

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

iv Contents

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Nondeterministic FSMs 66

From FSMs to Operational Systems 79

Simulators for FSMs - 80

Minimizing FSMs - 82
A Canonical Form for Regular Languages 94

Finite State Transducers - 96
Bidirectional Transducers. 98

Stochastic Finite Automata : Markov Models and HMMs _ 101

Finite Automata, Infinite Strings: Büchi Automata. 115

Exercises 121

6 Regular Expressions 127
6.1 What is a Regular Expression? 128

6.2 Kleene's Theorem 133

6.3 Applications of Regular Expressions 147

6.4 Manipulating and Simplifying Regular Expressions 149

Exercises 151

7 Regular Grammars • 155
7.1 Definition of a Regular Grammar 155

7.2 Regular Grammars and Regular Languages 157

Exercises 161

8 Regular and Nonregular Languages 162
8.1 How Many Regular Languages Are There? 162

8.2 Showing That a Language Is Regular 163

8.3 Some Important Closure Properties of Regular Languages 165

8.4 Showing That a Language is Not Regular 169

8.5 Exploiting Problem-Specific Knowledge 178

8.6 Functions on Regular Languages 179

Exercises 182

9 Aigorithms and Decision Procedures for Regular
Languages 187

9.1 Fundamental Decision Procedures 187

9.2 Summary of Aigorithms and Decision Procedures for Regular Languages 194
Exercises 196

10 Summary and References 198
References 199

https://hemanthrajhemu.github.io

CHAPTER 6

Regular Expressions

L
et's now take a different approach to categorizing problems. Instead of focus
ing on the power of a computing device, let's look at the task that we need to
perform. In particular, let's consider problems in which OUT goal is to match fi

nite or repeating patterns. For example, consider:

• The first step of eompiling a program: This step is ealled lexical analysis. Its job is to
break the SOUTce eode into meaningful units such as keywords, variables, and num
bers. For example, the string vo; d may be a keyword, while the string 23E-12
should be recognized as a floating point number.

• Filtering email for spam.

• Sorting email into appropriate mailboxes based on sender and/or content words
and phrases.

• Searching a complex directory structure by speeifying patterns that are known to
oeeur in the file we want.

In this ehapter, we will define a simple pattern language. It has limitations. But its
strength, as we will soon see, is that we ean implement pattern matehing for this lan
guage using finite state machines.

In his classie book, A Pattern Language Q, Christopher Alexander deseribed
common patterns that ean be found in sueeessful buildings, towns and eities.
Software engineers read Alexander's work and realized that the same is true
of suecessful programs and systems. Patterns are ubiquitous in our world.

127

https://hemanthrajhemu.github.io

128 Chapter6 Regular Expressions

6.1 What is a Regular Expression?
The regular expression language that we are about 10 describe is built on an alphabet
that contains two kinds of symbols:

• A set of special symbols to which we will attach particular mea ninos when they
occur in a regul ar expression. These symbols are 0, U, e;, (,), *, and +.

• An alphabet 2:, which contains the symbols that reg ul ar expr s ions will match
against.

A regular expression Q is astring th at can be form ed accordin g to the following
rules:

1. ° is a regular expression.

2. e; is a regular expression .

3. Every element in 2: is a regular exp ression.

4. Given two regular expressions a and ß , aß is a regular ex press ion.

5. Given two regular expressions a and ß , a U ß is a regul ar expression.

6. Given a regular expression a, 0'* i5 a regular expre sion.

7. Given a regular exp ression 0' , 0'+ is a regular expre ion.

8. Given a regular expression 0' , (0') is a regular express ion.

So, if we le t 2: = {a, b}, the fo llowing trings are regular express ions:

0, e;, a , b, (a U b)*, abba Ue;.

The language oE regular expressions, as we have just de fin ed it , is u d ul because
every regular expression has a meaning (just like eve ry E ngli h sente nce and every
Java program) . In the case of regular ex pressions, the mea ning of astring is another
language. In other words, every string 0' (such as abba U e;) in th e regul ar expre ion
language has, as its meaning, some new la nguage that contains xactly the trings that
match the pattern specified in a.

To make it possible to determine that meaning, we need to de cribe a semantic in
terpre tation function for regular expressions. Fortunately, the regular expre · ions lan
guage is simple. So designing a compositional semanti c inte rpreta ti on fun ction (as
defined in Section 2.2.6) Eor it is straightforward. As yo u read the definition that we are
about to present, it will become c\ear why we chose the particular symbol a lphabet we
did. In particular, you will notice the similar ity betwee n the operations th at are a llowed
in regular expressions and the operations that we de fin ed on language in Sect ion 2.2.

D efin e the following semantic interpretation function L for the language of regular
expressions:

1. L (0) = 0, the language that contains no strin gs.

2. L (e;) = {e;} , the language that conta ins just the empt y trin g.

3. For any CE 2: , L (e) = {e} , th e language thai conta in the ingle,one-character

string e.

https://hemanthrajhemu.github.io

--
6.1 What is a Regular Expression? 129

4. For any regula r expressions a and ß , L (a ß) = L(a) L (ß). In o ther words, to
fo rm the meaning of the concatenation of two regular expressions, first deter
mine the meaning of each of the constituents. Both meanings will be languages.
Then concatenate the two languages together. Recall that the concatenation of
two languages L] and L 2 is {'W = xy, where XE L , and y E L 2 }. Note that, if ei
the r L (a) or L (ß) is equal to 0, then the concatenation will a lso be equal to 0.

5. For any regular expressions a and ß , L (a U ß) = L (a) U L (ß). A gain we form
the meaning of the larger express ion by first determining the meaning of each of
the consti tuents. Each of them is a language. The meaning of a U ß then, as sug
gested by our choice of the character U as an operator, is the union of the two
consti tuent languages.

6. For any regular expression a , L (a*) = (L (a))"', where * is the Kleene star oper
ator defined in Section 2.2.5. So L (0'*) is the language tl1at is fo rmed by concate
nating together zero or more strings drawn from L (a) .

7. For any regular expression 0' , L (0'+) = L (0'0'*) = L (a)(L (a))* . lf L (0') is
equal to 0, then L (0'+) is also equal to 0 . O therwise L (0'+) is the Ianguage that
is formed by concatenat ing together one or more strings drawn from L (a) .

8. For any regular express ion 0' , L «a)) = L (a) . In other words, p arentheses have
no effect on meaning except to gro up the constituents in an expression.

Jf the meaning of a regular expression 0' is the language L , then we say that 0' defines
or describes L.

The definition that we have just give n fo r the regular expression language contains
three kinds oE rules:

• Rules 1., 3, 4, 5, and 6 give the language its power to define sets, starting with the
basic sets defined by rul es 1 and 3, and then building larger sets using the operators
defined by rul es 4, 5, and 6.

• Rule 8 has as its onl y ro le grouping othe r operators.

• Rules 2 and 7 appear to add functionality to the regular expression Ianguage. But in
fact they don't -they serve only to provide convenient sho rth ands for languages
that can be defined using only rules 1. , 3-6, and 8. Let 's see why.

First consider rule 2:The language of regular expressions does not need the symbol e be
cause it has an alternative mechanism for describing L (e). Observe that L (0*) = {'W : 'W
is formed by concatenating together zero or more strings from 0 }. But how many ways are
there to concatenate together zero or more strings from 0 ? lf we select zero strings to con
catenate, we get 8. We cannot select more than zero since there aren't any to choose trom.
So L (0*) = {8} . Thus, whenever we would like to write 8, we could instead write 0*. It
is much c\earer to write e, and we shall. But, whenever we wish to make a formal statement
about regular expressions or the languages they define, we need not consider rule 2 since
we can rewrite any regular expression that contains e as an equivalent one that contains 0*
instead.

Next consider rul e 7: As we showed in the statement of rule 7 itself, the regular ex
pression 0'+ is eq ui valent to the slightly longer regular expression aa*. The form a+ is a

https://hemanthrajhemu.github.io

130 Chapter 6 Regular Expressions

convenient shortcut, and we will use it. But we need not consider ru le 7 in an y analysis
that we may choose to do of regular express ions o r the languages that they generate.

The compositiona l semanti c inte rpretation fun ction th at we just defin ed lets us
map between regular expressions and the languages th a t th ey defin e. We begin by
analyzing the small est subexpressions and the n work o ulward to larger and Iarger
express IOns.

EXAMPLE 6.1 Analyzing a Simple Regular Expression

L«(aUb)*b) = L«aUb)*)L(b)

= (L«a U b»)* L(b)

= (L(a)UL(b» *L(b)

= ({a} U {b})*{b}

= {a, b} '" { b } .

So the meaning of the regular expression (a U b) * b is the set of an strings over
the alphabet {a, b} that end in b.

One straightforward way to read a regular expression and determine its mea ning is
to imagine it as a procedure that generates strings. Read it !eh to ri ght and imagine it
generating astring left to right. As you are doing that , think of any expression that is
enclosed in a Kleene star as a loop th at can be executed zero or more lim es. Each time
through the loop, choose any one of the alternatives listed in the expression. So we can
read the regular expression of the last example, (a U b)* b, as, "Go through a loop zero
Of more times, picking a single a or b each time. Then concatenate b.' A ny tring that
can be generated by this procedure is in L((a U b)* b).

Regular expressions can be used to scan text and pick o ut em a il addresses.
(0.2)

EXAMPLE 6.2 Another Simple Regular Expression

L(((a U b) (a U b)) a (a U b) *) = L«(a U b)(a U b)))L(a) L«a U b)*)

= L«a U b)(a U b)) {a} (L«a U b»)*

= L«a U b»L«a U b» {a l {a b}*

= {a , b} {a , b} {a } {a , b} *

https://hemanthrajhemu.github.io

--
6.1 What is a Regular Expression? 131

So the meaning of the regular expression C Ca U b) Ca U b))aCa U b)* is:

{xay: x and y are strings of a's and b's and lxi = 2}.

Alternatively, it is the language that contains an strings of a's and b's such that
there exists a third character and it is an a.

EXAMPLE 6.3 Given a Language, Find a Regular Expression

Let L = {w E {a, b} * : I w I is even}. There are two simple regular expressions
both of which define L:

«aUb)(aUb))* This one can be read as, "Go through a loop
zero 01' more times.

Each time through, choose an a or b, then
choose a second character (a or b)."

(aa U ab U ba U bb)* This one can be read as, "Go through a loop
zero or more times.

Each time through, choose one of the two
character sequences."

From this example, it is deal' that the semantic interpretation function we have de
fined for regular expressions is not one-to-one. In fact, given any language L , if there is
one regular expression that defines it, there is an infinite number that do. This is trivially
true since, for any regular expression Cl: , the regular expression Cl: U Cl: defines the same
language Cl: does.

Recall from our discussion in Section 2.2.6 that this is not unusual. Semantic inter
pretation functions for English and for Java are not one-to-one. The practical conse
quence of this phenomenon for regular expressions is that , if we are trying to design a
regular expression that describes so me particular language, there will be more than
one right answer. We will generally seek the simplest one that works, both for clarity
and to make pattern matching fast.

EXAMPlE 6.4 More than One Regular Expression for a Language

Let L = {w E {a, b} * : w contains an odd number of a's}. Two equally simple
regular expressions that define L are:

b* (ab*ab*)* a b*.

b* a b* (ab*ab*)*.

https://hemanthrajhemu.github.io

...

132 Chapter 6 Regular Expressions

EXAMPlE 6.4 (Continued)

Both of these expressions require that there be a single a omewhere.1l1ere can
also be other a's, but they must occur in pairs, so the result i an odd number of a 's.
In the first expression, the last a in the string is viewed as the required odd a" . In
the second, the first a plays th at role.

The regular exp ression language that we have just de fin ed provide thr e ope rators.
We will assign the following precedence order to them (from highe t to lov'les t):

1. Kleene star,

2. concatenation, and

3. union .

So the expression (a U bb*a) will be inte rpr ted as (a U (b(b*a))).
All useful languages have idioms: common phrases that correspond to common

meanings. Regul ar express ions are no exception.]n writing them, we will often use the
following:

(aUe)

(a U b)*

Can be read as "opli onal 0''', ince the expres ion can be atisfied ci lhe r by matching

0' 01' by matching the empty tring.

Describes the set o(a ll strings composed of the character a and b. More gcne ral
Iy, given any a lph abet L = {Ci> C2> ' " cll }, th e languagc 2: '~ is de cri bed by the

regular expression:
(CI U C2 U ... U cll)*·

When writing regular expressio ns, the detail s matte r. For exa mplc:

a* U b* * (a U b)*

(ab)* *- a *b*

Th e language on the righl cOnlains the tring a b, while th language on
th e le ft does not. Every slring in the languagc o n thc Icft c IH ai ns only
a's 01' only b's.
Th e language o n the le ft con tains th c tring abab, whilc th c language
on th e right does no t. Th e language n th c right conta in s the tring
aaabbbb , while the language o n the le ft doe not.

The regular expression a* is simply astring. 1t i diffe rent from the language L(a*)
= {w : w is composed of zero or mo re a 's}. Howeve r, when no c nfu io n will re ult.
we will use regular expressions to stand for the language that th describe and w
will no longer write the semantic inte rpretati on function explicitl y. 0 \ will be able
to say things like, "The language a* is infinite."

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 133

6.2 Kleene's Theorem
The regular expression language that we have just described is significant for two
reasons:

• It is a useful way to define patterns.

• The languages that can be defined with regular expressions are, as the name per
haps suggests, exactly the regular languages. In other words, any language that can
be defined by a regular expression can be accepted by some finite state machine.
And any language that can be accepted by a finite state machine can be defined by
some regular expressions.

In this section , we will state and prove as a theorem the claim that we just made:
The dass of languages that can be defined with regular expressions is exactly the reg
ular languages. This is the first of several claims of this sort that we will make in this
book. In each case, we will assert that some set A is identical to some very different
looking set B. The proof strategy that we will use in an of these cases is the same. We
will first prove that every element of A is also an element of B. We will then prove
that every element of Bis also an element of A . Thus, since A and B contain the same
elements, they are the same set. I

6.2.1 Building an FSM from a Regular Expression

THEOREM 6.1 For Every Regular Expression There is an Equivalent FSM

Theorem: Any language that can be defined with a regular expression can be
accepted by some FSM and so is regular.

Proof: Tlle prooE is by construction. We will show that , given a regular expression a ,
we can construct an FSM M such that L (a) = L (M).

We first show that tllere exists an FSM that eorresponds to each primitive reg
ular expression:

• lf ais any CE 2:., we construct for it the simple FSM shown in Figure 6.1 (a).

• 1f a is 0, we construct for it the simple FSM shown in Figure 6.1 (b).

• Although it ' not strict ly necessa ry to consider E since it has the same mean
ing as 0* we'll do so since we don 't usually think of it that way. So, if ais c, we
construet for it the simple FSM shown in Figure 6.1 (e) ,

Next we must show how to build FSMs to accept languages that are defined by
regular express ions that exploit th e operations of eoncatenation, union , and Kleene
star. Let ß and y be regular expressions that define languages over the alphabet 2:.
lf L (ß) is regular, then it is aceepted by some FSM MI = (KJ, 2:. , 8J, S1 , AL)' If
L (y) is regular, then it is aeeepted by some FSM M2 = (K2, L , Eh, S2, A2).

https://hemanthrajhemu.github.io

134 Chapter 6 Regular Expressions

(a)

b
(b)

b
(c) FIGURE 6.1 FSMs für primitive regular expressiüns.

• If ais the regular expression ß U l' and if both L (ß) and L (1') are regular, then we
construct M3 = (K3, L , 83, 53, A3) such that L (M3) = L (a) = L (ß) U L (1'). If
necessary,rename the states ofMI and M2 so that K I n K2 = 0 . Create a newstart
state,53' and connect it to the start states of MI and M2 via e-transitions. M3 accepts
iff either MI or M2 accepts. So M3 = ({S3} U KI U K2, L , 03, s3, AI U A2), where
83 = 0] U 82 U {«S3, e) , SI) , «S3' e), S2)}'

• If ais the regular expression ßy and if both L (ß) and L (1') are regular, then we
construct M3 = (K3, L, 03, S3 , A3) such that L (M3) = L (0') = L (ß)L (1'). If
necessary, rename the states of MI and M2 so that K] n K2 = 0. We will build
M3 by connecting every accepting state of MI to the start state of M2 via an
s-transition. M3 will start in the start state of MI and will accept iff M2 does. So
M3 = (K] U K2, L, 83, 5" A2) , where 83 = 81 U 0 2 U {«q , e) , 52) : q E Ad.

• If a is the regular expression ß* and if L (ß) is regular, then we construct
M2 = (K2, L, 82, 52, A2) such that L (M2) = L (0') = L (ß)*. We will create a
new start state 52 and make it accepting, thus assuring that M2 accepts e. (We
need a new start state because it is possible that Sb the start state of Mit is not
an accepting state.1f it isn't and if it is reachable via any input tring other than
s, then simply making it an accepting state would cause M2 to accept strings
that are not in (L (Ml »*.) We link the new 52 to SI via an e-transitions. Final
Iy, we create e-transitions from each of MI 's accepting sta tes back to SI' So
M2 = ({52}UKb L,82,5z,{52}UAI) , where 02 = 0IU {«s2, e) , sl)} U{«q,
e), SI): q EA]}.

Notice that the machines that these constructions build are typically highly
nondeterministic because of their use of s-transitions. They also typically have a
large number of unnecessary states. But, as a practical matter, that is not a prob
lem since, given an arbitrary NDFSM M, we have an algorithm that can construct
an equivalent DFSM M'. We also have an algorithm that can minimize M'.

Based on the constructions that have just been described, we can define the
following algorithm to construct, given a regular expression 0' a corresponding
(usually nondeterministic) FSM:

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 135

regextofsm(O': regular expression) =

Beginning with the primitive subexpressions of 0' and working outwards
until an FSM for aB of 0' has been built do:

Construct an FSM as described above.

The fact that regular expressions can be transformed into executable finite
state machines is important. It means that people can specify programs as
regular expressions and then have those expressions "compiled" into effi
cient processes. For example, hierarchically structured regular expressions,
with the same formal power as the regular expressions we have been work
ing with, can be used to describe a lightweight parser for analyzing legacy
software. (HA.l)

EXAMPLE 6.5 Building an FSM from a Regular Expression

Consider the regular expression (b U ab)*. We use regextofsm to build an FSM
that accepts the language defined by this regular expression:

AnFSM for b AnFSMfora AnFSMforb

An FSM for ab:

An FSM for (b U ab):

https://hemanthrajhemu.github.io

136 Chapter 6 Regular Expressions

EXAMPLE 6.5 (Continued)

An FSM for (b U ab)*

6.2.2 Building a Regular Expression from an FSM

Next we must show th at it is possible to go the other directi on, namely to build , from an
FSM , a corresponding regular expression. The idea behind the algo rithm that we are
about to present is the fo llowing: lnstead of limiting the labels on the transitions of an
FSM to a single character or 8, we will a ll ow entire regul ar express ions a labels. The
goal of the algorithm is to construct , from an input FSM M, an output machine M' such
that M and M' are equivalent and M' has onl y two sta tes, astart tate and a single ac
cepting state. It will also have just one transition, which will go from its start state to its
accepting state. The label on that transition will be a regul ar expression th at describes
all the strings that could have driven the o rigin al machine M from it tart tate to
some accepting state.

EXAMPLE 6.6 Building an Equivalent Machine M

LetMbe:

We can build an equivalent machine M' by ripping out q2 and replacing it by a
transition from ql to q3 labeled with the regul ar expression ab *a. 0 M' is:

ab*a

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 137

Given an arbitrary FSM M , M' will be built by starting with M and then removing,
one at a time, alt the states that lie in between the start state and an accepting state. As
each such state is removed, the remaining transitions will be modified so that the set of
strings that can drive M' from its start state to some accepting state remains unchanged.

The following algorithm creates a regular expression that defines L(M), provided
that step 6 can be executed correctly:

fsmtoregexheuristic(M: FSM) =

1. Remove from M any states that are unreachable from the start state.

2. If M has no accepting states then halt and return the simple regular expression 0 .
3. lf the start state of M is part of a loop (i.e., it has any transitions coming into it) ,

create a new start state sand connect s to M's start state via an e-transition. This
new start state s will have no transitions into it.

4. lf there is more than one accepting state of M or if there is just one but there are
any transitions out of it, create a new accepting state and connect each of M's ac
cepting states to it via an s-transition. Remove the old accepting states from the
set of accepting states. Note that the new accepting state will have no transitions
out from it.

5. If, at this point, M has only one state, then that state is both the start state and the
accepting state and M has no transitions. So L (M) = {e}. Halt and return the
simple regular expression e.

6. Until only the start state and the accepting state remain do:

6.1. Select some state rip of M. Any state except the start state or the accepting
state may be chosen.

6.2. Remove rip from M.

6.3. Modify the transitions among the remaining states so that M accepts the
same strings. The labels on the rewritten transitions may be any regular
expression.

7. Return the regular expression that labels the one remaining transition from the
start state to the accepting state.

EXAMPLE 6.1 Building a Regular Expression from an FSM

Let M be:

https://hemanthrajhemu.github.io

138 Chapter 6 Regular Expressions

EXAMPLE 6.7 (Continued)

Create a new start state and a new accepting state and link th em 10 M:

Remove state 3:

Remove state 2:

ab U aaa*b

Remove state 1:

(ab U aaa*b)*(a U e)

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 139

EXAMPLE 6.8 A Simple FSM With No Simple Regular Expression

Let M be the FSM that we built in Example 5.9 for the language L = {w E {a ,
b}* : w contains an even number of a 's and an odd number of b's }. M is:

[I] even a's
even b's

b

b

a

a

a

a

[2] odd a's
even b's

b
b

[4] odd a's
odd b's

Try to apply fS'mtoregexheuristic to M. It will not be easy because it is not at a11
obvious how to implement step 6.3. For example, if we attempt to remove state
[2], this changes not just the way that M can move from state [1] to state [4].1t also
changes, for example, the way that M can move from state [1] to state [3] because
it changes how M can move from state [1] back to itself.

To prove that for eve ry FSM there exists a corresponding regular expression will re
quire a construction in which we make clea re r what must be done each time astate is
removed and replaced by a regular expression . The algorithm that we are about to de
scribe has that property, a lthough it comes at the expense of simplicity in easy cases
such as the one in Example 6.7.

THEOREM 6.2 For Every FSM There is an Equivalent Regular Expression

Theorem: Every regular language (i.e., every language that can be accepted by some
FSM) can be defined with a regul a r expression.

Proof: The lJroof is by construct ion. Given an FSM M = (K L 8 s A) we can con-, , , ') ,
struct a regular expression 0' such lhat L (M) = L (0').

As we did in f \'mloregexhellrislic, we will begin by assur ing that M has no un
reachable states and that it has astart state that has no transitions into it and a
single accepting state that ha . no transitio ns out from it. But now we will make a
furth e r important modification to M before we start removing states: From every
state olher than th e accepti ng state there must be exactly one transition to every
state (including itse lf) except the start stat e. And into every state olher than the
start state there must be exaclly one transition from every stat e (including itself)
except the accepting state. To make this true , w do two things:

• [f the re is more than one trans ition bet ween states p and q, collap e them into
a single transition. If the e t of labe ls on the ori ginal set of such transitions is

https://hemanthrajhemu.github.io

140 Chapter 6 Regular Expressions

CI----) :-----..I:CJ
(a)

nau~
~~

(b)
FIGURE 6.2 Coll aps ing multiple transition
into one.

{CI , C2 , ' .. , CIl }, then delete those transitions a nd rep lace them by a si ngle
transition with the label CI U C2 U .. . U CIl . For exa mpl e, conside r th e FSM
fragment shown in Figure 6.2(a). We must co ll apse th e two transitions be
tween st a tes 1 and 2. After doing so, we have the fra gme nt shown in
Figure 6.2(b).

• If any of the required transitions are missing add them. We can add a1l of
those transitions without changing L(M) by labeling a11 of lh new transitions
with the regul ar expression 0. So the re is no string th at will a110w them to be
taken. Für example, le t M be the FSM shown in Figure 6.3(a). Several new
transitions are required . Whe n we add them, we have the new FSM shown in
Figure 6.3(b).

(a)

(b)
FIGURE 6.3 Adding all the requir d
transiti ons.

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 141

Now suppose that we select astate rip and remove it and the transitions into and
out of it. Then we must modify every remaining transition so that M's function stays
the same. Since Malready contains a transition between each pair of states (except
the on es that are not allowed into and out of the start and accepting states), if all
those transitions are modified correctly then M's behavior will be correct.

So, suppose that we remove some state that we will call rip. How should the re
maining transitions be changed? Consider any pair of states p and q. Once we re
move rip, how can M get from p to q?

• It can still take the transition that went directly from p to q, or

• It can take the transition from p to rip . Then, it can take the transition from rip
back to itself zero or more times. Then it can take the transition from rip to q.

Let R(p, q) be the regular expression that labels the transition in M from p to
q. Then, in the new machine M' that will be created by removing rip , the new reg
ular expression that should label the transition from p to q is:

R(p, q)

R(p, rip)
R(rip, rip)*
R(rip, q)

u
/* Go directly fromp to q,
/* or
/* go from p to rip , then

/*go from rip back to itself any number of tim es, then

/* go from rip to q.

We'll denote this new regular expression R '(p, q) . Writing it out without the
comments, we have:

R' = R(p, q) U R(p, rip)R(rip , rip)*R(rip , q).

EXAMPLE 6.9 Ripping States Out One at a Time

Again, let M be:

Let rip be state 2. Then:

R'(l , 3) = R(l , 3) U R(l , rip)R(rip, rip)*R(rip, 3).

= R(l, 3) U R(l , 2)R(2, 2)* R(2, 3).

https://hemanthrajhemu.github.io

142 Chapter 6 Regular Expressions

EXAMPLE 6.9 (Continued)

= 0 U a

= ab*a .

b* a.

Notice that ripping state 2 also changes another way the o riginal machine had
to get from state 1 to state 3: It could have gone from state 1 to state 4 to state 2
and then to state 3. But we don 't have to worry about that in computing R' (1, 3).
The required change to that path will oeeur when we eompute R' (4 , 3).

When all states exeept the start sta te sand the aceepting state a have been re
moved, R(5~ a) will deseribe the set of strin gs that ean drive M from its start state
to its aceepting state. So R(s, a) will describe L(M) .

We can now define an algorilhm to build , from any FSM M = (K , L , 8, s, A),
a regul ar expression that describes L(M) . We'lI use two subroutines, srandardize,
whieh will eonvert M to the required form, and buildregex, whieh will eonstruct,
from the modified maehine M, the required regular expression.

standardi ze(M: FSM) =

1. Remove from M any states that are unreachable from the tart state.

2. If the start state of M is part of a loop (i .e. , it has any transition coming into it) ,
create a new start state sand conneet s to M's starl Slale via an c- transition.

3. If there is more than one aceepting stale of M or if there is just one but
there are any transitions out of it , creale a new aceepting state and eonnect
each of M's aecepting states to it via an c-lransition. R emove th e old accept
ing states from the se t of accepting sta tes.

4. If there is more than one transition be tween state p and q, collapse them
into a single transition.

5. lf there is a pair oE sta tes p, q and there is no transition between them and
pis not the accepting state and q is not the start state, then crea te a transi
tion from p to q labeled 0 .

buildregex(M: FSM) =

1. If M has no accepting states, then halt and re turn th e simple regular ex

pression 0.
2. lf M has only one state, then halt and return the simple regular xpre Ion 8.

3. Until only the start state and the acee pting state remain do:

3.1. Seleet some state rip of M. Any state exeept the start stat r lhe ac
eepting state may be chosen.

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 143

3.2. For every transition from some state p to some state q, if both p and q are
not rip then, using the current labels given by the expressions R, compute
the new label R' for the transition from p to q using the formula:

R'(p, q) = R(p, q) U R(p, rip)R(rip, rip) *R(rip, q).

3.3. Remove rip and all transitions into and out of it.
4. Return the regular expression that labels the one remaining transition

from the start state to the accepting state.

We can show that the new FSM that is built by standardize is equivalent to the
original machine (i.e., that they accept the same language) by showing that the
language that is accepted is preserved at each step of the procedure. We can show
that buildregex(M) builds a regular expression that correctly defines L(M) by in
duction on the number of states that must be removed before it halts. Using those
two procedures, we can now define:

jsmlOregex(M: FSM) =

1. M' = standardize (M).

2. Return buildregex(M').

6.2.3 The Equivalence of Regular Expressions and FSMs
The last two theorems enable us to prove the next one, due to Stephen Kleene Q .

THEOREM 6.3 Kleene's Theorem

Theorem: The dass of languages that can be defined with regular expressions is ex-
actly the dass of regular languages.

I Proof: Theorem 6.1 says that every language that can be defined with a regular ex
I pression is regular. Theorem 6.2 says that every regular language can be defined
~ some regular expression.

6.2.4 Kleene's Theorem, Regular Expressions, and Finite State
Machines

Kleene's Theorem teIls us that there is no difference between the formal power of regular
expressions and finite state machines. But, as some of the examples that we just consid
ered suggest, there is a practical difference in their effectiveness as problem solving tools:

• As we said in the introduction to this chapter, the regular expression language is a
pattern language. In particular, regular expressions must specify the order in which
a sequence of symbols must occur. This is useful when we want to describe patterns
such as phone numbers (it matters that the area code comes first) or email address
es (it maUers that the user name comes before the domain).

https://hemanthrajhemu.github.io

144 Chapter 6 Regular Expressions

• But there are some applications where order doesn 't matt er. The ve nding machine
example that we considered at the beginning of C hapl er 5 is an in tance 01' this dass
of problem. The order in which the coins were e nte red doe n ' t matte r. Parity check
ing is another. Only the total number of 1 bits matters, not whe re they occur in the
string. Finite state machines can be very e ffective in o lving proble ms such as this.
But the regular expressions that correspond to th ose FSMs may b 100 complex to
be useful.

The bottom line is that sometimes it is easy 10 write a finit e tate machine to de
scribe a language. For other proble ms, it may be eas ier 10 wrile a regular expression.

Sometimes Writing Regular Expressions is Easy

Because, for some problems, regular expressions are easy to writ e, Klce ne 's theorem is
useful. It gives us a second way to show that a language is regul a r. We need only show
a regular expression that defines it.

EXAMPLE 6.10 No More Than One b

Let L = {w E {a, b p : there is no more than one b}. L is regul ar becau e it can
be described with the following regular express ion:

a* (b U e) a" '.

EXAMPLE 6.11 No Two Consecutive Letters are the Same

Let L = {w E {a, b p : 110 two consecutive letters are th e ame}. L is regul.a r be
eause it ean be described with either of the following regul ar expre Ions:

(b U e) (ab)'" Ca U e).

Ca U e) (ba) ~' (b U s).

EXAMPLE 6.12 Floating Point Numbers

Consider again FLOAT, the language of floating point numbe r that we de cribed
in Example 5.7. Kleene 's Theorem te]]s us that , inee FLOA is regul ar, there
must be some regular expression that deseribes it.]n fact, r gular xpre sions can
be used easily to describe languages like FLOAT. We 'll use one hortha nd. Let:

D stand for (0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9).

Then FLOAT is the language described by the following regul ar ex pr n:

(s U + U -) D+ (e U . D+) (e U (E (s U + U -)D).

https://hemanthrajhemu.github.io

6.2 Kleene's Theorem 145

1t is useful to think oE programs, queries, and ather strings in practical
languages as being composed af a sequence of tokens, where a token is
the small est string that has meaning. So vari able and function names,
numbers and other ca nstants, operators, and reserved words are a ll ta
kens. The regular expression we just wrote far the language FLOAT de
scribes one kind of token. Th e first thing a compile r does, afte r reading
its input, is to divide it 1nto tokens. That process is call ed lexical analysis.
lt is comm on to use regul ar ex pressions to define the behavior of a lexi
ca l analyzer. (G.4 .1)

Sometimes Building a Deterministic FSM is Easy
Given an arbitrary regul ar expression, the general algorithms presented in the proof of
Theorem 6.1 will typically construct a highly nondetermini stic FSM. But there is a use
tul special case in which it is possible to construct a DFSM directly from a set of pat
terns. Suppose that we are given a set K of 11 keywards and a text string s. We want to
find occurrences in S of the keywords in K. We can think of K as defining a language
that can be described by a regular expression of the form:

In other words, we will accept any string in which at least one keyword occurs. For
some applications this will be good enough. For others, we may care which keyword was
matched. For yet others we' ll want to find all substrings that match some keyword in K.

By letting the keywords correspond to sequences of amino acids, this idea
can be used 10 build a fas t search engine fo r protein databases. (K.3)

In any of th ese special cases, we can build a deterministic FSM M by first buiJding a
decision tree out 01' the set 01' keywords and then adding arcs as necessary to tell M
what to do when it reaches a dead end branch oE the tree. The to llowing algorithm
builds an FSM that accepts any string that contains at least one of the specified key
words:

buildkeyword FSM(K: set 01' keywords)

1. Create astart state qo.

2. For each e lement k of K do:

Create a branch corresponding to k .

3. Create a set 01' transitions that describe what to do when a branch dies, either be
cause it complete pattern has been fo und 0 1' because the next character is not
the correct one to continue the patte rn .

4. Make the states at the ends 01' each branch accepting.

https://hemanthrajhemu.github.io

146

EXAMPlE 6.13 Recognizing a Set of Keywords

Consider the set of keywords {cat, bat , cab}. We can use buildkeywordFSM to
build a DFSM to accept strings that conta in a t least on e of the e keywords. We
begin by creating astart state and then a path to accept the fir t keyword , cat:

-,{ c}

Next we add branches for the remaining keywords, bat and cab:

-,{ c, b, a}

b

b

Finally, we add transitions that let the machine recover aft r a path di es:

-,{c,b}

b
b C

c
-.{b,a,c}

b

....,{t,b,a}

https://hemanthrajhemu.github.io

6.3 Applications of Regular Expressions 147

6.3 Applications of Regular Expressions
Patterns are everywhere.

Regul ar expressions can be matched against the subject fie lds of emails to
find at least some of the ones that are likely to be spam. (0.1)

Because patterns are everywhere, applications of regul ar expressions are everywhere.
Before we look at some specific examples, one important caveat is required: The term
regu lar expression is used in the modern computing world ~ in a much more general
way than we have defined it here. Many programming languages and scripting systems
provide upport for regular express ion matching. Each of them has its own syntax.
They a11 have the basic operators union, concatenation, and Kleene star. They typically
have others as well. Many, for example, have a substitution operator so that, after a pat
tern is successfully matched aga inst astring, a new string can be produced. In many
cases, these other operators provide enough additional power that languages that are
not regular can be described. So, in discussing "regular expressions" 01' "regexes", it is
important to be dear exactly wh at definition is being used. In the rest of this book, we
will use the definition that we presented in Section 6.1 with two additions to be de
scribed below, untess we dearly state that , fo r some particular purpose, we are going to
use a different definition.

The programming language Perl , for example, supports regular expression
matchin g. (Appendix 0) In Exercise 6.19, we' ll consider the formal power of
the Perl regular expression language.

Real applications need more than two or three characters. But we do not want to
have to write expressions like:

(aUbUcUdUeUfUgUhUiUjUkU1UmUnUoUpUqU
rU 5 U t U u U v U w U x U y U z).

It wo uld be much more convenient to be able to write (a-z). So, in cases where there is
an agreed upon co ll at ing sequence, we will use the shorthand (a - w) to mean
(a U .. , U w) , where all the characters in the coll aü ng sequence between a and ware
induded in the union.

EXAMPLE 6.14 Decimal Numbers

The fo l1owing regular expression matches decimal encodings of numbers:

-7 ([0-9J +(\. [0-9J *)7 I \. [0-9J +)

https://hemanthrajhemu.github.io

148 Chapter 6 Regular Expressions

EXAMPLE 6.14 (Continued)

In most standard regular expression dialects, the notation a? is equivalent
to Ca U E). In other words, a is optional. So, in this exampl e, the minus ign is
optional. So is the decimal point.

Because the symbol . has a special meaning in mo t regular xpr ssion dialects,
we must quote it when we want to match it as a literal character.1l1e quote char
acter in most regular expression dialects is \.

Meaningful "words" in protein seq uences are called motifs. They ca n be de
scribed with regular express ions. (K.3.2)

EXAMPlE 6.15 Legal Passwords

Consider the problem of determining whether astring is a legal password. Sup
pose that we require that all passwords meet the following requirements:

• A password must begin with a letter.

• A password may contain only letters, numbers, and the under eore character.

• A password must contain at least four characters and no more than eight char
acters.

The following regular expression describes the language of legal passwords.
The line breaks have no significance. We have used them just to make the expres
sion easier to read.

« a-z) U (A-Z))

« a-z) U (A-Z) U (0-9) U_)

«a-z) U (A-Z) U (0-9) U _)

« a-z) U (A-Z) U (0-9) U_)

«a-z) U (A-Z) U (0-9) U _ U 8)

«a-z) U (A-Z) U (0-9) U _ U 8)

« a-z) U (A-Z) U (0-9) U_U 8)

«a-z) U (A-Z) U (0-9) U _ U 8).

While straightforward , the regular expres ion 1hat we just wrot i a nLli ance to
write and not very easy to read. The problem is thaI, so far, we ha e only three way to
specify how many times a pattern must occur:

https://hemanthrajhemu.github.io

6.4 Manipulating and Simplifying Regular Expressions 149

• 0' means that the pattern 0' must occur exactly once.
• 0'* means that the pattern 0' may occur any number (including zero) of times.
• 0' + means that the pattern 0' may occur any positive number of times.

What we needed in the previous example was a way to specify how many times a
pattern 0' should occur. We can do this with the follow ing notations:

• 0' {n , rn} means that the pattern 0' must occur at least n tim es and no more than m times.

• O'{n} means that the pattern 0' must occur exactly n tim es.

Using this notation, we can rewrite the regular expression of Example 6.15 as:

« a-z) U (A-Z) «a-z) U (A-Z) U (0-9) U _){3 , 7}.

EXAMPLE 6.16 IP Addresses

The following regular expression searches for Internet (IP) addresses:

C[0-9]{1, 3} C\. [0-9]{1, 3}){3}) .

In XML, regular expressions are one way to define parts of new document
types. (Q.1.2)

6.4 Manipulating and Simplifying Regular Expressions
Theregular expressions(a U b)*(a U b)*and(a U b)* definethesame language.The
second one is simpler than the first and thus easier to work with. In this section we dis
cuss techniques for manipulating and simplifying regular expressions. All of these tech
niques are based on the equivalence of the languages that the regular expressions define.
So we will say that, for two regular expressions 0' and ß, 0' = ß if L (0') = L (ß).

We first consider identities that fo llow from the fact that the meaning of every regu
lar expression 1S a language, which means that it is a set:

• Union is commutative: For any regular expressions 0' and ß, 0' U ß = ß U 0'.

• Union is associative: For any regular expressions 0' , ß , and y , (0' U ß) U y = 0'

U (ß U y).

• 0 is the identity for union: Für any regular expression 0',0' U 0 = 0 U 0' = a.

• Union is idempotent: For any regular expression 0' , 0' U 0' = 0'.

• Given any two sets A and B, if B ~ A , then A U B = A . So, für example, a * U aa
= a*, since L(aa) ~ L(a*) .

Nexl we consider identities involving concatenation:

• Concatenation is associative:For any regular expressions 0' , ß, and y, (aß)y = 0' (ßy).

https://hemanthrajhemu.github.io

150 Chapter 6 Regular Expressions

• eis the identity for concatenation: For any regular express ion 0',0' e = e 0' = a.

• 0 is a zero for concatenation: For any regular expression a , 0' 0 = 0 0' = 0 .

Concatenation distributes over union:

• For any regular expressions a, ß , and y , (0' U ß)y = (ay) U (ßy). Every string in
either of these languages is composed 01' a first part foUowed by a second part. The
first part must be drawn from L (0') or L (ß). 1l1e second part mu t be drawn from
L (y).

• For any regular expressions a, ß , and y, y (0' U ß) = (ya) U (yß). (By a similar
argument.)

Finally, we introduce identities involving Kleene star:

• 0* = e.

• e* = c.

• For any regular expression 0', (0'*)* = a*. L (a*) contains all and only the strings
that are composed of zero or more strings from L (0') , concatenated together. All of
thern are also in L «0'*)*) since L «0'*)*) contains, among other thing , every indi
vidual string in L (0'*). No other strings are in L «0'*)*) since il can contain only
strings that are Eormed (rom concatenating together element of L (0'*), which are
in turn concatenations of strings frorn L (a).

• For any regular expression 0' , 0'*0'* = 0'*. Every string in either of these languages
is cornposed of zero 01' more strings from 0' concatenated toget her.

• More generally, for any regular expressions 0' and ß , if L (0'*) <: L (ß *) then 0'* ß * =

ß *. For example:

a* (a U b)* = (a U b) *, since L(a*) <: L«a U b) *).

0' is redundant because any string it can generate and place at the b ginning of astring
to be genera ted by the cornbined expression O'*ß* can also be generaled by ß *.

• Similarly, if L (ß*) <: L (a*) then O'*ß* = 0'*.

• For any regular expressions 0' and ß , (0' U ß)* = (O'*ß *)*. Ta form a tring in
either language, a generator must walk through the Kl eene star loop zero or
more times. Using the first expression, each time through th e loop .it chooses
either astring from L (a) or astring from L (ß). That proce can be copied
using the second expression by picking exactly one string from L (0') and then
c; frorn L (ß) or one string from L (ß) and then e from L (0'). Us ing th e second
expression, a generator can pick a seq uence 01' strin gs from L (0') and then a se
quence of strings from L (ß) each time through the loop. But Ihal process can
be copied using th e first expression by simply se lec ting each el m nt of the se
quence one at a time on successive times through the loop.

• For any regular expressions 0' and ß , if L (ß) <: L (0'*) th en (0' U ß) * = 0'*. For ex
am pIe, (a U e)* = a*, since {e} <: L(a*). ß is redundant 'ince any tring il can gen
erate can also be generated by 0'*.

https://hemanthrajhemu.github.io

-
Exercises 151

EXAMPlE 6.17 Simplifying a Regular Expression

« a* u 0)* U aa) (b U bb)* b* « a U b)* b* U ab) * = /* L(0) C L(a*).

« a*)* U aa) (b U bb)* b* « a U b)* b* U ab) * =

(a* U aa) (b U bb)* b* « a U b)* b* U ab) * = /* L(aa) C L(a*).

/* L(bb) C L(b*). a* (b U bb)*b * «a U b)* b* U ab) * =
a* b* b* «aUb)* b * Uab)* =

a*

a*

a*

a*

a*

b* «a U

b* «a U

b* « a U

b* (a U

(a U

(a U

Exercises

b)* b* U

b)* U

b)*

b) *

b)*

b)*

ab) '" =

ab) * =

) * =

=

=

/* L(b*) C L«a U b)*) .

/* L(ab) ~ L«a U b)*) .

/* L(b*) ~ L«a U b)*) .

/* L(a*) ~ L«a U b)*).

1. Describe in English , as briefly as possible, the language defined by each of these
regular expressions:

a. (b U ba) (b U a)* (ab U b).

b. «(a*b*)*ab) U «a*b*)*ba» (b U a)*.

2. Write a regular expressions to describe each of the following languages:

a. {w E {a, b} * : every a in w is immediately preceded and followed by b} .

b. {w E {a, b} * : w does not end in ba}.

c. {w E {O, 1} * : 3y E {O, 1} * (Ixy I is even)} .

d. {w E {O, 1} * : w corresponds to the binary encoding, without leading Os, of
natural numbers that are evenly divisible by 4}.

e. {w E {O, 1} * : w corresponds to the binary encoding, without leading Os, of
natural numbers that are powers of 4} .

f. {w E {0-9} * : w corresponds to the decimal encoding, without leading Os, of
an odd natural number}.

g. {w E {O, 1} * : w has 001 as a substring} .

h. {w E {O, 1} * : w does not have 001 as a sUbstring}.

i. {w E {a, b} * : w has bba as a substring}.

j. {w E {a, b} * : w has both aa and bb as substrings}.

k. {w E {a, b} * : w has both aa and aba as substrings}.

I. {w E {a, b} * : w contains at least two b's that are not followed by an a}.

m. {w E {O, 1} * : w has at most one pair of consecutive Os and at most one pair
of consecutive l s}.

https://hemanthrajhemu.github.io

152 Chapter 6 Regular Expressions

n. {w E {O, 1} * : none of the prefixes of w ends in O}.

o. {w E { a, b} * : # a (w) = 3 O} .
p. {w E {a, b} * : #a(w) ~ 3}.
q. {w E {a, b} * : w contains exactly two occurrences of the sub tring aa} .

r. {w E {a, b} * : w contains no more than two occurrences of the substring
aa}.

s. {w E { a , b} * - L} , where L = {w E { a , b} * : w contains bba as a
substring} .

t. {w E {O, 1} * : every odd length string in L begins with 11}.

u. {w E {0-9} * : w represents the decimal encoding of an odd natura l number
without leading Os.

v. L] - L 2, where L 1 = a *b*c* and L 2 = c*b*a*.

w. The set of legal United States zip codes .Q.

x. The set of strings that correspond to domestic telephone numbers in your
country.

3. Simplify each of the fo llowing regular expressions:

a. (a U b)* (a U c) b*.

b. (0* U b) b*.

c. (a U b)*a* U b.

d. «a U b)*)*.

e. «a U bt)*.

f. a«a U b)(b U a»)* U a«a U b)a)* U a « b U a) b)*.

4. For each of the following expressions E, answer the following three questions
and prove your answer:

i. 1s E a regular expression?

ii. lf E is a regular expression, give a simpler regular expression.

iii. Does E describe a regular language?

a. «a U b) U (ab))*.

b. (a+ al1 b'1).

c. «ab)*0).

d. «(ab) U c)* n (b U c*» .

e. (0* U (bb*».

5. Let L = {al1 bll
: 0 ~ n ~ 4}.

a. Show a regular expression for L.

b. Show an FSM that accepts L.

6. Let L = {w E {I, 2} * : for all prefixes p of w, if Ip I > 0 and Ip I is even , then the
last character of p is I}.
a. Write a regular expression for L.
b. Show an FSM that accepts L.

https://hemanthrajhemu.github.io

--
Exercises 153

7. Use the algorithrn presented in the proof of Kleene's Theorem to construct an FSM
to accept the language generated by each of the following regular expressions:
a. (b(b U s)b)*.
b. bab U a*.

8. Let L be the language accepted by the following finite state machine:

lndicate, for each of the following regular expressions, whether it correctly de
scribes L:
a. (a U ba)bb*a.
b. (s U b)a(bb*a) *.
c. ba U ab*a.

d. (a U ba)(bb*a)*.
9. Consider the following FSM M:

a. Show a regular expression for L(M).
b. Describe L(M) in English.

10. Consider the FSM M of Example 5.3. Use fsmlOregexheuristic to construct a reg
ular expression that describes L(M).

11. Consider the FSM M of Example 6.9. Apply fsmtoregex to M and show the regu
lar expression that results.

U. Consider the FSM M of Example 6.8. Apply fsmlOregex to M and show the regular
expression that results. (Hint: This one is exceedingly tedious, but it can be done.)

13. Show a possibly nondeterministic FSM to accept the language defined by each of
the following regular expressions:
a. «(a U ba) b U aa)*.
b. (b Us)(ab)*(aUs).
c. (babb* U a)*.

I.

https://hemanthrajhemu.github.io

154 Chapter 6 Regular Expressions

d. (ba U « a U bb) a *b)).

e. (a U b)* aa (b U aa) bb (a U b)*.

14. Showa D FSM to aeeept the language de fin ed by each f thc fo ll owin g regular
expresslOIl s:

a. (aba U aabaa)*.

b. (ab)*(aab)*.

15. Conside r the following DFSM M:

a. Write a regul ar expression lh at descr ibes L(M) .

b. Showa DFSM lhat accepts -, L (M).

16. Given the following DFSM M , write a regular expre si on th at describe -, L (M):

17. Add the keyword ab 1 e to the set in ExampIe 6.13 and how thc F M th at will be
built by buildkeywordFSM from the expanded keyword se t.

18. Let 2: = {a , b}.LetL = {8, a , b}.LetR bear la ti ondefin edon 2: * a follow:
\lxy (xRy iff y = xb). Let R' be th e reflex ive, transiti ve elo ure f R. Let L' =

{x : :J y E L (y R'x)}. Write a regular ex pres ion for L'.

19. In Appendix 0 we summ3l'ize the main featur o f th e regular c 'pre ion lal1-
guage in Perl. What feature of that regular expression languag make it po ible
to write regular express ions that deseribe language th at are n' l r gu lar ?

20. For each of the following statements, stat e whe th e r it i Tru e r fo lse , Prove our
answer.

a. (ab) *a = a(ba)*.

b. (a U b)* b (a U b)* = a* b (a U b)*.

c. (a U b)* b (a U b)* U (a U b)* a (a U b)* = (a U b *.

d. (a U b) * b (a U b) :;: U (a U b) * a (a U b) * = (a U b) .

e. (a U b)* ba (a U b)* U a *b* = (a U b)*.

f. a * b (a U b) :;: = (a U b) :;: b (a U b) :;: .

g. If a and ß are any two regular exp ression s th n (a U ß)* = a (ßa U a).

h. lf a a nd ß are any two regul a r ex pre ions, the n (aß)*a = a (ß)*.

--

https://hemanthrajhemu.github.io

CHAPTER 7

Regular Grammars •

SO ra r, we have considered two equivalent ways to describe exactly the c1 ass of
regul ar languages:

• Finite state machines.

• Regular expressions.

We now introduce a third :

• Regul ar grammars (sometimes also ca lied right linear grammars).

7.1 Definition of a Regular Grammar
A regular grammar G is a quadl'uple (V, L , R, S), where:

• V is the rule alphabet , which contains nontermin als (symbols that are used in the
gl'ammar but that do not appeal' in strings in the language) and terminals (symbols
th at can appeal' in strings genera ted by G),

• L (the set of terminals) is a subset of V,

• R (the set of rules) is a finite set of rul es of the fo rm X ~ Y, and

• S (the start symbol) is a non terminal.

In a regular grammar, all rules in R must:

• have a left-hand ide that is a single nonterminal, and

• have a ri ght-hand ide that i s or a single terminal or a single terminal fo llowed by
a single nonterminal.

https://hemanthrajhemu.github.io

156 Chapter 7 Regular Grammars

So 5 ~ a , 5 ~ 8, and T ~ a5 are legal rules in a regular grammar. 5 ~ aSa and aSa - T
are not legal rules in a regular gram mar.

We will formalize the notion of a grammar ge nerating a langllage in Chapter 11 ,
when we introduce a more powerflll grammati cal framework , the cont cxt-frce gram
mar. For now, an informal notion will do. The languagc ge nerated by a gramm ar
G = (V, 2:, R, 5), denoted L(G), is the set of all string tu in 2> such th at it is possible
to start with 5, apply some finite set of rul es in R , and de rive w.

To make writing grammars easy, we will adopt th e conventi on th at, unl css otherwise
specified, the start symbol of any gram mar G wi ll be thc symbol on the left-hand side
of the first rule in Re.

EXAMPLE 7.1 Even Length Strings

Let L = {w E {a, b}*: Iwl is even} . The fo llowing regular expre ion defines L:

((aa) U (ab) U (ba) U (bb))*.

Tbe fo llowing DFSM M accepts L:

~ a,b ~f:'\

~-0 a,b

Tbe following regular gramm ar G also defines L:

S~e

5-aT
5- bT
T~aS

T~b5

In G, the job of the non terminal 5 is to generate an even length tring. Ir does
this either by generating the empty string or by generating a single character and
then creating T. The job of T is to gene rate an odd length tring. Il does this by
generating a single character and then creating 5. 5 generates e, the hortest pos
sible even length string. So, if T can be shown to genera te all and on ly th odd
length strings, we can show that 5 generates all and on ly the remaining even
length strings. T generates every stri ng whose length is on greater than the
length of some strjng S generates. So, if 5 generates all and on l the even length
strings, then T generates all and only the other odd length strin gs.

Notice the c1ear correspondence between M and G, which we have high li ghted
by naming M's states 5 and T. Even length strings drive M t tate S. Even length
strings are generated by G starting with 5. Odd length string drive M to state T.
Odd length strings are genera ted by G starting with T.

--

https://hemanthrajhemu.github.io

7.2 Regular Grammars and Regular Languages 157

7.2 Regular Grammars and Regular Languages

THEOREM 7.1 Regular Grammars Define Exactly the Regular Languages

r ~heorem: The d ass of languages that can be defined with regular grammars is exactly
the regular languages.

Proof: We fi rst show that any langu age that can be defined with a regular gramm ar
can be accepted by same FSM and so is regular. Then we must show that every
regul ar language (i. e., every language that can be accepted by some FSM) can be
defined with a regul ar grammar. Bo th proofs are by construction.

Regular grammar ~ FSM: The fo llowing algorithm constructs an FSM M
fr om a regular grammar 0 = (V, L , R, S) and ass ures that L (M) = L (0):

gramma rto.f.~m(G: regular grammar) =

1. Crea te in M aseparate sta te fo r each no n te rminal in V.

2. Make the state corresponding to S the start state.

3. H the re are any rules in R of the fo rm X ~ w, for some W E L, then create
an addition al state labe led #.

4. For each rul e of the fo rm X ~ w Y , add a transition from X to Y labeled w .

5. For each rule of the form X ~ w , add a transition from X to # labe led w.

6. Fo r each rul e of the form X ~ 8 , mark sta te X as accepting.

7. Mark state # as accepting.

8. lf M is incomplete (i. e., th ere are some (s tate, input) pairs far which no
transition is defined) , M requires a dead sta te. Add a new state D . For
every (q, i) pair fo r whi ch no transiti on has already been defin ed , create a
transitio n from q to D labeled i. Far every i in L, create a transition from
D to D labe led i.

FSM ~ Regular grammar: The constructi on is effectively the reverse of the
o ne we just did . We leave this step as an exercise.

EXAMPlE 7.2 Strings that End with aaaa

Let L = { w E {a, b }*: W ends with the pattern aaaa}. Alternatively, L =
aaaa. The following regular grammar defines L:

(a U b)*

S ~ aS
S~ bS

/* An arbitrary number of a 's and b's can be generated
before the patte rn starts.

S~ aB /* Generate the first a of the patte rn .

https://hemanthrajhemu.github.io

158 Chapter 7 Regular Grammars

EXAMPLE 7.2 (Continued)

B ---') aC

C ---') aD

/* Generate the second a of the pattern.

/* Generate the third a of the pattern.

/* Generate the last a of the pattern and quit.

Applying grammartofsm to this grammar, we get, omitting the dead state:

a,b

Notice that the machine that granunartofsm builds is not necessarily deterministic.

EXAMPLE 7.3 The Missing Letter Language

Let ~ = {a, b, c}. Let L be LMissil1g = {w: there is a symbol ai E ~ not appear
ing in w}, which we defined in ExampLe 5.12. The following grammar G generates

LMissing :

S---')8

S ---') aB

S- aC
S ---') bA

S ---') bC

S ---') cA

S- eR

A- bA

A- cA

A-B

B ---') aB

B- cB

https://hemanthrajhemu.github.io

7.2 Regular Grammars and Regular Languages 159

The job of S is to generate some string in LMissing' It does that by choosing a first
character of the string and then choosing which other character will be missing.
The job of A is to generate an strings that do not contain any a's. The job of B is to
genera te all strings that do not contain any b's. And the job of C is to generate all
strings that do not contain any c's.

If we apply grammartofsm to G, we get M =

b,c b,c

a,c a,e

a,b
a,b

M is identical to the NDFSM we had previously built for LMissillg except that it
waits to guess whether to go to A, B or C until it has seen its first input character.

Our proof of the first half ofTheorem 7.1 clearly describes the correspondence be
tween the nonterminals in a regular grammar and the states in a corresponding FSM.
This correspondence suggests a natural way to think about the design of a regular
grammar. The nonterminals in such a gramm ar need to "remember" the relevant state
of a left-to-right analysis of astring.

EXAMPLE 7.4 Satisfying Multiple Criteria

Let L = {w E {a, b} *: w contains an odd number of a's and w ends in a}. We can
write a regular gramrnar G that defines L. G will contain four nonterminals, each
with a unique function (corresponding to the states of a simple FSM that accepts
L). So, in any derived string, if the remaining nonterminal is:

• S, then the number of a's so far is even. We don't have worry about whether
the string ends in a since, to derive astring in L, it will be necessary to gener
ate at least one more a anyway.

. I , I

https://hemanthrajhemu.github.io

160 Chapter 7 Regular Grammars

EXAMPLE 7.4 (Continued)

• T, then the number of a's so far is odd and the derived string ends in a.

• X , then the number of a's so far is odd and the derived string does not end in a.

Since only T captures the situation in which the number of a 's so far is odd and
the derived string ends in a, T is the only nonterminal that can generate 8. G
contains the following rules:

S~bS

S~aT

T~aS

T~bX

X~aS

X~bX

/* Initial b's don't matter.

/* After this, the number of a's is odd and the generated
string ends in a.

/* Since the number of a 's is odd, and the string ends in
a, it 's okay to quit.

/* After this, the number of a 's will be even again.

/ * After this, the number of a 's is still odd but the gener
ated string no longer ends in a.

/* After this, the number of a 's will be even.

/* After this, the number of a 's is still odd and the gen
erated string still does not end in a.

To see how this grammar works, we can watch it generate the string baaba:

S ~ bS /* Still an even number of a's.

=> baT /* Now an odd number of a 's and ends in a. The process
could quit now since the derived string, ba, is in L.

=> baaS /* Back to having an even number of a 's, so it doesn't
matter what the last character iso

=> baabS /* Still even a 's.

=> baabaT /* Now an odd number of a 's and ends in a. The
process can quit, by applying the rule T ~ 8.

=> baaba

So now we know that regular grammars define exactly the regular languages. But
regular grammars are not often used in practice. The reason, though , is not that they
couldn't be. It is simply that there is something bett er. Given some regular language
L, the structure of a reasonable FSM for L very c10sely mirror the structure of a
reasonable regular grammar for it. And FSMs are easier to work with. In addition,
there exist regular expressions. In Parts III and IV, as we move outward to larger
classes of languages, there will no longer exist a technique like regular expressions.

https://hemanthrajhemu.github.io

Exercises 161

At that point, particularly as we are considering the context-free languages, we will
see that gramm ars are a very important and useful way to define languages.

Exercises
1. Show a regular grammar for each of the following languages:

a. {w E {a, b }*: w contains an even number of a's and an odd number of b's}.

b. {w E {a, b }*: w does not end in aal.
c. {w E {a, b }*: w contains the substring abb}.

d. {w E {a, b }*: if w contains the substring aa then Iwl is odd}.
e. {w E {a, b }*: w does not contain the substring aabb}.

2. Consider the following regular grammar G:
S~ aT

T~ bT
T~ a
T~ aW

W~e

W~ aT

a. Write a regular expression that generates L(G).

b. Use grammartofsm to generate an FSM M that accepts L(G).
3. Consider again the FSM M shown in Exercise 5.1. Show a regular grammar that

generates L(M).
4. Show by construction that, for every FSM M there exists a regular grammar G

such that L (G) = L (M).

5. Let L = {w E {a, b} *: every a in w is immediately followed by at least one b}.
a. Write a regular expression that describes L.
b. Write a regular grammar that generates L.
c. Construct an FSM that accepts L.

https://hemanthrajhemu.github.io

CHAPTER 8

Regular and Nonregular Languages

T
he language a*b* is regul ar. The language AI1 BI1

= {a"b": n ~ O} i not regu
lar (intuitively because it is not possible, give n some finite num ber o f states, to
count an arbitrary number of a 's and then compare that count to the number of

b's). The language {w E {a , b} * : every a is immediately fo llowed by a b} is regular. The
similar sounding language {w E {a , b }:;: : every a has a matching b somewhere and no b
matches more than one a} is not regular (again because it is now necessary to count the
a 's and make sure that the number of b's is at least as great as the number of a 's.)

G iven a new language L, how can we know whether or not it i regular? In this
chapter, we present a collection of techniques that can be used to answer th at question.

8.1 How Many Regular Languages Are There?

162

First , we observe that there are many more nonregular languages th an there are regu

lar ones:

THEOREM 8.1 The Regular Languages are Countably Infinite

Theorem: There is a countably in fini te number of regul ar languages.

Proof: We can lexicographica lly enumerate all the syntactically lega l DFSMs with
input alphabet ~ . Every regular language is accepted by at lea t one of them. So
there cannot be more regul ar languages than the re are DFSMs. Thus th re are at
most a countably infini te number of regular languages. The r is not a o ne-to-one
relationship between regular languages and DFSM ince there is an infini.te
number of machines that accept any give n language. But the num ber of regular
languages is infinite because it includes the fo ll owing in fin ite et of languages:

{a }, {aal, {aaa }, {aaaa }, {aaaaa}, {aaaaaa } . ..

https://hemanthrajhemu.github.io

,...

8.2 Showing That a Language 15 Regular 163

But, by Theorem 2.3, there is an uncountably infinite number of languages over any
nonempty alphabet So there are many more nonregular languages than there are reg
ular ones.

8.2 Showing That a Language Is Regular
But rnany languages are regular. How can we know which ones? We start with the sim
plest cases.

THEOREM 8.2 The Finite Languages

Theorem: Every finite language is regular.

Proof: If L is the empty set, then it is defined by the regular expression 0 and so is
regular. If it is any finite language composed of the strings Sb S2, ... Sn for some
positive integer n, then it is defined by the regular expression:

S1 U S2 U ... U SIl

So it too is regular.

EXAMPLE 8.1 The Intersection of Two Infinite Languages

Let L = L1 n L 2, where LI = {allbll
: n :> O} and L 2 = {bllall

: n ~ O}. As we
will soon be able to prove, neither LI nor L 2 is regular. But L iso L = {8} ,
which is finite.

EXAMPLE 8.2 A Finite Language We May Not Be Able to Write Down

Let L = {w E {O - 9} * : w is the social security number of a living US resident}.
L is regular because it is finite.1t doesn't matter that no individual or organization
happens, at any given instant, to know wh at strings are in L.

Note, however, that although the language in Example 8.2 is formally regular, the
techniques that we have described for recognizing regular languages would not be very
useful in building a program to check for a valid social security number. Regular ex
pressions are most useful when the elements of L match one or more patterns. FSMs
are most useful when the elements of L share some simple structural properties. Other
techniques, like hash tables, are better suited to handling finite languages whose ele
ments are chosen by our world, rather than by rule.

https://hemanthrajhemu.github.io

164 Chapter 8 Regular and Nonregular Languages

EXAMPLE 8.3 Santa (lause, God, and the History of the Americas

Let:

• LI = {WE{O - 9}*:wisthesocialsecuritynumberofthecurr ntUSpres-
ident }.

• L 2 = {1 if Santa Claus exists and 0 otherwise}.

• L 3 = {I if God exists and 0 otherwise} .

• L 4 = {I if there were people in North America more than 10,000 years ago
and 0 otherwise}.

• L5 = {I if there were people in North America more than .15 ,000 years ago
and 0 otherwise}.

• L 6 = {w E {o - 9} + : W is the decimal representation without lead ing O's, of
a prime Fermat number}.

L 1 is c1early finüe, and thus regular. There exists a imple FSM to accept it even
though none of us happens to know what that FSM iso L 2 and L 3 are perhaps a tittle
less clear, but that is because the meanings oE "Santa CI au " and" od" are less
c1ear. Pick a definition for either of them. Then something that atisfies that defini
tion either does or does not ex ist. So either the simple FSM that accepts {O} and
nothing else or the simple FSM that accepts {I} and nothing else accepts L 2. And
one of them (possibly the same one, possibly the other one) accepts L 3· L4 is elear.
It is the set {I}. L5 is also finite, and thus regular. Either there were people in Nortb
America by 15,000 years ago or there were not, although the currently available fos
sil evidence ,\;l, is unclear as to which. So we (collectively) just don't know yet which
machine to build. L6 is similar, although this time wh at is lacking is mathematics, as
opposed to fossils. Recall from Section 4.1 that the Fermat numbers are defined by

2" Fil = 2 + 1, 11 ~ O.

The first five elements oE F" are {3, 5, 17, 257, 65 ,537} . All oE them are prime. It
appears likely ~ that no other Fermat numbers are prime. [f that i true, theu L6
is finite and thus regular.lf it turns out that the set of Fermat numbers is infinite,
then it is almost surely not regular.

Not every regular language is computationally tractab le. Con ide r the Tow
ers of Hanoi language. (P. 2)

But, of course, most interes tin g regul ar languages are infinite. So far. we've devel
oped four techniques for showing that a (finite 0 1' infinit e) languagc L is regular:

• Exhibit a regular expression for L.

• Exhibit an FSM for L.

https://hemanthrajhemu.github.io

8.3 Some Important (losure Properties of Regular Languages 165

• Show that the number of equivalence classes of ~ L is finite.

• Exhibit a regular grammar for L.

8.3 Some Important Closure Properties of Regular
Languages
We now consider one final technique, which allows us, when analyzing complex lan
guages, to exploit the other techniques as subroutines. The regular languages are closed
under many common and useful operations. So, if we wish to show that some language
L is regular and we can show that L can be constructed from other regular languages
using those operations, then L must also be regular.

THEOREM 8.3 Closure under Union, Concatenation and Kleene Star

Theorem: Tbe regular languages are closed under union , concatenation, and Kleene
star.

Proof: By tbe same constructions tbat were used in the proof of Kleene's theorem.

THEOREM 8.4 Closure under Complement, Intersection, Difference, Reverse
and Letter Substitution

Theorem: The regular languages are closed under complement, interseetion, differ
ence, reverse, and letter substitution.

Proof:

• The regular languages are closed under complement. If L l is regular, then
there exists a DFSM MI = (K , 2:. , 0, s, A) that accepts it. The DFSM
M2 = (K, 2:. , 8, s, K - A), namely Mj with accepting and nonaccepting states
swapped, accepts .(L(M])) because it rejects all strings that MI accepts and
rejeets all strings that MI aceepts.

Given an arbitrary (possibly nondeterministic) FSM MI = (KJ, 2:. , ß b Sb A1) ,

we ean construet a DFSM M2 = (K2, 2:. , 0 2, S2 , A2) such that L(M2) = .(L(Mj)).

We do so as follows: From MI, construct an equivalent deterministic FSM M' =
(KM " 2:. , OM " SM', AM ,), using the algorithm ndfsmtodfsm, presented in the proof
ofTheorem 5.3. (If MI is already deterrninistic, M' = Md M' must be stated eom
pletely, so if it is described with an implied dead state, add tbe dead state and all re
quired transitions to it. Begin building M2 by setting it equal to M'. Then swap the
accepting and the nonaccepting states. So Mz = (KM', 2:. , 0M', SM', KM' - AM')'

• The regular languages are closed und er intersection. We note that:

L(M]) n L(M2) = .(.L(M1) U -,L(M2)).

We have already shown that the regular languages are closed under both com
plement and union. Thus they are also closed under intersection.

https://hemanthrajhemu.github.io

166 Chapter 8 Regular and Nonregular Languages

1 .. __ ..

It is also possible to prove this claim by construction of an FSM that accepts
L(M]) n L(M2) . We leave that proof as an exercise.

• The regular languages are closed under se t difference (subtract ion). We note
that:

We have already shown that the regular languages are closed under botb
complement and intersection. Thus they are also closed under set difference.

This claim too can also be proved by construction, which we leave as an
exercise.

• The regular languages are closed under reverse. Reca ll that L R = {w E ~* :
w = x R for some x E L}. We leave the proof of thi s as an exercise.

• The regular languages are closed under letter substitution, defined as folIows:
Consider any two alphabets, 2: 1 and 2: 2. Let sub be any function from 2: 1 to
2:2*, Then letsub is a letter substitution function from L] to L] ifr letsub(L1) =
{w E 2: 2* : 3y E L] (w = y except that every character C of y has been replaced
by sub(c»}. For example, suppose that 2: 1 = {a, b} , 2: 2 = {O, 1}, sub(a) = 0,
and sub(b) = 11. Then fetsub({al1 b" : n ;::: O}) = {0"12 1

: n ;::: O}. We leave
the proof that the regular languages are closed under letter substitution as an
exercise.

EXAMPLE 8.4 Closure Under Complement

Consider the following NDFSM M =

a

If we use the algorithm that we just described to convert M to a new machine
M r that accepts .., L(M), the last step is to swap the accepting and the nonaccept
ing states. A quick look at M makes it c1ear why it is necessary first to make M de
terministic and then to complete it by adding the dead state. M accepts the input
a in state 4. If we simply swapped accepting and nonaccepting states, without

https://hemanthrajhemu.github.io

8.3 So me Important Closure Properties of Regular Languages 167

making the other changes, M' would also accept a. It would do so in state 2. The
problem is that M is nondeterministic, and has one path along which a is accepted
and one along which it is rejected.

To see why it is necessary to add the dead state, consider the input string
aba. M rejects it since the path from state 3 dies when Mattempts to read the
final a and the path from state 4 dies when it attempts to read the b. But, if we
don't add the dead state, M' will also reject it since, in it too, both paths will die.

The closure theorems that we have now proved make it easy to take a divide-and
conquer approach to showing that a language is regular. They also let us reuse proofs
and constructions that we've already done.

EXAMPLE 8.5 The Divide-and-Conquer Approach

Let L = {w E { a, b} * : w contains an even number of a's and an odd number of
b's and all a's co me in runs of three}. L is regular because it is the intersection of
two regular languages. L = LI n L 2• where:

• L 1 = {w E {a, b} * : w contains an even number of a's and an odd number of
b's }, and

• L 2 = {w E {a, b}* : all a's come in runs of three}.

We already know that LI is regular, since we showed an FSM that accepts it in
Example 5.9:

a

---even a 's) C odd a 's
even b' s even b'S

a

b b
b b

C ~~
a

evena's))
~

odd a's
odd b's odd b's

a -
Of course, we could start with this machine and modify it so that it accepts L.

But an easier way is exploit a divide-and-conquer approach. We'll just use the
machine we have and then build a second simple machine, this one to accept L 2•

.1

I

\
1

1

!

I

https://hemanthrajhemu.github.io

168 Chapter 8 Regula r and Nonregu la r Langua ges

EXAMPLE 8.5 (Continued)

Then we can prove that L is regular by exploiting the fact tha t the regular languages
are closed under intersection. TIle following macbine ace pt L 2:

The closure theorems a re powerful, but lhey ay nl y what th e sa . We have tated
each of the closure theorems in as strang a fo rm as po sibl c. An imil a r cla ims that are
not implied by th e theorems as we have stated Ih em are alm o t cc rt ain ly false, which
can usually be shown eas il y by fin din g a sim ple cou nl erexample.

EXAMPLE 8.6 What the Closure Theorem for Union Does Not Say

The closure theorem for unio n says that:

ii LI and L 2 are regul ar riten L = L I U L 2 is regula r.

The theorem says nothing, for example, about wh at happens if L is regular. Does
that mean that LI and L 2 are also? The answer is maybe. We know that a+ is reg
ular. We will consider two cases for LI and L 2· First, let them be:

a + = {aP : p > 0 and p is prime} U {aP : p > 0 and p is not prime}.

U

As we will see in the next section, neither L I nor L? i regular. Bur now consider:

a+ = {aP:p > Oandpiseven} U {aP:p > Oandpisodd }.

u

In this case, both LI and L 2 are regula r.

EXAMPLE 8.7 Wh at the Closure Theorem for Concatenation Does Not Say

The c10sure theorem for concatenation says that:

ii LI and L 2 are regular then L = LI L2 i regula r.

But the theorem says nothing, for example, abo ut what happen if L2 i not regu
l~r. Does. that mean tha.t L isn't regular eithe r . Aga in , lhe an wer i maybe. We
fust eonslder the followmg example: .

a a : 11 2. 0. { abatl brl ·.n >_ O}· { b}{ Ilbn }

L

https://hemanthrajhemu.github.io

8.4 Showing That a Language is Not Regular 169

As we '1l see in the next section, L 2 is not regular. And, in this case, neither 1S L.
But now consider:

{aaa*} = {a*}{ aP : pis prime} .

L = L 1 L2.

While again L2 is not regular, now L iso

8.4 Showing That a Language is Not Regular
We can show that a language is regular by exh ibiting a regular expression or an FSM or
a finite list of the equivalence clas es of ~ L or a regular grammar, or by using the clo
sure properties that we have proved hold fo r the regular languages. But how shall we .
show that a language is not regular? In othe r words, how can we show that none of
those descriptions ex ists fo r it? It is not sufficient to argue that we tried to find one of
them and fa iled. Perhaps we didn't look in the right place. We need a technique that
does not rely on our cleve rness (or lack of it).

What we can do is to make use of the fo llowing observation about the regula r languages:
Every regular language L can be accepted by an FSM M with a fini te number of states.lf L
is in finite, then there must be at least one loop in M. All sufficiently long strings in L must
be characterized by one or more repeating patterns, corresponding to the substrings that
drive M through its loops. lt is also true that, if L is infinite, then any regular expression that
describes L must contain at least one Kleene star, but we will focus here on FSMs.

To help us visualize the rest of this discussion, consider the FSM M LOOP, shown in
Figure 8.1 (a) . M LOOP has 5 states. It can accept an infinite number of strings. But the
longest one that it can accept without going th rough any loops has length 4. Now consider
the slightl y different FSM ME' shown in Figure 8.1 (b). Me also has 5 states and one loop.
But it accepts only one string, aab. The only string that can drive Me through its loop is e.

No matter how many times ME goes through the loop, it cannot accept any longer strings.
To simpli fy the following discussion, we will consider only DFSMs, which have no

e-transitions. Each transition step that a D FSM takes corresponds to exactly one char
acter in its input. Since any language that can be accepted by an NDFSM can also be
accepted by a DFSM, this rest rietion will not aUect our conclusions.

(a)

(b)

FIGURE 8.1 What is the
langest string that a 5-state
FSM can accept?

https://hemanthrajhemu.github.io

170 Chapter 8 Regular and Nonregular Languages

THEOREM 8.5 Long Strings Force Repeated States

Theorem: Let M = (K , L , 8,s , A) be any DFSM . If M accept any string of
length IKI or greater, then that string will fo rce M to isit some stat more than
onee (thus traversing at least one loop).

Proof: M must start in one of its states. Eaeh time it reads an input eharaeter, it vis
its some state. So, in proeessing astring of length 11 , M erea tes a total of n + 1
state visits (the initia l one plus one fo r eaeh eharaeter it reads). If n + 1 > IKI.
then, by the pigeonhole principle, some state must ge t more th an one visit. So, if
n ~ I K I, then M must visit at least one state more than onee.

l ____ _

Let M = (K, L, 8, s, A) be any DFSM . Suppose th at there exists some "Iong' string
w (i.e., Iwl 2': I K I) such that w E L(M). Then M must go through at least one loop
when it reads w. So there is some substring y of tu th at drove M through at least oue
loop. Suppose we excise y from w. The resulting string must also be in L(M) sinee M
ean accept it just as it accepts w but skipping one pass through one I op. Further, sup
pose that we spliee in one or more extra copies of y, immed iately adj aeent to the origi
nal one. All the resulting strings must also be in L(M) since M ca n aecept them by
going through its loop one or more additional times. Using an analogy with a pump,
we 'll say that we can pump y out onee or in an arbi trary number of time and the re
sulting string must still be in L.

To make this eonerete, let's look aga in at MLOO P, wh ich aecepts, for example, tbe
string babbab. babbab is "long" since its length is 6 and I K I = 5. The second b drove
M LOOP through its loop. Call the string (in this ease b) that drove MLOOP through its
loop y . We can pump it out , producing babab, which is also acc pted by Mwop. Or we
can pump in as many copies of b as we like, genera ting such strings as babbbab,
babbbbbab, and so forth . M LOOP also accepts all of th em. Returning to the original
string babbab, the third b also drove Mwop through its loop. We could also pump it (in
or out) and get a similar result.

This property of FSMs, and the languages that they can accep t. is the basis far a
powerful too1 for showing that a language is not regul ar. If a language conlains even
one long (to be defined precise ly below) string that cannot be pumped in the fashion
that we have just described, then it is not aceepted by any FSM and so i not regular.
We formalize this idea, as the Pumping Theorem, in th next cti n.

8.4.1 The Pumping Theorem for Regular Languages

THEOREM 8.6 The Pumping Theorem for Regular Languages

Theorem: If L is a regular language, then:

:Jk ~ 1 (\I strin gs w E L , where Iwl 2': k (:Jx , y, Z (tu = xyz ,

Ix) I - k ,

Y * f;,a nd
q 2': 0 (xy '1- E L»)).

https://hemanthrajhemu.github.io

--
8.4 Showing That a Language is Not Regular 171

Proof: The proof is the argument that we gave above: If L is regular then it is accepted
by some DFSM M = (K, L, 8, s, A). Let k be IKI. Let w be any string in L of length
k or greater. By Theorem 8.5, to accept w, M must traverse some loop at least once.
We can carve w up and assign the name y to the first substring to drive M through a
loop. Then xis the part of w that precedes y and z is the part of w that follows y. We
show that each of the last three conditions must then hold:

• Ixyl::; k : M must not only traverse a loop eventually when reading w, it must
do so for the first time by at least the time it has read k characters. It can read
k - 1 characters without revisiting any states. But the kth character must, if
no earlier character already has, take M to astate it has visited before. What
ever character does that is the last in one pass through some loop.

• y -=1= e: Since M is deterministic, there are no loops that can be traversed by e.

• \fq ~ 0 (xl1 z E L): y can be pumped out once (which is what happens if q = 0)
or in any number of times (which happens if q is greater than 1) and the result
ing string must be in L since it will be accepted by M.1t is possible that we could
chop y out more than once and still generate astring in L, but without knowing
how much longer w is than k , we don't know any more than that it can be
pumped out once.

The Pumping Theorem teUs us something that is true of every regular language. Gen
erally, if we al ready know that a language is regular, we won 't particularly care about
what the Pumping Theorem teils us about it. But suppose that we are interested in
some language Land we want to know whether or not it is regular. If we could show
that the claims made in the Pumping Theorem are not true of L, then we would know
that L is not regular. lt is in arguments such as this that we will find the Pumping The
orem very useful. In particular, we will use it to construct proofs by contradiction. We
will say, " If L were regular, then it would possess certain properties. But it does not
possess those properties. Therefore, it is not regular."

EXAMPlE 8.8 AnBn is not Regular

Let L be AnBn
= {allbll

: n ~ O}. We can use the PumpingTheorem to show that
L is not regular. If it were, then there would exist so me k such that any string w,
where Iwl ~ k , must satisfy the conditions of the theorem. We show one string w
that does not. Let w = akbk. Since Iwl = 2k , w is long enough and it is in L , so it
must satisfy the conditions of the Pumping Theorem. So there must exist x, y, and
z, such that w = xyz, Ixyl ::; k, y -=1= e, and \fq ~ 0 (xy qz E L). But we show that
no such x, y, and z exist. Since we must guarantee that Ixyl ::; k, y must occur
within the first k characters and so y = aP for some p. Since we must guarantee
that y -=1= e, p must be greater than O. Let q = 2. (In other words, we pump in one
extra copy of y.) The resulting string is ak+pbk . The last condition of the Pumping
Theorem states that this string must be in L , but it is not since it has more a's than
b's. Thus there exists at least one long string in L that faBs to satisfy the conditions
of the Pumping Theorem. So L = ~lBn is not regular.

https://hemanthrajhemu.github.io

,

172 Chapter 8 Regular and Nonregular Languages

The Pumping Theorem is a powerful tool for showing that a language is not regular.
But, as with any tool , using it effeetively requires some skilI . To ee how the theorem
ean be used, let's state it again in its most general terms:

For any language L , if L is regular, then every " Iong" string in L is pumpable.

So, to show that L is not regular, it suffices to find a ingl e long string w that is in
L but is not pumpable. To show that astring is n01 pumpable, we must show that
there is no way to carve it up into x , y, and z in such a way that all three of the condi
tions of the theorem are met.lt is not suffieient to pick a particular y and show that it
doesn ' t work. (We focus on y since, once it has been chosen , eve rything to the left of
it is x and everything to the right of it is z). We must show tha t th e re is no value for y
that works. To do that , we consider all the logicall y possible classe of values for y
(sometimes there is only one such dass, but sometimes several must be considered).
Then we show that each of them fails to satisfy a1 least one of th e three conditions of
the theorem. Generally we do that by assuming that y does sa tisfy the first two con
ditions, namely that it occurs within the first k charaeters and is not e. Then we con
sider the third requirement, namely that, for all values of q, xy q z is in L. To show that
it is not possible to satisfy that requirement , it is suffieient to find a single value of q
such that the resulting string is not in L. Typically, this can be done by setting q to 0
(thus pumping out onee) or to 2 (pumping in once) , although sometime some other
value of q must be considered.

In a nutshell then, to use the PumpingTheorem to show that a language L is not reg
ular, we must:

1. Choose astring w, where w E Land Iwl :2: k . Note that we do not know what k
is; we know only that it exists. So we must state IV in terms of k.

2. Divide the possibilities for y into a set of equivalence cla es so that a11 strings in
a dass can be considered together.

3. For each such dass of possible y values, where Ixyl ::s k and y ~ g:

Choose a value for q such that x/'z is not in L.

In Example 8.8,y had to fall in the initial a region of w, so that was the only case that
needed to be eonsidered. But, had we made a less judicious choice fo r w, our proof
would not have been so simple. Let's look at another proof, with a different tu:

EXAMPlE 8.9 A Less Judicious Choice for w

Again let L be fttB n = {al1b": n 2: O}. If ~Bn were regular then there would

exist so me k such that an~ string w, where Iwl 2: k, must satisfy the conditions of

the theorem. Let w = a kjzl bfk/zl. (We must use r kl 2 l i.e. the mallest integer
greater than k12 , rather than truncating the division , since k might be odd.) Since
Iwl 2: k and w is in L, w must satisfy the conditions of the Pumping Theorem. So,
there must exist x, y, and z, such that w = xyz , Ixyl :5 k , * sand
Yq :> 0 (xy qz E L). We show that no such x , y, and z exist. This time, if they did,y

https://hemanthrajhemu.github.io

8.4 Showing That a Language is Not Regular 173

could be almost anywhere in w (since all the Pumping Theorem requires is that it
occur in the first k characters and there are ~~Iy at most k + 1 chai-acters). So we
must consider three cases and show that, in all three, there is no y that satisfies all
conditions of the Pumping Theorem. A useful way to describe the cases is to imag
ine w divided into two regions:

aaaaa aaaaaa \ bbbbb bbbbbb

1 \ 2

Now we see that y can fall:

• Exc1usively in region 1: In this case, the proof is identical to the proof we did
for Example 8.8.

• Exc1usively in region 2: then y = b P for some p. Since y * e, p must be greater
than O. Let q = 2. The resulting string is akbk+P. But this string is not in L, since
it has more b's than a's.

• Straddling the boundary between regions 1 and 2: Then y = aPbr for some
non-zero p and r. Let q = 2. The resulting string will have interleaved a's and
b's, and so is not in L.

There exists at least one long string in L that fails to satisfy the conditions of
the Pumping Theorem. So L = AnBD is not regular.

To make maximum use of the Pumping Theorem's requirement that y fall in the first
k characters, it is often a good idea to choose astring w that is substantially longer than
the k characters required by the theorem. In particular, if w can be chosen so that there
is a uniform first region of length at least k, it may be possible to consider just a single
case for where y can fall.

The Pumping Theorem inspires poets Q, as we'll see in Chapter 10.

~1Bn is a simple language that illustrates the kind of property that characterizes lan
guages that aren't regular. It isn't of much practical importance, but it is typical of a fam
ily of languages, many of which are of more practical significance. In the next example,
we consider BaI, the language of balanced parentheses. The structure of BaI is very sim
ilar to that of AnBn

. BaI is important because most languages for describing arithmetic
expressions, Boolean queries, and markup systems require balanced delirniters.

EXAMPLE 8.10 The Balanced Parenthesis Language is Not Regular

Let L be BaI = {w E {), (}* : the parentheses are balanced}. lf L were regular,
then there would exist some k such that any string w, where \w\ ~ k, must satisfy
the conditions of the theorem. BaI contains complex strings like (0)(00). But it is

I

https://hemanthrajhemu.github.io

174 Chapter 8 Regular and Nonregular Languages

EXAMPLE 8.10 (Continued)

almost always easier to use the Pumping Theorem if we pick as imple astring as
possible. So, let w = (k)k. Since Iwl = 2k and w is in L, w must sa tisfy the eondi
tions of the Pumping Theorem. So there must exist x ,) , and Z, ueh that
w = xyz, Ixyl :s k , y *- e, and Vq 2:: 0 (xy qz E L). But we show that no x, y, and
z exist. Since Ixy l :s k, y must occur within the first k characte rs and 0 y = CI' for
some p). Since y *- 8, p must be greater than O. Let q = 2. (In other words, we
pump in one extra copy of y.) The resulting string is (k +p) k. The las t condition of
the Pumping Theorem states that this string must be in L, bm it is not inee it has
more ('S than)'s. There exists at least one long string in L th at fai ls to satisfy the
conditions of the Pumping Theorem. So L = Bai is not regular.

EXAMPLE 8.11 The Even Palindrome Language is Not Regular

Let L be PalEven = {ww R : w E {a, b} *}. PalEven is the language of even
length palindromes of a 's and b's. We can use the Pumping Theorem 10 show that
PalEven is not regular. If it were, then there would exist ome k such that any
string w, where Iwl 2:: k , must satisfy the conditions of the theorem. We show une
string w that does not. (Note here lhat the variable w used in the definition of L
is different from the variable w mentioned in the Pumping Theorem.) We will
choose w so that we only have to consider one case for where y could fall. Let
w = akbkbkak • Since Iwl = 4k and w is in L, w must sa tisfy the conditions of the
Pumping Theorem. So there must exist x, y, and z, such that 10 = xyz, Ixy l :s k
y *- 8 , and Vq 2:: 0 (xyqz E L). Since Ixy l :s k , y must occur within the first k

characters and so y = aP for some p. Since y *- 8, P mus! be grea ter than O. Let
q = 2. The resulting string is ak+Pbkbkak. [f p is odd , then thi ' string is not in
PalEven because all strings in PalEven have even length . If p i even then it is at
least 2 so the first half of the string has more a 's than the second half doe, 0 it is ,
not in PalEven. So L = PalEven is not regular.

The Pumping Theorem says that , for any language L. if 1 is regular. then all long
strings in L must be pumpable. Our strategy in using it to show that CI language L is not
regular is to find one string th at fails to meet that requirement. Orten, there are many
long strings that are pumpable. [I' we try to work with thcm, we will fail to derive the
contradiction that we seek. In that case, we will know nothing about wh ether or not L
is regular. To find a w th at is not pumpable, think abaut what properly of L is not
checkable by an FSM and choose a w th at exhibits that property. on 'ider again our
last example. The thing that an FSM cannot do is to remember an arbitrar ily long first
half and eheck it against the second half. So we chose a w that would have forced it to
do that. Suppose instead that we had let w = akak. It is in L and long cnough. But y
could be aa and we could pump it out or in and allthe rc ulting trings would be in L.

https://hemanthrajhemu.github.io

8.4 Showing That a Language is Not Regular 175

So far, all of our Pumping Theorem proofs have set q to 2. But that is not always
the thing to do. Sometimes it will be necessary to set it to O. (In other words, we will
pump y out).

EXAMPlE 8.12 The Language with More a's Than b's is Not Regular

Let L = {a"bnJ
: n > m}. We can use the Pumping Theorem to show that L is

not regular. If it were, then there would exist some k such that any string w,
where Iwl ;:::: k, must satisfy the conditions of the theorem. We show one string
w that does not. Let w = ak+ 1bk

• Since Iwl = 2k + 1 and w is in L, w must sat
isfy the conditions of the Pumping Theorem. So there must exist x, y, and z,
such that w = xyz, Ixyl ::s; k, y i=- 8 , and \/q ;:::: 0 (xy qz E L). Since Ixyl ::s; k , y
must oecur within the first k eharacters and so y = aP for some p. Since y i=- 8, P
must be greater than O. There are already more a 's than b's, as required by the
definition of L. If we pump in, there will be even more a 's and the resulting
string will still be in L. But we can set q to 0 (and so pump out). The resulting
string is then a k+l-Pbk . Since p > 0, k + 1 - P ::s; k, so the resulting string no
longer has more a 's than b's and so is not in L. There exists at least one long
string in L that fails to satisfy the conditions of the Pumping Theorem. So L is
not regular.

Notice that the proof that we just did depended on our having chosen a w that is just
barely in L. It had exactly one more a than b. So y could be any string of up to k a's. If
we pumped in extra copies of y, we would have gotten strings that were still in L. But if
we pumped out even a single a , we got astring that was not in L, and so we were able
to compIete the proof.. Suppose, though, that we had chosen w = a2kbk . Again, pump
ing in results in strings in L. And now, if y were simply a , we could pump out and get a
string that was still in L. So that proof attempt fails. In general , it is a good idea to
choose a w that barely meets the requirements for L. That makes it more likely that
pumping will ereate astring that is not in L.

Sometimes values of q other than 0 or 2 mayaiso be required.

EXAMPlE 8.13 The Prime Number of a's Language is Not Regular

Let L be Primea = {an: n is prime}. We can use the Pumping Theorem to show
that L is not regular. If it were, then there would exist some k such that any string
w, where Iwl ;:::: k, must satisfy the conditions of the theorem. We show one string
w that does not. Let w = aj

, where j is the smallest prime number greater than

k + 1. Since \w\ > k, w must satisfy the conditions of the Pumping Theorem. So
theremustexistx,y,andZ,suchthatw = xyz, Ixyl ::s; kandy i=- B.y = aPforsome

p. The Pumping Theorem further requires that \/q ;:::: 0 (xy qz E L). So, \/q ;:::: 0
(alt 1+lz I+q lY I must be in L). That means that lxi + I z I + q' Iy I must be prime.

https://hemanthrajhemu.github.io

176 Chapter 8 Regular and Nonregular Languages

EXAMPLE 8.13 (Continued)

But suppose that q = lxi + Izl. Then:

lxi + Izl + q · Iyl = lxi + Izl + (lx i + Izl) ' y

= (lx i + Iz l) ' (1 + I I),

wh ich is composite (non-prime) if both factor are grea ter thall 1. <lxi + Izl) > 1
because Iwl > k + 1, and Iyl :5: k. (1 +Iyl) > J b cau I) I > O. 0 , f r at least
that one value of q, the re ulting string i not in L. 0 Li n t r gular.

When we do a Pum ping Theorem proof that a langua c L i n t regular w have
two choices to make: a valu e for wand a va lue for q. As we have just eil , there ar
some useful heuristics that can guide ou r choice :

• To choose w:

• Choose a w that is in the part of L that makes it not regular.

• Choose a w that i on ly barel.y in L.
• Choose a w with as homogeneous as pos ibl e an initial r gi n [Iength at lea t k.

• To choose q:

• Try letting q be either 0 or 2.
• lf th at doesn 't work, ana lyze L to see if th ere is some olh r I cific alu that

will work .

8.4.2 Using Closure Properties
Sometimes the easiest way to prove that a language L is 11 1 regul ar i 10 us th cIo
sure theorems for regular languages, either alone 0 1' in conjun ti on with the Pumping
Theorem. The fact that the regular language are c.losed und er interse ti on is particu
larly useful.

EXAMPLE 8.14 Using Interseetion to Force Order Constraints

Let L = {WE {a, b} * : #a(w) = #b (w)}.]f L wer regular, lh n L ' = Ln a*b*
would also be regular. B LI t L' = {al/b": 11 ~ O}, wh ich e ha e al r ad I hown i not
regular. So L isn't either.

EXAMPLE 8.15 Using Closure Under Complement

Let L = {ai b j : i , j ~ 0 and i =1= j }. It e m unlik I th at L i r gular in any
machine to accept it would have to count th a'. It i p ibl t u 1h Pumping

https://hemanthrajhemu.github.io

--
8.4 Showing That a Language is Not Regular 177

Theorem to prove that L is not regular but it is not easy to see how. Suppose, for
example, that we let w = ak + 1bk

. But then y could be aa and it would pump since
ak - 1bk is in L , and so is ak+ I+2(q- l) bk, for all nonnegaüve values of q.

Instead, let w = akbk+
k

!. Then y = aP for some nonzero p. Let q = (k! /p) + 1
(in other words, pump in (k! / p) times). Note that (k !/ p) must be an integer because
p < k. The number of a 's in the resulting string is k + (k! / p)p = k + k!. So the
resulting stringis ak+ k! bk+k! , which has equal numbers of a 's and b's and so is not in L.

The c10sure theorems provide an easier way. We observe that if L were regu
lar, then -,L would also be regular, since the regular languages are closed under
complement. ,L = {a" bn

: n 2": O} U { strings of a 's and b's that do not have a11
a 's in front of all b's}. If -,L is regular, then ,L n a *b* must also be regular. But
,L n a*b* = {a/'l b/: n 2": O} , which we have already shown is not regular. So
neither is -,L or L .

Sometimes, using the c10sure theorems is more than a convenience. There are lan
guages that are not regular but that do meet alt th e conditions of the Pumping Theo
rem. The Pumping Theorem alone is insufficient to prove that those languages are not
regular, but it may be possible to complete a proof by exploiting the closure properties
of the regul ar languages.

EXAMPLE 8.16 Sometimes We Must Use the Closure Theorems

Let L = {ai b j ck
: i , j , k 2": 0 and (if i = 1 then j = k)}. Every string of length at

least 1 that is in L is pumpable. It is easier to see this if we rewrite the final condi
tion as (i *- 1) 01' (j = k). Then we observe:

• If i = 0 then: If j *- 0, let y be b; otherwise, let y be c. Pump in or out. Then i
wilt still be 0 and thus not equal to 1, so the resulting string is in L.

• lf i = 1 then: Let y be a. Pump in or out. Then i will no longer equal 1, so the
resulting string is in L.

• If i = 2 then: Let y be aa. Pump in 01' out. Then i cannot equal 1, so the result
ing string is in L.

• If i > 2 then: Let y be a. Pump out once or in any nurnber of times. Then i can
not eq ual 1, so the resulting string is in L.

But L is not regular. One way to prove this is to use the fact that the regular lan
guages a re closed under interseetion. So, if L were regular, then L' = Ln ab*c*
= { abl ck

: j , k :> 0 and j = k } would also be regular. But it is not, which we can
how using the Pumping Theorem. Let w = abkc k. Then y must occur in the first

k characters of w. If y includes the initial a , pump in once. The resulting string is not
in L' because it contains more than one a . If y does not include the initial a, then it
must be bP

, where 0 < p < k. Pump in once. The resulting string is not in L' be
cause it contains more b's than c's. Since L' is not regular, neither is L.

https://hemanthrajhemu.github.io

178 Chapter 8 Regular and Nonregular Languages

EXAMPlE 8.16 (Continued)

Another way to show that L is not regular is to use the fact that the regular lan
guages are closed under reverse. LI? = {(k b i a i : i , j , k 2: 0 and (if i = 1 then
j = k)}. If L were regular then L R woul.d also be regular. But it is not, which we
can show using the Pumping Theorem. Let w = ck bk a. y must occur in the first
k characters of w, so y = cP, where 0 < p :::; k . Set q to O. The resulting string
contains a single a , so the number of b's and c 's must be eq ual for it to be in L R

.

But there are fewer ('S than b's. So the resulting string is not in L R. L R is not reg
uLar. Since L R is not regular, neither is L.

8.5 Exploiting Problem-Specific Knowledge
Given some new language L , the theory that we have beeIl clescribing provides tbe
skeleton for an analysis of L. If L is simple, th at may be enough. But if L is based on a
real problem, any analysis of it will also depend on knowl edge of the task domain. We
got a hint of this in Example 8.13, where we had to use some knowledge about num
bers and algebra. Other problems also require mathematica l facts.

EXAMPlE 8.17 The Octal Representation of a Number Divisible by 7

Let L = {w E {O, 1, 2, 3, 4 ,5, 6, 7} * : w is the octal representation of a nonnega
tive integer that is divisible by 7} . The first several strings in L are: 0, 7, 16, 25 , 34,
43,52, and 61. Is L regular? Yes, because there is a simple, 7-state DFSM M that
accepts L. The structure of M takes advantage of the fact that w is in L iff the sum
of its digits, viewed as numbers, is divisible by 7. So the slates of M correspond to
the modulo 7 sum of the digits so far. We omit the details.

Sometimes L corresponds to a problem from a domain ot he r than math ematics, in
which case facts from that domain will be importan t.

EXAMPlE 8.18 A Music Language

Let ~ = {u .J I jl ~ ~} Let L = {w: w represents a song written in 4/4 time}. L is , ," > ,.,. .
regular. It can be accepted by an FSM that checks for 4 beats be tween measure
bars, where., counts as 4, J counts as 2, J counts as 1,. counts as 1/2, .~ counts as Ik anel !

.~ counts as 1/8.

Other techniques described in this book can also be appli ed to the language
of music. (N.1)

,

https://hemanthrajhemu.github.io

8.6 Functions on Regular Languages 179

EXAMPLE 8.19 English

Is English a regular language? If we assurne that there is a longest sentence, then
English is regular because it is finite. If we ass urne that there is not a longest sen
tence and that the recursive constructs in English can be arbitrarily nested, then it
is easy to show that English is not regular. We consider a very small subset of Eng
lish, sentences such as:

• The rat ran.
• The rat that the cat saw ran.

• The rat that the cat that the dog chased saw ran.

There is a limit on how deeply nested sentences such as this can be if people
are going to be able to understand them easily. But the grammar of English im
poses no hard upper bound. So we must allow any number of embedded sen
tences. Let A = {cat, rat , dog, bi rd, bug, pony} and let V = {ran, saw, chased ,
flew, sang, frolicked} . If English were regular, then L = English n {The A
(that the A)*V*V} would also be regular. But every English sentence of this
form has the same number of nouns as verbs. So we have that:

L = {The A(that the At V 11 V, n ;::: O}.

We can show that L is not regular by pumping. The outline of the proof is the
same as the one we used in Example 8.9 to show that ~Bn is not regular. Let
w = The cat (that the rat)k sawk ran. y must oceur within the first k charae
ters of w. If y is anything other than (the A that)p, or (A that the)p, or (that
the A)p, for some nonzero p, pump in onee and the resulting string will not be of
the eorrect form. If y is equal to one of those strings, pump in onee and the num
ber of nouns will no longer equal the number of verbs. In either ease the resulting
string is not in L. So English is not regular.

Is there a longest English sentence? Are there other ways of showing that
English isn 't regular? Would it be useful to deseribe English as a regular lan
guage even if we could? (L.3.1)

8.6 Functions on Regular Languages
In Section 8.3, we considered so me important functions that ean be applied to the reg
ular languages and we showed that the dass of regular languages is closed under
them. In this section, we will look at some additional functions and ask whether the
regular languages are closed under them. In some cases, we will see that the answer is
yes. We will prove that the answer is yes by showing a construction that builds one
FSM from another. In other cases, we will see that the answer is no, which we now
have the tools to prove.

https://hemanthrajhemu.github.io

180 Chapter 8 Regular and Nonregu lar Languag es

EXAMPLE 8.20 The Function firstchars

Consider again the fun ction jlrslchars, which we dcfined in xample 4.1 1. Recall
that jlrslchars(L) = {w : 3 YE L (y = e X ,C E LL, X E L L*' and 1l.' E '*)}. Inother
words, to compute ji'rstchars(L) , we find all th e c1lara te l' lh at can be initial char
acters of some string in L. For each such characte r e, e* Cfirslc!wrs(L) .

The regular languages are c1 0sed under jirstc!/{/ rs. 'n, e proof i b con truction.
If L is a regular language, then th ere ex ists so me DF M M = (K, L, 8. s, A) that
accepts L. We construct , from M, a new DFSM M ' = (K' , :S. ' . s'. A ') that ac
cepts j irslchars(L). The algorithm 10 construct M' i :

1. Mark all the states in M fro m which thcr exists some path to ome accept
iog state.

/* Find alJ the ch aracters th at are initi al characters in olll e tring in L.

2. clist = 0 .

3. For each character c in L do:

lf th ere is a transition from s, wilh label c, to . ome tate q, and q \ as
marked in step 1 th en:

clist = clisl U {c}.

r Build M ' .

4. If clist = 0 then construct M ' with a single tale s', \l hich is not accepting.

5. Else do:
Create astart state s' and make it the fi rst state in A '.

For each character c in clist do:
Create a new state qc and add it to A ' .
Add a transition fro m s' to qc labe led c.
Add a transition from qc to qc labe l d c.

M ' accepts exact1y the trings in jlrslehars(L) ,sofirsrcJ/Ors(L) i regul ar.
We can also prove that j7rstehar '(L) must be regul ar by 11m ing how to 0 truct

a regular expression tl1atdescribes iLWe begin bycomputi ng c/isl = {C I'C_" '" II}
as described above. Then a regular expre ion lhat de cribe ' jlrslclwr '(L) i :

CI * U c2* U '" U c,,*.

The algorithm that we just presented constructs onc program (a DF M). u 'ing an
a ther program (another D FSM) as a ·tarting po int. Thc algo ri th m is traightfo1'\ ' rd .
We have omit ted a detailed proof of its co rrectn e . b ut th a I. proof is al 'o lraight f, [
ward . Suppase th at inslead of represe nting an input langua 'c L as a 0 M. we had
represented it as an arbitrary program (wrin en in 0 1' J-\ ' j or whate er) th at ac
cepted it. It would not have been as stra ighlfo rward to ha c des ignL:d Cl corre p nding
algarithm 10 convert th at program into one that accepl ed fi rslclw /'s(L) . \ e ha ju t
seen another adva ntage 01' th e FSM form ali m.

https://hemanthrajhemu.github.io

8.6 Functions on Regular Languages 181

EXAMPLE 8.21 The Function chop

Consider again the function chop, defined in Example 4.10. Chop(L) = {w: :Jx E

L(x = X tCX2, x , E LL*, X 2 E LL*' C E LL, lXII = Ix21, and w = X]X2)}' In other
words, chop(L) is a11 the odd length strings in L with their middle character
chopped out.

The regular languages are not closed under chop. To show this, it suffices to
show one counterexa mple, i.e., one regular language L such that chop(L) is not
regular. Let L = a*db *. L is regular since it can be described with a regular ex
pression .

What is chop(a*db*)? Let w be some string in a*db*. Now we observe:

• lf Iwl is even, then there is no middle character to chop so w contributes no
string to chop (a*db*) .

• lf Iw \ is odd and w has an equal number of a 's and b's, then its middle charac
ter is d. Chopping out the d produces, and contributes to chop(a*db*), astring
in { all bll

: n ;::: O}.

• 1f \wl is odd and w does not have an equal number of a 's and b's, then its mid
die character is not d. Chopping out the middle character produces astring
that still contains one d. Also note that, since Iwl is odd and the number of a 's
differs from the number of b's, it must differ by at least two. So, when w's mid
dIe characte r is chopped out, the resulting string will still have different num
bers of a 's and b's.

So chop(a*db*) contains all strings in {a" bll
: n ;::: O} plus so me strings in

{WE a*db * : Iw \ is even and #a(w) ::j:. #b(W)}. We can now show that chop(a*
db *) is not regular. If it were, then the language L' = chop(a*db*) n a*b*,
would also be regular since th e regular languages are closed under intersection.
But L' = {alibI! : n ;::: O} , which we have already shown is not regular. So neither
is chop(a*db*). Since there exists at least one regular language L with the prop
erty that chop(L) is not regular, the regular languages are not closed und er chop.

EXAMPLE 8.22 The Function maxstring

D efin e I1wxstring(L) = {w: w E Land 'l/z E L *(z ::j:. B ~ wz g L)}. In other
words, maxstring(L) contains exactly those strings in L that cannot be extended
on the right and still be in L. Let 's look at mQxslring applied to some languages:

L maxstring(L)
o 0
a*b* 0
ab *a ab*a

a*b*a a*b+a

https://hemanthrajhemu.github.io

182 Chapter 8 Regular and Nonregu lar Languages

EXAMPLE 8.23 The Function mix

Definemix(L) = {w : 3x,y,z(xE L, x = yz,lyl = I I, t = yz R)} . [n oth rwords,
mix(L) contains exactly those strings that can be for med by takin g ome even
length string in Land reversing its second half. Let's l.ook al mix applied to ome
languages:

L
o
(a U b)*

(ab)*
(ab)"' a(ab)*

mix(L)
o
«(a U b)(a U b))*
{(ab)21l 1: 1'/ ?: O} U {(ab)"(ba)": 11 ?: O}

o

The regul ar languages are c10sed under maxs/ring. They are nOl closed under mix.
We leave the proof of these claims as an exerci e.

Exercises
1. For each of the followin g language ' L , state wh elher L i, regular or not and

prove your answer:
a. { aibj : i , j ;;::: 0 and i + j = 5}.

b. { aibj : i , j ;;::: 0 and i - j = 5}.

c. { aib j: i , j ;;::: Oand li - j l =s O} .
d. {wE{O, l ,#}": :'/,/} = x#y, wherex,YE{ O, l }* and Ixl ' lyl =s O}.
e. {ai bj : 0 ~ i < j < 2000}.

f. {WE {Y, N}", : w containsat lea tt woY' and atmo tlw N'}.

g. {w = xy : x , YE {a, bY and lxi = Iyl and #a (x) ;;::: ltaCv)}.
h. {w = xyzlx:X,y,ZE {a, bY} .

i. {w = xyzy : x , y, z E {O, l V}·
J. {w E {O, l }*: #o(w) =I #l(W)} ,

k. {w E {a, b} * : W = wR
} .

I. { W E {a , b} * : 3x E {a , b } + (w = X xRx) }.

m. {w E {a, b}* : th e number of occurrence of th e ub trin o ab cqua l th num
ber of occurrences of the subslrin g ba }.

n. {w E {a b};]: : w contain exacLl y t wo more b 's th an a ' }.

o. {W E {a, b}"' : w = xyz, lxi = Iyl = Izl, and z = x wi th CI' ar plac d b
b and every b replaced by a }. xample: abbbabbaa E L, with x =
abb, y = bab, and z = baa.

p. {w : WE {a - z }* al1d th e lelters of w ppea r 111 re er alph abcti ca l ord T} .

For exampl e, spoonfeed E L.

https://hemanthrajhemu.github.io

Exercises 183

q. {w: W E {a - z} * every letter in W appears at least twice}. For example,
unprosperousness E L.

f. {w: W is the decimal encoding oE a natural number in which the digits appear
in a non-decreasing order without leading zeros}.

s. {w of the form: <integer, > + <integer2> = <integer3>' where each of the
substrings <integer, >, <integer2>' and < integer3> is an element of {O -
9} :;: and integer3 is the sum of integer] and integer2}' For example,
124+5=129 E L.

t. L o*, where Lo = {bai t>i ak , j ~ 0, 0::; i::; k}.

u. {W: W is the encoding of a date that occurs in a year that is a prime number} .
A date will be encoded as astring of the form rnm/dd/yyyy , where each m, d ,
and y is drawn (rom {O - 9}.

v. {w E {l} *:w is, for some n ~ 1, the unary encoding of lOIl}. (So L =

{1111111111, 1' 00, 1 lO00, .. . }.)

2. Far each of the following languages L, state wh ether L is regular or not and prove
your answer:

a. {wE{a , b, c} * :ineachprefixxoEw,#a(x) = #b(X) = #c(x))}.

b. {w E {a, b, c}* : :3 some prefix x of W (#a(x) = #b(X) = #c(x))}.

c. {w E {a, b, c} * : :3 so me prefix x of W (x * e and #a(x) = #b(X) = #c(x))}.
3. Define the Eollowing two languages:

La = {wE{a, b} * :ineachprefixxoE w,#a(x) ~ #b(X)} ,

Lb = {wE{ a, b} *: ineachprefix xof w,#b(x) ~ #a(x)}.

a. Let L, = La n L b. 1s L] regular? Prove your answer.

b. Let L2 = La U L b• Is L 2 regular? Prove your answer.

4. For each of the following languages L , state whether L is regular or not and prove
your an wer:

a. {uwwRv:U,v,wE{a, b}+}.
b. {xY Zy Rx:x,y,zE {a , bt }.

5. Use the Pumping Theorem to complete the proof, given in L.3.1, that English
isn't regular.

6. Prove by conSlruCl ion that the regular languages are closed under:
a. intersection.

b. set difference.

7. Prove that the regular languages are closed under each of the following operations:
a. pref (L) = {w: :3XE 2: *(wx E L)}.
b. suff'(L) = {w: :3 x E2:* (xw E L)} .
c. reverse(L) = {X E 2:*: X = wRfor somewEL}.

d. letter substitution (as deEined in Section 8.3).

8. U ing the defintions of maxstring and mix given in Section 8.6, give apreeise def
inition 01' each of the following languages:

https://hemanthrajhemu.github.io

184 Chapter 8 Regular and Nonregular Languages

a. maxslring(N1 BI/) .

b. maxslring(ai bj ck
, 1 :s k :s j :s i).

c. maxslring(L j L2) , where LI = {WE {a , b}*: W contains exactly Olle a} and
L 2 = {al·

d. mix(aba)*).

e. mix(a*b*).
9. Prove that the regular languages are not closed under mix.

10. Recallthatmaxstring(L) = {w:wELand VzE~>(Z *' g~wz~L)}.
a. Prove that the regular languages are c\osed under maxsrring.
b. If maxstring(L) is regular, must L also be regular? Prove your answer.

11. Define the function midchar CL) = {c: 3w E L(W = ycz , CE LL, y E LL *, z e
L L*' Iyl = Izl) }. Answer each of the following questions and prove your answer:

a. Are the regular languages closed under midchar?
b. Are the nonregular languages closed under midchar?

12. Define the function lwice(L) = {w: 3x E L (x can be written as C\C2" . C", for
somen ~ 1, whereeach ciELL, and w = C)C)C2C2 .. · CI/C,,)} ,

a. Let L = (1 U 0)*1. Write a regular expression for rwice(L).
b. Are the regular languages closed under LWice? Prove you r answer.

13. Define the function shuffle(L) = {w : 3x E L (w is some pe rmut ation of x)}. For
example, if L = {ab, abc} , then shuffle(L) = {ab , abc , ba , acb , bac bca, cab,
cba}. Are the regular languages closed under shuffle? Prove your answer.

14. Define the function copyandreverse(L) = {w : 3x E L(w = xx Ho)}. Are the reg
ular languages closed under copyandreverse? Prove your answer.

15. Let LI and L 2 be regular languages. Let L be the language consisting of strings
that are contained in exactly one of L) and L 2. Prove that L is regular.

16. Define two integers i and j to be twin primes Q iff both i and j are prime and
\j - il = 2.

a. Let L = { w E {1}* : w is the unary notation for a natura l number 11 such
that there exists a pair p and q of twin primes, bOlh > n. } I L regul.ar?

b. Let L = {x, y : xis the decimal encoding of a positive integer i , y is the deci
mal encoding of a positive integer j , and i and j are twin primes}.]s L regular?

17. Consider any function feLl) = L2, where L I and L2 are both languages over the
alphabet L = {O, 1}. A function fis niee iff whenever L 2 is regular, L) is regular.
For each of the following functions, J, state whether or not it is nice and prove
your answer.

a. f(L) = L R.

b. f(L) = {w: w is formed by taking astring in Land replacing all1's with O's
and leaving the O's unchanged}.

c. f (L) = L U 0*.

d. f(L) = {w: w is formed by taking astring in Land replacing a1l1's with O's
and all O's with l 's (simultaneously)}.

https://hemanthrajhemu.github.io

Exercises 185

e. teL) = {w: :lxEL (w = xOO)}.
f. teL) = {w: w is formed by taking astring in Land removing the last

character} .
18. We 'll say that a language Lover an alphabet L is splitable iff the following prop

erty holds: Let w be any string in L that can be written as cIC2' . . C2m for some
n ;::: 1, where each Ci E L. Then x = c]e3'" C2n-l is also in L.
a. Give an example of a splitable regular language.
b. Is every regular language splitable?
c. Does there exist a nonregular language that is splitable?

19. Define the dass IR to be the dass of languages that are both infinite and regular.
Tell whether the dass IR dosed under:
a. union.
b. intersection.
c. Kleene star.

20. Consider the language L = {xOlly 111z : n ;::: 0, x E P, Y E Q, zER, where P, Q,
and Rare nonempty sets over the alphabet {O, l}}. Can you find regular sets P,
Q, and R such that L is not regular? Can you find regular sets P, Q, and R such
that L is regular?

21. For each of the following claims, state whether it is True or False. Prove your
answer.
a. There are uncountably many non-regular languages over L = {a, b}.
b. The union of an infinite number of regular languages must be regular.
c. The union of an infinite number of regular languages is never regular.
d. lf L Land L 2 are not regular languages, then LI U L 2 is not regular.
e. lf L] and L 2 are regular languages, then L 1 @ L 2 = {w: W E (L t - L 2) or

w E (L2 - LI)} is regular.

f. If LI and L 2 are regular languages and L t ~ L ~ L 2, then L must be regular.
g. The interseetion of a regular language and a nonregular language must be

regular.

h. The intersection of a regular language and a nonregular language must not be
regular.

i. The intersection of two nonregular languages must not be regular.

J. The intersection of a finite number of nonregular languages must not be
regular.

k. The intersection of an infinite number of regular languages must be regular.

I. It is possible that the concatenation of two nonregular languages is regular.
m. It is possible that the union of a regular language and a nonregular language

is regular.

ß. Every nonregular language can be described as the interseetion of an infinite
number of regular languages.

o. lf L is a language that is not regular, then L * is not regular.

https://hemanthrajhemu.github.io

186 Chapter 8 Regular and Nonregular Languag es

p. H L* is regular, th en L is regular.

q. The nonregular language are elo ed under inter eetion.

r. Every subset of a regular language is regul ar.
s. Let L4 = L I L2L 3. lf LI and L 2 are regular and L3 is not regular. it i possible

that L4 is regular.

t. If L is regular, then so is {xy : XE L and y fi L }.
u. Every infinite regular language properl y eo ntain . ano th r in fini te r gular

language.

https://hemanthrajhemu.github.io

