

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Contents

Preface to the Third Edition
Preface to the Secand Edition

PART I; PROBLEMS AND SEARCH

Whatis Artificial Intelligence?

1.1

1.2

1.3

b.4

1.5

1.6

1.7

The AI Problems 4

The Underlying Assumption 6

What is an Al Technique? 7

The Level of the Model /8

Criteria for Success 20

Some General References 2/

One Final Word and Beyond 22

Exercises 24

Problems, Problem Spaces, and Search

2.1

2.2

2.3

24

2.5

2.6

Defining the Problem as a State Space Search 25

Production Systems 30

Problem Characteristics 36

Production System Characteristics 43

Issues in the Design of Search Programs 45

Additional Problems 47

Summary 48

Exercises 48

Heuristic Search Techniques

3.1

3.2

3.3

34

3.5

3.6

Generate-and-Test 50

Hili Climbing 52

Best-first Search 537

Problem Reduction 64

Constraint Satisfaction 68

Means-ends Analysis 72

Summary 74

Exercises 75

PART Il: KNOWLEDGE REPRESENTATION

Knowledge Representation Issues

4.1

4.2

Representations and Mappings 79

Approaches to Knowledge Representation 8&2

Batti

XVEE

25

50

79

https://hemanthrajhemu.github.io

viii Contents
wee OS mail, ME

4.3 Issues in Knowledge Representation 3&6

44 The Frame Problem 96

Summary 97

Using Predicate Logic

5.1 Representing Simple Facts in Logic 99

5.2 Representing Instance and /SA Relationships /03
5.3. Computable Functions and Predicates /05

3.4 Resolution /08

3.5 Natural Deduction /24

Summary {25

Exercises {26

Representing Knowledge Using Rules

6.1 Procedural Versus Declarative Knowledge /29

6.2 Logic Programming /3/

6.3 Forward Versus Backward Reasoning 9/34

6.4 Matching /3&

64 Control Knowledge /42

Summary /435

Exercises 145

Symbolic Reasoning Under Uncertainty

7.4 Introduction to Nonmonotonic Reasoning /47

7.2. Logics for Nonmonotonic Reasoning /50

7.3 Emplementation Issues /57

74 Augmenting a Problem-solver 158

7.5 Implementation: Depth-first Search /60

7.6 Implementation: Breadth-first Search /66

Sunumnary 169

Exercises 170

Statistical Reasoning

8.1 Probability and Bayes’ Theorem /72

8.2 Certainty Factors and Rule-based Systems /74

8.3 Bayesian Networks /79

8.4 Dempster-Shafer Theory /8/

8.5 Fuzzy Logic /84

Summary {85

Exercises 146

WeakSiot-and-Filler Structures

9.1 Semantic Nets /&8

9,2 Frames /93

Exercises 205

285 RR.

98

129

147

172

188

https://hemanthrajhemu.github.io

CHAPTER

4.
KNOWLEDGE REPRESENTATION ISSUES

ingeneralwe are least aware ofwhat our minds do best.

—Marvin Minsky
(1927-}, American cognitive scientist

In Chapter |, we discussed the role that knowledge plays in AI systems. In succeeding chapters up until now,

though, we havepaidlittle attention to knowledge andits importance as we instead focused on basic frameworks

for building search-based problem-solving programs. These methods are sufficiently general that we have

been able to discuss them without reference to how the knowledge they need is to be represented. For example,

in discussing the best-first search algorithm, we hid all the references to domain-specific knowledgein the

generation of successors and the computation of the h’ function. Although these methodsare useful and form

the skeleton of many ofthe methods we are about to discuss, their problem-solving poweris limited precisely

because of their generality. As we lock in more detail at ways of representing knowledge, it becomes clear

that particular knowledge representation models allow for more specific, more powerful problem-solving

mechanisms that operate on them.In this part of the book, we return to the topic of knowledge and examine

specific techniques that can be used for representing and manipulating knowledge within programs.

4.1 REPRESENTATIONS AND MAPPINGS

In order to solve the complex problems encounteredin artificial intelligence, one needs both a large amount

of knowledge and some mechanisms for manipulating that knowledge to create solutions to new problems. A

variety of ways of representing knowledge (facts) have been exploited in AI programs. But before we can talk

about them individually, we must consider the foliowing point that pertainsto all discussions of representation,

namely that we are dealing with two different kinds of entities: *

* Facts: truths in some relevant world. These are the things we want to represent.

e Representations of facts in some chosen formalism. These are the things we will actually be able to

manipulate.

One way to think of structuring these entities is as two levels:

* The knowledge level, at which facts (including each agent's behaviors and current goals) are described.

https://hemanthrajhemu.github.io

80 Artificial Intelligence

* The svmbol level, at which representations of objects at the knowledge level are defined in terms of
symbols that can be manipulated by programs.

Reasoning

See Newell [1982| for a detailed exposition of this view programs
: - : ale « tare * |in the context of agents and their goals and behaviors. In the Facts [_ > Reoentations Sd

rest of our discussion here, we will follow a model more like ~~

the one shown in Fig. 4.1. Rather than thinking of one level English : English
on top of another, we will focus on facts, on representations, understanding generation
and on the two-way mappings that must exist between them. English

We will call these links representation mappings. The forward Representation
representation mapping maps from facts to representations.

The backward representation mapping goes the other way,

from representations to facts.

One representation of facts is so commonthat it deserves special mention: natural language (particularly
English) sentences. Regardless of the representation for facts that we use in a program, we may also need to

be concerned with an English representation of those facts in order to facilitate getting information into and

out of the system.In this case, we must also have mapping functions from English sentences to the representation

we are actually going to use and from it back to sentencés. Figure 4.1 shows how these three kinds of objects

relate to each other.
Let's look at a simple example using mathematical logic as the representational formalism. Consider the

English sentence:

Fig.4.1 Mappings between Facts and

Representations

Spot is a dog.

The fact represented by that English sentence can also be represented in logic as:

dog(Spet)

Suppose that we also have a logical representation of the fact that all dogs havetails:

Va: dog(x) > hastail{x}

Then, using the deductive mechanismsof logic, we may generate the new representation object:

hastail(Spet)

Using an appropriate backward mapping function, we could then generate the English sentence:

Spot has a fail.

Or we could make use of this representation of a new fact to cause us to take some appropriate action orto

derive representations of additional facts.

It is important to keep in mind that usually the available mapping functions are not one-to-one. In fact, they

are often not even functions but rather many-to-many relations, (In other words, each object in the domain

may map to several elements in the range, and several elements in the domain may mapto the same element

of the range.) This is particularly true of the mappings involving English representations of facts. For example,

the two sentences “All dogs have tails” and “Every dog hasa tail” could both represent the samefact, namely,

https://hemanthrajhemu.github.io

Knowledge Representation Issues 61

that every dog has at least onetail. On the other hand, the former could representeither the fact that every dog

has at least one tail or the fact that each dog has several tails. The latter may represent either the fact that every

dog hasat least one tail or the fact that there is a tai! that every dog has. As we will see shortly, when we try

to convert English sentences into some other representation, such as logical propositions, we mustfirst decide

what facts the sentences represent and then convert those facts into the new representation.

The starred links of Fig. 4.1 are key components of the design of any knowledge-based program. To see

why, we need to understandthe role that the internal representation of a fact plays in a program, What an AI

program does is to manipulate the internal representations of the facts it is given. This manipulation should

result in new structures that can also be interpreted as internal representations of facts. More precisely, these

structures should be the internal representations offacts that correspond to the answer to the problem described

by the starting set of facts.

Sometimes, a good representation makes the operation of a reasoning program not only correct buttrivial.

A well-known example of this occurs in the context of the mutilated checker board problem, which can be

stated as follows:

The Mutilated Checker board Problem. Consider a normal checker board from which two squares, in opposite

corners, have been removed. The task is to cover all the remaining squares exactly with dominoes, each of which

covers two squares. No overlapping, either of dominoes on top of each other or of dominoes over the boundary of

the mutilated board are allowed. Can this task be done?

One wayto solve this problem is to try to enumerate, exhaustively, all possible tilings to see if one works.

But suppose one wants to be more clever. Figure 4.2 shows three ways in which the mutilated checker board

could be represented (to a person). The first representation does not directly suggest the answerto the problem.

The second may;the third does, when combined with the single additional fact that each domino must cover

exactly one white square and one black square. Even for human problem ‘solvers a representation shift may

make an enormousdifference in problem-solving effectiveness. Recall that we saw a slightly less dramatic

version of this phenomenon with respect to a problem-solving program in Section 1.3.1, where we considered

two different ways of representing a tic-tac-toe board, one of which was as a magic square.

Numberof

black squares = 30

Number of
white squares = 32

fa) {b) Gs
Fig.4.2 Three Representations of a Mutilated Checker board

Figure 4.3 shows an expanded view ofthe starred part of Fig. 4.1 The dotted line across the top represents

the abstract reasoning process that a program is intended to model. Thesolid line across the bottom represents

the concrete reasoning process that a particular program performs. This program successfully models the

abstract process to the extent that, when the backward representation mapping is applied to the program’s

output, the appropriate final facts are actually generated. [f either the programn’s operation or one of the

representation mappingsis not faithful to the problem that is being modeled,then the final facts will probably

not be the desired ones, The key role that is played by the nature of the representation mapping is apparent

from this figure. If no good mapping can be defined for a problem, then no matter how good the program to

solve the problem is, it will not be able to produce answers that correspond to real answers to the problem.

https://hemanthrajhemu.github.io

82 Artificial Intelligence

It is interesting to note that Fig. 4.3 looks very much Initial desired real reasoning ye! Final
like the sort of figure that might appear in a general facts facts

programming book as a description of the relationship J

between an abstract data type (such as a set) and a
. . . forward backward

concrete implementation of that type (e.g., as alinked ¥* representation representation *

list of elements}. There are some differences, though, mapping mapping

between this figure and the formulation usually used Y

in programming texts (such as Ahoetai. [1983]). For
. enn Internal Internal

exampie, in data type design it is expected that the representation — | representation

mapping that we are calling the backward ofinitial facts Specaram ofinitial facts

representation mapping is a function {i.e., every

representation correspondsto only onefact) and thatit

is onto (i.e., there is at least one representation for every fact). Unfortunately, in many AI domains, it may not

be possible to come up with such a representation mapping, and we may have to live with one that gives less

ideal results. But the main idea of what we are doing is the same as what programmersalways do, namely to

find concrete implementations of abstract concepts.

Fig. 4.3 Representation of Facts

4.2 APPROACHES TO KNOWLEDGE REPRESENTATION

A good system for the representation of knowledge in a particular domain should possess the following four

properties:

Representational Adequacy — the ability to representall of the kinds of knowledge that are neededin that

domain.

@ Inferential Adequacy — the ability to manipulate the representational structures in such a way as to

derive new structures comesponding to new knowledge inferred from old.

« Inferential Efficiency — the ability to incorporate into the knowledgestructure additional information

that can be used to focus the attention of the inference mecha- nisms in the most promising directions.

* Acquisitional Efficiency — the ability to acquire new information easily. The simplest case involves

direct insertion, by a person, of new knowledge into the database. Ideally, the program itself would be

able to control knowledge acquisition.

Unfortunately, no single system that optimizes all of the capabilities for all kinds of knowledge has yet

been found. As a result, multiple techniques for knowledge representation exist. Many programsrely on more

than one technique. In the chapters that follow, the most important of these techniques are described in detail.

But in this section, we provide a simple, example-based introduction to the importantideas.

Simple Relational Knowledge

The simplest way to represent declarative facts is as a set of relations of the same sort used in database

systems. Figure 4.4 shows an example ofsuch a relational system.

Player Height Weight Bats-Throws

Hank Aaron 6-0 180 Right-Right

Willic Mays |- 5-10 170 Right-Right

Babe Ruth 6-2 215 Left-Left

Ted Williams 6-3 205 Left-Right

player_info(‘hank aaron’, ‘6-0’, 180,right-right).
Fig. 4.4 Simple Relational Knowledge and a samplefact in Prologhttps://hemanthrajhemu.github.io

Knowledge Representation Issues 83

The reason that this representation is simple is that standing alone it provides very weak inferential

capabilities But knowledge represented in this form may serve as the input to more powerful inference engines.

For example, given just the facts of Fig. 4.4,it is not possible even to answerthe simple question, “Whois the

heaviest player?” But if a procedure for finding the heaviest player is provided, then these facts will enable

the procedure to compute an answer.If, instead, we are provided with a set of rules for deciding which hitter

to put up against a given pitcher (based on right- and left-handedness, say), then this same relation can

provide at least some of the information required by those rules.

Providing support for relational knowledge is what database systems are designed to do. Thus we do not

need to discuss this kind of knowledge representation structure further here, The practical issues that arise in

linking a database system that provides this kind of support to a knowledge representation system that provides

some of the other capabilities that we are about to discuss have already been solved in several commercial

products.

inheritable Knowledge

The relational knowledge of Fig. 4.4 corresponds to a set of attributes and associated values that together

describe the objects of the knowledge base. Knowledge about objects, their attributes, and their values need

nat be as simple as that shown in our example. In particular, it is possible to augmentthe basic representation

with inference mechanisms that operate on the structure of the representation. For this to be effective, the

structure must be designed to correspondto the inference mechanismsthat are desired. One of the most useful

forms of inference is property inheritance, in which elements of specific classes inherit attributes and values

from more general classes in which they are included. .

In order to support property inheritance, objects must be organized into classes and classes must be arranged

in a generalization hierarchy. Figure 4.5 shows some additional baseball knowledge inserted into a structure

that is so arranged, Lines represent attributes. Boxed nodes represent objects and values of attributes of

objects. These values can also be viewed as objects with attributes and values, and so on. The arrows on the

lines point from an object to its value along the correspondingattribute line, The structure shownin the figure

is a slot-and-filler structure. It may also be called a semantic network or a collection offrames. In the latter

case, each individual frame represents the collection of attributes and values associated with a particular
node. Figure 4.6 shows the node for baseball player displayed as a frame.

RightPerson handed

i,
isa

Aduit- |______»-[5-10
Male height

J

isa height 6-1

equal to bats |Baseball- batting-average
handed Player 35D

isa isa

batting-average batting-average Pitcher Fielder

A A
instance instance

Chicago team Three-Finger-| |Pee-Wee-| team | |Brooklyn-
Cubs - Brown Reese * |Dodgers

Figure 4.5 Inheritable Knowledge

https://hemanthrajhemu.github.io

84 Artificial Intelligence

Baseball-Player

isa: Aduli-Male

bats: (EQUAL handed}

height: 6-1

batting-average: 252

Fig. 4.6 Viewing a Node as a Frame

Do not be put off by the confusion in terminology here. There is so much flexibility in the way that this

(and‘the other structures described in this section) can be used to solve particular representation problemsthat

it is difficult to reserve precise words for particular representations. Usually the use of the term frame system

implies somewhat morestructure on theattributes and the inference mechanismsthat are available to apply to
them than does the term semantic network.

In Chapter 9 we discuss structures such as these in substantial detail. But to get an idea of how these

structures support inference using the knowledge they contain, we discuss them briefly here. All of the objects

and most ofthe attributes shown in this example have been chosen to correspond to the baseball domain, and

they have no general significance. The two exceptions to this are the attribute isa, which is being used to show

class inclusion, and the attribute instance, which is heing used to show class membership. These two specific

(and generally useful) attributes provide the basis for property inheritance as an inference technique. Using

this technique, the knowjedge base can support retrieval both of facts that have heen explicitly stored and of

facts that can be derived from those that are explicitly stored,

An idealized form of the property inheritance algorithm can be stated as follows:

Algorithm: Property Inheritance

To retrieve a value V for attribute A of an instance object O-

{. Find O in the knowledge base.

If there is a value there for the attribute A, report that value.

Otherwise, see if there is a value for the attribute instance. H not, then fail.

Otherwise, move to the node corresponding to that value and look for a value forthe attribute A. If one

is found, report it.

5, Otherwise, do until there is no value for the isa attrihute or until an answer is found:

(a) Get the value of the isa attribute and move to that node.

(b) See if there is a value for the attribute A. If there is, report it.

w
h

*

This procedure is simplistic. It does not say what we should do if there is more than one value of the

instance or isa attribute. But it does describe the basic mechanism of inheritance. We can apply this procedure

to our example knowledge base to derive answers to the following queries:

¢ team(Pee-Wee-Reese) = Brooklyn-Dodgers. This attribute had a value stored explicitly in the knowledge

base. /

® batting-average(Three-Finger Brown) = .106. Since there is no value for batting average stored explicitly

for Three Finger Brown, we follow the instance attribute to Pitcher and extract the value stored there.

Now weobserve one ofthe critical characteristics of property inheritance, namely that it may produce

default values that are not guaranteed to be correct but that represent “best guesses”in the face of a lack

of more precise information. In fact, in 1906, Brown’s batting average was .204.
* height(Pee-Wee-Reese) = 6-1. This represents another default inference. Notice here that because we

get to it first, the more specific fact about the height of baseball players overrides a more general fact

about the he'zht of adult males.

https://hemanthrajhemu.github.io

Knowledge Representation Issues 65

« bats(Three-Finger-Brown) = Right. To get a value for the attribute bats required going up the isa

hierarchy to the class Basebail-Player. But what we found there was not a value but a rule for computing

a value. This rule required another value (that for handed) as input. So the entire process must be begun

again recursively to find a value for handed. This time,it is necessary 10 go all the way up to Person to

discoverthat the default value for handedness for people is Right. Now the rule for bats can be applied,

producing the result Righz. In this case, that tums out to be wrong, since Brownis a switch hitter (i.e.,

he can hit both Jeft-and right-handed).

Inferential Knowledge

Property inheritance is a powerful form of inference, but it is not the only useful form. Sometimesall the

poweroftraditional logic (and sometimes even morethan that} is necessary to describe the inferences that are

needed. Figure 4.7 shows two examples of the use of first-order predicate logic to represent additional!

knowledge about baseball.

Va: Bali(x) A Fly(x) A Fair(x) A Infield-Catchable (x) /\

Occupied-Base(first) . Occupied-Base(Second) /\ (Outs <2) A

a[Line-Drive(x) \/ Attempted-Bt,(x)]

lnfield-Fly(x)

Yay : Batter(x) /\ batted(x, y) * infield-Fly(yj— Out(x)

Fig. 4.7 Inferential Knowledge

Of course, this knowledge is useless unless there is also an inference procedure that can exploitit (just as

the default knowledge in the previous example would have been useless without our algorithm for moving

through the knowledgestructure). The required inference procedure now 1s one that implements the standard

logical rules of inference. There are many such procedures, some of which reason forward trom given facts to

conclusions, others of which reason backward from desired conclusions to given facts. One of the most

commonly used of these proceduresis resolution, which exploits a proof by contradiction strategy. Resolution

is described in detail in Chapter 5.
Recall that we hinted at the need for something besides stored primitive values with the batsattribute of

our previous example, Logic provides a powerful structure in which to describe relationships among values.

It is often useful to combine this, or some other powerful description language, witb an isa hierarchy. In

generai,in fact, all of the techniques we are describing here should not be regarded as complete and incompatible

ways of representing knowledge. Instead, they should be viewed as building blocks of a complete

representational system.

Procedural Knowledge

So far, our examples of baseball knowledge have concentrated on relatively static, declarative facts. But

another, equally useful, kind of knowledge is operational, or procedural knowledge, that specifies what to do

when. Procedural knowledge can be represented in programs in many ways. The most common way is simply

as code (in some programming language such as LISP) for doing something. The machine uses the knowledge

when it executes the code to perform a task. Unfortunately, this way of representing procedural knowledge

gets low scores with respect to the properties of inferential adequacy (because it is very difficult to write a

program that can reason about another program’s behavior) and acquisitional efficiency (because the process

of updating and debugging large pieces of code becomes unwieldy).

As an extreme example, compare the representation of the way to compute the value of bats shown in

Fig. 4.6 to one in LISP shownin Fig, 4.8. Although the LISP one will work given a particular way of storing

attributes and values in a list, it does not lend itself to being reasoned about in the same straightforward way

https://hemanthrajhemu.github.io

86 Artificial {Intelligence

as the representation of Fig. 4.6 does. The LISP representation is slightly more powerful since it makes

explicit use of the name of the node whose value for handed is to be found. Butif this matters, the simpler

representation can be augmented to do this as well.

Baseball-Player

ise: Adult-Male

bats: (lambda (x)

(prog 0
Ll

(cond ((caddr x} (return (caddr x)))

(t (setq x (eval (cadr x))}

(cond (x (go L1)}

(t (return nil)}))))
height: 6-1
batting-average: 252

Fig. 4.8 Using LISP Code to Define a Value

Because ofthis difficulty in reasoning with LISP, attempts have been madeto find other ways of representing
procedural knowledge so that it can relatively easily be manipulated both by other programs and by people.

The most commonly used technique for representing procedural knowledge in AI programsis the use of

production rules. Figure 4.9 shows an example of a production rule that represents a piece of operational

knowledge typically possessed by a baseball player.

Production rules, particularly ones that are augmented with information on how they are to be used, are
more procedural than are the other representation methods discussed in this chapter. But making a clean

distinction between declarative and procedural knowledgeis difficult. Although at an intuitive level such a

distinction makes some sense, at a formal level it disappears, as discussed in Section 6.1. In fact, as you can

see, the structure of the declarative knowledge of Fig. 4.7 is not substantially different from that of the operational
knowledge of Fig. 4.9. The important difference is in how the knowledge is used by the procedures that

manipulate it.

If: ninth inning, and

score is close, and

less than 2 outs, and

first base is vacant, and

batter is better hitter than next batter,

Then: walk the batter.

Fig. 4.9 Procedural Knowledge as Rules

4.3. ISSUES IN KNOWLEDGE REPRESENTATION

Before embarking on a discussion of specific mechanisms that have been used to represent various kinds of

real-world knowledge, we need briefly to discuss several issues that cut across all of them:

e Are any attributes of objects so basic that they occur in almost every problem domain?If there are, we

need to make sure that they are handled appropriately in each of the mechanisms we propose.If such

attributes exist, what are they?

e Are there any important relationships that exist among attributes of objects?

https://hemanthrajhemu.github.io

Knowledge Representation Issues 87

e At what level should knowledge be represented?Is there a good setofprimitives tnto which all knowledge

can be broken down? Is it helpful to use such primitives?

* How should sets of objects be represented?

® Given large amount of knowledge stored in a database, how can relevant parts be accessed when they

are needed?

We will talk about each of these questions briefly in the next five sections.

4.3.1 Important Attributes

There are twoattributes that are of very general significance, and we have already seen their use: instance and

isa. These attributes are important because they support property inheritance. They are called a variety of

things in AJ systems, but the names do not matter. What does matter is that they represent class membership

and class inclusion andthatclass inclusion is transitive. In slot-and-filler systems, such as those described in

Chapters 9 and 10, these attributes are usually represented explicitly in a way muchlike that shownin Fig. 4.5

and 4.6. In logic-based systems, these relationships may be represented this way or they may be represented

implicitly by a set of predicates describing particular classes. See Section 5.2 for some examples of this.

4.3.2 Relationships amongAttributes

The attributes that we use to describe objects are themselves entities that we represent. What properties do

they have independent of the specific knowledge they encode? There are four such properties that deserve

mention here:

e Inverses

e Existence in an isa hierarchy

e Techniques for reasoning about values

e Single-valued attributes

Inverses

Entities in the world are related to each other in many different ways. But as soon as we decide to describe

those relationships as attributes, we commit to a perspective in which we focus on one object and lock for

binary relationships between it and others. Attributes are those relationships. So, for example, in Fig. 4.5, we
used the attributes instance, isa and team. Each of these was shownin the figure with a directed arrow,

Originating at the object that was being described and terminating at the object representing the value of the

specified attribute. But we could equally well have focused on the object representing the value. If we dothat,

then there is still a relationship between the two entities, although it is a different one since the original

relationship was not symmetric (although somerelationships, such as sibling, are). In many cases,it is important

to represent this other view of relationships. There are two good ways to dothis.

The first is to represent both relationships in a single representation that ignores focus. Logica] representations

are usually interpreted as doing this. For example, the assertion:

ieam(Pee-Wee-Reese, Brooklyn-Dodgers)

can equally easily be interpreted as a statement about Pee Wee Reese or about the Brooklyn Dodgers. Howit

is actually used depends on the other assertions that a system contains.

The second approach is to use attributes that focus on a single entity but to use them in pairs, one the

inverse of the other. In this approach, we would represent the team information with two attributes:

* one associated with Pee Wee Reese:

team = Brooklyn-Dodgers

https://hemanthrajhemu.github.io

88 Artificial Intelligence

® one associated with Brooklyn Dodgers:

team-members = Pee-Wee-Reese....

This is the approach that is taken in semantic net and frame-hased systems. Whenit is used, it is usually

accompanied by a knowledge acquisition tool that guarantees the consistency of inverse slots by forcing them

to be declared and then checking each time a value is added to one attribute that the corresponding value is

added to the inverse.

An Isa Hierarchy ofAttributes

Just as there are classes ofobjects and specialized subsets of those classes, there are attributes and specializations
of attributes. Consider, for example, the attribute Height. It is actually a specialization of the more general

attribute physical-size whichis, in turn,a specialization ofphysical-attribute. These generalization-specialization

relationships are important for attributes for the same reason that they are important for other concepts—they

support inheritance. In the case ofattributes, they support inheriting information about such thingsas constraints

on the values that the attribute can have and mechanisms for computing those values.

Techniques for Reasoning about Values

Sometimes values of attributes are specified explicitly when a knowledge base is created. We saw several

examplesofthat in the baseball exampie of Fig. 4.5. But often the reasoning system must reason about values

it has not been given explicitly. Several kinds of information can play a role in this reasoning, including:

« Information about the type of the value. For example, the value of Height must be a number measured

in a unit of length.

« Constraints on the value, often stated in terms of related entities. For example, the age of a person
cannot be greater than the age of either of that person’s parents.

« Rules for computing the value whenit is needed. We showed an example of such a rule in Fig. 4.5 for

the bats attribute. These rules are called backward rules, Such rules have also been called if-needed

rules,

e Rules that describe actions that should be taken if a value ever becomes known. These rules are called

forward rules, or sometimes if-added rules.

We discuss forward and backward rules again in Chapter 6, in the context of rulebased knowledge

representation.

Single-Valued Attributes

A specific but very useful kind of attribute is one that is guaranteed to take a unique value. For example, a

baseball player can, at any one time, have only a single height and be a member of only one team.If there is

already a value present for one of these attributes and a different value is asserted, then one of two things has

happened. Either a change has occurred in the world or there is now a contradiction in the knowledge base

that needs to be resolved. Knowledge-representation systems have taken several! different approaches to

providing support for single-valued attributes, including:

e Introduce an explicit notation for temporal interval. If two different values are ever asserted for the

same temporalinterval, signal a contradiction automatically.

e Assumethat the only temporal interval that is of interest is now. So if a new valueis asserted, replace
the old value.

* Provide no explicit support. Logic-based systemsare in this category. But in these systems, knowledge-

base builders can add axiomsthat state that if an attribute has one value thenit is knownnotto haveall

other values.

https://hemanthrajhemu.github.io

Knowledge Representation Issues 89

4.3.3. Choosing the Granularity of Representation

Regardless of the particular representation formalism we choose, 4 is necessary io answer the question “At

whatlevel of detail should the world be represented?” Another waythis question is often phrased is “Whai
should be our primitives?” Should there be a small number of low-level ones or should there be a targer

number covering a range of granularities? A brief exampleillustrates the problem. Suppose we are interested

in the following fact:

John spotted Sue.

We could representthis as!

spotted(agent(Jahn),

object(Sue})

Such a representation would makeit easy to answer questions suchas:

Who spotted Sue?

But now suppose we want to know:

Did John see Sue?

The obvious answeris “yes,” but given only the one fact we have, we cannot discover that answer. Wu:

could, of course, add other facts, such as

spotted(x, y) 3 saw(x, y)

We could then infer the answer to the question.

An alternative solution to this problem is to represent the fact that spotting is really a special type of seeing

explicitly in the representation of the fact. We might write something such as

saw(agent(John),

object(Sue),

timespantbriefly)})

In this representation, we have broken the idea of spotting apart into more primitive concepts ofseeing and

timespan. Using this representation, the fact that John saw Sue is immediately accessible. Butthe fact that he

spotted her is more difficult to get to.
The major advantage of converting all statements into a representation in terms of a small set of primitives

is that the rules that are used to derive inferences from that knowledge need be written only in terms of the

primitives rather than in terms of the many ways in which the knowledge may originally have appeared. Thus

whatis really being argued for is simply some sort of canonical form. Several AJ programs, including those

described by Schank and Abelson [1977] and Wilks [1972], are based on knowledge bases described in terms

of a small number of low-level primitives.

The arguments agens and object are usually called cases. They represent roles involved in the event. This semantic way of

analyzing sentences contrasts with the probably more familiar syntactic approach in which sentences have a surface subject.

direct object, indirect abject, and so forth. We will discuss case grammar [Fillmore, 1968] and its use in natural language

understanding in Section 15.3.2. For the moment, you can safely assumethat the cases mean what their names suggest.

https://hemanthrajhemu.github.io

90 Artificial Intelligence

P o
oePROPEL -~«—\ fist

s-by Poss-by it

JohnSfet <=Physcontact John

Mary John ,Mary

|

John <>MOVE

Poss-byfo

John —> Fist

D

“John punched Mary.”

(a) Mary

Mary>PROPEL« fist

Poss-by/}
Poss-by Ma

Mayfisst <=> Physcontact ry

Johan Mary John

|

Mary <-> MOVE

poss-byfo

Mary ———> Fist

D

“Mary punched John.”

{b) John

Fig. 4.10 Redundant Representations

There are several arguments against the use of low-level primitives. One is that simple high-level facts

may require a lot of storage when broken downinto primitives. Muchofthat storage is really wasted since the

low-level rendition of a particular high- level concept will appear many times, once for each time the high-

level concept is referenced. For example, suppose that actions are being represented as combinations of a

small set of primitive actions. Then the fact that John punched Mary might be represented as shown in

Fig. 4.10(a). The representation says that there was physical contact between John’s fist and Mary. The contact

was caused by John propelling his fist toward Mary, and in order to do that John first went to where Mary

was.” But suppose we also know that Mary punched John. Then we mustalso store the structure shown in

Fig. 4.10(b). If, however, punching were represented simply as punching, then most of the detail of both

structures could be omitted from the structures themselves. It could instead be stored just once in a common

representation of the concept of punching.

A secondbutrelated problem is that if knowledge is initially presented to the system in a relatively high-

level form, such as English, then substantial work must be done to reduce the knowledge into primitive form.

? The representation shown in this example is called conceptual dependency and is discussed in detail in Section 10.1,

https://hemanthrajhemu.github.io

Knowledge Representation Issues 91

Yet, for many purposes, this detailed primitive representation may be unnecessary. Both in understanding

language and in interpreting the world that we see, many things appear that later turn out to be irrelevant. For

the sake ofefficiency, it may be desirable to store these things at a very high level and then to analyze in detail

only those inputs that appear to be important.

A third problem with the use of low-level primitives is that in many domains,it is not at all clear what the

primitives should be. And even in domains in which there may be an obvious set of primitives, there may not be

enough information present in each use of the high-level constructs to enable them to be converted into their

primitive components. Whenthis is true, there is no way to avoid representing facts at a variety of granularities.

The classical example of this sort of situation is provided by kinship terminology [Lindsay, 1963]. There

exists at least one obvious set of primitives: mother, father, son, daughter, and possibly brother and sister. But

how suppose weare told that Mary is Sue’s cousin. An attempt to describe the cousin relationship in terms of

the primitives could produce any of the following interpretations:

® Mary = daughter(brother(mother(Sue)))

@ Mary = daughter(sister(mother(Sue}))

*® Mary = daughier(brother(father(Sue)})

« Mary = daughter(sister(father(Sue})) . ‘

If we do not already know that Mary is female, then of course there are four more possibilities as well.

Since in general we may have no way of choosing among these representations, we have no choice but to

represent the fact using the nonprimitive relation cousin.

The other way to solve this problem is to change our primitives, We could use the set: parent, child,

sibling, male, and female. Then the fact that Mary is Sue’s cousin could be represented as

Mary = child(sibling{parent{Sue)))

But now the primitives incorporate some generalizations that may or may not be appropriate. The main

point to be leamed from this example is that even in very simple domains, the correct set of primitives is not

obvious.

In less well-structured domains, even more problemsarise. For example, given just the fact

John broke the window.

a program would not be able to decide if John’s actions consisted of the primitive sequence:

1. Pick up a hard object.

2. Hur! the object through the window.

or the sequence:

1. Pick up a hard object.

2. Hold onto the object while causing it to crash into the window.

or the single action:

1. Cause hand (or foot) to move fast and crash into the window.

or the single action:

1. Shut the window so hard that the glass breaks.

https://hemanthrajhemu.github.io

92 Artificial Intelligence

As these examples have shown, the problem of choosing the correct granularity of epresentation for a
particular body of knowledge is not easy. Clearly, the lower the level we choose, the less inference required to
reason with it in some cases, but the more conference required to create the representation from English and the

more room it takes to store, since many inferences will be represented many times. The answer for any particular
tek domain must come to a large extent from the domain itself{—to what use is the knowledge to be put?

One way of looking at the question of whether there exists a good set of low-level primitives is that it is a

question of the existence of a unique representation. Does there exist a single, canonical way in which large

bodies of knowledge can be represented independently of how they were originally stated? Another, closely

related, uniqueness question asks whether individual objects can be represented uniquely and independently of

how they are described. This issue is raised in the following quotation from Quine [1961] and discussed in

Woods 11975]:

The phrase Evening Star names a certain large physical object of spherical form, which is hurtling through space

some scores of millions of miles from here. The phrase Morning Star names the same thing, as was probablyfirst

established by some observant Babylonian. But the two phrases cannot be regarded as having the same meaning;

otherwise that Babylonian could have dispensed with his observations and contented himself with reflecting on the
meaning of his words, The meanings, then, being different from one another, must be other than the named object,
which is one and the same in both cases.

In order for a program to be able to reason as did the Babylonian,it must be able to handle several distinct

representations that tum out to stand for the same object.

We discuss the question of the correct granularity of representation, as well as issues involving redundant

storage of information, throughout the next several chapters, particularly in the section on conceptual

dependency, since that theory explicitly proposes that a small set of low-level primitives should be used for

representing actions.

4.3.4 Representing Sets of Objects

It is important to be able to represent sets of objects for several reasons. Oneis that there are some properties

that are true of sets that are not true of the individual membersof a set. As examples, consider the assertions
that are being made in the sentences “There are more sheep than people in Australia” and “English speakers

can be found all over the world.” The only way to represent the facts described in these sentences1s to attach

assertions to the sets representing people, sheep, and English speakers, since, for example, no single English

speaker can be found al! over the world. The other reason that it is important to be able to represent sets of

objects is that if a property is true ofall (or even most) elements of a set, then it is more efficient to associate

it once with the set rather than to associate it explicitly with every element of the set. We have already looked

at ways of doing that, both in logical representations through the use of the universal quantifier and in slot-

and-filler structures, where we used nodes to represent sets and inheritance tc propagate set-level assertions

downto individuals. As we consider ways to represent sets, we will want to consider both ofthese usesof set-

level representations. We will also need to remember that the two uses must be kept distinct. Thus if we assert

something like farge(Elephant), it must be clear whether we are asserting some property of the set itself (i.e.,

that the set of elephants is large) or some property that holds for individual elements of the set (i.e., that

anything that is an elephantis large).

There are three obvious ways in which sets may be represented. The simplest is just by a name. This is

essentially what we did in Section 4.2 when we used the node named Basebaill-Player in our semantic net and

when we used predicates such as Ball and Batter in our logical representation. This simple representation

does make it possible to associate predicates with sets. But it does not, by itself, provide any information

about the set it represents. It does not, for example, tell how to determine whether a particular object is a
member of the set or not.https://hemanthrajhemu.github.io

Knowledge Representation Issues 93

There are two ways to state a definition of a set and its elements. Thefirst is to list the members. Such a

specification is called an extensional definition. The second is to provide a rule that, when a particular object
is evaluated, returns true or false depending on whether the object is in the set or not. Such a rule is called an

intensional definition. For example, an extensional description of the set of our sun’s planets on which people

live is {Earth}. An intensional description is

{a : sun-planet(x) /\ human-inhabited(x)}

For simple sets, it may not matter, except possibly with respect to efficiency concerns, which representation

is used. But the two kinds of representations can function differently in some cases.

One way in which extensional and intensional representations differ is that they do not necessarily correspond

one-to-one with eachother. For example, the extensionally defined set {Earth/ has many intensional definitions

in addition to the one we just gave. Others include:

(x: sun-planet{x) ? nth-farthest-fmm-sun(x, 3}}

(x: sun-planer(x) ? nth-biggest(x, 5)}

Thus, while it is trivial to determine whether twosets are identical if extensional descriptions are used,it
may be very difficult to do so using intensional descriptions.

Intensional representations have two important properties that extensional ones lack, however. Thefirst is
that they can be used to describe infinite sets and sets not all of whose elements are explicitly known. Thus we

can describe intensionally such sets as prime numbers (of whichthere are infinitely many) or kings of England

(even though we do not know whoall of them are or even how many of them there have been). The second
thing we can do with intensional descriptionsis to allow them to depend on parameters that can change, such

as time or spatial location. If we do that, then the actual set that is represented by the description will change
as a function of the value of those parameters. To see the effect of this, consider the sentence, “The president

of the United States used to be a Democrat,” uttered when the currentpresident is a Republican. This sentence
can mean two things. The first is that the specific person who is now president was once a Democrat. This

meaning can be captured straightforwardly with an extensional representation of “the president of the United

States.” We just specify the individual, But there is a second meaning, namely that there was once someone

who was the president and who was a Democrat. To represent the meaning of ‘‘the president of the United
States” given this interpretation requires an intensional description that depends on time. Thus we might write

president(t), where president is some function that maps instances of time onto instances of people, namely

U.S. presidents.

4.3.5 Finding the Right Structures as Needed

Recall that in Chapter 2, we briefly touched on the problem of matching mules against state descriptions during

the problem-solving process. This same issue now rears its head with respectto locating appropriate knowledge
structures that have been stored in memory.

For example, suppose we have a script (a description of a class of events in terms of contexts, participants,

and subevents) that describes the typical sequence of events in a restaurant. This script would enableus to

take a text such as ‘

John went to Steak and Ale last night. He ordered a large rare steak, paid his bill, andleft.

and answer ‘‘yes” to the question

3 We discuss such a script in detail in Chapter 10.

https://hemanthrajhemu.github.io

94 Artificial Intelligence

Did John eat dinner last night?

Notice that nowhere in the story was John’s eating anything mentioned explicitly. But the fact that when one

goes to a restaurant one eats will be contained in the restaurantscript. If we know in advanceto use the restaurant

script, then we can answerthe question easily. But in order to be able to reason abouta variety of things, a system
must have many scripts for everything from going to work to sailing around the world. How will it select the

appropriate one each time? For example, nowhere in our story was the word “restaurant” mentioned.

In fact, in order to have access to the right structure for describing a particular situation, it is necessary to

solve all of the following problems.*

* How to perform an initial selection of the most appropriate structure,

How to fill in appropriate details from the currentsituation.

Howto find a better structure if the one chosen initially turns out not to be appropriate.

Whatto do if none of the available structures 1s appropriate.

When to create and remember a new structure.

There is no good, general purpose method for solving all these problems. Some knowledge-representation
techniques solve some of them. In this section we survey some solutions to two of these problems: how to select

an initial structure to consider and howto find a better structure if that one turns out not to be a good match.

Selecting an [nitial Structure

Selecting candidate knowledge structures to match a particular problem-solving situation is a hard problem:

there are several ways in which it can be done. Three important approaches are the following:

e Index the structures directly by the significant English words that can be used to describe them. For

example, let each verb have associated with it a structure that describes its meaning. This is the approach

taken in conceptual dependency theory, discussed in Chapter 10. Even for selecting simple structures,

such as those representing the meaningsof individual words, though, this approach may not be adequate,

since many words may have several distinct meanings. For example, the word “fly” has a different

meaning in each of the following sentences:

— John flew to New York. (He rode in a plane from one place to another.)

— John flew a kite. (He held a kite that was up inthe air.)

— John flew downthe street. (He moved very rapidly.)

~ John flew into a rage. (An idiom)

Another problem with this approach is that it is onty useful when there is an English description ofthe
problem to be solved.

® Consider each major concept as a pointer to all of the structures (such as scripts} in which it might be

involved, This may produce several sets of prospective structures. For example, the concept Steak

might point to two scripts, one for restaurant and one for supermarket. The concept Bill might point to

a restaurant and a shopping script. Take the intersection of those sets to get the structure(s}, preferably

precisely one, that involves all the content words. Given the pointers just described and the story about

John’s trip to Steak and Ale, the restaurant script would be evoked. One important problem with this
method is that if the problem description contains any even slightly extraneous concepts, then the

intersection of their associated struttures will be empty. This might occur if we had said. for example,
“John rode his bicycle to Steak and Ale last night.” Another problem is that it may require a great deal

of computation to computeall of the possibility sets and then to intersect them. However,if computing

such sets and intersecting them could be done in parallel, then the time required to produce an answer

* Thislist is taken from Minsky [1975].

https://hemanthrajhemu.github.io

Knowledge Representation Issues 95

would be reasonable even if the total number of computations is large. For an exploration of this

parallel approach to clue intersection, see Fahlman [1979].

* Locate one major clue in the problem description and use it to select an initial structure, As other clues

appear, use them to refine the initial selection or to make a completely new one if necessary. For a

discussion of this approach, see Charntak [1978]. The major problem with this methodis that in some

situations there is not an easily identifiable major clue. A second problem is that it is necessary to

anticipate which clues are going to be important and which are not. But the reiative importance of clues

can change dramatically from one situation to another. For example, in many contexts, the color of the

objects involved is not important. But if we are told “The light turned red,” then the color of the light

is the most important feature to consider.

Noneof these proposals seems to be the complete answerto the problem.It often tums out, unfortunately,

that the more complex the knowledge structures are, the harderit 1s to tell when a particular one is appropriate.

Revising the Choice When Necessary

Once wefind a candidate knowledge structure, we must attempt to do a detailed match of it to the problem at

hand. Depending on the representation we are using, the details of the matching process will vary. It may

require variables to be bound to objects. It may require attributes to have their values compared. In any case,

if values that satisfy the required restrictions as imposed by the knowledge structure can be found, they are

put into the appropriate places in the structure. If no appropriate values can be found, then a new structure

must be selected. The way in which the attemptto instantiate this first structure failed may provide useful cues

as to which oneto try next. If, on the other hand, appropriate values can be found, then the current structure

can be taken to be appropriate for describing the current situation. But, of course, that situation may change.

Then information about what happened (for example, we walked around the room we were looking at) may

be useful in selecting a new structure to describe the revised situation.

As was suggested above, the process of instantiating a structure in a particular situation often does not
proceed smoothly. When the process runs into a snag, though,it is often not necessary to abandon the effort

and start over. Rather, there are a variety of things that can be done:

® Select the fragments of the current structure that do correspondto the situation and match them against

candidate alternatives. Choose the best match.If the current structure wasat all close to being appropriate,

much of the work that has been done to build substructuresto fit into it will be preserved.
® Make an excuse for the current structure’s failure and continue to use it. For example, a proposed chair

with only three legs might simply be broken. Or there might be another object in front of it which

occludes one leg. Part of the structure should contain mformation about the features for which it is

acceptable to make excuses. Also, there are general heuristics, such as the fact that a structure is more

likely to be appropriate if a desired feature is missing (perhaps because it is hidden from view) than if

an inappropriate feature is present. For example, a person with one leg is more plausible than a person

with a tail,

e Refer to specific stored links betweenstructures to suggest new directions in which to explore. An example
of this sort of linking amonga set of frames is shownin the similarity network shownin Fig. 4.11.5

e Ifthe knowledgestructures are stored in an isa hierarchy, traverse upwardin it until a structure is found

that is sufficiently general that it does net conflict with the evidence. Either use this structure if it is

specific enough to provide the required knowledge or consider creating a new structure just below the

matching one.

5 This example is taken from Minsky [1975].

https://hemanthrajhemu.github.io

96 Artificial Intelligence

BENCH

no back, too wide

CHAIR 7

too big, no backa atoo high, no back

TABLE STOOL

drawers

SIDEBOARD

DESKyO

no knee room

Fig. 4.11 A Similarity Net

4.4 THE FRAME PROBLEM

So far in this chapter, we have seen several methods for representing knowledge that would allow us to form

complexstate descriptions for a search program, Another issue concerns howto represent efficiently sequences of

problem statesthat arise from a search process. For complex ill-structured problems, this can be a serious matter.

Consider the world of a household robot, There are many objects and relationships in the world, and a state

description must somehow includefacts like on(Plant!2, Table34), under(Table34, Window13), and in(Table34,

Room 1/3). One strategy is to store each state description as a list of such facts. But what happens during the

problem-solving processif each of those descriptions is very long? Mostof the facts will not change from one

state to another, yet each fact will be represented once at every node, and we will quickly run out of memory.

Furthermore, we will spend the majority of our time creating these nodes and copying these facts—most of

which do not change often—from one node to another. For example, in the robot world, we could spend lot
of time recording abovefCeiling, Floor) at every node. AII of this is, of course, in addition to the rea! problem

of figuring out which facts should be different at each node.

This whole problem of representing the facts that change as well as those that do not is knownas theframe

problem [McCarthy and Hayes, 1969]. In some domains, the only hard part is representing all the facts. In

others, though, figuring out which ones change is nontrivial. For example, in the robot world, there might be
a table with a plant on it under the window. Suppose we movethe table to the center of the room. We must also

infer that the plant is now in the center of the room too butthat the window is not.

To support this kind of reasoning, some systems makeuse of an explicit set of axioms calledframe axioms,

which describe all the things that do not change when a particular operator is applied in state n to produce

state n + 1. (The things that do change must be mentioned as part of the operator itself.) Thus, in the robot

domain, we might write axioms such as

color(x,y, 5,;) \ move(x, 51,53) 3 color(x,y, $y)

https://hemanthrajhemu.github.io

Knowledge Representation Issues 97

which can be read as, “If x has color y in state s, and the operation of moving x is applied in state s, to produce

state s3, then the color of x in 5, is still y.” Unfortunately, in any complex domain, a huge numberof these

axioms becomes necessary. An alternative approachis to make the assumption that the only things that change

are the things that must. By “must” here we meanthat the changeis either required explicitly by the axioms

that describe the operator orthat it follows logically from some changethat is asserted explicitly. This idea of

circumscribing the set of unusual things is a very powerful one; it can be usedas a partial solution to the frame

problem and as a way of reasoning with incomplete knowledge. We returm to it in Chapter 7.

But now let us returm briefly to the problem of representing a changing problem state. We could do it by

simply starting with a descriptionofthe initial state and then making changesto that description as indicated

by the rules we apply. This solves the problem of the wasted space and time involved in copying the information

for each node. And it works fine until the first time the search has to backtrack. Then, unless all the changes

that were made can simply be ignored (as they could beif, for example, they were simply additions of new

theorems), we are faced with the problem of backing up to some earlier node. But how do we know what

changes in the problem state description need to be undone? For example, what do we have to change to undo

the effect of mo*ing the table to the center of the room? There are two ways this problem can be solved:

* Do not modify the initial state description at all. At each node, store an indication of the specific

changes that should be made at this node. Wheneverit is necessary to refer to the description of the

current problem state, look at the initial state description and also look back through all the nodes on

the path from thestart state to the current state. This is what we did in our solution to the cryptarithmetic
problem in Section 3.5. This approach makes backtracking very easy, but it makes referring to the state

description fairly complex.
e Modify the initial state description as appropriate, but also record at each node an indication of what to

do to undo the move should it ever be necessary to backtrack through the node. Then, whenever it is

necessary to backtrack, check each node along the way and perform the indicated operations on the

state description.

Sometimes, even these solutions are not enough. We might want to remember, for example, in the robot

world, that before the table was moved, it was under the window and after being moved, it was in the center

of the room. This can be handled by addingto the representation of each fact a specific indication of the time

at which that fact was true. This indicationis called a state variable. But to apply the same techniqueto real-

world problem, we need, for example, separate facts to indicate all the times at which the Statue of Liberty is

in New York,

There is no simple answereither to the question of knowledge representation or to the frame problem.

Each of them is discussed in greater depth later in the context of specific problems. Butit is important to keep

these questions in mind when considering search strategies, since the representation of knowledge and the

search process depend heavily on each other.

SUMMARY

AR RMREAS ot geme eROBOeH ES hic aoe aeoetnen <RETD Fee cae rperetd 8 fhe vee Bet ok Pftepe

The purpose of this chapter has been to outline the need for knowledge in reasoning programs and to survey

issues that must be addressed in the design of a good knowledge representation structure. Of course, we have

not covered everything. In the chapters that follow, we describe some specific representations and Jook at

their relative strengths and weaknesses.

The following collections all contain further discussions of the fundamental issues in knowledge
representation, along with specific techniques to address these issues: Bobrow [1975], Winograd [1978],

Brachman and Levesque [1985], and Halpern [1986]. For especially clear discussions of specific issues on

the topic of knowledge representation and use see Woods [1975] and Brachman [1985].

https://hemanthrajhemu.github.io

CHAPTER

5
USING PREDICATE LOGIC

Nature cares nothingfor logic, ourhuman logic: she has herown, which we do not recognize anddo not

acknowledge untilwe are crushedunder tts wheel,

—Ivan Turgenev
(1818-1883), Russian novelist and playwright

In this chapter, we begin exploring one particular way of representing facts — the language of logic. Other
representational formalisms are discussed in later chapters. The logical formalism is appealing because it

immediately suggests a powerful way of deriving new knowledge from old — mathematical deduction. In
this formalism, we can conclude that a new statement is true by proving that it follows from the statements

that are already known. Thusthe idea of a proof, as developed in mathematicsas a rigorous way of demonstrating

the truth of an already believed proposition, can be extended to include deduction as a way of deriving
answers to questions and solutions to problems.

One of the early domains in which AI techniques were explored was mechanical theorem proving, by

which was meantproving statementsin various areas of mathematics. For example, the Logic Theorist [Newell
et al., 1963] proved theoremsfrom the first chapter of Whitehead and Russell’s Principia Mathematica [1950].

Another theorem prover [Gelemter ef al., 1963] proved theorems in geometry. Mathematical theorem proving

is stil] an active area of Al research. (See, for example, Woset ai. [1984].} But, as we show in this chapter, the

usefulness of some mathematical techniques extends well beyond the traditional scope of mathematics. It

turns out that mathematics is no different from any other complex intellectual endeavor in requiring both

reliable deductive mechanisms and a mass of heuristic knowledge to contro] what would otherwise be a

completely intractable search problem.

At this point, readers who are unfamiliar with propositional and predicate logic may wantto consult a good

introductory logic text before reading the rest of this chapter. Readers who want a more complete and fonnal

presentation of the material in this chapter should consult Chang and Lee [1973]. Throughout the chapter, we

use the following standard logic symbols: “—>” (material implication), “7” (not), “Sy” (or), “/\" (and), “VW”

(for all), and “A”(there exists).https://hemanthrajhemu.github.io

Using Predicate Logic , 99

5.1 REPRESENTING SIMPLE FACTS IN LOGIC

Let’s first explore the use of propositional logic as a way of representing the sort of world knowledge that an

AI system might need. Propositional logic is appealing becauseit is simple to deal with and a decision procedure

for it exists. We can easily represent real-world facts as logical propositions written as well-formedformulas
(wff’s) in propositional logic, as shown in Fig. 5.1. Using these propositions, we could, for example, conclude

from the factthat it is raining the fact that it is not sunny. But very quickly we run up against the limitations of

propositional logic. Suppose we want to represent the obvious fact stated by the classical sentence

It is raining.
RAINING

It is sunny.
SUNNY

It is windy.
WINDY

If it is raining, then it is not sunny.

RAINING >= SUNNY

Fig.5.1 Some Simple Facts in Prepositional Logic

Socrates is a man.

We could write:

SOCRATESMAN

But if we also wanted to represent

Plato is a man.

we would have to write something such as:

PLATOMAN

which would bea totally separate assertion, and we would not be able to draw any conclusions about similarities

between Socrates and Plato. It would be much better to represent these facts as:

MAN(SOCRATES)

MAN(PLATO)

since now the structure of the representation reflects the structure of the knowledgeitself. But to do that, we

need to be able to use predicates applied to arguments. We are in even more difficulty if we try to represent the

equally classic sentence .

All men are mortal.

We could represent this as:

MORTALMAN

https://hemanthrajhemu.github.io

100 Artificial Intelligence

But that fails to capture the relationship between any individual being a man and that individual being a

mortal. To do that, we really need variables and quantification unless we are willing to write separate statements

about the mortality of every known man.
So we appear to be forced to moveto first-order predicate logic (or just predicate logic, since we do not

discuss higher order theories in this chapter) as a way of representing knowledge because il permits

representations of things that cannot reasonably be represented in prepositional logic. In predicate logic, we

can represent real-world facts as statements written as wif's.

But a major motivation for choosing to use Icgic at all is that if we use logical statements as a way of

representing knowledge, then we have available a good way of reasoning with that knowledge. Determining

the validity of a proposition in propositional logic is straightforward, although it may be computationally

hard. So before we adopt predicate logic as a good medium for representing knowledge, we need to ask

whetherit also provides a good way of reasoning with the knowledge. At first glance, the answeris yes. It

provides a way of deducing new statements from old ones. Unfortunately, however, unlike propositional

logic, it does not possess a decision procedure, even an exponential one. There do exist procedures that will

find a proof of a proposed theorem if indeed it is a theorem. But these procedures are not guaranteed to halt if

the proposed statementis not a theorem. In other words, althoughfirst-order predicate logic is not decidable,

it is semidecidable. A simple such procedure is to use the rules of inference te generate theorem’s from the

axioms in some orderly fashion, testing each to see if it is the one for which a proof is sought. This method is
notparticularly efficient, however, and we will wantto try to find a better one.

Although negative results, such as the fact that there can exist no decision procedure for predicate logic,
generally have little direct effect on a science such as Al, which seeks positive methods for doing things, this

particular negative result is helpful since it tells us that in our search for an efficient proof procedure, we

should he content if we find one that will prove theorems, even if it is not guaranteed to halt if given a
nontheorem. And the fact that there cannot exist a decision procedure thathalts on all possihle inputs does not
mean that there cannot exist one that will halt on almost all the inputs it would see in the process oftrying to
solve real problems. So despite the theoretical undecidability of predicate logic, it can still serve as a useful

way of representing and manipulating some of the kinds of knowledge that an AI system might need.

Let’s now explore the use of predicate logic as a way of representing knowledge by looking at a specific

example. Consider the following set of sentences:

Marcus was a man.

Marcus was a Pompeian.

All Pompeians were Romans.

Caesar was a ruler.

All Romans were either Joyal to Caesar or hated him.

Everyoneis loyal to someone.
People only try to assassinate rulers they are not loyalto.

Marcustried to assassinate Caesar.S
H
A
M
E
W
N

The facts described by these sentences can be represented as a set of wff's in predicate logic as follows:
1. Marcus was a man.

manMarcus)

This representation captures the critical fact of Marcus being a man.It fails to capture some of the

information in the English sentence, namely the notion of past tense. Whether this omission is acceptable

or not depends on the use to which we intend to put the knowledge. For this simple example,it will be

all right.

https://hemanthrajhemu.github.io

Using Predicate Logic 101

. Marcus was a Pompeian.

Pompeian(Marcus)

. All Pompeians were Romans.

Va : Pompeian(x) - Roman(x)

. Caesar was a ruler.

ruler{ Caesar)

Here we ignore the fact that proper names are often not references to unique individuals, since many

people share the same name. Sometimes deciding which of several people of the same nameis being

referred to in a particular statement may require a fair amount of knowledge and reasoning.
. All Romanswere either loyal to Caesar or hated him.

Vx: Roman(x) 3 loyalto(x, Caesar) \/ hate(x, Caesar)

In English, the word “or” sometimes meansthe logical inclusive-or and sometimes meansthe logical

exclusive-or (MOR). Here we have used the inclusive interpretation. Some people will argue, however,

that this English sentence is really stating an,exclusive-or. To express that, we would haveto write:

Vx : Romman(x) — [(loyal to(x, Caesar) \/ hate(x, Caesar)) /\

a(loyalto(x, Caesar) /\ hate(x,Caesar))]

. Everyoneis loyal to someone.

Vai y: loyalto(z,y)

A major problem that arises when trying to convert English sentences into logical statements is the

scope of quantifiers. Does this sentence say, as we have assumedin writing the logical formula above,

that for each person there exists someone to whom heorshe is loyal, possibly a different someone for

everyone? Or doesit say that there exists someone to whom everyonets loyal (which would be written

as dy : ¥x : loyalto(x,y))? Often only one of the two interpretations seemslikely, so people tend to

favorit.

. Peopie only try to assassinate rulers they are not loyal to.

Wax: Vy: person{x) / ruler(y) A tryassassinate(x,y) > > loyalta(x,y)

This sentence, too, is ambiguous. Does it mean that the only nilers that people try to assassinate are
those to whom they are not loyal (the interpretation used here), or does it mean that the only thing

people try to do is to assassinate rulers to whom they are not loyal?
In representing this sentence the way we did, we have chosen to write “try to assassinate” as a single

predicate. This gives a fairly simple representation with which we can reason abouttrying to assassinate.

But using this representation, the connections between trying to assassinate and trying to do other

things and between trying to assassinate and actually assassinating could not be made easily. If such

connections were necessary, we would need to choose a different representation.
. Marcustried to assassinate Caesar.

tryassassinate (Marcus, Caesar)

https://hemanthrajhemu.github.io

102 Artificiol Intelligence

From this brief attempt to convert English sentences into logical statements, it should be clear how
difficult the task is. For a good description of many issues involved in this process, see Reichenbach

[1947]. '

Now suppose that we want to use these statements to answer the question

Was Marcus loyal to Caesar?

It seems that using 7 and 8, we should be able to prove that Marcus was not loyal to Caesar (again

ignoring the distinction between past and present tense). Now let’s try to produce a formal proof,

reasoning backward from the desired goal:

aloyatto(Marcus, Caesar)

In order to prove the goal, we need to use the rules of inference to transform it into another goal (or

possibly a set of goals) that can in turn be transformed, and so on, until there are no unsatisfied goals

remaining. This process may require the search of an AND-OR graph (as described in Section 3.4)
whenthere are alternative ways of satisfying individual goals. Here, for simplicity, we show only a

single path. Figure 5.2 shows an attempt to produce a proofof the goal by reducingthe set of necessary

but as yet unattained goals to the empty set. The attempt fails, however, since there is no wayto satisfy

the goal person (Murcus) with the statements we have available.

The problem is that, although we know that Marcus was a man, we do not have any way to conclude

from that that Marcus was a person. We need to add the representation of another fact to our system,

namely:
= loyaito(Marcus, Caesan

T (7, substitution)
person(Marcus\
ruler Caesan”.

tryassassinaie(Marcus, Caesar}

T (4)
person(Marcus)
assaseinateley Caesar

person(Marcus)

Fig. 5.2. An Attempt to Prove sloyaltof{Marcus,Caesar)

. All men are people.

Vs man(x) — person(x) ;

Now we can satisfy the last goal and produce a proof that Marcus was not loyal to Caesar.

From this simple example, we see that three important issues must be addressed in the process of

converting English sentences into logical statements and then using those statements to deduce new

ones:

e Many English sentences are ambiguous (for example, 5, 6, and 7 above). Choosing the correct

interpretation may be difficult.

« There is often a choice of how to represent the knowledge (as discussed in connection with 1, and 7

above). Simple representations are desirable, but they may preclude certain kinds of reasoning. The
expedient representation for a particular set of sentences depends on the use to which the knowledge

contained in the sentences will be put.

https://hemanthrajhemu.github.io

Using Predicate Logic 103

« Even in very simple situations, a set of sentences 1s unlikely to contain all the information necessary
to reason about the topic at hand. In order to be able to use a set of statements effectively, it is

usually necessary to have access to anotherset of staternents that representfacts that people consider

too obvious to mention. We discuss this issue further in Section 10.3.

An additional problem arises in situations where we do not know in advance which statements to deduce,

In the example just presented, the object was to answer the question “Was Marcus loyal to Caesar?” How

would a program decide whether it should try to prove

loyalto(Marcus, Caesar)

aloyalto(Marcus, Caesar}

There are several things it could do. It could abandonthe strategy we have outlined of reasoning backward

from a proposed truth to the axioms and instead try to reason forward and see which answerit gets to. The

problem with this approachis that, in general, the branching factor going forward from the axiomsis so great

that it would probably not get to either answer in any reasonable amountof time. A second thing it could do

is use some sort of heuristic rules for deciding which answeris morelikely and thentry to prove that onefirst.

If it fails to find a proof after some reasonable amountof effort, it can try the other answer. This notion of

limited effort is important, since any proof procedure we use may nothalt if given a nontheorem. Another

thing it could do is simply try to prove both answers simultaneously and stop when one effort is successful.

Even here, however, if there is not enough information available to answer the question with certainty, the

program may neverhalt. Yet a fourth strategy is to try both to prove one answer andto disproveit, and to use

information gained in one of the processes to guide the other.

5.2 REPRESENTING INSTANCE AND ISA RELATIONSHIPS

In Chapter 4, we discussed the specific attributes instance and isa and described the importantrole they play
in a particularly useful form of reasoning, property inheritance. But if we look back at the way we just

represented our knowledge about Marcus and Caesar, we do not appear to have used theseattributes at all. We

certainly have not used predicates with those names. Why not? The answeris that although we have not used

the predicates instance and isa explicitly, we have captured the relationships they are used to express, namely

class membership and class inclusion.

Figure 5.3 shows the first five sentences of the last section represented in logic in three different ways. The

first part of the figure contains the representations we have already discussed. In these representations, class

membership is represented with unary predicates (such as Reman), each of which corresponds to a class.

Asserting that P(x) is true is equivalent to asserting that x is an instance (or element) of P The second part of

the figure contatns representationsthat use the instance predicate explicitly. The predicate instance is a binary

one, whosefirst argument is an object and whose second argumentis a class to which the object belongs. But

these representations do not use an explicit isa predicate. Instead, subclass relationships, such as that between

Pompeians and Romans, are described as shown in sentence 3. The implication mule there states that if an

object is an instance of the subclass Pompeian thenit is an instance of the superclass Roman, Note that this

Tule is equivalent to the standard set-theoretic definition of the subclass-superclass relationship. The third part

contains representations that use both the instance and isa predicates explicitly. The use of the isa predicate

simplifies the representation of sentence 3, but it requires that one additional axiom (shown here as number 6)

be provided. This additional axiom describes how an instance relation and an isa relation can be combined to

derive a new instance relation. This one additional axiom is general, though, and does not need to be provided

separately for additional isa relations.

https://hemanthrajhemu.github.io

104 Artificial Intelligence
cin

markMarcus}

Pompeian(Marcus)

Wx: Pompeianod > Roman(x)

ruler(Caesan

¥x: Roman} > loyalto(x, Caesar \/ hate(x, Caesana
k
o
n

=
instance{Marcus, man)

insiance(Marcus, Pompeian)

Wx: instance(x, Pompeian) > instance(x, Roman)

instance{ Caesar, ruler}

Wax: instance(x, oman) > loyalto(x, Caesars \/ hate(x, Caesarwa
F
o
O
o
n
s

instance(Marcus, man)

instance(Marcus, Pompeian)

isa{Pompeian, Roman)

instance(Caesar, ruler}

vx: instance(x, Homan) > loyalto(x, Caesar \/ hate(x, Caesar)

Wx: Vy: Vz: instance(x, 4) isaly, z} 3 instancetx, z)Q
n
P
a
n

>

Fig.5.3. Three Ways of Representing Class Membership

These examples illustrate two points. The first is fairly specific. It is that, although class and superclass
memberships are importantfacts that need to be represented, those memberships need not be represented with

predicates labeled instance and isa. In fact, in a logical framework it is usually unwieldy to do that, and

instead unary predicates corresponding to the classes are often used. The second point is more general. There

are usually several different ways of representing a given fact within a particular representational framework,

be it logic or anything else. The choice depends partly on which deductions need to be supported most

efficiently and partly on taste. The only important thing is that within a particular knowledge base consistency

of representation is critical. Since any particular inference rule is designed to work on one particular form of

representation,it is necessary that all the knowledge to which thatrule is intended to apply be in the form that

the rule demands. Many errors in the reasoning performed by knowledge-based programs are the result of

inconsistent representation decisions. The moral is simply to be careful.

There is one additional point that needs to be made here on the subject of the use of isa hierarchies in logic-

based systems. The reason that these hierarchies are so important is not that they permit the inference of

superclass membership.It is that by permitting the inference of superclass membership, they permit the inference

of other properties associated with membership in that superclass. So, for example, in our sample knowledge

base it is important to be able to conclude that Marcus is a Roman because we have some relevant knowledge

about Romans, namely that theyeither hate Caesar or are loyal to him. Butrecall thatin the baseball example

of Chapter 4, we were able to associate knowledge with superclasses that could then be overridden by more

specific knowledge associated either with individual instances or with subclasses. In other words, we recorded

default values that could be accessed whenever necessary. For example, there was a height associated with

adult males and a different height associated with baseball players. Our procedure for manipulating the isa

hierarchy guaranteed that we always foundthe correct(i.e., most specific) value for any attribute. Unfortunately,

reproducing this result in logic is difficult.
Suppose, for example, thal, in addition to the facts we already have, we add the following.!

Pompeian(Paulus)

« [loyalto(Paulus, Caesar) \/ hate(Paulus, Caesar)]

For convenience, we now return to our original notation using unary predicates to denote class relations.

https://hemanthrajhemu.github.io

Using Predicate Logic 105

In other words, suppose we want to make Paulus an exception to the general rule about Romansandtheir
feelings toward Caesar. Unfortunately, we cannot simply add these facts to our existing knowledge base the

way we could just add new nodes into a semantic net. The difficulty is that if the old assertions are left

unchanged, then the addition of the new assertions makes the knowledge base inconsistent. In order to restore
consistency, it is necessary to modify the original assertion to which an exception is being made. So our

orginal sentence 5 must become:

Vx: Roman(x) Ameq(x,Paulus) > loyalto(x,Caesar) \/ hate(x,Caesar)

in this framework, every exception to a general rule’ must be stated twice, once in a particular statement

and once in an exception list that forms part of the general rule. This makes the use of general rules in this

framework less convenient and less efficient when there are exceptions than is the use of general rules in a
semantic net.

A further problem arises when information is incomplete and it is not possible to prove that no exceptions

apply in a particular instance. But we defer consideration of this problem until Chapter 7.

5.3 COMPUTABLE FUNCTIONS AND PREDICATES

In the example we explored in the last section,all the simple facts were expressed as combinationsof individual

predicates, such as:

tryassassinate(Marcus, Caesar)

This is fine if the numberoffacts is not very large or if the facts themselves are sufficiently unstructured

that thereis little alternative. But suppose we want to express simple facts, such as the following greater-than

and less-than relationships:

gt(1,0) 10,1)
et(2,1) 1tC4 2}

gt(3,2) 1(2,3)

Clearly we do not want to have to write out the representation of each of these facts individually. For one
thing, there are infinitely many of them. But even if we only considerthe finite number of them that can be

represented, say, using a single machine word per number, it would be extremely inefficientto store explicitly

a large set of statements when wecould, instead, so easily compute each one as we need it, Thus it becomes
useful to augment our representation by these computable predicates. Whatever proof procedure we use,

whenit comes upon one of these predicates, instead of searching for it explicitly in the database or attempting

to deduce it by further reasoning, we can simply invoke a procedure, which we will specify in addition to our

regular rules, that will evaluate it and return true orfalse.

It is often also useful to have computable functions as well as computable predicates. Thus we might want

to be able to evaluate the truth of

gt(2 + 3,1)

To do so requires that we first compute the value of the plus function given the arguments 2 and 3, and then

send the arguments 5 and | to gi. ;

The next example shows how these ideas of computable functions and predicates can be useful. It also

makes use of the notion of equality and allows equal objects to be substituted for each other whenever it

appears helpful to do so dunnga proof.

https://hemanthrajhemu.github.io

106 Artificial Intelligence

Consider the following set of facts, again involving Marcus:

1, Marcus was a man.

meantMarcus)

Again we ignore the issue of tense.

Marcus was a Pompeian.

Pompeian(Marcus)

Marcus was bom in 40 A.D.

bern(Marcus, 40)

For simplicity, we will not represent A.D. explicitly, just as we normally omit it in everyday discussions.

If we ever need to represent dates B.C., then we will have to decide on a way to do that, such as by using

negative numbers. Notice that the representation of a sentence does not haveto look like the sentence itself

as long as there is a way to convert back and forth between them. This allows us to choose a

representation, such as positive and negative numbers, that is easy for a program to work with.

. All men are mortal.

Wat man(x) 3 mortal(x)

. All Pompeians died when the volcano erupted in 79 A.D.

erupted(volcano, 79) /\ ‘Vx : [Pompeian(x) > died(x, 79)|

This sentence clearly asserts the two facts represented above. It may also assert another that we have

not shown, namely that the eruption of the volcano caused the death of the Pompeians. People often

assume causality between concurrent events if such causality seems plausible.

Another problem that arises in interpreting this sentence is that of determining the referent of the

phrase “the volcano.” There is more than one volcano in the world. Clearly the one referred to here is

Vesuvius, which is near Pompeii and erupted in 79 A.D. In general, resolving references such as these

can require both a Jot of reasoning and a lot of additional knowledge.

No mortal lives longer than 150 years.

Vx Wr: Vfq: mortal(x} /\ born(x, t,) \ gt(t, — t,,150) > dead(x, ty)

There are several ways that the content of this sentence could be expressed. For example, we could

introduce a function age and assert that its value is never greater than 150. The representation shown
above is simpler, though, and it will suffice for this example.

It is now 1991.

now = 199]

Here we will exploit the idea of equal quantities that can be substituted for each other.

Now suppose we want to answerthe question “Is Marcus alive?” A quick glance throughthe statements

we have suggests that there may be two ways of deducing an answer. Either we can show that Marcus

is dead because he waskilled by the volcano or we can show that he must be dead because he would

otherwise be more than 150 years old, which we know is not possible. As soon as we attempt to follow

https://hemanthrajhemu.github.io

Using Predicate Logic 107

either of those paths rigorously, however, we discover, just as we did in the last example, that we need
some additional knowledge. For example, our statements talk about dying, but they say nothing that

relates to being alive, which is what the question is asking. So we add the following facts:

8. Alive means not dead.

Veo Ve: [alive(x, 1) 3 ~dead(x,9] “\ [ndead(x, 1) > alive(x, 1]

This is not strictly correct, since ~dead implies alive only for animate objects. (Chairs can be neither

dead noralive.) Again, we will ignore, this for now. This is an example of the fact that rarely do two

expressions have truly identical meaningsin all circumstances.

9. If someonedies, then he is dead at all later times.

Vai Wr, 2 Wty: died(x, t)} A Stlts, f)) @ dead(a,t,)

This representation says that one is dead in all years after the one in which one died. It ignores the

question of whether one is dead in the year in which onedied.

manMarcus}

PompelarkMarcus)

born{Marcus, 40)

Var man(x) 3 mortaix

Vv: Pompeianx - died(x, 79)

eruptedtyolcano, 79)

¥,.¥t 1 Vt: mortakx) “born(x, 4) A gt(ty- t,, 150) + dead(x, ty)
now = 1991

Vx: Vt [alive(x,) — -dead{x, 8) * [Adead{x, | > alive(x, p]

Wx: Wt, : Vb: died(x, 4) A git, t,} > deactx, tL)

Fig. 5.4 A Set ofFacts about Marcus

S
P
O
O
N
O
O
P
O
N

=
_

To answerthat requires breaking time up into smaller units than years. If we do that, we can then add
rules that say such things as “Oneis deadat time (year 1, month 1) if one died during (year /, month /)

and month 2 precedes month I).” We can extend this to days, hours, etc., as necessary. But we do not

want to reduceall time statementsto that level of detail, which is unnecessary and often not available.

A summary ofall the facts we have now represented is given in Fig. 5.4. (The numbering is changed

slightly because sentence 5 has been split into two parts.) Now let’s attempt to answer the question “Is Marcus
alive?” by proving:

aalive(Marcus, now)

Two such proofs are shownin Fig. 5.5 and 5.6. The term vil at the end of each proofindicates that the list

of conditions remaining to be proved is empty and so the proof has succeeded. Notice in those proofs that

whenever a statement of the form:

af\boc

wasused, a and / were set up as independent subgoals.In one sense they are, but in another sense they are not

if they share the same bound variables, since, in that case, consistent substitutions must be made in each of

them. For example, in Fig. 5.6 look at the step justified by statement 3. We can satisfy the goal

https://hemanthrajhemu.github.io

108 Artificial Intelligence

born(Marcus, t))

using statement 3 by binding A to 40, but then we must also bind A to 40 in

at(now — t,, 150)

since the two #,’s were the same variable in statement4, from which the two goals came. A good computational

proof procedure has to include both a way of determining that a match exists and a way of guaranteeing

uniform substitutions throughout a proof. Mechanismsfor doing both those things are discussed below.

salive(Marcus, now)

fT (9, substitution}

dead{Marcus, now)

T (10, substitution)

diec{Marcus, t,) /\ gt(now, t,)

T (5, substitution)

Pompeian{Marcus) /\ gi{now, 79)

T (2)

ot(now, 73)

T (8, substitute equals)

gt(1991,79)
Tt (compute gt)

nil

Fig.5.5 One Way ofProving That Marcus Is Dead

From looking at the proofs we have just shown, two things should be clear:

e Even very simple conclusions can require many steps to prove.

* A variety of processes, such as matching, substitution, and application of modus ponens are involved

in the production ofa proof. This is true even for the simple statements we are using. It would be worse

if we had implications with more than a single term on the right or with complicated expressions

involving amis and ors on theleft.

Thefirst of these observations suggests that if we want to be able to do nontnvial reasoning, we are going

to need some statements that allow us to take bigger steps along the way. These should represent the facts that

people gradually acquire as they become experts. How to get computers to acquire them is a hard problem for

which no very good answer is known.

The second observation suggests that actually building a program to do what people do in producing

proofs such as these may not be easy. In the next section, we introduce a proof procedure called resolution that

reduces some of the complexity because it operates on statements that have first been converted to a single
canonical form.

5.4 RESOLUTION

As we suggest above, it would be useful from a computational point of view ff we had a proof procedure that
carried out in a single operation the variety of processes involved in reasoning with statements in predicate
logic. Resolution is such a procedure, which gainsits efficiency from the fact that it operates on statements

that have been converted to a very convenient standard form, which is described below.

https://hemanthrajhemu.github.io

Using Predicate Logic 109

nalive(Marcus, now)

T (9, substitution}
dead{Marcus, now)

T (7, substitution)

mortai{ Marcus) /\

born(Marcus, t))

giinow — t,, 150)

(4, substitution)

man(Marcus) /\

born(Marcus, t,) \
gt(now — t,, 150)

T (1)
born(Marcus, t,) /\

giinow — t,, 150)

T (3)
gitnow — 40,150)

T (8)
gt(1991 - 40,150)

Tt (compute minus)

gt t951,150)
T {compute gt)

nil

Fig. 5.6 Another Way ofProving That Marcus is Dead

Resolution produces proofs by refutation. In other words, to prove a statement (i.e., show that it is valid),

resolution attempts to show that the negation of the statement produces a contradiction with the known

statements (i.e., that it is unsatisfiable). This approach contrasts with the technique that we have been using to

generate proofs by chaining backward from the theorem to be proved to the axioms. Further discussion of

how resolution operates will be much more straightforward after we have discussed the standard form in

which statements will be represented, so we defer it until then.

5.4.1 Conversion to Clause Form

Suppose we know that all Romans who know Marcus either hate Caesar or think that anyone who hates

anyone 1s crazy. We could represent that in the following wff:

Va: L[Roman(x) *\ know(a, Marcus)] 9

[hate(x,Caesar) \/ (Vy 2 dz: hate(y, z) > thinkcrazy(x, y))]

To use this formula in a proof requires a complex matching process. Then, having matched onepiece ofit,
suchas thinkcrazy(x,y), it is necessary to do the night thing with the rest of the formula including the pieces in

which the matched part is embedded and those in whichit is not. If the formula were in a simpler form,this

proc;ess would be mucheasier. The formula would be easier to work with if

« It were flatter, ic., there was less embedding of components.

« The quantifiers were separated from the rest of the formula so that they did not need to be considered.

Conjunctive normalform [Davis and Putnam, 1960] has both of these properties. For example, the formula

given above for the feelings of Romans who know Marcus would be represented in conjunctive normal form as

aRoman(x) /\ aknow(x, Marcus) \/

hate(x, Caesar) \f ahate(y, z) \/ thinkcrazy(x, 2)

https://hemanthrajhemu.github.io

110 Artificial Intelligence

Since there exists an algorithm for converting any wff into conjunctive normal form, we lose no generality
if we employ a proof procedure (such as resolution) that operates only on wff’s in this form. In fact, for

resolution to work, we need to go one step further. We need to reduce a set of wif’s to a set of clauses, where

a clause 15 defined to be a wff in conjunctive nonmal form but with no instances of the connector A. We can do

this by first converting each wff into conjunctive normal form and then breaking apart each such expression

into clauses, one for each conjunct. All the conjuncts will be considered to be conjoined together as the proof

procedure operates. To convert a wff into clause form, perform the following sequenceofsteps.

Aigorithm: Convert to Clause Form

1. Elimimate —, using the fact that a > 6 is equivalent to 7a \/ b. Performing this transformation on the
wff given above yields

ie: apRomania /\ knew< x, Marcus)| \/

|kate(x, Caesar} \/ (Vy > 7(3z : Aate(y, 2) \/ thinkerazy(yyy}

2. Reduce the scope of each - to a single term, using the fact that -(-~) = p, deMorgan’s laws [which say

that n(@a A 6) =7a\/ 4b and -(a\/ 6) = aa 7b], and the standard correspondences between quantifiers

[7Ve: PO) = dx: PQ) and 7d: POS) = Vx: 4PQd]. Performing this tansformation on the wff from

step 1 yields

Vx: [ARoman(x) \/f mknow(x, Marcus) \/

[hate(x, Caesar) \/ (Wy 1 Vz: ahately, z) \f thinkcrazy(, yyy]

3. Standardize variables so that each quantifier binds a unique variable. Since variables are just dummy

names, this process cannot affect the truth value of the wff. For example, the formula

Vx: Pod yy Vx: GG)

would be converted to

Ve: PAX) YY Vy: OG)

This step is in preparation for the next.

4. Moveall quantifiers to the left of the formula without changing their relative order. This is possible since

there is no conflict among variable names. Performing this operation on the formula of’step 2, we get

Wa: Vy: Vz: [[Reman(x) \/ aknow(x Marcus)| \/

{hate(x, Caesar) \/ (ahate(y, z) \/ thinkcrazy(.y))]

Atthis point, the formula is in what is known as prenex normalform. It consists of a prefix of quantifiers

followed by a matrix, which is quantifier-free.

5. Eliminate existential quantifiers. A formula that contains ar existentially quantified variahle asserts

‘that there is a value that can be substituted for the variable that makes the formula true. We can eliminate

the quantifier by substituting for the variable a reference to a function that produces the desired value.

Since we do not necessarily know how to produce the value, we must create a new function name for

every such replacement. We make no assertions about these functions except that they mustexist. So,

for example, the formula

dy : President(y}

can be transformed into the formula

President(S1)https://hemanthrajhemu.github.io

Using Predicate Logic 111

where S] is a function with no arguments that somehow producesa valuethat satisfies President.

If existential quantifiers occur within the scope of universal quantifiers, then the value that satisfies the

predicate may depend on the values of the universally quantified variables. For example, in the formula

Vat dy cfather-of(yx)

the value of y that satisfies father-of depends on the particular value of x. Thus we must generate

functions with the same number of arguments as the number of universal quantifiers in whose scope
the expression occurs. So this exampie would be transformed into

Wx : father-of(S2(x),x))

These generated functions are called Skolem functions. Sometimes ones with no arguments are called

Skolem constants.

. Drop the prefix. At this point, all remaining variables are universally quantified, so the prefix can just

be dropped and any proof procedure we use can simply assume that any variable it sees is universally

quantified. Now the formula produced in step 4 appears as

[7Roman(x) \y¥ aknow(s, Marcus)|

|hate(x, Caesar) \y (-hate(y, 2) \¥ thinkcrazy/x, y))]

. Convert the matrix into a conjunction of disjuncts. In the case of our example, since there are no and’s,

it is only necessary to exploit the associative property of or [Le., (a A b) ye = (ay c) A(b Ac)] and

simply remove the parentheses, giving

aRoman(x) \y ahnew(x, Marcus) \/

hate(x, Caesar) \/ shate(y, z) Vy thinkcrazy(x, y)

However,it is also frequently necessary to exploit the distributive property [i.e., (a Ab) yc =(ayo)

‘A (bh \¥ c)]. For example, the formula

(winter A wearingboots) \y (summer /\ wearingsandals)

becomes, after one application of the rule

[winter \/ (summer “, wearingsandals)}

/\ [wearingboots \/ (summer /\ wearingsandals)|

and then, after a second application, required since there are still conjuncts joined byOR’s,

(winter \/ summer) /\

(winter \/ wearingsandals) /\

(wearingboots \f summer) /\

(wearingboots \/ wearingsandals}

. Create a separate clause corresponding to each conjunct. In order for a wff to be true, all the clauses

that are generated from it must be true. If we are going to be working with several wff's, all the clauses

generated by cach of them can now be combinedto represent the sameset of facts as were represented

by the original wff’s.

. Standardize apart the variables in the set of clauses generated in step 8. By this we mean rename the

variables so that no two clauses make reference to the same variable. In makingthis transformation, we

rely on the factthat

https://hemanthrajhemu.github.io

112 Artificial Intelligence

(Wx: PQ) A GC) = Wx: Pa) Ax: OO)

Thus since each clause is a separate conjunct and since all the variables are universally quantified,

there need be no relationship between the variables of two clauses, even if they were generated from

the same wff.

Performing this final step of standardization is important because during the resolution procedure it is

sometimes necessary to instantiate a universally quantified variable (i.e., substitute for it a particular value).

But, in general, we want to keep clauses in their most general form as long as possible. So when a variableis

instantiated, we want to know the minimum number of substitutions that must be made to preserve the truth

value of the system.

After applying this entire procedure to a set of wff’s, we will have a set of clauses, each of which is a
disjunction of literals, These clauses can now be exploited by the resolution procedure to generate proofs.

5.4.2 The Basis of Resolution

The resolution procedure is a simple iterative process: at each step, two clauses, called the parent clauses, are

compared (resolved), yielding a new clause that has been inferred from them. The new clause represents ways
that the two parent clauses interact with each other. Suppose that there are two clauses in the system:

winter \/ summer

awinter \/ cold

Recall that this means that both clauses must betrue (1.e., the clauses, although they look independent, are

really conjoined).

Now we observe that precisely one of winter and >winter will be true at any point. If winter is true, then

cold must be true to guarantee the truth of the second clause. If swinter is true, then summer must be true to

guarantee the truth of the first clause. Thus we see that from these two clauses we can deduce

summer \/ cold

This is the deduction that the resolution procedure will make. Resolution operates by taking two clauses

that each contain the sameliteral, in this example, winter. Theliteral must occur in positive form in one clause

and in negative form in the other. The resolvent is obtained by combiningall oftheliterals of the two parent

clauses except the ones that cancel.
If the clause that is produced is the empty clause, then a contradiction has been found. For example, the

two clauses

winter

awirter

will produce the empty clause. If a contradiction exists, then eventually it will be found. Of course, if no

contradiction exists, it is possible that the procedure will never terminate, although as we will see, there are

often ways of detecting that no contradiction exists.
So far, we have discussed only resolution in prepositional logic. In predicate logic, the situation is more

complicated since we must consider all possible ways of substituting values for the variables. The theoretical

basis of the resolution procedure in predicate logic is Herbrand’s theorem [Chang and Lee, 1973], whichtells

us the following:

https://hemanthrajhemu.github.io

Using Predicate Logic 113

« To show that a set of clauses S$ is unsatisfiable, it is necessary to consider only interpretations over a

particular set, called the Herbrand universe ofS.

e A set of clauses § is unsatisfiable if and only if a finite subset of ground instances (in which all bound
variables have had a value substituted for them) of § is unsatisfiable.

The second part of the theorem is important if there is to exist any computational procedure for proving

unsatisfiability, since in a finite amount of time no procedure will be able to examine an infinite set. The first

part suggests that one way to go about finding a contradiction is to try systematically the possible substitutions

and see if each produces a contradiction. But that is highly inefficient. The resolution principle,first introduced

by Robinson [1965], provides a way of finding contradictions by trying a minimum numberof substitutions.

The idea is-to keep clauses in their general form as long as possible and only introduce specific substitutions

when they are required. For more details on different kinds of resolution, see Stickel [1988].

5.4.3 Resolution in Propositional Logic

In order to make it clear how resolution works, we first present the resolution procedure for propositional
logic. We then expandit to include predicate logic.

In propositional logic, the procedure for producing a proof by resolution of proposition P with respect to a

set of axioms F is the following.

Algorithm: Propositional Resolution

1, Convert all the propositions of F to clause form.

2. Negate P and convert the result to clause form. Addit to the set of clauses obtained in step 1.

3. Repeat until either a contradiction is found or no progress can be made:

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resulting clause, called the resolvent, will be the disjunction ofall of

the literals of both of the parent clauses with the following exception: If there are any pairs of

literals LZ and i such that one of the parent clauses contains 1 and the other contains 4Z, then

select one such pair and eliminate both Z and AZ from the resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been found.If it is not, then add it to

the set of clauses available to the procedure.

Let’s look at a simple example. Suppose weare given the axioms shownin the first column of Fig. 5.7 and

we want to prove A. First we convert the axioms to clause form, as shown in the second columnof the figure.

Given Axioms Converted to Clause Form

P P (1)

(PAQROA =P\/ ,01/ A (2}

(S/N Q “S\/ Q (3)

aT\VQ (4)

T T (5)

Fig. 5.7 A Few Facts in Propositional Lagic

Then we negate R, producing 2, whichis already in clause form. Then we begin selecting pairs of clauses to

resolve together. Although any pair of clauses can be resolved, only those pairs that contain complementary

literals will produce a resolventthat is likely to lead to the goal of producing the empty clause (shown as a

box). We might, for example, generate the sequence of resolvents shown in Fig. 5.8. We begin by resolving

with the clause 7since that is one of the clauses that must be involved in the contradiction we are trying to

find.

https://hemanthrajhemu.github.io

114 Artificial Intelligence

One way of viewing the resolution processis thatit takes a set of clauses thatare _p,Qur _R

all assumedto be true and, based on information provided by the others, it generates NN

new clauses that represent restrictions on the way each of those original clauses aPvQ P

can be madetrue. A contradiction occurs when a clause becomessorestricted that ae

there is no way it can be true. This is indicated by the generation of the empty 7K 2@
clause. To see how this works,let’s look again at the example. In order for proposition Ne r

2 to be tme., one of three things must be true: nf 7Q, or R. But we are assuming . wae

that —8 is true. Given that, the only way for proposition 2 to be true is for one of

two things to be true: —/ or ~Q. That is what the first resolvent clause says. But Fig. 5.8 Resolution in
proposition 1 says that P is true, which means that =? cannotbe true, which leaves Propositional
only one way for proposition 2 to be true, namely for ~@ to be true (as shown in Logic

the second resolvent clause). Proposition 4 can be true ifeither ~7 or Q is true. But since we now know that

7Q must be true, the only way for proposition 4 to be true is for aT to be true (the third resolvent). But

proposition 5 says that T is true. Thus there is no wayforall of these clausesto be true in a single interpretation.

This is indicated by the empty clause (the last resolvent).

5.4.4 The Unification Algorithm

In propositional logic, it is easy to determine that two literals cannot both be true at the same time. Simply

look for Z and AL In predicate logic, this matching process is more complicated since the arguments of the

predicates must be considered. For example, man(John) and ~man(fohn) is a contradiction, while man(John)

artd sman(Spor) is not Thus, in order to determine contradictions, we need a matching procedure that compares

two literals and discovers whether there exists a set of substitutions that makes them identical. There is a

straightforward recursive procedure, called the unification algorithm, that does just this.

The basic idea of unification is very simple. To attempt to unify twoliterals, we first check if their initial

predicate symbols are the same. If so, we can proceed. Otherwise, there is no way they can be unified,

regardless of their arguments. For example, the twoliterals

tryassassinate(Marcus. Caesar)

hate(Marcus, Caesar)

cannotbe unified.If the predicate symbols match, then we must check the arguments, one pair at a time. If the

first matches, we can continue with the second, and so on. To test each argument pair, we can simply call the

unification procedure recursively. The matching rules are simple. Different constants or predicates cannot

match; identical ones can. A variable can match another variable, any constant, or a predicate expression,

with the restriction that the predicate expression must not contain any instances of the variable being matched.
The only complication in this procedure is that we must find a single, consistent substitution for the entire

literal, not separate ones for each piece of it. To do this, we must take each substitution that we find and apply

it to the remainder of the literals before we continue trying to unify them. For example, suppose we want to

unify the expressions

P(xx)

P(y,.2)

The two instances of P match fine. Next we compare x and y, and decide that if we substitute y for x, they

could match. We will write that substitution as

wWhx

https://hemanthrajhemu.github.io

Using Predicate Logic 115

(We could, of course, have decided instead to substitute x for y, since they are both just dummy variable

names. The algonthm will simply pick one of these two substitutions.) But now, if we simply continue and *

match x and z. we produce tne substitution z/x. But we cannot substitute bothy and z for x, so we have not

produced a consistent substitution.

What we need to do after finding the first substitutiony/* is to make that substitution throughouttheliterals,

giving

POY, ¥)
Py, z)

Now we can attempt to unify arguments v and z, which succeeds with the substitution z/y. The entire

unification process has now succeeded with a substitution that is the composition of the two substitutions we

found. We write the composition as

(z/y(yx)

following standard notation for function composition. In general, the substitution (4,/a,, a,/a,, ...(b\/D,,
b,/b,,...)... means to apply all the substitutions of the right- mostlist, then take the result and apply all the ones

of the nextlist, and so forth, until all substitutions have been applied.

The object of the unification procedure is to discover at least one substitution that causes twoliterals to
match. Usually, if there is one such substitution there are many. ‘ For example, the literals

hate(x, y)

hate({Marcus, z)

could be unified with any of the following substitutions:

(Marcus/x,2z/y)

(Marcus/*,¥/2z)

(Marcus/x, Cuesar/y,Caesar/z)

’ (Marcus/x, Polontus/y, Polonius/z)

The first two of these are equivalent exceptfor lexical variation. But the second two, although they produce

a match, also produce a substitution that is more restrictive than absolutely necessary for the match. Because

the final substitution produced by the unification process will be used by the resolution procedure,it is useful

to generate the most general unifier possible. The algorithm shown below will do that.

Having explained the operation of the unification algorithm, we can now state it concisely. We describe a

procedure Unify(Ll, L2), which returnsas its value a list representing the compositionof the substitutions that

were performed during the match. The empty list, NIL, indicates that a match was fpund without any

substitutions. The list consisting of the single value FAIL indicates that the unification procedure failed.

Algorithm: Unify(Ll, L2)

1. If £1 or £2 are both variables or constants, then:

(a} If £1 and £2 are identical, then return NIL.

(b) Else if £1] is a variable, then if £1 occurs in £2 then return {FAIL}, else return (£2/L1).

(c) Else if £2 is a variable then if £2 occurs in Z1 then return {FAIL}, else returm (21/22).

(d) Else return {FAIL}.

https://hemanthrajhemu.github.io

116 Artificial Intelligence

2. If the initial predicate symbols in £1 and 12 are not identical, then return { FAIL).

If LI and £2 have a different number of arguments, then return {FAIL}.

4. Set SUBSTto NIL.(Atthe end of this procedure, SUBST will contain all the substitutions used to unify

£\ and £2.)
5. For i — 1 to numberof arguments in £1:

(a) Call Unify with the /th argumentof L! and the ith argument of £2, putting result in S.

(b) If § contains FAIL then retum {FAIL}.

(c} If Sis not equal to NIL then:

(i) Apply S to the remainderof both L} and £2.

Gi) SUBST : = APPEND(S, SUBST).
6. Retum SUBST.

The only part of this algorithm that we have not yet discussed is the check in steps 1() and I(c) to make

sure that an expression involving a given vanable is not unified with that variable. Suppose we were aliempting

to unify the expressions

we

F(a.)
F(g)gQ))

If we accepted g(x) as a substitution for x, then we would have to substitute it for « in the remainder of the

expressions. But this leads to infinite recursion since it will never be possible to eliminate x. ,

Unification has deep mathematical roots and is a useful operation in many AI programs, for example,

theorem provers and natural language parsers. As a result, efficient data structures and algorithmsfor unification

have been developed. For an introduction to these techniques and applications, see Knight [1989].

5.4.5 Resolution in Predicate Logic

We now have an easy wayof determining that two literals are contradictory——they are if one of them can be

unified with the negation of the other, So, for example, man(x) and aman(Spot) are contradictory, since

man(x) and man(Spot) can be unified. This corresponds to the intuition that says that man(x) cannot be true

for all x if there is known to be some x, say Spot, for which man(x) is false. Thus in order to use resolution for

expressions in the predicate logic, we use the unification algorithm to locate pairs of literals that cancel out.

Wealso need to use the unifier produced by the unification algorithm to generate the resolvent clause. For

example, suppose we want to resolve two clauses:

1. man(Marcus)

2, rman(x,) \/ mortal(x,)

Theliteral man{Mareus) can be unified with the literal man/x\) with the substitution Marcus/x,, telling us

that for x, = Marcus, aman(Marcus)is false, But we cannot simply cancel out the two man literals as we did
in propositional logic and generate the resolvent mortal(x,). Clause 2 says that for a given x,, either ~man(x,)

or mortal(x,). So for it to be true, we can now conclude only that mortal(Marcus) must be true. It is not

necessary that morfal(x,) be true for all x,, since for some values of x,, sman(x,} might be true, making

mortal(x,) irrelevant to the truth of the complete clause. So the resolvent generated by clauses 1 and 2 must be

mortal(Marcus), which we get by applying the result of the unification processto.the resolvent. The resolution

process can then proceed from there to discover whether mortal(Marcus) leads to a contradiction with other

available clauses.

This example illustrates the importance of standardizing variables apart during the process of converting
expressions to clause form. Given that that standardization has bee’n done, it is easy to determine how the

https://hemanthrajhemu.github.io

Using Predicate Logic 117

unifier must be used to perform substitutions to create the resolvent. If two instances of the same variable

occur, then they must be given identical substitutions.

We can now state the resolution algorithm for predicate logic as follows, assuming a set of given statements

F and a statement to be proved P:

Algorithm: Resolution

1. Convert all the statements of F to clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses obttfHied in J.
3. Repeat until either a contradiction is found, no progress can be made, or a prede- termined amount of

effort has been expended.

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunctionofall the literals of both parent clauses

with appropriate substitutions performed and with the following exception: If there is one pair of
literals 71 and 72 such that one of the parent clauses contains 72 and the other contains 7} and

if 71 and 72 are unifiable, then neither 71 nor 72 should appear in the resolvent. We call 71 and 72

Complementary literals. Use the substitution produced by the unification to create the resolvent.If

there is more than one pair of complementary literals, only one pair should be omitted from the

resolvent.

(c) Ifthe resolvent is the empty clause, then a contradiction has been found.If it is not, then addit to

the set of clauses available to the procedure.

If the choice ofclauses to resolve together at each step is madein certain systematic ways, then the resolution

procedure will find a contradiction if one exists. However, it may take a very long time. There exist strategies

for making the choice that can speed up the process considerably:

¢ Only resolve pairs of clauses that contain complementary literals, since only such reslutions produce

new clauses that are harderto satisfy than their parents. To facilitate this, index clauses by the predicates

they contain, combined with an indication of whether the predicate is negated. Then, given a particular
clause, possible resolvents that contain a complementary occurrence of one of its predi- cates can be

located directly.

e Eliminate certain clauses as soon as they are generated so that they cannotpartic- ipate in later resolutions.

Twokinds of clauses should be eliminated: tautologies (which can never be unsatisfied} and clauses that

are subsumed by other clauses (i.e., they are easier ;o satisfy. For example, P \/ @ is subsumed by P)

« Wheneverpossible, resolve either with one of the clauses that is part of the statement we are trying to

refute or with a clause generated by a resolution with such a clause. This is called the set-of-suppert

Strategy and corresponds to the intuition that the contradiction we are looking for must involve the

statement we are trying to prove. Any other contradiction would say that the previously believed

statements were inconsistent.

e Wheneverpossible, resolve with clauses that have a single literal. Such resolutions generate new clauses

with fewer literals than the larger of their parent clauses and thus are probably closer to the goal of a

resolvent with zero terms. This method is called the unit-preference strategy.

Let’s now retum to our discussion of Marcus and show how resolution can be used to prove new things

about him. Let’s first consider the set of statements introduced in Section 5.1. To use them in resolution

proofs, we must convert them to clause form as described in Section 5.4.1. Figure 5.9(@) showsthe results of

that conversion. Figure 5.9(/) shows a resolution proof of the statement

hate(Marcus, Caesar)

 https://hemanthrajhemu.github.io

118 Artificial Intelligence

Axioms in clause form:

1. man{Marcus)

2. Pompeian(Marcus)

3. =-Pompeian(x,} \/ Roman(x,)

4, ruledCaesar

5. =Romar(x,) \/ loyalto(x,,Caesar) \/ hate(x,, Caesar

6. loyaltalx,,fKx5))

7. -man(xy) \/ orulerly,) \/ otryassassinate(x,,¥,) \/ loyalto(x,,y;)

8. tryassassinate(Marcus,Caesar

(a)

Prove: hate (Marcus, Caesar) shate (Marcus, Caesar) 5

Marcus/x2

3. Roman (Marcus) \/ loyaito (Marcus, Caesar)

aeMarcus!x;

—Pompeian (Marcus) \/ foyalto (Marcus, Caesar) 2

ae

7 loyalfo (Marcus, Caesar)

Tras! Caesarly,

1 —man (Marcus) \/ —ruler (Caesar) \/ siryassassinate (Marcus, Caesar)

Ne

—rulernCaesar) \/ —tryassassinate (Marcus, Caesar) 4

oN
atryassassinate (Marcus, Caesar)

{b)
Fig.5.9 A Resolution Proof

8

Of course, many more resolvents could have been generated than we have shown,but we used the heuristics

described above to guide the search. Notice that what we have done here essentially is to reason backward

from the statement we want to show is a contradiction through a set of intermediate conclusionsto the final
conclusion of inconsistency.

Suppose our actual goal in proving the assertion

hate(Marcus, Caesar)

was to answerthe question “Did Marcus hate Caesar?”In that case, we might just as easily have attempted to
prove the statement

shate(Marcus, Caesar)

https://hemanthrajhemu.github.io

Using Predicate Logic 119

To do so, we would have added

hate(Marcus, Caesar)

to the set of available clauses and begun the resolution process. But immediately we notice that there are no

clauses that containa literal involving 7hate. Since the resolution process can only generate new clausesthat

are composed of combinationsofliterals from already existing clauses, we know that no such clause can be

generated and thus we conclude that hate(Marcus,Caesar) will not produce a contradiction with the known

statements. This is an example of the kind of situation in which the resolution procedure can detect that no
contradiction exists. Sometimesthis situation is detected not at the beginning ofa proof, but part way through,

as shown in the example in Figure 5.10(a), based on the axioms given in Fig. 5.9,

But suppose our knowledge base contained the two additional statements

—loyaito (Marcus, Caesar) 5

Marcus/x2

3. -=FRoman (Marcus) \/ foyalte (Marcus, Caesar)

aeMarcus/x,

—Pompeian (Marcus) \/ hate (Marcus, Caesar) 3

ae

hate (Marcus, Caesar)

(a)

hate (Marcus, Caesar) 40

 Marcus/, Caasar/y3

persecute (Caesar, Marcus) 9
Marcus, Caesar/y2

hate (Marcus, Caesar)

{b)

Fig.5.10 An Unsuccessful Attempt at Resolution

9. persecute(x, vy) — hate(y, Xx)

10. Aate(x, y) > persecute(y, x)

Converting to clause form, we get

9. apersecute(Xs, ¥2) \/ hate(yy, X5)

10. shate(x,, ¥4) VV persecute(y3, X,)

These statements enable the proof of Fig. 5.10(a) to continue as shownin Fig. 5.10(5). Now to detect that

there is no contradiction we must discover that the only resolvents that can be generated have been generated

before. In other words, although we can generate resolvents, we can generate no new ones.

https://hemanthrajhemu.github.io

120 Artificial Intelligence

Given:

1. xfather(x, y) \¥ owoman(x)

(Le., father(x, y) > swoman(x)
2. amother(x, y) \¥ woman(x)

. {i.¢., Mother(x, yi > woman(x))

3. mother Chris, Mary)

4. father(Chris, Bill

1 2

ae

—father (x,y) ~Mother, {x,y} 3

Chris{x, Mary/y

—father (Chris, Mary)

Fig.5.11 The Need to Standardize Variables

Axioms in clause form:

man{Marcus)

Pompeian(Marcus)

horn(Marcus, 40}

mman(x,) \/ mortallx,)

—Pompeianx,} \/ died(x,,79)

erupied{ volcano,79}

smorta(r%) \f »boM(xg, 4) \/ mgi{tz — t, 150) \/ deaa{x,, t)
now = 2008

~alive(x,, &) \/ 7deaalx,, ty)

dead(xs, t4} \/ alive(x,, &)

10. -diedtxg ts) \/ ~Qtlig,te) \V deadx, fe)
Prove: -alive(Marcus, now)

E
N
B

P
o
h

+
©

6
o
v

alive (Marcus, now) 9a

Marcus}x,, now/ts
~—dead (Marcus, now) 40
NNMarcus[xg, now/ts

5 adead (Marcus, ts) \/ —gt (now, ts)

N
L

Marousfx 79 {ts

—Pompeian (Marcus) \/ wgt (now, 79)

Substitute equals

—Pompeian (Marcus) \/ ~gi(2008, 79}

SNteduce

—Pompeian (Marcus) 2

Ne

Fig.5.12 Using Resolution with Equality and Reduce

 https://hemanthrajhemu.github.io

Using Predicate Logic 121

Recail that the final step of the process of converting a set of formulas to clause form was to standardize

apart the variables that appear in the final clauses, Now that we have discussed the resolution procedure, we

can see clearly why this step is so important. Figure 5.11 shows an example ofthe difficulty that may arise if

standardization is not done. Because the variable y occurs in both clause 1 and clause 2, the substitution at the

second resolution step producesa clause that is too restricted and so does not lead to the contradiction thatis

present in the database. If, instead, the clause

afather(Chris, y)

had been produced, the contradiction with clause 4 would have emerged. This would have happenedif clause

2 had been rewritten as

amother(a, 6) \f woman{a)

In its pure form, resolution requires all the knowledge it uses to be represented in the form ofclauses. But
as we pointed out in Section 5.3, it is often moreefficient to represent certain kinds of informationin the form
of computable functions, computable predicates, and equality relationships.It is not hard to augmentresolution

to handle this sort of knowledge. Figure 5.12 shows, a resolution proofof the statement

nalive(Marcus,now)

based on the statements given in Section 5.3. We have added two ways of generating new clauses, in addition

to the resolution rule:

e Substitution of one value for another to which it is equal.

¢ Reduction of computable predicates. If the predicate evaluates to FALSE,it can simply be dropped,

since adding V FALSE to a disjunction cannot change its truth value. If the predicate evaluates to

TRUE,then the generated clause is a tautology and cannotlead to a contradiction.

5.4.6 The Need to Try Several Substitutions

Resolution provides a very good wayoffinding a refutation proof without actually trying all the substitutions

that Herbrand’s theorem suggests might be necessary. But it does not always eliminate the necessity of trying

more than one substitution. For example, suppose we know,in addition to the statements in Section 5.i, that

hate(Marcus, Paulus)

hate(Marcus, Julian)

Now if we want to prove that Marcus hates some ruier, we would be likely to try each substitution shown

in Figure 5.13(a) and (b) before finding the contradiction shown in (c). Sometimes there is no way short of

very good luck to avoid trying several substitutions.

5.4.7 Question Answering

Very early in the history of AI it was realized that theorem-proving techniques could be applied to the problem

of answering questions. As we have already suggested, this seems natural since both deriving theorems from

axioms and deriving new facts (answers) from old facts employ the process of deduction. We have already

shown how resolution can be used to answer yes-no questions, such as “ls Marcus alive?” In this section, we

show how resolution can be used to answerfill-in-the-blank questions, such as “When did Marcus die?” or

https://hemanthrajhemu.github.io

122 Artificial intelligence

“Who tried to assassinate a ruler?” Answering these questions involves finding 4 known statement that matches

the terms giver in the question and then responding with anotherpiece of that same statementthat fills the slot

dvianded by the question. For example, to answer the question “When did Marcus die?” we need a statement
of the form

died({Marcus, 97)

with 7? actually filled in by some particular year. So, since we can prove the statement

died(Marcus, 79)

we can respond with the answer 79.

Tt turns out that the resolution procedure provides an easy way of locating just the statement we need and

finding a proof for it. Let’s continue with the example question

Prove: dx : hate(Marcus,x) *\ ruler(x}
{negate): adx : hate(Marcus,x) /\ ruler(x)
(clausify): sahate(Marcus,x} \/ arulenx}

—shate(Marcus, x) \/ -ruler(x) hate (Marcus, Paulus)

Paulus|x

rulerPaulus}

(a)

shate(Marcus, x)\/ aruler(x} Aate(Mareus, Julian)

Julian{x

rulerJulian)

(b)

—hate (Marcus, x) \/ -nuler(x) ~hate(Marcus, Caesar)

Caesar/x

ruler (Caesar) ruler (Caesar\

(s)

Fig. 5.13 Trying Several Substitutions

‘When uid Marcus die?”In order to be able to answerthis question, it must first be true that Marcus died.

Thusit must be the case that

At: died(Marcus,t)

A reasonable first step then mightbe to try to prove this. To do so using resolution, we aitempt to show that

dt: died(Marcus, i)

produces a contradiction. What does it mean for that statement to produce a contradiction? Either it conflicts
with a statement of the form

Vet died(Marcus,t)

https://hemanthrajhemu.github.io

Using Predicate Logic "423

where ¢ is a variable, in which case we can either answer the question by reporting that there are many times

at which Marcus died, or we can simply pick one such time and respond with it. The other possibility is that
we produce a contradiction with one or more specific statements of the form

died(Marcus, date)

for some specific value of date. Whatever value of date we use in producing that contradiction is the answer
we want. The value that proves that there is a value (and thus the inconsistency of the statement that there is

no such value) is exactly the value we want.

Figure 5.14(a) shows how the resolution process finds the statement for which we are looking. The answer
to the question can then be derived from the chain of unifications that lead back to the starting clause. We can

eliminate the necessity for this final step by adding an additional expression to the one we are going to use to
try to find a contradiction. This new expression will simply be the one weare trying to prove true (.e., it will

be the negation of the expression that is actually used in the resolution}. We can tag it with a special marker so
that it will not interfere with the resolution process. (In the figure, it is underlined.) It wiil just get carried

along, but each time unification is done, the variables in this dummy expression will be bound just as are the

ones in the clausesthat are actively being used. Instead of terminating on reachingthe nil clause, the resolution

procedure will terminate when ali that is left is the dummy expression. The bindings of its variables at that

point provide the answer to the question. Figure 5.14(fr) shows how this process produces an answerto our

question.

Unfortunately, given a particular representation ofthe facts in a system, there will usually be some questions

that cannot be answered using this mechanism. For example, suppose that we want to answer the question

“What happened in 79 A.D.?” \ising the statements in Section 5.3. In order to answer the question, we need to

prove that something happened in 79. We need to prove

dx : event(x, 79}

—di ; died(Marcus, t) = —died(Marcus,t)

=Pompeian(xs) \/ died(x, 79) died (Marcus, f)

T9/t, Marcus/x,

Pompeian(Marcus) | -.Pompeian(Marcus)

ae

(a)

—=Pompeian(x,) \/ died{x,, 79) —=died(Marcus, t) \/ died (Marcus, f}

NTMarcus/x,

—Pompeian(Marcus) \/ died (Marcus, 79)

—Pompeian(Marcus)

=adied(Mercus, 79)

(b)
Fig.5.14 Answer Extraction Using Resolution

https://hemanthrajhemu.github.io

124 Artificial Intelligence

and to discover a value for x. But we do not have any statements of the form event(x, y).

We can, however, answer the question if we change our representation. Instead of saying

erupted(volcano, 79)

we Can say

event(erupted(volcane), 79)

Then the simple proof shown in Fig. 5.15 enables us to answer the question.

This new representation has the drawback that it is more complex than the old one. Andit still does not
make it possible to answer all conceivable questions. In general, it is necessary to decide on the kinds of

questions that will be asked and to design a representation appropriate for those questions.

-nevent(x,79) \/ eveni(x, 79) event (erupted (voicano),79)

erupted (volcano)x

avent (erupted {volcano),79)

Fig. 5.15 Using the New Representation

Of course, yes-no and fill-in-the-blank questions are not the only kinds one could ask. For example, we

might ask how to do something. So we have not yet completely solved the problem of question answering.In

later chapters, we discuss some other methods for answering a variety of questions. Some of them exploit

resolution; others do not.

5.5 NATURAL DEDUCTION

In the Jast section, we introduced resolution as an easily implementable proof procedure that relies for its
simplicity on a uniform representation of the statements it uses. Unfortunately, uniformity has its price—

everything looks the same. Since everything looks the same, there is no easy way to select those statements
that are the most likely to be useful in solving a particular problem. In converting everything to clause form,

we often lose valuable heuristic information that is contained in the original representation of the facts. For

example, suppose we believe that all judges who are not crooked are well-educated, which can be represented

as

Wa: judge(x) A ~crooked(x) > educated(x)

In this form, the statement suggests a way of deducing that someone is educated. But when the same

statement is converted to clause form,

ajudge(x) \/ crooked(x) \/ educated{x)

it appears also to be a way of deducing that someoneis not a judge by showing that heis not crooked and not

educated. Of course, in a logical sense,it is. But it is almost certainly not the best way, or even a very good

way, to go about showing that someoneis not a judge. The heuristic information contained in the original
statement has been lost in the transformation.

Another problem with the use of resolution as the basis of a theorem-proving system is that people do not

think in resolution. Thusit is very difficult for a person to interact with a resolution theorem prover, either to

https://hemanthrajhemu.github.io

Using Predicate Logic 125

give it advice or to be given advice by it. Since proving very hard things is something that computers still do

poorly, it is important from a practical standpoint that such interaction be possibile. To facilitate it, we are

foiced to look for a way of doing machine theorem proving that comesponds more closely to the processes

used in hurnan theorem proving. We are thus led to what we call, mostly by definition, natural deduction.

Natural deduction is not a precise term. Rather it describes a melange of techniques, used in combination

to solve problems that are not tractable by any one method alone. One common technique is to arrange
knowledge, not by predicates, as we have been doing, but rather by the objects involved in the predicates.

Sometechniques for doing this are described in Chapter 9. Another technique is to use a set of rewrite rules

that not only describe logical implications but also suggest the way that those implications can be exploited in

proofs. °

For a good survey of the variety of techniques that can be exploited in a natural deduction system, see

Bledsoe [1977]. Although the emphasis in that paper is on proving mathematical theorems, many ofthe ideas

in it can be applied to a variety of domains in whichit is necessary to deduce new statements from known

ones. For another discussion of theorem proving using natural mechanisms, see Boyer and Moore {1988},

which describes a system for reasoning about programs.It places particular emphasis on the use’of mathematical

induction as a proof technique.

SUMMARY
bee novenmas a SLPAMORAT yHgramyoney a cdenneindadgAtink wees
GREK GS x Ry em nee He

“

EASHMIHY £ poe Sah smd eGo ELT AEE ETE AS Pe

In this chapter we showed how predicate logic can be used as the basis of a technique for knowledge

representation. We also discussed a problem-solving technique, resolution, that can be applied when knowledge

is represented in this way. The resolution procedure is not guaranteed to halt if given a nontheorem to prove.

Butis it guaranteed io halt and find a contradiction if one exists? This is called the completeness question. In
the form in which we have presented the algorithm, the answerto this question is no. Some small changes,

usually not implemented in theorem-proving systems, must be made to guarantee completeness. But, from a

computational point of view, completeness is not the only important question. Instead, we must ask whether

a proof can be foundin the limited amountof time that is available. There are two ways to approach achieving

this computational goal. The first is to search for good heuristics that can inform a theorem-proving program.

Current theorem-proving research attempts to do this. The other approachis to change not the program but the
data given to the program.In this approach, we recognize that a knowledge base that is just a list of logical

assertions possesses no structure. Suppose an information-bearing structure could be imposed on such a

knowledge base. Then that additional information could be used to guide the program that uses the knowledge.

Such a program majuiot look a lot like a theorem prover, althoughit will still be a knowledge-based problem

solver. We discuss this idea further in Chapter 9.

A seconddifficulty with the use of theorem proving in AI systemsis that there are some kindsofinformation

that are not easily represented in predicate logic. Consider the following examples:

“It is very hot today.” How can relative degrees of heat be represented?

e “Blond-haired people often have blue eyes.” How can the amount of certainty be represented?

e “If there is no evidence to the contrary, assume that any adult you meet knows how to read.” How can

we represent that one fact should be inferred from the absence of another?

® “It’s better to have more pieces on the board than the opponent has.” How can werepresent this kind of

heuristic information?

e “T know Bill thinks the Giants will win, but I think they are going to lose.” How can several different

https://hemanthrajhemu.github.io

126 Artificial Inteiligence

belief systems be represented at once?

These examples suggest issues in knowledge representation that we have not yet satisfactorily addressed.

They deal primarily with the need to make do with a knawledge base that is incomplete, although other

problems also exist, such as the difficulty of representing continuous phenomena in a discrete system. Some

solutions to these problems are presented in the remaining chapters in this part of the book.

EXERCISE
OMB Rnd GE te Re kgte sated nec ae mePPR ROPER we Pe on me heed te APSRET RB Pays been

1. Using facts 1-9 of Section 5.1, answer the question, “Did Marcus hate Caesar?”

2. In Section 5.3, we showed that given our facts, there were two ways to prove the statement

aalive(Marcus, now). In Fig. 5.12(a) resolution proof corresponding to one of those methods is shown.

Use resolution to derive another proof of the statement using the other chain of reasoning.
3. Trace the operation of the unification algorithm on each of the following pairs of literals:

(a) f(Marcus) and f(Caesar}

(b) fx) mdf(g(y))
(c) f(Marcus, a(x, y)) andf(x, 9(Caesar, Marcus))

+. Consider the following sentences:

e

(a)
(b)
(c)
(d)
{e)

John likes all kinds of food.

Apples are food,

Chicken is food.

Anything anyone eats and isn’t killed by is food.
Bill eats peanuts and isstill alive.

Sue eats everything Bill eats.

Translate these sentences into formulas in predicate logic.

Prove that John likes peanuts using backward chaining.

Convert the formulas of part a into clause form.
Prove that John tikes peanuts using resolution.

Use resolution to answer the question, ““What food does Sue eat?”

5. Consider the following facts:

The membersof the Elm St. Bridge Club are Joe,Saily, Bill, and Ellen.
Joe is married to Sally.

Bill is Elen’s brother.

The spouse of every married person in the club is also in the club.
The last meeting of the club wasat Joe’s house.

Represent these facts in predicate logic.
From the facts given above, most people would be able to decide on the truth of the following

additional statements:

The last meeting of the club was at Sally’s house.

Ellen is not martied.

Can you construct resolution proofs to demonstrate the truth of each of these statements given the

five facts listed above? Do so if possible. Otherwise, add the facts you need and then constnict the

proofs.

6. Assume the following facts:

*

Steve only likes easy courses.

Science courses are hard.

https://hemanthrajhemu.github.io

Using Predicate Logic 127

¢ All the courses in the basketweaving departmentare easy.

e BK301is a basketweaving course.
Use resolution to answer the question, “What course would Steve like?”

. In Section 5.4.7, we answered the question, “When did Marcus die?” by using resolution to show that

there was a time when Marcus died. Using the facts given in Fig. 5.4, and the additional fact

Vai Wt, : dead(x, t)) 3 dt, : ett, th) A died(x, t,)
there is another way to show that there was a time when Marcusdied.

(a) Do resolution proof of this other chain of reasoning.

(b) What answer will this proof give to the question, “When did Marcus die?”

. Suppose that we are attempting to resolve the following clauses:

loves(father{a), a)

sloves(y, x) v loves(x, y)

(a) What will be the result of the unification algorithm when applied to clause | and the first term of

clause 2?

(b) What must be generated as a result of resolving these two clauses?

(c) What does this example show about the order in which the substitutions determined by the

unification procedure must be performed?
. Suppose you are given the following facts:

Vx, yz gtx, y) A gry, 2) > gts, 2)
Va,b : succ(a, by 3 pgt(a,b)

Wax 2 ~gt(x,x)

You want to prove that

gt(5,2)

Consider the following attempt at a resolution proof:

“gt5,2) Tatlx, ¥) V 7gtly, 2) v glx, Z)

Six, 21Z

agiS, y) \/ 7gtly, 2) “succ(a, b) Vy gtta, b}

yla, 2/b

TAX, y) \v ~sucely, 2} ngttx, y) Vv Tatly, Z) v gx, 2}

Six, Wiz

7gi(S, Y) V 7gtly, ¥} VV 7Sucely, 2)

(a) What went wrong?

(b) What needs to be added to the resolution procedure to make sure that this does not happen?

https://hemanthrajhemu.github.io

128

10.

11.

12.

13.

Artificial Intelligence

The answerto the last problem suggests that the unification procedure could be simplified by omitting

the check that prevents x andf(x) from being unified together (the occur check). This should be possible

since no two clauses will ever share variables. If x occurs in one, f(x} cannot occur in another. But

suppose the unification procedureis given the following two clauses (in the notation of Section 5.4.4):

PRLG))
pUf(a),a)
Trace the execution of the procedure. What does this example show about the need for the occur

check?

What is wrong with the following argument [Henle, 1965]?

e Men are widely distributed over the earth.
‘e Socrates is a man.

¢ Therefore, Socrates is widely distributed over the earth.

How should the facts represented by these sentences be represented in logic so that this problem does

not arise?

Considerall the facts about baseball that are represented in the slot-and-filler structure of Fig. 4.5.

Represent those same facts as a set of assertions in predicate logic. Show how the inferences that were

derived from that knowledge” in Section 4.2 can be derived using logical deduction.

What problems would be encountered in attempting to represent the following statements in predicate

logic? It should be possible to deduce the final statement from the others.
* John only likes to see French movies.

it’s safe to assume a movie is American unless explicitly told otherwise.

The Playhouse rarely showsforeign films.

People don’t do things that will cause them to be in situations that they don’t like.

John doesn’t go to the Playhouse very often.

https://hemanthrajhemu.github.io

7 teh bane .

ou4

CHAPTER

6
REPRESENTING KNOWLEDGE USING RULES

To be useful, a system has to do more tharjust correctlyperform some task,

—John McDermott,

Al Researcher

In this chapter, we discuss the use of rules to encode knowledge. This is a particularly important issue since

Tule-based reasoning systems have played a very importantrole in the evolution of AI from a purely laboratory

science into a commercially significant one, as we see later in Chapter 20.

We havealready talked about rules as the basis for a search program. But we gavelittle consideration to the

way knowledge about the world was represented in the rules (although we can see a simple example ofthis in

Section 4.2). In particular, we have been assuming that search control knowledge was maintained completely

separately from the rules themselves. We will now relax that assumption and considera set of mules to represent

both knowledge about relationships in the world, as well as knowledge about how to solve problemsusing the

content of the rules.

6.1 PROCEDURAL VERSUS DECLARATIVE KNOWLEDGE

Since our discussion of knowledge representation has concentrated so far on the use of logical assertions, we

use logic as a starting point in our discussion of rule-based systems.

In the previous chapter, we viewed logical assertions as declarative representations of knowledge. A

declarative representation is one in which knowledge is specified, but the use to which that knowledgeis to

be put is not given. To use a declarative representation, we must augment it with a program that specifies what

is to be done to the knowledge and how. For example, a set of logical assertions can be combined with a

resolution theorem prover to give a complete program for solving problems. There is a different way, though,

in which logical assertions can be viewed, namely as a program, rather than as data to a program.In this view,

the implication statements define the legitimate reasoning paths and the atomic assertions provide the starting

points (or, if we reason backward, the ending points) of those paths, These reasoning paths define the possible

execution paths of the program in much the same waythat traditional control constructs, such as if-then-else.

define the execution paths throughtraditional programs. In other words, we could view logical assertions as

https://hemanthrajhemu.github.io

130 Artificial Intelligence

procedural representations of knowledge. A procedural representation is one in which the control information

that is necessary to use the knowledgeis considered to be embeddedin the knowledgeitself. To use a procedural

representation, we need to augmentit with an interpreter that follows the instructions given in the knowledge.
Actually, viewing logical assertions as code is not a very radical idea, given that all programsare really

data to other programsthat interpret (or compile) and execute them. Thereal difference between the declarative

and the procedural views of knowledge lies in where control information resides. For example, consider the

knowledge base:

man(Marcus)

man(Caesar)

person(Cleopatra)

Wax: man(x) > person(x)

Now consider trying to extract from this knowledge base the answer to the question

Ay : person(y)

We wantto bind y to a particular value for which person is tue. Our knowledge base justifies any of the

following answers:

y = Marcus

y = Caesar

y = Cleopatra

Because there is more than one value that satisfies the predicate, but only one value is needed, the answer

to the question will depend on the order in which the assertions are examined during the search for a response.

If we view the assertions as declarative, then they do not themselves say anything about how they will be

examined. If we view them as procedural, then they do. Of course, nondeterministic programs are possible —

for example, the concurrent and parallel programming constructs described in Dijkstra [1976], Hoare [1985],

and Chandy and Misra [1989]. So, we could view these assertions as a nondeterministic program whose

output is simply not defined. If we do this, then we have a “procedural” representation that actually contains

no more information than does the “declarative” form. But most systems that view knowledge as procedural

do not do this. The reason for this is that, at least if the procedure is to execute on any sequential or on most

existing parallel] machines, some decision must be made about the order in which the assertions will be

examined, There is no hardware support for randomness. So if the interpreter must have a way of deciding,
there is no rea] reason not to specify it as part of the definition of the language and thusto define the meaning

of any particular program in the language. For example, we might specify that assertions will be examined in

the order in which they appear in the program andthat search will proceed depth-first, by which we meanthat

if a new subgoal is established then it will be pursued immediately and other paths will only be examinedif

the new onefails. If we do that, then the assertions we gave above describe a program that will answer our

question with

¥ = Cleopatra

‘To see clearly the difference between declarative and procedural representations, consider the following

assertions:

https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 131

man(Murcus)

man(Caesar)

Wx : man(x} 3 person(x)

person(Cleopatra)

Viewed declaratively, this is the same knowledge base that we had before. All the same answers are supported

by the system and no one of them is explicitiy selected. But viewed procedurally, and using the control model

we used to get Cleopatra as our answer before,this is a different knowledge base since now the answerto our

question is Marcus. This happens becausethefirst statement that can achieve the person goalis the inference

rule Vx : man(x) > person(x). This rule sets up a subgoal to find a man. Again the statements are examined

from the beginning, and now Marcus is found to satisfy the subgoal and thus also the goal. So Marcus is

reported as the answer,

It is inyportant to keep in mind that although we have said that a procedural representation encodes control

information in the knowledge base, it does so only to the extent that the interpreter for the knowledge base

recognizes that control information. So we could have gotten a different answerto the person question by leaving

our original knowledge base intact and changing the interpreter so that it examines statements from lastto first

(but still pursuing depth-first search). Following this control regime, we report Caesar as our answer.

There has been a great deal of controversy in Al over whether declarative or procedural knowledge

representation frameworks are better. There is no clearcut answer to the question. As you can see from this

discussion, the distinction between the two forms is often very fuzzy. Rather than try to answer the question

of which approachis better, what we do in the rest of this chapter is to describe ways in which rule formalisms

and interpreters can be combined to solve problems. We begin with a mechanism called logic programming,

and then we consider more flexible structures for rule-based systems.

6.2 LOGIC PROGRAMMING

Logic programming 1s a programming language paradigm in whichlogical assertions are viewed as programs,

as described in the previous section. There are several logic programming systems in use today, the most

popular of which is PROLOG [Clocksin and Meliish, 1984; Bratko, 1986]. Programming in PROLOG has

been described in more detail in Chapter 25. A PROLOGprogram is described as a series of logical assertions,

each of which is a Horn clause.'! A Horn clause is a clause (as defined in Section 5.4.1) that has at most one

positive literal. Thus p, ap \¥ g, and p > gq are all Hom clauses. Thelast of these does not look like a clause

Wx: petx) A smaiixi + apartmentpet()

Vx: cat{x) \/ dogtx} -» pettx)
Vx: poodie(xs + dogix small(x)

poodiet(ftujfy)

A Representation In Logic

apartmentpet (x) :- pet{xX), small(X}).

pet{X) :- cat(x).

petix) :- dog(X).

dog{X) :- poodle (xX}

small(%) :- poodle(xX).

poodleffluffy}.

A Representation in PROLOG

Fig. 6.1 A Declarative and a Procedural Representation

' Programs written in pure PROLOGare composed only of Horn clauses. PROLOG,as an actual programming language,

however, allows departures from Hom clauses. In the rest of this section, we limit our discussion to pure PROLOG,

https://hemanthrajhemu.github.io

132 Artificial Intelligence

and it appears to have two positive literals. But recall from Section 5.4.1 that any logical expression can be

converted to clause form. If we do that for this example, the resulting clause is —p \y g, whichis a well-formed

Hom clause. As we will see below, when Horn clauses are written in PROLOGprograms,they actually look

more like the form we started with (an implication with at most oneliteral on the right of the implication sign)

than the clause form we just produced. Some examples of PROLOG Hormclauses appear below.

The fact that PROLOGprograms are composed only of Horn clauses and notof arbitrary logical expressions

has two important consequences. Thefirst is that because of the uniform representation a simple and efficient

interpreter can be written. The second consequence is even more important. The logic of Horn clause systems

is decidable (unlike that of full first-order predicate logic).
The control structure that is imposed on a PROLOG program by the PROLOGinterpreter is the same one

we used at the beginning of this chapterto find the answers Cleopatra and Marcus. The inputto a program is

a goal to be proved. Backward reasoning is applied to try to prove the goal given the assertions in the program.

The program is read top to bottom,left to nght and search is performed depth-first with backtracking.

Figure 6.1 shows an example of a simple knowledge base represented in standard logical] notation and then

in PROLOG.Both of these representations contain two types of staternents,facts, which contain only constants

(i.e., no variables) and rules, which do contain variables. Facts represent statements about specific objects.

Rules represent statements about classes of objects.

Notice that there are several superficial, syntactic differences between the logic and the PROLOG

representations, including:

1. In logic, variables are explicitly quantified. In PROLOG,quantification is provided implicitly by the

waythe variables are interpreted (see below). The distinction between variables and constants is made

in PROLOG byhaving all variables begin with upper case letters and all constants begin with lower

case letters or numbers.

2. In logic, there are explicit symbols for and (/\) and or (\/). In PROLOG,there is an explicit symbol for

and (,), but there is none for on Instead, disjunction must be representedasa list of alternative statements,

any one of which may provide the basis for a conclusion.

3. In logic, implications of the form “p implies q”are written as p > g. In PROLOG,the same implication

is written “backward,” as q : - p. This form is natural in PROLOG becausethe interpreter always

works backwards from a goal, and this form causes every rule to begin with the component that must
therefore be matched first. This first componentis called the head of the rule.

Thefirst two of these differences arise naturally from the fact that PROLOG programsare actually sets of

Horn clauses that have been transformed as follows:

1. If the Horn clause contains no negative literals (i.e., it contains a single literal which is positive), then

leave it as itis.

2. Otherwise, rewrite the Horn clause as an implication, combining all of the negative literals into the

antecedent of the implication and leaving the single positive literal (if there is one) as the consequent.

This procedure causes a clause, which originally consisted of a disjunction ofliterals (all but one of which

were negative), to be transformed into a single implication whose antecedent is a conjunction of (what are

now positive) literals. Further, recall that in a clause, all variabies are implicitly universally quantified. But,

when weapply this transformation (which essentially inverts several steps of the procedure we gave in Section

5.4.1 for converting to clause form), any variables that occurred in negative literals and so now occur in the
antecedent become existentially quantified, while the variables in the consequent (the head) are still universally
quantified. For example, the PROLOGclause ,

P(x) i- Q(x, y)https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 133

is equivalent to the logical expression

Va: dy: Oy ¥} > P(x)

A key difference between logic and the PROLOG representation is that the PROLOG interpreter has a

fixed control strategy, and so the assertions in the PROLOG program define a particular search path to an

answer to any question. In contrast, the fogical assertions define only the set of answers that they justify; they

themselves say nothing about how to choose among those answers if there are more than one.

The basic PROLOGcontrol strategy outlined above is simple. Begin with a problem statement, which is

viewed as a goal to be proved. Look for assertions that can prove the goal. Consider facts, which prove the

goal directly, and also consider any rule whose head matches the goal. To decide whethera fact or a rule can

be applied to the current problem, invoke a standard unification procedure (recall Section 5.4.4). Reason

backward from that goal until a path is found that terminates with assertions in the program. Consider paths

using a depth-first search strategy and using backtracking. At each choice point, consider options in the order

in which they appear in the program. If a goal has more than one conjunctive part, prove the parts in the order

in which they appear, propagating variable bindingsas they are determined during unification. We can illustrate

this strategy with a simple example.

Suppose the problem we are given is to find a value of X thatsatisfies the predicate apartmentpet
(X). We state this goal to PROLOGas

?- apartmentpet {Xx}.

Think of this as the input to the program. The PROLOGinterpreter begins looking for a fact with the

predicate apartmentpet or a rule with that predicate as its head. Usually PROLOG programsare written

with the facts containing a given predicate coming before the rules for that predicate so that the facts can be

used immediately if they are appropriate andtherules will only be used when thedesiredfact is not immediately
available. In this example, there are no facts with this predicate, though, so the one rule there is must be used.

Since the rule will succeed if both of the clauses on its right-hand side can be satisfied, the next thing the

interpreter doesis to try to prove each of them. They will be tried in the order in which they appear. There are
no facts with the predicate pet but again there are rules with it on the nght-handside. Butthis time there are
two such rules, rather than one. All that is necessary for a proof though is that one of them succeed. They will

be tried in the order in which they occur. Thefirst will fail because there are no assertions about the predicate

cat in the program. The second will eventually lead to success, using the rule about dogs and poodles and

using the fact poodle (fluffy) . This results in the variable X being bound to fluffy. Now the second

clause small (X) ofthe initial rule must be checked. Since X is now boundto fluffy, the more specific goal,

small (fluffy), must be proved. This too can be done by reasoning backward to the assertion poodle

(fluffy). The program then halts with the result apartmentpet (fluffy).

Logical negation (-) cannot be represented explicitly in pure PROLOG.So, for example,it is not possible

to encode directly the logical assertion

Wx: dog(x) > acat{x)

Instead, negation is represented implicitly by the lack of an assertion. This leads to the problem-solving

strategy called negation as failure [Clark, 1978]. If the PROLOG program ofFig. 6.1 were given the goal

?- cat(fluffy).

https://hemanthrajhemu.github.io

134 Artificial Intelligence

it would retum FALSEbecause it is unable to prove that Fluffy is a cat. Unfortunately, this program returns

the same answer when given the goal even though the program knowsnothing about Mittens and specifically

knows nothing that might prevent Mittens from being a cat. Negation by failure requires that we make what

is called the closed world assumption, which states that all relevant, true assertions are contained in our

knowledge base or are derivable from assertions that are so contained. Any assertion that is not present can

therefore be assumed to be false. This assumption, while often justified, can cause serious problems when

knowledge bases are incomplete. We discuss this issue further in Chapter 7.

There is much to say on the topic of PROLOG-style versus LISP-style programming. A great advantage of

logic programming is that the programmer need only specify rules and facts since a search engine is built

directly into the language. The disadvantage is that the search controlis fixed. Althoughit is possible to write

PROLOGcodethat uses search strategies other than depth-first with backtracking,it is difficult to do so. It is

even more difficult to apply domain knowledge to constrain a search. PROLOG does allow for rudimentary

control of search through a nen-logical operator called curt. A cut can be inserted into a rule to specify a point

that may not be backtracked over.

More generally, the fact that PROLOG programs must be composedof a restricted set of logical operators

can be viewed as a limitation of the expressiveness of the language. But the other side of the coin is thatit ts
possible to build PROLOG compilers that produce very efficient code.

In the rest of this chapter, we retain the rule-based nature of PROLOG,but we relax a number of PROLOG’S

design constraints, leading to more flexible rule-based architectures. Programming in PROLOG has been

explained in more detail later in Chapter 25,

6.3. FORWARD VERSUS BACKWARD REASONING

The object of a search procedureis to discover a path through a problem space from aninitial configuration to

a goal state, While PROLOGonly searches from a goal state, there are actually two directions in which such

a search could proceed:

* Forward, from the start states
e Backward, from the goalstates

The production system modelof the search process provides an easy way of viewing forward and backward

reasoning as symmetric processes. Consider the problem of solving a particular instance of the 8-puzzle. The

rules to be used for solving the puzzle can be written as shown in Fig. 6.2. Using those rules we could attempt

to solve the puzzle shown back in Fig. 2.12 in one of two ways:

Assume the areas of the tray are numbered:

1 e 3

4 5 6

7 8 9
Square 1 empty and Square 2 containstile n =

Square 2 empty and Square 1 containstile 7
Square 1 empty and Square 4 containstile n >

Square 4 empty and Square 1 contains tile 7
Square 2 empty and Square 1 containstile 7 =

Square 1 empty and Square 2 containstile 7

Fig.6.2 A Sample ofthe Rulesfor Solving the 8-Puzzle

« Reasonforwardfrom the initial states. Begin building a tree of move sequences that might be solutions

by starting with the initial configuration(s) at the root of the tree. Generate the next level of the tree by

finding all the rules whose /eft sides match the root node and using their right sides to create the newhttps://hemanthrajhemu.github.io

Representing Knowledge Using Rules 135

configurations, Generate the next Jevel by taking each node generated at the previous level and applying

to it all of the rules whose left sides match it. Continue until a configuration that matches the goal state
is generated. ;

© Reason backwardfrom the goal states. Begin building a tree of move sequencesthat might be solutions

by starting with the goal configuration(s) at the root of the tee. Generate the next level of the tree by

finding all the rules whose righr sides match the root node. These are all the rules that, if only we could

apply them, would generate the state we want. Usethe left sides of the rules to generate the nodes at

this secondlevel of the tree. Generate the next level of the tree by taking each nodeat the previous level

and finding all the rules whose nght sides match it. Then use the correspondingleft sides to generate

the new nodes. Continue until a node that matches the initial state is generated. This method of reasoning

backward from the desired final state is often called geai-directed reasoning.

Notice that the same rules can be used both to reason forward from theinitial state and to reason backward

from the goal state. To reason forward, the left sides (the preconditions) are matched against the currentstate

and the right sides (the results) are used to generate new nodes until the goal is reached. To reason backward,

the right sides are matched against the current node andtheleft sides are used to generate new nodes representing

new goal states to be achieved. This continues until one of these goal states is matched by an initial state.

In the case of the 8-puzzle, it does not make much difference whether we reason forward or backward; about

the same numberof paths will be explored in either case. But this is not always true. Depending on the topology

of the problem space, it may be significantly more efficient to search in one direction rather than the other.
Fourfactors influence, the question of whetherit is better to reason forward or backward:

e Are there more possible start states or goal states? We would like to move from the smaller set ofstates

to the larger (and thus easier to find) set of states.

e In which direction is the branching factor(i.e., the average number of nodes that can be reached directly

from a single node) greater? We would like to proceed in the direction with the lower branching factor.

« Will the program be asked to justify its reasoning process to a user? Ef so, it 1s important to proceed in

the direction that corresponds more closely with the way the user will think.

e What kind of event is going to trigger a problem-solving episode? Hf it is the arrival of a new fact,

forward reasoning makessense.If it is a query to which a response is desired, backward reasoning is

more natural,

A few examples make these issuesclearer. It seems easier to drive from an unfamiliar place home than from

home to an unfamiliar place. Why is this? The branching factor is roughly the same in both directions (unless

one-waystreets are laid out very strangely). But for the purpose of finding our way around, there are many more

locations that count as being home than there are locations that count as the unfamiliar target place. Any place

from which we know how to get home can be considered as equivalent to home. If we can get to any such place,

we can get home easily, But in order to find a route from where we are to an unfamiliar place, we pretty much

have to be already at the unfamiliar place. So in going toward the unfamiliar place, we are aiming at a much

smaller target than in going home. This suggests thatif our starting position is home and our goal position is the

unfamiliar place, we should plan our route by reasoning backward from the unfamiliar place.

On the other hand, consider the problem of symbolic integration. The problem spaceis the set of formulas,

some of which contain integral expressions. The start state is a particular formula containing someintegral

expression. The desired goal state is a formula that is equivalentto the initial one and that does not contain any

integral expressions. So we begin with a single easily identified start state and a huge numberofpossible goal

states. Thus to solve this problem,it is better to reason forward using therules for integrationto try to generate

an integral-free expression than to start with arbitrary integral-free expressions,use the rulesfor differentiation,

and try to generate the particular integral we are trying to solve. Again we want to head toward the largest

target; this time that means chaining forward.

https://hemanthrajhemu.github.io

136 Artificial Intelligence

These two examples haveillustrated the importance of the relative numberof start states to goal states in

deterinining the optimal direction in which to search when the branching factor is approximately the same in

both directions. When the branching factor is not the same, however, it must aiso be taken into account.

Consider again the problem of proving theoremsin some particular domain of mathematics. Our goal state

is the particular theorem to be proved. Ourinitial states are normally a small set of axioms. Neither of these

sets is significantly bigger than the other. But consider the branching factor in each of the two directions.

From a small set of axioms we can derive a very large number of theorems. On the other hand,this large

number of theorems must go back to the small set of axioms. So the branching factor is significantly greater

going forward from the axioms to the theorems than it is going backward from theorems to axioms. This

suggests that it would be much better to reason backward when trying to prove theorems. Mathematicians

have long realized this (Polya, 1957], as have the designers of theorem-proving programs.

The third factor that determines the direction in which search should proceed is the need to generate

coherent justifications of the reasoning process as it proceeds. This is often crucial for the acceptance of

programs for the performance of very important tasks. For example, doctors are unwilling to accept the

advice of a diagnostic program that cannot explain its reasoning to the doctors’ satisfaction. This issue was of

concern to the designers of MYCIN [Shortliffe, 1976], a program that diagnoses infectious diseases. It reasons

backward from its goal of determining the cause of a patient’s illness. To do that, it uses rulesthattell it such

things as “If the organism has the following set of characteristics as determined by the lab results, then it is
likely that it is organism x.” By reasoning backward using such rules, the program can answer questions like

“Why should I perform that test you just asked for?” with such answersas “Because it would help to determine

whether organism x is present.” (For a discussion of the explanation capabilities of MYCIN, see Chapter 20.)
Most of the search techniques described in Chapter 3 can be used to search either forward or backward. By

describing the search process as the application of a set of production rules,it is easy to describe the specific

search algorithms without reference to the direction of the search.

We can also search both forward from the start state and backward from the goal simultaneously until two
paths meet somewhere in between. This strategy is called bidirectional search. It seems appealing if the
numberof nodes at each step grows exponentially with the numberof steps that have been taken. Empirical

search it is much fess likely to be so. Figure 6.3 shows

whybidirectionalsearch may be ineffective. The two

to have finished. However,if individual forward and

eachin exactly those situations where it can be the most profitable, the results can be more encouraging. In

Although in principle the same set of rules can be used for both forward and backward reasoning,in

results [Poh], 1971] suggest that for blind search, this divide-and-conquer strategy is indeed effective.

searches may pass each other, resulting in more work

Backward search

Start States explored here GoatStatesOO
backward steps are performed as specified by a

fact, many successful AI applications have been written using a combination of forward and backward

practice it has proved useful to define two classesofrules, each of which encodesa particular kind ofknowledge.

Unfortunately, other resuits [Pohl, 1971; de Champeaux and Sint, 1977] suggest that for informed, heuristic

than it would have taken for one of them, on its own,

program that has been carefully constructedto exploit Fig. 6.3 A Bad Use of Heuristic Bidirectional Search .

reasoning, and most AI programming environments provide explicit support for such hybrid reasoning.

e Forward rules, which encode knowledge about how to respond to certain input configurations.
¢ Backward miles, which encode knowledge about how to achieve particular goals.

? One exception to this is the means-ends analysis technique, described in Section 3.6, which proceeds not by making

successive steps in a single direction but by reducing differences between the current and the goalstates, and,as a result,

sometimes reasoning backward and sometimes forward.https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 137

By separating rules into these two classes, we essentially add to each rule an additional piece of inforination.

namely, how it should be used in problem-solving. In the next three sections, we describe in more detaii the
two kinds of rule systems and how they can be combined,

6.3.1 Backward-Chaining Rule Systems

Backward-chaining rule systems, of which PROLOG is an example, are good for goal-directed problem-

solving. For example, a query system would probably use backward chaining to reason about and answer user

questions.

In PROLOG,mulesare restricted to Horn clauses. This allows for rapid indexing because all of the rules for

deducing a given fact share the samerule head. Rules are matched with the unification procedure. Unification

tries to find a set of bindings for variables to equate a (sub)goal with the head of some rule. Rules in a

PROLOG program are matched in the order in which they appear.

Other backward-chaining systems allow for more complex rules, In MYCIN,for example, rules can be

augmented with probabilistic certainty factors to reflect the fact that some rules are more reliable than others.

Wediscuss this in more detail in Chapter 8.

6.3.2 Forward-Chaining Rule Systems

Insteadof being directed by goals, we sometimes wantto be directed by incoming data. For example, suppose
you sense searing heat near your hand. Youare likely to jerk your hand away, While this could beconstrue

as goal-directed behavior, it is modeled more naturally by the recognize-act cycle characteristic of forward-

chaining rule systems. In forward-chaining systems,left sides of rules are matched against the state descriptior.

Rules that match dumptheir right-hand side assertions into the state, and the process repeats.

Matching is typically more complex for forward-chaining systems than backward ones. For example.

consider a rule that checks for some condition in the state description and then adds an assertion. After the
rule fires, its conditions are probably still valid, so it could fire again immediately. However, we will need

some mechanism to prevent repeated firings, especially if the state remains unchanged.

While simple matching and control strategies are possible, most forward-chaining systems (e.g., OPS5

[Brownston et al., 1985)) implement highly efficient matchers and supply several mechanisms for preferring

one rule over another. We discuss matching in more detail] in the next section.

6.3.3 Combining Forward and Backward Reasoning

Sometimes certain aspects of a problem are best handled via forward chaining and other aspects by backward

chaining. Consider a forward-chaining medical diagnosis program. It might accept twenty or so facts about a
patient’s condition, then forward chain on those facts to try to deduce the nature and/or cause of the disease.

Now suppose that at some point, the left side of a rule was nearly satisfied—say, nine out of ten of its

preconditions were met. It might be efficient to apply backward reasoningto satisfy the tenth precondition in

a directed manner, rather than wait for forward chaining to supply the fact by accident. Or perhaps the tenth

condition requires further medical tests. In that case, backward chaining can be used to query the user.
Whetherit is possible to use the same rules for both forward-andbackward reasoning also depends on the

form of the rules themselves. If both left sides and right sides contain pure assertions, then forward chaininy
can matchassertions on the left side of a rule and add to the state description the assertions on the right side.

Butif arbitrary procedures are allowed as the right sides of rules, then the rules will not be reversible. Some

production languages allow only reversible rules; others do not. When irreversible ruies are used, then a

commitmentto the direction of the search must be madeat the time the rules are written. But, as we suggested

above, this is often a useful thing to do anyway becauseit allows the rule writer to add control knowledge to

the rules themselves.

https://hemanthrajhemu.github.io

138 Artificial Intelligence

6.4 MATCHING

Sofar. we have described the process of using search to solve problemsas the application of appropriate rules

io individual problem states to generate new states to which the rules can then be applied, and so forth, until

a solution is found. We have suggested that clever search involves choosing from amongtherules that can be

applied at a particular point, the ones that are most likely to lead to a solution. But we have said little about

how we extract from the entire collection of rules those that can be applied at a given point. To do so requires

some kind of matching between the current state and the preconditions of the rules. How should this be done?

The answerto this question can be critical to the success of a rule-based system. We discuss a few proposals

below.

6.4.1 Indexing

One way to select applicable rules is to do a simple search through all the rules, comparing each one’s

preconditions to the current state and extracting all the ones that match. But there are two problems with this

simple solution:

e Inorder to solve very interesting problems,it will be necessary to use a large numberofrules. Scanning

through all of them at every step of the search would be hopelessly inefficient.

* It is not always immediately obvious whether a rule’s preconditions are satisfied by a particular state.

Sometimes there are easy ways to deal with the first of these problems. Instead of searching through the

rules, use the current state as an index into the rules and select the matching ones immediately. For example,

consider the legal-move generation rule for chess shown in in Fig. 6.4. To be able to access the appropriate

rules immediately, all we need do is assign an index to each board position. This can be done simply by

treating the board description as a large number. Any reasonable hashing function can then be used to treat

that number as an index into the rules. Ail the rules thai describe a given board position will be stored under

the same key and so will be found together. Unfortunately, this simple indexing scheme only works because

preconditions of rules match exact board configurations. Thus the matching process is easy butat the price of

complete lack of generality in the statement of the rules. As discussed in Section 2.1, it is often better to write

rules in a more general form, such as that shown in Fig. 6.5. Whenthis is done, such simple indexing is not

possible. In fact, there is often a trade-off between the ease of writing rules (which is mcreased by the use of

high-level descriptions) and the simplicity of the matching process (which is decreased by such descriptions).

Black Biack

a\X|a\ a) ¥/ CO bald Lia/hi¥i 0 a a/2

Ti(h hal Se; PR 2/2 2)2/;/ 4; 4/2 4/2/24

6

5 aa

4 &

3

Z2/R/A/ BASRA ALA ALAR AR Ala) RH

1 Dia Al¥lelsialaQ LiAlAlH/ OA alo

abcde fdgdih abcdeéfd9gdihr

White White

Fig. 6.4 One Legal Chess Move

https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 139

White pawn at

Square(tile e, rank 2)
AND move pawn from

Squaret(file e, rank 3) ~ Square(file e, rank 2}
is empty to Square(file e, rank 4)

AND

Square(tile e, rank 4}

is empty

Fig.6.5 Another Way to Describe Chess Moves

All of this does not mean that indexing cannot be helpful even when the preconditions of mules are stated as
fairly high-level predicates. In PROLOG and many theorem-proving systems, for example, rules are indexed by

the predicates they contain, so all the rules that could be applicable to proving a particular fact can be accessed

fairly quickly. In the chess example, rules can be indexed by pieces and their positions. Despite some limitations

of this approach, indexing in some form is very important in the efficient operation of rule-based systems.

6.4.2. Matching with Variables

The problem of selecting applicable rules is made more difficult when preconditions are not stated as exact

descriptions of particular situations but rather describe properties (of varying compiexity) that the situations

must have. It often turns out that discovering whether there is a match between a particular situation and the
preconditions of a given rule must itself involve a significant search process.

If we want to match a single condition against a single elementin a state description, then the unification

procedure of Section 5.4.4 will suffice. However, in many rule-based systems, we need to compute the whole set

of rules that match the currentstate description, Backward-chaining systems usually use depth-first backtracking

to select individual rules, but forward-chaining systems generally employ sophisticated conflict resolution
strategies to choose amongthe applicable rules.’ While it is possible to apply .unification repeatedly over the

cross product of preconditions and state description elements, it is more efficient to consider the many-many

match problem, in which many rules are matched against many elements in the state description simultaneously,

Oneefficient many-many match algorithm is RETE, which gains efficiency from three major sources:

e The temporal nature of data. Rules usually do not alter the state description radically. Instead, a rule

will typically add one or two elements, or perhaps delete one or two, but most ofthe state description

remains the same. (Recall our discussion of this as part of our treatment of the frame problem in

Section 4.4.) If a mule did not match in the previous cycle, it will most likely fail to apply in the current

cycle. RETE maintains a network of rule conditions, and it uses changes in the state description to

determine which new rules might apply (and which rules might no longer apply). Full matchingis only

pursued for candidates that could be affected by incoming or outgoing data,
* Structural similarity in rules. Different rules may share a large number of pre-conditions. For example,

consider rules for identifying wild animals. One rule concludes jaguar{x) if mammal(x), feline(x},

carnivorous(x}), and has-spots(x), Another rule concludes tiger(x) and is identical to the first rule except

that it replaces has-spets with has-stripes. If we match the two rules independently, we will repeat a lot

of work unnecessarily. RETEstores the rules so that they share structures in memory;sets of conditions

that appear in several rules are matched (at most) once per cycie.

« Persistence of variable binding consistency. While all the individual preconditions of a rule might be

met, there may be variable binding conflicts that preventthe rule from firing. For example, suppose we

know the facts son(Mary, Joe) and son(Bill, Bob), The individual preconditions of the rule

3 Conflict resolution is discussed in the next section.

https://hemanthrajhemu.github.io

140 Artificial Intelligence

son(x, y) “\ son(y. z} > grandpareni(x, 2)

can be matched, but not in a mannerthatsatisfies the constraint imposed by the variable y. Fortunately,

it is not necessary to compute binding consistency from scratch every time a new conditionis satisfied.

RETE remembers its previous calculations and is able to merge new binding information efficiently.

For more details about the RETE match algorithm, see Forgy [1982]. Other matching algorithms (e.g.,

Miranker | 1987] and Oflazer {1987]) take different standson how muchtime to spend on saving state information

hetween cycles. They can be more orless efficient than RETE, depending on the types of rules written for the

domain and on the degree of hardware parallelism available.

6.4.3. Complex and Approximate Matching

A more complex matching process is required when the preconditions of a mule specify required properties
that are not stated explicitly in the description of the currentstate. In this case, a separate set of rules must be

used to describe how some properties can be inferred from others.

An even more complex matching process is required if rules should be applied if their preconditions
approximately match the current situation. This is often the case in situations involving physical descriptions

of the world. For example, a speech- understanding program must contain rules that map from a description

of a physical waveform to phones (instances of English phonemes, such as p or d). There is so much variability

in the physical signal, as a result of background noise, differences in the way individuals speak, and so forth,

that one can hope to find only an approximate match between the rule that describes an ideal sound and the
input that describes an unideal world. Approximate matching is particularly difficult to deal with because as

we increase the tolerance allowed in the match, we also increase the numberof rules that will match, thus

increasing the size of the main search process. But approximate matching is nevertheless superior to exact

matching in situations such as speech understanding. where exact matching may often result in no roles being
matched and the search process coming to a grinding halt. Although symbolic techniques for approximate

matching exist, there is another, very different approach that can be used to solve this problem. We discussit

in detail in Chapter 18 where we describe connectionist systems (aiso called neural nets).

For some probiems, almostall the action is in the matching of the miles to the problem state. Once thatis

done, so few rules apply that the remaining search is trivial. This was the case, for example, in ELIZA

[Weizenbaum, 1966], an early Al program that simulated the behavior of a Rogerian therapist. A fragment of

a dialogue between ELIZA and a user is shown in Figure 6.6. ELIZA’s knowledge about both English and

psychology was codedin a set of simple rules. Figure 6.7 shows some ELIZA-like rules.

Person: Menareail alike.
ELIZA: in what way?
Person: They're always bugging us about something or other.
ELIZA: Can you think of a specific example?
Person: Well, my boyfriend made me come here.
ELIZA: Your boyfriend made you come here.
Person: He says |’m depressed muchof the time.
ELIZA: | am sorry to haar you are depressed.
Person: It's true. | am unhappy.
ELIZA: Do you think coming here will help you not to be unhappy?
Person: | need somehelp, that much seems certain.
ELIZA: What would it mean to you if you got some help?
Person: Perhaps | could learn to get along with my mother.

ELIZA: Tell me mora about your family.

Fig. 6.6 A Bit ofa Dialogue with ELIZA

https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 141

{X me Y) — (you ¥)
(I remember X} — (Why do rememberX just now?)
(My {family-member} is Y) — (Whoelse in yourfamily is ¥?}

(% {family-member} Y} — (Tell me more about your family)

Fig.6.7 Some ELIZA-like rules

ELIZA operated by matching the left sides of the rules against the user’s last sentence and using the

appropriate right side to generate a response. For example, if the user typed “My brother is mean to me,”

ELIZA might respond, “Whoelse in your family is mean to you?” or “Tell me more about your family.” The
tules were indexed by keywords so only a few had actually to be matched against a particular sentence. Some

of the rules had no left side, so the rule could apply anywhere, These rules were used if no other rules matched

and they generated replies such as ‘“Tell me more about that’. Notice that the rules themselves cause a form of

approximate matching to occur. The patterns ask about specific words in the user’s sentence. They do not

need to match entire sentences. Thus a great variety of sentences can be matched by a single rule, and the

grammatical complexity of English is pretty much ignored. This accounts both for ELIZA’s majorstrength,its

ability to say something fairly reasonable almostall of the time, and its major weakness, the superficiality of

its understanding andits ability to be led completely astray. Approximate matching can easily lead to both
these results. .

Asif the matching process were not already complicated enough,recall the frame problem mentioned in

Chapter 4. One way of dealing with the frame problem is to avoid storing entire state descriptions at each

node but instead to store only the changes from the previous node.If this is done, the matching process will

have to be modified to scan backward from a node throughits predecessors, looking for the required objects.

6.4.4 Conflict Resolution

Theresult of the matching processis a list of rules whose antecedents have matchedthe current state description

along with whatever variable bindings were generated by the matching process. It is the job of the search

method to decide on the order in which rules will be applied. But sometimesit is useful to incorporate some

of that decision making into the matching process. This phase of the matching processis then called conflict
resolution.

There are three basic approaches to the problem of conflict resolution in a production system:

* Assign a preference based on therule that matched.
« Assign a preference based on the objects that matched.

¢ Assign a preference based on the action that the matched rule would perform.

Preferences Based on Rules

There are two common waysof assigning a preference based on the rules themselves. Thefirst, and simplest,

is to considerthe rules to have been specified in a particular order, such as the physical order in which they are

presented to the system. Then priority: is given to the rules in the order in which they appear. This is the

scheme used in PROLOG, ,
The other common rule-directed preference schemeis to give priority to special case rules over rules that

are more general. We ran across this in Chapter 2, in the case of the water jug problem of Fig. 2.3. Recall that

rules |! and 12 were special cases of rules 9 and 5, respectively. The purpose of such specific rulesis to allow

for the kind of knowledge that expert problem solvers use when they solve problems directly, without search.

If we considerail rules that match,then the addition of such special-purpose rules will increase the size of the
search rather than decrease it. In order to prevent that, we build the matcher so that it rejects rules that are
more general than otherrules that also match. How can the matcherdecide that one rule is more general than

another? There are a few easy ways:

https://hemanthrajhemu.github.io

142 Artificial Intelligence

® If the set of preconditions of one rule contains all the preconditions of another (plus some others), then

the second rule is more general than thefirst.

« Jf the preconditions of one rule are the same as those of another except that in the first case variables
are specified where in the second there are constants, then the first rule is more general than the second.

Preferences Based on Objects

Another way in which the matching process can ease the burden on the search mechanism is to order the

matches it finds based on the importance of the objects that are matched. There are a variety of waysthis can

happen. Consider again ELIZA, which matched patterns against a user’s sentence in order to find a rule to
generate a reply. The patterns looked for specific combinationsof important keywords. Often an input sentence

contained several of the keywords that ELIZA knew. If that happened, then ELIZA made useofthe fact that
some keywords had been marked as being more significant than others. The pattern matcher returned the

match involving the highest priority keyword. For example, ELIZA knew the word “I” as a keyword. Matching

the input sentence “] know everybody laughed at me” by the keyword “I” would have enabled it to respond,

“You say you know everybody laughed at you.” But ELIZA also knew the word “everybody” as a keyword.

Becayse “everybody” occurs more rarely than “I,” ELIZA knowsit to be more semantically significant and

thus to be the cine to which it should respond. Soit will produce a response such as “Whoin particular are you
thinking of?” Notice that priority matching such asthis is particularly importantif only one of the choices will

ever be tried. This was true for ELIZA and would also be true, say, for a person who, when leaving a fast-

burming room, must choose between turing off the lights (normally a good thing to do) and grabbing the

baby (a more important thing to do).

Another form of priority matching can occur as a function of the position of the matchable objects in the
current state description. For example, suppose we want to model the behavior of human short-term memory

(STM). Rules can be matched against the current contents of STM and then used to generate actions, such as

producing output to the environmentor storing something in long-term memory. In this situation, we might

like to have the matcherfirst try to match against the objects that have most recently entered STM and only

compare against older elements if the newer elements do nottrigger a match. For a discussion of this method

as a conflict resolution strategy in a production system, see Newell [1973].

Preferences Based on States

Suppose that there are several rules waiting to fire. One way of selecting among them is tofire all of them

temporarily and to examine the results of each. Then, using a heuristic function that can evaluate each of the
resulting states, compare the merits of the results, and select the preferred one. Throw away (or maybe keep

for later if necessary) the remaining ones,

This approach should lock familiar — it is identical to the best-first search procedure we saw in Chapter3.

Although conceptually this approach can be thoughtofas a conflict resolutionstrategy,it is usually implemented

as a search contro} technique that operates on top of the states generated by rule applications. The drawback

to this design is that LISP-coded search control knowledge is procedural and therefore difficult to modify.
Many AI search programs, especially ones that leam from their experience, represent their control strategies

declaratively. The next section describes some methods for capturing knowledge about control] using rules.

6.5 CONTROL KNOWLEDGE

A major themeofthis beokis that while intelligent programs require search, search is computationally intractable
unless it is constrained by knowledge about the world. In large knowledge bases that contain thousands of

rules, the intractability of search is an overriding concern. When there are many possible paths of reasoning,

it 1s critical that

https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 143

Under conditions A and B,
Rules that do {not} mention X

{at all,

in their iefi-hand side,
in their right-hand side}

will

{definitely be useless,
probably be useless

probably be especially useful

definitely be especially useful}

Fig.6.8 Syntaxfor a Control! Rule {[Davis, 1980}

fmitless ones not be pursued. Knowledge about which paths are most likely to lead quickly to a goal state is

often called search control knowledge. It can take many forms:

1. Knowledge about which states are more preferable to others.

2. Knowledge about which mule to apply in a givensituation.

3. Knowledge about the order in which to pursue subgoals.

4, Knowledge about useful sequences of rules to apply.

In Chapter 3, we saw how the first type of knowledge could be represented with heuristic evaluation functions.

There are many ways of representing the othertypes of control knowledge. For example, mules can be labeled and

partitioned. A medical diagnosis system might have oneset of mules for reasoning about bacteriologicat diseases

and anotherset for immunologicaldiseases. If the system is trying to prove a particular fact by backward chaining,

itcan probably eliminate one ofthe two rule sets, depending on whatthe fact is. Another method [Etzioni, 1989] is

to assign cost and probability-of-success measures to rules. The problem-solver can then use probabilistic

decision analysis to choose a cost-effective altemative at each point in the search.
By now it should be clear that we are discussing how to represent knowledge about knowledge. For this

reason, search control knowledge is sometimes called meta- knowledge. Davis [1980] first pointed out the

need for meta-knowledge, and suggested that it be represented declaratively using rules. The syntax for one

type of control mile is shown in Fig, 6.8.

A numberof AI systems represent their control knowledge with rules. We look briefly at two such systems,

SOAR and PRODIGY.
SOAR[Laird ef al., 1987] is a general architecture for building intelligent systems. SOAR is based on a set

of specific, cognitively motivated hypotheses aboutthe structure of human problem solving. These hypotheses

are derived from what we know about short-term memory, practice effects, etc. In SOAR:

1. Long-term memory is stored as a set of productions (or, rules).

2. Short-term memory (also called working memory) is a buffer that is affected by perceptions and serves

as a Storage area for facts deduced by rules in long-term memory. Working memory is analogousto the

state description in problem soiving.
3. All problem-solving activity takes place as state space traversal. There are several classes of problem-

solving activities, including reasoning about which states to explore, which rules to apply in a given

situation, and what effects those rules will have.

4, Ail intermediate andfinal results of problem solving are remembered(or, chunked) for future reference.*

Thethird feature is of most interest to us here. When SOARis given a start state and a goal state, it sets up

an initial problem space. In order to take the first step in that space, it must choose a rule from the set of

applicable ones. Instead of employing a fixed conflict resolution strategy, SOAR considers that choice of

4 We return to chunking in Chapter 17.

https://hemanthrajhemu.github.io

144 Artificial Intelligence

rules to be a substantial problem in its own right, and it actually sets up another, auxiliary problem space. The

rules that apply in this space look something ‘ike the rule shown in Figure 6.8. Operator preference rules may

be very general, such as the ones described in the previous section on conflict resolution, or they may contain

domain-specific knowledge.

SOARalso has rules for expressing a preference for applying a whole sequenceofrules in a given situation.

In Jeaming mode, SOARcantake useful sequences and build from them more complex productions that it can

apply in the future.
Wecan also write rules based on preferences for somestates over others. Such rules can be used to implement

the basic search strategies we studied in Chapters 2 and 3. For example, if we always prefer to work from the

state we generated last, we will get depth-first behavior. On the other hand, if we prefer states that were

generated earlier in time, we will get breadth-first behavior. If we prefer any state that looks better than the

current state (according to some heuristic function), we will get hill climbing. Best-first search results when

state preference rules prefer the state with the highest heuristic score. Thus we see thatall of the weak methods

are subsumed by an architecture that reasons with explicit search control knowledge. Different methods may

be employed for different problems, and specific domain knowledge can override the more general strategies.

PRODIGY [Minton er ai., 1989] is a general-purpose problem-solving system that incorporates several

different learning mechanisms. A good deal of the learning in PRODIGY is directed at automatically

constructing a set of control rules to improve search in a particular domain. We return to PRODIGY’S leaming

methods in Chapter 17, but we mention here a few facts that bear on the issue of search control rules. PRODIGY

can acquire control rules in a number of ways:

® Through hand coding by programmers.

© Through static analysis of the domain's operators.

e Through looking at traces of its own problem-solving behavior.

PRODIGY learns contro! mies from its experience, but unlike SOARit also learns from its failures. If

PRODIGYpursues an unfruitful path,it will try to come up with an explanation of why that path failed. It will

then use that explanation to build control knowledge that will help it avoid fruitless search paths in the future.

One reason why a path mayleadto difficulties is that subgoals can interact with one another. In the process

of solving one subgoal, we may undo our solution of a previous subgoal. Search control knowledge canteil us

something about the order in which we should pursue our subgoals. Suppose we are faced with the problem

of building a piece of wooden fumiture. The problem specifies that the wood must be sanded, sealed, and

painted. Which ofthe three goals do we pursuefirst? To humans who have knowledge aboutthis sort ofthing,

the answeris clear. An AI program, however, might decide to try paintingfirst, since any physical object can

be painted, regardiess of whether it has been sanded. However, as the program plans further,it will realize that

one of the effects of the sanding process is to remove the paint. The program will then be forced to plan a

repainting step or else backtrack and try working on another subgoal first. Proper search control knowledge

can prevent this wasted computational effort. Rules we might consider include:

e Ifa problem’s subgoals include sanding and painting, then we should solve the sanding subgoalfirst.

« Ifsubgoals include sealing and painting, then consider what the object is made of. If the object is made

of wood, then we should seal it before painting it.

Before closing this section, we should touch on a couple of seemingly paradoxical issues concerning

control rules. The first issue is called the utility problem [Minton, 1988]. As we add more and more contro]

knowledge to a system, the system is able to search more judiciously. This cuts down on the numberof nodes

it expands. However, in deliberating about which step to take next in the search space, the system must

consider ali the control rules. If there are many control rules, simply matching them all can be very time-

consuming.It is easy to reach a situation (especially in systems that generate control knowledge automatically}

https://hemanthrajhemu.github.io

Representing Knowledge Using Rules 145

in which the system’s problem-solving efficiency, as measured in CPU cycles, is worse with the control rules

than without them. Different systems handle this problem in different ways, as demonstrated in Section 17.4.4.

The second issue concerns the complexity of the production system interpreter. As this chapter has

progressed, we have seen a trend toward explicitly representing more and more knowledge about how search

should proceed. We have foundit useful to create meta-rules that talk about when to apply other rules. Now,

a production system interpreter .aust know how to apply various rules and meta-miles, so we should expect

that our interpreters will have to become more complex as we progress away from simple backward-chaining

systems like PROLOG. And yet, moving to a declarative representation for control knowledge means that

previously hand coded LISP functions can be eliminated from the interpreter. In this sense, the interpreter

becomes more streamlined.

SUMMARY

In this chapter, we have seen how to represent knowledge declaratively in rule-based systems and how to

reason with that knowledge. We began with a simple mechanism,logic programming, and progressed to more

complex production system models that can reason both forward and backward, apply sophisticated and

efficient matching techniques, and represent their search control knowiedgein rales.

In later chapters, we expand further on rule-based systems. In Chapter 7, we describe the use of rules that

allow default reasoning to occur in the absence of specific counter evidence. In Chapter 8, we introduce the

idea of attaching probabilistic measures to rules. And, in Chapter 20, we look at how mule-based systems are

being used to solve complex, real-world problems.

The book Pattern-Directed Inference Systems [Waterman and Hayes-Roth, 1978] is a collection of papers

describing the wide variety of uses to which production systems have been put in AL. Its mtroduction provides

a good overview of the subject. Brownston er af. [1985] is an introduction to programming in production

rules, with an emphasis on the OPS5S programming language.

EXERCISES

1. Consider the following knowledge base:

Wa: Vy: cat(x) A fishty) likes — to- eat(x,y)

Wx : calico(x) 2 cat(x)

Vx: tuna(x) fish(x)

tuna(Charlie)

funa(Herb)

calico(Puss)

(a) Convert these wff’s into Hom clauses.

(b) Convert the Horm clauses into a PROLOG program.
{c) Write a PROLOG query corresponding to the question, “What does Puss like to eat?” and show

how it will be answered by your program.

(d} Wiite another PROLOG program that corresponds to the sameset of wff’s but returns a different

answer to the same query.

2. A problem-solving search can proceed either forward (from a knownstart state to a desired goal state}

or backward (from a goalstate to a start state). What factors determine the choice of direction for a

particular problem?

https://hemanthrajhemu.github.io

146 Artificial Intelligence

3. Ifa problem-solving search program wereto be written to solve each ofthe following types of problems,

determine whether the search should proceed forward or backward:

(a) water jug problem

(b) blocks world

(c) naturat language understanding

4. Program the interpreter for a production system. You will need to build a table that holds the rules and

a matcher that compares the current state to the left sides of the rules. You will also need to provide an

appropriate control strategy to select among competing miles. Use your interpreter as the basis of a

program that solves water jug problems.

https://hemanthrajhemu.github.io

