

—

—_

—_

(4, y)

(x, 3)

(x~d,y)

(x, y-d)

(0, y)

(x, 0)

(4, y—(4~x)

(x - 3 - y), 3)

(x+y, 0)

(0, x + y)

(2, 0)

(0, y)

Fill the 4-gallon jug

Fill the 3-gallon jug

Pour some water out of

the 4-gallon jug

Pour some water out of

the 3-gallon jug

Empty the 4-gallon jug

on the ground

Empty the 3-gallon jug
on the ground

Pour water from the

3-gallon jug into the

4-gallon jug until the
4-gallon jug is full

Pour water from the

4-gallon jug into the

3-gallon jug until the

3-galion jug is full

Pourail the water

from the 3-gatlon jug

into the 4-galion jug
Pourall the water

from the 4-gallon jug

into the 3-gallon jug
Pourthe 2 gallons

from the 3-gallon jug
into the 4-galion jug

Empty the 2 gallons in

the 4-gallon jug on

the ground

Fig. 2.3 Production Rulesfor the WaterJug Problem

Gallons in the
4-Gallon Jug

0

0

3

3

4

0

2

Gallonsin the

3-Galion Jug
0

2

0

Rule Applied

2

9

2

7

3 or 12

9 or EY

Fig. 2.4 One Solution to the Waterjug Problemhttps://hemanthrajhemu.github.io
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The extreme of this approach is shownin thefirst tic-tac-toe program of Chapter 1. Each entry in the move

vector correspondsto a rule that describes an operation, The left side of each rule describes a board configuration

and is represented implicitly by the index position. The right side of each rule describes the operation to be

performed and is represented by a nine-element vector that correspondsto the resulting board configuration.

Each of these rules is maximally specific; it applies only to a singie board configuration, and, as a result, no

search is required when such rules are used. However, the drawback to this extreme approach is that the

problem solvercan take no action at all in a novel situation. In fact, essentially no problem solving ever reaily

occurs. For a tic-tac-toe playing program,this is not a serious problem,sinceit is possible to enumerateall the

situations (i.¢e., board configurations) that may occur. But for most problems, this is not the case. In order to

solve new problems, more general rules must be available.

A second issue is exemplified by rules 3 and 4 in Fig. 2.3. Should they or should they not be included in the

list of available operators? Emptying an unmeasured amount of water onto the groundis certainly allowed by

the problem statement. But a superficial preliminary analysis of the problem makesit clear that doing so will

never get us any closer to a solution. Again, we see the tradeoff between wniting a set of rules that describe

just the problem itself, as opposed to a set of rules that describe both the problem and some knowledge about

its solution.

Rules 11 and 12 illustrate a third issue. To see the problem-solving knowledge that these rules represent,

look at the last two steps of the solution shown in Fig, 2.4. Oncethe state (4, 2) is reached,it is obvious what

to do next. The desired 2 gallons have been produced, but they are in the wrong jug. So the thing to dois to

‘move them (rule 11). But before that can be done, the waterthat is already in the 4-gallon jug must be emptied

out (rule 12}. The idea behind these special-purpose rules is to capture the special-case knowledge that can be

used at this stage in solving the problem. These rules do not actually add power to the system since the

operations they describe are already provided by rule 9 (in the case of rule 11) and by rule 5 (in the caseof rule
12). In fact, depending on the control strategy that is used for selecting rules to use during problem solving,
the use of these rules may degrade performance. But the use of these rules may also improve performanceif

preference is given to special-case rules (as we discuss in Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug problem. From these

discussions, it should be clear that the first step toward the design of a program to solve a problem mustbe the

creation of a formal and manipuiable description of the problem itself. Ultimately, we would like to be able to

write programs that can themselves produce such formal descriptions from informal ones. This process is
called operationalization. \t is not at all well-understood how to construct such programs, but see Section

17.3 for a description of one program thatsolves a piece of this problem. Until it becomes possible to automate
this process, it must be done by hand, however. For simple problems, such as chess or the waterjug, this is not
very difficult. The problems are artificial and highly stractured. For other problems, particularly naturally-

occuring ones, this step is much more difficult. Consider, for example, the task of specifying precisely what
it means to understand an English sentence. Although such a specification must somehow be provided before
we can design a program to solve the problem, producing such a specification is itself a very hard problem.

Although our ultimate goal is to be able to solve difficult, unstructured problems, such as natura] language

understanding, it is useful to explore simpler problems, such as the water jug problem,in order to gain insight
into the details of methods that can form the basis for solutions to the harder problems.

Summarizing what we havejust said, in order to provide a formal description of a problem, we must do the

following:

1. Define a state space that contains all the possible configurations of the relevant objects (and perhaps

some impossible ones). It is, of course, possible to define this space without explicitly enumerating all

ofthe states it contains,
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2, Specify one or more states within that space that describe possible situations from which the problem-

solving process may start. These states are called the inifial states.
3, Specify one or more states that would be acceptable as solutionsto the problem. These states are called

goal states,
4. Specify a set of rules that describe the actions (operators) available. Doing this will require giving

thought to the following issues:

e What unstated assumptions are present in the informat problem description?

® How general should the mules be?

« How muchof the work required to solve the problem should be precomputed and represented in the

rules?

The problem can then be solved by using the rules, in combination with an appropriate control strategy, to

move through the problem space until a path from an initial state to a goal state is found. Thus the process of

search is fundamental to the problem-solving process. The fact that search provides the basis for the process

of problem-solving does not, however, mean that other, more direct approaches cannot also be exploited.

Whenever possible, they can be included as steps in the search by encoding them into the rules. For example,

in the water jug problem, we use the standard arithmetic operations as single steps in the rules. We do not use

search to find a number with the property that it is equal toy — (4 — x) Of course, for complex problems,

more sophisticated computations will be needed. Search is a general mechanism that can be used when no

more direct method is known. At the sametime, it provides the framework into which more direct methodsfor

solving subparts of a problem can be embedded.

2.2 PRODUCTION SYSTEMS

Since search forms the core of many intelligent processes,it is useful to structure AI programs in a way that

facilitates describing and performing the search process. Production systems provide such structures. A

definition of a production system is given below, Do not be confused by other uses of the word production,

such as to describe what is done in factories. A production system consists of:

e A set of rules, each consisting of a left side (a pattern) that determines the applicability of the rule and

a right side that describes the operation to be performedif the rule is applied.*

* One or more knowledge/databases that contain whatever information is appropri- ate for the particular

task, Some parts of the database may be permanent, while otherparts of it may pertain only to the solution
of the current problem. The information in these databases may be structured in anyappropriate way.

« A control strategy that specifies the order in whichthe rules will be compared to the database and a

way of resolving the conflicts that arise when several rules match at once.

« A tule applier.

So far, our definition of a production system has been very general. It encompasses a great many systems,

including our descriptions of both a chess player and a water jug problem solver.It also encompassesa family

of general production system interpreters, including:

* Basic production system languages, such as OPS5 [Brownston et ai, 1985} and ACT* [Anderson, 1983}.

* More complex, often hybrid systems called expert system sheils, which provide complete (relatively

speaking) environments for the construction of knowledge- based expert systems.

¢ General problem-solving architectures like SOAR [Laird et af., 1987], a system based on a specific set

of cognitively motivated hypotheses about the nature of problem-solving.

* This convention for the use ofleft and right sides is natural for forward rules. As wewill seelater, many backwardrule

systems reverse the sides. https://hemanthrajhemu.github.io
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All of these systems provide the overall architecture ofa production system and allow the programmerto write

tules that-define particular problems to be solved. We discuss production system issues further in Chapter6.

We have now seen that in order to solve a problem, we must first reduce it to one for which a precise

statement can be given. This can be done by defining the problem’sstate space (including the start and goal

states) and a set of operators for moving in that space. The problem can then be solved by searching for a path

through the space from an initial state to a goal state. The process of solving the problem can usefully be

modeled as a production system.In the rest ofthis section, we look at the problem of choosing the appropriate

control structure for the production system so that the search can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply next during the process

of searching for a sclution to a problem. This question arises. since often more than one rule (and sometimes
fewer than one rule) will have its left side match the current state. Even without a great deal of thought, it is

clear that how such decisions are made will have a crucial impact on how quickly, and even whether, a

problem is finally solved.

© The first requirement of a good control strategyis that it causes motion. Consider again the water jug

problem of the last section. Suppose we implemented the siinple control strategy of starting each ume

at the top of the list of rules and choosing the first applicable one. If we did that, we would never solve

the problem. We would continue indefinitely filling the 4-gallon jug with water Control! strategies that

do not cause motion will never lead to a solution.

© The second requirement of a good control strategy is that it be systematic. Here is another simple

control strategy for the water jug problem: On each cycle, choose at random from among the applicable

rules. This strategy is better than the first. It causes motion. It will lead to a solution eventually. Bul we

are likely to arrive at the same state several times during the process and to use many more steps than

are necessary, Because the control strategy is not systematic, we may explore a particular useless

sequence of operators several times before we finally find a solution, The requirement that a control

strategy be systematic correspondsto the need for global motion (over the course of several steps) as

well as for Jocal motion (over the course of a single step), One systematic controlstrategy for the water

jug problem is the following. Construct a tree with theinitial state as its root. Generate all the offspring

of the root by applying each ofthe applicable rulesto the initial state. Fig. 2.5 shows how the tree looks

at this point. Now for each leaf node, generate all its successors by applying all the rules that are

appropriate. Thetree at this point is shown in Fig. 2.6.4 Continuethis process until some rule produces

a goal state. This process, called breadth-first search, can be described precisely as follows.

   
  

    

 

|0.0) | (0.0) 30)
Fig. 2.5 One Level ofa Breadth- Fig.2.6 Two Levels ofa Breadth-

First Search Tree First Search Tree

(1,3)

4 Rule 3, 4, 11, and 12 have been ignored in constructing the search tree.
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Algorithm: Breadth-First Search

1, Create a variable called NODE-LIST and set it to the initial state.

2. Until a goal state is found or NODE-LISTis empty:
(a} Removethe first element from NODE-LIST and call it £. If NODE-LIST was empty, quit.

(b) For each way that each rule can match the state described in E do:

(2) Apply the mule to generate a new state,

(ii) If the new state is a goal state. quit andreturnthis state.

(iii) Otherwise, add the new state to the end of NODE-LIST:

Other systematic control strategies are also available. For example, we could pursue a single branch ofthe

tree until it yields a solution or uniil a decision to terminate the path is made. It makes sense to terminate a path

if it reaches a dead-end, produces a previous state, or becomes longer than some prespecified “futility” limit.

In such a case, backtracking occurs. The most recently created state from which alternative moves are available
will be revisited and a new state will be created. This formofbacktrackingis called chronological backtracking

because the order in which steps are undone depends only on the temporal sequence in which the steps were

originally made. Specifically, the most recent step is always the first to be undone. This form of hacktracking

is what is usually meant by the simple term backtracking. But there are other ways of retracting steps of a

computation. We discuss one important such way, dependency-directed backtracking. in Chapter 7. Until

then, though, when we use the term backtracking. it means chronological backtracking.

The search procedure we have just described is also called depth-first search. The following algorithm

describes this precisely.

Algorithm: Depth-First Search

1. If the initial state is a goal state, quit and return success.

2. Otherwise, do the following until success or failure is signaled:

(a) Generate a successor, —, ofthe initial state. If there are no more successors, signal failure.

(b) Call Depth-First Search with Eas the initial state.

(c) If success is returned, signal success, Otherwise continue in this loop.

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A comparison of these two

simple methods produces the following observations:

 

43)
Fig, 2.7 A Depth-First Search Tree

Advantages of Depth-First Search

« Depth-first search requires less memory since only the nodes on the current path are stored. This

contrasts with breadth-first search, whereall ofthe tree that has so far been generated must be stored.

e By chance (orif care is taken in ordering the alternative successor states), depth-first search may find

a solution without examining much ofthe search space at all. This contrasts with breadth-first search in

which all parts of the tree must be examinedto level » before any nodes on level m + 1 can be examined.

Thisis particularly significant if many acceptable solutions exist. Depth-first search can stop when one

of them is found.https://hemanthrajhemu.github.io
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Advantages ofBreadth-First Search

« Beeadth-first search will not get trapped exploring a blind alley. This contrasts with depth-first searching,

which may follow a single, unfruitful path for a very long time, perhaps forever, before the path actually

terminates in a state that has no successors, This is a particular problem in depth-first search if there are

loops (i.e., a state has a successorthat is also one ofils ancestors) unless special care is expendedto test

for such a situation. The example in Fig. 2.7, if it continues always chousing the first (in numerical

sequence) rule that applies, will have exactly this problem.

e If there is a solution, then breadth-first search is guarantced to find it. Furthermore,if there are multiple

solutions, then a minimalsolution (i-e., one that requires the minimum numberof steps) will be found.

This is guaranteed by the fact that longer paths are never explored until all shorter ones have already

been examined. This contrasts with depth-first search, which may find a long path to a solution in one

part of the tree, when a shorter path exists in some other, unexplored part ofthe tree.

Clearly what we would like is a way to combine the advantages of both of these methods. In Section 3.3 we

will talk about one way of doing this when we have same additionalformation. Later, in Section 12.5, we

will describe an uninformed way of doing so.

For the water jug problem, most control] strategics that cause motion and are systematic will lead to an

answer. The problem is simple. But this is not always the case. In order to solve some problems during our

lifetime, we must also demand a contro} structure that is efficient.

Consider the following problem.

TheTraveling Salesman Problem:A salesman has a list of cities, cach of which he must visit exactly once, There

are direct roads between each pair of cittes on the jist. Find the route the salesman should follow for the shortest

possible round trip that both starts and finishes at any one ofthecities.

A simple, motion-causing and systematic control structure could,in principle, solve this problem. It would

simply explore all possible paths in the tree and return the one with the shortest length. This approach wiil

even work in practice for very short lists of cities. But it breaks down quickly as the numberofcities grows.

If there are N cities, then the numberof different paths among themis 1.2..(N -- 1), or (NV — 1)!. The time to

examinea single path is proportional to NV, So the total time required to perform this search is proportional to

Ni. Assuming there are only 10 cities, 16! is 3,628,800, which ts a very large number. The salesman could

easily have 25 cities to visit. To solve this problem would take more time than he would be willing to spend.

This phenomenonis called combinatorial explosion. To combat it. we need a new control strategy.

We can beat the simplestrategy outlined above using a technique called branch- and-bound. Begin generating

complete paths, keeping track of the shortest path found so far. Give up exploring any path as soon asits

partial length becomes greater than the shortest path found so far. Using this technique, weare still guaranteed

to find the shortest path. Unfortunately, although this algorithm is more efficient than the first one, it still

requires exponential time. The exact amountof time it saves for a particular problem depends on the order in

which the paths are explored. But it is still inadequate for solving large problems.

2.2.2 Heuristic Search

In order to solve many hard problemsefficiently, it is often necessary to compromise the requirements of

mobility and systematicity and to construct a control structure thal is no longer guaranteed to find the best

answerbut that will almost always find a very good answer. Thus we introduce the idea of a heuristic? A

*The word Aeuristic comes from the Greek word heuriskein, meaning “to discover,” which is also the origin of eureka,

derived from Archimedes’ reputed exclamation, feurika (for “Tt have found”), uttered when he had discovered a method

for determining the purity of gold.
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heuristic is a technique that improves the efficiency of a search process, possibly by sacrificing claims of

completeness. Heuristics are like tour guides. They are goodto the extent that they point in generally interesting

directions; they are bad to the extent that they may miss points of interest to particular individuals. Some

heuristics help to guide a search process without sacrificing any claims to completenessthat the process might
previously have had. Others (in fact, many of the best ones) may occasionally cause an excellent path to be
overlooked. But, on an average, they improve the quality ofthe paths that are explored. Using good heuristics,

we can hope to get good (though possibly nonoptimal) solutions to hard problems, such as the traveling

salesman, in less than exponential time. There are some good general-purpose heuristics that are useful in a

wide variety of problem domains.In addition,it is possible to construct special-purpose heuristics that exploit

domain-specific knowledge to solve particular problems.

One example of a good general-purpose heuristic that is useful for a variety of combinatoria! problemsis

the nearest neighbor heuristic, which worksby selecting the locally superior altemative at each step. Applying

it to the traveling salesman problem, we produce the following procedure:

1. Arbitrarily select a starting city.

2. To select the next city, look at all cities not yet visited, and select the one closest to the current city. Go

to it next.

3. Repeat step 2 until all cities have been visited.

This procedure executes in time proportional to N’,a significant improvement over N', andit is possible to

prove an upper bound onthe error it incurs. For general-purpose heuristics, such as nearest neighbor, it is

often possible to prove such error bounds, which provides reassurance that one is not paying too high a price

in accuracy for speed.

In many AI problems, however, it is not possible to produce such reassuring bounds. This is true for two

reasons:

® For real world problems,it is otic hard to measure precisely the valueof a particular solution. Although

the length of a trip to several cities .» 4 precise notion, the appropriateness of a particular response to

such questions as “Why hasinflation increased?” is much less so,
« For real world problems, it is often useful to introduce heuristics based on relatively unstructured

knowledge.It is often impossible to define this knowledge in such a way that a mathematical analysis

of its effect on the search process can be performed.

There are many heuristics that, although they are not as general as the nearest neighbor heuristic, are

nevertheless useful in a wide variety of domains. For example, consider the task of discovering interesting

ideas in some specified area. The following heuristic [Lenat, 1983b] is often useful:

H there is an interesting function of two arguments f(x, y), look at what happensif the two arguments are

identical.

In the domain of mathematics, this heuristic leads to the discovery of squaring iff is the multiplication
function, and it leads to the discovery of an identityfunction iffis the function of set union. In less formal

domains, this same heuristic leads to the discovery of introspection iffis the function contemplate or it leads

to the notion of suicide iff is the function kill.

Without heuristics, we would become hopelessly ensnarled in a combinatorial ex-plosion. This alone might

be a sufficient argument in favor of their use. But there are other arguments as well:

© Rarely do we actually need the optimum solution; a good approximation will usually serve very well. In

fact, there is some evidence that people, when they solve problems, are not optimizers but rather are
satisficers [Simon, 1981]. In other words, they seek any solution that satisfies some set of requirements,

and as soon as they find one they quit. A good example of this is the search for a parking space. Most

people stop as soon as they find a fairly good space, even if there might be a slightly better space up ahead.
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* Although the approximations produced by heuristics may not be very good in the worst case, worst

cases rarely arise in the real world. For example, although many graphs are not separable (or even

nearly so) and thus cannot be considered as a set of small problems rather than one large one,a lot of

graphs describing the real world are.®
* Trying to understand why a heuristic works, or whyit doesn’t work, often leads to a deeper understanding

of the problem.

One of the best descriptions of the importance of heuristics mm solving interesting problems is How to Solve
it [Polya, 1957}. Although the focus of the bogk-is the solution of mathematical problems, many of the

techniques it describes are more generally applicable. For example, given a problem to solve, look for a

similar problem you have solved before. Ask whether you can use either the solution of that problem or the

method that was used to obtain the solution to help solve the new problem. Polya’s work serves as an excellent
guide for people who want to become better problem solvers. Unfortunately, it is not a panacea for Al for a

couple of reasons. Oneis that it relies on humanabilities that we mustfirst understand well enough to build

into a program. For example, many of the problems Polya discusses are geometric ones in which once an

appropriate picture is drawn, the answer can be seen immediately. But to exploit such techniques in programs,

we must develop a good way of representing and manipulating descriptions of those Fig.s. Another is that the

rules are very general.

They have extremely underspecified left sides, so it is hard to use them to guide a search—too many of

them are applicable at once. Manyof the rules are really only useful for looking back and rationalizing a

solution after it has been found. In essence, the problem is that Polya’s rules have not been operationalized.

Nevertheless, Polya was several steps ahead of Al. A comment he madein the prefaceto the first printing

(1944) of the book is interesting in this respect:

The following pages are written somewhat concisely, but as simply as possible, and are based on a long

and serious study of methodsof solution. This sort of study, called heuristic by some writers, is not in fashion

nowadays but has a long past and,-perhaps, some future.

There are two major ways in which domain-specific, heuristic knowledge can be incorporated into a rule-

based search procedure: :

* In the rules themselves. For example, the rules tor a chess-playing system might describe not simply

the set of legal moves but rather a set of “sensible” moves, as determined by the rule writer.

* Asa heuristic function that evaluates individual problem states and determines how desirable they are.

A heuristic function is a function that maps from problem state descriptions to measures of desirability,

usually represented as numbers. Which aspects of the problem state are considered, how those aspects are

evaluated, and the weights given to individual aspects are chosen in such a way that the value of the heuristic

function at a given node in the search process gives as good an estimate as possible of whether that node is on

the desired path to a solution.

Well-designed heuristic functions can play an importantpart in efficiently guiding a search process toward

a solution. Sometimes very simple heuristic functions can provide a fairly good estimate of whether a path is

any good or not. In other situations, more complex heuristic functions should be employed. Fig. 2.8 shows

some simple heuristic functions for a few problems. Notice that sometimes a high value of the heuristic

function indicates a relatively good position (as shown for chess and tic-tac- toe), while at other times a low

value indicates an advantageoussituation (as shownfor the traveling salesman). It does not matter. in general,

which way the function is stated. The program that uses the values of the function can attempt to minimize it

or to maximize it as appropriate.

® For arguments in support of this, see Simon [1981].
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Chess the material advantage of our side

over fhe opponent

Traveling Salesman the suin of the distances so far

Tic-Tac-Toe 1 for each row in which we could win

and in which we already have one

piece plus 2 for each such rowin

which we have two pieces

Fig. 2.8 Same Simple Heuristic Functions

The purpose of a heuristic function ts to guide the search process in the most profitable direction by

suggesting which path to follow first when more than one is available. The more accurately the heuristic

function estimates the true merits of each node in the search tree (or graph), the more direct the solution

process. In the extreme, the heuristic function would be so good that essentially no search would be required.

The system would move directly to a solution. But for many problems, the cost of computing the value of

such a function would outweigh the effort saved in the search process, After all, it would be possible to

compute a perfect heuristic function by doing a complete search from the node in question and determining

whether it leads to a good solution. In general, there is a trade-off between the cost of evaluating a heuristic

function and the savings in search time that the function provides.

In the previous section. the solutions to AI problems were descnbed as centering on a search process.

From the discussion in this section, it should be clear that it can more precisely be described as a process of

heuristic search. Some heuristics will be used to define the contro! structure that guides the application of

rules in the search process. Others. as we shall see, will be encoded in the rules themselves. In both cases, they

will represent either general or specific world knowledge that makes the solution of hard problemsfeasible.

This leads to another waythat one could define artificial intelligence: the study of techniques for solving

exponentially hard problems in polynomial time by exploiting knowledge about the problem domain.

2.3— PROBLEM CHARACTERISTICS

Heuristic search is a very general method applicable to a large class of problems. It encompasses a variety of

specific techniques, each of whichis particularly effective for a small class of problems. In order to choose the

most appropriate method (or combination of methods) for a particular problem,it is necessary to analyze the

problem along several key dimensions:

¢ {s the problem decomposable into a set of (nearly) independent smaller or easier subproblems?

e Can solution steps be ignored or at least undone if they prove unwise?

* Js the problem’s universe predictable?

« Is a good solution to the problem obvious without comparison to all other possible solutions?

* is the desired solution a state of the world or a path to a state?

« Is a large amount of knowledge absolutely required to solve the problem, or is knowledge important

only to constrain the search?

e Cana computerthat is simply given the problem returm the solution,or will the solution of the problem

require interaction between the computer and a person?

In the rest of this section, we examine each of these questions in greater detail. Notice that some of these

questions involve not just the statement of the problem itself but also characteristics of the solution that is

desired and the circumstances under which the solution musttake place.
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2.3.1 Is the Problem Decomposable?

Suppose we want to solve the problem of computing the expression

Je + 3x + sin?* - cost) dy Je + 3x + sin? x cos? x dx

We can solve this problem by breaking it down inta fe ax [ax dx J sin2x cos2x dx

three smaller problems, each of which we can then solve | |

by using a small collection of specific rules. Figure2.9 x? 3] x dx fa — cos* x) cos2x dx
shows the problem tree that will be generated by the 3 | >

oe aC Hh ott ae ; 3xprocess of problem decomposition as it can be exploited =F icos2x ax j cost xdx

by a simple recursive integration program that works as | ;

follows: At each step, it checks to see whether the prob-

lent it is working onis immediately solvable. H so, then

the answeris returned directly. If the problem is not

JA (1 + cos 2x) dx

i 1
easily solvable, the integrator checks to sce whetherit val} ax a]cos 2x dx

can decompose the problem into smaller problems. If it 1 1.
can,it creates those problems and calls itself recursively 7% sin 2x
on them. Using this technique of problem decomposi-

tion, we can often solve very large problems easily.

Nowconsider the problem illustrated in Fig. 2.10. This problem is gpad.

Fig. 2.9 A Decomposable Problem

 

drawn from the domain often referred to in Al literature as the blocks

world. Assume that the following operators are available: [Bl

1. CLEAR (x) [block x has nothing on it] — ON (x, Table) [pick ON(C,A) ON(B,C) and ON(A,B)

up x and put it on the table] Fig. 2.10 A Simple Blocks World

2, CLEAR(4) and CLEAR(¥) > ON (x, y) {[put.x on y] Problem

Applying the technique of problem decomposition to this simple blocks world example would lead to a

solution tree such as that shown in Fig. 2.11. In the figure, goals are underlined. States that have been achieved

are not underlined. The idea of this solution is to reduce the problem of getting B on C and A on B to two

separate problems. The tirst of these new prohiems, getting B on C,is simple, given the start state. Simply put

B on C. The second subgoalis not quite so simple. Since the (B,C)and (A.B)

only operators we have allowus to pick up single blocks at a
time, we have to clear off A by removing C before we can

pick up A and put it on B. This can easily be done. However,

if we now try to combine the two subsolutions into one

solution, we will fail. Regardless of which one wedo first, we Move Ato tabio

will not be able to do the second as we had planned. In this

problem, the two subproblems are not independent. They

interact and those interactions must be considered in order to Fig. 2.11 A Proposed Solution for the Blocks
artive at a solution for the entire problem. Problem

These two examples, symbolic integration and the blocks world, illustrate the difference between

decomposable and nondecomposable problems. In Chapter 3, we present a specific algorithm for problem

decomposition, and in Chapter 13, we look at what happens when decomposition is impossible.

  
   

     
Put Bon C

CLEAR(A  
 

  

  Put AonB

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose weare trying to prove a mathematical theorem. We proceed by first proving a lemma that we think

will be useful. Eventually, we realize that the lemmais no help at all. Are we in trouble?
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No. Everything we need to know to prove tbe theoremis still true and in memory,if it ever was. Anyrules

that could have been applied at the outset can still be applied. We can just proceed as we should have in the

first place. All we have lost is the effort that was spent exploring the blindailey.

Now consider a different problem.

The 8-Puzzle: The 8-puzzle is a square tray in which are placed, eight square tiles. The remaining ninth square is

uncovered. Each tile has a numberonit. A tile that is adjacent to the blank space canbe slid into that space. A game

consists of a starting position and a specified goal position. The goal is to transform the starting position into the

goal position by sliding the tiles around.

  

  

  

A sample game using the 8-puzzle is shown in Fig. 2.12. In attempting to solve Start Goal
the &-puzzle, we might make a stupid move. For example, in the game shown ala|3 1412/3

above, we mightstart by sliding tile 5 into the empty space. Having done that, we (4[@[4 8 4
cannot change our mind and immediately slide tle 6 into the empty space since [5 5 716l5          
the empty space will essentially have moved. But we can backtrack and undo the

first move, sliding tile 5 back to where it was, Then we can movetile 6. Mistakes

can still be recovered from but not quite as easily as in the theorem-proving

problem. An additional step must be performed to undo each incorrect step, whereas no action was required

to “undo” a useless lemma. In addition, the control mechanism for an 8-puzzle solver must keep track of the

order in which operations are performed so that the operations can be undone oneat a time if necessary. The

control structure for a theorem prover does not need to record all that information.

Now consider again the problem of playing chess. Suppose a chess-playing program makes a stupid move

and realizes it a couple of moveslater. It cannot simply play as though it had never made the stupid move. Nor

can it simply back up andstart the game over from that point. All it can do is to try to make the best of the

current situation and go on from there.

These three problems—theorem proving, the 8-puzzle, and chess—illustrate the differences between three

important classes of problems:

Fig. 2.12 An Example of
the 8-Puzzle

@ Ignorable (e.g., theorem proving). in which solution steps can be ignored

* Recoverable (e.g., 8-puzzle), in which solution steps can be undone

* Isrecoverable (e.g., chess), in which solution steps cannot be undone

These three definittons make reference to the steps of the solution to a problem and thus may appear to

characterize particular production systems for solving a problem rather. than the problem itself. Perhaps a

different formulation of the same problem would lead to the problem being characterized differently. Strictly

speaking, this is true, But for a great many problems, there is only one (or a small number of essentially

equivalent) formulations that naturally describe the problem. This was true for each of the problems used as

examples above. Whenthis is the case, it makes sense to view the recoverability of a problem as equivalentto

the recoverability of a natural formulation ofit.

The recoverahility of a problein plays an important role in determining the complexity of the control

structure necessary for the problem’s solution. [gnorable problems can be solved using a simple control

structure that never backtracks. Such a control structure is easy to implement. Recoverable problems can be

solved by a slightly more complicated contro! strategy that does sometimes make mistakes. Backtracking will

be necessary to recover from such mistakes, so the control structure must be implemented using a push-down

stack, in which decisions are recorded in case they need to be undonelater. Irrecoverable problems, on the

other hand, will need to be solved by a system that expends a great deal of effort making each decision since

the decision must be final. Some irrecoverable problems can be solved by recoverable style methods used in

a planning process. in which an entire sequence of steps is analyzed in advance to discover whereit will lead
before the first step is actually taken. We discuss next the kinds of problems in which this is possible.https://hemanthrajhemu.github.io



 

Problems, Problem Spaces, and Search 39
 

2.3.3 Is the Universe Predictable?

Again supposethat we are playing with the 8-puzzie. Every time we make a move, we know exactly what will

happen. This meansthat it is possible to plan an entire sequence of moves and be confident that we know what

the resulting state will be. We can use planning to avoid having to undo actual moves, although it will still be

necessary to backtrack past those moves one at a time during the planning process. Thus a control structure

that allows backtracking will be necessary.

However, in games other than the 8-puzzle, this planning process may not be possible. Suppose we want to

play bridge. One of the decisions we will have to make is which card to play on thefirst trick. What we would

like to do ts to plan the entire hand before makingthat first play. But nowit is not possible to do such planning

with certainty since We cannot know exactly where all the cards are or what the other players will do on their

turns. The best we can do is to investigate several plans and use probabilities of the various outcomes to

choose a plan that has the highest estimated probability of leading to a good score on the hand.

These two gamesillustrate the difference between certain-outcome(e.g., 8-puzzle) and uncertain-outcome

(e.g., bridge) problems. One way of describing planningis that it is problem-solving without feedback from

the environment. For solving certain-outcome problems, this open-loop approach will work fine since the

result of an action can be predicted perfectly. Thus, planning can be used to generate a sequence of operators

that is guaranteedto lead to a solution. For uncertain-outcome problems, however, planning can at best generate

a sequence of operators that has a good probability of lcading to a solution. To solve such problems, we need

to allow for a process of plan revision to take place as the plan is carried out and the necessary feedback is

provided. In addition to providing no guarantee of an actual solution, planning for uncertain-outcome problems

has the drawback thatit is often very expensive since the number of solution paths that need to be explored

increases cxponentially with the; number of points at which the outcome cannot be predicted.

The fast two problem characteristics we have discussed, ignorable versus recoverable versus irrecoverable

and certain-outcome versus uncertain-outcome,interact in an interesting way. As has already been mentioned,

one way to solve irrecoverable problemsis to plan an entire solution before embarking on an implementation

of the plan. But this planning process can only be done effectively for certain-outcome problems. Thus one of

the hardest types of problems to solve is the irrecoverable, uncertain-outcome. A few examples of such
problemsare:

* Playing bridge. But we can do fairly well since we have available accurate estimatesof the probabilities

of each of the possible outcomes.

* Controlling a robot arm. The outcome is uncertain for a variety of reasons. Someone might move
something into the path of the arm. The gears of the arm might stick. A slight error could cause the arm

to knock over a whole stack of things.

* Helping a lawyer decide how to defend his client against a murder charge. Here we probably cannot

even list all the possible outcomes, much less assess their probabilities.

2.3.4 Isa Good Solution Absolute or Relative?

Consider the problem of answering questions based on a database of simple facts, such as the following:

|. Marcus was a man.

Marcus was a Pompeian.

Marcus was bor in 40 A.D.

All men are mortal.

Ali Pompeians died when the voleano erupted in 79 A.D.
No mortal lives longer than 150 years.

Itis now 1991 A.D,a
a
P
e
n
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Suppose we ask the question “Is Marcusalive?” By representing each ofthese facts in a formal language, such

as predicate logic, and then using formal inference methods we can fairly easily derive an answer to the

question.’ In fact, either of two reasoning paths will lead to the answer, as shown in Fig. 2.13. Since all we are

interested in is the answer to the question, it does not matter which path we follow. If we do follow one path

successfully to the answer, there is no reason to go back and see if some other path might alsolead to a solution.

Justification

1. Marcus was a man. axiom |

4, All men are mortal. axiom 4

8. Marcus is mortal. 1,4

3, Marcus was born in 40 A.D. axiom 3

7. Itis now 1991 A.D. axiom 7

9. Marcus’ age is 1951 years. 3,7

6. No mortal lives longer than 150 years, axiom 6

10. Marcusis dead. 8, 6,9

OR

7. Itis now 199] A.D, axiom 7

5. All Pompeians died in 79 A.D, axiom 5

11. All Pompeians are dead now. 7,5

2, Marcus was a Pompeian. axiom 2

12. Marcus is dead. 11,2

Fig. 2.13 Two Ways ofDeciding That Marcus Is Dead

But now consider again the traveling salesman problem. Our goalis to find the shortest route that visits each

city exactly once. Suppose the cities to be visited and the distances between them are as shown in Fig. 2.14.
 

 

 

 

    

Boston |New York] Miami Dallas S.F

. Boston 250 1450 1700 3000

New York 250 1200 1500 2900

Miami 1450 1200 £600 3300

Dallas 1700 1500 1600 1700

S.F. 3000 2900 3300 1700       
Fig. 2.14 An Instance of the Traveling Salesman Problem

Oneplace the salesman could start is Boston. In that case, one path that might be followedis the one shown

in Fig. 2.15, which is 8850 miles long. But is this the solution to the problem? The answeris that we cannot

be sure unless wealsotry all other paths to make sure that none of them is shorter. In this case, as can be seen

from Fig. 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examplesillustrate the difference between any-path problems and best- path problems. Best-

path problemsare, in general, computationally harder than any-path problems. Any-path problems can often

be solved in a reasonable amount of time by using heuristics that suggest good paths to explore. (See the

discussion of best-first search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the

search for a solution may not be as direct as possible, but that does not matter. For true best-path problems,

however, no heuristic that could possibly miss the best solution can be used. So a much more exhaustive
search will be performed.

? Of course, representing these statements so that a mechanical! procedure could exploit them to answerthe question also

requires the explicit mention of other facts, such as “dead implies not alive.” We do this in Chapter 5.https://hemanthrajhemu.github.io
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2.3.5

Consider the problem of finding a consistent interpretation for the sentence

Is the Solution a State or a Path?

The bank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, im isolation, may have more than one

interpretation, But the components must form a coherent whole. and so they constrain each other’s

interpretations. Some of the sources of ambiguity in this sentence are the following:

The word “bank” mayrefer either to a financial institution or to a side of a river. But only one of these may

have a president.

* The word “dish” is the object of the verb “eat.” It is possible that a dish was eaten. But itis more likely

that the pasta salad in the dish was caten.

¢ Pasta salad is a salad containing pasta. But there are other ways meanings can be formed from pairs of

nouns. For example, dog food does not normally contain dogs.

« The phrase “with the fork” could modify several parts of the sentence. In this case, it modifies the verb

“eat.” But, if the phrase had been “with vegetables,” then the modification structure would be different,

And if the phras:: had been “with her friends,” the structure would be different still.

Because of the interaction amongthe interpretations of the constituents of this sentence, some search may

be required to find a complete interpretation for the sentence. But to solve the problem of finding the

interpretation we need to produce only the interpretation itself. No record of the processing by which the

interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not sufficient to report that we have solved the problem

and thatthe final state is (2, 0). For this kind of problem, what we really must report is not the final state but

the path that we found to that state. Thus a statement of a solution to this problem must be a sequence of
operations (sometimes called apian) that producesthe final state. .

These two examples, natural language understanding and the water jug problem,illustrate the difference

between problems whose solution is a state of the world and problems whose solution is a path to a state. At

one level, this difference can be ignored and ail problems can be formulated as ones in which only state is
required to be reported. If we do this for problems such as the water jug, then we must redescribe ourstates so

that each state represents a partial path to a solution rather than just a single state of the world. So this question

+
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is not a fonnally significant one, But, just as for the question of ignorability versus recoverability, there is

often a natural (and economical) formulation of a problem in which problem states correspondto situations in

the world, not sequences of operations. In this case, the answerto this question tells us whetherit is necessary
to record the path of the problem-solving process as it proceeds.

2.3.6 What is the Role of Knowledge?

Consider again the problem of playing chess. Suppose you had unlimited computing power available. How

much knowledge would be required hy a perfect programy? The answerto this question is very litthe—just the

rules for determining legal moves and some simple control mechanism that implements an appropnate search

procedure. Additional knowledge about such things as good strategy and tactics couid of course help’

considerably to constrain the search and speed up the execution of the program.
But now consider the problem of scanning daily newspapers to decide which are supporting the Democrats

and which are supporting the Republicans in some upcoming election. Again assuming unlimited computing

power, how much knowledge would be required by a computer trying to solve this problem? This time the

answeris a great deal. It would have to knowsuch thingsas:

* The namesof the candidates im each party,

e The fact that if the major thing you want to see done is have taxes lowered, you are probably supporting

the Republicans.

e The fact that if the major thing you want to see done is improved education for minority students, you
are probably supporting the Democrats.

« The fact that if you are opposed to big government, you are probably supporting the Republicans.

* And soon...

These two problems, chess and newspaper story understanding,illustrate the difference between problems

for which a lot of knowledge is important only to constrain the search for a solution and those for which lot
of knowledge is required even to be able to recognize a solution.

2.3.7 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to solve problems in waysthat the majority of people would not

be able to understand. Thisis fine if the level of the interaction between the computer and its human users is

problem-in solution-out. But increasingly we ate building programsthat require intermediate interaction with

people, both to provide additional input to the program and to provide additional reassurance to the user.

Consider, for example, the problem of proving mathematical theorems.If

1. All we want is to know that there is a proof

2. The program is capable of finding a proof byitself

then it does not matter what strategy the program takes to find the proof. It can use, for example, the resolution

procedure (see Chapter 5), which can be very efficient but which does not appear natural to people. Butif

either of those conditions is violated, it may matter very much how a proof is found. Suppose that we are

trying to prove some new, very difficult theorem. We might demand a proof that follows traditional patterns

so that a mathematician can read the proof and check to make sure it is correct. Alternatively, finding a proof

of the theorem might be sufficiently difficult that the program does not know whereto start. At the moment,

people are still better at doing the high-level strategy required for a proof. So the computer mightlike to be

able to ask for advice. For example, it is often much easier to do a proof in geometry if someone suggests the

right line to draw into the Fig.. To exploit such advice, the computer’s reasoning must be analogousto that of

its humanadvisor, at least on a few levels. As computers moveinto areas ofgreat significance to human lives,

such as medical diagnosis, people will be very unwilling to accept the verdict of a program whose reasoning

they cannot follow. Thus we mustdistinguish between two types of problems:
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e Solitary, in which the computer is given a problem description and produces an answer with no

intermediate communication and with no demand for an explanation of the reasoning proce..s

* Conversational, in which there is intermediate communication between a person and the computer,either

to provide additional assistance to the computeror to provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains. As we just showed,

mathematical theorem proving could be regardedas either. But for a particular application, one or the other of

these types of systems wili usually be desired and that decision will be importantin the choice of a probiem-
solving method.

2.3.8 Problem Classification

Whenactual problems are examined from the point of view ofall of these questions, it becomes apparent that
there are several broad classes into which the problems fall. These classes can each be associated with a
generic control strategy that is appropriate for solving the problem. For example, considerthe generic preblern

of classification. The task here is to examine an input and then decide which of a set of known classes the

input is an instance of. Most diagnostic tasks, including medical diagnosis as well as diagnosis of faults tn

mechanical devices, are examples of classification. Another example of a generic strategy is propose ane

refine. Many design and planning problems can be attacked with this strategy.

Depending on the granularity at which we attempt to classify problems and control strategies, we may

come up with different lists of generic tasks and procedures. See Chandrasekaran [1986] and McDermott

[1988] for two approaches to constructing such lists. The important thing to rememberhere, though, since we

are about to embark on a discussion of a variety of problem-solving methods,is that there is no one single way

of solving all problems. But neither must each new problem be considered totally aé initio. Instead, if we

analyze our problems carefully and sort our problem-solving methods by the kinds of problems for which

they are suitable, we will be able to bring to each new problem much of what we have learned from solving
other, similar problems.

2.4 PRODUCTION SYSTEM CHARACTERISTICS

We have just examined a set of characteristics that distinguish various classes of problems. We have also

argued that production systems are a good way to describe the operationsthat can be performedin a search for

a solution to a problem. Two questions we might reasonably ask at this pointare:

1, Can production systems, like problems, be described by a set of characteristics that shed somelight on

how they can easily be implemented?

2. If so, what relationships are there between problem types and the types of pro- duction systems best
suited to solving the problems?

The answerto the first question is yes. Consider the following definitions of classes of production systems.

A monotonic production system is a production system in which the application of a rule never prevents the

later application of another rule that could also have been applied at the time the first rule was selected. A

nonmonotonic production system is one in which this is not true. A partially commutative production system

is a production system with the property that if the application of a particular sequence of rules transforms

state x into state y, then any permutation of those mules that is allowable (i.e., each rule’s preconditions are

satisfied whenit is applied) also transformsstate x into state y, A commutative production system 1s a production
system that is both monotonic and partially commutative.®

® This correspondsto the definition of a commutative production system given in Nilsson {1980}.
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The significance of these categories of production systerns lies in the relationship between the calegories

and appropriate implementation strategies. But beiore discussing that relationship, it may be helpful to make

the meanings of the definitions clearer by showing howthey relate to specific problems.
Thus we arrive at the second question above, which asked whetherthere is an interesting relationship

between classes of production systems and classes of problems. For any sclvable problem, there exist an

infinite number of production systems that describe ways to find solutions. Some will be more natural or

efficient than others. Any problem that can be solved by any production system can oe solved by a commutative

one (our most restricted class}, but the commutative one may be so unwieldy as to be practically useless. It

may use individual states to represent entire sequences of applications of rules cf a simpler, noncommutative

system, So in a formai sense, there is no relationship between kinds of problems and kinds of production

systems since all problems can be solved by ail kinds of systems. But in a practical sense. there definitely is

such a relationship between kinds of problems and the kinds of systems that lend themselves naturally to

describing those problems. To see this, let us look at a few examples. Fig. 2.17 shows une four categories of

production systems produced by the two dichotomies, monotenic versus nonmonotonic and partially

commutative versus
 

Monotonic Nonmonotonic
 

Partially Theorem proving Robot navigation

commutative
 

Not partially Chemical synthesis Bridge

| commutative
     

Fig.2.17 The Four Categories of Production Systems

nonpartially commutative, along with some problems that can naturally be solved by each type of system.

The upper lett corner represents commutative aystems.

Partially commutative, monotonic production systems are useful for solving ignurable problems. This is

not sarprismeg since the definitions of the two are essentially the same. But recall that ignorable probletnsare

those for which a nafural formulation leads to solution steps that can be ignored. Such a natural formulation

will then be a partially commutative, monotonic system. Problems that involve creating new things rather

than changing oid ones are zenerally ignorable. Theoremproving, as we have describedil, is one example of

such a cteaiive process. Making deductions from some known facts is a similar creative process. Both of

these processes can easily be implemented with a partially commutative. monotonic system.

Partially commutative, monotonic production systems are important from an impdeimentation standpoint

because they can be implemented without the ability to backtrack to previous siates when it is discoveredthat

an iecorrect path has been followed. Although it is often useful to implement such systems with backtracking

in order tO guarantee a systema. scarch, the actual database representing the probiem state need not be

restored, This often results in a considerable increase in efficiency, particularly because, since the database

will never have to be restored. #1 15 nol necessary to keep track of where in the search process every change

was made. °

We have now discussed partially commutative production systems that are also monotonic. They are good

fur problems where things do not change; new things get created. Nonmomnetonic, partially commutative

systems, of the other hand, are useful for problems in which changes occur but can be reversed and in which

order of operations is not critical. This is usualiy the case in physical manipulation preblems, such as robot

nevigation on a flat plane. Suppose that a robot has the following operators: go north (N), go east (E}, 20 south

(3), and 20 west (W). To reach its goal. i does not matter whether the robot executes N-N-E or N-E-N.
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Depending on howthe operators are chosen, the 8-Puzzle and the blacks world problem can also b+ corsidered

partially. commutative.

Both types of partially commutative production systems are significant from an implementation point of

view because they tend to lead to many duplications of individual states during the search process. This is

discussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems in which irreversible

changes occur. For example, consider the problem of determining a process to produce a desired chemical

compound. The operators available include such things as “Add chemical « to the pot or “Change the

temperature to ¢ degrees.” These operators may cause irreversible changes to the potion being brewed. The

order in which they are performed can be very important in detennining the final output. It is possible thatif
x 1s added to y, a stable compound will be formed, so later addition of z will have no effect; if z is addedto y,

however, a different stable compound may be formed, so later addition of x will have no effect. Nonpartially

commutative production systemsare less likely to produce the same node many times in the search process,

When dealing with ones that describe irreversible processes, it is particularly important to make correct

decisionsthefirst time, althoughif the universe is predictable, planning can be used to make that less important.

2.5 ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Every search process can be viewed asa traversal of a tree structure in which each node represents a problem

state and each are represents a relationship between the states represented by the nodes it connects. For

example, Fig. 2.18 shows part of a search tree tor a water jug problem. The arcs have not been labeled in the

Fig., but they correspondto particular water-pouring operations. The search process must find a path or paths

through the tree that connect an initial state with one or morefinalstates. The tree that must be searched could,

in principle, be constructed in its entirety from the rules that define allowable moves in the problem space.

But, in practice, most of tt neveris. It is too large and most

of it need never be explored. Instead of first building the

tree explicitly and then searching it, most search programs

represent the tree implicitly in the rules and generate

explicitly only those parts that they decide to explore.

Throughout our discussion of search methods, it is

important to keep in mind this distinction between implicit

search trees and the explicit partial search trees that are

actually constructed by the search program.

In the next chapter, we present a family of general-purpose search techniques. But before doing so we need

to mention some important issues that arise in all of them:

   [(1:3) (0,0)
Fig.2,18 A Search Treefor the WaterJug Problem

* Thedirection in which to conduct the search (forward versus backward reasoning). We can search forward

ihrough the state space from the start state to a goal state, or we can search backward fromthe goal.

* How to select applicable rules (marching). Production systems typically spend mostoftheir time looking

for rules to apply, so it is critical to have efficient procedures for matching rules againststates.

* How to represent cach node of the search process (the knowledge representation problem and the

frame problem). For problems like chess, a node can be fully represented by a siniple array. In more

complex problem solving, however,it is inefficient and/or impossible to represent all of the facts in the

world and to determine all of the side effects an action may have.

We discuss the knowledge representation and frame problemsfurther in Chapter 4. We investigate matching

and forward versus backward reasoning when we return to production systems in Chapter 6.
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Oneother issue we should considerat this point is that of search trees versus search graphs. As mentioned

above, we can think of production rules as generating nodes in a search tree. Each node can be expandedin

turn, generating a set of successors. This process continues until a node representing a solution is found.

Implementing such a procedure requireslittle bookkeeping. However, this process often results in the same

node being generated as part of several paths and so being processed more than once. This happens because

the search space may really be an arbitrary directed graph rather than a tree.

For example, in the tree shown in Fig. 2.18, the node (4,3), representing 4-gallons of water in one jug and

3 gallons in the other, can be generated either by first filling the 4-gallon jug and then the 3-gallon one or by

filling them in the opposite order. Since the order does not matter, continuing to process both these nodes

would be redundant. This example also illustrates another problem that often arises when the search process

operates as a tree walk. On the third level, the node (0, 0) appears.(In fact, it appears twice.) Butthis is the

sameas the top node ofthe tree, which has already been expanded. ~[(0.0)+

Those two paths have not gotten Us anywhere. So we would like

to eliminate them and continue only along the other branches.

The waste of effort that arises when the same nodeis generated

more than once can be avoided at the price of additional

bookkeeping. Instead of traversing a search tree, we traverse a aay] “rh ea]

directed graph. This graph differs from a tree in that several paths
may cometogether at a node. The graph corresponding to the Fig: 2.19 A Search Graph for the Water
tree of Fig. 2.18 is shown in Fig.2.19. Jug Problem

Anytree search procedure that keeps track of all the nodes that have been gencrated sofar can be converted

to a graph search procedure by modifying the action performed each time a node is generated. Notice that of

the two systematic search procedures we have discussed so far, this requirement that nodes be kepttrack of is

met by breadth-first search but not by depth-first search. But, of course, depth-first search could be modified,

at the expense of additional storage, to retain in memory nodes that have been expanded and then backed-up

over. Since all nodes are saved in the search graph, we must use the following algorithm instead of simply

adding a new node to the graph.

 

  

 

 

Algorithm: Check Duplicate Nodes

|. Examine the set of nodes that have been created so far to see if the new node already exists.

2. If it does not-simply add it to the graph just as for a tree.

3. If it does already exist, then do the following:

(a) Set the node that is being expanded to point to the already existing-node corresponding to its

successor rather than to the new one. The new one can simply be thrown away.

(b) If you are keeping track of the best (shortest or otherwise least-cost) path to each node, then check

to see if the new path is better or worse than the old one. If worse, do nothing.If better, record the

new path as the correct path to use to get to the node and propagate the corresponding change in

cost down through successor nodes as necessary.

One problem that may arise here is that cycles may be introduced into the search graph. A cycle is a path

through the graph in which a given node appears more than once. For example, the graph of Fig. 2.19 contains

two cycles of length two, One includes the nodes (0, 0) and (4, 0); the other includes the nodes (0, 0) and (0,

3). Wheneverthere is a cycle, there can be paths of arbitrary length. Thus it may become more difficult to

show that a graph traversal algorithm is guaranteed to terminate.
Treating the search process as a graph search rather than as a tree search reduces the amountof effort that

is spent exploring essentially the same path several times. Butit requires additional effort each time a node is
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generated to see if it has been generated before. Whether this effort is justified depends on the particular

problem:If it is very likely that the same node will be generated in several different ways, then it is more

worthwhile to use a graph procedure than if such duplication will happen onlyrarely.

Graph search procedures are especially useful for dealing with partially commutative production systems

in which a given set of operations will produce the same result regardless of the order in which the operations

are applied. A systematic search procedure will try many of the permutations of these operators and so will

generate the same node many times. This is exactly what happened in the water jug example shown above.

2.6 ADDITIONAL PROBLEMS

Several specific problems have been discussed throughout this chapter. Other problems have not yet been

mentioned, but are common throughout the AI literature. Some have become such classics that no AT book

could be complete without them, so we present them in this section. A useful exercise, at this point. would be
to evaluate each of them in light of the seven problein characteristics we have just discussed.

A briefjustification is perhaps required before this parade of toy problemsis presented. Artificial intelligence

is not merely a science of toy problems and microworlds (such as the blocks world). Many of the techniques

that have been developed for these problems have becomethe core of systems that solve very nontoy problems.

So think about these problemsnot as defining the scope of AI but rather as providing a core from which much

more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of a river. They have agreed that they

would all like to get to the other side. But the missionaries are not sure whatelse the cannibals have agreed to.

So the missionaries want to managethetrip across theriver in such a way that the number of missionaries on

either side ofthe river is never less than the number of cannibals who are on the same side. The only boat
available holds only two people at a time. How can everyone get across the river without the missionaries

risking being eaten?

The Tower ofHanoi

Somewhere near Hanoithere is a monastery whose monks devote their lives to a very importanttask. In their

courtyard are three tal) posts. On these postsis a set of sixty-four disks, each with a hole in the center and each

of a different radius. When the monastery was established, all of the disks were on one ofthe posts, each disk

resting on the one just larger than it. The monks’ task is to move all of the disks to one of the other pegs. Only

one disk may be moved at a time, and alt the other disks must be on one of the pegs. In addition, at no time

during the process may a disk be placed on top of a smailer disk. The third peg can, of course, be used as a

temporary resting place for the disks, What is the quickest way for the monks to accomplish their mission?

Even the best solution to this problem wil] take the monksa very tong time. This is fortunate, since legend

has it that the world will end when they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from the ceiling. The

monkey, unfortunately, cannot reach the bananas. However, in the room there are also a chair and a stick. The

ceiling is just the right height so tbat a monkey standing on a chair could knock the bananas down with the

stick. The monkey knows how to move around, carry other things around, reach for the bananas, and wave a

stick in the air. What is the best sequence of actions for the monkey to take to acquire lunch?
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Fig. 2.20 Some Cryptarithmetic Problems

Cryptarithmetic

Consideran arithmetic problem representedin letters, as showniff the examples in Fig. 2.20. Assign a decimal

digit to each of the letters in such a way that the answerto the problem is correct. If the same letter occurs

more than once, it must be assigned the same digit each time, No two different letters may be assigned the

same digit.

People’s strategies for solving cryptarithmetic problems have been, studied intensively by Newell and

Simon [1972].
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In this chapter, we bave discussed the first two steps that must be taken toward the design of a program to

solve a particular problem:

1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).

2. Analyze the problem to determine whereit falls with respect to seven importantissues.

The last two steps for developing a program to solve that problem are, of course:

3. Identify and represent the knowledge required by the task.
4, Choose one or more techniques for problem solving, and apply those techniques to the problem.

Several general-purpose, problem-solving techniques are presented in the next chapter, and several of

them have already been alluded to in the discussion of the problem characteristics in this chapter. The

relationships between problem characteristics and specific techniques should become even clearer as we go

on. Then, in Part II, we discuss the issue of how domain knowledgeis to be represented.

EXERCISES
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1, In this chapter, the following problems were mentioned:

e Chess . *® Water jug

® 8-puzzle * Traveling salesman

* Missionaries and cannibals *® Tower of Hanoi
e Monkey and bananas * Cryptarithmetic
« Bridge

Analyze each of them with respect to the seven problem characteristics discussed in Section 2.3.

2. Before we can solve a problem using state space search, we must define an appropriate state space. For

each of the problems mentioned above for which it was not done in the text, find a good state space

representation. :
3. Describe how the branch-and-bound technique could be used to find the shortest solution to a water

jug problem.https://hemanthrajhemu.github.io
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. For each of the following types of problems, try to describe a good heuristic function:

(a) Blocks world

(b) Theorem proving

(c) Missionaries and cannibals

. Give an example of a problem for which breadth-first search would work better than depth-first search.

Give an example of a problem for which depth-first search would work better than breadth-first search.

. Write an algorithm to perform breadth-first search of a problem graph. Make sure your algorithm

works properly when a single node is generated at more than one level in the graph.

. Try to construct an algorithm for solving blocks world problems, such as the one in Fig. 2.10. Do not

cheat by looking ahead to Chapter 13,
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Failure is the opportunity to begin again more intelligently.

——Moshe Arens

(1925-), Israeli politician

In the last chapter, we saw that many ofthe problemsthat fall within the purview ofartificial intelligence are
too complex to be solved by direct techniques; rather they must be attacked by appropriate search methods

armed with whatever direct techniques are available to guide the search. In this chapter, a framework for

describing search methods is provided and several general-purpose search techniques are discussed. These

methods are all varieties of heuristic search. They can be described independently of any particular task or
problem domain. But when applied to particular problems, their efficacy is highly dependent on the way they

exploit domain-specific knowledge since in and of themselves they are unable to overcomethe combinatorial

explosion to which search processes are so vulnerable. For this reason, these techniques are often called weak

methods. Althougha realization of the limited effectiveness of these weak methods to solve hard problems by

themselves has been an importantresult that emerged from the last three decades of AI research, these techniques

continue to provide the framework into which domain-specific knowledge can be placed, either by hand or as

a result of automatic learning. Thus they continue to form the core of most Al systems. We have already

discussed two very basic search strategies:

« Depth-first search *® Breadth-first search

In the rest of this chapter, we present some others:

e Generate-and-test « Hill climbing ® Best-first search

e Problem reduction * Constraint satisfaction ® Means-ends analysis

3.1 GENERATE-AND-TEST

The generate~and-test strategy is the simplest of all the approaches wediscuss.It consists of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this means generating a particular point in the problem

space. For others, it means generating a path from start state.
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2. Test to see if this is actually a solution by comparing the chosen point or the endpoint of the chosen

path to the set of acceptable goal states.

3. Ifa solution has been found, quit. Otherwise, return to step 1.

If the generation of possible solutions is done systematically, then this procedure will find a solution

eventually, if one exists, Unfortunately, if the problem space is very large, “eventually” may be a very long time.

The generate-and-test algorithm is a depth-first search procedure since complete solutions must be generated

before they can be tested. In its most systematic form, it is simply an exhaustive search of the problem space.

Generate-and-test can, of course, also operate by generating solutions randomly, but then there is no guarantee

that a solution will ever be found. In this form,it is also known as the British Museum algorithm, a reference

to a method for finding an object in the British Museum by wandering randoinly.! Between these two extremes

fies a practical middle ground in which the search process proceeds systematically, but some paths are not

considered because they seem unlikely to lead to a solution. This evaluation is performed by a heuristic

function, as described in Section 2.2.2.
The most straightforward way to implement systematic generate-and-test is as a depth-first search tree

with backtracking. If some intermediate states are likely to appear often in the tree, however, it may be better

to modify that procedure, as described above, to traverse a graph rather than tree.

For simple problems, exhaustive generate-and-test is often a reasonable technique. For example, consider

the puzzie that consists of four six-sided cubes, with each side of each cube painted one of four colors. A

solution to the puzzle consists of an arrangement of the cuhes in a rowsuch that on all four sides of the row

one block face of each color is showing. This problem can be solved hy a person (who is a much slower

processor for this sort of thing than even a very cheap computer) in several minutes by systematically and

exhaustively trying all possibilities. It can be solved even more quickly using a heuristic generate-and-test

procedure. A quick glance at the four blocks reveals that there are more, say, red faces than there are of other

colors. Thus when placing a block with several red faces, it would be a good idea to use as few of them as

possible as outside faces. As many of them as possible should be placed to abut the next block. Using this

heuristic, many configurations need never be explored and a solution can be found quite quickly.
Unfortunately, tor problems much harder than this, even heuristic generate-and-test, all by itself, is not a

very effective technique. But when combined with other techniques to restrict the space m which to search

even further, the technique can be very effective.

For example, one early example of a successful AI program is DENDRAL[Lindsay et a/., 1980], which

infers the structure of organic compounds using mass spectrogram and nuclear magnetic resonance (NMR)
data. ft uses a strategy called plan-generare-test in which a planning process that uses constraint-satisfaction

techniques (see Section 3.5) creates lists of recommended and contraindicated substructures. The generate-

and-test procedure then uses those lists so that it can explore only a fairly limited set of structures. Constrained

in this way, the generate-and-test procedure has proved highly effective.

This combination of planning, using one problem-solving method (in this case,.constraint satisfaction)

with the use of the plan by another problem-solving method, generate-and-test, is an excellent example ofthe

waytechniques can be combined to overcomethe limitations that each possesses individually, A major weakness

of planning is that it often produces somewhat inaccurate solutions since there is no feedback from the world.

Butby using it only to produce pieces ofsolutions that will then be exploited in the generate-and-test process,

the lack of detailed accuracy becomes unimportant. And, at the same time, the combinatorial problemsthat

arise in simple generate-and-test are avoided by judicious reference to the plans.

'Or, as anotherstory goes, if a sufficient number of monkeys were placed in front of a set of typewriters and left alone

Jong enough,then they would eventually produce all of the works of Shakespeare.

https://hemanthrajhemu.github.io



52 Artificial Intelligence
 

3.2 HILL CLIMBING

Hill climbing is a variant of generate-and-test in which feedback from the test procedure is used to help the

generator decide which direction to move in the search space. In a pure generate-and-test procedure, the test

function responds with only a yes or no. Butif the test function is augmented with a heuristic function? that

provides an estimate of how close a given state is to a goal state, the generate procedure can exploit it as

shownin the procedure below. Thisis particularly nice because often the computation ofthe heuristic function

can be done at almost no cost at the sametime that the test for a solution is being performed. Hill climbingis

often used when a good heuristic function is available for evaluating states but when no other useful knowledge

is available. For example, suppose you are in an unfamiliar city without a map and you want to get downtown.

You simply aim forthetall buildings. The heuristic function is just distance between the current location and
the location ofthe tall buildings and the desirable states are those in which this distance is minimized. _

Recall from Section 2.3.4 that one way to characterize problemsis according to their answerto the question,

“Is a good solution absolute or relative?” Absolute solutions exist wheneverit is possible to recognize a goal

state just by examining it. Getting downtown is an example of such a problem. For these problems, hill

climbing can terminate whenever a goal state is reached. Only relative solutions exist, however, for maximization

(or minimization) problems, such as the traveling salesman problem.In these problems, there is no a priori

goal state. For problems of this sort, it makes sense to terminate hill climibing when there is no reasonable

alternative state to move to,

3.2.1 Simple Hill Climbing

The simplest way to implementhil] climbingis as follows.

Algorithm:Simple Hill Climbing

1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the

initial state as the current state.

2. Loop until a solution is found or until there are no new operatorsleft to be applied in the currentstate:

(a) Select an operator that has not yet been applied to the currentstate and apply it to produce a newstate.

(b) Evaluate the new state.

(i) If it is a goalstate, then return it and quit.

(ii) If it is not a goal state but it is better than the current state, then make it the currentstate.
(ii) Lf it is not better than the current state, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and-test is the use of an

evaluation function as a way to inject task-specific knowledge into the control process. It is the use of such

knowledge that makesthis and the other methods discussed in the rest of this chapter Aeuristic search methods,

and it is that same knowledgethat gives these methods their power to solve some otherwise intractable problems.

Notice that in this algorithm, we have asked the relatively vague question,‘Is one state betfer than another?”
For the algorithm to work, a precise definition of better must be provided. In somecases, it means a higher

value of the heuristic function. In others, it means a lower value. [t does not matter which, as long as a

particular hill-climbing program is consistent in its interpretation.

To see how hill climbing works,let’s return to the puzzle of the four colored blocks. To solve the problem,

we first need to define a heuristic function that describes how close a particular configuration is to being a

solution, One such function is simply the sum of the numberof different colors on each of the four sides. A

solution to the puzzle will have a value of 16. Next we need to define a set of rules that describe ways of

transforming one configuration into another. Actually, one rule will suffice. It says simply pick a-block and

? Whatwe are calling the heuristic function is sometimesalso called the objectivefunction, particularly in the literature of

mathematical optimization.https://hemanthrajhemu.github.io
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rotate it 90 degrees in any direction. Having provided these definitions, the next step is to generate a starting

configuration. This can either be done at random or with theaid of the heuristic function describedin the last
section. Now hill climbing can begin. We generate a new state by selecting a block and rotatingit. If the

resulting state is better, then we keepit. If not, we return to the previous state and try a different perturbation.

3.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers ail the moves from the current state and selects the best

one as the next state. This methodis called steepest-ascent hill climbing or gradient search, Notice that this

contrasts with the basic method in which thefirst state that is better than the current state is selected. The

algorithm works as follows.

Algorithm: Steepest-Ascent Hill Climbing

1, Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the

initial state as the current state.
2. Loop until a solution is found or until a complete iteration produces no change to currentstate:

{a) Let SUCC be state such that any possible successor of the current state will be better than SUCC.

(b) For each operator that applies to the currentstate do:

(i} Apply the operator and generate a new state.

{ii) Evaluate the new state. If it is a goal state, then return it and quit. If not, compare it to SUCC.

If it is better, then set SUCC to this state. If it is not better, leave SUCC alone.

(c) If the SUCC is better than current state, then set current state to SUCC.

To apply steepest-ascent hill climbing to the colored blocks problem, we must consider all perturbations of

the initial state and choose the best. For this problem,this is difficult since there are so many possible moves.

There is a trade-off between the time required to select a move (usually longer for steepest-ascenthill climbing)

and the number of moves required to get to a solution (usually longer for basic hill climbin’’ that must be

considered when deciding which method will work better for a particular problem.
Both basic and steepest-ascent hill climbing may fail to find a solution. Either algorithm may terminate not

by finding a goal state but by getting to a state from which nobetter states can be generated. This will happen

if the program has reached either a local maximum,a plateau, or a ridge.

A local maximum is a state that is better than all its neighbors but is not better than some other states farther away.

At a local maximum, all moves appear to make things worse. Local maxima are particularly frustrating because
they often occur almost within sight of a solution. In this case, they are called fovthills.

A plateau is a flat area of the search space in which a whole set of neighboring states have the same value. On a

plateau, it is not possible to determine the best direction in which to move by tnaking focal comparisons,

A ridge is a special kind of local maximum.It is an area of the search spacethat is higher than surrounding areas and

that itself has a slope (which one would like to climb). But the orientation of the high region, compared to the set of

available moves and the directions in which they move, makes it impossible to traverse aridge by single moves,

There are some waysof dealing with these problems, although these methods are by no means guaranteed:

* Backtrack to some earlier node and try going in a different direction. This is particularly reasonableifat

that node there was anotherdirection that looked as promising or almost as promising as the one that was

chosen earlier. To implementthis strategy, maintain a list of paths almost taken and go back to one of them

if the path that was taken leads to a dead end. This is a fairly good way of dealing with local maxima.

© Makea bigjump in somedirectionto try to get to a new section of the search space. This is a particularly
good way of dealing with plateaus. If the only rules available describe single small steps, apply them

several times in the same direction.
* Apply two or more miles before doing the test. This corresponds to moving in severaj directions at

once. This is a particularly good strategy for dealing with ndges.
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Even with these first-aid measures, hill climbing is not always very effective. It is particularly unsuited to

problems wherethe valueof the heuristic function drops off suddenly as you move awayfrom a solution. This

is often the case wheneverany sort of threshold effect is present. Hill climbing is a local method, by which we

mean that it decides what to do next by looking only at the “immediate” consequences ofits choice ratherthan
by exhaustively exploring al! the consequences. It shares with other loca] methods,

such as the nearest neighbor heuristic described in Section 2.2.2, the advantage

of being less combinatoriaily explosive than comparable global methods. But it

also shares with other local methods a lack of a guarantee that it will be effective.

Although it is true that the hill-climbing procedure itself looks only one move

ahead and not any farther, that examination may in fact exploit an arbitrary amount

of global information if that information is encoded in the heuristic function.

Consider the blocks world problem shownin Fig. 3.1. Assume the same operators

fi.e., pick up one block and put it on the table; pick up one block and putit on

another one) that were used in Section 2.3.1. Suppose we use the following Fig. 3.1 A Hill-Climbing

heuristic function: Problem

  
intitial state goal state

Local: Add one point for every block that is resting on the thing it is supposed to be resting on. Suhtract one point

for every block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial state has a score of 4 (since it gets one point

added for blocks C, D, E, F, G, and H and one point subtracted for blocks A and B). There is only one move

from the initial state, namely to move biock A to the table. That produces a state with a score of 6 (since now

A’s position causes a point to be added rather than subtracted}. The hill-climbing procedure wil! accept that

move. From the new state, there are three possible moves, leading

to the three states shown in Fig. 3.2. These states have the scores:

 

 

(a) 4, (6) 4, and (c) 4. Hill climbing will halt because all these

states have lower scores than the current state. The process has

reached a local maximum that is not the global maximum. The |

problem is that by purely local examination of support structures, 1D
the current state appears to be better than any of its successors c

; [A\[H] [6
because more blocks rest on the correct objects. To solve this (c)

c
problem, it is necessary to disassemble a good local structure (the

stack B through H) becauseit is in the wrong global context. Fig. 3.2 Three Possible Moves
We could blamehill climbing itself for this failure to look far enough ahead to find a solution. But we could

also blame the heuristic function and try to modify it. Suppose we try the following heuristic function in place

of the first one:

Global: For each block that has the correct support structure {i.e., the complete structure underneath it is exactly as

it should be), add one point for every block in the support structure. For each block that has an incorrect support

structure, subtract one point for every block in the existing support structure.

Using this function, the goal state has the score 28 (1 for B, 2 for C, ete.). The initial state has the score —

28. Moving A to the table yields a state with a score of —21 since A no longer has seven wrong blocks under

it. The three states that can be produced next now have the following scores: (a) -28, (b) ~16, and (c) -15.

This time, steepest-ascent hill climbing will choose move (c), which is the correct one. This new heuristic

function captures the two key aspects of this problem: incorrect structures are bad and should be taken apart,
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and correctstructures are good and should be built up. As a result, the same hill climbing procedure that failed

with the earlier heuristic function now works perfectly.

Unfortunately, it is not always possible to construct such a perfect heuristic function. For example, consider

again the problem of driving downtown. The perfect heuristic function would need to have knowledge about

one-way and dead-end streets, which,in the case ofa strange city, is not always available. And even if perfect

knowledgeis, in principle, available, it may not be computationally tractable to use. As an extreme example,

imagine a heuristic function that computes a value for a state by invoking its own problem-solving procedure

to look ahead from the state it is given to find a solution. It then knows the exact cost offinding that solution

and can returnthat costas its value. A heuristic function that does this converts the local hill-climbing procedure
into a global method by embedding a global method within it. But now the computational advantages of a
local method have been lost. Thusit is still true that hill climbing can be very inefficient in a large, rough

problem space. But it is often useful when combined with other methodsthat get it started in the night general

neighborhood.

3.2.3. Simulated Annealing

Simulated annealing is 4 variation ofhill climbing in which, at the beginning of the process, some downhill

moves may be made. The idea is to do enough exploration of the whole space early on so that the final

solution is relatively insensitive to the starting state. This should lower the chances of getting caught at a local

Maximum, a plateau, or a ridge.

In order to be compatible with standard usage in discussions of simulated annealing, we make two notational

changesfor the durationof this section. We use the term objectivefunction in place of the term heuristicfunction.

And we attempt to minimize rather than maximize the value of the objective function. Thus we actually

describe a process of valley descending rather than hill climbing.

Simulated annealing [Kirkpatrick er af., 1983] as a computational process is patterned after the physical

process of annealing, in which physical substances such as metals are melted (i.e., raised to high energy

levels) and then gradually cooled until some solid state is reached, The goat of this process is to produce a

minimal-energy final state. Thus this process is one of valley descending in which the objective function is

the energy level. Physical substances usually move from higher energy configurations to lower ones, so the

valley descending occurs naturally. But there is some probability that a transition to a higher energy state wifl

occur. This probability is given by the function
p=MEAT

where A £ is the positive change in the energy level Tis the temperature, and & is Boltzmann’s constant. Thus,

in the physical valley descending that occurs during annealing, the probability of a large uphill move is lower

than the probability of a small one. Also, the probability that an uphill move will be made decreases as the

temperature decreases. Thus such moves are more likely during the beginning of the process when the

temperature is high. and they become fess likely at the end as the temperature becomes lower. One way to

characterize this process is that downhill moves are allowed anytime. Large upward moves may occur early

on, but as the process progresses. only relatively small upward moves are allowed until finally the process

converges to a local minimum configuration.
The rate at which the system is cooled is called the annealing schedule. Physical annealing processes are

very sensitive to the annealing schedule. If cooling occurs too rapidly, stable regions of high energy will form.

In other words, a local but not global minimum is reached. If. however, a slower schedule is used, a uniform

crystalline structure, which corresponds to a global minimum,is more likely to develop. But, if the schedule

is too slow, time is wasted. At high temperatures, where essentially random motion is allowed, nothing useful

happens. At low temperatures a lot of time may be wasted after the final structure has already been formed.

The optimal annealing schedule for each particular annealing problem mustusually be discovered empirically.
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These properties of physical annealing can be used to define an analogous process of simulated annealing,

which can be used (although not always effectively) whenever simple hill climbing can be used. In this

analogous process, AF is generalized so that it represents not specifically the change in energy but more

generally, the change in the value of the objective function, whateverit is. The analogy for &7 is slightly less

straightforward. In the physical process, temperature is a well-defined notion, measured in standard units.

The variable & describes the correspondence between the units of temperature and the units of energy. Since,

in the analogous process, the units for both £ and are artificial, it makes sense to incorporate k into T,

selecting values for 7 that produce desirable behavior on the part of the algorithm. Thus we use the revised

probability formula
p = eAE!F

But westill need to choose a schedule of values for T (which westill call temperature). We discuss this

briefly below after we present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different from the simple hill-climbing procedure.

The three differences are:

¢ The annealing schedule must be maintained.

* Moves to worse states may be accepted.

* ltis a good idea to maintain, in addition to the currentstate, the best state found so far. Then,if the final

state is worse than that earlier state (because of bad luck in accepting moves to worsestates), the earlier

state is still available.

Algorithm: Simulated Annealing

1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the

initial state as the currentstate.

2. Initialize BEST-SO-FAR to the current state.

. Initialize 7 according to the annealing schedule.

4, Loop until a solution is found or until there are no new operatorsleft to be applied in the currentstate.

(a) Select an operator that has not yet been applied to the current state and apply it to produce a new

state.

(b) Evaluate the new state. Compute

AF = (value of current) — (value of new state)

* If the new state is a goal state, then retum it and quit.

« Jfit is not a goal state but is better than the current state, then makeit the current state. Also set

BEST-SO-FARto this new state.

e If it is not better than the currentstate, then make it the current state with probability p’ as

defined above. This step is usually implemented by invoking a random number generator to
produce a numberin the range [0,1]. If that numberis less than p’, then the moveis accepted.

Otherwise, do nothing.

(c) Revise T as necessary according to the annealing schedule.

5. Return BEST-SO-FAR, as the answer.

To implement this revised a]gorithm, it is necessary to select an annealing schedule, which has three

components. Thefirst is the initial value to be used for temperature. The secondis the criteria that will be used to
decide when the temperature of the system should be reduced. The third is the amount by which the temperature
will be reduced each timeit is changed, There may also be a fourth componentofthe schedule, namely, when to

quit. Simulated annealingis often used to solve problems in which the number of moves from a givenstate is very

w
o
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large (such as the numberof permutations that can be made to a proposed traveling salesman route). For such

problems, tt may not make sense to try all possible moves. Instead, it may be useful to oxpioll. suine criterion

involving the number of moves that have been tried since an improvement was found.

Experiments that have been done with simulated annealing on a vanety of problems sugzest that the best

way to select an annealing schedule is by trying several and observing the effect on both the quality ofthe

solution that is found and the rate at which the process converges. To begin to get a feel for how to come up

with a schedule, the first thing to notice is that as T approaches zero, the probability of accepting a move to a

worse state goes to zero and simulated annealing becomesidentical to simple hill climbing. The second thing

to notice is that what really matters in computing the probability of accepting a move is the ratio AE/T. Thus

it is important that values of 7 be scaled so that this ratio is meaningful. For example, T could be initialized to

a value such that, for an average AE, p’ would be 0.5.

Chapter 18 returns to simulated annealing in the context of neural networks.

3.3. BEST-FIRST SEARCH

Until now, we have really only discussed two systematic control strategies, breadth-first search and depth-

first search (of several varieties). In this section, we discuss a new method, best-first search, which is a way of

combining the advantages of both depth-first and breadth-first search into a single method.

3.3.1 OR Graphs

Depth-first search is good becauseit allows a solution to be found without all competing branches having to

be expanded. Breadth-first search is good because it does not get trapped on dead-end paths. One way of

combining the twois to follow a single path at a time, but switch paths whenever some competing path looks

more promising than the current one does.

At each step of the best-first search process, we select the most promising of the nodes we have generated

so far. This is done by applying an appropriate heuristic function to each of them. We then expand the chosen

node by using the rules to generate its successors. If one ofthem is a solution, we can quit. If not, all those new

nodes are added to the set of nodes generated so far. Again the most promising node is selected and the
process continues. Usually what happensis that a bit of depth-first searching occurs as the most promising

branch is explored, But eventually, if a solution is not found, that branch will start to look less promising than

one of the top-level branches that had been ignored. At that point, the now more promising, previously

ignored branch will be explored. But the old branch is not forgotten.. [ts last node remains in the set of

generated but unexpanded nodes. The search can return to it wheneverall the others get bad enough that it is

again the most promising path.

Figure 3.3 shows the beginning of a best-first search procedure. Initially, there is only one node, so it will

be expanded. Doing so generates three new nodes. The heuristic function, which, in this example, is an

estimate of the cost of getting to a solution from a given node, is apphed to each of these new nodes. Since
node D is the most promising, it is expanded next, producing two successor nodes, E and F. But then the

heuristic function is applied to them. Now another path, that going through node B, looks more promising, so

itis pursued, generating nodes G and H. But again when these new nodesare evaluated they look less promising

than another path, so attention is returned to the path through D to E. E is then expanded, yielding nodes [ and
J. At the next step, J will be expanded, since it is the most promising. This process can continue until a
solution is found,

Notice that this procedure is very similar to the procedure for steepest-ascent hill climbing, with two

exceptions. In hill climbing, one move is selected and all the others are rejected, never.to be reconsidered.

This produces the straightline behaviorthat is characteristic of hill climbing. In best-first search, one moveis

selected, but the others are kept around so that they can be revisited later if the selected path becomes less
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Fig. 3.3 A Best-First Search

promising. Further, the best available state is selected in best-first search, even if that state has a value that is

lower than the value of the state that was just explored. This contrasts with hill climbing, which will stop if

there are no successor states with better values than the currentstate.

Although the exarnple shown aboveillustrates a best-first search of a tree, it is sometimes important to

search a graph instead so that duplicate paths will not be pursued. An algorithm to do this will operate by

searching a directed graph in which each node represents a point in the problem space. Each node will contain,

in addition to a description of the problem state it represents, an indication of how promising it is, a parent link

that points back to the best node from which it came, and a list of the nodes that were generated from ii. The

parent link will make it possible to recover the path to the goal once the goal is found. The list of successors

will makeit possible, if a better path is found to an already existing node, to propagate the improvement down

to its successors. We will call a graph of this sort an OR graph, since each of its branches represents an

tlternative problem-solving path.

Jo implement such a graph-search procedure, we will need to use twolists of nodes:

¢ OPEN — nodes that have been generated and have had the heuristic function applied to them but which

have not yet been examined(i.e., had their successors generated). OPEN is actually a priority queue in

which the elements with the highest pnority are those with the most promising value of the heuristic
function. Standard techniques for manipulating priority queues can be used to manipulate thelist.

* CLOSED — nodes that have already been examined. We need to keep these nodes in memory if we
want to search a graph rather than a tree, since whenever a new node is generated, we need to check

whether jt has been generated before.

We will also need a heuristic function that estimates the merits of each node we generate. This wil] enable the

algorithm to search more promising paths first. Call this function f’(to indicate that it is an approximation to a

 
In a variation of best-first search, called beam search, only the m most promising states are kept for future consideration.
This procedure is more efficient with respect to memory but introduces the possibility of missing a solution altogether by-

pruning the search tree too early.
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function/that gives the true evaluation of the node). For many applications,it is convenient to define this function

as the sum of two components that we call g and #”. The function g is a measure of the cost of getting from the

initial state to the current node. Note that g is not an estimate of anything;it is known to be the exact sumof the

costs of applying each of the rules that were applied along the best path to the node. The function A’ is an estimate

of the additional cost of getting from the current node to a goalstate, This is the place where knowledge aboutthe

problem domain is exploited. The combined function /’, then. represents an estimate of the cost of getting from

the initial state to a goal state along the path that generated the current node. If more than one path generated the

node, then the algorithm will record the best one. Note that because g and /’ must be added,it is importantthat A’

be a measure ofthe cost of getting from the node to a solution (i.¢., good nodes get low values; bad nodes get high

values) rather than a measure of the goodness of a node (Le., good nodes get high values). But that is easy to
arrange with judicious placement of minussigns. Ht is also important that g be nonnegative.If this is not true. then

paths that traverse cycles in the graph will appear to get better as they get longer.

The actual operation of the algorithm is very simple.It proceeds in steps, expanding one node at eachstep,

until it generates a node that correspondsto a goal state. At each step, it picks the most promising of the nodes

that have so far been generated but not expanded. It generates the successors of the chosen node, applies the

heuristic function to them, and adds them to the list of open nodes, after checking to see if any of them have

been generated before. By doing this check, we can guarantee that each node only appears once in the graph,

although many nodes may point to it as a successor. Then the next step begins.

This process can be summarized as follows.

Algorithm: Best-First Search

1. Start with OPEN contuining just the initial state.
2. Until a goal is found or there are no nodesleft on OPEN do:

(a) Pick them best node on OPEN.

{b) Generate its successors.

(c) For each successor do:

(4) If it has not been generated before, evaluate it, add it to OPEN, andrecord its parent.

(it) [f it has been generated before, change the parentif this new path is better than the previous
one. In that case, update the cost of getting to this node and to any successors that this node

may already. have.

The basic idea of this algorithm is simple. Unfortunately, it is rarely the case that graph traversal algorithms

are simple to write correctly. Andit is even rarer that it is simple to guarantee the correctness of such algorithms.
In the section that follows, we deseribe this algorithm in more detail as an example of the design and analysis

of a graph-search program.

3.3.2. The A* Algorithm

The best-first search algorithm that was just presented is a simplification of an algorithm called A*, which

wasfirst presented by Hart et af. [1968, 1972]. This algorithm uses the samef’, g, and A’ functions, as well as

the lists OPEN and CLOSED, that we have already described.

Algorithm: A*

L. Start with OPEN containing only the initial node. Set that node’s g value to 0, its 4’ value to whatever

it is, and its f’ value to A’ + 0, or A”. Set CLOSED to the emptylist.
2, Until a goal node is found, repeat the following procedure: If there are no nodes on OPEN, report

failure. Otherwise, pick the node on OPEN with the lowest f’ value. Call it BESTNODE. Removeit

from OPEN, Place it on CLOSED, See if BESTNODEis a goal node. If so, exit and report a solution

(either BESTNODEifall we want is the node or the path that has been created betweentheinitial state
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and BESTNODEif we are interested in the path). Otherwise, generate the successors of BESTNODE

but do not set BESTNODEto point to them yet. (First we need to see if any of them have already been

generated.) For each such SUCCESSOR, do the following:

(a)

(b)

(c)

(d)

(e)

Sei SUCCESSORto point back to BESTNODE. These backwards links will make it possible to

recover the path once a solution is found.

Compute (SUCCESSOR) = g(BESTNODE) + the cost of getting from BESTNODE to

SUCCESSOR.
See if SUCCESSORis the same as any node on OPEN(i.e. it has already been generated but not

processed). If so, cal! that node OLD. Since this node already exists in the graph, we can throw

SUCCESSOR away and add OLDto the list of BESTNODE’s successors. Now we must decide

whether OLD’s parent link should be reset to point to BESTNODE. Jt should be if the path we have
just found to SUCCESSORis cheaper than the current best path to OLD (since SUCCESSOR and

OLDare really the same node). So see whether it is cheaper to get to OLD via its current parent or

to SUCCESSOR via BESTNODEby comparingtheir g values, If OLD is cheaper (or just as cheap),

then we need do nothing. If SUCCESSOR is cheaper. then reset OLD’s parent link to point to

BESTNODE,record the new cheaper path in g(OLD), and update f’(OLD).

If SUCCESSOR was not on OPEN,see if itis on CLOSED. If so, call the node on CLOSED OLD

and add OLD to the list of BESTNODE’s, successors. Check to see tf the new path or the old path

is better just as in step 2/c), and set the parent link-and g and f’ values appropriately. If we have

just found a better path to OLD, we must propagate the improvement to OLD’s successors. This is

a bit tricky. OLD points to its successors. Each successor in turn points to its successors. and so

forth, unti] each branch terminates with a node that either ts still on OPEN or has no successors. So

to propagate the new cost downward, do a depth-first traversal of the tree starting at OLD, changing

each node’s g value (and thusalso its f’ value), terminating each branch when you reach either a

node with no successors or a node to which an equivalentor better path has already been found.‘

This condition is easy to check for. Each node’s parent link points back to its best known parent.

As We propagate down to a node, see if its parent points to the node we are coming from.If so,

continue the propagation.If not, then its g value already reflects the better path of which it is part.

So the propagation may stop here. Butit is possible that with the new value of ¢ being propagated

downward, the path we are following may becomebetter than the path through the current parent.

So compare the two.If the path through the current parentis still better, stop the propagation.If the

path we are propagating through is now better, reset the parent and continue propagation.

If SUCCESSOR was not already on either OPEN or CLOSED,then put it on OPEN, and add it to

the list of BESTNODE’s successors, Compute f’. SUCCESSOR) = g(SUCCESSOR) +

h'(SUCCESSOR).

Several interesting observations can be made about this algorithm. The first concerns the role of the g

function. It lets us choose which node to expand next on the basis not only of how good the node itself looks (as

measured by /”), but also on the basis of how good the path to the node was. By incorporating g intof’, we will

not always choose as our next node to expand the node that appears to be closest to the goal. This is useful if we

care about the path wefind.If, on the other hand, we only care about getting to a solution somehow, we can define

g always to be 0, thus always choosing the node that seems closest to a goal. Jf we want to find a path involving

the fewest numberof steps, then we set the cost of going from a node to its successor as a constant. usually 1. Ef,

on the other hand, we want to find the cheapest path and some operators cost more than others, then we set the

* This second check guarantees that the algorithm will terminate even if there are cycles in the graph.If there is a cycle.

then the second time that a given nodeis visited, the path will be no better than thefirst time and so propagation will stop.
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cost of going from one node to another to reflect those costs. Thus the A* algorithm can be used whether weare

interested in finding a mimimal-cost overall path or simply any path as quickly as possible.

The second observation involves h’, the estimator of 4, the distance of a node to the goal. If f’ is a perfect

estimator of #, then A* will converge immediately to the goal with no search. The better Ai is, the closer we

will get to that direct approach.If, on the other hand, the value of /’ is always 0, the search will be controlled

by g. If the value of g is also 0, the search strategy will be random.If the value of g is always 1, the search will

be breadth first. All nodes on one level will have lower g values, and thus lowerf’ values than will all nodes

on the next level. What if, on the other hand, 4’ is neither perfect nor 0? Can we say anything interesting about
the behavior of the search? The answeris yes if we can guarantee that A’ never overestimates A. In that case,

the A* algorithm is guaranteed to find an optimal (as determined by g) path to a goal, if one exists. This can

easily be seen from a few examples.*
Considerthe situation shown in Fig. 3.4. Assume that the cost ofall

arcs is 1. Initially, all nodes except A are on OPEN (although the Fig.

showsthe situation two stepslater, after B and E have been expanded).

For each node, f’ is indicated as the sum of #’ and g. In this example,

node B has the lowest f’, 4, so it is expandedfirst. Suppose it has only

one successor E, which also appears to be three moves away from a goal.

Nowf’(E}is 5, the same asf’(C). Suppose we resolve this in favor of the

path we are currently following. Then we will expand E next. Supposeit

too has a single successor F, also judged to be three moves from a goal. Fig. 3.4 h’ Underestimates h
We are clearly using up moves and making no progress. But f’(F) = 6,
which is greater than f’(C). So we will expand C next. Thus we see that by underestimating A’(B) we have

wasted someeffort. But eventually we discover that B was farther away than we thought and we go back and

try another path.
Nowconsider the situation shown in Fig. 3.5. Again we expand B

on the first step. On the second step we again expand E. At the next
step we expand F, and finally we generate G, for a solution path of

length 4, But suppose there is a direct path from D to a solution, giving

a path of length 2. We will never find it. By overestimating A’(D) we

make D look so bad that we may find some other, worse solution without

ever expanding D. In general,if #’ might overestimate A, we cannot be

guaranteed of finding the cheapest path solution unless we expand the

entire graph until all paths are longer than the best solution. An
interesting question is, “Of what practical significance is the theorem

that if A/ never overestimates A then A* is admissible?” The answeris, Fig. 3.5 h’ Overestimates h
“almost none,” because, for most real problems, the only way to guarantee that Ai never overestimatesA is to

set it to zero. But then we are back to breadth-first search, which is admissible but not efficient. But there is a

corollary to this theorem that is very useful. We can state it loosely as follows:

 

Graceful Decay of Admissibility: If 4’ rarely overestimates # by more than 6, then the A* algorithm will rarely
find a solution whose cost is more than 6 greater than the cost of the optimal solution.

The formalization and proof of this corollary will be left as an exercise,

The third observation we can make about the A* algorithm has to do with the relationship between trees

and graphs. The algorithm was stated in its most general form as it applies to graphs. It can, of course, be

5 A search algorithm that is guaranteed to find an optimalpath to a goal, if one exists, is called admissible [Nilsson, 1980}.
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simplified to apply to trees by not bothering to check whether a new node is already on OPEN or CLOSED.

This makesit faster to generate nodes but may result in the same search being conducted many timesif nodes

are often duplicated. .

Undercertain conditions, the A* algorithm can be shownto be optimal in that #t generates the fewest nodes

in the processoffinding a solution to a problem. Under other conditions it is not optimal. For formal! discussions

of these conditions, see Gelperin [1977] and Martelli [1977}.

3.3.3 Agendas

In our discussion of best-first search in OR graphs, we assumed that we could evaluate multiple paths to the

same node independently of each other. For example, in the water Jug problem, it makes no difference to the

evaluation of the merit of the position (4, 3) that there are at least two separate paths by which it could be

reached. This is not true, however, in ail situations, e.g., especially when there is no single, simple heuristic

function that measures the distance between a given node and a goal,

Consider, for example, the task faced by the mathematics discovery program AM,written by Lenat |1977;

1982]. AM wasgiven a small set of starting facts about number theory and a set of operators it could use to

develop new ideas. These operators included such things as “Find examples of a concept you already know.”

AM’s goal was to generate new“interesting” mathematical concepts. It succeeded in discovering such things

as prime numbers and Goldbach’s conjecture.

Armed solely with its basic operators, AM would have been able to create a great many new concepts,

most of which would have been worthless. It needed a way to decide intelligently which rules to apply. For
this it was provided with a set of heuristic rules that said such things as “The extreme cases of any concept are

likely to be interesting.” “Interest” was then used as the measure of merit of individual tasks that the system

could perform. The system operated by selecting at each cycle the most interesting task, doing it, and possibly

generating new tasks in the process. This corresponds to the selection of the most promising node in the best-

first search procedure. But in AM’ssituation the fact that several paths recommend the same task does matter.

Each contributes a reason why the task would lead to an interesting result. The more such reasons there are,

the morelikely it is that the task really wouid Iead to something good. So we need a way to record proposed

tasks along with the reasons they have been proposed. AM used a task agenda. An agendais a list of tasks a

system could perform. Associated with each task there are usually two things: a jist of reasons whythe task is

being proposed (often called justifications) and a rating representing the overall weight of evidence suggesting

that the task would be useful. ,

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search

1. Do until a goal state is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice that this task can be represented in any

desired form. It can be thought of as an explicit statement of what to do next or simply as an

indication of the next nade to be expanded.
(b) Execute the task by devoting to it the number of resources determined by its importance. The

important resources to consider are time and space. Executing the task will probably generate

additional tasks (successor nodes). For each of them, do the following:

(i) See if it is already on the agenda. [f so, then see if this same reason for doing it is already on

its list ofjustifications. If so, ignore this current evidence.If this justification was not already

present, addit to the list, If the task was not on the agenda, imsertit.

Gi) Compute the new task’s rating, combining the evidence from all its justifications. Not all

justifications need have equai weight. It is often useful to associate with each justification a

measure of how strong a reason itis. These measures are then combinedatthis step to produce

an overall rating for the task.https://hemanthrajhemu.github.io
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One important question that arises in agenda-driven systems is how to find the most promising task on

each cycle. One way to do this is simple. Maintain the agenda sorted by rating. When a new task is created,

insert it into the agenda in its proper place. When a task hasits justifications changed, recomputeits rating and

moveit to the correct place in the list. But this method causes a great deal of time to be spent keeping the

agendain perfect order. Much ofthis time is wasted since we do not need perfect order. We only need to know

the proper first element. The following modified strategy may occasionally cause a task other than the best to

be executed, but it is significantly cheaper than the perfect method. When a task is proposed, or a new

justification is added to an existing task, compute the new rating and compareit against the top few (e.g., five

or ten) elements on the agenda.If it is better, insert the node into its proper position at the top of thelist.

Otherwise, leave it where it is or simply insert it at the end of the agenda. At the beginning of each cycle,

choosethe first task on the agenda. In addition, once in a while, go through the agenda and reorderit properly.

An agenda-driven control structure is also useful if some tasks (or nodes) provide negative evidence about

the merits of other tasks (or nodes). This can be represented by justifications with negative weightings. If

these negative weightings are used, it may be important to check not only for the possibility of moving a task
to the head of the agenda but also of movinga top task to the bottom if new, negative justifications appear. But

this is easy to do.

As you can see, the agenda mechanism provides a good way of focusing the attention of a complex system

in the areas suggested by the greatest numberofpositive indicators. But the overhead for each task executed

may be fairly high. This raises the question of the proper grain size for the division of the entire problem-

solving process into individual tasks. Suppose each task is very smail. Then we will never do even a very

small thing unless it really is the best thing to do. But we will spend a large percentage of our total effort on

figuring out what to do next. If, on the other hand,the size of an individual task is very large, then some effort

may be spent finishing one task when there are more promising ones that could be done. But a smaller

percentage ofthe total time will be spent on the overhead of figuring out what to do. The exact choice of task

size for a particular system depends on the extent to which doing one small thing really means that a set of
other small things is likely to be very good to do too. It often requires some experimentation to get right.

There are some problem domains for which an agenda mechanism is inappropriate. The agenda mechanism

assumesthat if there is good reason to do something now, then there will also be the same good reason to do

something later unless something better comesalongin the interim. But this is not always the case, particularly

for systems that are interacting with people. The following dialogue would not be acceptable to most people:

Person: { don’t want to read any more about China. Give me somethingelse.

Computer: OK. What else are you interested in?

Person: How about Italy? I think Pd find Italy fascinating.

Computer: What things about Italy are you interested in reading about?

Person: I think I'd like to start with its history.

Computer: Why don’t you want to read any more about China?

It would have been fine to have tried to find out why the person was no longer interested in China right

after he or she mentioned it. The computer chose instead to try to find a new area of positive interest, also a
very reasonable thing to do. But in conversations, the fact that something is reasonable now does not mean

that it will continue to be so after the conversation has proceeded for a while. So it is not a good idea simply

to put possible statements on an agenda, wait until a later lull, and then pop out with them. More precisely,

agendas are a good way to implement monotonic production systems(in the sense of Section 2.4) and a poor

way to implement nonmonotonic ones.

Despite these difficulties, agenda-driven contro! structures are very useful. They provide an excellent way

of integrating information from a variety of sources into one program since each source simply adds tasks and
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justifications to the agenda. As AI programs become more complex and their knowledge bases grow, this

becomesa particularly significant advantage.

3.4 PROBLEM REDUCTION

So far, we have considered search strategies for OR graphs through which we wantto find a single, path to a

goal. Such structures represent the fact that we will know how to get from a node to a goal state if we can

discover how to get from that node to a goal state along any one of the branchesleaving it.

3.4.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (ortree), is useful for representing the solution of problems

that can be solved by decomposing them into a set of smaller problems, all of which must then be solved. This

decomposition, or reduction, generates arcs that we call AND arcs. One AND arc may point to any number of
successor nodes, all of which must be solved in order for the arc to point to a solution. Just as in an OR graph,

several arcs may emerge from a single node, indicating a variety of ways in which the briginal problem might

be solved. This is why the structure is called not simply an AND graph but rather an AND-OR graph. An

example of an AND-OR graph (which also happens to be an AND-ORtree) is given in Fig. 3.6. AND arcs are

indicated with a line connecting all the components.

Goal: Acquire TV set   

  
| Goal: Steal TV set | Goal: Earn some money] Goal: Buy TV set |
 

Fig. 3.6 A Simple AND-OR Graph

In order to find solutions in an AND-OR graph, we need an algorithm similar to best-first search but with

the ability to handle the AND arcs appropriately. This algorithm should find a path from the starting node of

the graph to a set of nodes representing solution states. Notice that it may be necessary to get to more than one

solution state since each arm of an AND arc mustlead to its own solution node.

To see why our best-first search algorithm is not adequate for searching AND-OR graphs, consider

Fig. 3.7(a). The top node, A, has been expanded, producing two arcs, one leading to B and one leading to C and

D. The numbers at each node represent the valueoff’ at that node. We assume,for simplicity, that every operation

has a uniform cost, so each arc with a single successor has a cost of 1 and each AND arc with multiple successors

has a cost of | for each of its components. If we look just at the nodes and choose for expansion the one with the

lowestf’ value, we must select C. Butusing the information now available, it would be better to explore the path

going through B since to use C we mustalso use D, for a total cost of 9 (C + D + 2) compared to the cost of 6 that

weget by going through B. The problem is that the choice of which node to expand next must depend not only on

 

(5) (3) (4)

 

(5) (10) (3) (4) (15) (10)

(a) {b)
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the f’ value of that node but also on whether that node is part of the current best path from theinitial node. The

tree shownin Fig. 3.7(b) makesthis even clearer. The most promising single node is G with anf’ valueof3. It is

even part of the most promising arc G-H,with a total cost of 9. But that arc is not part of the current best path since

to use it We must also use the arc I-J, with a cost of 27. The path from A, through B,to E andF 1s better, with a total

cost of 18. So we should not expand G next: rather we should examine either E orF.

In order to describe an algorithm for searching an AND-ORgraph, we need to exploit a value that we call

FUTILITY. If the estimated cost of a solution becomes greater than the value of FUTILITY, then we abandon

the search. FUTILITY should be chosen to correspond to a threshold such that any solution with a cosflibove

it is too expensive to be practical, even if it could ever be found. Now we can state the algorithm.

Algorithm: Problem Reduction

1. Initialize the graph to the starting node.
2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:

(a) Traverse the graph,starting at the initial node and following the current best path, and accumulate

the set of nodes that are on that path and have not yet been expanded or labeled as solved.

(b} Pick one of these unexpanded nodes and expandit. If there are no successors, assign FUTILITYas

the value of this node. Otherwise, add its successors to the graph and for each of them compute f’

(use only A’ and ignore g, for reasons we discuss below). [f of any node is 0, mark that node as

SOLVED.
(c) Changethef’ estimate of the newly expanded nodeto reflect the new information provided by its

successors. Propagate this change backward through the graph. If any node contains a successor

arc whose descendants are all solved, label the nodeitself as SOLVED. At each nodethatis visited

while going up the graph, decide which of its successor arcs is the most promising and mark it as

part of the current best path. This may cause the current best path to change. This propagation of

revised cost estimates back up the tree was not necessary in the best-first search algorithm because

only unexpanded nodes were examined. But now expanded nodes must be reexamined so that the

best current path can be selected. Thus it is important that their f’ values be the best estimates

available.

This processis illustrated in Fig. 3.8. At step 1, A is the only node,so it is at the end of the current best path.

It is expanded, yielding nodes B, C, and D. The arc to D is labeled as the most promising one emerging from

A, since it costs 6 compared to B and C, which costs 9. (Marked arcs are indicated in the Fig.s by arrows.) In

step 2, node D) is chosen for expansion. This process produces one new arc, the AND arc to E andF, with a

combined cost estimate of 10. So we update the f’ value of D to 10. Going back one morelevel, we see that

this makes the AND arc B-C better than the arc to D, so it is labeled as the current best path. At step 3, we

traverse that arc from A and discover the unexpanded nodes B and C.If we are goingto find a solution along

this path, we will have to expand both B and C eventually, so let’s choose to explore B first. This generates

two new arcs, the ones to G and to H. Propagating their f’ values backward, we update f’ of B to 6 (since that

is the best we think we can do, which we can achieve by going through G). This requires updating the cost of

the AND arc B-C to 12 (64+ 4+ 2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node E or node F will be chosen for expansion at step 4. This process

continues until either a solution is found oralli paths have led to dead ends, indicating that there is no solution.

In addition to the difference discussed above, there is a second important way in which an algorithm for

searching an AND-OR graph must differ from one for searching an OR graph. This difference, too, arises

from the fact that individual paths from node to node cannot be considered independently of the paths through

other nodes connected to the original ones by ANDarcs.In the best-first search algorithm, the desired path
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Before step 1 Before step 2

[A] (5)

Before step 3

 

(4) (4)

Fig. 3.8 The Operation ofProblem Reduction .

 

from one node to another was always the one with the lowest cost. But this is not always the case when

searching an AND-OR graph.

Consider the example shown in Fig. 3.9(a). The nodes were generated in alphabetical order. Now suppose

that node J is expandedat the next step and that one ofits successors is node E, producing the graph shown in

Fig. 3.9(b). This new path to E is longer than the previous path to E going through C. But since the path

through C will only lead to a solution if there is also a solution to D, which we know there is not, the path

through J is better.

  

 

Unsolvable

 

Fig. 3.9 A Longer Poth May Be Better

There is one important limitation of the algorithm we have just described.It fails to take into account any

interaction between subgoals. A simple example of this failure is shown in Fig. 3.10. Assuming that both

node C and node E ultimately lead to a solution, our algorithm will report a complete

solution that includes both of them. The AND-ORgraphstates that for A to be solved,

both C and D must be solved. But then the algorithm considers the solution of D as a

completely separate process. from the solution of C. Looking just at the alternatives

from D,E is the best path. But it turns out that C is necessary anyway, so it would be

better also to use it to satisfy D. But since our algorithm does not consider such —_{) (2)

interactions, it will find a nonoptimal path. In Chapter 13, problem-solving methods Fig3.10 interacting
that can consider interactions among subgoals are presented. Subgoals
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3.4.2. The AO* Algorithm

The problem reduction algonthm we just described 1s a simplification of an algorithm described in Martelli
and Montanari [1973], Martelli and Montanari [1978], and Nilsson [1980]. Nilsson calls it the AO* algorithm,

the name we assume.

Ratherthan the two lists, OPEN and CLOSED, that were used in the A* algorithm, the AO* algorithm will

use a single stricture GRAPH, representing the part of the search graph that has been explicitly generated so

far. Each node in the graph will point both downto its immediate successors and up to its immediate

predecessors. Each node in the praph will also have associated with it an f’ value, an estimate of the cost of a

path from itself to a set of solution nodes. We. will not store ¢ (the cost of getting from the start node to the

current node) as we did in the A* algorithm.It is not possible to compute a single such value since there may

be many paths to the same state. And such a valueis not necessary because of the top-down traversing of the

best-known path, which guarantees that only nodes that are on the best path will ever be considered for

expansion. So A’ will serve as the estimate of goodness of a node.

Algorithm: AO*

1. Let GRAPH consist only of the node representing the initial state. (Call this node IN/T.} Compute

A'(UINIT)
2. Until INiT is labeled SOLVED or until /NIT’s h’ value becomes greater than FUTILITY, repeat the

following procedure:

(a) Trace the labeled arcs from INIT and select for expansion one of the as yet unexpanded nodesthat

occurs on this path. Call the selected node NODE.

(b) Generate the successors of NODE. If there are none, then assign FUTILITY as the 4’ value of

NODE. This is equivalent to saying that NODE is not solvable. If there are successors, then for

each one (called SUCCESSOR) that is not also an ancestor of NODE do the following:

{i} Add SUCCESSOR to GRAPH.
(ii) If SUCCESSOR is a terminai node, label it SOLVED and assignit an h’ value of 0.

(iit) If SUCCESSORis not a terminal node, computeits /’ value.

(c) Propagate the newly discovered information up the graph by doing the foliowing: Let S be a set of

nodesthat have been labeled SOLVED or whose hi’ values have been changed and so need to have

values propagated backto their parents.Initialize 5 to NODE. Until S is empty, repeat the, following

procedure:

(i) If possible, select from S a node none of whose descendants in GRAPH occursin S. If there is

no such node, select any node from 5. Call this node CURRENT, and removeit from S.

(ii) Compute the cost of each of the arcs emerging from CURRENT. The cost of each arc is equal

to the sum of the A’ values of each of the nodes at the end of the arc plus whateverthe cost of
the arc itself is. Assign as CURRENT’Snew h’ value the minimum ofthe costs just computed
for the arcs emerging from it.

(iii) Mark the best path out of CURRENTby markingthe are that had the minimumcost as computed
in the previous step.

(iv) Mark CURRENTSOLVEDif all of the nodes connectedto it through the new labeled arc have

been labeled SOLVED.

(v) If CURRENT has been labeled SOLVED orif the cost of CURRENT was just changed, then its

new status must be propagated back up the graph. So addall of the ancestors of CURRENT to S.

It is worth noticing a couple of points about the operation of this algorithm. In step 2(c)v, the ancestors of

anode whose cost was altered are added to the set of nodes whose costs must also be revised. As stated, the

algorithm will insert all the node’s ancestors’ into the set, which may result in the propagation of the cost
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change back up through a large numberof paths that are already known notto be

very good. For example, in Fig. 3.11, it is clear that the path through C will

always be better than the path through B, so work expended on the path through

B is wasted. But if the cost of E is revised and that change is not propagated up

through B as well as through C, B may appear to be better. For example,if, as a

result of expanding node E, we update its cost to 10, then the cost of C will be

updated to 11. If this is all that is done, then when A is examined,the path through

B will have a cost of only 11 compared to 12 for the path through C, and it willbe Fig 3.11 An Unnecessary
labeled erroneously as the most promising path. In this example, the mistake Backward

might be detected at the next step, during which D will be expanded.If its cost Propagation

changes and is propagated back to B, B’s cost will be recomputed and the new

cost of E will be used. Then the new cost of B will propagate back to A. At that point, the path through C will

again be better. All that happened was that some time was wasted in expanding D. But if the node whose cost

has changedis farther down in the search graph,

the error may never be detected. An example of

this is shown in Fig. 3.12(a). If the cost of G is

revised as shown in Fig. 3.12(b) and if it is not

immediately propagated back to E, then the

change will never be recorded and a nonoptimal

solution through B may be discovered.

A second point concerns the termination of

the backward cost propagation of step 2(c).

Because GRAPH may contain cycles, there is no

guarantee that this process wil! terminate simply

because it reaches the “top” of the graph.It tums

outthat the process can be guaranteed to terminate

for a different reason, though. Oneofthe exercises

at the end of this chapter explores why.

 

  
{a) (b)

Fig. 3.12 A Necessary Backward Prapagation

3.5 CONSTRAINT SATISFACTION

Many problems in Al can be viewed as problems of constraint satisfaction in which the goal is to discover

some problem state that satisfies a given set of constraints. Examples of this sort of problem include

cryptarithmetic puzzles (as described in Section 2.6) and many real-world perceptual labeling problems.

Design tasks can also be viewed as constraint-Satisfaction problems in which a design must be created within

fixed limits on time, cost and materials.

By viewing a problem as one of constraint satisfaction, it is often possible to reduce substantially the

amount of search that is required as compared with a method that attempts to form partial solutions directly by

choosing specific values for components of the eventual solution. For example, a straightforward search
procedure to solve a cryptarithmetic problem might operate in a state space of partial solutions in which

letters are assigned particular numbers as their valuer. A depth-first control scheme could then follow a path

of assignments until either a solution or an inconsistency is discovered. In contrast, a constraint satisfaction

approachto solving this problem avoids making guesses on particular assignments of numbersto letters until

it has to, Instead, the initial set of constraints, which says that each number may correspond to only one letter

and that the sumsofthe digits mustbe as they are givenin the problem,is first augmentedto includerestrictions

that can be inferred from the rules of arithmetic. Then, although guessing maystill be required, the number of

allowable guesses is reduced and so the degree of searchis curtailed.
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Constraint satisfaction is a search procedure that operates in a space of constraint sets. The initial state

contains the constraints that are originally given in the problem description. A Goal State is any state that has

been constrained “enough,” where “enough” must be defined for each problem. For example, for

cryptarithmetic, enough meansthat each letter has been assigned a unique numeric value.

Constraint satisfaction is a two-step process. First, constraints are discovered and propagated as far as

possible throughout the system. Then,if there is still not a solution, search begins. A guess about something

is made and added as a new constraint. Propagation can then occur with this new constraint, and so forth.

Thefirst step, propagation, arises from the fact that there are usually dependencies among the constraints.

These dependencies occur because many constraints involve more than one object and many objects participate

in more than one constraint. So, for example, assume we start with one constraint, N = E + 1. Then, if we

added the constraint N = 3, we could propagate that to get a stronger constraint on E. namely that E = 2.

Constraint propagation also arises from the presence of inference rules that allow additional constraints to be

inferred from the ones that are given. Constraint propagation terminates for one of two reasons. First, a

contradiction may be detected. If this happens, then there is no solution conyistent with all the knownconstraints.

If the contradiction involves only those constraints that were given as part of the problem specification (as

opposed to ones that were guessed during problem solving), then no solution exists. The second possible

reason for termination is that the propagation has run out of steam and there are no further changesthat can be

made on the basis of current knowledge.If this happens and a solution has not yet been adequately specified,

then search is necessary to get the process moving again.

Atthis point, the second step begins. Some hypothesis about a way to strengthen the constraints must be

made.In the case of the cryptarithmetic problem, for example, this usually means guessing a particular value

for someletter. Once this has been done, constraint propagation can begin again from this new state. If a

solution is found, it can be reported. If still more guesses are required, they can be made.If a contradiction is

detected, then backtracking can be used to try a different guess and proceed with it. We can state this procedure

more precisely as follows:

Algorithm: Constraint Satisfaction

I. Propagate available constraints, To do this, first set OPENto the set ofall objects that must have values

assigned to them in a complete solution. Then do until an inconsistency is detected or until OPEN is

empty:

(a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that apply

to OB.

(b) If this set is different from the set that was assigned the last time OB was examinedorif this is the

first time OB has been examined, then add to OPENall objects that share any constraints with OB.

{c) Remove OF from OPEN. ,

2. If the union of the constraints discovered above defines a solution, then quit and report the solution.

If the union of the constraints discovered above defines a contradiction, then return failure.

4. If neither of the above occurs, then it is necessary to make a guess at something in order to proceed. To

do this, loop until a solution is found orall possible solutions have been eliminated:

{a} Select an object whose value is not yet determined andselect a way of strengthening the constraints

on that object.

{b) Recursively invoke constraint satisfaction with the current set of constraints augmented by the

strengthening constraint just selected.

ww

This algorithm has been stated as generally as possible. To apply it in a particular problem domain requires

the use of two kinds of rules: rules that define the way constraints may validly be propagated and rules that

suggest guesses when guessesare necessary.It is worth noting, though,that in some problem domains guessing
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may not be required. For example, the Waltz algorithm for propagating line labels in a picture, which is

described in Chapter 14,is a version\ofthis constraintsatisfaction algorithm with the guessing step eliminated.

In general, the more powerful the rules for propagating constraints, the less need there is for guessing.

‘To see how this algorithm works, consider the cryptarithmetic problem shown in Fig. 3.13. The goal state

is a problem state in which all letters have been assigned a digit in such a way thatall the imitial constraints are

satisfied.
Problem:

SEND
+ MORE

MONEY
Initial State:

Notwoletters have the same value.

The sumsof the digits must be as shownin

the problem.

Fig. 3.13 A Cryptarithmetic Problem

The solution process proceeds in cycles, At each cycle, two significant things are done (corresponding to

steps J and 4 of this algorithm):

1. Constraints are propagated by using rules that correspond to the properties of arithmetic.

2. A value is guessed for some letter whose value is not yet determined.

In the first step, it does not usually matter a great deal what order the propagation is done in,since all
available propagations will be performed before the step ends. In the second step, though, the order in which

guesses are tried may have a substantial impact on the degree of search that is necessary. A few useful heuristics

can help to select the best guess to try first. For example, if there is a letter that has only two possible values

and another with six possible values, there is a better chance of guessing righton the first than on the second.

Another useful heuristic is that if there is a letter that participates in many constraints thenit is a good idea to

preferit to a letter that participates in a few. A guess on such a highly constrained letter will usually lead

quickly either to a contradiction (if it is wrong) or to the generation of many additional constraints (if it is

right). A guess ona less constrained letter, on the other hand, provides less information. Theresult of the first
few cycles of processing this example is shownin Fig. 3.14. Since constraints never disappear at lowerlevels,

only the ones being added are shownfor eachlevel. It will not be much harderfor the problem solverto access

the constraints asa set of lists than as one long list, and this approachis efficient both in terms of storage space
and the ease of backtracking. Another reasonable approachfor this problem would be to storeall the constraints

in one central database and also to record at each node the changes that must be undone during backtracking.

Ch, C2, C3, and C4 indicate the carry bits out of the columns, numbering from the right.

Initially, rules for propagating constraints generate the following additional constraints:

© M = 1, since two single-digit numbers plus a carry cannot total more than 19,

e S=8or9, smceS +M+C3 > 9 (to generate the carry) and M = 1,8+ 1+ C3>9,s0S+C3> 8 and

C3 is at most 1,

« O=60, since S + M(I) + C3 (<= 1) must be at least 10 to generate a carry and it can be at most 11. But

M is already 1, so O mustbe 0.

* N=EorE +1, depending on the value of C2. But N cannot have the same value as E.SoN =E+ 1 and

C2 is 1.
€
a
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e In order for C2 to be 1, the sum of N + R + Cl must be greater than 9, so N + R must be greater than 8.

e N+R cannotbe greater than 18, even with a carry in, so E cannot be 9.

At this point, let us assume that no more constraints can be generated. Then, to make progress from here,
we must guess. Suppose E is assigned the value 2. (We chose to guess a value for E because it occurs three

times and thus interacts highly with the other letters.) Now the next cycle begins. -

The constraint propagator now observes that:

« N=3,sinceN=E+ 1.

e R=8or9, since R + N (3) + C1(1 or 0) =2 or 12. But since N is alreudy3, the sum of these nonnegative

numbers cannot be less than 3. Thus R + 3 + (0 or 1)= 12 andR=8 or 9.

e 2+D=Yo0r2+D!= 10+ Y, from the sum in the rightmost column.

  

 

  

   
  

   

Again, assuming no further constraints can be _jpitial State | SEND
generated, a guess is required. Suppose C1 is chosen to +MORE

guessa value for. If we try the value 1, then we eventually MONEY

Teach dead ends, as shown in the Fig.. When this M=1

happens, the process will backtrack and try C] = 0. Ono 30=0
A couple of observations are worth making onthis N=EorEtH1ON=E+1

process. Noticethat all that is required of the constraint C2=1
propagation rules is that they do not infer spurious we 3 8

constraints. They do not haveto infer all legal ones. For

example, we could have reasoned through to the result E=2

that Cl equals 0. We could have done so by observing Y
that for Cl to be 1, the following must hold: 2+ D= 10 N=3

+ Y. For this to be the case, D would have to be 8 or 9. ae2 24D = 10+

But both § and R must be either 8 or 9 and threeletters

cannot share two values. So Cl cannot be 1. If we had c1=0 C1=1
realized this initially, some search could have been

avoided. But since the constraint propagation rules we 2+D=Y 2+D = 10+¥

used were not that sophisticated, it took some search. N*R=10+E D= 8+
. R=9 D=8or9

Whether the search route takes more or less actualtime s=8    
than does the constraint propagation route depends on
how long it takes to perform the reasoning required for
constraint propagation.

A second thing to notice is that there are often two
kinds of constraints. The first kind is simple; they just

list possible values for a single object. The second kind is more complex; they describe relationships between

or amongobjects. Both kinds of constraints play the samerole in the constraint satisfaction process, and in the

cryptarithmetic example they were treated identically. For some problems, however,it may be useful to represent

the two kinds of constraints differently. The simple, value-listing constraints are always dynamic, and so must

always be represented explicitly in each problem state. The more complicated, relationship-expressing

constraints are dynamic in the cryptarithmetic domain since they are different for each cryptarithmetic problem.

But in many other domains they are static. For example, in the Waltz line labeling algorithm, the only binary

constraints arise from the nature of the physical world, in which surfaces can meetin only a fixed numberof

possible ways. These ways are the samefor all pictures that that algorithm may see. Whenever the binary

constraints are static, it may be computationally efficient not to represent them explicitly in the state description

but rather to encode them in the algorithm directly. When this is done, the only things that get propagated are

possible values. But the essential algonthm is the same in both cases.

 

Conflict Conflict

Fig. 3.14 Solving a Cryptarithmetic Problem
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So lar, we have described a fairly simple algorithm for constraint satistaction in which chronological
backtracking is used when guessing leads to an inconsistent set of constraints. An alternative is to use a more

sophisticated scheme in which the specific cause of the inconsistency is identified and only constraints that

depend on that culprit are undone. Others, even though they may have been generatedafter the culprit, are left

alone if they are independent of the problem and its cause. This approach is called dependency-directed

backtracking (DDB). It is described in detail in Section 7.5.1.

3.6 MEANS-ENDS ANALYSIS

So far, we have presented a collection of search strategies that can reason either forward or backward, but for

a given problem, one direction or the other must be chosen. Often, however, a mixture of the two directions is

appropriate. Such a mixed strategy would makeit possible to solve the major parts of a problem first and then

go back and solve the smail problemsthat arise in “gluing” the big pieces together. A technique known as

means-ends analysis allows us to do that.

The means-ends analysis process centers around the detection of differences between tbe currentstate and

the goal state. Once such a difference is isolated, an operator that can reduce the difference must be found. But

perhaps that operator cannot be applied to the current state. So we set up a subproblem of getting to a state in

whichit can be applied. The kind of backward chaining in which operators are selected and then subgoals are
set up to establish the preconditions of the operators is called operator subgoaling. But maybe the operator

' does not produce exactly the goal state we want. Then we have a second subproblem of getting from the state

it does produce to the goal. But if the difference was chosen correctly and if the operator is really effective at

reducing the difference, then the two subproblems should be easier to solve than the original problem. The

means-ends analysis process can then be applied recursively. In order to focus the system’s attention on the

big problemsfirst, the differences can be assigned priority levels. Differences of higher priority can then be

considered before lower priority ones.

Thefirst Al program to exploit means-ends analysis was the General Problem Solver (GPS) [Newell and

Simon, 1963; Emst and Newell, 1969]. Its design was motivated by the observation that people often use this

technique when they solve problems. But GPS provides a good example of the fuzziness of the boundary

between building programsthat simulate what people do and building programs that simply solve a problem

any way they can.

Just like the other problem-solving techniques we have discussed, means-ends analysis relies on a set of

rules that can transform one problem state into another. These rules are usually not represented with complete

state descriptions on each side. Instead, they are represented as a left side that describes the conditions that

must be met for the rule to be applicable (these conditions are called the rule’s preconditions} and a right side

that describes those aspects of the problem state that will be changed by the application ofthe rule. A separate

data structure called a difference table indexes the rules by the differences that they can be used to reduce.

Consider a simple household robot domain. The available operators are shown in Fig. 3.15, along with

their preconditions and results. Figure 3.16 shows the difference table that describes when each of the operators
is appropriate. Notice that sometimes there may be more than one operator that can reduce a given difference

and that a given operator may be able to reduce more than one difference.

Supposethat the robot in this domain were given the problem of moving a desk with two things on it from

one room to another, The objects on top must also be moved. The main difference between the start state and

the goal state would be the location of the desk. To reduce this difference, either PUSH or CARRYcould be

chosen. If CARRYis chosenfirst, its preconditions must be met. This results in two more differences that
must be reduced:the location of the robot and the size of the desk, The location of the robot can be handled by

applying WALK,but there are no operators than can change the size of an object (since we did not include
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Operator Preconditions Results

PUSHoh}, loc) at(robot, obj)* aitoby, loc)"

large(oabj)* atrobot, loc}

clear(obj)*

armempty

CARRY(obj, toc) at(robot, obj)* at(obj, loc)*

small(obj) at(robot. loc)
WALKCioc) none at(robot, loc)

PICKUP(obj} at(robot, obj} holding(abj)

PUTDOWN(obj) holding(ob}) sholding(obj}

PLACE(obj1, obj2) at(robot, obj2)* on(objt, obj2}

holding(obj1)

Fig. 3.15 The Robot's Operators

 

Push Carry Walk Pickup |Putdownl Place

Move object * *
 

 

Moverobot *
 

Clear object ¥
 

Get object on object
 

Get arm empty * *  
Be holding object         

Fig. 3.16 A Difference Table

SAW-APART)}. So this path leads to a dead-end. Following the other branch, we attempt to apply PLSH.

Figure 3.17 shows the problem solver’s progress at this point. it has found a way of doing something useful.

But it is not yet in a position to do that thing. And the thing does notget A B C D

it quite to the goal state. So now the differences between A and B and i 1 t

between C and D must be reduced. | Push

PUSHhas four preconditions, two of which produce differences Start Goa
between the start and the goal states: the robot must be at the desk, and Fig. 3.17) The Progress afthe
the desk must be clear. Since the desk is already large, and the robot's Means-Ends Anarysrs
arm is empty, those two preconditions can be ignored, The robot can be Method
brought to the correct location by using WALK. And the surface of the desk can be cleared by two uses of

PICKUP. But after one PICKUP, an attempt to do the second results in another difference-—the arm musi he

empty. PUTDOWNcanbe used to reduce that difference.

Once PUSHis performed, the problem state is close to the goal state, but not quite. The objects must be

placed back on the desk. PLACEwill put them there. But it cannot be applied immediately. Another difference

must be eliminated, since the robot must be holding the objects. The progress of the problem solver at this

point is shown in Fig. 3.18.

 

A B Cc E D

| | | | | | |
| Push | Pick up [Put down! Pick up |Put down! Push! Btace

Start Gaal
Fig. 3.18 More Progress of the Means-Ends Method
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The final difference between C and E can be reduced by using WALKto get the robotbackto the objects,

. Howed by PICKUP and CARRY.

‘Phe process we have just illustrated (which we cail MEA for short) can be summarized as follows:

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

1. Compare CURRENTto GOAL. If there are no differences between them then return.

2, Otherwise, select the most important difference and reduce it by doing the following until success or

failure is signaled:

(a) Select an as yet untried operator CO that is applicable to the current difference. {f there are no such

operators, then signal failure. ;

(b} Attempt to apply O to CURRENT. Generate descriptions of two states: O-START, a state in which

O’s preconditions are satisfied and O-RESULT, the state that would result if O were applied in O-

START.
(c) If

(FIRST-PART — MEA(CURRENT, O-START))
and

(LAST-PART — MEMO-RESULT, GOAL))
are successful, then signal success and retum the result of concatenating

FIRST-PART, O, and LAST-PART.

Manyof the details of this process have been omitted in this discussion. In particular, the order in which

cifferences are considered can becritical. It is important that significant differences be reduced before less

critical ones. If this is not done, a great deal of effort may be wasted on situations that take care of themselves
once the main parts of the problem are solved.

The simple process we have described is usually not adequate for solving complex problems. The number

of permutations of differences may get too large. Working on one difference may interfere with the plan for

reducing another. And in complex worlds, the required difference tables would be immense. In Chapter 13 we

look at some ways in which the basic means-ends analysis approach can be extended to tackle some of these

problems. :
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in Chapter 2, we listed four steps that must be taken to design a program to solve an AI problem. Thefirst two

steps were:

1, Define the problem precisely. Specify the problem space, the operators for moving within the space,

and the starting and goal state(s).

2. Analyze the problem to determine where it falls with respect to seven importantissues.

The other two steps were to isolate and represent the task knowledge required, and to choose problem

solving techniques and apply them to the problem.In this chapter, we began our discussion ofthe last step of

this process by presenting some general-purpose, problem-solving methods. There are several important ways

in which these algorithms differ, including:

« Whatthe states in the search space(s) represent. Sometimes the states represent complete potential

solutions (as in hill climbing). Sometimes they represent solutions that are partially specified (as in

constraint satisfaction).
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How,at each stage of the search process, a state is selected for expansion.

How operators to be applied to that node are selected.

Whether an optima! solution can be guaranteed.

Whether a given state may end up being considered more than once.

How many state descriptions must be maintained throughout the Search process.

Under what circumstances should a particular search path be abandoned.

the chapters that follow, we talk about ways that knowledge about task domains can be encoded in

problem-solving programs and we discuss techniques for combining problem-solving techniques with

knowledge to solve several important classes of problems.

EXERCISES

I,

2,

Bae che giodrm moOAYES Beis be x omaPAPO OL SUUEeedREED yy Lak ee Sree RT

When would best-first search be worse than simple breadth-first search?
Suppose we have a problem that we intend to solve using a heuristic best-first search procedure. We

need to decide whetherto implementit as a tree search oras a graph search. Suppose that we knowthat,

on the average, each distinct node will be generated N times during the search process. We also know

that if we use a graph, it will take, on the average, the same amount of time to check a nodeto seeifit

has already been generated as it takes to process M nodes if no checking is done. How can we decide

whether to use a tree or a graph? In addition to the parameters N and Mf, what other assumptions must

 

 

 
         

be made? Start Goal
. Consider trying to solve the 8-puzzle using hill climbing. Can you find a [4[2]3 12/3

heuristic function that makes this work? Make sure it works on the following (8/5/6 4151/6
example: 4)? 7|8
Describe the behavior of a revised version of the steepest ascenthill climbing algorithm in which step

2(c) is replaced by “set currentstate to best successor.”

Suppose that the first step of the operation of the best-first search algorithm

results in the following situation (a + & meansthat the value of A’ at a node is a
and the value of g is b): a 5] (441) FG}a+1)

The second and third steps then result in the following sequence of situations:

(B] (441) (6](3+1)     [D] (4+2)

(a) What node will be expanded at the next step?

(b) Can we guarantee that the best solution will be found?

Why must the A* algorithm work properly on graphs containing cycles? Cycles could be prevented if

when a new path is generated to an existing node, that path were

simply thrown awayif it is no better than the existing recorded one.

If g is nonnegative, a cyclic path can never be better than the same

path with the cycle omitted. For example, consider the first graph

shown below, in which the nodes were generated in alphabetical

order. The fact that node D is a successor of node F could simply not

be recorded since the path through node F is longer than the one

through node B. This same reasoning would also prevent us from

E (2+2) LD] (4+2}
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recording node E as a successor of node F, if such was the case. But what would happenin the situation

shown in the second graph below if the path from node G to node F were not recorded and,at the next

step, it were discovered that node G is a successor of node C?
Formalize the Graceful Decay of Admissibility Corollary and prove thatit is true of the A* algorithm.

in step 2(a} of the AO* algorithm, a random state at the end of the current best path is chosen for

expansion. But there are beuristics that can be used to influence this choice. For example, it may make
sense to choose the state whose current cost estimate is the lowest. Tbe argument for this is that for

such nodes, only a few steps are required before either a solution is found or a revised cost estimateis

preduced, With nodes whose current cost estimate is large, on the other hand, many steps may be

required before any new information is obtained. How would the algorithm have to be changed to

implement this state-selection heuristic?

The backward cost propagation step 2(c) of

the AO* algorithm must be guaranteed to

terminate even on graphs containing cycles.

Howcan we guarantee that it does? To help

answer this question, consider what happens

for the following two graphs, assuming in each case that node F is expanded

next and that its only successor is A: (8)

   (30)LE] [E}(10)

Also consider what happens in the following graph if the cost of node C is (6) |B)
changed to 3: (5)

The AO* algorithm, in step 2(c)i. requires that a node with no descendants in S be A.

selected from 5, if possible. How should the manipulation of S be implemented so that

such a node can be chosen efficiently? Make sure that your technique works correctly

on ihe following graph, if the cost of node E is changed: .

Consider again the AO*algorithm. Under what circumstances will it happen that there are nodes in 5

but there are no nodes in $ that have no descendants also in $?

Trace the constraint satisfaction procedure solving the following cryptarithmetic problem:

CROSS

+ ROADS

The constraint satisfaction procedure we have described performs depth-first search whenever some

kind of search is necessary. But depth-first is not the only way to conduct such a search (although it is

perhaps the srimplest).

(a} Rewrite the constraint satisfaction procedure to use breadth-first search.

(b) Rewrite the constraint satisfaction procedure to use best-first search.

Show how means-endsanalysis could be used to solve the problem of getting from one place to another.

Assumethat the available operators are walk, drive, take the bus, take a cab, and fly.

Imagine a robot trying to move from one place in a city to another. It has complete knowledge of the

connecting roads in the city. As it moves the road condition keep changing. If the robotis to reachits
destination within a prescribed time. suggest an algorithm for the same. (Hint: Split the road map into
a set of connected nodes and imagine that the cosis of moving from one node to the other change based
on some time-dependent conditions).

https://hemanthrajhemu.github.io


