

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Automata,
Computability
and Complexity
THEORY AND APPllCATIONS

Elaine Rich

PEARSON ---Prentice
Hall

Upper Sadd le River NJ 07458

https://hemanthrajhemu.github.io

Library or Congrcss Cataloging-in-Publication Data on File

Vice Pres idcnt and Edi tori al Director, ECS: Marcia .l. I-Iorlon
Executive Editor: Tra ey DlIl7kelberger
Assislant Editor: Carole Snyder
Editorial Ass istant : ReeAllne Davis
Managing Editor: Seoll Disollno
Producti on Ed itor: J?ose Keman
Director 01' Crea tive Services: Palll Belfanti
Crea tive Director:Jllan Lopez
Cover Designer: Mavreen Eide
Managing Edi tor,AV Management and Production: Patrieia Bllrns
Art Editor: Cregory Dill/es
Director, Im age Resource Center: Melinda Reo
Manager, Ri ghts anel Permi ss ions: Zina Arahia
Manager, Visual Resea rch: Belh Brenze!
Manager, Cover Vi sual Research ami Permissions: Karen Sanatar
Manufacturing Manage r, ESM: Alexis Heydl-Long
Manllfacturing Buyer: Lisa MeDowell
Marketing Manage r: Maek Pallerson

•
• .. :

© 2008 Pea rson Ed ucation , Inc .
Pem'son Prentice Hall
Pcarso l1 Edllcation, lnc.
Uppe r Sadell e River, NJ 07458

All rights reservcel. No part 01' lhis book may be reproeluced in any form or by any ll1 eans, withoul permission in wril
ing from the I ublisher.

Pea rson Prentice Hall n l i a traele mark 01' Pea rson Educa tion. In e.

All other trael marks or proeluct names are the property 01' their respecti ve owners.

The allthor anel publishe r 01' lhis book have lIseelthei r best errons in preparing thi s book. These efforts inelude the ele
velopment , research, anel testing of the theori es and programs to eletermine their effeetivencss. TI1 C author and pub-
li 'her make 11 0 warrant y 0 1' any kind , expressed or implieel , with regard to these prograll1s or the elocllmentat ion
contained in this book. The auth or anel publisher sha ll not be liable in an)' event for incident al o r ons quenti al ela m
ages in connection with, 01' ar ising out of, the furni shing, performance, 01' use 0 1' these program . .

Print ed in the Un iteel Slales 01' All1eriea
10 9 8 7 6 5 4 3 2 I

ISBN: 0-13-228806-0
ISBN: 978-0-13-228806-4

Pearso n Eellicat ion Uel. , London
Pearson Eelucation Australi a Pty. Lid ., Sydney
Pear on Eclucat ion Singapore, Pte. Ltd .
Pea rson Eelucation North Asia Ltd. , !-Iong Kon g
Pearson Educa ti ol1 Canada, I I1c., Torol1lo
Pearson Educaci6n de Mexico, S.A. de c.v.
Pearso l1 Education - Japan, Tokyo
Pearson Educa tion Malaysia, Pte. Ltd.
Pea rson Education, Inc., Upper Saddle J?ivel'; New Jersey

https://hemanthrajhemu.github.io

CONTENTS

Preface XIII

Acknowledgments XVII

Credits xix

PART I: INTRODUCTION 1

1 Why Study the Theory of (omputation? 2
1.1 The Shelf Life of Programming Tools 2

1.2 Applications of the Theory Are Everywhere 5

2 Languages and Strings 8
2.1 Strings 8

2.2 Languages 10

Exercises 19

3 The Big Pieture: A Language Hierarehy 21
3.1 Defining the Task: Language Recognition 21

3.2 The Power of Encoding 22

3.3 A Machine-Based Hierarchy of Language Classes 28

3.4 A Tractability Hierarchy of Language (lasses 34

Exercises 34

4 (omputation 36
4.1 Decision Procedures 36

4.2 Determinism and Nondeterminism 41

4.3 Functions on Languages and Programs 48

Exercises 52

PART 11: FINITE STATE MACHINES AND REGULAR
LANGUAGES 53

5 Finite State Maehines 54
5.1 Deterministic Finite State Machines 56

5.2 The Regular Languages 60

5.3 Designing Deterministic Finite State Machines 63

iii

https://hemanthrajhemu.github.io

iv Contents

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Nondeterministic FSMs 66

From FSMs to Operational Systems 79

Simulators for FSMs - 80

Minimizing FSMs - 82
A Canonical Form for Regular Languages 94

Finite State Transducers - 96
Bidirectional Transducers. 98

Stochastic Finite Automata : Markov Models and HMMs _ 101

Finite Automata, Infinite Strings: Büchi Automata. 115

Exercises 121

6 Regular Expressions 127
6.1 What is a Regular Expression? 128

6.2 Kleene's Theorem 133

6.3 Applications of Regular Expressions 147

6.4 Manipulating and Simplifying Regular Expressions 149

Exercises 151

7 Regular Grammars • 155
7.1 Definition of a Regular Grammar 155

7.2 Regular Grammars and Regular Languages 157

Exercises 161

8 Regular and Nonregular Languages 162
8.1 How Many Regular Languages Are There? 162

8.2 Showing That a Language Is Regular 163

8.3 Some Important Closure Properties of Regular Languages 165

8.4 Showing That a Language is Not Regular 169

8.5 Exploiting Problem-Specific Knowledge 178

8.6 Functions on Regular Languages 179

Exercises 182

9 Aigorithms and Decision Procedures for Regular
Languages 187

9.1 Fundamental Decision Procedures 187

9.2 Summary of Aigorithms and Decision Procedures for Regular Languages 194
Exercises 196

10 Summary and References 198
References 199

https://hemanthrajhemu.github.io

--

PAR T

INTRODUCTION

1

https://hemanthrajhemu.github.io

CHAPTER 1

Why Study the Theory
of (omputation?

1.1

2

I
n this book, we present a theory of what can be computed and what cannot. We al 0

sketch some theoretical frameworks that can info rm the design of programs to solve
a wide variety of problems. But why do we bother? We don 't we just skip ahead and

write the programs that we need? This chapter is a short attempt to answer that question.

The Shelf Life of Programming Tools
lmplementations come and go. In the somewhat ea rly day
ming meant knowing how to write code like: 1

of computing, program-

ENTRY 5XA 4,RETURN
LDQ X
FMP A
FAD B
XCA
FMP X
FAD C
5TO RE5ULT

RETURN TRA 0

A BSS 1
B BSS 1
C B55 1
X BSS 1
TEMP BSS 1
STORE BSS 1

END

ITh is program was written for the IBM 7090. lt computes the value of a imple quadrati c ax ! hx c.

https://hemanthrajhemu.github.io

1.1 The Shelf Life of Programming Tools 3

In 1957, Fortran appeared and made it possible for people to write programs that looked
more straightforwardly like mathematics. By 1970, the IBM 360 series of computers was
in widespread use for both business and scientific computing. To submit a job, one keyed
onto punch cards a set of commands in OS/360 JCL (Job Control Language). Guruhood
attached to people who actually knew what something like this meant:2

IIMYJOB JOB (COMPRESS), 'VOLKER BANOKE', CLASS=P,CONO=(O,NE)
IIBACKUP EXEC PGM=IEBCOPY
IISYSPRINT 00 SYSOUT=*
IISYSUT1 00 OISP=SHR,OSN=MY.IMPORTNT.POS
IISYSUT2 00 OISP=(,CATLG) ,OSN=MY.IMPORTNT. POS. BACKUP,
II UNIT=3350,VOL=SER=OISK01,
II OCB=MY.IMPORTNT. POS, SPACE=(CYL, (10,10,20))
IICOMPRESS EXEC PGM=IEBCOPY
IISYSPRINT 00 SYSOUT=*
IIMYPOS 00 OISP=OLO,OSN=*.BACKUP.SYSUTl
IISYSIN 00 ,',
COPY INOO=MYPOS,OUTOO=MYPOS
IIOELETE2 EXEC PGM=IEFBR14
IIBACKPOS 00 OISP=(OLO,OELETE,OELETE),OSN=MY.IMPORTNT.POS.BACKUP

By the turn of the millennium, gurus were different. They listened to different music and
had never touched a keypunch machine. But many of them did know that the following
Java method (when compiled with the appropriate libraries) allows the user to select a
fi le, which is read in and parsed using whitespace delimiters. From the parsed file, the
program builds a freq uency map, which shows how often each word occurs in the file:

public static TreeMap<String, Integer> create() throws IOExcept;on
public static TreeMap<String, Integer> create() throws

IOExcept;on

}

{ Integer freq;
String word;

}

TreeMap<String, Integer> result = new TreeMap<Str;ng, Integer>();
JFileChooser c = new JFileChooser();
int retval = c.showOpenOialog(null);
if (retval == JFileChooser.APPROVE_OPTION)

{ Scanner s = new Scanner(c.getSelectedFile());
while(s.hasNext())

}

{ word = s.next().toLowerCase();
freq = result.get(word);
result.put(word, (freq == null? 1 freq + 1));

}

return result;

2H sa fe ly reorgani ze and compresses a partitio ned data e t.

https://hemanthrajhemu.github.io

4 (hapter 1 Why Study the Theory of (omputation?

Along the way, other programming languages became popular, a t least within some
circles. There was a time when some people bragged th a t they could write code
like:3

(r IV) > (+ IV) - r IV

Today's programmers can 't read code fro m 50 years ago. Programmers from the early
days could never have imagined what a program of today would look lik e. In the face
of that kind of change, what does it mean to learn the science of computing?

The answer is that there are mat hematical propertie , both oE probl e ms and of
algorithms for solving problems, that depend on nei ther th e details of today 's technol
ogy 110r th e programming fashion du jour. The theory that we will present in this book
addresses some of those properties. Most of what we will discuss was known by the
ea rly 1970s (barely the middle ages of computing hi story). But it is still use rul in two
key ways:

• It provides a set oE abstract structures that are useful for solving certain cla es of
problems. These abstract structures can be implemented on whateve r hardware/
software platform is available.

• It defines provable limits to what can be computed , regardless of processor speed
or memory size. An understanding oE these limits helps us to focus our design effort
in areas in which it can pay off, rather than on the computing eguivalent of the
search for a perpetual motion machine.

In this book our focus will be on analyzing problems, rather than on comparing solu
tions to problems. We will , of course, spend a lot of time solving problems. But our goal
will be to discover fundamental properties of the problems themselves:

• Is there any computational solution to the problem? If not, is there a rest ricted but
useful variation of the problem for which a solution does ex ist?

• If a solution exists, can it be implemented using some fixed amount of memory?

• lf a solution ex ists, how efficient is it? More specifically, how do its time and space
reguirements grow as the size of the problem grows?

• Are there groups of problems that are eguivalent in the sense th at if th ere i an eE
ficient solution to one member of the group there is an eEEicien t so lutio n to all the
others?

3 An expressio n in the programmin g la nguage A PL Q . It returns I if th e largest va lue in a three e lement vec
tor is greater than the sum of the o t he r two e lement s, and Ootherwis [Gillman and Rose 1984, p. 326]. A I
tho ugh APL is not o ne o f th e major progra milling languages in use today, its invent a r, Ken ne th Iverson,
received the 1979 Turing Award for its deve lopment.

https://hemanthrajhemu.github.io

1.2 Applications of the Theory Are Everywhere 5

1.2 Applications of the Theory Are Everywhere
Computers have revolutionized our worid. They have changed the course of our daily
lives, the way we do science, the way we entertain ourselves, the way that business is
conducted, and the way we protect our security. The theory that we present in this
book has applications in a11 of those areas. Throughout the main text, you will find
notes that point to the more substantive application-focused discussions that appear in
Appendices G-Q. Some of the applications that we'll consider are:

• Languages, the focus of this book, enable both machine/machine and person/ma
chine communication. Without them, none of today's applications of computing
could exist.

Network communication protocols are languages. (1.1) Most web pages are
described using the Hypertext Markup Language, HTML. (Q.1.2) The Se
mantic Web, whose goal is to support intelligent agents working on the Web,
exploits additionallayers of languages, such as RDF and OWL, that can be
used to describe the content of the Web. (I. 3) Music can be viewed as a lan
guage, and speciatized languages enable composers to create new eIectronic
music. (N.1) Even very unlanguage-like things, such as sets of pictures, can
be viewed as languages by, for example, associating each picture with the
program that drew it. (Q.1.3)

• Both the design and the implementation of modern programming languages rely
heavily on the theory of context-free languages that we will present in Part IH. Con
text-free grammars are used to document the languages' syntax and they form the
basis for the parsing techniques that a11 compilers use.

The use of context-free grammars to define programming languages and to
build their compilers is described in Appendix G.

• People use natural languages, such as English, to communicate with each other.
Since the advent of word processing, and then the Internet, we now type or speak
our words to computers. So we would like to build programs to manage our words,
check our grammar, search the World Wide Web, and translate from one language
to another. Programs to do that also rely on the theory of context-free languages
that we present in Part III.

A sketch of some of the main techniques used in naturallanguage process
ing can be found in Appendix L.

• Systems as diverse as parity checkers, vending machines, communication protocols,
and building security devices can be straightforwardly described as finite state ma
chines, which we'll describe in Chapter 5.

https://hemanthrajhemu.github.io

6 Chapter 1 Why Study the Theory of Computation?

A vending machine is described in Example 5.1. A family of network com
munication protocols is modeled as finite state machines in 1.1. An exampJe
of a simple building security system, modeled as a finite state machine, can be
found in J.1. An example of a finite state controller for a soccer-playing robot
can be found in P.4.

• Many interactive video games are (Iarge, often nonde termini tic) finite state
machines.

An example of the use of a finite state machine to describe a role Pl aY~' ng
game can be found in N.3.1.

- -

• DNA is the language of life. DNA molecules, as we il as the proteins th at they de
scribe, are strings that are made up of symbols drawn from small alph abe ts (nu
c1eotides and amino acids, respectively). So computational biologists exploit many
of the same tools that computational linguists use. For example, they rely on tech
niques that are based on both finite state machines and context-free gra mmars.

[Fo"r ~~~~~~~~~~~~:-~ to computational biology see Appendix K. ~

• Security is perhaps the most important property of many computer systems. The
undecidability results that we present in Part IV show that there cannot exist a gen
eral purpose method for automatically verifying arbitrary securit y prope rties of
programs. The complexity results that we present in Part V serve as the basis for
powerful encryption techniques.

For a proof of the undecid~bility of ~he correctness of a very simple security!
model, see J.2. For a short mtroduct1on to cryptography, see J.3. ~

• Artificial intelligence programs solve problems in task domains ranging from medical
diagnosis to factory scheduling. Various logical frameworks have been proposed for
representing and reasoning with the knowledge that such programs exploit.1l1e un
decidability resuIts that we present in Part IV show that there cannot exist a general
theorem prover that can decide, given an arbitrary statement in first order logic,
whether or not that statement follows from the system's axioms. The complexity re ults
that we present in Part V show that, if we back ofi to the far less ex pressive 'ystem of
Boolean (propositional) logic, while it becomes possible to decide the validity of a given
statement, it is not possible to do so, in general, in a reasonable amount o f time.

For a ?iscu~sion of the role of ~ndecjdability an~ complexity res.ults in arti]
fici al mtelhgence, see AppendIx M. The same IS ues plague the develop
ment of the Semantic Web. (1.3) L______ ----- ____ _

https://hemanthrajhemu.github.io

1.2 Applications of the Theory Are Everywhere 7

• Clearly documented and widely accepted standards playa pivotal role in modern
computing systems. Getting a diverse group of users to agree on a single standard is
never easy. But the undecidability and complexity results that we present in Parts IV
and V mean that, for some important problems, there is no single right answer for all
uses. Expressively weak standard languages may be tractable and decidable, but they
may simply be inadequate for some tasks. For those tasks, expressively powerfullan
guages, that give up so me degree of tractability and possibly decidability, may be re
quired. The provable lack of a one-size-fits-allIanguage makes the standards process
even more difficult and may require standards that allow alternatives.

We'll see one example of this aspect oi the standards process when we con
si der, in 1.3, the design of a description language for the Semantic Web.

• Many natural structures, including on es as different as organic moleeules and com
puter networks, can be modeled as graphs. The theory of complexity that we present
in Part V teils us that , while there exist effieient algorithms ior answering some im
portant questions about graphs, other questions are "hard" , in the sense that no ef
fieient algorithm ior them is known nor is one likely to be developed.

.-------------------------------------,

We'll diseuss the role of graph algorithms in network analysis in 1.2.

• The complexity results that we present in Part V eontain a lot of bad news. There
are problems that matter yet for whieh no effieient algorithm is likely ever to be
found. But praetieal solutions to so me of these problems exist. They rely on a vari
ety of approximation teehniques that work pretty weH most of the time.

An almost optimal solution to an instance of the traveling salesman prob
lem with 1,904,711 cities has been found, as we'll see in Seetion 27.1. Ran
domized algorithms can find prime numbers effieiently, as we'll see in
Section 30.2.4. Heuristic search algorithms find paths in computer games
(N.3.2) and move sequences for champion chess-playing programs. (N.2.5)

https://hemanthrajhemu.github.io

CHAPTER 2

Languages and Strings

I n the theory that we are about to build, we are going to analyze problems by cast
ing them as instances of the more specific question , "Given some string sand some
language L, is s in L?" Before we can formalize what we mean by that, we need to

define OUT terms.
An alphabet, often denoted L, is a finite set. We will ca]] the members of L symbols

or characters.

2.1 Strings

8

Astring is a finite sequence, possibly empty, of symbols drawn from some alphabet L.
Given any alphabet L , the shortest string that can be formed from L i the empty
string, which we will write as e. The set of all possible strings over an alphabet L is writ
ten L*. This notation exploits the Kleene star operator, which we will define more gen
erally below.

EXAMPLE 2.1 Alphabets

Alphabet name

The English alphabet

The binary alphabet

A star alphabet

A music alphabet

Alphabet symbols

{ a, b, c, ... , z}

{0,1}

{*,O,*, * ,*,Z:X,*}

{",J, J, ,h, ft, } }

Example strings

e, aabbcg,aaaaa

e, 0, 001100

e, OO, O*** * ~

e, oUJIJJJI

In running text, we will indicate literal symbols and strings by wriüng them 1 i ke thi s.

https://hemanthrajhemu.github.io

--
2.1 Strings 9

2.1.2 Functions on Strings

The length of astring s , which we will write as Isl, is the number of symbols in s. For
example:

\cl = 0

\1001101\ = 7

For any symbol c and string s, we define the function #c(s) to be the number of times
that the symbol c occurs in s. So, for example, #a(abbaaa) = 4.

The concatenation of two strings sand t, written s II tor simply st, is the string formed
by appending I to s. For example, if x = good and y = bye, then xy = goodbye. So
Ixy l = lx i + Iy l.

The empty string, 8, is the identity far concatenation of strings. So Vx (X8 = 8X = x).
Concatenation, as a function defined on strings, is associative. So Vs, t, w «st)w =

s (lW».
Next we define string replication. For each string wand each natural number i, the

string w i is defined as:

For example:

a 3 = aaa
(bye)2 = byebye
aOb3 = bbb

wO = e

Wi+1 = wiw

Finally we define string reversal. For each string w, the reverse of w, which we will
wri te w R, is defined as:

If Iwl = OthenwR = w = 8.

lf Iw l 2= 1 then :Ja E 2: (:lu E 2:* (w = ua», (i.e., the last character of w is a.)
Then define w R = auR.

THEOREM 2.1 Concatenation and Reverse of Strings

Theorem: If wand x are strings, then (wxl = XRWR.
For example, (nametag)R = (tag)R(name)R = gateman .

Proof: The proof is by induction on I x I:

Base case: lxi = O. Then x = 8, and (wx)R = (we)R = (w)R = ewR = eRwR = XRW R.

Prove:Vn;::: 0 «(lxi = n) - «wx)R = xRWR» - «lxi = n + 1) - «WX)R = xRW R»).

Consider any string x, where lxi = n + 1. Then x = ua far some character a and
lul = n. So:

https://hemanthrajhemu.github.io

10 Chapter 2 Languages and Strings

(w x)R = (w (ua»R

= ((wu)a)R

= a(wu)R

= a(uRwR)

= (auR)w R

= (ua)RwR

= xRW R

2.1.3 Relations on Strings

rewrite x as ua

associativity oE concatenation

definition of reversal

induction hypothesis

associat ivi ty of conca tenation

definition oE reversal

rewrite ua as x

Astring s is a substring of astring t iff S occurs contiguously as pari of I . For example:

aaa

aaaaaa

is a substring of

is not a substring of

aaabbbaaa

aaabbbaaa

Astring s is a proper substring of astring 1 iff s is a substring of land s i= I . Every
string is a substring (although not a proper substring) of itself. The empty strin g, c, is a
substring of every string.

Astring 5 is a prefix of t iff 3x E :2/' (I = sx). Astring s is a proper prefix of a tring t
iff s is aprefix of r and s i= t. Every string is aprefix (a lthough not a prope r prefix) of
itself. The empty string, c, is aprefix of every string. For example, the prefixes of abba
are:c, a , ab , abb , abba.

Astring s is a suffix of t iff 3x E 2:* (r = xs). Astring s is a proper suffix of astring r
iff s is a suffix of land s =j::. l. Every string is a suffix (a lthough not a proper suffix) of it
self. The empty string, c, is a suffix of every str in g. Fo r exampLe, the suffixes of abba are:
c, a , ba, bba, abba.

2.2 Languages
A language is a (finite or infinite) set of strings over a finite alph abet 2:. Whe n we are
talking about more than one language, we will use the notation 2: L to mean the a lpha
bet horn which the strings in the language L are form ed.

EXAMPlE 2.2 Defining Languages Given an Alphabet

Let 2: = {a, b}. 2: * = {c, a, b, aa, ab, ba, bb, aaa, aab, . .. }.

Some examples of languages over 2: are:

0 , {e} , {a, b}, {c, a, aa, aaa, aaaa, aaaaa},
{ c , a, aa, aaa, aaaa, aaaaa, ... }

https://hemanthrajhemu.github.io

2.2 Languages 11

2.2.2 Techniques for Defining Languages
We will use a variety of techniques for defining the languages that we wish to consider.
Since languages are sets, we can define them using any of the set-defining techniques
that are described in A.2. For example, we can specify a characteristic function, i.e. , a
predicate that is True of every element in the set and False of everything else.

EXAMPLE 2.3 All a's Precede All b's

Let L = {w E {a, b} * : a11 a 's precede all b' 5 in w} . The strings e, a, aa, aabbb,
and bb are in L. TI1e strings aba, ba, and abc are not in L. Notice that some strings
trivially satisfy the requirement for membership in L. The rule says nothing about
there having to be any a's 01' any b's. All it says is that any a's there are must come
before a11 the b's (lf any). If there are no a 's 01' no b's, then there can be none that
violate the rule. So the strings e, a, aa, and bb trivially satisfy the rule and are in L.

EXAMPLE 2.4 Strings That End in a

Let L = { x : 3y E {a, b} * (x = yan. The strings a , aa, aaa, bbaa, and ba are in L.
The strings e, bab, and bca are not in L. L consists of aB strings that can be
fo rmed by taking some string in {a, b} * and concatenating a single a onto the
end of i1.

EXAMPLE 2.5 The Perils of Using Engl ish to Describe Languages

Let L = {x#y: x, y E {O, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and , when x and y are viewed as
the decimal representations of natural numbers, square(x) = y} . The strings 3#9
and 12#144 are in L. The strings 3#8, 12 , and 12#12#12 are not io L. But what
about the string #? Is it in L? It depends on what we mean by the phrase, "when x
and y are viewed as the decimal representations of natural numbers." Is e the dec
imal representation of some natural number? lt is possible that an algorithm that
converts strings to numbers might convert e to 0. In that case, since ° is the square
of 0, # is in L. If, on the other hand, the string-to-integer converter fa ils to accept e
as a valid input, # is not in L. TI1is example illustrates the dangers of using English
descriptions of sets. They are sometimes ambiguous. We will strive to use only
unambiguous terms. We will also, as we discuss below, develop other definitional
techniques that do not present this problem.

https://hemanthrajhemu.github.io

12 Chapter 2 Languages and Strings

EXAMPLE 2.6 The Empty Language

Let L = {} = 0 . L is the language that contains no strings.

EXAMPLE 2.7 The Empty Language is Different From the Empty String

Let L = {e}, the language that contains a single string, e. Note that L is different
from 0 .

AU of th e exampl es we have conside red so ra r fi t th e definition th at we are
using for the term Language: a se t of strings. They' re quite different , tho ugh, from
the eve ryday use o f the te rm . E veryday languages are a lso languages under our
definition.

EXAMPLE 2.8 English Isn't a Well-Defined Language

Let L = {w : w is a sentence in English}.

Exampl es: Kerry hit the ball.
Colorless green ideas sleep furiously.4

The window needs fixed.
Ball the Stacy hit blue.

/~; Clearly in L.
1* The syntax is correct

but what could it mean?
/* In some dialects of L.
1* Clearly not in L.

The problem with languages like E ngli sh is that there is no c1 ear agreement on
what strings they contain. We will not be able to appty the theory that we are
about to build to any language for which we cannot first produce a form al specifi
cation . Naturall anguages, like E nglish or Spanish 0 1' Chinese, while hard to spec
ify, are of great practical importance, though. As a result, substantial effort has
been expended in crea ting formal and computationall y effective descriptions of
them that are good enough to be used as the basis for applications such as gram
mar checking and text database retri eva l.

To the extent th at formal descriptions of natural languages lik e E nglish ca n
be crea ted, the theory that we are about to develop can be applied, a we will
see in Parts Il and III and Appendix L.

41l1is c1assic exal1lple of a syntactica ll y correc! bur se l1lantically anol1lalous s ntcllce is from I horn ky 1957].

https://hemanthrajhemu.github.io

2.2 Languages 13

EXAMPLE 2.9 A Halting Problem Language

Let L = {w: w is aC pro gram that halts on all inputs}. L is substantially more
complex than, for example, {x E {a,b }*: all a 's precede all b's}. But, unlike Eng
lish, there does exist a clear formal specification of it. The theory that we are
about to build will tell us something very useful about L.

We can use the relations that we have defined on strings as a way to define
languages.

EXAMPLE 2.10 Using the Prefix Relation

We define the following languages in terms of the prefix relation on strings:

L 1 = { W E {a, b} * : no prefix of W contains b}

= { e I a , aa I aaa I aaaa. aaaaa I aaaaaa I .. • }.

L2= { W E {a I b} * : no prefix of w starts with b}

= { W E {a, b} * : the first character of w is a} U {e}.

L 3= {w E {a I b} * : every prefix of w starts with b}
= 0.

L 3 is equal to 0 because eis aprefix of every string. Since 8 does not start with
b, no strings meet L 3's requirement.

Recall that we defined the replication operator on strings: For any string sand inte
ger n, Sll = neopies of s concatenated together. For example, (bye)2 = byebye. We
can use replication as a way to define a language, rather than a single string, if we allow
n to be a variable, rather than a specific eonstant.

EXAMPLE 2.11 Using Replication to Define a Language

LetL = {all:n;::: O}.L = {S, a , aa, aaa , aaaa , aaaaa , ... }.

Languages are sets. So, if we want to provide a computational definition of a lan
guage, we could specify either:

• a language generator, which enumerates (lists) the elements of the language, or

• a language recognizer, whieh decides whether or not a eandidate string is in the lan
guage and returns True if it is and Fa/se if it isn't.

https://hemanthrajhemu.github.io

14 Chapter 2 Languages and Strings

For example, the logical definition , L = {x: :Jy E la, bj * (x = ya) j can be turned
into either a language generator (enumerator) or a language recognizer.

In some cases, when considering an enumerato r for a languagc L, we may care
about the order in which the elements of L are generated. Ir th ere exi I .~ t tal rder
D of the elements of 2: L (as there does, fo r example, on the Ietters of the Roman alpha
bet or the symbols for the digits 0 - 9) , th en we can use D to de fin e on L a useful tota l
order called lexicographic order (written < rJ:

• Shortel' strings precede longer ones: '\Ix ('\Iy ((lx i < Iyl) ~ (x < L y))), and

• Of st rings th at are the same length , sort them in diction ary order u ing D.

Wh en we use lexicographic order in the rest of this book, we wi ll a ume th at 0 is
the standard sort order on letters and numerals. Ir D i not obvioLl , we will state il.

We will say that a program lexicographically enumerales the elements of L ifr it
enumerates them in lexicographic order.

EXAMPlE 2.12 Lexicographic Enumeration

Let L = {X E {a, b}*: all a 's precede al1 b's}. Th e lexicographic enumeration
of L is:

c, a, b, aa, ab , bb, aaa, aab, abb, bbb, aaaa, aaab , aabb, abbb, bbbb, aaaaa, .. .

[n Parts n, IIl , and IV of this book , we will consider a va rie ty of form al technique
for specifying both generators (enumerators) and recognize rs for vari ous c1asse of
languages.

2.2.3 What is the Cardinality of a Language?

How large is a language? The smallest language over any alph abet is 0 , wh se cardi
nality is O. The largest language over any alphabet 2: is 2:*. Wh at i I :2:*I? Suppose that
2: = 0 . Then 2: * = {c} and 1:2:* 1 = 1. But wh at abou t the rar more useful case in
which 2: is not empty?

THEOREM 2.2 The Cardinality of L*
--

\ Theorem: H :2: * 0 then :2: * is countably infinite.

\ Proof: The elements of :2: * can be lexicographicall y enulll ra ted by a straightfor-
\ ward procedure that:

\ .
I •

Enumerates all strings of length 0, tben lengtb L, Ihen length 2, and so forth .

Within the strings of a given length , enumerates them in diclion ary order.

https://hemanthrajhemu.github.io

2.2 Languages 15

This enumeration is infinite since there is no longest string in L*. By Theorem A.l ,
since there ex ists an infinite enumerat ion of L* , it is countably infinite.

Since any language over L is a subset of L*, the cardin ality of every language is at
least 0 and at most ~ o . So allianguages are either finit e or countably infinite.

2.2.4 How Many Languages Are There?

Let L be an alphabet. How many diffe rent languages are there that are defined on L?
The set of languages defined on L is 0l (L*) , the power set of L *, or the set of alt sub
sets oE L*. If L = 0 then L * is {e} and 0l (L *) is {0 , {e}} . But, aga in , what about the
useful case in which L is not empty?

THEOREM 2.3 An Uncountably Infinite Number of Languages

Theorem: If L 1= 0 tben the set of languages over L is uncountably infinÜe.

Proof: The set oE languages defined on L is 0l (L *). By Theorem 2.2, L~: is count
ably infinite. By Theorem AA, if S is a countably infinite set, 0l (S) is uncount
ably infinite. So 0l (L ":) is uncountably infinite.

2.2.5 Functions on Languages

Since languages are sets, all of the standard set operations are well-defined on languages.
In particul ar, we will find union , intersection, difference, and complement to be useful.
Complement will be defined with L * as the universe unless we explicitly state otherwise.

EXAMPLE 2.13 Set Functions Applied to Languages

Let: L = {a, b}.
L1 = {strings with an even number of a 's} .
L2 = {strings with no b's} = {e, a , aa, aaa, aaaa, aaaaa, aaaaaa, ... }.

L I U L 2 = {all strings of just a 's plus strings that contain b's and an even

number of a 's} .

LI n L 2 = {e , aa, aaaa, aaaaaa, aaaaaaaa, . .. }.

L 2 - LI = {a, aaa, aaaaa, aaaaaaa, ' " } .

.,(L2 - LI) = {strings with at least one b } U {strings with an even number
oE a 's} .

Because languages are sets of strings, it mak es sen e to define operations on them in
term of th e opera ti ons that we have al ready defined on strings. Three useful on es to
consider are concatenation, Kleene star, and reverse.

Let LI and L2 be two languages defined over some alphabet L . Then their
concalenation , written L I L2 i :

https://hemanthrajhemu.github.io

16 Chapter 2 Languages and Strings

EXAMPLE 2.14 Concatenation of Languages

Let: LI = {cat, dog , mouse, bi rd} .
L 2 = {bone, food}.

L1L2 = {catbone, catfood, dogbone , dogfood , mousebone mousefood,
birdbone, birdfood}.

The language {E:} is the identity for concatenation of languages. So, fo r alll anguages
L , L { e} = {E:} L = L.

The language 0 is a zero fo r concatenation of languages. So, for all languages L,
L0 = 0 L = 0 . That 0 is a zero foll.ows from the definition of the concatenation of
two languages as the set consisting of a1l strings that can be form ed by e lecting so me
string s from the first language and some string (from the second language and then
concatenating them together. There are no ways to select astring from the empty set.

Concatenation, as a function defined on languages, is associali ve. So, far all lan
guages L1, L2, and L 3:

It is important to be careful when concatenating languages th at are defined using
replication. R ecall that we used the notation {all: 11 ;::: O} to mean the set of strings

composed of zero or more a 's. That notation is a shorthand far a longer, perhaps c1earer

expression, {w : 3n ;::: 0 (w = a ll
)}. In this form , it is clear that n is a variable bound by

an existential quantifier. We will use the convention that the scope of such quantifiers is
the entire expression in which they occur. So multiple occurrence o f the ame variable
letter are the same variable and must take on the same va lue. Suppose that LI =

{all: n ;::: O} and L 2 = {b ll : n ;::: O} . By the definition of language concatenation,

L 1L 2 = {w: w consists of a (possibly empty) a region foUowed by a (possibly empty)
b region}. L 1L 2 ;f. {allbfl

: n ;::: O} , since every string in {allbll : n ;::: O} must have the

same number of b's as a 's. The easiest way to avo id confusion is simply to rename con
flicting variables before attempting to concatenate the expressio ns that contai11 them.
So L 1L 2 = {al1 b/J/: n, m ;::: O}. In Chapter 6 we will define a conveni ent no ta tion that

will let us write this as a*b*.
Let L be a language defined over some alphabet L. Then the Kleene star of L, writ

ten L* is:

L* = {E:} U {WE L* : 3k ;::: 1 (3Wt ,W2""WkE L (w = W IW 2 ... wd) }.

In other words, L* is the set of strings that can be form ed by concatenating together
zero or more strings from L.

EXAMPlE 2.15 Kleene Star

Let L = {dog, cat , fi sh} . Then:

L* = {e , dog, cat, fi sh, dogdog , dogcat, . . . ,

fi shdog, .. . , fi shcatfi sh, fi shdogfi shcat, . .. }.

https://hemanthrajhemu.github.io

2.2 Languages 17

EXAMPLE 2.16 Kleene Star, Again

Let L = {w E {a , b} * : #a (w) is odd and #b (w) is even}. Then L * = { W E {a, b} * :
#b (w) is even}. TI1e constraint on the number of a's disappears in the description of
L* because strings in L* are formed by concatenating together any number of
strings from L. If an odd number of strings are concatenated together, the result
will contain an odd number of a 's. If an even number are used , the result will con
tain an even number of a's.

L* always contains an infinite number of strings as long as L is not equal to either 0
or {8} (i.e. , as long as there is at least one nonempty string any number of which can be
concatenated together). If L = 0, then L* = {8} , since there are no strings that could
be concatenated to e to make it longer. If L = {e}, then L * is also {8}.

It is sometimes useful to require that at least one element of L be selected. So we
define:

L+ =LL*.

Another way to describe L + is that it is the closure of L under concatenation. Note
that L + = L* - {8} iff 8 ~ L.

EXAMPLE 2.17 L +

Let L = {O, I} + be the set of binary strings. L does not include e.

Let L be a language defined over some alphabet L. Then the reverse of L , written
L R is:

L R = {w E L:;: : w = xR for some x E L}.

In other words, L R is the set of strings that can be formed by taking some string in L
and reversing it.

Since we have defined the reverse of a language in terms of the definition of reverse
applied to strings, we expect it to have analogous properties.

THEOREM 2.4 Concatenation and Reverse of Languages

Theorem: lf L J and L 2 are languages, then (L 1L2)R = L2
RLt.

Proof: If x and y are strings, then \Ix (\ly «xy)R = yRxR)) Theorem 2,1

(L JL2)R = {(xy) R :xEL\ andYEL2 } Definitionofconcatenation
of languages

Lines 1 and 2

Definition of concatenation
of languages

https://hemanthrajhemu.github.io

18 Chapter 2 Languages and Strings

We have now defined the two important data types, string and language, that we will
use throughout this book.]n the next chapter, we will see how we can u. e them to de
fine a framework that will enable us to analyze computational problems 01' a ll orts
(not just on es you may naturally think of in terms of strings) .

2.2.6 Assigning Meaning to the Strings of a Language

Sometimes we are interested in viewing a language just as a set of trings. For exa11l
pie, we ' lI consider some i11lportant formal properties of th e language we ' lI call
AIlB Il = {al/bll

: n. 2:: O}.ln other words, AIlB Il is the language composed of all string of
a 's and b's such that a1l the a 's come first and the number of a ' equals the number of
b's. We won' t attempt to assign meanings to any of those strings.

But some languages are useful precisely because their strin gs do have meanings. We
use naturallanguages like English and Chinese because they allow us to communicate
ideas. A program in a language like Java or C++ or Perl also has a meaning. In lhe case
of a programming language, one way to define meaning is in terms of some other (typ
ically eIoser to machine architecture) language. So, for example, the meaning of a Java
program can be described as a Java Virtual Machine program. An alt ernative i to de
fine a program's meaning in a logicallanguage.

Philosophers and linguists (and others) have spent centuries arguing about wh at
sentences in naturallanguages Iike English (or Sanskrit or whalever) mean. We won't
attempt to solve that problem here. But if we are going to work with forma llanguages,
we need a precise way to map each string to its meaning (a lso cal led its semantics).
We']J call a function that assigns meanings to strings a semantic illlerprelat;on
/unelion. Most of the languages we 'lI be concerned with are infinite becau e the re is no
bound on the length of the strings that they contain. So it won't , in general, be possible
to define meanings by a table that pairs each string with its meaning.

We must instead define a function that knows the meanings of the language's basic
units and can combine those meanings, according to same fixed el 01' rules, to build
11leanings for larger expressions. We call such a function , which can be aid to "com
pose" the meanings of simpler constituents into a single meaning for a largc r expres
sion, a compositional semanlic interpretation/unetion . There arguab ly ex isls CI mo tly
compositional semantic interpretation function for English. Lingui . ts fi ght about the
gory details of wh at such a function must look like. Everyone agrees that words have
meanings and that one can build a meaning for a simple sente nce by combining the
meanings of the subject and the verb. For example, speakers of English would have no
trouble assigning a meaning to the sentence, "1 gave hirn the fi zd in g." provided that
they are told what the meaning of the ward " fizding" iso Everyone a l agrees that the
meaning of idioms, like " I'm going to give hirn a piece of my mind." cannot be de rived
compositionally. Some other issues are more subtle.

Languages whose strings have meaning pervade computing and its applica
tions. Boolean logic and first-order logic are language . Programming lan
guages are languages. (G.l) Network protocols are language . (1.1) Database
query languages are languages. (Q.l.l) HTML is a language for defining

https://hemanthrajhemu.github.io

Exercises 19

Web pages. (Q.1.2) XML is a more generallanguage for marking up data.
(Q.1.2) OWL is a language for defining the meaning of tags on the Web.
(1.3 .6) BNF is a language that can be used to specify the syntax of other 1an
guages. (G.1.1) DNA is a language for describing proteins. (K.1.2) Music is a
language based on sound. (N.l)

When we define a formal language for a specific purpose, we design it so that there
exists a compositional semantic interpretation function. So, for example, there exist
compositional semantic interpretation functions for programming languages like Java
and C++. There exists a compositional semantic interpretation function for the lan
guage of Boolean logic. It is specified by the truth tables that define the meanings of
whichever operators (e.g., 1\ , V, ..., and ---7) are allowed.

One significant property of semantic interpretation functions for usefullanguages is
that they are generally not one-to-one. Consider:

• English: The sentences, "Chocolate, please," " l'd like chocolate," ''I'U have cboco
late," and "I guess choco1ate today," all mean the same thing, at least in the context
of ordering an ice cream cone.

• Java: The following chunks of code all do the same thing:

int x = 4;
x++;

int x = 4;
++x;

;nt x = 4;
x = x + 1;

int x = 4;
x = x --1;

The semantic interpretation functions that we will describe later in this book, for ex
ample for the various grammar formalisms that we will introduce, will not be one-to
one either.

Exercises
1. Consider the language L = {111 211

: n > O}. Is the string 122 in L?

2. Let LI = {allb' 1
: n > O}. Let L 2 = {cll

: n > O}. For each of the following
strings, state whether or not it is an element of L j L2:

3. e.

b. aabbcc.

c. abbcc.

d. aabbcccc.

3. Let LI = {peach, apple , cherry} and L 2 = {pie, cobbler, e}. List the ele
ments of L j L 2 in lexicographic order.

4. Let L = {WE {a, b} * : Iwi = 30}. List the first six elements in a lexicographic
enumeration of L.

5. Consider the language L of all strings drawn from the alphabet {a, b} with at
least two different substrings of length 2.

https://hemanthrajhemu.github.io

20 Chapter 2 Languages and Strings

a. Describe L by writing a sentence of the form L = {w E L * : P(w)}, where L
is a set of symbols and Pis a first-order logic formula . You may u e the func
tion Isl to return the length of s. You may use all the standard re la ti onal ym
bols (e.g. , =, -:f::. , <, etc.) , plus the predicate Substr(s , t), which i Tme irf s is a
substring of t.

b. List the first six elements of a lexicographic enumeration of L.

6. For each oE the following languages L , give a simple English description. Show
two strings that are in Land two that are not (unless there are fewer than two
strings in L 01' two not in L, in which case show as many as possible) .

a. L = {w E {a, b} * : exactly one prefix of w ends in a }.

b. L = {w E { a , b} * : a1l prefixes of w end in a }.

c. L = {w E {a, b} * : 3x E {a, b} +(W = axa }.

7. Are the fo llowing sets closed under the fo llowing operations? lf not, what are
their respective closures?

a. The language {a , b} under concatenation.

b. The odd length strings over the alphabet {a , b} under Kleene tar.

c. L = {w E {a , b} *} under reverse.

d. L = {w E { ci, b} * : w starts with a } under reverse.

e. L = {w E {a, b} * : w ends in a } unde r concatenation .

8. For each of the fo llowing statements, state whether it is True or Fa /se. Prove your
answer.

a. VL], L2 (L) = L2 iff L I* = L2*).
b. (0 U 0 *) n (-,0 - (00*» = 0 (where -,0 is the complement o f 0).
c. Every infinite language is the complement of a fin ite language.

d. VL «L R)R = L).

e. VL), L2 «L}L2)* = L 1*L2*).

f. VL" L2 «L) * L 2* L} *)* = (L2 U L})*).
g. VLt. L2 «L} U L2)* = L} * U L2*).
h. VL1, L2, L3 «L } U L2)L3 = (L} L3) U (L 2L3»·
i. VLh L2, L3 «L }L2) U L3 = (L} U L3) (L 2 U L3».
j. VL «L +)* = L*).
k. VL (0 L* = {e}).
I. VL (0 UL+ = L*).

m. VL" L2 «L} U L2)* = (L 2 U L})*).

https://hemanthrajhemu.github.io

CHAPTER 3

The Big Picture: A Language
Hierarchy

O
ur goal, in the rest of this book, is to build a framework that lets us examine a
new problem and be able to say something .about how intrinsically difficult it
iso In order to do this, we need to be able to compare problems that appear, at

first examina ti on, to be wildly different. Apples and oranges come to mind. So the first
thing we need to do is to define a single framework into which any computational
problem can be cast. Then we wi lI be in a position to compare problems and to distin
guish between those that are relatively easy to solve and those that are not.

3.1 Defining the Task: Language Recognition
The unifying framework that we will use is language recognition. Assume that we are
given:

• The definition of a language L. (We will consider about half a dozen different tech
niques for providing this definition.)

• A string w.

Then we must answer the question: "Is w in L?" This question is an instance of a
more general dass that we will call decision problems. A decision problem is simply a
problem that requires a yes or no answer.

In the rest of this book, we will discuss programs to solve decision problems specifi
cally of the form , " Is w in L?" We will see that, for some languages, a very simple pro
gram suffices. For others, a more complex one is required. For still others, we will prove
that no program can exist.

21

https://hemanthrajhemu.github.io

22 Chapter 3 The Big Picture: A Language Hierarchy

3.2 The Power of Encoding
The question that we are going to ask , " ls w in L? " may seem, at first glanee, way too
limited to be useful. What about problems like multiplying numbers, sOl·ting li ts, and
retrieving values from a database? And what about real problem lik e air traffie control
or inventory management? Can our theory tell us anything interesting about them?

The answer is yes and the key is eneoding. With an appropri ate eneoding, other
kinds of problems can be recast as the problem of deciding wh ether astring is in a lan
guage. We will show some examples to iIIustrate this idea. We will di vide the examples
into two categories:

• Problems that are already stated as decision problems. For these, a ll we need to do
is to encode the inputs as strings and then define a language that contains exactly
the set of inputs for which the desired answer is yes.

• Problems that are not already stated as deeision problems. These problems may
require results of any type. For these, we must first reformul ate the problem as a
decision problem and then encode it as a language recognition ta k.

3.2.1 Everything is aString
Our stated goal is to build a theory of computation. What we are actually about to
build is a theory specifically of languages and strings. Of course, in a compute r' mem
ory, everything is a (binary) string. So, at that level, it is obvious that res tricting our at
tention to strings does not limit the scope of our theory. Often, however, we will find it
easier to work with languages with larger alphabe ts.

Each time we consider a new problem, our first task will be to describe it in te rms of
strings. In the examples that follow, and throughout the book, we will u th e notation
< x > to mean astring encoding of some object X. We'U use the no tation < x Y> to
mean the encoding, into a single string, of the two obj ect X and Y.

The first three examples we' lI consider are of problems that are naturall y described
in terms of strings. Then we'lllook at examples where we must begin by constructing
an appropriate string encoding.

EXAMPLE 3.1 Pattern Matching on the Web

• Problem: Given a search string wand a web document d do they match? In
other words, should a search engine, on input w, consider returning d?

• The language to be decided: {<w, d> : dis a candidate match for the query w }.

EXAMPLE 3.2 Question-Answering on theWeb

• Problem: Given an English question q and a web document d (which luay be
in English or Chinese), does d contain the answer to q?

• The language to be decided: { <q, d> : d contains the answer to q}.

https://hemanthrajhemu.github.io

3.2 The Power of Encoding 23

The techniques that we will describe in the rest of this book are widely used
in the construction of systems that work with naturallanguage (e. g., English
or Spanish or Chinese) text and speech inputs. (Appendix L)

EXAMPlE 3.3 Does a Program Always Halt?

• Problem: Given a program p, written in some standard programming language,
is p guaranteed to halt on all inputs?

• The language to be decided: HP ALL = {p : p halts on all inputs}.

A procedure that could decide whether or not astring is in HP ALL could be
an important part of a larger system that proves the correctness of a pro
gram. Unfortunately, as we will see in Theorem 21.3, no such procedure can
exist.

EXAMPlE 3.4 Primality Testing

• Problem: Given a nonnegative integer n, is it prime? In other words, does it
have at least one positive integer factar other than itseLf and 1?

• An instance of the problem: Is 9 prime?

• Encoding of the problem: We need a way to encode each instance. We will
encode each nonnegative integer as a binary string.

• The language to be decided: PRIMES = {w: w is the binary encoding of a
prime number}.

Prime numbers play an important role in modern cryptography systems. (1.3)
We' lt discuss the complexity of PRIMES in Section 28.1.7 and again in
Section 30.2.4.

EXAMPlE 3.5 Verifying Addition

• Problem: Verify tbe correctness of the addition of two numbers.

• Encoding of the problem: We encode each of the numbers as astring of decimal
digits. Each instance of the problem is astring of the form:

https://hemanthrajhemu.github.io

24 Chapter 3 The Big Pi cture: A Language Hierarchy

EXAMPlE 3.5 (Continued)

• The language to be decided:

INTEGERSUM = Iw of the form: <integer, > + <integer:. > = <integer, > :
each of the substrings <integer, > . < in teger2 > and <inreger3> is an element of
10, 1, 2, 3,4, 5, 6, 8, 91 and integer3 is the sum of il1leger, and inreger:d.

• Examples of strings in L: 2 + 4 = 6 23 + 47 = 70 .

• Examples of strings not in L: 2 + 4 = 10 2 + 4.

EXAMPlE 3.6 Graph (onneetivity

• Problem: Given an undirected graph C , is it connected? In o lh r words. given
any two distinct vertices x a nd y in C , is there a path from x I) ?

• Instance of the problem: Is the following grap h eonneeted?

1--2--- 3

\ ~
4 5

• Encoding of the proble m: Let V be a set of binary number , ne for each ver
tex in C . Then we construct < C > as follow :

• Write Iv las a binary number.

• Write a list of edges, eaeh of whieh is represented by a pair of binar nut11-
bers corresponding to the vertiees that th e edge connect .

• Separate all such binary numbers by the symbol I .

For example, the graph shown above would be encodcd by th (11 m ing slring,
whieh begins with an eneoding of 5 (the number of ve rti ces) and is followed b
four pairs corresponding to the four edges:

101/1/10/10/11/1/100/10/101.

• The language to be decided:

CONNECTED = {w E {O, 1, I} * : w = n, /n2/ ... l1 i, wh ere each 11 1 i a binary
string and w eneodes a eonnected graph , as de cribed above}.

EXAMPlE 3.7 Protein Sequence Alignment

• Problem: Given a protein fragment fand a comp lete prolc in mol eu le p, could
fbe a fragment from p?

https://hemanthrajhemu.github.io

3.2 The Power of Encoding 25

• Encoding of the problem: R epresent each pro tein molecule 0 1' fragment as a
sequence of amino acid residues. A ssign a letter to each of the 20 possible
amino acids. So a protein fragment might be represented as AGHTYWDNR.

• The language to be decided: { <j' , p> j' could be a fragment from p }.

The techniques that we will describe in the rest of this book are widely used
in computational biology. (Appendix K)

In each of the e examples, we have chosen an encoding that is expressive enough to
make it possible to describe all of the instances of the problem we are interested in. But
have we chosen a good encoding? Might there be another one? The answer to this sec
ond question is yes. And it will turn out that the encoding we choose may have a signif
icant impact on what we can say about the di fficulty of solving the original problem. To
see an example 01' this, we need look no farther than the addition problem that we just
considered. Suppose that we want to write a program to examine astring in the addition
language that we proposed above. Suppose further that we impose the constraint that
our program reads the string one character at a time, left to right. It has only a finite
(bounded in advance, independent of the length of the input string) amount of memory.
These restrictions correspond to the notion of a finite state machine, as we will see in
Chapte r 5. It turns out that no machine oE this sort can decide the language that we have
described. We' ll see how to prove results such as this in Chapter 8.

But now consider a different encoding oE the addition problem. This time we encode
each of the numbers as a binary string, and we write the digits, from lowest order to
highest order, left to right (i.e., backwards from the usual way). Furthermore, we imag
ine the three number aligned in the way they often are when we draw an addition
problem. So we might encode 10 + 4 = 14 as:

0101
+0010

0111

writing 1010 backwards
writing 0100 backwards
writing 1110 backwards

We now encode each column 01' that sum as a single character. Since each column is
a equence of three bin ar'y digits, it may take on any one of 8 possible values. We can
use the symbols a , b, C, d, e , f , g, and h to correspond to 000, 001 , 010, 011 , 100, 101, 110,
and 1U , respective ly. So we could encode the 10 + 4 = 14 example as afdf.

It is easy to design a program that reads such astring, left to right, and decides, as
each character is considered, whether the um so (ar is correct. For example, if the first
character oE astring is c , then the sum is wrong, since 0 + 1 cannot be 0 (although it
could be later if there were a carry bit from the previous column).

This idea is the basis fo r the design of binary adders, as weH as larger circuits,
like mul tipl iers, that exploit them. (P.3)

I

Ir
I
1 ~
I

11

j '

https://hemanthrajhemu.github.io

26 Chapter 3 The Big Picture: A Language Hierarchy

In Part V of this book we will be concerned with the efficiency (stated in terms of
either time or space) of the programs that we write. We will de cribe bolh time and
space requirements as functions of the length of the program 's input. When we do that,
it may matter what encoding scheme we have picked since som ncodings produce
longer strings than others do. For example, consider the integer 25. ft can be encoded:

• In decimal as:
• In binary as:
• In unary as:

25 ,
11001,or
1111111111111111111111111.

We'l! return to this issue in Section 27.3.1.

3.2.2 Casting Problems as Decision Questions
Problems that are not already stated as decision questions can be transformed illto de
cisioll questions. More specificall y, tbey can be reformulated so that they become lan
guage recognition problems. The idea is to encode, into a single string, bOlh the inputs
and the outputs of the original problem P. So, for example, if P takes two inputs and
produces one result, we could construct strings of the fo rm i, ; i2; r. Then astring
s = x; y; z is in the language L that corresponds to P iff z is the result that P produces
given the inputs x and y.

EXAMPLE 3.8 Casting Addition as Decision

• Problem: Given two nonnegative integers, compute tbeir sumo

• Encoding of the problem: We transform the problem of adding two numbers
into the problem of checking to see whether a third number is the sum of the
first two. We can use the same encoding that we used in Example 3.5.

• The language to be decided:

INTEGERSUM = {w of the form: <integer(>+<inleger2>=<integer3>' where
each of the substrings <integerl>, <integer2>, and <integer3> is an element of
10, 1,2,3, 4, 5, 6,7 , 8, 9j+ and integer3 is the sum of integert and inte erJ.

EXAMPLE 3.9 Casting Sorting as Decision

• Problem: Given a list of integers, sort it.

• Encoding of the problem: We transform the problem of sort ing a list into the
problem of examining a pair of lists and deciding whether the econd corre
sponds to the sorted version of the first.

https://hemanthrajhemu.github.io

3.2 The Power of Encoding 27

• The language to be deeided:

L = {W1 # W2 : :Jn > 1 (Wl is of the form intb int2, .. . intl1'

W2 is of the form int1, int2, ... intm and

W2 contains the same objects as Wl and W2 is sorted)}.

• Example of astring in L: 1, 5 , 3 , 9 , 6#1, 3 , 5 , 6 , 9 .

• Example of astring not in L: 1, 5 , 3 ,9,6#1,2 , 3,4, 5 ,6, 7 .

EXAMPlE 3.10 Casting Database Querying as Decision

• Problem: Given a database and a query, execute the query against the data
base.

• Encoding of the problem: We transform the task of executing the query into
the problem of evaluating a reply to see if it is eorrect.

• The language to be decided:

L = {d # q # a : d is an eneoding of a database,

• Example of astring in L:

q is astring representing a query, and

ais the correct result of applying q to d}.

(name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876)#

(select name age=23) #

(John) .

Given each of the problems that we have just considered, there is an important
sense in which the encoding of the problem as adecision question is equivalent to the
original formulation of the problem: Eaeh can be reduced to the other. We'1l have a lot
more to say about the idea of reduction in Chapter 21. But, for now, what we mean by
reduction of one problem to another is that, if we have a program to solve the second,
we can use it to build a program to solve the first. For example, suppose that we have a
program P that adds a pair of integers. Then the following program deeides the lan
guage INTEGERSUM, whieh we described in Example 3.8:

Given astring of the form <integer\ > + < integer2> = <integer3> do:

1. Let x = convert-ro-integer (<integerl >).
2. Let y = convert-to-integer «integer2»'

3. Let z = P(x, y).

4. If z = convert-to-integer «integer3» then accept. Else reject.

https://hemanthrajhemu.github.io

28 Chapter 3 The Big Picture: A Language Hierarchy

Alternatively, if we have a program T that decides INTEGERSUM, then the follow
ing program computes the sum of two integers x and y:

1. Lexicographically enumerate the strings that represent decimal encodings of
nonnegative integers.

2. Each time astring s is genera ted, create the new string <x > + <y > =s.

3. Feed that string to T.

4. lf T accepts <x > + <y > =5, halt and return converr-lo -imeger(s).

3.3 A Machine-Based Hierarchy of Language (lasses
In Parts H, III, and IV, we will define a hierarchy of computational models each more
powerful than the last. The first model is simple: Programs written for it are generally
easy to understand, they run in linear time, and algorit hms ex ist to answer almo t any
question we might wish to ask about such programs. The second model i more powerful ,
but stilllimited. The last model is powerful enough to describe anything that can be COI11-

puted by any sort of real computer. All of these models will a llow us to write programs
whose job is to accept some language L. In this section, we sketch lhis machine hierarchy
and provide a short introduction to the language hierarchy that goes al ng with it.

3.3.1 The Regular Languages

The first mode l we will consider is thefinite state machine or FSM. Figure 3. 1 shows a
simple FSM that accepts strings of a 's and b's, where all a 's come before all b's.

The input to an FSM is astring, which is fed to it one character at a time, left to right.
The FSM has astart state, shown in the diagram with an unlabelled arrow leading to it
and some number (zero or more) of accepting states, which will be hown in our dia
grams with double circles. The FSM starts in its start state. As each character is
read, th e FSM changes state based on the transition hown in the figure. If an F M
M is in an accepting state after reading the last character of so me input tring s
then M accepts 5. Otherwise it rejects it. Our example FSM stays in state I as long as it
is reading a's. When it sees a b, it moves to state 2, where it stay a long a it continues
seeing b's. Both state 1 and state 2 are accepting states. But if, in sta te 2, it see an a , it
goes to state 3, a nonaccepting state, where it tays until it runs out of input. , for ex
ample, this machine will accept aab, aabbb, and bb. It will reject ba.

FIGURE 3.1 A simple FSM.

a

a,b

https://hemanthrajhemu.github.io

3.3 A Machine-Based Hierarchy of Language Classes 29

We will call the class oE languages that can be accepted by some FSM regular. As we
will see in Part Il, many usefullanguages are regular, including binary strings with even
parity, syntactically well-formed floating point numbers, and sequences of coins that
are sufficient to buy asoda.

3.3.2 The Context-Free Languages

But there are useful simple languages that are not regular. Consider, for example, Bai,
the language of balanced parentheses. Bai contains strings Iike (0) and 00; it does
not contain strings like 0)) (. Because it 's hard to read strings of parentheses, let's
consider instead the related language AllBll = {a/b/: n 2: O}. In any string in AllBn

,

all the a 's come first and the number of a 's equa]s the number of b's. We could try to
build an FSM to accept AllBll . But the problem is, "How shall we count the a 's so that
we can compare them to the b's?" The only memory in an FSM is in the states and we
must choose a fixed number oE states when we build our machine. But there is no
bound on the number oE a 's we might need to count. We will prove in Chapter 8 that it
is not possible to build an FSM to accept AllBIl .

But languages like Ba] and AIlB n are important. For example, atmost every pro
gramming language and query language allows parentheses, so any front end for such a
language must be able to check to see that the parentheses are balanced. Cal1 we aug
ment the FSM in a simple way and thus be ab le to so lve this problem? The answer is
yes. Suppose that we add one thing a single stack. We will call any machine that con
sists of an FSM, plus a single stack, a pushdown automaton or PDA.

We can easily build a PDA M to accept AIlB Il . The idea is that, each time it sees an a , M
will push it onto the stack. Then, each time it sees a b, it will pop an a from the stack. If it
runs out of input and stack at the same time and it isin an accepting state, it will accept.
Otherwise, it will reject. M will use the same state structure that we used in our FSM ex
ample above to guarantee that all the a 's come before all the b's. In diagrams of PDAs,
read an arc labet of the form x/y/z to mean, "if the input is an x, and it is possible to pop y
off the stack, then take the transition , do the pop of y, and push z" . If the middle argument
is e, then don't bother to check the stack . lf the third argument is e, then don 't push any
thing. Using those conventions, the PDA shown in Figure 3.2 accepts AIlBIl .

Using a very similar sort of PDA, we can build a machine to accept Bai and other
languages whose trings are composed of properly ne ted substrings. For example, a
palindrome is astring that reads the same right-to-Ieft as it does left-to right. We can
easily build a PDA to accept the language PalEven = {wwR : W E {a, b }*}, the

FIGURE 3.2 A simple PDA that accepts NB Il
•

a lele

a. bleIe

https://hemanthrajhemu.github.io

30 Chapter 3 The Big Picture: A Language Hierarchy

language of even-Iength palindromes of a 's and b's. The PDA for PalEven simply push
es aB the characters in the first half of its input string onto the stack , guesses where the
middle is, and then starts popping one character for each remaining input character.1f
there is a guess that causes the pushed string (which will be popped off in reverse
order) to match the remaining input string, then the input string is in PalEven.

But we should note some simple Iimitations to the power of the PDA. Consider the
language WW = {ww: W E {a, b }*}, which is just Iike PalEven except that the second
half of each of its strings is an exact copy of the first half (ralher than the rever e of it).
Now, as we 'll prove in Chapter 13, it is not possible to build an acc pting PDA (al
though it would be possible to build an accepting machine if we could augment the fi
nite state controller with a first-in, first-out queue rather than a stack).

We will call the class of languages that can be accepted by some PDA conlext-free.
As we will see in Part III, many usefullanguages are context-free, including most pro
gramming languages, query languages, and markup languages.

3.3.3 The Decidable and Semidecidable Languages
But there are useful straightforward languages that are not context-free. Consider, for
example, the language of English sentences in which some word occurs more than
once. As an even simpler (although probably less useful) example, consider another
Janguage to which we will give a name. Let A J1 BJ1 C J1 = {aI/bI/eil: n 2: O}, i.e., the lan
guage composed of all strings of a 's, b's, and e 's such that all the a 's come fir t, followed
by all the b's, then aB the c's, and the number of a 's equal the number of b's eq uals the
number of ('s. We could try to build a PDA to accept A J1BJ1CJ1 . We could use the stack
to count the a's, just as we did for A J1 BJ1 . We could pop the stack as the b's come in and
compare them to the a's. But then what shall we do about the e 's? We have lost all in
formation about the a's and the b's since, if they matched, the stack will be empty. We
will prove in Chapter 13 that it is not possible to build a PDA to accept AIlBIlC1

•

But it is easy to write a pro gram to accept A IIBJ1 Cn
. So, if we want a class of machines

that can capture everything we can write programs to compute, we need a model that
is stranger than the PDA. To meet this need , we will introduce a third kind of machine.
We will get rid of the stack and replace it with an infinite tape. The tape will have a sin
gle read/write head. Only the tape square under the read/wril head can be acce sed
(for reading or for writing). The read/write head can be moved o ne ·quar in ither di
rection on eaeh move. The resulting machin e is called a TuriIJg machine. W will also
change the way that input is given to the machine. Instead of streaming it , one charac
ter at a time, the way we did for FSMs and PDA , we will simpl y \ rit e th input tring
onto the tape and then start the machine with the read/write head just to lh left of the
first input character. We show the structure of a Turing maehin in Figur 3.3. The
arrow under the tape indicates the Ioeation of the read/write head .

At each step, a Turing machine M considers it current sta l and th haracter that is
on the tape directly under its read/write head. Based on those tw things, il choose it
next state, chooses a character to write on the tape under the read/writ head , and choos
es whether to move the read/write head one square to the right o r one quare to the I ft .
A finite segment of M's tape contains the input string. The rest i blank , but M ma move
the read/write head off the input string and write on the blank quare of thc tape.

https://hemanthrajhemu.github.io

3.3 A Machine-Based Hierarchy of Language (lasses 31

o o o a a

t

FIGURE 3.3 The structure of a Turing machine.

b b b o

Finite State Controller
S, qj, q 2, ... h1, h2

o

There exists a simple Turing machine that accepts A ß B I1Cn. It marks off the
leftmost a, scans to the right to find a b, marks it off, continues scanning to the right,
finds a c, and marks it off. Then it goes back to the left, marks off the next a, and so
forth. When it runs out of a's, it makes one final pass to the right to make sure that
there are no extra b's or c's. If that check succeeds, the machine accepts. If it fails, or if
at any point the machine failed to find a required b or c, it rejects. For the details of
how this machine operates, see Example 17.8.

Finite state machines and pushdown automata (with one technical exception that
we can ignore for now) are guaranteed to halt. They must da so when they run out of
input. Turing machines, on the other hand, carry no such guarantee. The input simply
sits on the tape. A Turing machine may (and generally does) move back and forth
across its input many times. It may move back and forth forever. Or it may simply
move in one direction, off the input onto the blank tape, and keep going forever. Be
cause of its flexibility in using its tape to re cord its computation, the Turing machine is
a more powerful model than either the FSM or the PDA. In fact, we will see in Chap
ter 18 that any computation that can be written in any programming language or run
on any modern computer can be described as a Turing machine. However, when we
work with Turing machines, we must be aware of the fact that they cannot be guaran
teed to halt. And, unfortunately we can prove (as we will do in Chapter 19) that there
exists no algorithm that can examine a Turing machine and tell whether or not it will
halt (on any one input or on all inputs). This fundamental result about the limits of
computation is known as the undecidability of the halting problem.

We will use the Turing machine to define two new classes of languages:

• A language L is decidable iff there exists a Turing machine M that halts on all in
puts, accepts all strings that are in L , and rejects all strings that are not in L. In other
words, M can always say yes or no, as appropriate.

• A language L is semidecidable iff there exists a Turing machine M that accepts a1l
strings that are in Land fails to accept every string that is not in L. Given astring
that is not in L , M may reject or it may loop forever. In other words, M can recog
nize a solution and tben say yes, but it may not know when it should give up look
ing for a solution and say no.

https://hemanthrajhemu.github.io

32 Chapter 3 The Big Picture: A language Hierarchy

Bai, A nBo, PalEven, WW, and AnBncn are all decidable languages. Every decidable
language is also semidecidable (since the requirement for semidecidability is strictly
weaker than the requirement for decidability). But there are languages that are semi
decidable yet not decidable. As an example, consider L = {<p, tu >: p is a Java pro
gram that halts on input w}. L is semidecidable by a Turing machine that simulates p
running on w. If the simulation halts, the semidecider can halt and accepL But, if the
simulation does not halt , the semidecider will not be able to recognize that it isn 't going
to. So it has no way to halt and rejecL Just as there exists no algorithm that can exam
ine a Turing machine and decide whether or not it will halt , there is no algorithm to ex
amine a Java program (without having to run it) and make that determination. So L is
semidecidable but not decidable.

3.3.4 The Computational Hierarchy and Why It Is Important
We have now defined four language classes:

1. Regular languages, which can be accepted by some finite state machine.

2. Context-free languages, which can be accepted by some pushdown automaton.

3. Decidable (or simply D) languages, which can decided by some Turing machine
that always halts.

4. Semidecidable (or SD) languages, which can be semidecided by ome Turing ma
chine that halts on all strings in the language.

Each of these classes is a proper subset of the nexl class, as illu trated in the diagram
shown in Figure 3.4.

As we move outward in the language hierarchy, we have access to tools with greater
and greater expressive power. So, for example, we can define A nBn a a context-free
language but not as a regular one. We can define A nBoCIl as a decidable language but
not as a context-free or a regular one. This matters because expres iv ness generally
comes at a price. Tbe price may be:

• Computational efficiency: Finite state machines run in time that is linear in the
length of the input string. A general context-free par e r ba ed on the idea of a
pushdown automaton requires time that grows as the cube of the length of the
input string. A Turing machine may require time that grows expon ntially (or
faster) with the length of the input string.

• Decidability: Tbere exist procedures to answer many u eful que ti on about finite
state machines. For example, does an FSM accepl some panicul ar tring? Is an FSM
minimal (i.e. , is it the simplest machine that does the job it d es)? Ar two FSMs
identical? A subset of those questions can be answered for pu hdm n automata.
None of them can be answered far Turing machine .

• Clarity: There exist tools that enable designers to draw and analyze finite state
machines. Every regular language can also be de cribed u in g th (ft en ery con
venient) regular expression pattern language that we will d fine in hapter 6.
Every context-free language, in addition to being ree gnizable b om pushdown

https://hemanthrajhemu.github.io

SO Languages

Turing Machines

3.3 A Machine-Based Hierarchy of Language Classes 33

FIGURE 3.4 A hierar
chy of language classes.

automaton, can (as we will see in Chapter 11) be described with a context-free
grammar. For many important kinds of languages, context-free grammars are suffi
ciently natural that they are commonIy used as documentation tools. No correspon
ding tools exist for the broader dasses of decidable and semidecidable languages.

So, as a practical as weH as a theoretical matter, it makes sense, given a particular prob
lem, to describe it using the simplest (Le. , expressively weakest) formalism that is ade
guate to the job.

The Rute 0/ Least Power5
: "Use the least powerfullanguage suitable for expressing

information, constraints or programs on the World Wide Web."

Although stated in the context of the World Wide Web, the Rule of Least Power ap
plies far more broadly. We're appealing to a generalization of it here. We'll return to a
discussion of it in the specific context of the Semantic Web in 1.3.

In Parts Il, IIl , and IV of this book, we explore the language hierarchy that we have
just defined. We will start with the smaHest dass, the regular languages, and move out
wards.

5Quoted from [Berners-Lee and Mendelsohn 2006].

https://hemanthrajhemu.github.io

34 Chapter 3 The Big Picture : A Language Hierarchy

3.4 A Tractability Hierarchy of Language (lasses
The decidab le languages, as defin ed above, are those that can, in principle, be decided.
Unfortunately, in the case of some of them, any proeedure that ean decide whether or
not astring is in the la nguage may require, on reasonably large input , more time steps
than have e lapsed since the Big Bang. So it makes sense to take another look at the
c1ass of decidable languages, this tim e from the perspective 01' the reso urces (time,
space, or both) that may be required by the best decision procedures we can construct.

We will do that in Part V. So, for example, we will defin e the cla es:

• P , which contains those languages that can be decided in time th at grows as some
polynomial function of the le ngth of the input,

• NP, which contains those languages that ean be deeided by a nonde terministic ma
chine (one that ean eonduct a search by guessi ng whieh move to m ake) with the
property that the amount of time required to explore one sequence of guesses (one
path) grows as some polynomial funetion of the length of the input, and

• PSPACE, which contains those languages that ean be decided by a machine whose
space requirement grows as some polynomial funetion of the length of the input.

These c1asses, like the ones that we defined in terms of particular kinds of machines,
can be arranged in a hierarehy. For example, it is th e case that:

P ~ NP ~ PSPACE

Unfortunately, as we will see, less is known abo ut the strueture of this hiera rchy than
about the strueture of the hi e rarehy we drew in the last section . For example, perhaps
the biggest open question of theoretical computer science is whether P = NP. I t is pos
sible, although generally thought to be very unlikely, that every language that is in NP
1S also in P. For this reason , we won 't draw a picture he re. Any picture we eould draw
might suggest a situation that will eventually turn out not to be true.

Exercises
1. Consider the following problem: Given a digital eircuit C, does C output 1 on all

inputs? Describe this problem as a language to be deeided.

2. Using the technique we used in Example 3.8 to describe addition , describe quare
root as a language recognition problem .

3. Consider the problem of enerypting a password, given a n eneryptio n key. Formu
late this problem as a language recognition problem.

4. Consider the optieal character recognition (OCR) problem: Given an array of
black and white pixels and a set of charaeters, determine which charaeter best
matches the pixel array. Formulate this problem as a language recognition
problem.

5. Consider lh e language AIlBIlCIl = {a"b"cll
: n ~ O} , discussed in Seclion 3.3.3.

We might consider the following design for a PDA to accept AIlBIlCIl : As eaeh a

https://hemanthrajhemu.github.io

Exercises 35

is read, push two a's onto the stack. Then pop one a for each band one a for each
c. If the input and the stack come out even, accept. Otherwise reject. Why doesn't
this work?

6. Define a PDA-2 to be a PDA with two stacks (instead of one). Assurne that the
stacks can be manipulated independently and that the machine accepts iff it is
in an accepting state and both stacks are empty when it runs out of input. De
scribe the operation of a PDA-2 that accepts AßBßCß = {allbllcll : n 2= O}.
(Note: We will see, in Section 17.5.2, that the PDA-2 is equivalent to the Turing
machine in the sense that any language that can be accepted by one can be ac
cepted by the other.)

https://hemanthrajhemu.github.io

CHAPTER 4

(amputation

O
ur goal in this book is to be able to make useful cla ims about problems and the
programs that solve th em. Of course, both problem pecifi cation and the pro
grams that solve them take many diffe rent [o rms. Specifi cati ons can be written

in English, or as a set of logical fo rmul as, or as a set of input/output pairs. Programs can
be written in any of a wide array of common programming language . As we aid in the
last chapter, in this book we are, for the most part, going to dep art from those standard
methods and , instead

• Define problems a languages to be decided , and

• Define programs as state machines whose input is astring and whose output is

Accept 01' Reject.

Both because of this change in perspective and because we are go ing to introduce
two ideas that are not commo n in everyday programming practice, we will pause, in
this chapter, and look at what we mean by computation and how we are going to go
about it. In particular, we will examine three key idea :

1. Decision procedures.

2. Nondeterminism.
3. Functions on languages (alternatively, programs that opera te on othe r programs).

Once we have finished this discussion , we will begin our examination o f the language
classes that we outlined in Chapter 3.

4.1 Decision Procedures

36

Recatl that a decision problem is one for which w mu t make a ye /no deci ion. An
algorithm is a detailed procedure that acco mplishes ome clea rl y specifi d ta k. A
decision procedure is an algorÜhm 10 solve adecision probl m. Pul anoth er way, it i a
program whose result is a Boo lean va lue. Not e th at, in orde r t be guara ntecd t r turn
a Boolean value, a decision procedure must be guaranteed to halt n a ll input.

https://hemanthrajhemu.github.io

4.1 Decision Procedures 37

This book is about decision procedures. We will spend most of our time discussing
decision procedures to answer questions of the form:

• Is string s in language L?

But we will also attempt to answer other questions, in particular on es that ask about
the machines that we will build to answer the first group of questions. So we may ask
questions such as:

• Given a machine (an FSM, a PDA, or a Turing machine) , does it accept any strings?

• Given two machines, do they accept the same strings?

• Given a machine, is it the smallest (simplest) machine that does its job?

If we have in mi nd adecision problem to which we want an answer, there are three
things we may want to know:

1. Does there exist adecision procedure (i.e., an algorithm) to answer the ques
tion? Adecision problem is decidable iff the answer to this question is yes. A de
cision problem is undecidable iff the answer to this question is no. Adecision
problem is semidecidable iff there exists an algarithm that halts and returns
True iff True is the answer.When Fa/se is the answer, it may either halt and re
turn Fa/se or it may loop. Some undecidable problems are semidecidable; some
are not even that.

2. If any decisiol1 procedures exist, find one.

3. Again , if any decision proeedures exist, wh at is the most effieient one and how ef
fieient is it?

In the early part of this book, we will ask questions for whieh decision proeedures
exist and we will often skip direetly to question 2. But, as we progress, we will begin to
ask questions for which , provably, no decision procedure exists. It is because there are
such problems that we have articulated question l.

Decision procedures are programs. They must possess two eorrectness properties:

1. The program n1Ust be guaranteed to halt on a11 inputs.

2. When the program halts and returns an answer, it nmst be the eorreet answer far
the given input.

Let's consider some examples.

EXAMPLE 4.1 Checking for Even Numbers

Is the integer x even? This one is easy. Assume that / performs (truncating) integer
division. Then the following program answers the question:

even (x: integer) =

If (x/2) * 2 = x then return True else return False.

https://hemanthrajhemu.github.io

38 Chapter 4 Computation

EXAMPLE 4.2 Checking for Prime Numbers

Is the positive integer x prime? Given an appropriate string encoding, thi s prob
lem corresponds to the language PRIMES that we defined in Example 3.4. Defin
ing a procedure to answer this question is not hard , although it will requ ire a loop
and so it will be necessa ry to prove that the laop always terminates. Several algo
rithms that salve this problem exist. H ere's an easy one:

prime (x: positive integer) =

For i = 2 to ceiling (sqrt(x») da:

If (x/i) :;: i = x then return False.

Return True.

The function ceiling(x), also written r x 1 returns the smallest intege r that is
greater than or equal to x. This pro gram is guaranteed to halt. The natural num
bers between 0 and ceiling (sqrl(x))-2 form a well-ordered set under :S o Let
index correspond to ceifing (sqrc(x))-i. At the beginning of the fir t pass through
the loop, the value of index is ceiling (sqrt(x)) - 2.1l1e value of index decrea es by
ane eaeh time through the loop. The loop ends when that value becomes O. It 's
worth pointing out that , while this program is simple and it is easy to prove that it
is correet, it is not the most effieient program that we could write. We ' lI have more
to say about this problem in Seetions 28.1.7 and 30.2.4.

For our next few examples we need a definition. The sequence:

2" FII = 2 + 1, n ;:::: 0,

defines the Fermat numbers Q . The first few Fermat numbers are:

Fo = 3, F I = 5, F2 = 17 , FJ = 257, F4 = 65 ,537, F- = 4,294,907.297.

EXAMPLE 4.3 Checking for Small Prime Fermat Numbers

Are there any prime Fermat numbers less than 1 ,OOO,OOO? There exists a simple
decision proeedure to answer this question :

!ermatSmallO =

i = O.
Repeat:

candida te = (2:j:* (2 ** I») + l.
If candida te is prime then return True.

https://hemanthrajhemu.github.io

; = i+1.

un ti l candidale 2: 1,000,000.

Return False.

4.1 Decision Procedures 39

This algorithm is guaranteed to halt because the value of candidate inereases eaeh
time through the loop and the loop terminates when its value exeeeds a fixed
bound. We will skip the proof that the eorrect answer is re turned.

EXAMPLE 4.4 Checking for Large Prime Fermat Numbers

Are there any prime Ferm at numbers greater than 1,000,000'1 This question is dif
fe rent in one important way from the previous one. Does there exist adeeision
procedure to answer this question ? What about:

fermatLarge 0=
i = O.

Repeat:

candidale = (2 ** (2 ** i)) + 1.

If candida te > 1,000,000 and is prime then return True.

i=i+1.

R eturn False.

What can we say about this pTogram? 1f there is a prime Fermat number
greater than 1,000,000, fennalLarge will fi nd it and will halt. But suppose that
the re is no such number. Then the program willloop forever. FermatLarge is not
capable or returning False even if False i the correct answer. So, is fermatLa rge a
deeision procedure? No. Adecision procedure must halt and return the correet
answer, whatever that iso

Can we do better? Is there adecision proeedure to answer this question? Yes.
Since this question takes no arguments, it has a simple answer, either True or
False. So either

or

fermatYes 0=
Return True,

fennatNo 0=
Return False.

correctly answers the question . Our problem now is "Whieh one?" No one knows.
Fermat himself was only able to genera te the first five Fermat numbers, and, on

https://hemanthrajhemu.github.io

...

40 Chapter 4 Camputation

EXAMPLE 4.4 (Continued)

that basis, conjectured that all Fermat number are prime. If h had been right ,
then !ennalYes answers the question. However it now seems likely that the re
are no prime Fermat numbers greater than 65,537. A sub lanÜa l effort Q con
tinues to be devoted to finding one, but so far the onl y discove ri e have been
larger and large r composite Fermat numbers. But there is al 0 no proof that a
larger prime one does not exist nor is the re an algorithm for finding one. We
simply do not know.

EXAMPLE 4.5 Checking for Programs That Halt on a Particular Input

Now consider a problem that is harder and that cannot be solved by a imple con
stant function such as !ermatYes or fermatNo. Given an arbitrary Java program p
that takes astring w as an input parameter, does p halt on some part icul ar value
of w? Here's a candidate for adecision procedure:

haltsOnw (p: program, w : string) =

1. Simulate the execution of p on w .

2. If the simulation halts return True e lse return Fa/se.

Is ha/tsOnw adecision procedure? No, because it can never re turn the value
False. Yet False is sometimes the correct answer (s ince th ere are (P. w) pairs such
that p fails to halt on w). When haltsOnw should return False it willloop fo rever
in step 1. Can we do better? NO. lt is possib le to prove, as we will do in hapte r 19,
that no decision procedure for this question exists.

D efine a semidecisioll procedure to be a procedure th at halts and re turns 7"i-lIe when
ever True is the correct answer. But, whenever Fa/se is the correct answer, it may return
False or it may loop forever. In other words, a semidecision procedure know when to
say yes but it is not guaranteed to know when to say no. A semidecidable problem i a
problem for which a semidecisio n procedure ex ists. Exampl e 4.5 is a semidecid able
problem. While some semidecidab le problems are also decidable. th at one isn' l.

EXAMPLE 4.6 Checking for Programs That Halt on All Inputs

Now consider an even harder problem: Given an arbi tra ry Java program that
takes a single string as an input parameter, does it halt on all possibl input val
ues? Here's a candidate for a decision procedure:

https://hemanthrajhemu.github.io

4.2 Determinism and Nondeterminism 41

haltsOnAll (program) =

1. For i = 1 to infinity do:

Simulate the execution of program on all possible input
strings of length i.

2. lf an of the simulations halt return True else return False.

HaltsOnAf{ will never halt on any program since, to do so, it must try running
the program on an infinite number of strings. And there is not a better proce
dure to answer this question. We will show, in Chapter 21, that it is not even
semidecidable.

The bottom line is that there are three kinds of questions:

• Those (or which adecision procedure exists.

• Those for which no decision procedure exists but a semidecision procedure exists.

• Those for which not even a semi-decision procedure exists.

As we move through the language classes that we will consider in this book, we will
move from worlds in which there exist decision procedures for just about every ques
tion we can think of to worlds in which there exist some decision procedures and per
haps some semidecision procedures, all the way to worlds in which there do not exist
even semidecision procedures.

But keep in mind throughout that entire progression wh at a decisiol1 procedure iso It
is an algorithm that is guaranleed to halt on all inputs.

4.2 Determinism and Nondeterminism
Imagine adding to a programming language the function choose, which may be written
in either of the following fonns:

• choose (action 1;;
action 2;;

action 11)

• choose (x from S: P(x))

In the first form, choose is presented with a finite list of alternatives, each of which
will return either a successful value or th e va]ue Fa/se. Choose will:

• Return some successful value, if there is one.

• lf there is BO successful value, then choose will:

https://hemanthrajhemu.github.io

42 (hapter 4 (amputation

• Halt and re turn Fa/se if a ll the actions halt and return Fa /se.

• Fail to halt if any of the actions fa il s to halt. We wantto define choose th is way since
any path that has not halted still has the potential to return a successful value.

In the second form, choose 1S presented wi th a set 5 of va lue . 5 may be fin ite or it
m ay be infinite if it is specified b y a generato r. Choose will :

• Return some eleme nt x of 5 such that P(x) halts wi th a va lue othe r th an Fa/se, if
there 1S one.

• If there is no such element, the n choose will :

• Halt and return False iE it can be determined that, fo r all e lements x of 5, P(x) is not
satisfied. This will happen iE 5 is finite and there i a procedure fo r checking P that
always halts, lt mayaiso happen, even if 5 is infinite, if there is some way, short of
checking all the elements, to determine that no elements that sa t1sfy P exist.

• Fail to halt if the re is no mechani sm for determining that no e lements of 5 that
sati sfy P exist. This may happen eithe r becau e 5 is infinite o r becau e there is
no algo rithm, guaranteed to halt on a ll inputs, that checks fo r P and returns
FaLse whe n necessa ry.

In both forms, the job of choose is to find a successful va lue (wh ich we will define to
be any value other th an Fa/se) if there is o ll e. When we don' t care whi ch successful
value we find (or how we find it) , choose is a useful abst raction , as we wi ll see in the
next few examples.

We will call progra ms th at a re written in o ur new language, whi ch includes
choose, nondetermini5'tic. We will ca ll programs that are written wi thout using choose
determ i n;st;c.

Real computers are, of course, dete rministic. So, if choose is going to b useful , there
must ex ist a way to imple me nt it on a determinist ic m achine. Fo r now, however, we will
be noncommittal as to how that is done.]t may try the alte rn ati ves o ne al a time, o r it
may pursue them in para lle l. If 1t tri es them one a t a time, it may try them in the order
listed, in some random o rder, o r in some order th at is carefully de igned to maximize
the chances of finding a successful va lue without trying all the others. The o nl y require
ment is th at it must pursue the altern atives in some fashion th at is guaranteed to find a
successful value if there 1S o ne. T he poin t of the choose functi on is that we can separate
the design of the choosing mechanism from the de ign of the p rogram th at needs a
value and calls choose to find it one.

EXAMPLE 4.7 Nondeterministically Choosing a Travel Plan

Suppose that we regularly plan medium length trips. We are wiLling to d rive or to
fly and rent a car or to take a train and use public transpOl'ta tion iE it is available
when we get there, as long as the tota l cost of the trip and the total t ime required
are reasonable. We don 't care abo ut sm all di fference in time or co t eno ugh to

https://hemanthrajhemu.github.io

4.2 Determinism and Nondeterminism 43

make it worth exhaustiveLy expLoring aU the options every time. We can define the
function trip-plan to soLve our problem:

trip-plan (start, finish) =

Return (choose (fly-major-airline-and-rent-car (start, finish);;

f I y-regional-airline-and-rent-car (start, finish);;

take-train-and-use-public-trans portation (start , finish);;

drive (start,finish)).

Each of the four functions trip-plan calls returns with a successful value iff it
succeeds in finding a plan that meets the cost and time requirements. Probably
the first three of them are implemented as an Internet agent that visits the appro
priate Web sites, specifies the necessary parameters, and waits to see if a solution
can be found. But notice that trip-plan can return a result as so on as at least one
of the four agents finds an acceptable solution. It doesn 't care whether tbe four
agents can be run in parallel or are tried sequentially. It just wants to know if
there's a solution and , if so, what it iso

A good deal of the power of choose comes from the fact that it ean be ealled reeur
sively. So it can be used to describe a sem'eh proeess, without having to specify the de
tails of how the search is conducted.

EXAMPLE 4.8 Nondeterministically Searching aSpace of Puzzle Moves

Suppose that we want to solve the 15-puzzle Q . We are given two configurations
of the puzzle, for example the ones shown here labeled (a) and (b). Tbe goal is
to begin in configuration (a) and, through a sequence of moves, reach configura
tion (b). The only allowable move is to slide a numbered tile tnto the blank
square.

5 2 15 9 1 2 3 4

7 8 4 12 5 6 7 8

13 6 11 9 10 11 12

10 14 3 13 14 15

https://hemanthrajhemu.github.io

44 Chapter 4 Computation

EXAMPLE 4.8 (Continued)

Using choose, we can easily write solve-15 , a progralll that finds a solution if
there is one. The idea is that solve-15 will guess at a fir t lllove. From the board
configuration that results from that move, it will gue s a t a second move. From
there, it will guess at a third move, and so on. Ir il reaches th e goa l configuration,
it will report the sequenee of moves that got it there.

Using the second form of choose (in which values are selected from a set that
can be generated eaeh time a new ehoice must be made), we ean define solve-15
so th a t it returns an ordered list of board positions. The first e le ment of the list
corresponds to th e initial eonfiguration . Following that , in order, are the configu
rations that result from each of the moves. The final configuration will correspond
to the goal. So th e result of a call to solve-15 will descr i be a move seq uence that
corresponds to a solution to the original problem. We'll invoke solve-15 with a list
that contains just the initial configuration. So we define:

solve-15 (position-list) =

/* Explore moves available from the la t board configuration to have
been genera ted.

current = last (position-list).

lf current = solution then re turn (position-list).

/* Assume th a t successors (current) returns the e l of configurations
that can be genera ted by one lega llllove from currenr. Then choose
picks one with the properly that , onee it has been appended to
position-list, solve- 15 ean continue and find a solution. We assurne
that append destructive ly lllodifies its first argument.

choose (x from successors (current):solve-15 (append (posiriol1-1isl.x»)).

Return position-list.

Ifthere is a solution to a particular instance of lhe l5-puzz1.e, solve-15 will find
it.lf we care about how efficiently the so lutionis found , th e n we can dig in ide the
implementation of choose and try various strategies, including:

• Checking to make sure we don 't generale a board position th a t has already

been explored, 01'

• Sorting the successors by how clo e they a re to th e goa l.

But if we don ' t ca re about how choose works, we don 't have to.

15-puzzle eonfigurations can be divided into two eq uiva lence c lasscs. very
configuration can be transformed into every other eonfiguration in the same
dass and into none of the configurations in th e oth e r class O .

Many decision problems can be solved straightforwardl y llsin g c/w()se.

https://hemanthrajhemu.github.io

4.2 Determinism and Nondeterminism 45

EXAMPlE 4.9 Nondeterministically Searching for a Satisfying
Assignment

A wff in Boolean logic is satisfiable iff it is true for at least one assignment of
truth values to the literals it contains. Now consider the following problem, which
we'll caB SAT: Given a Boolean wff w, decide whether or not w is satisfiable.

To see how we might go about designing a program to solve the SAT problem,
consider an example wff w = P/\ (QV R)/\, (RvS) ~ Q. We can build a program
that considers the predicate symbols (in this case P, Q, R, and S) in some order.
For each one, it will pick one of the two available values, True or False, and assign
it to aB occurrences of that predicate symbol in w. When no predicate symbols
remain, a11 that is necessary is to use the truth table definitions of the logical oper
ators to simplify w until it has evaluated to either True or Fa/se . If True, then we
have found an assignment of values to the predicates that makes w true; w is sat
isfiable. If False, then this path fails to find such an assignment and it fails. This
procedure must halt because w contains only a finite number of predicate sym
bols, one is eliminated at each step, and there are only two values to choose from
at each step. So either some path will return True or all paths will eventually halt
and return False.

The following algorithm returns True if the answer to the question is yes and
False if the answer to the question is no:

decideSAT (w: Boolean wff)=

If there are no predicate symbols in w then:

Simplify w untU it is either True or False.

Return w.

Else:

Find P, the first predicate symbol in w. ,

/* Let w/P/x mean the wff w with every instance of P replaced
by x.

Return choose (decideSAT (w/P/True);;

decideSAT (w/P/FaLse)).

One way to envision the execution of a prograrn like solve-15 or decideSAT is as a
sem·ch tree. Each node in the tree corresponds to a snapshot of solve-15 or decideSAT
and each path frorn the root to a leaf node corresponds to one computation that solve-
15 or decideSAT might perforrn. For example, if we invoke decideSAT on the input
p /\ , R, the set of possible cornputations can be described by the tree in Figure 4.1. The
first level in the tree corresponds to guessing a value for P and the second level corre
sponds to guessing a value for R.

https://hemanthrajhemu.github.io

46 Chapter 4 Computation

PI\...,R

Trl/cl\ ...,R False 1\ ..., R

~~ ~~
True 1\ ..., True Truc 1\ ...,Falsc False 1\ -. True False 1\ ..., False

I I I I
False Tme False Fa lse

FIGURE 4.1 A search tree created by decideSATon the input PI\ -,R.

Since there exists at least one computational path that succeeds (i.e. , returns a value
other than Fa/se), decideSAT will pick the value returned by one such path and return
it. So decideSAT will return True. lt may do so aft e r exp loring all four 01' the p aths
shown above (if it is unlucky choosing an order in which to explore the path). Or it
may guess correctly and find the successful path without considering any of the others.

Efficient algorithms for so lving Boolean satisfiabi lit y problems are impor
tant in a wide variety of domains. No general and efficienl algorithms are
known. But, in B.l.3 , we' lI describe ordered binary decision diagrams
(OBDDs) , which are used in SAT solvers that work , in pract ice, sub tanti a ll y
more efficiently than decideSA T does.

One of the most important properties of programs th at exploil choose is d eal' from
the simple tree that we just examined: Guesses th at do not lead to a lution C3 n be ef
fectively ignored in any analysis that is directed at determining th e program 's re ult.

Does adding choose to our programming language let us solve any problems that we
couldn ' t solve without it? The answer to that question turn ou t to depend on what else
the programming language already le ts us do.

Suppose, for example, that we are desc ribing our progra ms as finit ta t machines
(FSMs). One way to add choose to the FSM model is to all ow two 0 1' mo re transitions,
labeled with the same input character, to emerge from a in glc tate. We shO\ a simple
example in Figure 4.2.

We'lI say that a nondeterministic FS M M (i. e., one that ma exploi l cJlOose) acc pts
iff at least one of its paths accepts. It will reject iff all of it s paths rcject. So M' job i to

a

FIGURE 4.2 A nondeter ll1ini tie FSM , i\h \Wo
eompeting transiti ons labe led a.

https://hemanthrajhemu.github.io

4,2 Determinism and Nondeterminism 47

find an accepting path if there is one, If it succeeds, it can ignore a11 other paths.lf M ex
ploits choose and does contain competing transitions, then one way to view its behav
ior is that it makes a guess and chooses an accepting path if it can,

While we will find it very convenient to allow nondeterminism like this in finite
state machines, we will see in Section 5.4 that, whenever there is a nondeterministic
FSM to accept some language L, there is also a (possibly much larger and more com
plicated) deterministic FSM that accepts L. So adding choose doesn't change the dass
of languages that can be accepted.

Now suppose that we are describing our programs as pushdown automata (PDAs),
Again we will add choose to the model by allowing competing transitions coming out
of astate, As we will see in Chapter 13, now the answer is that adding choose adds
power. There are languages that can be accepted by PDAs that exploit choose that can
not be accepted by any PDA that does not exploit it.

Lastly, suppose that we are describing our programs as Turing machines or as code in a
standard, modem programming language, Then, as we will see in Chapter 17, we are back
to the situation we were in with FSMs, Nondeterminism is a very useful design tool that
lets us specify complex programs without worrying about the details of how the search is
managed, But, if there is a nondeterministic Turing machine that solves a problem, then
there is a deterministic one (one that does not exploit choose) that also solves the problem.

In the two cases (FSMs and Turing machines) in which adding choose does not add
computational power to our model we will see that it does add descriptive power.
We 'll see examples for wh ich a very simple nondeterministic machine can do the work
of a substantially more complex deterministic one. We 'lI present algorithms, for both
FSMs and Turing machines, that construct, given an arbitrary nondeterministic ma
chine, an equivalent deterministic one, Thus we can use nondeterminism as an effective
design tool and leave the job of building a deterministic program to a compiler.

In Part V, we will take a different look at analyzing problems and the pro grams that
solve them. There we will be concerned with the complexity of the solution: How much
running time does it take or how much memory does it require? In that analysis, non
determinism will playanother important roIe. It will enable us to separate our solution
to a problem into two parts:

1. The complexity of an individual path through the search tree that choose creates,
Each such path will typically correspond to checking one complete guess to see if
it is a solution to the problem we are trying to solve,

2. The total complexity of the entire search process.

So, although nondeterminism may at first seem at odds with our notion of effective
computation, we will find throughout this book that it is a very useful tool in helping us
to analyze problems and see how they fit into each of the models that we will consider.

For some problems, it is useful to extend choose to allow probabilities to be associ
ated with each of the alternatives. For example, we might write:

choose «,5) action 1;;

(.3) action 2;;

(.2) action 3)

https://hemanthrajhemu.github.io

48 Chapter 4 Camputation

For some applications, th e semantics we wil l want fo r thi s ex tended form of
choose will be that exactl y one path should be pursued. Let Pr(l/) be th e probabili
ty associated with altern ative n . Th en choose wi ll se leet a lt e rnat ive 11 wit h probabil
ity Pr(n) . For other applications, we will want a different semantics: All paths
should be pursued and a total probability should be assoc iated wi th each pa th as a
function of the set of probabiliti es associa ted with each step along th e pat h. We will
have more to say about how th ese probabiliti es aetu all y work when we talk about
specific applications.

4.3 Functions on Languages and Programs
In Chapter 2, we described some useful functi ons on languages. We con ide red sim
ple functions such as complement, co ncatena ti on. uni on, inter ecti on, and Kleene
star. All of those were defin ed by slraightforward extension of th e standa rd opera
tions on se ts and strings. Functions on languages are not limited to th ose, however.ln
this section , we mention a couple of others, wh ich we' ll co me back to at va rious
points throughout this book .

EXAMPLE 4.10 The Function chop

Define chop(L) = {w: ::JxEL(x =X ,CX2I\ X1E2.L* I\ X2E 2.L* I\ CE2.L l\ lxd =

IX211\w = X,X2)}' In other words, chop(L) is all the odd length trin gs in L with
their middle character chopped out.

Recall the language A llB ll = {al/b ll
: n ~ O}. What is chop (An Bl l)? Th answer

is 0, since there are no odd length strings in A Il BI1
.

What about AllBIlCIl = {al/b"c/'l: n ~ O}? Wh at is chop (A I1 BIl CIl)? Approxi
mately half of the strings in AIlBIlCn have odd length and so ca n have their middle
character chopped out. Strings in A Il BJ1 Cn contribute strings to chop (AJ1 BnCIl

) as
folIows:

n in AnBncn in chop A nBnC"

0 E

1 abc ac
2 aabbcc
3 aaabbbccc aaabbccc
4 aaaabbbbcccc
5 aaaaabbbbbccccc aaaaabbbbccccc

--

https://hemanthrajhemu.github.io

4.3 Functions on Languages and Programs 49

EXAMPLE 4.11 The Function firstchars

Define j'irstchars(L) = {w: 3y E L (y = cx 1\ CE LL 1\ X E LL* 1\ W E c*)}. So we
could determine firstchars(L) by looking at all the strings in L, finding all the
eharaeters that start such strings, and then, for each such eharaeter c, adding to
firslchars(L) all the strings in C*. Let's look atfirslchars applied to some languages:

L jirstchars(L)

(25 (25
{e} (25

{a} {a}*

A"B" {a}*
{ a, b} * { a} ;,: U {b} *

Given some funetion fon languages, we may want to ask the question , "If L is a
member of some language class C, what ean we say about fCL)? 1s it too a member
of C? Alternatively, is the class C c10sed under f?"

EXAMPLE 4.12 Are Language Classes Closed Under Various
Functions?

Consider two c1asses of languages, INF (the set of infinite languages) and FIN
Cthe set of finite languages). And consider four of the functions we have dis
cussed: union, intersection, chop and firstchars. We will ask the question , "Is dass
C c10sed under funetion f? " The answers are (wirh the number in each eell point
ing to an explanation below for the eorresponding answer):

FIN INF
union yes (1) yes (5)
inlerseCllOlt yes (2) 110 (6)
chop yes (3) 110 (7)
!irslchars 110 (4) yes (8)

1. For any sets A and B, IA U BI ::; IA I + IB\.
2. ForanysetsA and B, IA nBI ::; minCIAI, IBI) .

3. Each string in L ean generate at most one string m chop CL) , so
\chop (L) I ::; ILI.

https://hemanthrajhemu.github.io

50 Chapter 4 Computation

EXAMPlE 4.12 (Continued)

4. To show that any dass Cis not closed under some function fit is sufficient
to show a single counter example: a language L where L E C butf(L) rt. c.
We showed such a counter example above: fi rstchars ({a}) = {a} *.

5. For any sets A and B , IA U BI 2': IA \.
6. We show one eounte rexample: Let LI = {a} * and L 2 = {b} *. LI and

L 2 are infinite. But LI n L 2 = {e} , which is finite.

7. We have already shown a counterexample: AIlBn is in finite. But
Chop (AIlBn

) = 0, whieh is finite.

8. If L is infinite, then it eontains at least one string of length greater than O.
That string has some first eharaeter c. Then {c} * sfirstchars (L) and
{c} * is infinite.

In the rest of this book , we will discuss the four c1asse o f languages: regular,
context-free, decidable, and semidecidable, as deseribed in Chapter 3. One of the ques
tions we will ask for eaeh of them is whether they are c10sed under va rio us operations.

Given some funetion fon languages, how can we:

1. Implement f?

2. Show that so me class of languages is c10sed under f?

The answer to question 2 is generally by eonstruction. In o ther w rds, we will show
an algorithm that takes a deseription of the input language(s) and construets a deserip
tion of the result of applyingfto that input. We will then use th at construeted deserip
tion to show that the resulting Janguage is in the dass we care about. So our ability to
answer both questions 1 and 2 hinges on our ability 10 define an algori1hm that eom
putes f, given a deseription of its input (which is one or more languages).

In order to define an algorithm A to eompute some function J, we first need a way to
define the input to A. D efining A is going to be very difficult if we all ow, for example,
EngJish deseriptions of the language(s) on which A is supposed to operate. What we
need is a formal model that is exaetly powerful eno ugh 10 describe 1he languages on
whieh we would like A to be able to run. Then A could use the description(s) of its input
language(s) to build a neW description , using the same model, of the result of applying[.

EXAMPlE 4.13 Representing Languages So That Functions
(an Be Applied

Suppose that we wish to compute the funetion union .1t will be very hard to imple
ment union if we allow input language description ueh as:

• {w E {a, b} * : w has an odd number of characters}.

https://hemanthrajhemu.github.io

4.3 Functions on Languages and Programs 51

• { W E { a, b} * : W has an even number of a's }.

• {w E {a, b}* : all a's in w precede an b's}.

Suppose, on the other hand, that we describe each of these languages as a finite
state machine that accepts them. So, for example, language 1 would be repre
sented as

-0- a,b .0
a,b

In Chapter 8, we will show an algorithm that, given two FSMs, corresponding to
two regular languages, LI and L 2, constructs a new FSM that accepts the union of
L l and L 2.

If we use finite state machines (er pushdown automata or Turing machines) as
input I to an algorithm A that computes some function J, then what A will do is to ma
nipulate those FSMs (er PDAs or Turing machines) and produce a new one that ac
cepts the language J(I). If we think of the input FSMs (or PDAs or Turing machines) as
programs, then A is a program whose input and output are other programs.

Lisp is a programming language that makes it easy to write programs that
manipulate programs. (0.5)

Programs that write other programs are not particularly common, but they are
not fundamentally different from programs that work with any other data type.
Programs in any conventional programming language can be expressed as strings,
so any program that can manipulate strings can manipulate programs. Unfortu
nately, the syntax of most programming languages makes it relatively difficult to
design programs that can effectively manipulate other programs. As we will see
later, the FSM, PDA, and Turing machine formalisms that we are going to focus on
are reasonably easy to work with. Programs that perform functions on FSMs,
PDAs, and Turing machines will be an important part of the theory that we are
about to build.

Programs that write other programs play an important role in some applica
tion areas, including mathematical modeling of such things as oil weHs and fi
nancial markets. (G. 8)

https://hemanthrajhemu.github.io

52 Chapter 4 Camputation

Exercises
1. D eseribe in clear English o r pseudocode a d CI Io n p rocedure to answer the

question, "G iven a list of integers N and an individual integ r n , is there any ele
ment of N that is a factor of n?"

2. Given a Java program p and the input 0, eon ider th que tio n, " Does p ever out
put anything? "

a. D escribe a semidecision proced ure that an \' e rs thi que tion.

b. Is there an obvious way to turn your an we r t pa rt a in ta a deision
procedure?

3. R eeall the funetion chop (L) , defined in Example 4.10. Let L = {W E {a b}*:
W = wR } . What is chop (L)?

4. Are the following sets cJosed under the following ope rati ons? Pro your an wer.
If a set is not cJosed unde r the operati on , what i its clo ure unde r the ope ration?

a. L = {w E {a , b} * : W ends in a } under the functio n odds, defined on tring
as folIows: odds(s) = the string that 1S form ed by concatenatin g together all
of the odd numbered characters of s, (Sta rt numberin g the cha racte r at 1.)
For example, odds(ababbbb) = aabb.

b. FIN (the set of finite languages) under the function oddsL d fined n lan
guages as folIows:

oddsL(L) = {w: 3XE L(w = odds (x» }.

c. INF (the set of infinite languages) unde r th e fun cti o n odd L.

d. FIN unde r the funetion maxslring, defined in E xample 8.22.

e. INF under the funetion maxstring.

5. Let L = {a , b} . Let S be the set of a ll languages ove r 2, . Le t f b a binar func
ti on defined as folIows:

f : S X S-7 S.

fex , y) = x - y.

Answer each of the following questions and justi fy your an wer:

a. Is f one-to-one?

b. Isfonto?

c. Is f commutative?

6. D escribe a program , using choose, to:

a. Play Sudoku ~, described in N. 2.2.

b. So lve Rubik 's Cube® Q .

https://hemanthrajhemu.github.io

PAR T I

FINITE STATE MACHINES
AND REGULAR LANGUAGES

In this section, we begin our explo
ration of the language hierarchy.
We will start in the inner circle,
which corresponds to the class of
regular languages.

We will explore three techniques,
which we will prove are equivalent,
for defining the regular languages:

• Finite state mach in es.

• Regular languages.

• Regular grammars.

SD Languages

o Languages

Context-Free
Languages

PDAs

Turing Machines

.::".

https://hemanthrajhemu.github.io

CHAPTER 5

Finite State Machines

54

T he simplest and most efficient computational device th at we will consider is the
finite state machine (or FSM).

EXAMPLE 5.1 A Vending Machine

Consider the problem of deciding when to dispense a drink from a vending ma
chine. To simplify the problem a bit, we' lI pretend that it were still possible to buy
a drink far $.25 and we will assume that vending machines do not take pennies.
The solution that we will present for this problem can straightforwardly be ex
tended to modern, high-priced machines.

The vending machine controller will receive a sequence of inputs, each of which
corresponds to one of the following events:

• A coin is deposited into the machine. We can use the symbols N (for nickel) , 0
(for dime) , and Q (for quarter) to represent these events.

• The coin return button is pushed. We can use the symbol R (for return) to rep

resent this event.
• A drink button is pushed and a drink is dispensed. We can use the symbol S

(for soda) for this event.

After any finite sequence of inputs, the controller will be in ei ther:

• A dispensing state, in which it is willing to dispense a drink if a drink button is
pushed.

• A nondispensing state, in which not enough money has been inserted into the
machine.

While there is no bound on the length of the input sequence that a drink ma
chine may see in a week, there is only a finite amount of history thatits con
troller must remember in order to do its job. It needs only to be able to answer

https://hemanthrajhemu.github.io

Chapter 5 Finite State Machines 55

the question, "Has enough money been inserted, since the last time a drink was
dispensed, to purchase the next drink?" It is of course possible for someone to
keep inserting money without ever pushing a dispense-drink button. But we can
design a controller that will simply reject any money that comes in after the
amount required to buy a drink has been recorded and before a drink has actu
ally been dispensed. We will however assume that our goal is to design a cus
tomer-friendly drink machine. For example, the thirsty customer may have only
dimes. So we' ll build a machine that will accept up to $.45. If more than the nec
essary $.25 is inserted before a dispensing button is pushed, our machine will re
member the difference and leave a "credit" in the machine. So, for example, if a
customer inserts three dimes and then asks for drink , the machine will remember
the balance of $.05 .

Notice that th'e drink controller does not need to remember the actual se
quence of coins that it has received. It need only remernber the total value of the
coins that have been inserted since the last drink was dispensed.

The drink controller that we have just described needs 10 states, corresponding
to the possible values of the credit that the customer has in the machine: 0, 5, 10,
15, 20, 25 , 30, 35, 40, and 45 cents. The main structure of the controller is then:

The state that is labeled S is the start state. Transitions from one state to the
next are shown as arrows and labeled with the event that causes them to take
place. As coins are deposited, the controller's state changes to reflect the amount
of money that has been deposited. When the drink button is pU5hed (indicated as
S in the diagram) and the customer has a credit of less than $.25 , nothing happens.
The machine's state does not change. If the drink button is pushed and the cus
tomer has a credit of $.25 or more, the credit i5 decremented by $.25 and a drink is
dispensed. The drink-dispensing states, namely those that correspond to "enough
money", can be thought of as goal or accepting states. We have shown them in the
diagram with double circIes.

Not a1l of the required transitions have been shown in the diagram. It would be
too difficult to read. We must add to the ones shown a11 of the following:

• From each of the accepting states, a transition back to itself labeled with each
coin value. These transitions correspond to our decision to rejeet additional
eoins onee the machine has been fed the priee of a drink.

https://hemanthrajhemu.github.io

56 Chapter 5 Finite State Machines

EXAMPlE 5.1 (Continued)

• From each state, a transition back to the start state labe led R. These transitions
will be taken whenever the customer pushes the coin return button. 111ey cor
respond to the machine returning all of the money that it ha accumulated
since the last drink was dispensed.

The drink controller that we have just described is an example of a finit e state ma
chine. We can think of it as a device to solve a problem (dispense drinks). Or we can
think of it as a device to recognize a language (the "eno ugh mo ney" language that corr
sists of the set of strings, such as NDD , th at drive the machin e 10 an accepting state in
which a drink can be dispensed). In most o f the rest of Ihis chap ter, we will take the lan
guage recognition perspective. But it does also make sense to im agi ne a finite sta te ma
chine that actually acts in the world (for example, by outputting a coin o r a drink). We
will return to that idea in Section 5.9.

Th.e history of finite state machines substantiall y predates modern
computers. (P. 1)

5.1 Deterministic Finite State Machines
Afinite state machine (or FSM) is a computation al dev ice whose input is as tring and
whose output is one of two values that we can call Accepl and Rejecl. FSMs are also
so me tim es called finite state automata or FSAs.

If M is an FSM, an input string is fed to M one character at a time, left to right. Each
time it receives a character, M considers its current state and the new character and
chooses a next state. One or more 01' M's states may be marked as accepting state . If M
runs out of input and is in an acce pting state, it accepts. If, however, M runs out of input
and is not in an accepting state, it rej ects. The number of steps that M executes on input
w is exactly equal to \w\, so M always halts and either accepts or rejects.

We begin by defining the class of FSMs whose behavior is deterministic. I n such machines,
there is always exactly one move that can be made at each slep; that move is determined by
the current state and the next input character. In Section 5.4, we will relax thi restriction and
introduce nondeterministic FSMs (also caHed NDFSM), in wh ich there may, at various
points in the computation, be more than one move from which the machine may choose. We
will continue to use the ternl FSM to include both deterministic and nondetermini tic FSMs.

A telephone switching circuit can easily be modeled as a DFSM .

Formally, a deterministic FSM (or DFSM) M is a quintuple (K, I , 0, s, A) , where:

• K is a finite set of states,

• I is the input alphabet,

--

https://hemanthrajhemu.github.io

5.1 Deterministic Finite State Machines 57

• SE K is the start state,

• A ~ K is the set of accepting states, and

• {) is the transition function. It maps from:

x 2: K
state input symbol

to K.

state

A configuration of a DFSM M is an element of K x 2: *. Think of it as a snapshot
of M.lt captures the two things that can make a difference to M's future behavior:

• Its current state.

• The input that is stillieft to read.

The initial configuration of a DFSM M, on input w, is (SM, W), where SM is the start
state of M. (We can use the subscript notation to refer to components of a machine M's
definition, although, when the context makes it clear what machine we are talking about,
we may omit the subscript.)

The transition function 8 defines the operation of a DFSM M one step at a time. We
can use it to define the sequence of configurations that M will enter. We start by defin
ing the relation yields-in-one-step , written 1-M. Yields-in-one-step relates configurationl
to configuration2 iff M can move from configuration] to configuration2 in one step. Let
c be any element of 2: and let W be any element of 2: *. Then,

We can now define the relation yields , written 1- M* to be the reflexive, transitive
c\osure of 1-M· SO configuration CI yields configuration C2 iff M can go from Cl to C2

in zero or more steps. In this case, we will write:

A computation by M is a finite sequence of configurations Co, Cl>"" Cn for some
n 2 0 such that:

• Co is an initial configuration,

• CII is of the form (q , e) , for some state q E KM (i.e., the entire input string has been
read) , and

• CO I-M Cl I- M c2 1-M .. . I-M CIl •

Let w be an element of 2: *. Then we will say that:

• M accepts w iff (s , w) I-M* (q , e) , for some q EA M . Any configuration (q, e) , for
some q EA M, is called an accepting configuration of M.

• M rejects w iff (s , w) I-M* (q , e) , for so me qftA M . Any configuration (q , e), for
some q ft AM, is called an rejecting configuration of M.

M halts whenever it enters either an accepting or a rejecting configuration. It will do so
immediately after reading the last character of its input.

The language accepted by M, denoted L(M) , is the set of a11 strings accepted by M.

https://hemanthrajhemu.github.io

58 Chapter 5 Finite State Machines

EXAMPLE 5.2 A Simple Language of a's and b's

Let L = {w E {a, b} '" : every ais immediately followed by a b}. L can be accept
ed by the DFSM M = ({ qo, q], q2}, {a, b} , 8, qo, {qo}), where:

8 = {«qo, a), ql) ,

«qo, b) , qo),

«Q1' a), q2) ,

«q!> b), qo) ,

«q2, a), q2) ,

«Q2, b), q2»}'

The tuple notation that we have just used for 8 is quite hard LO read. We will
generally find it useful to draw 8 as a transition diagram in tead . When we do that,
we will use two conventions:

1. The start state will be indicated with an unlabeled arrow pointing into it.

2. The accepting states will be indicated with double circIes.

With those conventions, a DFSM can be completely specified by a transition
diagram. So M is:

-a~a .bl----a_(.;pa.b
We will use the notation a , b as a shorthand for two transitions, one labeled a

and one labeled b.
As an example of M's operation , consider the input string abbabab. M's

computation is the sequence of configurations: (qo , abbabab) , (Qlo bbabab) ,
(Qo, babab), (qo, abab) , (q], bab) , (qo, ab) , (q), b), (qo, 8). Since qo is an accepting
state, M accepts.

If we look at the three states in M , the machine that we just built. we see that they
are of three different sorts:

1. State qo is an accepting state. Every string that drives M to state Cfo is in L.

2. State q\ is not an accepting state. But every string th at drives M l.O state q\ could
turn out to be in L if it is followed by an appropria te continuation strin g. in this
case, one that starts with a b.

--

https://hemanthrajhemu.github.io

5.1 Deterministic Finite State Machines 59

3. State q2 is what we will eall a dead state. Onee M enters state q2, it will never
leave. State q2 is not an aceepting state, so any string that drives M to state q2 has
already been determined not to be in L , no matter what comes next. We will often
name OUf dead states d.

EXAMPLE 5.3 Even Length Regions of a's

Let L = {w E { a, b} * : every a region in w is of even length} . L ean be aecepted
by the DFSM M:

If M sees a b in state qh then there has been an a region whose length is odd.
So, no matter what happens next, M must reject. So it goes to the dead state d.

A useful way to prototype a complex system is as a finite state machine. See
P 4 for one example: the controller for a soceer-playing robot.

Because objects of other data types are encoded in computer memories as binary
strings, it is important to be able to check key properties of such strings.

EXAMPLE 5.4 Checking for Odd Parity

Let L = {w E {O, 1} * : w has odd parity}. A binary string has odd parity iff the
number of l's in it is odd. So L can be accepted by the DFSM M:

One of the most important properties of finite state machines is that they are guar
anteed to halt on any input string of finite length. While this may seem obvious, it is
worth noting since, as we'll see later, more powerful computational models may not
share this property.

,I

https://hemanthrajhemu.github.io

60 Chapter 5 Finite State Machines

THEOREM 5.1 DFSMs Halt

Theorem: Every DFSM M, on input w, halts after Iwl step .

Proof: On input w, M executes some computa tion Co 1- f CI I- i\! c2 1- M .,. I- M
Cm where Co is an initial configuration and CII is of th e fo rm (q, e) , fo r ome tate
q E KM- Cn is either an accepting or a rejecting configura tio n, so M will halt when
it reaches CIl" Each step in the computatio n consume o ne character of w. So
n = Iwl . Thus M wi ll ha lt after Iwl steps.

5.2 The Regular Languages
We have now built DFSMs to accept four languages:

• "enough money to buy a drink ",

• {w E {a, b} * : every a is immediately fo llowed by a b},

• {w E {a , b} * : every a region in w is of even length }, a nd

• binary strings with odd parity.

These four languages are typical of a large c\ a of language. tha t ca n b accepted by

finite state machines.
We define the set of regular languages to be exactly those th at can be accepted by

some DFSM.

EXAMPLE 5.5 No More Than One b

Let L = {w E {a, b}* : w cOl1tains 110 more than one b}. L i regul ar because it
can be accepted by the DFSM M:

b b a,b

Any string witb more than one b will drive M to the d ad tal d. All other
strings will drive M to either qo or qt> both of which are acc pling tat .

EXAMPLE 5.6 No Two Consecutive Charaeters .Are the Same

Let L = {w E {a, b}* : no two consecutive characler a re th e ame} . Li r gular
because it can be accepted by the DFSM M:

https://hemanthrajhemu.github.io

5.2 The Regular Languages 61

a,b

The start state, qo, is the only state in which both a and b are legal inputs. M will be
in state qj whenever the consecutive characters rule has not been violated and the
last character it has read was a. At that point, the only legal next character is b. M will
be in state q2 whenever the consecutive characters rule has not been violated and the
last character it has read was b. At that point, the only legal next character is a. Any
other inputs drive M to d.

Simple languages of a 's and b's, like the ones in the last two examples, are useful
for practice in designing DFSMs. But the real power of the DFSM model comes from
the fact that the languages that arise in many real-world applications are regular.

The language of universal resource identifiers (URIs), used to describe
objects on the World Wide Web, is regular. (1.3.1)

To describe less triviallanguages will sometirnes require DFSMs that are hard to
draw if we include the dead state. In those cases, we will omit it from our diagrams. This
doesn't mean that it doesn 't exist. 0 is a function that must be defined for all (state,
input) pairs. It just means that we won 't bother to draw the dead state. lnstead , our
convention will be that if there is 110 transition specified for some (state, input) pair ,
then that pair drives the machine to a dead state.

EXAMPLE 5.7 Floating Point Numbers

Let FLOAT = {w : w is the string representation of a floating point number}.
Assume the following syntax for floating point numbers:

• A floating point number is an optional sign, followed by a decimal number,
followed by an optional exponent.

• A decimal number may be of the form x or X.y, where x and y are nonempty
strings of decimal digi ts.

https://hemanthrajhemu.github.io

62 Chapter 5 Finite State Machines

EXAMPlE 5.7 (Continued)

• An exponent begins with E and is followed by an optional sign and then an
integer.

• An integer is a nonempty string of decimal digits.

So, for example, these strings represent floating point numbers:

+3.0,3.0, 0.3El, O.3E+l, -0.3E+l, - 3E8

FLOAT is regular because it can be accepted by the DFSM:

d E d

In this diagram, we have used the shorthand d to stand for any one of the deci
mal digits (0 - 9). And we have omitted the dead state to avoid arrows crossing
over each other.

EXAMPlE 5.8 A Simple Communication Protocol

Let L be a language that contains all the legal sequences of me sages that can be
exchanged between a dient and a server using a simple communication protocol.
We will actually consider only a very simplified version of ueh a protocol , but the
idea can be extended to a more realistic model.

Let LL = {Open, Request, Reply, Close}. Every string in L begins with Open
and ends with Close. In addition, every Request, exeept possibly the last must be
followed by Reply and no unsolicited Reply's may occur.

L is regular because it can be aceepted by the DFSM:

Reply

Open Request

Close

Note that we have again omitted the dead state.

--

https://hemanthrajhemu.github.io

5.3 Designing Deterministic Finite State Machines 63

More realistic communication protocols can also be modeled as FSMs. (1.1)

5.3 Designing Deterministic Finite State Machines
Given some language L, how should we go about designing a DFSM to accept L? In
general , as in any design task, there is no magie bullet. But there are two related things
that it is helpful to think about:

• Imagine any DFSM M that accepts L. As astring w is being read by M, what prop
erties of the part of w that has been seen so far are going to have any bearing on the
ultimate answer that M needs to produce? Those are the properties that M needs to
record. So, for example, in the "enough money" machine, all that matters is the
amount of money since the last drink was dispensed. Which coins came in and the
order in which they were deposited make no difference.

• If L is infinite but M has a finite number of states, strings must "cluster" . In
other words, multiple different strings will aB drive M to the same state. Once
they have done that , none of their differences matter anymore. If they've driven
M to the same state, they share a fate. No matter what comes next, either all of
them cause M to accept or all of them cause M to reject. In Section 5.7 we will
show that the smallest DFSM for any language L 1S the one that has exact1y one
state for every group of initial substrings that share a common fate. For now,
however, it helps to think about what those clusters are. We'll do that in our
next example.

A building security system can be described as a DFSM that sounds an alarm
if given an input sequence that signals an intruder. (1.1)

EXAMPlE 5.9 Even a's, Odd b's

Let L = {w E {a, b }* : w contains an even number of a's and an odd number
of b's} . To design a DFSM M to accept L, we need to decide what history mat
ters. Since M's goal is to separate strings with even a's and odd b's from strings
that fail to meet at least one of those requirements, a11 it needs to remember is
whether the count of a's so far is even or odd and whether the count of b's is
even or odd. So, since there are two clusters based on the number of a's so far
(even and odd) and two clusters based on the number of b's, there are four
distinct clusters.

That suggests that we need a four-state DFSM. Often it helps to name the
states with adescription of the clusters to which they correspond. Tbe following
DFSM M accepts L:

https://hemanthrajhemu.github.io

64 Chapter 5 Finite State Machines

EXAMPLE 5.9 (Continued)

even a 's
even b's

b

b

a

a

a

a

b

odd a'
odd b'

b

Notice that , onee we have designed a machine that analyzes an input tring with
respeet to some set of properties we care abo ut, it is relative ly easy to build a dif
ferent maehine that accepts strings based on different values of those properties.
For example, to change M so that it aceepts exaetly the string with bolh even a 's
and even b's, all we need to do is to change the accepting ta te.

EXAMPLE 5.10 All the Vowels in Alphabetical Order

Let L = {w E {a - z } * : alJ five vowels, a , e , i , 0 , and U oceur in 10 in al.ph abeticaJ
order}. So L eontains words Iike abstemious , facet;ous , and sacrilegious.
But it does not eontain tenaci ous, which does contain all the owels, b ut not in
the correct order. It is hard to write a c1ea r, elegant program to ace pt L. But de
signing a DFSM is simple. The foIlowing machine M does the job. In this descrip
tion of M, let the label " 2, - {a} " mean "a)] elements of 2, exc pt a " and let the
label " 2," mean "all elements of 2, " :

L - {al L - {e} L - {i} 2 - {a} 2: - {al

Notice that the state that we h ave labeled yes functions xactl y opposi te t the
way in which the dead state work . JE M ever reache ye , il ha decid d t accept
no matter what comes next.

Sometimes an easy way to design an FSM to aceept a languag L i 10 begin by de
signing an FSM to aceept th e compl ement of L. Then, as a final step. 'vve swap the ac
cepting and the nonaccepting states.

https://hemanthrajhemu.github.io

5.3 Designing Deterministic Finite State Machines 65

EXAMPlE 5.11 A Substring that Doesn't Occur

Let L = {w E {a, b} * : w does not contain the substring aab}. It is straightfor
ward to design an FSM that looks für the substring aab. So we can begin building
a machine to accept L by building the following machine to accept -,L:

Then we can convert this machine into one that accepts L by making states qo, qh
and q2 accepting and state q3 nonaccepting.

In Section 8.3 we'lI show that the regular languages are closed under complement
(i.e. , the complement of every regular language is also regular). The proof will be by
construction and the last step of the construction will be to swap accepting and nonac
cepting states, just as we did in the last example.

Sometimes the usefulness of the DFSM model , as we have so far defined it, breaks down
before its formal power does. There are some regular languages that seem quite simple
when we state them but that can only be accepted by DFSMs of substantial complexity.

EXAMPlE 5.12 The Missing Letter Language

Let L = {a, b. c. d}. Let LMissillg = {w: there is a symbol ai E L not appearing
in w}. L Missing is regular. We can begin writing out a DFSM M to accept it. We will
need the following states:

• The start state: all letters are still missing.

After one character has been read, M could be in any one of:

• a read, so b, c , and d still missing.
• b read, so a, c, and d still missing.
• c read, so a, b, and d still missing.
• d read, so a , b, and c still missing.

After a second character has been read, M could be in any of the previous
states or one of:

• a and b read , so c and d still missing.
• a and c read, so band d still missing.
• and so forth. There are six of these.

https://hemanthrajhemu.github.io

66 Chapter 5 Finite State Machines

EXAMPLE 5.12 (Continued)

A fter a third character has been read, M could be in any of the previous states
o r one of:

• a and b and c read, so d rnissing.

• a and b and d read, so c miss ing.
• a and c alld d read, so b rni ssing.

• b and c alld d read, so a missing.

After a fourth character has been read, M could be in any of th e previous
states or:

• All characters read , so no thing is missing.

Every state except the last is an accepting state. M is complicated but it would be
possible to write it out. Now imagine that 2: were the entire English alphabet It
would still be possible to write out a DFSM to accept L Missillg, but it would be so com
plicated it would be hard to get it right.1l1e DFSM model is no longer very useful.

5.4 Nondeterministic FSMs
To solve the proble m th at we just e ncount ered in th e missing le tle r example, we will
moc\ify OUT definition of an FSM to allow no nc\ete rmilli sm. Reca ll our di cussion of
nonc\etermini sm in Sectio n 4.2. We will now introduce our first specific use of the ideas
we di scussed th ere. We' lI see tha t we can eas il y build a nondetermini sti c FSM M to ac
cept L Mis.lillg' An y strin g in L Milsillg must be missing a t leas t one le tter. We 'tt design M so
tha t it simpty guesses at which le tte r that iS. lf there is a missing lelte r, 1he n a1 I ast one
of M's guesses will be right and the co rresponding path will accept. So M will accept.

5.4.1 What Is a Nondeterministic FSM?

A nondetermini stic FSM (or NDFSM) M is a quintuple (K , 2:, ~,s, A), whe re:

• K is a finit e set of sta tes,

• 2: is an alph abe t,

• SE K is the start sta te,

• A ~ is the set of final states, a nd

• ~ is the transition re lation . 1t is a finit e subset of: (K x (1 U {s})) x K .

In other words, each ele ment o f ~ contains a (s ta te. input symbol o r e) pair, and a
Ilew state.

We define configura ti on, initia l configura tio n, accepting configur ti on ,) ielrls-in-one
step, yields, alld computation anatogously to the way th at we defined them fü r DFSMs.

Let w be an element of 2: *. Then we will say tha t:

• M accepls w iff at least on.e of its computa ti o ns accepls.

• M rejecls w ift none of its co mputa tions accept s.

https://hemanthrajhemu.github.io

5.4 Nondeterministic FSMs 67

The language accepted by M, denoted L(M) , is the set of all strings accepted by M.
There are two key differences between DFSMs and NDFSMs. In every configuration,

a DFSM ean make exaetly one move. However, because ß ean be an arbitrary relation
(that may not also be a function), that is not neeessarily true for an NDFSM. Instead:

• An NDFSM M may enter a eonfiguration in whieh there are still input symbols left
to read but from whieh no moves are available. Since any sequenee of moves that
leads to such a configuration cannot ever reaeh an accepting configuration, M will
simply halt without accepting. This situation is possible because ß is not a function.
So there ean be (state, input) pairs for whieh no next state is defined.

• An NDFSM M may enter a eonfiguration from which two or more competing
moves are possible. The competition can come from either or both of the following
properties of the transition relation of an NDFSM:

- An NDFSM M may have one or more transitions that are labeled e, rather than
being labeled with a character from L. An e-transition out of state q may (but
need not) be followed, without eonsuming any input, whenever M is in state q.
So an e-transition from astate q eompetes with aB other transitions out of q.
One way to think about the usefulness of s-transitions is that they enable M to
guess at the correet path before it aetually sees the input. Wrong guesses will
generate paths that will fail but that can be ignored.

- Out of some state q, there may be more than one transition with a given label.
These eompeting transitions give M another way to guess at a correct path.

Consider the fragment , shown in Figure 5.1, of an NDFSM M. If M is in state qo and
the next input character is an a, then there are three moves that M could make:

1. It ean take the e-transition to ql before it reads the next input character,

2. It can read the next input character and take the transition to q2, or

3. It can read the next input character and take the transition to q3'

One way to envision the operation of M is as a tree, as shown in Figure 5.2. Each
node in the tree corresponds to a configuration of M. Each path from the root corre
sponds to a sequence of moves that M might make. Each path that leads to a configura
tion in which the entire input string has been read corresponds to a computation of M.

An alternative is to imagine following all paths through M in parallel. Think of M
as being in a set of states at each step of its computation. If, when M runs out of input,
the set of states that it is in contains at least one accepting state, then M will accept.

FIGURE 5.1 An NDFSM with two kinds of
nondetermi nism.

https://hemanthrajhemu.github.io

68 Chapter 5 Finite State Machines

s, abab

q! , abab qz, bab ql,. bab

q2. ab

FIGURE 5.2 Viewing nondeterminism as search through aspace of comput ati on paths.

EXAMPLE 5.13 An Optional Initial a

Let L = {w E { a, b} * : w is made up of an optional a foUowed by aa foLIowed by
zero or more b's}. The following NDFSM M accepts L:

M may (but is not required to) follow the [';-transition from state qo to state qt
before it reads the first input character. In effect, it must guess whether or not the
optional a is present.

EXAMPLE 5.14 Two Different Sublanguages

Let L = {w E {a, b} * : w = aba or Iw l is even}. An easy way 10 build an FSM to
accept this language is to build FSMs for each of the individual sublanguages and
then "glue" them together with e-transitions. In essen ce, the machine guesses,
when processing astring, which sublanguage the string migh1 be in. So we have:

The upper machine accepts {w E {a, b} * : w = aba}. The lower one accepts
{wE{a,b} * : Iwl iseven}.

https://hemanthrajhemu.github.io

5.4 Nondeterministic FSMs 69

By exploiting nondeterminism, it may be possible to build a simple FSM to accept a lan
guage for which the smallest deterministic FSM is complex. A good example of a language
for which this is true is the missing letter language that we considered in Example 5.12.

EXAMPlE 5.15 The Missing Letter Language, Again

Let L = {a, b, c, d} . L Missing = {w: there is a symbol ai E L not appearing in
w}. The following simple NDFSM M accepts L Missing:

e. ~ __ b,c,d

a,c,d

a,b,d

e
a,b,c

M works by guessing which letter is going to be the missing one. If any of its
guesses is right, it will accept. If all of them are wrong, then all paths will fail and M
will reject.

5.4.2 NDFSMs for Pattern and Substring Matching

Nondeterministic FSMs are a particularly effective way to define simple machines to
search a text string for one or more patterns or substrings.

EXAMPlE 5.16 Exploiting Nondeterminism for Keyword Matching

LetL = {WE {a,b, c}*: :JX,YE {a,b,c}* (w = x abcabb y)}. Inotherwords,w
must contain at least one occurrence of the substring abcabb. The following
DFSM Mt accepts L:

https://hemanthrajhemu.github.io

70 Chapter 5 Finite State Machines

EXAMPLE 5.16 (Continued)

While M] works, and it works effici ently, designing machine like MI and getting
them right is hard. The spaghetti-like transitions are neces ary because, whenever
a match fail s, it is possible that another partial match ha a lready bee n found.

But now consider the foHowing NDFSM M2, which also accepts L:

The idea here is that, whenever M2 sees an a , it may guess that it is at the begin
ning of the pattern abcabb. Or, on any input character (including a) it may guess
that it is not yet at the beginning of the pattern (so it stays in qo). If it ever reach
es Q6, it will stay there until it has finished reading the input. Then it will accept.

Of course, practica l strin g search engines need to be small a nd detcrrninistic. But
NDFSMs like the one we just built can be used as the ba i fo r co nstructing such
efficient search machin es. In Section 5.4.4, we will de c ribe a n a lgo rithm th at con
verts an arbitrary NDFSM into a n e quiva le nt D FSM. It is lik e ly th a t that rnachine
will h ave more states th an it needs. But , in Section 5.7 , we will present a n algorithm
that takes a n arbitra ry DFSM a nd produces an equi va le nt minim a l o ne (i.e., Olle
with the smallest number of sta tes). So o ne effecti ve way to build a correct and
efficient string-searching mac hine is to build a simple ND FSM , conve rt it to an
equivalent DFSM, and then minimize the result . O ne a lt e rn a ti ve to thi three-step
process is the Knuth -Mo rri s- Pra tt string sea rch a lgo rithm , which we will present in
Example 27.5.

String searching is a fundamenta l o peration in every wo rd process ing or text
editing system.

Now suppose that we have not one pattern but seve ral. H and craftin g a DF M may be
even more difficult. One alternative is to use a pecialized , keyword- ca rch FSM-build
ing algorithm that we wi1\ present in Section 6.2.4. Anothe r is to build a simple
NDFSM, as we show in the next example.

https://hemanthrajhemu.github.io

-
5.4 Nondeterministic FSMs 71

EXAMPlE 5.17 Multiple Keywords

Let L = {w E {a, b} * : ::Ix, Y E {a, b} * ((W = x abbaa y) V (w = x baba y))}. In
other words, w contains at least one occurrence of the substring abbaa or the sub
string baba. The following NDFSM M accepts L:

The idea here is that, whenever M sees an a, it may guess that it is at the beginning
of the substring abbaa. Whenever it sees a b, it may guess that it is at the begin
ning of the substring baba. Alternatively, on either a or b, it may guess that it is
not yet at the beginning of either substring (so it stays in qo).

NDFSMs are also a natural way to sem·ch for other kinds of patterns, as we can see
in the next example.

EXAMPlE 5.18 Other Kinds of Patterns

Let L = {WE {a, b} * : the fourth from the last character is a}. The following
NDFSM M accepts L:

The idea here is that, whenever it sees an a, one of M's paths guesses that it is the
fourth from the last character (and so proceeds along the path that will read the
last three remaining characters). The other path guesses that it is not (and so stays
in the start state).

It is enlightening to try designing DFSMs for the last two examples. We leave that as
an exercise. lf you try it, you'lI appreciate the value of the NDFSM model as a high
level tool for describing complex systems.

https://hemanthrajhemu.github.io

72 Chapter 5 Finite State Machines

5.4.3 Analyzing Nondeterministic FSMs
Given an NDFSM M , such as any of the ones we have just considered how can we an
alyze it to determine wh at strings it accepts? One way is to do a depth-first search of
the paths through the machine. Another is to imagine tracing the execution of the orig
inal NDFSM M by following all paths in parallel. To do that think of M as being in a set
of states at each step of its computation. For example, consider aga in the NDFSM that
we built for Example 5.17. You may find it useful to trace the process we are about to
describe by using several fingers. Or, when fingers run out, use a eoin on each active
state. Initially, M is in qo. If it sees an a , it can loop to state qo or go to qJ. So we wiU
think of it as being in the set of states {qo , qt} (thus we need two finge rs or two coins).
Suppose it sees a b next. From qo, it can go to qo or q6. From qh it can go to q2' So, after
seeing the string ab , M is in {qo, q2, q6} (three fingers or three coins). Suppose it sees a
b next. From qo, it can go to qo or q6' From q2, it can go to q3' From q6, it can go
nowhere. So, after seeing abb, M is in {qo , q3, q6}' And so forth. If, when all the input
has been read, M is in at least one aceepting state (in this ease, qs or q9), then it accepts.
Otherwise it rejects.

Handling e-Transitions
But how shall we handle s-transitions? The construction that we just sketched assumes
that all paths have read the same number of input symbols. But if, from some state q,
one transition is labeled sand another is Iabeled with some element of L , M consumes
no input as it takes the first transition and one input symbol as it takes the second tran
sition. To solve this problem, we introduce the funelion eps: KM --+ gp (KM). We define
eps(q) , where q is some state in M , to be the set of states of M that are reachable from
q by following zero or more s-transitions. Formally:

eps (q) = {p E K: (q, w) I-M * (p, w)}.

Alternatively, eps(q) is the c\osure of {q} under the relation {(p , r) : there is a tran
sition (p, s, r) E ß}. The following algorithm compute eps:

eps(q: state) =

1. result = {q} .
2. While there exists some p E result and some r ~ result and some transition

(p , e, r) E ß do: Insert r into result.

3. Return result.

This algorithm is guaranteed to halt because, eaeh time through the Ioop, it adds an
element to resull. It must halt when there are no elements left to add. Since there is
only a finite number of candidate elements, namely the finite set of states in M and no
element can be added more than onee, the algorithm must eventuall y run out of ele
ments to add, at whieh point it must halt.lt correetly computes eps(q) becau e, by the
condition associated with the while loop:

• It can add no element that is not reachable from q following only s-tran itions.

• It will add all elements that are reachable from q following nly s- transition .

https://hemanthrajhemu.github.io

5.4 Nondeterministic FSMs 73

EXAMPLE 5.19 Computing eps

Consider the following NDFSM M:

To compute eps (qo) , we initially set result to {qo}. Then ql is added, producing
{qo, ql}' Then q2 is added, producing {qo, ql> q2}' There is an e-transition from q2
to qo, but qo is already in result. So the computation of eps(qo) halts.

The result of running eps on each of the states of M is:

eps(qo) = {qo, qh q2}'

eps(ql) = {qO,qhq2}'

eps (q2) = {qo, ql> q2}'

eps(q3) = {q3}'

Example 5.19 illustrates clearly why we chose to define the eps function, rather than
treating e-transitions like other transitions and simply following them whenever we could.
The machine we had to consider in that example contains what we might choose to call an
E-loop: a loop that can be traversed by following only e-transitions. Since such transitions
consume no input, there is no limit to the number of times the loop could be traversed. So,
if we were not careful, it would be easy to write a simulation algorithm that did not halt.
The algorithm that we presented for eps halts whenever it runs out of unvisited states to
add, which must eventually happen since the set of states is finite.

A Simulation Aigorithm

With the eps function in hand, we can now define an algorithm for tracing all paths in
parallel through an NDFSM M:

ndfsmsimulate (M: NDFSM, w: string) =

1. current-state = eps(s). /*Start in the set that contains M's start state
and any other states that can be reached
from it foLlowing only e-transitions.

https://hemanthrajhemu.github.io

74 Chapter 5 Finite State Machines

2. While any input symbols in w remain to be read do:

2.1. c = get-next-symboJ(w).

2.2. neXl-state = 0.

2.3. For each state q in currel1l-stale do:

For each state p such that (q , c, p) E I:::. do:

next-S/Qle = n ext-Slate U eps(p).

2.4. current-stale = neXl-stale .

3. If current-Slale contains any states in A , aceept. E lse rej cl.

Step 2.3 is the core of the sim ulation algorithm .1t says: Follow every are labeJed c from
every state in current-stale. Then eompute neXl-Slaie (and thus the n -w va lue of current
stale) so that it includes every state that is reached in that pr ce , plu ' eve ry tate that
can be reaehed by fo llowing c:-transitions from any of those states. For more on how this
step can be implemented, see the more detail ed description of nrlj. ... ·fl/sirnu!are that we
present in Section 5.6.2.

5.4.4 The Equivalence of Nondeterministic and Deterministic FSMs
In this seetion , we explore the relationship be tween the DFSM and NDFSM models
that we have just defined.

THEOREM 5.2 If There is a DFSM for L, There is an NDFSM for L

Theorem: Far every DFSM there is an equivalen t NDFSM.

Proof: Let M be a DFSM that aceepts some language L. M is a lso an NDFSM that
happens to contain no c:-transitions and whose tran itio n rc lati n happens to be a
function. So the NDFSM that we claim musl ex ist is simpl y M.

But what about the other direction ? The nondeterm inisti c mode l that we have just
introduced makes it substantia lly easier to build FSMs to aeeept some kinds of lan
guages, particularly those that involve looking far instances of eomplex pattern. But
real computers a re deterministic. What doe th ex i tence of an NDFSM 10 accept a
language L tell us about the existence of a de terministi c program to acee pl L? The an
swer is given by the fo ll owing theorem:

THEOREM 5.3 If There is an NDFSM for L, There is a DFSM for L
~---------- ----

Theorem: Given an NDFSM M = (K, L, 1:::. , s, A) th aI acccpts som language L .
there exists an equivalent DFSM th at aeeepts L.

Proof: The prooE is by construction of a n equiva lent DFSM M'. The constl'uction
is based on the function eps a nd on th e s imulatio n a lgo rithm tha t we de
scribed in the last section . The states of M' wi ll CO lT p nd I e l f stat s in M.
So M' = (K' , 2:,8 ' , s', A') , where:

https://hemanthrajhemu.github.io

5.4 Nondeterministic FSMs 75

• K' contains one state for each element of QP(K).

• s' = eps(s).

• A' = {Q c;: K : Q nA =F 0}.
• o'(Q, c) = U {eps(p) : 3q E Q ((q, c,p) E ß)}.

We should note the following things about this definition:

• In principle, there is one state in K' for each element of QP(K). However, in
most cases, many of those states will be unreachable from s' (and thus unnec
essary). So we will present a construction algorithm that creates states only as
it needs to.

• We'll name each state in K' with the element of QP(K) to which it corresponds.
That will make it relatively straightforward to see how the construction works.
But keep in mind that those labels are just names. We could have called them
anything.

• To decide whether astate in K' is an accepting state, we see whether it corre
sponds to an element of QP(K) that contains at least one element of A, i.e., one
accepting state from K.

• M' accepts wheilever it runs out of input and Is in astate that contains at least
one accepting state of M. Thus it implements the definition of an NDFSM,
which accepts iff at least one path through it accepts.

• The definition of 0' corresponds to step 2.3 of the simulation algorithm we
presented above.

The following algorithm computes M' given M:

ndfsmtodfsm(M: NDFSM) =

1. For each state q in K do:

Compute eps(q).

2. s' = eps(s).

3. Compute 0':

a. active-states = {s'} .

b. 0' = 0.

1* These values will be used below.

1* We will build a list of aU states that are re ach
able from the start state. Each element of
aClive-states is a set of states drawn from K.

c. While there exists some element Q of aClive-states for which 0' has not
yet been computed do:

For each character c in L do:

new-slate = 0 .

For each state q in Q do:

https://hemanthrajhemu.github.io

76 Chapter 5 Finite State Machines

For each state p such that (q, C, p) E /j. do:

new-sfale = new-slale U eps(p).

Add the transition (Q, c, neW-SlCl1e) to {5' .

If new-SIC/te fi active-srates then in ert it into acrive-sfares.

4. K' = active-states.

5. A' = {Q E K' : Q nA i:- 0 }.

The core of ndfsmtodf<;ln is the loop in step 3.3. At each step through it, we
pick astate that we knowis reachable from the start state but from which we
have not yet computed transitions. Call it Q. Then compute the paths from Q for
each element c of the input a lphabet as folIows: Q is a set of stat es in the original
NDFSM M. So consider each element q of Q. Find all tran itions from q labeled
c. For each state p that is reached by such a tran ition , find all additional states
that are reachable by following only e-transitions from p. Let neW-Slare be the set
that contains all of those states. Now we know that whenever M' i in Q and it
reads a c, it should go to new-sfare.

The algorithm ndfsmtodfsm halts on all inputs and constructs a DFSM M' that
accepts exactly L(M), the language accepted by M.

A rigorous construction proof requires a proof tha t th e construction al
gorithm is correct. We will generally omit th e detai ls of ueh proofs. But
we show them for this case as an exa mple of wh at these proofs look like.
(Appendix C)

The algorithm ndf<;mtodfsm. is important for two reasons:

• It proves the theorem that, for every NDFSM there exist an equivaJe nt DFSM.

• It Jets us use nondeterminism as a des ign tool , even though we may ultimately need
a deterministic machine. If we have an implementation of ndf'il11tod!m1, then, if we
can build an NDFSM to solve our problem, ndfmllOdfsm can easily construct an
equivalent DFSM.

EXAMPlE 5.20 Using ndfsmtodfsm to Build a Deterministic FSM

Consider the NDFSM M shown on the next page. To get a fee t for M, simulate it
on the input string bbbacb, using coins to keep track of the stat s it nt r .

We can apply ndfsmtodfsm to M as fo lIows:

1. Compute eps(q) for each state q in KM:

https://hemanthrajhemu.github.io

".

5.4 Nondeterministic FSMs 77

eps (ql) = {ql, q2, q7}, eps (q2) = {q2, q7}, eps (q3) = {q3}, eps (q4) = {q4},

eps (qS) = {qS}, eps (q6) = {q2' q6, q7}, eps (q7) = {q7}, eps (qg) = {qg}.

2. s' = eps (s) = {ql ' q2, q7}'

3. Compute 8 ':

active-states = {{ qh qz, q7} }. Consider {qt. q2, q7}:

« {ql, q2, q7}' a), 0).
« {ql, q2, Q7}, b),{ qh q2, q3, qs, q7, qg}).

« {Q}, q2, Q7}, c), 0).

active-states = {{ql, Q2, Q7}, 0, {ql, q2, q3, qs, q7, qs}}. Consider 0:

«0, a), 0).
«0, b), 0).

«0, c), 0).

/* 0 is a dead state and we will generally omit it.

active-states = {{ Ql, Q2, q7}, 0, {qt. q2, Q3, qs, q7, qs} }. Consider

{Qb q2, Q3, Qs, Q7, Qs}:

« {qh qz, q3, qs, q7, qg}, a), {Q2, Q4, q6, q7}).

« {qh q2, q3, qs, q7, qs}, b), {ql , q2, q3, Qs, Q6, q7, Qs}).

C({qh q2, q3, qs, q7, qs}, c), {q4})'

active-states = {{ ql, q2, q7}, 0, {qJ, Q2, Q3, qs, Q7, Qs}, {q2, Q4, q6, Q7},
{Qt, q2, q3, qs, q6, q7, qs}, {Q4}}. Consider {Q2, Q4, Q6, Q7}:

« {q2, Q4, Q6, q7}, a), 0).

https://hemanthrajhemu.github.io

78 Ch a pte r 5 Fi n ite State Mach ines

EXAMPLE 5.20 (Continued)

« {q2, q4, (16, q7}, b) , { q3' qs, qs}).

« {qb q4, q6, q7}, c), {q2 q7}) '

acrive-stares = {{qj, q2> q7}, 0, {q) , q2, q3, qs, q7, CJ s}, {CJ _, 74' ({ (" (h}

{ q), q2, Q3, qs, q6, q7, qs}, {q4}, {Q3, qS· qg} . { q:!, Cf7} }'

Consider {q) , q2, q3, qs, q6, q7, qs}:

«{ql , q2, q3, qS, q6, q7, q }, a), { q2,qJ"Cfc, .Cf7}) '

« {ql , q2> q3, qs, Q6, q7, qs} , b), {Q" q2, Cf :, - Cfs, Cf c" Cf7, CJ x}).

«{qJ,q2, q3, qS, q6, q7, q} , c), { q2, qJ, Cf7}) .

aClive-slates = {{q[,q2, 17}, 0 ,{Q"q2, q , QS, Q7,qH}, { Cf z,{h qfl . lh},{Ql,Q2,

Q3, Qs, Q6, Q7, Qs}, {Q4}, {Q3, Qs, Qs}, {Q2, Q7}, { Cf2, Cf4, CJ7}}. n id r {Q4}:

« { q 4}' a), 0).
« { q4} , b), O).

«({q4}, c), {q2, Q7})'

acti ve-stales did not change. Conside r {Q3, Cf s Qs}:

« {Cf 3, qs, qs}, a), {q2, q4, Cf6, Cf7})'

« {q3, qs, qs}, b), { q2, Q6, Cf7}) .

« {Cf], Cfs, Q8}, c), {Cf4})'

active-slates = {{ q j, Q2, Q7}, 0 , { Ql' Q2, Q3, Qs, Q7· QH} , { Cf2' CfJ" Cf c" Cf7} ,

{Q], Q2, q3, qs, Q6, q7, Qs} { CJ4}, { Q3, Cfs, Cfs}, { Cf2' Cf7} ' { q ~ , Cf ... - fJ7} ' {Q_, Q6. Cf7}} '
Conside r {Cf2, Cf7} :

«{Q2, Q7} , a),0).

« { Q2, Q7}, b), {Q3, Qs, Q }).

«{Q2, Q7} , c),0).

acrive-sTares d id not change. Conside r { Cf2, Cf4, Cf7}:

« { q2, q4, Cf7}, a), O).

«{Q2, Q4 , Q7}, b), {Q3, Qs, Qg}).

«{Q2, Q4 Q7}, c), { Q2, Q7})'

active-slC/tes d id not chang . Conside r {Q2 Q6, Q7} :

« {Q2 , Cf6, Q7}, a) , O).

«{Q2, Q6, Q7} , b), {Q3, Qs, Cfs}) ·

«{Q2, Q6, Q7} , c) {Q2, Cf7})'

https://hemanthrajhemu.github.io

5.5 From FSMs to Operational Systems 79

active-states did not change. Ö has been computed for each element of
acti ve-states .

4. K' = {{qt> q2, q7}, 0, {q], Q2, q3, qs , q7, qs}, {q2' q4 , q6, q7} , {q], q2, q3,

qs, q6, q7, qs}, {q4}, {q3' qs, qs}, {q2, Q7}, {Q2' q4' q7}, {q2' Q6, Q7}}'

5. A' = {{ Q[, Q2 , q3, qs , q7, Qs}, {Q}, qz, q3, Qs , Q6, Q7, Qs} , {Q3, Qs , qs} }.

Notice th at, in Example 5.20, the original NDFSM had 8 states. So Igp(K) I = 256.
There could have been that many states in the DFSM that was constructed t rom the
origi nal machine. But only 10 of those are reachable trom the start state and so can
play any role in the operation of the machine. We designed the a lgorithm n.dfsmtodfsm
so th at only those 10 would have to be built.

Somet imes, however, all or almost a11 of the possible subsets of states are reachable.
Consider again the NDFSM of Example 5.15, th e missing letter machine. Let's imagi ne
a slight vari ant that considers an 26 lette rs of the alphabet. That machine M has 27
states. So, in principle, the corresponding DFSM could have 227 states. And , this time,
all subsets are possible excepl that M can not be in the start state, Qo, at any time except
before the first character is read . So the DFS M that we would build if we applied
n df,)l17lO[(t~'m to M would have 226 + 1 states. In Section 5.6, we will describe a tech
nique for interpreting NDFSMs without converting them to DFSMs first. Using that
technique, highly nondeterministic machines, like the mjssing letter one, are still practical.

What happens if we apply ndfsrn.tod.f<;m to a machine that is already deterministic?
lt must work , since every DFSM is also a lega l NDFSM. You may want to try it on one
01' the machin es in Section 5.3. What you will see is that the machine that n.dfsnuodfsm
builds, given an input DFSM M, is identical to M except for the names of the states.

5.5 From FSMs to Operational Systems
An FSM is an abstractio n. We can describe an FSM that solves a problem without wor
ryi ng abo ut many kinds of implementation details. In fact, we don't even need to know
whether it will be e tched into silicon 01' implemented in software.

Statechart , which are based on the idea of hierarchica Uy structured transi
tion networks, are widely used in software engineeri ng precisely because
they enab le system designers to work at varyi ng level of abstraction. (H.2)

FSMs for rea l problems can be turned into operation al y tems in any of a number
of ways:

• A n FSM ca n be translated illtO a circuit design and implemented directly in
hardware. For example, it make sense to implement the parity checking FSM of
Example 5.4 in hardware.

https://hemanthrajhemu.github.io

80 Chapter 5 Fi n ite State Machi nes

• An FSM can be si mul ated by a general purpo int erpreter. \; il! de cribe de-
signs for such interpreters in the nex t section . ometime all that i r quir dia
simulation. In other ca ses, a sim ul ati on can be u ed to check a dc ion before it i
trans lated into hardware.

• A n FSM ca n be used as a specifica ti on for som crilica l a pec t of th e b ha ior of a
complex system. The specificat ion can lh n be implemenlcd in oft\ are ju t as an
specification might be. And the c rrectness of the implem nl ti n an b shown
by verifying that the implementation sati fi es th e 'p ifi at ion (i. " that it match
es the FSM).

Many network communication protoco) , includin g th e Alt rnating Bit pro
tocol and TCP, are descr ibed as FSMs. (I.1)

5.6 Simulators for FSMs •
Once we have created an FSM to solve a problem, \ e ma want 10 simulat it xecU
tion. In this section , we consider techniqu for doing that, tarting wi th OFSMs and
then extending our ideas to hand le nondetermini m.

5.6.1 Simulating Deterministic FSMs

We begin by considering onLy deterministic FSM. ne approa h i to think of an
FSM as the specification for a simple tab le-dri n pro ram and th en proceed to writ
th e code.

EXAMPLE 5.21 Hardcoding a Deterministic FSM

Consider the fo llowing deterministic FSM M lhat a cept thc lan uage L = {~ E

{a, b} * : w contains no more than one b}.

b

We could view M as a speeiJieation for the fo li o ing pr gr m:
Unti] aecept or rejeet do:

S: s = get-next- ymb I.
lf s = end-of-file th en a c pt.
E lse if s = a then go to S.
Else if s = b then go to T

https://hemanthrajhemu.github.io

T: s = get-next-syrnbol.

End.

lf s = end-of-file then accept.
Else if s = athen go to T
Else if s = b then reject.

5.6 Simulators for FSMs 81

Given an FSM M with states K, this approach will create a program of length
= 2 + (IKI · (I L I + 2)). The time required to analyze an input string w is
o (Iwl·1 LI). The biggest problem with this approach is that we must generate new
code for every FSM that we wish to run. Of course, we could write an FSM compiler
that did that far uso But we don 't need to. We can , instead, build an interpreter that ex
ecutes the FSM directly.

Here's a simple interpreter for a deterministic FSM M = (K, 2:,8, s, A):

dfsmsim.ulate(M: DFSM, w: string) =

1. sr = S.

2. Repeat:

2.1. c = get-next-symbol(w) .

2.2. If c *' end-of-file then:

2.2.1. sr = 8(st, c).

until c = end-of-fi le.

3.] f sr E Athen accept else reject.

The algorithm dfsmsimulare runs in time approximately 0 (Iwi) , if we assume that
the lookup in step 2.2.1 can be implemented in constant time.

5.6.2 Simulating Nondeterministic FSMs

Now suppose that we want to execute an NDFSM M. One solution is:

ndfsmconvertandsimulate(M : NDFSM) =

dfsmsimulate(ndfsmtodfsm(M)) .

But, as we saw in Section 5.4, converting an NDFSM to a DFSM can be very ineffi
cient in terms of both time and space. If M has k states, it could take time and space
equal to O(2k

) just to do the conversion , although the simulation, after the conversion,
would take time equa l to O(lwl) . So we would like a better way. We would like an
algorithm that directly simulates an NDFSM M without converting it to a DFSM first.

We sketched such an algorithm ndfsmsimulate in our discussion leading up to the
definition of the conversion algorithm ndfsmlodfsm. The idea 1S to simulate being in
sets of states at on ce. But, instead of generating all of the reachable sets of states right

https://hemanthrajhemu.github.io

82 Chapter 5 Finite State Machines

away, as ndfsl11lodfsm does, it generates them on the f1y, a they are needed , being care
ful not to get stuck chasing e-loops.

We give hefe a more detailed description of ndj5l11Sinlllfale, which . imulates an
NDFSM M = (K, 2:, ß , s, A) running on an input string w:

ndfsmsimulate(M: NDFSM , w: string) =

1. Declare the set sr. /* sI will hold the current tate (a se I of states from K).

2. Declare the set stl . /* srl will be built to contain the nex t tate.

3. st = eps(s) . /"-: Start in all states reachabl e from s via onl y c-transitions.

4. Repeat:

c = get-next-symbol (w).

If c =I- end-of-file then do:

stl = 0.
For all q E SI do:

For allr: (q, c, r) E ß do:

SI] = sI1 U eps(r).
sI = st].

If Sl = 0 then exit.

until c = end-of-file .

5. If st n A =I- 0 then accept else reject.

/* Fo ll ow paths from a ll states M is
currently in .

r Find all sta tes reachable from q
via a transitio n labeled c.

/* FolIowall €- tran itions from there.

r Done following all palhs. So sr be
come M s new stat e.

/* If all pa ths have died , quit.

Now there is no conversion cost. To analyze astring w requircs Iwl passes through
the main loop in step 4. ln the worst case, M is in all states all th e time and each of them
has a transition to every other one. So one pass could take as many as O(I K12) steps, for
a total cost of O(w ·IKI2

).

There is also a third way we could build a simulator for an NDF M. We coutd build
a depth-first search program that examines the paths thr ugh M and stops whenever
either it finds a path that accepts or it has tried all the paths the re a re.

5.7 Minimizing FSMs •
If we are going to solve a real problem with an FSM , we may want t find the smallest
one that does the job. We will say that a DFSM M is minimal iff Ihe re is no other
DFSM M' such that L(M) = L(M') and M' has fewer states than M does.

We might want to be able to ask:

1. Given a language, L, is there a minimal DFSM tha t accepts l ?

2. lf there is a minimal machine, is it unique?

3. Given a DFSM M that accepts some language L , can we te ll whether M i minimal?

4. Given a DFSM M, can we construct a minimal eq uiva le nt DFSM M'?

https://hemanthrajhemu.github.io

5.7 Minimizing FSMs 83

The answer to all four questions is yes. We'll consider questions 1 and 2 first, and then
consider questions 3 and 4.

5.7.1 Building a Minimal DFSM for a Language
Recall that in Section 5.3 we suggested that an effective way to think about the design
of a DFSM M to accept some language Lover an alphabet ~ is to cluster the strings in
~ * in such a way that strings that share a future will drive M to the same state. We will
now formalize that idea and use it as the basis for constructing a minimal DFSM to ac
cept L.

We will say that x and y are indistinguishable with respect to L, which we will write
as x:::::: L y iff:

\lz E ~* (either both xz and yz E L or neither is) .

In other words, ::::::L is a relation that is defined so that x ::::::L Y precisely in case, if x and
y are viewed as prefixes of some longer string, no matter what continuation string z
comes next, either both xz and yz are in L or both are not.

EXAMPlE 5.22 HOW:::::::L Depends on L

If L = {a}*, then a::::::L aa ::::::L aaa. But if L = {WE {a, b}*: Iwi is even} , then
a :::::: L aaa, but it is not the case that a ::::::L aa because, if z = a, we have aa E L
but aaa $. L.

We will say that x and y are distinguishable with respect to L, iff they are not indis
tinguishable. So, if x and y are distinguishable, then there exists at least one string z
such that one but not both of xz and yz is in L.

Note that :::::: L is an equivalence relation because it is:

• Reflexive: \Ix E ~ * (x :::::: LX), because \Ix, z E ~ * (xz E L ~ XZ E L).

• Symmetrie: \Ix, y E L* (x :::::: L y - Y :::::: LX), because Vx, y, z E L* «xz E L - yz E L)
~(yzEL~xZ EL)).

• Transitive: \Ix, y, Z E ~* «(x ::::::LY)f\(y ::::::L w)) - (x ::::::L w)), because:

\Ix, y, z E L* «(xz E L ~ yz E L) f\(yz E L ~ WZ E L)) - (xz E L ~ WZ E L)).

We will use three notations to describe the equivalence dasses of :::::: L:

• [1] , [2], etc. will refer to explicitly numbered dasses.

• [x] describes the equivalence dass that contains the string x.

• [some logieal expression P] describes the equivalence dass of strings that satisfy P.

https://hemanthrajhemu.github.io

84 Chapter 5 Finite State Machines

Since ;::::: L is an equivalence relation , its equivalence d asses constitute a partition of
the set L*. So:

• No equivalence dass of ;::::: L is empty, and

• Every string in L * is in exactly one equivalence c1 ass o f ;::::: 10'

What we will see so on is that the equivalence d asses o f ;::::: L co rrespond exactly to
the states of the minimum DFSM that accepts L. So eve ry string in L * will drive that
DFSM to exactly one state.

Given some language L , how can we de termine ;::::: L? An y pair o f ·trings x and y are
related via ;::::: L unless there exists some z that could foll ow them and cause one to be
in Land the other not to be. So it helps to begin the analys is by co nside ring simple
strings and seeing wh ether they are distingui shable o r no t. One way to start this
process is to begin lexicographically enumerating the strings in L * and continue until
a pattern has emerged.

EXAMPlE 5.23 Determining ~L

Let L = {a, b}. Let L = {w E L * : every a is immediately followed by ab}.
To determine the equivalence classes of ;::::: L , we begin by creating a first class

[1] and arbitrarily assigning e t6 it. Now consider a. It is distinguishable from E

since eab E L but aab rt L. So we create a new equivalence class [2] and put a in
it. Now consider b. b ~ L 8 since every string is in L unless it has an a that is not fol
lowed by a b. Neither of these has an a that could have t.hat problem. So they are
both in L as long as their continuation doesn ' t violate the rule. If the ir continua
tion does violate the rule, they are both out. So b goes into [1).

Next we try aa. It is distinguishable from the strings in [1] because the strings in
[1] are in L but aa is not. So, consider e as a continuation string. Take any string in
[1] and concatenate e. The result is still in L. But aas is not in L. We also notice
that aa is distinguishable from a , and so cannot be in [2] , because a still bas a
chance to become in L if it is foHowed by astring that starts with a b. But aa is out,
no matter what comes next. We create a new equivalence dass [3] and pUl aa in it.
We continue in this fashion until we discover the property that holds of each
equivalence class.

The equivalence classes of ;::::: L are:

[1]

[2]

[3]

[8, b, abb, ., 0]

[a, abbba, . . .]

[aa, abaa, ···1

[all strings in L].

[all strings that end in a and have no prior
a that is not followed by ab].

[all strings that contain at least one in
stance of aal.

https://hemanthrajhemu.github.io

5.7 Minimizing FSMs 85

Even this simple example illustrates three key points about ;::::: L:

• No equivalence dass can contain both strings that are in Land strings that are not.
This is dear if we consider the continuation string e. If x E L then xe E L. If y tt L
then ye tt L. So x and y are distinguishable by e.

• If there are strings that would take a DFSM for L to the dead state (in other words,
strings that are out of L no matter what comes next), then there will be one equiv
alence dass of ;::::: L that corresponds to the dead state.

• Some equivalence dass contains e. It will correspond to the start state of the mini
mal machine that accepts L.

EXAMPLE 5.24 When More Than One Class Contains Strings in L

Let ~ = {a, b}. Let L = {w E {a, b} * : no two adjacent characters are the
same}. The equivalence classes of ;::::: L are:

[1]

[2]

[3]

[4]

[e]
[a, aba, ababa, ...]

[b, ab, bab, abab, ...]

[aa, abaa, ababb . . .]

[e].

{a11 nonempty strings that end in a
and have no identical adjacent
characters] .

[a11 nonempty strings that end in b
and have no identical adjacent
characters].

[a11 strings that contain at least
one pair of identical adjacent
characters] .

From this example, we make one new observation about ;::::: L:

• While no equivalence dass may contain both strings that are in Land strings that are
not, there may be more than one equivalence dass that contains strings that are in
L. For example, in this last case, a11 the strings in classes [1] , [2], and [3] are in L. Only
those that are in [4], which corresponds to the dead state, are not in L. That is be
cause of the structure of L: Any string is in L until it violates the rule, and then it is
hopelessly out.

Does ;::::: L always have a finite number of equivalence dasses? It has in the two ex
amples we have considered so far. But let's consider another one.

https://hemanthrajhemu.github.io

86 Chapter 5 Finite State Machines

EXAMPlE 5.25 ~L for AnBn

Let 2: = {a , b}. LetL = AllEIl = { allbll:n ~ O}.
We can begin constructing the equivalence c\ asses of ;::::: L:

[1] [4
[2] [al

[3] [aal

[4] [aaa].

But we seem to be in trouble. Each new string of a 's has to go in an equivalence
class di stinct from the shorter strings because each string requires a different con
tinuation string in order to become in L. So the set of equiva le nce cl asses of ;::::: L

must include at least a ll of the fo llowing classes:

{[n] : n is a positive integer and [n] contains the single string a ll
-

1}

Of course, classes that include strings that contain b's are also required.

So, if L = AllEIl , then ~L has an infinite number of equivale nce classes. This should
come as no surprise. ABB Il is not regular , as we will prove in Chapte r 8. If the equiva
lenee classes of ;::::: L are going to correspo nd to the states of a machine to accept L , then
there will be a finite number of equivale nce c1 asses precisely in case L is regula r.

We are now ready to talk abo ut DFSMs and to examin e the re la ti o nship between
;::::: Land any DFSM that accepts L. To hetp do th at we wi ll say that as tate q of a DFSM
M conla;ns the set of strings s such that M , when started in it s start la te, lands in q
after reading s.

THEOREM 5.4 ~L Imposes a Lower Bound on the Minimum Number of
States of a DFSM for L

Theorem: Let L be a regular language and le t M = (K , 2:,8 , s, A) be a DFSM that
accepts L. The numbe r of states in M is grea te r than or equal to th e nllmber of
equivalence c\asses of ~ L.

Proof: Suppose th at the nllmbe r of states in M were less th an the number of equiv
alence classes of ;::::: L. The n, by the pigeonhole principle, there must be a t least o ne
state q that contains strings from at least two equivalence c1 asses o f ;::::: 1.. But the n
M's future behavior on those strings will be ide ntica l, whieh is not eonsiste nt with
the fact that th ey are in di ffe re nt equivale nce classes o f ;::::: L.

So now we know a lower bo und on the number of sta tes th at a re required to build
an FSM to accept a la nguage L. But is it a lways possible to find a DFSM M uch that
IKMI is exactly equaI to the number of equivale nce c\asses of ;::::: ,) The answer is yes.

https://hemanthrajhemu.github.io

5.7 Minimizing FSMs 87

THEOREM 5.5 There Exists a Unique Minimal DFSM for Every Regular
Language
r- -----.- .-... ----.-
I Theorem: Let L be a regular language over some alphabet L. Then there is a

DFSM M that accepts Land that has precisely n states where n is the number of
equivalence classes of <;::::, L. Any other DFSM that accepts L must either have
more states than M or it must be equivalent to M except for state names.

Proof: The proof is by construction of M = (K, L, 8, s , A), where:

• K contains n states, one for each equivalence dass of <;::::, L.

• S = [cl, the equivalence dass of c under <;::::, L'

• A = {[X]:XEL} .
• 8([x] , a) = [xa]_ln other words, if M is in the state that contains some string x,

then, after reading the next symbol a, it will be in the state that contains xa .

For this construction to prove the theorem, we must show:

• K is finite. Since L is regular, it is accepted by some DFSM M'. M' has some
finite number of states m. By Theorem 5.4, n :S m. So K is finite.

• 8 is a function. In other words, it is defined for all (state, input) pairs and it
produces, for each of them, a unique value. The construcÜon defines a value of
8 for all (state, input) pairs. The fact that the construction guarantees a unique
such value follows from the definition of <;::::, L .

• L = L(M). In other words, M does in fact accept the language L. To prove
this, we must first show that Vs, t «[c] , sc) I-li': ([s] , t». In other words,
when M starts in its start state and has astring that we are describing as
having two parts, sand f , to read , it correctly reads the first part sand lands
in the state [s], with tleft to read. We do this by induction on \s\. If \s\ = 0
then we have ([c] , g t) \-M* ([c] , t), which is true since M simply makes
zero moves. Assume that the claim is true if Is\ = k. Then we consider
what happe ns when \sl = k + 1. \sl ~ 1, so we can let s = ye where y E L *
and CE L . We have:

/* M reads the first k characters:

([c],yel) \-M* ([y],et) (induction hypothesis, since Iyl = k).

/* M reads one more character:

([y], et) 1- M* ([ye] , I) (definition of OM)'

/* Combining those two, after M h as read k + 1 characters:

([gl, yet) 1- M* ([ye] , t)

([cl, SI) I- M* ([s], t)

(transit ivity of 1-M*)-

(defini lion of s as ye) .

https://hemanthrajhemu.github.io

88 Chapter 5 Finite State Machines

Now let t be e. (In other words, we are examining M's behavior after it
reads its entire input string.) Let s be any string in 2: *. By the claim we just
proved, ([e],s) I-M* ([s], e). M will accept s iff [s] E A, which, by the way in
which A was constructed, it will be if the strings in [s] are in L. So M accepts
precisely those strings that are in M.

• There exists no smaller machine M# that also accepts L. Thi follows directly
from Theorem 5.4, wh ich says that the number of equivalence classes of ;::JL

imposes a lower bound on the number of states in any OFSM that accepts L.

• There is no different machine M# that also ha 11 state and that accepts L.
Consider any DFSM M# with 11 states. We show that either M# i identical to
M (up to state names) or L(M#) * L(M).

Since we do not care about state nam es, we can sta nda rdi ze the m. Call
the start state of both M and M# state 1. Oefine a lex icographic ordering
on the elements of 2:. Number the res t of the state in both M and M# as
follows:

Until all states have been numbered do:

Let q be the lowest numbered state from wh ich the re are transitions
that lead to an as yet unnumbered state.

List the transitions that lead out from q to any unnumbered state. Sort
those transitions lexicographically by the symbo l on them.

Go through the sorted transitions (q, a, p) , in order, and, for each, assign
the next unassigned number to state p.

Note that M# has n states and there are 11 equivalence classes of ~ L' Since
none of those equivalence classes is empty (by the definition of equivalence
c1asses), M# either wastes no states (i .e., every state contain at least one tring)
or, if it does waste any states, it has at least one state that contains strings in dif
ferent equiva lence classes of ~ L. If the latte r, then L(M#) * L. So we assume
the former. Now suppose that M# is diffe rent from M. Then there would have to
be at least one state q and one input symbol c such tha t M ha a tran ition (q, c, r)
and M# has a transition (q, c, t) and r '* t. Call the set of st rings that ,. contains
[r]. Since M# has no unused states (i.e. , states that contain no strings) , by the pi
geonhole principle, M#'s transition (q, c, r) mu t end ome strin g s in [r] to a
state, t, that also contains strings that are not in [r] . All trings in [t] will then
share all futures with s. But s is distinguishable from the strin gs in [r]. lf two
strings that are distinguishable with respect to L share all futures in M#, then
L(M#) '* L. Contradiction.

The construction that we used to prove llleorem 5.5 is u eful in its own right:
We can us it, if we know ~ L, to construct a minimal OFSM for L.

https://hemanthrajhemu.github.io

5.7 Minimizing FSMs 89

EXAMPLE 5.26 Building a Minimal DFSM fram ~L

We consider again the language of Example 5.24: Let 2: = {a, b}. Let L = {w E

{a, b} * : no two adjacent characters are the same}.
The equivalence dasses of ~ L are:

[1]

[2]

[3]

[4]

[e]
[a, aba, ababa, . . .]

[b, ab, bab, abab, .. .]

[aa, abaa, ababb . ..]

{e}.

{ all nonempty strings that end in a
and have no identical adjacent
characters} .

{all nonempty strings that end in b
and have no identical adjacent
characters} .

{ aB strings that contain at least one
pair of identical adjacent characters;
these strings are not in L , no matter
what comes next}.

We build a minimal DFSM M to accept L as follows:

• The equivalence dasses of ~ L become the states of M.

• The start state is [e] = [1].

• The accepting states are all equivalence dasses that contain strings in L, namely
[1], [2], and [3].

• 8([x], a) = [xa]. So, for example, equivalence dass [1] contains the string e.
lf the character a follows e, the resulting string, a, is in equivalence dass [21.
So we create a transition from [1) to [2] labeled a. Equivalence dass [2] con
tains the string a. If the character b follows a , the resulting string, ab, is in
equivalence dass [3] . So we create a transition from [2) to [3] labeled b. And
so forth.

a,b

https://hemanthrajhemu.github.io

90 Chapter 5 Finite State Machines

The fact that it is always possible to construct a minimum DFSM M to acce pt any lan
guage L is good news.As we will see later, the fact that that minimal DFSM is unique up
to state names is also useful. In particular, we will u e it as a basis for an algorithm that
checks two DFSMs to see if they accept the same language.1l1e theorem that we have
just proven is also useful because it gives us an easy way to prove the following result,
which goes by two names, Nerode's theorem and the Myhill- Ne rode theo rem.

THEOREM 5.6 Myhill-Nerode Theorem
1------ ---
I Theorem: A language is regular iff the number of equiva lence classe of :::::: L is finite.

I

Proof: We do two proofs to show the two directions of the implica tion:

L regular ~ (he number 0/ equivalence cla5'ses 0/ :::::: L is finite: I f L i regular, then
there exists some DFSM M that accepts L. M has some finite number of states m. By
Theorem 5.4, the number of equivalence classes of :::::: L ~ m. So the number of
equivalence classes of :::::: L is finite.

The number 0/ equivalence classes Oj :::::: L ;5' jinite ~ L regular:]f the number of
equivalence c\asses of :::::: L is finite , then the construction that was de cribed in the
proof ofTheorem 5.5 will build a DFSM th at accepts L. So L must be regular.

The Myhill-Nerode theorem gives us our first technique for proving that a language
L, such as AIlBIl , is not regular. It suffices to show that :::::: L has an infinite number of
equivalence classes. But using the Myhill-N erode theorem rigorously is difficult. In
Chapter 8, we will introduce othe r methods that are harder to use incorrectly.

5.7.2 Minimizing an Existing DFSM
Now suppose that we already have a DFSM M that accepts L. In fact , pos ibly M is the
only definition we have of L. In this case, it makes sense to construct a minimal DFSM
to accept L by starting with M rather than with :::::: L . There are t wo ap proaches that we
could take to constructing a minimization algorithm:

1. Begin with M and collapse redundant sta tes, gelting rid of one at a tim until. the
resulting machine is minimal.

2. Begin by overclustering the states of L into just two groups, acceptin g and nonac
cepting. Then iteratively split those groups apart until a ll the distinctions that L
requires have been made.

Both approaches work. We will present an algorithm that takes the second one.
Our goal is to end up with a minimal machine in wh ich a1l equi valent sta t of M

have been collapsed. In order to do that , we need apreeise definiti on of what i.t means
for two states to be equivalent (and thus collapsible). We will u e th fo llowing:

We will say that two states q and p in Mare equivalent , which wc will write q == P
iff for all strings W E 2:*, either w drives M to an accepting tate from both q a nd p or it

https://hemanthrajhemu.github.io

--
5.7 Minimizing FSMs 91

drives M to a rejecting state from both q and p. In other words, no matter wh at contin
uation string comes next, M behaves identically from both states. Note that = is an
equivalence relation over states, so it will partition the states of M into a set of equiva
lence classes.

EXAMPLE 5.27 A Nonminimal DFSM with Two Equivalent States

Let 2: = {a, b}. Let L = {w E 2: * : I w I is even} . Consider the following FSM
that accepts L:

In this machine state q2 = state q3'

For two states q and p to be equivalent, they must yield the same outcome for alt
possible continuation strings. We can't claim an algorithm for finding equivalent states
that works by trying a11 possible continuation strings since there is an infinite number
of them (assuming that 2: is not empty). Fortunately, we can show that it is necessary to
consider only a finite subset of them. In particular, we will consider them one character
at a time, and quit when considering another character has no effect on the machine we
are building.

We define aseries of equivalence relations =='\ for values of n ~ O. For any two
states p and q , p = 11 q iff p and q yield the same out co me for all strings of length n. So:

• p = 0 q iff they behave equivalently when they read c. In other words, if they are
both accepting or both rejecting states.

• p =1 q iff they behave equivalently when they read any string of length 1. In otber
words, if any single character sends both of them to an accepting state or both of
them to a rejecting state. Note that this is equivalent to saying that any single char
acter sends them to states that are = 0 to each other.

• p ==2 q iff they behave equivalently when they read any string of length 2, which
they will do if, when they read the first character they land in states that are =] to
each other. By the definition of == 1, they will then yield the same outcome when
they read the single remaining character.

• And so forth.

https://hemanthrajhemu.github.io

92 Chapter 5 Finite State Machines

We can state this definition concisely as folIows. For alI p , q E K:

• P =0 q iff they are both accepting or both rejecting tates .

• Foralln 2: 1, q =I/ p iff:

• q =1/ - 1 p , and

• Va E "2-(8(p , a) =1/ - 1 8(q, a)).

We will define minDFSM, a minimization algorithm th at lake a its input a OFSM
M = (K, "2-,8, s, A). MinDFSM will construct a minimal DF M M ' that i equivalent
to M . It begins by constructing =0, which divide the states of M inlo at most two
equivalence dasses, corresponding to A and K - A. If M has no accepting tates or if a11
its states are accepting, then th ere will be only one nonempty equivalence dass and we
can quit since there is a one-state machine th at is equivalent to M. W con ider there
fore only those cases where both A and K - Aare nonempty.

MinDFSM executes a sequence 01' steps, during which it constructs the sequ nce of
equivalence relations = 1, =2, To construct =k+l, minDFSM begin with =k.
But then it splits equivalence c1asses of =k whenever it di scovers som pair of states
that do not behave equivalen tly. MinDFSM halts when il di covers th at =" is the same
as =;1/ +]. Any further steps would operate on the same set of quivalence da ses and so
would also fai l to find any state that need to be split.

We can now state the algorithm:

minDFSM(M: DFSM) =

1. classes = {A, K-A } . /*]nitially, just two d asses of state , accepting and
rejecting.

2. Repeat until a pass at which no change to classes has been made:

2.1. newclasses = 0 . /* At each pass, we build a new set of cl as e ,splitting
, the old on es as necessa ry. Then this new set be

comes the old se t, and the proc s is repea ted.

2.2. For each equivalence dass e in classes, if e contain more than one state, see
if it needs to be split:

For each state q in e do: 1* Look at each tate and build a table of
what it do . Then the table for all
tates in the d a s ca ll b compared to

see if there are any differenc that
force splitting.

For each character c in 2: do :

Determine which element of c/asses q goes 10 if c i read.

If there are any two states p and q such thaI there is any characler c ueh
that, when c is read, p goes to one el m nt of cfasses and q goe to
another, then p and q mu t be split. Cr ale a many new quivalence
classes as are necessary 0 that no state remains in th ame dass

https://hemanthrajhemu.github.io

--
5.7 Minimizing FSMs 93

with astate whose behavior differs from its. Insert those classes into
newclasses.

lf there are no states whose behavior differs, no splitting is necessary. In
sert e into newclasses.

2.3. classes = newclasses .

/* The states of the minimal machine will correspond exactly to the elements of
classes at this point. We use the notation [q] for the element of classes that contains
the original sta te q.

3. Return M' = (classes , 2:, D, [SM], ([q: the elements of q are in A M]}), where DM '
is constructed as folIows:

if DM (q, c) = p, then DM ' ([q], c) = [p].

Clearly, no class that contains a single state can be split. So, if IK I is k, then the max
imum number of times that minDFSM can spli t classes is k - 1. Since minDFSM halts
when no more splitting can occur, the maximum number of times it can go through the
loop is k - 1. Thus minDFSM must halt in a finite number of steps. M' is the minimal
DFSM that is equivalent to M since:

• M' is minimal: It splits classes and thus creates new states only when necessary to
simulate M, and

• L(M') = L(M): The proof of this is straightforward by induction on the length of
the input string.

EXAMPlE 5.28 Using minDFSM to Find a Minimal Machine

Let 2: = {a, b}. Let M =

We will show the operation o[minDFSM at each step:

Jnitially, c!asses = {[2, 4] , [1,3,5, 6]}.

At step 1:

«2, a), [1 , 3, 5, 6])

«2, b) , [1 , 3,5 , 6])

«4, a) , [1 , 3, 5, 6])

«4, b) , [1 ,3,5,6])

No splitting required here.

a,b

https://hemanthrajhemu.github.io

94 Chapter 5 Finite State Machines

EXAMPLE 5.28 (Continued)

((1 , a) , [2 , 4])

((1 , b), [2, 4])

((3, a), [2, 4])

((3, b) , [2, 4])
((5, a), [2, 4])

((5, b), [2.4])
((6.a). \1 ,3,5 6])

((6. b).1l ,3,5, 6])

There are two different pattern s. so we must split inLO t,· 0 cla s, [I . ,5] and
[6]. Note that, although [6] has th e same behav ior a [2, 4] aft er reading a ingle
character, it cannot be combined with \2,4] because Lh ey do not haI' behavior
after reading no characters.

Classes = {[2, 4], [1 , 3, 5] , [6]}.

At step 2:

((2 , a) , [1 , 3, 5])

((2,b) , [6])

((1, a) , [2 , 4])

((1 , b) , [2, 4])

((4, a), [6])

((4, b), [1 , 3, 5])

((3 , a), [2 , 4])

((3 , b) , [2 , 4])

These LWO I11U L b plit.

((5 , a), [2, 4}) No plittino required.

((5 , b) [2,4])

Classes = {[2], [4] , [1 , 3, 5] , [6]}.

At step 3:

((1 , a) , [2])

((1, b) , [4])

((3, a) , [2])

((3 , b), [4])

So minDFSM returns M ' =

((5 , a), [2])

((5 , b), [4])

a,b

o splitting rcquired.

5.8 A Canonical Form for Regular Languages
A canol1ical form fo r some se t of obj ecL Ca. ign exactl y one rep rescnt aLi n I ach
class of "equivalent" objects in C. Further, each such repre cntation i di tincI, 0 two
objects in C share the same representati on iff they are "cqui va lcnt " in thc ' Cll for
which we defin e the form.

https://hemanthrajhemu.github.io

5.8 A Canonical Form for Regular Languages 95

T he ordered binary decision diagram (OBDD) is a canonical form for
Boolean express ions that makes it poss ible for model checkers to verify the
correctness 01' ve ry la rge concurrent systems and hardware circuits. (B.1.3)

Suppose that we had a canonical form for FSMs with the property that two FSMs
share a canonical form iff they accept the same language. Further suppose that we had
an a lgorithm that on input M , constructed M's canonical form. Then some questions
about FSMs would become easy to answer. For example, we could test whether two
FSMs are equivalent (i.e., they accept the ame language). It would suffice to construct
the canonical form for each of them and test whether the two farms are identical.

The algorithm minDFSM constructs, from any DFSM M, a minimal machine that
accepts L(M). By Theorem 5.5 , all minimal machines for L(M) are identical except
possibly for state names. So, if we could define a standard way to name states, we could
de1'ine a canonical machine to accept L(M) (and thus any regular language) . The fol
lowing algorithm does this by using the state-naming convention that we described in
the proo1' ofTheorem 5.5:

buildFSMcanonicalform(M: F SM) =

1. M' = ndfsmlodfsm(M).

2. M# = minDFSM(M') .

3. CJ'eate a unique assignment of names to the states of M# as follows:

3.1. Call the start state qo.

3.2. Define an order on the elements of L.

3.3 Unhl a1l states have been named do:

Select the lowest numbered named state that has not yet been selected. Call it q.

Crea te an ordered list of the transitions out of q by the order imposed on
the ir labels.

Create an ordered list of th e as yet unnam ed states that those transitions
enter by doing the following: If the first transition is (q , C], PI) , then put
p] first.lf the second transition is (q, C2, P2) and P2 is not already on the
list, put it next. lf it is a lready on the list , skip it. Continue until a11 tran
sitions have been considered. R emove from the list any states that have
already been named .

Name the states on the list th at was just created: A ssign to the first one the
name qk, where k is the smallest index that h asn't yet been used. Assign
the nex t name to the nex t state and so forth until all have been named.

4. R eturn M#.

Given two FSMs M] and Mb buildFSMcanonicalform (MI) = buildFSMcanonical
fo rm (M2) iff: L (M I) = L (M2) . We' ll see, in Seetion 9.1.4, one important use for this
canonical form: 1t provides the basis for a simple way to test whe the r an FSM accepts
any string or whether two FSMs are equivalent.

https://hemanthrajhemu.github.io

96 Chapter 5 Finite State Machines

5.9 Finite State Transducers •
So fa r, we have used finite state machines as language recognize r . All we have cared
about, in analyzing a machine M , is whether or not M ends in an accepting tate. But it
is a simple matter to augment our fini te state model to allow for output at eaeh step of
a maehine's operation. Often, o nee we do that, we may eease to care about whether M
actually aeeepts any strings. Many finite state transducers are loop th at simply run for
ever, processing inputs.

One simple kind of finite state transdueer associates an outpu t with each tate of a
machine M. That output is generated whenever M enters the associated tate. Deter
ministie finite state transducers of thi s sort are ca lled Moore machine ,aft e r their inven
tor Edward Moore. A Moore machine M is a seven-tuple (K , L, 0 , 0, D , s, A) where:

• K is a finite set of states,

• L is an input alphabet,

• 0 is an output a lphabet,

• S E K is the start state,

• A ~ K is the set of accepting sta tes (a lthough fo r some app li ca ti ons thi s des ignation
is not important),

• 0 is the transition funetion. It is funetion from (K X 2:) to (K), and

• D is the di splay or output function. It is a function from (K) to (0 *).

A Moore machine M eomputes a function J(w) iff, when it reads the input string w, its
output sequence isJ(w).

EXAMPlE 5.29 A Typical United States Traffic Light

Consider the following controller for a single directio n of a very simple U.S. traf
fie light (wh ich ignores time of day, traffic, the need to let eme rgency vehicles
through, ete.). We will also ignore the fact that a practical controller has to manage
all directions for a particu]ar intersection. In Exercise 5.16, we will explore remov
ing some of these limüations.

Tbe states in this simple controlle r eorrespond to the light 's eolors: green, yel
low and red. Note that the definition of the start state is arbitrary. There are three
inputs, all of which are elapsed time.

80 seconds

A different definition for a deterministic finite state transduce r permit ach ma
chine to output any finite sequence of symbols a it make each tran iti n (in other
words, as it reads each symbol of its input). FSM thaI. associa te o ut put wi th tra n itions

https://hemanthrajhemu.github.io

-
5.9 Finite State Transducers 97

are called Mealy machines, after their inventor George Mealy. A Mealy machine M is a
six-tuple (K, L, 0 ,0, s,A), where:

• K is a finite set of states,

• L is an input alphabet,

• 0 is an output alphabet,

• S E K is the start state,

• AC; is the set of accepting states, and

• 0 is the transition function.lt is a function from (K X L) to (K x 0 *).

A Mealy machine M computes a function f(w) iff, when it reads the input string w, its
output sequence isf(w).

EXAMPlE 5.30 Generating Parity Bits

The following Mealy machine adds an odd parity bit after every four binary digits that
it reads. We will use the notation alb on an arc to mean that the transition may be fol
lowed if the input character is a.lf it is followed, then the string b will be generated.

Digital circuits can be modeled as transducers using either Moore or Mealy
machines. (P. 3)

EXAMPlE 5.31 A Bar Code Reader

Bar codes are ubiquitous. We consider here a simplification: a bar code system
that encodes just binary numbers. lmagine a bar code such as:

https://hemanthrajhemu.github.io

98 Chapter 5 Finite State Mac hines

EXAMPLE 5.31 (Continued)

lt is composed of columns, each 0 1' the sa me width. A column an be either white
or bIack.lf two black co lLlInns oecur next 10 eaeh olh er, it \. illl ok to U likc a sin
gle, wide, blaek eolumn, but the reader will see two adj a ent black co lumn 01' the
standard width . The job of the white eolul1111 s is to delil11it thl! black one . ingle
blaek co lul11n encodes O. A double black eo lu l11n eneodes I.

We can bui ld a finite state transducer to read ueh a bar code and output astring
of binm'y digits. We'l\ rep resent a black bar with th c symbol Band a white bar with
the symbol W. The inpu t to the transducer will be a sequ nce 0 1' lho e symbol , cor
responding to read ing the bar code left 10 ri ght. We'll a ume that cvcr ' cOl'rect bar
code starts wirh a black column , so white space ah ad of the fir t blaek lumn i ig
nored. We'1I also assume that aft er every compl etc bar code there are at lea t two
white columns. So the reader should at th at point , reset to b re d to read the nex!
code. lf the reader sees three 01' more blaek col umn in row, it must indicate an
enor and stay in its error sta te until it is reset by seeing two white colu mn .

Bfe

Interpreters for finit e ·tat transducers ca n be bu ilt using tcchniqucs simi lar to th
on es th at we used in Seclion 5.6 10 bui ld int erpretcrs for finit c stalc m<l ehin cs.

5.10 Bidirectional Transducers •
A process th at read an input st rin g and construct . a eorresponding output tring can
be described in a variety oi' different way . Wh y houl d we choa se the fini te state tran -
ducer model? One reason is th at it provides a dee larativc. raLh c r th an Cl procedural ,
way to describe the relationship be tween inputs and out put. . lI ch a dcc larali ve m deI
can then be run in two direetions. For exa mpl e:

• To read an English text requires transformin g a word like " li berti es " into the root
word "Iiberty" anel the affix PLU RAL. To ge ne rate an ngli sh lex t rcqui rcs tran -
formin g a root word like "Iiberty" anclthe .' mant ic mark er " P RAL" im o th
surface word " liberti es". lf we could pec ify, in a . in gle dec larati vc mode l. the r la
tionship between surface words (th e ones we see in tex t) and undc rl yin g ro t \\lord
and affixes we could use it for eithe r applica tion. ,

https://hemanthrajhemu.github.io

5.10 Bidirectional Transducers 99

The facts about E nglish spelling rules and morphological analysis can be
described with a bidirectional finite state transducer. (L.I)

• The Soundex system, described below in Example 5.33, groups names that sound
alike. To create the Soundex representation of a name requires a set of rules for
mapping the spelling of the name to a unique four character code. To find other
names th at sound like the one that generated a particular code requires running
those same rul es backwards.

• Many things we call translators need to run in both directions. For example, consider
translating between Roman numerals ,!;l, and Arabic ones.

If we expand the definition of a Mealy machine to allow nondeterminism, then any
01' these bidirectional processes can be represented. A nondeterministic Mealy ma
chine can be thought of as defining a relation between one set of strings (for example,
Engli sh surface words) and a second set of strings (for example, English underlying
root words, along with affixes) . It is possible that we will need a machine that is nonde
terministic in one 01' both directions beca use the relationship between the two sets may
not be able to be described as a function.

EXAMPlE 5.32 Letter Substitution

When we define a regular language, it doesn 't matter what alphabet we use. Any
thing that is true of a language L defined over the alphabet {a, b} will also be true
of the language L' that contains exactly the strings in L except that every a has
been replaced by a 0 and every b has been replaced by a 1. We can build a simple
bidirectional transducer that can convert strings in L to strings in L' and vice versa.

y-Q a/o
~b/l

01' course, th e real power 01' bidirect ional finite state transducers comes from their
ability to model more complex processes.

EXAMPlE 5.33 Soundex: A Way to Find Similar Sounding Names

People change the spelling of their names. Sometimes the spelling was changed
for thern when they immigrated to a country with a different language, a different
set of sounds, and maybe a different writing system. For various reasons, one

https://hemanthrajhemu.github.io

100 Chapter 5 Finite State Machines

EXAMPLE 5.33 (Continued)

might want to identify other people 10 whom one is relatcd. ß ut bcca u e of
spelling changes, it isn't sufficie nl simpl y 1.0 loo k ror pcop le with cxa tl y th ame
last name. The Soundex ~ system was patented by Mar aret O 'Dell and Robert
C. Russell in 191 8 a a solution to thi s problem. h ys tem map .. any n'Oj me to a
four character code th at is derived (rom th e ori gin al name but that th rows away
details of th e sort that oft en get perturbed as names cvolve. So, to find related
names, one can run the Soundex transduce r in one directi 11 , from a starting name
to its Soundex code and then. in the other directi on, from the code to Ihe other
names that share that code. For exa mple, if we start with the name Ka lor, we will
produce the Soundex code K460. lf we then u c that code ami run thc tran ducer
backwards, we can generale Ihe names Kahl er, Kaler, Ka lor, Keel r, Kellar,
Kelleher, Keller, Kelliher, Kilroe, Kilroy, Koehl er, Kohler, Koller. and Kyler.

The Soundex system is described by th e fo llowing set of rul e for mapping
from a name to a Soundex code:

1. If two or more adjacent letlers (including the fir. 1 in the name) would map
to the same number if rule 3. L were app li ed 10 them. rem ve all but the first
in the sequence.

2. The first character of th e Soundex code wi ll be th e fir tletter of th name.

3. For all other letters of th e name da :

3.1. Convert the letters B, P, F, V, C, S, G, J, K, Q, X, Z. D,T, L. M, N, and R to
numbers using th e following correspondences:

B, P, F, V = 1.

C, S, G, J , K , Q, X , Z = 2.

D, T = 3.

L = 4.

M, N = 5.

R = 6.

3.2. Delete all instances 01' the letters A, E, I. 0, U, Y, H, and W.

4. lf the string contains more than three numbers, delete ali but the I hmo t
three.

5. H the string cont ain s fewer than three number , l ad with O' on the right to
get three.

Here's an initial fra gment of a finit e-s late tran ducer that imp lemcnt the rela
tionship between names and Soundex codes. The compl te C I' i n f lhi ma
chine can input a name and output a code by interpreting cach tran iti n lab 1 d
x/y as saying that th e transition can be taken on input x and il will output). lI1g
the other direction , it can input a code and output a name if it interpret ach
transition the other way : On input y, take lh e tr an. ition and utput x. Ta implif

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 101

the diagram, we've used two conventions: The symbol # stands for any one of the
letters A,E,J,O,U,Y,H , or W. And a label of the form x, y, z/a is a shorthand for
three transitions labeled x/a , y/a , and z/a. Also, the states are named to indicate
how many code symbols have been generated/read.

B, P, F, V /e B , P. F, V le

BIß

P/P

F/F B, P, F , VI1

VIV

LlL

Notice that in one direction (from names to codes) , this machine operates de
terministically. But , because information is lost in that direction , if we run the ma
chine in the direction that maps from codes to names, it becomes nondeterministic.
For example, the I>transitions can be traversed any number of times to generate
vowels that are not represented in the code. Because the goal, in running the rna
düne in the direction from code to narnes is to generate actual names, the system
that does this is augmented with a list of names found in U.S. census reports.lt can
then follow paths that match those names.

The Soundex system was designed far the specific purpose of matching names
in United States census data horn the early part of the twentieth century and be
fore. Newer systems, such as Phonix and Metaphone Q , are attempts to solve the
more general problem of identifying words that sound simila r to each other. Such
systems are used in a variety of applications, including ones that require matching
a broader range of proper names (e.g. , genealogy and white pages look up) as wen
as more general word matching tasks (e.g., speil checking).

5.11 Stochastic Finite Automata: Markov Models and HMMs •
Most 01' the fi nite state transducers that we have considered so far are deterministic. But
that is simply a property of the kinds of applications to which they are pul. We do not want
to live in a world of nondeterministic traffic lights or phone switching circuits. So we typi
cally design controllers (i.e. , machines that run things) to be deterministic. For some appli
cations though,nondeterminism can be useful. For example, it can add entertainment value.

Nondeterministic (possibly stochastic) FSMs can form the basis of video
games. (N.3.l)

https://hemanthrajhemu.github.io

102 Chapter 5 Finite State Machines

But now consider problems like the name-evolution one we ju t discussed. Now we
are not attempting to build a controller that drives the world. I.nstead we are trying to
build a model that describes and predicts a world that we are not in control of. Nondeter
ministic finite state models are often very useful tools in solving such problems. And typ
ically, although we do not know enough to predict with cerlainty how the behavior of the
model will change from one step to the next (thus the need for nondeterminism) , we do
have some data that enable us to estimate the probability that the system will move from
one state to the next. In this section, we explore the use of nondetermini tic finite state
machines and transducers that have been augmented with probabilistic inl' rmation.

5.11.1 Markov Models
A Markov model !;I, is an NDFSM in which the state at each tep can be predicted bya
probability distribution associated with the current state. Steps usuall y correspond to
time intervals, but they may correspond to any ordered di scre te seque nce. In essence
we replace transitions labeled wirh input symbols by transitions labeled wirh probabil
ities. The usual definition of a Markov mode l is that its behavior at time t depends only
on its state at time t - 1 (although higher-order models may allow any finite number
of past states to playa role). Of course, if we eliminate an input sequence, that is exactly
the property that characterizes an FSM.

Markov models have been used in musk composi tion. (N.I .1) They have al 0

been used to model the generation of many other son s of content , inc\uding

Web pages Q .

Formally a Markov model is a tripIe M = (K , 'Tr , A), wh er :

• K is a finite set of states,
• 'Tr is a vector that contains the initial probabilities of each of the tale, and

• Ais a matrix that represents the transition probabilities. A(p, q 1 = Pr(state q at time I
I state p at time t - 1). In other words A [p , q] is the probability that, if M is in state
p , it will go to state q next.

Some definitions specify a unique start state, but this definiti n is more general. If
there is a unique start state, then its initial probability is 1 and th initial probabilities
of all other states are O.

Notice that we have not mentioned any output alphabet. We wil l as urne that the
output at each step is simply the name of the state of the machin at thaI step. The se
quence of outputs produced by a Markov mode l i.s often call da Markov chain.

The link structure of the World Wide Web can be mode led a a Markov
chain, where the states correspond to Web pages and the pr babilities de
scribe the likelihood, in a randorn walk , of going from one page 10 lhe next.
Google's PageRank is based on the limits of those probabiliJies Q .

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 103

Given a Markov model that describes some random process, we can answer either
of the following questions:

• What is the probability that we will observe a particular sequence sls2' .. Sn of
states? We can compute this as fo11ows, using tbe prob ability that SI is the start state
and then multiplying by the probabilities of each of the transitions:

n

Pr(sls2' .. sn) = 7T[Sl]· TI A[Si- h sJ
i=2

• If the process runs for an arbitrarily long sequence of steps, what is likely to be the
result? More specifica11y, for each state in the system, what is the prob ability that
the system will land in that state?

EXAMPLE 5.34 A Simple Markov Model of the Weather

Suppose that we have the following model for the weather where we live. 'Ibis model
assumes that the weather on day t is influenced only by tbe weather on day t - 1.

7T=.4
Sunny

.75

.25 .3

7T = .6

Rainy
.7

We are considering a five day camping trip and want to know tbe probability of
five sunny days in a row. So we want to know the probability of the sequence
Sunny Sunny Sunny Sunny Sunny. The model teUs us that it is:

.4. (.75)4 = .1266

Or we could ask, given that it's sunny today, what is the probability that, if we
leave now, it will stay sunny for four more days. Now we assume that the model
starts in state Sunny, so we compute:

(.75)4 = .316

EXAMPLE 5.35 A Simple Markov Model of System Performance

Markov models are used extensively to model the performance of complex sys
tems of a11 kinds, including computers, electrical grids, and manufacturing plants.
While real models are substantially more complex, we can see how these models
work by taking Example 5.34 and renaming the states:

https://hemanthrajhemu.github.io

104 Chapter 5 Finite State Machines

EXAMPLE 5.35 (Continued)

'TT =.9

Operationsl
.95

.05 .7

.3
Broken

To make it a bit more realistic, we've changed the probabilities so that they de
scribe a system that actual1y works most of the time. We 'lI also use smaller time
intervals, say seconds. Now we might ask, "Given that the system is now up, what
is the probability that the system will stay up for an hour (i.e., for 3600 time steps).
The (possibly surprising) answer is:

.953600 = 6.3823.10-81

EXAMPLE 5.36 Population Genetics

In this example we consider a simple problem in population genetic . For a survey
of the biological concepts behind this example, see Appendix K. Suppose that we
are interested in the effect of inbreeding on the gene pool 01' a diploid organism (an
organism, such as humans, in which each individual has two co pies of each gene).
Consider the following simple model of the inheritance of a single gene with two al
leles (values): A and B. There are potentially three kinds of individua.l in the popu
lation: the AA organisms, the BB organisms, and the AB organi ms. Because we are
studying inbreeding, we'H make the assumption that individuals always mate with
others who are genetically similar to themselves and so possess the same gene pair.

To simplify our model, we will assume that one couple mates, has two children,
and dies. So we can think of each individual as replacing itself and then dying. We
can build the foHowing Markov model of a chain of descendents. Each step now
corresponds to a generation.

.25

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 105

AA pairs can produce only AA offspring. BB pairs can produce only BB off
spring. But what about AB pairs? What is their fate? We can answer this question
by considering the prob ability that the model, if it starts in state AB and runs for
some number of generations, will land in state AB. That prob ability is .sn, where n
is the number of generations. As n grows, that number approaches O. We show
how quickly it does so in the following table:

n Pr(AB)

1 .5

5 .03125
10 .0009765625

100 7.8886.10-31

After only 10 generations, very few heterozygous individuals (i.e., possessing two
different alleles) remain. After 100 generations, almost none do. If there is survival ad
vantage in being heterozygous, this could be a disaster for the population. The disas
ter can be avoided, of course, if individuals mate with genetically different individuals.

Where do the probabilities in a Markov model come from? In some simple cases,
they may be computed by hand and added to the system. In most cases, however, they
are computed by examining real datasets and discovering the probabilities that best de
scribe those data. So, for example, the probabilities we need for the system performance
model of Example 5.35 could be extracted from a log of system behavior over some re
cent period of time. To see how this can be done, suppose that we have observed the out
put sequences:T PT Q P QT and S S PT P Q Q PS T Q PTT P. The correct value for
A[P, Q] is the number of times the pair P Q appears in the sequence divided by the total
number of times that Pappears in any position except the last. Similarly, the correct
value for 1T[P] is the total number of times that P is the first symbol in a sequence divided
by the total nu mb er of sequences. In realistic problem contexts, the models are huge and
they evolve over time. There exist more computationally tractable algorithrns for updat
ing the probabilities (and, when necessary the states) of such models.

Substantial work has been done on efficient techniques for updating the huge
Markov model of the World Wide Web that is used to compute Google's
PageRanks Q . Note here that both the state set (corresponding to the set of
pages on the Web) as weil as the probabilities (which depend on the link
structure of the Web) must be regularly revised.

All of the Markov models we have presented so far have the property that their be
havior at step t is a function only of their state at step t - 1. Such models are called first
order. To build a first-order model with k states requires that we specify k 2 transition

https://hemanthrajhemu.github.io

106 Chapter 5 Finite State Machines

probabilities. Now suppose that we wish to describe a situation in which what happens
next depends on the previous two states. Or the previous three. Using the ame tech
niques that we used to build a first-order model, we can build model that consider the
previous n states for any fixed n. Such models are called nth ord r Markov models. Notice
that an n th order model requires e +1 transition probabilitie . But if there are enough
data available to train a higher-order model (i.e. , to ass ign appropriate probabilities to
all of the required transitions) , it may be possible to build a system that quite accurately
mimics the behavior of a very complex system.

A third-order Markov model, trained on about half of this book , used word
frequencies to generate the text "The Pumping Theorem is a useful way to
define a precedence hierarchy for the operators + and *." (L.3.2) A clever
application of a higher order Markov mode l of English is in producing spam
that is hard to detect. (L.3.2)

Early work on the use of Markov models for musical compo ition suggested
that models of order four or less tended to create works that see med ran
dom, while models of order seven or more tended to creale works that fe It
just like copies of works on which the model was trained. (N.I.1)

Whenever we build a Markov model to describe a natura ll y occurring process there
is a sense in which we are using probabilities to hide an underlying lack of understand
ing that would enable us to build a deterministic model of the phenomenon. So, for ex
ample, if we know that our computer system is more like ly to crash in the morning than
in the evening, that may show up as a pair of different probabilitie in a Markov model
even if we have no c1ue why the tim e of day affects system performance. Some Markov
models that do a pretty good job of mimicking nature may eem silly 10 us for exactly
that reason. Tbe one that generates random English text is a good example of that. But
now suppose that we had a model that did a very good job of predicting earthquakes.
Although we might rather have a good structural model that te il s u whyearthquakes
happen, a purely statistical , predictive mode l would be a very LI eful tool. rt is because
of cases like this that Markov models can be ex tremely valuable LOols for anyone
studying complex systems (be they naturally occurring ones like plate tectonic or en
gineering artifacts like computer systems) .

5.11.2 Hidden Markov Models
Now suppose that we are interested in analyzing a ystem that can be described with
a Markov model with one important difference: Th e sta tes of the y 1 m are not di
rectly observable. lnstead the model has a eparate se t of output ymbo l ', which are
emitted, with specified probabilities, whenever the system enlers one of it s now " hid
den" states. Now we must base our analysis of the sy tem o n an obser ed seque nce of

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 107

output symbols, from which we can infer, with some probability, the actual sequence
of states of the underlying model.

Examples of significant problems that can be described in this way include:

• DNA and pro tein evolution: A protein is a sequence of amino acids that is man
ufactured in living organisms according to a DNA blueprint. Mutations that change
the blueprint can occur, with the result that one amino acid may be substituted for
another, one or more amino acids may be deleted, or one or more additional amino
acids may be inserted. When we examine a DNA fragment or a protein, we'd like to
be able to reconstruct the evolutionary process so that we can find other pro teins
that are functionally related to the current one, even though its details may be dif
ferent. But the process isn't visible; only its result iso

HMMs are used for DNA and protein sequence alignment in the face of mu
tations and other kinds of evolutionary change. (K.3.3)

• Speech understanding: When we talk, our mouths map from the sentences we want
to say into sequences of sounds. The mapping is complex and nondeterministic
since multiple words may map to the same sound, words are pronounced differently
as a function of the words before and after them, we an form sounds slightly differ
ently, and so forth . All a listener can hear is the sequence of sounds. (S)he would
like to reconstruct the mapping (backwards) in order to determine what words we
were attempting to say.

HMMs are used extensively in speech understanding systems. (L.5)

• Optical character recognition (OCR) ~: When we write, our hands map from an
idealized symbol to some set of marks on a page. The marks are observable, but the
process that generates them isn't. Imagine that we could describe a probabilistic
process corresponding to each symbol that we can write. Then, to interpret the marks,
we must select the process that is most bkely to have generated the marks we can see.

What is a Hidden Markov Model?

A powerful technique for solving problems such as this is the hidden Markov model or
HMM ~. An HMM is a nondeterministic finite state transducer tbat has been aug
mented witb three kinds of probabilistic information:

• Each state is labeled witb the probability that the machine will be in that state when
it starts.

• Each transition from some state p to some (possibly identical) state q is labeled with
tbe prob ability that, whenever the machine is in state p, it will go next to state q. We

https://hemanthrajhemu.github.io

108 Chapter 5 Finite State Machines

can specify M's transition behavior completely by defining these probabilities. If it is
not possible for M to go horn some slate p 10 ome other stat Cf, then we simply
state the probability of going from p to Cf a O.

• Each output symbol c at each state Cf is labeled with the probability that the ma
chine, if it is in state Cf , will output c.

Formally, an HMM M is a quintuple (K , 0 , 7r, A , B) , where:

• K is a finite set of states.

• 0 is the output alphabet.

• 7r is a vector that contains the initial probabilities of each of the states.

• A is a matrix that represents the transition probabilities. Alp , q] = Pr(state
Cf at time f I state p at time r - 1).

• B, sometimes called the confusion matrix, represents the output probabilities.
B[q,o] = Pr(output 0 I state q). Note that outputs are associated wi1h states (as in
Moore machines).

The name "hidden Markov model" derives from the two key properties of such de
vices:

• They are Markov models. Theif state at time t is a functi on o lely 01' their state at
time l - l.

• The actual progression of the machine from one tate 10 the nex t i hidden from all
observers. Only the machine 's output string can be observed.

To use an HMM as the basis for an application program, we typicall y have to solve
so me or all of the following problems:

• The decoding problem: Given an observation sequence 0 and an HMM M dis
cover the path through M that is most likely to have produced O. For example, 0
might be astring of words that form a sentence. We mighl have an HMM that de
scribes the structure of naturally occurring Engl ish ente nces. Each state in M cor
responds to apart of speech, such as noun , verb, or adjective. I t 's not possible to tell
just by looking at 0 , what sequence of parts of speech general ed it , ince many
words can have more than one part of speech. (Consider for exa mple, the simple
English sentence, "Hit the fly ball.") But we need to inf r the parts of speech (a process
called part of speech or POS tagging) before we can parse the sentence. We can do
that if we can find the path through the HMM that is the most Jik Iy t have gener
ated the observed sentence. This problem can be o lved efficientl y u -ing adynamie
programming algorithm called the Viterbi algorithm , d . cribed below.

HMMs are often used for part of speech taggin g. (L.2)

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 109

Suppose that the sequences that we observe correspond to original sequences
that have been altered in some way. The alteration may have been done intention
ally (we'll call this "obfuscation") or it may be the result of a natural phenomenon
like evolution or a noisy transmission channeL In either case, if we want to know
what the original sequence was, we have an instance of the decoding problem. We
seek to find the original sequence that is most likely to have been the one that got
transformed into the observed sequence.

In the Internet era, an important application of obfuscation is the generation
of spam. If specific words are known to trigger spam filters, they can be al
tered, by changing vowels, introducing special characters, or whatever, so
that they are still recognizable to people but unrecognizable, at least until the
next patch, to the spam filters. HMMs can be used to perform "deobfusca
tion" in an attempt to foil the obfuscators. Q.

• The evaluation problem: Given an observation sequence 0 and a set of HMMs
that describe a collection of possible underlying models, choose the HMM that is
most likely to have generated O. For example, 0 might be a sequence of sounds. We
might have one HMM for each of the words that we know. We need to choose the
word model that is most likely to have generated O. As another example, consider
again the protein problem: Now we have one HMM for each family of related pro
teins. Given a new sampie, we want to find the family to which it is most likely to be
related. So we look for the HMM that is most likely to have genera ted it. This prob
lem can be solved efficiently using the forward algorithm, wh ich is very similar to
the Viterbi algorithm except that it considers all paths through a candidate HMM,
rather than just the most likely one.

• The training problem: We typically assurne, in crafting an HMM M, that the set K of
states is built by hand. But where do all the probabilities in 7T , A , and B come trom?
Fortunately, there are algorithms that can learn them from a set of training data (i.e.,
a set of observed output sequences 0). One of the most commonly used algorithrns is
the Baum-Welch algorithm Q, also called the forward-backward algorithrn. Its goal is
to tune 7T, A , and B so that the resulting HMM M has the property that, out of all the
HMMs whose state set is equal to K, M is the one most likely to have produced the
outputs that constitute the training set. Because the states cannot be directly observed
(as they can be in a standard Markov model), the training technique that we de
scribed in Section 5.11.1 won't work here. Instead, the Baum-Welch algorithm em
ploys a technique called expectation maximization or EM. It is an iterative method,
so it begins with some initial set of values for 7T , A , and B. Then it runs the forward al
gorithm, along with a related back ward algorithrn, on the training data. The result of
this step is a set of probabilities that describe the likelihood that the existing machine,
with the current values of 7T , A , and B, would have output the training set. Using those
probabilities, Baum-Welch updates 7T , A , and B to increase those probabilities. The
process continues until no changes to the parameter values can be made.

https://hemanthrajhemu.github.io

110 Chapter 5 Finite State Machines

The Viterbi Aigorithm
Given an HMM M and an observed output sequence 0 , a olution lo the decoding
problem is the path through M that is most likely to have produced O. One way to find
that most likely path is to explore all paths of length 101, keeping track of the aceumu
lated probabilities, and then re port the path whose probability is the highest. This ap
proach is straightforward , but may require searching a tree with I KMI IO I noctes, so the
time required may grow exponentially in the length of O.

A more efficient approach uses a dynamic programming technique in which the
most likely path of some length , say t , is computed once and then ext ended by one
more step to find the most likely path of length I + 1. The Vite rbi algorithm uses this
approach. It solves the decoding problem by computing, for each step land for eaeb
state q in M:

• The most likely path to q of a11 the ones that would have gene ra ted 0 1 • • • 0/.

• The probability of that path .

Onee it has done that for each step for which an output was obse rved, it traces the
path backwards. lt assumes that the last state is the one at the end of the overall most
likely path. The next to the last state is the one that preceded that one on the most likely
path, and so forth .

Assume, at each step I , that the algorithm has already considered all palhs of length
t - 1 that could have generated 0\ ... 0/ _1, From those paths, it has se\ect ed , for each
state p, the most likely path to p and it has recorded the probability 01' the model tak
ing that path , reaching p, and producing 0 1 •• • 0/_ \. We ass ume furth er lhat the algo
rithm has also recorded, at each state p , the state that preceded p on that most likely
path. Before the first output symbol is observed , the probability that the system has
reached some state p is simply 7T(p) and the re is no preceding slale.

Because the model is Markovian , the only thing that affects the probability of the next
state is the previous state. In constructing the mode l, we assumed th at prior history
doesn't matter (although that may be only an approximation to reality for som prob
lems). So, at step c, we compute, for each state q, the probability that the best path so far
that is consistent with 0\ . . . q ends in q and outputs the first 1 observed symbols. We do
this by considering each state p that the model could have been in at step I - 1. We
already know the probability that the best path up to step { - 1 landed in p and produced
the observed output sequence. So, to add one more step, we multiply that pr bability by
A[p, q], the probability that the model, if it we re in p , would go next to q. But we have one
more piece of information: the next output symbol. So, to compute the probability that the
model went through p, landed in q, and output the next symbol 0, wc muItiply by B[p , 0].

Onee these numbers have been computed for all possible preceding state . p , we choose
the most likely one (i.e. , the one with the highest score as described above). We record that
score at q and we re cord at q that the most likely predecessor ·ta te is the one that pro
duced that highest score.

Although we've described the output function as a function of the ta te the model is
in, we don ' t actually consider it until we compute the next step, 0 it may be ea ier to
think of the outputs as associated with the transition rat her th an with the states. In
particular, the computation that we have just described will end by choosing the state

https://hemanthrajhemu.github.io

5.11 Stochastic Finite Automata: Markov Models and HMMs 111

in which the model is most likely to land just after it outputs the final observed symbol.
That last state will not generate any output.

Onee all steps have been considered, we can choose the overall most likely path as
folIows: Consider all states. The model is most likely to have ended in the one that, at
the final time step, has the highest score as described above. Call that highest scoring
state the last state in the path. Find the state that was marked as immediately preced
ing that one. Continue backwards to the start state.

We can summarize this proeess, known as the Viterbi algorithm ,!;!" as follows: Given
an observed output sequence 0, we will consider each time step between 1 and tbe
length of O. At eaeh such step t, we will set score(q, t) to the highest probability associ
ated with any path of length t that lands M in q, having output the first t symbols in O.
We will set backptr(q , t) to the state that immediately preceded q along that best path.
Once score and backptr have been eomputed for each state at each time step t, we can
start at the most likely final state and trace backwards to find the sequence states that
describes the most likely path through M consistent with O. So the Viterbi algorithm is:

Vilerbi(M: Markov model, 0: output sequenee) =

1. For t = 0, for each state q, set score [q, t] to 1T[q].

2. /* Trace forward recording the best path at each step:

Fort = 1 to 101 do:
2.1. For eaeh state q in K do:

2.1.1. For each state p in K that could have immediately preceded q:

candidatescore[p] = score[p, t - 1] * A[p, q] * B[p, 0/].

2.1.2. /* Reeord score along most likely path:

score[q, t] = max candidatescore[p].
pEK

2.1.3. / * Set q's backptr. The function argmax returns the value of the argu
ment p that produced the maximum value of candidatescore[p] :

backplr[q , t] = argmax candidalescore[p].
pEK

/* Retrieve the best path by going backwards from the most likely last state:

3. states[IOI] = the state q with the highest value of score[q, 101].
4. For t = 101 - 1 to ° do:

4.1. states[t] = backptr[states[t + 1], t + 1].

5. Return states[O: 101 - 1].

The Forward Aigorithm

/* Ignore the last state since its output
was not observed.

Now suppose that we want to solve the evaluation problem: Given a set of HMMs
and an observed output sequence 0, decide which HMM had the highest probabil
ity of producing O. This problem can be solved with the forward algorithm Q,

https://hemanthrajhemu.github.io

112 Chapter 5 Finite State Machines

which is very similar to the Viterbi algorithm except that , inslead of finding the sin
gle best path through an HMM M, it computes the probability that M could have
output 0 along any path. In step 2.1.2, the Viterbi algorithm selects the highest
score associated with any one path to q. The forward algorilhm, at that point, sums
all the scores. The other big difference between the Viterbi algorithm and the for
ward algorithm is that the forward algorithm does not need 1O find a particular
path. So it will not have to bother maintaining the backprr array. We can state the
algorithm as follows:

forward(M: Markov model , 0 : output sequence) =

1. For t = 0, for each state q, set forward-score[q , c] to 7T[q] .

2. /* Trace forward recording, at each step, the total probability associated with a11
paths to each state:

For t = 1 to 101 do:

2.1. For each state q in K do:

2.1.1. Consider each state p in K that could have immediately preceded q:

candidatescore[p] = forwardscore[p , t - 1] * AlP, q] * B[p, 0,].

2.1.2. / * Sum scores over all paths:

forwardscore[q, t] = :L candidatescore[p].
p

3. /* Find the total probability of going through M a]ong any path, landing in any of
M's states, and emitting O. This is simply the sum of the probability of landing in
state 1 having emitted 0, plus the probability of landing in state 2 having emitted
0 , and so forth. So:

totalprob = :L forwardscore[q, 101).
qEK

4. Return fOta/prob .

To solve the evaluation problem, we run the forward algorithm on all of the eon
tending HMMs and return the one with the highest final score.

The Complexity of the Viterbi and the Forward Aigorithms
Analyzing the complexity of the Viterbi and the forward algorithms is straightforward.
In both cases, the outer loop of step 2 is executed onee for each observed output , so 101
times. Within that loop, the computation of candidarescore is done onee for each state
pair. So if M has k states, it is done k2 times. The eomputation of scorelforwardscore
takes O(k) steps, as does the computation of backptr in the Viterbi algorithm. The final
operation of the Viterbi algorithm (computing the list of states 10 be returned) takes
od 0 I) steps. The final operation of the forward algori1hm (computing the total prob
ability of producing the observed output) takes O(k) steps. So, in both ca ses, the total
time complexity is O(k2 ·101).

https://hemanthrajhemu.github.io

- - ---
-:; ""- ----~ =- - -

5.11 Stochastic Finite Automata: Markov Models and HMMs 113

An Example of How These Aigorithms Work
The real power of HMMs is in solving complex, real-world problems in which probabil
ity estimates can be derived from large datasets. So it is hard to illustrate the effective
ness of HMMs on small problems, but the idea should be clear from the following
simple example of the use of the Viterbi algorithm.

EXAMPLE 5.37 Using the Viterbi Aigorithm to Guess the Weather

Suppose that you are astate department official in a small country. Each day, you
receive areport from each of your consular offices telling you whether or not any
of your pass ports were reported missing that day. You know that the probability
of a passport getting lost or stolen is a function of the weather, since people tend
to stay inside (and thus manage to keep track of their passports) when the weath
er is bad. But they tend to go out and thus risk getting their passport lost or stolen
if the weather is good. So it amuses you to try to infer the weather in your favorite
cities by watching the lost passport reports. We'll use the symbol L to mean that a
passport was lost and the symbol # to me an that none was. So, for example, a re
port for a week might look like LL##L###.

We'll consider just two cities, London and Athens. We can build an HMM for
each. Both HMMs have two states, Sunny and Rainy.

London

7T = .55

Sunny :J.
B(Sunny, L) = .7
B(Sunny, #) = .3

,

.25 .3

7T = .45

Rainy

:J B(Rainy, L) = .2
B(Rainy, #) = .8

75

.7

Athens

7T = .87

Sunny

B(Sunny, L) = .2
B(Sunny, #) = .8

.1

7T = .13

Rainy

B(Rainy, L) = .05
B(Rainy, #) = .95

.9

.67

.33

Now suppose that you receive the report ###L from London and you want to
find out what the most likely sequence of weather reports was for those days. The
Viterbi algorithm will solve the problem.

The easiest way to envision the way that Viterbi works is to imagine a lattice, in
which each column corresponds to a step and each row corresponds to astate in M:

https://hemanthrajhemu.github.io

114 Chapter 5 Finite State Machines

EXAMPLE 5.37 (Continued)

Sunny

Rainy

(= 0 1= 1 1= 2 { =] { = 4

The number shown at each point (q , r) is the value that Vitabi compute (or
score[q, t]. So we can think ofViterbi as creating this lattice le ft to right , and fiLling
in scores as it goes along. The arrows rep resent possible transitions in M . The
heavy arrows indicate the path that is recorded in the matri x backptr.

At t = 0, the probabilities recorded in score are just the initial probabilities, as
given in 1T. So the surn of the values in colurnn 1 is 1. At later steps, the um is less
than 1 because we are considering only the probabilities of paths through M tb at
result in the observed output sequence. Other paths could have produced other
output sequences.

At all times t > 0, tbe values for score can be computed by considering the prob
abilities at tbe previous time (as recorded in score) the probabilities o(moving
from one state to another (as recarded in the matrix A), and the probabilities
(recorded in the vector 0) of observing the next output symbol. To ee how the
Viterbi algorithm computes those values, let 's cornpute the value of score[Sunny, 1]:

candidate-score[Sunny] = score[Sunny, O] . A[Sunny , Sunny] . B[Sunny,#]
= .55 . . 75 . . 3

= .12

candidale-score[Rainy] = score[Rainy , O] . A[Rainy , Sunny] . B[Rainy.#]
= .45 • . 3 . . 8

= .11

So score[Sunny, 1] = max(.12, .11) = .1.2, and backptr(Sunny, 1) i et to Sunny.

Once a11 the values of score have been computed , the final step is to observe
that Sunny is the most like ly state for M to have reached jus! prior to r ading a
fifth output symbol. The state that most likely preceded it is Sunny 0 we report
Sunny as the last state to have produced output. Then we trace the backpointers
and report that the most like ly sequence of weathe r reports i Rain y, Rainy,
Rainy, Sunny.

Now suppose that the fax machine was broken and the reporls far la t week
came in with the city names chopped off the top. You have rece ived the report
###L and you want to know whether it is more Iikely that it came from London or
frorn Athens. To solve this problem, you use the forward algorilhm. Yo u run the

https://hemanthrajhemu.github.io

5.12 Finite Automata, Infinite Strings: Büchi Automata 115

output sequence ###L through the London model and through the Athens model,
this time computing the total probability (as opposed to just the probability along
the best path) of reaching each state from any path that is consistent with the out
put sequence. The most likely source of this report is the model with the highest
final probability.

5.12 Finite Automata, Infinite Strings: Büchi Automata.
So far , we have considered, as input to our machines, only strings of finite length. Thus
we have focused on problems for which we expect to write programs that read an
input, compute a resull, and halt. Many problems are of that sort , but some are not. For
example, consider:

• An operating system.

• An air traffic control system.

• A factory process control system.

ldeally, such systems never halt. They should accept an infinite string of inputs and
continue to function. Define LW to be the set of infinite length strings drawn from the
alphabet L. For the rest of this discussion , define a language to be a set of such infinite
length strings.

To model the behavior of processes that do not halt , we can extend our notion of an
NDFSM to define a machine whose inputs are elements of LW. Such machines are
sometimes called w-automata (or omega automata).

We'll define one particular kind of w-automaton: A Büchi automaton is a quintuple
(K, L , ß, S, A) , where:

• K is a finite set of states.

• L is the input alphabet.

• S ~ K is a set of start states.

• A ~ K is the set of accepting states.

• ß is the transition relation . lt is a finite subset of:

(K X 2:) x K.

Note that unlike NDFSMs, Büchi automata may have more than one start state.
Note also that the definition of a Büchi automaton does not allow e-transitions.

We define configuration , initial configuration , yields-in-one-step, and yields exactly
as we did for NDFSMs. A computation of a Büchi automaton M is an infinite sequence
of configurations Co, CI> ' . . such that:

• Co is an initial configuration, and

• CO I- M CI I- M c2 1- M ' "

https://hemanthrajhemu.github.io

116 Chapter 5 Finite State Machines

But now we must defin e what it mea ns for a Büehi automaton M 10 aeeept astring.
We ean no longer defin e acceptance by th sta te of M wh en it run s out of input , sinee it
won 't. fnstead , we' ll say th at M aecept astring 10 E LW iff. in at leas t one of its eompu
tations, there is some accepti ng sta te q such th aI, when proccss in g IV, M cnt ers q an in
finite number of times. So note that it is not required th at M enler an accep ting sta te
and stay there. But it is not suffi cient for M to enter an accep tin g state ju t once (or any
finite number of lim es). As be fore, the language aecep ted by M. denotcd L(M), is the
set of all strings accepted by M. A language L is Büchi-acceptable iff it is aceepted by
some Büchi automaton.

Büehi automata can be used Lo model coneurre nt sys tem '. hardwa re device ' ,
and their specifications. Then programs ca lled mod el checkers ca n verify that
those systems eorrectly con form to a set of statecl rcquirements. (H.l.2)

EXAMPlE 5.38 Büchi Automata for Event Sequences

Suppose that there are five kinds of events that can occm in the system that we
wish to model. We'll call them a, b, C, d, and e . So let L = {a, b c. d, e }.

We first consider the ca se in wh ich we require th at event e oceur at least onee.
The following (nondeterministie) Büehi automaton aceept all alld only the ele
ments of LW that contain at least one oceurrenee of e:

a,b,c,d a,b,c,d,e

Now suppose that we require that there come a poim after which on ly e ' can
oceur. The fo llowing Büchi automaton (described using our convent ion that the
dead state need not be written explicitly) accepts all anel on ly the element of LW
that eventually reaeh a point afte r which no events other than e ' oeeur:

a,b,c,d,e e

Finally, suppose that we require that every C event be immediate!y foll ow d by
an e event. The fo llowing Büehi automaton (this time with th e dead tate, 3, shown
explicitly) accepts all and only the elements of LW that sa ti C-y thai requirement:

https://hemanthrajhemu.github.io

5.12 Finite Automata, Infinite Strings: Büchi Automata 117

EXAMPLE 5.38 (Continued)

a,b,d,e

e

a,b,c,d,e

EXAMPLE 5.39 Mutual Exclusion

Suppose that we want to model a concurrent system with two processes and en
force the constraint, often called a mutual exclusion property, that it never hap
pens that both processes are in their critical regions at the same time. We could
do this in the usual way, using an alphabet of atomic symbols such as {Both ,
NotBoth }, where the system receives the input Both at any time interval at
which both processes are in their critical region and the input NotBoth at any
other time interval. But a more direct way to model the behavior of complex
concurrent systems is to allow inputs that correspond to BooLean expressions
that capture the properties of interest. That way, the same Boolean predicates
can be combined into different expressions in different machines that corre
spond to different desirable properties. To capture the mutual exclusion con
straint, we'll use two Boolean predicates, CRa, which will be True iffprocessa is in
its criti cal region and CR h which will be True iff processl is in its critical region .
The inputs to the system will then be drawn from a set of three Boolean expres
sions: {(CRa 1\ CR\), , (CRa 1\ CR 1), True}. The fo l1owing Büchi automaton ac
cepts a11 and only the input sequences that satisfy the property that (CRo 1\ CR1)

never occurs:

True

While there is an obvious similarity between Büchi automata and FSMs, and the
languages they accept are relaled , a described below, there is one important differ
ence. For Büchi automata, nondetermini m malters.

https://hemanthrajhemu.github.io

118 Chapter 5 Finite State Machines

EXAMPLE 5.40 For Büchi Automata, Nondeterminism Matters

Let L = {WE {a, b}w: #b (w) is (inite}. Note th at eve ry tring in L mu t con
tain an infinite number of a 's. The following nond eterministi c Büchi automa
ton accepts L:

a,b a

a

We can try to build a corresponding deterministic machin e by using the con truc
ti on that we used in the proof ofTheorem 5.3 (which says th at for every NDFSM
there does exist an equivalent DFSM). The states of the new machin will then
correspond to subsets of states of the original machine and we' ll have:

b a

~~1 -:---+~
This new maehine is indeed nondeterministic and it does aeeept an strings in L.
Unfortunately, it also aceepts an infinite number of string lh at are not in L 111-

cluding (ba)w. More un fortunate ly, we eannot do any better.

THEOREM 5.7 Nondeterministic versus Deterministic Büchi Automata

Theorem: There exist languages th at ca n be aecepted b a nondetcrmini tie Büchi
automaton (i.e., one th at meets the definition we have given), but for whieh there
exists no eq uivalent deterministie Büchi automaton (i.e., one th at has a single
sta rt state and whose transitions are defin ed by a funeti on from (K x 2:) to K).

Proof: Th e proof is by a demonstration that no determini ti e Büchi automaton ac
cepts th e language L = {w E {a, b}w: #b(U) is f inil e} of xa mple 5.40. Suppo e
th at there were such a machine B. Then, among th tring acceptcd by B, would
be every string of the form w a(U, where w is some finit e string in {a, b} *. This mu t
be true sinee all such st rings contain onl y a finit e number of b' . R movc fr m B
any states that are not reachabl e fr om th e sta rt state. 0\ eon ider an rcmaining
state q in B. Since q is reachab le from the start tale there mu t exi t al !ca t on
finite string th at drives B (rom th e start state to q. alt th at trin g 'W . Then, as \: e

https://hemanthrajhemu.github.io

-
5.12 Finite Automata, Infinite Strings: Büchi Automata 119

just observed, w al<! is in Land so must be accepted by B . In order for B to accept it ,
there must be at least one acceptin g sta te q(/ that occurs infinitely often in the com
putation of B o n w aw

. That accepting state must be reachable fro m q (the state of B
when just w has been read) by some finite number, which we'lI call aq , of a 's (since
B has o nl y a finite of states). Compute aq for every state q in B. Let m be the max i
mum o r the aq va lues.

We can now show that B accepts the string (bal/l)W, which is not in L. Since B is
de te rministic, its transition function is defined 011 all (state, input) pairs, so it must
run forev er on aU strings including (barll)w. From the last paragraph we know that,
from any state, lhere is ast ring of 117 or fewer a 's that can drive B to an accepting
tale. So, in pa rticular, after each time it reads a b, followed by a sequence of a 's, B

must reach some acce pting state within 117 a 's. But B has only a finite l1Umber of ac
cepti ng states. So, o n input (balll)W, B reaches some accepting state an infinite num
ber of times and it accepts.

There is a natural relationship between the languages of infinite strings accepted
by Büchi automata and the regular languages (i.e. , the languages of finite strings ac
cepted by FSMs). To describe this relationship requires an understanding of the clo
sure properties o f the regul ar languages that we will present in Section 8.3 , as weil as
some of the decision procedures for regular languages that we wiU present in Chapter 9.
lt would be he lpful to read those sections before continuing to read this discussion of
Büchi automata.

Any Büchi-acceptable language can be described in te rms of regular languages. To
see how, observe that any Büchi automaton B can alm ost be viewed as an FSM, if we
simpl y consider input strings of finite \ength . The only reason that that can' t quite be
done is that Büchi automata may have multiple start states. So, from any Büchi au
tomaton B, we can build wh at we ' t! call the mirror FSM M to B as folIows: Let M = B
except tha1 , if B ha more than one start state, then, in M, create a new start state that
has an e-transition to each of the sta rt states of B. Notice that the set of finite length
strings that can drive B from as tart state to some state q is identical to the set of finite
length strin gs that can drive M from its start state to state q.

Now consider any Büchi automaton Band any string w that B accepts. Since w is ac
cepted, th ere is so me accepting state in B that is visited an infinite number of times
while B processes w . Call that sta te q. (There may be more than one such state. Pick
one.) Then we can di vide w into two part , x and y. The fir t part, x, has finite length
and it drive B fro m astart state to q for the first time. The second part , y, has infinite
length and it simply pushes B through one loop after another, each of which starts and
ends in q (although the re may be more than one path that does this). The set of possi
ble va lues for x is regul ar: 1t is exactl y the set that can be accepted by the FSM M that
mirrors B, if we let q be M's onl y accepting state. Call a path (rom q back to itself
minima/irf it does not pa s through q. Then we also notice that the se t of strings that
can force B through such a minimal path is also regular. It is the set accepted by the
FSM M that mirro rs B, if we let q b e both M 's start state and its only accepting state.
The e observa tion lead to the following theorem:

https://hemanthrajhemu.github.io

120 Chapter 5 Finite State Machines

THEOREM 5.8 Büchi-Acceptable and Regular Languages

Theorem: L is a Büchi-acceptable language iff it is the finite unio n of sets each of
which is of the form Xy w

, where each X and Y is a regular language.

Proof: Given any Büchi automaton B = (K, L , ß , 5, A) , let Wqlj q , be the set of all
strings that drive B from state qo to state q). 1l1en, by the definition of what it
means for a Büchi automaton to accept astring, we have:

L(B) = UU~(/~/q)w.
SESqEA

If L is a Büchi-acceptable language, then there is some Büchi automaton B
that accepts it. So the only-if part of the claim is true since:

• 5 and Aare both finite,

• For each sand q, ~'q is regular since it is the set of strings ace pted by B s mir
ror FSM M with start state sand single accepting state q,

• Wqq = Y* , where Yis the set of strings that can force B along a minimal path
from q back to q,

• Y is regular since it is the set of strings accepted by B's mirror FSM M with q
as its start state and its only accepting state, and

• The regular languages are c10sed under Kleene star 0 ~/q = Y * i al 0 regular.

The if part follows from a set of properties of the Büchi-acceptable and regular
languages that are described in Theorem 5.9.

THEOREM 5.9 Closure Properties of Büchi Automata

Theorem and Proof: The Büchi-acceptable languages (Iik e the regular languages)
are c10sed under:

• Concatenation with a regular language: If L) is a regular language and L 2 is a
Büchi-acceptable language, then L IL 2 is Büchi-acceptable. 1l1e proof is simi
lar to the proof that the regular languages are clo ed under concatenation ex
cept that, since s transitions are not allowed the machines for the two languages
must be "glued together" differently. 1f qis astate in th F M that accepts
L] , and there is a transition trom q, labeled C, 10 some accepting stat , then
add a transition from q, labe led c, to each tart stat of th Büchi automaton
that accepts L 2.

• Union: If LI and L2 are Büchi-acceptable, then LI U L 2 is also Büchi-accept
able. The proof is analogous to the proof that the regular language are cIosed
under union. Again, since e transitions are not allowed, we mu t use a lightly
different glue. The new machine we will build will have tran itions directly

https://hemanthrajhemu.github.io

--
Exercises 121

from a new start state to the states that the original machines can reach after
reading one input character.

• Interseetion: If LI and L 2 are Büchi-acceptable, then LI n L 2 is also Büchi-ac
ceptable. The proof is by construction of a Büchi automaton that effectively
runs a Büchi automaton for L 1 in parallel with one for L 2.

• Complement: If L is Büchi-acceptable, then -,L is also Büchi-acceptable. The
proof of this claim is 1ess obvious. It is given in [Thomas 1990].

Further , if L is a regular language, then LW is Büchi-acceptable. The proof is
analogous to the proof that the regular languages are closed under K1eene star,
but we must again use the modification that was used above in the proof of clo
sure under concatenation.

Büchi automata are useful as models for computer systems whose properties we
wish to reason about because a set of important questions can be answered about
them. In particular, Büchi automata share with FSMs the existence of decision proce
dures for a1l of the properties described in the following theorem:

THEOREM 5.10 Decision Procedures for Büchi Automata

Theorem: There exist decision procedures for all of the following properties:

• Emptiness: Given a Büchi automaton B , is L(B) empty?

• Nonemptiness: Given a Büchi automaton B, is L(B) nonempty?

• Inclusion: Given two Büchi automata BI and B2, is L(B1) ~ L(B2)?

• Equivalence: Given two Büchi automata BI and B2, is L(B1) = L(B2)?

Proof: The proof of each of these claims can be found in [Thomas 1990].

Exercises
1. Give a clear English description of the language accepted by the following DFSM:

\
I

https://hemanthrajhemu.github.io

122 Chapter 5 Finite State Machines

2. Showa DFSM to accept each of the fo llowing languages:

a. {tu E {a , b p : every a in tu is immedi ate ly preceded and fo llowed by b}.

b. {tu E { a , b} * : tu does not end in ba}.

c. {tu E {O, 1}* : tu corresponds to the binary e ncoding, withou l leadin g O's, of nat
ural numbers that are evenly divisible by 4}.

d. {tu E {O, 1}* : tu corresponds to th e binary encoding, without leadin g 0 , of nat
ura l numbers that a re powe rs of 4} .

e. {tu E {0-9} * : tu corresponds to th e deeimal encod ing, witho ut lead ing 0' , of an
odd natural number} .

f. {tu E {O, 1 P : tu has 001 as a substring}.

g. {tuE {O, 1}* : tu does not have 001 as a substring} .

h. {tu E {a , b} * : tu has bbab as a substri ng} .

i. {tu E {a , b} * : tu has ne ither ab nor bb as a subslring}.

j. {tu E {a, b} * : tu has both aa and bb as a substrin gs}.

k. {tu E {a, b}* : tu contains at least two b's that a re no t imme di a le ly followed
by an a} .

I. {tu E {O, 1} '" : tu has no more th an o ne pair of consecuti ve 0 ' and no more
than one pair of consecutive l 's}.

m. { tu E {O, 1} * : none of th e prefixes of tu ends in O}.

ß. {tuE{a,b}*:(#a(tu) + 2·#b(tu)) =s O} . (#a('w) is the numbe r ofa ' in tu).

3. Consider the children's game Rock , Paper, Scissors Q . We ' lI ay th at Ihe first player
to win two rounds wins the game. Call the two playe rs A a nd ß.

a. Define an alphabet Land describe a technique for encoding Rock , Paper, Scissors
games as strings over L. (Hinl: Each symbol in L should corr pond to an ordered
pair that describes the simultaneous actions of A and ß.)

b. Let L RPS be the language of Rock , Pape r, Scissor ga me, e ncoded as slrings as
described in part (a) , that correspond to wins for playe r A. Show a D FSM that

aceepts L RPS'

4. If M is a DFSM and E E L(M), what s imple property must be tru e of M?

5. Consider the following NDFSM M:

a a

b

b

a

https://hemanthrajhemu.github.io

Exercises 123

For each of the following strings w, determine wh ether W E L (M) :
a. aabbba.

b. bab.

c. baba.
6. Show a possibly nondeterministic FSM to accept each of the fo llowing languages:

a. {al/ ba" l
: n, m ~ 0, n =3 m}.

b. {W E {a, b} * : W contains at least one instance of aaba, bbb or ababa}.

c. {w E {0-9} * : W corresponds to the decimal encoding of a natural num ber whose
e ncoding con ta ins, as a substring, the encoding of a natural number that is di
visible by 3} .

d. {w E {O, 1} '" : W contains both 101 and 010 as substrings}.

e. {w E {O, 1} * : W corresponds to the binary encoding of a positive in teger that is
divisibl e by 16 or is odd }. \ '

f. {wE{ a, b, c, d, e}* : Iw i ~ 2 and w beginsand ends withthesamesymbol}.

7. Show an FS M (deterministic or nondeterministic) that accepts L = {w E {a, b,
c} * : W contains at least one substring that consists of three identical symbols in a
row}. For example:

• The fo llowing strings are in L : aabbb, baacccbbb.
• The fo llowing strings are not in L: e , aba, abababab, abcbcab.

8. Show a DFSM to accept each of the fo llowing languages. The point of this exercise
is to see how much harder it is to build a DFSM for tasks like these than it is to
build an NDFSM. So do not simply build an NDFSM and then convert it. But do,
after you build a DFSM, build an equivalent NDFSM.

a. {w E {a , b} * : the fourth from the last character is a}.

b. {w E {a, b}:;: : 3x, Y E { a, b} * : « W = x abbaa y) V (w = x baba y»}.
9. For each of the fo llowing NDFSMs, use ndfsmtodfsm to construct an equivalent

DFSM. Begin by showing the value of eps(q) fo r each state q:

1 1 1

(a)

(b)

https://hemanthrajhemu.github.io

124 (ha pter 5 Finite State Machines

~ __________________ ~b ~ ____________ ~.a

a a

b a a b a

b r-______ b ____ -4~~
a

(c)

10. Let M be the fo llowing NDFSM. Construct (using Ildfwllodfsm) , a DF M that
accepts -,L(M).

I--_____ E ______ .-! G t--_____ a ____ ---'H

b
b

a

b

11. For each of the following languages L:

(i) Describe the equivalence classe of ';:0:; L'

(ii) lf the number of equivalence c1asses of ';:0:; Li fini te, con truct thc minimal OFSM
that accepts L.

a. {w E {O, 1} * : every ° in W is immedi ately fo llowed b thc [ring 11} ,
b. {WE {O, 1}*: W has either an odd number of l 's and an dd numbcr of 0' or

it has an even number of l 's and an even numb r of 0', } .

c. {w E {a, b} * : W contains at least one occurrence of th e tring aababa }.

d. {ww R
: w E { a , b} * }.

e. {wE{ a, b}* : wcontaillsa tleasrone a and elld in at lea tlW b'. }.
f. {w E {O, 1} * : there is no occurrence of the sub tring 000 in 'W },

https://hemanthrajhemu.github.io

Exercises 125

12. Let M be the following DFSM. Use minDFSM to minimize M.

a
a

a

b b b b b b

a
a

a

13. Construct a deterministic finite state transducer with input alphabet {a , b} for
each of the following tasks:

a. On input w, produce 1" , where n = #a(w).

b. On input w, produce 111
, where n = #a(w) /2.

c. On input w, produce 1", where n is the number of occurrences of the substring
aba in w.

14. Construct a deterministic finite state transducer that could serve as the controller
for an elevator. C1early describe the input and output alphabets, as weil as the
states and the transitions between them.

15. Consider the problem of counting the number of words in a text file that may con
tain letters plus any of the following non-letter characters:

< blank> < linefeed> < end-of-file> , .; :?!

Define a word to be astring of le tters that is preceded by either the beginning
of the file 01' some non-letter character and that is fo llowed by some non-letter
character. For example, there are 11 words in the fo llowing text:

The < b7ank>< b7ank> cat <b7ank>< 7inefeed>
saw <b7ank> the <b7ank>< b7ank>< b7ank> rat < 7inefeed>
<b 7ank> w; th
< 7inefeed> a< b7ank> hat < 7inefeed>
on < b7ank> the < b7ank>< b7ank> mat < end-af- fi 7e>

D escribe a very simple fi nite- tate transducer that reads the characters in the
fi le one at a time and so]ves the word-counting problem. Assume that there exists
an output symbol with the property that, every time it is generated, an external
counter gets incremented.

16. Real traffic li ght controllers are more complex than the one that we drew in
Example 5.29.

a. Consider an inter ection of two road controlled by a et of four lights (one in
each direction). Don 't worry about allowin g for a specialleft-turn signal. D e
sign a controll er for thi four-light system.

https://hemanthrajhemu.github.io

126 Chapter 5 Finite State Machines

b. As an emergency vehic\e approaches an intersection , it hould be able to send
a signal that will cause the light in its direction to turn green and the light in the
cross direction to turn yellow and then red. Modify your design to allow tbis.

17. Real bar code systems are more complex than the one thaI we ketched in
Exarnple 5.31. They must be able to encode all ten digits, for example. There are
several industry-standard formats for bar codes, inc\uding the common UPC code
~ found on nearly everything we buy. Describe a finite state transducer that reads
the bars and outputs the corresponding decimal number.

o 12 345 67890 5

18. Extend the description of the Soundex FSM that was started in Example 5.33 so
that it can assign a code to the name Pfifer. R emember thaI yo u must take into ac
count the fact that every Soundex code is made up of exactly four characters.

19. Consider the weather/passport HMM of Example 5.37. Trace the execulion of the
Viterbi and forward algorithms to answer the following questions:

3. Suppose that the report ###L is received from Athen. What was lhe most
likely weather during the time of the re port?

b. Is it more likely that ###L came from London or from Athens?

20. Construct a Büchi automaton to accept each of the foll owing languages of infinite

length strings:
3. {w E {a, b, c}W : after any occurrence of an a there i eventuall y an occurrence

of ab}.
b. {w E {a, b, c} W : between any two consecutive a s there is an odd number of b's}.

c. {w E {a, b, c} W : there never comes a time after which no b's occur}.

21. In H.2 , we describe the use of statecharts as a tool for building complex systems.
A statechart is a hierarchically structured transition ne twork mode l. Statecharts
aren' t the only tools that exploit this idea. Another is Simulink ~, which is one
component of the larger programming environment MATLAB Q . U Simulink
to build an FSM simulator.

22. In 1.1.2, we describe the Alternating Bit protoco] for handling message trans
mission in a network. Use the FSM that describes the se nde r to answer the
question, " Is there any upper bound on the number of time a me age may be re
transmitted?"

23. In J.1 , we show an FSM model of a simple intrusion detection device that could be
part of a building security system. Extend the model to all.ow the y tem to have two
zones that can be armed and disarmed independently of each oth r.

https://hemanthrajhemu.github.io

