Furure Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Pa

Or
Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

€

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Contents

Preface to the Third Edition
Preface to the Second Edition

PART I: PROBLEMS AND SEARCH

What is Artificial Intelligence?

1.1 The Al Problems 4

1.2 The Underlying Assumption 6

1.3 What is an Al Technique? 7

I.4 The Level of the Model 18

1.5 Criteria for Success 20

1.6 Some General References 2/

1.7 One Final Word and Beyond 22
Exercises 24

Problems, Problem Spaces, and Search

2.1 Defining the Problem as a State Space Search 25
2.2 Production Systems 30
2.3 Problem Characteristics 36
2.4 Production System Characteristics 43
2.5 Issues in the Design of Search Programs 45
2.6 Additional Problems 47
Swmmary 48
Exercises 48

Heuristic Search Techniques

3.1 Generate-and-Test 50
3.2 Hill Climbing 52
3.3 Best-first Search 57
3.4 Problem Reduction 64
3.5 Constraint Satisfaction 68
3.6 Means-ends Analysis 72
Summary 74
Exercises 75

PART II: KNOWLEDGE REPRESENTATION

Knowledge Representation Issues

4.1 Representations and Muppings 79
4.2 Approaches to Knowledge Representation &2

xiif
Xvii

25

50

79

CHAPTER

1

WHAT IS ARTIFICIAL INTELLIGENCE?

There are three Kinds of intelligence: one Kind understands things for itself, the other appreciates what
others can understand, the third understands neither for itself nor through others. This first Kind is
excellent, the second good, and the third Kind useless.

—Niccolo Machiavelli
(1469-1527), Italian diplomat, political philosopher,
musician, poet and playwright

What exactly is artificial intelligence? Although most attempts to define complex and widely used terms
precisely are exercises in futility, it is useful to draw at least an approximate boundary around the concept to
provide a perspective on the discussion that follows. To do this, we propose the following by no means
universally accepted definition. Artificial intelligence (Al) 1s the study of how to make computers do things
which, at the moment, people do better. This definition is, of course, somewhat ephemeral because of its
reference to the current state of computer science. And it fails to include some areas of potentially very large
impact, namely problems that cannot now be solved well by either computers or people. But it provides a

. good outline of what constitutes artificial intelligence, and it avoids the philosophical issues that dominate

attempts to define the meaning of either artificial or intelligence. Interestingly, though, it suggests a similarity
with philosophy at the same time it is avoiding it. Philosophy has always been the study of those branches of
knowledge that were so poorly understood that they had not yet become separate disciplines in their own
right. As fields such as mathematics or physics became more advanced, they broke off from philosophy.
Perhaps if Al succeeds it can reduce itself to the empty set. As on date this has not happened. There are signs
which seem to suggest that the newer off-shoots of Al together with their real world applications are gradually
overshadowing it. As Al migrates 1o the real world we do not seem to be satisfied with just a computer playing
a chess game. Instead we wish a robot would sit opposite to us as an opponent, visualize the real board and
make the right moves in this physical world. Such notions seem to push the definitions of Al to a greater
extent. As we read on, there will be always that lurking feeling that the definitions propounded so far are not
adequate. Only what we finally achieve in the future will help us propound an apt definition for Al! The
feeling of intelligence is a mirage, if you achieve it, it ceases to make yol feel so. As somebody has apity put
it — Al is Artificial Intelligence till it is achieved; after which the acronym reduces to Already Implemented.

4 Artificial Intelligence

One must also appreciate the fact that comprehending the concept of Al also aids us in understanding how
natural intelligence works. Though a complete comprehension of its working ynay remain a mirage. the very
attempt will definitely assist in unfolding mysteries one by one.

1.1 THE Al PROBLEMS

What then are some of the problems contained within Al? Much of the early work in the field focused on
formal tasks, such as game playing and theorem proving. Samuel wrote a checkers-playing program that not
only played games with opponents but also used its experience at those games to improve its [ater performarnce.
Chess also received a good deal of attention. The Logic Theorist was an early attempt to prove mathematical
theorems. It was able to prove several theorems from the first chapter of Whitehead and Russell’s Principia
Mathematica. Gelemter’s theorem prover explored another area of mathematics: geometry. Game playing
and theorem proving share the property that people who do them well are considered to be displaying
intelligence. Despite this, it appeared initially that computers could perform well at those tasks simply by
being fast at exploring a large number of solution paths and then selecting the best one. It was thought that this
process required very little knowledge and could therefore be programmed ecasily. As we will see later, thisy
assumption turned out to be false since no computer is fast enough to overcome the combinatorial explosion
generated by most problems.

Another early foray into Al focused on the sort of problem solving that we do every day when we decide
how to get to work in the morning, often called commonsense reasoning, 1t includes reasoning about physical
objects and their relationships to each other (e.g., an object can be in only one place at a time), as well as
reasoning about actions and their consequences (e.g., if you let go of something, it will fait o the floor and
maybe break). To investigate this sort of reasoning, Newell. Shaw, and Simon built the General Problem
Solver (GPS), which they applied to several commonsense tasks as well as to the problem of perforniing
symbolic manipulations of logical expressions. Again, no attempt was made to create a program with a large
amount of knowledge about a particular problem domain. Only simple tasks were selected.

As Alresearch progressed and techniques for handling larger amounts of world knowledge were developed,
some progress was made on the tasks just described and new tasks could reasonably be attempted. These
include perception (vision and speech), natural language understanding, and problem solving in specialized
domains such as medical diagnosis and chemical analysis.

Perception of the world around us is crucial to our survival. Animals with much less inteiligence than
people are capable of more sophisticated visual perception than are current machines. Perceplual tasks are
difficult because they involve analog (rather than digital) signals; the signals are typically very noisy and
usually a large number of things (some of which may be partially obscuring others) must be perceived at once.
The problems of perception are discussed in greater detail in Chapter 21.

The ability to use language to communicate a wide variety of ideas is perhaps the most important thing that
separates humans from the other animals. The problem of understanding spoken language is a perceptual
problem and is hard to solve for the reasons just discussed. But suppose we simplify the problem by restricting
it to written language. This problem, usually referred to as natural language understanding, s still extremety
difficult. In order to understand sentences about a topic, it is necessary to know not only a lot about the
language itself (its vocabulary and grammar) but also a good deal about the topic so that unstated assumptions
can be recognized. We discuss this problem again later in this chapter and then in more detail in Chapter 15.

In addition to these mundane tasks, many people can also perform one or maybe more specialized tasks in
which carefully acquired expertise is necessary. Examples of such tasks include engineering design. scientific
discovery, medical diagnosis, and financial planning. Programs that can solve problems in these domains also fall
under the aegis of artificial intelligence. Figure 1.1 lists some of the tasks that are the targets of work in Al

What is Artificial Intelligence? 5

A person who knows how to perform tasks from several of the categories shown in the figure learns the
necessary skills in a standard order. First, perceptual, linguistic, and commonsense skills are learned. Later
{and of course for some people, never) expert skills such as engineering, medicine, or finance are acquired. It
might seem to make sense then that the earlier skills are easier and thus more amenable to computerized
duplication than are the later, more specialized ones. For this reason, much of the initial Al work was
concentrated in those early areas. But it tumns out that this naive assumption is not right. Although expert skills
require knowledge that many of us do not have, they often require much less knowledge than do the more
mundane skills and that knowledge is usually easier to represent and deal with inside programs.

Mundane Tasks
* Perception
- Vision
- Speech
« Natural language
- Understanding
- Generation
- Translation
«» Commonsense reasoning
Robot control

Formal Tasks
¢ Games
- Chess
- Backgammon
- Checkers -Go
¢ Mathematics
- Geometry
- Logic
- Integral calculus
- Proving properties of programs

Expert Tasks

e Engineering

- Design

- Fault finding

- Manufacturing planning
» Scientific analysis

Medical diagnosis

» Financial analysis

Fig. 1.1 Some of the Task Domains of Artificial Intelligence

As a result, the problem areas where Al is now flourishing most as a practical discipline (as opposed to a
purely research one) are primarily the domains that require only specialized expertise without the assistance
of commonsense knowledge. There are now thousands of programs called expert systems in day-to-day
operation throughout all areas of industry and government. Each of these systems attempts to solve part, or
perhaps all, of a practical, significant problem that previously required scarce human expertise. In Chapter 20
we examine several of these systems and explore techniques for constructing them.

6 Artificial Intelligence

Before embarking on a study of specific Al problems and solution techniques, it is important at least to
discuss, if not to answer, the following four questions:

1. What are our underlying assumptions about intelligence?

2. What kinds of techniques will be useful for solving Al problems?

3. At what level of detail, if at all, are we trying to model human intelligence?

4. How will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that is a survey of some Al books
that may be of interest and a summary of the chapter.

1.2 THE UNDERLYING ASSUMPTION

At the heart of research in artificial intelligence lies what Newell and Simon [1976] call the physical symbol
system hypothesis. They define a physical symbol system as follows:

A physical symbol syster consists of a set of entities, called symbols, which are physical patterns that can occur as
components of another type of entity called an expression (or symbol structure). Thus, a symbeol structure is composed
of a number of instances {or tokens) of symbols related in some physical way (such as one token being next to
another). At any instant of time the system will contain a collection of these symbol structures. Besides these
structures, the system also contains a collection of processes that operate on expressions to produce other expressions:
processes of creation, modification, reproduction and destruction. A physical symbol system is a inachine that
produces through time an evolving collection of symbol structures. Such a system exists in a world of objects wider
than just these symbolic expressions themselves.

They then state the hypothesis as

The Physical Symbol System Hypothesis. A physical symbol system has the necessary and sufficient means for
general intelligent action.

This hypothesis is only a hypothesis. There appears to be no way to prove or disprove it on logical grounds.
So it must be subjected to empirical validation. We may find that it is false. We may find that the bulk of the
evidence says that it is true, But the only way to determine its truth is by experimentation.

Computers provide the perfect medium for this experimentation since they can be programmed to simulate
any physical symbol system we like. This ability of computers to serve as arbitrary symbol manipulators was
noticed very early in the history of computing. Lady Lovelace made the following observation about Babbage’s
proposed Analytical Engine in 1842.

The operating mechanism can even be thrown into action independently of any object to operate upon (although of
course no result could then be developed). Again, it might act upon other things besides numbers, were objects
found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and
which should be also susceptible of adaptations to the action of the operating notation and mechanism of the
engine, Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of
musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent. [Lovelace, 1961]

As it has become increasingly easy to build computing machines, so it has become increasingly possible to
conduct empirical investigations of the physical symbol system hypothesis. In each such investigation, a
particular task that might be regarded as requiring intelligence is selected. A program to perform the task is
proposed and then tested. Although we have not been completely successful at creating programs that perform

What is Artificial Intelligence? 7

all the selected tasks, most scientists believe that many of the problems that have been encountered will
ultimately prove to be surmountable by more sophisticated programs than we have yet produced.

Evidence in support of the physical symbol system hypothesis has come not only from areas such as game
playing, where one might most expect to find it, but also from areas such as visual perception, where it is more
tempting to suspect the influence of subsymbolic processes. However, subsymbolic models (for example,
neural networks) are beginning to challenge symbolic ones at such low-level tasks. Such models are discussed
in Chapter 18. Whether certain subsymbolic models conflict with the physical symbol system hypothesis is a
topic still under debate (e.g., Smolensky [1988] }. And itis important to note that even the success of subsymbolic
systems is not necessarily evidence against the hypothesis. It is often possible to accomplish a task in more
than one way.

One interesting attempt to reduce a particularly human activity, the understanding of jokes, to a process of
symbol manipulation is provided in the book Mathematics and Humor [Paulos, 1980]. It is, of course, possible
that the hypothesis will turn out to be only partially true. Perhaps physical symbol systems will prove able to
model some aspects of human intelligence and not others. Only time and effort will tefl.

The importance of the physical symbol system hypothesis is twofold. It is a significant theory of the nature
of human intelligence and so is of great interest to psychologists. It also forms the basis of the belief that it is
possible to build programs that can perform intelligent tasks now performed by people. Our major concern
here is with the latter of these implications, although as we will soon see, the two issues are not unrelated.

1.3 WHAT IS AN Al TECHNIQUE?

Artificial intelligence problems span a very broad spectrum. They appear to have very little in common
except that they are hard. Are there any techniques that are appropriate for the solution of a variety of these
problems? The answer to this question is yes, there are. What, then, if anything, can we say about those
techniques besides the fact that they manipulate symbols? How could we tell if those techniques might be
useful in solving other problems, perhaps ones not traditionally regarded as Al tasks? The rest of this book is
an attempt to answer those questions in detail. But before we begin examining closely the individual techniques,
it is enlightening to take a broad look at them to see what properties they ought to possess.

One of the few hard and fast results to come out of the first three decades of Al research is that intelligence
reguires knowledge. To compensate for its one overpowering asset, indispensability, knowledge possesses
some less desirable properties, including:

¢ It is voluminous.

e It is hard to characterize accurately.

o lt is constantly changing.

¢ [t differs from data by being organized in a way that corresponds to the ways it will be used.

So where does this leave us in our attempt to define Al techniques? We are forced to conclude that an Al
technique is a method that exploits knowledge that should be represented in such a way that:

s The knowledge captures generalizations. In other words, it is not necessary to represent separately
each individual situation. Instead, situations that share important properties are grouped together. If
knowledge does not have this property, inordinate amounts of memory and updating will be required.
So we usually call something without this property “data” rather than knowledge.

e [t can be understood by people who must provide it. Although for many programs, the bulk of the data
can be acquired automatically (for example, by taking readings from a variety of instruments), in many
Al domains, most of the knowledge a program has must ultimately be provided by people in terms they
understand.

8 Artificial Intelligence

s [t can easily be modified to correct errors and to reflect changes in the world and in our world view.

¢ [t can be used in a great many situations even if it is not totally accurate or complete.

¢ [t can be used to help overcome its own sheer bulk by helping to narrow the range of possibilities that
must usually be considered.

Although AT techniques must be designed in keeping with these constraints imposed by Al problems, there
is some degree of independence between problems and problem-solving techniques. 1t is possible to solve Al
problems without using Al techniques (although, as we suggested above, those solutions are not likely to be
very good). And it is possible to apply Al techniques to the solution of non-Al problems. This is likely to be
a good thing to do for problems that possess many of the same characteristics as do Al problems. In order to
try to characterize Al techniques in as problem-independent a way as possible, let’s took at two very different
problems and a series of approaches for solving each of them.

1.3.1 Tic-Tac-Toe
In this section, we present a series of three programs to play tic-tac-toe. The programs in this series increase in:

» Their complexity

e Their use of generalizations

» The clarity of their knowledge

» The extensibility of their approach. Thus, they move toward being representations of what we call Al

techniques.
Program 1

Data Structures
Board A nine-element vector representing the board, where the elements of the vector correspond
to the board positions as follows:
1 2
4 5 6
7 8 9 .
An element contains the value 0 if the corresponding square is blank, | if it is filled with
an X, or 2 if it is filled with an O.
Movetable A large vector of 19,683 elements 3%, each element of which is a nine-element vector.
The contents of this vector are chosen specifically to allow the algorithm to work.

)

The Algorithm
To make a move, do the following:
1. View the vector Board as a ternary (base three) number. Convert it to a decimal number.
2. Use the number computed in step 1 as an index into Movetable and access the vector stored there.
3. The vector selected in step 2 represents the way the board will look after the move that should be made.
So set Board equal to that vector.

Comments
This program is very efficient in terms of time. And, in theory, it could play an optimal game of tic-tac-toe.
But it has several disadvantages:

What is Artificial Intelligence? 9

Fhat s, A FEEVRRSE ead i i

o It takes a lot of space to store the table that specifies the correct meve to make fromgs euch boast

LOSIEGN,

s Somicome will have (o do a by ol ot spedifying nll the ortries o e moveluble,

@ 11 is very uidihely that ali the segured wmoveiabde entries can be detevmined snd entocg vondan s

CITOrS,

e If we want 10 extend the game. say to three dimensions. we would have to stait from scratch, and in fact
this technigue would no fonger work at all, since 377 board positions would have to be stored. thas
overwhelming present computer memosies,

The technique embadied in this program does nol appear to meet any of our requirements for a good Al
technigue. Let’s see if we can do better.

Data Structures
Board

Turn

The Algorithm

[Programj_)

A ning-element vector representing the board, as described for Program 1. But wstead of
using the numbers (0,1, or 2 0 each elerent. we store 2 (indicuiing blank). 3 {ndicaring X
or 5 {indicaiing O).

An integer indicating which move ol the gane is about to be played: |indicater. the fitad
move, 9 the last.

The main algorithn uses three subprocedures:

Make 2

Posswin(p)}

Golny

Returns 5 if the center square of the board 1x biank, that is, 17 Bourd{ 5] = 2. Otherwe,
this function returns any blank noncorner square (2, 4, 0, or 8).

Returns O if player p cannot win on his next move: otherwise, it returns the number o i
square that constitutes a winning move. This function will enable the prosram tah o
win and to block the opponent’s win. Posswin operales by checking. one at a tive, each
of the rows. columns, and diagonals. Because of the way values are numboered, ifcon tos
an entire row (cotumn or diagonal) 10 see if it is 2 possible win by mulipiying the v alve
of its squares together. If the product is F8 (3 x 3 x 2). then X can win. H the product is 540
{5 x 5 x 2} then O can win. If we find a winning row, we determine which clovent o
blank, and return the number of that square.

Makes a move in square #. This procedure sets Board{n| to 3 if Tern is odd. e 518 Tuy
15 even. It also increments Turn by one.,

The algorithm has a built-in strategy for each move it may have to make. It makes the odd-numbered
moves if it is playing X, the even-numbered moves if it is playing O. The strategy for each turn is as follows

Turn=1
Turn=2
Turn=3
Turn=4
Turn=5

Gol) (upper lett <orner).

I Board{5] is blank, Go(5). else Go(l),

If Board)9} is blank, Go(9), else Go(3).

if Posswin(X) is not 0, then Go(Posswin(X)) {i.e., block opponent’s wini. clse CotMahe 21
If Posswin(X) is not 0 then Go(Posswin{ X)) [i.e.. win| else if Posswinf(is not O then
Go{Posswin(O)) [i.c.. biock win}, else if Board[7] is blank, then Goi7 elve Gofldn
{Here the program is tryving to make a fork.|

10 Artificial Intelligence

Turn=6 If Posswin(O} is not 0O then Go {Posswin(O)). else if Posswin(X) is not 0, then
Go(Posswin(X)), else Go(Make2).

Turn=7 If Posswin(X) is not O then Go(Posswin{X};. else if Posswin{Q) is not 0, then
Go{Posswin{O}). else go anywhere that is blank.

Turn=8 If Posswin(QO) is not O then Go(Posswin(Q)), else if Posswin(X) is not 0, then
Go(Posswin(X», else go anywhere that is biank.

Turn=% Same as Tum=7.

Comments

This program is not quite as efficient in terms of time as the first one since it has to check several conditions
before making each move. But it is a lot more efficient in terms of space. It is also a lot easier to understand the
program’s strategy or to change the strategy if desired. But the total strategy has still been figured out in
advance by the programmer. Any bugs in the programmer’s tic-tac-toe playing skill will show up in the
program’s play. And we still cannot generalize any of the program’s knowledge to a different domain, such as

three-dimensional tic-tac-toe.
Program 2’

This program is identical to Program 2 except for one change in the representation of the board. We again
represent the board as a nine-element vector, but this time we assign board positions to vector elements as
follows:

8 3 4
1 5 9
6 7 2

Notice that this numbering of the board produces a magic square: all the rows, columns, and diagonals sum
up to 15. This means that we can simplify the process of checking for a possible win. In addition to marking
the board as moves are made, we keep a list, for each player, of the squares in which he or she has played. To
check for a possible win for one player, we consider each pair of squares owned by that player and compute
the difference between 15 and the sum of the two squares. If this difference is not positive or if it is greater
than 9, then the original two squares were not collinear and so can be ignored. Otherwise, if the square
representing the difference is blank, a move there will produce a win. Since no player can have more than four
squares at a time, there will be many fewer squares examined using this scheme than there were using the
more straightforward approach of Program 2. This shows how the choice of representation can have a major
impact on the efficiency of a problem-solving program.

Comments

This comparison raises an interesting question about the relationship between the way people solve problems
and the way computers do. Why do people find the row-scan approach easier while the number-counting
approach is more efficient for a computer? We do not know enough about how people work to answer that
question completely. One pact of the answer is that people are parallel processors and can look at several parts
of the board at once, whereas the conventional computer must look at the squares one at a time. Sometimes an
investigation of how people solve problems sheds great light on how computers should do so. At other times,
the differences in the hardware of the two seem so great that different strategies seem best. As we learn more
about problem solving both by people and by machines, we may know better whether the same representations
and algorithms are best for both people and machines. We will discuss this question further in Section 1.4,

What is Artificial Intelligence? 11

Data Structures

BoardPosition A structure conlaining a nine-element vector representing the board, a list of board positions
that couid result from the next move, and a number representing an estimate of how
likely the board position is to lead to an ultimate win for the player to move.

The Algorithm

To decide on the next move, look ahead at the board positions that result from each possible move. Decide
which position is best (as described below), make the move that leads to that position, and assign the rating of
that best move to the current position.

To decide which of a set of houard positions is best, do the following for each of them:

I. Seeif it is a win. If so, call it the best by giving it the highest possible rating.

2. Otherwise, consider all the moves the opponent could make next. See which of them is worst for us (by
recursively calling this procedure). Assume the opponent will make that move. Whatever rating that
move has, assign it to the node we are considering.

3. The best node is then the one with the highest rating,

This algorithm will look ahead at various sequences of moves in order to find a sequence that leads to a
win. It attempts to maximize the liketihood of winning, while assuming that the opponent will try to minimize
that likelihood. This algorithm is called the minimax procedure, and it is discussed in detail in Chapter 12.

Comments

This program will require much more time than either of the others since it must search a tree representing all
possible move sequences before making each move. But it is superior to the other programs in one very big
way; It could be extended to handle games more complicated than tic-tac-toe, for which the exhaustive
enumeration approach of the other programs would completely fall apart. It can also be augmented by a
variety of specific kinds of knowledge about games and how to play them. For example, instead of considering
all possible next moves. it might consider only a subset of them that are determined, by some simple algorithm,
to be reasonahble. And. instead of following each series of moves until one player wins, it could search for a
limited time and evaluate the merit of each resulting board position using some static function.

Program 3 is an example of the use of an Al technique. For very small problems, it is less efficient than a
variety of more direct methods. However, it can be used in situations where those methods would fait,

1.3.2 Question Answering

In this section we look at a series of programs that read in English text and then answer questions, also stated
in English. about that text, This task differs from the last one in that it is more difticult now to state formally
and precisely what our problem is and what constitutes correct solutions to it. For example, suppose that the
input text were just the single sentence

Russia massed troops on the Czech border.

Then either of the following question-answering dialogues might occur (and in fact did occur with the
POLITICS program [Carbonell, 19801);

e

12 Artificial Intelligence

Y e o B TE RV R

Dialogue 1

Q. Why did Russia do this?

At Because Russaa thought that it could take political control of Crechoslovakia by sending troops.
J: What should the United States do?

Ar The Eaited States should intervene militarily.

R —

E Dialogue 2 |

: Why did Russia do this?

Buecause Russia wanted to increase its political influence over Czechoslovakia.
What should the United States do?

¢ The United States should denounce the Russtan action in the United Nations.

o

In the POLITICS program, answers were constructed by considering hoth the input text and a separate
model of the beliefs and actions of various political entities. including Russia. When the model js changed. ax
it was between these two dialogues, the sysiem’s answers also change. In this example. the first dialogue was
preduced when POLITICS was given a model that was intended 1o correspond to the beliefs of a typical
American conservative {circa 1977). The second dialogue occurred when POLITICS was given a model that
was intended to correspend to the beliels of a typical American liberal (ol the same vintage).

The general point here is that defining what it means Lo produce a correct answer to a question may be very
hard, Usuaily. question-answering programs define what it mesns to be an answer by the procedure that is
used to compuie the answer. Then their authors appeal to other people to agree that the answers found by the
program “mike sense” und s0 to confirm the model of question answering defined in the program. This is not
completelv satisfactory. but ne better way of defining the prohlem has yet been found. For lack ot u better
method. we will do the same here and illustrate three definitions of question answering, each with a
correspendimg progrum that implements the definition.

In order to be able to compare the three programs, we ttlustrate all of them using the following text:

Mary went shopping for a new coat. She found a red one she really liked. When she got it home, she discovered that
it went perfectiy with her favorite dress.

We wili also attempr to answer each of the following questions with euch program:

Ql: What did Mary go shopping for?
Q2: What did Mary find that she liked?

Q3: Did Mary buy anything?
Program 1

This program attempts to answer questions using the literal input text. It simyply matches text fragments 1n the
questions against the input text.

Data Structures
QuestionPattems A set of templates that match common question forms and produce patterns te he used to
match against inputs. Templates and patterns (which we call rext patternsj are paired so
that if a template matches successfully against an input question then its associated text

What is Art;f' cial Intellrgence? 13

= & © o aepBdeesie GERIRENEREA SRRy

patterns are used to try to find appropriate answers in the text. For example, if the template
. “Who did x y" matches an input question, then the text pattern “x y z” is matched against
the input text and the value of 7 is given as the answer to the question.

Text The input text stored simply as a long character string.
Question The current question also stored as a character string,
The Algorithm

To answer a question, do the following:

1. Compare each element of QuestionPatterns against the Question and use all those that match successfully
to generate a set of lext patterns.

2. Pass each of these patterns through a substitution process that generates alternative forms of verbs so
that, for example, “go” in a question might match “went” in the text. This step generates a new, expanded
set of text patterns.

3. Apply each of these text patterns to Text, and collect all the resulting answers.

4. Reply with the set of answers just collected.

Examples

QI: The template “What did x v” matches this question and generates the text pattern “Mary go shopping
for z.” After the pattern-substitution step, this pattern is expanded to a set of patterns including
“Mary goes shopping for z,” and “Mary went shopping for z.” The latter pattern matches the input
text; the program, using a convention that variables match the longest possible string up to a sentence
delimiter (such as a period), assigns z the value, “a new coat,” which is given as the answer.

Q2: Unless the template set is very large, allowing for the insertion of the object of “find” between it and
the modifying phrase “that she liked,” the insertion of the word “really” in the text, and the substitution
of “she” for “Mary,” this question is hot answerable, I all of these variations are accounted for and
the question can be answered, then the response is “a red one.”

Q3: Since no answer to this question is contained in the text, no answer will be found.

Comments

This approach is clearly inadequate to answer the kinds of questions people could answer after reading a
simple text. Even its ability to answer the most direct questions is delicately dependent on the exact form in
which questions are stated and on the variations that were anticipated in the design of the templates and the
pattern substitutions that the system uses. In fact, the sheer inadequacy of this program to perform the task
may make you wonder how such an approach could even be proposed. This program is substantially farther
away from being vseful than was the initial program we looked at for tic-tac-toe. Is this just a strawman
designed to make some other technique look good in comparison? In a way, yes, but it is worth mentioning
that the approach that this program uses, namely matching patterns, performing simple text substitutions, and
then forming answers using-straightforward combinations of canned text and sentence fragments located by
the matcher, is the same approach that is used in one of the most famous “Al” programs ever written—
ELIZA, which we discuss in Section 6.4.3. But, as you read the rest of this sequence of prngrams, it shouid
become clear that what we mean by the term “artificial intelligence” does not include programs such as this
except by a substantial stretching of definitions.

This program first converts the input text into a structured internal form that attempts to capture the meaning
of the sentences. It also converts questions into that form. It finds answers by matching structured forms
against each other.

-

14

Data Structures
EnglishKnow

InputText
StructuredText

Artificial Intelligence

A description of the words, grammar, and appropriate semantic interpretations of a large
enough subset of English fo account for the mput texts that the system will see. This
knowledge of English is used both to map input sentences into an internzl, meaning-
oriented Form ard to map from such internal forms back into English. The former process
is used when English text is being read; the latter is used to generate English answers
from the meaning-oriented form that constitutes the program’s knowledge base.

The input text in character form.

A structured representation of the content of the input text. This structure attempts to
capture the essential knowledge contained in the text, independently of the exact way
that the knowledge was stated in English. Some things that were not explicit in the English
text, such as the referents of pronouns, have been made explicit in this form. Representing
knowledge such as this is an important issue in the design of almost all Al programs.
Existing programs exploit a variety of frameworks for doing this. There are three important
families of such knowledge representation systems: production rules (of the form “if x
then y), slot-and-filler structures, and statements in mathematical logic. We discuss all
of these methods later in substantial detail, and we look at key questions that need to be
answered in order to choose a method for a particular program’. For now though, we just
pick one arbitrarily. The one we’ve chosen is a slot-and-filler structure. For example, the
sentence “She found a red one she really liked.” might be represented as shown in
Fig. 1.2. Actually, this is a simplified description of the contents of the sentence. Notice
that it is not very explicit about temporal relationships (for example. events are just marked
as past tense) nor have we made any real attemnpt to represent the meaning of the qualifier
“really.” It should, however, illustrate-the basic form that representations such as this
take. One of the key ideas in this sort of representation is that entities in the representation
derive their meaning from their connections to other entities. In the figure, only the entities
defined by the sentence are shown. But other entities, corresponding to concepts that the
program knew about before it read this sentence, also exist in the representation and can
be re- ferred to within these new structures. In this example, for instance, we teler to the
entities Mary, Coar (the general concept of a coat of which Thing{ is a specific instance),
Liking {the general concept of liking), and Finding (the general concept of finding).

Event 2
instance : Finding
tense: FPast
agent ! Mary
object: Thingl
Thingl
instance: Coat
color: Red
Even:2
instance: Liking
tense : FPast
modifier: Much
obhject: Thingl

Fig. 1.2 A Structured Representation of a Sentence

What is Artificial Intelligence? 15

InputQuestion The input question in character form.
StructQuestion A structured representation of the content of the user’s question. The structure is the
same as the one used to represent the content of the input text.

The Algorithm

Convert the InputText into structured form using the knowledge contained in EnglishKnow. This may require
considering several difterent potential structures, for a variety of reasons, including the fact that English
words can be ambiguous, English grammatical structures can be ambigucus, and pronouns may have several
possible antecedents, Then, to answer a question, do the following:

1. Convert the question to structured form, again using the knowledge contained in EnglishKnow. Use
some special marker in the structure to indicate the part of the structure that should be returned as the
answer. This marker will often correspond to the occurrence of a question word (like “who” or “what”)
in the sentence. The exact way in which this marking gets done depends on the form chosen for
representing StructuredText. If a slot-and-filler structure, such as ours, is used, a special marker can be
placed in one or more slots. If a logical system is used, however, markers will appear as variables in the
logical formulas that represent the question.

2. Match this structured form against StructuredText.

3. Return as the answer those parts of the text that match the requested segment of the question.

Examples
QI: This question is answered straightforwardly with, “‘a new coat”.
Q2: This one also is answered successfully with, “a red coat”.
Q3: This one, though, cannot be answered. since there is no direct response to it in the text.

Comments

This approach is substantially more meaning (knowledge)-based than that of the first program and so is more
effective. It can answer most questions to which replies are contained in the text. and it is much less brittle
than the first program with respect to the exact forms of the text and the questions. As we expect, based on our
experience with the pattem recognition and tic-tac-toe programs, the price we pay for this increased flexibility
is time spent searching the various knowledge bases (i.e., EnglishKnow, StructuredText).

One word of warning is appropriate here. The problemn of producing a knowledge base for English that is
powerful enough to handle a wide range of English inputs is very difficult. It is discussed at greater length in
Chapter 15. In addition, it is now recognized that knowledge of English alone is not adequate in general to
enable a program to build the kind of structured representation shown here. Additional knowledge about the
world with which the text deals is often required to support lexical and syntactic disambiguation and the
correct assignment of antecedents to pronouns, among other things. For example, in the text

Mary walked up to the salesperson. She asked where the toy department was.

it ts not possible to determine what the word *“she” refers to without knowledge about the roles of customers
and sales people in stores. To see this, contrast the correct antecedent of “she” in that text with the correct
antecedent for the first occurrence of “she” in the following example:

Mary walked up to the sales person. She asked her if she needed any help.

In the simple case illustrated in our coat-buying example, it is possible to derive correct answers to our first
two questions without any additional knowledge about stores or coats, and the fact that some such additional
information may be necessary to support question answering has already been illustrated by the failure of this

16

Artificiol Intelligence

program to find an answer to question 3. Thus we see that although extracting a structured representation of
the meaning of the input text is an improvement over the meaning-free approach of Program 1, it is by no
means sufficient in general. So we need to look at an even more sophisticated (i.c., knowledge-rich) approach,
which is what we do next.

This program converts the input text into a structured form that contains the meanings of the sentences in the
text, and then it combines that form with other structured forms that describe prior knowledge about the
objects and situations involved in the text. It answers questions using this augmented knowledge structure.

Data Structures
WorldModel

EnglishKnow
InputText

A structured representation of background world knowledge. This structure contains
knowledge about objects, actions and situations that are described in the input text. This
structure is used to construct IntegratedText from the input text. For example, Figure 1.3
shows an example of a structure that represents the system’s knowledge about shopping.
This kind of stored knowledge about stereotypical events is called a script and is discussed
in more detail in Section 10.2. The notation used here differs from the one normally used
in the literature for the sake of simplicity. The prime notation describes an object of the
same type as the unprimed symbol that may or may not refer to the identical object. In the
case of our text, for example, M is a coat and M’ is a red coat. Branches in the figure
describe alternative paths through the script.

1.Centers L

2. C begins looking around
-

3. C looks f?" a specific M 4. C looks for any interesting M
5.C asksi’ for help

y

6.
|-
7. C finds M’ 8. C fails to find M
T T
9. C lsaves L 10. Cbuys M" 11. C leaves L 12. goto step 2
13.C leaves L
14. C takes M’

Fig. 1.3 A Shopping Script

Same as in Program 2.
The input text in character form.

What is Artificial Intelligence? 17

IntegratedText A structured representation of the knowledge contained in the in- put text (similar to the
- structured description of Program 2) but combined now with other background, related
knowledge.
InputQuestion The input question in character form.
StructQuestion A structured representation of the question.

The Algorithm

Convert the InputText into structured form using both the knowledge contained in EnglishKnow and that
contained in WorldModel. The number of possible structures will usually be greater now than it was in
Program 2 because so much more knowledge is being used. Sometimes, though, it may be possible to consider
fewer possibilities by using the additional knowledge to filter the alternatives.

Shopping Script:

roles: C {customer), S (salesperson)

props: M (merchandise), D (dollars)

{ocation: L (a store)

To answer a guestion, do the following:

1. Convert the question to structured form as in Program 2 but use WorldModel iT necessary to resolve
any ambiguities that may arise.

2. Match this structured form against IntegratedText.

3. Return as the answer those parts of the text that match the requested segment of the question.

Examples

Ql: Same as Program 2.

Q2: Same as Program 2.

Q3: Now this question can be answered. The shopping script is instantiated for this text, and because of
the last sentence, the path through step 14 of the script is the one that is used in forming the
representation of this text. When the script is instantiated M’ is bound to the structure representing
the red coat (because the script says that M’ is what gets taken home and the text says that a red coat
is what got taken home). After the script has been instantiated, IntegratedText contains several
events.that are taken from the script but that are not described in the original text, including the event
“Mary buys a red coat” (from step 10 of the script). Thus, using the integrated text as the basis for
question answering allows the program to respond “She bought a red coat.”

Comments

This program is more powerful than either of the first two because it exploits more knowledge. Thus, like the
final program in each of the other two sequences we have examined, it is exploiting what we call Al techniques.
But, again, a few caveats are in order. Even the techniques we have exploited in this program are not adequate
for complete English question answering. The most important thing that is missing from this program is a
general reasoning (inference) mechanism to be used when the requested answer is not contained explicitly
even in IntegratedText, but that answer does follow logically from the knowledge that is there. For example,
given the text

Saturday morning Mary went shopping. Her brother tried to call her then, but he couldn’t get hold of her.

it should be possible to answer the question

18 Artificial Intelligence

Why couldn’t Mary’s brother reach her?

with the reply
Because she wasn't home.

But to do so requires knowing that one cannot be at two places at once and then using that fact to conclude
that Mary could not have been home because she was shopping instead. Thus, although we avoided the
inference problem temporarily by building IntegratedText, which had some obvious inferences built into it,
we cannot avoid it forever. It is simply not practical to anticipate all legitimate inferences. In later chapters, we
look at ways of providing a general inference mechanism that could be used to support a program such as the
last one in this series.

This limitation does not contradict the main point of this example though. In fact, it is additional evidence
for that point, namely, an effective question-answering procedure must be one based soundly on knowledge
and the computational use of that knowledge. The purpose of Al techniques is to support this effective use of
knowledge.

With the advent of the Internet and the vast amount of knowledge in the ever increasing websites and
associated pages, came the Web based Question Answering Systems. Try for instance the START natural
language question answering system (http://start.csail. mit.edu/). You will find that both the questions — What
is the capital of India? and Is Delhi the capiral of India? yield the same answers, viz. New Delhi is the capital
of India. On the contrary the question — Are there wolves in Korea? yields I don't know if there are wolves in
Karea. which looks quite natural.

1.3.3 Conclusion

We have just examined two series of programs to solve two very different problems. In each series, the final
program exemplifies what we mean by an Al technique. These two programs are slower to execute than the
earlier ones in their respective series, but they illustrate three important Al technigues:

+ Search-—Provides a way of solving problems for which no more direct approach is available as well as
a framework into which any direct techniques that are available can be embedded..

* Use of Knowledge—Provides a way of solving complex problems by exploiting the structures of the
objects that are involved.

¢ Abstraction—Provides a way of separating important features and vartations from the many unimportant
ones that would otherwise overwhelm any process.

For the solution of hard problems, programs that exploit these techniques have several advantages over
those that do not. They are much less fragile; they will not be thrown off completely hy a small perturbation
in their input. People can easily understand what the program’s knowledge is. And these techniques can work
for large problems where more direct methods break down.

We have still not given a precise definition of an Al technique. It is probably not possible to do so. But we
have given some examples of what one is and what one is not. Throughout the rest of this book, we talk in
great detail about what one is The definition should then become a bit clearer, or less necessary.

1.4 THE LEVEL OF THE MODEL

Before we set out to do something, it is a good idea to decide exactly what we are trying to do. So we must ask
ourselves, “What is our goal in trying to produce programs that do the intelligent things that people do?” Are
we trying to produce programs that do the tasks the same way people do? Or, are we attempting to produce

What is Artificial Intelligence? 19

programs that simply do the tasks in whatever way appears easiest? There have been Al projects motivated by
each of these goals.

Efforts to build programs that perform tasks the way people do can be divided into two classes. Programs
in the first class attempt to solve problems that do not really fit our definition of an Al task. They are problems
that a computer could easily solve, although that easy solution would exploit mechanisms that do not seem to
be available to people. A classical example of this class of program is the Elementary Perceiver and Memorizer
(EPAM) [Feigenbaum, 1963], which memorized associated pairs of nonsense syllables. Memorizing pairs of
nonsense syllables is easy for a computer. Simply input them. To retrieve a response syllable given its associated
stimulus one, the computer just scans for the stimulus syllable and responds with the one stored next to it. But
this task is hard for people. EPAM simulated one way people might perform the task. It built a discrimination
net through which it could find images of the syllables it had seen. It also stored, with each stimulus image, a
cue that it could later pass through the discrimination net to try to find the correct response image. But it
stored as a cue only as much information about the response syllable as was necessary to avoid ambiguity at
the time the association was stored. This might be just the first letter, for example: But, of course, as the
discrimination net grew and more syllables were added, an old cue might no longer be sufficient to identify a
response syllable uniquely. Thus EPAM, like people, sometimes “forgot” previously learned responses. Many
people regard programs in this first class to be uninteresting, and to some extent they are probabiy right.
These programs can, however, be useful tools for psychologists who want to test theories of human performance.

The second class of programs that attempt to model human performance are those that do things that fail
more clearly within our definition of Al tasks; they do things that are not trivial for the computer. There are
several reasons one might want to model human performance at these sorts of tasks:

1. To test psychological theories of human performance. One example of a program that was written for
this reason is PARRY [Colby, 1975], which exploited a model of human paranoid behavior to simulate
the conversational behavior of a paranoid person. The model was good enough that when several
psychologists were given the opportunity to converse with the program via a terminal, they diagnosed
its behavior as paranoid.

2. To enable computers to understand human reasoning. For example, for a computer to be able to read a
newspaper story and then answer a question, such as “Why did the terrorists kill the hostages?” its
program must be able to simulate the reasoning processes of people.

3. To enable people to understand computer reasoning. In many circumstances, people are reluctant to
rely on the output of a computer unless they can understand how the machine arrived at its result. If the
computer’s reasoning process is similar to that of people, then producing an acceptable explanation is
much easier.

4. To exploit what knowledge we can glean from people. Since people are the best-known performers of
most of the tasks with which we are dealing, it makes a lot of sense to look to them for clues as to how
to proceed.

This last motivation is probably the most pervasive of the four. It motivated several very early systems that
attemnpted to produce intelligent behavior by imitating people at the level of individual neurons. For examples
of this, see the early theoretical work of McCulloch and Pitts [1943], the work on perceptrons, originally
developed by Frank Rosenblatt but best described in Perceptrons [Minsky and Papert, 1969] and Design for
a Brain [Ashby, 1952]. It proved impossible, however, to produce even minimally intelligent behavior with
such simple devices. One reason was that there were severe theoretical limitations to the particular neural, net
architecture that was being used. More recently, several new neural net architectures have been proposed.
These structures are not subject to the same theoretical limitations as were perceptrons. These new architectures
are loosely called connectionist, and they have been used as a basis for several leaming and problem-solving
programs. We have more to say about them in Chapter 18. Also, we must consider that while human brains are

20 Artificial Intelligence

highly parallel devices, most cutrrent computing systems are essentially serial engines. A highly successful
parallel technique may be computationally intractable on a serial computer. But recently, partly because of the
existence of the new family of parallel cognitive models, as well as because of the general promise of parallel
computing, there is now substantial interest in the desigy of massively parallel machines to support Al programs.

Human cognitive theories have also influenced Al to look for higher-level (i.e., far above the neuron level)
theories that do not require massive parallelism for their implementation. An early example of this approach
can be seen in GPS, which are discussed in more detail in Section 3.6. This same approach can also be seen in
much current work in natural language understanding. The failure of straightforward syntactic parsing
mechanisms to make much of a dent in the problem of interpreting English sentences has led many people
who are interested in natural language understanding by machine to look seriously for inspiration at what
little we know about how people interpret language. And when people who are trying to build programs to
analyze pictures discover that a filter function they have developed is very similar to what we think people
use, they take heart that perhaps they are on the right track.

As you can see, this last motivation pervades a great many areas of Al-research. In fact, it, in conjunction. with
the other motivations we mentioned, tends to make the distinction between the goal of simulating human
performance and the goal of building an intelligent program any way we can seem much less different than
they at first appeared. In either case, what we really need is a good mbdel of the processes involved in
intelligent reasoning. The field of cognitive science, in which psychologists, linguists, and computer scientists
all work together, has as its goal the discovery of such a model. For a good survey of the variety of approaches
contained within the field, see Norman [1981], Anderson [1985], and Gardner [1985].

1.5 CRITERIA FOR SUCCESS

One of the most important questions to answer in any scientific or engineering research project is “How will
we know if we have succeeded?” Arificial intelligence is no exception. How will we know if we have
constructed a machine that is intelligent? That question is at least as hard as the unanswerable question “What
is intelligence?” But can we do anything to measure our progress?

In 1950, Alan Turing proposed the following method for determining whether a machine can think. His
method has since become known as the Turing Test. To conduct this test, we need two people and the machine
to be evaluated. One person plays the role of the interrogator, who is in a separate room from the computer
and the other person. The interrogator can ask questions of either the persen or the computer by typing
questions and receiving typed responses. However, the interrogator knows them only as A and B and aims to
determine which is the person and which is the machine. The goal of the machine is to fool the interrogator
into believing that it is the person. If the machine succeeds at this, then we will conclude that the machine can
think. The machine is allowed to do whatever it can to fool the interrogator. So, for example, if asked the
question “How much is 12,324 times 73,9817” it could wait several minutes and then respond with the wrong
answer [Turing, 1963].

The more serious issue, though, is the amount of knowledge that a machine would need to pass the Turing
test. Turing gives the following example of the sort of dialogue a machine would have to be capable of:

Interrogator: In the first line of your sonnet which reads “Shall 1 compare thee to a summer’s day,”
would not “a spring day”™ do as well or better?

A It wouldn’t scan.

Interrogator: How about “a winter’s day.” That would scan all right.

A Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

A: In a way.

What is Artificial Intelligence? 21

Interrogator: Yet Christmas is a winter’s day, and 1 do not think Mr. Pickwick would mind the
- comparison.
A: I don’t think you're serious. By a winter’s day one means a typical winter’s day, rather

than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe none ever will. But
suppose we are willing to settle for less than a complete imitation of a person. Can we measure the achievement
of Al in more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a fairly precise measure of the
achievement of a program. For example, a program can acquire a chess rating in the same way as a human
player. The rating is based on the ratings of players whom the program can beat. Already programs have
acquired chess ratings higher than the vast majority of human players. For other problem domains, a less
precise measure of a program’s achievement is possible. For example, DENDRAL is a program that analyzes
organic compounds to determine their structure, Tt is hard to gel a precise measure of DENDRAL's level of
achievernent compared to human chemists, but it has produced analyses that have been published as original
research results. Thus it is certainly performing competently.

In other technical domains, it is possible to compare the time it takes for a program to complete a task to the
time required by a person to do the same thing. For example, there are several programs in use by computer
companies to configure particular systems to customers’ needs (of which the pioneer was a program calied
R1). These programs typically require minutes to perform tasks that previously required hours of a skilled
engineer’s time. Such programs are usually evaluated by looking at the bottom line— whether they save (or
make) money.

For many everyday tasks, though, it may be even harder to measure a program’s performance. Suppose,
for example, we ask a program to paraphrase a newspaper story. For problems such as this, the best test is
usually just whether the program responded in a way that a person could have.

If our goal in writing a program is to simulate human performance at a task, then the measure of success is
the extent to which the program’s behavior corresponds to that performance, as measured by varicus kinds of
experiments and protocol analyses. In this we do not simply want a program that does as well as possible. We
want one that fails when people do. Various techniques developed by psychologists for comparing mdmduah
and for testing models can be used to do this analysis.

We are forced to conclude that the question of whether a machine has intelligence or can think is too
nebulous to answer precisely. But it is often possible to construct a computer program that meets some
performance standard for a particular task. That does not mean that the program does the task in the best
possible way. It means only that we understand at least one way of doing at least part of a task. When we set
out to design an Al program, we should attempt to specify as well as possible the criteria for success for that
particular program functioning in its restricted domain, For the moment, that is the best we can do.

1.6 SOME GENERAL REFERENCES

There are a greal many sources of information about artificial intelligence. First, some survey books: The
broadest are the multi-volume Handbook of Artificial Intelligence [Barr et al.. 1981] and Encyclopedia of
Artificial Intelligence [Shapiro and Eckroth, 1987], both of which contain articles on each of the major topics
in the field. Four other books that provide good overviews of the field are Artificial Intelligence [Winston,
1984], Introduction to Artificial Intelligence [Charniak and McDermott, 1985], Logical Foundations of Artificial
Intelligence [Genesereth and Nilsson, 1987], and The Elements of Artificial Intelligence [Tanimoto, 1987]. Of
more restricted scope is Principles of Artificial Intelligence [Nilsson, 1980], which contains a formal treatment
of some general-purpose Al techniques.

22 Artificial Intelligence

The history of research in artificial intelligence is a fascinating story, related by Pamela McCordiick [1979]
in her book Machines Who Think. Because almost all of what we call Al has been developed over the last 30
years, McCorduck was able to conduct her research for the book by actually interviewing almost all of the
people whose work was influential in forming the field.

Most of the work conducted in Al has been originally reported in journa} articles, conference proceedings,
or technical reports. But some of the most interesting of these papers have later appeared in special collections
published as books. Computers and Theught [Feigenbaum and Feldman, 1963] is a very early collection of
this sort. Later ones include Simon and Siklossy [1972], Schank and Colby [1973], Bobrow and Collins
[1975], Waterman and Hayes-Roth [1978), Findler [1979], Webber and Nilsson [1981], Halpern [1986],
Shrobe [1988], and several others that are mentioned in later chapters in connection with specific topics.For
newer Al paradigms the book Fundamentals of the New Artificial lntelligence [Toshinori Munakata, 1998] is
a good one.

The major journal of Al research is called simply Artificial Intelligence. 1n addition, Cognitive Science is
devoted to papers dealing with the overlapping areas of psychology, linguistics, and artificial intelligence. Af
Magazine is a more ephemeral, less technical magazine that is published by the American Association for
Artificial Intelligence (AAAI). IEEE Fxpert, IEEE Transactions on Systems, Man and Cybernetics, IEEE
Transactions on Neural Networks and several other journals publish papers on a broad spectrum of Al
application domains.

Since 1969, there has been a major Al conference, the Internationai Joint Conference on Artificial Intelligence
(IICAI), held every two years. The proceedings of these conferences give a good picture of the work that was
taking place at the time. The other important Al conference, held three out of every four years starting in
1980, is sponsored by the AAAI and its proceedings, too, are published.

In addition to these general references, there exists a whole array of papers and books describing individual
Al projects. Rather than trying to list them all here, they are referred to as appropriate throughout the rest of
this book.

1.7 ONE FINAL WORD AND BEYOND

What conclusions can we draw from this hurried introduction to the major questions of AI? The problems are
varied, interesting, and hard. If we solve them, we will have useful programs and perhaps a better understanding
of human thought. We should do the best we can to set criteria so that we can tell if we have solved the
problems, and then we must try to do so.

How actually to go about solving these problems is the topic for the rest of this book. We need methods to
help us solve AT’s serious dilemma:

1. An Al system must contain a lot of knowledge if it is to handle anything but trivial toy problems.

2. But as the amount of knowledge grows, it becomes harder to access the appropriate things when
needed, so more knowledge must be added to help. But now there is even more knowledge to manage,
$0 more must be added, and so forth.

Our goal in Al is to construct working programs that solve the problems we are interested in. Throughout
most of this book we focus on the design of representation mechanisms and algorithms that can be used by
programs to solve the problems. We do not spend much time discussing the programming process required to
turn these designs into working programs. In theory, it does not matter how this process is carried out, in what
language it is done, or on what machine the product is run. In practice, of course, it is often much easier to
preduce a program using one system rather than another. Specifically, Al programs are easiest to build using
languages that have been designed to support symbolic rather than primarily numeric computation.

What is Artificial Intetligence? 23

For a variety of reasons, LISP has historically been the most commonly used language for Al programming.
We say little explicitly about L1SP in this book, although we occasionally rely on it as 2 notation. There used
to be several competing dialects of LISP, but Common Lisp is now accepted as a standard. If you are unfarniliar
with LISP, consult any of the folowing sources: LISP [Winston and Hom. 1989], Common Lisp [Hennessey,
1989, Common LISPcraft [Wilensky, 1986], and Common Lisp: A Gentle Introduction to Symbolic
Computation [Touretzky, 1989a]. For a complete description of Common Lisp, see Common Lisp: The Reference
[Steele, 19904,

Another language that is often used for Al programming is PROLOG, which is described in Chapter 25
And increasingly, as Al makes its way into the conventional programming world, Al systems are being
written in general purpose programming languages such as C. One reason for this is that Al programs are
ceasing to be standalone systems; instead, they are becoming components of larger systems, which may
include conventional programs and databases of various forms. Real code does not form a big part of this
book precisely because it is possible to implement the techniques we discuss in any of several languages and
it is important not to confuse the ideas with their specific implementations. But you should keep in mind as
you read the rest of this book that both the knowledge structures and the problem-solving strategies we
discuss must ultimately be coded and integrated into a working program. This process will definitely throw
more light into real world problems faced in the implementation of Al techniques. It is for this reason we have
introduced Prolog to ensure that you do not end up just reading and believing.

Al is still a young discipline possibly in the sense that little has been achieved as compared to what was
expected. However one must admit a lot more has been learnt about it. We have learnt many things, some of
which are presented in this book. But it is still hard to know exactly the perspective from which those things
should be viewed. We cannot resist quoting an observation made by Lady Lovelace more than 100 years ago:

In considering any new subject, there is frequently a tendency, first, to overrate what we find to be already
interesting or remarkable; and, secondly, by a sort of natural reaction, to undervalue the true state of the case,
when we do discover that our notions have surpassed those that were really tenable. [Lovelace, 1961]

She was talking.about Babbage’s Analytical Engine. But she could have been describing artificial
intelligence.

While defining Al in terms of symbol processing it would only be right for us to inspect the problem of
Symbol Grounding [Stevan Harnad, 1990, The Symbol Grounding Problem, Physica, D42, 335-346] and not
forget about it while grasping any of the concepts discussed in this book. Harnad defines the symbol grounding
problem citing the example of the Chinese Room [Searle, 1980]. The basic assumption of symbolic Al is that
if a symbol system is able to exhibit behaviors which are indistinguishable from those made by a human
being, then it has a mind. Imagine such a system subjected to the Turing test in Chinese. If the system can
respond to all Chinese symbol string inputs in just the manner as a native Chinese speaker, then it means
{seems) that the system is able to comprehend the meaning of the Chinese symbols just the way we all
comprehend our native languages. Searle argues that this cannot be and poses the question — If he (who
knows none of Chinese} is given the same strings and does exactly what the computer did {maybe execute the
program manually!), would he be understanding Chinese? The rhetoric only leads to one unambiguous inference
— The computer does not understand a thing. It is thus imponant to note that the symbols by themselves do
not have any inwrinsic meaning (like the symbols in a book). They derive their meanings only when we read
and the brain comprehends it. It goes to say that if the meaning of the symbols used in a symbol system are
extrinsic, unlike the meanings in our heads, then the model itself has no meaning. As the symbols themselves
have no meaning and depend on other symbols whose meanings are also extrinsic, we seem to be reasoning
around meaningless entities which itself is a meaningless affair! This is the symbol grounding problem.

In the context of the meaninglessness of the use of symbols, Harnad provides a classic example of learning
Chinese. Assume you do not know Chinese and had to learn it using a Chinese to Chinese dictionary. You

24 Artificial Intelligence

would compare character by character of a given word and find the comresponding word in the dictionary only
to tind many more (meanings) written in the same language alongside, for which you would repeat the same
task. The process would put you on an endless merry-go-round. It would be only by translating it to a language
that you understand that your brain can finally perceive what it means. The Chinese symbols in the present
case are not grounded to its meaning. The moral of the example is simple — You cannot ground the meaning
of a symbol with other meaningless symbols. Hamad also cites that cryptologists are able to comprehend
ancient languages and symbols because their efforts are grounded in their real world domain knowledge as
also on some previous language that forms its basis.

Robots form the ultimate test-bed for Al While Al researchers have brought forth a reasonably large
repository of techniques and programs that are based on the symbol system, implementing them on robots
have posed several problems. Though this'may be beyond the scope of this book we must exercise caution
while implementing symbolic Al. For instance on board a robot a symbel ‘red” has to be actually grounded to
some values reported by the camera or a colour sensor.

Finally one should not forget that research in Al is multidisciplinary. People have been using Al technigues
to reap benefits in a gamut of applications. There are still a lot more untrodden paths to be discovered. In the
quest to find better techniques, the reader is advised to give imagination a free run so that the marginal and the
peripheral are accommodated without losing the grounding of each symbol.

EXERCISES

Pmame BT IthTa LoLFEEYIIRENSREYCUE v meea co3@o] iBETRIRENTURETRRE i T S T A R T T T S S T P)

1. Pick a specific topic within the scope of Al and use the sources described in this chapter to do a
preliminary literature search to determine what the current state of understanding of that topic is. If you
cannot think of a more novel topic, try one of the following: expert systems for some specific domain
{e.g., cancer therapy, computer design, financial planning), recognizing motion in images, using natural
(i.e., humanlike) methods for proving mathematical theorems, resolving pronominal references in natural
language texts, representing sequences of events in time, or designing a memory organization scheme
for knowledge in a computer system based on our knowledge of human memory organization.

2. Explore the spectrum from static to Al-based techniques for a problem other than the two discussed in
this chapter. Think of your own problem or use one of the following:
s Translating an English sentence into Japanese
¢ Teaching a child to subtract integers
+ Discovering patterns in empirical data taken from scientific cxpenmems and suggesting further

experiments to find more patterns -

3. Imagine that you had been to an aquarium and seen a shark and an octopus. Describe these to a child
who has never seen one. What resources and mechanisms does the child use to comprehend the nature
of these marine animals?

CHAPTER

PROBLEMS, PROBLEM SPACES, AND SEARCH

15 not that ['m so smart, its just that [stay with problems lovger.

-—Albert Einstein
(1879 —-1955), German-born theoretical physicist

In the last chapter, we gave a brief description of the kinds of problems with which Al is typicaliy concemed,
as well as a couple of examples of the techniques it offers to solve those problems. To build a system to salve
a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise specifications of what the initial
situation (s) will be as well as what final situations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense impact on the appropriateness
of various possible techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply it (them) to the particular problem.

In this chapter and the next, we discuss the first two and the last of these issues. Then, in the chapters in
Part 11, we focus on the issue of knowledge representation.

2.1 - DEFINING THE PROBLEM AS A STATE SPACE SEARCH

Suppose we start with the problem statement “Play chess”. Although there are a lot of people to whom we
could say that and reasonably expect that they will do as we intended, as our request now stands it is a very
incomplete statement of the problem we want solved. To build a program that could “Piay chess,” we would
first have to specify the starting position of the chess board, the rules that define the legal moves, and the
board positions that represent a win for one side or the other, In addition, we must make explicit the previously
implicit goal of not only playing a legal game of chess but also winning the game, if possible.

For the problem “Play chess,” it is fairly easy to provide a formal and complete problem description. The
starting position can be described as an 8 x § array where each position contains a symbol standing for the
appropriate piece in the official chess opening position. We can define as our goal any board position in which
the opponent does not have a legal move and his or her kipg is under attack. The legal moves provide the way
of getting from the initial state to a goal state. They can be described easily as a set of nules consisting of two
parts: a left side that serves as a pattern to be matched against the current board position and a right side that

o

26 Artificial Intelligence

describes the change to be made to the board position to reflect the move. There are several ways in which
these rules can be written. For example, we could write a rule such as that shown in Fig. 2.1.

BB SK S SE 2R JF SR 1B | I4 k¥ W9 i al

714|222 12|2|2 2 412 222 1212 2

s ‘

5 —

4 &

3

2|1R|A R|R|A[R|A|A AIRIA|A RI&|A

1109 B IS (a10 Jla/aix$a|all

a b cd e f 9 h a b cd e f 9 h
White White

Fig. 2.1 One Legal Chess Move

However, if we write rules like the one above, we have to write a very large number of them since there has
to be a separate rule for each of the roughly 10'? possible board positions. Using so many rules poses two
serious practical difficulties:

* No person could ever supply a complete set of such rules. It would take too long and could certainly
not be done without mistakes.

» No program could easily handle ali those rules. Although a hashing scheme could be used to find the
relevant rules for each move fairly quickly, just storing that many rules poses serious difficulties.

In order to minimize such problems, we should look for a way to write the rules describing the legal moves
in as general a way as possible. To do this, it is useful to introduce some convenient notation for describing
patterns and substitutions. For example, the rule described in Fig. 2.1, as well as many like it, could be written
as shown in Fig. 2.2.! In general, the more succinctly we can describe the rules we need. the less work we will
have to do to provide them and the more efficient the program that uses them can be.

White pawn at
Square(file e, rank 2)

AND move pawn from
Square(file e, rank 3) — Square(file e, rank 2)
is empty to Square(file e, rank 4)
AND
Square(file e, rank 4)
is empty

Fig. 2.2 Another Way to Describe Chess Moves

We have just defined the problem of playing chess as a problem of moving around in a siate space, where
each state corresponds to a legal position of the board. We can then play chess by starting at an initial state,
using a set of rules to move from one state to another, and attempting to end up in one of a set of final states.
This state space representation seems natural for chess because the set of states, which corresponds to the set
of board positions, is artificial and well-organized. This same kind of representation is also useful for naturally
occurring, less well-structured problems, although it may be necessary to use more complex structures than a

' To be compiletely accurate, this rule should include a check for pinned pieces, which have been ignored here.

Problems, Problem Spaces, and Search 27

matrix to describe an individual state. The state space representation forms the basis of most of the Al methods
we discuss here. Its structure corresponds to the structure of problem solving in two important ways:

e [t allows for a formal definition of a problem as the need to convert some given situation into some
desired situation using a set of permissible operations.

» [t permits us to define the process of solving a particular problem as a combination of known techniques
(each represented as a rule defining a single step in the space) and search, the general technique of
exploring the space to try to find some path from the cument state to a goal state. Search is 4 very
important process in the solution of hard problems for which no more direct techniques are available.

In order to show the generality of the state space representation, we use it to deseribe a problem very
different from that of chess.

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring
markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of
water into the 4-gallon jug?

The state space for this problem can be described as the set of ordered pairs of integers (x, y), such that.x =
0.1,2.3, ord4and y =0, 1, 2, or 3; x represents the number of gallons of water in the 4-gallon jug, and y
represents the quantity of water in the 3-gallon jug. The start state is (0, 0}, The goal state is (2, n) for any
value of # (since the problem does not specify how many gallons need to be in the 3-gallon jug).

The operators” to be used to solve the problem can be described as shown in Fig. 2.3. As in the chess
problem, they are represented as rules whose left sides are matched against the current state and whose right
sides describe the new state that results from applying the rule. Notice that in order to describe the operators
completely, it was necessary to make explicit some assumptions not mentioned in the problem statement. We
have assumed that we can fill a jug from the pump, that we can pour water out of a jug onto the ground, that
we can pour water from one jug to another, and that there are no other measuring devices available. Additional
assumptions such as these are almost always required when converting from a typical problein statement
given in English to a formal representation of the problem suitable for use by a program.

To solve the water jug problem, all we need, in addition to the problem description given above, is a
control structure that loops through a simple cycle in which some rule whose left side matches the current
state is chosen, the appropriate change to the state is made as described in the corresponding right side, and
the resulting state is checked to see if it corresponds to a goal state. As long as it does not, the cycle continues.
Clearly the speed with which the problem gets solved depends on the mechanism that is used to select the next
operation to be performed. In Chapter 3, we discuss several ways of making that selection.

For the water jug problem, as with many others, there are several sequences of operators that solve the
problem. One such sequence is shown in Fig. 2.4. Often, a problem contains the explicit or implied statement that
the shortest {or cheapest) such sequence be found. If present, this requirement will have a significant effect on the
choice of an appropriate mechanism fo guide the search for a solution. We discuss this issue in Section 2.3.4.

Several issues that often arise in converting an informal problem statement into a formal problem description
are illustrated by this sample water jug problem. The first of these issues concerns the role of the conditions
that occur in the left sides of the rules. All but one of the rules shown in Fig. 2.3 contain conditions that must
be satisfied before the operator described by the rule can be applied. For example, the first rule says, “If the 4-
gallon jug is not already full, fill it.” This rule could, however, have been written as, “Fill the 4-gallon jug,”
since it is physically possible to fill the jug even if it is already full. It is stupid to do so since no change in the
problern state results, but it is possible. By encoding in the left sides of the rules constraints that are not strictly
necessary but that restrict the application of the rules to states in which the rules are most likely to lead to a
solution, we can generally increase the efficiency of the problem-solving program that uses the rules.

% The word “operator” refers to some representation of an action. An operator usually includes information about what
must be true in the world before the action can take place, and how the world is changed by the action.

28

Artificial Intelligence

(x, ¥)
ifxe<4d
(x. ¥)
ify<3
(x. y)
fx>0
(x, ¥
ify>0
(x. ¥}
ifx>0
(x. y)
ify>0
(% ¥
ifx+y>d4andy>0

(x, »
ifx+y23andx>0

(x, ¥)
ifr+y<4andy>0

(x y)
ifx+y<3andx>0

(0, 2)

—)

—

—_

4. »
(% 3)
(x-d. y)
(x,y-d
0, »n
{x, 0)

4. y-(4-x)

x-(3-y.3)

(x+y.0)

O, x+ ¥

2.0

(Y]

Fill the 4-gallon jug
Fill the 3-gallon jug

Pour some water out of
the 4-galion jug
Pour some water out of
the 3-gallon jug
Empty the 4-gallon jug
on the ground
Empty the 3-gailon jug
on the ground
Pour water from the
3-gallon jug into the
4-gallon jug until the
4-gallon jug is full
Pour water from the
4-gallon jug into the
3-gallon jug until the
3-galion jug is full
Pour all the water
from the 3-gallon jug
into the 4-gallon jug
Pour all the water
from the 4-gallon jug
into the 3-gallon jug
Pour the 2 gallons
from the 3-gallon jug
into the 4-gallon jug
Empty the 2 gallons in
the 4-gallon jug on
the ground

Fig. 2.3 Production Rules for the Water fug Probiem

Gallons in the
4-Gallon Jug
0
0
3
3
4
0

2

Gallons in the
3-Gallon Jug
0

2

0

Rule Applied

2

9

2

7
Sorli2

9or il

Fig. 24 | Une Solution\to thel Water fug Problem

SRR I

pol & ne Problems, Problem Spaces, and Séarch- S 29
Rig

The extreme of this approach is shown in the first tic-tac-toe program of Chapter 1. Each entry in the move
vector corresponds to a rule that describes an operation, The left side of each rule describes a board configuration
and is represented implicitly by the index position. The right side of each rule describes the operation to be
performed and is represented by a nine-element vector that corresponds to the resulting board configuration.
Each of these rules is maximally specific; it applies only to a single board configuration, and, as a result, no
search is required when such rules are used. However, the drawback to this extreme approach is that the
problem solver can take no action at atl in a novel situation. In fact, essentially no problem sofving ever really
occurs. For a tic-tac-toe playing program, this is not a serious problem, since it is possible to enumerate all the
situations (i.e., board configurations) that may occur. But for most problems, this is not the case. In order to
solve new problems, more general rules must be available.

A second issue is exemplified by rules 3 and 4 in Fig. 2.3. Should they or should they not be included in the
list of available operators? Emptying an unmeasured amount of water onto the ground is certainly allowed by
the problem statement. But a superficial preliminary analysis of the problem makes it clear that doing so will
never get us any closer to a solution. Again, we see the tradeoff between writing a set of rules that describe
just the problem itself, as opposed to a set of rules that describe both the problem and some knowledge about
its solution.

Rules 11 and 12 illustrate a third issue. To see the problem-solving knowledge that these rules represent,
look at the last two steps of the solution shown in Fig, 2.4. Once the state {4, 2} is reached, it is obvious what
to do next. The desired 2 gallons have been produced, but they are in the wrong jug. So the thing to do is to

‘move them (rule 11). But before that can be done, the water that is already in the 4-gallon jug must be emptied
out (rule 12}. The idea behind these special-purpose rules is to capture the special-case knowledge that can be
used at this stage in solving the problem. These rules do not actually add power to the system since the
operations they describe are already provided by rule 9 (in the case of rule 11) and by rule 5 (in the case of rule
12). In fact, depending on the control strategy that is used for selecting rules to use during problem solving,
the use of these rules may degrade performance. But the use of these rules may also improve performance if
preference is given to special-case rules (as we discuss in Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug problem. From these
discussions, it should be clear that the first step toward the design of a program to solve a problem must be the
creation of a formal and manipuiable description of the problem itself. Ultimately, we would like to be able to
write programs that can themselves produce such formal descriptions from informal ones. This process is
called operationalization. 1t is not at al! well-understood how to construct such programs, but see Section
17.3 for a description of one program that solves a piece of this problem. Until it becomes possible to automate
this process, it must be done by hand, however. For simple problems, such as chess or the water jug, this is not
very difficult. The problems are artificial and highly structured. For other problems, particularly naturally-
occurring ones, this step is much more difficult. Consider, for example, the task of specifying precisely what
it means to understand an English sentence. Although such a specification must somehow be provided before
we can design a program to solve the problem, producing such a specification is itself a very hard problem.
Although our ultimate goal is to be able to solve difficult, unstructured problems, such as natural language
understanding, it is useful to explore simpler problems, such as the water jug problem, in order to gain insight
into the details of metheds that can form the basis for solutions to the harder problems.

Summarizing what we have just said, in order to provide a formal description of a problem, we must do the
following;

1. Define a state space that contains all the possible configurations of the relevant objects (and perhaps

some impossible ones). It is, of course, possible to define this space without explicitly enumerating all
of the states it contains,

30 Artificial Intelligence

2. Specify one or more states within that space that describe possible situations from which the problem-
solving process may start. These states are called the initial states.

3. Specify one or more states that would be acceptable as solutions to the problem. These states are called
goal states.

4, Specify o set of rules that describe the actions {operators) available. Doing this will require giving
thought to the following issues:
e What unstated assumptions are present in the informat problem description?
* How general should the rules be?
« How much of the work required to solve the problem should be precomputed and represented in the

rules?

The problem can then be solved by using the rules, in combination with an appropriate control strategy, to
move through the problem space until a path from an initial state to a goal state is found. Thus the process of
search is fundamental to the problem-solving process. The fact that search provides the basis for the process
of problem-solving does not, however, mean that other, more direct approaches cannot also be exploited.
Whenever possible. they can be included as steps in the search by encoding them into the rules. For example,
in the water jug problem, we use the standard arithmetic operations as single steps in the rules. We do not use
search to find a number with the property that it is equal to ¥y — (4 — xj. Of course, for complex problems,
more sophisticated computations will be needed. Search is a general mechanism that can be used when no
more direct method is known. At the same time, it provides the framework into which more direct methods for
solving subparts of a problem can be embedded.

2.2 PRODUCTION SYSTEMS

Since search forms the core of many intelligent processes, it is useful to structure Al programs in a way that
facilitates describing and performing the search process. Production systems provide such structures. A
definition of a production system is given below. Do not be confused by other uses of the word production,
such as to describe what is done in factories. A production system consists of:

* A set of rules, each consisting of a left side (a pattern) that determines the applicability of the rule and
a right side that describes the operation to be performed if the rule is applied.?

» One or more knowledge/databases that contain whatever information is appropri- ate for the particular
task. Some parts of the database may be penmanent, while other parts of it may pertain only to the solution
of the current problem. The information in these datahases may be structured in any appropriate way.

» A control strategy that specifies the order in which the rules will be compared to the database and a
way of resolving the conflicts that arise when several rules match at once.

¢ A ule applier.

So far, our definition of a production system has been very general. It encompasses a great many systems,
including our descriptions of both a chess player and a water jug problem solver. It also encompasses a family
of general production system interpreters, including:

* Basic production system languages, such as OPS5 [Brownston et @i., 1985} and ACT* [Anderson, 19831.

¢ More complex, often hybrid systems called expert system shells, which provide complete (relatively
speaking) environments for the construction of knowledge- based expert systems.

¢ General problem-solving architectures like SOAR [Laird ef af., 1987], a system based on a specific set
of cognitively motivated hypotheses about the nature of problem-solving.

* This convention for the use of left and right sides is natural for forward rules. As we will see later, many backward rule
systems reverse the sides.

Problems, Problem Spaces, and Search 31

All of these systems provide the overall architecturc of a production system and allow the programmer to write
rules that-define particular problems to be solved. We discuss production system issues further in Chapter 6.

We have now seen that in order to solve a problem, we must first reduce it to one for which a precise
statement can be given. This can be done by defining the problem’s state space (including the start and goal
states) and a set of operators for moving in that space. The problem can then be solved by searching for a path
through the space from an initial state to a goal state. The process of solving the problem can usefully be
modeled as a production system. In the rest of this section, we look at the problem of choosing the appropriate
control structure for the production system so that the search can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply next during the process
of searching for a solution to a problem. This question arises “ince often more than one rule {and sometimes
fewer than one rule) will have its left side match the current state. Even without a great deal of thought, it is
clear that how such decisions are made will have a crucial impact on how quickly, and even whether, a
problem is finally solved.

o The first requirement of a good control strategy is that it causes motion. Consider again the water jug
problem of the last section. Suppose we implemented the siinple control strategy of starting each time
at the top of the list of rules and choosing the first applicable one. If we did that, we would never solve
the problem. We would continue indefinitely filling the 4-gallon jug with water Contro! strategies that
do not cause motion will never lead to a solution.

e The second requirement of a good control strategy is that it be systematic. Here i1s another simple
control strategy for the water jug problem: On each cycle, choose at random from among the applicable
rules. This strategy is better than the first. It causes motion. It will lead to a solution eventually. But we
are likely to arrive at the same state several times during the process and to use many more steps than
are necessary. Because the control strategy is not systematic, we may explore a particular useless
sequence of operators several times before we finally find a solution. The requirement that a control
strategy be systematic corresponds to the need for global motion (over the course of several steps) as
well as for Jocal motion (over the course of a single step). One systematic control strategy for the water
jug problem is the folowing. Construct a tree with the initial state as its root. Generate all the offspring
of the root by applying each of the applicable rules to the initial state. Fig. 2.5 shows how the tree looks
at this point. Now for each leaf node, generate all its successors by applying all the rules that are
appropriate. The tree at this point is shown in Fig. 2.6.* Continue this process until some rule produces
a goal state. This process, called breadth-first search, can be described precisely as follows.

o] [19] (@] [69] [69)]

Fig. 2.5 One Level of a Breadth- Fig. 2.6 Two Levels of a Breadth-
First Search Tree First Search Tree

(1,3)

“Rule 3,4, 11, and 12 have been ignored in constructing the search tree,

32 Artificial Intelligence

Algorithm: Breadth-First Search

1. Create a variable called NODE-LIST and set it to the initial state.
2. Until a goal state is found or NODE-LIST is empty:
(a) Remove the first element from NODE-LIST and call it £, If NODE-LIST was empty. quit.
(b) For each way that each rule can match the state described in £ do:
(i) Apply the rule to generate a new state,
(ii) If the new state is a goal state. quit and return this state.
(iii) Otherwise, add the new state to the end of NODE-LIST.

Other systematic control strategies are also available. For example, we could pursue a single branch of the
tree until it yields a solution or uniil a decision 1o terminate the path is made. It makes sense to terminate a path
if it reaches a dead-end, produces a previous state, or becomes longer than some prespecified “futility” limit.
In such a case, backtracking occurs. The most recently created state from which alternative moves are available
will be revisited and a new state will be created. This form of backtracking is called chronological backtracking
because the order in which steps are undone depends anly on the temporal sequence in which the steps were
originally made. Specifically, the most recent step is always the first o be undone. This form of hacktracking
is what is usually meant by the simple term hacktracking. But there are other ways of retracting steps of a
computation. We discuss one important such way, dependency-directed backtracking. in Chapter 7. Until
then, though, when we use the term backtracking, it means chronological backtracking.

The search procedure we have just described is also called deprh-first search. The following algorithm
describes this precisely.

Algorithm: Depth-First Search
1. If the initial state is a goal state, quit and return success.
2. Otherwise, do the following until success or failure is signaled:
(a) Generate a successor, E, of the initial state. If there are no more successors, signal failure.
(b) Call Depth-First Search with Easthe initial state.
(c) If success is returned, signal success. Otherwise continue in this loop.

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A comparison of these two
simple methods produces the following observations:

L4

Fig. 2.7 A Depth-First Search Tree

Advantages of Depth-First Search

¢ Depth-first search requires less memory since only the nodes on the current path are stored. This
contrasts with breadth-first search, where all of the tree that has so far been generated must be stored.

e By chance (or if care is taken in ordering the alternative successor states), depth-first search may find
a solution without examining much of the search space at all. This contrasts with breadth-first search in
which all parts of the tree must be examined to level n before any nodes on level # + 1 can be examined.
This is particularly significant it many acceptable solutions exist. Depth-first search can stop when one
of them is found.

Problems, Problem Spaces, and Search 33

Advantages of Breadth-First Search

+ Beeadth-first search will not get irapped exploring a blind aliey. This contrasts with depth-{irst searching,
which may follow a single, unfruitful path tor a very long time, perhaps forever, before the path actually
terminates in a state that has no successors, This is a particular problem in depth-first search if there are
loops (i.e., a state has a successor that is also one of its anccstors) unless special care is expended to test
for such a situation. The example in Fig. 2.7, if it continues always choosing the first (in numerical
sequence) rule that applies, will have exactly this problem.

o If there is a solution, then breadth-first search is guaranteed (o find it. Furthermore, if there are multiple
solutions, then a minimal solution (i.e., one that requires the minimum number of steps) will be found.
This is guaranteed by the fact that longer paths are never explored until all shorter ones have already
been examined. This contrasts with depth-first search, which may find & long path to a solution in one
part of the tree, when a shorter path exists in some other. unexplored part of the tree.

Clearly what we would like is a way to combine the advantages of both of these methods. In Section 3.3 we
will talk about one way of doing this when we have some additional information. Later, in Section 12.5, we
will describe an uninformed way of doing so.

For the water jug problem, most control strategics that cause motion and are systematic will lead to an
answer. The problem is sitnple. But this is not always the case. ln order to solve some problems during our
lifetime, we must also demand a control structure that is efficient.

Consider the following problem.

The Traveling Salesman Problem: A salesman has a list of cities, cach of which he must visit exactly once, There
are direct roads between each pair of cities on the fist. Find the route the salesman should follow for the shortest
possible round trip that both starts and finishes at any one ol the cities.

A simple, motion-causing and systernatic controf siructure could, in principle, solve this problem. 1t would
simply explore all possible paths in the tree and return the one with the shortest length. This approach will
even work in practice for very short lists of cities. But it breaks down quickly as the number of cities grows.
If there are N cities, then the number of different paths among them is 1.2...(N - 1), or (N — 1)!. The time to
examine a single path is proportional to V. So the total time required to perform this search is proportional to
NI Assuming there are only 10 cities, 10! is 3,628,800, which is a very large number. The salesman could
easily have 25 cities to visit. To solve this problem would take more time than he would be willing to spend.
This phenomenon is called combinatorial explosion. To combat it. we need a new control strategy.

‘We can beat the simple strategy outlined above using a technique called branch- and-bound. Begin generating
complete paths, keeping track of the shortest path found so far. Give up exploring any path as soon as its
partial length becomes greater than the shortest path found so far. Using this technique, we are still guaranteed
to find the shortest path. Unfortunately, although this algorithm is more efficient than the first one, it still
requires exponential time. The exact amount of rime it saves for a particular problem depends on the order in
which the paths are explored. But it is still inadequate for solving large problems.

2.2.2 Heuristic Search

In order to solve many hard problems efficiently, it is often necessary 10 compromise the requirements of
mobility and systematicity and to construct a control structure that is no longer guaranteed to find the best
answer but that will almost always find a very good answer. Thus we introduce the idea of a heuristic.” A

3 The word heuristic comes from the Greek word heuriskein, meaning “1o discover,” which is also the origin of ewreka,
derived from Archimedes’ reputed exclamation, fewrike (for *1 have found™), uttered when he had discovered a method
for determining the purity of gold.

34 Artificial Intelligence

heuristic is a technique that improves the efficiency of a search process, possibly by sacrificing claims of
completeness. Heuristics are like tour guides. They are good to the extent that they point in generally interesting
directions; they are bad to the extent that they may miss points of interest to particular individuals. Some
heuristics help to guide a search process without sacriticing any claims to completeness that the process might
previously have had. Others (in fact, many of the best ones) may occasionally cause an excellent path to be
overlooked. But, on an average, they improve the quality of the paths that are explored. Using good heuristics,
we can hope to get good (though possibly nonoptimal) solutions to hard problems, such as the traveling
salesman, in less than exponential time. There are some good general-purpose heuristics that are useful in a
wide variety of problem domains. In addition, it is possible to construct special-purpose heuristics that exploit
domain-specific knowledge to solve particular problems.

One example of a good general-purpose heuristic that is useful for a variety of combinatorial problems is
the nearest neighbor heuristic, which works by selecting the locally superior altemative at each siep. Applying
it to the traveling salesman problem, we produce the following procedure:

1. Arbitrarily select a starting city.

2. To select the next city, look at all cities not yet visited, and select the one closest to the current city. Go
to it next,

3. Repeat step 2 until all cities have been visited.

This procedure executes in time proportional to N2, a significant improvement over !, and it is possible to
prove an upper bound on the error it incurs. For general-purpose heuristics, such as nearest neighbor, it is
often possible to prove such error bounds, which provides reassurance that one is not paying too high a price
in accuracy for speed.

In many AI problems, however, it is not possible to produce such reassuring bounds. This is true for two
reasonsh

¢ For real world problems, it is ot~ hard to measure precisely the value of a particular solution. Although
the length of a trip to several cities » a precise notion, the appropriateness of a particular response to
such questions as “Why has inflation wncreased?” is much less so.

s For real world problems, it is often useful to introduce heuristics based on relatively unstructured
knowledge. It is often impossible to define this knowledge in such a way that a mathematical analysis
of its effect on the search process can be performed.

There are many heuristics that, although they are not as general as the nearest neighbor heuristic, are
nevertheless useful in a wide variety of domains. For example, consider the task of discovering interesting
ideas in some specified area. The following heuristic [Lenat, 1983b] is often useful:

H there is an interesting function of two arguments f(x, y), look at what happens if the two arguments are
identical.

In the domain of mathematics, this heuristic leads to the discovery of squaring iff is the multiplication
function, and it leads to the discovery of an identity function if f is the function of set union. In less formal
domains, this same heuristic leads to the discovery of introspection if fis the function contemplate or it leads
to the notion of suicide iff is the function kill.

Without heuristics, we would become hopelessly ensnarled in a combinatorial ex-plosion. This alone might
be a sufficient argument in favor of their use. But there are other arguments as well:

e Rarely do we actually need the optimum solution; a good approximation will usually serve very well. In
fact, there is some evidence that people, when they solve problems, are not optimizers but rather are
satisficers [Simon, 1981]. In other words, they seck any solution that satisfies some set of requirements,
and as soon as they find one they quit. A good example of this is the search for a parking space. Most
people stop as soon as they find a fairly good space, even if there might be a slightly better space up ahead.

Preblems, Problem Spaces, and Search 35

» Although the approximations produced by heuristics may not be very good in the worst case, worst
cases rarely arise in the real world. For example, although many graphs are not separable (or even
nearly so) and thus cannot be considered as a set of small problems rather than one large one, a lot of
graphs describing the real world are.®

» Trying to understand why a heuristic works, or why it doesn’t work, often leads to a deeper understanding
of the problem.

One of the best descriptions of the importance of heuristics in solving interesting problems is How to Solve
it [Polya, 1957}. Although the focus of the bogk-is the solution of mathematical problems, many of the
techniques it describes are more generally applicable. For example, given a problem to solve, look for a
similar problem you have solved before. Ask whether you can use either the solution of that problem or the
method that was used to obtain the solution to help solve the new problem. Polya’s work serves as an excellent
guide for people who want to become better problem solvers. Unfortunately, it is not a panacea for Al for a
couple of reasons. One is that it relies on human abilities that we must first understand well enough to build
into a program. For example, many of the problems Polya discusses are geomeiric ones in which once an
appropriate picture is drawn, the answer can be seen immediately. But to exploit such techniques in programs,
we must develop a good way of representing and manipulating descriptions of those Fig.s. Another is that the
rules are very general.

They have extremely underspecified left sides, so it is hard to use them to guide a search—too many of
them are applicable at once. Many of the rules are really only useful for looking back and rattonalizing a
solution after it has been found. In essence, the problem is that Polya’s rules have not been operationalized.

Nevertheless, Polya was several steps ahead of Al. A comment he made in the preface to the first printing
(1944) of the book is interesting in this respect:

The following pages are written somewhat concisely, but as simply as possible, and are based on a long
and serious study of methods of solution. This sort of study, called heuristic by some writers, is not in fashion
nowadays but has a long past and, perhaps, some future.

There are two major ways in which domain-specific, heuristic knowledge can be incorporated into a rule-
based search procedure:)

¢ In the rules themselves. For examiple, the rules tor a chess-playing system might describe not simply
the set of legal moves but rather a set of “sensible” moves, as determined by the rule writer.
* As a heuristic function that evaluates individual problem states and determines how desirable they are.

A heuristic function is a function that maps from problem state descriptions to measures of desirability,
usually represented as numbers. Which aspects of the problem state are considered, how those aspects are
evaluated, and the weights given to individual aspects are chosen in such a way that the value of the heuristic
function at a given node in the search process gives as good an estimate as possible of whether that node is on
the desired path to a solution.

Well-designed heuristic functions can play an important part in efficiently guiding a search process toward
a solution. Sometimes very simple heuristic functions can provide a fairly good estimate of whether a path is
any good or not. In other situations, more complex heuristic functions should be employed. Fig. 2.8 shows
some simple heuristic functions for a few problems. Notice that sometimes a high value of the heuristic
function indicates a relatively good position (as shown for chess and tic-tac- toe), while at other times a low
value indicates an advantageous situation (as shown for the traveling salesman). It does not matter. in general,
which way the function is stated. The program that uses the values of the function can attempt to minimize it
or to maximize it as appropriate.

% For arguments in support of this, see Simon [1981].

36 Artificigl Intelligence

WEET RIS e R R R TR E T b R e T

Chess the material advantage of our side
over the opponent

Traveling Salesman the suin of the distances so far

Tic-Tac-Toe | for each row in which we could win

and in which we already have one
piece plus 2 for each such row in
which we have two pieces

Fig. 2.8 Some Simple Heuristic Functions

The purpose of a heuristic function is to guide the search process in the most profitable direction by
suggesting which path to follow first when more than one is available. The more accurately the heuristic
function estimates the true merits of each node in the search tree (or graph), the more direct the solution
process. In the extreme, the heuristic function would be so good that essentially no search would be required.
The system would move directly to a solution. But for many problems, the cost of computing the value of
such a function would outweigh the effort saved in the search process, After all, it would be possible to
compute a perfect heuristic function by doing a complete search from the node in question and determining
whether it leads to a good solution. In general, there is a trade-off between the cost of evaluating a heuristic
function and the savings in search time that the function provides.

In the previous section. the solutions to Al problems were described as centering on a search process.
From the discussion in this section, it should be clear that it can more precisely be described as a process of
heuristic search. Some heuristics will be used to define the control structure that guides the application of
rules in the search process. Others. as we shall see, will be encoded in the rules themselves. In both cases, they
will represent either general or specific world knowledge that makes the solution of hard problems feasible.
This leads to another way that one could define artificial intelligence: the study of techniques for solving
exponentially hard problems in polynomial time by exploiting knowledge about the problem domain.

2.3 PROBLEM CHARACTERISTICS

Heuristic search is a very general method applicable to a large class of problems. It encompasses a variety of
specific techniques, each of which is particularly effective for a small class of problems. In order to choose the
most appropriate method (or combination of methods) for a particular problem, it is necessary to analyze the
problem along several key dimensions:
¢ 15 the problem decomposable into a set of (nearly) independent smaller or easier subproblems?
e (Can solution steps be ignored or at least undone if they prove unwise?
¢ [s the problem’s universe predictable?
s Is a good solution to the problem obvious without comparison to all other possible solutions?
¢ 15 the desired solution a state of the world or a path to a state?
¢ Is a large amount of knowledge absolutely required to solve the problem, or is knowledge important
only to constrain the search?
o (Can a computer that is simply given the problem return the solution, or will the solution of the problem
require interaction between the computer and a person?
In the rest of this section, we examine each of these questions in greater detail. Notice that some of these
questions involve not just the statement of the problem itself but also characteristics of the solution that is
desired and the circumstances under which the solution must take place,

Problems, Problem Spaces, and Search 37

! Rl E R o &k

2.3.1 Is the Problem Decomposable?

Suppose we want (0 solve the problem of computing the expression

J(xz + 3x + sin’* - cosiv) dx IX2 + 3x + sin? x cos? x dx
We can solve this problem l?y preaklng it down into sz dx jBx dx Isinzx Cosx dx
three smaller problems, each of which we can then solve | |
by using a small collection of specific rules. Figure 2.9 ¥ 3] x dx I(1 — cos? x) cos?x dx
shows the problem tree that will be generated by the 3 |)
. o C o . ; Ix
process of problem decomposition as it can be exploited =5 j cos2x dx I 0954 X dx

by a simple recursive integration program that works as | :
follows: Ateach step, it checks to see whether the prob-

lent it is working on is immediately solvable. If so, then
the answer is returned directly. 1f the problem is not

I—; (1 + cos 2x) dx

i 1
easily solvable, the integrator checks to sce whether it H'i.[1| dx _2.[€08 2x dx
can decompose the problem into smaller problems. If it | -
can, it creates those problems and calls itsclf recursively X —3 5in 2

on them. Using this technique of problem decomposi-
tion. we can often solve very large problems easily.
Now consider the problem illustrated in Fig. 2.10. This problem is g,

Fig. 2.9 A Decomposable Problem

drawn from the domain often referred to in Al literature as the blocks
world. Assume that the following operators are available: B]
1. CLEAR (x} |biock x has nothing on it] — ON (x, Table) [pick ON(C,A) ON(B.C) and ON(A,B)
up x and put it on the table] Fig. 2.10 A Simple Blocks World
2. CLEAR (x) and CLEAR () — ON (x, y) {put x on y] Problem

Applying the technique of problem decomposition to this simple blocks world example would lead to a
solution tree such as that shown in Fig. 2.11. In the figure, goals are underlined. States that have been achieved
are not underlined. The idea of this solution is to reduce the problem of getting B on C and A on B to two
separate problems. The first of these new prohlems, getting B on C, is simple, given the start state. Simply put
B on C. The second subgoal is not quile so .\'jlmplc. Since the [ON(B,C)and ON (A] |
only operators we have altow us to pick up single blocks at a
time, we have to clear off A by removing C before we can
pick up A and put it on B. This can casily be done. However,
if we now try to combine the two subsolutions into one
solution, we will fail. Regardless of which one we do first, we
will not be able to do the second as we had planned. In this
problem, the two subproblems are not independent. They
interact and those interactions must be considered in order to Fig. 2.11 A Proposed Solution for the Blocks
arrive at a solution for the entire problem. Problem

These two examples, symbolic integration and the blocks world, illustrate the difference between
decomposable and nondecomposable problems. In Chapter 3, we present a specific algorithm for problem
decomposition, and in Chapter 13, we look at what happens when decomposition is impossible.

ON(A.B)

PutBonC

PutAcnB
ON(A,B)

Move A to table

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are trying to prove a mathematical theorem. We proceed by first proving a lemma that we think
will be useful. Eventually, we realize that the lemma is no help at all. Are we in trouble?

38 Artificial Intelligence

No. Everything we need to know to prove the theorem is still true and in memory, if it ever was. Any rules
that could have been applied at the outset can still be applied. We can just proceed as we should have in the
first place. All we have lost is the effort that was spent exploring the blind alley.

Now consider a ditferent problem.

The 8-Puzzle; The 8-puzzle is a square tray in which are placed, eight square tiles. The remaining ninth square is
uncovered. Each tile has a number on it. A tile that is adjacent to the blank space can be slid into that space. A game
consists of a starting position and a specified goal position. The goal is to transform the starting position into the
goal position by sliding the tiles around.

A sample game using the 8-puzzle is shown in Fig. 2.12. In attempting to solve Start Goal
the 8-puzzle, we might make a stupid move. For example, in the game shown 283 11213
above, we might start by sliding tile 5 into the empty space. Having done that, we |4 g | 4 8 4
cannot change our mind and immediately slide tile 6 into the empty space since |7 5 7165

the empty space will essentially have moved. But we can backtrack and undo the
first move, sliding tile 5 back to where it was, Then we can move tile 6. Mistakes
can still be recovered from but not quite as easily as in the theorem-proving
problem. An additional step must be performed to undo each incorrect step, whereas no action was required
to “undo” a useless lemma. In addition, the control mechanism for an 8-puzzle solver must keep track of the
order in which operations are performed so that the operations can be undone one at a time if necessary. The
control structure for a theorem prover does not need to record all that information.

Now consider again the problem of playing chess. Suppose a chess-playing program makes a stupid move
and realizes it a couple of moves later. It cannot simply play as though it had never made the stupid move. Nor
can it simply back up and start the game over from that point. All it can do is to try to make the best of the
current situation and go on from there.

These three problems—theorem proving, the 8-puzzle, and chess—illustrate the differences between three
important classes of problems:

Fig. 2.12 An Example of
the 8-Puzzie

* Ignorable {e.g., theorem proving). in which solution steps can be ignored
*» Recoverable (e.g., 8-puzzle), in which solution steps can be undone
* Irrecoverable (e.g., chess), in which solution steps cannot be undone

These three definittons make reference to the steps of the solution to a problem and thus may appear to
characterize particular production systems for solving a problem rather than the problem itself. Perhaps a
different formulation of the same problem would lead to the problem being characterized differently. Strictly
speaking, this is true. But for a great many problems, there is only one (or a small number of essentially
equivalent) formulations that naturally describe the problem. This was true for each of the problems used as
examples above. When this is the case, it makes sense to view the recoverability ot a problem as equivalent to
the recoverability of a natural formulation of it.

The recoverahility of a problein plays an important role in determining the complexity of the control
structure necessary for the problem’s solution. Ignorable problems can be solved using a simple control
structure that never backtracks. Such a control structure is easy to implement. Recoverable problems can be
solved by a slightly more complicated contro! strategy that does sometimes make mistakes, Backtracking will
be necessary to recover from such mistakes, so the control structure must be implemented using a push-down
stack, in which decisions are recorded in case they need to be undone later. Irrecoverable problems, on the
other hand, will need to be solved by a system that expends a great deal of effort making each decision since
the decision must be final. Some irrecoverable problems can be solved by recoverable style methods used in
a planning process. in which an entire sequence of steps is analyzed in advance to discover where it will lead
before_the. first step ispactually taken, We digonss next thegkinds of problems inewhich thissis possible.

Problems, Problem Spaces, and Search 39

2.3.3 1Is the Universe Predictable?

Again suppose that we are playing with the 8-puzzie. Every time we make a move, we know exactly what will
happen. This means that it is possible to plan an entire sequence of moves and be confident that we know what
the resulting state will be. We can use planning to avoid having to undo actual moves, although it will still be
necessary to backtrack past those moves one at a time during the planning process. Thus a control structure
that allows backtracking will be necessary.

However, in games other than the 8-puzzle, this planning process may not be possible. Suppose we want to
play bridge. One of the decisions we will have to make is which card to play on the first trick. What we would
like to do is to plan the entire hand before making that first play. But now it is not possible to do such planning
with certainty since We cunnot know exactly where all the cards are or what the other players will do on their
turns. The best we can do is to investigate several plans and use probabilities of the various outcomes to
choose a plan that has the highest estimated probability of leading to a good score on the hand.

These two games illustrate the difference between certain-outcome (e.g., 8-puzzle) and uncertain-outcome
(e.g., bridge) problems. One way of describing planning is that it is problem-solving without feedback from
the environment. For solving certain-outcome problems, this open-loop approach will work fine since the
result of an action can be predicted perfectly. Thus, planning can be used to generate a sequence of operators
that is guaranteed to lead to a solution. For uncertain-outcome problems, however, planning can at best generate
a sequence of operators that has a good probability of lcading to a solution. To solve such problems, we need
to allow for a process of plan revision to take place as the plan is carried out and the necessary feedback is
provided. In addition to providing no guarantee of an actual solution, planning for uncertain-outcome problems
has the drawback that it is often very expensive since the number of solution paths that need to be explored
increases cxponentially with the; number of points at which the outcome cannot be predicted.

The tast two problem characteristics we have discussed, ignorable versus recoverable versus irrecoverable
and certain-outcome versus uncertain-outcome, interact in an interesting way. As has already been mentioned,
one way to solve irrecoverable problems is to plan an entire solution before embarking on an implementation
of the plan. But this planning process can only be done effectively for certain-outcome problems. Thus one of
the hardest types of problems to solve is the irrecoverable, uncertain-outcome. A few examples of such
problems are:

+ Playing bridge. But we can do fairly well since we have available accurate estimates of the probabilities
of each of the possible outcomes.

+ Controlling a robot arm. The outcome is uncertain for a variety of reasons. Someone might move
something into the path of the arm. The gears of the arm might stick. A slight error could cause the arm
to knock over a whole stack of things.

» Helping a lawyer decide how to defend his client against a murder charge. Here we probably cannot
even list all the possible outcomes, much less assess their probabilities.

2.3.4 Is a Good Solution Absolute or Relative?
Consider the problem of answering questions based on a database of simple facts, such as the following:

1. Marcus was a man.

Marcus was a Pompeian.

Marcus was borm in 40 A.D.

All men are mortal.

All Pompeians died when the volcano erupted in 79 A.D.
No mortal lives longer than 150 years.

It is now 1991 A.D.

S

40 Artificial Intelligence

Suppose we ask the question “Is Marcus alive?” By representing each of these facts in a formal language, such
as predicate logic, and then using formal inference methods we can fairly easily derive an answer to the
question.” In fact, either of two reasoning paths will lead to the answer, as shown in Fig. 2.13. Since alt we are
interested in is the answer to the question, it does not matter which path we fotlow. If we do follow one path
successfully to the answer, there is no reason to go back and see if some other path might also lead to a solution.

Justification

1. Marcus was a man. axtom |
4. All men are mortal, axiom 4
8. Marcus is mortal. 1,4

3. Marcus was born in 40 A.D. axiom 3
7. Itis now 1991 A D, axiom 7
9. Marcus’ age is 1951 years, 3.7

6. No mortal lives longer than 150 years. axiom 6
£0. Marcus is dead. 8,6,9

OR

7. Itisnow 1991 A.D, axiom 7
5. All Pompeians died in 79 A.D, axiom 5
11. All Pompeians are dead now. 7.5

2. Marcus was a Pompeian. axiom 2
12. Marcus is dead. 11,2

Fig. 2.13 Two Ways of Deciding That Marcus Is Dead

But now consider again the traveling salesman problem. Our goal is to find the shortest route that visits each
city exactly once. Suppose the cities to be visited and the distances between them are as shown in Fig. 2.14.

Boston [New York| Miami Dallas SF

. Boston 250 1450 1700 3000

New York 250 1200 1500 2900

Miami 1450 1200 1600 3300

Daltas 1700 1500 1600 1700
S.F 3000 2900 3300 1700

Fig. 2.14 An Instance of the Traveling Salesman Problem

One place the salesman could start is Boston. In that case, one path that might be followed is the one shown
in Fig. 2.15, which is 8850 miles fong. But is this the solution to the problem? The answer is that we cannot
be sure uniess we also try all other paths to make sure that none of them is shorter. In this case, as can be seen
from Fig. 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examples illustrate the difference between any-path problems and best- path problems. Best-
path problems are, in general, computationally harder than any-path problems. Any-path problems can often
be solved in a reasonable amount of time by using heuristics that suggest good paths to explore. (See the
discussion of best-first search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible, but that does not matter. For true best-path problems,
however, no heuristic that could possibly miss the best solution can be vsed. So a much more exhaustive
search will be performed.

7 Of course, representing these statements so that a mechanica! procedure could exploit them to answer the question also
requiles) tife €xplicityie pi oot therdoets, saciiasideadsim pl iIegnen dlives e derthis-ilt Chapen e

Problems, Problem Spares, and Search 41

bt e R g i W

Bosten |
) P

[Boston] (3000) 20
(3000} [San Francisco| New York|
[San Francisca] (1700) ’ N {1200)
(1700) >

[[Dallas | [Miami_|

LD N
(1500) {1500} B (1600)
g New York Dallas

(1200) (1200) (1700)

Miami | [San Frangi—sL—ol
(1450) (1450) ; (3000)
| Boston
Total: (8850) Total: (8850) Total: (7750)
Fig. 2.15 One Path among the Cities Fig. 2.16 Two Paths Among the Cities

2.3.5 Is the Solution a State or a Path?

Consider the problem of finding a consistent interpretation for the sentence
The bank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, in isolation, may have more than one
interpretation. But the components must form a coherent whole. and so they constrain each other’s
interpretations. Some of the sources of ambiguity in this sentence are the following:

The word “hank’™ may refer either to a financial institution or to a side of a river. But only one of these may
have a president.

+ The word “dish” is the object of the verb “eat.” It is possible that a dish was eaten. But it is more likely
that the pasta salad in the dish was caten.

+ Pasta salad is a salad containing pasta. Buti there are other ways meanings can be formed from pairs of
nouns. For examiple, dog food does not normally contain dogs.

+ The phrase “with the fork” could modify several parts of the sentence. In this case, it modifies the verb
“eat.” But, if the phrase had been “with vegetables,” then the modification structure would be different,
And if the phrase had been “with her friends,” the structure would be different stiil.

Because of the interaction among the interpretations of the constituents of this sentence, some search may
be required to find a complete interpretation for the sentence. But to solve the problem of finding the
interpretation we need to produce only the interpretation itself. No record of the processing by which the
interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not sufficient to report that we have solved the problem
and that the final state is (2, 0). For this kind of problem, what we really must report is not the final state but
the path that we found to that state. Thus a staterment of a solution to this problem must be a sequence of
operations (sometimes called apian) that produces the final state. ‘ .

These two examples, natural language understanding and the water jug problem, illustrate the difference
between problems whose solution is a state of the world and problems whose solution is a path to a state, At
one level, this difference can be ignored and all problems can be formulated as ones in which only a state is
required to be reported. If we do this for problems such as the water jug, then we must redescribe our states so
that each state represents a partial path to a solution rather than just a single state of the world. So this question

+

42 Artificial Intelligence

is not a fortnally significant one. But, just as for the question of ignorability versus recoverability, there is
often a natural (and economical) formulation of a problem in which problem states correspond to situations in
the world, not sequences of operations. In this case, the answer to this question tells us whether it is necessary
to record the path of the problem-solving process as it proceeds.

2.3.6 What s the Role of Knowledge?

Consider again the problem of playing chess. Suppose you had unlimited computing power available. How
much knowledge would be required by a perfect program? The answer to this question is very little—just the
rules for determining legal moves and some simple control mechanism that implements an appropnate search
procedure. Additional knowledge about such things as good strategy and tactics could of course help’
considerably to constrain the search and speed up the execution of the program.

But now consider the problem of scanning daily newspapers to decide which are supporting the Democrats
and which are supporting the Republicans in some upcoming election. Again assuming unlimited computing
power, how much knowledge would be required by a computer trying to solve this problem? This time the
answer is a great deal. It would have to know such things as:

= The names of the candidates in each party.

* The fact that if the major thing you want to see done is have taxes lowered, you are probably supporting
the Republicans.

e The fact that if the major thing you want to see done is improved education for minority students, you
are probably supporting the Democrats.

+ The fact that if you are opposed to big government, you are probably supporting the Republicans.

* Andsoon ..

These two problems, chess and newspaper story understanding, illustrate the difference between problems
for which a lot of knowledge is important only to constrain the search for a solution and those for which a lot
of knowledge is required even to be able to recognize a solution.

2.3.7 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to sclve problems in ways that the majority of people would not

be able to understand. This is fine if the level of the interaction between the computer and its human users is

problem-in solution-out. But increasingly we are building programs that require intermediate interaction with

people, both to provide additional input to the program and to provide additional reassurance to the user,
Consider, for example, the problem of proving mathematical theorems. If

1. All we want is to know that there is a proof
2. The program is capable of finding a proof by itself

then it does not matter what strategy the program takes to find the proof. It can use, for example, the resolution
procedure (see Chapter 5), which can be very efficient but which does not appear natural to people. But if
either of those conditions is violated, it may matter very much how a proof is found. Suppose that we are
trying to prove some new, very difficult theorem, We might demand a proof that follows traditional patterns
so that a mathematician can read the proof and check to make sure it is correct. Alternatively, finding a proof
of the theorem might be sufficiently difficult that the program does not know where to start. At the moment,
people are still better at doing the high-level strategy required for a proof. So the computer might like to be
able to ask for advice. For example, it is often much easier to do a proof in geometry if someone suggests the
right line to draw into the Fig.. To exploit such advice, the computer’s reasoning must be analogous to that of
its human advisor, at least on a few levels. As computers move into areas of great significance to human lives,
such as medical diagnosis, people will be very unwilling to accept the verdict of a program whose reasoning
they cannot follow. Thus we must distinguish between two types of problems:

Problems, Problem Spaces, and Search 43

e Solitary, in which the computer is given a problem description and produces an answer with no
intermediate communication and with no demand for an explanation of the reasoning proce..s

= Conversational, in which there is intermediate communication between a person and the computer, either
to provide additional assistance to the computer or to provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains. As we just showed,
mathematical theorem proving could be regarded as either. But for a particular application, one or the other of
these types of systems wili usually be desired and that decision will be important in the choice of a problem-
solving method.

2.3.8 Problem Classification

When actual problems are examined from the point of view of all of these questions, it becomes apparent that
there are several broad classes into which the problems fall. These classes can each be associated with a
generic control strategy that is appropriate for solving the problem. For example, consider the generic problem
of classification. The task here is to examine an input and then decide which of a set of known classes the
input is an instance of. Most diagnostic tasks, including medical diagnosis as well as diagnosis of faults in
mechanical devices, are examples of classification. Another example of a generic strategy is propose and
refine. Many design and planning problems can be attacked with this strategy.

Depending on the granularity at which we attempt to classify problems and control strategies, we may
come up with different lists of generic tasks and procedures. See Chandrasekaran [1986] and McDermott
[1988] for two approaches to constructing such lists. The important thing to remember here, though, since we
are about to embark on a discussion of a variety of problem-solving methods, is that there is no cne single way
of solving all problems. But neither must each new problem be considered totally ab initio. lnstead, il we
analyze our problems carefully and sort our problem-selving methods by the kinds of problems for which
they are suitable, we will be able to bring to each new problem much of what we have learned from solving
other, similar problems.

2.4 PRODUCTION SYSTEM CHARACTERISTICS

We have just examined a set of characteristics that distinguish various classes of problems. We have also
argued that production systems are a good way to describe the operations that can be performed in a search for
a solution to a problem. Two questions we might reasonably ask at this point are:

1. Can production systems, like problems, be described by a set of characteristics that shed some light on
how they can easily be implemented?

2. If so, what relationships are there between problem types and the types of pro- duction systems best
suited to solving the problems?

The answer to the first question is yes. Consider the following definitions of classes of production systems.
A monotonic production system is a production system in which the application of a rule never prevents the
later application of another rule that could also have been applied at the time the first rule was selected. A
nonmonotonic production system is one in which this is not true. A partially commutative production systein
is a production system with the property that if the application of a particular sequence of rules transforms
state x into state y, then any permutation of those rules that is allowable (i.e., each rule’s preconditions are
satisfied when it is applied) also transforms state x into state y. A commutative production system is a production
system that is both monotonic and partially commutative.?

¥ This comresponds to the definition of a commutative production system given in Nilsson {1980].

44 Artificial Intelligence

ity

The significance of these categories of produciion systerns lies in the relationship between the calegories
and appropriate implementation strategies. But before discussing that relationship, it may be helpful to make
the meanings of the definitions clearer by showing how they relate to specific problems.

Thus we arrive at the second question above, which asked whether there is an interesting relationship
between classes of production systems and classes of problems. For any solvable problem, there exist an
infinite number of production systems that describe ways to find solutions. Some will be more natural or
efficient than others. Any probiem that can be solved by any production system can be solved by a commutative
one (our most restricted class), but the commmutative one may be so unwieldy as to be practically useless. It
may use individual states to represeni entire sequences of applications of rules of a simpler, noncommutative
systemn, So in a formal sense, there is no relationship between kinds of problems and kinds of production
systerns since ail problems can be solved by all kinds of systems. But in a practicai sense. there definitely is
such a relationship between kinds of problems and the kinds of systems that lend thewmselves naturaily to
describing those problems. To see this, let us look at a few examples. Fig. 2.17 shows (he four categories of
production systems produced by the two dichotomies, monotenic versus nonmonotonic and partially
commutative versus

Monotonic Nonmonntonic

Partially Theorem proving Robot navigation
commutative

Not partindly Chemical synthesis [Bridge
| commutative

¥ig. 2.17 The Four Categories of Production Systems

sonpartially commuative, ajong with some problems that can naturally be solved by each type of system.
The upper left corner represents commutative aystems.

Partialty commutative, monotonic production systeins are useful for solving ignurable prablems. This is
nat sarprising since the definitions of the two are essentially the same. But recall that ignorable probleins are
those for which a narural formulation leads to solution steps that can be 1gnored. Such a natural! formuiation
wiil then be a partially commutative, monotonic system. Problems that involve creating new things rather
than changing oid ones are renerally ignorable. Theorem proving, as we have described it, is one example of
such a creaiive process. Making deductions from some known facts is a similar creative process. Both of
thuese processes can easily be implemented with a partially commutative. monotonic system.

Partially commutative, monotonic production systems are important from an impleinentation standpoint
because they can be impiemented without the ability to backtrack to previous states when it is discovered that
an incorrect path has been foliowed. Although it is otten useful to inplement such systems with backiracking
in order to guarantee a systemat. scarch, the actual database representing the probiem state need not be
restored. This often results in a copsiderable increase in efficiency, particularly because, since the database
will never have to be restored. it is not necessary to keep track of where in the search process every change
was made. :

We have now discussed partially commuiative production systems that are also monotonic. They are good
for prokioms where things do not change; new things get created. Nonmonotonic, partially comrnutative
systems, o the other hand, are useful for problems in which changes occur but can be reversed and in which
order of operations is not critical. This is usually the case in physical manipulation problems, such as robot
nivigation on a flat plane. Supposc that a robot has the following operators: go north (N}, go cast (E), go south
53, and 2o west (W), To reach its goal. it does not matter whether the robot execites N-N-E or N-E-N.

Probiems, Problem Spaces, and Search 45

Depending on how the operators are chosen, the 8-Puzzle and the blocks world problem can also b coridered
partially. commutative.

Both types of partially commutative production systems are significant from an implementation point of
view because they tend to lead to many duplications of individual states during the search process. This is
discussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems in which irreversible
changes occur. For example, consider the problem of determining a process to produce a desired chemical
compound. The operators available include such things as “Add chemical « w the pol or “Change the
temperature to r degrees.” These operators may cause irreversible changes to the potion being brewed. The
order in which they are performed can be very important in determining the final output. It is possible that if
x 15 added to y, a stable compound will be formed, so later addition of z will have no effect; if z is added to ,
however, a different stable compound may be formed, so later addition of x will have no effect. Nonpartially
commutative production systems are less likely to produce the same node many times in the search process.
When dealing with ones that describe irreversible processes, it is particularly important to make correct
decisions the first time, although if the universe is predictable, planning can be used to make that less important.

2.5 ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Every search process can be viewed as a traversal of a tree structure in which each node represents a problem
state and each arc represents a relationship between the states represented by the nodes it connects. For
example, Fig. 2.18 shows part of a search tree for a water jug problem. The arcs have not been labeled in the
Fig., but they correspond to particular water-pouring operations. The search process must find a path or paths
through the tree that connect an initial state with one or more final states. The tree that must be searched could,
in principle, be constructed in its entirety from the rules that define allowable moves in the problem space.
But, in practice, most of it never is. It is too large and most
of it need never be explored. Instead of first building the
tree explicitly and then searching it, most search programs
represent the tree implicit!v in the rules and generate
explicitly only those parts that they decide to explore.
Throughout our discussion of search methods, it is
important to keep in mind this distinction between implicit
search trees and the explicit partial search trees that are
actually constructed by the search program.

In the next chapter, we present a family of generai-purpose search techniques. But before doing so we need
to mention some important issues that arise in all of them:

[(13) (0.0)

Fig. 2,18 A Search Tree for the Water Jug Problem

= The direction in which to conduct the search (forward versus hackward reasoning). We can search forward
through the state space from the start state to a goal state, or we can search backward from the goal.

* How toselect applicable rules (rmuarching). Production systems typically spend most of their time looking
for rules to apply, so it is critical to have efficient procedures for matching rules against states.

*+ How to represent cach node of the search process (the knowledge representation problem and the
Jrame problem). For problems like chess, a node can be fully represented by a siniple array. In more
complex problem solving, however, it is inefficient and/or impossible to represent all of the facts in the
world and to determine all of the side effects an action may have.

We discuss the knowledge representation and frame problems further in Chapter 4. We investigate matching
and forward versus backward reasoning when we return to production systems in Chapter 0.

46) Artificial Intelligence

One other issue we should consider at this point is that of search trees versus search graphs. As mentioned
above, we can think of production rules as generating nodes in a search tree. Each node can be expanded in
turn, generating a set of successors. This process continues until a node representing a solution is found.
Implementing such a procedure requires little bookkeeping. However, this process often results in the same
node being generated as part of several paths and so being processed more than once. This happens because
the search space may really be an arbitrary directed graph rather than a tree.

For example, in the tree shown in Fig. 2.18, the node (4,3), representing 4-gallons of water in one jug and
3 gallons in the other, can be generated either by first filling the 4-gallon jug and then the 3-gallon one or by
filling them in the opposite order. Since the order does not matter, continuing to process both these nodes
would be redundant. This example also illustrates another problem that often arises when the search process
operates as a tree walk. On the third level, the node (0, 0) appears. (In fact, it appears twice.) But this is the

same as the top node of the tree, which has already been expanded. ~[0.0) |«
Those two paths have not gotten Us anywhere. So we would like
to eliminate them and continue only along the other branches.
The waste of effort that arises when the same node is generated {4.0) m?i‘
more than once can be avoided at the price of additional
bookkeeping. Instead of traversing a search tree, we lraverse a e (4.3) 3.0)

directed graph. This graph differs from a tree in that several paths
may come together at a node. The graph corresponding to the
tree of Fig. 2.18 is shown in Fig. 2.19,

Any tree search procedure that keeps track of all the nodes that have been generated so far can be converted
to a graph search procedure by modifying the action performed each time a node is generated. Notice that of
the two systematic search procedures we have discussed so far, this requirement that nodes be kept track of is
met by breadth-first search but not by depth-first search. But, of course, depth-first search conid be modified,
at the expense of additional storage, to retain in memory nodes that have been expanded and then backed-up
over. Since all nodes are saved in the search graph, we must use the following algorithm instead of simply
adding a new node to the graph.

Fig. 2.19 A Search Graph for the Water
fug Problem

Algorithm: Check Duplicate Nodes

1. Examine the set of nodes that have been created so far to see if the new node already exists.
2. 1f it does not-simply add it to the graph just as for a tree.
3. If it does already exist, then do the following:

(a) Set the node that i1s being expanded to point to the already existing-node corresponding to its
successor rather than to the new one. The new one can simply be thrown away.

{b) If you are keeping track of the best (shortest or otherwise least-cost) path to each node, then check
to see if the new path is better or worse than the old one, If worse, do nothing. If better, record the
new path as the correct path to use to get to the node and propagate the corresponding change in
cost down through successor nodes as necessary,

One problem that may arise here is that cycles may be introduced into the search graph. A cycle is a path
through the graph in which a given node appears more than once. For example, the graph of Fig. 2.19 contains
two cycles of length two. One includes the nodes (0, 0) and (4, 0); the other includes the nodes (0, 0) and (0,
3). Whenever there is a cycle, there can be paths of arbitrary length. Thus it may become more difficult to
show that a graph traversal algorithm is guaranteed to terminate.

Treating the search process as a graph search rather than as a tree search reduces the amount of effort that
is spent exploring essentially the same path several times. But it requires additional effort each time a node is

Problems, Problem Spaces, and Search 47

generated to see if it has been generated before. Whether this effort is justified depends on the particular
problem: If it is very likely that the same node will be generated in several different ways, then it is more
worthwhile to use a graph procedure than if such duplication will happen only rarely.

Graph search procedures are especially useful for dealing with partially commutative production systems
in which a given set of operations will produce the same result regardiess of the order in which the operations
are applied. A systematic search procedure will try many of the permutations of these operators and so will
generate the same node many times. This is exactly what happened in the water jug example shown above.,

2.6 ADDITIONAL PROBLEMS

Several specific problems have been discussed throughout this chapter, Other problems have not yet been
mentioned, but are common throughout the Al literature. Some have become such classics that no Al book
couid be complete without them, so we present them in this section. A useful exercise, at this point. would be
to evaluate each of them in light of the seven problein characteristics we have just discussed.

A brief justification is perhaps required before this parade of toy problems is presented. Artificial intelligence
is not merely a science of toy problems and microworlds (such as the blocks world). Many of the techniques
that have been developed for these problems have become the core of systems that solve very nontoy problems.
So think about these problems not as defining the scope of Al but rather as providing a core from which much
more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of a river, They have agreed that they
would all like to get to the other side. But the missionaries are not sure what else the cannibals have agreed to.
So the missionaries want to manage the trip across the river in such 2 way that the number of missionaries on
either side of the river is never less than the number of cannibals who are on the same side. The only boat
available holds only two people at a time. How can everyone get across the river without the missionaries
risking being eaten?

The Tower of Hanoi
Somewhere near Hanoi there is a monastery whose monks devote their lives to a very important task. In their
courtyard are three tal) posts. On these posts is a set of sixty-four disks, each with a hole in the center and each
of a different radius. When the monastery was established, all of the disks were on one of the posts, each disk
resting on the one just larger than it. The monks’ task is to move all of the disks to one of the other pegs. Only
one disk may be moved at a time, and all the other disks must be on one of the pegs. In addition, at no time
during the process may a disk be placed on top of a smailer disk. The third peg can, of course, be used as a
temporary resting place for the disks. What is the quickest way for the monks to accomplish their mission?
Even the best solution to this problem will take the monks a very long time. This is fortunate, since legend
has it that the world will end when they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from the ceiling. The
monkey, unfortunately, cannot reach the bananas. However, in the room there are also a chair and a stick. The
ceiling is just the right height so that a monkey standing on a chair could knock the bananas down with the
stick. The monkey knows how to move around, carry other things around, reach for the bananas, and wave a
stick in the air. What is the best sequence of actions for the monkey to take to acquire lunch?

48 Artificial Intelligence

SEND DONALD CROSS
+MORE +GERALD +ROADS
MONEY ROBERT DANGER

Fig. 2.20 Some Cryptarithmetic Problems

Cryptarithmetic
Consider an arithmetic problem represented in letters, as shown iff the examples in Fig. 2.20. Assign a decimal
digit to each of the letters in such a way that the answer to the problem is correct. If the same letter occurs
more than once, it must be assigned the same digit each time, No two different letters may be assigned the
same digit.

People’s strategies for solving cryptarithmetic problems have been, studied intensively by Newell and
Simon [1972].

sEe e - . se R = : ~ . P R L SER Lt v
. - N - Cponend $EOBOREEN PG D00 ARBag. UIREOLN Apepelic FLEFE rma sge THITe0 ulimer WEERBIERRAnEaf a g Y VAP0 0aal THY Sy pr ol i BRI RE

In this chapter, we bave discussed the first two steps that must be taken toward the design of a program to
solve a particular problem:

1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).
2. Analyze the problem to determine where it falls with respect to seven important issues.

The last two steps for developing a program to solve that problem are, of course:
3. Identify and represent the knowledge required by the task,
4. Choose one or more techniques for problem solving, and apply those techniques to the problem.

Several general-purpose, problem-solving techniques are presented in the next chapter, and several of
thern have already been alluded to in the discussion of the problem characteristics in this chapter. The
relationships between problem characteristics and specific technigues should become even clearer as we go
on. Then, in Part 11, we discuss the issue of how domain knowledge is to be represented.

EXERCISES
: - - B TR pwaTpEetITIY PeErdpas R P Ee e IREERAST S ow s REITES v pe ek iR RS AR banl POTEPRRG 0
1. In this chapter, the following problems were mentioned:
¢ Chess : * Water jug
* Z-puzzle + Traveling salesman
+ Missionaries and cannibals » Tower of Hanoi
e Monkey and bananas s Cryptarithmetic
s Bridge

Analyze each of them with respect to the seven problem characteristics discussed in Section 2.3.

2. Before we can solve a problem using state space search, we must define an appropriate state space. For
each of the problems mentioned above for which it was not done in the text, find a good state space
representation.)

3. Describe how the branch-and-bound technique could be used to find the shortest solution to a water
jug problem.

Problems, Problem Spaces, and Search 49

. For each of the following types of problems, try to describe a good heuristic function:

(a) Blocks world

(b) Theorem proving

{c) Missionaries and cannibals

. Give an exampie of a problem for which breadth-first search would work better than depth-first search.
Give an example of a problem for which depth-first search would work better than breadth-first search.
. Write an algorithm to perform breadth-first search of a problem graph. Make sure your algorithm
works properly when a single node is generated at more than one level in the graph.

. Try to construct an algorithm for solving blocks world problems, such as the one in Fig. 2.10. Do not
cheat by locking ahead to Chapter 13,

CHAPTER

3

HEURISTIC SEARCH TECHNIQUES

Failure is the opportunity to begin again nore intelligently.

-—Moshe Arens
(1925-), Israeli politician

In the last chapter, we saw that many of the problems that fall within the purview of artificial intelligence are
too complex to be solved by direct techniques; rather they must be attacked by appropriate search methods
armed with whatever direct techniques are available to guide the search. In this chapter, a framework for
describing search methods is provided and several general-purpose search techniques are discussed. These
methods are all varieties of heuristic search. They can be described independently of any particular task or
problem domain. But when applied to particular problems, their efficacy is highly dependent on the way they
exploit domain-specific knowledge since in and of themselves they are unable to overcome the combinatorial
explosion to which search processes are so vulnerable. For this reason, these techniques are often called weak
methods. Although a realization of the limited effectiveness of these weak methods to solve hard problems by
themselves has been an important result that emerged from the last three decades of Al research, these techniques
continue to provide the framework inte which domain-specific knowledge can be placed, either by hand or as
a result of automatic learning. Thus they continue to form the core of most Al systems. We have already
discussed two very basic search strategies:

¢ Depth-first search * Breadth-first search
In the rest of this chapter, we present some others:
¢ (enerate-and-test + Hill climbing » Besi-first search
e Problem reduction ¢ (Constraint satisfaction e Means-ends analysis

3.1 GENERATE-AND-TEST
The generate-and-lest strategy is the simplest of all the approaches we discuss. It consists of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this means generating a particular point in the problem
space. For others, it means generating a path from a start state,

Heuristic Search Techniques 51

2. Test to see if this is actually a solution by comparing the chosen point or the endpoint of the chosen
path to the set of acceptable goal states.
3. If a solution has been found, quit. Otherwise, return to step 1.

If the generation of possible solutions is done systematically, then this procedure will find a solution
eventually, if one exists, Unfortunately, if the problem space is very large, “eventually” may be a very long time.

The generate-and-test algorithm is a depth-first search procedure since complete solutions must be generated
before they can be tested. Tn its most systematic form, it is simply an exhaustive search of the problem space.
Generate-and-test can, of course, also operate by generating solutions randomly, but then there is no guarantee
that a solution will ever be found. In this form, it is also known as the British Museum algorithm, a reference
to a method for finding an object in the British Museum by wandering randoinly.! Between these two extremes
fies a practical middle ground in which the search process proceeds systematically, but some paths are not
considered because they seem unlikely to lead 1o a solution. This evaluation is performed by a heuristic
function, as described in Section 2.2.2.

The most straightforward way to implement systematic generate-and-test is as a depth-first search tree
with backtracking. If some intermediate states are likely to appear often in the tree, however, it may be better
to modify that procedure, as described above, to traverse a graph rather than a tree.

For simple problems, exhaustive generate-and-test is often a reasonable technique. For example, consider
the puzzie that consists of four six-sided cubes, with each side of each cube painted one of four colors. A
solution to the puzzle consists of an arrangement of the cuhes in a row such that on all four sides of the row
one block face of each color is showing. This problem can be solved hy a person {who is a much slower
processor for this sort of thing than even a very cheap computer) in several minutes by systematically and
exhaustively trying all possibilities. It can be solved even more quickly using a heuristic generate-and-test
procedure. A quick glance at the four blocks reveals that there are more, say, red faces than there are of other
colors. Thus when placing a block with several red faces, it would be a good idea to use as few of them as
possible as outside faces. As many of them as possible should be placed to abut the next block. Using this
heuristic, many configurations need never be explored and a solution can be found quite quickly.

Unfortunately, for problems much harder than this, even heuristic generate-and-test, all by itself, is not a
very effective technique. But when combined with other techniques to restrict the space in which to search
even further, the technique can be very effective.

For example, one early example of a successful Al program is DENDRAL. [Lindsay et al., 1980], which
infers the structure of organic compounds using mass spectrogram and nuclear magunetic resonance (NMR)
data. it uses a strategy called plan-generare-test in which a planning process that uses constraini-satisfaction
techniques (see Section 3.5) creates lists of recommended and contraindicated substructures. The generate-
and-test procedure then uses those lists so that it can explore only a fairly limited set of structures. Constrained
in this way, the generate-and-test procedure has proved highly effective.

This combination of planning, using one problem-solving method (in this case,. constraint satisfaction)
with the use of the plan by another problem-solving method, generate-and-test, is an excellent example of the
way techniques can be combined to overcome the limitations that each possesses individually. A major weakness
of planning is that it often produces somewhat inaccurate solutions since there is no feedback from the world.
But by using it only to produce pieces of solutions that will then be exploited in the generate-and-test process,
the lack of detailed accuracy becomes unimportant. And, at the same time, the combinatorial probiems that
arise in simple generate-and-test are avoided by judicious reference to the plans.

'Or, as another story goes, if a sufficient number of monkeys were placed in front of a set of typewriters and left alone
long encugh, then they would eventually produce all of the works of Shakespeare.

52 Artificial Intelligence

3.2 HILL CLIMBING

Hill climbing is a variant of gencrate-and-test in which feedback from the test procedure is used to help the
generator decide which direction to move in the search space. In a pure generate-and-test procedure, the test
function responds with only a yes or no. But if the test function is augmented with a heuristic function® that
provides an estimate of how close a given state is to a goal state, the generate procedure can exploit it as
shown in the procedure below. This is particularly nice because often the computation of the heuristic function
can be done at almost no cost at the same time that the test for a solution is being performed. Hill climbing is
often used when a good heuristic function is available for evaluating states but when no other useful knowledge
i available. For example, suppose you are in an unfamiliar city without a map and you want to get downtown.
You simply aim for the tal) buildings. The heuristic function is just distance between the current location and
the location of the tall buildings and the desirable states are those in which this distance is minimized.

Recall from Section 2.3.4 that one way to characterize problems is according to their answer to the question,
“Ts a good solution absolute or relative?” Absolute solutions exist whenever it is possible to recognize a goal
state just by examining it. Getting downtown is an example of such a problem. For these problems, hill
climbing can terminate whenever a goal state is reached. Only relative solutions exist, however, for maximization
(or minimization) problems, such as the traveling salesman problem. In these problems, there is no a priori
goal state. For problems of this sort, it makes sense to terminate hill climibing when there is no reasonable
alternative state © move to.

3.2.1 Simple Hill Climbing

The simplest way to implement hill climbing is as follows.

Algorithm: Simple Hill Climbing
1. Evaluate the initial state. If it is also a goal state. then return it and quit. Otherwise, continue with the
initial state as the current state.
2. Loop until a solution is found or until there are no new operators left to be applied in the current state:
(a) Select an operator that has not yet been applied to the current state and apply it to produce a new state.
{b) Evaluate the new state.
(i) If it is a goal state, then return it and quit.
(1) If it is not a goal state but it is better than the current state, then make it the current state.
(iii) If it is not better than the current state, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and-test is the use of an
evaluation function as a way to inject task-specific knowledge into the control process. It is the use of such
knowledge that makes this and the other inethods discussed in the rest of this chapter Aeuristic search methods,
and it is that same knowledge that gives these miethods their power to solve some otherwise intractable problems.

Notice that in this algorithm, we have asked the relatively vague question, “‘Is one state betfer than another?”
For the algorithm to work, a precise definition of berter must be provided. In some cases, it means a higher
value of the heuristic function. In others, it means a lower value. It does not matter which, as long as a
particular hill-climbing program is consistent in its interpretation.

To see how hill climbing works, let's return to the puzzle of the four colored blocks. To solve the problem,
we first need to define a heuristic function that describes how close a particular configuration is to being a
solution. One such function is simply the sum of the number of different colors on each of the four sides. A
solution to the puzzle will have a value of 16. Next we need to define a set of rules that describe ways of
transforming one configuration into another. Actually, one rule will suffice. It says simply pick a-block and

2 What we are calling the heuristic function is sometimes also called the objective function, particularly in the literature of
mathematical optimization.

Heuristic Search Techniques 53

rotate it 90 degrees in any direction. Having provided these definitions, the next step is to generate a starting
configuration. This can either be done at random or with the aid of the heuristic function described in the last
section. Now hill climbing can begin. We generate a new state by selecting a bloek and rotating it. If the
resulting state is better, then we keep it. If not, we return to the previous state and try a different perturbation,

3.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers ail the moves from the current state and selects the best
one as the next state. This method is called steepest-ascent hill climbing or gradient search. Notice that this
contrasts with the basic method in which the first state that is better than the current state is selected. The
algorithm works as follows.

Algorithm: Steepest-Ascent Hill Climbing

1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the
initial state as the current state.
2. Loop until a solution is found or until a complete iteration produces no change to current state:
{a) Let SUCC be a state such that any possible successor of the current state will be better than SUCC.
(b} For each operator that applies to the current state do:
(i} Apply the operator and generate a new state.
(ii) Evaluaie the new state. If it is a goal state, then return it and quit. If not, compare it to SUCC.
If it is better, then set SUCC to this state. If it is not better, leave SUCC alone.
(c) If the SU/CC is better than current state, then set current state to SUCC.

To apply steepest-ascent hill climbing to the colored blocks problem, we must consider all perturbations of
the initial state and choose the best. For this problem, this is difficult since there are so many possible moves.
There is a trade-off between the time required to select a move (usually longer for steepest-ascent hill climbing)
and the number of moves required to get to a solution (usually longer for basic hill climbin+) that must be
considered when deciding which method will work better for a particular problem.

Both basic and steepest-ascent hill climbing may fail to find a solution. Either algorithm may terminate not
by finding a goal state but by getting to a state from which no better states can be generated. This will happen
if the program has reached either a local maximum, a plateau, or a ridge.

A local maximum is a state that is better than all its neighbors but is not better than some other states farther away.
At a local maximum, all moves appear to make things worse. Local maxima are particularly frustrating because
they often occur almost within sight of a solution. In this case, they are called foothills.

A plateau is a flat area of the search space in which a whole set of neighboring states have the same value. On a
platean, it is not possible to determine the best direction in which to move by making tocal comparisons,

A ridge is a special kind of local maximum. It is an area of the search space that is higher than surrounding areas and
that itself has a slope (which one would like to climb). But the orientation of the high region, compared to the set of
availahle moves and the directions in which they move, makes it impossible to traverse a ridge By single moves,

There are some ways of dealing with these problems, although these methods are by no means guaranteed:

¢ Backtrack to some earlier node and try going in a different direction. This is particularly reasonable if at
that node there was another direction that looked as promising or almost as promising as the one that was
chosen earlier. To implement this strategy, maintain a list of paths almost taken and go back to one of them
if the path that was taken leads to a dead end. This is a fairly good way of dealing with local maxima.

o Make a big jump in some direction to try to get to a new section of the search space. This is a particularly
good way of dealing with plateaus. If the only rules available describe single small steps, apply them
several times in the same direction.

s Apply two or more rules before doing the test. This corresponds to moving in several directions at
once. This is a particularly good strategy for dealing with ridges.

54 Artificial Intelligence

Even with these first-aid measures, hill climbing is not always very effective. It is particularly unsuited to
problems where the value of the heuristic function drops off suddenly as you move away from a sotution. This
1s often the case whenever any sort of threshold effect is present. Hill climbing is a local method, by which we
mean that it decides what to do next by looking only at the “immediate” consequences of its choice rather than
by exhaustively exploring all the consequences. It shares with other local methods,

such as the nearest neighbor heuristic described in Section 2.2.2, the advantage A [H]
of being less combinatorially explosive than comparable global methods. But it —g— %
also shares with other local methods a lack of a guarantee that it will be effective. ﬂ E|
Although it is true that the hill-climbing procedure itself looks only one move E D
ahead and not any farther, that examination may in fact exploit an arbitrary amount E C]
of global information if that information is encoded in the heuristic function. 1C 1B
Consider the blocks world problem shown in Fig. 3.1. Assume the same operators B A
(i.e., pick up one block and put it on the table; pick up one block and put it on ~ 1fitiatstate goal state
another one) that were used in Section 2.3.1. Suppose we use the following ~ Fig 3.1 /; H:;-Cﬁmbing
roblem

heuristic function:

Local: Add one point for every block that is resting on the thing it is supposed to be resting on. Suhtract one point
{or every block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial state has a score of 4 (since it gets one point
added for blocks C, D, E, F, G, and H and one point subtracted for blocks A and B}). There is only one move
from the initial state, namely to move block A to the table. That produces a state with a score of 6 (since now
A’s position causes a point to be added rather than subtracted). The hill-climbing procedure will accept that
move. From the new state, there are three possible moves, leading

- A
to the three states shown in Fig, 3.2. These states have the scores: g
(a) 4, (b) 4, and (c) 4. Hill climbing will halt because all these G|
states have lower scores than the current state. The process has E
reached a local maximum that is not the global maximum. The 1E]| E]
problem is that by purely local examination of support structures, 1D/ D!
the current state appears to be better than any of its successors € €
)) B [Al[H][B
because more blocks rest on the correct objects. To solve this @ ©
a c

problem, it is necessary to disassembie a good local structure (the
stack B through H) because it is in the wrong global context. Fig. 3.2 Three Possible Moves

We could blame hili climbing itself for this failure to look far enough ahead to find a solution. But we could
also blame the heuristic function and try to modify it. Suppose we try the following heuristic function in place
of the first one:

Global: For each block that has the correct support structure (i.e.. the complete structure underneath it is exactly as
it should be), add one point for every block in the support structure, For each block that has an incorrect support
structure, subtract one point for every block in the existing support structure.

Using this function, the goal state has the score 28 (! for B, 2 for C, etc.). The initial state has the score —
28. Moving A to the table yields a state with a score of —21 since A no longer has seven wrong blocks under
it. The three states that can be produced next now have the following scores: (a) -28, (b) ~16, and (c) -15.
This time, steepest-ascent hill ciimbing will choose move (¢), which is the correct one. This new heuristic
function captures the two key aspects of this problem: incorrect structures are bad and should be taken apart;

Heuristic Search Techniques 55

and correct structures are good and should be built up. As a result, the same hill climbing procedure that failed
with the eariier heuristic function now works perfectly.

Unfortunately, it is not always possible to construct such a perfect heuristic function. For example, consider
again the problem of driving downtown. The perfect heunistic function would need to have knowledge about
one-way and dead-end streets, which, in the case of a strange city, is not always available. And even if perfect
knowledge is, in principle, available, it may not be computationally tractable 10 use. As an extreme example,
imagine a heuristic function that computes a value for a state by invoking its own problem-solving procedure
to look ahead from the state it is given to find a solution. It then knows the exact cost of finding that solution
and can return that cost as its value. A heuristic function that does this convests the local hill-climbing procedure
into a global methoed by embedding a global method within it. But now the computational advantages of a
local method have been lost. Thus it is still true that hitl climbing can be very inefficient in a large, rough
problem space. But it is often useful when combined with other methods that get it started in the right general
neighborhood.

3.2.3 Simulated Annealing

Simulated annealing is 4 vadation of hill climbing in which, at the beginning of the process, some downhill
moves may be made. The idea is to do enough exploration of the whole space early on so that the final
solution is relatively insensitive to the starting state. This should lower the chances of getting caught at a local
maximum, a plateau, or a ridge.

In order to be compatible with standard usage in discussions of simulated annealing, we make two notational
changes for the duration of this section. We use the term objective function in place of the term heuristic function.

And we attempt to minimize rather than maximize the valvue of the objective function. Thus we actvally
descnbe a process of valley descending rather than hill climbing.

Simulated annealing [Kirkpatrick er «l., 1983] as a computational process is patterned after the physical
process of annealing, in which physical substances such as metals are melted (i.e., raised to high energy
levels) and then gradually cooled until some solid state is reached. The goal of this process is to produce a
minimal-energy final state. Thus this process is one of valley descending in which the objective function is
the energy level. Physical substances usually move from higher energy configurations to lower ones, so the
valley descending occurs naturally. But there is some probability that a transition to a higher energy state wil
occur. This probability is given by the function

p = e AEAT

where A £ is the positive change in the energy level T'is the temperature, and & is Boltzmann’s constant. Thus,
in the physical valley descending that occurs during annealing, the probability of a large uphill move is lower
than the probability of a small one. Also, the probability that an uphill move will be made decreases as the
temperature decreases. Thus such moves are more likely during the beginning of the process when the
temperature is high. and they become less likely at the end as the temperature becomes lower. One way to
characterize this process is that downhill moves are aliowed anytime. Large upward moves may occur early
on, but as the process progresses. only relatively small upward moves are allowed until finally the process
converges to a local minimum configuration.

The rate at which the system is cooled is called the annealing schedule. Physical annealing processes are
very sensitive to the annealing schedule. If cooling occurs too rapidly, stable regions of high energy will form.
In other words, a local but not global minimum is reached. If. however, a slower schedule is used, a uniform
crystalline structure, which corresponds to a global minimum, is more likely to develop. But, if the schedule
is too slow, time is wasted. At high temperatures, where essentially random motion is allowed, nothing useful
happens. At low temperatures a lot of time may be wasted after the final structure has already been formed.
The optimal annealing schedule for each particular annealing problem must usually be discovered empiricalty.

56 Artificial Intelligence

These properties of physical annealing can be used to define an analogous process of simulated annealing,
which can be used (although not always effectively) whenever simple hill climbing can be used. In this
analogous process, AF is generalized so that it represents not specifically the change in energy but more
generally, the change in the value of the objective function, whatever it is. The anatogy for kT is slightly less
straightforward. In the physical process, temperature is a well-defined notion, measured in standard units.
The variable k describes the correspondence between the units of temperature and the units of energy. Since,
in the analogous process, the units for both E and T are anificial, it makes sense to incorporate & into T,
selecting values for T that produce desirable behavior on the part of the algorithm. Thus we use the revised
probability formula

p' = ¢ AEIT

But we still need to choose a scheduie of values for T (which we still call temperature). We discuss this
briefly below after we present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different from the simple hill-climbing procedure.
The three differences are:

¢ The annealing schedule must be maintained.

* Moves to worse states may be accepted.

¢ ltisa good idea to maintain, in addition to the current state, the best state found so far. Then, if the final
state is worse than that earlier state (because of bad luck in accepting moves to worse states), the earlier
state is still available.

Algorithm: Simulated Annealing
1. Evaluate the initial state. If it is also a goal state, then return it and quii. Otherwise, continue with the
initial state as the current state.
2. Initialize BEST-SO-FAR to the current state.
. Initiatize 7 according to the annealing schedule.
4. Loop unti] a solution is found or untii there are no new operators left to be applied in the current state.
{a) Select an operator that has not yet been applied to the current state and apply it to produce a new
state.
{b) Evaluate the new state. Compute
AF = (value of current) — (value of new state)

s [f the new state is a goal state, then return it and quit.

« Ifitis not a goal state but is better than the current state, then make it the current state. Also set
BEST-SO-FAR 1o this new state.

e If it is not better than the current state, then make it the current state with probability p’ as
defined above. This step is usually implemented by invoking a random number generator to
produce a number in the range [0,1]. If that number is less than p’, then the move is accepted.
Otherwise, do nothing.

(c) Revise T as necessary according to the annealing schedule.
5. Return BEST-SO-FAR, as the answer.

To implement this revised algorithm, it is necessary to select an annealing schedule, which has three
components. The first is the initiai value to be used for temperature. The second is the criteria that will be used to
decide when the temperature of the system should be reduced. The third is the amount by which the temperature
will be reduced each time it is changed. There may also be a fourth component of the schedule, namely, when to
quit. Simulated annealing is often used to solve problems in which the number of moves from a given state is very

(¥

Heuristic Search Techniques 57

large (such as the number of permutations that can be made to a proposed traveling salesman route). For such
problems, tt may not make sense to try all possible moves. Instead, it may be useful to Cxpioit. soine criterion
involving the number of moves that have been tried since an improverment was found.

Experiments that have been done with simulated annealing on a variely of problems suggest that the best
way to select an annecaling schedule is by trying several and observing the effect on both the quality of the
solution that is found and the rate at which the process converges. To begin to get a feel for how to come up
with a schedule, the first thing to notice is that as T approaches zero, the probability of accepling a move to a
worse state goes to zero and simulated annealing becomes identical to simple hill climbing. The second thing
to notice is that what really matters in computing the probability of accepting a move is the ratio AE/T. Thus
it is important that vaiues of T be scaled so that this ratio is meaningful. For example, T could be initialized to
a value such that, for an average AE, p” would be 0.5.

Chapter 18 returns to simulated annealing in the context of neural networks.

3.3 BEST-FIRST SEARCH

Until now, we have really only discussed two systematic control strategies, breadth-first search and depth-
first search (of several varieties). In this section, we discuss a new method, best-first search, which is a way of
combining the advantages of both depth-first and breadth-first search into a single method.

3.3.1 OR Graphs

Depth-first search is good because it allows a solution to be found without all competing branches having to
be expanded. Breadth-first search is good because it does not get trapped on dead-end paths. One way of
combining the two is to follow a single path at a time, but switch paths whenever some competing path looks
more promising than the current one does.

At each step of the best-first search process, we select the most promising of the nodes we have generated
s0 far. This is done by applying an appropriate heuristic function to each of them. We then expand the chosen
node by using the rules to generate its successors. If one of them is a solution, we can quit. If not, all those new
nodes are added to the set of nodes generated so far. Again the most promising node is selected and the
process continues. Usually what happens is that a bit of depth-first searching occurs as the most promising
branch is explored. But eventually, if a solution is not found. that branch will start to look less promising than
one of the top-level branches that had been ignored. At that peint, the now more promising, previously
ignored branch will be explored. But the old branch is not forgotten.. Its last node remains in the set of
generated but unexpanded nodes. The search can return to it whenever all the others get bad enough that it is
again the most promising path.

Figure 3.3 shows the beginning of a best-first scarch procedure. Initially, there is only one node, so it will
be expanded. Doing so generates three new nodes. The heuristic function, which, in this example. is an
estimate of the cost of getting to a solution from a given node, is applied to each of these new nodes. Since
node D is the most promising. it is expunded next, producing two successor nodes, E and F. But then the
heuristic function is applied to them. Now another path, that going through node B, looks more promising, so
itis pursued, generating nodes G and H. But again when these new nodes are evaluated they look less promising
than another path, so attention is returned to the path through D to E. E is then expanded, yielding nodes [and
J. At the next step, J will be expanded, since it is the most promising. This process can continue undl a
solution is found,

Notice that this procedure is very similar to the procedure for steepest-ascent hill ¢limbing, with two
exceptions. In hill climbing, one move is selected and all the others are rejected, never.to be reconsidered.
This produces the straightline behavior that is characteristic of hill climbing. In best-first search, one move is
selected, but the others are kept around so that they can be revisited later if the selected path becomes less

58 Artificial Intelligence

tep 1 Step 2 Step 3

e
[El@ [6)6) Bl lj(s) i_LI(o} 5
@ [F]®

L]

B3t

Fig. 3.3 A Best-First Search

promising.® Further, the best available state is selected in best-first search, even if that state has a value that is
fower than the value of the state that was just explored. This contrasts with hill climbing, which will stop if
there are no successor states with better values than the current state.

Although the exarnple shown above illustrates a best-first search of a tree, it is sometimes important to
search a graph instead so that duplicate paths will not be pursued. An algorithim to do this will operate by
searching a directed graph in which each node represents a point in the problem space. Each node will contain,
in addition lo a description of the problem state it represents, an indication of how promising it is, a parent link
that points back to the best node from which it came, and a list of the nodes that were generated from ii. The
parent link will make it possible to recover the path to the goal once the goal is found. The list of successors
will make it possible, if a better path is found to an already existing node, to propagate the improvemeni down
to its successors. We will call a graph of this sort an OR graph, since each of its branches represents an
wlternative problem-solving path.

To implement such a graph-search procedure, we will need to use two lists of nodes:

¢ (PEN — nodes that have been generated and have had the heuristic function applied to them but which
have not yet been examined (i.e., had their successors generated). OPEN is actually a priority queue in
which the elements with the highest priority are those with the most promising value of the heuristic
function. Standard techniques for manipulating priority queunes can be used to manipulate the list.

o CLOSED — nodes that have already been examined. We need to keep these nodes in memory if we
want to search a graph rather than a tree, since whenever a new node is generated, we need to check
whether it has been generated before.

We will also need a heuristic function that estimates the merits of each node we generate. This wiil enable the
algorithm to search more promising paths first. Call this function f’(to indicate that it is an approximation to a

¥In a variation of best-first search, called beam search, only the n most promising states are kept for future consideration.
This procedure is more efficient with respect to memory but introduces the possibility of missing a solution altogether by
pruning the search tree too early.

Heuristic Search Techniques 59

function/that gives the true evaluation of the node). For many applications, it is convenient to define this function
as the sum of two components that we call g and #". The function g is a measure of the cost of getting from the
initial state to the current node. Note that g is not an estimate of anything; it is known to be the exact sum of the
costs of applying each of the rules that were applied along the best path to the node. The function &’ is an estimate
of the additional cost of getting from the current node to a goal state. This is the place where knowledge about the
problem domain is exploited. The combined function £, then. represents an estimate of the cost of getting from
the initial state 10 a goal state along the path that generated the current node. If more than one path generated the
node, then the algorithm will record the best one. Note that because g and £” must be added, it is important thar A’
be a measure of the cost of getting from the node to a solution (i.e., good nodes get low values; bad nodes get hich
values) rather than a measure of the goodness of a node (i.e., good nodes get high vatues). But thar is easy 0
arrange with judicious placement of minus signs. I is also important that g be nonnegative. If this is not true. then
paths that traverse cycles in the graph will appear to get better as they get longer.

The actual operation of the algorithm is very simple. It proceeds in steps, expanding one node at each step,
until it generates a node that corresponds to a goal state. At each step, it picks the most promising of the nodes
that have so far been generated but not expanded. It generates the successors of the chosen node, applies the
heuristic function to them, and adds them to the list of open nodes, after checking to see if any of them have
been generated before. By doing this check. we can guarantee that each node only appears once in the graph,
although many nodes may point to it as a successor. Then the next step begins.

This process can be summarized as follows.

Algorithm: Best-First Search
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OFPEN do:
{a) Pick them best node on OPEN,
{b) Generate its successors.
(¢) For each successor do:

(t) If it has not been penerated before, evaluate it, add it to OPEN, and record its parent.

(1) If it has been generated before, change the parent if this new path is better than the previous
one. In that case, update the cost of getting to this node and to any successors that this node
may already. have.

The basic idea of this algorithm is simple. Unfortunately, it is rarely the case that graph traversal algorithms
are simple to write correctly. And it is even rarer that it is simple to guarantee the correctness of such algorithms.
In the section that follows, we describe this algorithm in more detail as an example of the design and analysis
of a graph-search program.

3.3.2 The A* Algorithm

The best-first search algorithm that was just presented is a simplification of an algorithm called A*, which
was first presented by Hart er al. [1968; 1972]. This algorithm uses the same f*, g, and A’ functions, as well as
the lists OPEN and CLOSED, that we have already described.

Algorithm: A*

L. Start with OPEN containing only the initial node. Set that node’s g value to 0, its A" value to whatever
itis, and its f* value to A" + 0, or #". Set CLOSED 1o the empty list.

2. Until a goal node is found, repeat the following procedure: If there are no nodes on OPEN, report
tailare. Otherwise, pick the node on OPEN with the lowest £ value, Call it BESTNODE. Remove it
from OPEN. Place it on CLOSED. See if BESTNODE is a goal node. If so0, exit and report a solution
(either BESTNODE if all we want is the node or the path that has been created between the initial state

60

Artificial Inteliigence

and BESTNODE if we are interested in the path). Otherwise, generate the successors of BESTNODFE
but do not set BESTNODE to point to them yet. (First we need to see if any of them have already been
generated.) For each such SUCCESSOR, do the following:

(a)
(b)

(<)

(d)

{e)

Seit SUCCESSOR to point back to BESTNODE. These backwards finks will make it possible to
recover the path once a solution is found.

Compute g{SUCCESSOR) = g{BESTNODE) + the cost of getting from BESTNODE to
SUCCESSOR.

See if SUCCESSOR is the same as any node on OPEN (i.e., it has already been generated but not
processed). If so, call that node OLD. Since this node already exists in the graph, we can throw
SUCCESSOR away and add QLD to the list of BESTNODE’s successors. Now we must decide
whether QLD 's parent link should be reset to point to BESTNODE. Tt should be if the path we have
just found to SVCCESSOR is cheaper than the current best path to OLD (since SUCCESSOR and
OLD are really the same node). So see whether it is cheaper to get to QLD via its current parent or
to SUCCESSOR via BESTNODE by comparing their g values, If OLD is cheaper (or just as cheap),
then we need do nothing, If SUCCESSOR is cheaper. then reset OLDs parent link to point to
BESTNODE, record the new cheaper path in g{OLD), and update f'(OLD).

If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so, call the node on CLOSED OLD
and add QLD to the list of BESTNODEs, successors. Check to see if the new path or the old path
is better just as in step 2(c), and set the parent link-and g and f* values appropriately. If we have
just found a better path to OLD, we must propagate the improvement to OLD’s successors. This is
a bit tricky. QLD points to its successors. Each successor in turn points to its successors. and so
forth, until each branch terminates with a node that either 1s still on QPEN or has no successors. So
to propagate the new cost downward, do a depth-first traversal of the tree starting at OLD, changing
each node’s g value {(and thus also its f” value), terminating each branch when you reach either a
node with no successors or a node to which an equivalent or better path has already been found.*
This condition is easy to check for. Each node’s parent link points back to its best known parent.
As we propagate down to a node, see if its parent points to the node we are coming from. If so,
continue the propagation. If not, then its g value already reflects the better path of which it is part.
So the propagation may stop here. But it is possible that with the new value of g being propagated
downward, the path we are following may become better than the path through the current parent.
So compare the two. If the path through the current parent is still better, stop the propagation. If the
path we are propagating through is now better, reset the parent and continue propagation.

If SUCCESSOR was not already on either OPEN or CLOSED, then put it on QPEN, and add it to
the list of BESTNODE’s successors, Compute f'((SUCCESSOR) = g{SUCCESSOR) +
K (SUCCESSOR).

Several interesting observations can be made about this algorithm. The first concerns the role of the g
function. It lets us choose which node to expand next on the basis not only of how good the node itself looks (as
measured by /"), but also on the basis of how good the path to the node was. By incorporating g into f*. we will
not always choose as our next node to expand the node that appears to be closest to the goal. This is useful if we
care about the path we find. If, on the other hand, we only care about getting to a solution somehow, we can define
g always to be 0, thus always choosing the node that seems closest to a goal. If we want to find a path involving
the fewest number of steps, then we set the cost of going from a node to its successor as a constant. usually 1. if,
on the other hand, we want to find the cheapest path and some operators cost more than others, then we set the

* This second check guarantees that the algorithm will terminate even if there are cycles in the graph. If there is a cycle.
then the second time that a given node is visited, the path will be no better than the first time and so propagation will stop.

Heuristic Search Technigues 61

xxxxx N Bt o

cost of going from one node to another to reflect those costs. Thus the A* algorithm can be used whether we are
interested in finding a minimal-cost overall path or simply any path as quickly as possible.

The second observation involves /', the estimator of /4, the distance of a node to the goal. If #’ is a perfect
estimator of /, then A* will converge iinmediately to the goal with no search. The better ki is, the closer we
will get to that direct approach. If, on the other hand, the value of 4’ is always 0, the search will be controlled
by g. If the value of g is also 0, the search strategy will be random. If the value of g is always 1, the search will
be breadth first. All nodes on one level will have lower g values, and thus lower £ values than will all nodes
on the next level. What if, on the other hand, /" is neither perfect nor (07 Can we say anything interesting about
the behavior of the search? The answer is ves if we can guarantee that A" never overestimates /4. In that case,
the A* algorithm is guaranteed to find an optimal (as determined by g) path to a goal, if one exists. This can
easily be seen from a few examples.®

Consider the situation shown in Fig. 3.4. Assume that the cost of all
arcs is 1. Initially, all nodes except A are on OPEN (although the Fig.
shows the situation two steps later, after B and E have been expanded).
For each node, f' is indicated as the sum of #” and g. In this example,
node B has the lowest f', 4, so it is expanded first. Suppose it has only
one successor E, which also appears to be three moves away from a goal.
Now f'(E} is 5, the same asf’(C). Suppose we resolve this in favor of the
path we are currently following. Then we will expand E next. Suppose it
too has a single successor F, also judged to be three moves from a goal. Fig. 3.4 h’Underestimates h
We are clearly using up moves and making no progress. But f'(F) = 6,
which is greater than f'(C). So we will expand C next. Thus we see that by underestimating #'(B) we have
wasted some effort. But eventually we discover that B was farther away than we thought and we go back and
try another path.

Now consider the situation shown in Fig. 3.5. Again we expand B
on the first step. On the second step we again expand E. At the next
step we expand F, and finally we generate G, for a solution path of
length 4, But suppose there is a direct path from D to a solution, giving
a path of length 2. We will never find it. By overestimating 4'(D) we
make D look so bad that we may find some other, worse solution without
ever expanding D. In general, if " might overestimate k&, we cannot be
guaranteed of finding the cheapest path solution unless we expand the
entire graph until all paths are longer than the best solution. An
interesting question is, “Of what practical significance is the theorem
that if 4/ never overestimates 4 then A* is admissible?” The answer is, Fig. 3.5 h’Overestimates h
“almost none,” because, for most real problems, the only way to guarantee that Ai never overestirates £ is to
set it to zero. But then we are back to breadth-first search, which is admissible but not efficient. But there is a
coroltary to this theorem that is very useful. We can state it loosely as follows:

(0+4)

Graceful Decay of Admissibility: If 4 rarely overestimates £ by more than &, then the A* algorithm will rarely
find a solution whose cost is more than & greater than the cost of the optimal solution.

The formalization and proof of this corollary will be left as an exercise,
The third observation we can make about the A* algorithm has to do with the relationship between trees
and graphs. The algorithm was stated in its most general form as it applies to graphs. It can, of course, be

3 A search algorithm that is guaranteed to find an optimal path to a goal, if one exists, is called admissible [Nilsson, 1980].

62 Artificial Intelligence

simplified to apply to trees by not bothering to check whether a new node is already on OPEN or CLOSED.
This makes it faster to generate nodes but may result in the same search being conducted many times if nodes
are often duplicated. .

Under certain conditions, the A* algorithm can be shown to be optimal in that it generates the fewest nodes
in the process of finding a solution to a problem. Under other conditions it is not optimal. For formal discussions
of these conditions, see Gelperin [1977) and Martelti [1977].

3.3.3 Agendas

In our discussion of best-first search in OR graphs, we assumed that we could evaluate multiple paths to the
same node independently of each other. For example, in the water jug problem, it makes no difference to the
evaluation of the merit of the position (4, 3) that there are at least two separate paths by which it could be
reached. This is not true, however, in all situations, e.g., especially when there is no single, simple heuristic
function that measures the distance between a given node and a goal.

Consider, for example, the task faced by the mathematics discovery program AM, written by Lenat |1977;
1982]. AM was given a small set of starting facts about number theory and a set of operators it could use to
develop new ideas. These operators included such things as “Find examples of a concept you already know.”
AM’s goal was to generate new “interesting” mathematical concepts. It succeeded in discovering such things
as prime numbers and Goldbach’s conjecture.

Armed solely with its basic operators, AM would have been able to create a great many new concepts,
most of which would have been worthless. It needed a way to decide intelligently which rules to apply. For
this it was provided with a set of heuristic rules that said such things as “The extreme cases of any concept are
likely to be interesting.” “'Interest” was then used as the measure of merit of individual tasks that the system
could perform. The system operated by selecting at each cycle the most interesting task, doing it, and possibly
generating new tasks in the process. This corresponds to the selection of the most promising node in the best-
first search procedure. But in AM’s situation the fact that several paths recommend the same task does matter.
Each contributes a reason why the task would lead to an interesting result. The more such reasons there are,
the more likely it is that the task really wouid Iead to something good. So we need a way to record proposed
tasks along with the reasons they have been proposed. AM used a task agenda. An agenda is a list of tasks a
system could perform. Associated with each task there are usually two things: a list of reasons why the task 1s
being proposed (often called justifications) and a rating representing the overall weight of evidence suggesting
that the task would be useful. '

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search

1. Do until a goal state is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice that this task can be represented in any
desired form. It can be thought of as an explicit statement of what to do next or simply as an
indication of the next node to be expanded.

(b) Execute the task by devoting to it the number of resources determined by its importance. The
important resources to consider are time and space. Executing the task will probably generate
additional tasks (successor nodes). For each of them, do the following:

(i) See if it is already on the agenda. If so, then see if this same reason for doing it is already on
its list of justifications. If so, ignore this current evidence. If this justification was not already
present, add it to the list. If the task was not on the agenda, insert it.

(ii) Compute the new task’s rating, combining the evidence from all its justifications. Not all
justifications need have equal weight. It is often useful to associate with each justification a
measure of how strong a reason it is. These measures are then combined at this step to produce
ap-oygrallrating.for the task.

Heuristic Search Techniques 63

One important question that arises in agenda-driven systems is how to find the most promising task on
each cycle. One way to do this is simple. Maintain the agenda sorted by rating. When a new task is created,
insert it into the agenda in its proper place. When a task has its justifications changed, recompute its rating and
move it to the correct place in the list. But this method causes a great deal of time to be spent keeping the
agenda in perfect order. Much of this time is wasted since we do not need perfect order. We only need to know
the proper first element. The following modified strategy may occasionally cause a task other than the best to
be executed, but it is significantly cheaper than the perfect method. When a task is proposed, or a new
Jjustification is added to an existing task, compute the new rating and compare it against the top few {(e.g., five
or ten) elements on the agenda. If it is better, insert the node into its proper position at the top of the list.
Otherwise, leave it where it is or simply insert it at the end of the agenda. At the beginning of each cycle,
choose the first task on the agenda. In addition, once in a while, go through the agenda and reorder it properly.

An agenda-driven control structure is also useful if some tasks (or nodes) provide negative evidence about
the merits of other tasks (or nodes). This can be represented by justifications with negative weightings. If
these negative weightings are used, it may be important to check not only for the possibility of moving a task
to the head of the agenda but also of moving a top task to the bottom if new, negative justifications appear. But
this is easy to do.

As you can see, the agenda mechanism provides a good way of focusing the attention of a complex system
in the areas suggested by the greatest number of positive indicators. But the overhead for each task executed
may be fairly high. This raises the question of the proper grain size for the division of the entire problem-
solving process into individual tasks. Suppose each task is very small. Then we will never do even a very
small thing unless it really is the best thing to do. But we will spend a large percentage of our total effort on
figuring out what to do next. If, on the other hand, the size of an individual task is very large, then some effort
may be spent finishing one task when there are more promising ones that could be done. But a smaller
percentage of the total time will be spent on the overhead of figuring out what to do. The exact choice of task
size for a particular system depends on the extent to which doing one small thing really means that a set of
other small things is likely to be very good to do too. It often requires some experimentation to get right.

There are some problem domains for which an agenda mechanism is inappropriate. The agenda mechanism
assumes that if there is good reason to do something now, then there will also be the same good reason to do
something later unless something better comes along in the interim. But this is not always the case, particularly
for systems that are interacting with people. The following dialogue would not be acceptable to most people:

Person: I don’t want to read any more about China. Give me something else.
Computer: OK. What else are you interested in?

Person: How about Italy? I think I'd find Italy fascinating.

Computer; What things about Italy are you interested in reading about?

Person: [think I'd like to start with its history.

Computer: Why don’t you want to read any more about China?

It would have been fine to have tried to find out why the person was no longer interested in China right
after he or she mentioned it. The computer chose instead to try to find a new area of positive interest, also a
very reasonable thing to do. But in conversations, the fact that something is reasonable now does not mean
that it will continue to be so after the conversation has proceeded for a while. So it is not a good idea simply
to put possible statements on an agenda, wait until a later lull, and then pop out with them. More precisely,
agendas are a good way to implement monotonic production systems (in the sense of Section 2.4) and a poor
way to implement nonmonotonic ones.

Despite these difficulties, agenda-driven contro! structures are very useful. They provide an excellent way
of integrating information from a variety of sources into one program since each source simply adds tasks and

64 Artificial Intelligence

justifications to the agenda. As Al programs become more complex and their knowledge bases grow, this
becomes a particularly significant advantage.

3.4 PROBLEM REDUCTION

So far, we have considered search strategies for OR graphs through which we want to find a single, path to a
goal. Such structures represent the fact that we will know how to get from a node to a goal state if we can
discover how to get from that node to a goal state along any one of the branches leaving it.

3.4.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is useful for representing the solution of problems
that can be solved by decomposing them into a set of smaller problems, all of which must then be solved. This
decomposition, or reduction, generates arcs that we call AND arcs. One AND arc may point to any number of
successor nodes, all of which must be solved in order for the arc to point to a solution. Just as in an OR graph,
several arcs may emerge from a single node, indicating a variety of ways in which the briginal problem might
be solved. This is why the structure is called not simply an AND graph but rather an AND-OR graph. An
example of an AND-OR graph (which also happens to be an AND-OR tree) is given in Fig. 3.6. AND arcs are
indicated with a line connecting all the components.

LGoal: Acquire TV it—]

| Goal Steal TV set | | Goal: Earn some money | | Goal: Buy TV set |

Fig. 3.6 A Simple AND-OR Graph

In order to find solutions in an AND-OR graph, we need an algorithm similar to best-first search but with
the ability to handle the AND arcs appropriately. This algorithm should find a path from the starting node of
the graph to a set of nodes representing solution states. Notice that it may be necessary to get to more than one
solution state since each arm of an AND arc must lead to its own solution node.

To see why our best-first search algorithm is not adequate for searching AND-OR graphs, consider
Fig. 3.7(a). The top node, A, has been expanded, producing two arcs, one leading to B and one leading to C and
D. The numbers at each node represent the value of f” at that node. We assume, for simplicity, that every operation
has a uniform cost, so each arc with a single successor has a cost of 1 and each AND arc with multiple successors
has a cost of 1 for each of its components. If we look just at the nodes and choose for expansion the one with the
lowest £ value, we must select C. But using the information now available, it would be better to explore the path
going through B since to use C we must also use D, for a total cost of 9 (C + D + 2) compared to the cost of 6 that
we get by going through B. The problem is that the choice of which node to expand next must depend not only on

(5) (3) (4)

{5 (10) (3) 4 (15 (10)
(a) b
Fig.3 7o =ANB OR Graphs

Heuristic Search Techniques 65

the £ value of that node but also on whether that node is part of the current best path from the initial node. The
tree shown in Fig. 3.7(b) makes this even clearer. The most promising single node is G with an £ value of 3. It is
even part of the most promising arc G-H, with a total cost of 9. But that arc is not part of the currenit best path since
t0 use it we must also use the arc I-J, with a cost of 27. The path from A, through B, to E and F 1s better, with a total
cost of 18. So we should not expand G next; rather we should examine either E or F.

In order to describe an algorithm for searching an AND-OR graph, we need to exploit a value that we call
FUTILITY. If the estimated cost of a solution becomes greater than the value of FUTILITY, then we abandon
the search. FUTILITY should be chosen to correspond to a threshold such that any solution with a cosflibove
it is too expensive 1o be practical, even if it could ever be found. Now we can state the algorithm.

Algorithm: Problem Reduction

1. Initialize the graph to the starting node.
2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:

(a) Traverse the graph, starting at the initial node and following the current best path, and accumulate
the set of nodes that are on that path and have not yet been expanded or labeled as solved.

(b} Pick one of these unexpanded nodes and expand it. If there are no successors, assign FUTILITY as
the value of this node. Otherwise, add its successors to the graph and for each of them compute £
(use only k" and ignore g, for reasons we discuss below). If of any node is 0, mark that node as
SOLVED.

{c) Change the " estimate of the newly expanded node to reflect the new information provided by its
successors. Propagate this change backward through the graph. If any node contains a successor
arc whose descendants are all solved, label the node itself as SOLVED. At each node that is visited
while going up the graph, decide which of its successor arcs is the most promising and mark it as
part of the current best path. This may cause the current best path to change. This propagation of
revised cost estimates back up the tree was not necessary in the best-first search algorithm because
only unexpanded nodes were examined. But now expanded nodes must be reexamined so that the
best current path can be selected. Thus it is important that their f* values be the best estimates
available.

This process is illustrated in Fig. 3.8. At step 1, A is the only node, so it is at the end of the current best path.
It is expanded, yielding nodes B, C, and D. The arc to D is labeled as the most promising one emerging from
A, since it costs 6 compared to B and C, which costs 9. (Marked arcs are indicated in the Fig.s by arrows.) In
step 2, node D) is chosen for expansion. This process produces one new arc, the AND arc to E and F, with a
combined cost estimate of 10. So we update the £ value of D to 10, Going back one more level, we see that
this makes the AND arc B-C better than the arc to D, so it is labeled as the current best path. At step 3, we
traverse that arc from A and discover the unexpanded nodes B and C. If we are going to find a solution along
this path, we will have to expand both B and C eventually, so let’s choose to explore B first. This generates
two new arcs, the ones to G and to H. Propagating their f* values backward, we update f” of B to 6 (since that
is the best we think we can do, which we can achieve by going through G). This requires updating the cost of
the AND arc B-C to 12 (6 + 4 + 2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node E or node F will be chosen for expansion at step 4. This process
continues until either a solution is found or all paths have led to dead ends, indicating that there is no solution.

In addition to the difference discussed above, there is a second important way in which an algorithm for
searching an AND-OR graph must differ from one for searching an OR graph. This difference, too, arises
from the fact that individual paths from node to node cannot be considered independently of the paths through
other nodes connected to the original ones by AND arcs. In the best-first search algorithm, the desired path

66 Artificial Intelligence

Before step 1 Before step 2

[Al5)

Before step 3

4) 4
Fig. 3.8 The Operation of Problem Reduction .

from one node to another was always the one with the lowest cost. But this is not always the case when
searching an AND-OR graph.

Consider the example shown in Fig. 3.9(a). The nodes were generated in alphabetical order. Now suppose
that node J is expanded at the next step and that one of its successors is node E, producing the graph shown in
Fig. 3.9(b). This new path to E is longer than the previous path to E going through C. But since the path
through C will only lead to a solution if there is also a solution to D, which we know there is not, the path
through J is better.

Unsolvable

Fig. 3.9 A Longer Poth May Be Better

There is one important limitation of the algorithm we have just described. It fails to take into account any
interaction between subgoals. A simple example of this failure is shown in Fig. 3.10. Assuming that both
node C and node E ultimately lead to a solution, our algorithm will report a complete
solution that includes both of them. The AND-OR graph states that for A to be solved,
both C and I} must be solved. But then the algorithm considers the solution of D as a
completely separate process. from the solution of C. Looking just at the alternatives
from D, E is the best path. But it turns out that C is necessary anyway, so it would be
better also to use it to satisfy D. But since our algorithm does not consider such (g) @
interactions, it will find a nonoptimal path. In Chapter 13, problem-solving methods gig 310 interocting
that can consider interactions among subgoals are presented. Subgoals

Heuristic Search Techniques 67

3.4.2 The AO* Algorithm

The problem reduction algorithm we just described is a simplification of an algorithm described in Martelli
and Montanari [1973], Martelli and Montanari [1978], and Nilsson [1980]. Nilsson calls it the AO* algorithm,
the name we assume.

Rather than the two lists, OPEN and CLOSED, that were used in the A* algorithm, the AO* algorithm will
use a single structure GRAPH, representing the part of the search graph that has been explicitly generated so
far. Each node in the graph will point both down to its immediate successors and up to its immediate
predecessors. Each node in the graph will also have associated with it an A" value, an estimate of the cost of a
path from itself to a set of solution nodes. We. will not store g (the cost of getting from the start node to the
current node) as we did in the A* algorithm. It is not possible to compute a single such value since there may
be many paths to the same state. And such a value is not necessary because of the top-down traversing of the
best-known path, which guarantees that only nodes that are on the best path will ever be considered for
expansion. So A" will serve as the estimate of goodness of a node.

Algorithm: AO*
1. Let GRAPH consist only of the node representing the initial state. (Call this node INIT.}) Compute

K (INIT) ,

2. Until INIT is labeled SOLVED or until INIT'’s £’ value becomes greater than FUTILITY, repeat the
following procedure:

(a) Trace the labeled arcs from /VIT and select for expansion one of the as yet unexpanded nodes that
occurs on this path. Call the selected node NODE.

{b) Generate the successors of NODE. If there are none, then assign FUTILITY as the &' value of
NQODE. This is equivalent to saying that NODE is not solvable. If there are successors, then for
each one (called SUCCESSOR) that is not also an ancestor of NODE do the following:

(i) Add SUCCESSOR to GRAPH,

(ii) If SUCCESSOR is a terminai node, label it SOLVED and assign it an A" value of 0.

(iit) If SUCCESSOR is not a terminal node, compute its /" value,

{c) Propagate the newly discovered information up the graph by doing the following: Let S be a set of
nodes that have been labeled SOLVED or whose A’ values have been changed and so need to have
values propagated back to their parents. Initialize 5 to NODE. Until § is empty, repeat the, following
procedure:

(i) If possible, select from § a node none of whose descendants in GRAPH occurs in §. If there is
no such node, select any node from S. Call this node CURRENT, and remove it from S.

(i1) Compute the cost of each of the arcs emerging from CURRENT. The cost of each arc is equal
to the sum of the 4" values of each of the nodes at the end of the arc plus whatever the cost of
the arc itself is. Assign as CURRENT’S new h’ value the minirmi of the costs just computed
for the arcs emerging from it.

(iti) Mark the best path out of CURRENT by marking the arc that had the minimum cost as computed
in the previous step.

{iv) Mark CURRENT SOLVED if all of the nodes connected to it through the new labeled arc have
been labeled SOLVED.

{v) If CURRENT has been labeled SOLVED or if the cost of CURRENT was just changed, then its
new status must be propagated back up the graph. So add all of the ancestors of CURRENT to §.

It is worth noticing a couple of points about the operation of this algorithm. In step 2{c)v, the ancestors of
anode whose cost was altered are added to the set of nodes whose costs must also be revised. As stated, the
algorithm will insert all the node’s ancestors’ into the set, which may result in the propagation of the cost

68 Artificial Intelligence

change back up through a large number of paths that are already known not to be
very good. For example, in Fig. 3.11, it is clear that the path through C will
always be better than the path through B, so work expended on the path through
B is wasted. But if the cost of E is revised and that change is not propagated up
through B as well as through C, B may appear to be better. For example, if, as a
result of expanding node E, we update its cost to 10, then the cost of C will be
updated to 11. If this is all that is done, then when A is examined, the path through
B will have a cost of only 11 compared to 12 for the path through C, and it willbe gig 311 An Unnecessary
labeled erroneously as the most promising path. In this example, the mistake Backward
might be detected at the next step, during which D will be expanded. If its cost Propagation
changes and is propagated back to B, B’s cost will be recomputed and the new

cost of E will be used. Then the new cost of B will propagate back to A. At that point, the path through C will
again be better. All that happened was that some time was wasted in expanding . But if the node whose cost
has changed is farther down in the search graph,
the error may never be detected. An example of
this is shown in Fig. 3.12(a). If the cost of G is
revised as shown in Fig. 3.12(b) and if it is not
immediately propagated back to E, then the
change will never be recorded and a nonoptimal
solution through B may be discovered.

A second point concerns the termination of
the backward cost propagation of step 2(c).
Because GRAPH may contain cycles, there is no
guarantee that this process will terminate simply
because it reaches the “top” of the graph. It tumsg
out that the process can be guaranteed to terminate
for a different reason, though. One of the exercises
at the end of this chapter explores why.

{a) (M
Fig. 3.12 A Necessary Backward Prapagation

3.5 CONSTRAINT SATISFACTION

Many problems in Al can be viewed as problems of constraint satisfaction in which the goal is to discover
some problem state that satisfies a given set of constraints. Examples of this sort of problem include
cryptarithmetic puzzles (as described in Section 2.6) and many real-world perceptual labeling problems.
Design tasks can also be viewed as constraint-satisfaction problems in which a design must be created within
fixed lirnits on time, cost and materials.

By viewing a problem as one of constraint satisfaction, it is often possible to reduce substantially the
amount of search that is required as compared with a method that attempts to form partial solutions directly by
choosing specific values for components of the eventual solution. For example, a straightforward search
procedure to solve a cryptarithmetic problem might operate in a state space of partial solutions in which
letters are assigned particular numbers as their valuer. A depth-first control scheme could then follow a path
of assignments until either a solution or an inconsistency is discovered. In contrast, a constraint satisfaction
approach to solving this problem avoids making guesses on particular assignments of numbers to letters until
it has to, Instead, the initial set of constraints, which says that each number may correspond to only one letter
and that the sums of the digits must be as they are given in the problem, is first augmented to include restrictions
that can be inferred from the rules of arithmetic. Then, although guessing may still be required, the number of
allowable guesses is reduced and so the degree of search is curtailed.

Heuristic Search Techniques 69

Constraint satisfaction is a search procedure that operates in a space of constraint sets. The initial state
contains the constraints that are originally given in the problem description. A Goal State is any state that has
been constrained “enough,” where “enough™ must be defined for each problem. For example, for
cryptarithmetic, enough means that each letter has been assigned a unique numeric value. .

Constraint satisfaction is a two-step process. First, constraints are discovered and propagated as far as
possible throughout the system. Then, if there is still not a solution, search begins. A guess about something
is made and added as a new constraint. Propagation can then occur with this new constraint, and so forth.

The first step, propagation, arises from the fact that there are usually dependencies among the constraints.
These dependencies occur because many constraints involve more than one object and many objects participate
in more than one constraint. So, for example, assume we start with one constraint, N = E + 1. Then, if we
added the constraint N = 3, we could propagate that to get a stronger constraint on E. namely that E = 2,
Constraint propagation also arises from the presence of inference rules that allow additional constraints to be
inferred from the ones that are given. Constraint propagation terminates for one of two reasons. First, a
contradiction may be detected. If this happens, then there is no solution convistent with all the known constraints.
If the contradiction involves only those constraints that were given as part of the problem specification {(as
opposed to ones that were guessed during problem solving), then no solution exists. The second possible
reason for termination is that the propagation has run out of steam and there are no further changes that can be
made on the basis of current knowledge. If this happens and a solution has not yet been adequately specified,
then search is necessary to get the process moving again.

At this point, the second step begins. Some hypothesis about a way to strengthen the constraints must be
made. In the case of the cryptarithmetic problem, for example, this usually means guessing a particular value
for some letter. Once this has been done, constraint propagation can begin again from this new state. If a
solution is found, it can be reported. If still more guesses are required, they can be made. If a contradiction is
detected, then backtracking can be used to try a different guess and proceed with it. We can state this procedure
more precisely as follows:

Algorithm: Constraint Satisfaction
1. Propagate available constraints, To do this, first set QPEN to the set of all objects that must have values
assigned to them in a complete solution. Then do until an inconsistency is detected or until OPEN is
empty:
(a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that apply
to OB.
(b) If this set is different from the set that was assigned the last time OB was examined or if this is the
first time OB has been examined, then add to QPEN all objects that share any constraints with OB.
{c) Remove OB from OPEN. ’
2. If the union of the constraints discovered above defines a solution, then quit and report the solution.
If the union of the constraints discovered above defines a contradiction, then return failure.
4. If neither of the above occurs, then it is necessary to make a guess at something in order to proceed. To
do this, loop until a solution is found or all possible solutions have been eliminated:
{a} Select an object whose value is not yet determined and select a way of strengthening the constraints
on that object.
{b) Recursively invoke constraint satisfaction with the current set of constraints augmented by the
strengthening constraint just selected.

w

This algorithm has been stated as generally as possible. To apply it in a particular problem domain requires
the use of two kinds of rules: rules that define the way constraints may validly be propagated and rules that
suggest guesses when guesses are necessary. It is worth noting, though, that in some problem domains guessing

|
|

70 . Artificial Intelligence

may not be required. For example, the Waltz algorithm for propagating line labels in a picture, which is
described in Chapter 14, is a version\of this constraint satisfaction algorithm with the guessing step eliminated.
In general, the more powerfu! the rules for propagating constraints, the less need there is for guessing.

.To see how this algorithm works, consider the cryptarithmetic problem shown in Fig. 3.13. The goal state
is a problem state in which all letters have been assigned a digit in such a way that all the initial constraints are
satisfied.

Problem:
SEND
+ MORE

MONEY
Initial State:
No two letters have the same value.
The sums of the digits must be as shown in
the problem.

Fig. 3.13 A Cryptarithmetic Problem

The solution process proceeds in cycles. At each cycle, two significant things are done (corresponding to
steps 1 and 4 of this algorithm):

1. Constraints are propagated by using rules that correspond to the properties of arithmetic.
2. A value is guessed for some letter whose value is not yet determined.

In the first step, it does not usually matter a great deal what order the propagation is done in, since ail
available propagations will be performed before the step ends. In the second step, though, the order in which
guesses are tried may have a substantial impact on the degree of search that is necessary. A few useful heuristics
can help to select the best guess to try first. For example, if there is a letter that has only two possible values
and another with six possible values, there is a better chance of guessing right on the first than on the second.
Another useful heuristic is that if there is a letter that participates in many constraints then it is a good idea to
prefer it to a letter that participates in a few. A guess on such a highly constrained letter will usually lead
quickly either to a contradiction (if it is wrong) or to the generation of many additional constraints (if it is
right). A guess on a less constrained letter, on the other hand, provides less information. The result of the first
few cycles of processing this example is shown in Fig. 3.14. Since constraints never disappear at lower levels,
only the ones being added are shown for each level. It wiil not be much harder for the problem solver to access
the constraints as a set of lists than as one long list, and this approach is efficient both in terms of storage space
and the ease of backtracking. Another reasonable approach for this problem would be to store all the constraints
in one central database and also to record at each node the changes that must be undone during backtracking.
Cl, C2, C3, and C4 indicate the carry bits out of the columns, numbering from the right.

Initially, rules for propagating constraints generate the following additional constraints:

s M = |, since two single-digit numbers plus a carry cannot total more than 19,

e S=8o0r9,simce S +M + C3 > 9 (to generate the cary)and M= [, S+ 1+ C3>9,505+ C3> 8 and
C3is at most 1.

e O=0,since S+ M(]) + C3 (<= 1) must be at least 10 to generate a carry and it can be at most 11, But
M is already 1, so O must be (.

¢ N=FEorE + 1, depending on the value of C2. But N cannot have the same value as E. SoN=E + 1 and
C2is 1.

¢
a

Heuristic Search Technigues 71

s In order for C2 to be 1, the sum of N + R + Cl must be greater than 9, so N + R must be greater than 8.
¢ N + R cannot be greater than 18, even with a carry in, so E cannot be 9.

At this point, let us assume that no more constraints can be generated. Then, to make progress from here,
we must guess. Suppose E is assigned the value 2. (We chose to guess a value for E because it occurs three
times and thus interacts highly with the other letters.) Now the next cycle begins. :

The constraint propagator now observes that:

o N=3 since N=E+ 1.

e R=80r9,since R+ N(3)+ Cl(1l or0)=2or 12, But since N is alre.dy 3, the sum of these nonnegative
numbers cannot be less than 3. Thus R+ 3+ (Dor1)=12 and R=8 or 9.

¢ 2+D=Yor2+D=10+Y, from the sum in the rightmost column.

Again, assuming no further constraints can be | o) siate @ SEND
generated, a guess is required. Suppose C1 is chosen to +MORE
guess a value for. If we try the value 1, then we eventually MONEY
reach dead ends, as shown in the Fig.. When this M=1
happens, the process will backtrack and try C1 = 0. gz%zﬁ 2 0=0

A couple of observations are worth making on this N=zEorE+1=N=E+1
process. Notice that all that is required of the constraint Cz=1
propagation rules is that they do not infer spurious g:’z ; 8
constraints. They do not have to infer all legal ones. For
example, we could have reasoned through to the resuit E=2
that Cl equals 0. We could have done so by observing Y
that for CI to be 1, the following must hold: 2 + D = 10 N=3
+ Y. For this to be the case, D would have to be 8 or 9. ;’Bio\; gr 24D = 10+Y
But both § and R must be either 8 or 9 and three letters
cannot share two values. So Cl cannot be 1. If we had C1=0 C1=1
realized this initially, some search could have been
avoided. But since the constraint propagation rules we | 2+D=Y 2+D = 10+Y
used were not that sophisticated, it took some search. | N*R=10+E D =8+Y

) R=9 D=8or9
Whether the search route takes more or less actual time | g-=g

than does the constraint propagation route depends on
how long it takes to perform the reasoning required for
constraint propagation.

A second thing to notice is that there are often two
kinds of constraints. The first kind is simple; they just
list possible values for a single object. The second kind is more complex; they describe relationships between
or among objects. Both kinds of constraints play the same role in the constraint satisfaction process, and in the
cryptarithmetic example they were treated identically. For some problems, however, it may be useful to represent
the two kinds of constraints differently. The simple, value-listing constraints are always dynamic, and so must
always be represented explicitly in each problem state. The more complicated, relationship-expressing
constraints are dynamic in the cryptarithmetic domain since they are different for each cryptarithmetic problem.
But in many other domains they are static. For example, in the Waltz line labeling atgorithm, the only binary
constraints arise from the nature of the physical world, in which surfaces can meet in only a fixed number of
possible ways. These ways are the same for all pictures that that algorithm may see. Whenever the binary
constraints are static, it may be computationally efficient not to represent them explicitly in the state description
but rather to encode them in the algorithm directly. When this is done, the only things that get propagated are
possible values. But the essential algorithm is the same in both cases.

Conflict Conflict
Fig. 3.14 Solving a Cryptarithmetic Problem

72 Artificial Intelligence

So lar, we have described a fairly simple algorithm for constraint satistaction in which chronological
backtracking is used when guessing leads to an inconsistent set of constraints. An alternative is to use a more
sophisticated scheme in which the specific cause of the inconsistency is identified and only constraints that
depend on that culprit are undone. Others, even though they may have been generated after the culprit, are left
alone if they are independent of the problem and its cause. This approach is called dependency-directed
backtracking (DDB). It is described in detail in Section 7.3.1.

3.6 MEANS-ENDS ANALYSIS

So far, we have presented a collection of search strategies that can reason either forward or backward, but for
a given problem, one direction or the other must be chosen. Often, however, a mixture of the two directions is
appropriate. Such a mixed strategy would make it possible to solve the major parts of a problem first and then
go back and solve the small problems that arise in “gluing” the big pieces together. A technique known as
reans-ends analysis allows us to do that.

The means-ends analysis process centers around the detection of differences between tbe current state and
the goal state. Once such a difference is isolated, an operator that can reduce the difference must be found. But
perhaps that operator cannot be applied to the current state. So we set up a subproblem of getting to a state in
which it can be applied. The kind of backward chaining in which operators are selected and then subgoals are
set up to establish the preconditions of the operators is called operator subgoaling. But maybe the operator
" does not produce exactly the goal state we want. Then we have a second subproblem of getting from the state
it does produce to the goal. But if the difference was chosen correctly and if the operator is really effective at
reducing the difference, then the two subproblems should be easier to solve than the original problem. The
means-ends analysis process can then be applied recursively. In order to focus the system’s attention on the
big problems first, the differences can be assigned priority levels. Differences of higher priority can then be
considered before lower priority ones.

The first Al program to exploit means-ends analysis was the General Problem Solver (GPS) [Newell and
Simon, 1963; Emst and Newell, 1969]. lts design was motivated by the observation that people often use this
technique when they solve problems. But GPS provides a good example of the fuzziness of the boundary
between building programs that simulate what people do and building programs that simply solve a problem
any way they can.

Just like the other problem-solving techniques we have discussed, means-ends analysis relies on a set of
rules that can transform one problem state into another. These rules are usually not represented with complete
state descriptions on each side, Instead, they are represented as a left side that describes the conditions that
must be met for the rule to be applicable (these conditions are called the rule’s preconditions} and a right side
that describes those aspects of the problem state that will be changed by the application of the rule. A separate
data structure called a difference table indexes the rules by the differences that they can be used to reduce.

Consider a simple household robot domain. The available operators are shown in Fig. 3.15, along with
their preconditions and results. Figure 3.16 shows the difference table that describes when each of the operators
is appropriate. Notice that sometimes there may be more than one operator that can reduce a given difference
and that a given operator may be able to reduce more than one difference.

Suppose that the robot in this domain were given the problem of moving a desk with two things on it from
one room to another, The objects on top must also be moved. The main difference between the start state and
the goal state would be the location of the desk. To reduce this difference, either PUSH or CARRY could be
chosen. If CARRY is chosen first, its preconditions must be met. This results in two more differences that
must be reduced: the location of the robot and the size of the desk. The location of the robot can be handled by
applying WALK, but there are no operators than can change the size of an object (since we did not include

Heuristic Search Techniques 73

Operator Preconditions Results
PUSH({ohy, loc) at(robot, obj)" atfoby, loc)”
large(obj)” atrobot, loc)
clear(obj)?
armempty
CARRY/(obj, loc) at{robot, obj)* at(obj, loc)®
small(obj) at(robot. loc)
WALK((io¢) none at(robot, loc)
PICKUP(obj} at(robot, obj) holding(obj)
PUTDOWN(obj) holding(obj) —holding(obj)
PLACE(objl, obj2) at(robot, obj2)* on(obil, obj2)
holding(objl)

Fig. 3.15 The Robot’s Operators

Push | Carry | Walk | Pickup |Putdown Place

Move object * *

Move robot *

Clear object *

Get object on object

Get arm empty * *

Be holding object

Fig. 3.16 A Difference Tuble

SAW-APART). So this path leads to a dead-end. Following the other branch, we aftempt to apply PUSH.
Figure 3.17 shows the problem solver’s progress at this point. it has found a way of doing something useful.
But it is not yet in a position to do that thing. And the thing does not get A B C D
it quite to the goal state. So now the differences between A and B and i ' :
between C and D must be reduced. ‘ " Push |

PUSH has four preconditions, two of which produce differences Stert Goa
between the start and the goal states: the robot must be at the desk, and ~ Fig. 3.17 The Progress of the
the desk must be clear. Since the desk is aiready large, and the robot’s Means-Ends dnaiys's
arm is empty, those two preconditions can be ignored. The robot can be Method
brought to the correct location by using WALK. And the surface of the desk can be cleared by two uses of
PICKUP. But after one PICKUP. an attempt to do the second results in another difference-—the arm musi he
empty. PUTDOWN can be used to reduce that difference.

Once PUSH is performed, the problem state is close to the goal state, but not quite. The objects must be
placed back on the desk. PLACE will put them there. But it cannot be applied immediately. Another difference
must be eliminated, since the robot must be holding the objects. The progress of the problem solver at this
point is shown in Fig. 3.18.

A B C E D

|] | i i | |

["Push [Pick up [Put down| Pick up |Put down! Push | | Prace
Start Goal

Fig. 3.18 More Progress of the Means-Ends Method

74 Artificial Intelligence

The final difference between C and E can be reduced by using WALK to get the robot back to the objects,
- dnwed by PICKUP and CARRY.
‘i'he process we have just illustrated (which we call MEA for short) can be summarized as follows:

Algorithm: Means-Ends Analysis (CURRENT, GOAL)
1. Compare CURRENT to GOAL. If there are no differences between them then return.
2. Otherwise, select the most important difference and reduce it by doing the following until success or
failure is signaled:
(a} Select an as yet untried operator O that is applicable to the current difference. If there are no such
operators, then signal failure. _
(b} Attempt to apply O to CURRENT. Generate descriptions of two states: O-START, a state in which
(¥'s preconditions are satisfied and O-RESULT, the state that would result if O were applied in O-
START.
(cy If
{FIRST-PART « MEA(CURRENT, O-START))
and
(LAST-PART « MEMO-RESULT, GOAL))
are successful, then signal success and retumn the result of concatenating
FIRST-PART, O, and LAST-PART.

Many of the details of this process have been omitted in this discussion. In particular, the order in which
cifferences are considered can be critical. It is important that significant differences be reduced before less
critical ones. If this is not done, a great deal of effort may be wasted on situations that take care of themselves
once the main parts of the problem are solved.

The simple process we have described is usually not adequate for solving complex problems. The number
of permutations of differences may get too large. Working on one difference may interfere with the plan for
reducing ancther. And in complex worlds, the required difference tables would be immense. In Chapter 13 we
look at some ways in which the basic means-ends analysis approach can be extended to tackle some of these
problems. :

yulpipe L WAMLIEG M 0 IR wa 0 T % g e
FLIER BrgEe R, N e el L BR TTEY 50 80 AEEAT vamea,TTLY R B

SUMMAR

PR S AR RARE S AR LA b A S 1

In Chapter 2, we listed four steps that must be taken to design a program to solve an Al problem. The first two
steps were:
1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).
2. Analyze the problem to determine where it falls with respect to seven important issues.

The other two steps were to isolate and represent the task knowledge required, and to choose problem
solving techniques and apply them to the problem. In this chapter, we began our discussion of the last step of
this process by presenting some general-purpose, problem-solving methods. There are several important ways
in which these algorithms differ, including:

« What the states in the search space(s) represent. Sometimes the states represent complete potential
solutions (as in hill climbing). Sometimes they represent solutions that are partially specified (as in
constraint satisfaction).

In

Heuristic Search Techniques 75

How, at each stage of the search process, a state is selected for expansion.

How operators to be applied to that node are selected.

Whether an optimal solution can be guaranteed.

Whether a given state may end up being considered more than once.

How many state descriptions must be maintained throughout the Search process.
Under what circumstances should a particular search path be abandoned.

the chapters that follow, we talk about ways that knowledge about task domains can be encoded in

problem-solving programs and we discuss techniques for combining problem-solving techniques with
knowledge to solve several important classes of problems.

EXERCISES

I.
2.

LiTuie AS0ANRRIIRY INTY Qaisie ¢ ewao PAPRRS TG I RET et RARAS S SESIEEYE y e e ew v Ty 82

When would best-first search be worse than simple breadth-first search?

Suppose we have a problem that we intend to solve using a heuristic best-first search procedure. We
need to decide whether to implement it as a tree search or as a graph search. Suppose that we know that,
on the average, each distinct node will be generated N times during the search process. We also know
that if we use a graph, it will take, on the average, the same amount of time to check a node to see if it
has already been generated as it takes to process M nodes if no checking is done. How can we decide
whether to use a tree or a graph? In addition to the parameters N and M, what other assumptions must

be made? Start Goal
. Consider trying to solve the 8-puzzle using hill climbing. Can you find a [1]2]3 1]2]3

heuristic function that makes this work? Make sure it works on the following [8!56 4/5]6

example: 47 718

Describe the behavior of a revised version of the steepest ascent hill climbing algorithm in which step
2(c) is replaced by “set current state to best successor.”

Suppose that the first step of the operation of the best-first search algorithm

results in the following situation (g + b means that the value of 2" at a node is a

and the value of g i h): . . o Bl @+1) [CHa+1)
The second and third steps then result in the following sequence of situations:

Bl ¢4+1) [C13+1)

[D]{4+2)

(a) What node will be expanded at the next step?
{b) Can we guarantee that the best solution will be found?

Why must the A* algorithm work properly on graphs containing cycles? Cycles could be prevented if
when a new path is generated to an existing node, that path were
simply thrown away if it is no better than the existing recorded one.
If g is nonnegative, a cyclic path can never be better than the same
path with the cycle omitted. For example, consider the first graph
shown below, in which the nodes were generated in alphabetical
order. The fact that node D is a successor of node F could simply not
be recorded since the path through node F is longer than the one
through node B. This same reasoning would also prevent us from

E[(2+2) [D](4+2}

76

9,

10.

L1

12.

13.

14.

15.

Artificial Intelligence

recording node E as a successor of node F, if such was the case. But what would happen in the situation
shown in the second graph below if the path from node G to node F were not recorded and, at the next
step, it were discovered that node G is a successor of node C?7

Formatize the Graceful Decay of Admissibility Corollary and prove that it is true of the A* algorithm.
in step 2(a) of the AO* algorithm, a random state at the end of the current best path is chosen for
expansion. But there are beuristics that can be vsed to influence this choice. For example, it may make
sense to cheose the state whose current cost estimate is the lowest. The argument for this is that for
such nodes, only & tew steps are required before either a solution is found or a revised cost estimate is
preduced. With nodes whose current cost estimate is large, on the other hand, many steps may be
required before any new information is obtained. How would the algorithm have to be changed to
implement this state-selection heuristic?

The hackward cost propagation step 2(c) of
the AQ* algorithim must be guaranteed to
terminate even on graphs containtng cycles.
How can we guarantee that it does? To help
answer this question, consider what happens
for the following two graphs, assuming in each case that node F is expanded

next und that its only successor is A: (6

(30)(E] [F1(10)

Also consider what happens in the following graph if the cost of node C is (6) [B]
changed to 3: [Cl(5)

The AO* algorithm, in step 2(c). requires that a node with no descendants in S be A
selecied from S, if possible. How should the manipulation of § be implemented so that
such a node can be chosen efficiently? Make sure that your technique works correctly

on the following graph, if the cost of node E is changed: Pl

Consider again the AO* algorithm. Under what circumstances will it happen that there are nodes in 5
but there are no nodes in S that have no descendants also in 87
Trace the constraint satisfaction procedure solving the following cryptarithmetic problem:
CROSS
+ ROADS

The constraint satisfaction procedure we have described performis depth-first search whenever some
kind of search is necessary. But depth-first is not the only way to conduct such a search (although it is
perhaps the stmplest).

(a} Rewrite the constraint satisfaction procedure to use breadth-first search.

{b) Rewrite the constraint satisfaction procedure to use best-first search.

Show how means-ends analysis could be used to solve the problem of getting from one place to another.
Assume that the available operators are walk, drive, take the bus, take a cab, and fly.

Imagine a robot trying t0 move from one place in a city to another. 1t has complete knowledge of the
connecting roads in the city. As it moves the road condition keep changing. If the robot is to reach its
destination within a prescribed time. suggest an algorithm for the same, (Hint: Split the road map into
asctobotnnected nédes gndarhaging thadihe-Cobis afoying from Gngnode i the othef dhange based
on some time-dependent conditions).

