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CHAPTER

15
 

NATURAL LANGUAGE PROCESSING

The man who Knows noforeign language Knows nothing ofhis mother tongue.

—Johann Wolfgangvon Geoethe
(1749-1832), German poet. novelist, playwright and philosopher

Language is meant for communicating about the world. By studying language, we can come to understand

more about the world. We can test our theories about the world by how well they support our attempt to

understand language. And, if we can succeed at building a computational model of language, we will have a

powerful tool for communicating about the world. In this chapter, we look at how we can exploit knowledge

about the world, in combination with linguistic facts, to build computational natural language systems.

Throughoutthis discussion, it is going to be important to keep in mindthatthe difficulties we will encounter

do not exist out of perversity on the part of some diabolical designer. Instead, what we see as difficulties when

we try to analyze language are just the flip sides of the very properties that make language so powerful.

Figure 15.1 shows some examplesof this. As we pursue our discussion of language processing,it 1s important

to keep the good sides in mind since it is because of them that language is significant enough a phenomenon

to be worth all the trouble.

By far the largest part of human linguistic communication occurs as speech. Written language is a fairly

recent invention andstill plays a less central role than speech in mostactivities. But processing written language
(assuming it is written in Unambiguous characters) is easier, in some ways, than processing speech. For

example, to build a program that understands spoken language, we needall the facilities of a written language

understand as well as enough additional knowledge to handle all the noise and ambiguities of the audio

signal.’ Thusit is useful to divide the entire language-processing problem into two tasks:

e Processing written text, using lexical, syntactic, and semantic knowledge ofthe language as well as the

required real world information

e Processing spoken language, using all the information needed above plus additional knowledge about

phonology as well as enough added informal ion to handle the further ambiguities that arise in speech

‘Actually, in understanding spoken language, we take advantageofclues, such as intonation and the presence of pauses,

to which we do not have access when we read. We can make the task of a speech-understanding program easier by
allowing it, too, to use these clues, but to do so. we must know enough about them to incorporate into the program

knowledge of how to use them.
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The Problem: English sentences are incomplete descriptions of the information that they are intended to convey:

Some dogs are outside. | called Lynda to ask her

to the movies.

She said she'd love to go.

L tL
Some dogs are on the lawn. She was home when| called,

Three dogs are on the lawn. She answered the phone.

Rover, Tripp, and Spot are on the lawn. | actually asked her.

The Good Side: Language allows speakers to be as vague or as precise as theylike. It alse allows speakers to leave out
things they believe their hearers already know.
 

The Problem: The same expression meansdifferent things in different contexts:

Where's the water? (in a chemistry lab, it must be pure}

Where's the water? (when you are thirsty, it must be potable)

Where’s the water? (dealing with a leaky roof, it can be filthy)

The GoodSide: Languagelets us communicate about an infinite world using a finite (and thus learnable) number of symbols.
 

The Problem: No natural language program can be complete bacause new words, expressions, and meanings can be
generated quite freely:

I'll fax it to you.

The Good Side: Language can evolve as the experiences that we want to communicate about evolve.
 

The Problem: There are lots of ways to say the samething:

Mary was born on October 11.

Mary’s birthday is October 11.

The Good Side: When you know lot, facts imply each other. Languageis intended to be used by agents who knowa lot.

Fig. 15.1 features ofLanguage That Make It Both Difficult and Useful

In Chapter 14 we described someofthe issues that anse in speech understanding, and in Section 21.2.2 we

returnto them in moredetail. In this chapter, though, we concentrate on written language processing (usually

called simply natural language processing).

Throughout this discussion of natural language processing, the focus is on English. This happens to be

convenient and turns out to be where much of the work in the field has occurred. But the major issues we

address are commonto al] natural languages, In fact, the techniques we discuss are particularly importantin

the task of translating from one natural language to another.

Natural language processing includes both understanding and generation, as well as other tasks such as

multilingual translation. In this chapter we focus on understanding, although in Section 15.5 we will provide

some references to work in these other areas.

15.1 INTRODUCTION

Recall that in the last chapter we defined understanding as the process of mapping from an input form into a

more immediately useful form. It is this view of understanding that we pursue throughout this chapter. Butit
is useful to point out here that there is a formal sense in which a language can be defined simply as a set of

strings without reference to any world being described or task to be performed. Although someofthe ideas

that have come out of this formal study of languages can be exploited in parts of the understanding process,

they are only the beginning. To get the overall picture, we need to think of language as a pair (source language,https://hemanthrajhemu.github.io
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target representation), together with a mapping between elements of each to the other. The target representation

will have been chosen to be appropriate for the task at hand. Often, tf the task has clearly been agreed on and

the details of the target representation are not important in a particular discussion, we talk just about the

languageitself, but the other half of the pair is really always present.

One of the great philosophical debates throughout the centuries has centered around the question of what

a sentence means. We do not claim to have found the definitive answer to that question, But once werealize

that understanding a piece of language involves mapping it into some representation appropriate to a particular

situation, it becomes easy to see why the questions ‘What is language understanding?” and “What does a

sentence mean?” have provedto be so difficult to answer, We use languagein such a wide variety of situations

that no single definition of understanding is able to account for them all. As we set about the task of building

computer programs that understand natural language, one ofthe first things we have to do is define precisely

what the underlying task is and whatthe target representation should tock like. In the rest of this chapter, we

assume that our goalis to be able to reason with the knowledge containedin the linguistic expressions, and we
exploit a frame language as our target representation.

15.1.1 Steps in the Process

Before we gointo detail on the several componentsof the natural language understanding process,it is useful

to survey ail of them and see how they fit together. Roughly, we can break the process downinto the following

pieces:

¢ Morphological Analysis—Individual words are analyzed into their components, and nonword tokens,

such as punctuation, are separated from the words.

® Syntactic Analysis—Linear sequences of words are transformed into structures that show how the

words relate to each other. Some word sequences may be rejected if they violate the language’s rules
for how words may be combined. For example, an English syntactic analyzer would reject the sentence

“Boy the go the to store.”

e Semantic Analysis—Thestructures created by the syntactic analyzer are assigned meanings. In other

words, a mapping is made between the syntactic structures and objects in the task domain. Structures

for which no such mapping is possible may be rejected. For example, in most universes, the sentence

“Colorless green ideas sleep furiously” [Chomsky, 1957] would be rejected as semantically anomolous.

« Discourse Integration—The meaning of an individual sentence may depend on the sentencesthat precede

it and may intluence the meanings of the sentencesthat follow it. For example, the word “it” in the
sentence, “John wantedit,” depends on the prior discourse context, while the word “John” may influence

the meaning of later sentences (such as, “He always had.”)

e Pragmatic Analysis—Thestructure representing what was said is reinterpreted to determine what was

actually meant. For example, the sentence “Do you know what time it is?” should be interpreted as a
request to be told the time.

The boundaries between these five phases are often very fuzzy. The phases are sometimes performed in

sequence. and they are sometimes performedail at once. If they are performed in sequence, one may need to

appeal for assistance to another. For example, part of the process of performing the syntactic analysis of the

sentence “Is the glass jar peanut butter?” is deciding how to form two noun phrases out of the four nounsat

the end of the sentence (giving a sentence of the form “Is the x y?”). All of the following constituents are

syntactically possible: glass, glass jar, glass Jar peanut, jar peanut butter, peanut butter, butter. A syntactic

processor on its own has no way to choose among these, and so any decision must be made by appealing to

some model of the world in which some of these phrases make sense and others do not. If we do this, then we

get a syntactic structure in which the constituents “glass jar” and “peanut butter” appear. Thus although it is
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often useful to separate these five processing phases to some extent, they can all interact in a variety of ways,

making a complete separation impossible.

Specifically, to make the overall language understanding problem tractable, it will help if we distinguish

between the following two ways of decomposing a program:

* The processes and the knowledge required to perform the task

® The global control structure that is imposed on those processes

In this chapter, we focus primarily on the first of these issues. It is the one that has received the most

attention from people working on this problem. We do not completely ignore the second issue, although

considerably less of substance is known aboutit. For an example of this kind of discussion that talks about

interleaving syntactic and semantic processing, see Lytinen [1986].

With that caveat, let’s consider an example to see how the individual processes work. In this example, we

assume that the processes happen sequentially. Suppose we have an English interface to an operating system

and the following sentence is typed:

T want to print Bill’s .init file.

Morphological Analysis

Morphological analysis must do the following things:
wore

s® Pull apart the word “Bill's” into the proper noun “Bill” and the possessive suffix

® Recognize the sequence “init” as a file extension that is functioning as an adjective in the sentence

In addition, this process will usually assign syntactic categories to all the words in the sentence. This is

usually done now because interpretations for affixes (prefixes and suffixes) may depend on the syntactic

category of the complete word. For example, consider the word “prints.” This word is either a plural noun

(with the ‘-s” marking plural) or a third person singular verb (as in “he prints”), in which case the “‘-s”

indicates both singular and third person. If this step is done now, then in our example, there will be ambiguity

since “want,” “print,” and “file” can all function as more than one syntactic category.

Syntactic Analysis

Syntactic analysis must exploit the results of Ss

morphological analysis to build a structural description NP” RMN
of the sentence. The goal of this process, called parsing, | a

is to convert the flat list of words that forms the sentence PRO ° V (M3)

into a structure that defines the units that are represented |
. I want

by that fiat list. For our example sentence, the result of (RMz) NP VP.

parsing is shown in Fig. 15.2. The details of this oko i _

representation are not particularly significant; we describe | | (RMA)

alternative versions of them in Section 15.2. Whatis | print / ~
important here is that a flat sentence has been converted (RM2) ADJS NN

into a hierarchicalstructure and thatthat structure has been i's acs N
designed to correspond to sentence units (such as noun (RMS) | |

phrases) that will correspond to meaning units when .init file

semantic analysis is performed. One useful thing we have Fig.15.2 The Result ofSyntacticAnalysis of“I want

donehere, although notall syntactic systemsdo, is create to print Bill's initfile.”
a set of entities we call reference markers. They are shown in parenthesesin the parse tree. Each one corresponds

to some entity that has been mentioned in the sentence. These reference markers are useful later since they
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provide a place in which to accumulate information aboutthe entities as we get it. Thus although we have not

tried to do semantic analysis {i.e., assign meaning) at this point, we have designed our syntactic analysis

process so that it will find constituents to which meaning can be assigned.

Semantic Analysis

Semantic analysis must do two important things:

* It must map individual words into appropriate objects in the knowledge base or database.

* It must create the correct structures to correspond to the way the meanings of the individual words

combine with each other.

For this example, suppose that we have a frame-based knowledge base that contains the units shown in

Fig. 15.3. Then we can generate a partial meaning, with respect to that knowledge base, as shownin Fig. 15.4.

Reference marker RM/ corresponds to the top-level event of the sentence.It is a wanting event in which the

speaker (denoted by “[) wants a printing event to occur in which the same speaker prints a file whose

extension is “init” and whose owneris Bill.

User
isa: Person
"login-name: must be <string>

User068

instance: User
fogin-name: Susan-Black

User073
instance : User
login-name: Bill-Smith

Fi
instance: File-Struct
name : stutt
extension : init
owner: User073
in-directory : éwsmith/

File-Struct

isa: information-Object

Printing
isa: Physical-Event
* agent: must be <animate or program>
* object: must be <information-object>

Wanting
isa: Mentai-Event
* agent: must be <animate>
* abject : must be <state or event>

Commanding
fsa : Mental-Event
* agent. must be <animate>
* performer: must be <animate or program>

* object: must be <event>

This-System

instance : Program

Fig. 15.3. A Knowledge Base Fragment
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AMT {the whole sentence}
insiance : Wanting
agent: RM2 {t}
object : AMI {a printing event}

AM2 {h

AM3 {a printing event}
instance : Printing
agent: AM2 {l}
object : AM4 {Bill's -init file}

AM4 {Bill's .init file}

instance: File-Struct
extension : -Init
owner; AMS {Bill}

AMS {Bill}

insiance: Person

first-name: Biil

Fig. 15.4 A Partial Meaningfor a Sentence

Discourse Integration

At this point, we have figured out what kinds of things this sentence is about. But we do not yet know which
specific individuals are being referred to. Specifically, we do not know to whom the pronoun “I”or the proper

noun “Bill” refers. To pin down these references requires an appeal to a model of the current discourse

context, from which we can learn that the current user (who typed the word “I’’) is U/ser068 and that the only

person named “Bill” about whom we could be talking is User?73. Once the correctreferent for Bill is known,
we can also determine exactly which file is being referred to: F'/ is the only file with the extension “init” that

is owned by Bill.

Pragmatic Analysis

We now have a complete description, in the terms provided by our knowledge base, of what was said. Thefinal

step toward effective understanding is to decide what to do as a result. One possible thing to do is to record what

was said as a fact and be done with it. For some sentences, whose intended effect is clearly declarative, that is

precisely the correct thing to do, But for other sentences, including this one, the intendedeffect is different. We

can discover this intended effect by applying a set of rules that characterize cooperative dialogues. In this

example, we use the fact that when the user claims to want something that the system is capable of performing,

then the system should go ahead and do it. This produces the final meaning shown in Fig. 15.5.

Meaning
instance « Commanding
agent : User068
performer: This-System
object: P27

P27
instance : Printing
agent: This-System

object : FY

Fig. 15.5 Representing the intended Meaning

The final step in pragmatic processing is to translate, when necessary, from the knowledge-based

representation to a command to be executed by the system.In this case, this step is necessary, and we see that

the final result of the understanding process ishttps://hemanthrajhemu.github.io
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lpr Avsmith/stulf.init

where “Ipr” is the operating system's file print command.

Summary

At this point, we have seen the results of each of the main processes that combine to form a natural language

system, In a complete system,all of these processes are necessary in some form. For example, it may have

seemed that we could have skipped the knowledge-based representation of the meaning of the sentence since
the final output of the understanding system bore no relationship to it. But tt is that intermediate knowledge-

based representation to which we usually attach the knowledge that supports the creation of the final answer.

All of the processes we have described are important in a complete natural language understanding system.

Butnot all programs are written with exactly these components. Sometimes two or more of them are collapsed,

as. we will see in several sectionslater in this chapter. Doing that usually results in a system that is easier to

build for restricted subsets of English but one that is harder to extend to wider coverage. In the rest of this

chapter we describe the major processes in more detail and talk about some of the ways in which they can be
put together to form a complete system.

15.2 SYNTACTIC PROCESSING

Syntactic processing is the step in which a flat input sentence is converted into a hierarchical structure that

correspondsto the units of meaning in the sentence. This process is called parsing. Althoughthere are natural

language understanding systems that skip this step (for example, see Section 15.3.3), it plays an important

role in many natural language understanding systems for two reasons:

e Semantic processing must operate on sentence constituents. If there is no syntactic parsing step, then

the semantics system must decide on its own constituents. If parsing is done, on the other hand,it

constrains the number ofconstituents that semantics can consider. Syntactic parsing is computationally

less expensive than is semantic processing (which may require substantial inference). Thus it can play

a significant role in reducing overall system complexity.

« Althoughit is often possible to extract the meaning of a sentence without using grammaticalfacts,it is

not always possible to do so. Consider, for example. the sentences

— The satellite orbited Mars.

— Mars orbited the satellite.

In the second sentence, syntactic facts demand an interpretation in which a planet (Mars) revolves

around a satellite. despite the apparent improbability of such a scenario.

Although there are many ways to produce a parse, almostall the systems that are actually used have two

main components:

* A declarative representation, called a grammar, of the syntactic facts about the language

e A procedure, called a parser, that compares the grammar against input sentences to produce parsed

structures

15.2.1 Grammars and Parsers

The most common wayto represent grammarsis as a set of production rules. Although details of the forms

that are allowed in the rules vary, the basic idea remains the same andis iliustrated in Fig. 15.6, which shows

a simple context-free, phrase structure grammar for English. Read the first rule as, “A sentence is composed

of a noun phrase followed by a verb phrase.” In this grammar, the vertical bar should be read as “or.” The €
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denotes the empty string. Symbols that are further expanded byrules are called nonterminal symbols. Symbols
that corresponddirectly to strings that must be found in an input sentence are called terminal symbols,

S — NP VP

NP => the NP1

NP + PRO

NP + PN

NP -5 NP4

NP1 > ADJS N

ADJS > «| ADJ ADJS

VPo3V¥

VP —- V NP

N — file { printer

PN — Bill

PRO >]

ADJ —> short | long | fast

V — printed | created | want

Fig. 15.6 A Simple Grammarfor a FragmentofEnglish

Grammar formalisms such asthis one underlie many linguistic theories, which in turn providethe basis for

many natural janguage understanding systems. Modem linguistic theories include: the government binding

theory of Chomsky [1981; 1986}, GPSG [Gazdaretai., 1985], LPFG [Bresnan, 1982], and categorial grammar

[Ades and Steedman, 1982; Oehrle e¢ ai., 1987]. The first three of these are also discussed in Sells [1986]. We

should point out here that there is general agreement that pure, context-free grammars are not effective for

describing natural languages.” Asa result, natural language processing systems have less in common with

computer language processing systems (such as compilers) than you might expect.

Regardless of the theoretical basis of the grammar, the parsing process takes

the rules of the grammar and compares them against the input sentence. Each rule

that matches adds something to the complete structure that is being built for the

sentence. The simplest structure to build is a parse tree, which simply records the

Tules and how they are matched. Figure 15.7 shows the parse tree that would be

produced for the sentence “Bill printed the file” using this grammar. Figure 15.2

contained another example ofa parse tree, although some additionsto this grammar

would be required to produce it.

Notice that every node of the parse tree correspondseither to an input word or
to a nonterminal in our grammar. Each level in the parse tree corresponds to the

application of one grammar rule. As a result, it should be clear that a grammar

specifies two things about a language: ,

S
aN

NP VP
| ao

VvPN NP

| oN
Bill printed the NP1

oN
ADJS N

|
e file

Fig. 15.7. A Parse Tree

for a Sentence

e {ts weak generative capacity, by which we mean the set of sentences that are contained within the

language. This set (called the set of grammatical sentences) is made up of precisely those sentences

that can be completely matched by a series of rules in the grammar.

* Its strong generative capacity, by which we meanthe structure (or possibly struc- “tures) to be assigned

to each grammatical sentence of the language.

There is, however, still some debate on whether context-free grammars are formally adequate for describing natural

languages (e.g., Gazdar [1982].)
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So far, we have shown the result of parsing to be exactly a trace of the rules that were applied during it.

Thisis not alwaysthe case, though. Some grammars contain additional information that describesthe structure

that should be built. We present an example of such a grammarin Section 15.2.2.
Butfirst we need to look at two important issues that define the space of possible parsers that can exploit

the grammars we write.

Top-Down versus Bottom-Up Parsing

To parse a sentence, it is necessary to find a way in which that sentence could have been generated from the

start symbol. There are two ways that this can be done:

® Top-Down Parsing—Begin with the start symbol and apply the grammar rules forward until the symbols

at the terminals of the tree correspond to the componentsof the sentence being parsed.

® Bottom-Up Parsing---Begin with the sentence to be parsed and apply the grammar miles backward

until a single tree whose terminals are the words of the sentence and whose top node is the start symbol

has been produced.

The choice between these two approachesis similar to the choice between forward and backward reasoning

in other problem-solving tasks. The most important consideration is the branching factor. Is it greater going

backward or forward? Another importantissue is the availability of good heuristics for evaluating progress.
Can partial information be used to rule out paths early? Sometimes these two approaches are combined into a

single method called bottom-up parsing with top-down filtering. In this method. parsing proceeds essentially

bottom-up (i.e., the grammar rules are applied backward). But using tables that have been precomputed for a

particular grammar, the parser can immediately eliminate constituents that can never be combined into useful

higher-level structures.

Finding One Interpretation or Finding Many

As several of the examples above have shown, the process of understanding a sentence is a search process in

which a large universe of possible interpretations must be explored to find one that meets all the constraints

imposed by a particular sentence.* As for any search process, we must decide whetherto exploreall possible

pathsor, instead, to explore oniy a single most likely one and to produce only the result of that one path as the

answer,
Suppose, for example, that a sentence processor looks at the words of an input sentence oneat a time, from

left to right, and suppose that so far, it has seen:

“Have the students who missed the exam—”

There are two paths that the processor could be following at this point:

« “Have”is the main verb of an imperative sentence, such as

“Have the students who missed the exam take it today.”

« “Have”is an auxiliary verb of an interrogative sentence, such as
“Have the students who missed the exam taken it today?”

There are four ways of handling sentences such as these:

e All Paths—Follow all possible paths and build all the possible intermediate components. Many of the

components will later be ignored because the other inputs required to use them will not appear. For
example, if the auxiliary verb interpretation of “have” in the previous example is built, it will be

discarded if no participle, such as “taken,” ever appears. The major disadvantage of this approach is

that, because it results in many spurious constituents being built and many deadendpaths being followed,

it can be very inefficient.
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« Best Path with Backtracking—Follow only one path at a time, but record, at every choice point, the

information that is necessary to make another choice if the chosen path fails to lead to a complete

interpretation of the sentence. In this example, if the auxiliary verb interpretation of “have” were

chosen first and the end of the sentence appeared with no main verb having been seen, the understander

would detect failure and backtrack to try some other path. There are two important drawbacksto this

approach. Thefirst is that a good deal of time may be wasted saving state descriptions at each choice

point, even though backtracking will occur to only a few of those points. The second is that often the

same constituent may be analyzed many times. In our example,if the wrong interpretation is selected

for the word “have,”it will not he detected until after the phrase “the students who missed the exam”

has been recognized. Once the error is detected, a simple backtracking mechanism will undo everything

that was done after the incorrect interpretation of “have” was chosen, and the noun phrase will be

reinterpreted (identically) after the second interpretation of “have” has been selected. This problem

can be avoided using some form of dependency-directed backtracking, but then the implementation of

the parser is more complex.

e Best Path with Patchup—Follow only one path at a time, but when an error is detected, explicitly

shuffle around the components that have already been formed. Again, using the same example, if the

auxiliary verb interpretation of “have” were chosenfirst, then the noun phrase “the students who

missed the exam” would be interpreted and recorded as the subject of the sentence. If the word “taker”
appears next, this path can simply be continued. But if “take” occurs next, the understander can simply

shift componentsinto different slots. “Have” becomes the main verb. The noun phrase that was marked

as the subject of the sentence becomesthe subject of the embedded sentence “The students who missed

the exam take it today.” And the subject of the main sentence can be filled in as “you,” the default
subject for imperative sentences. This approachis usually more efficient than the previous two techniques.

[ts major disadvantage is that it requires interactions among the rules of the grammar to be made

explicit in the rules for moving components from one place to another. The interpreter often becomes

ad hoc, rather than being simple and driven exclusively from the grammar.

« Wait and See—Follow only one path, but rather than making decisions about the function of each

component as it is encountered, procrastinate the decision unti] enough information is available to

make the decision correctly. Using this approach, when the word “have”ofour example is encountered,

it would be recorded as some kind of verb whose function is, as yet, unknown. The following noun

phrase would then be mterpreted and recorded simply as a noun phrase. Then, when the next word is

encountered, a decision can be made about how all the constituents encountered so far should be

combined. Although several parsers have used some form of wait-and-see strategy, one, PARSIFAL

[Marcus, 1980], relies on it exclusively. It uses a small, fixed-size buffer in which constituents can be

stored until their purpose can be decided upon. This approach is very efficient, but it does have the

drawbackthatif the amount of lookaheadthatis necessary is greater than the size of the buffer, then the

interpreter will fail. But the sentences on which it fails are exactly those on which people have trouble,
apparently because they choose one interpretation, which proves to be Wrong. A classic example of

this phenomenon,called the garden path sentence, is

The horse raced past the barn fell down.

Although the problems of deciding which paths to follow and how to handle backtracking are common to

all search processes, they are complicated in the case of language understanding by the existence of genuinely

ambiguous sentences, such as our earlier example “They are flying planes.” If it is important that not just one

interpretation but rather all possible ones be found, then either all possible paths must be followed (which is

very expensive since most of them will die out before the end of the sentence} or backtracking must be forced
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(whichis also expensive because of duplicated computations). Many practical systems are content to find a

single plausible interpretation.Ifthat interpretationis later rejected, possibly for semantic or pragmatic reasons,

then a new attempt to find a different interpretation can be made.

Parser Summary

As this discussion suggests, there are many different kinds of parsing systems. There are three that have been

used fairly extensively in natura! language systems:

* Chart parsers [Winograd, 1983], which provide a way of avoiding backup by storing intermediate

constituents so that they can be reused along alternative parsing paths.

e Definite clause grammars [Pereira and Warren, 1980], in which grammar rules are written as PROLOG

clauses and the PROLOGinterpreter is used to perform top-down, depth-first parsing.

e Augmented transition networks (or ATNs) [Woods, 1970]-, in which the parsing process ts described

as the transition from a start state to a final state in a transition network that corresponds to a grammar

of English.

We do not have space here to go into all these methods. In the next section, we illustrate the main ideas

involved in parsing by working through an example with an ATN.After this, we look at one way of parsing

with a more declarative representation.

15.2.2. Augmented Transition Networks

An augmented transition network (ATN) is a top-down parsing procedure that allows various kinds of

knowledge to be incorporated into the parsing system so it can operate efficiently. Since the early use of the

ATN in the LUNARsystem [Woods, 1973], which provided access to a large database of information on lunar

geology, the mechanism has been exploited in many language-understanding systems. The ATN ts similar to

a finite state machine in which the class of labels that can be attached to the arcs that define transitions

between states has been augmented. Arcs may be labeled with an arbitrary combination of the following:

© Specific words, such as “in.”

e Word categories, such as “noun.”

e Pushes to other networks that recognize significant components of a sentence. For example, a network

designed to recognize a prepositional phrase (PP) may include an arc that asks for (‘pushes for’) a

noun phrase (NP).

e Procedures that perform arbitrary tests on both the current input and on sentence components that have

already been identified.

e Procedures that build structures that will form part of the final parse.

Figure 15.8 shows an example of an ATN in graphical notation. Figure 15.9 shows the top-level ATN of

that example in a notation that a program could read. To see how an ATN works,let us trace the execution of
this ATN as it parses the following sentence:

The long file has printed.

This execution proceeds as follows:

Begin in state S.

Push to NP.

Do a category test to see if “the” is a determiner.

This test succeeds, so set the DETERMINERregister to DEFINITEand goto state Q6.

Do a category test to see if “long”is an adjective.O
W

m
B
W
N
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Fig. 15.8 An ATN Networkfor a Fragment of English

(Si (PUSH NP/T
(SETR SUBJ *)
(SETR TYPE (QUOTE DCL}}
(TO Q1))

(CAT AUX T
(SETR AUX *)
(SETR TYPE (QUOTE ©)}
(TO Q2)})

(Ql (CATVT
(SETR AUX NIL)
(SETR V *)
(TO 04})

(CAT AUX T
(SETR AUX *)
{TO Q3)))

(Q2. (PUSH NPY T
(SETR SUBJ *)
(TO Q3))

(03 (CATVT
(SETR V *}
(TO Q4)))

(C4 (POP (BUILDQ (S + + + (VP +})
TYPE SUBJ AUX V) T)

(PUSH NP/ T
(SETR VP (BUILDQ (VP (V +) *) V)
{TO Q5)))

(Q5 (POP (BUILDQ (S$ + + + 4)
TYPE SUBJ AUX VP) T)

(PUSH PP/ T
(SETR VP (APPEND (GETR VP}(LIST*)))
(TO Q5)}}

Fig. 15.9 An ATN Grammarin List Form
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This test succeeds, so append “long”tothe list contained in the ADJS register. (This list was previously

crpty.} Stay in state Q6.

Do a category test to see if “file” is an adjective. This test fails.
Do a category test to see if “file” is a noun. This test succeeds, so set the NOUN register io “file” ard
go to state Q7.

Push to PP.

Do a category test to see if “has” is a preposition. This test fails, so pop and signal failure.

There is nothing else that can be done from state Q7, so pop and return the structure

(NP (FILE (LONG) DEFINITE))
The return causes the machineto be in state QL, with the SUBJ register set to the structure just returned

and the TYPEregister set to DCL.

. Doacategory test to see if “has”is a verb. This test succeeds, so set the AUX register to NIL and set the

V register to “has.” Goto state Q4,

. Push to state NP. Since the next word, “printed,” is not a determiner or a proper noun, NP will pop and

return failure.

The only other thing to do in state Q4 is to halt. But more input remains. so a complete parse has not

been found. Backtracking is now required.

The last choice point was at state QI, so return there. The registers AUX and V musi be unset.

Do a category test to see if “has” is an auxiliary. This test succeeds. so set the AUX register lo “has”

and go to state Q3.

Do a category test to see if “printed” is a verb. This test succeeds, so set the V register to “printed.” Go

to state Q4.

. Now, since the input is exhausted, Q4 is an acceptable final state. Pop and return the structure

(S DCL (NP (FILE (LONG) DEFINITE)) HAS (VP PRINTED))
This structure is the output of the parse.

This example grammarillustrates several interesting points about the use of ATNs. A single subnetwork

need only occur once even though it is used in more than one place. A network canbe called recursively. Any

numberof internal registers may be used to contain the result of the parse. The result of a network can be built,
using the function BUILDQ, out of values contained in the various system registers. A single state may he

both a final state, in which a complete sentence has been found, and an intermediate state, in which only # part

of a sentence has been recognized. And.finally, the contents of a register can be modified at any tune.

In addition, there are a variety of ways in which ATNs can be used which are not shownin this example:

« The contents of registers can be swapped. For example, if the network were expanded to recognize

passive sentences, then at the point that the passive was detected, the current contents of the SUBJ

register would be transferred to an OBJ register and the object of the preposition “by” would be placed

in the SUBJ register. Thus the final interpretation of the following two sentences would be the same

— Biil printed the file.

~ Thefile was printed by Bill.

Arbitrary tests can be placed on the arcs. In each ofthe arcs in this example,thetest is specified simply

as T (always true). But this need not be the case. Suppose that when the first NP is found, its number is

determined and recorded in a register called NUMBER.Thenthearcs labeled V could have an additiona!

test placed on them that checked that the number ofthe particular verb that was found is equal to the

value stored in NUMBER. More sophisticated tests, involving semantic markers or other semantic

features, can also be performed.
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15.2.3. Unification Grammars

AT'N grammars have substantial procedural components. The grammar describes the order in which constituents
nust be built. Variables are explicitly given values, and they must already have been assigned a value before

chey can be referenced. This procedurality limits the effectiveness of ATN grammars in some cases, for

example: in speech processing where somelater parts of the sentence may have been recognized clearly while

earlier parts are still unknown (for example, suppose we had heard, “The long * * * file printed.”), or in
systems that want to use the same grammar to support both understanding and generation (e.g., Appelt [1987],

Shieber [1988], and Bamett ef af [1990]). Although there is no clear distinction between declarative and

procedural representations (as we saw in Section 6.1}, there is a spectrum and it often tums out that more

declarative representations are more flexible than more procedural ones are. So in this section we describe a

declarative approach to representing grammars.

When a parser applies grammar rules to a sentence, it performs two major kinds of operations:

e Matching (of sentence constitnents to grammarrules)

e Building structure (corresponding to the result of combining constituents)

Now think back to the unification operation that we described in Section 5.4.4 as part of our theorem-

proving discussion. Matching and structure building are operations that unification performs naturally. So an

obvious candidate for representing grammars is some structure on which we can define a unification operator.

Directed acyclic graphs (DAGs) can do exactly that.

Each DAG represents a set of attribute-value pairs. For example, the graphs corresponding to the words

“the” and “file” are:

[CAT: DET [CAT: N

LEX:the} LEX: file

NUMBER:SING]

Both words have a lexical category (CAT) and a lexical entry. In addition, the word “file” has a value

(SING) for the NUMBERattribute. The result of combining these two words to form a simple NP can also be

described as a graph:

INP: [DET: the

HEAD:file

NUMBER:SING]]

The rule that forms this new constituent can also be represented as a graph, but to do so we need to

introduce a new notation. Until now, all our graphs have actually been trees. To describe graphs that are not

trees, we need a wayto label a piece of a graph and then pointto that piece elsewhere in the graph. Solet{7}

for any value of » be a label, which is to be interpreted as a label for the next constituent following it in the

graph. Sometimes, the constituent is empty (i.e., there is not yet any structure that is knownto fill that piece of

the graph). In that case, the label functions very much like a variable and will be treated like one by the

unification operation. It is this degenerate kind of a label that we need in order to describe the NP rule:

NP -> DET N

We can write this rule as the following graph:
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[CONSTITUENTI: [CAT: DET
LEX: {1}]

CONSTITUENT2: [CAT: N
LEX: {2}
NUMBER:{3}]

BUILD: {NP:{DET:[1]
HEAD:{2]
NUMBER:{3}]]]

This rule should be read as follows: Two constituents, described in the subgraphs labeled CONSTITUENT 1

and CONSTITUENT?2,are to be combined. The first must be of CAT DET. We do not care what its lexical

entry is, but whateverit is will be bound to the label {1}. The second constituent must be of CAT N.Its lexical

entry will be bound to the label {2}, and its number will be boundto the label {3}. The result of combining

these two constituents is described in the subgraph labeled BUILD. This result will be a graph corresponding

to an NP with three attributes: DET, HEAD, and NUMBER.Thevaluesforail these attributes are to be taken

from the appropriate pieces of the graphs that are being combined bythe rule.

Now we need to define a unification operator that can be applied to the graphs we have just described.It

will be very similar to logical unification. Two graphs unify if, recursively, all their subgraphs unify. The
result of a successful unification is a graph that is composed of the union of the subgraphs of the two inputs,

with all bindings made as indicated. This process bottoms out when a subgraphis not an attribute-value pair

butis just a value for an attribute. At that point, we must define what it means for two values to unify. Identical

vaJues unify. Anything unifies with a variabie (a label with no attached structure) and produces a binding for
the label. The simplest thing to do is then to say that any other situation results in failure. But it may be useful

to be more flexible. So some systems allow a value to match with a more general one (e.g., PROPER-NOUN

matches NOUN). Others allow values that are disjunctions [e.g., (MASCULINE \/ FEMININE)|, in which

case unification succeeds wheneverthe intersection of the two values is not empty.

There is one other important difference between logical unification and graph unification, The inputs to

logical unification are treated as logical formulas. Order matters, since, for example,f(g(a), A(b)) is a different

formula than f(A(6), ¢(@)). The inputs to graph unification, on the other hand, must betreated assets, since the
order in which attribute-value pairs are stated does not matter. For example, if a rule describes a constituent as

(CAT: DET

LEX: {1}]

we want to be able to match a constituent such as

[LEX: the

CAT: DET]

Algorithm: Graph-Unify

1. Ifeither G, or G, is an attribute that is not itself an attribute-value pair then:
(a) If the attributes conflict (as defined above), then fail.

(b) If either is a variable, then bind it to the value of the other and return that value.

(c) Otherwise, return the most general value that is consistent with both the original values. Specifically,
if disjunction is allowed, then return the inter section of the values.
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2. Otherwise, do:

(a) Set variable NEW to empty.

(b} For each attribute A that is present (at the top level) in either GI or G2 do

(i) If A is not present at the top level in the other input, then add A andits value to NEW.

(ti) If itis, then call Graph-Unify with the two values for A.If that fails, then fail. Otherwise, take

the newvalue of A to be the result of that unification and add A with its value to NEW

{co} Tf there are any labels attached to GI or G2, then bind them to NEW and retum NEW

A simple parser can use this algorithm to apply a grammar rule by unifying CONSTITUENT | witha

proposed first constituent. If that succeeds, then CONSTITUENT21s unified with a proposed second constituent,

if that also succeeds, then a new constituent corresponding to the value of BUILD is produced.If there are

variables in the value of BUILD that were bound during the matching of the constituents, then those bindings

will be used to build the newconstituent.

There are many possible variations on the notation we have described here. There are also a variety of

ways of using it fo represent dictionary entries and grammarrules. See Shieber [1986] and Knight | 1989] for

discussions of some of them.

Although we have presented unification here as a technique for doing syntactic analysis, it has also been

used as a basis for semantic interpretation. In fact, there are arguments for using it as a uniform representation

for all phasesof natural language understanding. There are also arguments against doing so, primarily involving

system modularity, the noncompositionality of language in some respects (see Section 15.3.4), and the need

to invoke substantial domain reasoning. We will not sav any more about this here, but to see how this idea

could work, see Allen [1989].

 

15.3. SEMANTIC ANALYSIS

Producing a syntactic purse of a sentence is only the first step toward understanding it. We muststill produce

a representation of the meaning of the sentence. Because understanding is a mapping process, we must first

define the language into which we are trying to map. There ts no single, definitive Janguage in which all

sentence meanings can be described. All of the knowledge representation systems that were described in Part

i] are candidates, and having selected one or more of them, westill need to define the vocabulary (ie., the

predicates, frames, or whatever) that will be used on top of the structure. In the rest of this chapter, we call the

final meaning representation language, including both the representational framework and the specific meaning

vocabulary, the target language. The choice of a target language for any particular natural language

understanding program must depend on what is to be done with the meanings once they are constructed.

There are two broad families of target languages that are used in NL systems, depending on the role that the

natural language system is playing in a larger system (if any).

When natural language is being considered as a phenomenon onits own,as, for example. when one builds

a program whose goal is to read text and then answer questions aboutit, a target language can be designed

specifically to support language processing. In this case, one typically looks for primitives that correspond to

distinctions that are usually made in language. Of course, selecting tbe nght set of primitives is not easy. We

discussed this issue briefly in Section 4.3.3, and in Chapter 10 we looked at two proposals for a set of primitives,

conceptual dependency and CYC.

When natural language is being used as an interface language to another program (such as a database

query system or an expert system), then the target language must be a legal input to that other program. Thus

the design of the target language is driven by the backend program. This was the case in the simple example

we discussed in Section 15.1.1. But even in this case, it is useful, as we showed in that example, to use an

intermediate knowledge-based represertation to guide the overall process. So, in the rest of this section, we

assumethat the target language we are building is a knowledge-based one.
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Although the main purpose of semantic processing is the creation of a target language representation of a

sentence’s meaning, there is another importantrole that it plays. It imposes constraints on the representations

that can be constructed, and, because of the structural connections that must exist between the syntactic

structure and the semantic one, it also provides a way of selecting among competing syntactic analyses.

Semantic processing can impose constraints because it has access to knowledge about what makes sense in

the world. We already mentioned one example ofthis, the sentence, *Is the glass jar peanut butter?” There are

other examples in the rest of this section.

Lexical Processing

The first step in any semantic processing system is to look up the individual words in a dictionary (or /exicon)

and extract their meanings. Unfortunately, many words have several meanings, and it may not be possible to

choose the correct one just by looking at the word itself. For example, the word “diamond” might have the

following set of meanings:

e A geometrical shape with four equal sides

e A baseball field

e An extremely hard and valuable gemstone

To select the correct meaning for the word “diamond”in the sentence,

Joan saw Susan’s diamond shimmering from across the room.

it is necessary to know that neither geometrical shapes nor baseball fields shimmer. whereas gemstones do.

Unfortunately, if we view English understanding as mapping from English words into objects in a specific

knowledge base, lexical ambiguity is often greater than it seems in everyday English. For, example, consider

the word “mean.” This word is ambiguousin at least three ways: it can be a verb meaning “to signify”; it can

be an adjective meaning “unpleasant”or “cheap”; and it can be a noun meaning “statistical average.” But now

imagine that we have a knowledge base that describes a statistics program and its operation. There might be

at least two distinct objects in that knowledge base, both of which correspond to the “statistical average”

meaning of “mean.” One objectis the statistical concept of a mean; the other is the particular function that

computes the mean in this program. To understand the word “mean” we need to mapit into some conceptin

our knowledge base. But to do that, we must decide which of these concepts is meant. Because of cases like

this, lexical ambiguity is a serious problem, even when the domain of discourse is severely constrained.

The process of determining the correct meaning of an individual word is called word sense disambiguation

or lexical disambiguation. It is done by associating, with each word in the lexicon, information about the

contexts in which each of the word’s senses may appear. Each of the words in a sentence can serve as part of

the context in which the meanings of the other words must be determined.

Sometimes only very straightforward information about each word sense is necessary. For example, the

baseball field interpretation of “diamond” could be marked as a LOCATION.Then the correct meaning of

“diamond” in the sentence “I'll meet you at the diamand” could easily be determined if the fact that ar

requires a TIME or a LOCATIONasits object were recorded as part of the lexical entry for at. Such simple

properties of word senses are called semantic markers. Other useful semantic markers are

e PHYSICAL-OBJECT

e ANIMATE-OBJECT

® ABSTRACT-OBJECT

Using these markers, the correct meaning of “diamond”in the sentence “I dropped my diamond” can be

computed. As part ofits lexical entry, the verb “drop” will specify that its object must be a PHYSICAL-
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OBJECT. The gemstone meaning of “diamond” will be marked as a PHYSICAL-OBJECT. So it will be

selected as the appropriate meaning in this context.

This technique has been extended by Wilks [1972; 1975a; 1975b] in his preference semantics, whichrelies

on the notion that requirements, such as the one described above for an object that is a LOCATION,are rarely

hard-and-fast demands. Rather, they can best be described as preferences. For example, we might say that

verbs such as “hate” prefer a subject that is animate. Thus we have no difficulty in understanding the sentence

Pop hates the cold.

as describing the feelings of a man and notthose of soft drinks. But now consider the sentence

MyJawn hates the cold.

Now,there is no animate subject available, and so the metaphorical use of lawn acting as an animate object

should be accepted.

Unfortunately, to solve the lexical disambiguation problem completely, it becomes necessary-to introduce

more and more finely grained semantic markers. For example, to interpret the sentence about Susan's diamond

correctly, we must mark one sense of diamond as SHIMMERABLE,while the other two are marked

NONSHIMMERABLE.Asthe numberof such markers grows,the size of the lexicon becomes unmanageable.

In addition, each new entry into the lexicon may require that a new marker be added to each of the existing
entries, The breakdownof the semantic marker approach when the numberof words and word senses becomes

large has led to the development of other ways in which correct senses can be chosen, We return to this issue

in Section 15.3.4.

Senience-Level Processing

Several approaches to the problem of creating a semantic representation of a sentence have been developed,

including the following:

« Semantic grammars, which combine syntactic, semantic, and pragmatic knowledgeinto a single set of

rules in the form of a grammar. Theresult of parsing with such a grammar is a semantic, rather than just

a syntactic, description of a sentence.
e Case grammars, in which the structure that is built by the parser contains some semantic information,

although further interpretation may also be necessary.

« Conceptual parsing, in which syntactic and semantic knowledge are combined into a single interpretation

system that is driven by the semantic knowledge. In this approach, syntactic parsing is subordinated to

semantic interpretation, which is usually used to set up strong expectations for particular sentence

structures,

* Approximately compositional semantic interpretation, in which semantic processing is applied to the

result of performing a syntactic parse. This can be done either incrementally, as constituents are built,

or all at once, when a structure corresponding to a complete sentence has been built.

In the following sections, we discuss each of these approaches.

15.3.1 Semantic Grammars

A semantic grammar(Burton; 1976; Hendnxet al., 1978; Hendrix and Lewis, 1981] is a context-free grammar

in which the choice of nonterminals and production rules is governed by semantic as well as syntactic function.

In addition, there is usually a semantic action associated with each grammarrule. The result of parsing and

applying all the associated semantic actions is the meaning of the sentence. This close coupling of semantic
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actions to grammar rules works because the grammar rules themselves are designed around key semantic

concepts.

An example of a fragment of a semantic grammar is shown in Fig. 15.10. This grammar defines part of a
simple interface to an operating System. Shown in braces under each rule is the semantic action that is taken
when the rule is applied. The term “value”is used to refer to the value that is matched by the right-hand side
of the ruie. The dotted notation x.y should be read as the y attribute of the unit x. The result of a successful

parse using this grammarwill be either a command or a query.

S —> what is FILE-PROPERTYof FILE?
{query FILE.FILE-PROPERT¥}

SK — | want to ACTION
{command ACTION}

FILE-PROPERTY — the FILE-PROP
{FILE-PROP}

FILE-PROP —> extension | protection | creation date | owner
{value}

FILE — FILE-NAME| FILE1
{value}

FILE1 > USER’s FILE2
{FILE2.owner: USER}

FILE1 > FILE2
{FILE2}

FILE2 > EXTtile

{instance: file-struct
extension: EXT}

EXT — Unit} .tt | Jsp | for! .ps | mss
value

ACTION > print FILE
{instance: printing
object: FILE}

ACTION — print FILE on PRINTER
{instance: printing
object: FILE
printer: PRINTER}

USER — Bill | Susan

{value}

Fig. 15.10 A Semantic Grammar

A semantic grammar can be used by a parsing system in exactly the same ways in which strictly syntactic

grammar could be used. Several existing systems that have used semantic grammars have been built around

an ATN parsing system, since it offers, a great deal of flexibility.

Figure 15.11 shows the result of applying this semantic grammar to the sentence

T want to print Bill’s .init file.

Notice that in this approach, we have combined into a single process ail five steps of Section 15.1.1 with

the exception of the final part of pragmatic processing in which the conversion to the system’s command

syntax is done, :

The principal advantages of semantic grammars are the following:

e Whenthe parse is complete, the result can be used immediately without the additional stage of processing

that would be required if a semantic interpretation had not already been performed during the parse.
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Ss

{command: {instance: printing
object: {instance:file-struct

extension: .init
owner: Bill}}}

ACTION

{instance: printing
object: {instance: file-struct

extension: .init
, owner: Bill}}

FILE

FILE1
{instance:file-struct
extension: init
owner: Bill}}

FILE2
{instance: file-struct
extension: .init
owner: Bill}}

EXT

 

 
I want to print Bill's -init file.

Fig. 15.11 The Result ofParsing with a Semantic Grammar

e Many ambiguities that would arise during a strictly syntactic parse can be avoided since someof the

interpretations do not make sense semantically and thus cannot be generated by a semantic grammar.

Consider, for example, the sentence “I want to print stuff.txt on printer3.” During a strictly syntactic

parse, it would not be possible to decide whether the prepositional phrase, “on printer3” modified

“want” or “print.” But using our semantic grammar,there is no general notion of a prepositional phrase

and there is no attachment ambiguity.
* Syntactic issues that do not affect the semantics can be ignored. For example, using the grammar shown

above, the sentence, “What is the extension of lisp file?” would be parsed and accepted as correct.

There are, however, some drawbacksto the use of semantic grammars:

e The numberof rules required can become very large since many syntactic generalizations are missed.

* Because the number of grammar rules may be very large, the parsing process may be expensive.

After many experiments with the use of semantic grammars in a variety of domains, the conclusion appears

to be that for producing restricted natural language interfaces quickly, they can be very useful. But as an

overall solution to the problem of language understanding, they are doomedby their failure to capture important

linguistic generalizations.
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15.3.2 Case Grammars

Case grammars [Fillmore, 1968; Bruce, 1975] provide a different approach to the problem of how syntactic and

semantic interpretation can be combined. Grammar rules are written to describe syntactic rather than semantic
regularities. But the structures the miles produce correspond to semantic relationsrather than to strictly syntactic

ones. As an example, consider the two sentences and the simplified forms of thei conventional parse trees shown

in Fig. 15.12.

Ss Ss

NP VP NP ve

“oN aN

Vv NP Vv PP

‘N
Susan printed the file. The file was printed by Susan.

Fig. 15.12 Syntactic Parses ofan Active and a Passive Sentence

Although the semantic roles of “Susan” and “the file” are identical in these two sentences, their syntactic

roles are reversed. Each is the subject in one sentence and the object in another.

Using a case grammar, the interpretations of the two sentences would both be

(printed (agent Susan)

(object File))

Now consider the two sentences shown in Fig. 15.13.

5 Ss

oO a
NP VP NP VP

aN /\ a
V PP Vv PP

a
Mother baked forthree hours. The pie baked for three hours.

Fig. 15.13 Syntactic Parses of Two Similar Sentences

The syntactic structures of these two sentences are almost identical. In one case, “Mother” is the subject of

“baked,” while in the other “the pie” is the subject. But the relationship between Mother and bakingis very

different from that between the pie and baking. A case grammar analysis of these two sentences reflects this

difference. The first sentence would be interpreted as

(baked {agent Mother)

(timeperiod 3-hours)}

The second would be interpreted as

(baked (object Pie}

(timeperiod 3-hours))

In these representations, the semantic roles of “mother” and “the pie” are made explicit. It is interesting to

note that this semantic information actually does intrude into the syntax of the language. Whileit is allowed

to conjoin two parallel sentences (e.g., “the pie baked” and “the cake baked” become “the pie and the cake
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baked”), this is only possible if the conjoined noun phrases are in the same case relation to the verb. This

accounts for the fact that we do not say, “Mother and the pie baked.”

Notice that the cases used by a case grammar describe relationships between verbs and their arguments.

This contrasts with the grammatical notion of surface case. as exhibited, for example, in English, by the

distinction between “I” (nominative case) and “me” (objective case). A given grammatical, or surface, case
can indicate a variety of semantic, or deep, cases.

There is no clear agreement on exactly what the Correct set of deep cases ought to be, but some obvious

ones are the following:

(A) Agent—Instigator of the action (typically animate)

e (1) Instrament—Cause of the event or object used in causing the event (typically inanimate)

{D) Dative—Entity affected by the action (typically animate)

(F) Factitive—Object or being resulting from the event

(L) Locative—Place of the event

(5) Source—Place from which something tnoves

(G) Goal—Place to which something moves

(B) Beneficiary—Being on whose behalf the event occurred (typically animate)

(T) Time—~Time at which the event occurred

(O) Object—Entity that is acted upon or that changes, the most general case

The process of parsing into a case representation is Heavily directed by the lexical entries associated with
each verb. Figure 15.14 shows examples of a few such entries. Optional cases are indicated in parentheses.

open [__9 (1) (A)
The door opened.

John opened the door.
The wind opened the doov.

John opened the door with a chisel.

die {__D]

John died.

kill [__D{hA]

Bill killed John.

Bill killed John with a knife.

run [__Al

John ran.

want [__ AQ]

John wanted someice cream.

John wanted Mary to go to the store.

Fig. 15.14 Some Verb Case Frames

Languages have rules for mapping from underlying case structures to surface syntactic forms, For example,
m3in English, the “unmarked subject”” is generally chosen hy the following rule:

If A is present, it is the subject. Otherwise, if ] is present, it is the subject. Else the subject is O.

*The unmarked subject is the one that is used by default; it signals no special focus or emphasis in the sentence.  https://hemanthrajhemu.github.io
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These rules can be applied in reverse by a parser to determine the underlying case structure from the

superficial syntax.

Parsing using a case grammar is usually expectation-driven. Once the verb of the sentence has been located,

it can be used to predict the noun phrases that will occur and to determine the relationship of those phrases to

the rest of the sentence.
ATNsprovide a good structure for case grammar parsing. Unlike traditional parsing algorithms in which

the output structure always mirrors the structure of the grammar rules that created it, ATNs allow output

structures of arbitrary form, For an example of their use, see Simmons[1973], which describes a system that

uses an ATN parser to translate English sentences into a semantic net representing the case structures of

sentences. These semantic nets can then be used to answer questions about the sentences.

The result of parsing in a case representation is usually not a complete semantic description of a sentence.

For example, the constituents that fill the case slots may still be English words rather than true semantic

descriptions stated in the target representation. To go the rest of the way toward building a meaning

representation, we still require many of the steps that are described in Section 15.3.4.

15.3.3 Conceptual Parsing

Conceptual parsing, like semantic grammars,is a strategy for finding both the structure and the meaning of a

sentence in one step. Conceptual parsing is driven by a dictionary that describes the meanings of words as

conceptual dependency (CD) structures.

Parsing a sentence into a conceptual dependency representationis similar to the process of parsing using a

case grammar.In both systems, the parsing processis heavily driven by a set of expectations that are set up cn

the basis of the sentence’s main verb. But because the representation of a verb in CDis at a lower level than

that of a verb in a case grammar (in which the representation is often identical to the English word that is

used), CD usually provides a greater degree of predictive power. The first step in mapping a sentence into its

CD representation involves a syntactic processor that extracts the main noun and verb. It also determines the

syntactic category and aspectual class of the verb (ie., stative, transitive, or intransitive). The conceptual

processor then takes over. Jt makes use of a verb-ACT dictionary, which contains an entry for each environment

in which a verb can appear. Figure 15.15 (taken from Schank [ 1973]) showsthe dictionary entries associated

with the verb “want.” These three entries correspond to the three kinds of wanting:

mainnoun abject

“want” stative
human

pleased

ATRANS «oya human physobj

x &> pleased

transitive

ne

=
e
t
s

intransitive cf Dp here
YS PTRANS ay human human

cf

x => pleased

Fig. 15.15 The Verb-ACT Dictionary
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« Wanting something to happen

« Wanting an object

*« Wanting a person

Once the correct dictionary entry is chosen, the conceptua} processor analyzes the rest of the sentence

looking for components that will fit into the empty slots of the verb structure. For example,if the stative form

of “want” has been found, then the conceptual processor wili look for a conceptualization that can be inserted

into the structure. So, if the sentence being processed were
cf o D the store

Mary <=> PTRANS ~—Maryoy

John > pleased

Fig. 15.16 A CD Structure

John wanted Mary to go to the store.

the structure shown in Fig. 15.16 would be built.

The conceptual processor examines possible interpretations

in a well-defined order. For example,if a phrase of the form “‘with PP”(recall that a PP is a picture producer)

occurs, it could indicate any of the following relationships between the PP and the conceptualization of which

it is a part:

Object of the instrumental case

Additional actor of the main ACT

Attribute of the PP just preceding it

Attribute of the actor of the conceptualization

w
r

>

Supposethat the conceptual processor were attempting to interpret the prepositional phrase in the sentence

John went to the park with the girl.

First, the system’s immediate memory would be checked to see if a park with a girl has been mentioned.If

so, areference to that particular object ts generated and the process terminates. Otherwise, the four possibilities

outlined above are investigated in the order in which they are presented. Can “the girl” be an instrumentofthe

main ACT (PTRANS)ofthis sentence? The answeris no, because only MOVE and PROPELcanbeinstruments

of a PTRANSandtheir objects must be either body parts or vehicles. “Girl” is neither of these. So we move

on to consider the second possibility. In order for “girl” to be an additional actor of the main ACT,it must be

animate. It is. So this interpretation is chosen and the process terminates. If, however, the sentence had been

John went to the park with the fountain.

the process would not have stopped since a fountain is inanimate and cannot move. Thenthe third possibility
would have been considered. Since parks can have fountains, it would be accepted and the process would

terminate there. For a more detailed description of the way a conceptual processor based on CD works, see

Schank [1973], Rieger [1975], and Riesbeck [1975].

This example illustrates both the strengths and the weaknesses of this approach to sentence understanding.

Because a great deal of semantic information is exploited in the understanding process, sentences that would

be ambiguousto a purely syntactic parser can be assigned a unique interpretation. Unfortunately, the amount

of semantic information that is required to do this job perfectly is immense. All simple rules have exceptions.

For example, suppose the conceptual processor described above were given the sentence

John went to the park with the peacocks.

 

|
|
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Since peacocks are animate, they would be acceptable as additional actors of the main verb, “went.” Thus,

the interpretation that would be produced would be that shown in Fig. 15.17(a), while the more likely

interpretation, in which John wentto a park containing peacocks, is shown in Fig, 15.17(b}. But if the possible

roles for a prepositional phrase introduced by “with” were considered in the order necessaryfor this sentence

to be interpreted correctly, then the previous example involving the phrase, “with Mary,” would have been

misunderstood.

John ay PTRANS <2John DfTPNSpee

A

peacocks

specific

John wentto the park with the peacocks.

(a)

p o D park «— with peacocks
John <> PTRANS ~— John aig

John went to the park with the peacocks.

{b)

Fig. 15.17 Two CD interpretations ofa Sentence

The problem is that the simple check for the property ANIMATEis not sufficient to determine acceptability

as an additional actor of a PTRANS. Additional knowledge is necessary. Some more knowledge can be

inserted within the framework we have described for a conceptual processor. But to do a very good job of

producing correct semantic interpretations of sentences requires knowledgeof the larger context in which the

sentence appears. Techniques for exploiting such knowledge are discussed in the nextsection.

15.3.4 Approximately Compositional Semantic Interpretation

The final approach to semantics that we consider here is one in which syntactic parsing and semantic

interpretation are treated as separate steps, although they must mirror each other in well-defined ways. This is

the approach to semantics that we looked at briefly in Section 15.1.1 when we worked through the example

sentence “J want to print Bill’s .init file.”

If a strictly syntactic parse of a sentence has been produced then a straightforward way to generate a

semantic interpretation is the following:

1. Look up each word in a lexicon that contains one or more definitions for the word, each stated in terms

of the chosen target representation, These definitions must describe how the idea that corresponds to

the word is to be represented, and they may also describe how the idea represented by this word may

combine with the ideas represented by other words in the sentence.

2. Use the structure information contained in the output of the parser to provide additional constraints,

beyond those extracted from the lexicon, on the way individual words may combine to form larger

meaning units.

' We have already discussedthefirst of these steps (in Section 15.3). In the rest of this section, we discuss

the second.

Montague Semantics

Recall that we argued in Section [5.1.1 that the reason syntactic parsing was a good idea wasthat it produces

structures that correspondto the structures that should result from semantic processing. If we investigate this
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idea more closely, we armive at a notion called compositional semantics. The main idea behind compositional

semantics is that, for every step in the syntactic parsing process, there is a corresponding step in semantic
interpretation. Each time syntactic constituents are combined to form larger syntactic unit, their corresponding

semantic interpretations can be combined to form a larger semantic unit. The necessary rules for combining

semantic structures are associated with the corresponding mules for combining syntactic structures. We use the

word “compositional” to describe this approach because it defines the meaning of each sentence constituent
to be a composition of the meaningsofits constituents with the meaning of the rule that was used to create it.

The main theoretical basis for this approach is modern (i.e., post-Fregean) logic; the clearest linguistic

application is the work of Montague [Dowty et al., 1981; Thomason, 1974}.

As an example of this approach to semantic interpretation, let’s return to the example that we began in

Section 15.1.1. The sentence is

I want to print Bill’s .init file.

The output of the syntactic parsing process was shown in Fig. 15.2, and a fragment of the knowledge base

that is being used to definethe target representation was shownin Fig. 15.3. The result of semantic interpretation

was also shown there in Fig. 15.4. Although the exact form of semantic mapping rules in this approach

depends on the way that the syntactic grammar is defined, we illustrate the idea of compositional semantic

tules in Fig. 15.18.

“want” 4 Unit
subject: AM, instance: Wanting
object: RM; agent: RM,

object: RM,

“print” > Unit
subject: AM, instance: Printing
object: RM, agent: RM;

object: AM,

“init® 4 Unit for NP, plus
modifying NP, extension:.init

possessive marker 9 Unit tor NP, plus
NP,’s NP» ewner: NP,

“file” > Unit
instance: File-Struct

“Bill” > Unit
instance: Person

first-name:Bill

Fig. 15.18 Some Semantic Interpretation Rules

The first two rules are examples of verb-mapping rules. Read these rules as saying that they map from a

partial syntactic structure containing a verb, its subject, and its object, to some unit with the attributes instance,

agent, and object. These rules do two things. They describe the meaning of the verbs (‘“‘want” or “print’?}

themselves in terms of events in the knowledge base. They also state how the syntactic arguments of the verbs
(their subjects and objects) map into attributes of those events. By the way, do not get confused by the use of

the term “object”in two different senses here. The syntactic object of a sentence and its semantic object are
two different things. For historical reasons (including the standard usage in case grammars as described in

Section 15.3.2), they are often called the same thing, although this problem is sometimes avoided by using

some other name, such as affected-entity, for the semantic object. Alternatively, in some knowledge bases,

much more specialized names, such as printed-thing, are sometimes used as attribute names.  https://hemanthrajhemu.github.io
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The third and fourth rules are examples of modifier rules. Like the verb rules, they toc must specify both

their own constituent’s contribution to meaning as well as how it combines with the meaning of the noun

phrase or phrases to whichit is attached.

The last two rules are simpler. They define the meanings of nouns. Since nouns do not usually take arguments,
these rules specify only single-word meanings; they do not need to describe how the meanings oflarger

constituents are derived from their components.
One important thing to remember aboutthese rules is that since they define mappings from words into a

knowledge base, they implicitly make available to the semantic processing system all the information contained

in the knowledge base itself. For example, Fig. 15.19 contains a description of the semantic information that

is associated with the word “want” after applying the semantic rule associated with the verb” and retrieving

semantic constraints associated with wanting events in the knowledge base. Notice that we now know where

to pick up the agent for the wanting (RM 1) and we now know someproperty that the agent must have. The

semantic interpretation routine will reject any interpretation that does not satisfy all these constraints..

This compositional approach to defining semantic interpretation has proved to be a very powerful idea.

(See, for example, the Absity system described in Hirst [1987].) Unfortunately, there are some linguistic

constructions that cannot be accountedfor naturally in a strictly compositional system. Quantified expressions

have this property. Consider, for example, the sentence

Every student who hadn’t declared a major took an Englishclass.

Unit

instance : Wanting

agent: AM,

must be <animate>
object: AM;

must be <state or event>

Fig. 15.19 Combining Mapping Knowledge with the Knowledge Base

There are several ways in which the relative scopes of the quantifiers in this sentence can be assigned. In

the most likely, both existential quantifiers are within the scope of the universal quantifier. But, in cther

readings, they are not. These include readings corresponding to, “There is a major such that every student

who had not declared it tock an English class,” and “There is an English class such that every student who had

not declared some major took it.” In order to generate these meanings compositionally from the parse, it ts

necessary to produce a separate parse for each scope assignment. But there is no syntactic reason to do that,

and it requires substantial additional effort. An alternative is to generate a single parse and then to use a

noncompositional algorithm to generate as many alternative scopes as desired.

As a second example, consider the sentence, “John only eats meat on Friday and Mary does too.” The

syntactic analysis of this sentence must include the verb phrase constituent, “only eats meat on Friday,” since
that is the constituent that is picked up by the elliptical expression “does too.’ But the meaning ofthefirst

clause has a stmicture more like

oniy(meat, {x 1 John eats x on Friday}}

which can be read as, “Meatis the only thing that John eats on Friday.”
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Extended Reasoning with a Knowledge Base

A significant amount of world knowledge may be necessary in order to do semantic interpretation (and thus,

someiimes, to get the correct syntactic parse). Sometimes the knowledge is needed to enable the system to

choose among competing interpretations. Consider, for example, the sentences

l. John made a huge wedding cake with chocolate icing.
2. John made a huge wedding cake with Bill’s mixer.

3. John made a huge wedding cake with a giant tower covered with roses.

4. John made a cherry pie with a giant tower covered with roses.

Let us concentrate on the problem of deciding to which constituent the prepositional phrase should be

attached and of assigning a meaning to the preposition “with.” We have two main choices: either the phrase

attaches to the action of making the cake and “with” indicates the instrumentrelation, or the prepositional

phrase attaches to the noun phrase describing the dessert that was made, in which case “with” describes an

additional componentof the dessert. The first two sentencesare relatively straightforward if we imagine that

our knowledge base contains the following facts:

e Foods can be components of other foods.

*® Mixers are used to make many kinds of desserts.

But now consider the third sentence. A giant tower is neither a food nor a mixer, So it is not a likely
candidate for either role. What is required here is the much more specific (and culturally dependent) fact that

* Wedding cakes often have towers and statues and bridges and flowers on them.

The highly specific nature of this knowledge is illustrated by the fact that the last of these sentences does

not make muchsense to us since we can find no appropriate role for the tower, either as part of a pie or as an

instrument used during pie making.

Another use for knowledge is to enable the system to accept meaningsthat it has not been explicitly told

about. Consider the following sentences as examples:

l. Sue likes to read Joyce.

2. Washington backed out of the summittalks.

3. The stranded explorer ate squirrels.

Suppose our system has only the following meanings for the words “Joyce,” “Washington,” and “squirrel”
(actually we give only the relevant parts of the meanings):

1. Joyce——instance: Author; last-name: Joyce

2, Washington—inszance. City; name: Washington

3. squirrel—isa: Redent,...

But suppose that we also have only the following meanings for the verbs in these sentences:

1. read—isa: Mental-Event; object: must be <printed-material>

2. back out—isa: Mental-Event; agent: must be <animate-entity>

3, eat—isa: Ingestion-Event;, object: must be <food>

The problem is that it is not possible to construct coherent interpretations for any of these sentences with

these definitions. An author is not a <printed-material>. A city is not an <animate-entity>. A rodent is nota

<food>. One solution is to create additional dictionary entries for the nouns: Joyce as a set of literary works,

Washington as the people who min the U.S, government, and a squirrel as a food. Buta better solutionis to use

general knowledge to derive these meanings when they are needed. By better, here we mean that since less

knowledge must be entered by hand,the resulting system will be less brittle. The general knowledgethatis

necessary to handle these examples is:
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e The nameof 4 person can be used to refer to things the person creates. Authoring is a kind of creating.

e The name of a place can be used to stand for an organization headquartered in thatplace if the association

between the organization and the place js salient in the contest. An organization can in tum stand for

the people whorun it. The headquarters of the U.S. government is in Washington.

* Food (meat) can be made out of almost any animal. Usually the word for the animalcan be used torefer

to the meat made from the animal.

Of course, this problem can becomearbitrarily complex. For example, metaphors are a rich source for

linguistic expressions [Lakoff and Johnson, 1980]. And the problem becomes even more complex when we

move beyond single sentences and attempt to extract meaning from texts and dialogues. We delve briefly into

those issues in Section 15.4.

The Interaction between Syntax and Semantics

If we take a compositional approach to semantics, then we apply semantic interpretation rules to each syntactic

constituent, eventually producing an interpretation for an entire sentence. But making a conimitment about

what to do implies no specific commitment about when to do it. To implement a system, however, we imusi

make some decision on how control will be passed back and forth between the syntactic and the semantic
processors. Two extreme positions are:

* Every time a syntactic constituent is formed, apply semantic interpretation to it immediately.

* Wait until the entire sentence has been parsed, and then interpret the whole thing.

There are arguments in favor of each approach. The theme of most of the arguments is search control and

the opportunity to prune dead-end paths. Applying semantic processing to each constituent as soon as it is

produced allows semantics to mule out right away those constituents that are syntactically valid but that miaiv
no sense. Syntactic processing can then be informed that it should not go any further with those constituents.

This approach would pay off, for example, for the sentence, “Is the glass jar peanut butter?” But this approach

can be costly when syntactic processing builds constituents that it will eventually reject as being syntactically

unacceptable, regardless of their semantic acceptability. The sentence, “The horse raced past the barn fell

down,”is an example of this. There is no point in doing a semantic analysis of the sentence “The horse raced

past the barn,” since that constituent will not end up being part of any complete syntactic parse. There are also

additional arguments for waiting until a complete sentence has been parsed to do at least some parts of
semantic interpretation. These arguments involve the need for large constituents to serve as the basis of those

semantic actions, such as the ones we discussed in Section 15.3.4, that are hard to define conipletely

compositionally. There is no magic solution to this problem. Most systems use one of these two extremes ar

a heuristically driven compromise position.

15.4 DISCOURSE AND PRAGMATIC PROCESSING

To understand even a single sentence, it is necessary to consider the discourse and pragmatic context in which

the sentence was uttered (as we sawin Section 15.1.1). These issues become even more important when we

want to understand texts and dialogues, so in this section we broaden our concern to these larger linguistic

units. There are a numberof importantrelationships that may hold between phrases and parts oftheir discourse
contexts, including:

® Identical entities. Consider the text

— Bill had a red balloon.

— John wanted it.
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‘The word ‘“at" should be identified as referring to the red balloon. References such as this are called

wniphoric references or anaphora.

Parts of entities. Consider the text

— Sue opened the book she just bought.

— Thetitle page was torn.

The phrase “the title page” should be recognized as being part of the book that was just bought.

Parts of actions. Consider the text

— John went on a business trip to New York.
— Heleft on an early morning flight.

Taking a flight should be recognized as part of going on a trip.

Entities involved in actions. Consider the text

— My house was broken into last week,

~ They took the TV and the stereo,

The pronoun “they” should be recognized as referring to the burglars who broke into the house.

Elements of sets. Consider the text

~ The decals we have in stock are stars, (he moon, item and flag.

— TH take two moons.

The moons in the second sentence should be understood to be someof the moons mentionedin thefirst

sentence. Notice that to understand the second sentence at all requires that we use the context of the

first sentence to establish that the word “moons” means moon decals.

Namesof individuals. Consider the text

— Dave went to the movies.

Dive should be understood to be some person named Dave. Although there are many, the speaker had

une particular one in mind and the discourse context should tell us which.

Causal chains. Consider the text

— There was a big snow storm yesterday.

~— The schools were closed today.

The snow should be recognized as the reason that the schools were closed.

Planning sequences. Consider the text

-- Sally wanted a new car.

— She decided to get a job.

Sally’s sudden interest in a job should be recognized as arising out of her desire for a new car and thus

for the money to buy one.

Tlocutionary force. Consider the sentence

— It sure is cold in here.
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In many circumstances, this sentence should be recognized as having, as its intended effect, that the

hearer should do something like close the window or turn up the thermostat.

¢ Implicit presuppositions. Consider the query

— Did Joe fail CS101?

The speaker’s presuppositions, including the fact that CS 101 is a valid course, that Joe is a studeni,

and that Joe took CS 101, should be recognized so that if any of them is not satisfied, the speaker can

be informed.

In order to be able to recognize these kinds of relationships among sentences, a great deal of knowledge

about the world being discussed is required. Programs that can do multiple-sentence understandingrely either

on large knowledge bases or on strong constraints on the domain of discourse so that only a more limited

knowledge base is necessary. The way this knowledgeis organized is critical to the success of the understanding

program.In the rest ofthis section, we discuss briefly how some of the knowledge representations described

in Chapters 9 and 10 can be exploited by a language-understanding program.In particular, we focus on the

use of the following kinds of knowledge: :

* The current focus of the dialogue
e A model of each participant’s current beliefs

® The goal-driven character of dialogue

« The rules of conversation shared by all participants

Although these issues are complex, we discuss them only briefly here. Most of the hard problems are not

peculiar to natural language processing. They involve reasoning about objects, events, goals, plans, intentions,

beliefs, and likelihoods. and we have discussed all these issues in some detail elsewhere. Our goal in this

section is to tie those reasoning mechanismsinto the process of natural language understanding.

15.4.1 Using Focus in Understanding

There are two important parts of the process of using knowledge to facilitate understanding:

® Focus on the relevant part(s) of the availahle knowledge base.

* Use that knowledge to resolve ambiguities and to make connections among things that were said.

The first of these is critical if the amount of knowledge available is large. Some techniques for handling

this were outlined in Section 4.3.5, since the problem arises whenever knowledge structures are to be used.

Thelinguistic properties of coherent discourse, however, provide some additional mechanismsfor focusing.

For example, the structure of task-oriented discourses typically mirrors the structure of the task. Consider the

following sequence of (highly simplified) instructions:

To makethe torte, first make the cake, then, while the cake is baking, make the filling. To make the cake, combine

all ingredients. Pour them into the pans, and bake for 30 minutes. To make the filling, combine the ingredients. Mix
until light and fluffy. When the cake is done, alternate layers of cake and filling.

This task decomposes into three subtasks: making the cake, making the filling, and combining the two

components. The structure of the paragraph of instructionsis: overall sketch of the task, instructions for step

1, instructions for step 2, and then instructions for step 3.

A second property of coherent discourse is that dramatic changes of focus are usually signaled explicitly

with phrases such as “on the other hand,” “to return to an earlier topic,” or “a second issue is.”
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Assuming that all this knowledge has been used successfully to focus on the relevant part(s) of the knowledge
base, the second issue is how to use the focused knowledge to help in understanding. There are as many ways

of doing this as there are discourse phenomenathat requireit. In the last section, we presented a sample list of

those phenomena. To give one example, considerthe problem of finding the meaning of definite noun phrases.

Detinite noun phrases are ones that refer to specific individual objects, for exampie, the first noun phrase in

the sentence, “The title page was torn.” Thetitle page in question 1s assumed to be one that is rejated to an
object that is currently in focus. So the procedure for finding a meaningfor it involves searching for ways in

which a title page could be related to a focused object. Of course, in some sense, almost any object in a

knowledge base relates somehow to almost any other. But somerelations are far moresalient than others, and

they should be considered first. Highly salient relations include physical-part-of, temporai-part-of, and element-

of In this example, physical-part-ofrelates the title page to the bookthat is in focus as a result of its mention

tn the previous sentence.

Other ways of using focused information also exist. We examine some of them in the remaining parts of

this section.

15.4.2. Modeling Beliefs

In order for a program to be able to participate intelligently in a dialogue, it must be able to represent not only

its own beliefs about the world, but also its knowledge of the other dialogue participant’s beliefs about the

world, that person’s beliefs about the computer’s beliefs, and so forth. The remark “She knew I knew she

knew I knew she knew’’ may be a bit extreme, but we do that kind of thinking all the time. To make

computational modelsofbelief, it is useful to divide the issue into two parts: those beliefs that can be assumed

to be shared amongall the participants in a linguistic event and those that cannot.

Modeling Shared Beliefs

Shared beliefs can be modeled without any explicit notion of belief in the knowledge base. All we need to do

is represent the shared beliefs as facts, and they will be accessed whenever knowledge about anyone’s beliefs

is needed. We have already discussed techniques for doing this. For example, much of the knowledge described

in Chapter 10 is exactly the sort that people presumeis shared by other people they are communicating with.

Scripts, in particular, have been used extensively to aid in natural language understanding. Recall that scripts

record commonly occurring sequences of events. There are two steps in the process of using a script to aid in

language understanding: ,

¢ Select the appropriate script(s) from memory.

e Use the script(s) to fill in unspecified parts of the text to be understood.

Both ofthese aspects of reasoning with scripts have already been discussed in Section 10.2. The story-

understanding program SAM [Cullingford, 1981] demonstrated the usefulness of such reasoning with scripts

in natural language understanding. To understand a story, SAM first employed a parser that translated the

English sentences . into their conceptual dependency representation. Then it built a representation of the

entire text using the relationships indicated by the relevant scripts.

Modeling Individual Beliefs

As soon as we decide to represent individual beliefs, we need to introduce some explicit predicate(s) to

indicate that a fact is believed. Up until now, belief has been indicated only by the presence or absence of

assertions in the knowledge base. To model belief, we need to move to a logic that supports reasoning about

“From Kingsley Amis’ Jake's Thing.
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belief propositions. The standard approach is to use a modal logic such as that defined in Hintikka [1962].

Logic, or “classical” logic, deals with the truth or falsehood of different statements as they are. Modallogic,

on the other hand, concernsitself with the different “modes” in which a statement may be true. Modal logics

allow us to talk about the truth of a set of propositions not only in the currentstate of the real world, but also

about their truth or falsehood in the past or the future (these are called temporal logics), and about their truth

or falsehood under circumstances that might have been, but were not (these are sometimes called conditional

logics), We have already used one idea from modal logic, namely the notion necessarily true. We used it in

Section 13.5, when we talked about nonlinear planning in TWEAK.

Modal logicsalso allow usto talk of the truth or falsehood of statements concerning the beliefs, knowledge,

desires, intentions, and obligations of people and robots, which may,in fact be, respectively, false, unjustified,

unsatisfiable, irrational, or mutually contradictory. Modal logics thus provide a set of powerful tools for

understanding natural language utterances, which often involve reference to other times and circumstances,

and to the mental states of people.

In particular, to model individual belief we define a modal operator BELIEVE,that enables us to make
assertions of the form BELIEVE(A, P), which is true whenever A believes P to be true. Notice that this can

occur even if P is believed by someoneelse to be false or even if P is false.

Another useful modal operator is KNOW:

BELIEVE(A, P) A P > KNOW(A,P)

A third useful modal operator is KNOW-WHAT(A,P), which is true if A knows the value ofthe function

P For example, we might say that A knowsthe value of his age.

Analternative way to represent individual beliefs is to use the idea of knowledge base partitioning that we

discussed in Section 9.1. Partitioning enables us to do two things:

1. Represent efficiently the large set of beliefs shared by the participants. We discussed one wayof doing

this above. .
2. Represent accurately the smaller set of beliefs that are not

shared.
 
 
 

Requirement 1 makes it imperative that shared beliefs not be

duplicated in the representation. This suggests that a single

knowledge base must be used to represent the beliefs of all the

participants. But requirement 2 demands that it be possible to

separate the beliefs of one person from those of another. One way

to do this is to use partitioned semantic nets. Figure 15.20 showsan

example of a partitioned belief space.

$1
Mary

    instance +7] agent

  Three different belief spaces are shown:

¢ SI believes that Mary hit Bill. 83
¢ S2 believes that Sue hit Bill. “
« 53 believes that someone hit Bill, It is important to be able 82 ‘Sue

to handle incomplete beliefs of this kind, since they frequently
serve as the basis for questions, such as, in this case. “Who

hit Bill?”

       
Fig. 15.20 A Partitioned Semantic Net

Showing Three BeliefSpaces
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15.4.3 Using Goals and Plans for Understanding

Consider the text

John was anxious to get his daughter’s new bike put together before Christmas Eve. He looked high and low fora

screwdriver.

To understand this story, we need to recognize that John had

1. A goal, getting the bike put together.

2. A plan, which involves putting together the various subparts until the bike is complete. At least one of

the resulting subpians involves using a screwdriver to screw two parts together.

Some ofthe commongoals that can be identified in stories of all softs (including children’s stories, newspaper

reports, and history books) are

Satisfaction goals, such as sleep, food, and water.

Enjoyment goals, such as entertainment and competition.

Achievement goais, such as possession, power, and status.

Preservation goals, such as health and possessions.

Pleasing goals, which involve satisfying some other kind of goal for someoneelse.

Instrumental goals, which enable preconditions for other, higher-level goals.

To achieve their goals, people exploit plans. In Chapter 13, we talked about several computational

representations of plans, These representations can be used to support natural language processing, particularly

if they are combined with a knowledge base of operators and stored plans that describe the ways that people

often accomplish commongoals. These stored operators and pians enable an understanding system to form a

coherent representation of a text even when steps have been omitted, since they specify things that must have

occurred in the complete story. For example, to understand this simple text about John, we need to make use

ot the fact that John was exploiting the operator USE (by A of P to perform G), which can be described as:

USE(A, PG):

precondition: KNOW-WHAT(A, LOCATION(P))

NEAR(A,P)
HAS-CONTROL-OF(A, P)
READY (P)

posicondition: DONE(G)

In other words, for A to use P to perform G, A must know the location of B A must be near P A must have

control of P (for example, | cannot use a screwdriver that you are holding and refuse to give to me), and P

must be ready for use (for example, [ cannot use a broken screwdriver).

In our story, John’s plan for constructing the bike includes using a screwdriver. So he needs to establish the

preconditions for that use. In particular, he needs to know the location of the screwdriver. To find that out, he

makesuse ofthe operator LOOK-FOR:

LOOK-FORI(A,P):

precondition: CAN-RECOGNIZE(A, P)

postcondition: KNOW-WHAT(A, LOCATION(P))

A story understanding program can connect the goal of putting together the bike with the activity of

looking for a screwdriver by recognizing that John is looking for a screwdriver so that he can use if as part of

putting the bike together.
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Often there are alternative operators or plans for achieving the same goal. For example, to find out where
ihe screwdriver was, John could have asked someone. Thusthe problem of constructing a coherentinterpretation

of a text or a discourse may involve considering many partial plans and operators.
Plan recognition has served as the basis for many understanding programs. PAM [Wilensky, 1981] is an

early example;it translated stories into a CD representation.
Another such program was BORIS [Dyer, 1983}. BORIS used a memory structure called the Thematic

Abstraction Unit to organize knowledge about plans, goals, interpersonal relationships, and emotions. For

other examples, see Allen and Perrault [1980] and Sidner[1985].

15.4.4 Speech Acts

Language is a form of behavior. We use it as one way to accomplish our goals. In essence, we make

communicative plans in much the same sense that we make plans for anything else [Austin, 1962]. In fact, as
we just saw in the example above, John could have achieved his goal of locating a screwdriver by asking

someone where it was rather than by looking for it. The elements of communicative plans are called speech

acts {Searte, 1969]. We can axiomatize speech acts just as we axiomatized other operators in the previous
section, except that we need to make use of modal operators that describestates of belief, knowledge, wanting,

‘etc, For example, we can define the basic speech act A INFORM of P as follows:

TNFORM(A, &, P)

precondition: BELIEVE(A, P)

KNOW-WHAT(A, LOCATION(B))

postcondition: BELIEVE(8, BELIEVE(A, P))

BELIEVE-IN(&, A) ~ BELIEVER,(B, P)

To execute this operation, A must believe P and A must know where B is. The result of this operator is that
B believes that A believes P and if B believes in the truth of what A says, then B also believes P.

We can define other speech acts similarly. For example, we can define ASK-WHAT(in which A asks B the
value of some predicate P):

ASK-WHATI(A,8, P):

precondition: KNOW-WHAT(A, LOCATION(8))

KNOW-WHAT(B,P)

WILLING-TO-PERFORM

(B, INFORM(2,A, P))

postcondition: KNOW-WHAT(A, P)

This is the action that John could have performed as an alternative way of finding a screwdriver.

We can also define other speech acts, such as A REQUEST & to perform R:

REQUEST(A,B, R)

precondition: KNOW-WHAT(4, LOCATION(8))

CAN-PERFORM(B, 2)

WILLING-TO-PERFORM(A, R)

postcondition: WILL(PERFORM(8S,R))}

15.4.5 Conversational Postulates

Unfortunately, this analysis of language is complicated by the fact that we do not always say exactly what we

mean. Instead, we often use indirect speech acts, such as “Do you know whattimeit is?”or “It sure is cold in
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here,” Searle [1975] presents a linguistic theory of such indirect speech acts. Computational treatments ofthis

phenomenon usually rely on models of the speaker’s goals and of ways that those goals might reasonably be

achieved by using language. See, for example, Cohen and Perrault [1979].

Fortunately, there is a certain amount of regularity in people’s goals and in the way language can be used to

achieve them. This regularity gives rise to a set ofconversational postulates, which are rujes about conversation

that are shared byall speakers. Usually these rules are followed. Sometimes they are not, but when this happens,

the violation of the rules communicates something in itself. Some of these conversational postulates are:

e Sincerity Conditions—For a request by A of B to do & to be sincere, A must want B to do R, A must

assume B can do &, A must assume B is willing to do R, and A mustbelieve that B would not have done

R anyway. If A attempts to verify one of these conditions by asking a question of B, that question

should normally be interpreted by B as equivalent to the request R. For example,

A: Can you open the door?

e Reasonableness Conditions—For a request by A of B to do R to be reasonable, A must have a reason

for wanting R done, A must have a reason for assuming that B can do R, A must have a reason for

assuming that # is willing to do R, and A must have a reason for assuming that B was not already

planning to do R. Reasonableness conditions often provide the basis for challenging a request. Together

with the sincerity conditions described above, they account for the coherence of the following

interchange:

A: Can you open the door?

B: Why do you wantit open?

* Appropriateness Conditions——For a statement to be appropriate, it must provide the correct amount of

information, it must accurately reflect the speaker’s beliefs, it must be concise and unambiguous, and

it must be polite. These conditions account for A’s response in the following interchange:

A: Who won the race?

B: Someonewith long, dark hair.

A: I thought you knew all the runners.

A inferred from 2’s incomplete response that B did not know who won the race, because if B had

known she would have provided a name.

Of course, sometimes people “cop out” of these conventions. In the following dialogue, & is explicitly

copping out:

A: Whois going to be nominated for the position?

B: I’m sorry, I cannot answerthat question.

But in the absence of such a cop out, and assuming a cooperative relationship between the parties to a

dialogue, the shared assumption of these postulates greatly facilitates communication. For a more detailed

discussion of conversational postulates, see Grice [1975] and Gordon and Lakoff [1975].

We can axiomatize these conversational postulates by augmenting the preconditions for the speech acts

that we have already defined. For example, we can describe the sincerity conditions by adding the following

clauses to the precondition for REQUEST(A,B, R):

WANT(A, PERFORM(&, R))

BELIEVE(A, CAN-PERFORM(B, R))

BELIEVE(A, WILLING-T0-PERFORM(S, &))

BELIEVE(A, ~WILL(PERFORM(S,R)})
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If we assume that each participantin a dialogue is following these conventions, thenit is possible to infer

facts about the participants’ belief states from what they say. Those facts can then be used as a basis for

constructing a coherentinterpretation of a discourse as a whole.

‘To summarize, we have just described several techniques for representing knowledge about how people

act and talk. This knowledge plays an important role in text and discourse understanding, since it enables an

understander to fill in the gaps left by the original writer or speaker. It turns out that many of these same

mechanisms, in particular those that allow us to represent explicitly the goals and beliefs of multiple agents,

will also tum out to be useful in constructing distributed reasoning systems, in which several(at least partially

independent) agents interact to achieve a single goal. We come back to this topic in Section 16.3.

15.5 STATISTICAL NATURAL LANGUAGE PROCESSING

Long sentences most often give rise to ambiguities when conventional grammars are used to process the

same. The processing of such sentences may yield a large number of analyses. It is here that the statistical

information extracted from a large corpus of the concerned language can aid in disambiguation. Since a
complete study of how statistics can aid natural language processing cannot be discussed, wetry to highlight

some issues that will kindle the reader’s interest in the same.

15.5.1 Corpora
The term “corpus” is derived from the Latin word meaning “body”. The term could be used to define a

collection of written text or spoken words of a language. In general a corpus could be defined as a large

collection of segments of a language. These segmentsare selected and ordered based on some explicitlinguistic

criteria so that they may be used to depict a sample of that language. Corpora maybe available in the form of

a collection of raw text or in a more sophisticated annotated or marked-up form wherein information about

the wordsis also included to ease the process of language processing.

Several kinds of corpora exist. These include ones containing written or spoken language, new orold texts,

texts from either one or different languages. Textual content could mean the content of a complete book or
books, newspapers, magazines, web pages, journals, speeches, etc. The British National Corpus (BNC), for

instance is said to have a collection of around a hundred million written and spoken language samples, Some

corpora may contain texts on a particular domain of study or a dialect. Such corpora are called Sublanguage

Corpora. Others may focus specifically to select areas like medicine, law,literature, novels, etc.

Rather than just being a collection of raw text some corpora contain extra information regarding their

content. The words are labeled with a linguistic tag that could mean the part of speech of the word or some

other semantic category. Such corpora are said to be annotated. A Treebank is an annotated corpus that

contains parse trees and otherrelated syntactic information. The Penn Treebank madeavailable by the University

of Pennsylvania is a typical example of such a corpus. Naturally the creation of such annotation requiresa lot

of extra effort involving linguists.

Some corpora contain a collection of texts which have been translated into one or several other languages.

These corpora are referred to as parallel corpora and find their use in language processing applications that

involve translation capabilities. They facilitate the translation of words, phrases and sentences from one language

to another. Tagging of corpora is done part manually and pait automatically.

A concordance is a typical term used with reference to corpora. Concordance in general 1s an index orlist

of the important words in a text or a group of texts. Most often when we refer to a corpus, we are looking for
concordances, Concordances can give us the notion of how often a word occurs (frequency), or, even, does

not occur.
Another term that we often come across when we deal with corpus processing1s a collocation. A collocation

is a collection of words that are often observed togetherin a text. [f we are talking about Christmas, then the

words Christmas gifts forms a collocation. A chain smoker, a hard nut, extremely beautiful, are all examples
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of collocations. Note that we do not generally refer to a smoker as an intense of severe smoker, nor do we

remark someone to be tremendously beautiful. Collocations can thus aid us im the search for the apt words.

15.5.2 Counting the elements in a Corpus

Counting the number of words in a corpus as also the distinct words in it can yield valuable information

regarding the probability of the occurrence of a word given an incomplete string in the language under

consideration. These probabilities can be used to predict a word that will follow. How should counting be

done depends on the application scenario. Should the punctuation markslike , (comma), ; (semicolon) and the
period (.) be treated as a word or not has to be decided. The question mark (7?) aliows us to understand that
something is being asked. Other issues in counting are whether to treat wordslike /n and in (case sensitization),

book and books (singular and plural) as distinct ones. Thus we arrive at two terms called Types and Tokens.

The former means the numberofdistinct words in the corpus while the latter stands for the total number of

wordsin the corpus. In the last sentence, (the one earlier to this), for example, we have 14 types and 24 tokens.

15.5.3. N-Grams

N-grams are basically sequences of N words or strings, where N could assume the value 1,2,3, and so on.

When N=1, we call it a unigram (just one word). N=2 makes a bigram (a sequence of two words). Similarly

we havetrigrams, tetragrams and so on, Let’s see in what way these N-grams make sense to us.

Different words in a corpus have their own frequency (t.e. the number of times they occur) in a given

corpus. Some words have a high frequency like the article “the”. As an example let us take the number of
occurrences of words in the novel - The Scarler Pimpernel by Baroness Orczy (It also provides for good
reading! You can download the text from http://www.gutenberg.org). The novel has around 87163 words and

8822 types or word forms. Some typical words within are listed in the Table 15.1 along with their probabilities

of occurrencein thetext.

Table 15.1 Frequencies and probabilities ofsome words in a corpus
 

 

 
| an

Word Probability = (Word Frequency
Total number of words

the 0.051

of 0.028

and 0.027

to 0.026

a 0.018

her 0,013

had 0.012

she 0.0107

It 0.005

said 0.0046

man 0.002

Scariet 0.0011

woman 0.00076

beautiful 0.00045

fool 0.00002

However 6.00002     
Here welook at the probability ofjust one word in the corpus. Let us go a step further and ask - Whatis the

probability ofa word being followed by another?
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Given the word however, and the words the andir that could follow we can use the respective probabilities

(of the and /f) to guess that the word the is a better candidate. Note that the has higher probability. But things

do not always work this way. If we consider the segment of a sentence —

A very wealthy...

If we assume that the high frequency word the will follow the word wealthy it would lead to a syntactic

error. The word man with a probability much less than the seems more appropriate.It thus seems that the next

word is dependent on the previous one. Finding probabilities of all such words in the corpus that follow the
word wealthy and then choosing the best of them may lead to the construction of a more appropriate sentence.

Thus as we move through a sentence we could keep looking at a Ave-word window and predict the next or

second word using probabilities of finding the second word, given the first word. This can be more formally

written as—

maxP{X|wealthy)}

or in plain English we find that word X which appears after wealthy and has the maximum probability of

occurrence in this two-word sequence (viz. wealthy followed by X) amongalt other such words in the corpus.

If there are n words in a sentence and assuming the occurrence of each word at their appropriate places to

be independent events, the probability P(wj,..., w,) can be expressed using the chain rule as

PCW) = P(w,). Plw bw). POs] (wy), 2)... Pow, | On, wp. WA)

Computing this probability is far from simple. Observe that as we move to rightwards, the terms become

more complex. The last term would naturally be the most complex to compute. A more practical approach to

such chaining of probabilities could be to look at only one prior word at any given momentof processing. In
other words, given a word we look for only the previous word to compute the probabilities. Since we look at

only word pairs (viz. a single word previous to the one we are searching) this model is called the bigram

model.

If we follow the bigram model of seeking the next word using the novel used as the corpus the word that

would follow Scarlet would most aptly be Pimpernel. This is substantiated by the data on words that appear

after the word Scarlet depicted in Table 15.2.

Table 15.2 Frequencies ofwordsfollowing the word Scarlet
 

Wordfollowing Scarlet
 

Pimpernel

geranium

heels

waistcoat

flower

device

enigma  

 

 

It can thus be assumed that when werefer to a previous word and find the probability of the next word, a

more apt sentence is created, This is called a Markov assumption. Based on this, for a bigram model, the

probability P(w, | (w,.w2... #,_,)) can be approximated to the productof all P(w,lw,_,) for i varying from / to

n (7 is the number of words in the sentence) i.e.
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Pt) = |POytw)
i=l

We could extend the concept from bigrams(taking into consideration only two words viz. the current and

the previous) to trigrams(viz. taking the current word and the previous two words) and furtheron,to tetragrams

(previous four words). The approximate probability of finding the next word in case of N-gramsis given by

Pw,he?!) = Pow,dw)

wel includes the words from w, to w,,_,. Similarly, w"7),,, means words w,v4) tO W,_ |,

It may now be interesting to note that the probability of the sentence —

He never told her and she had never cared to ask.

can be found using the bigram probability model as—

P(He never told her and she had never cared to ask.)

P(Hel<nil>).P(neverlHe).P(toldinever).P(herltold).P(andlher).P(sheland).P(hadlshe).

P(neverlhad) P(cared \never).P(tolcared).P(asklto).

(207/67675).(3/5 12).C1/60).(10/3 1).(6/1137).(34/2353).(168/935).(6/1077).(1/60).(3/11).

(3/2267)

Note that each probability term is calculated by finding the number of occurrences of the specific bigram

and dividing it by the frequency of the previous word.

Thus,

P(sheland) = (Numberof occurrence of the bigram and she)/(Number of occurrences of the word and)

Observe that the denominator could also be interpreted as the numberof bigramsthat start with the word and.

When wewish to predict the next word given a word, we mayfind all the bigram frequencies starting with

the given word and use the next word of that bigram that has highest frequency. The concept can be extended

to higher gramsviz.tri, tetra and finally N-grams.

So, what can we do with these grams? If we have a large corpus from which the related probabilities can

be calculated, we could generate sentences and verify their correctness. Starting with oné word we could

predict what could be the next, and then do the same for the next word; always using the maximum probability

to select the next word in the sequence.

Table 15.3 shows the bigram counts from our corpora for the sentence.

Table 15.3 Bigram counts (The numberin the bracket indicates the probability.)
 

 

He never told her and she had meyer cared to ask

He (207) O(05 30.014) KO) 0(0) 40.019) Ord) 114(0.55)  3(0.0144) 00) 200.01) 0(0)

never (60) 0) Od) 140.02) O(0) OO) O(0) 3(0.05) 00) 1(0.02) O40} (0)

told [31] OO) 00) x0) 10(0.323) O(0) 0(0) KO) 0(0) 0(0) 0(0) aco)

her [1137] 1€0.00008) 0(0) O(0) OO) 6(0.005) 00) 1(0.00008) 0(6) 0(0) 19(0.0167) 00)

and [2353] 34(0.0144) 1(0.06004) 0(0} 260,011) O00) 34(0.014) 2300.01} 1(0.000043 000) 38(0,016)  O(0)

she |935] (0) 100,001) £(0.001) O¢0) 3(0.003) O(0) 168(0.18) 1(0.001} 2(0.002} (0) Oo)

had [1077] 800.007)  6(0.006) 3(0,003) O00} 0(0) 9(0.008)  12(0.111) =600.006} ~=—-1(0.0001) 870.007) OO}

never [60] 0(0) 00) 1(0.02) Oc} 0(0) O(0) 30.03) Oca) 1(0.07) 00) OO}

cared [LI] 60) 0) OG) O(0} £(0,090) 0(0) 0(0} . OO) 0(0) 3(0.273) O¢0}

to [2267] O(a) 01s 0(0) 99(0.044) 100.0004) 0(0) 0(0) 00} 0(0) Oxo) 2(0.00008)

ask [12] (0) (0) 0} OO) . 0) OK) O(O} 0(0) O(0) OO} 0(0)     https://hemanthrajhemu.github.io
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Extending this concept we may define a trigram wherein given a sequence of two words we predict the

next one. In the example sentence above we could calculate the probability of a trigram as P(andliold her).

15.5.4 Smoothing

While -grams may be a fairly good way of predicting the next word,it does suffer from a major drawback —

it banks heavily on the corpus which formsthe basic training data. Any corpusis finite and there are bound to

be many N-grams missing within it. There are numerous N-grams which should have had non-zero probability

but are assigned a zero value instead. Observe such bigrams in Table 15.3 It is thus best if we could assign
some non zero probability to circumvent the problem to some extent. This process is known as smoothing.

Two known methods are described herein.

Add-One Smoothing

Let P(w,) be the normal unigram (single word) probability without smoothing (unsmoothed) and N be the

total number of words in the corpusthen,

This is the simplest way of assigning non-zero probabilities. Before calculating the probabilities, the count
c of each distinct word within the corpusis incremented by 1. Note the total of the counts of all words has now

increased by D the numberofdistinct types of words in the language (vocabulary).

The new probability of a word after add one smoothing can now be computed as—

Pagal= {cOw+1 AN+D)

The readeris urged to re-compute the probability using the information in Table 15.3 and inspectthe fresh

values.

Witten-Bell Discounting

The probability of unseen N-grams could be looked upon as things we saw once(for the first time). As we go

through the corpus we do encounter new N-grams and finally are in a position to ascertain the number of

unique N-grams. The event of encountering a new N-gram could be looked upon as a case of an (so far)

unseen N-gram. This calls for computing the probability of an N-gram which has just been sighted. One may

observe that the number of unique N-grams seen in the data is the same as the count, H, of the N-grams

observed (so far) for the first time. Thus (V+) would mean the sum of the words or tokens seen so far and the

unique AN-grams types in the corpus.

The total probability mass of all such N-grams (occurring for the first time i.e. having zero probability)

could be estimated by computing H(N+H)}. This value stands for the probability of a new type of N-gram

being detected. H/(N+H)}is also the probability of unseen N-gramstaken together. If 7 is the total number of

N-grams that have never occurred so far (zero count), dividing the probability of unseen N-grams by J would

distribute it equally among them. Thus the probability of an unseen N-gram could be written as—

P" = HIIN+H)
Since the total probability has to be 1, this extra probability distributed amongst unseen N-grams has to be

scooped or discounted from other regions in the probability distribution. The probability of the seen N-grams

is therefore discounted to aid the generation of the extra probability requirement for the unseen ones as:

P; = c,/(N+H) where c, is the (non-zero positive) count of &N-gram.

15.6 SPELL CHECKING

A Spell Checker is one of the basic tools required for language processing. It is used in a wide variety of

computing environments including word processing, character or text recognition systems, speech recognition
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and generation. Spell checking is one of the pre-processing formalities for most natural language processors.

Studies on computer aided spell checking date back to the early 1960’s and with the advent of tt being applied

to new languages, continue to be one of the challenging areas in information processing. Spell checking

involves identifying words and non words and also suggesting the possible alternatives for its correction.

Most available spell checkers focus on processing isolated words and do not take into account the context.

Forinstance if you try typing —

“Henry sar on the box”

in Microsoft Word 2003 and find what suggestions it serves, you will find that the correct word sat is missing!

Now try typing this —

“Henry at on the box”

Here you will find that the error remains undetected as the word at is spelt correctly as an isolated word.
Observe that context plays a vital role in spell checking.

15.6.1 Spelling Errors

Damerau (1964) conducted a survey on misspelled words and found that most of the non words were a resuit

of single error misspellings. Based on this survey it was found that the three causes of error are:

¢ Insertion: Insertion of an extra letter while typing. E.g. maximum typed as maxiimum. The extra i has

been inserted within the word.

® Deletion: A case of a letter missing or not typed in a word. E.g, netwrk instead of network.
e Substitution: Typing of a letter in place of the correct one as in intellugence wherein the letter / has been

wrongly substituted by 4.

Spelling errors may be classified into the following types —

Typographic errors:

As the name suggests, these errors are those that are caused due to mistakes committed while typing. A typical

example is nefwrk instead of network.

Orthographic errors:

These, on the other hand,result due to a lack of comprehension of the concerned language on part ofthe user.

Example of such spelling errors are arithmetic, wellcome and accomodation.

Phonetic errors:

These result due to poor cognition on part of the listner. The word rough could be spelt as ruff and listen as

lisen. Note that both the misspelled words ruff and lisen have the same phonetic pronunciation as their actual

spellings. Such errors may distort misspelled words more than typographic editing actions that cause a

misspelling (viz. insertion, deletion, transposition, or substitution error) as in case of ruff. Words like piece,

peace and peas, reed and read and quite and quiet may all be spelt correctly but can lead to confusion

depending on the context.

15.6.2 Spell Checking Techniques

One could imagine a naive speil checker as a large corpus of correct words. Thus if a word in the text being

corrected does not match with one in the corpus thenit results in a spelling error. An exhaustive corpus would

of course be a mandatory requirement.

Spell checking techniques can be broadly classified into three categories —
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(a} Non-Word Error Detection:

This process involves the detection of misspelled words or non-words. For example —

The word soper is a non-word,its correct form being super (or maybe sober).
The most commonly used techniques to detect such errors are the N-gram analysis and Dictionary look-up.

Asdiscussed earlier, N-gram techniques make use of the probabilities of occurrence of N-gramsin a large

corpus of text to decide on the error in the word. Those strings that contain highly infrequent sequences are
treated as cases of spelling errors. Note that in the context of spell checkers we take N-grams to be a sequence

ofletters (alphabet) rather than words. Here we try to predict the next letter (alphabet) rather than the next
word. These techniques have often been used in text (handwritten or printed) recognition systems which are

pracessed by an Optical Character Recognition (OCR) system. The OCR uses features of each character such

as the curves and the loops made by them to identify the character. Quite often these OCR methadslead to

errors. The number0, the alphabet O and D are quite often sources of errors as they look alike. This calls for
a spell checker that can post-process the OCR output. One common N-gram approach uses tables to predict

whether a sequence of characters does exist within a corpora and then flags an error. Dictionary look-up

involves the use of an efficient dictionary lookup coupled with pattern-matching algorithms (such as hashing

techniques,finite state automata, etc.), dictionary partitioning schemes and morphological processing methods,

(b) Isolated-Word Error Correction:

This process focuses on the correction of an isolated non-word by finding its nearest and meaningful word

and makes an attemptto rectify the error. It thus transforms the word soper into super by some means but

without looking into the context.

This correction is usually performed as a context independent suggestion generation exercise, The techniques

employed herein include the minimim edit distance techniques, similarity key techniques, rule-based methods,

N-gram, probabilistic and neural network based techniques (Kukich 1992).
Isolated-word error correction may be looked upon as a combination of three sub-problems— Errordetection,

Candidate (Correct word} generation and Ranking of the correct candidates. Error detection as already

mentioned could use either of the dictionary or the N-gram approaches. The possible correct candidates are

found using a dictionary or by looking-up a pre-processed database of correct N-grams. Ranking of these

candidates is done by measuring the fexical or similarity distance between the misspelled word and the candidate.

Minimum Edit Distance Technique

Wagner [1974] defined the minimum edit distance between the misspelled word and the possible correct
candidate as the minimum numberof edit operations needed to transform the misspelled word to the correct

candidate. By edit operations we mean — insertions, deletions and substitutions of a single character (alphabet)

to transform one word to the other. The minimum numberof such operations required to effect the transform

is commonly known as the Levenshtein distance named after Vladimir Levenshtein whofirst used this metric

as a distance. As an example inspect the way in which you could transform the word drive (below) to the word

time and arrive at the distance 3 between them.
 
| D R I V E |
 

f

| 1.Subs(D,T) 2. Delete(R) 3. Subst(V,M) |
 

 

r

| T I M E |
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A variant of the Levenshtein distance is the Damerau~Levenshtein distance which also takes into account

the transposition of two characters in addition to insertion, deletion and substitution.

{c) Context dependent Error detection and correction:

These processes try, in addition to detect errors, try to find whether the corrected wordfits into the context of

the sentence. These are naturally more complex to implement and require more resources than the previous

method. How would you correct the wise words of Lord Buddha —

“Peace comesfrom within”

if it were typed as —

“Piece comes from within” ?

Note that the first word in both these statements is a correct word.

This involves correction of real-word errors or those that result in another valid word. Non-word errors

that have more than one potential correction also fall in this category. The strategies commonly usedfind their

basis on traditional and statistical natural language processing techniques.

15.6.3 Soundex Algorithm

The Soundex algorithm can be effectively used as a simple phonetic based spell checker. It makes use ofrules

found using the phonetics of the language in question. We discuss this algorithm with reference to English.
Developed by Robert Russell and Margaret Odell in the early 20" century, the Soundex algorithm uses a

code to check for the closest word. The code was used to index names in the U.S. census. The code for a word

consists ofits first letter followed by three numbers that encode the remaining consonants. Those consonants

that generate the same sound have the same number: Thusthe labials B, F, P and V imply the same number

viz. 1.

Hereis the algorithm —

Removeail punctuation marks and capitalize the letters in the word.

Retain the first letter of the word.
Remove any occurrence of the letters — A, E, , O, U, H, W, Y apart from the very first letter.
Replace thc letters (other than the first) by the numbers shown in Table 15.4.

If two or more adjacentletters, not separated by vowels, have the same numeric value, retain only one

of them.

e Return the first four characters; pad with zeroesif there are less than four.

Table 15.4 Substitutionsfor generating the Soundex code

 

 

eeea

Lener(s) Substitutewith Integer
BEBV }-- -
C,G,J,K,5,X,Z 2

D,T 3...

L 4 x
M,N 5
R 6   

Nominally the Soundex code contains —
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First character of word, Code_1, Code_2, Code_3. Table 15.5 shows the Soundex codes for a few words.

Table 15.5 Soundex codes for some words

Word
 

Grate, great

Network, network

Henry, Henary

Torn

Worm

Hom

 

   
Notethat the last three words are different only in the starting alphabet. This algorithm can thus be used to

measure the similarity of two words. This measure can then be used to find possible good candidates for

correction to be effected for a misspelled word such as rorn (viz. tom, worn, horn).

SUMMARY
BeTT8 easy PERE ae, Se

PRES 0 PEPEESPat ah 8 BRR, 3 E a e922

  

 

In this chapter, we presented a brief introduction to the surprisingly hard problem of language understanding.

Recall that in Chapter f4, we showedthat at least one understanding problem,line labeling, could effectively

be viewed as a constraint satisfaction problem. One interesting way to summarize the natural language
understanding problem that we have described in this chapter is to view it too as a constraint satisfaction
problem. Unfortunately, many more kinds of constraints must be considered, and even when they are all

exploited,it is usually not possible to avoid the guess and search part of the constraint satisfaction procedure.

But constraint satisfaction does provide a reasonable framework in which to view the whole collection of
steps that together create a meaning for a sentence. Essentially each of the steps described in this chapter

exploits a particular kind of knowledge that contributes a specific set of constraints that must be satisfied by
any correct final interpretation of a sentence.

Syntactic processing contributes a set of constraints derived from the grammar of the language. It imposes

constraints such as:

e Word order, which rules out, for example, the constituent, “managerthe key,” in the sentence, “T gave

the apartment manager the key.”

* Number agreement, which keeps “trial run” from being interpreted as a sentence in “The first trial run

was a failure.”

* Case agreement, which rules, out, for example, the constituent, “me and Susan gave one to Bob,”in the

sentence, “Mike gave the program to Alan and me and Susan gave one to Bob.”

Semantic processing contributes an additional set of constraints derived from the knowledge it has about

entities that can exist in the world. [t imposes constraints such as:

® Specific kinds of actions involve specific classes of participants. We thus rule out the baseball field

meaning of the word “diamond”in the sentence, “John saw Susan’s diamond shimmering from across

the room.”

# Objects have properties that can take on values from a limited set. We thus rule out Bill’s mixer as a

componentof the cake in the sentence, “John made a huge wedding cake with Bill’s mixer.”
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Discourse processing contributes a further set of constraints that arise from the structure of coherent
discourses. These include:

« The entities involved in the sentence must either have been introduced explicitly or they must be
related to entities that were. Thus the word “it” in the discourse “John had a cold. Bill caughtit,” must

refer to John’s cold. This constraint can propagate through other constraints. For example, in this case,

it can be used to determine the meaning of the word “caught” in this discourse, in contrast to its

meaning in the discourse, “John threw the ball. Bill caught it.”

e The overall discourse must be coherent. Thus, in the discourse, “I needed to deposit some money, so |

went downto the bank,” we would choose the financial institution reading of bank overthe river bank

reading. This requirement can even cause a later sentence to impose a constraint on the interpretation
ofan earlier one,as in the discourse, “I went down to the bank. Theriver had just flooded, and J wanted

to see how bad things were.”

Andfinally, pragmatic processing contributes yet another set of constraints. For exampie,

*® The meaning of the sentence must be consistent with the known goals of the speaker. So, for example,

in the sentence, “Mary was anxiousto get the bill passed this session, so she moved totable it,” we are

forced to choose the (normally British) meaningoftable (to put it on the table for discussion) over the

(normaliy American) meaning (to set it aside for later).

There are many importantissues in natural language processing that we have barely touched on here. To

learn more aboutthe overall problem, see Allen [1987], Cullingford [1986], Dowty er a/. [1985],and Grosz et

at. [1986]. For more information on syntactic processing, see Winograd [1983] and King [1983]. See Joshiet

al, [1981] for more discussion of the issues involved in discourse understanding. Also, we have restricted our

discussion to natural language understanding.It is often useful to be able to go the other way as well, thatis,

to begin with a logical description and render it into English. For discussions of natural language generation

systems, see McKeown and Swartout {1987] and McDonald and Bole [1988]. By combining understanding

and generation systems,it is possible to attack the problem of machine translation, by which we understand

text written in one language and then generateit in another language. See Slocum [1988], Nirenburg [1987],

Lehrberger and Bourbeau [1988], and Nagao [1989] for discussions of a variety of approachesto this problem.

We have also seen how statistical methods cometo the aid of natural language processing. The use of a

large corpus and the frequency and sequence of occurrence of words can be used to decide and predict the

correctness of a given text. This can also be used for language generation to a certain extent.

Natural language processing also entails spell checking as a preprocessing exercise. This chapter introduced
some common spelling errors, checking and suggestion generation methods. A good discussion on speil

checkers can be found in Kuckich’s paper entitled “Techniques for Automatically Correcting Words in Text”,

ACM Computing Surveys, Vol. 24, No. 4, December 1992, pp. 377-439. Other references include F. J.

Damerau, “‘A technique for computer detection and correction of spelling errors”, Communications of the

ACM Vol.7, No. 3(Mar.), 1964, pp.171-176, Gonzalo Navarro, “A guided tour to Approximate String

Matching”, ACM Computing Surveys Vol.33, No.1 (Mar.), 2001, pp. 31-88, J. J. Pollock, and A. Zamora,

“Automatic spelling correction in scientific and scholarly text”, Communications of the ACM Vol. 27, No. 4

(Apr), 1984, pp.358-368, J.R. Ulmann, “A binary n-gram technique for automatic correction of substitution,

deletion, insertion, and reversal errors in words”, Computer Journal, Vol. 20, No.2, 1977, pp.141-147, D.

Jurafsky, and J.H. Martin, An Introduction to Natural Language Processing, Computational Linguistics and

Speech Recognition, Prentice Hall Inc, New Jersey, U.S.A., 2000. As a tail ender one must bear in mind that

once a spell checker has been designed for a language, the same checker need not always work well for
another. Considerable effort may have to be put in before the realization of the same for a new language.
The paper by M. Das, S.Borgohain, J.Gogoi, $.B.Nair, “Design and Implementation of a Spell Checker for

Assamese”, Proceedings of the Language Engineering Conference, 2002, IEEE CS Press, pp.156-162, throws

more insights into this aspect.
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Inquisitive readers could, after reading Chapter 24, go through the paper entitled “An Artificial Immune

System Based Approach for English Grammar Checking” authored by Akshat Kumar and 5. B. Nair, appearing
in the book Artificial Immune Systems: Proceedings of the 6th International Conference on AIS, ICARIS
2007, Santos, Brazil, 2007, Eds. Leandro N. de Castro, Fermando J. Yon Zuben, Helder Knidel, Springer,

2007, pp. 348-357, and ruminate on off-the-track approaches to natural ianguage processing

EXERCISES
WP eeMRE wn feAEELEMELS MRR ES PTE otsee - Ta PE ROE Be Se Ge iiSS 

1. Consider the sentence

The old man’s glasses were filled with sherry.

What information is necessary to choose the correct meaning for the word “glasses”? What information

suggests the incomect meaning?

2. For eachofthe following sentences, show a parse tree. For each of them, explain what knowledge,in

addition to the grammar of English, is necessary to produce the correct parse. Expand the grammar of
Fig. 15.6 as necessary to dothis.

John wanted to go to the movie with Sally,

John wanted to go to the movie with Robert Redford.
I heard the story listening to the radio.
T heard the kids listening to the radio.
All books and magazines that deal with controversial topics have been removed from the shelves.

All books and magazines that come out quarterly have been removed from the shelves.
3. Inthe following paragraph, show the antecedents for each of the pronouns. What knowledgeis necessary

to determine each?

John went to the store to buy a shirt. The salesclerk asked him if he couid help him. He said he

wanted a blue shirt. The salesclerk found one andhetried it on. He paid for it andleft.
4. Consider the following sentence:

Put the red block on the blue block on the table.

(a) Show all the syntactically valid parsesofthis sentence. Assume any standard grammatical formalism

youlike.

(b) How could semantic information and world knowledge be used to select the appropriate meaning

of this commandin particular situation?
After you-have done this, you might want to look at the discussion of this problem in Church and Patil

[1982].
5. Each of the following sentences is ambiguousin at least two ways. Because of the type of knowledge

represented by each sentence, different target languages may be useful to characterize the different

meanings. For each of the sentences, choose an appropriate target language and show howthe different
meanings would be represented:

« Everyone doesn’t know everything.

® John saw Mary and the boy with a telescope.

e John flew to New York.

6. Write an ATN grammar that recognizes verb phrases involving auxiliary verbs. The grammar should

handle such phrases as

« “went”

¢ “should have gone”

e “had been going”
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« “would have been going”

e “would go”

Do not expect to produce an ATN that can handle all possible verb phrases. But do design one with a

reasonable structure that handles most common ones, including the ones above. The grammar should
create structures that reflect the structures of the input verb phrases.

Show how the ATNof Figs 15.8 and 15.9 could be modified to handle passive sentences.:

Write the rule “S — NP VP”in the graph notation that we defined in Section 15.2.3. Show how

unification can be used to enforce number agreement between the subject and the verb.

Consider the problem of providing an English interface to a database of employee records.

(a) Write a semantic grammar to define a language forthis task.
(b) Show a parse, using your grammar, of each of the two sentences

- Whatis Smith's salary?

Tell ine who Smith’s manageris.

{c) Show parses of the two sentences of part (b) using a standard syntactic grammar of English. Show

the fragment of the grammar that you use.

(d) How do the parses of parts (b) and (c} differ? What do these differences say about the differences

between syntactic and semantic grammars?

How would the following sentences be represented in a case structure:

(a} The plane flew above the clouds

(b) John flew to New York

(c) The co-pilot flew the plane

Both case grammar and conceptual dependency produce representations of sentences in which noun

phrases are described in terms of their semantic relationships to the verb. In what ways are the two
approaches similar? In what ways are they different? Is one a more general version of the other? As an
example, compare the representation of the sentence

John broke the window with a hammer

in the two formalisms

Use compositional semantics and a knowledge base to construct a semantic interpretation of each of

the following sentences:

(a) A student deleted myfile

(b) John asked Mary to printthe file
To do this, you will need to do all the following things:

e Define the necessary knowledge base objects

e Decide what the output of your parser will be assumed to be

® Write the necessary semantic interpretation rules

e Show how the process proceeds

Show how conversational postulates can be used to get to the most common,coherent interpretation of

each of the following discourses:

(a) A: Do you have a comb?

(b) A: Would Jones make a good programmer? B: He’s a great guy. Everyone likes him

{c) A (ina store}: Do you have any money? B (A’s friend): What do you want to buy?

. Winograd and Flores [1986] present an argument that it is wrong to attempt to make computers

understand language. Analyze their arguments in light of what was said in this chapter.

Gather text from known and reliable sources and make your own corpus. Analyze the corpusbyfinding

the number and the different types of words within and their unigram and bigram probabilities.

Using the information from exercise 15, try generating correct sentences using N-grams.
Explain how you would use the above corpus as a database for spell checking?
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17
LEARNING

 

That men do not learn very muchfrom the lessons ofhistory ts the mast important ofallthe lessons af

Aistory.

—Aldous Huxley
(1894-1963), American Writer and Author

17.1 WHAT IS LEARNING?

One ofthe most often heard criticisms of Al is that machines cannotbe called intelligent until they are able to
learn to do new things and to adapt to new situations, rather than simply doing as they are told to do. There can

be little question that the ability to adapt to new surroundings and to solve new proolems is an important

characteristic ofintelligent entities. Can we expect to see such abilities in programs? Ada Augusta, one of the
earliest philosophers of computing, wrote that

The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know howto order

it to perform. [Lovelace, 1961]

This remark has been interpreted by several Al critics as saying that computers cannot learn. In fact, it does

not say that at all. Nothing prevents us from telling a computer how to interpret its inputs in such a way that

its performance gradually improves.

Rather than asking in advance whether it is possible for computers to “learn,” it is much more enlightening

to try to describe exactly what activities we mean when we say “learming” and what mechanisms could be

used to enable us to perform those activities. Simon [1983] has proposed that learning denotes

. changes in the system that are adaptivein the sense that they enable the system to do the sametask or tasks drawn

from the same population more efficiently and more effectively the next time.

Asthus defined, learning covers a wide range of phenomena. At one end ofthe spectrum is skill refinement.

People get better at many tasks simply by practicing. The more youride a bicycle or play tennis, the better you

get. At the other end of the spectrum lies knowledge acquisition. As we have seen, many Al programs draw
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heavily on knowledge as their source of power. Knowledge is generally acquired through experience, and

such acquisition is the focus of this chapter.

Knowledge acquisition itself includes many different activities. Simple storing of computed information,

or rote learning, is the most basic learning activity. Many computer programs, e.g., database systems, can be

said to “learn” in this sense, although most people would not call such simple storage learning. However,

many AT programsare able to improve their performance substantially through rote-learning techniques, and

we will look at one example in depth, the checker-playing program of Samuel [1963].

Another way we learn is through taking advice from others. Advice taking is similar to rotc learning, but
high-level advice may not be in a form simple enough for a program to use directly in problem-solving. The

advice may need to be first operationalized, a process explored in Section 17.3.

Peopie also learn through their own problem-solving experience. After solving a complex problem, we

rememberthe structure of the problem and the methods weused to solve it. The next time we see the problem,
we can solve it more efficiently. Moreover, we can generalize from our experience to solve related problems

more easily. In contrast to advice taking, learning from problem-solving experience docs not usually involve

gathering new knowledge that was previously unavailable to the learning program. That is, the program

remcmbers its experiences and generalizes from them, but does not add to the transitive closure! of its

knowledge, in the sense that an advice-taking program would, Le., by receiving stimuli from the outside

world. In large problem spaces, however,efficiency gains are critical. Practically speaking, learning can mean

the difference between solving a problem rapidly and not solving it at all. In addition, programs that leam

through problem-solving experience may be able to eome up with qualitatively better solutions in the future.

Another form of learning that does involve stimuli from the outside is learning from examples. We often

learn to classify things in the world without being given explicit rules. For example, adults can differentiate

between cats and dogs, but small children often cannot. Somewhere along the line, we induce a method for

telling cats from dogs based on seeing numerous examples of each. Learning from examples usually involves

a teacher who helps us classify things by correcting us when we are wrong. Sometimes, however, a program

can discover things without the aid of a teacher.

AI researchers have proposed many mechanisms for doing the kinds of learning described above.In this

chapter, we discuss several of them. But keep in mind throughout this discussion that learning is itself a

problem-solving process.In fact, itis very difficult to formulate a precise definition of learning that distinguishes

it from other problem-solving tasks. Thus it should come as no surprise that, throughoutthis chapter, we will

make extensive use of both the problem-solving mechanisms and the knowledge representation techniques

that were presented in Parts [ and II.

17.2 ROTE LEARNING

When a computer stores a piece of data, it is performing a rudimentary form of learning. After all, this act of

storage presumably allows the program to perform better in the future (otherwise, why bother?). In the case of

data caching, we store computed values so that we do not have to recompute them later. When computation is

more expensive than recall, this strategy can save a significant amountof time. Caching has been used in AI

programs to produce some surprising performance improvements. Such caching is knownas rote learning.
In Chapter 12, we mentioned one of the earliest game-playing programs, Samuel’s checkers program

{Samuel, 1963]. This program learned to play checkers well enough to beat its creator. It exploited two kinds

of learning: rote learning, which we look at now, and parameter(or coefficient) adjustment, which is described

in Section 17.4.1. Samuel’s program used the minimax search procedure to explore checkers gametrees. As

'Thetransitive closure of a program’s knowledgeis that knowledge plus whatever the program can logically deduce from it.
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is the case with all such programs, time constraints permitted it to search only a few levels in the tree. (The

exact numbervaried depending on the situation.) Whenit could search no deeper,it applied its static evaluation

function to the hoard position and used that score to continue its search of the game tree. Whenit finished

searching the tree and propagating the values backward,it had a score for the position represented by the root

of the tree. It could then choose the best move and makeit. Butit also recorded the board position at the root

of the tree and the backed up score that had just been computed forit. This situation is shown in Fig. 17.1 (a).

Now suppose that in a later game, the situation shown in Fig. 17.1 (b) were to arise. Instead of using the
static evaluation function to compute a score for position A, the stored value for A can be used. This creates
the effect of having searched an additional several ply since the stored value for A was computed by backing

up values from exactly such a search.

Game Tree

 

Stored Scores A: 10

{a)

 

Fig.17.1 Storing Backed-Up Values

Rote learning of this sort is very simple. It does not appear to involve any sophisticated problem-solving

capabilities. But even it shows the need for some capabilities that will become increasingly important in more

complex learning systems. These capabilities include:

© Organized Storage of Information—tn order for it to be faster to use a stored value than it would be to

recompute it, there must be a way to access the appropriate stored value quickly. In Samuel’s program,this

was done by indexing board positions by a few important characteristics, such as the numberofpieces. But

as the complexity of the stored information increases, more sophisticated techniques are necessary.

© Generalization—The numberofdistinct objects that might potentially be stored can be very large. To

keep the numberof stored objects down to a manageablelevel, some kind of generalization is necessary.

In Samuel’s program, for example, the numberof distinct objects that could be stored was equal to the

nuinberof different board positions that can arise in a game. Only a few simple forms of generalization

were used in Samuel’s program to cut down that number. All positions are stored as though Whiteis to

move. This cuts the numberof stored positions in half. When possibile, rotations along the diagonal are

also combined. Again, though, as the complexity of the learning process increases, so too does the

need for generalization.

At this point, we have begun to see one way in which jeamingis similar to other kinds of problem solving.

Its success depends on a good organizational structure for its knowledge base.

17.3. LEARNING BY TAKING ADVICE

A computer can do very little without a program for it to nm. When a programmerwrites a series of instructions

into a computer, a rudimentary kind of learning is taking place: The programmeris a sort of teacher, and the
computeris a sort of student. After being programmed, the computer is now able to do somethingit previously

could not. Executing the program may not be such a simple matter, however. Suppose the program is written
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in a high-level language like LISP. Some interpreter or compiler must intervene to change the teacher’s

instructions into code that the machine can execute directly.

People process advice in an analogous way. In chess, the advice “fight for control of the center of the

board”is useless unless the player can translate the advice into concrete moves and plans. A computer program

might make use of the advice by adjusting its static evaluation function to include a factor based on the

numberof center squares attacked by its own pieces.

Mostow [1983] describes a program called FOO, which accepts advice for playing hearts, a card game. A

human userfirst translates the advice from English into a representation that FOO can understand. For example,

“Avoid taking points” becomes:

(avoid (take-points me) (trick))

FOO must operationalize this advice by turning it into an expression that contains concepts and actions

FOO can use when playing the gameof hearts. One strategy FOO can follow is to UNFOLD anexpression by

replacing some term by its definition. By UNFOLDingthe definition of avoid, FOO comes up with:

(achieve (not (during (trick) (take-points me})))

FOOconsiders the advice to apply to the player called “me.” Next, FOO UNFOLDsthe definition of trick:

(achieve (not (during

(scenario

(each pl (players) (play-card pl})

(take-trick (trick-winner)}}

(take-points me))))

In other words, the player should avoid taking points during the scenario consisting of (1) players playing

cards and (2) one player taking the trick. FOO then uses case analysis to determine which steps could cause

one to take points, It rules out step | on the basis that it knows of no intersection of the concepts take-points

and play-card. But step 2 could affect taking points, so FOO UNFOLDsthe definition of take-points:

(achieve (not (there-exists cl (cards-played)

(there-exists c2 (point-cards)

(during (take (trick-winner) cl)

{take me c2)}})))

This advice says that the player should avoid taking point-cards during the process of the trick-winner

taking the trick. The question for FOO now is: Under what conditions does (take me c2} occur during (take

(trick-winner) cl)? By using a technique called partial match, FOO hypothesizes that points will be taken if

me = trick-winner and c2 = cl, It transforms the advice into:

(achieve (not (and (have-points (cards-played))

(= (trick-winner) me))))

This means “Do not win a trick that has points.” We have not traveled very far conceptually from “avoid
taking points,” butit is important to note that the current vocabulary is one that FOO can understand in terms of

actually playing the game of hearts. Through a numberof other transformations, FOO eventually settles on:  https://hemanthrajhemu.github.io
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(achieve (>= (and (in-suit-led (card-of me))

(possible (trick-has-points)))

(low (card-of me))})

In other words, when playing a card that is the same suit as the card that was playedfirst, if the trick

possibly contains points, then play a low card. At last, FOO has translated the rather vague advice “avoid

taking points” into a specific, usable heuristic. FOO is able to play a better game of hearts after receiving this

advice. A human can watch FOO play, detect new mistakes, and correct them through yet more advice, such

as “play high cards whenit is safe to do so.” The ability to operationalize knowledgeis critical for systems

that lear from a teacher’s advice. It is also an important componentof explanation-based learning, another

form of learning discussed in Section 17.6.

17.4 LEARNING IN PROBLEM-SOLVING

In the last section, we saw how a problem-solver could improve its performance by taking advice from a

teacher. Can a program get better without the aid of a teacher? It can, by generalizing from its own experiences.

17.4.1 Learning by Parameter Adjustment

Manyprogramsrely on an evaluation procedure that combines information from several sourcesinto a single

summary statistic. Game-playing programsdo this in their static evaluation functions, in which a variety of

factors, such as piece advantage and mobility, are combined into a single score reflecting the desirability of a

particular board position. Pattern classification programs often combine several features to determine the

correct category into which a given stimulus should be placed. In designing such programs,it is often difficult

to know a priori how much weight should be attached to each feature being used. One way of finding the

correct weights is to begin with some estimate of the correct settings and then to let the program modify the

settings on the basis of its experience. Features that appear to be good predictors of overail success will have

their weights increased, while those that do not will have their weights decreased, perhaps even to the point of

being dropped entirely.

Samuel’s checkers program [Samuel, 1963] exploited this kind of leaming in addition to the rote learning

described above, and it provides a good example ofits use. Asits static evaluation function, the program used

a polynomial of the form

Cyfy + Cofy +... + Crelig

The ¢ terms are the values of the sixteen features that contribute to the evaluation. The c terms are the

coefficients (weights) that are attached to each of these values. As learning progresses, the c values will change.
The most important question in the design of a learning program based on parameter adjustmentis “When

should the value of a coefficient be increased and when should it be decreased?” The second question to be

answeredis then “By how muchshould the value be changed?” The simple answerto the first question is that the

coefficients of terms that predicted the final outcome accurately should be increased, while the coefficients of
poor predictors should be decreased. In some domains,this is easy to do. If a pattern classification program uses

its evaluation functionto classify an input andit gets the right answer,thenall the terms that predicted that answer

should have their weights increased. But in game-playing programs, the problem is more difficult. The program

does not get any concrete feedback from individual moves. It does not find out for sure until the end of the game

whether it has won. But many moves have contributed to that final outcome. Even if the program wins, it may

have made some bad moves along the way. The problem of appropriately assigning responsibility to each of the

steps that led to a single outcome is known as the credit assignment problem.

Samuel’s program exploits one technique, albeit imperfect, for solving this problem. Assume that the

initial values chosen for the coefficients are good enough that the total evaluation function produces values
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that are fairly reasonable measures of the correct score even if they are not as accurate as we hopeto get them.

Then this evaluation function can be used to provide feedbackto itself. Move sequencesthat lead to positions

with higher values can be considered good (and the terms in the evaluation function that suggested them can

be reinforced).

Because of the limitations of this approach, however, Samuel’s program did two other things, one of which

provided an additional test that progress was being made and the other of which generated additional nudges

to keep the process out of a rut:

e Whenthe program was in learning mode, it played against another copy of itself. Only one of the

copiesaltered its scoring function during the game; the other remained fixed. At the end of the game,

if the copy with the modified function won, then the modified function was accepted. Otherwise, the

old one wasretained. If, however, this happened very many times, then somedrastic change was made

to the function in an attempt to get the process going in a more profitable direction.

« Periodically, one term in the scoring function’ waseliminated and replaced by another. This was possible

because, although the program used only sixteen features at any one time, it actually knew about thirty-

eight. This replacement differed from the rest of the learning procedure since it created a sudden

change in the scoring function rather than a gradual shift in its weights.

This process of learning by successive modifications to the weights of terms in a scoring function has

many limitations, mostly arising out of its lack of exploitation of any knowledge about the structure of the

problem with whichit is dealing and the logical relationships among the problem’s components. In addition,

because the leaming procedureis a variety of hill climbing,it suffers from the samedifficulties as do other

hill-climbing programs. Parameter adjustmentis certainly not a solution to the overall learning problem. But

it ts often a useful technique, either in situations where very little additional knowledge is available or in

programs in which it is combined with more knowledge-intensive methods, We have more to say about this

type of learning in Chapter 18.

17.4.2. Learning with Macro-Operators

We saw in Section 17.2 how rote learning was used in the context of a checker-playing program. Similar

techniques can be used in more general problem-solving programs. The idea is the same: to avoid expensive

recomputation. For example, suppose you are faced with the problem of getting to the downtownpost office.

Yoursolution may involve getting in yourcar, starting it, and driving along a certain route. Substantial planning
may go into choosing the appropriate route, but you need not plan about how to go about starting yourcar.

You are free to treat START-CARas an atomic action, even thoughit really consists of several actions:sitting

down, adjusting the mirror, inserting the key, and turning the key. Sequences of actions that can be treated as

a whole are called macro-aperators.

Macro-operators were used in the early problem-solving system STRIPS [Fikes and Nilsson, 1971; Fikes

et al., 1972]. We discussed the operator and goal strictures of STRIPS in Section 13.2, but STRIPSalso has

a learning component. After each problem-solving episode, the leaming component takes the computed plan

and stores it away as a macro-operator, or MACROP. A MACROPisjust like a regular operator except thatit

consists of a sequence of actions, not just a single one. A MACROP’spreconditionsare the initial conditions

of the problem just solved, and its postconditions correspond to the goal just achieved. In its simplest form,

the caching of previously computed plansis similar to rote learning.

Suppose weare given an initial blocks world situation in which ON(C, B) and ON(A,Tabie) are both true.

STRIPS can achieve the goal ON(A, B) by devising a plan with the four steps UNSTACK(C, B),

PUTDOWN(C), PICKUP(A), STA*K(A, B). STRIPS now builds aMACROPwith preconditions ON(C, B),
ON(A, Table) and postconditions ON(C, Table}, ON(A, B). The body of the MACROPconsists of the four  https://hemanthrajhemu.github.io
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steps just mentioned. In future planning, STRIPSis free to use this complex macro-operator just as it would

use any other operator, ,
But rarely will STRIPS see the exact same problem twice. New problemswill differ from previous problems.

We would still like the problem solver to make efficient use of the knowledge it gained from its previous

experiences. By generalizing MACROPsbefore storing them, STRIPSis able to accomplish this. The simplest

idea for generalization is to replace all of the constants in the macro-operator by variables. Instead of storing

the MACROPdescribed in the previous paragraph, STRIPS can generalize the plan to consist of the steps

UNSTACK(x,, x5), PUTDOWN(,), PICKUP(x,), STACK(x,x»), where x), x, and x, are variables. This plan
can then be stored with preconditions ON(x,, x2), ON(x;, Table) and postconditionsON(x,, Table), ON(x5, x4).

Such a MACROPcan now apply in a variety of situations.

Generalization is not so easy, however. Sometimes constants must retain their specific values. Suppose our

domain included an operator called STACK-ON-B(x), withpreconditions that both x and B be clear, and with

postcondition ON(x, B). Consider the same problem as above:

start: ON(C, B) goal: ON(A, B)

STRIPS might come up with the plan UNSTACK(C, B), PUTDOWN(C), STACK-ON-B(A). Let’s
generalize this plan and store it as a MACROP. The precondition becomes ON(x, x3), the postcondition

becomes ON(x,, x5), and the plan itself becomes UNSTACK(Gs, x5), PUTDOWNQG,), STACK-ON-B(x)).

Now, suppose we encountera slightly different problem:

=] [o) ra] [iT
fel fal ele tel
start: ON(E, C) goal: ON(A, C}

ON(D,B)

The generalized MACROPwejust stored seems well-suited to solving this problem if we let x, = A, x) =

C, and x, = E. Its preconditions are satisfied, so we construct the plan UNSTACKEE, C), PUTDOWN({E),

STACK-ON-B(A). But this plan does not work. The problem is that the postcondition of the MACROPis

overgeneralized. This operation is only useful for stacking blocks onto B, which is not what we needin this

new example. In this case, this difficulty will be discovered when the last step is attempted. Although we

cleared C, which is where we wanted to put A, we failed to clear B, which is were the MACROPis going to

iry to put it. Since B is not clear, STACK-ON-B cannot be executed. If B had happened to be clear, the

MACROPwould have executed to completion, hut it would not have accomplished the stated goal.

In reality, STRIPS uses a more complex generalization procedure. First, all constants are replaced by
variables. Then, for each operator in the parameterized plan, STRIPS revaluates its preconditions. In our

example, the preconditions of steps I and 2 aresatisfied, but the only way to ensure that B is clear for step 3

is to assume that block x, which was cleared by the UNSTACK operator, is actually block B. Through “re-

proving”that the generalized plan works, STRIPS locates constraints of this kind.
More recent work on macro-operators appears in Korf [1985b]. It turns out that the set of problems for

which macro-operatorsare critical are exactly those problems with nonserializable subgoals, Nonserializability

means that working on one subgoal will necessarily interfere with the previous solution to another subgoal.

Recall that we discussed such problems in connection with nonlinear planning (Section 13.5). Macro-operators
can be useful in such cases, since one macro-operator can produce a small global change in the world, even

though the individual operators that makeit up produce many undesirable local changes.
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For example, consider the 8-puzzle. Once a program has correctly placed the first fourtiles, it is difficult to

place the fifth tile without disturbing the first four. Because disturbing previously solved subgoals is detected as

a bad thing by heuristic scoring functions, it is strongly resisted. For many problems, including the 8-puzzle and

Rubik’s cube, weak methods based on heuristic scormg are therefore insufficient, Hence, we either need domain-

specific knowledge, or else a new weak method. Fortunately, we can learn the domain-specific knowledge we

need in the form of macro-operators. Thus, macro-operators can be viewed as a weak methodfor learning. In the

8-puzzle, for example, we might have a macro—a complex, prestored sequence of operators—for placing the

fifth tile without disturbing any of the first four tiles externally (although in fact they are disturbed within the

macro itself). Korf [1985b] gives an algorithm for learning a complete set of macro-operators. This approach

contrasts with STRIPS, which learned its MACROPsgradually, from experience. Korf*s algonthm runsin time

proportional to the time it takes to solve a single problem without macro-operators.

17.4.3. Learning by Chunking

Chunkingis a process similar in flavor to macro-operators. The idea of chunking comesfrom the psychological

literature on memory and problem solving. Its computational basis is in production systems, of the type

studied in Chapter 6. Recall that in that chapter we described the SOAR system and discussed its use of

control knowledge, SOAR also exploits chunking [Laird ef a/., 1986] so that its performance can increase

with experience. In fact, the designers of SOAR hypothesize that chunking is a universal learning method,

i.e., it can account for all types of learning in intelligent systems.

SOARsolves problems by firing productions, which are stored in long-term memory. Some of those

firings turn out to be more useful than others. When SOARdetects a useful sequence of productionfirings, it

creates a chunk, whichis essentially a large production that does the work of an entire sequence of smatlet

ones, As in MACROPs, chunks are generalized before they are stored.

Recall from Section 6.5 that SOAR is a uniform processing architecture. Problems like choosing which

subgoals to tackle and which operatorsto try (i.e., search control problems) are solved with the same mechanisms

as problems in the original problem space. Because tbe problem-solving is uniform, chunking can be used to
learn general search control knowledge in addition to operator sequences. For example, if SOAR tries several

different operators, but only one leads to a useful path in the search space, then SOAR builds productions that

help it choose operators more wisely in the future.

SOARhas used chunking to replicate the macro-operator results described in the last section. In solving

the 8-puzzle, for example, SOAR learns howto place a given ttle without permanently disturbing the previously

placed tiles. Given the way that SOAR learns, several chunks may encode a single macro-operator, and one

chunk may participate in a number of macro sequences. Chunks are generally applicable toward any goal

state. Tbis contrasts with macro tables, which are structured toward reaching a particular goal state from any

initial state. Also, chunking emphasizes how learning can occur during problem-solving, while macro tables

are usually built during a preprocessing stage. As a result, SOARis able to learn withintrials as well as across

trials. Chunks learned during the initial stages of solving a problem are applicable in the later stages of the

same problem-solving episode. After a solution is found, the chunks remain in memory, ready-for-use in the

next problem.

The price that SOAR paysfor this generality and flexibility is speed. At present, chunking is inadequate

for duplicating the contents of large, directly-computed macro-operatortables.

17.4.4 The Utility Problem

PRODIGY [Minton ef al, 1989], which we described in Section 6.5, also acquires control knowledge

automatically. PRODIGY employs several learning mechanisms. One mechanism uses explanation-based

learning (EBL), a learning method we discuss in Section 17.6. PRODIGY can examinea trace of its own

problem-solving behavior and try to explain why certain paths failed. The program; uses those explanations
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to formulate control miles that help the problem solver avoid those paths in the future. So while SOAR learns

primarily from examples of successful problem solving, PRODIGYalso learns from its failures.

A major contribution of the work on EBL in PRODIGY [Minton, 1988] was the identification of the utility

problem in learning systems. While new search control knowledge can be of great benefit in solving future

problemsefficiently, there are also some drawbacks. The learned control rules can take up large amounts of

memory and the search program must take the time to consider each rule at each step during problem solving.

Considering a control rule amounts to seeingif its postconditions are desirable and seeing if its preconditions

are satisfied This is a time-consuming process. So while learned rules may reduce problem-solving time by

directing the search more carefully, they may also increase problem-solving time by forcing the problem

solverto consider them. If we only want to minimize the number of node expansionsin the search space, then

the more control rules we learn, the better. But if we want to minimize the total CPU time required to solve a

problem, we must consider this trade-off.

PRODIGY maintains a utility measure for each control mile. This measure takes into account the average

savings provided by the rule, the frequency of its application, and the cost of matching it. If a proposed rule

has a negative utility, it is discarded (or “forgotten’’). If not, it is placed in long-term memory with the other

rules. It is then monitored during subsequent problem solving.If its utility falls, the rule is discarded. Empirical

experiments have demonstrated the effectiveness of keeping only those control miles with high utility. Utility

considerations apply to a wide range of learning systems. For example, for a discussion of how to deal with

large, expensive chunks in SOAR, see Tambe and Rosenbloom [1989].

17.5 LEARNING FROM EXAMPLES: INDUCTION

Classification is the process of assigning to a particular input, the name of a class to which it belongs. The

classes from which the classification procedure can choose can be described in a variety of ways. Their

definition will depend on the use to which they will be put.

Classification is an important componentofmany problem-solvingtasks. In its simplest form,it is presented

as a straightforward recognition task. An example ofthis is the question “Whatletter of the alphabetis this?”

But often classification is embedded inside another operation. To see how this can happen, consider a probiem-

solving system that contains the following production rule:

If: the current goal is to get from place A to place B, and

there is a WALL separating the two places

then: look for a DOORWAY in the WALL and go through it.

To use this rule successfully, the system’s matching routine must be able to identify an object as a wall.
Without this, the rule can never be invoked. Then, to apply the rule, the system must be able to recognize a

doorway.

Before classification can be done, the classes it will use must be defined. This can be done in a variety of

ways, including:

* Isolate a set of features that are relevant to the task domain. Define each class by a weighted sum of

values of these features. Each class is then defined by a scoring function that looks very similar to the

scoring functions often used in other situations, such as game playing. Such a function has the form:

Cyl, + Cply + Calg t+...

Each t corresponds to a value of a relevant parameter, and each c represents the weight to be attached

to the corresponding 4 Negative weights can be used to indicate features whose presence usually

constitutes negative evidence for a given class.
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For example, if the task is weather prediction, the parameters can be such measurementsas rainfall and

location of cold fronts. Different functions can be written to combine these parameters to predict sunny,

cloudy, rainy, or snowy weather.

e Isolate a set of features that are relevant to the task domain. Define each class as a structure composed

of those features.

For example, if the task is to identify animals, the body of each type of animal can be stored as a
structure, with various features representing such things as color, length of neck, and feathers.

There are advantages and disadvantages to each of these general approaches. The statistical approach

taken by the first scheme presented here is often more efficient than the structural approach taken by the

second. But the second is more flexible and more extensible.

Regardless of the way that classes are to be described,it is often difficult to construct, by hand, good class

definitions. This is particularly true in domains that are not well understood or that change rapidly. Thus the

idea of producing a classification program that can evolve its own class definitions is appealing. This task of
constructing class definitions is called concept learning, or induction. The techniques usedfor this task must,

of course, depend on the way that classes (concepts) are described. If classes are described by scoring functions,

then concept leaming can be done using the technique of coefficient adjustment described in Section 17.4.1.

Hf, however, we want to define classes structurally, some other technique for learning class definitions is

necessary. In this section, we present three such techniques.

17.5.1 Winston’s Learning Program

Winston [1975] describes an early structural concept Concept Near Miss

learning program. This program operated in a simple

blocks world domain. Its goal was to construct

representationsof the definitions of concepts in the blocks Mouse A ce

domain. For example, it learned the concepts House, Tent,

and Arch shown in Fig. {7.2. The figure also shows an Tent KD ce

example of a near miss for each concept. A near miss is

an objectthat is not an instance of the concept in question

but that is very similar to such instances. Arch TLa TT

The program started with a line drawing of a blocks —!

world structure. it used procedures such as the one Fig. 17.2 Some Blocks World Concepts
described in Section 14.3 to analyze the drawing and

construct a semantic net representation of the structural description of the object(s) .This structural description

was then provided as input to the learning program. An example of such a structural description for the House

of Fig. 17.2 is shown in Fig. 17,.3{a). Node A represents the entire structure, which is composed of two parts:
node B, a Wedge, and node C, a Brick. Figures 17.3(b) and 17.3(c) show descriptions of the twe Arch structures

of Fig. 17-2. These descriptions are identical except for the types of the objects on the top; one is a Brick while

the other is a Wedge. Notice that the two supporting objects are related not only by feft-of and right-of links,

but also by a does-not-marrylink, which says that the two objects do not marry. Two objects marry if they

have faces that touch and they have a common edge, The marry relation is critical in the definition of an Arch.

It is the difference between the first arch structure and the near miss arch structure shownin Fig. 17.2.
The basic approach that Winston’s program took to the problem of concept formation can be described as

follows:

 

 

    

 

      

1. Begin with a structural description of one known instance of the concept. Call that description the

concept definition.  https://hemanthrajhemu.github.io
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(b)

 

(c)

Fig. 17.3 Structural Descriptions

2. Examine descriptions of other known instances of the concept. Generalize the definition to include them.

3. Examine descriptions of near misses of the concept. Restrict the definition to exclude these.

Steps 2 and 3 of this procedure can be interleaved.

Steps 2 and 3 ofthis procedure rely heavily on a comparison process by which similarities and differences

between structures can be detected. This process must function in much the same way as does any other

matching process, such as one to determine whether a given production rule can be applied to a particular
problem state. Because differences as well as similarities must be found, the procedure must perform not

just literal but also approximate matching. The

output of the comparison procedure is a skeleton

structure describing the commonalities between

the two input structures. It is annotated with a

set of comparison notes that describe specific

similarities and differences between the inputs.

To see how this approach works, we trace it

through the process of learning what an arch is.

Suppose that the arch description of Fig. 17.3(b)

is presented first. It then becomes the definition

of the concept Arch. Then suppose that the arch

description of Fig. 17.3(c) is presented. The

comparison routine will return a structure similar

to the two inputstructures except that it will note

that the objects represented by the nodes labeled
C are not identical. This structure is shown as

Fig. 17.4. The c-note link from node C describes

 
 

 

does-not-marry

Fig. 17.4 The Comparison of Two Arches
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the difference found by the comparison routine. It notes that the

difference occurred in the ‘sa link, and that in the first structure

the isa link pointed to Brick, and in the secondit pointed to Wedge.

It also notes that if we were to follow isa links from Brick and

Wedge, these links would eventually merge. At this point, a new

description of the concept Arch can be generated. This description

could say simply that node C must be either a Brick or a Wedge.

But since this particular disjunction has no previously known

significance, it is probably better to trace up the isa hierarchies :

ofBrick and Wedge until they merge. Assuming that that happens Brick does-not-marry Brick
at the node Object, the Arch definition shown in Fig. 17.5 can be Fig. 17.5 The Arch Description after
built. Two Examples

 

 

Next, suppose that the near miss arch shown in Fig. 17.2 is

presented. This time, the comparison routine will note that the

only difference between the current definition and the near miss

is in the does-not-marry link between nodes B and D. But since

this is a near miss, we do not want to broaden the definition tc

include it. Instead, we want to restrict the definition so that it is

specifically excluded. To do this, we modify the link does-not-

marry, which may simply be recording something that has

happened by chance to be true of the small numberof examples Brick — Briok

at have been presented. It must now say must-not-marry. The Brick \nust-not marry [Brick
Arch description at this point is shown in Fig. 17.6, Actually, Fig. 17.6 The Arch Description after a

must-not-marry should not be a completely new link. There must Near Miss

be some structure amonglink types to reflect the relationship between marry, does-not-marry, and must-not-

marry.
Notice how the problem-solving and knowledge representation techniques we covered in earlier chapters.

are brought to bear on the problem of learning. Semantic networks were used to describe block structures, and
an isa hierarchy was used to de-scribe relationships among already known objects. A matching process was

used to detect similarities and differences between structures, and hill climbing allowed the program to evolve

a more and more accurate conceptdefinition.

This approach to structural concept learning is not without its problems. One major problem is that a

teacher must guide the learning program througha carefully chosen sequence of examples.In the next section,

we explore a learning technique that is insensitive to the order in which examples are presented.

 

 

17.5.2 Version Spaces-

Mitchell [1977; 1978] describes another approach to concept learning called version spaces. The goal is the

same: to produce a description that is consistent with all positive examples but no negative examplesin the

training set. But while Winston’s system did this by evolving a single concept description, version spaces

work by maintaining a set of possible descriptions and evolving that set as new examples and near misses are

presented. As in the previous section, we need some sort of representation language for examples so that we

can describe exactly what the system sees in an example. For now we assume a simple frame-based language:

although version spaces can be constructed for more general representation languages. Consider Fig. 17.7, a

frame representing an individual car.
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Car023

origin : Japan

manufacturer: Honda

color : Blue

decade : 1970

type : Economy

Fig.17.7 An Example of the Concept Car

Now, suppose that each slot may contain only the discrete values shown in Fig. 17.8. The choice of features

and values is called the bias of the learning system. By being embeddedin a particular program and by using

particular representations, every learning system is biased, because it learns some things more easily than

others. In our example, the bias is fairly simple — e.g., we can learn concepts that have to do with car
manufacturers, but not car owners. In more complex systems, the bias is less obvious. A clear statement of the

bias of a learning system is very important to its evaluation.

origin E {Japan, USA, Britain, Germany, Italy}

manufacturer € {Honda, Toyota, Ferd, Chrysier, Jaguar, BMW, Fiaf

color € {Blue, Green, Red, White}

decade € {1950, 1960, 1970, 1980, 1990, 2000}

type é {Economy, Luxury, Sports}

Fig. 17.8 Representation Language for Cars

Concept descriptions, as well as training examples, can be stated in terms of these slots and values. For

example, the concept “Japanese economy car” can be represented as in Fig. 17.9. The names x,, x,, and x, are
variables. The presence of x5, for example, indicates that the color of a car is not relevant to whetherthe car is

a Japanese economycar. Now the learning problem is: Given a representation language such as in Fig. 17.8,

and given positive and negative training examples such as those in Fig. 17.7, how can we produce a concept

description such as that in Fig. 17.9 that is consistent with all the training examples?

origin : Japan

manufacturer: x

color: Xy

decade : Xy

type : Economy

Fig, 17.9 The Concept “Japanese economy car”

Before we proceed to the version space algorithm, we should make some observations about the

representation. Some descriptions are more general than others. For example, the description in Fig. 17.9 is

more general than the one in Fig. 17.7. In fact, the representation language defines a partial ordering of

descriptions. A portion of that partial ordering is shown in Fig. 17.10.
The entire partial ordering is called the cencept space, and can be depicted as in Fig. 17.11. At the top of

the concept space is the null descnption, consisting only of variables, and at the bottom are all the possible

training instances, which contain no variables. Before we receive any training examples, we know that the

target concept lies somewhere in the concept space. For example, if every possible description is an instance

of the intended concept, then the null description is the concept definition since it matches everything. On the

other hand,if the target concept includes only a single example, then one of the descriptionsat the bottom of

the concept spaceis the desired concept definition. Most target concepts, of course, lie somewhere in between

these two extremes.

As we process training examples, we want to refine our notion of where the target concept mightlie. Our

current hypothesis can be represented as a subset of the concept space called the version space. The version

space is the largest collection of descriptions that is consistent with all the training examples seen so far.
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origin : x
mir: Xp
color: X3

decade: x4

type: 5

aN

 

 

ongin : Japan origin x4
mir: x2 mir: Xo
color: x3 color : X3

decade: X4 decade: X%4

type : x5 type: Economy

: origin : Japan ongin : USA
mir: xX mfr: Xe
color : Xa color: x4
decade: 4 decade: x4
type: Economy type : Economy

origin : Japan origin : USA
mir : Honda mir: Chrysier
color : White color : Green
decade: 1980
type : Economy type: Economy

Fig. 17.10 Partial Ordering of Concepts Specified by the Representation Language

How can we represent the version space? The

version spaceis simplya setof descriptions,so aninitial

idea is to keep an explicit list of those descriptions.
Unfortunately, the number of descriptions in the

concept space is exponential in the number of features
and values. So enumerating them is prohibitive.

However, it turns out that the version space has a

concise representation. It consists of two subsets of
the concept space. One subset, called G contains the

most general descriptions consistent with the training

examples seen so far; the other subset, called 5, contains

the most specific descriptions consistent with the

 

 

decade: 1970  Null Hypothesis

Version Space Concept Space

Training Examples

Fig. 17.11 Concept and Version Spaces

training examples. The version space is the set of all descriptions that lie between some element of G and

some elementof S in the partial order of the concept space.

This representation of the version spaceis not only efficient for storage, but also for modification. Intuitively,

each time we receive a positive training example, we want to make the S set more general. Negative training

examples serve to make the G set more specific. If the S and G sets converge, our range of hypotheses will

narrow to a single concept description. The algorithm for narrowing the version space is called the candidate

elimination algorithm.
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Algorithm: Candidate Elimination

Given: A representation language and a set of positive and negative examples expressed in that languag:.

Compute: A concept description that is consistent with all the cositive examples and none of the negath »:

examples.

1. Initialize G to contain one element: the nul} description (all features are variables).

2. Initialize $ to contain one element: thefirst positive example.

3. Accept a new training example.

Ifit is a positive example, first remove from G any descriptions that do not cover the example. Then,

update the § set to contain the most specific set of descriptions in the version space that cover the

example and the current elements of the S set.

That is, generalize the elements of S$ as little as possible so that they cover the new training example.

If it is a negative example,first remove from S any descriptions that cover the example. Then, update

the G set to contain the most general set of descriptions in the version space that do not cover the

example. That is, specialize the elements of G as little as possible so that the negative example is no

longer covered by any of the elements of G.

4. if Sand G are both singleton sets, then if they are identical, output their value and halt. If they are both

singleton sets but they are different, then the training cases were inconsistent. Output this result and

hait. Otherwise, go to step 3.

Let us trace the operation of the candidate elimination algorithm. Suppose we want to Jearn the concept ut

“Japanese economy car’ from the examplesin Fig. 17.12. G and S both start out as singleton sets. G contains

the null description (see Fig. 17.11), and S contains the first positive training example. The version space now

contains all descriptions that are consistent with this first example:*

origin: Japan origin: Japan origin: Japan

mir: Honda mir: Toyota mfr: Toyota

color; Blue color: Green eolor: Biue

decade. 1980 decade: 1970 decade: 1990

type: Economy type: Sports type: Economy

(+) {~) (+)

ongin: USA origin: Japan

mir: Ghrysier mir. Honda

color; Aed color: White

decade: 1980 decade: 1980

type: Economy type: Economy

{-) (+)

Fig. 17.12 Positive and Negotive Examples of the Concept “Japanese economy car”

G = {(), 4.43, 4, 75)}
S= {(Vapan. Honda, Blue, 1980, Economy)}

Now weare ready to process the second example. The G set must be specialized in such a way that the

negative example is no longer in the version space. In our representation language, specialization involves

replacing variables with constants. (Note: The G set must be specialized only to descriptions that are wirjin

the current version space, not outside of it.) Here are the available specializations:

* To make this example concise, we skip slot names in the descriptions. We justlist slot values in the order in which the

slots have been shown in the preceding figures.
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G = {Ox Honda, x5, 44, 5), (X), Xa, Blue, x4, 15),

(XX, 1g. 1980, 15), (x4, X92, X53, 44, Economy)}

The S$ set is unaffected by the negative example. Now we come to the third example, a positive one. The

first order of business is to remove from the G set any descriptions that are inconsistent with the positive
example. Our new setis:

G = {(1), %, Blue, x4, X5), (41, Xg, X3 Xq, Economy)}

We must now generalize the S set to include the new example. This involves replacing constants with

variables. Here is the new S set:

S= (Vapan, x5, Blue, x3, Economy)}

At this point, the S and G sets specify a version space (a space of candidate descriptions) that can be

translated roughly into English as: “The target concept may be as specific as ‘Japanese, blue economycar,’ or

as general as either ‘blue car’ or ‘economy car.’”

Next, we get another negative example, a car whose origin is USA. The S set is unaffected, but the G set

must be specialized to avoid covering the new example. The new setis:

CG = ((Japen, Xo, Blue, x4, ts), Japan, x, X54, 4, Economy)}

We now know that the car must be Japanese, because aé/ of the descriptions in the version space contain

Japanas origin.’ Ourfinal example is a positive one. We first remove from the G set any descriptions that are

incensistent with it, leaving:

Gr = {(Japan, X5, Xy, X4, Economy)}

We then generalize the S set to include the new example:

J = [Cfapan, Xp, Xz, X4, Economy)}

Sand G are both singletons, so the algorithm has converged on the target concept. No more examples are

needed.

There are several things to note about the candidate elimination algorithm. First, it is a /east-commitment

algorithm. The version space is prunedaslittle as possible at each step. Thus, evenif all the positive training
examples are Japanese cars, the algorithm will not reject the possibility that the target concept may include

cars of other origin—until it receives a negative example that forces the rejection. This means that if the

iraining data are sparse, the S and G sets may never converge to a single description; the system may learn

aily partially specified concepts. Second, the algorithm involves exhaustive, breadth-first search through the

version space. We can see this in the algorithm for updating the G set. Contrast this with the depth-first

ochavior of Winston’s learning program. Third, in our simple representation language, the S set always contains

exXuctly one element, because any two positive examples always have exactly one generalization. Other

representation languages may not share this property,

* It could be the case that our target concept is “not Chrysler,” but we will ignore this possibility because our representation

language is not powerful enough to express negation and disjunction.
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The version space approach can be applied to a wide variety of learning tasks and representation languages.

The algorithm above can be extended to handle continuously valued features and hierarchical knowledge {sve

Exercises). However, version spaces have several deficiencies. One is the large space requirements of the

exhaustive, breadth-first search menttoned above. Another is that inconsistent data, also called foise, can

cause the candidate elimination algorithm to prune the target concept from the version space prematurely. In

the car example above,if the third training instance had been mislabeled (—) instead of (+), the target concept

of “Japanese economy car” would never be reached. Also, given enough erroneous negative examples, the G

set can be specialized so far that the version space becomes empty. In that case, the algorithm concludes that

no concept fits the training examples.

Onesolution to this problem [Mitchel], 1978] is to maintain several G and S sets. One G set is conststent
with all the training instances, another is consistent with all but one, another with all but two, etc. (and the

same for the § set). When an inconsistency arises, the algorithm switches to G and sets that are consistent

with most, but not all, of the training examples. Maintaining multiple version spaces can be costly, however,

and the § and G sets are typically very large. If we assume bounded inconsistency,i.e., that instances close to

the target concept boundary are the mostlikely to be misclassified, then more efficient solutions are possible.

Hirsh [1990] presents an algorithm that runs as follows. For each instance, we form a version space consistent

with that instance plus other nearby instances (for some suitable definition of nearby). This version spaceis

then intersected with the one created for all previous instances. We keep accepting instances until the version

space is reduced to a small set ofcandidate concept descriptions. (Because of inconsistency,it is unlikely that
the version spaec will converge to a singleton.) We then match each of the concept descriptions against the

entire data set, and choose the one that classifies the imstances most accurately.

Another problem with the candidate elimination algorithm is the learning of disjunctive concepts. Suppose

we wanted to learn the concept of “European car,” which, in our representation, means either a German,

British, or Italian car. Given positive examples of each, the candidate elimination algonthm will generalize to

cars of any origi#. Given such a generalization, a negative instance (say, a Japanese car) will only cause an

inconsistency of the type mentioned above,

Of course, we could simply extend the representation language to include disjuncticns. Thus, the concept

space would hold descriptions such as “Blue car of German or British origin” and “Italian sports car or
German Suxury car.” This approach has two drawbacks. First, the concept space becomes much larger and

specialization hecomesintractable. Second, generalization can easily degenerate to the point where the 5 set

contains simply one large disjunction of al! positive instances. We must somehow force generalization while

allowing for the introduction of disjunctive descriptions. Mitchell [1978] gives an iterative approach that

involves several passes through the training data. On each pass, the algorithm builds a concept that covers the

largest numberof posiiive training instances without covering any negative training instances. At the end of

the pass, the positive training instances covered by the new concept are removed from the training set, and the

new concept then becomes one disjunct in the eventual disjunctive concept description. When all positive

training instances have been removed, we are Jeft with a disjunctive concept that covers all of them without

covering any negative instances.

There are a number of other complexities, including the way in which features interact with one another.

For example, if the erigin of a car is Japan, then the manufacturer cannot be Chrysler. The version space

algorithm as described above makes no use of such information, Also in our example, it would be more

natural to replace the decade slot with a continuously valued year field. We would have to change our procedures

for updating the S and G sets to accountfor this kind of numerical data.
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17.5.3 Decision Trees

A third approach to concept learning is the induction

otdecision trees, as exemplified by the ID3 program origin?

of Quinlan [1986]. [D3 uses a tree representation c T | I —

for concepts, such as the one shown in Fig. 17.13. USA Germany Britain italy Japan
Toclassify a particular input, we start at the top of 0 -) O ©) |
the tree and answer questions until we reacha ieaf, type?

where the classification is stored, Fig. 17.13
ae sg: ‘ Sports Economy Luxury

represents the familiar concept “Japanese economy (-) (+) -)

car.” [D3 is a program that builds decision trees

automatically, given positive and negative instances

of a concept.4
1D3 uses an iterative method to build up decision trees, preferring simple trees over complex ones, on the

theory that simple trees are more accurate classifiers of future inputs. It begins by choosing a random subset

ofthe training examples. This subsetis called the window. The algorithm builds a decision tree that correctly

classifies all examples in the window. Thetree is then tested on the training examples outside the window. If
all the examples are classified correctly, the algorithm halts. Otherwise, it adds a numberoftraining examples

to the window and the process repeats. Empirical evidence indicates that the iterative strategy is more efficient
than considering the whole training set at once.

So how does ID3 actually construct decision trees? Building a node means choosing someattribute to test.

Ata given point in the tree, some attributes will yield more information than others, For example, testing the

attribute color is useless if the color of a car does not help usto classify it correctly. Ideally, an attribute will

separate training instances into subsets whose members share a commonlabel(e.g., positive or negative). In

that case, branching is terminated, and the leaf nodes are labeled.

There are many variations on this basic algorithm. For example, when we add a test that has more than two

branches, It is possible that one branch has no corresponding training instances. In that case, we can either leave
the node unlabeled, or we can attempt to guess a label based on statistical properties of the set of instances being

tested at that point in the tree. Noisy input is another issue. One way of handling noisy inputis to avoid building

new branchesif the information gained is very slight. In other words, we do not want to overcomplicatethe tree

to accountfor isolated noisy instances, Another, source of uncertainty is that attribute values may be unknown.
For example a patient's medical record may be incomplete. One solution is to guess the correct branch to take;

another soiution is to build special “unknown” branches at each node during learning.

When the concept space is very large, decision tree learning algorithms run more quickly than ther version

space cousins. Also, disjunction is more straightforward. For example, we can easily modify Fig. 17.13 to

represent the disjunctive concept “American car or Japanese economycar,” simply by changing one of the

negative (—) leaf labels to positive (+). One drawback to the ID3 approach is that large, complex decision

trees can be difficult for humansto understand, and so a decision tree system may have a hard time explaining

the reasons for its classifications.

 

Fig.17.13 A Decision Tree

17.6 EXPLANATION-BASED LEARNING

The previous section illustrated how we can induce concept descriptions from positive and negative examples.

Learning complex concepts using these procedures typically requires a substantial numberoftraining instances.

4 Actually, the decision tree representation is more general: Leaves can denote any of a numberofclasses, not just positive

and negative.
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But people seem to be able to learn quite a bit from single examples. Consider

a chess player who, as Black, has reached the position shown in Fig. 17.14.

The positionis called a “fork” because the white knight attacks both the black

king and the black queen. Black must move the king, thereby leaving the

queen open to capture. From this single experience, Black is able to learn

quite a bit about the fork trap: the idea is that if any piece x attacks both the

opponent’s king and anotherpiece y, then piece y will be lost. We don’t need

to see dozens ofpositive and negative examples of fork positions in orderto (&|&l1&
draw these conclusions. From just one experience, we can learn to avoid this @

trap in the future and perhapsto use it to our own advantage.

What makes such single-example learning possible? The answer, not

surprisingly, is knowledge. The chess player has plenty of domain-specific

knowledge that can be brought to bear, including the rules of chess and any previously acquired strategies.

That knowledge can be used te identify the critical aspects of the training example. In the case of the fork, we

know that the double simultaneous attack is important while the precise position and type of the attacking
piece is not.

Muchofthe recent work in machine learning has moved away from the empirical, data-intensive approach

described in the last section toward this more analytical, knowledge-intensive approach. A number of

independent studies led to the characterization of this approach as explanation-based learning. An EBL

system attempts to learn from a single example x by explaining why x is an example of the target concept. The

explanation is then generalized, and the system’s performance is improved through the availability of this

knowledge.

Mitchell ef al. [1986] and DeJong and Mooney[1986] both describe general frameworks for EBL programs

and give general learning algorithms. We can think of EBL programsas accepting the following as input:

 

Fig. 17.14 A Fork Position

in Chess

e A Training Example—What the leaming program “sees” in the world, e.g., the car of Fig. 17.7

A Goal Ceancept—Ahigh-level description of what the program is supposed to learn

An Operationally Criterion—A description of which concepts are usable

A Domain Theory—Aset of rules that describe relationships between objects and actions in a domain

From this, EBL computes a generalization of the training example that is sufficient to describe the goai

concept, and also satisfies the operationality criterion.

Let’s look more closely at this specification. The training exampleis a familiar input—it is the same thing

as the example in the version space algorithm. The goal concept is also familiar, but in previous sections, we

have viewed the goal concept as an output of the program, not an input. The assumption hereis that the goal
concept is not operational, just like the high-level card-playing advice described in Section 17.3. An EBL

program seeks to operationalize the goal concept by expressing it in terms that a problem-solving program

can understand. These terms are given by the operatioriality criterion. In the chess example, the goal concept

might be something like “bad position for Black,” and, the operationalized concept would be a generalized

description of Situations similar to the training example, given in terms of pieces and their relative positions.

Thelast input to an EBL. program is a domain theory, in our case, the rules of chess. Without such knowledge,

it is impossible to come up with a correct generalization of the training example.

Explanation-based generalization (EBG) is an algorithm for EBL described in Mitchell et ai. [1986]. It

has two steps: (1) explain and (2) generalize. During the first step, the domain theory is used to prune awayall

the unimportant aspects of the training example with respect to the goal concept. Whatis left is an explanation

of why the training example is an instance of the goal concept. This explanation is expressed in terms that

satisfy the operationality criterion. The next step is to generalize the explanation as far as possible while still
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describing the goal concept. Following our chess example, the first EBL step chooses to ignore White's

pawns, king, and rook, and constructs an explanation consisting of White’s knight, Black’s king, and Black’s

queen, each in their specific positions. Operationality is ensured: ali chess-playing programs understand the

basic concepts of piece and position. Next, the explanation is generalized. Using domain knowledge, we find
that moving the pieces to a different part of the board is still bad for Black. We can also determinethat other

pieces besides knights and queens can participate in fork attacks.

In reality, current EBL methodsrun into difficulties in domains as complex as chess, so we will not pursue

this example further. Instead, let’s look at a simpler case. Consider the problem of learning the concept Cup

[Mitchell e# al, 1986]. Unlike the arch-learning program of Section 17.5.1, we want to be able to generalize

from a single example of a cup. Suppose the example is:

* Training Example:

owner(Object23, Ralph) A has-part(Object23, Coneavity12) A

is(Object23, Light) “4 colar(Object23, Brown) / ...

Clearly, some of the features of Object23 are more relevant to its being a cup than others. So far in this

chapter, we have seen several methods forisolating relevant features. These methodsall require many positive

and negative examples. In EBL weinstead rely on domain knowledge, such as:

® Domain Knowledge:

is(x, Light) A has-part(x, y)  isa(y. Handle) > liftable(x)

has-part(x, y) \ isa(y, Bottom) A is(y, Flat) 3 stable(x)

has-part(x, y) “ isa(y, Cancavity) \ is(y, Upward-Pointing) 3 open-vessel(x)

We also need a goal concept to operationalize:

® Goal Concept: Cup

xis a Cupif x is liftable, stable, and open-vessel.

® Operationality Criterion: Concept definition must be expressed in purely structural terms (e.g., Light,

Flat, etc.).

Givena training example and a functionaldescription, we want to build a general structural description of

a cup. The first step is to explain why Objecf23 is a cup. We do this by constructing a proof, as shown in

Fig. 17.15. Standard theorem-proving techniques can be used to find such a proof. Notice that the proof

Cup(Object23}

 

I | ]
fiftable(Object23) open-vessel(Object23}

stable(Object23)

Is(Object23, Light) has-part(Object23, Concavity2)_
has-part(Object23, Handie 16) isa(Concavity?2, Concavity)

isa(Handie16, handfe) fsa(Concavity12, Upward-Pointing)

has-part(Object23, Bottom?9)
isa(Botiom?9, Bottom)

is(Bottom?9, Flat)

Fig. 17.15 An Explanation

https://hemanthrajhemu.github.io



Learning 367
 

 

isolates the relevant features of the training example: nowhere in the proof do the predicates owner and coler

appear. The proof also serves as a basis for a valid generalization, [f we gather up all the assumptions and

replace constants with variables, we get die following description of a cup:

has-partty, vy) 4. isaty. Concavity) 7. ist, Upward-Pointing)

hes-partts, 2)» isatz, Botton) ’S ist, Flat) /s

has-part(x, w) /s fsa(w, Herdle) \ isty, Light)

This definition satisties the operationality criterion and could be used by a robot to classify objects.

Simply replacing constants by variables worked in this example, but in some cases it is necessary to retain

certain constants. To catch these cases, we must reprove the goal. This process, which we saw earlier in our

discussion of learning in STRIPS,is called goa! regression.

As we have seen, EBL depends strongly on a domain theory. Given such a theory, why are examples

neededat all? We could have operationalized the goal concept Cup without reference to an example, since the

domain theory containsall of the requisite information. The answeris that examples help to focus the learning

on relevant operationalizations. Without an example cup, EBL is faced with the task of characterizing the

entire range of objects that satisfy the goal concept. Most of these objects will never be encounteredin the real

world, and so the result will be overly general.

Providing a tractable domain theory is a difficult task. There is evidence that humans do not learn with very

primitive relations. Instead, they create incomplete and inconsistent domain theories. For example, returning

to chess. such a theory might include concepts like “weak pawn structure.” Getting EBL to work in ill-

structured domain theories is an active area of research (see, e.g., Tadepalli [1989]).

EBL shares many features of all the learning methods described in earlier sections. Like concept learning,

EBL hegins with a positive example of some concept. As in learning by advice taking, the goal is to

operationalize some piece of knowledge. And EBL techniques, like the techniques of chunking and macro-

operators, are often used to improve the performance of problem-solving engines. The major difference between

EBLand other learning methods is that EBL programs are built to take advantage of domain knowledge.

Since learning is just another kind of problem solving, it should come as no surprise that there is leverage to

be found in knowledge.

17.7 DISCOVERY

Learningis the process by which one entity acquires knowledge. Usually that knowledgeis already possessed

by some number of other entities who may serve as teachers. Discovery is a restricted form oflearning in

which one entity acquires knowledge withoutthe help ofa teacher.” In this section, we look at three types of

automated discovery systems.

17.7.1 AM: Theory-Driven Discovery

Discovery is certainly fearning. But it is also. perhaps more clearly than other kinds of learning, problem-

solving. Suppose that we want to build a program to discover things, for example. in mathematics. We expect

that such a program would haveto rely heavily on the problem-solving techniques we have discussed. In fact,

one such program was written by Lenat [1977: 1982]. It was called AM, and it worked from a few basic

concepts ofset theory to discover a good deal of standard numbertheory.

5 Sometimes,there is no one in the world who has the knowledge we seek. In that case, the kind of action we must takeis

called scientific discovery.
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AM exploited a variety of general-purpose AI techniques. It used a frame system to represent mathematical

concepts. One of the major activities of AM is to create new concepts andfill in their slots. An example of an

AM conceptis shown in Fig. 17.16. AM also uses heuristic search, guided by a set of 250 heuristicrules

representing hints about activities that are likely to lead to “interesting” discoveries. Examples of the kind of

heuristics AM used are shown in Fig. 17.17. Generate-and-test is used to form hypotheses on the basis ofa

small number of examples and then to test the hypotheses on a larger set to see if they still appear to hold.

Finally, an agenda controls the entire discovery process. When the heuristics suggest a task, it is placed on a

central agenda, along with the reason that it was suggested and the strength with which it was suggested. AM

operates in cycles, each time choosing the most promising task from the agenda and performingit.

name : Prime-Numbers
definitions :

ongin : Number-of-divisors-of{x) = 2
predicate-caiculus: Pime(x) <> (vz}(z| x= (z= 1 @ z= x)

iterative : (for x > 1): For i from 2 to ix, iXx

examples : 2,3, 5, 7, 11,13, 17
boundary : 2, 3
boundary-failures : 9, 1
failures > 12

generalizations ;: Number, numbers with an even numberof divisors
specializations : Odd primes, primepairs, prime uniquely addables
conjecs : Unique factorization, Goldbach’s conjecture, extremes of number-of-divisors-of
intus : A metaphorto the effect that primes are the building blocks ofall numbers
analogies:

Maximally divisible numbers are converse extremes of number-of-divisors-of
Factor a nonsimple group into simple groups

interest : Conjectures tying primes to times, to divisors of, to related operations

worth : 800
Fig. 17.16 An AM Concept: Prime Number

e If fis a function from A to B and Bis ordered, then consider the elements of A that are mapped into extremal
elements of 8. Create a new concept representing this subsetof A.

* if some (but not most} examples of some concept X are also examples of another concept Y, create a new

concept representing the intersection of X and Y.

« If very few examples of a concept X are found, then add to the agendathe task of finding a generalization of X.

Fig. 17.17 Some AM Heuristics

Tn one run, AM discovered the concept of prime numbers. How did it do that? Having stumbled onto the

natural numbers, AM explored operations such as addition, multiplication, and their inverses. It created the

conceptof divisibility and noticed that some numbers had very few divisors. AM has a built-in heuristic that

tells it to explore extremecases.It attempted to list all numbers with zero divisors (finding none), one divisor

(finding one: 1}, and two divisors. AM was instructed to call the last concept “primes.” Before pursuing this

concept, AM went on to list numbers with three divisors, such as 49. AM tned to relate this property with

other properties of 49, such asits being odd and a perfect square. AM generated other odd numbers and other

perfect squares to test its hypotheses. A side effect of determining the equivalence of perfect squares with

numbers with three divisors was to boost the “interestingness” rating of the divisor concept. This led; AM to
investigate ways in which a number could be broken down into factors. AM then noticed that there was only

one way to break a number down into prime factors (known as the Unique Factorization Theorem).

Since breaking down numbers into multiplicative components turned out to be interesting, AM decided,
by analogy, to pursue additive components~as well. It made several uninteresting conjectures, such as that  https://hemanthrajhemu.github.io
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every number could be expressed as a sum of 1 ‘s. It also found more interesting phenomena, such as that

manynumbers were expressible as the sum of two primes. By listing cases, AM determined that all even

numbers greater than 2 seemed to have this property. This conjecture, known as Goldbach’s Conjecture,is

widely believed to be true, but a proof of it has yet to be found in mathematics.

AM contains a great many general-purpose heuristics such as the ones it used in this example. Often

different heuristics point in the same place. For example, while AM discovered prime numbers using a heuristic

that involved fooking at extreme cases, another way to derive prime numbersis to use the following tworules:

e If there is a strong analogy between A and B butthere is a conjecture about A that does not hold for all

elements of B, define a new concept that includes the elements of B for which it does hold.

® If there is a set whose complementis muchrarer than itself, then create a new concept representing the

complement.

There is a strong analogy between addition and multiplication of natural numbers. But that analogy breaks

down when we observe that all natural numbers greater than I can be expressed as the sum of two smaller
natural numbers (excluding the identity). This is not true for multiplication. So the first heuristic described

above suggests the creation of a new concept representing the set of composite numbers. Then the second
heuristic suggests creating a concept representing the complementof that, namely the set of prime numbers.

Two major questions came out of the work on AM. One question was: “Why was AM ever turned off?”

That is, why didn’t AM simply keep discovering new interesting facts about numbers, possibly facts unknown

to human mathematics? Lenat [1983b] contends that AM’s performance was limited by the static nature ofits

heuristics. As the program progressed, the concepts with which it was working evolved away from the initial

ones, while the heuristics that were available to work on those concepts stayed the same. To remedy this

problem, it was suggested that heuristics be treated as full-fledged concepts that could be created and modified
by the same sorts of processes (such as generalization, specialization, and analogy) as are concepts in the task

domain. In other words, AM would run in discovery modein the domain of “Heuretics,” the study of heuristics

themselves, as well as in the domain of numbertheory. An extension of AM called EURISKO [Lenat, 1983a]

was designed with this goal in mind.
The other question was: “Why did AM work as well as it did?” One source of power for AM wasits huge

collection of heuristics about what constitute interesting things. But AM had another less obvious source of
power, namely, the natural relationship between numbertheoretical concepts and their compact representations

in AM {Lenat and Brown, 1983]. AM worked by syntactically mutating old concept definitions— stored

essentially as short LISP programs-—in the hopes of finding new, interesting concepts. [t tums out that a

mutation in a small LISP program verylikely results in another well-formed, meaningful LISP program. This

accounts for AM’s ability to generate so many novel concepts. But while humansinterpret AM as exploring
number theory, it was actually exploring the space of small LISP programs. AM succeeded in large part

becauseofthis intimate relationship between number theory and LISP programs. When AM and EURISKO

were applied to other domains, including the study of heuristics themselves, problems arose. Concepts in

these domains were larger and more complex than number theory concepts, and the syntax of the representation

language no longer closely mirrored the semantics of the domain. Asa result, syntactic mutation of a concept

definition almost always resulted in an il!-formed or useless concept, severely hampering the discovery

procedure.

Perhaps the mora! of AM is that learning is a tricky business. We must be careful how we interpret what

our Al programs are doing [Ritchie and Hanna, 1984]. AM had an implicit bias toward leaming concepts in

numbertheory. Only after that bias was explicitly recognized wasit possible to understand why AM performed

well in one domain and poorly in another.
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17.7.2 BACON: Data-Driven Discovery

AM showed how discovery might occur in a theoretical setting. Empirical scientists see things somewhat

differently. They are confronted with data from the world and must make “sense ofit. They make hypotheses,

and in order to validate them, they design and execute experiments. Scientific discovery has inspired a number

of computer models. Langley et al. [ 1981 a] present a model of data-driven scientific discovery that has been

implemented as a program called BACON,named after Sir Francis Bacon, an early philosopher of science.

BACONbegins with a set of variables for a problem. For example, in the study of the behavior ofgases,

some variables are p, the pressure on the gas, \ the volumeof the gas, , the amount of gas in moles, and 7

the temperature of the gas, Physicists have long known a law, called the idea! gas faw, that relates these

vartables. BACONis able to derive this law on its own. First, BACON holds the variables 2 and 7 constant,

performing experiments at different pressures p,, ps, and p;. BACONnotices that as the pressure increases,

the volume V decreases. Therefore,it creates a theoretical term pV. This term is constant. BACONsystematically

moves on to vary the other variables. lt tries an experiment with different values of 7 and finds that pV

changes. The two terms are linearly related with an intercept of 0, so BACONcreates a new term pV/T.

Finally, BACONvaries the term a and finds anotherlinear relation between a and pV/T.Forall valuesof #, p,

V and 7, pVMT = 8.32. This is, in fact, the ideal gas law. Fig. 17.18 shows BACON’sreasoning in a tabular

format.

 

 

        

n TF p V pV pwT pyr

1 300 100 24.96
1 300 200 12.48
1 300 300 8.32 2496
1 310 2579.2
1 320 2662.4| 8.32
2 320 16.64
3 | 320 24.96 8.32
 

Fig. 17.18 BACON Discovering the Ideal Gas Law

BACONhas beenused to discover a wide variety of scientific laws, such as Kepler’s third law, Ohm’s law,

the conservation of momentum, and Joule’s law. The heuristics BACONuses to discover the ideal gas law

include noting constancies, finding linear relations, and defining theoretical terms. Other heuristics allow

BACONto postulate intrinsic properties of objects and to reason by analogy. For example, if BACON finds

a regularity in one set of parameters,it will attempt to generate the same regularity in a similar set of parameters.

Since BACON’s discovery procedure is state-space search, these heuristics allow it to reach solutions while

visiting only a small portion of the search space. In the gas example, BACON comesup with the ideal gas law

using a minimal number of experiments.

A better understanding of the science of scientific discovery may lead one day to programs that display

true creativity. Much more work must be done in areas of science that BACON does not model, such as

determining what data to gather, choosing (or creating) instruments to measure the data, and using analogies

to previously understood phenomena. For a thorough discussionofscientific discovery programs, see Langley

et al. [1987].

17.7.3 Clustering

A third type of discovery, called clustering, is very similar to induction, as we described it in Section 17.5. In

inductive learning, a program learns to classify objects based on the labelings provided by a teacher. In

clustering, no class labelings are provided. The program must discoverfor itself the natural classes that exist

for the objects, in addition to a method for classifying instances.  https://hemanthrajhemu.github.io
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AUTOCLASS [Cheeseman ef al., 1988] is one program that accepts a number of training casesiand

hypothesizes a set of classes. For any given case, the program provides a set of probabilities that predict into

which class(es) the case is likely to fail. In one application, AUTOCLASSfound meaningful new classes of

stars from their infrared spectral data. This was an instance of true discovery by computer, since the facts it

discovered were previously unknown to astronomy. AUTOCLASSusesstatistical Bayesian reasoning of the

type discussed in Chapter 8.

17.8 ANALOGY

Analogy is a powerful inference tool. Our language and reasoning are Jaden with analogies. Consider the

following sentences:

e Last month, the stock market was a roller coaster.

e Bill is like a fire engine.

e Problems in electromagnetism are just like problemsin fluid flow.

Underlying cach of these examplesis a complicated mapping between what appear to be dissimilar concepts.
For example, to understand the first sentence above, it is aecessary to do two things: (1) pick out one key
property of a roller coaster, namely that it travels up and down rapidly and (2) realize that physical travel is

itself an analogy for numerical fluctuations (in stock prices). This is no easy trick. The space of possible

analogies is very large. We do not want to entertain possibilities such as “the stock market is like a roller

coaster because it is made of metal.”

Lakoff and Johnson [| 1980] makethe case that everyday languageisfilled with such analogies and metaphors.

An AJ programthat is unable to grasp analogy will be difficult to talk to and, consequently, difficult to teach.

Thus, analogical reasoning is an important factor in learning by advice taking. It is also important to learning

in problem-solving.
Humans often solve problems by making analogies to things they already understand how to do. This

process 1s more complex thanstoring macro-operators (as discussed in Section 17.4.2) because the old problem

might be quite different from the new problem on the surface. The difficuity comes in determining what

things are similar and what things are not. Two methodsof analogical probtem solving that have been studied

in Al are transformational and derivational analogy.

17.8.1 Transformational! Analogy

 
 Suppose youare asked to prove a theorem in plane geometry. You

 

 
 

 

    

might look for a previous theorem thatis very similar and “copy”

—_|

New a previously

its proof, making substitutions when necessary. The idea is to Problem Problem

transform a solution to a previous problem into a solution for the

current problem. Figure 17.19 showsthis process.

Anexample of transformational analogy is shown in Fig. 17.20 Solution Solution

[Anderson and Kline. 1979]. The program has seen proofs about oea oonmn
 

 

points and line segments; for example, it knows a proofthat the

line segment RNis exactly as Jong as the line segment OY, given Fig. 17.19 Transformational Analogy

that RO is exactly as long as NY. The program is now asked to prove a theorem about angles, namely that the

angle BD is equivalent to the angle CE, given that angles BC and DEare equivalent. The proof about line

segments is retrieved and transformed into a proof about angles bysubstituting the notion ofline for point,

angle for line segment, AB for R. AC for O, AD for N, and AEfor Y.

Carbonell [1983] describes one methodfor transforming old solutions into new solutions. Whole solutions

are viewed as states in a problem space called T-space. T-operators prescribe the methods of transforming
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solutions (states) into other solutions. Reasoning by analogy becomessearch in T-space: starting with an old

solution, we use means-ends analysis or some other method to find a solution to the current problem.

BC
Y

N

B

E
o

R A

Old Praof: New Proof:

RO = NY (given) BAC = DAE
ON = ON (reflexive) CAD = CAD
RO+ON=ON+NY (additive) BAC + CAD = CAD + DAE
RN = OY (transitive) BAD = CAE

Fig. 17.20 Solving a Probiem by Transformational Analogy

17.8.2 Derivational Analogy

Notice that transformational analogy does not look at how the old problem was solved: it only looks at the

final solution. Often the twists and tums involved in solving an old problem are relevant to solving a new
problem. The detailed history of a problem-   

 

  

    

      

solving episode is called its derivation. New 6 Proviously

Analogical reasoning that takes these histories Problem Problem
into accountis called derivational analogy (see New Derivation b Old Derivation

Fig. 17.21).
Carbonell [1986] claims that derivational Solution Solution

an. isa sary componentin the transfer to New to Old
alogy ts necessary conip : mn se Problem Problem

of skills in complex domains. For example,

suppose you have coded anefficient sorting Fig. 17.21 Derivational Analogy
routine in Pascal, and then you are asked to recode the routine in LISP. A line-by-line translation is not

appropriate, but you will reuse the major structural and control decisions you made when you constructed the

Pascal program. One way to model this behavioris to have a problem-solver “replay” the previous derivation

and modify it when necessary. If the original reasons and assumptions for a step’s existence still hold in the

new problem, the step is copied over. If some assumption is no longer valid, another assumption must be

found. If one cannot be found, then we can try to find justification for some alternative stored in the derivation

of the original problem. Or perhaps we can try some step marked as leading to search failure in the original

derivation, if the reasons to failure conditions are not valid in the current derivation.

Analogy in problem solving is a very open area of research. For a survey of recent see Hall [1989].

17.9 FORMAL LEARNING THEORY

Like many other AI problems, learning has attracted the attention of mathematicians and theoretical computer

scientists. Inductive learning in particular has received con-siderable attention. Valiant [1984] describes a

“theory of the leamable” which classifies problems by how difficult they are to leam. Formally, a device
leas a conceptif it can, given positive and negative examples, produce an algorithm that will classify future
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examples correctly with probability I/#. The complexity of learning a conceptis a function ofthree factors:
the error tolerance (f), the number of binary features present in the examples (#), and the size of the rule

necessary to make the discrimination (f). If the number of training examples required is polynomial in A, ¢,

and f, then the conceptis said to be learnable,

Someinteresting results have been demonstrated for concept learning. Consider the problem of learning
conjunctive feature descniptions. For example, from the list of positive and negative examples of elephants

shown in Fig. 17.22, we want to induce the description “gray, mammal, large.” It has been shown that in
conjunctive learning the number of randomly chosen training examples is proportional to the logarithm of the

total number of features [Haussler, 1988; Littlestone, 1988].° Since very few training examples are needed to

solve this induction problem,it is called learnable. Even if werestrict the learner fe positive examples only,

conjunctive learning can be achieved when the number of examplesis linearly proportional to the number of

attributes [Ehrenfeuchte¢ a/., 1989]. Learning from positive examples only is a phenomenon not modeled by

least-commitment inductive techniques such as version spaces. The introduction of the error tolerance A

makes this possible: After all, even if all the elephants in our training set are gray, we may later encounter a

genuine elephant that happens to be white. Fortunately, we can extend the size of our randomly sampled

training set to ensure that the probability of misclassifying an elephant as something else (such as a polar

bear) is an arbitrarily smail 1/A.
 

gray? mammal? large? vegetarian? wild?

+ + +, + + + (Elephant)
+ + + _ + + (Elephant)
+ + - + + - {Mouse}
- + + + + - (Giraffe)
+ - + - + - (Dinosaur)

+ + + + - + (Elephant)   
Fig. 17.22 Six Positive and Negative Examples of the Concept Elephant

Formai techniques have been applied to a number of other leaming problems. For example, given positive

and negativeexamplesof strings in some regular language, can weefficiently induce the finite automaton that

producesail and only the strings in that language? The answeris no; an exponential number of computational
steps is required [Keamsand Valiant, 1989].’ However, if we allow the learner to make specific queries(e.g.,
“Is string x in the language?”), then the problem is leamable [Angluin, 1987].

It is difficult to tell how such mathematical studies of learning will affect the ways in which we solve Al

problemsin practice. After all people are able to solve many exponentially hard problems by using knowledge

to constrain the space of possible solutions. Perhaps mathematical theory will one day be used to quantify the

use of such knowledge, but this prospect seems far off. For a critique of formal iearning theory as well as

some of the inductive techniques described in Section 17.5, see Amsterdam [1988].

17.10 NEURAL NET LEARNING AND GENETIC LEARNING

The very first efforts in machine learning tried to mimic animal learningat a neural level. These efforts were
quite different from the symbolic manipulation methods we have seen so far in this chapter. Collections of
idealized neurons were presented with stimuli and prodded into changing their behavior via forms of reward

* However, the number of examples must be finear in the numberof refevantattributes,i.e., the numberof attributes that

appear in the learned conjunction.

’ The proofofthis result rests on some unproven hypotheses about the complexity of certain number theoretic functions.
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and punishment, Researchers hoped that by imitating the learning mechanisms of animals. they might build

learning machines from very simple parts. Such hopes proved elusive. However, the field of neural network
leaming has seen a resurgence in recent years, partly as a result of the discovery of powerful new learning

algorithms. Chapter 18 describes these algorithmsin detail.

While neural network models are based on a computational “brain metaphor,” a number of other learning

techniques make use of a metaphor based on evolution. In this work, learning occurs through a selection

' process that begins with a large population of random programs. Learning algorithms inspired by evolution
are called” genetic algorithms (Holland, 1975; de Jong, 1988; Goldberg. 1989}, GAs have been dealt with in

greater detail in Chapter 23,

SUMMARY

The most important thing to conclude from our study of automated learningis that learningitself is a problem-

solving process. We can cast various leamingstrategies in terms of the methods of Chupters 2 and 3.

© Learning by taking advice

— Initial state: high-level advice

~ Final state: an operational rule

~ Operators: unfolding definitions, case analysis, matching. ete.

« Learning from examples

— Initial state: collection of positive and negative examples

~ Final state: concept description

— Search algorithms: candidate elimination. induction of decisiug trees

* Leurning in problem solving

— Initial state: solution traces to example problems

- Final state: new heuristics for solving new probterns efficiently

— Heuristics for search: generalization, explanation-based learning, utility constderations

¢ Discovery
— Initial state: some environment

— Final state: unknown

- Heuristics for search: interestingness, analogy, etc.

A learning machine is the dream system of AI. As we have seen in previous chapters, the key to intelligent

behavior is having a lot of knowledge. Getting all of that knowledge into a computeris a staggering task. One

hope of sidestepping the task is to let computers acquire knowledge independently. as people do. We do not

yet have programsthat can extend themselves indefinitely. But we have discovered some ofthe reasuns for

our failure to create such systems. If we look at actual learning programs. we find that the more knowledge a

programstarts with. the more it can learn. Tbis finding is satisfying, in the sense that # corroborates our other

discoveries about the power of knowledge. Butit is also unpleasant, because it seems that fully ,self-extending

systems are, for the present, still out of reach,

Research in machine jearning has gone throughseveral cycles of popularity. Timing ts always an important

consideration. A learning program needs to acquire new knowledge and new problem-solving abilities, but

knowledge and problem-solving are topics still underintensive study, [f we du not undersiand the nature of

the thing we want to learn, learning is difficult. Net surprisingly. the most successful learning programs

operate in fairly well-understood areas (like planning), und not in less well-understood areas (like natural

language understanding).
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EXERCISES

I.

2.

Would it be reasonable to apply Samue]’s rote-learning procedure to chess? Why (not)?

Implementthe candidate elimination algorithm for version spaces. Choose a concept space with several]

features (for example, the space of books, computers, animals, etc.) Pick a concept and demonstrate

learning by presenting positive and negative examples of the concept.

In Section 17.5.2, the concept “Japanese economy car” was learned through the presentation of five

positive and negative examples. Give a sequenee offour examples that accomplishes the same goal. In

general, what properties of a positive example make it most useful? What makes a negative example

most useful?

Recall the problem of learning disjunctive concepts in version spaces. ok

We discussed learning a conceptlike “European car,” where a European imported USA
car was defined as a car whose origin was either Germany, Italy, or oe

Britain. Suppose we expand the numberof discrete values the slot Europe Japan
origin might take to include the values Europe and Imported. Suppose

further that we have the following isa hierarchy at our disposal:

The diagram reflects facts such as “Japanese cars are a subset of imported cars” and “Italian cars ure a

subset of European cars.” How could we modify the candidate elimination algorithm to take advantage

of this knowledge? Propose new methods of updating tne sets G and 5 that would alow us to learn the

concept “European car” in one pass through a set of adequate training examples.

AM exploited a set of 250 heuristics designed to guide AM’s behavior toward interesting mathematical

concepts. A classic work by Polya [1957] describes a set of heuristics for solving mathematical problems.

Unfortunately, Polya’s heuristics are not specified in enough detail to make them implementable in a

program. In particular they lack precise descriptions of the situations in which they are appropriate

(.¢., the left sides if they are viewed as productions). Examine some of Polya’s rules and refine them so

that they could be implemented in a problem-solving program with a structure similar to AM’s.

Consider the problem of building a program to learn a grammarfor a Janguage such as English. Assume

that such a program would be providad, as input, with a set of pairs, each consisting of a sentence and

a representation of the meaning of the sentence. This is analogous to the experience of a child who

hears a sentence and sees something at the same time. How could such a program be built using the

techniques discussed in this chapter?

Germany italy 8ritain
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20
EXPERT SYSTEMS

 

An expert is a man who has made allthe mistakes which can be made in a very narrowfield.

—Niels Bohr
(1885-1962), Danish physicist

Expert systems solve problems (such as the ones in Fig. 1.1) that are normally solved by human “experts.” To

solve expert-level problems, expert systems need access to a substantial domain knowledge base, which must

be built as efficiently as possible. They also need to exploit one or more reasoning mechanisms to apply their

knowledge to the problems they are given. Then they need a mechanism for explaining what they have done

to the users who rely on them. One way to look at expert systems is that they represent applied AI in a very

broad sense. They tend to lag several years behind research advances, but because they are tackling harder
and harder problems, they will eventually be able to make use of all of the kinds of results that we have

described throughout this book. So this chapter is in some ways a review of much of what we have already

discussed.

The problems that expert systems dea] with are highly diverse. There are some general issues that arise

across these varying domains. But it also turns out that there are powerful techniques that can be defined for

specific classes of problems. Recall that in Section 2.3.8 we introduced the notion of problem classification

and we described some classes into which problems can be organized. Throughout this chapter we have

occasion to return to this idea, and we see how some key problem characteristics play an important role in

guiding the design of problem-solving systems. For example,it is now clear that tools that are developed to

support one classification or diagnosis task are often useful for another, while different tools are useful for

solving various kinds of design tasks.

20.1 REPRESENTING AND USING DOMAIN KNOWLEDGE

Expert systems are complex AJ programs. Almostall the techniques that we described in Parts I and II have

been exploited in at least one expert system. However, the most widely used way of representing domain

knowledge in expert systems is as a set of production rules, which are often coupled with a frame system that

defines the objects that occurin the rules. In Section 8.2, we saw one example of an expert system rule, which

was taken from the MYCIN system. Let’s look at a few additional examples drawn from some other
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representative expert systems. All the rules we show are English versions of the actual mules that the systems

use. Differences among these rules illustrate some ofthe important differences in the ways that expert systems
operate. ,

RI [McDermott, 1982; McDermott, 19841 (sometimes also called XCON) is a program that configures

DEC VAXsystems. [ts rules look like this:

If: the most current active context is distributing

*Massbus devices, and

there is a single-port disk drive that has not been

assigned to a massbus, and

there are no unassigned dual-port disk drives, and

the number of devices that each massbus should

support is known, and

there is a massbus that has been assigned at least

one disk drive and that should support additional

disk drives,

and the type of cable needed to connect the disk drive

to the previous device on the massbus is known

then: assign the disk drive to the massbus.

Notice that RI’s rules, unlike MYCIN’s, contain no numeric measuresofcertainty. In the task domain with

which Ri deals, it is possible to state exactly the correct thing to be done in each particular set of circumstances

(although it may require a relatively complex set of antecedents to do so). One reason for this is that there

exists a good deal of human expertise in this area. Another is that since RI is doing a design task (in contrast

to the diagnosis task performed by MYCIN),it is not necessary to considerall possible alternatives; one good

one is enough. As a result, probabilistic information is not necessary in R1.

PROSPECTOR [Duda et ai.. 1979; Hart et al., 1978] is a program that provides advice on mineral

exploration. Its rules look like this:

If: magnetite or pyrite in disseminated or veinlet form is present

then: (2, -4} there is favorable mineralization and texture

for the propylitic stage.

In PROSPECTOR,each mile contains two confidence estimates. Thefirst indicates the extent to which the

presence of the evidence described in the condition part ofthe rule suggests the validity of the rule’s conclusion.
In the PROSPECTOR mule shown above, the number ? indicates that the presence of the evidence is mildly
encouraging. The second confidence estimate measures the extent to which the evidence is necessary to the

validity of the conclusion, or stated another way, the extent to which the lackof the evidence indicatesthat the
conclusion is not valid. In the example rule shown above, the number —4 indicates that the absence of the

evidence is strongly discouraging for the conclusion.

DESIGN ADVISOR[Steele et a/., 1989] is a system that critiques chip designs. Its mijes look like:

If: the sequential level count of ELEMENT is greater than 2,

UNLESS the signal of ELEMENT is resetable

then: critique for poor resetability

DEFRAT: poor resetability of ELEMENT

due to: sequential level count of ELEMENT greater than 2

by: ELEMENT is directly resetable

https://hemanthrajhemu.github.io



 

424 Artificial intelligence
 

The DESIGN ADVISORgives advice to a chip designer, who can accept or reject the advice. If the advice

is rejected, the system can exploit a justification-based truth maintenance system to revise its model of the

circuit. The first rle shown here says that an element should be criticized for poor resetability if its sequential

ievel count is greater than two, unless its signal is currently believed to be resetable. Resetability is a fairly

common condition, so it is mentioned explicitly in this first rule. But there is also a much less common
condition, called direct resetability. The DESIGN ADVISORdoes not even bother to consider that condition

unless it gets in trouble with its advice. At that point, it can exploit the second of the mies shown above.

Specifically, if the chip designer rejects a critique about resetability and if that critique was based on a high

level count, then the system will attempt to discover (possibly by asking the designer) whether the elementis

directly resetable. If it is, then the original nile is defeated and the conclusion withdrawn.

Reasoning with the Knowledge

As these example rules have shown, expert systems exploit many of the representation and reasoning

mechanisms that we have discussed. Because these programs are usually written primarily as rule-based

systems, forward chaining, backward chaining, or some combination of the two, is usually used. For example,

MYCINused backward chaining to discover what organisms were present; then it used forward chaining to

reason from the organismsto a treatment regime. R1, on the other hand, used forward chaining.Asthe field of

expert systems matures, more systerhs that exploit other kinds of reasoning mechanismsare being developed,

The DESIGN ADVISORis an example of such a system; in addition to exploiting rules, it makes extensive

use of a justification-based truth maintenance system.

20.2 EXPERT SYSTEM SHELLS

Initially, each expert system that was built was created from scratch, usually in LISP. But, after several systems

had been built this way, it became clear that these systems often had a lot in common.In particular, since the
systems were constructed as a set df declarative representations (mostly rules) combined with an interpreter

for those representations, it was possible to separate the interpreter from the domain-specific knowledge and

thus to create a system that could be used to construct new expert systems by adding new knowledge

corresponding to the new problem domain. The resulting interpreters are called shei/s. One influential example
of such a shell is EMYCIN (for Empty MYCIN) [Buchanan and Shortliffe, 1984], which was derived from

MYCIN.
There are now several commercially available shells that serve as the basis for many of the expert systems

currently being built. These shells provide much greater flexibility in representing knowledge and in reasoning

with it than MYCIN did. They typically support mies, frames, truth maintenance systems, and a variety of

other reasoning mechanisms.

Early expert system shells provided mechanisms for knowledge representation, reasoning, and explanation.

Later, tools for knowledge acquisition were added, as we see in Section 20.4. But as experience with using

these systems to solve real world problems grew, it became clear that expert system shells needed to do

something else as well. They needed to makeit easy to integrate expert systems with other kinds of programs.

Expert systems cannot operate in a vacuum, any more than their human counterparts can. They need access to

corporate databases, and access to them needs to be controlled just as it does for other systems. They are often

embedded within larger application programs that use primarily conventional programming techniques. So

one of the important features that a shell must provide is an easy-to-use interface between an expert system

that is written with the shell and a larger, probably more conventional, programming environment.  https://hemanthrajhemu.github.io
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20.3 EXPLANATION

In order for an expert system to be an effective tool, people must be able to interact with it easily. To facilitaie

this interaction, the expert system must have the following two capabilities in addition to the ability to perform

its underlying task:

« Explain its reasoning. In many of the domains in which expert systems operate, people will not accept

results unless they have been convinced of the accuracy of the reasoning process that produced those

results. This is particularly true, for example, in medicine, where a doctor must accept ultimate

responsibility for a diagnosis, even if that diagnosis was arrived at with considerable help from a
program. Thusitis important that the reasoning process used in such programs proceed in understandable

steps and that enough meta-knowledge (knowledge about the reasoning process) be available so the

explanations of those steps can be generated.

e Acquire new knowledge and modifications of old knowledge. Since expert systems derive their power

from the richness of the knowledge bases they exploit, it is extremely important that those knowledge

bases be as complete and as accurate as possible. But often there exists no standard codification of that

knowledge; rather it exists only inside the heads of human experts. One way to get this knowledge into

a program is through interaction with the human expert. Another way is to have the program leam

expert behavior from raw data.

TEIRESIAS [Davis, 1982; Davis, 1977] was the first program to support explanation and knowledge

acquisition. TEIRESIASserved as a front-end for the MYCIN expert system. A fragment of a TEIRESIAS-
MYCIN conversation with a user (a doctor) is shown in Fig. 20.1. The program has asked for a piece of

informationthat it needs in order to continueits reasoning. The doctor wants to know why the program wants

the information, and later asks how the program arrived at a conclusion that it claimed it had reached.

An important premise underlying TEIRESIAS’s approach to explanationis that the behavior of a program
can be explained simply by referring to a trace of the program’s execution. There are ways in which this

assumption limits the kinds of explanations that can be produced, but it does minimize the overhead involved

in generating each explanation. To understand how TEIRESIASgenerates explanations of MYCIN’s behavior,

we need to know how that behavioris structured. ;
MYCIN attemptsto solve its goal of recommendinga therapy fora particular patient by first finding the cause

of the patient’s illness. It uses its production rules to reason backward from goals to clinical observations. To

solve the top-level diagnostic goal, it looks for rules whoseright sides suggest diseases. It then uses the left sides

of those rules (the preconditions) to set up subgoals whose success would enable the mules to be invoked, These

subgoals are again matched against rules, and their preconditions are used to set up additional subgoals.

Whenevera precondition describes a specific piece of clinical evidence, MYCIN uses that evidenceif it already

has access to it. Otherwise, it asks the user to provide the information. In order that MYCIN’s requests for
information will appear coherent to the user, the actual goals that MYCIN sets up are often more general than
they need be to satisfy the preconditions of an individual rule. For example,if a precondition specifies that the

identity of an organism is X, MYCIN will set up the goal “infer identity.” This approach also means that if another

mule mentions the organism’s identity, no further work will be required, since the identity will be known.

We can now retum to the trace of TEIRESIAS-MYCIN’s behavior shown in Fig. 20.1. The first question
that the user asks is a “WHY”question, which is assumed to mean “Why do you need to know that?”Particularly

for clinical tests that are either expensive or dangerous,it is important for the doctor to be convinced that the

information is really needed before ordering the test. (Requests for sensitive or confidential information

present similar difficulties.) Because MYCINis reasoning backward, the question can easily be answered by

examining the goal tree. Doing so provides two kinds of information:
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e® What higher-level question might the system be able to answer if it had the requested piece of

information? (In this case, it could help determine the category of ORGANISM-1.)

s What other information does the system already have that makes it think that the requested piece of

knowledge would help? (In this case, facts [2.1] to [2.4].}

Is the patient's illness with ORGANISM-1 a hospital-acquired infection?
* WHY
[i.e., WHY is it important to determine whether or not the

infection with CAGANISM-1 was acquired while the patient
was hospitalized?)
[2.0] This will aid in determining the category of

ORGANISM-T. It has already been established that
[2.1] the gram stain of ORGANISM-1 is gramneg, and
{2.2] the morphology of ORGANISM-1 is rod, and
[2.3] the aerobicity of ORGANISM-1 is facultative

Therefore,if
[2.4] the infection with ORGANISM-1 was not acquired

while the patient was hospitalized, then
there is strongly suggestive evidence {.8) that the
category of ORGANISM-tis enterobacteriaceae
[ALSO:there is weakiy suggestive evidence (.1) that
the identity of ORGANISM-1 is pseudomonas-aeruginosa]
[RULE037)

* HOW [2.3]
[i.e., HOW wasit established that the aercbicity of
ORGANISN-1 is facultative?]

The following were used:
[3.1] RULE0O27 indicated there is strongly suggestive

evidence (.8) that the aerobicity of ORGANISM-1
is facultative.

[3.2] RULEQ33 indicated there is weakly suggestive
evidence (.2) that the aerobicity of ORGANISM-1

is not facultative.

Since this gave a cumulative CF of {.6) for facultative,
the evidence indicates that the aercbicity of CRGANISM-1

is facuitative.

Fig. 20.1 A Portion ofa Dialogue with TEIRESIAS

When TEFRESIAS provides the answerto the first of these questions, the user may be satisfied or may
want to follow the reasoning process back even further, The user can do that by asking additional “WHY”

questions.

When TEIRESIAS provides the answer to the second of these questions andtells the user whatit already

believes, the user may want to know the basis for those beliefs. The user can ask this with a “HOW”question,

which TEIRESIASwill interpret as “How did you know that?” This question also can be answered by looking

at the goal tree and chaining backward from thestated fact to the evidence that allowed a mule that determined

the fact to fire. Thus we see that by reasoning backward from its top-level goal and by keeping track of the

entire tree that it traverses in the process, TEIRESIAS- MYCIN can do a fairly good job of justifying its

reasoning to a human user. For more details of this process, as well as a discussion of someofits limitations,

see Davis [1982].

The production system model is very general, and without somerestrictions, it is hard to support ali the

kinds of explanations that a human might want. If we focus on a particular type of problem solving, we can

ask more probing questions, For example, SALT [Marcus and McDermott, 1989] is a knowledge acquisition

program used to build expert systems that design artifacts through a propose-and-revise strategy. SALT is
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capable of answering questions like WHY-NOT (‘why didn’t you assign value x to this parameter?”) and

WHAT-IF (“what would happen if you did?”). A human might ask these questions in order to locate incorrect

or missing knowledge in the system as a precursor to correcting it. We now turn to ways in which a program

such as SALT can support the process of building and refining knowledge.

20.4 KNOWLEDGE ACQUISITION

How are expert systems built? Typically, a knowledge engineer interviews a domain expert to elucidate expert

knowledge, which is then translated into rules. After the initial system is built, it must be iteratively refined

until it approximates expert-level performance. This process is expensive and time-consuming, so it is

worthwhile to look for more autoinatic ways of constructing expert knowiedge bases, While nototally automatic

knowledge acquisition systems yet exist, there are many programsthat interact with domain experts to extract

expert knowledgeefficiently. These programs provide support for the following activities:

* Entering knowledge

e Maintaining knowledge base consistency

« Ensuring knowledge base completeness

The most useful knowledge acquisition programsare thosethat are restricted to a particular problem-solving

paradigm,e.g., diagnosis or design. It is important to be able to enumerate the roles that knowledge can play in

the problem-solving process. For example, if the paradigm ts diagnosis, then the program can structure its

knowledge base around symptoms, hypotheses, and causes. It can identify symptoms for which the expert has

not yet provided causes. Since one symptom may have multiple causes, the program can ask for knowledge about

hew to decide when one hypothesis is better than another. If we move to another type of problem-solving, say

designing artifacts, then these acquisition strategies no longer apply, and we must look for other ways of

profitably interacting with an expert. We now examine two knowledge acquisition systems in detail,
MOLE[Eshelman, 1988] is a knowledge acquisition system for heuristic classification problems, such as

diagnosing diseases. In particular, it is used in conjunction with the cover-and-differentiate problem-solving

method. An expert system produced by MOLEaccepts input data, comes up with a set of candidate explanations
or classifications that cover (or explain) the data, then uses differentiating knowledge to determine which oneis

best. The process is iterative, since explanations must themselves be justified, until ultimate causes are
ascertained.

MOLEinteracts with a domain expert to produce a knowledge base that a system called MOLE-p (for

MOLE-performance) uses to solve problems. The acquisition proceeds through several steps:

1. Initial knowledge base construction. MOLE asks the expert to list common symptoms or complaints

that might require diagnosis. For each symptom, MOLE prompts for a list of possible explanations.

MOLEtheniteratively seeks out higher-level explanations until it comes up with a set of ultimate

causes. During this process, MOLEbuilds an influence network similar to the belief networks we saw

in Chapter 8.

Whenever an event has multiple explanations, MOLEtries to determine the conditions under which

one explanation is correct. The expert provides covering knowledge, that is, the knowledge that a

hypothesized event might be the cause of a certain symptom. MOLEthentries to infer anticipatory

knowledge, which says that if the hypothesized event does occur, then the symptom will definitely

appear. This knowledge allows the system to rule out certain hypotheses on the basis that specific

symptomsare absent.

2. Refinement of the knowledge base. MOLE now tries to identify the weaknesses of the knowledge

base. One approachis to find holes and promptthe expert to fill them.It is difficult, in general, to know

whether a knowledge base is complete, so instead MOLElets the expert watch MOLE-p solving sample
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problems. Whenever MOLE-p makes an incorrect diagnosis, the expert adds new knowledge. There

are several ways in which MOLE-p can reach the wrong conclusion. It may incorrectly reject a hypothesis

because it does not feel that the hypothesis is needed to explain any symptom.It may advance a hypothesis

because it 1s needed to explain some otherwise inexplicable hypothesis, Or it may lack differentiating

knowledge for choosing between alternative hypotheses.

For example, suppose we have a patient with symptoms A and B. Further suppose that symptom A
could be caused by events X and Y, and that symptom B can be caused by Y and Z. MOLE-p might

concludeY,since it explains both A and B. If the expert indicates that this decision was incorrect, then

MOLEwill ask what evidence should be used to prefer X and/or Z over Y.

MOLEhas been used to build systems that diagnose problems with car engines, problemsin steel-rolling

mills, and inefficiencies in coal-burning power plants. For MOLEto be applicable, however, it must be
possible to preenumerate solutions or classifications. It must also be practical to encode the knowledge in

terms of covering and differentiating.

But suppose our task is to design an artifact, for example, an elevator system. It is no longer possible to

preenumerate all solutions. Instead, we must assign values to a large number of parameters, such as the width
of the platform, the type of door, the cable weight, and the cable strength. These parameters must be consistent

with each other, and they mustresult in a design that satisfies external constraints imposed by cost factors, the

type of building involved, and expected payloads.

One problem-solving method useful for design tasks is called propose-and-revise. Propose-and-revise
systems build up solutions incrementaily. First, the system proposes an extension to the current design. Then

it checks whether the extension violates any global or local constraints. Constraint violations are then fixed,

and the process repeats. It turns out that domain experts are goodatlisting overall design constraints and at

providing local constraints on individual parameters, but not so good at explaining how to arrive at global!

solutions. The SALT program [Marcus and McDermott, 1989] provides mechanisms for elucidating this

knowledge from the expert.
Like MOLE, SALT builds a dependency network as it converses with the expert. Each node stands for a

value of a parameter that must be acquired or generated. Thereare three kindsof links: contributes-to, constrains,

and suggests-revision-of. Associated with the first type of link are procedures that allow SALT to generate a

value for one parameter based on the value of another, The second type of link, constrains, rules out certain

parameter values. The third link, suggests-revision-of, points to ways in which a constraint violation can be

fixed. SALT uses the following heuristics to guide the acquisition process:

1. Every noninput node in the network needs at least one contributes-ro link coming into it. If links are

missing, the expert is promptedto fill them in.
2. No contributes-to loops are allowed in the network. Without a value for at least one parameter in the

loop, it is impossible to compute values for any parameter in that loop. If a loop exists, SALT tries to
transform one of the contributes-to links into a constrains link.

3. Constraining links should have suggests-revision-oflinks associated with them. These include constrains

"links that are created when dependency loops are broken.

Control knowledge is also important.It is critical that the system propose extensions and revisions that

lead toward a design solution, SALT allows the expert to rate revisions in terms of how muchtrouble they

tend to produce.
SALT compiles its dependency network into a set of production miles. As with MOLE,an expert can watch

the production system solve problems and can override the system’s decision. At that point, the knowledge

base can be changed or the override can be logged for future inspection.  https://hemanthrajhemu.github.io
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The processof interviewing a human expertto extract expertise presents a number ofdifficulties, regardless

of whether the interview is conducted by a human or by a machine. Experts are surprisingly inarticulate when

it comes to how they solve problems. They do not seem to have accessto the low-level details of what they do
and are especially inadequate suppliers of any type of statistical information. There is, therefore, a great deal

of interest in building systerns that automatically induce their own rules by looking at sample problems and

solutions. With inductive techniques, an expert needs only to provide the conceptual framework for a problem

and a set of useful examples.

For example, consider a bank’s problem in deciding whether to approve a loan. One approachto automating

this task is to interview loan officers in an attempt to extract their domain knowledge. Another approach is to

inspect the record of loans the bank has madein the past and then try to generate automatically rules that will

maximize the number of good loans and minimize the numberof bad ones in the future.

META-DENDRAL[Mitchell, 1978] was the first program to use learning techniques to construct niles for
an expert system automatically. It built rules to be used by DENDRAL, whose job was to deterinine the

structure of complex chemical compounds. META-DENDRAL wasable to induce its mules based on a set of

mass spectrometry data; it was then able to identify molecular structures with very high accuracy. META-

DENDRALused the version space leaming algorithm, which we discussed in Chapter 17. Another popular

method for automatically constructing expert systems is the induction of decision trees, data structures we

described in Section 17.5.3. Decision tree expert systems have been built for assessing consumercredit

applications, analyzing hypothyroid conditions, and diagnosing soybean diseases, among many other

applications.
Statistical techniques, such as multivariate analysis, provide an alternative approach to building expert-

level systems. Unfortunately, statistical methods do not produce concise rules that humans can understand.

Therefore it is difficult for them to explain their decisions.
For highly structured problemsthat require deep causal chains ofreasoning, learning techniques are presently

inadequate. There is, however, a great deal of research activity in this area, as we saw in Chapier 17.
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Since the mid-1960s, when work began on the earliest of what are now called expert systems, much progress

has been made in the construction of such programs. Experience gained in these efforts suggests the following

conclusions:

e These systems derive their power from a great deal of domain-specific knowledge, rather than from a

single powerful technique.

« In successful systems, the required knowledge is about a particular area and is well defined. This

contrasts with the kind of broad, hard-to-define knowledge that we cali common sense. It is easier to

build expert systems than ones with commonsense.

* An expert system is usually built with the aid of one or more experts, who must be willing to spend a

great deal of effort transferring their expertise to the system.
* Transfer of knowledge takes place gradually through many interactions between the expert and the

system. The expert will never get the knowledge right or complete the first time.

« The amount of knowledgethat is required dependson the task. it may range from forty rules to thousands.

¢ The choice of control structure for a particular system depends on specific characteristics of the system.
e It is possible to extract the nondomain-specific parts from existing expert systems and use them as

tools for building new systems in new domains.
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Four major problems facing current expert systems are:

e Brittleness—Because expert systems only have access to highly specific domain knowledge, they

cannotfall back on more general knowledge when the need arises. For example, suppose that we make
a mistake in entering data for a medical expert system, and we describe a patient whois 130 years old

and weighs 40 pounds. Most systems would not be able to guess that we may have reversed the two

fields since the values aren’t very plausible. The CYC system, which we discussed in Section 10.3,
represents one attempt to remedy this problem by providing a substrate of common sense knowledge

on which specific expert systems can be built.

« Lack of Meta-Knowledge—Expert systems do not have very sophisticated knowledge about their own

operation. They typically cannot reason about their own scope and limitations, making it even more

difficult to deal with the brittleness problem.
e Knowledge Acquisition—Despite the development of the tools that we described in Section 20.4,

acquisition still remains a major bottleneck in applying expert systems technology to new domains.

e Validation—Measuring the performance of an expert system is difficult because we do not know how

to quantify the use of knowledge. Certainly it is impossible to present formal proofs of correctness for

expert systems. One thing we can do is pit these systems against human experts on real-world problems.

For example, MYCIN participated in a panel of experts in evaluating ten selected meningitis cases,
scoring higher than any of its human competitors [Buchanan, 1982]

There are many issues in the design and implementation of expert systems that we have not covered. For

example, there has been a substantial amount of work done in the areaof real-time expert systems [Laffey et

al., 1988]. For more information on the whole area of expert systems and to get a better feel for the kinds of

applicationsthat exist, look at Weiss and Kulikowski [1984], Harmon and King [1985]. Rauch-Hindin [1986],

Waterman [1986], and Prerau [1990].
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1. Rule-based systems often contain mules with several conditions in their left sides.
(a) Whyis this tue in MYCIN?
(b) Whyis this true in RI?

2. Contrast expert systems and neural networks (Chapter 18) in terms of knowledge representation,

knowledge acquisition, and explanation. Give one domain in which the expert system approach wauld

be more promising and one domain in which the neural network approach would be more promising.
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