

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

viii Contents
wee OS mail, ME

4.3 Issues in Knowledge Representation 3&6

44 The Frame Problem 96

Summary 97

Using Predicate Logic

5.1 Representing Simple Facts in Logic 99

5.2 Representing Instance and /SA Relationships /03
5.3. Computable Functions and Predicates /05

3.4 Resolution /08

3.5 Natural Deduction /24

Summary {25

Exercises {26

Representing Knowledge Using Rules

6.1 Procedural Versus Declarative Knowledge /29

6.2 Logic Programming /3/

6.3 Forward Versus Backward Reasoning 9/34

6.4 Matching /3&

64 Control Knowledge /42

Summary /435

Exercises 145

Symbolic Reasoning Under Uncertainty

7.4 Introduction to Nonmonotonic Reasoning /47

7.2. Logics for Nonmonotonic Reasoning /50

7.3 Emplementation Issues /57

74 Augmenting a Problem-solver 158

7.5 Implementation: Depth-first Search /60

7.6 Implementation: Breadth-first Search /66

Sunumnary 169

Exercises 170

Statistical Reasoning

8.1 Probability and Bayes’ Theorem /72

8.2 Certainty Factors and Rule-based Systems /74

8.3 Bayesian Networks /79

8.4 Dempster-Shafer Theory /8/

8.5 Fuzzy Logic /84

Summary {85

Exercises 146

WeakSiot-and-Filler Structures

9.1 Semantic Nets /&8

9,2 Frames /93

Exercises 205

285 RR.

98

129

147

172

188

https://hemanthrajhemu.github.io

CHAPTER

7

SYMBOLIC REASONING UNDER UNCERTAINTY

‘There are many methodsforpredicting thefuture. For example, you can readhoroscopes, tea leaves, tarot
cards, or crystal balls. Collectively, these methods are Known as ‘nutty methods.’ Or you can put well-
researchedfacts into sophisticatedcomputer models, more commonly referred to as “a complete waste of
time.”

—Scott Adams

-(1957-) Author Known for his comic strip Dilbert

So far, we have described techniques for reasoning with a complete, consistent, and unchanging modelof the
world. Unfortunately, in many problem domainsit is not possible to create such models. in this chapter and

the next, we explore techniques for solving problems with incomplete and uncertain models.

7.1 INTRODUCTION TO NONMONOTONIC REASONING

In their book, The Web of Belief, Quine and Ullian [1978] provide an excellent discussion of techniques that

can be used to reason effectively even when a complete, consistent, and constant model of the world is not

available. One of their examples, which wecall the ABC Murderstory, clearly illustrates many of the main

issues that such techniques must deal with. Quoting Quine and Ullian [1978]:

Let Abbott, Babbitt, and Cabot be suspects in a murder case. Abbott has an alibi, in the register of a

respectable hotel in Albany. Babbitt also has an alibi, for his brother-in-law testified that Babbitt was visiting

him in Brooklyn atthe time. Cabot pleadsalibi too, claiming to have been watching a ski meetin the Catskills,

but we have only his word for that. So we believe

1. That Abbott did not commit the crime

2. That Babbitt did not commit the crime

3. That Abbott or Babbitt or Cabot did.

But presently Cabot documents his alibi—he had the good luck to have been caught by television in the

sidelines at the ski meet. A new belief is thus thrust upon us:

4. That Cabot did not.

https://hemanthrajhemu.github.io

148 Artificial intelligence

Ourbeliefs (1) through (4) are inconsistent, so we must choose one for rejection. Which has the weakest

evidence? The basis for (1) in the hotel register is good, since it is a fine old hotel. The basis for (2) is weaker,

since Babbitt’s brother-in-law might be lying. The basis for (3) is perhaps twofold: that there is no sign of

burglary and that only Abbott, Babbitt, and Cabot seem to have stood to gain from the murder apart from

burglary. This exclusion of burglary seems conclusive, but the other consideration does not; there could be

some fourth beneficiary. For (4), finally, the basis is conclusive: the evidence from television. Thus (2) and (3)

are the weak points. To resolve the inconsistency of (1) through (4) we should reject (2) or (3), thus either

incriminating Babbitt or widening our net for some new suspect.

See also how the revision progresses downward. If we reject (2), we also revise our previous underlying

belief, however tentative, that the brother-in-law wastelling the truth and Babbitt was in Brooklyn. If instead

wereject (3), we also revise our previous underlying belief that none but Abbott, Babbitt, and Cabot stood to

gain from the murder apart from burglary.

Finally, a certain arbitrariness should be noted in the organization ofthis analysis. The inconsistent beliefs

(1) through (4) were singled out, and then various further beliefs were accorded a subordinate status as

underlying evidence: a belief about a hotel register, a belief about the prestige of the hotel, a belief about the

television, a perhaps unwarranted belief about the veracity of the brother-in-law, and so on. We could instead

have listed this full dozen of beliefs on an equal footing, appreciated that they were in contradiction, and

proceeded to restore consistency by weeding them out in various ways. But the organization lightened our

task. It focused our attention on four prominent beliefs among which to drop one, and then it ranged the other

beliefs under these four as mere aids to choosing whichofthe four to drop.

The strategy illustrated would seem in general to be a good one: divide and conquer. Whena set of beliefs

has accumulated to the point of contradiction, find the smaliest selection of them you can thatstill involves

contradiction; for instance, (1) through (4). For we can be sure that we are going to have to drop someof the

beliefs in that subset, whatever else we do. In reviewing and comparing the evidence for the beliefs in the

subset, then, we will find ourselves led down in a rather systematic way to other beliefs of the set. Eventually

wefind ourselves dropping some of them too.

In probing the evidence, where do we stop? In probing the evidence for (1) through (4) we dredged up

various underlying beliefs, but we could have probed further, seeking evidence in tum for them.In practice,

the probing stops when we are satisfied how best to restore consistency: which ones to discard among the

beliefs we have canvassed.

This story illustrates some of the problems posed by uncertain, fuzzy, and often changing knowledge. A

variety of logical frameworks and computational methods have been proposed for handling such problems.In

this chapter and the next, we discuss two approaches:

* Nonmonotonic reasoning, in which the axioms and/or the rules of inference are extended to makeit

possible to reason with incomplete information. These systems preserve, however, the property that, at

any given moment, a statement is either believed to be true, believed to be false, or not believed to be

either.

® Statistical reasoning, in which the representation is extended to allow some kind of numeric measure

of certainty (rather than simply TRUE or FALSE) to be associated with each statement.

Other approachesto these issues have also been proposed and used in systems. For example,it is sometimes

the case that there is not a single knowledge base that captures the beliefs ofal} the agents involved in solving

a problem. This would happen in our murder scenario if we were to attempt to mode! the reasoning of Abbott,
Babbitt, and Cabot, as well as that of the police investigator. To be able to do this reasoning, we would require

a technique for maintaining several parallel belief spaces, each of which would correspondto the beliefs of

one agent. Such techniques are complicated by the fact that the belief spaces of the various agents, although https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 149

not identical, are sufficiently similar that it is unacceptably inefficient to represent them as completely separate

knowledge bases. In Section 15.4.2 we return briefly to this issue. Meanwhile, in the rest of this chapter, we

describe techniques for nonmonotonic reasoning.

Conventiotnal reasoning systems, such first-order predicate logic, are designed to work with information

that has three important properties:

* It is complete with respect to the domain of interest. In other words, all the facts that are necessary to
solve a problem are present in the system or can be derived from those that are by the conventional

rules of first-order logic.

e It is consistent.

© The only way it can change is that new facts can be added as they become available. If these new facts

are consistent with all the other facts that have already been asserted, then nothing will ever be retracted

from the set of facts that are known to be true. This property is called monotonicity.

Unfortunately, if any of these properties is not satisfied, conventional logic-based reasoning systems become

inadequate. Nonmonotonic reasoning systems, on the other hand, are designed to be able to solve problems in

which all of these properties may be missing.

In order to do this, we must address several key issues, including the following:

I. How can the knowledge base be extended to allow inferences to be made on the basis of lack of

knowledge as weil as on the presence ofit? For example, we would like to be able to say thingslike, “H

you have no reason to suspectthat a particular person committed a crime, then assume he didn’t,”or “If

you have no reason to believe that someoneis not getting along with herrelatives, then assumethat the

relatives will try to protect her.” Specifically, we need to make clear the distinction between:

* It is known that ~P

© Jt is not known whether P

First-order predicate logic allows reasoning to be based on the first of these. We need an extended

system that allows reasoning to be based on the second as well. In our new system,wecall any inference

that depends on the lack of some piece of knowledge a nonmonotonicinference.!

Allowing such reasoning has a significant impact on a knowledge base. Nonmonotonic reasoning

systems derive their name from the fact that because of inferences that depend on lack of knowledge,

knowledge bases may not grow monotonically as new assertions are made. Adding a new assertion

may invalidate an inference that depended on the absence of that assertion. First-order predicate logic

systems, on the other hand, are monotonic in this respect. As new axiomsare asserted, new wff’s may

become provable, but no old proofs ever become invalid.

In other words, if some set of axioms T entails the truth of some statement w, then 7 combined with

another set of axioms N also entails w. Because nonmonotonic reasoning does not share this property,

itis also called defeasible: a nonmonotonic inference may be defeated (rendered invalid) by the addition

of new information that violates assumptions that were made during the original reasoning process.It

turns out, as we show below,that making this one change has a dramatic impact on the structure of the
logical system itself. In particular, most of our ideas of what it means to find a proof will have to be

reevaluated.

How can the knowledge base be updated properly when a new fact is added to the system (or when an

old one is removed}? In particular, in nonmonotonic systems, since the addition of a fact can cause

* Recall that in Section 2.4, we also made a monotonic/nonmonotonic distinction. There the issue was classes of production
systems. Although we are applying the distinction to different entities here,it is essentially the same distinction in both

cases,since it distinguishes between systems that never shrink as a result of an action (monotonic ones) and ones that can

(nonmonotoni¢c ones).

https://hemanthrajhemu.github.io

150 Artificial Intelligence

previously discovered proofs to be become invalid, how can those proofs, and all the conclusions that

depend on them be found? The usual solution to this problem is to keep track of proofs, which are often

called justifications. This makes it possible to ftndall the justifications that depended on the absence of

the new fact, and those proofs can be marked as invalid. Interestingly, such a recording mechanism

also makes it possible to support conventional, monotonic reasoning in the case where axioms must

occasionally be retracted to reflect changes in the world that is being modeled. For example, it may be

the case that Abbott is in town this week and so is available to testify, but if we wait until next week, he

may be out of town. As a result, when we discuss techniques for maintaining valid sets ofjustifications,

wetalk both about nonmonotonic reasoning and about monotonic reasoning in a changing world.

3. How can knowledge be used to heip resolve conflicts when there are several in consistent nonmonotonic

inferences that could be drawn? \t turnsout that when inferences can be based on the lack of knowledge

as well as on its presence, contradictions are much morelikely to occur than they were in conventional

logical systems in which the only possible contradictions were those that depended on facts that were

explicitly asserted to be true. In particular, in nonmonotonic systems, there are often portions of the

knowledge base that are locally consistent but mutually (globally) inconsistent. As we show below,

many techniques for reasoning nonmonotonically are able to define the alternatives that could be

believed, but most of them provide no way to choose among the options when not all of them can be

believed at once.

To do this, we require additional methods for resolving such conflicts in ways that are most appropriate for

the particular problem that is being solved, For example, as soon as we conclude that Abbott, Babbitt, and

Cabot all claim that they didn’t commit a crime, yet we conclude that one of them must have since there’s no

one else who is believed to have had a motive, we have a contradiction, which we want to resolve in some

particular way based on other knowledge that we have. In this case, for example, we choose to resolve the

conflict by finding the person with the weakestalibi and believing that he committed the crime (which involves

believing other things, such as that the chosen suspectlied).

The rest of this chapter is divided into five parts. In the first, we present several Jogical formalisms that

provide mechanisms for performing nonmonotonic reasoning. In the last four, we discuss approachesto the

implementation of such reasoning in problem-solving programs. For more detailed descriptions of many of

these systems, see the papers in Ginsberg [1987].

7.2 LOGICS FOR NONMONOTONIC REASONING

Because monotonicity is fundamental to the definition of first-order predicate logic, we are forced to find some

alternative to support nonmonotonic reasoning. In this section, we look at several formal approaches to doing

this. We examine several because no single formalism with all the desired properties has yet emerged (although

there are some attempts, e.g., Shoham [1987} and Konolige [1987], to present a unifying framework for these

several theories). In particular, we would like to find a formalism that doesall of the following things:

© Definesthe set of possible worlds that could exist given the facts that we do have. More precisely, we

will define an interpretation of a set of wff’s to be a domain (a set of objects) D, together with a

function that assigns: to each predicate, a relation (of corresponding arity); to each n-ary function, an

operator that maps from D” into D; and to each constant, an element of D. A model of a set of wif’s is

an interpretation that satisfies them. Now we can be more precise about this requirement. We require a

mechanism for defining the set of models of any set of wff’s we are given.

* Provides a way to say that we prefer to believe in some models rather than others.

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 151

e Provides the basis for a practical implementation of this kind of reasoning.

e Corresponds to our intuitions about how this kind of reasoning works. In other words, we do not want

vagaries of syntax to have a significant impact on the conciusions that can be drawn within our system.

As we examine each ofthe theories below, we need to evaluate how well they

perform each ofthese tasks. For a more detailed discussion of these theories and

some comparisons among them, see Reiter [1987a], Etherington [1988], and

Genesereth and Nilsson[1987].

Before we go into specific theories in detail, let’s consider Fig. 7.1, which shows

one wayof visualizing how nonmonotonic reasoning worksin all of them. The box

labeled A correspondsto an original set of wff’s. The large circle contains all the
models of A. When we add some nonmonotonic reasoning capabilities to A, we get

a new set of wff’s, which we’ve labeled 8.? B (usually) contains more information

than A does. As a result, fewer models satisfy 5 than A. The set of models 8B

corresponding to & is shown at the lowerrightof the large circle. Now suppose we

add some new wff’s (representing new information) to A. We represent A with Fig. 7.1 Models, Wff's,
these additions as the box C. A difficulty may arise, however, if the set of models and Non-

correspondingto C is as shownin the smaller, interior circle, since it is disjoint with monotonic
the models for 8. In order to find a new set of models that satisfy C, we need to Reasoning

accept modelsthat had previously been rejected. To dothat, we need to eliminate the wff’s that were responsible

for those models being thrown away. This is the essence of nonmonotonic reasoning.

7.2.1 Default Reasoning

We want to use nonmonotonic reasoning to perform what is commonly called default reasoning. We want to

draw conclusions based on what is most likely to be true. In this section, we discuss two approachesto doingthis.
e Nonmonotonic Logic?
® Default Logic

Wethen describe two common kinds of nonmonotonic reasoning that can be defined in those logics:

e Abduction

e Inheritance

Nonmonotonic Logic

One system that provides a basis for default reasoning is Nonmonotonic Logic (NML) [McDermott and

Doyle, 1980], in which the language offirst-order predicate logic is augmented with a modal operator M,

which can be read as “is consistent.”’ For example, the formula

Vx, y : Related(x, y) /\ M GetAlong(x, y) 3 7WillDefend(x, y)

should be read as, “For all x and y, if x and y are related andif the fact that x gets along with y is consistent with

everything else that is believed, then conclude that x will defend y.”

* As we will see below, some techniques add inference rules, which then generate wff’s, while others add wff’s directly.
We’ll ignore that difference for the moment.

‘Try not to get confused about names here. We are using the terms “nonmonotonic reasoning” and “default reasoning”

generically to describe a kind of reasoning. The terms “Nonmonotonic Logic” and “Default Logic” are, on the other

hand, being used to refer to specific formal theories.

https://hemanthrajhemu.github.io

152 Artificial Intelligence

Once we augment our theory to allow statements of this form, one important issue rust be resolved if we

want our theory to be even semidecidable. (Recall that even in a standard first-order theory, the question of

theoremhood is undecidable, so semide-cidability is the best we can hope for.} We must define what “is

consistent” means. Because consistency in this system, as in first-order predicate logic, is undecidable, we

need some approximation. The one that is usually used is the PROLOG notion of negation as failure, or some

variant of it. In other words, to show that P is consistent, we attempt to prove >P. If we fail, then we assume

7 to be false and we call P consistent. Unfortunately, this definition does not completely solve our problem.

Negation as failure works in pure PROLOG because, if we restrict the rest of our language to Hom clauses,

we have a decidable theory. So failure to prove something means thatit is not entailed by our theory. If, on the

other hand, westart with full first-order predicate logic as our base language, we have no such guarantee. So,

as a practical matter, it may be necessary to define consistency on some heunstic basis, such as failure to

prove inconsistency within some fixed level of effort.

A second problem that arises in this approach (and others, as we explain below) is what to do when

multiple nonmonctonic statements, taken alone, suggest ways of augmenting our knowledge that if taken

together would be inconsistent. For example, consider the following set of assertions:

Ya: Republican(x) A M 7>Pacifist(x) > ~Pacifist(x)

Wx: Quaker(x) /\ M Pacifist(x) > Pacifist(x)
Republican(Dick)

Quakev{Dick)

The definition of NML that we have given supports two distinct ways of augmenting this knowledge base.

In one, we first apply the first assertion, which allows us to conclude ~Pacifist(Dick). Having done that, the

second assertion cannot apply,since it is not consistent to assume Pacifist(Dick). The other thing we could do,

however, is apply the second assertion first. This results in the conclusion Pacéfist(Dick), which prevents the

first one from applying. So what conclusion doesthe theory actually support?

The answeris that NML defines the set of theorems that can be derived from a set of wff’s A to be the

intersection ofthe sets of theoremsthatresult from the various ways in which the wff’s ofA might be combined.

So, in our example, no conclusion about Dick’s pacifism can be derived. This theory thus takes a very

conservative approach to theoremhood. ,

It is worth pointing out here that although assertions such as the ones we used to reason about Dick’s

pacifism look like rules, they are, in this theory, just ordinary wff’s which can be manipulated by the standard

rules for combining logical expressions. So, for example, given

AAMBOB

“AAMBOB

we can derive the expression

M8>B

In the original formulation of NML,the semantics of the modai operator M, which is self-referential, were

unclear. A more recent system, Aufoepistemic Logic [Moore, 1985] is very similar, but solves some of these

problems.

4 Reiter’s original notation had “:M”in place of “:”. but since it conveys no additional information, the M is usually omitted.

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 153

Default Logic

An alternative logic for perfonming default-based reasoning is Reiter's Default Logic (DL) [Reiter, 1980],in

which a new class of inference rules is introduced. In this approach, we allow inference rules of the forim*

A: B

Cc

Such a rule should be read as, “Hf A is provable and it is consistent to assume 2 then conclude C.” As you
can see, this is very similar in intent to the nonmonotonic expressions that we used in NML.There are some

unportant differences between the two theories, however. Thefirst is that in DL the new inference miles are

used as a basis for computing set ofplausible extensions to the knowledge base. Each extension corresponds

to one maximal consistent augmentation of the knowledge base.° The Jogic then admits as a theorem any

expression that is valid in any extension. If a decision among the extensions is necessary to support problem

solving, some other mechanism must be provided. So, for example, if we return to the case of Dick the

Republican. we can compute two extensions, one corresponding tohis beinga pacifist and one corresponding

to his not being a pacifist. The theory of DL does not say anything about how to choose between the two, But

see Reiter and Criscuolo [1981], Touretzky [1986], and Rich [1983] for discussions of this issue.

A second important difference between these two theories is that, in DL, the nonmonotonic expressions

are rujes of inference rather than expressions in the language. Thus they cannot be manipulated by the other

rules of inference. This leads to some unexpected results. For example, given the two rules

A:B —aA:B

Cc B

and no assertion about A, no conclusion about #8 will be drawn, since neither inference rule applies.

Abduction

Standard logic performs deduction. Given two axioms:

Wa: Aly) > Boy)

ACC)

we can conchide B(C) using deduction. But what about applying the implication in reverse? For example,

suppose the axiom we have is.

Wa: Measles(x) > Spots(x)

The axiom says that having measles implies having spots. But suppose we notice spots. We mightlike to

conclude measles. Such a conclusion is not licensed by the rules of standard logic and it may be wrong, but it

may be the best guess we can make about what is going on. Deriving conclusions in this way is thus another

form of default reasoning. We call this specific form abductive reasoning. More precisely, the process of

abductive reasoning can be described as, “Given two wff’s (A — B) and (8), for any expressions A and 8,if

it is consistent to assume A, do so.”

In many domains, abductive reasoningis particularly useful if some measure of certainty is attached to the

resulting expressions. These certainty measures quantify the risk that the abductive reasoning process is

> What we mean by the expression “maximal consistent augmentation” is that no additional default mules can be applied
withoui violating consistency, Butits is important to note that only expressions generated by the application of the stated

inference rules to the original knowledge are allowed in an extension. Gratuitous additions are not permitted.

https://hemanthrajhemu.github.io

154 Artificial Intelligence

wrong, which it will be whenever there were other antecedents besides A that could have produced B. We

discuss ways of doing this in Chapter 8.
Abductive reasoning is not a kind of logic in the sense that DL and NMLare.In fact, it can be described in

either of them. Butit is a very useful kind of nonmonotonic reasoning, and so we mentionedit explicitly here.

Inheritance

One very common use of nonmonotonic reasoningis as a basis for inheriting attribute values from a prototype

description of a class to the individual entities that belong to the class. We considered one exampleofthis kind
of reasoning in Chapter 4, when we discussed the baseball knowledge base. Recall that we presented there an
algorithm for implementing inheritance. We can describe informally whatthat algorithm does by saying, “An
object inherits attribute values from all the classes of which it is a member unless doing so leads to a

contradiction, in which case a value from a morerestricted class has precedence over a value from a broader

class.” Can the logical ideas we have just been discussing provide a basis for describing this idea more

formally? The answeris yes. To see how,let’s return to the baseball example (as shown in Figure 4.5) and try
tu write its inheritable knowledge as rules in DL.

We can write a rule to accountfor the inheritance of a default value for the height of a baseball player as:

Baseball-Player(x) : height(x, 6-1)

height(x, 6-1)

Now suppose weassert Pitcher(Three-Finger-Brown). Since this enables us to conclude that Three-Finger-

Brown is a baseball player, our rule aJlows us to conclude that his height is 6-1. If, on the other hand, we had

asserted a conflicting value for Three Finger’ had an axiom like

Wx, ¥, 2: Reight(x, y) A height(x, 2) 3 y =z,

which prohibits someone from having more than one height, then we would not be able to apply the default
rule. Thus an explicitly stated value will block the inheritance of a default value, which is exactly what we

want. (We'll ignore here the order in which the assertions and the rules occur. As a jogical framework, default

logic does not care. We'll just assume that somehowitsettles out to a consistent state in which no defaults that

conflict with explicit assertions have been asserted. In Section 7.5.1 we look at issues that arise in creating an

implementation that assures that.)
But now, fet’s encode the default rule for the height of adult mates in general. If we pattern it after the one

for baseball players, we get

Aduit-Male(x) : height(x, 5-10)

height(x, 5-10)

Unfortunately, this rule does not work as we would like, In particular, if we again assert Pitcher(Three-

Finger-Brown), then the resulting theory contains two extensions: one in which ourfirst rule fires and Brown’s

height is 6-1 and one in which this new rule applies and Brown’s height is 5-10. Neither of these extensions

is preferred. In order to state that we prefer to get a value from the more specific category, baseball player, we

could rewrite the default rule for adult males in general as:

Adult-Male(x) : ~Baseball-Player(x) \ height(x, 5-10)

height(x, 5-10)

This effectively blocks the application of the default knowledge about adult males in the case that more
specific information from the class of baseball players is available.

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 155

Unfortunately, this approach can become unwieldy as the set of exceptions to the general rule increases.

For example, we could end up with a rule like:

Adult-Male(x) : “Baseball-Player(x) /\ “Midget(x) A — Jockey(x) /\ height(x, 5-10)

height(x, 5-10)

What we have donehere is to clutter our knowledge about the general class of adult males with list ofall

the known exceptions with respect to height. A clearer approach is to say something like, “Adult males

typically have a height of 5-10 unless they are abnormal in some way.” We can then associate with other

classes the information that they are abnormal! in one or another way. So we could write, for example:

Va Adult-Male(x) (\ ~AB(x, aspect1) —> height(x,5-10)

Wx : Basebail-Player(x) — AB(x, aspect 1)

Wx : Midget(x) -» AB(x, aspect 1)

Wax : Jockey(x) — AB(x, aspect 1)

Then,if we add the single default rule:

: A AB(x, y)

7 AB(x, y)

we get the desired result.

7.2.2 Minimalist Reasoning

So far, we have talked about general methods that provide ways of describing things that are generally true. In

this section we describe methods for saying a very specific and highly useful class of things that are generally
true. These methods are based on some variant of the idea of a minimal model. Recall from the beginning of

this section thal a model of a set of formulasis an interpretation that satisfies them. Although there are several

distinct definitions of what constitutes a minimal model, for our purposes, we will define a model to be

minimal if there are no other models in which fewer things are truce. (As you can probably imagine, there are

technicaldifficulties in making this precise, many of which involve the treatment of sentences with negation.)

The idea behind using minimal models as a basis for nonmonotonic reasoning about the world is the following:
“There are many fewer true statements than false ones. If something is true and relevant it makes sense to
assumethat it has been entered into our knowledge base. Therefore, assume that the only true statements are

those that necessarily must be true in order to maintain the consistency of the knowledge base.” We have

already mentioned (in Section 6.2) one kind of reasoning based on this idea, the PROLOG conceptof negation
as failure, which provides an implementation of the idea for Horm clause-based systems. In the rest of this

section we look at some logical issues that arise when we remove the Horn clause limitation.

The Closed World Assumption

A simple kind of minimalist reasoning is suggested by the Closed World Assumption or CWA [Reiter, 1978].

The CWAsaysthat the only objects that satisfy any predicate P are those that must. The CWA is particularly

powerful as a basis for reasoning with databases, which are assumed to be complete with respect to the

properties they describe. For example, a personnet database can safely be assumedtolist all of the company’s

employees. If someone asks whether Smith works for the company, we should reply “no” unlesshe is explicitly

listed as an employee. Similarly, an airline database can be assumed to contain a completelist of all the routes

flown bythat airline. So if I ask if there is a direct flight from Oshkosh to El Paso, the answer should be “no”
if none can be found in the database. The CWAis also useful as a way to deal with AB predicates, of the sort

https://hemanthrajhemu.github.io

156 Artificial Intelligence
ReiseS

we introduced in Section 7.2.1, since we want to take as abnormal only those thingsthat are asserted to be so.
Although the CWA is both simple and powerful, it can fail to produce an appropriate answer for either of

two reasons. The first js that its assumptions are not always true in the world; some parts of the world are not
realistically “closable.” We saw this problem in the murder story example. There were facts that were relevant

to the investigation that had not yet been uncovered and so were not present in the knowledge base. The CWA

wiil yield appropriate results exactly to the extent that the assumption that all the relevant positive facts are

present in the knowledge base is true.

The second kind of problem that plagues the CWA arises from the fact thatit is a purely syntactic reasoning

process. Thus, as you would expect, its results depend on the form of the assertions that are provided. Let’s

look at two specific examples of this probiern.
Consider a knowledge base that consists of just a single statement:

A(Joe} \¥ B(Joe}

The CWA allowsus to conclude both ? AVJee) and ?B(Joe), since neither A nor 6 must necessarily be true

of Joe. Unfortunately, the resulting extended knowledge base

AClue) \/ BUJoe}

aA(VJoe)

aAB(Ioe)

is inconsistent.

The problem is that we have assigned a special status to positive instances ot predicates, as opposed to
negative ones. Specifically, the CWA forces completion of a knowledge base by adding the negative assertion

*P wheneverit is consistent to do so. But the assignment of a real world property to some predicate P and its

complement to the negation of P may be arbitrary. For example, suppose we define a predicate Single and

create the following knowledge base:

Single(John)

Single(Mary)

Then, if we ask about Jane, the CWA will yield the answer >Sing/e/Jane}, But now suppose we had chosen

instead to use the predicate Married rather than Single. Then the corresponding knowledge base would be

aMarried(Johris

aMarried(Mary}

Tf we now ask about Jane, the CWA will yield the result ~Married(Jane).

Circumscription

Although the CWA captures part of the idea that anything that musi not necessarily be true should be assured

to be false, it does not capture all “of it. It has two essential imitations:

® It operates on individual’ predicates without considering the interactions among predicates that are

defined in the knowledge hase. We saw an example of this above when we considered the statement

Alfoe) \/ Boe).

e It assumesthatall predicates have all oftheir instanceslisted. Allhough in many database applications
this is true, in many knowledge-based systemsit is not. Some predicates can reasonably be assumed to

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 157

be completely defined (i.c., the part oF -he world they describe is closed), but others cannot(i.e., the
part of the world they describe is open). For example, the predicate has-a-green-shirt should probably
be considered open since in mostsituations it would not be safe to assumethat one hasbeen told all the

details of everyone else’s wardrobe.

Several theories ofcircumscription (e.g.. McCarthy [1980], McCarthy [1986], and Lifschitz [1985]) have

been proposed to deal with these problems. In all of these theories, new axioms are added to the existing

knowledge base. The effect of these axiomsis to force a minimalinterpretation on ‘‘a selected portion of the

knowledge base. In particular, each specific axiom describes a way that the set of values for which a particular

axiom of the original theory is true is to be delimited (i.e.. circumscribed).

As an example, suppose we have the simple assertion

Wa: Adult(x) \ aAB(, aspect!) > Literate(x)

We would like to circumscribe AB, since we would like it to apply only to those individuals to which it

applies. In essence, what we want to do is to say something about what the predicate AB must be(since atthis

point we have no idea whatit is; all we know is its name). To know whatit is, we need to know for what values

itis true. Even though we may know a few values for which it is true (if any individuals have been asserted to

be abnormalin this way), there are many different predicates that would be consistent with what we know so

far. Imagine this universe of possible binary predicates. We might ask, which of these predicates could be AB?

We wantto say that AB can only be one of the predicates that is true only for those objects that we know it

must be true for. We can do this by adding a (second order) axiom that says that AB is the smallest predicate

that is consistent with our existing knowledge base.

In this simple example, circumscription yields the same result as does the CWA since there are no other

assertions in the knowledge base with which a minimization ofAB must be consistent. In both cases, the only

models that are admitted are ones in which there are no individuals who are abnormal in aspect J. In other

words, AB must be the predicate FALSE.

But, now let’s return to the example knowledge base

A(Joe) \/ BUJoe)

If we eircumscribe only A, then this assertion describes exactly those models in which A is true of no one

and 8 is true of at least Joe. Similarly, if we circumscribe only 8, then we will accept exactly those models in

which 8 is true of no one and A istrue of at least Joe. If we circumscribe A and 8 together, then we will admit

only those models in which A is true of only Joe and B is true of no one or those in which is true of only Joe

and A is true of no one. Thus, unlike the CWA, circumscription allows us to describe the logical relationship

between A and B.

7.3. IMPLEMENTATION ISSUES

Although the logical frameworks that we have just discussed take us part of the way toward a basis for

implementing nonmonotonic reasoning in problem-solving programs, they are not enough. As we have seen,

they all have some weaknesses as logical systems. In addition, they fail to deal with four important problems

that arise in real systems.

Thefirst is how to derive exactly those nonmonotonic conclusionsthat are relevant to solving the problem

at hand while not wasting time on those that, while they may be licensed by the logic, are not necessary and

are not worth spending time on.

https://hemanthrajhemu.github.io

158 Artificial Intelligence

The second problem is how to update our knowledge incrementally as problem-solving progresses. The
definitions of the logical systems tell us how to decide on the truth status of a proposition with respect to a

given truthstatus of the rest of the knowledge base. Since the procedure for-doing this is a global one (relying

on some form of consistency or minimality), any change to the knowledge base may have far-reaching

consequences. It would be computationally intractable to handle this problem by starting over with just the

facts that are explicitly stated and reapplying the various nonmonotonic reasoning steps that were used before,

this time deriving possibly different results.
The third problem is that in nonmonotonic reasoning systems, it often happens that more than one

interpretation of the knownfacts is licensed by the available inference rules. In Reiter’s terminology, a given

nonmonotonic system may (and often does) have several extensions at the moment, even though many of

them will eventually be eliminated as new knowledge becomes available. Thus some kind of search process

is necessary. How should it be managed?

The final problem is that, in general, these theories are not computationally effective. None of them is

decidable. Some are semidecidable, but only in their propositional forms. And none is efficient.

In the rest of this chapter, we discuss several computational solutions to these problems. In all of these

systems, the reasoning process is separated into two parts: a problem solver that uses whatever mechamsm it

happensto have to draw conclusions as necessary and a truth maintenance system whose job is just to do the

bookkeeping required to provide a solution to our second problem. The various logical issues we have been

discussing, as well as the heuristic ones we have raised here are issues in the design of the problem solver, We
discuss these issues in Section 7.4. Then in the following sections, we describe techniques for tracking

nonmonotonic inferences so that changes to the knowledge base are handled properly. Techniques for doing

this can be divided into two classes, determined by their approach to the search control problem:

e Depth-first, in which we follow a single, most likely path until come new piece of information comes

in that forces us to give up this path and find another.
* Breadth-first, in which we considerall the possibilities as equally likely. We consider them as a group,

eliminating some of them as newfacts becomeavailable. Eventually, it may happen that only one (or a

small number) turn out to be consistent with everything we come to know.

It is important to keep in mind throughoutthe rest of this discussion that there is no exact correspondence

between any of the logics that we have described and any of the implementations that we will present.

Unfortunately, the details of how the two can be brought togetherarestill unknown.

7.4 AUGMENTING A PROBLEM-SOLVER

So far, we have described a variety of logical formalisms, all of which describe the theorems that can be

derived from a set of axioms. We have said nothing about how we might write a program that solves problems

using those axioms. In this section, we do that.

Aswe havealready discussed several times, problem-solving can be done using either forward or backward
reasoning. Problem-solving using uncertain knowledge is no exception. As a result, there are two basic

approachesto this kind of problem-solving (as well as a variety of hybrids):

* Reason forward from what is known. Treat nonmonotonically derivable conclusions the same way

monotonically derivable ones are handled. Nonmonotonic reasoning systems that support this kind of

reasoning allow standard forward-chaining rules to be augmented with uniess clauses, which introduce

a basis for reasoning by default. Control (including deciding which default interpretation to choose)is

handled in the same way thatall other control decisions in the system are made (whatever that may be,

for example, via rule ordering or the use of metarules).

https://hemanthrajhemu.github.io

j

Symbolic Reasoning Under Uncertainty 159

* Reason backward to determine whether some expression P is true (or perhapsto find a set of bindings

for its variables that make it true). Nonmonotonic reasoning systems that support this kind of reasoning

may do either or both of the following two things’.

— Allow default (unless) clauses in backward rules. Resolve conflicts among defaults using the same,

control strategy that is used for other kinds of reasoning (usually rule ordering).

— Support a kind of debate in which an attempt is made to construct arguments both in favor of P and

opposedto it. Then some additional knowledge is applied to the arguments to determine whichside

has the strongercase.

Let’s look at backward reasoning first. We will begin with the simple case of backward reasoning in which

we attempt to prove (and possibly to find bindings for) an expression & Suppose that we bave a knowledge

base that consists of the backward rules shown in Fig. 7.2.

Suspect(x) «- Benefician(x
UNLESS Alibi{x}

Alibiix} — SomewhereElse(x}
SomewhereElse(x}) — AegisteredHotel(x, y) and FarAway(y)

UNLESS ForgedRagister{y)
Alib{x) — Defends(x, y)

UNLESS Lies(y)
SomewhereElse(x) — PictureOfx, y) and FarAway(y}
Contradiction() — TRUE

UNLESS dx: Suspect(x)
Beneficiary (Abbott)
BeneficiaryBabbitt}

Benefician Cabot}

Fig. 7.2. Backward Rules Using UNLESS

Assume that the problemsolver that is using this knowledge base uses the usual PROLOG-style control

structure in which rules are matched top to bottom,left to right. Then if we ask the question? Suspect/x), the
program will first try Abbott, who is a fine suspect given what we know now,so it will return Abbott as its

answer. If we had also included the facts

RegisteredHotel(Abbott, Albany)

FarAway(Albany)

then, the program would have failed to conclude that Abbott was a suspect and it would instead have located

Babbitt.
As an alternative to this approach, consider the idea of a debate. In debating systems, an attempt is made to

find multiple answers. In the ABC Murder story case, for example, all three possible suspects would be

considered. Then some attempt to choose among the arguments would be made. In this case, for example, we

might want to have a choice rule that says that it is more likely that people will lie to defend themselves than

to defend others. We might have a second rule that says that we prefer to believe hotel registers rather than

people. Using these two rules, a problem solver would conclude that the most likely suspect is Cabot.

Backward rules work exactly as we have described if all of the required facts are present when the rules are

invoked, But what if we begin with the situation shown in Fig. 7.2 and conclude that Abbott is our suspect.

Later, we are told that he was registered at a hotel in Albany. Backward rules will never notice that anything

has changed. To make our system data-driven, we need té use forward rules. Figure 7.3 shows how the same
knowledge could be represented as forward rules. Of course, what we probably wantis a system that can
exploit both. In such a system, we could use a backward rule whose goal is to find a suspect, coupled with

forwardrules that fire as new facts that are relevant to finding a suspect appear.

https://hemanthrajhemu.github.io

160 Artificial Intelligence

lf: Beneficiary(),
UNLESS Alibi(x),

then Suspeci{ x}

lf: SomewhereElse(x},

then Alibi(x)

If: RegisteredHotel x, yj, and
FarAway(y),
UNLESS ForgedRegistery),

then SomewhereE/se(x)

lf Defends(x,y),

UNLESSLies(y), i
then Alibi(x)

If PictureOfx, y}, and
FarAway(y),

then SomewhereE/se(x}

lf TRUE,

UNLESS 4x: Suspect x}
then Contradiction()
BeneficiaryAbbot

Beneficiary Babbith

Beneficiary(Cabot)

Fig. 7.3. Forward Rules Using UNLESS

7.5 IMPLEMENTATION: DEPTH-FIRST SEARCH

7.5.1. Dependency-Directed Backtracking

If we take a depth-first approach to nonmonotonic reasoning, then the following scenario is likely to occuroften:

Weneed to know a fact, F, which cannot be derived monotonically from what we already know, but which can be

derived by making some assumption A which seems plausible. So we make assumption A, derive F, and then

derive some additional facts G and H from F. Welater derive some other facts M and N,but they are completely

independent of A and F, A little while later, a new fact comes in that invalidates A. We need to rescind our proof

of F, andalso our proofs of G and H since they depended on F. But what about M and N? They didn’t depend on

F, so there is no logical need to invalidate them. But if we use a conventional backtracking scheme, we have to

back up past conclusions in the order in which we derived them. So we have to backup past M and N,thus

undoing them, in order to get back to F, G, H and A.To get around this problem, we need slightly different

notion of backtracking, one that is based on logical dependencies rather than the chronological order in which

decisions were made. We cal] this new method dependency-directed backtracking [Stallman and Sussman,

1977], in contrast to chronological backtracking, which we have been using up until now.

Before we go into detail on how dependency-directed backtracking works, it is worth pointing out that

although one of the big motivationsforit is in handling nonmonotonic reasoning,it turns out to be useful for

conventional search programs as well. This is not too surprising when you consider that what any depth-first

search program does is to “‘make a guess” at something, thus creating a branch in the search space. If that

branch eventually dies out, then we know that at least one guess that led to it must be wrong.It could be any

guess along the branch. In chronological backtracking we have to assume it was the most recent guess and

back up there to try an alternative. Sometimes, though, we have additional information that tells us which

guess caused the problem. We'd like to retract only that guess and the work that explicitly depended onit,
leaving everything else that has happened in the meantime intact. This is exactly what dependency-directed

backtracking does.https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 161
‘SAae,

As an example, suppose we wantto build a program that generates a solution to a fairly simple problem,

such as-finding a time at which three busy people can all attend a meeting. One wayto solve such a problem

is first to make an assumptionthat the meeting will be held on someparticular day, say Wednesday, add to the

database an assertionto that effect, suitably tagged as an assumption, and then proceed to find a time, checking

along the way for any inconsistencies in people’s schedules.If a conflict arises, the statement representing the

assumption must be discarded and replaced by another, hopefully noncontradictory, one. But, of course, any

statements that have been generated along the way that depend on the now-discarded assumption must also be

discarded.

Of course, this kind of situation can be handled by a straightforward tree search with chronological back-

tracking. All assumptions, as well as the inter-

ences drawn from them, are recorded at the

search nodethat created them. When a node is YY day = Wednesday Try day = Tuesday
determined to represent a contradiction, sim- After many steps, Repeat sametime-finding

ply backtrack to the next node from whichthere concn tat re process an aga decide
: : only time ail people on p.m. for all of the

remain unexploredpaths. The assumptions and ate available is 2 p.m. same reasons.

their inferences will disappear automatically.
The drawback to this approachis illustrated in Try to find a room Try to find a room

Fig. 7.4, which showspart of the search tree of |
a program thatis trying to schedule a meeting. FAIL SUCCEED
To do so, the program must solve a constraint {A special conference

: : 1 ‘ d nd ti hasall the roomssatisfaction problem to find a day a d time at booked on Wednesday.)

which none of the participants is busy and at
which there is a sufficiently large room avail- Fig. 7.4 Nondependency-Directed Backtracking
able.

In orderto solve the problem, the system musttry to satisfy one constraintat a time. Initially, there is little

reason to choose one alternative over another, so it decides to schedule the meeting on Wednesday. That

creates a new constraint that must be met by the rest of the solution. The assumption that the meeting will be

held on Wednesday is stored at the node it generated. Next the program tries to select a time at which all

participants are available. Among them,they have regularly scheduled daily meetings at all times except 2:00,

So 2:00 is chosen as the meeting time. But it would not have mattered which day was chosen. Then the

program discovers that on Wednesdaythere are no roomsavailable. So it backtracks past the assumption that

the day would be Wednesday and tries another day, Tuesday. Now it must duplicate the chain of reasoning

that led it to choose 2:00 as the time because that reasoning was Jost when it backtracked to redo the choice of

day. This occurred even though that reasoning did not depend in any way on the assumption that the day

would be Wednesday. By withdrawing statements based on the order in which they were generated by the

search process rather than on the basis of responsibility for inconsistency, we may waste a great deal of effort.

Hf we want to use dependency-directed backtracking instead, so that we do not waste this effort, then we

need to do the following things:

« Associate with each node one or more justifications. Each justification corre sponds to a derivation
processthat led to the node. (Since it is possible to derive the same node in several different ways, we

wantto allow for the possibility of multiple justifications.) Each justification must containa list ofall
the nodes (facts, rules, assumptions) on whichits derivation depended.

e Provide a mechanism that, when given a contradiction node andits justification, computes the “no-
good” set of assumptions that underlie the justification. The no-good set is defined to be the minimal

set of assumptions suchthat if you remove any element from theset, the justification will no longer be

valid and the inconsistent node will no longer be believed.

https://hemanthrajhemu.github.io

162 Artificial Intelligence

* Provide a mechanism for considering a no-good set and choosing an assumption to retract.

Provide a mechanism for propagating the result of retracting an assumption. This mechanism must cause

all of the justifications that depended, however indirectly, on the retracted assumption to become invalid.

In the next two sections, we will describe two approaches to providing such a system.

7.5.2 Justification-Based Truth Maintenance Systems

The idea of a truth maintenance system or TMS [Doyle, 1979] arose as a way of providing the ability to do

dependency-directed backtracking and so to support nonmonotonic reasoning. There was a later attempt to

renameit to Reason Maintenance System (a bit less pretentious), but since the old namehasstuck, we use it here.

A TMSallows assertions to be connected via a spreadsheet-like network of dependencies. In this section,

we describe a simple form of truth maintenance system, a justification-based truth maintenance system (or

JTMS). In a JTMS(orjust TMSforthe rest of this section), the TMSitself does not know anything about the

structure of the assertions themselves. (As a result, in our examples, we use an English-like shorthand for

representing the contents of nodes.) The TMS’s only role is to serve as a bookkeeperfor a separate problem-

solving system, which in tum provides it with both assertions and dependencies amongassertions,

To see how a TMS works,let’s retum to the ABC Murderstory. Initially, we might believe that Abbott is

the primary suspect because he wasa beneficiary of the deceased and he had no alibi. There are three assertions

here, a specific combination of which we now believe, although we may change our beliefs later. We can

represent these assertions in shorthand as follows:

* Suspect Abbott (Abbott is the primary murder suspect.)

« Beneficiary Abbott (Abbott is a beneficiary of the victim.)

® Alibi Abbott (Abbott was at an Albany hotel at the time.)

Our reason for possible belief that Abbott is the murderer is nonmonotonic. In the notation of Default

Logic, we can state the rule that producedit as

Beneficiary(x) : SAlibi(x)

Suspect(x)

or we Can write it as a backward nile as we did in Section 7.4.

If we currently believe that he is a beneficiary and we have no reason to believe he has a valid alibi, then
we will believe that he is our suspect. But if later we cometo believe that he does have a valid alibi, we will

no longer believe Abbott is a suspect.
But how should belief be represented and how should this change in belief be enforced? There are various

ad hoc ways we might do this in a rule-based system. But they wouid all require a developer to construct niles

carefully for each possible change in belief. For instance, we would have to havea rule that said that if Abbott

ever gets an alibi, then we should erase from the database the belief that Abbott is a suspect. But suppose that

welater fire a rule that erases belief in Abbott’s alibi, Then we need another mile that would reconclude that

Abbott is a suspect. The task ofcreating a rule set that consistently maintains beliefs when new assertions are

added to the database quickly becomes un- Suspect Abbott supported belied
manageable. In contrast, a TMS dependency

network offers a purely syntactic, domain-

independent way to represent belief and i

changeit consistently.

Figure 7.5 shows how these three facts |_ Beneficiary Abbott |_ Alibi Abbott
would be represented in a dependency INdist OUT-lst
network, which can be created as a result of Fig. 7.5 A justification

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 163

applying the first rule of either Fig. 7.2 or Fig. 7.3. The assertion Suspect Abbott has an associated TMS
justification. Each justification consists of two parts: an IN-dist and an OUT-/ist. In the figure, the assertions

on the IN-list are connectedto thejustification by “+”links, those on the OUT-list by “—”links. The justification

is connected by an arrow to the assertion that it supports. In the justification shown, there is exactly one

assertion in each list. Beneficiary Abbott is in the IN-list and Alibi Abbort is in the OUT-list. Such ajustification

says that Abbott should be a suspect just when it is believed that he is a beneficiary and it is not believed that

he has an alibi.

More generally, assertions (usually called nodes) in a TMS dependency network are believed when they

have a valid justification. A justification is valid if every assertion in the IN-list is believed and none of those

in the OUT-list is. A justification is nonmonotonic if its OUT-list is not empty,or, recursively, if any assertion

in its IN-list has a nonmonotonic justification. Otherwise, it is monotonic. In a TMS network, nodes are

labeled with a belief status, If the assertion corresponding to the node should be believed, then in the TMSit

is labeled IN. If there is no good reason to believe the assertion,then it is labeled OUT. What does it mean that

an assertion “should be believed” or has no “good” reason for belief?

ATMSanswers these questions for a dependency network in a waythat is independentof any interpretation

of the assertions associated with the nodes. The /abeling task of a TMSis to label each node so that two

criteria about the dependency network structure are met. The first criterion is consistency: every node labeled

IN is supported by at least one valid justification and all other nodes are labeled OUT. More specifically than

before, a justification is valid tf every nodein its [N-list is labeled IN and every node in its OUT-list is labeled

OUT. Notice that in Fig. 7.5, all of the assertions would have to be labeled OUTto be consistent. Alibi Abbon

has no justification at all, much less a valid one, and so must be labeled OUT. But the sameis true for

Beneficiary Abbott, so it must be OUT as well. Thenthe justification for Suspec¢ Abbott is invalid because an

elementof its IN-list is labeled OUT. Suspect Abbott would then be labeled OUT as weil. Thus status labels

correspondto our belief or lack of it in assertions,and justifications Correspond to our reasons for such belief,

with valid justifications being our “good” reasons. Notice that the label OUT may indicate that we have

specific reason to believe that a node represents an assertion that is not true, or it may mean simply that we

have no information one way or the other.

But the state of affairs in Fig. 7.5 is incomplete. We are told Suspect Abbott [IN]

that Abbott is a beneficiary. We have no furtherjustification for

this fact; we must simply accept it. For such facts, we give a

premise justification: a justification with empty IN- and OUT-

lists. Premise justifications are always valid. Figure 7.6 shows

suchajustification added to the network and a consistent labeling

for that network, which shows Suspect Abbott labeled IN. |

That Abbotis the primary suspect represents an initial state of

the murder investigation. Subsequently, the detective establishes

that Abbottis listed on the register of a good Albany hotel on the

day of the murder. This prevides a valid reason to believe Abbott's alibi. Figure 7.7 shows the effect of adding

such a justification to the network, assuming that we have used forward (data-driven) rules as shown in Fig. 7.3

for ail of our reasoning except possibly establishing the top-level goal. That Abbott was registered at the hotel.

Registered Abbott, wastold to us and has a premise justification and sois labeled IN. That the hotel is far away is

also asserted as a premise. The register might have been forged, but we have no good reason to believe it was.

Thus Register Forged lacks any justification and is labeled OUT. That Abbott was on the register of a far away

hotel and the lack of belief that the register was forged will cause the appropriate forward ruleto fire and create

a justification for Alibi-Abbott, which is thus labeled IN. This means that Suspect Abbots no longerhas a valid

justification and must be labeled OUT. Abbott is no longer a suspect.

Beneficiary Abbott [IN] Alibi Abbott [OUT]

Fig. 7.6 Labeled Nodes with Premise
Justification

https://hemanthrajhemu.github.io

164 Artificial Intelligence

Notice that such a TMS labeling carefully
avoids saying that the register definitely was

not forged. It only says that there is currently

no good reason to believe that it was. Just like

our original reason for believing that Abbott was

a suspect, this is a nonmonotonic justification.
Later, if we find that Abbott was secretly
married to the desk clerk, we might add to this

network ajustification that would reverse some

of the labeling. Babbitt will have a similar

justification based upon lack of belief that his

brother-in-law lied as shown in Fig. 7.8 (where

B-I-L stands for “Brother-In-Law’”).

Abbott’s changing state showed how

consistency was maintained. There is another

criterion that the TMS must meet in labeling a

dependencynetwork: well-foundedness (1.e., the

proper grounding of a chain ofjustifications on

a set of nedes that do not themselves depend on

the nodes they support). To illustrate this,

consider poor Cabot: Not only does he have

fewer bs and ¢s in his name,he also lacks a valid

justification for his alibi that he was at a ski

show. We have only his word that he was.

Ignoring the more complicated representation
of lying, the simple dependency network in

Fig. 7.9 illustrates the fact that the only support

for the alibi of attending the ski show is that

Cabotis telling the truth about being there. The

only supportfor his telling the truth would beif
we knew he wasat the ski show. Butthis is a

circular argument. Part of the task of a TMSis

to disallow such arguments, In particuiar, if the

support for a node only depends on an unbroken

chain of positive links (IN-list links) leading

back to itself then that node must be labeled

OUTif the labeling is to be well-founded.

The TMStask of ensuring a consistent, well-

founded labeling has now been outlined. The

other major task of a TMSis resolving

contradictions. In a TMS,a contradiction node

does not represent a logical contradiction but

rather a state of the database explicitly deciared

to be undesirable. (In the next section, we

describe a slightly different kind of TMS in

which this is not the case.) In our example, we

Beneficiary Babbitt [IN]

Beneficiary Cabot [IN]

Suspect Abbott (OUT)

oN

“meeAbbott [IN] Alibi Abbott [IN]

Registered Abbott [IN]

| Far away[IN]
I Register forged {OUT}

Fig. 7.7 Changed Labeling

Suspect Babbitt [OUT]an
Alibi Babbitt [IN]

es
Says SofIL [IN] Lies B-f-L OUT]

Fig. 7.8 Babbitt’s justification

Suspect Cabot[IN]

Alibi Cabot [GUT] |

l. Tells Truth Cabot (OUT]

Fig.7.9 Cabot’s justification

+

Contradiction

Other Suspects

Suspect Abboit Suspect Babbitt Suspect Cabot

Fig. 7.10 A Contradiction

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 165

have a contradiction if we do not have at least one murder suspect. Thus a contradiction might have the

justification shown in Fig. 7.10, where the node Other Suspects means that there are suspects other than
Abbott, Babbitt, and Cabot. This is one way of explicitly representing an instance of the closed world

assumption. Later, if we discover a long-lostrelative, this will provide a valid justification for Other Suspects.

But for now, it has none and must be labeled OUT. Fortunately, even though Abbott and Babbitt are not

suspects, Suspect Cabotis labeled IN, invalidating thejustification for the contradiction. While the contradiction

is labeled OUT,there is no contradiction to resolve.

Now we learn that Cabot was seen on

television attending the ski tournament. Adding

this to the dependency network first illustrates

the fact that nodes can have more than one + =

justification as shownin Fig. 7.11. Not only does

Cabot say he wasat the ski slopes, but he was ,Cabot[IN] Alibi Cabot[IN]

seen there on television, and we have no reason

to believe that this was an elaborate forgery. This

new valid justification of Alibi Cabot causesit Tells Truth Cabot[IN]

to he labeled IN (which also causes Teils Truth

Cabot to come IN). This change in state

propagates to Suspect Cabot, which goes OUT.

Now we have a problem.

Thejustification for the contradiction is now

valid and the contradiction is IN. The job of the

TMSat this pointis to determine how the contradiction can be made OUTagain. In a TMS network, a node

can be made OUT by causingall of its justifications to become invalid. Monotonic justifications cannot be

made invalid without retracting explicit assertions that have been made to the network, Nonmonotonic

justifications can, however, be invalidated by asserting some fact whose absence is required by the justification.

We cali assertions with nonmonotonic justifications assumptions. An assumption can be retracted by making

IN someelementofits justification’s OUT-list (or recursively in some elementof the OUT-list of the justification

of some elementin its IN-list). Unfortunately, there may be many such assumptions in a large dependency

network. Fortunately, the network gives us a way to identify those that are relevant to the contradiction at

hand. Dependency-directed backtracking algorithms, of the sort we described in Section 7.5.1, can use the

dependency links to determine an AND/ORtree of assumptions that might be retracted and ways to retract

them by justifying other beliefs.

In Fig. 7.40, we see that the contradiction itself is an assumption wheneverits justification is valid. We

might retract it by believing there were other suspects or by finding a way to believe again that either Abbott,

Babbitt, or Cabot was a suspect. Each of the last three could be believed if we disbelieved their alibis, which

in turn are assumptions. So if we believed that the hotel register was a forgery, that Babbitt’s brother-in-law

lied, or that the television pictures were faked, we would have a suspect again and the contradiction would go

back OUT. So there are four things we might believe to resolve the contradiction, That is as far as DDB will

take us. It reports there is an OR tree with four nodes. What should we do?

A TMShasno answerfor this question. Early TMSs picked an answerat random. Morerecentarchitectures

take the more reasonable position that this choice was a problem for the same problem-solving agent that

created the dependenciesin the first place. But suppose we do pick one. Suppose, in particular, that we choose

to believe that Babbitt’s brother-in-law lied. What should be the justification for that belief? If we believeit

just because not believingit leads to a contradiction, then we should install a justification that should be valid

only as long asit needs to be. If iater we find another way that the contradiction can be labeled OUT, we will

not want to continue in our abductive belief.

Suspect Cabot (OUT)

vt Seen {IN] TY Forgery [OUT]

Fig. 7.11 A Second fustification

https://hemanthrajhemu.github.io

166 Artificial Intelligence

For instance, suppose that we believe that the brother-in-law lied, but later we discover that a long-lost

relative, jilted by the family, was in town the day of the murder. We would no longer have to believe the

brother-in-law lied just to avoid a contradiction. A TMS may also have algorithmsto create such justifications,

which wecall abductive since they are created using abductive reasoning. If they have the property that they

are not unnecessarily valid, they are said to be complete. Lies B-lL
Figure 7.12 shows a complete abductive justification for

the belief that Babbitt’s brother-in-law lied. If we come to
believe that Abbott or Cabotis a suspect, or we find a long-

lost relative, or we somehow cometo believe that Babbitt’s Says So B-I-L Suspect Abbott Suspect Cabot

brother-in-law didn’t really say Babbitt was at his house,

then this justification for lying will become invalid.

At this point, we have described the key reasoning operations that are performed by a JTMS:

Other Suspects

Fig. 7.12 A Complete Abductive Justification

® consistent labeling

® contradiction resolution

Wehavealso described a set of important reasoning operations that a JTMS does not perform, including:

® applying rules to derive conclusions

¢ creating justifications for the results of applying rules (although justifications are created as part of

contradiction resolution)

* choosing among alternative ways of resolving a contradiction

* detecting contradictions

All of these operations must be performed by the problem-solving program that is using the JTMS. In the

next section, we describe a slightly different kind of TMS,in which,althoughthefirst three of these operations

muststill be performed by the problem-solving system, the last can be performed by the TMS.

7.5.3 Logic-Based Truth Maintenance Systems

A logic-based truth maintenance system (LTMS) [McAllester, 1980] is very similar to a JTMS.It differs in

one important way. In a JTMS,the nodes in the network are treated as atoms by the TMS, which assumes no

relationships among them except the ones that are explicitly stated in the justifications. In particular, a JFMS

has no problem simultaneously labeling both P and — PIN. For example, we could have represented explicitly

both Lies B-I-L and Not Lies B-f-L and labeled both of them IN. No contradiction will be detected automatically.

In an LTMS,on the other hand, a contradiction would be asserted automatically in such a case. If we had

constructed the ABC example in an LTMS system, we would not have created an explicit contradiction
correspondingto the assertion that there was no suspect. Instead we would (replace the contradiction node by

one that asserted something like No Suspect. Then we would assert Suspect. When No Suspect came IN,it

would cause a contradiction to be asserted automatically.

7.6 IMPLEMENTATION: BREADTH-FIRST SEARCH

The assumption-based truth maintenance system (ATMS) |de Kleer, 1986]is an alternative way of implementing

nonmonotonic reasoning. In both JTMS and LTMSsystems,a single line of reasoning is pursued at a time,
and dependency-directed backtracking occurs wheneverit is necessary to change the system’s assumptions.

Inan ATMS,alternative paths are maintained in parallel. Backtracking is avoided at the expense of maintaining

multiple contexts, each of which correspondsto a set of consistent as-sumptions. As reasoning proceedsin an

ATMS-based system, the universe of consistent contexts is pruned as contradictions are discovered. The

remaining consistent contexts are used to label assertions, thus indicating the contexts in which each assertion

has a valid justification. Assertions that do not have a valid justification in any consistent context can be

https://hemanthrajhemu.github.io

, Symbolic Reasoning Under Uncertainty 167

pruned from consideration by the problem solver, As the set of consistent contexts gets smaller, so too does
the set of assertions that can consistently be believed by the problem solver. Essentially, an ATMS system

works breadth-first, considering all possible contexts at once, while both JTMS and LTMSsystems operate

depth-first. :

The ATMS,like the JTMS,is designed to be used in conjunction with a separate problem solver. The

problem solver’s job is to:

e Create nodes that correspond to assertions (both those that are given as axioms and those that are

derived by the problem solver).

@ Associate with each such node one or more justifications, each of which describes a reasoning chain

that led to the node.

e Inform the ATMSofinconsistent contexts.

Notice that this is identical to the role of the problem solver that uses a JTMS, except that no explicit

choices among paths to follow need be made as reasoning proceeds. Some decision may be necessary at the

end, though, if more than one possible solution still has a consistent context.

The role of the ATMSsystem is then to: :

« Propagate inconsistencies, thus ruling out contexts that include subcontexts (sets of assertions) that are

known to be inconsistent.

e Label each problem solver node with the contexts in which it has a valid justification. This is done by

combining contexts that correspond to the componentsofajustification.In particular, given a justification

of the form

AILAA2 A... A\An aC

assign as a context for the node corresponding to C the intersection of the contexts corresponding to

the nodes A) through An.

Contexts get eliminated as a result of the problem-solver asserting inconsistencies and the ATMS propagating

them. Nodesget created by the problem-solver to represent possible components of a problem solution. They

may then get pruned from consideration if all their context labels get pruned. Thus a choice among possible

solution components gradually evolves in a process very muchlike the constraintsatisfaction procedure that

we examined in Section 3.5.
One problem with this approachis that given a set of 1 assumptions, the number of possible contexts that

may have to be considered is 2". Fortunately, in many problem-solving scenarios, most of them can be pruned

without ever looking at them. Further, the ATMS exploits an efficient labeling system that makes it possible

to encode a set of contexts as a single context [Ai, A2, A3, Ad]

that delimits the set. To see how both of these

things work,it is necessary to think of the set of

contexts that are defined by a set of assump- [A1, A2, AS] (1, A2, Ad] [A1, A3, Ad] [A2, A3, Aa]

tions as forming lattice, as shown for a simple=
example with four assumptions in Fig. 7.13.

Lines going upward indicate a subset relation- [A1, A2]_ [A1, AS] fA1, A4) [A2, AS} [A2, Aa] [AS, Aa]

ship.

The first thing this lattice does for us is to [At] [A2j [A3] [Aa

illustrate a simple mechanism by which Le

contradictions (inconsistent contexts) can be TOLa

propagated so that large parts of the space of 2” {}
contexts can be eliminated. Suppose that the Fig. 7.13 A Context Lattice

https://hemanthrajhemu.github.io

168 Artificial Intelligence

context labeled (A2, A3} is asserted to be Inconsistent. Then all contexts that include it (1.e., those that are

above it) must also be inconsistent. —

Nowconsider how a node can be labeled with ali the contexts in whichit has a valid justification. Supposeits

justification depends on assumption Al. Then the context labeled {Al} and all the contexts that include it are

acceptable. Butthis can be indicated just by saying {A1}. It is not necessary to enumerate its supersets. In general,

each node will be labeled with the greatest lower bounds of the contexts in which it should be believed.
Clearly, it is importantthat this lattice not be built explicitly but only used as an implicit structure as the

ATMSproceeds.

As an example of how an ATMS-based problem-solver works, let’s return to the ABC Murderstory.

Again, our goal is to find a primary suspect. We need (at least) the following assumptions:

Al. Hotel register was forged.
A2. Hotel register was not forged.

A3. Babbitt’s brother-in-law lied.

A4, Babbitt’s brother-in-law did notlie.

A5. Cabotlied.

Ao. Cabot did notlie.

A7. Abbott, Babbitt, and Cabot are the only possible suspects.

* A&. Abbott, Babbitt, and Cabot are not the only suspects.

The problem-solver could then generate the nodes and associated justifications shown in the first two

columnsof Fig. 7.14. In the figure, the justification for a node that correspondsto a decision to make assumption

Nis shown as {4}. Justifications for nodes that correspond to the result of applying reasoning rules are shown

as the rule involved. Then the ATMScan assign labels to the nodes as shownin the second two columns. The

first showsthe label that would be generated for each justification taken by itself. The second showsthe label

{possibly containing multiple contexts) that is actually assigned to the node givenall its current justifications.

These columns are identical in simple cases, but they may differ in more compiex situations as we see for

nodes J2, 13, and i4 of our example.

Nodes Justifications Node Labels
[1] Register was not forged {Az} {A?} {Ae}.
[2] Abbott at hotel 11 [2] {A2} {A2}
[3] 8-I-L didn't lie {4} {Ad}, {Ad}
[4] Babbitt at 8-I-L [3] > [4] {A4} {A4}
[5] Cabot didn't lie {6} {AG} {AG}
(6] Cabot at ski show [5] - [6] {A6} {A6}
E7] A, B, C only suspects {A7} {A7} {A7}

[8] Prime Suspect Abbott [7] A [13] 4 [14] > [8] {A?, A4, AB} {A7, A4, A6}

{9] Prime Suspect Babbitt [AA [12] A [14] > [9] {A7, A2, AB} {A7, A2, A6}

[10] Prime Suspect Cabot [7] A [12] A [13] 3 [10] {A7, A2, Aa} {A7, A2, A4}

[11] A, B,C not only suspects {A8} {A8} {AB}
[12] Not prime suspect Abbott [2] > [12] {A2} {A2}, LAB}

[11] — [12] {AB}
[9] > [12] i{A7, A2, AG}
[10] - [12] {A7, A2, Ad}

[13] Nof prime suspect Babbitt [4] > [13] {A4} {Ad}, {AB}
{14] > [13] {A8}
{8} > [13] {A7, A4, A6}
[10] > [13] {A7, A4, A2}

[14] Not prime suspect Cabot [6] > [14] {AG} {A6]}, {AB}
[11] > [14] {Ad}
[6] > [14] {A7, A4, A6)

[9] > [14] {A?, A2, AG}

Fig. 7.14 Nodes and Their justifications and Labels

https://hemanthrajhemu.github.io

Symbolic Reasoning Under Uncertainty 169

There are several things to notice about this example:

* Nodes may have several justifications if there are several possible reasons for believing them. This is

the case for nodes 12, 13, and /4.

* Recall that when we were using a JTMS,a node was labeled IN if it had at least one valid justification.

Using an ATMS, a node will end up being labeled with a consistent context if it has at least one

justification that can occur in a consistent context.

@ The label assignment process is sometimes complicated. We describe it in more detail below,

Suppose that a problem-solving program first created nodes 1 through 14, representing the various

dependencies among them without committing to which of them it currently believes. It can indicate known

contradictions by marking as no good the context:

e A, B, Care the only suspects; A, B, C are not the only suspects: {A7, A8}

The ATMS would then assign the labels shown in the figure. Let’s consider the case of node 12. We

generate four possible labels, one for each justification. But we wantto assign to the node a label that contains

just the greatest lower bounds ofail the contexts in which it can,occur, since they implicitly encode the

superset contexts. The label {A2} is the greatest lower bound ofthefirst, third, and fourth label, and (A8} is

the same for the secondlabel. Thus those two contexts are all that are required as the label for the node. Now

Jet's consider labeling node 8. Its abel must be the union of the labels of nodes 7, 13, and 14. But nodes 13

and 14 have compiex labels representing alternative justifications. So we must considerall ways of combining:

the labelsof all three nodes. Fortunately, some of these combinations, namely those that contain both A7 and

A8, can be eliminated because they are already knownto be contradictory. Thus weare left with a single labe!

as shown.

Now suppose the problem-solving program labels the context {A2} as no good, meaningthatthe assumption

it contains (namely that the hotel register was not forged) conflicts with what it knows. Then many of the

labels that we had disappear since they are now inconsistent. In particutar, the labels for nodes 1, 2,9, 10, aud

12 disappear. At this point, the only suspect node that has a label is node 8. But node 12 (Not prime suspect

Abbott) also still has a jabel that corresponds to the assumption that Abbott, Babbitt, and Cabot are net the

only suspects. If this assumption is made, then Abbott would: not be a clear suspect even if the hotel register

were forged. Further information or some choice processis still necessary to choose between these remuining

nodes.

SUMMARY

In this chapter we have discussed several logical systems that provide a basis for nontnonotonic reasoning,

including nonmonotonic logic, default logic, abduction, inheritance, the closed world assumption, and

circumscription. We have also described a way in which the kind of rules that we discussed in Chapter 6 could

be augmented to support nonmonotonic reasoning.

We then presented three kinds of TMS systems,all of which provide a basis for implementing nonmonotonic

reasoning. We have considered two dimensions along which TMSsystems can vary: whether they automatically

detect logical contradictions and whether they maintain single or multiple contexts. The following table

summarizes this discussion:

TMS Kinds single context muitiplecontext

nontogical JTMS ATMS

logical LTMS ?

https://hemanthrajhemu.github.io

170 Artificial Intelligence

As can be seen in this table, there is currently no TMS with logical contradictions and multiple contexts.

These various TMS systems each have advantages and disadvantages with respect to each other. The

major issues that distinguish JTMS and ATMSsystemsare:

e The FTMSis often better when only a single solution is desired since it does not need to consider

alternatives; the ATMSis usually more efficient if all solutions are eventually going to be needed.

* To create the context lattice, the ATMS performs a global operation in which it considers all possible

combinations of assumptions. Asa result, either all assumptions must be knownat the outset of problem

solving or an expensive, recompilation process must occur whenever an assumption is added. In the

JTMS,on the other hand, the gradual addition, of new assumptions poses no problem.

* The JTMS mayspenda lot of time switching contexts when backtracking is necessary. Context switching

does not happen in the ATMS.

¢ Inan ATMS,inconsistent contexts disappear from consideration. Ifthe initial problem description was

overconstrained, then all nodes will end up with empty labels and there will be no problem-solving

trace that can serve as a basis for relaxing one or more of the constraints. Jn a JTMS, on the other hand,

the justification that is attached to a contradiction node provides exactly such a trace.

« The ATMSprovides a natural way to answer questions of the form, “In what contexts is A true?” The

only way to answer such questions using a JTMSis to try all the alternatives and record the ones in

which A is labeled IN.

One wayto get the best of both of these worlds is to combine an ATMSand a JTMS(or LTMS),letting

each handle the part of the problem-solving process to which it is best suited.

The various nonmonotonic systems that we have described in this chapter have served as a basis for a
variety of applications. One area of particular significance is diagnosis (for example, of faults in a physical

device) [Reiter, 1987b; de Kleer and Williams, 1987]. Diagnosis is a natural application area for minimalist

reasoning in particular, since one way to describe the diagnostic task is, “Find the smalles’: set of abnormally

tchaving components that would account for the observed behavior.” A second application area is reasoning

about action, with a particular emphasis on addressing-the frame problem [Hanks and McDermott, 1986].

The frame problem is also natural for this kind of reasoning since it can be described as, “Assume that
everything stays the same after an action except the things that necessarily change.” A third application area

is design [Steele ef a/., 1989]. Here, nonmonotonic reasoning provides a basis for using common design

principies to find a promising path quickly even in a huge design space while preserving the option to consider

alternatives later if necessary, And yet another application area is in extracting intent from English expressions

(see Chapter 15.)

In all the systems that we have discussed, we have assumed that belief status is a binary function. An

assertion must eventually be either believed or not. Sometimes, this is too strong an assumption. In the next

chapter, we present techniques for dealing with uncertainty without making that assumption. Instead, we

allowfor varying degrees ofbelief.

EXERCISES

t. Try to formulate the ABC Murderstory in preduate logic and see how far you can get.

The classic example of nonmonotonic reasoning involves birds and flying. In particular, consider the

following facts:

« Most things do notfly.

* Most birds do fly, unless they are too young or dead or have a broken wing.

« Penguins and ostriches do notfly.

@ Magical ostrichesfly.

t
w

https://hemanthrajhemu.github.io

10.

Il.

Symbolic Reasoning Under Uncertainty 171

« Tweety is a bird.

« Chirpy is either a penguin or an ostrich.
* Feathers is a magical ostrich,

Use one or more of the nonmonotonic reasoning systems we have discussed to answer the following

questions:

* Does Tweety fly?

e Does Chirpy fly?

e Does Feathers fly?

Does Paul fly?

Consider the missionaries and cannibals problem of Section 2.6. When you solved that problem, you

used the CWA several times (probably without thinking aboutit}. List some of the ways in which you

usedit.

A big technical problem that arises in defining circumscription precisely is the definition of a minimal

model. Consider again the problem of Dick, the Quaker and Republican, which we can rewrite using a

slightly different kind of AB predicate as:

Va: Republican(a) \ 7ABI(x) 3 —Pacifist()

Wx: Quaker(x) \ ~AB2(x) - Pacifist(x)

Republican(x)

Quaker(x)

(a) Write down the smallest models you can that describe the two extensions that we computed for

that knowledge base.

(2) Does it make sense to say that either is smaller than the other?

(c) Prioritized circumscription [McCarthy, 1986] attempts to solve this problem by ranking predicates

bythe order in which they should be minimized, How could you usethis idea to indicate a preference

as to which extension to prefer?
Consider the problern of finding clothes to wear in the moming. To solve this problem,it is necessary

to use knowledge such as:

* Wear jeans unless either they are dirty or you have a job interview today.

« Wear a sweater ifit’s cold.

® It’s usually cold in the winter.

® Wear sandals if it’s warm.

© Tt’s usually warm in the summer,

(a) Build a JTMS-style database of the necessary facts to solve this problem.

(b) Show how the problem can be solved and how the solution changes as the relevant facts (such as

time of year and dirtiness of jeans) change.

Show how a JTMS could be used in medical diagnosis. Consider rules such as, “If you have a runny

nose, assume you have a cold unless it is allergy season.”
Solve the same medical reasoning problem with an ATMS.

Show how a JTMS could be used to select a TV program to watch. Consider rules such as, “If it is 6:00,

then watch the news on channel 2 unless there is a football gamestill going on.”

TMSsare useful tools in solving constraint satisfaction problemssince theyfa cilitate the nonmonotonic

reasoning that occurs during the search for a complete solution.

(a) Show how a JTMScould be used to solve the cryptarithmetic problems of Chapter2.

(bh) Show how an ATMS would solve the same problem.

We described informally the JTMS labeling process. Write a formal description of that algorithm.

Work through the details of the ATMS node labeling process whose results are shown in Fig. 7.14.

https://hemanthrajhemu.github.io

CHAPTER

3
STATISTICAL REASONING

Statistics can be made to prove anything-even the truth.

—Anonymous

So far, we have described several representation techniques that can be used to model belief systems in which,

at any given point, a particular fact is believed to be true, believed to be false, or not considered one wayor the

other. For some kinds of problem solving, though,it is useful to be able to describe beliefs that are not certain

but for which there is some supporting evidence. Let’s consider two classes of such problems.
Thefirst class contains problems in which there is genuine randomnessin the world. Playing card games

such as bridge and blackjack is a good example of this class. Although in these problemsit is not possible to

predict the world with certainty, some knowledge aboutthe likelihood of various outcomesis available, and

we would like to be able to exploitit.

The second class contains problemsthat could,in principle, be modeled using the techniques we described
in the last chapter. In these problems, the relevant world is not random; it behaves “normally” unlessthere is

some kind of exception. The difficulty is that there are many more possible exceptions than we care to enumerate

explicitly (using techniques such as AB and UNLESS). Many commonsense tasks fall into this category, as

do many expert reasoning tasks such as medical diagnosis. For problemslike this, statistical measures may

serve a very useful function as summaries of the world; rather than enumerating all the possible exceptions,

we can use a numerical summary thattells us how often an exception of somesort can be expected to occur.

In this chapter we explore several techniques that can be used to augment knowledge representation

techniques with statistical measures that describe levels of evidence and belief.

8.1 PROBABILITY AND BAYES’ THEOREM

An important goal for many problem-solving systemsis to collect evidence as the system goes along and to

modify its behavior on the basis of the evidence. To model this behavior, we need a Statistical theory of

evidence. Bayesian statistics is such a theory. The fundamental notion of Bayesianstatistics is that of conditional

probability:

PURE)https://hemanthrajhemu.github.io

Statistical Reasoning 173

Read this expression as the probability of hypothesis HW given that we have observed evidence E. To

compute this, we need to take into account the prior probability of H (the probability that we would assign to

H if we had no evidence) and the extent to which £ provides evidence of H. To do this, we need to define a

universe that contains an exhaustive, mutually exclusive set of H,’s, among which weare trying to discriminate,

Then,let

P(ANE) = the probability that hypothesis H, is true given evidence FE

PCENH,) = the probability that we will observe evidence FE given that hypothesis i is true
PCH.) = the a priori probability that hypothesis /is true in the absence ofany specific evidence. These probabilities

are called prior probabilities or priors.
& = the numberof possible hypotheses

Bayes’ theorem then states that

P(E|H,)- P(H;)
P(HME) = =

DiPUEVH,) PUH,)

Suppose, for example, that we are interested in examining the geological evidence at a particular location

to determine whether that would be a good place to dig to find a desired mineral. If we know the prior

probabilities of finding each of the various minerals and we know the probabilities that if a mineral is present

then certain physical characteristics will be observed, then we can use Bayes’ formula to compute, from the

evidence we collect, how likely it is that the various minerals are present. This is, in fact, what is done by the

PROSPECTORprogram [Duda et al, 1979], which has been used successfully to help locate deposits of

several minerals, including copper and uranium.

The key to using Bayes’ theorem as a basis for uncertain reasoning is to recognize exactly whatit says.

Specifically, when we say P(A\B), we are describing the conditional probability of A given that the only

evidence we haveis B, If there is also other relevant evidence, then it too must be considered. Suppose, for

example, that we are solving a medical diagnosis problem. Consider the following assertions:

S: patient has spots

M: patient has measles

F, patient has high fever

Without any additional evidence, the presence of spots serves as evidence in favor of measles. It also

serves as evidence of fever since measles would cause fever. But suppose we already know that the patient
has measles. Then the additional evidence that he has spots actually tells us nothing aboutthe likelihood of

fever. Alternatively, either spots alone or fever alone would constitute evidence in favor of measles. If both

are present, we need to take both into accountin determining the total weight of evidence. But, since spots and

fever are not independent events, we cannot just sum their effects. Instead, we need to represent explicitly the

conditional probability that arises from their conjunction. In general, given a prior body of evidence e and

some new observation £, we need to compute

P(elE, A)
PANE, e) = PUAIE) - PlelE)

https://hemanthrajhemu.github.io

174 Artificial intelligence

Unfortunately, in an arbitrarily complex world, the size of the set of joint probabilities that we require in

order to compute this function grows as 2” if there are n different propositions being considered. This makes

using Bayes’ theorem intractable for several reasons:

* The knowledge acquisition problem is insurmountable: too many probabilities have to be provided.In
addition, there is substantial empirical evidence (e.g., Tversky and Kahneman [1974] and Kahneman

et al. [1982]) that people are very poor probability estimators.
e The space that would be required to store all the probabilities is too large.

© The time required to compute the probabilities is too large.

Despite these problems, though, Bayesian statistics provide an attractive basis for an uncertain reasoning

system. As a result, several mechanisms for exploiting its power while at the same time makingit tractable

have been developed. In the rest of this chapter, we explore three of these:

« Attaching certainty factors to miles

e Bayesian networks

« Dempster-Shafer theory

We also mention one very different numerical approach to uncertainty, fuzzy logic.

There has been an active, strident debate for many years on the question of whether pure Bayesianstatistics

are adequate as a basis for the development of reasoning programs. (See, for example, Cheeseman [1985] for

arguments that it is and Buchanan and Shortliffe [1984] for arguments that it is not.) On the one hand, non-

Bayesian approaches have been shown to work weil for some kinds of applications (as we see below). On the

other hand, there are clear limitations to all known techniques. In essence,the jury is still out. So we sidestep

the issue as much as possible and simply describe a set of methods and their characteristics.

8.2 CERTAINTY FACTORS AND RULE-BASED SYSTEMS

In this section we describe one practical way of compromising on a pure Bayesian system. The approach we

discuss was pioneered in the MYCIN system [Shortliffe, 1976; Buchanan and Shortliffe, 1984; Shortliffe and

Buchanan, 1975], which attempts to recommend appropriate therapies for patients with bacterial infections. It

interacts with the physician to acquire the clinical data it needs. MYCIN is an example of an expert system,

since it performs a task normally done by a human expert. Here we concentrate on the use of probabilistic

reasoning; Chapter 20 provides a broader view of expert systems.
MYCIN represents most of its diagnostic knowledge as a set of rules. Each rule has associated with it a

certainty factor, which is a measure of the extent to which the evidence that is described by the antecedent of

the rule supports the conclusion that is given in the rule’s consequent. A typical MYCIN mile lookslike:

Tf: (1) the stain of the organism is gram-positive, and

{2) the morphology of the organism is coccus, and

(3) the growth conformation of the organism is clumps,

then there is suggestive evidence (0.7) that

the identity of the organism is staphylococcus.

This is the form in which the niles are stated to the user. They are actually represented internally in an easy-

to-manipulate LISP list structure. The rule we just saw would be represented internally as

PREMISE: (SAND (SAME CNTKT GRAM GRAMPOS})

(SAME CNTXT MORPH COCCUS}

(SAME CNTXT CONFORM CLUMPS) }

ACTION: {CONCLUDE CNTXT IDENT STAPHYLOCOCCUS TALLY 0.7)

https://hemanthrajhemu.github.io

Statistical Reasaning 175

MYCINusesthese rules to reason backward to the clinical data available from its goal of finding significant

disease-causing organisms. Onceit finds the identities of such organisms,it then attempts to select a therapy

by which the disease (s) may be treated. In order to understand how MYCIN exploits uncertain information,

we need answers to two questions: “What do certainty factors mean?” and “How does MYCIN combine the

estimates of certainty in each ofits rules to produce a final estimate of the certainty of its conclusions?” A
further question that we need to answer, given our observations about the intractability of pure Bayesian

reasoning, is, “What compromises does the MYCIN technique make and whatrisks are associated with those

compromises?” In the rest of this section we answerall these questions.

Let’s start first with a simple answerto the first question (to which we return with a more detailed answer

later}. A certainty factor (CF [A, e]) is defined in terms of two components:

® MBjh, e}—a measure (between 0 and 1) of belief in hypothesis A given the evidence ¢. 4/B measures
the extent to which the evidence supports the hypothesis. It is zero if the evidence fails to support the

hypothesis,

* MD{[h,e]—a measure (between 0 and 1) of disbelief in hypothesis A given the evidence e. MD measures

the extent to which the evidence supports the negation of the hypothesis. It is zero if the evidence

supports the hypothesis.

From these two measures, we can define the certainty factor as

CFIh, e) = MBA, e] - MD[RA,e)

Since any particular piece of evidence either supports or denies a hypothesis (but not botfi), and since each

MYCIN rule corresponds to one piece of evidence (although it may be a compound piece of evidence), a

single number suffices for each rule to define both the MB and MD and thus the CF

The CF’s of MYCIN’s rules are provided by the experts who write the ®)

rules. They reflect the experts’ assessments of the strength of the evidence in @®

support of the hypothesis. As MYCIN reasons, however, these CF's need to) Wa ©) (B)

be combinedto reflect the operation of multiple pieces of evidence and multiple 6)

rules applied to a problem. Figure 8.1 illustrates three combination scenarios (©)

that we need to consider. In Fig. 8.1(a), several rules all provide evidence that (a) (b) (c)

relates to a single hypothesis. In Fig. 8.1(b), we need to consider ourbelief in

a collection of several propositions taken together. In Fig. 8.1(c), the output

of one me provides the input to another.

What formulas should be used to perform these combinations? Before we answer that question, we need
first to describe some properties that we would like th >combining functionsto satisfy:

Fig.8.1 Combining
Uncertain Rules

« Since the order in which evidence is collecteJ is arbitrary, the combining functions should be
commutative and associative.

« Until certainty is reached, additional confirming evidence should increase MB (and similarly for

disconfirming evidence and MD).

e If uncertain inferences are chained together, then the result should be less certain than either of the
inferences alone.

Having accepted the desirability of these properties, let’s first consider the scenario in Fig. 8.1 (a), in which

several pieces of evidence are combined to determine the CF of one hypothesis. The measures of belief and

disbelief of a hypothesis given two observations 5, and s, are computed from:

https://hemanthrajhemu.github.io

176 Artificial intelligence

0 if MDIA, 5; A s3}= 1
MBAs, /\ 55) =

MB\h, 8,| + MB[A, 55] - C1 — MBIA, 5\) otherwise

0 if MBIA, s, As] =1
MDA, 8, A 51 =

21) MBIA, 5, + MDIh, sy) - (1 — MD[A, 8,1) otherwise

One way to state these formulas in English is that the measure of belief in # is 0 if # is disbelieved with

certainty, Otherwise, the measure of belief in # given two observations is the measure of belief given only one

observation plus some increment for the second observation. This increment is computed byfirst taking the

difference between | (certainty) and the belief given only the first observation. This difference is the most that

can be added by the second ohservation. The difference is then scaled by the belief in A given only the second

observation. A corresponding explanation can be given, then, for the formula for computing disbelief. From

MB and MD, CF can be computed. Notice that if several sources of corroborating evidence are pooled, the

absolute value of CFwill increase. If conflicting evidence is introduced, the absolute value of CF will decrease.

A simple example shows how these functions operate. Suppose we makean initial observation that confirms

our belief in A with MB = 0.3, Then MD[4,5,] = 0 and CFTA, s,] = 0.3. Now we make a second observation,

which also confirms A, with MB[A,s,| = 0.2. Now:

MB[h,s, \ 55] = 0.3 +0.2-0.7
= 0.44

- MDIh,s, A 5] = 0.0
CFIh,s, A 85] = 0.44

You can see from this example how slight confirmatory evidence can accumulate to produce increasingly

larger certainty factors.

Next let’s consider the scenario of Fig. 8.1(b), in which we need to compute the certainty factor of a

combination of hypotheses. In particular, this is necessary when we need to knowthecertainty factor of a rule

antecedent that contains several clauses (as, for example, in the staphylococcus rule given above}. The

combination certainty factor can be computed from its MB and MD, The formulas MYCIN usesfor the MB of

the conjunction and the disjunction of two hypotheses are:

MB\h, ‘\ fy, e] = min(MB[A,, e],MBTh,, e])

MBUh, “fy, e] = max(MB[h,,c|,MBlAye])

MD can be computed analogously.

Finally, we need to consider the scenario in Fig. 8.1(c), in which rules are chained together with the result

that the uncertain outcome of one rule must provide the input to another. Our solution to this problem will also

handle the case in which we must assign a measure of uncertainty to initial inputs. This could easily happen in
situations where the evidence is the outcome of an experiment or a iaboratory test whose results are not

completely accurate. In such a case, the certainty factor of the hypothesis must take into account both the

strength with which the evidence suggests the hypothesis and the level of confidence in the evidence. MYCIN
provides a chaining rule that is defined as follows. Let MB’[A, s] be the measure ofbeliefin # given that we are

absolutely sure of the validity of s, Let e be the evidence that led us to believe in s (for example, the actual

readings of the laboratory instruments or the results of applying other rules). Then:

https://hemanthrajhemu.github.io

Statistical Reasoning 177

MB[h, s] = MB’[A, s] - max(0, CF[s, e])

Since initial CF’s in MYCIN are estimates that are given by experts who write the mules, it is not really

necessary to state a more precise definition of what a CF means than the one we have already given. The

original work did, however, provide one by defining MB (which can be thoughtof as a proportionate decrease

in disbelief in # as a result of e)} as:

1 if Pth) =1
MB[h, ef = maxfP(Ale), PC] — P(r

I~ Pth)
otherwise

Similarly, the 7D is the proportionate decrease in belief in f as a result ofe:

1 if P(A) = 0

MDIh, el = jminlP(hle),P(R)]~ PCA)
—P(h)

otherwise

It turns out that these definitions are incompatible with a Bayesian view of conditional probability. Small

changes to them, however, make them compatrble [Heckerman, 1986]. In particular, we can redefine MB as

1 if P(A) = 1

Math, e] = |max(PChle),PCA)] — PCA)(1— P(A): Plhle)
otherwise

The definition of MD must also be changed similarly.
With these reinterpretations, there ceases to be any fundamental conflict between MYCIN’s techniques

and those suggested by Bayesianstatistics. We argued at the end of the last section that pure Bayesianstatistics

usually leads to intractable systems. But MYCIN works [Buchanan and Shortliffe, 1984]. Why?

Each CF ina MYCIN nile represents the contribution ofan individual nile to MYCIN’sbelief in a hypothesis.

In some sense then, it represents a conditional probability, PCA\E). But recall that in a pure Bayesian system,

P(ANE) describes the conditional probability of A given that the only relevant evidence is F. If there is other

evidence, joint probabilities need to be considered, This is where MYCIN diverges from a pure Bayesian

system, with the result that it is easier to write and more efficient to execute, but witb the correspondingrisk,

that its behavior will be counterintuitive. In particular, the MYCIN formulasforall three combination scenarios

of Fig. 8.1 make the assumptionthat all rules are independent. The burden of guaranteeing independence (at

least to the extent that it matters} is on the rule writer. Each of the combination scenarios is vulnerable when

this independence assumption is violated.

Let’s first consider the scenario in Fig. 8.1(a). Our example rule has three antecedents with a single CF

rather than three separate rules; this makes the combination rules unnecessary. The rule writer did this because

the three antecedents are not independent. To see how much difference MYCIN’s independence assumption

can make, suppose for a momentthat we had instead had three separate rules and that the CF of each was0.6.

This could happen andstill be consistent with the combined CF of 0.7 if the three conditions overlap

substantially. If we apply the MYCIN combination formula to the three separate rules, we get

https://hemanthrajhemu.github.io

178 Artificial Intelligence

MB\h.s \ 85] = 0.6 + (0.6 - 0.4)
= 0.84

MB|h(s, A 55) A sy] = 0.84 + (0.6 - 0.16)
= 0.936

This is a substantially different result than the true value, as expressed by the expert, of 0.7.

Now let’s consider what happens when independence assumptions are violated in the scenario of Fig.

8.1(c). Let’s consider a concrete example in which:

5: sprinkler was on Jast night
W; grass is wet

R: it rained last night

We can write MYCIN-style rules that describe predictive relationships among these three events:

If: the sprinkler was on last night

then there is suggestive evidence (0.9) that

the grass will be wet this morning

Taken alone, this rule may accurately describe the world. But now consider a second rule:

If: the grass is wet this morning

then there is suggestive evidence (0.8) that

it rained last night

Taken alone, this rule makes sense whenrain is the most common source of water on the grass. Butif the

two rules are applied together, using MYCIN’s rule for chaining, we get

MB[WS] = 0.8 {sprinkler suggests wet}

MB[R,W] = 0.8 «0.9 = 0.72 {wet suggests rains}

In other words, we believe that it rained because we believe the sprinkler was on. We get this despite the

fact that if the sprinkler is known to have been on and to be the cause of the grass being wet, then there is

actually almost no evidence for rain (because the wet grass has been explained some other way). One of the

major advantages of the, modularity of the MYCIN rule system is that it allows us to consider individual

antecedent/consequentrelationships independently of others, In particular,it lets us talk about the implications

of a proposition without going back and considering the evidencethat supported it. Unfortunately,this example

showsthat there is a dangerin this approach wheneverthe justifications of a belief are important to determining

its consequences.In this case, we need to know why webelieve the grass is wet (e.g., because we observedit

to be wet as opposed to because we knowthe sprinkler was on) in order to determine whether the wetgrass is
evidence for it having just rained.

It is worth pointing out here that this example illustrates one specific rule structure that almost always

causes trouble and should be avoided. Notice that our first rule describes a causal relationship (sprinkler
causes wetgrass). The secondrule, althoughit looks the same, actually describes an inverse causality relationship

(wet grass is caused by rain and thus is evidence for its cause). Although one can derive evidence for a

symptom ftom its cause and for a cause from observing its symptom, it is important that evidence thatis

derived one way not be used again to go back the other way with no new information. To avoid this problem,

https://hemanthrajhemu.github.io

Statistical Reasoning 179

many rule-based systemseither limit their rules to one structure or clearly partition the two kinds so that they

cannot interfere with each other. When we discuss Bayesian networks in the next section, we describe a

systematic solution to this problem.

We can summarize this discussion of certainty factors and rule-based systems as follows. The approach

makes strong independence assumptions that make it relatively easy to use; at the same time assumptions
create dangers if rules are not written carefully so that important dependencies are captured. The approach

can serveas the basis of practical application programs.It did so in MYCIN.It has doneso in a broad array of
other systemsthat have been built on the EMYCINplatform [van Melle e# ai., 1981], which is a generalization

(often called a shell) of MYCIN with all the domain-specifie rules stripped out. One reason thatthis framework

is useful, despite its limitations, is that it appears that in an otherwise robust system the exact numbersthat are

used do not matter very much. The other reason is that the rules were carefully designed to avoid the major

pitfalls we have just described. One other interesting thing about this approach is that it appears to mimic

quite weil [Shultz ef al., 1989] the way people manipulate certainties.

8.3 BAYESIAN NETWORKS

In the last section, we described CFs as a mechanism for reducing the complexity of a Bayesian reasoning

system by making some approximations to the formalism. In this section, we describe an alternative approach,
Bayesian networks [Pearl, 1988], in which we preserve the formalism and rely instead on the modularity of

the world we are trying to model. The main ideais that to describe the real world,it is not necessary to use a

huge joint probabililify table in which welist the probabilities of all conceivable combinations of events.

Most events are conditionally independent of most other ones, so their interactions need not be considered.

Instead, we can use a more local representation in which we will describe clusters of events that interact.

Recall that in Fig. 8.1 we used a network notation to describe the vanous kinds of constraints on likelihoods

that propositions can have on each other. The idea of constraint networks turns out to be very powerful. We

expand on it in this section as a way to represent interactions among events; we also return to it later in

Sections 11.3.1 and 14.3, where we talk

about other ways of representing
knowledge as sets of constraints.

Let’s return to the example of the

sprinkler, rain, and grass that we introduced Sprikier Rain Sprikler Rain

in the last section. Figure 8.2(a) shows the

flow of constraints we described in Wet

MYCIN-style rules. But recall that the "

problem that we encountered with that (a) (6)
example was that the constraints flowed Fig. 8.2 Representing Causality Uniformly
incorrectly from “sprinkler on” to “rained last night.” The problem was that we failed to make a distinction

that turned outto be critical. There are two different ways that propositions can influence the Itkelihood of
each other. The first is that causes influence the likelihood of their symptoms; the second is that observing a

symptom affects the likelihood of ali of its possible causes. The idea behind the Bayesian networkstructure is
to make a clear distinction between these two kinds of influence.

Specifically, we construct a directed acyclic graph (DAG) that represents causality relationships among

variables. The idea of a causality graph (or network) has proved to be very useful in several systems,particularly

medical diagnosis systems such as CAS- NET [Weiss ef ai., 1978] and INTERNIST/CADUCEUS[Pople,
1982]. The variables in such a graph may be propositional (in which case they can take on the values TRUE

and FALSE)or they may be variablesthat take on values of some other type (e.g., a specific disease, a body

https://hemanthrajhemu.github.io

180 Artificial Intelligence

temperature, or a reading taken by some other diagnostic device). In Fig. 8.2(4). we show a causality graph

for the wet grass example. In additionto the three nodes we have been talking about, the graph contains a new

node corresponding to the propositional variable that tells us whether it is currently the rainy season.

A DAG,such as the one we have just drawn,illustrates the causality relationships that occur among the

nodesit contains. In order to use it as a basis for probabilistic reasoning, however, we need more information.

In particular, we need to know, for each value of a parent node, what evidence is provided about the values

that the child node can take on. We can state this in a table in which the conditional probabilities are provided.

We show such a table for our example in Fig. 8.3. For example. from the table we see that the prior probability

of the rainy season is 0.5. “Then, if it is the rainy season, the probability of rain on a given night is 0.9; if it is

not, the probability is only 0.1.

Attribute Probability

p{ Wet\Sprinkler, Rain) 0.95
P(Wet\Sprinkler, Rain) 0.9
PWet\-Sprinkler, Rain) 0.8
pi Weil-Sprinkler, +Fain) 0.1

Pi Sprinkler\AainySeason) 0.0
plSprinkler\~AlainySeason) 1.0

p{Rain \RainySeasen) 0.9
p{Rain \ +RainySeason) 0.1

pi RainySeason) 0.5
Fig.8.3 Conditional Probabilities for a Bayesian Network

To be useful as a basis for problem solving, we need a mechanism for computing the influence of any

arbitrary node on any other. For example, suppose that we have observed that it rained last night. What does

that tell us about the probability that it is the rainy season? To answer this question requires that the inittal

DAG be converted to an undirected graph in which the arcs can be used to transmit probabilities in either

direction, depending on where the evidence is coming from. We also require a mechanism for using the graph

that guarantees that probabilities are transmitted correctly. For example, while it is true that observing wet

grass may be evidence for rain, and observing rain is evidence for wet grass, we must guarantee that no cycle

is ever traversed in such a way that wet grass is evidence for rain, whichis then taken as evidence for wet

grass, and so forth.

There are three broad classes of algorithms for doing these computations: a message-passing method

!Pear], 1988], a clique triangulation method [Lauritzen and Spiegelhaiter, 1988], and a variety of stochastic

algorithms. The idea behind these methods is to take advantage of the fact that nodes have limited domains of

influence. Thus, although in principle the task of updating probabilities consistently throughout the network

is intractable, in practice it may not be. In the clique triangulation method, for example, explicit arcs are

introduced between pairs of nodes that share a common- descendent. For the case shown in Fig. 8.2(b), a link
would be introduced between Sprinkler and Rain. This explicit link supports assessing the impact of the

observation Sprinkler on the hypothesis Rain. This is important since wet grass could be evidence of either of

them, but wet grass plus oneofits causes is not evidence for the competing causesince an alternative explanation

for the observed phenomenon already exists.

The message-passing approach is based on the observation that to compute the probability of a node A

given what is known about other nodes in the network, it is necessary to know three things:

* q-the total support arriving at A from its parent nodes (which represent its causes).

e A-the total support arriving at A from its children (which representits symptoms).

« The entry in the tixed conditional probability matrix that relates A to its causes.

https://hemanthrajhemu.github.io

Statistical Reasoning , 181

Several methods for propagating a and A messages and updating the probabilities at the nodes have been

developed. The structure of the network determines what approach can be used. For example, in singly

connected networks (those in which there is only a single path between every pair of nodes), a simpler

algorithm can be used than in the case of multiply connected ones. For details, see Pearl [1988].

Finally, there are stochastic, or randomized algorithms for updating belief networks. One such algorithm

(Chavez, 1989] transforms an arbitrary network into a Markov chain, The idea is to shield a given node

probabilistically from most of the other nodes in the network: Stochastic algorithms run fast in practice, but

may not yield absolutely correct results.

8.4 DEMPSTER-SHAFER THEORY

So far, we have described several techniques,all of which consider individual propositions and assign to each

of them a point estimate (i.e., a single number) of the degree ofbelief that is warranted given the evidence. In

this section, we consider an alternative technique, called Dempster-Shafer theory |Dempster, 1968; Shafer,

1976]. This new approach considers sets of propositions and assigns to each of theian interval

[Belief, Plausibility]

in which the degree of belief mustlie. Belief (usually denoted Bel) measures the strength of the evidence in

favor of a set of propositions. It ranges from 0 (indicating no evidence) to | (denoting certainty).

Plausibility (P/) is denned to be

Pi(s) = 1 — Bel(>s)

[t also ranges from 0 to I and measures the extent to which evidence in favor of 7s leaves room for belief

in s. In particular, if we have certain evidence in favor of -s, then Bel(ss) will be 1 and Pi(s} will be 0. This

tells us that the only possible value for Bel(s) is also 0.

The belief-piausibility interval we have just defined measures not only our level of belief in some

propositions, but also the amountof information we have. Suppose that we are currently considering three

competing hypotheses: A, B, and C. If we have no information, we representthat by saying, for each of them,

that the true likelihood is in the range [0,1]. As evidence is accumulated, this interval can be expected to

shrink, representing increased confidence that we know how likely each hypothesis is. Note that this contrasts

with a pure Bayesian approach,in which we would probably begin by distributing the prior probability equally

among the hypotheses andthus assert for each that P(A) = 0.33. The interval approach makesit clear that we

have no information when westart. The Bayesian approach does not, since we could end up with the same

probability values if we collected volumes of evidence, which taken together suggest that the three values

occur equally often. This difference can matter if one of the decisions that our program needs to make is

whether to collect more evidence or to act on the basis of the evidence it already has.

So far we havetalked intuitively about Bel as a measure of ourbelief in some ., hypothesis given some

evidence, Let’s now define it moreprecisely. To do this, we need to start, just as with Bayes’ theorem, with an

exhaustive universe of mutually exclusive hypotheses. We'll call this the frame of discernment and we'll

write it as ©, For example,in a simplified diagnosis problem, © might consist of the set {Ad Flu,Cold, Pneuj:

All: allergy

Flu: flu

Cold: cold

Pneu: pneumonia

https://hemanthrajhemu.github.io

182 Artificial Intelligence

Our goal is to attach some measure of belief to elements of ©. However, not all evidence is directly
supportive of individual elements. Often it supports sets of elements (i.e., subsets of @). For example, in our

diagnosis problem, fever might support (Flu, Cold, Pneu}. In addition, since the elements of © are mutually

exclusive, evidence in favor of some may have an affect on our belief in the others. In a purely Bayesian
system, we can handle both of these phenomenabylisting all of the combinations of conditional! probabilities.

But our goal is not to have to do that. Dempster-Shafer theory lets us handle interactions by manipulating sets

of hypothesesdirectly.

The key function we use is a probability density function, which we denote as m. The function m is defined

not just for elements of © butfor all subsets of it Gncluding singleton subsets, which correspondto individual
elements). The quantity +(p) measures the amount of beliet that is currently assigned to exactly the set p of

hypotheses. If @ contains n elements, then there are 2" subsets of @. We must assign so that the sum ofall

the yn values assigned to the subsets of @ is 1. Although dealing with 2" values may appear intractable, it
Usually tums out that many of the subsets will never need to be considered because they have no significance

in the problem domain (and so their associated value of m will be 0).
Let us see how m works for our diagnosis problem. Assume that we have no information about how to

choose among the four hypotheses when westart the diagnosis task. Then we define mm as:

{@} (1.0)

Ali other values of m are thus 0. Although this meansthat the actual value must be some one element Ali,

Flu, Cold, or Pneu, we do not have any information that allows us to assign belief in any other way than to say

that we are sure the answer is somewhere in the whole set. Now suppose we acquire a piece of evidence that
suggests (at a level of 0.6) that the correct diagnosis is in the set { Flu, Cold, Pneu}. Fever might be such a

piece of evidence. We update mt as follows:

{Fiu, Cold, Pneu} (0.6)

{@} (0.4)

At this point, we have assigned to the set { Flu, Cold,Pneu} the appropriate belief. The remainder of our

belief still resides in the larger set ©. Notice that we do not make the commitmentthat the remainder must be

assigned to the complementof { Flu,Cold, Pneu}.
Having defined +, we can now define Bel(p) for a set p as the sum of the values of m for p andforall ofits

subsets. Thus Bel(z) is our overall belief that the correct answer lies somewhere in theset p.

In order to be able to use m (and thus Bel and P/) in reasoning programs, we need to define functions that

enable us to combine m’s that arise from multiple sources of evidence.

Recail that in our discussion of CF’s, we considered three combination scenarios, which weillustrated in

Fig. 8.1. When we use Dempster-Shafer theory, on the other hand, we do not need an explicit combining

function for the scenario in Fig. 8.1(b) since we have that capability already in our ability to assign a value of

m toa set of hypotheses. But we do need a mechanism for performing the combinations of scenarios (a) and

(c). Dempster’s rule of combination serves both these functions. It allows us to combine any two belief

functions (whether they represent multiple sources of evidence for a single hypothesis or multiple sources of

evidence for different hypotheses),

Suppose weare given two belief functions m, and m,, Let X be the set of subsets of © to which m, assigns
a nonzero value and let Y be the correspondingset for m,. We define the combination m, of m, and m, to be

(Z) = LD yaar m(X)>+m(¥)

i- S xaveo MX) “m,(¥}

https://hemanthrajhemu.github.io

Statistical Reasoning 183

This gives us a new belief function that we can apply to any subset Z of @. We can describe what this formula
is doing by lookingfirst at the simple case in which all ways of intersecting elements of X and elements of Y
generate nonempty sets. For example, suppose m, correspondsto ourbelief after observing fever:

{Flu, Cold, Pneu} (0.6)

eo (0.4)

Suppose m, corresponds to our belief after observing a runny nose:

(All, Flu,Cold} (0.8)
2 (0.2)

Then we can compute their combination m, using the following table Gin which we further abbreviate

disease names), which we can derive using the numerator of the combinationrule:

{A,EC} (0.8) 9 (0.2)

{EC P) (0.6) {FEC} (0.48) {FCP} (0.13
e (0.4) {AEC} (032) @ (0.08)

The four sets that are generated by taking all ways of intersecting an element of X and an elementof Y are

shown in the body of the table. The value of m, that the combination rule associates with each of them is
computed by multiplying the values of m, and m, associated with the elements from which they were derived.

Although it did not happen in this simple case, it is possible for the same set to be derived in more than one
way during this intersection process. If that does occur, then to compute #7, for that set, it is necessary to

compute the sum ofall the individual values that are generated for all the distinct ways in which the set is

produced (thus the summation sign in the numerator of the combination formula).

A slightly more complex situation arises when someof thesubsets created by the intersection operation are

empty. Notice that we are guaranteed by the way we compute m, that the sum of all its individual valuesis 1

(assuming that the sumsof all the values of m, and m, are |), If some empty subsets are created, though, then

some of m, will be assigned to them. But from the fact that we assumed that 0 is exhaustive, we know that the
true value of the hypothesis must be contained in some nonempty subset of 0. So we need to redistribute any

belief that ends up in the empty subset proportionately across the nonempty ones. We do that with the scaling

factor shown in the denominator of the combination formula. If no nonempty subsets are created, the scaling

factor is 1, so we were able to ignoreit in our first example. But to see how it works, let's add a new piece of
evidence to our example. As a result of applying m, and m,, we produced my.

{Fiu, Cold} (0.48)

(All, Flu,Cold\ (0.32)
{ Fiu,Cold,Pneu) (0.12)

2 (0.08)

Now,let m, correspond to our belief given just the evidence that the problem goes away when the patient

goes on a trip: .

{Ail} (0.9)
8 (0.4)

https://hemanthrajhemu.github.io

184 Artificial Intelligence

We can apply the numerator of the combination rule to produce (where * denotes the empty set):

{A} (0.9) e (0.1)

{F,C} (0.48) o (0.432) [FC] (0.048)
{A, EC} (0.32) {ARC} (0.288) {[A, EC} (0.032)
{ACP} (012) (0.108) {FCP} (0.012)
o (0.08) {A} (0.072) © (0.008)

But there is now a total belief of 0.54 associated with ; only 0.45 is associated with outcomes that are in fact
possible. So we need to scale the remaining values by the factor 1 — 0.54 = 0.46. If we do this, and also combine

alternative ways of generating the set {Al/, Flu, Cold}, then we get thefinal combined belief function, ms.

{ Flu, Cold} (0.104)

{All, Flu, Cold} (0.696)

{ Flu, Cold, Pheu} (0.026)

{Al} (0.157)

' Oo (0.017)

height

(a) Fuzzy Membership

0

height

(b) Conventional Membership

Fig. 8.4 Fuzzy versus Conventional Set Membership

In this example, the percentage of m, that wasinitially assigned to the empty set was large (overhalf). This

happens wheneverthere is conflicting evidence (as in this case between m, and my).

8.5 FUZZY LOGIC

In the techniques we have discussed so far, we have hot modified the mathematical underpinnings provided

by set theory and logic. We have instead augmented those ideas with additional constructs provided by

probability theory. In this section, we take a different approach and briefly consider what happens if we make

fundamental changes to our idea of set membership and corresponding changes to our definitions oflogical

operations. °

The motivation for fuzzy sets is provided by the need to represent such propositionsas:

John is very tall.

Mary is slightlyill.

Sue and Linda are close friends.

Exceptions to the rule are nearly impossible.

Most Frenchmen are not very tall.

While traditional set theory defines set membership as a boolean predicate, fuzzy set theory allows us to
represent set membership as a possibility distribution, such as the ones shownin Fig. 8.4(a) for the set of tall

https://hemanthrajhemu.github.io

Statistical Reasoning 185

people and the set of very tall people. Notice how this contrasts with the standard boolean definition for tall

people shown in Fig. 8.4(b). In the latter, one is either tall or not and there must be a specific height that

defines the boundary. The sameis true for very tall. In the former, one’s tallness increases with one’s height

until the value of 1 1s reached.

Once set membership has been redefined in this way, it is possible to define a reasoning system based on

techniques for combining distributions [Zadeh, 1979] (or see the papers in the journal Fuzzy Sets and Systems).

Such reasoners have been applied in control systems for devices as diverse as trains and washing machines. A

typical fuzzy logic control system has been described in Chapter 22.

AEPREOE SE Eade Ah obAIG, OLSaah 4 not

EGaEEeeCRBSSheaeoehe Pe eRBP

SUMMARY
Re Fan Rkdea 8 hhes aediRS

Bore
.

ASETUE. Blin BP Ye ad WP aRt ether he ge

In this chapter we have shown that Bayesianstatistics provide a good basis for reasoning under various kinds

of uncertainty, We have also, though, talked about its weaknesses in complex real tasks, and so we have talked

about ways in which it can be modified to work in practical domains. The thing thatall of these modifications

have in common is that they substitute, for the huge joint probability matrix that a pure Bayesian approach

requires, a more structured representation of the facts that are relevant to a particular problem. They typically

do this by combining probabilistic information with knowledge that is represented using one or more other

representational mechanisms, such as rules or constraint networks.

Comparing these approachesforuse in a particular problem-solving program is not always straightforward,

since they differ along several dimensions, for example:

¢ They provide different mechanisms for describing the ways in which propositions are not independent

of each other.

e They provide different techniques for representing ignorance.

e They differ substantially in the ease with which systems that use them can be built and in the

computational complexity that the resulting systems exhibit.

We have also presented fuzzy logic as an alternative for representing some kinds of uncertain knowledge.

Although there remain many arguments about the relative overall merits of the Bayesian and the fuzzy

approaches, there is some evidence that they may both be useful in capturing different kinds of information,

As an example, consider the proposition

John was pretty sure that Mary was seriously ill.

Bayesian approaches naturally capture John’s degree of certainty, while fuzzy techniques ran describe the

degree of Mary’s illness.

Throughout all of this discussion, it is important to keep in mind the fact that although we have been

discussing techniques for representing knowledge, there is another perspective from which what we have

really been doing is describing ways of representing lack of knowledge. In this sense, the techniques we have

described in this chapter are fundamentally different from the ones we talked aboutearlier. For example, the

truth values that we manipulate in a logical system characterize the formulas that we write; certainty measures,

on the other hand, describe the exceptions — the facts that do not appear anywhere in the formulas that we

have written. The consequences ofthis distinction show up in the ways that we can interpret and manipulate

the formulas that we write. The most important difference is that logical formulas can be treated as though

they represent independent propositions. As we have seen throughout this chapter, uncertain assertions cannot.

As aresult, for example, while implicationis transitive in logical systems, we often get into trouble in uncertain

https://hemanthrajhemu.github.io

186 Artificial Intelligence

systemis if wetreat it as though it were (as we saw in our first eatment of the sprinkler and grass example).

Another differenceis that in logical systemsit is necessary to find only a single proofto be able to assert the
ifuth value cfa proposition. All other proofs,‘if there are any, can safely be ignored. In uncertain systems, on

the other hand, computingbelief in a proposition requiresthatall available reasoning paths be followed and
combined.

One final commentis in order before we end this discussion. You may havenoticed throughoutthis chapter

that we have not maintained a clear distinction among such concepts as probability, certainty, and belief. This

is because although there has been a great deal of philosophical debate over the meaning of these various

terms, there is no clear argreement on how best to interpret them if our goal is to create working programs.

Although the idea that probability should be viewed as a measure of belief rather than as a summary of past

experience is now quite widely held, we have chosen to avoid the debate in this presentation. Instead, we have

used all those words with their everyday, undifferentiated meaning, and we have concentrated on providing

simple descriptions of how several algorithms actually work. If you are interested in the philosophical issues,

see, for example, Shafer [1976] and Pearl [1988].

Unfortunately, although in the last two chapters we have presented several important approaches to the

problem of uncertainty management, we have barely scraped the surface of this area, For more information,

see Kanai and Lemmer[1986], Kanal and Lemmer[1988], Kanal et al. [1989], Shafer and Pearl [1990], Clark

[1990]. In particular, ourlist of specific techniques is by no méans complete. For example, you may wish to

look into probabilistic logic [Nilsson, 1986; Halper, 1989], in which probability theory is combined with

logic so that the truth value of a formula is a probability value (between 0 and 1) rather than a boolean value

(TRUE or FALSE). Or you may wish to ask not what statistics can do for AI but rather what AJ can do for

statistics. In that case, see Gale [1986].

EXERCISES
captoASaat Rfsate SedeeFRRAAORBcdifaAEeASPEIRES igRE Ged SawaoR ete mews Mba ES 1 At oo Ga OSE Mey

1. Consider the following puzzle:

A pea is placed under one of three shells, and the shells are then manipulated in such a fashion

that all three appear to be equally likely to contain the pea. Nevertheless, you win a prize if you

guess the correctshell, so you make a guess. The.person running the game does know the correct

shell, however, and uncovers one of the shells that you did not choose and that is empty. Thus,

what remains are two shells: one you chose and one you did not choose. Furthermore, since the
uncovered shell did not contain the pea, one of the two remaining shelis does contain it. You are

offered the opportunity to change your selection to the other shell. Should you?

Work through the conditional probabilities mentioned in this problem using Bayes’ theorem. What do
the results tell about what you should do’

2. Using MYCIN’s rules for inexact reasoning, compute CF MB, and MD ofA, given three observations

where

CF(h,, 0,) = 0.5
CF(hy, 03) = 0.3
CF(A,, @3) = 0.2

3. Show that MYCIN’s combiningrules satisfy the three properties we gave for them.
4. Consider the following set of propositions:

patient has spots

patient has measles

https://hemanthrajhemu.github.io

Statistical Reasoning 187

patient has high fever
patient has Rocky Mountain Spotted Fever

patient has previously been innoculated against measles

patient was recently bitten by a tick
patienthasan allergy

(a) Create a network that defines the causal connections among these nodes.

(b) Make it a Bayesian network by constructing the necessary conditional probability matrix.

. Consider the same propositions again, and assume our task is to identify the patient’s disease using

Dempster-Shafer theory.

(a) What is @?
{b) Define a set ofm functions that describe the dependencies among sources of evidence and elements

of @’ ,
(c) Suppose we have observed spots, fever, and a tick bite. In that case, what is our

Bel({ RockyMountainSpottedFever})?

. Define fuzzy sets that can be used to representthe list of propositions that we gave at the beginning of

Section 8.5.

. Consider again the ABC Murderstory from Chapter 7. In our discussion ofit there, we focused on the

use of symbolic techniques for representing and using uncertain knowledge. Let’s now explore the use
of numeric techniques to solve the same problem. For each part below, show how knowledge could be

represented. Whenever possible, show how it can be combined to producea prediction of who committed

the murder given at least one possible configuration of the evidence.
(a} Use MYCIN-style mutes and CFs. Example rules might include:

If (1) relative (x,y), and

{2) on speaking terms (x,y),

then there is suggestive evidence (0.7) that

will-lie-for {x,y}

(b) Use Bayesian networks. Represent as nodes such propositions as brother- in-law-lied, Cabot-at-
ski-meet, and so forth.

(c) Use Dempster-Shafer theory. Examples of/w’'s might be:

m, = {Abbott, Babbitt} (0.8) { beneficiaries in will]

8 (0.2)
my = {Abbott, Cabot} (0.7) {in line for his job}

© (0.3)

{d} Use fuzzy logic. For example, you might wantto define such fuzzy sets as honest people or greedy

people and describe Abbott, Babbitt, and Cabot’s memberships in those sets.

(e) What kinds of information arc easiest (and hardest) to represent in each of these frameworks?

https://hemanthrajhemu.github.io

CHAPTER

9
Bee, RePNRoaESLa etapRReRoR

WEAKSLOT-AND-FILLER STRUCTURES

Speech is the representation of the mind, and writing is the representation ofspeech

—Aristotle
(384 BC — 322 BC), Greek philosopher

In this chapter, we continue the discussion we began in Chapter 4 of slot-and-filler structures. Recall that we

originally introduced them as a device to support property inheritance along isa and instance links. This is an

important aspect of these structures. Monotonic inheritance can be performed substantially more efficiently

with such structures than with pure logic, and nonmonotonic inheritance is easily supported. The reason that

inheritance is easy is that the knowledge in slot-and-filler systems is structured as a set of entities and their

attributes. This structure turns out to be a useful one for other reasons besides the support of inheritance,

though, including:

* Jt indexes assertions by the entities they describe. More formally, it indexes binary predicates [such as

team | Three-Finger-Brown, Chicago-Cubs) by their first argument. As a result, retrieving the value for

an attribute of an entity is fast.
e It makesit easy to describe properties of relations. To do this in a purely logical system requires some

higher-order mechanisms.

® Itis a form of object-oriented programming and has the advantages that such systems normally have,

including modularity and ease of viewing by people.

We describe two viewsof this kind of structure: semantic nets and frames. We talk about the representations

themselves and about techniques for reasoning with them. We do not say much, though, about the specific

knowledge that the structures should contain. We call these “knowledge-poor” structures “weak,” by analogy

with the weak methods for problem solving that we discussed in Chapter 3. In the next chapter, we expand

this discussion to include “strong”slot-and-filler structures, in which specific commitments to the content of
the representation are made.

9.1 SEMANTIC NETS

The main idea behind semantic nets is that the meaning of a concept comes from the wavs in which it is
connected to other concepts. In a semantic net, information is represented as a set of nodes connected to each

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 189

other by a set of labeled arcs, which represent relationships among the nodes. A fragmentofa typical semantic

net is shown in Fig. 9.1.

isa

instance

Fig. 9.1 A Semantic Network

 uniform-

color

Brooklyn-Dodgers

This network contains examples of both the isa and instance relations, as well as some other, more domain-

specific relations like ream and uniform-color. In this network, we could use inheritance to derive the additional

relation

has-part (Pee-Wee-Reese, Nose)

9.1.1 Intersection Search

One of the early ways that semantic nets were used wasto find relationships among objects by spreading
activation out from each of two nodes and seeing where the activation met. This process is called intersection

search [Quillian, 1968]. Using this process, it is possible to use the network of Fig. 9.1 to answer questions

such as “What is the connection between the Brooklyn Dodgers and blue?”! This kind of reasoning exploits

one of the important advantages that slot-and-filler structures have over purely logical representations because

it takes advantage of the entity-based organization of knowledge that slot-and-fiiler representations provide.
To answer morestructured questions, however, requires networksthat are themselves more highly structured.

In the next few sections we expand and refine our notion of a network in order to support more sophisticated

reasoning.

9.1.2 Representing Nonbinary Predicates

Semantic nets are a natural way to represent relationships that would appear as ground instances of binary

predicates in predicate logic. For example, some ofthe arcs from Fig. 9.1 could be represented in logic as

isa(Person, Mammal)

instance(Pee-Wee-Reese, Person)

team(Pee-Wee-Reese, Brooklyn-Dodgers)

uniform-color(Pee-Wee-Reese, Blue)

But the knowledge expressed by predicates of other arities can also be expressed in semantic nets. We have

already seen that many unary predicates in logic can be thought of as binary predicates using some very

general-purpose predicates, such as isa and insfance. So, for example,

man(Marcus)

1 Actually, to dothis we need to assumethat the inverses of the links we have shownalso exist.

https://hemanthrajhemu.github.io

190 Artificial Intelligence

could be rewritten as

instance(Marcus, Man)

thereby making it easy to represent in a semantic net.

Three or more place predicates can aiso be converted to a binary form by creating one new object representing

the entire predicate statement and then introducing binary predicates to describe the relationship to this new

object of each of the original arguments. For example, suppose we know that

score(Cubs, Dodgers, 5-3)

visiting
This can be represented in a semantic net by team

creating a node to represent the specific game and

then relating each of the three pieces of information
to it. Doing this produces the network shownin Fig.

9.2.
This technique is particularly useful for

representing the contents of a typical declarative

sentence that describes several aspects of a particular

event. The sentence

instance

object

John gave the book to Mary.

beneficiary

y

could be represented by the network shownin | Mary
Fig. 9.3.7 In fact, several of the earliest uses of
semantic nets were in English-understanding Fig. 9.3 A Semantic Net Representing a Sentence
programs.

9.1.3. Making Some Important Distinctions

In the networks we have described so far, we have glossed over some distinctions that are important in

reasoning. For example, there should be a difference between a link that defines a new entity and one that

relates two existing entities. Consider the net

Both nodes represent objects that exist independently of their relationship to each other. But now suppose

we want to represent the fact that John istalfer than Bill, using the net

The nodes ffl and H2 are new concepts representing John’s height and Biil’s height, respectively. They are

defined by their relationships to the nodes John and Bill, Using these defined concepts, it is possible to

2? The node labeled BX23 represents the particular book that was referred to by the phrase “the book.” Discovering which
particular book was meant by that phrase is similar to the problem of deciding on the correct referent for a pronoun, and

it can be a very hard problem. These issues are discussed in Section 15.4.

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 191
 a

represent such facts as that John’s height increased, which we could not do before. (The number 72 increased?)

Sometimes it 1s useful to introduce the arc value to make this distinction clear. Thus we might use the

following net to represent the fact that John is 6 feet tall and that he is taller than Bill:

The procedures that operate on nets such as this can exploit the fact that some arcs, such as eight, define

new entities, while others, such as greater-than and value, merely describe relationships among existing

entities.

Another example of an important distinction we have missed is the difference between the properties of a

node itself and the properties that a node simply holds and passes on to its instances. For example. it is a

property of the node Personthat it is a subclass of the node Mammal. But the node Person does not have as

one of its parts a nose. Instances of the node Person do, and we want them to mhenit it.

It is difficult to capture these distinctions without assigning mote structure to our notions of node,link, and

value. in the next section, when we talk about frame systems, we do that. But first, we discuss a network-

oriented solution to a simpler problem; this solution illustrates what can be done in the network model but at

what price m complexity.

9.1.4 Partitioned Semantic Nets

Suppose we wantto represent simple quantified expressions in semantic nets. One way to do thisis to partition

the semantic net into a hierarchical set of spaces, each of which corresponds to the scope of one or more

variables [Hendrix, 1977]. To see how this works, consider first the simple net shown in Fig. 9.4(a). This net

corresponds to the statement

The dog bit the mail carrier

The nodes Dot’s, Bite, and Mail-Carrier represent the classes of dogs, bitings, and mail carriers, respectively,

while the nodes d@, b, and m represent a particular dog, a particular biting, and a particular mail carrier. This

fact can easily be represented by a single net with no partitioning.

But now suppose that we want to representthe fact

Every dog has bitten a mail carrier,

or, in logic:

Wx. Dog(x) dy: Mail-Carvier (y) A Bite & (x,y)

To representthis fact, it is necessary to encode the scopeof the universally quantified variable x, This can

be done using partitioning as shownin Fig. 9.4(b). The node g stands for the assertion given above. Node g is

an instance of the special class GS of general statements about the world (i.e., those with universal quantifiers).

Every element of GS hasat least two attributes: aform, which states the relation that is being asserted, and one

https://hemanthrajhemu.github.io

192 Artificial Intelligence

or more V connections. one for cach of the universally quantified variables. In this example, there is only one

such variable ¢, which can stand for any elementofthe class Dogs. The other two variables in the form, b and

m, are understood to be existentially quantified. In other words, for every dog d, there exists a biting event b,

and a mail carrier m, such that d is the assailant of 6 and m is the victim.

Mail- Mail- |SA
Dogs Bite carrier Dogs Bite carrier

isa isa isa isa isa isal S1
d b b m

assailant victim assailant victim

{a) (b)

SA SA

GS] [Dogs] Bite Bite [Maii-carrier|
A .

. isa isa isa isal S7
isa d bt! m

SS isa isa Sf SSangin

v b ve
assailant victim sq LE] form

(c) (d)

Fig. 9.4 Using Partitioned Semantic Nets

To see how partitioning makes variable quantification explicit, consider next the similar sentence:

Every dog in town has bitten the constable.

The representation of this sentence is shown in Fig. 9.4(c). In this net, the node c representing the victim

lies outside the form of the general statement. Thusit is not viewed as an existentially quantified variable

whose value may depend on the value of d. Instead it is interpreted as standing for a specific entity (in this

case, a particular constable), just as do other nodes in a standard, nonpartitioned net.

Figure 9.4{d) shows how yet another similar sentence:

Every dog has bitten every mail carrier.

would be represented. In this case, g has two V links, one pointing to d, which represents any dog. and one

pointing to m, representing any mail carrier,

The spaces of a partitioned semantic net are related to each other by an inclusion hierarchy. For example,

in Fig. 9.4(d), space 51 is included in space SA. Whenevera search process operates in a partitioned sernantic

net, it can explore nodes and arcs in the space from which it starts and in other spaces that contain the starting

point, but it cannot go downward, except in special circumstances, such as when aform arc is being traversed.

So, returning to Fig. 9.4(d), from node d it can be determined that ¢ must be a dog. But if we were to start at

the node Degs and search for all known instances of dogs by traversing isa links, we would not find d since

it and thelink to it are in the space $1, which is at a lower level than space SA, which contains Dogs. This is

important, since d does not stand for a particular dog; it is merely a variable that can be instantiated with a

value that represents a dog.

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 193

9.1.5 The Evolution into Frames

The idea of a semantic net started out simply as a way to represent labeled connections.among entities. But, as

we have just seen, as we expand the range of problem-solving tasks that the representation must support, the

representation itself necessarily begins to become more complex. In particular, it becomes useful to assign

more structure to nodes as well as to links. Although there is no clear distinction between a semantic net and

a frame system, the more structure the system has, the more likely it is to be termed a frame system.In the next

section we continue our discussion of structured slot-and-filler representations by describing some of the

most important capabilities that frame systemsoffer.

9.2 FRAMES

A frameis a collection of attributes (usually called slots) and associated values (and possibly constraints on

values) that describe some entity in the world. Sometimes a frame describes an entity in some absolute sense;

sometimes it represents the entity from a particular point of view (as it did in the vision system proposal

(Minsky, 1975] in which the term frame was first introduced). A single frame taken alone is rarely useful.

Instead, we build frame systems out of collections of frames that are connected to each other by virtue of the

fact that tbe value of an attribute of one frame may be another frame. In therest of this section, we expand on

this simple definition and explore ways that frame systems can be used to encode knowicdge and support

reasoning

9.2.1 Frames as Sets and Instances

The Set theory provides a good basis for understanding frame systems. Although notall frame systems are

defined this way, we do so here. In this view, each frame represents either a class (a set) or an instance (an

element ofa class). To see how this works, consider the frame system shown in Fig. 9.5, which is a slightly

modified form of the network we showed in Fig. 9.5. In this example, the frames Person, Adult-Male, ML-

Baseball-Player (corresponding to major league basebail players), Pitcher, and ML-Baseball-Team (for major

league baseball team) are all classes. The frames Pee-Wee-Reese and Brooklyn-Dodgers are instances.

The isa relation that we have been using without a precise definition is in fact the subser relation. The set

of adult males is a subset of the set of people. The set of major league baseball players is a subset ofthe set of

adult males, and so forth. Our instance relation correspondsto the relation element-of. Pee Wee Reese is an

elementof the set of fielders. Thus he is also an elementof all of the supersets of fielders, including major

league baseball players and people. The transitivity of isa that we have taken for granted in our description of

property inheritance follows directly from the transitivity of the subset relation.

Both the isa and instance relations have inverse attributes, which we call subclasses and all-instances. We

do not bother to write them explicitly in our examples unless we need to refer to them. We assumethat the

frame system maintains them automatically, either explicitly or by computing them if necessary.

Because a class represents a set, there are two kindsof attributes that can be associated with it. There are

attributes aboutthe set itself, and there are attributes that are to be inherited by each element of the set. We

indicate the difference between these two by prefixing the latter with an asterisk (*). For example, consider

the class ML-Baseball-Player, We have shown only twoproperties of it as a set: [tis a subset of the set of adult

males. And it has cardinality 624 (i.e., there are 624 major league baseball players). We have listed five

properties that all major league baseball players have (height, bats, batting-average, team, and uniforim-

color), and we have specified default values for the first three of them. By providing both kinds ofslots, we

allow a class both to define a set of objects and to describe a prototypical object of the set.

Sometimes, the distinction between a set and an individual instance may not seem clear. For example, the

team Brookiyn-Dodgers, which we have described as an instance of the class of major league baseball teams,

https://hemanthrajhemu.github.io

194 Artificial Intelligence

could be thought of as a set of players. In fact, notice that the value of the slot players is a set. Suppose,

instead, that we want to represent the Dodgers as a class instead of an instance. Then its instances would be

the individual players. It cannot stay whereit is in the isa hierarchy; it cannot be a subclass of ML-Baseball-

Team, because if it were, then its elements, namely the players, would also, by the transitivity of subclass, be

elements of ML-Basebail-Team, which is not what we wantto say. We have to put it somewhereelsein the isa

hierarchy. For example, we could makeit a subclass of major league baseball players. Then its elements,the
players, are also elements of ML-Basebail-Player, Aduit-Male, and Person. That is acceptable. But if we do

that, we Jose the ability to inherit properties of the Dodgers from general information about baseball teams.
We canstill inherit attributes for the elements of the team, but we cannotinherit properties of the team as a

whole, i.e., of the set of players. For example, we might like to know what the default size of the team is,

Person

isa: Mammal
cardinality : 6,000,000,000
* handed : Right

Aduit-Male
isa: Person
cardinality : 2,006,000,000
" height: 5-10

ML-Basebail-Player
isa: Aduit-Male
cardinality : 624
“height: 6-1
* pats : equal to handed
* baiting-average: .252
* team :
* uniform-coilor:

Fielder
isa: ML-Baseball-Player
cardinality : 376
“batting-average: .262

Pee-Wee-Reese
instance : Fielder

height : 5-16
bais : Right
baiting-average: .309
team: Brooklyn-Dodgers
uniform-coior: Blue

ML-Baseball-Team
isa: Team
cardinality : 26
* team-size : 24
* manager :

Brooklyn-Dodgers
instance : ML-Basebail-Team
tearn-size : 24
manager: Leo-Durocher

players : {Pee-Wee-Fieese....}

Fig. 9.5 A Simplified Frame System

that it has a manager, and so on. The easiest way to allow for this is to go back to the idea of the Dodgers as
an instance of ML-Baseball-Team, with the set of players given as a slot value.

But what we have encountered here is an example of a more general problem. A classis a set, and we want
to be able to talk about properties that its elements possess. We wantto use inheritance to infer those properties

https://hemanthrajhemu.github.io

Weak Siot-and-Filler Structures 195

from general knowledge about the set. But a class is also an entity in itself. [t may possess properties that

belong not to the individual instances butrather to the class as a whole.In the case of Brooklyn-Dodgers, such

properties included team size and the existence of a manager. We may even want to inherit some of these

properties from a more general kind of set. For example, the Dodgers can inherit a default team size from the

set of all major league baseball teams. To support this, we need to view a class as two things simultaneously:

a subset (isa) of a larger class that also contains its elements and an instance (instance) of a class of sets, from

whichit inherits its set-level properties.

To make this distinction clear, it is useful to distinguish between regular classes, whose elements are

individual entities, and metaciasses, which are special classes whose elements are themselvesclasses. A class

is now an elementof (instance} some class (or classes) as well as a subclass (isa) of one or more classes. A

class inherits properties from the class of whichit is an instance, just as any instance does. In addition, a class

passes inheritable properties down from its superclassesto its instances.
Let us consider an example. Figure 9.6 shows how we could represent teams as classes using this distinction.

Figure 9.7 shows a graphic view of the same classes. The most basic metaclass is the class Class. lt represents

the set of all classes. All classes are instances of it, either directly or through one of its subclasses. In the

example, Team is a subclass (subset) of Class and ML-Baseball-Team is a subclass of Team. The class Class

introduces the attribute cardinality, which is to be inherited by all instances of Class (including itself). This

makes sense since all the instances of Class are sets and all sets have a cardinality.

Class

instance : Class

isa: Class

* cardinality :

Team

instance : Class

isa: Class

cardinality : {the numberof teamsthat exist}

“team-size : {gach team hasa size}

ML-Basebail-Team

isa: Mammal

instance : Class

isa: Team

cardi nality 26 {the number of basebail teams that exist}

* team-size : 24 {default 24 players on a team}

* manager:

Brookiyn-Dodgers .

instance : ML-Baseball-Team

isa: ML-Baseball-Player

team-size : 24

manager « . Leo-Durocher

" uniform-color: Biue

Pee-Wee-Aleese

instance : Brooklyn-Dodgers

instance - Fielder

uniform-color: Biue

batting-average: .309

Fig. 9.6 Representing the Class ofAll Teams as a Metaclass

https://hemanthrajhemu.github.io

196 Artificial Intelligence

ML-Baseball-Team

Team

) Class (set of sets}

ML-Baseball-Player Brooklyn-Dodgers

Pee-Wee-Reese I

Fig. 9.7 Classes and Metaclasses

Team represents a subsetofthe set of all sets, namely those whose elements are sets of players on a team.

{t inherits the property of having a cardinality from Class. Team introduces the attribute team-size, which all

its elements possess. Notice that team-size is like cardinality in that it measures the size of a set. But it applies

to something different; cardinality applies to sets of sets and is inherited by ail elements of Class. The slot

team-size applies to the elements of those sets that happen to be teams. Those elements are sets of individuals.

ML-Baseball-Team is also an instance of Class, since itis a set. It inherits the property of having a cardinality

from the set of which it is an instance, namely Class. But it is a subset of Team. All of its instances will have

the property of having a team-size since they are also instances of the superclass Team. We have added at this

level the additional fact that the default team size is 24, so all instances of ML-Baseball-Team wail inherit that

as well. In addition, we have added the inheritable slot manager.

Brookivn-Dodgers is an instance of a ML-Rasebail-Team. It is not an instance of Class because its elements

are individuals, not sets. Brooklyn-Dodgers is a subclass of ML-Baseball-Player sinceall of its elements are

also elements ofthat set. Since it is an instance of a ML-Baseball-Team,it inherits the properties feam-size and

manager, as well as their default values. It specifies a new attribute uniform-color, whichis to be inherited by

all of its instances (who will be individual players).

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him also, by transitivity up isa

links, an instance of ML-Baseball-Piayer. But recall that in our earlier example we also used the class Fielder,

to which we attached the fact that fielders have above-average batting averages. To allow that here, we simply

make Pee Wee an instance of Fielder as well, He will thus inherit properties from both Brookiyn-Dodgers and

from Fielder, as well as from the classes above these. We need to guarantee that when multiple inheritance

occurs, as it does here, that it works correctly. Specifically, in this case, we need to assure that batting-average

gets inherited from Fielder and not from ML-Baseball-Player through Brookiyn-Dodgers. We return to this

issue in Section 9.2.5.

In all the frame systemsweillustrate, all classes are instances of the metaclass Class. As a result, theyall

have the attribute cardinality. We leave the class Class, the isa linksto it, and the attribute cardinality out of

our descriptions of our examples, though, unless there is some particular reason to include them.

Every class is a set. But not every set should be described as a class. A class describes a set of entities that

share significant properties. In particular, the default information associated with a class can be used asa basis

for inferring values for the properties ofits individual elements. So there is an advantage to representing as a

class those sets for which membership serves as a basis for nonmonotonic inheritance. Typically, these are

sets in which membership is not highly ephemeral. Instead, membership is based on some fundamental structural
or functional properties. To see the difference, consider the following sets:

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 197

e People

¢ People who are major league baseball players

* People who are on my plane to New York

Thefirst two sets can be advantageously representedas classes, with which a substantial numberofinheritable

attributes can be associated. Thelast, though, is different. The only properties thatall the elements of that set

probably share are the definition of the set itself and some other properties that follow from the definition
(e.g., they are being transported from one place to another). A simple set, with some associated assertions, is

adequate to represent these facts; nonmonotonic inheritance is not necessary.

9.2.2 Other Waysof Relating Classes to Each Other

We havetalked up to this point about two ways in which classes (sets) can be related to each other. Class, can be

a subset of Class, Or, if Class, is a metactass, then Ciass, can be an instance of Classy, But there are other ways
that classes can be related to each other, corresponding to ways that sets of objects in the wortd can be related.

One such relationship is mutually-disjoint-with, which relates a class to one or more other classes that are

guaranteed to have no elements in common with it. Another important relationship is is-covered-by which

telates a class to a set of subclasses, the union of which is equal to it. If a class ts-covered-by a set 5 of

mutually disjoint classes, then S$ is called a partition of the class.

For examples of these relationships, consider the classes shownin Fig. 9.8, which represent two orthogonal

ways of decomposing the class of major league baseball players. Everyone is either a pitcher, a catcher, ora

fielder (and no one is more than one of these), In addition, everyone plays in either the National League or the

American League, but not both.

9.2.3 Slots as Full-Fledged Objects

So far, we have provided a way to describe sets of objects and individual objects, both in terms of attributes

and values. Thus we have made extensive use ofattributes, which we have represented as slots attached to

frames. But it turns out that there are several reasons why we would like to be able to represent attributes

explicitly and describe their properties. Some of the properties we would like to be able to represent and use

in reasoning include:

* The classes to which the attribute can be attached,i.e. for what classes does it make sense? For example,

weight makes sense for physical objects but not for conceptual ones (except in some metaphorical

sense).

¢ Constraints on either the type or the value of the attribute. For example, the age of a person must be a

numeric quantity measured in some time frame, and it must be less than the ages of the person’s

biological parents.

e A value that all instances of a class must have by the definition of the class.

e A default value for the attribute.

* Rules for inheriting values for the attribute. The usual rule is to inherit down isa and instance links.
But someattributes inherit in other ways. For example, /ast-name inherits down the child-of link.

* Rules for computing a value separately from inheritance. One extreme form of such arule is a procedure

written in some procedural programming language such as LISP.

« An inverse attribute.

e Whetherthe slot is single-valued or multivalued.

In order to be able to representthese attributesof attributes, we need to describe attributes(slots) as frames.

These frames will be organized into an isa hierarchy, just as any other frames are, and that hierarchy can then

be used to support inheritance of values for attributes of slots. Before we can describe such a hierarchy in

detail, we need to formalize our notion ofa slot.

https://hemanthrajhemu.github.io

198 Artificial Intelligence
pheay Che ark sige hate ates nate

ML-Basebali-Player

isa isa

; American- National-
Fielder leaguer Leaguer

instance

instance

Three-Finger-Brown

ML-Basebaill-Player
is-covered-by: (Pitcher, Catcher, Fielder

{American-Leaguer, National-Leaquer
Pitcher

isa: ML-Basebati-Player
mutually-disjoint-with + {Caicher, Fielder,

Caicher
isa: ML-Baseball-Player
mutually-disjoint- with: {Pitcher, Fielder

Fielder
isa: ML-8aseball-Player
mutually-disjoini-with :

American-Leaguer
isa:

mutually-disjoint-with :

National-Leaguer
isa:
mutually-disjoint-with :

Three-Finger-Brown
instance :

{Pitcher, Catcher

ML-Baseball-Player
{National-Leaguer

ML-Basebaill-Piayer
{American-Leaquen

Pitcher

instance : National-Leaguer

Fig.9.8 Representing Relationships among Classes

A slot is a relation. It maps from elements of its domain (the classes for which it makes sense) to elements

of its range (its possible values). A relation is a set of ordered pairs. Thus it makes sense to say that one

relation (R,) is a subset of another (R,). In that case, R, is a specialization of R,, so in our terminology fsa (R,,
R,}. Since a slot is a set, the set of all slots, which we will] call Slo, is a metaclass. Its instances are slots, which

may have subslots.

Figures 9.9 and 9.10 illustrate several examples of slots represented as frames. Sfot is a metaclass. Its

instances are slots (each of which is a set of ordered pairs). Associated with the metaclass are attributes that

each instance(i.e., each actual slot) will inherit. Each slot, since it is a relation, has a domain and a range. We

represent the domain in the slot labeled domain, We break up the representation of the range into two parts:

range gives the class of which elements of the rangemust be elements; range-constraint contains a logical

expression that further constrains the range to be elements of range that also satisfy the constraint. [f range-

constraint is absent, it is taken to be TRUE. The advantage to breaking the description apart into these two

“pieces is that type checking is much cheaperthanis arbitrary constraint checking,so it is useful to be able to

do it separately and early during some reasoning processes.

The other slots do what you would expect from their names. If there is a value for definition, it must be

propagated to all instances ofthe slot. If there is a value for defau/t, that value is inherited to all instances of

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 199

the slot unless there is an overriding value. The attribute transfers-through lists other slots from which values

for this slot can be derived through inheritance. The to-compute slot contains a procedure for deriving its

value. The inverse attribute contains the inverse of the slot. Although in principle all slots have inverses,

sometimes they are not useful enough in reasoning to be worth representing. And single-valued is used to
mark the special cases in which the slot is a function and so can have only one value.

Of course, there is no advantage to representing these propertiesof slots if there is no reasoning mechanism

that exploits them. In the rest of our discussion, we assume that the frame-system interpreter knows how to

reason with ail of these slots of slots as part of its built-in reasoning capability. In particular, we assume that

it is capable of performing the following reasoning actions:

e Consistency checking to verify that when a slot value is added to a frame

— The slot makes sense for the frame. This relies on the demain attribute of the slot.

— The value is a legal value for the slot. This relies on the range and range-constraints attributes.

« Maintenance of consistency between the values for slots and their inverses when ever one is updated.

« Propagation of definition values along isa and instancelinks.

e Inheritance of defauit values along isa and instancelinks.

a =
manager color

——~

my-manager bats

uniform-cofor Stot|

D U

Smokey-The-Bear Brown

Class (set of sets)
Pee-Wee-Reese Blue Pee-Wee-Reese Right

Slot
isa: Class
instance : Class
* domain :
*" range :
* range-constraint:
* definition :
* default :
* transters-through :
* to-compute ‘
* inverse :
* single-valued :

manager
instance : Siot
domain : ML-Baseball-Team
range : Person
range-constraint: Ax {baseball-experience x.manager)
default «
inverse: manager-of

single-valued : TRUE

Fig. 9.9 Representing Slots as Frames,I

https://hemanthrajhemu.github.io

Artificial Intelligence

my-manager
instance : Siot
domain : ML-Baseball-Player
range : Person

range-constraint : AX (basebail-experience x.my-manager
to-compute : AX (x.feam).manager
single-valued : TRUE

color
instance : Siot
domain : Physical-Object
range : Color-Sat
transters-through ; fop-level-part-of
visual-salience : High
single-valued : FALSE

uniform-color
instance ; Slot
isa: color
domain : team-player
range : Color-Set
range-constraint : not Pink
visual-salience : High
single-valued : FALSE

bats
instance : Slot
domain : ML-Baseball-Player
range: {Left, Right, Switch)
to-compute: Ax x fanded

single-vaiued : TRUE

Fig.9.10 Representing Slots as Frames, I]

«@ Computation ofa valueof a slot as needed. This relies on the t#-compute and transfers-through attributes.

e Checking that only a single value is asserted for single-valued slots. This is usually done by replacing

an old value by the new one whenit is asserted. An alternative is to force explicit retraction of the old

value and to signal a contradiction if a new value is asserted when anotheris already there.

There is something slightly counterintuitive about this way of defining slots. We have defined the properties

range-consiraint and default as parts of a slot. But we often think of them as being properties of a slot

associated with a particular class. For example, in Fig. 9.5, we listed two defaults for the batting-average slot,

one associated with major league baseball players and one associated with fielders. Figure 9.11 shows how

batting-average
instance:

domain :
range :
fange-constraint :
default :
single-valued :

fieider-batting-average
instance «

isa:

domain :
range -
range-constraint :
default:

single-valued :

Siot
ML-Basebail- Player
Number
Ax (0 < x.range-constraint < t}
252
TRUE

Siot
batting-average
Fielder
Number
Ax (0 < x.range-constraint < 1)
262

TRUE

Fig. 9.11 Associating Defaults with Slotshttps://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 201

this can be represented correctly, by creating a specialization ot burting-average that can be associated with a
specialization of ML-Basebail-Piayer to represent the more specific information that is known about the
specialized class. This seems cumbersome.It is natural, though, given our definition ofa slot as a relation.

There are really two relations here, one a specialization of the other. And below we will define inheritance so
that it looks for values of either the siotit is given or any of that slot’s generalizations,

Unfortunately, although this model of slots is simple and it is internally consistent, it is not easy to use. So

we introduce some notational shorthand that allows the four most important properties of a slot (domain,

range, definition, and default) to be defined implicitly by how the slot is used in the definitions of the classes
in its domain. We describe the domain implicitly to be the class where the slot appears. We describe the range

and any range constraints with the clause MUSTBE,asthe value of an inherited slot. Figure 9.12 shows an

example of this notation. And we describe the definition and the default, if they are present, by inserting them

as the value of the slot whenit appears. The two will be distinguished by prefixing a definitional value with an
asterisk (*). We then fet the underlying bookkeeping of the frame system create the frames that representslots

as they are needed.
ML-Baseball-Player

bats : MUSTBE{Left, Right, Switch}

Fig. 9.12 A Shorthand Notation for Siot-Range Specification

Nowlet’s look at examples of how these slots can be used. The slots bats and my-managerillustrate the

use ofthe fo-compute attribute of a slot. The variable x will be bound to the frame to which theslot is attached.

We use the dot notation to specify the value of a slot of a frame. Specifically, x.y describes the value(s) of the

y slot o' frame x. So we know that to compute a frame’s value for my-manager, it is necessary to find the

frame’s value for team, then find the resulting team’s manager. We have simply composed twoslots to form

a new one.* Computing the value of the bats slot is even simpler. Just go get the value of the handedslot.

The manager slot illustrates the use of a range constraint. It is stated in terms of a variable x, which is

boundto the frame whose manager slot is being described.It requires that any manager be not only a person

but someone with baseball experience. It relies on the domain-specific function baseball-experience, which

must be defined somewhere in the system.

The slots color and uniform-color lustrate the arrangementof slots in an isa hierarchy. The relation color

is a fairly general one that holds between physical objects and colors. The attribute uniform-coloris a restricted

form of color that applies only between team players and the colors that are allowed for team uniforms

(anything but pink). Arranging slots in a hierarchy is useful for the same reason that arranging any thing else

in a hierarchy is: jt supports inheritance. In this example, the general slot color is known to have high visual

salience. The more specific slot uniform-color then inherits this property, so it too is known to have high

visual salience.

The slot color also illustrates the use of the transfers-through stot, which defines a way of computing a

slot’s value by retrieving it from the sameslot of a related object. In this example, we used transfers-through

to capture the fact that if you take an object and chopit up into several top level parts (in other words, parts

that are not contained inside each other), then they will all be the same color. For example, the arm of a sofa

is the same color as the sofa. Formally, what transfers-through means in this example is

color (x, yy N top-level-part-of (z, x} — color(z, y)

In addition to these domain-independentslot attributes, slots may have domain-specific properties that

support problem solving in a particular domain. Since these slots are not treated explicitly by the frame-

system interpreter, they will be useful precisely to the extent that the domain problem solver exploits them.

3Notice that since slots are relations rather than functions, their composition may retum a set of values.

https://hemanthrajhemu.github.io

202 Artificial Intelligence

9.2.4 Slot-Values as Objects

In thelast section, we reified the notion of a slot by making it an explicit object that we could make assertions

about. In some sense this was not necessary. A finite relation can be completely described by listing its

elements. But in practical knowledge-based systems one often does not have that list, So it can be very
important to be able to make assertions about the list without knowing all of its elements. Reification gave us

a way to dothis.

The nextstep alongthis path is to do the samethingto a particular attribute-value (an instanceof a relation)

that we did to the relation itself. We can reify it and make it an object about which assertions can be made. To

see why we might wantto do this, let us return to the example of John and Bill’s height that we discussed in

Section 9.4.3. Figure 9.13 shows a frame-based representation of some of the facts. We could easily record

Bill’s height if we knew it. Suppose, though, that we do not know it. All we knowis that Johnis taller than

Bill. We need a way to make an assertion about the value of a slot without knowing whatthat valueis. To do
that, we need to view the slot and its value as an object.

John
height : 72

Bill

height :

Fig. 9.13 Representing Siot-Values

We could attempt to do this the same way we madeslots themselves into objects, namely by representing

them explicitly as frames. There seemslittle advantage to doing that in this case, though, because the main

advantage of frames does not apply to slot values: frames are organized into an isa hierarchy and thus support

inheritance. There is no basis for such an organization of slot values. So instead, we augment our value

representation language to allow the value of a slot to be stated as either or both of:

e A value of the type required by the slot.

e A logical constraint on the value. This constraint may relate the slot’s value to he values of other slots
or to domain constants,

If we do this to the frames of Fig. 9.13, then we get the frames of Fig. 9.14. We again use the lambda
notation as a way to pick up the nameof the frame that is being described.

John

height : 72; Ax (x. height > Billheight
Bil!

height : Ax (x. height < John.height

Fig. 9.14 Representing Slot-Values with Lambda Notation

9.2.5 Inheritance Revisited

In Chapter 4, we presented a simple algorithm for inheritance. But that algorithm assumedthat the isa hierarchy

wasa tree. This is often not the case. To support flexible representations of knowledge about the world,it is

necessary to allow the hierarchy to be an arbitrary directed acyclic graph (DAG). We know that acyclic

graphs are adequate because isa corresponds to the subset relation. Hierarchies that are not trees are called

tangled hierarchies. Tangled hierarchies require a new inheritance algorithm. In the rest of this section, we

discuss an algorithm for inheriting values for single-valued slots in a tangled hierarchy. We leave the problem

of inheriting multivalued slots as an exercise.

Consider the two examples shownin Fig. 9.15 (in which we return to a network notation to make it easy to

visualize the ise structure). In Fig. 9.15(a), we want to decide whether Fifi can fly. The correct answeris no.

https://hemanthrajhemu.github.io

Weak Slot-and-Filler Structures 203

Althoughbirds in general can fly, the subsetof birds, ostriches, does not. Althoughthe class Pet-Bird provides

a path from Fifi to Bird and thus to the answerthat Fifi canfly, it provides no information that conflicts with

the special case knowledge associated with the class Ostrich, so it should have no affect on the answer. To

handle this case correctly, we need an algorithm for traversing the isa hierarchy that guarantees that specific

knowledge will always dominate more general facts.

In Fig. 9.15(b), we return to a problem we discussed in Section 7.2.1, namely determining whether Dick is

a pacifist. Again, we must traverse multiple instance links, and more than one answercan be found along the

paths. Butin this case, there is no well-founded basis for choosing one answeroverthe other. The classes that

are associated with the candidate answers are incommensurate with each other in the partial ordering that is

defined by the DAG formed bythe isa hierarchy. Just as we found that in Default Logic this theory had two

extensions and there was no principled basis for choosing between them, what we need hereis an inheritance

algorithm that reports the ambiguity; we do not want an algorithm that finds one answer(arbitrarily) and stops

without noticing the other.

One possible basis for a new inheritance algorithm is path length. This can be implemented by executing

a breadth-first search, starting with the frame for which a slot value is needed. Follow its instance links, then

follow fsa links upward. If a path produces a value, it can be terminated, as can all other paths once their

length exceeds that of the successful path. This algorithm works for both of the examples in Fig. 9.15. In (a),

it finds a value at Ostrich. It continues the other path to the same length (Pet-Bird), fails to find any other

answers, and then halts. In the caseof (b), it finds two competing answersat the same level, so it can report the

contradiction.

Bird

fly : yes
isa isa

Ostrich . Quaker Republican
fly : no Pet-Bird pacifist : true pacifist : false

instanco™. instance instance~, instance
Fifi Dick

fly: ? pacifist : ?

(a) (b)
Fig. 9.15 Tungied Hierarchies

But now consider the examples shownin Fig. 9.16. In the case of (a), our new algorithm reaches Bird (via

Pet-Bird) before it reaches Ostrich. So it reports that Fifi can fly. In the case of (b), the algorithm reaches

Quaker and stops without noticing acontradiction. The problem is that path length does not always correspond

to the level of generality of a class. Sometimes what it really correspondsto is the degree of elaboration of

classes in the knowledge base. If some regions of the knowledge base have been elaborated more fully than

others, then their paths will tend to be longer. But this should not influencethe result of inheritance if no new

information about the desired attribute has been added.
The solution to this problem is to base our inheritance algorithm not on path length but on the notion of

inferential distance [Touretzky, 1986], which can be defined as follows:

Class, is closer to Class, than to Class,, if and only if Class, has an inference path through Class, to Class,
(in other words, Class, is between Class, and Class3).

Notice that inferential distance defines only a partial ordering. Some classes are incommensurate with
each other underit.

https://hemanthrajhemu.github.io

204 Artificial intelligence

Bird
fly : yes

isa

7 a isa
Ostrich

fly: no

isa\ Pet-Bird

Plumed- i: Republican
Osirich pacifist: false

isa/ .
isa

WhitePlumed instance Quarker Conservative-
sine pacifist : true Republican

instance\ instance Zinstance
Fifi Dick
fy: ? pacifist : 7

(a) (b)

Fig. 9.16 More Tangled Hierarchies

We can now define the result of inheritance as follows: The set of competing values for a slot $ in a frame

F contains all those values that

e Can be derived from someframe X that is above F im the isa hierarchy

e Are not contradicted by some frame Y that has a shorter inferential distance to F than X does

Notice that under this definition competing values that are derived from incommensurate frames continue

to compete. ;
Using this definition, let us return to our examples. For Fig. 9.15(a), we had two candidate classes from

which to get an answer. But Ostrich has a shorter inferential distance to Fifi than Bird does, so we get the

single answer no. For Fig. 9.15(b), we get two answers, and neither is closer to Dick than the other, so we

correctly identify a contradiction. For Fig. 9.16(a), we get two answers, but again Ostrich has a shorter

inferential distance to Fifi than Bird does. The significant thing about the way we have defined inferential
distance is that as long as Ostrich is a subclass of Bird, it will be closerto all its instances than Bérd is, no

matter how many other classes are added to the system. For Fig, 9.16(b), we again get two answers and again

neither is closer to Dick than the other.

There are several ways that this definition can be implemented as an inheritance algorithm. We present a

simple one. It can be made moreefficient by caching paths in the hierarchy, but we do not do that here.

Algorithm: Property Inheritance

To retrieve a value Vfor slot S of an instance F do:

1. Set CANDIDATESto empty.
2. Do breadth-first or depth-first search up the isa hierarchy from #; following all instance and isa links.

At each step, see if a value for S or one f its generalizationsis stored.

(a) If a value is found, add it to CANDIDATESand terminate that branch of the search.

{b) If no value is found but there are instance or isa links upward, follow them.

(c} Otherwise, terminate the branch.

https://hemanthrajhemu.github.io

Weak Shot-and-Filler Structures 205

3. For each element C of CANDIDATESdo:

(a) See if there is any other element of CANDIDATESthat was derived from a class closer to F than

the class from which C came.

(b) If there is, then, remove C from CANDIDATES.

4. Check the cardinality of CANDIDATES:

(a) If it is 0, then report that no value was found.

(b) If itis 1, then return the single element of CANDIDATESasV.

(c) If it is greater than 1, report a contradiction.

This algorithm is guaranteed to terminate because the isa hierarchy is represented as an acyclic graph.

9.2.6 Frame Languages

The idea of a frame system as a way to represent declarative knowledge has been encapsulated in a series of

frame-oriented knowledge representation languages, whose features have evolved and been driven by an

increased understanding of the sort of representation issues we have been discussing. Examples of such

languages include KRL [Bobrow and Winograd, 1977], FRL [Roberts and Goldstein, 1977], RLL [Greiner

and Lenat, 1980], KL-ONE [Brachman, 1979; Brachman and Schmolze, 1985], KRYPTON [Brachman et al.,

1985], NIKL [Kaczmarek et ai, 1986}, CYCL {Lenat and Guha, 1990], conceptual graphs [Sowa, 1984],

THEO [Mitchell e¢ aZ., 1989], and FRAMEKIT[Nyherg, 1988]. Although noiall of these systems support all

of the capabilities that we have discussed, the more modem of these systems permit elaborate and efficient

representation of many kinds of knowledge. Their reasoning methods include most of the ones described

here, plus many more, including subsumption checking, automatic classification, and various methods for

consistency maintenance.

EXERCISES
SIRPOEE AGS ao aa aliceedhedé othe

1. Construct semantic net representations for the following:

(a) Pompeian(Marcus), Blacksmith(Marcus)

(b) Mary gave the green flowered vase to her favorite cousin.

2. Suppose we want to use a semantic net to discover relationships that could help in disambiguating the

word “bank”in the sentence

John went downtown to deposit hts money in the bank.

The financial institution meaning for bank should be preferred over the river bank meaning.
(a) Construct a semantie net that contains representations for the relevant concepts.

(b} Show how intersection seareh could be used to find the connection between the correct meaning

for bank and the rest of the sentence mure easily than it can find a connection with the incorrect

meaning.

3. Construct partitioned semantic net representations for the following:

(a) Every batter hit a ball.

(b) All the batters like the pitcher.

4. Construct one consistent frame representation of all the baseball knowledge that was described in this
chapter. You will need to choose between the two representations for team that we considered.

5. Modify the property inheritance algorithm of Section 9.2 to work for multiple-valued attributes, such

as the attribute believes-in-principles, defined as follows:

https://hemanthrajhemu.github.io

206 Artificial Intelligence

believes-in-principles

instance : Slot

domain : Person

range! Philosophical-Principles

single-valued : FALSE

Define the value of a multiple-valued slot $ of class C to be the union of the values that are found for

S and all its generalizations at C and all its generalizations. Modify your technique to allow a class to

exclude specific values that are associated with one or more ofits superclasses.

Pick a problem area and represent some knowledge aboutit the way we represented baseball knowledge

in this chapter.

How would you classify and represent the various types of triangles?

https://hemanthrajhemu.github.io

