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CHAPTER

10
STRONG SLOT-AND-FILLER STRUCTURES

 

In the 1960s and1970s, studentsfrequently asked, “WhichKindofrepresentation ts best?”andTusually
repliedthat we dneedmore research... But now 1 wouldreply: To solve really hardproblems, we have

to use severaldifferent representations, This is because eachparticularKindofdata structure has its own

wartues anddeficienctes, andnone by itselfwouldseem adequatefor allthe differentfunctions involved
with what we callcommon sense.

—Minsky, Marvin
(1927-), American cognitive scientist

The slot-and-filler structures described in the previous chapter are very general, Individual semantic networks
and frame systems may have specialized links and inference procedures, but there are no hard and fast rules

about what kinds of objects and links are good in generat for knowledge representation. Such decisions are

left up to the builder of the semantic network or frame system,

The three structures discussed in this chapter, conceptual dependency, scripts, and CYC, on the other hand,

embody specific notions of what types of objects and relations are permitted. They stand for powerful theories

of how Al programs can represent and use knowledge about commonsituations.

10.1 CONCEPTUAL DEPENDENCY

Conceptual dependency (often nicknamed CD)is a theory of how to represent the kind of knowledge about

events that is usually contained in natural language sentences. The goalis to represent the knowledge in a way

that

e Facilitates drawing inferences from the sentences.

® Is independent of the language in which the sentences were originally stated.

Becauseofthe two concerns just mentioned, the CD representation of a sentence is built not out of primitives

corresponding to the words used in the sentence, but rather out of conceptual primitives that can be combined

to form the meanings of words in any particular language. The theory wasfirst described in Schank [1973]
and was further developed in Schank [1975]. It has since been implemented in a variety of programs that read

and understand natural language text. Unlike semantic nets, which provide only a structure into which nodes
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representing information at any level can be placed, conceptual dependency provides both a structure and a

specific set of primitives, at a particular level of granularity, out of which representationsof particular pieces

of information can be constructed.

to
man

1< ATRANS ~2- bookPom
rom I

where the symbols have the following meanings:

« Arrowsindicate direction of dependency.

¢ Double arrow indicates two way link between actor and action.

* p indicates past tense.

* ATRANSis one of the primitive acts used by the theory. It indicates transfer of possession.

¢ o indicates the object case relation.

« indicates the recipient case relation.

Fig. 10.1 A Simpie Conceptual Dependency Representation

As a simple example of the way knowledge is represented in CD, the event represented by the sentence

I gave the man a book.

would be represented as shown in Fig. 10.1.

In CD,representations of actions are built from a set of primitive acts. Although there are slight differences

in the exactset of primitive actions provided in the various sources on CD,a typical set is the following, taken

from Schank and Abelson [1977]:

ATRANS Transfer of an abstract relationship (e.g., give)

PITRANS Transfer of the physical location of an object (e.g., go)

PROPEL Application of physical force to an object {e.g., push)

MOVE Movementof a body part by its owner(e.g., kick)

GRASP Grasping of an object by an actor (e.g., clutch)

INGEST Ingestion of an object by an animal(e.g.. eat)

EXPEL Expulsion of something from the body of an animal (e.g., cry}

MTRANS Transfer of mental information(e.g., tell)

MBUILD Building new information cutofold (e.g., decide}

SPEAK Production of sounds (e.g., say)

ATTEND Focusing of a sense organ toward a. stimulus (e.g., listen)

A second set of CD building blocks is the set of allowable dependencies among the conceptualizations

described in a sentence. There are four primitive conceptual categories from which dependencystructures can

be built. These are

ACTs Actions

PPs Objects (picture producers)

AAs Modifiers of actions (action aiders)

PAs Modifiers of PPs (picture aiders)

In addition, dependency structures are themselves conceptualizations and can serve as components of

larger dependency structures.
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The dependencies among conceptualizations correspond to semantic relations among the underlying

(concepts. Figure 10.2 lists the most important ones allowed by CD.! The first column contains the rules; the

second contains examples oftheir-useLand the third contains an English version of each example. The rules

shown in the Fig. can be interpreted as follows:

1t.

12.

13.

14.

p
PP>act John <—>PTRANS

PP SPA John>>height (> average}

PP=>PA John>doctor

PP boy
t ¢
PA nice

PP d
4b 7 Pose-by
PP Jehn

p
AcT© pp John <>>PROPEL+ cart

° PP Pp a John

ACT John<>ATRANS

PP bd “ey
\ p \ John

ACT “ff John<>INGEST + >
to +

ica cream °
spoon

pf PP Pp fald
ACTAT John<>PTRANS

PP to bag
fertilizer

PP size > x
PP i plants_ /

PA sIz6@ = X

acPeoge Bill <> PTOPEL= bullet
& oopa health{—10)

R Bob

gun

yesterday
T +
& John<>PTRANS

P

0 D home

SES 1 *PTRANS 1 ar
+ 4

ape
eS 1 perpans© tog 27

eyes

PP woods

av a ee
<> Caetrans <2 trog a"

ears

Fig. 10.2 The Dependencies of CD

John ran.

Johnis talt.

Johnis a doctor.

A nice boy.

John's dog.

John pushed

the cert.

John tock the
beok from Mary.

John ate ice
cream with
a spoon.

John fertilized
the flald.

The plants grew.

Bill shat Bob.

John ran
yesterday.

While gaing
home,| saw
a frog.

{heard a frog
in the woods.

* Rule | describes the relationship between an actor and the event he or she causes. This is a two-way
dependencysince neither actor nor eyent can be considered primary. Theletter p above the dependency

link indicates past tense.

« Rule 2 describes the relationship between a PP and a PA thatis being asserted to describe it. Manystate

descriptions, such as height, are represented in CD as numericscales.

'The lable shown in the figure is adapted from several tables in Schank [1973].
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* Rule 3 describes the relationship between two PPs, one of which belongs to the set defined by the other.
® Rule 4 describes the relationship between a PP and an attribute that has already been predicated ofit.

The direction of the arrow is toward the PP being described.
Rule 5 describes the relationship between two PPs, one of which providesa particular kind of information

aboutthe other. The three most common types of information to be provided in this way are possession

(shown as POSS-BY), location (shown as LOC), and physical containment (shown as CONT). The

direction of the arrow is again toward the concept being described.
Rule 6 describes the relationship between an ACT and the PP that is the object of that ACT. The

direction of the arrow is toward the ACT since the context of the specific ACT determines the meaning

of the object relation.
# Rule 7 describes the relationship between an ACT and the source and,the recipient of the ACT.

¢ Rule 8 describes the relationship between an ACT andthe instrument with whichit is performed. The

instrument must always be a full conceptualization (i.e.. it must contain an ACT), not just a single

physical object.

e Rule 9 describes the relationship between an ACT andits physical source and destination.

* Rule 10 represents the relationship between a PP and a state in whichit started and another in whichit
ended.

Rule 11 describes the relationship between one conceptualization and another that causes it. Notice

that the arrows indicate dependency of one conceptualization on another and so point in the opposite

direction of the implication arrows. The two forms of the mule describe the cause of an action and the

cause of a state change.

Rule 12 describes the relationship between a conceptualization and the time at which the event it

describes occurred.
Rule 13 describes the relationship between one conceptualization and anotherthat is the time of the

first. The example for this rule also shows how CD exploits a model of the human information processing

system; see is represented as the transfer of information between the eyes and the conscious processor.

Rule 14 describes the relationship between a conceptualization and the place at which it occurred.

Conceptualizations representing events can be modified in a variety of ways to supply information nonnally

indicated in language by the tense, mood, or aspect of a verb form. The use of the modifier p to indicate past

tense has already been shown. Theset of conceptual tenses proposed by Schank [1973] includes

P Past

f Future

t Transition

t, Start transition
ty Finished transition

k Continuing
? Interrogative

/ Negative

nil Present

delta Timeless

c Conditional

As an example of the use of these tenses, consider the CD representation shown in Fig. 10.3 (taken from

Schank [1973]) of the sentence

Since smoking can kill you, I stopped.
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Thevertical causality link indicates that smoking kills one ° ke <B one
one. Since it is marked ¢, however, we know only that © INGEST smokeAf cigarette
smoking can kill one, not that it necessarily does. The I

horizontal causality link indicates that it is that first T tp I
causality that made me stop smoking. The qualification c INGEST+smoke<2 cigarette

t;, attached to the dependency between I and INGEST

indicates that the smoking (an instance of INGESTING) dead
has stopped andthat the stopping happened in thepast.  °"°=

There are three important ways in which representing

knowledge using the conceptual dependency model

facilitates reasoning with the knowledge:

alive

Fig. 10.3 Using Conceptual Tenses

1. Fewer inference rules are needed than would be required if knowledge were not broken down into
primitives.

2. Many inferences are already contained in the representationitself.

3. The initial structure that is built to represent the information contained in one sentence will have holes

that need to be filled. These holes can serveas an attention focuser for the program that must understand
ensuing sentences.

Each of these points merits further discussion.

Thefirst argumentin favor of representing knowledge in terms of CD primitives rather than in the higher-

level terms in which it is normally described is that using the primitives makes it easier to describe the

inference rules by which the knowledge can be manipulated. Rules need only be represented once for each

primitive ACT rather than once for every word that describes that ACT. For example, all of the following

verbs involve a transfer of ownership of an object:
e Give e Take John Bill

© Steal « Donate

If any of them occurs, then inferences about who Poss-by

now has the object and who once had the object (and D 0 Bill nose <———= John
thus who may know something about it) may be Bill > MTRANS ~~fe
important. In a CD representation, those possible 1 do; broken
inferences can be stated once and associated with the ; o
primitive ACT ATRANS. John <=> believe ~~]
A second argument in favor of the use of CD John <> doy

representation is that to construct it, we must use not

only the information thatis stated explicitly in a sentence

but also a set of inference rules associated with the Bill <> do,

specific information. Having applied these: rules once,

we store these results as part of the representation and
they can be used repeatedly without the rules being

reapplied, For example, consider the sentence Poss-by||

John

Fig. 10.4 The CD Representation of a Threat

a

nose == broken

Bill threatened John With a broken nose.

The CD representation of the information contained in this sentence is shown in Fig. 10.4. (For simplicity,
believe is shownas a single unit. In fact, it must be represented in terms of primitive ACTs and a modelof the

human information processing system.} It says that Bill informed John that he (Bill) will do something to
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break John’s nose. Bill did this so that John will believe thatif he (John) does someotherthing (different from

whatBill will do to break his nose), then Bill will break John’s nose. In this representation, the word “believe”

has been used to simplify the example. But the idea behind believe can be represented in CD as an MTRANS

of a fact into John’s memory. The actions do, and do, are dummyplaceholders that refer to some as yet
unspecified actions.

A third argumentforthe use of the CD representation is that unspecified elements of the representation of

one piece of, information can be used as a focus for the understandingof later events as they are encountered.

So, for example, after hearing that

Bill threatened John with a broken nose.

we might expect to find out what action Bill was trying to prevent John from performing. That action could

then be substituted for the dummyaction represented in Fig. 10.4 as do,. The presence of such dummy objects

provides clues as to what other events or objects are important for the understanding of the known event.

Of course, there are also arguments against the use of CD as a representation formalism, For one thing, it

requires that all knowledge be decomposed into fairly low-level primitives. In Section 4.3.3 we discussed how

this may be inefficient or perhaps even impossible in somesituations. As Schank and Owens[1987] putit,

CD is a theory of representing fairly simple actions. To express, for example, “John bet Sam fifty dollars that the

Mets would win the World Series” takes about two pages of CD forms. This does not seem reasonable.

Thus, although there are several arguments in favor of the use of CD as a model for representing events,it

is not always completely appropriate to do so, and jt may be worthwhile to seek out higher-level primitives.

Anotherdifficulty with the theory of conceptual dependency as a general model for the representation of

knowledgeis that it is only a theory of the representation of events. But to representall the information that a

complex program may need, it must be able to represent other things besides events. There have been attempts

to define a set of primitives, similar to those of CD for actions, that can be used to describe other kinds of

knowledge. For example, physical objects, which in CD are simply represented as atomic units, have been

analyzed in Lehnert [1978]. A similar analysis of social actions is provided in Schank and Carbonell [1979}.

These theories continue the style of representation pioneered by CD, but they have not yet been subjected to

the same amount of empirical investigation(i.e,, use in real programs) as CD.

We have discussed the theory of conceptual dependency in somedetail in orderto illustrate the behaviorof

aknowledge representation system built arounda fairly small set of specific primitive elements. But CD is not

the only such theory to have been developed and used in AI programs. For another example of a primitive-

based system, see Wilks [1972].

10.2 SCRIPTS

CD is a mechanism for representing and reasoning about events. But rarely do events occur in isolation. In

this section, we present a mechanism for representing knowledge about common sequences of events.

A script is a structure that describes a stereotyped sequence of events in a particular context. A script

consists of a set of slots. Associated with each slot may be some information about what kinds of values it may

contain as well as a default value to be used if no other information is available. So far, this definition of a

script looks very similar to that of a frame given in Section 9.2, and atthis level of detail, the two structuresare

identical. But now, because of the specialized role to be played by a script, we can make some moreprecise
statements aboutits structure.
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Figure 10.5 showspart of a typical script, the restaurant script (taken from Schank and Abelson [1977]). It

illustrates the important componentsofa script:

Entry conditions Conditions that must, in general, be satisfied before the events described in the script can
occur,

Result Conditions that will, in general, be true after the events described in the script have occurred.
Props. Slots representing objects that are involved in the events described in the script. The presence

of these objects can be inferred even if they are not mentioned explicitly.

Roles Slots representing people who are involved in the events described in the script. The presence

of these people, too, can be inferred even if they are not mentioned explicitly. If specific

individuals are mentioned, they can be inserted into the appropriate slots.

Track The specific variation on a more general pattern that is represented by this particular script.

Different tracks of the same script will share many but not all components.

Scenes Theactual sequences ofevents that occur. The events are represented in conceptual dependency

formalism.

Scripts are useful because, in the real world, there are patterns to the occurrence of events. These patterns

arise because of causalrelationships between events. Agents wil! perform one action so that they will then be

able to perform another. The events described in a script form a giant causal chain. The beginning of the chain

is the set of entry conditions which enablethefirst events of the script to occur, The end ofthe chainis the set

of results which may enable later events or event sequences (possibly described by other scripts) to occur,

Within the chain, events are connected both to earlier events that make them possible and to later events that

they enable.

If a particular script is known to be appropriate in a given situation, then it can be very useful in predicting

the occurrence of events that were not explicitly mentioned. Scripts can also be useful by indicating how

events that were mentioned relate to each other. For example, what is the connection between someone’s

ordering steak and someone’s eating steak? But before a particular script can be applied, it must be activated

(i.e., it must be selected as appropriate to the current situation). There are two ways in which it may be useful

to activate a script, depending on how importantthe scriptis likely to be:

« Forfleeting scripts (ones that are mentioned briefly and may be referred to again but are not central to

the situation), it may be sufficient merely to store a pointer to the script so that it can be accessed later

if necessary. This would be an appropriate strategy to take with respect to the restaurant script when

confronted with a story such as

Susan passed her favorite restaurant on her way to the museum. Shereally enjoyed the new Picasso exhibit.

« For nonfleeting scripts it is appropriate to activate the script fully and to attemptto fill in its slots with
particular objects and people involved in the current situation.

The headersof a script (its preconditions, its preferred locations,its props,its roles, arid its events) can all serve as

indicators that the scnipt should be activated. In order to cut down on the number of times a spurious script is
activated, it has proved useful to require that a situation contain at least two of a script’s headers before the script

will be activated.

Oncea script has been activated, there are, as we have already suggested, a variety of ways in whichit can

be useful in interpreting a particular situation. The most important of these is the ability to predict events that
have not explicitly been observed. Suppose, for example, that you are told the following story:
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John went out to a restaurant last night. He ordered steak. When he paid for it, he noticed that he was running out

of money. He huried homesince it had started to rain,

 

Script) RESTAURANT
Track: Coffee Shop
Props: Tables

Menu

F = Food

Check

Money

Roles: $= Customer

W = Waiter

C = Cook

M = Cashier

O = Owner

Scene 1: Entering

S PTRANS§ into restaurant
S ATTENDeyesto tables

S MBUILD where tosit
S PTRANS§ to table

S MOVE tositting position
 

 

Entry conditions:

$ is hungry.

S$ has money.

Resulls:

S has less money.

O has more money.

$ is not hungry.

 

Scene 2: Ordering

{Menuontable} (W brings menu) (S asks for menu)
S PTRANS menu to § S MTRANSsignal to W

W PTRANSW to table

S MTRANS‘need menu’ to W
W PTRANS W to menu

W PTRANSW totable

W ATRANS menute S

S MTRANSW to table

* S$ MBUILDchoice of F

S MTRANSsignal to W

W PTRANSW to table

S MTRANS* want F to W
~~.

W PTRANS W to C
W MTRANS(ATRANSF}.to G

C MTRANS‘noF’toWo
W PTRANS W to S C DO (prepare F script)

W MTRANS ‘no F’ to S to Scene 3

(go back to *) or

(go to Scene 4 at no pay path)
 

Sis pleased (optional).

Scene 3: Eating

C ATRANSF to W

W ATRANSF to S
5S INGEST F
(Option: Return to Scene 2 to order more:

otherwise, go te SceneA)
  Scene 4: Exiting ee

S MTRANSto W
{W ATRANScheck to S)

W MOVE(write check)

W PTRANS W to S
W ATRANScheck to S

S ATRANStip to W

S PTRANS S to M

S ATRANS moneyto M

(No pay path} S PTRANS to out of restaurant   
Fig. 10.5 The Restaurant Script
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If you were then asked the question

Did John eat dinner last night?

you would almost certainly respond that he did, even though you were not told so explicitly. By using the

Testaurant script, a computer question-answerer would also be able to infer that John ate dinner, since the

restaurant script could have been activated. Sinceall of the events in the story correspond to the sequence of
events predicted by the script, the program could infer that the entire sequence predicted by the script occurred

normally. Thus it could conclude, in particular, that John ate. In their ability to predict unobserved events,

scripts are similar to frames and to other knowledge structures that represent stereotyped situations. Once one

of these structures is activated in a particular situation, many predictions can be made.

A second important use of scripts is to provide a way of building a single coherent interpretation from a

collection of observations. Recall! that a script can be viewed asa giant causal chain. Thus it provides information

about how events are related to each other. Consider, for example, the following story:

Susan went out to lunch. She sat downat a table and called the waitress. The waitress brought her a menu and she

ordered a hamburger.

Now consider the question

Why did the waitress bring Susan a menu?

The script provides two possible answers to that question:

e Because Susan asked her to, (This answer is gotten by going backward in the causal chain to find out

what caused herto doit.)

e So that Susan could decide what she wanted to eat. (This answer is gotten by going forward in the

causal chain to find out what event her action enables.)

A third way in which scriptis useful is that it focuses attention on unusual events. Consider the following

story:

John went to a restaurant. He was shownto his table. He ordered a large steak. He sat there and waited for a long

time. He got mad andleft.

The importantpart of this story is the place in which it departs from the expected sequenceof events in a

restaurant. John did not get mad because he was shownto his table. He did get mad because he had to wait to

be served. Once the typical sequence of events is interrupted, the script can no longer be used to predict other

events. So, for example, in this story, we should not infer that John paid his bill. But we can infer that he saw

a menu, since reading the menu would have occurted before the interruption. For a discussion of SAM, a

program that uses scripts to perform this kind of reasoning, see Cullingford [1981].
From these examples, we can see how information about typical sequences of events, as represented in

scripts, can be useful in interpreting a particular, observed sequence of events, The usefulness of a script in

some of these examples, such as the one in which unobserved events were predicted, is similar to the usefulness

of other knowledge structures, such as frames. In other examples, we have relied on specific properties of the

information stored in a script, such as the causal chain represented by the events it contains. Thus although

scripts are less general structures than are frames, and so are notsuitable for representingall kinds of knowledge,

they can be very effective for representing the specific kinds of knowledge for which they were designed.
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10.3 CYC

CYC [Lenat and Guha, 1990] is a very large knowledge base project aimed at capturing human commonsense

knowledge. Recall that in Section 5.1, our first attempt to prove that Marcus was not loyal to Caesar failed

because we were missing the simple fact that ail men are people. The goal of CYC is to encode the large body

of knowledgethatis so obviousthatit is easy to forgetto state it explicitly. Such a knowledge base could then

be combined with specialized knowledge bases to produce systems that are less brittle than most of the ones

available today.

Like CD, CYC represents a specific theory of how to describe the world, and like CD,it can be used for AI

tasks such as natural language understanding. CYC, however, is more comprehensive; while CD provided a

specific theory of representation for events, CYC contains representations of events, objects, attitudes, and so

forth, in addition, CYC is particularly concerned with issues of scale, that is, what happens when we build

knowledge bases that contain millions of objects.

10.3.1 Motivations

Why should we wantto butld large knowledge bases at all? There are many reasons, among them:

« Brittleness—Specialized knowledge-based systems are brittle. They cannot cope with novel situations,

and their performance degradation is not graceful. Programs built on top of deep, commonsense
knowledge about the world should rest on firmer foundations.

e Form and Content—Thetechniques we have seen so far for representing and using knowledge may or

may not be sufficient for the purposes of AI. One good wayto find outis to start coding large amounts

of commonsense knowledge and see where the difficulties crop up. In other words, one strategy is to

focus temporarily on the content of knowledge bases rather than on their form.
e Shared Knowledge-—Small knowledge-based systems must make simplifying assumptions about how

to represent things Jike space, time, motion, and structure.If these things can be represented once at a

very high level, then domain-specific systems can gain leverage cheaply. Also, systems that share the

same primitives can communicate easily with one another.

Building an immense knowledge base is a staggering task, however We should ask whether there are any

methods for acquiring this knowledge automatically. Here-are two possibilities:

1. Machine Learning—-In Chapter 17, we discuss some techniques for automated learning. However,

current techniques permit only modest extensions of a program’s knowledge.In order for a system to

learn a great deal, it must already knowa great deal. In particular, systems with a lot of knowledge will

be able to employ powerful analogical reasoning.

2. Natural Language Understanding—Humansextend their own knowledge by reading books andtalking

with other humans. Since we now have on-line versions of encyclopedias and dictionaries, why not

feed these texts into an Al program and haveit assimilate all the information automatically? Although
there are many techniques for building language understanding systems (see Chapter 15), these methods

are themselves very knowledge-intensive. For example, when we hear the sentence

John went to the bank and withdrew $50.

we easily decide that “bank” meansa financial institution, and not a river bank. To do this, we apply

fairly deep knowledge about what a financial institution is, what it means to withdraw money,etc.

Unfortunately, for a program to assimilate the knowledge contained in an encyclopedia, that program

must already know quite a bit about the world.

The approach taken by CYC is to hand-code (whatits designers consider to be) the ten million or so facts
that make up commonsense knowledge. It may then be possible to bootstrap into more automatic methods.
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10.3.2 CYCL

CYC’s knowledge is encoded in a representation language called CYCL. CYCLis a frame-based system that

incorporates most of the techniques described in Chapter 9 (multiple inheritance,slots as full-fledged objects,

transfers-through, mutually-disjoint-with, etc). CYCL generalizes the notion of inheritance so that properties

can be inherited along any link, not just is@ and instance. Consider the two statements:

Mary

likes: 2???

constraints: (LispConstraint}

LispConstraint

slotConstrained: (likes)

slotValueSubsumes:

(TheSetO£f X (Person allInstances)

(And (programsin X LispLanguage)

(Not {ThereExists Y (Languages all Instances}

{And (Not (Equal Y LispLanguage))

(programsin X ¥)))}))}

propagationDirection: forward

Bob

programsin: - {LispLanguage)

Jane

programsIn: (LispLanguage CLanguage)

Fig. 10.6 Frames and Constraint Expressions in CYC

1. All birds have two legs.

2. All of Mary’s friends speak Spanish.

We can easily encode the first fact using standard inheritance—any frame with Bird on its instance slot

inherits the value 2 on its Jegs slot. The second fact can be encodedin a similar fashion if we allow inheritance

to proceed along thefriend relation—any frame with Mary onits friend slot inherits the value Spanish on its

languagesSpoken slot. CYC further generalizes inheritance to apply to a chain of relations, allowing us to

express facts like, “All the parents of Mary’s friends are rich,” where the value Rich is inherited through a
composition of the friend and parentOf links.

In addition to frames, CYCL contains a constraint language that allows the expression of arbitrary first-

order logical expressions. For example, Fig. 10.6 shows how we can express the fact ‘Mary likes people who
program solely in Lisp.” Mary has a constraint called lispConstraint, which restricts the values of her likes

slot. The slotValueSubsumes attribute of lispConstraint ensures that Mary’s likes slot will be filled with at

least those individuals that satisfy the logical condition, namely that they program in LispLanguage and no

others.

The time at which the default reasoning is actually performed is determined by the direction of the

slotValueSubsumesrules. If the direction is backward,the rule is an if-needed rule, andit is invoked whenever

someone inquires as to the value of Mary’s likes slot. (In this case, the rule infers that Mary likes Bob but not

Jane.) If the direction is forward, the rule is an if-added rule, and additions are automatically propagated to

Mary’s likes slot. For example, after we place LISP on Bob’s pregramsin slot, then the system quickly places

Bob on Mary’s dikes slot for us. A truth maintenance system (see Chapter 7) ensures that if Bob ceases to be

a Lisp programmer(or if he starts using Pascal), then he will also cease to appear on Mary’slikes slot.

While forward rules can be very useful, they can also require substantial time and space to propagate their

values, If a rule is entered as backward, then the system defers reasoning until the information is specifically

requested, CYC maintains a separate background process for accomplishing forward propagations. A
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knowledge engineer can continue entering knowledge whileits effects are propagated during idle keyboard

time.*
Now let us return to the constraint language itself. Recall that it allows for the expression of facts as

arbitrary logical expressions. Since first-order logic is much more powerful than CYC’s frame language, why

does CYC maintain both? The reason is that frame-based inference is very efficient, while general logical

reasoning is computationally hard. CYC actually supports about twenty types of efficient inference mechanisms

(including inheritance and transfers-through), each with its own truth maintenance facility. The constraint

language allows for the expression of facts that are too complex for any of these mechanisms to handle.

The constraint languagealso provides an elegant, abstract layer of representation.In reality, CYC maintains

two levels of representation: the epistemological level (EL) and the heuristic level (HL). The EL contains

facts stated in the Jogical constraint language, while the HL contains the same facts stored using efficient

inference templates. There is a translation program for automatically converting an EL statement into an

efficient HL representation. The EL provides a clean, simple functional interface to CYC so that users and

computer programscan easily insert andretrieve information, from the knowledge base. The EL/HLdistinction
represents one way of combining the formal neatness of logic with the computational efficiency of frames.

In addition to frames, inference mechanisms, and the constraint language, CYCL performs consistency

checking(e.g., detecting when an illegal value is placed on slot) and conflict resolution (e.g., handling cases

where multiple inference procedures assign incompatible valuesto a slot).

10.3.3. Control] and Meta-Knowledge

Recall our discussion of control knowledge in Chapter 6, where we saw how to take information about

control out of a production system interpreter and represent it declar-atively using rules. CYCL strives to

accomplish the same thing with frames. We have already seen how to specify whethera fact is propagated in

the forward or backward direction—thists a type of control information. Associated with eachslot is a set of

inference mechanismsthat can be used to compute values for it. For any given problem, CYC’s reasoning is

constrained to a small range of relevant, efficient procedures. A query in CYCL can be tagged with level of
effort. At the lowest level of effort, CYC merely checks whetherthe fact is stored in the knowledge base. At

higher levels, CYC will invoke backward reasoning and even entertain metaphorical chains of inference. As

the knowledge base grows,it will become necessary to use control knowledge to restrict reasoning to the most

relevant portions of the knowledge base. This control knowledge can, of course, be stored in frames.

In the tradition of its predecessor RLL (Representation Language Language) [Greiner and Lenat, 1980},

many of the inference mechanisms used by CYC are stored explicitly as EL templates in the knowledge base.

These templates can be modified like any other frames, and a user can create a new inference template by

copying and editing an old one. CYC generates LISP code to handle the various aspects of an inference

template. These aspects include recognizing when an EL statement can be transformed into an instance of the

template, storing justifications of facts that are deduced (and retracting those facts when the justifications

disappear), and applying the inference mechanism efficiently. As with production systems, we can build a

more flexible, reflective system by moving inference procedures into a declarative representation.

It should be clear that many of the same control issues exist for frames and rules. Unlike numerical heuristic

evaluation functions, control knowledge often has a commonsense, “knowledge about the world”flavorto it.

It therefore -begins to bridge the gap between two usually disparate types of knowledge: knowledge that is

typically used for search control and knowledgethat is typically used for natural language disambiguation.

? Another idea is to have the system do forward propagation of knowledge during periods of infrequent use, such as at

night.
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10.3.4 Global Ontology

Ontology is the philosophical study of what exists. In the AI context, ontology is concemmed with which

categories we can usefully quantify over and how those categories relate to each other. Ali knowledge-based

systemsreferto entities in the world, but in order to capture the breadth of human knowledge, we need a weil-

designed global ontology that specifies at a very high level what kinds of things exist and what their general

properties are. As mentioned above, such a global ontology should provide a more solid foundation for
domain-specific Al programs and should also allow them to communicate with each other.

The highest level concept in CYCis called Thing. Everything is an instance of Thing. Below this top-level

concept, CYC makes several distinctions, including:

IndividualObject versus Collection—The CYCL concept Collection correspondsto the class CLASS

described in Chapter 9. Here are some examples of frames that are instances of Collection: Person,

Nation, Nose. Someinstances of In dividualObject are Fred, Greece, Fred’sNose. These twosets share

no common instances, and any instance of Thing must be an instance of one of the two sets. Anything

that is an instance of Collection is a subset of Thing. Only Collections may have supersets and subsets;

only IndividualObjects may have parts.

Intangible, Tangible, and Composite—Instances of Intangible are things without mass,e.g., sets,

numbers, laws, and events. Instances of TangibieObject are things with mass that have no intangible

aspect, e.g., a person’s body, an orange, and dirt. Every instance of TangibleObject is also an instance

of IndividualObject since sets have no mass. Instances of CompositeObject have two key slots,

physicalExtent and intangibleExtent. For example, a person is a CompositeObject whose physicalExtent

is his body and whose éntangibleExtent is his mind.

Substance-—Substance is a subclass of IndividualObyect. Any subclass of Substance is something that

retains its properties when it is cut up into smaller pieces. For example, Wood is a Substance.’ A
concept like Table34 can be an instance of both Woed (a Substance) and Table (an IndividualObject).

intrinsic versus Extrinsic properties—A property is intrinsic if when an object has that property all

parts of the object also have that property. For example, co/eris an intrinsic property. Objects tend to

inherit their intrinsic properties from Substances. Extrinsic properties include things like number-of-

fegs. Objects tend to inherit their extrinsic properties from IndividualObjects.

Event and Process—An Eventis anything with temporal extent, e.g., Walking. Process is a subclass of
Event. If every temporal slice of an Event is essentially the same as the entire Event, then that Event is

also a Process. For example, Walking is a Process, but WalkingTwoMiles is not. This relationship is

analogous to Substance and IndividualObject.
Slots—S/or is a subclass of Intangible. There are many types of Slot. BookkeepingSiots record such

information as when a frame was created and by whom. DefiningSlots refer not to properties of the

frame but to properties of the object represented by the frame. DefiningSlots are further divided into

intensional, taxonomic, and extensional categories. QuantitativeSlots are those which take on a scalar

range of values, e.g., height, as opposed to gender.

Time—E£vents can have temporal properties, such as duration and startsBefore. CYC deals with two

basic types of temporal measures:intervals, and sets of intervals, A numberof basic interval properties,

such as endsDuring, are denned from the property before, which applies to starting and ending times

3 Of course,if we cut a substance upfoofinely, itceases to be the same substance. For each substance type, CYC storesits
granule size, e.g., Wood.granule = PlantCell.Crowd.granule = Person, etc.
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for events. Sets of intervals are built up from basicintervals through operationslike union and intersection.

Thus, it is possibleto state facts like “John goes to the movies at three o’clock every Sunday.”

* Agent—An important subset of CompositeObject is Agent, the collection ofin telligent beings. Agents can
be collective (e.g., corporations) owndividual (e.g., people). Agents have a numberof properties, one of

which is beliefs. Agents often ascribe their own beliefs to other agents in orderto facilitate communication.

An agent’s beliefs may be incorrect, so CYC must be able to distinguish between facts in. its own

knowledge base (CYC’s beliefs) and “facts” that are possibly inconsistent with the knowledge base.

These are but a few of the ontological decisions that the builders of a large knowledge base must make.

Other problemsarisein the representation of space, causality, structures, and the persistence of objects through

time. We return to some of these issues in Chapter 19.

10.3.5 Tools

CYC is a multi-user system that provides each knowledge enterer with a textual and graphical interface to the

knowledge base. Users’ modifications to the knowledge base are transmitted to a central server, where they

are checked and then propagated to other users.

We do not yet have much experience with the engineering problemsof building and maintaiing very large

knowledge bases. In the future, it will be necessary to have tools that check consistency in the knowledge

base, point out areas of incompleteness, and ensure that users do not step on each others’ toes.

EXERCISES
‘etalon ge neo SNEONE RATES HG THEDESTHORT ESET, BEL DDE ORTIDEESTIE SHUN, FONT HT ETGUT POM EMEPRIS TLIARL EMEeta STEADEHSLhhLTSRS

1. Show a conceptual dependencyrepresentation of the sentence

John begged Mary for a pencil.

How does this representation make it possible to answer the question

Did John talk to Mary?

2. One difficulty with representations that rely on a small set of semantic primitives, such as conceptual

dependency,is that it is often difficult to represent distinctions between fine shades of meaning. Write

CD representations for each of the following sentences. Try to capture the differences in meaning

between the two sentences of each pair,

John slapped Bill.

John punched Bill.

Bill drank his Coke.

Bill slurped his Coke.

Suelikes Dickens.

Sue adores Dickens.

3. Construct a script for going to a movie from the viewpoint of the movie goer.

4, Consider the following paragraph:

Jane was extremely hungry. She thought about going to her favorite restaurant for dinner, but it

was the day before payday. So instead she decided to go home and pop frozen pizzain the oven.

On the way, though, she ran into her friend, Judy. Judy invited Jane to go out to dinner with her

and Jane instantly agreed. When they got to their favorite place, they found a good table and

telaxed over their meal.
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How could the restaurant script be invoked by the contents of this story? Trace the process throughout
the story. Might any other scripts also be invoked? For example, how would you answerthe question,

“Did Jane pay for her dinner?”
. Would conceptual dependency be a good way to represent the contents of a typical issue of National

Geographic’?
. State where in the CYC ontology following concepts should fail:

* cat
* court case

e New York Times

« France

® glass of water
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CHAPTER

12
 

GAME PLAYING

Everygame ofskillis susceptible ofbeingplayedby an automaton.

—Charles Babbage
(1791-1871), English mathematician, philosopher, inventor and mechanical engineer

12.1 OVERVIEW

Gameshold an inexplicable fascination for many people, and the notion that computers might play games has

existed at least as long as computers. Charles Babbage, the nineteenth-century computer architect, thought

about programming his Analytical Engine to play chess and later of building a machine to play tic-tac-toe

[Bowden, 1953]. Two of the pioneers of the science of information and computing contributed to the fledgling

computer game-playing literature. Claude Shannon [1950] wrote a paper in which he described mechanisms

that could be used in a program to play chess. A few years later, Alan Turing described a chess-playing

program, although he never built it. (For a description, see Bowden [1953}.) By the early 1960s, Arthur

Samuel had succeededin buildingthefirst significant, operational game-playing program. His program played

checkers and, in addition to simply playing the game, could learn from its mistakes and improveits performance

[Samuel, 1963].
There were two reasons that games appeared to be a good domain in which to explore machineintelligence:

e They provide a structured task in whichit is very easy to measure successorfailure.

e They did not obviously require large amounts of knowledge. They were thought to be solvable by

straightforward search from the starting state to a winning position.

Thefirst of these reasons remains valid and accounts for continued interest in the area of game playing by

machine. Unfortunately, the second is not true for any but the simplest garhes. For example, consider chess.

e The average branching factor is around 35,

* In an average game, each player might make 50 moves.

* So in order to examine the complete game tree, we would have to examine 35! positions.

Thusit is clear that a program that simply doesa straightforward search of the gametree will not be abie to

select even its first move during the lifetime of its opponent. Some kind of heuristic search procedure is

necessary.

https://hemanthrajhemu.github.io



232 Artificial Intelligence
 

One way of looking at all the search procedures we have discussed is that they are essentially generate-

and-test procedures in which the testing is done after varying amounts of work by the generator. At one

extreme, the generator generates entire proposed solutions, which the tester then evaluates. At the other

extreme, the generator generates individual movesin the search space, each of which is then evaluated by the,

tester and the most promising one is chosen. Lookedat this way, it is clear that to improve the effectiveness of

a search-based problem-solving program two things can be done:

* Improve the generate procedure so that only good moves (or paths) are generated.

e Improve the test procedure so that the best moves (or paths) will be recognized and exploredfirst.

In game-playing programs, it is particularly important that both these things be done. Consider again the

problem of playing chess, On the average, there are about 35 legal moves available at each turn. If we use a

simple legal-move generator, then the test procedure (which probably uses some combination of search and a
heuristic evaluation function) will have to look at each of them. Because the test procedure must look at so

many possibilities, it must be fast. So it probably cannot do a very accurate job. Suppose, on the other hand,

that instead of a legal-move generator, we use a plausible-move generator in which only some small number

of promising moves are generated. As the numberof legal moves available increases, it becomes increasingly

important to apply heuristics to select only those that have some kind of promise. (So, for example, it is

extremely important in programsthat play the game of go [Benson et af, 1979].) With a more selective move

generator, the test procedure can afford to spend more time evaluating each of the movesit is given so it can

produce a more reliable result. Thus by incorporating heuristic knowledge into both the generator and the

tester, the performanceof the overall system can be improved.

Of course, in game playing, as in other problem domains, search is not the only available technique. In

some games, there are at least some times when more direct techniques are appropriate. For example, in

chess, both openings and endgamesare often highly stylized, so they are best played by table lookup into a

database of stored patterns. To play an entire game then, we need to combine search-oriented and nonsearch-

oriented techniques.
The ideal way to use a search procedureto find a solution to a problem is to generate moves through the

problem space until a goal state is reached. In the context of game-playing programs, a goalstate is one in

which we win. Unfortunately, for interesting games such as chess,it is not usualiy possible, even with a good

plausible-move generator, to search until a goal state is found. The depth of the resulting tree (or graph) and

its branching factor are too great. In the amountof time available, it is usually possible to search a tree only ten

or twenty moves(called p/y in the game-playing literature) deep. Then, in order to choose the best move, the

resulting board positions must be compared to discover which is most advantageous. This is done using a

static evaluation function, which uses whatever information it has to evaluate individual board positions by

estimating how likely they are to lead eventually to a win. Its function is similar to that of the heuristic

function A’ In the A* algorithm:in the absence of complete information, choose the most promising position.

Of course, the static evaluation function could simply be applied directly to the positions generated by the

proposed moves. But since it is hard to produce a function like this that is very accurate, it is better to apply it

as many levels down in the gametree as time permits.

A lot of work in game-playing programshasgoneinto the developmentofgoodstatic evaluation functions.}

A very simple static evaluation function for chess based on piece advantage was proposed by Turing-—simply

add the values of black’s pieces (B), the values of white’s pieces (W), and then compute the quotient W/B.

A more sophisticated approach was that taken in Samuel’s checkers program, in whichthe static evaluation

function was a linear combination of several simple functions, each of which appeared as though it might be

'See Berliner [ 1979b] for a discussion of some theoretical issues in the design of static evaluation functions.
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significant. Samuel's functions included, in addition to the obvious one, piece advantage, such things as

capability for advancement, contro! of the center, threat of a fork, and mobility. These factors were then

combined by attaching to each an appropriate weight and then adding the terms together. Thus the complete

evaluation function had the form:

c, * pleceadvantage + ¢, x advancement + c, * centercontrol...

There were also some nonlinear terms reflecting combinations of these factors. But Samuel did not know

the correct weights to assign to each of the components. So he employed a simple learning mechanism in

which components that had suggested movesthat turned out to lead to wins were given an increased weight,

while the weights of those that had led to losses were decreased.

Unfortunately, deciding which moves have contributed to wins and which to losses is not always easy.
Suppose we make a very bad move, but then, because the opponent makes a mistake, we ultimately win the

game. We would notlike to give creditfor winning to our mistake. The problem of deciding which ofa series

of actions is actually responsible for a particular outcomeis called the credit assignment problem [Minsky,

1963]. It plagues many learning mechanisms,not just those involving games. Despite this and other problems,

though, Samuel’s checkers program was eventually able to beat its creator. The techniques it used to acquire

this performance are discussed in more detail in Chapter 17.

We have now discussed the two important knowledge-based components of a good game-playing program:

a good plausible-move generator and a good static evaluation function. They must both incorporate a great

deal of knowledge about the particular game being played. But unless these functions are perfect, we also

need a search procedure that makes it possible to look ahead as many moves as possible to see what may

occur, Of course, as in other problem-solving domains, the role of search can be altered considerably by

altering the amount of knowledge that is available to it. But, so far at least, programs that play nontrivial

gamesrely heavily on search.

What search strategy should we use then? For a simple one-person game or puzzle, the A* algorithm

described in Chapter 3 can be used. It can be applied to reason forward from the current state as far as possible

in the time allowed. The heuristic function h’ can be applied at terminal nodes and used to propagate values
back up the search graph so that the best next move can be chosen. But because of their adversarial nature,this

procedureis inadequate for two-person games such as chess. As values are passed back up, different assumptions

must be made at levels where the program chooses the move andat the alternating levels where the opponent

chooses. There are several ways that this can be done. The most commoniy used method is the minimax

procedure, which is described in the next section. An alternative approach ts the B* algorithm [Berliner,

1979a], which works on both standard problem-solving trees and on game trees.

12.2. THE MINIMAX SEARCH PROCEDURE

The minimax search procedure'is a depth-first, depth-limited search procedure, It was described briefly in

Section 1.3.1. The idea is to start at the current position and use the plausible-move generator to generate the

set of possible successor positions. Now we can apply the static evaluation ‘unction to those positions and

simply choose the best one. After doing so, we can back that value up to the starting position to represent our

evaluation of it. The starting position is exactly as good for us as the position generated by the best move we

can make next. Here we assume that the static evaluation functica returns large values to indicate good

situations for us, so our goal is to maximize the value of the static evaluation function of the next board
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An example of this operation is shown in Fig. 12.1. It assumes a static
evaluation function that returns values ranging from — 10 to 10, with 10

indicating a win for us, —10 a win for the opponent, and 0 an even match. Since

our goal is to maximize the value of the heuristic function, we choose to move

to B. Backing B’s value up to A, we can conclude that A’s value is 8, since we

know we can move to a position with a value of 8. (8) (3) (-2)

But since we know that the static evaluation function is not completely Fig. 12.1. One-Ply Search
accurate, we would like to carry the search farther ahead than one ply. This

could be very important, for example, in a chess game in which weare in the

middle of a piece exchange. After our move, the

situation would appear to be very good, but, if we look
one move ahead, we will see that one of our pieces

also gets captured and so the situation is not as

favorable as it seemed. So we would like to look ahead

to see what wil] happen to each of the new game

positions at-the next move which will be made by the

opponent. Instead of applying the static evaluation

functionto each of the positions that we just generated,

we apply the plausible-move generator, generating a

set of successor positions for each position. If we

wanted to stop here, at two-ply lookahead, we could apply the static evaluation function to each of these

positions, as shown in Fig. 12.2.

But now we must take into account that the opponent gets to choose which successor moves to make and

thus which terminal value should be backed upto the next level. Suppose we made move B. Then the opponent

must choose among moves FE, F, and G. The opponent’s goal is to minimize the value of the evaluation

function, so he or she can be expected to choose move F, This means that if we make moveB,the actual
position in which we will end up one movelater is very bad for us, This is true even though a possible

configuration is that represented by node E, which is very good for us. But since at this level we are not the

ones to move, we will not get to choose it. Figure 12.3 shows the result of propagating the new values up the

tree. At the level representing the opponent’s choice, the minimum value was chosen and backed up. At the

level representing our choice, the maximum value was chosen.

  

(9) (6) (0) (8) (-2) +4) ©)
Fig. 12.2 Twe-Ply Search

Maximizing ply

Minimizing ply

 

(9) (~6) (0) (0) 2) -) ¢3)

Fig. 12.3 Backing Up the Values ofa Two-Ply Search

Once the values from the second ply are backed up, it becomes clear that the correct move for us to make

at the first level, given the information we have available, is C, since there is nothing the opponent can do

from there to produce a value worse than -2. This process can be repeated for as many ply as time allows, and
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the more accurate evaluations that are produced can be used to choose the correct move atthe top level. The

alternation of maximizing and minimizing at alternate ply when evaluations are being pushed back up

corresponds to the opposing strategies of the two players and gives this method the name minimax.

Having described informally the operation of the minimax procedure, we now describe it precisely. It is a

straightforward recursive procedure that relies on two auxiliary procedures that are specific to the game being
played:

1. MOVEGEN(Position, Player}—The plausible-move generator, which returns a list of nodes representing

the moves that can be made by Player in Position. We call the two players PLAYER-ONE and PLAYER-
TWO;in a chess program, we might use the names BLACK and WHITEinstead.

2. STATIC(Position, Player)—Thestatic evaluation function, which returns a num ber representing the

goodnessof Position from the standpoint of Player.”

As with any recursive program,a critical issue in the design of the MINIMAX procedure is when to stop

the recursion and simply cail the static evaluation function. There are a variety of factors that may influence

this decision. They include:

# Has one side won?

How many ply have we already explored?

How promising is this path?

How muchtimeis left?

Howstable is the configuration?

For the general MINIMAXprocedure discussed here, we appeal to a function, DEEP-ENOUGH,whichis
assumedto evaluate all of these factors and to return TRUEif the search should be stopped at the currentlevel

and FALSE otherwise. Our simple implementation of DEEP-ENOUGHwill take two parameters, Position
and Depth. It will ignore its Position parameter and simply return TRUEif its Depth parameter exceeds a

constant cutoff value.
One problem that arises in defining MINIMAX as a recursive procedureis that it needs to return not one

but two results:

* The backed-up value of the path it chooses.
© The pathitself. We return the entire path even though probably only the first element, representing the

best move from the current position, is actually needed.

We assume that MINIMAX returns a structure containing both results and that we have two functions,

VALUE and PATH,that extract the separate components.

Since we define the MINIMAX procedure as a recursive function, we must also specify how it is to be

called initially. It takes three parameters, a board position, the current depth of the search, and the player to

move. So the initial call to compute the best move from the position CURRENTshould be

MINIMAX (CURRENT, 0, PLAYER-ONE})

if PLAYER-ONEis to move, or

MINIMAX (CURRENT, 0, PLAYER-TWO)

if PLAYER-TWOis to move.

? This may be a bit confusing, but it need not be. In all the examples in this chapter so far (including Fig. 12.2 and 12.3),

we have assumedthatall values of STATIC are from the point of view of the initial (maximizing)player. It turns outto

be easier when defining the algorithm, though, to let STATIC alternate perspectives so that we do not need to write

separate procedures for the two levels. It is easy to modify STATIC for this purpose; we merely compute the value of

Position from PLAYER-ONE’s perspective, then invert the value if STATIC’s parameter is PLAYER-TWO.

 

https://hemanthrajhemu.github.io



236 Artificial Intelligence
 

Algorithm: MINIMAX(Position, Depth, Player)

1, If DEEP-ENOUGH(Position, Depth), then return the structure

VALUE= STATIC(Position, Player),

PATH = nil

This indicates that there is no path from this node and that its value is that determined by the static

evaluation function.

2, Otherwise, generate one more ply of the tree by calling the function MOVE-GEN(Position Player) and

setting SUCCESSORStothelist it returns.

3. If SUCCESSORSis empty, then there are no moves to be made, so return the samestructure that would

have been retumed if DEEP-ENOUGHhad returned true.

4. 1f SUCCESSORSis not empty, then examine each element in turn and keep track ofthe best one. This

is done as follows.

Initialize BEST-SCOREto the minimum value that STATIC can return. It will be updated to reflect the

hest score that can be achieved by an element of SUCCESSORS.

For each element SUCC of SUCCESSORS,do the following:

(a} Set RESULT-SUCC to
MINIMAX(SUCC,Depth + 1, OPPOSITE(Player))

This recursive call to MINIMAX will actually carry out the exploration of SUCC.

{b) Set NEW-VALUEto - VALUE(RESULT-SUCC). This will cause it to reflect the merits of the

position from the opposite perspective from that of the next lowerlevel.

{c) If NEW-VALUE > BEST-SCORE,then we have found a successor that is better than any that

have been examined so far. Record this by doing the following:

(i) Set BEST-SCORE to NEW-VALUE.
(ii) The best known path is now from CURRENTto SUCC and then on to the appropriate path

down from SUCCas determined hy the recursive call to MINIMAX. So set BEST-PATH to

the result of attaching SUCCto the front of PATH(RESULT-SUCC).
5. Now that all the successors have been examined, we know the value of Position as well as which path

to take from it. So return the structure

VALUE = BEST-SCORE
PATH = BEST-PATH

Whentheinitial call to MINIMAXreturns, the best move from CURRENTisthe first element on PATH.

To see how this procedure works, you should trace its execution for the game tree shown in Fig. 12.2.

The MINIMAXprocedure just descnbedis very simpie. But its performance can be improved significantly

with a few refinements. Some of these are described in the next few sections.

12.3. ADDING ALPHA-BETA CUTOFFS

Recall that the minimax procedure is a depth-first process. One path is explored as far as time allows, the

static evaluation function is applied to the game positionsat the last step of the path, and the value can then be

passed up the path one level at a time. One of the good things about depth-first procedures is that their

efficiency can often be improved by using branch-and-bound techniques in which partial solutions that are

clearly worse than known solutions can be abandoned early. We described a straightforward application of

this technique to the traveling salesman problem in Section 2.2.1. For that problem,all that was required was

storage of the length of the best path foundsofar. If a later partial path outgrew that bound, it was abandoned.
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Butjust as it was necessary to modify our search procedureslightly to handle both maximizing and minimizing

players, it is also necessary to modify the branch-and-boundstrategy to include two bounds, one for each of

the players. This modified strategy is called alpha-beta pruning. It requires the maintenance of two threshold

values, one representing a lower bound on the value that a maximizing node mayultimately be assigned (we

call this alpha) and another representing an upper bound on the value that a minimizing node maybe assigned

(this we call beta).

To see how the alpha-beta procedure works, consider the example shownin Fig, (2.4.7 After examining

node F, we know that the opponentis guaranteed a score of —5 orless at C (since the opponentis the minimizing

player). But we also know that we are guaranteed a score of 3 or greater at node A, which we can achieveif

we move to B. Any other move that produces a

score of less than 3 is worse than the move to B,

and we can ignore it. After examining only F, we
are sure that a move to C is worse

(it will be less than or equal to -5) regardless ofthe
score of node G. Thus we need not botherto explore

node G at all. Of course, cutting out one node may
not appear to justify the expense of keeping track

of the limits and checking them, but if we were

exploring this tree to six ply, then we would have (3) (5) (-5}

eliminated not a single node butan entire tree three

ply deep.

To see how the two thresholds, alpha and beta, can both be used, consider the example shownin Fig. 12.5

In searching this tree, the entire subtree headed by B is searched, and we discover that at A we can expect a

score of at least 3. When this alpha value is passed downto F, it will enable us to skip the exploration of L.

Let’s see why. After K is examined, wesee that I is puaranteed a maximum score of 0, which meansthatF is

Maximizing ply

Minimizing ply

 

Fig. 12.4 An Alpha Cutoff

Maximizing ply

Minimizing ply

Maximizing ply        (5) (7) (8)

Minimizing ply

(0) (7)

Fig.12.5 Alpha and Beta Cutoffs

4In this figure, we return to the use of a single STATIC function from the point of view of the maximizing player.
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guaranteed a minimum of 0. Butthisis less than alpha’s value of 3, so no more branchesofI need be considered.

The maximizing player already knowsnot to choose to move to C and then to since, if that move is made, the

resulting score will be no better than 0 and a score of 3 can be achieved by movingto B instead. Now let’s see

how the value of beta can be used. After cutting off further exploration of I, J is examined, yielding a value of

5, which is assigned as the value of F (sinceit is the maximum of 5 and 0). This value becomesthe value of

beta at node C. It indicates that C is guaranteed to get a 5 or less. Now we must expand G.First M is examined

and it has a value of 7, which is passed back to G asits tentative value. But now 7 is comparedto beta (5). It

is greater, and the player whose turn it is at node C is trying to minimize. So this player will not choose G,

which would lead to a score of at least 7, since there is an alternative move to F, which will lead to a score of

5. Thusit is not necessary to explore any of the other branchesof G.

From this example, we see that at maximizing levels, we can rule out a moveearly if it becomes clear that

its value will be less than the currentthreshold, while at minimizing levels, search will be terminated if values

that are greater than the current threshold are discovered. But ruling out a possible move by a maximizing

player actually means cutting off the search at a minimizing level. Look again at the example in Fig. 12.4.

Once we determine that C is a bad move from A, we cannot bother to explore G, or any other paths, at the

minimizing level below C. So the way alpha and beta are actually used is that search at a minimizing level can

be terminated whena valueless than alphais discovered, while a search at a maximizing level can be terminated

when a value greater than beta has been found. Cutting off search at a maximizing level when a high valueis

found may seem counterintuitive at first, but if you keep in mind that we only get to a particular node at a

maximizing levelif the minimizing player at the level above choosesit, then it makes sense.

Having illustrated the operation of alpha-beta pruning with examples, we can now explore how the
MINIMAX procedure described in Section 12.2 can be modified to exploit this technique. Notice that at

maximizing levels, only beta is used to determine whetherto cut off the search, and at minimizing levels only

alpha is used. But at maximizing levels alpha must also be known since when a recursive call is made to

MINIMAX,a minimizing level is created, which needs access to alpha. So at maximizing levels alpha must

be known notso thatit can be used butso that it can be passed down the tree. The sameis true of minimizing
levels with respect to beta. Each level must receive both values, one to use and one to pass down for the next

level to use.

The MINIMAXprocedureas it stands does not need to treat maximizing and minimizing levels differently

since it simply negates evaluations each time it changes levels. It would be nice if a comparable technique for

handling alpha and beta could be foundso that it would still not be necessary to write separate procedures for

the two players. This tums out to be easy to do. Instead of referring to alpha and beta, MINIMAX uses two

values, USE-THRESH and PASS-THRESH. USE-THRESHis used to compute cutoffs. PASS-THRESHis

merely passed to the next level as its USE-THRESH. Of course, USE-THRESH mustalso be passed to the

next level, but it wili be passed as PASS-THRESHso that it can be passed to the third level down as USE-

THRESHagain, and so forth. Just as values had to be negated each time they were passed acrosslevels, so too

must these thresholds be negated. This is necessary so that, regardless of the leve] of the search, a test for
greater than wil] determine whether a threshold has been crossed. Now there need still be no difference

between the code required at maximizing levels and that required at minimizing ones.

We have now described how alpha and beta values are passed downthe tree. In addition, we must decide

how they are to be set. To see how to do this, let’s return first to the simple example of Fig. 12,4. At a

maximizing level, such as that of node A, alpha is set to be the value of the best successor that has yet been
found, (Notice that although at maximizing levels it is beta that is used to determine cutoffs, it is alpha whose

new value can be computed. Thusat any level, USE-THRESHwill be checked for cutoffs and PASS-THRESH

will be updated to be usedlater.) But if the maximizing nodeis not at the top of the tree, we must also consider  https://hemanthrajhemu.github.io
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the alpha value that was passed downfrom a higher node. To see how this works, look again at Fig. 12.5 and

consider what happens at node F, We assign the value 0 to node I on the basis, of examining node K. This is
so far the best successor of F. But from an earlier exploration of the subtree headed by B, alpha wasset to 3
and passed down from A to F. Alpha should notbe reset to 0 on the basis of node I. It should stay as 3 to reflect

the best move found so far in the entire tree. Thus we see that at a maximizing level, alpha should besetto
either the value it had at the next-highest maximizing level or the best value found at this level, whicheveris

greater. The corresponding statement can be made about beta at minimizing levels. In fact, what we want to

say is that at any level, PASS-THRESHshould always be the maximum of the value it inherits from above

and the best move foundatits level. If PASS-THRESHis updated, the new value should be propagated both
down to lower levels and back up to higher ones so that it always reflects the best move found anywherein the

tree.

At this point, we notice that we are doing the same thing in computing PASS-THRESHthat we did in

MINIMAXto compute BEST-SCORE. We might as well eliminate BEST-SCOREandlet PASS-THRESH

serve in its place.

With these observations, we are in a position to describe the operation of the function MINIMAX-A-B,
which requires four arguments, Position, Depth, Use-Thresh, and Pass-Thresh. Theinitial call, to choose a

move for PLAYER-ONEfrom the position CURRENT,should be

MINIMAX-A-B(CURRENT,

0,
PLAYER-ONE,
maximum value STATIC can compute,

minimum value STATIC can compute)

These initial values for Use-Thresh and Pass-Thresh represent the worst values that each side could achieve.

Algorithm: MINIM AX-A-B( Position, Depth, Player, Use-Thresh, Pass-Thresh)

1. If DEEP-ENOUGH(Position, Depth), then return the structure

VALUE = STATIC(Position, Player);

PATH = nil

2. Otherwise, generate one more ply of the tree by calling the function MOVE- GEN(Position, Player)
and setting SUCCESSORSto thelist it returns.

3. If SUCCESSORSis empty, there are no moves to be made; return the same structure that would have

been retumed if DEEP-ENOUGH had retumed TRUE.

4, If SUCCESSORSis not empty, then go through it, examining each element and keeping track of the

best one. This is done as follows.

For each element SUCC of SUCCESSORS:

(a) Set RESULT-SUCCto

MINIMAX-A-B(SUCC, Depth + 1, OPPOSITE(Player),

—Pass-Thresh, —Use-Thresh).

(b) Set NEW-VALUE to -VALUE(RESULT-SUCC),

(c) If NEW-VALUE > Pass-Thresh, then we have found a successorthat is better than any that have

been examined so far. Record this by doing the following.
Gi) Set Pass-Thresh to NEW-VALUE.

(ii) The best known path is now from CURRENT to SUCCand then on to the appropriate path

from SUCC as determined bythe recursive call to MINIMAX-A-B. So set BEST-PATH to

the result of attaching SUCC to the front of PATH(RESULT-SUCC).
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(d) Hf Pass-Thresh (reflecting the current best value) is not better than Use-Thresh, then we should

stop examining this branch. But both thresholds and values have been inverted. So if Pass-Thresh
>= Use-Thresh, then return immediately with the value

VALUE = Pass-Thresh

PATH = BEST-PATH
5. Return the structure

VALUE = Pass-Thresh

PATH = BEST-PATH

The effectiveness of the alpha-beta procedure depends greatly
on the order in which paths are examined. If the worst paths are

examined first, then no cutoffs at all will occur. But, of course,if the

best path were known in advance so that it could be guaranteed to

be examined first, we would not need to bother with the search

process. If, however, we knew how effective the pruning technique

is in the perfect case, we would have an upper bound onits

performancein other situations. It is possible to prove that if the

nodes are perfectly ordered, then the number of terminal nodes

considered by a search to depth d using alpha-beta pruning is

approximately equal to twice the numberof terminal nodes generated

by a search to depth d/2 without alpha-beta [Knuth and Moore, 1975]. Fig. 12.6 A Futility Cutoff
A doubling of the depth to which the search can be pursued is a significant gain. Even thoughall of this

improvement cannot typically be realized, the alpha-beta technique is a significant improvementto the minimax

search procedure.- For a more detailed study of the average branching factor of the alpha-beta procedure, see

Baudet [1978] and Peart [1982].

The idea behind the alpha-beta procedure can be extended to cut off additional paths that appear to be at

best only slight improvements over paths that have already been explored. In step 4(d), we cut off the search

if the path we were exploring was not better than other paths already found. But consider the situation shown

in Fig. 12.6. After examining node G, we see that the best we can hope for if we make moveC is a score of 3.2.

We know that if we make move B weare guaranteed a score of3. Since 3.2 is only very slightly better than 3,
we should perhaps terminate our exploration of C now. We could then devote more time to exploring other

parts of the tree where there may be more to gain. Terminating the exploration of a subtree that offers little

possibility for improvement over other known pathsis called a futility cutoff.

 

(3) (5) (3.2)

12.4 ADDITIONAL REFINEMENTS

In addition to alpha-beta pruning, there are a variety of other modifications to the minimax procedure that can

also improve its performance. Four of them are discussed briefly in this section, and we discuss one other

important modification in the next section.

12.4.1 Waiting for Quiescence

As we suggested above, one of the factors that should sometimes be considered in determining when to stop

going deeper in the search tree is whether the situation is relatively stable. Consider the tree shown in

Fig. 12.7. Suppose that when node B is expanded one more level, the result is that shown in Fig. 12.8. When
we looked one move ahead, our estimate of the worth of B changed drastically. This might happen, for
examiple, in the middle of a piece exchange. The opponent hassignificantly improved the immediate appearance

of his or her position by initiating a piece exchange. If we stop exploring the tree at this level, we assign the

value —4 to B and therefore decide that B is not a good move.
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Maximizing ply

Minimizing ply  
(0)  (-4)

Fig.12.7 The Beginning ofa Search Fig.12.8 The Beginning ofan Exchange

To make sure that such short-term measures do not unduly influence our choice of move, we should

continue the search until no such drastic change occurs from one level to the next. This is called waiting for
quiescence. If we do thai, we might get the situation shownin Fig. 12.9, in which the move to B again looks

like a reasonable movefor us to makesince the other half of the piece exchange has occurred. A very general

algorithm for quiescence can be found in Beal [1990].

Maximizing ply

Minimizing ply

Maximizing ply

 

(5) (6) (7) (6)

Fig. 12.9 The Situation Calms Down

Waiting for quiescence helps in avoiding the horizon effect, in which an inevitable bad event can be delayed

by various tactics until it does not appear in the portion of the gametree that minimax explores. The horizon

effect can also influence a program’s perception of good moves. The effect may make a move look good

despite the fact that the move might be better if delayed past the horizon. Even with quiescence, all fixed-

depth search programsare subject to subtle horizon effects.

12.4.2 Secondary Search

One good way of combating the horizon effect is to double-check a chosen move to make sure that a hidden

pitfall does not exist a few moves farther away than the original search explored. Suppose we explore a game

tree to an average depth of six ply and, on the basis of that search, choose a particular move. Althoughit

would have been too expensive to have searched the entire tree to a depth of eight, it is not very expensive to

search the single chosen branch an additional two levels to make sure thatit still looks good. This technique

is called secondary search.

Oneparticularly successful form of secondary searchis called singular extensions. The idea behind singular

extensions is that if a leaf node is judged to be far superior to its siblings and if the value ofthe entire search  https://hemanthrajhemu.github.io
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dependscritically on the correctness of that node’s value, then the node is expanded one extra ply. This

technique allows the search program to concentrate on tactical, forcing combinations. lt employs a purely

syntactic criterion, choosing interesting lines of play without recourse to any additional domain knowledge.

The DEEP THOUGHT chess computer [Anantharaman etai., 1990] has used singular extensions to great

advantage, finding midgame mating combinationsas long as thirty-seven moves, an impossible feat for fixed-

depth minimax.

12.4.3. Using Book Moves

For complicated games taken as wholes,it is, of course, not feasible to select a move by simply looking up the

current game configuration in a catalogue and extracting the correct move. The catalogue would be immense

and no one knows how to construct it. But for some segments of some games, this approach is reasonable. In

chess, for example, both opening sequences and endgame sequences are highly stylized. In these situations,

the performanceof a program can often be considerably enhanced if it is provided with a list of moves (called

book moves) that should be made. The use of book moves in the opening sequences and endgames, combined

with the use of the minimax search procedure for the midgame, provides a good example of the way that

knowledge and search can be combined in a single program to produce more effective results than could

either technique on its own.

12.4.4 Alternatives to Minimax

Even with the refinements above, minimax still has some problematic aspects. For instance, it relies heavily

on the assumption that the opponent will always choose the optimal move. This assumption is acceptable in

winning situations where a move that is guaranteed to be good for us can be found. But, as suggested in

Berliner [1977], in a losing situation it might be better to take the risk that the opponent will make a mistake.

Suppose we must choose between two moves, both of which, if the opponent plays perfectly, lead to situations

that are very bad for us, but one is slightly less bad than the other. But further supposethat the less promising

movecould lead to a very good situation for us if the opponent makes a single mistake. Although the minimax
procedure would choose the guaranteed bad move, we oughtinstead to choose the other one, which is probably

slightly worse but possibly a lot better. A similar situation arises when one move appears to be only slightly

more advantageous than another, assuming that the opponentplays perfectly. It might be better to choose the

less advantageous moveif it could lead to a significantly superior situation if the opponent makes a mistake.
To make these decisions well, we must have access to a model of the individual opponent’s playing style so

that the likelihood of various mistakes can be estimated, Butthis is very hard to provide.

As a mechanism for propagating estimates of position strengths up the game tree, minimax stands on

shaky theoretical grounds. Nau. [1980] and Pearl [1983] have demonstrated that for certain classes of game

trees, e.g., uniform trees with random terminal values, the deeper the search, the poorer the result obtained by
Mminimaxing. This “pathological” behavior of amplifying/error-prone heuristic estimates has not been observed

in actual game-playing programs, however. It seems that game trees containing won positions and nonrandom

distributions of heuristic estimates provide environments that are conducive to minimaxing.

12.5 ITERATIVE DEEPENING

A numberof ideas for searching two-player game trees have led to new algorithms for single-agent heuristic

search, of the type described in Chapter 3. One such ideais iterative deepening, originally used in a program

called CHESS 4.5 [Slate and Atkin, 1977]. Rather than searchingto a fixed depth in the game tree, CHESS

4,5 first searched only a single ply, applying its static evaluation function to the result of each ofits possible

moves. It then initiated a new minimax search, this time to a depth of two ply. This was followed by a three-
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ply search, then a four-ply search, etc. The name “iterative deepening” derives from the fact that on each

iteration, the tree is searched one level deeper. Figure 12.10 depicts this process.

Iteration 1. Iteration 2.

Iteration 3.

 

iteration 4.

Fig. 12.10 iterative Deepening

Ontheface ofit, this process seems wasteful. Why should we be interested in any iteration exceptthe final

one? There are several reasons. First, game-playing programs are subject to time constraints. For example, a

chess program may be required to completeall its moves within two hours. Since it is impossible to know in

advance how long a fixed-depth tree search will take (because of variations in pruning efficiency and the need

for selective search), a program may find itself running out of time. With iterative deepening, the current

search can be aborted at any time and the best move found by the previous iteration can be played. Perhaps

more importantly, previous iterations can provide invaluable move-ordering constraints. If one move was

judged to be superior to its siblings in a previous iteration, it can be searchedfirst in the next iteration. With

effective ordering, the alpha-beta procedure can prune many more branches, and total search time can be

decreased drastically. This allows more time for deeperiterations.

Years after CHESS 4.5’s success with iterative deepening, it was noticed [Korf, 1985a] that the technique

could also be applied effectively to single-agent search to solve problemslike the 8-puzzle. In Section 2.2.1,

we compared two types of uninformed search, depth-first search and breadth-first search. Depth-first search

wasefficient in terms of space but required some cutoff depth in order to force backtracking when a solution

was not found. Breadth-first search was guaranteed to find the shortest solution path but required inordinate

amounts of space becauseall leaf nodes had to be kept in memory. An algorithm called depth-first iterative

deepening (DFID) combines the best aspects of depth-first and breadth-first search.  https://hemanthrajhemu.github.io
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Algorithm: Depth-First iterative Deepening

1, Set SEARCH-DEPTH = 1.
2. Conduct a depth-first search to a depth of SEARCH-DEPTH.If a solution path is found, then return it.

3. Otherwise, increment SEARCH-DEPTHby I and goto step 2.

Clearly, DFID will find the shortest solution path to the goal state. Moreover, the maximum amount of

memory used by DFID is proportional to the number of nodes in that solution path. The only disturbing fact

is that all iterations but the final one are essentially wasted. However,this is not a serious problem. The reason

is that most of the activity during any giveniteration occurs at the leaf-node level. Assuming a completetree,

wesee that there are as many leaf nodesat level n as there are total nodes in levels I through n. Thus, the work

expended during the nth iteration is roughly equal to the work expended during all previous iterations, This

means that DFID is only slower than depth-first search by a constant factor. The problem with depth-first
searchis that there is no way to know in advance how deepthe solution lies in the search space. DFID avoids

the problem of choosing cutoffs without sacrificing efficiency, and, in fact, DFID is the optimal algorithm (in

terms of space and time) for uninformed search.

But what about informed, heuristic search? Iterative deepening can also be used to improve the performance

of the A* search algorithm [Korf, 1985a]. Since the major practical difficulty with A* is the large amount of

memory it requires to maintain the search nodelists, iterative deepening can be of considerable service.

Algorithm: Iterative-Deepening-A*

1. Set THRESHOLD= the heuristic evaluation ofthe start state.

2. Conduct a depth-first search, pruning any branch whenits total cost function (g + A’) exceeds

THRESHOLD.If a solution path is found during the search, return it.

3. Otherwise, increment THRESHOLDby the minimum amount it was exceeded during the previous

step, and then go to Step 2.

Like A*, Iterative-Deepening-A* (IDA*) is guaranteed to find an optimal solution, provided that A’ is an

admissible heuristic. Because of its depth-first search technique, [DA* is very efficient with respect to space.

IDA* wasthe first heuristic search algorithm to find optimal solution paths for the 15-puzzle (a 4x4 version

of the 8-puzzle) within reasonable time and space constraints.

12.6 REFERENCES ON SPECIFIC GAMES

In this chapter we have discussed search-based techniques for game playing. We discussed the basic minimax

algorithm and then introduceda series of refinementsto it. But even with these refinements,it is still difficult

to build good programsto play difficult games. Every game,like every AI task, requires a careful combination

of search and knowledge.

Chess

Research on computer chess actually predates the field we call artificial intelligence. Shannon [1950] was the

first to propose a method for automating the game, and two early chess programs were written by Greenblatt

et al. [1967] and Newell and Simon [1972].

Chess provides a well-defined laboratory for studying the trade-off between knowledge and search. The

more knowledge a program has,the less searching it needs to do. Onthe other hand, the deeper the search, the

less knowledge is required. Human chess players use a great deal of knowledge and very little search—they

* Recal g stands for the cost so far in reaching the current node, and A’ standsfor the heuristic estimate of the distance from

the node to the goal.
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typically investigate only 100 branches or so in deciding a move. A computer, on the other hand,is capable of

evaluating millions of branches. Its chess knowledge is usually limited to a static evaluation function. Deep-

searching chess programs have been calibrated on exercise problems in the chess literature and have even

discovered errorsin the official human analyses of the problems.
A chess player, whether human or machine, carries a numericalrating that tells how well it has performed

in competition with other players. This rating lets us evaluate in an absolute sense the relative trade-offs

between search and knowledge in this domain. The recent trend in chess-playing programsis clearly away

from knowledge and toward faster brute force search. It turns out that deep, full-width search (with pruning)

is sufficient for competing at very high levels of chess. Two examples of highly rate chess machines are

HITECH [Berliner and Ebeling, 1989] and DEEP THOUGHT [Anantharamanet a/., 1990], both of which

have beaten human grandmasters and both of which use custom-built parallel hardware to speed up legal

move generation and heuristic evaluation.

Checkers

Work on computer checkers began with Samuel [1963]. Samuel’s program had an interesting learning

component which allowedits performance to improve with experience. Ultimately, the program wasable to

beat its author. We look more closely at the leaning mechanisms used by Samuel in Chapter 17.

Go

Go is a very difficult game to play by machine since the average branching factor of the gametree is very

high. Brute force search, therefore, is not as effective as it is in chess. Human go players make upfor their

inability to search deeply by using a great dea] of knowledge about the game. It is probable that go-playing

programs must also be knowledge-based, since today’s brute-force programs cannot compete with humans.

For a discussion of some of the issues involved, see Wilcox [1988].

Backgammon

Unlike chess, checkers, and go, a backgammon program must choose its moves with incomplete information

about what may happen.If all the possible dice rolls are considered, the numberof alternatives at each level

of the search is huge. With current computational power,it is impossible to search more than a few ply ahead.

Such a search will not expose the strengths and weaknesses of complex blocking positions, so knowledge-

intensive methods must be used. One program that uses such methods is BKG Berliner [1980]. BKG actually

does no searching at all but relies instead on positional understanding and understanding of how its goals

should change for various phases of play. Like its chess-playing cousins, BKG has reached high levels of
play, even beating a human world champion in a short match.

NEUROGAMMON[Tesauro and Sejnowski, 1989] is another interesting backgammon program.It is

based on a neural network model that learns from experience. Neurogammonis one of the few competitive
game-playing programs that relies heavily on automatic learning.

Othello

Othello is a popular board game that is played on an 8x8 grid with bi-colored pieces. Although computer

programs have already achieved world-championshiplevel play [Rosenbloom, 1982; Lee and Mahajan, 1990),

humans continue to study the game and international tournaments are held regularly. Computers are not

permitted to compete in these tournaments,but it is believed that the best programs are stronger than the best

humans. High-performance Othello programs rely on fast brute-force search and table lookup.

The Othello experience may shed some light on the future of computer chess. Will top human players in
the future study chess games between World Champion computers in the same waythat they study classic

human grandmaster matches today? Perhaps it will tum out that the different search versus knowledge trade-  https://hemanthrajhemu.github.io
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offs made by humans and computers will make it impossible for either of them to benefit from the experiences

of the other.

Others

Levy [1988] contains a numberof classic papers on computer game playing. The papers cover the games

listed above as well as bridge, scrabble, dominoes, go-moku, hearts, and poker.

EXERCISES

1.

x

 bon Gey aehewe R953. maker abA OPPS ATR ETS a hat EMREtady Pe. BER:

Consider the following game tree in which static scores are all from the first player’s point of view:

 

(7) (6) (8) (5) (2) =) (0) 2) (6) &) (5) (8) (2)

Suppose the first player is the maximizing player. What move should be chosen?

In the game tree shownin the previous problem, what nodes would not need to be examined using the

alpha-beta praning procedure?

Why does the search in game-playing programs always proceed forward from the current position

rather than backward from a goal state?

Is the minimax procedure a depth-first or breadth-first search procedure?

The minimax algorithm we have described searches a gametree, But for some games,it might be better

to search a graph and to check, each time a position is generated, if it has been generated and evaluated

before. Under what circumstances would this be a good idea? Modify the minimax procedure to do

this.

How would the minimax procedure have to be modified to be used by a program playing a three- or

four-person game rather than a two-person one?

In the contextofthe search procedure described in Section 12.3, does the ordering of the list of successor

positions created by MOVEGEN matter? Why or why not? If it does matter, how much does it matter

(i-e., how mucheffort is reasonable for ordering it)?

implement the alpha-beta search procedure. Use it to play a simple game suchastic-tac-toe.

Apply DFID to the water jug problem of Section 2.1.
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