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CHAPTER 6 

Regular Expressions 

L 
et's now take a different approach to categorizing problems. Instead of focus
ing on the power of a computing device, let's look at the task that we need to 
perform. In particular, let's consider problems in which OUT goal is to match fi

nite or repeating patterns. For example, consider: 

• The first step of eompiling a program: This step is ealled lexical analysis. Its job is to 
break the SOUTce eode into meaningful units such as keywords, variables, and num
bers. For example, the string vo; d may be a keyword, while the string 23E-12 
should be recognized as a floating point number. 

• Filtering email for spam. 

• Sorting email into appropriate mailboxes based on sender and/or content words 
and phrases. 

• Searching a complex directory structure by speeifying patterns that are known to 
oeeur in the file we want. 

In this ehapter, we will define a simple pattern language. It has limitations. But its 
strength, as we will soon see, is that we ean implement pattern matehing for this lan
guage using finite state machines. 

In his classie book, A Pattern Language Q, Christopher Alexander deseribed 
common patterns that ean be found in sueeessful buildings, towns and eities. 
Software engineers read Alexander's work and realized that the same is true 
of suecessful programs and systems. Patterns are ubiquitous in our world. 

127 
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128 Chapter6 Regular Expressions 

6.1 What is a Regular Expression? 
The regular expression language that we are about 10 describe is built on an alphabet 
that contains two kinds of symbols: 

• A set of special symbols to which we will attach particular mea ninos when they 
occur in a regul ar expression. These symbols are 0, U, e;, (,), *, and +. 

• An alphabet 2:, which contains the symbols that reg ul ar expr s ions will match 
against. 

A regular expression Q is astring th at can be form ed accordin g to the following 
rules: 

1. ° is a regular expression. 

2. e; is a regular expression . 

3. Every element in 2: is a regular exp ression. 

4. Given two regular expressions a and ß , aß is a regular ex press ion. 

5. Given two regular expressions a and ß , a U ß is a regul ar expression. 

6. Given a regular expression a, 0'* i5 a regular expre sion. 

7. Given a regular exp ression 0' , 0'+ is a regular expre ion. 

8. Given a regular expression 0' , (0') is a regular express ion. 

So, if we le t 2: = {a, b}, the fo llowing trings are regular express ions: 

0, e;, a , b, (a U b)*, abba Ue;. 

The language oE regular expressions, as we have just de fin ed it , is u d ul because 
every regular expression has a meaning (just like eve ry E ngli h sente nce and every 
Java program) . In the case of regular ex pressions, the mea ning of astring is another 
language. In other words, every string 0' (such as abba U e;) in th e regul ar expre ion 
language has, as its meaning, some new la nguage that contains xactly the trings that 
match the pattern specified in a. 

To make it possible to determine that meaning, we need to de cribe a semantic in
terpre tation function for regular expressions. Fortunately, the regular expre · ions lan
guage is simple. So designing a compositional semanti c inte rpreta ti on fun ction (as 
defined in Section 2.2.6) Eor it is straightforward. As yo u read the definition that we are 
about to present, it will become c\ear why we chose the particular symbol a lphabet we 
did. In particular, you will notice the similar ity betwee n the operations th at are a llowed 
in regular expressions and the operations that we de fin ed on language in Sect ion 2.2. 

D efin e the following semantic interpretation function L for the language of regular 
expressions: 

1. L (0) = 0, the language that contains no strin gs. 

2. L (e;) = {e;} , the language that conta ins just the empt y trin g. 

3. For any CE 2: , L (e) = {e} , th e language thai conta in the ingle,one-character 

string e. 
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4. For any regula r expressions a and ß , L (a ß) = L(a) L (ß). In o ther words, to 
fo rm the meaning of the concatenation of two regular expressions, first deter
mine the meaning of each of the constituents. Both meanings will be languages. 
Then concatenate the two languages together. Recall that the concatenation of 
two languages L] and L 2 is {'W = xy, where XE L , and y E L 2 }. Note that, if ei
the r L (a) or L (ß ) is equal to 0, then the concatenation will a lso be equal to 0. 

5. For any regular expressions a and ß , L (a U ß) = L (a) U L (ß ). A gain we form 
the meaning of the larger express ion by first determining the meaning of each of 
the consti tuents. Each of them is a language. The meaning of a U ß then, as sug
gested by our choice of the character U as an operator, is the union of the two 
consti tuent languages. 

6. For any regular expression a , L (a*) = (L (a))"', where * is the Kleene star oper
ator defined in Section 2.2.5. So L (0'*) is the language tl1at is fo rmed by concate
nating together zero or more strings drawn from L (a) . 

7. For any regular expression 0' , L (0'+) = L (0'0'*) = L (a)( L (a))* . lf L (0') is 
equal to 0, then L (0'+) is also equal to 0 . O therwise L (0'+) is the Ianguage that 
is formed by concatenat ing together one or more strings drawn from L (a) . 

8. For any regular express ion 0' , L «a)) = L (a) . In other words, p arentheses have 
no effect on meaning except to gro up the constituents in an expression. 

Jf the meaning of a regular expression 0' is the language L , then we say that 0' defines 
or describes L. 

The definition that we have just give n fo r the regular expression language contains 
three kinds oE rules: 

• Rules 1., 3, 4, 5, and 6 give the language its power to define sets, starting with the 
basic sets defined by rul es 1 and 3, and then building larger sets using the operators 
defined by rul es 4, 5, and 6. 

• Rule 8 has as its onl y ro le grouping othe r operators. 

• Rules 2 and 7 appear to add functionality to the regular expression Ianguage. But in 
fact they don't -they serve only to provide convenient sho rth ands for languages 
that can be defined using only rules 1. , 3-6, and 8. Let 's see why. 

First consider rule 2:The language of regular expressions does not need the symbol e be
cause it has an alternative mechanism for describing L (e). Observe that L (0*) = {'W : 'W 
is formed by concatenating together zero or more strings from 0 }. But how many ways are 
there to concatenate together zero or more strings from 0 ? lf we select zero strings to con
catenate, we get 8. We cannot select more than zero since there aren't any to choose trom. 
So L (0*) = {8} . Thus, whenever we would like to write 8, we could instead write 0*. It 
is much c\earer to write e, and we shall. But, whenever we wish to make a formal statement 
about regular expressions or the languages they define, we need not consider rule 2 since 
we can rewrite any regular expression that contains e as an equivalent one that contains 0* 
instead. 

Next consider rul e 7: As we showed in the statement of rule 7 itself, the regular ex
pression 0'+ is eq ui valent to the slightly longer regular expression aa*. The form a+ is a 
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130 Chapter 6 Regular Expressions 

convenient shortcut, and we will use it. But we need not consider ru le 7 in an y analysis 
that we may choose to do of regular express ions o r the languages that they generate. 

The compositiona l semanti c inte rpretation fun ction th at we just defin ed lets us 
map between regular expressions and the languages th a t th ey defin e. We begin by 
analyzing the small est subexpressions and the n work o ulward to larger and Iarger 
express IOns. 

EXAMPLE 6.1 Analyzing a Simple Regular Expression 

L«(aUb)*b) = L«aUb)*)L(b) 

= (L«a U b»)* L(b) 

= (L(a)UL(b» *L(b) 

= ({a} U {b})*{b} 

= {a, b} '" { b } . 

So the meaning of the regular expression (a U b) * b is the set of an strings over 
the alphabet {a, b} that end in b. 

One straightforward way to read a regular expression and determine its mea ning is 
to imagine it as a procedure that generates strings. Read it !eh to ri ght and imagine it 
generating astring left to right. As you are doing that , think of any expression that is 
enclosed in a Kleene star as a loop th at can be executed zero or more lim es. Each time 
through the loop, choose any one of the alternatives listed in the expression. So we can 
read the regular expression of the last example, (a U b)* b, as, "Go through a loop zero 
Of more times, picking a single a or b each time. Then concatenate b.' A ny tring that 
can be generated by this procedure is in L( (a U b)* b). 

Regular expressions can be used to scan text and pick o ut em a il addresses. 
(0.2) 

EXAMPLE 6.2 Another Simple Regular Expression 

L( ( (a U b) (a U b) ) a (a U b) *) = L«(a U b)(a U b)))L(a) L«a U b)*) 

= L«a U b)(a U b)) {a} (L«a U b»)* 

= L«a U b»L«a U b» {a l {a b}* 

= {a , b} {a , b} {a } {a , b} * 
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So the meaning of the regular expression C Ca U b) Ca U b) )aCa U b)* is: 

{xay: x and y are strings of a's and b's and lxi = 2}. 

Alternatively, it is the language that contains an strings of a's and b's such that 
there exists a third character and it is an a. 

EXAMPLE 6.3 Given a Language, Find a Regular Expression 

Let L = {w E {a, b} * : I w I is even}. There are two simple regular expressions 
both of which define L: 

«aUb)(aUb))* This one can be read as, "Go through a loop 
zero 01' more times. 

Each time through, choose an a or b, then 
choose a second character (a or b)." 

(aa U ab U ba U bb)* This one can be read as, "Go through a loop 
zero or more times. 

Each time through, choose one of the two
character sequences." 

From this example, it is deal' that the semantic interpretation function we have de
fined for regular expressions is not one-to-one. In fact, given any language L , if there is 
one regular expression that defines it, there is an infinite number that do. This is trivially 
true since, for any regular expression Cl: , the regular expression Cl: U Cl: defines the same 
language Cl: does. 

Recall from our discussion in Section 2.2.6 that this is not unusual. Semantic inter
pretation functions for English and for Java are not one-to-one. The practical conse
quence of this phenomenon for regular expressions is that , if we are trying to design a 
regular expression that describes so me particular language, there will be more than 
one right answer. We will generally seek the simplest one that works, both for clarity 
and to make pattern matching fast. 

EXAMPlE 6.4 More than One Regular Expression for a Language 

Let L = {w E {a, b} * : w contains an odd number of a's}. Two equally simple 
regular expressions that define L are: 

b* (ab*ab*)* a b*. 

b* a b* (ab*ab*)*. 
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EXAMPlE 6.4 (Continued) 

Both of these expressions require that there be a single a omewhere.1l1ere can 
also be other a's, but they must occur in pairs, so the result i an odd number of a 's. 
In the first expression, the last a in the string is viewed as the required odd a" . In 
the second, the first a plays th at role. 

The regular exp ression language that we have just de fin ed provide thr e ope rators. 
We will assign the following precedence order to them (from highe t to lov'les t): 

1. Kleene star, 

2. concatenation, and 

3. union . 

So the expression (a U bb*a) will be inte rpr ted as (a U (b(b*a))). 
All useful languages have idioms: common phrases that correspond to common 

meanings. Regul ar express ions are no exception. ]n writing them, we will often use the 
following: 

(aUe) 

(a U b)* 

Can be read as "opli onal 0''', ince the expres ion can be atisfied ci lhe r by matching 

0' 01' by matching the empty tring. 

Describes the set o( a ll strings composed of the character a and b. More gcne ral
Iy, given any a lph abet L = {Ci> C2> ' " cll }, th e languagc 2: '~ is de cri bed by the 

regular expression: 
(CI U C2 U ... U cll )*· 

When writing regular expressio ns, the detail s matte r. For exa mplc: 

a* U b* * (a U b)* 

(ab)* *- a *b* 

Th e language on the righl cOnlains the tring a b, while th language on 
th e le ft does not. Every slring in the languagc o n thc Icft c IH ai ns only 
a's 01' only b's. 
Th e language o n the le ft con tains th c tring abab, whilc th c language 
on th e right does no t. Th e language n th c right conta in s the tring 
aaabbbb , while the language o n the le ft doe not. 

The regular expression a* is simply astring. 1t i diffe rent from the language L(a*) 
= {w : w is composed of zero or mo re a 's}. Howeve r, when no c nfu io n will re ult. 
we will use regular expressions to stand for the language that th describe and w 
will no longer write the semantic inte rpretati on function explicitl y. 0 \ will be able 
to say things like, "The language a* is infinite." 
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6.2 Kleene's Theorem 133 

6.2 Kleene's Theorem 
The regular expression language that we have just described is significant for two 
reasons: 

• It is a useful way to define patterns. 

• The languages that can be defined with regular expressions are, as the name per
haps suggests, exactly the regular languages. In other words, any language that can 
be defined by a regular expression can be accepted by some finite state machine. 
And any language that can be accepted by a finite state machine can be defined by 
some regular expressions. 

In this section , we will state and prove as a theorem the claim that we just made: 
The dass of languages that can be defined with regular expressions is exactly the reg
ular languages. This is the first of several claims of this sort that we will make in this 
book. In each case, we will assert that some set A is identical to some very different 
looking set B. The proof strategy that we will use in an of these cases is the same. We 
will first prove that every element of A is also an element of B. We will then prove 
that every element of Bis also an element of A . Thus, since A and B contain the same 
elements, they are the same set. I 

6.2.1 Building an FSM from a Regular Expression 

THEOREM 6.1 For Every Regular Expression There is an Equivalent FSM 

Theorem: Any language that can be defined with a regular expression can be 
accepted by some FSM and so is regular. 

Proof: Tlle prooE is by construction. We will show that , given a regular expression a , 
we can construct an FSM M such that L (a) = L (M). 

We first show that tllere exists an FSM that eorresponds to each primitive reg
ular expression: 

• lf ais any CE 2:., we construct for it the simple FSM shown in Figure 6.1 (a). 

• 1f a is 0, we construct for it the simple FSM shown in Figure 6.1 (b). 

• Although it ' not strict ly necessa ry to consider E since it has the same mean
ing as 0* we'll do so since we don 't usually think of it that way. So, if ais c, we 
construet for it the simple FSM shown in Figure 6.1 (e) , 

Next we must show how to build FSMs to accept languages that are defined by 
regular express ions that exploit th e operations of eoncatenation, union , and Kleene 
star. Let ß and y be regular expressions that define languages over the alphabet 2:. 
lf L (ß) is regular, then it is aceepted by some FSM MI = (KJ, 2:. , 8J, S1 , AL)' If 
L (y) is regular, then it is aeeepted by some FSM M2 = (K2, L , Eh, S2, A2). 
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134 Chapter 6 Regular Expressions 

(a) 

b 
(b) 

b 
(c) FIGURE 6.1 FSMs für primitive regular expressiüns. 

• If ais the regular expression ß U l' and if both L (ß) and L (1') are regular, then we 
construct M3 = (K3, L , 83, 53, A3) such that L (M3) = L (a) = L (ß) U L (1'). If 
necessary,rename the states ofMI and M2 so that K I n K2 = 0 . Create a newstart 
state,53' and connect it to the start states of MI and M2 via e-transitions. M3 accepts 
iff either MI or M2 accepts. So M3 = ({S3} U KI U K2, L , 03, s3, AI U A2), where 
83 = 0] U 82 U {«S3, e) , SI) , «S3' e), S2)}' 

• If ais the regular expression ßy and if both L (ß) and L (1') are regular, then we 
construct M3 = (K3, L, 03, S3 , A3) such that L (M3) = L (0') = L (ß)L (1'). If 
necessary, rename the states of MI and M2 so that K] n K2 = 0. We will build 
M3 by connecting every accepting state of MI to the start state of M2 via an 
s-transition. M3 will start in the start state of MI and will accept iff M2 does. So 
M3 = (K] U K2, L, 83, 5" A2) , where 83 = 81 U 0 2 U {«q , e) , 52) : q E Ad. 

• If a is the regular expression ß* and if L (ß) is regular, then we construct 
M2 = (K2, L, 82, 52, A2) such that L (M2) = L (0') = L (ß)*. We will create a 
new start state 52 and make it accepting, thus assuring that M2 accepts e. (We 
need a new start state because it is possible that Sb the start state of Mit is not 
an accepting state.1f it isn't and if it is reachable via any input tring other than 
s, then simply making it an accepting state would cause M2 to accept strings 
that are not in (L (Ml »*.) We link the new 52 to SI via an e-transitions. Final
Iy, we create e-transitions from each of MI 's accepting sta tes back to SI' So 
M2 = ({52}UKb L,82,5z,{52}UAI) , where 02 = 0IU {«s2, e) , sl)} U{«q, 
e), SI): q EA]}. 

Notice that the machines that these constructions build are typically highly 
nondeterministic because of their use of s-transitions. They also typically have a 
large number of unnecessary states. But, as a practical matter, that is not a prob
lem since, given an arbitrary NDFSM M, we have an algorithm that can construct 
an equivalent DFSM M'. We also have an algorithm that can minimize M'. 

Based on the constructions that have just been described, we can define the 
following algorithm to construct, given a regular expression 0' a corresponding 
(usually nondeterministic) FSM: 
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6.2 Kleene's Theorem 135 

regextofsm(O': regular expression) = 

Beginning with the primitive subexpressions of 0' and working outwards 
until an FSM for aB of 0' has been built do: 

Construct an FSM as described above. 

The fact that regular expressions can be transformed into executable finite 
state machines is important. It means that people can specify programs as 
regular expressions and then have those expressions "compiled" into effi
cient processes. For example, hierarchically structured regular expressions, 
with the same formal power as the regular expressions we have been work
ing with, can be used to describe a lightweight parser for analyzing legacy 
software. (HA.l) 

EXAMPLE 6.5 Building an FSM from a Regular Expression 

Consider the regular expression (b U ab)*. We use regextofsm to build an FSM 
that accepts the language defined by this regular expression: 

AnFSM for b AnFSMfora AnFSMforb 

An FSM for ab: 

An FSM for (b U ab): 
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EXAMPLE 6.5 (Continued) 

An FSM for (b U ab)* 

6.2.2 Building a Regular Expression from an FSM 

Next we must show th at it is possible to go the other directi on, namely to build , from an 
FSM , a corresponding regular expression. The idea behind the algo rithm that we are 
about to present is the fo llowing: lnstead of limiting the labels on the transitions of an 
FSM to a single character or 8, we will a ll ow entire regul ar express ions a labels. The 
goal of the algorithm is to construct , from an input FSM M, an output machine M' such 
that M and M' are equivalent and M' has onl y two sta tes, astart tate and a single ac
cepting state. It will also have just one transition, which will go from its start state to its 
accepting state. The label on that transition will be a regul ar expression th at describes 
all the strings that could have driven the o rigin al machine M from it tart tate to 
some accepting state. 

EXAMPLE 6.6 Building an Equivalent Machine M 

LetMbe: 

We can build an equivalent machine M' by ripping out q2 and replacing it by a 
transition from ql to q3 labeled with the regul ar expression ab *a. 0 M' is: 

ab*a 
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Given an arbitrary FSM M , M' will be built by starting with M and then removing, 
one at a time, alt the states that lie in between the start state and an accepting state. As 
each such state is removed, the remaining transitions will be modified so that the set of 
strings that can drive M' from its start state to some accepting state remains unchanged. 

The following algorithm creates a regular expression that defines L(M), provided 
that step 6 can be executed correctly: 

fsmtoregexheuristic(M: FSM) = 

1. Remove from M any states that are unreachable from the start state. 

2. If M has no accepting states then halt and return the simple regular expression 0 . 
3. lf the start state of M is part of a loop (i.e., it has any transitions coming into it) , 

create a new start state sand connect s to M's start state via an e-transition. This 
new start state s will have no transitions into it. 

4. lf there is more than one accepting state of M or if there is just one but there are 
any transitions out of it, create a new accepting state and connect each of M's ac
cepting states to it via an s-transition. Remove the old accepting states from the 
set of accepting states. Note that the new accepting state will have no transitions 
out from it. 

5. If, at this point, M has only one state, then that state is both the start state and the 
accepting state and M has no transitions. So L (M ) = {e}. Halt and return the 
simple regular expression e. 

6. Until only the start state and the accepting state remain do: 

6.1. Select some state rip of M. Any state except the start state or the accepting 
state may be chosen. 

6.2. Remove rip from M. 

6.3. Modify the transitions among the remaining states so that M accepts the 
same strings. The labels on the rewritten transitions may be any regular 
expression. 

7. Return the regular expression that labels the one remaining transition from the 
start state to the accepting state. 

EXAMPLE 6.1 Building a Regular Expression from an FSM 

Let M be: 
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EXAMPLE 6.7 (Continued) 

Create a new start state and a new accepting state and link th em 10 M: 

Remove state 3: 

Remove state 2: 

ab U aaa*b 

Remove state 1: 

(ab U aaa*b)*(a U e) 
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6.2 Kleene's Theorem 139 

EXAMPLE 6.8 A Simple FSM With No Simple Regular Expression 

Let M be the FSM that we built in Example 5.9 for the language L = {w E {a , 
b}* : w contains an even number of a 's and an odd number of b's }. M is: 

[I] even a's 
even b's 

b 

b 

a 

a 

a 

a 

[2] odd a's 
even b's 

b 
b 

[4] odd a's 
odd b's 

Try to apply fS'mtoregexheuristic to M. It will not be easy because it is not at a11 
obvious how to implement step 6.3. For example, if we attempt to remove state 
[2], this changes not just the way that M can move from state [1] to state [4].1t also 
changes, for example, the way that M can move from state [1] to state [3] because 
it changes how M can move from state [1] back to itself. 

To prove that for eve ry FSM there exists a corresponding regular expression will re
quire a construction in which we make clea re r what must be done each time astate is 
removed and replaced by a regular expression . The algorithm that we are about to de
scribe has that property, a lthough it comes at the expense of simplicity in easy cases 
such as the one in Example 6.7. 

THEOREM 6.2 For Every FSM There is an Equivalent Regular Expression 

Theorem: Every regular language (i.e., every language that can be accepted by some 
FSM) can be defined with a regul a r expression. 

Proof: The lJroof is by construct ion. Given an FSM M = (K L 8 s A) we can con-, , , ') , 
struct a regular expression 0' such lhat L (M) = L (0'). 

As we did in f \'mloregexhellrislic, we will begin by assur ing that M has no un
reachable states and that it has astart state that has no transitions into it and a 
single accepting state that ha . no transitio ns out from it. But now we will make a 
furth e r important modification to M before we start removing states: From every 
state olher than th e accepti ng state there must be exactly one transition to every 
state (including itse lf) except the start stat e. And into every state olher than the 
start state there must be exaclly one transition from every stat e (including itself) 
except the accepting state. To make this true , w do two things: 

• [f the re is more than one trans ition bet ween states p and q, collap e them into 
a single transition. If the e t of labe ls on the ori ginal set of such transitions is 
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CI----) :-----..I:CJ 
(a) 

nau~ 
~~ 

(b) 
FIGURE 6.2 Coll aps ing multiple transition 
into one. 

{CI , C2 , ' .. , CIl }, then delete those transitions a nd rep lace them by a si ngle 
transition with the label CI U C2 U .. . U CIl . For exa mpl e, conside r th e FSM 
fragment shown in Figure 6.2(a). We must co ll apse th e two transitions be
tween st a tes 1 and 2. After doing so, we have the fra gme nt shown in 
Figure 6.2(b). 

• If any of the required transitions are missing add them. We can add a1l of 
those transitions without changing L(M) by labeling a11 of lh new transitions 
with the regul ar expression 0. So the re is no string th at will a110w them to be 
taken. Für example, le t M be the FSM shown in Figure 6.3(a). Several new 
transitions are required . Whe n we add them, we have the new FSM shown in 
Figure 6.3(b). 

(a) 

(b) 
FIGURE 6.3 Adding all the requir d 
transiti ons. 
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Now suppose that we select astate rip and remove it and the transitions into and 
out of it. Then we must modify every remaining transition so that M's function stays 
the same. Since Malready contains a transition between each pair of states (except 
the on es that are not allowed into and out of the start and accepting states), if all 
those transitions are modified correctly then M's behavior will be correct. 

So, suppose that we remove some state that we will call rip. How should the re
maining transitions be changed? Consider any pair of states p and q. Once we re
move rip, how can M get from p to q? 

• It can still take the transition that went directly from p to q, or 

• It can take the transition from p to rip . Then, it can take the transition from rip 
back to itself zero or more times. Then it can take the transition from rip to q. 

Let R(p, q) be the regular expression that labels the transition in M from p to 
q. Then, in the new machine M' that will be created by removing rip , the new reg
ular expression that should label the transition from p to q is: 

R(p, q) 

R(p, rip) 
R(rip, rip )* 
R(rip, q) 

u 
/* Go directly fromp to q, 
/* or 
/* go from p to rip , then 

/*go from rip back to itself any number of tim es, then 

/* go from rip to q. 

We'll denote this new regular expression R '(p, q) . Writing it out without the 
comments, we have: 

R' = R(p, q) U R(p, rip)R(rip , rip)*R(rip , q). 

EXAMPLE 6.9 Ripping States Out One at a Time 

Again, let M be: 

Let rip be state 2. Then: 

R'(l , 3) = R(l , 3) U R(l , rip)R(rip, rip)*R(rip, 3). 

= R(l, 3) U R(l , 2)R(2, 2)* R(2, 3). 
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EXAMPLE 6.9 (Continued) 

= 0 U a 

= ab*a . 

b* a. 

Notice that ripping state 2 also changes another way the o riginal machine had 
to get from state 1 to state 3: It could have gone from state 1 to state 4 to state 2 
and then to state 3. But we don 't have to worry about that in computing R' (1, 3). 
The required change to that path will oeeur when we eompute R' (4 , 3). 

When all states exeept the start sta te sand the aceepting state a have been re
moved, R(5~ a) will deseribe the set of strin gs that ean drive M from its start state 
to its aceepting state. So R(s, a) will describe L(M) . 

We can now define an algorilhm to build , from any FSM M = (K , L , 8, s, A), 
a regul ar expression that describes L(M) . We'lI use two subroutines, srandardize, 
whieh will eonvert M to the required form, and buildregex, whieh will eonstruct, 
from the modified maehine M, the required regular expression. 

standardi ze(M: FSM) = 

1. Remove from M any states that are unreachable from the tart state. 

2. If the start state of M is part of a loop (i .e. , it has any transition coming into it) , 
create a new start state sand conneet s to M's starl Slale via an c- transition. 

3. If there is more than one aceepting stale of M or if there is just one but 
there are any transitions out of it , creale a new aceepting state and eonnect 
each of M's aecepting states to it via an c-lransition. R emove th e old accept
ing states from the se t of accepting sta tes. 

4. If there is more than one transition be tween state p and q, collapse them 
into a single transition. 

5. lf there is a pair oE sta tes p, q and there is no transition between them and 
pis not the accepting state and q is not the start state, then crea te a transi
tion from p to q labeled 0 . 

buildregex(M: FSM) = 

1. If M has no accepting states, then halt and re turn th e simple regular ex

pression 0. 
2. lf M has only one state, then halt and return the simple regular xpre Ion 8. 

3. Until only the start state and the acee pting state remain do: 

3.1. Seleet some state rip of M. Any state exeept the start stat r lhe ac
eepting state may be chosen. 
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3.2. For every transition from some state p to some state q, if both p and q are 
not rip then, using the current labels given by the expressions R, compute 
the new label R' for the transition from p to q using the formula: 

R'(p, q) = R(p, q) U R(p, rip)R(rip, rip) *R(rip, q). 

3.3. Remove rip and all transitions into and out of it. 
4. Return the regular expression that labels the one remaining transition 

from the start state to the accepting state. 

We can show that the new FSM that is built by standardize is equivalent to the 
original machine (i.e., that they accept the same language) by showing that the 
language that is accepted is preserved at each step of the procedure. We can show 
that buildregex(M) builds a regular expression that correctly defines L(M) by in
duction on the number of states that must be removed before it halts. Using those 
two procedures, we can now define: 

jsmlOregex(M: FSM) = 

1. M' = standardize (M). 

2. Return buildregex(M'). 

6.2.3 The Equivalence of Regular Expressions and FSMs 
The last two theorems enable us to prove the next one, due to Stephen Kleene Q . 

THEOREM 6.3 Kleene's Theorem 

Theorem: The dass of languages that can be defined with regular expressions is ex-
actly the dass of regular languages. 

I Proof: Theorem 6.1 says that every language that can be defined with a regular ex
I pression is regular. Theorem 6.2 says that every regular language can be defined 
~ some regular expression. 

6.2.4 Kleene's Theorem, Regular Expressions, and Finite State 
Machines 

Kleene's Theorem teIls us that there is no difference between the formal power of regular 
expressions and finite state machines. But, as some of the examples that we just consid
ered suggest, there is a practical difference in their effectiveness as problem solving tools: 

• As we said in the introduction to this chapter, the regular expression language is a 
pattern language. In particular, regular expressions must specify the order in which 
a sequence of symbols must occur. This is useful when we want to describe patterns 
such as phone numbers (it matters that the area code comes first) or email address
es (it maUers that the user name comes before the domain). 
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• But there are some applications where order doesn 't matt er. The ve nding machine 
example that we considered at the beginning of C hapl er 5 is an in tance 01' this dass 
of problem. The order in which the coins were e nte red doe n ' t matte r. Parity check
ing is another. Only the total number of 1 bits matters, not whe re they occur in the 
string. Finite state machines can be very e ffective in o lving proble ms such as this. 
But the regular expressions that correspond to th ose FSMs may b 100 complex to 
be useful. 

The bottom line is that sometimes it is easy 10 write a finit e tate machine to de
scribe a language. For other proble ms, it may be eas ier 10 wrile a regular expression. 

Sometimes Writing Regular Expressions is Easy 

Because, for some problems, regular expressions are easy to writ e, Klce ne 's theorem is 
useful. It gives us a second way to show that a language is regul a r. We need only show 
a regular expression that defines it. 

EXAMPLE 6.10 No More Than One b 

Let L = {w E {a, b p : there is no more than one b}. L is regul ar becau e it can 
be described with the following regular express ion: 

a* (b U e) a" '. 

EXAMPLE 6.11 No Two Consecutive Letters are the Same 

Let L = {w E {a, b p : 110 two consecutive letters are th e ame}. L is regul.a r be
eause it ean be described with either of the following regul ar expre Ions: 

(b U e) (ab)'" Ca U e). 

Ca U e) (ba) ~' (b U s). 

EXAMPLE 6.12 Floating Point Numbers 

Consider again FLOAT, the language of floating point numbe r that we de cribed 
in Example 5.7. Kleene 's Theorem te]]s us that , inee FLOA is regul ar, there 
must be some regular expression that deseribes it.]n fact, r gular xpre sions can 
be used easily to describe languages like FLOAT. We 'll use one hortha nd. Let: 

D stand for (0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9). 

Then FLOAT is the language described by the following regul ar ex pr n: 

(s U + U -) D+ (e U . D+) (e U (E (s U + U - )D ). 
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1t is useful to think oE programs, queries, and ather strings in practical 
languages as being composed af a sequence of tokens, where a token is 
the small est string that has meaning. So vari able and function names, 
numbers and other ca nstants, operators, and reserved words are a ll ta 
kens. The regular expression we just wrote far the language FLOAT de
scribes one kind of token. Th e first thing a compile r does, afte r reading 
its input, is to divide it 1nto tokens. That process is call ed lexical analysis. 
lt is comm on to use regul ar ex pressions to define the behavior of a lexi
ca l analyzer. (G.4 .1) 

Sometimes Building a Deterministic FSM is Easy 
Given an arbitrary regul ar expression, the general algorithms presented in the proof of 
Theorem 6.1 will typically construct a highly nondetermini stic FSM. But there is a use
tul special case in which it is possible to construct a DFSM directly from a set of pat
terns. Suppose that we are given a set K of 11 keywards and a text string s. We want to 
find occurrences in S of the keywords in K. We can think of K as defining a language 
that can be described by a regular expression of the form: 

In other words, we will accept any string in which at least one keyword occurs. For 
some applications this will be good enough. For others, we may care which keyword was 
matched. For yet others we' ll want to find all substrings that match some keyword in K. 

By letting the keywords correspond to sequences of amino acids, this idea 
can be used 10 build a fas t search engine fo r protein databases. (K.3) 

In any of th ese special cases, we can build a deterministic FSM M by first buiJding a 
decision tree out 01' the set 01' keywords and then adding arcs as necessary to tell M 
what to do when it reaches a dead end branch oE the tree. The to llowing algorithm 
builds an FSM that accepts any string that contains at least one of the specified key
words: 

buildkeyword FSM(K: set 01' keywords) 

1. Create astart state qo. 

2. For each e lement k of K do: 

Create a branch corresponding to k . 

3. Create a set 01' transitions that describe what to do when a branch dies, either be
cause it complete pattern has been fo und 0 1' because the next character is not 
the correct one to continue the patte rn . 

4. Make the states at the ends 01' each branch accepting. 
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EXAMPlE 6.13 Recognizing a Set of Keywords 

Consider the set of keywords {cat, bat , cab}. We can use buildkeywordFSM to 
build a DFSM to accept strings that conta in a t least on e of the e keywords. We 
begin by creating astart state and then a path to accept the fir t keyword , cat: 

-,{ c} 

Next we add branches for the remaining keywords, bat and cab: 

-,{ c, b, a} 

b 

b 

Finally, we add transitions that let the machine recover aft r a path di es: 

-,{c,b} 

b 
b C 

c 
-.{b,a,c} 

b 

....,{t,b,a} 
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6.3 Applications of Regular Expressions 
Patterns are everywhere. 

Regul ar expressions can be matched against the subject fie lds of emails to 
find at least some of the ones that are likely to be spam. (0.1) 

Because patterns are everywhere, applications of regul ar expressions are everywhere. 
Before we look at some specific examples, one important caveat is required: The term 
regu lar expression is used in the modern computing world ~ in a much more general 
way than we have defined it here. Many programming languages and scripting systems 
provide upport for regular express ion matching. Each of them has its own syntax. 
They a11 have the basic operators union, concatenation, and Kleene star. They typically 
have others as well. Many, for example, have a substitution operator so that, after a pat
tern is successfully matched aga inst astring, a new string can be produced. In many 
cases, these other operators provide enough additional power that languages that are 
not regular can be described. So, in discussing "regular expressions" 01' "regexes", it is 
important to be dear exactly wh at definition is being used. In the rest of this book, we 
will use the definition that we presented in Section 6.1 with two additions to be de
scribed below, untess we dearly state that , fo r some particular purpose, we are going to 
use a different definition. 

The programming language Perl , for example, supports regular expression 
matchin g. (Appendix 0) In Exercise 6.19, we' ll consider the formal power of 
the Perl regular expression language. 

Real applications need more than two or three characters. But we do not want to 
have to write expressions like: 

(aUbUcUdUeUfUgUhUiUjUkU1UmUnUoUpUqU 
rU 5 U t U u U v U w U x U y U z). 

It wo uld be much more convenient to be able to write (a-z). So, in cases where there is 
an agreed upon co ll at ing sequence, we will use the shorthand (a - w) to mean 
(a U .. , U w) , where all the characters in the coll aü ng sequence between a and ware 
induded in the union. 

EXAMPLE 6.14 Decimal Numbers 

The fo l1owing regular expression matches decimal encodings of numbers: 

-7 ([0-9J +(\. [0-9J *)7 I \. [0-9J +) 
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EXAMPLE 6.14 (Continued) 

In most standard regular expression dialects, the notation a? is equivalent 
to Ca U E). In other words, a is optional. So, in this exampl e, the minus ign is 
optional. So is the decimal point. 

Because the symbol . has a special meaning in mo t regular xpr ssion dialects, 
we must quote it when we want to match it as a literal character.1l1e quote char
acter in most regular expression dialects is \. 

Meaningful "words" in protein seq uences are called motifs. They ca n be de
scribed with regular express ions. (K.3.2) 

EXAMPlE 6.15 Legal Passwords 

Consider the problem of determining whether astring is a legal password. Sup
pose that we require that all passwords meet the following requirements: 

• A password must begin with a letter. 

• A password may contain only letters, numbers, and the under eore character. 

• A password must contain at least four characters and no more than eight char
acters. 

The following regular expression describes the language of legal passwords. 
The line breaks have no significance. We have used them just to make the expres
sion easier to read. 

« a-z) U (A-Z)) 

« a-z) U (A-Z) U (0-9) U_) 

«a-z) U (A-Z) U (0-9) U _) 

« a-z) U (A-Z) U (0-9) U_) 

«a-z) U (A-Z) U (0-9) U _ U 8) 

«a-z) U (A-Z) U (0-9) U _ U 8) 

« a-z) U (A-Z) U (0-9) U_U 8) 

«a-z) U (A-Z) U (0-9) U _ U 8). 

While straightforward , the regular expres ion 1hat we just wrot i a nLli ance to 
write and not very easy to read. The problem is thaI, so far, we ha e only three way to 
specify how many times a pattern must occur: 
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• 0' means that the pattern 0' must occur exactly once. 
• 0'* means that the pattern 0' may occur any number (including zero) of times. 
• 0' + means that the pattern 0' may occur any positive number of times. 

What we needed in the previous example was a way to specify how many times a 
pattern 0' should occur. We can do this with the follow ing notations: 

• 0' {n , rn} means that the pattern 0' must occur at least n tim es and no more than m times. 

• O'{n} means that the pattern 0' must occur exactly n tim es. 

Using this notation, we can rewrite the regular expression of Example 6.15 as: 

« a-z) U (A-Z) «a-z) U (A-Z) U (0-9) U _){3 , 7}. 

EXAMPLE 6.16 IP Addresses 

The following regular expression searches for Internet (IP) addresses: 

C[0-9]{1, 3} C\. [0-9]{1, 3}){3}) . 

In XML, regular expressions are one way to define parts of new document 
types. (Q.1.2) 

6.4 Manipulating and Simplifying Regular Expressions 
Theregular expressions(a U b)*(a U b)*and(a U b)* definethesame language.The 
second one is simpler than the first and thus easier to work with. In this section we dis
cuss techniques for manipulating and simplifying regular expressions. All of these tech
niques are based on the equivalence of the languages that the regular expressions define. 
So we will say that, for two regular expressions 0' and ß, 0' = ß if L (0') = L (ß). 

We first consider identities that fo llow from the fact that the meaning of every regu
lar expression 1S a language, which means that it is a set: 

• Union is commutative: For any regular expressions 0' and ß, 0' U ß = ß U 0'. 

• Union is associative: For any regular expressions 0' , ß , and y , (0' U ß) U y = 0' 

U (ß U y). 

• 0 is the identity for union: Für any regular expression 0',0' U 0 = 0 U 0' = a. 

• Union is idempotent: For any regular expression 0' , 0' U 0' = 0'. 

• Given any two sets A and B, if B ~ A , then A U B = A . So, für example, a * U aa 
= a*, since L(aa) ~ L(a*) . 

Nexl we consider identities involving concatenation: 

• Concatenation is associative:For any regular expressions 0' , ß, and y, (aß)y = 0' (ßy). 
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• eis the identity for concatenation: For any regular express ion 0',0' e = e 0' = a. 

• 0 is a zero for concatenation: For any regular expression a , 0' 0 = 0 0' = 0 . 

Concatenation distributes over union: 

• For any regular expressions a, ß , and y , (0' U ß)y = (ay) U (ßy). Every string in 
either of these languages is composed 01' a first part foUowed by a second part. The 
first part must be drawn from L (0') or L (ß). 1l1e second part mu t be drawn from 
L (y). 

• For any regular expressions a, ß , and y, y (0' U ß) = (ya) U (yß). (By a similar 
argument.) 

Finally, we introduce identities involving Kleene star: 

• 0* = e. 

• e* = c. 

• For any regular expression 0', (0'*)* = a*. L (a*) contains all and only the strings 
that are composed of zero or more strings from L (0') , concatenated together. All of 
thern are also in L «0'*)*) since L «0'*)*) contains, among other thing , every indi
vidual string in L (0'*). No other strings are in L «0'*)*) since il can contain only 
strings that are Eormed (rom concatenating together element of L (0'*), which are 
in turn concatenations of strings frorn L (a). 

• For any regular expression 0' , 0'*0'* = 0'*. Every string in either of these languages 
is cornposed of zero 01' more strings from 0' concatenated toget her. 

• More generally, for any regular expressions 0' and ß , if L (0'*) <: L (ß *) then 0'* ß * = 

ß *. For example: 

a* (a U b)* = (a U b) *, since L(a*) <: L«a U b) *). 

0' is redundant because any string it can generate and place at the b ginning of astring 
to be genera ted by the cornbined expression O'*ß* can also be generaled by ß *. 

• Similarly, if L (ß*) <: L (a*) then O'*ß* = 0'*. 

• For any regular expressions 0' and ß , (0' U ß)* = (O'*ß *)*. Ta form a tring in 
either language, a generator must walk through the Kl eene star loop zero or 
more times. Using the first expression, each time through th e loop .it chooses 
either astring from L (a) or astring from L (ß). That proce can be copied 
using the second expression by picking exactly one string from L (0') and then 
c; frorn L (ß) or one string from L (ß) and then e from L (0'). Us ing th e second 
expression, a generator can pick a seq uence 01' strin gs from L (0') and then a se
quence of strings from L (ß) each time through the loop. But Ihal process can 
be copied using th e first expression by simply se lec ting each el m nt of the se
quence one at a time on successive times through the loop. 

• For any regular expressions 0' and ß , if L (ß) <: L (0'*) th en (0' U ß) * = 0'*. For ex
am pIe, (a U e)* = a*, since {e} <: L(a*). ß is redundant 'ince any tring il can gen
erate can also be generated by 0'*. 
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EXAMPlE 6.17 Simplifying a Regular Expression 

« a* u 0)* U aa) (b U bb)* b* « a U b)* b* U ab) * = /* L(0) C L(a*). 

« a*)* U aa) (b U bb)* b* « a U b)* b* U ab) * = 

(a* U aa) (b U bb)* b* « a U b)* b* U ab) * = /* L(aa) C L(a*). 

/* L(bb) C L(b*). a* (b U bb)*b * «a U b)* b* U ab) * = 
a* b* b* «aUb)* b * Uab)* = 

a* 

a* 

a* 

a* 

a* 

b* «a U 

b* «a U 

b* « a U 

b* (a U 

(a U 

(a U 

Exercises 

b)* b* U 

b)* U 

b)* 

b) * 

b)* 

b)* 

ab) '" = 

ab) * = 

) * = 

= 

= 

/* L(b*) C L«a U b)*) . 

/* L(ab) ~ L«a U b)*) . 

/* L(b*) ~ L«a U b)*) . 

/* L(a*) ~ L«a U b)*). 

1. Describe in English , as briefly as possible, the language defined by each of these 
regular expressions: 

a. (b U ba) (b U a)* (ab U b). 

b. «(a*b*)*ab) U «a*b*)*ba» (b U a)*. 

2. Write a regular expressions to describe each of the following languages: 

a. {w E {a, b} * : every a in w is immediately preceded and followed by b} . 

b. {w E {a, b} * : w does not end in ba}. 

c. {w E {O, 1} * : 3y E {O, 1} * ( Ixy I is even)} . 

d. {w E {O, 1} * : w corresponds to the binary encoding, without leading Os, of 
natural numbers that are evenly divisible by 4}. 

e. {w E {O, 1} * : w corresponds to the binary encoding, without leading Os, of 
natural numbers that are powers of 4} . 

f. {w E {0-9} * : w corresponds to the decimal encoding, without leading Os, of 
an odd natural number}. 

g. {w E {O, 1} * : w has 001 as a substring} . 

h. {w E {O, 1} * : w does not have 001 as a sUbstring}. 

i. {w E {a, b} * : w has bba as a substring}. 

j. {w E {a, b} * : w has both aa and bb as substrings}. 

k. {w E {a, b} * : w has both aa and aba as substrings}. 

I. {w E {a, b} * : w contains at least two b's that are not followed by an a}. 

m. {w E {O, 1} * : w has at most one pair of consecutive Os and at most one pair 
of consecutive l s}. 
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n. {w E {O, 1} * : none of the prefixes of w ends in O}. 

o. {w E { a, b} * : # a ( w) = 3 O} . 
p. {w E {a, b} * : #a( w) ~ 3}. 
q. {w E {a, b} * : w contains exactly two occurrences of the sub tring aa} . 

r. {w E {a, b} * : w contains no more than two occurrences of the substring 
aa}. 

s. {w E { a , b} * - L} , where L = {w E { a , b} * : w contains bba as a 
substring} . 

t. {w E {O, 1} * : every odd length string in L begins with 11}. 

u. {w E {0-9} * : w represents the decimal encoding of an odd natura l number 
without leading Os. 

v. L ] - L 2, where L 1 = a *b*c* and L 2 = c*b*a*. 

w. The set of legal United States zip codes .Q. 

x. The set of strings that correspond to domestic telephone numbers in your 
country. 

3. Simplify each of the fo llowing regular expressions: 

a. (a U b)* (a U c) b*. 

b. (0* U b) b*. 

c. (a U b)*a* U b. 

d. «a U b)*)*. 

e. «a U bt)*. 

f. a«a U b)(b U a»)* U a«a U b)a)* U a « b U a) b)*. 

4. For each of the following expressions E, answer the following three questions 
and prove your answer: 

i. 1s E a regular expression? 

ii. lf E is a regular expression, give a simpler regular expression. 

iii. Does E describe a regular language? 

a. «a U b) U (ab))*. 

b. (a+ al1 b'1 ). 

c. «ab)*0). 

d. «(ab) U c)* n (b U c*» . 

e. (0* U ( bb*». 

5. Let L = {al1 bll
: 0 ~ n ~ 4}. 

a. Show a regular expression for L. 

b. Show an FSM that accepts L. 

6. Let L = {w E {I, 2} * : for all prefixes p of w, if Ip I > 0 and Ip I is even , then the 
last character of p is I}. 
a. Write a regular expression for L. 
b. Show an FSM that accepts L. 
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7. Use the algorithrn presented in the proof of Kleene's Theorem to construct an FSM 
to accept the language generated by each of the following regular expressions: 
a. (b(b U s)b)*. 
b. bab U a*. 

8. Let L be the language accepted by the following finite state machine: 

lndicate, for each of the following regular expressions, whether it correctly de
scribes L: 
a. (a U ba)bb*a. 
b. (s U b)a(bb*a) *. 
c. ba U ab*a. 

d. (a U ba)(bb*a)*. 
9. Consider the following FSM M: 

a. Show a regular expression for L(M). 
b. Describe L(M) in English. 

10. Consider the FSM M of Example 5.3. Use fsmlOregexheuristic to construct a reg
ular expression that describes L(M). 

11. Consider the FSM M of Example 6.9. Apply fsmtoregex to M and show the regu
lar expression that results. 

U. Consider the FSM M of Example 6.8. Apply fsmlOregex to M and show the regular 
expression that results. (Hint: This one is exceedingly tedious, but it can be done.) 

13. Show a possibly nondeterministic FSM to accept the language defined by each of 
the following regular expressions: 
a. «(a U ba) b U aa)*. 
b. (b Us)(ab)*(aUs). 
c. (babb* U a)*. 

I. 
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d. (ba U « a U bb) a *b)). 

e. (a U b)* aa (b U aa) bb (a U b)*. 

14. Showa D FSM to aeeept the language de fin ed by each f thc fo ll owin g regular 
expresslOIl s: 

a. (aba U aabaa)*. 

b. (ab)*(aab)*. 

15. Conside r the following DFSM M: 

a. Write a regul ar expression lh at descr ibes L(M) . 

b. Showa DFSM lhat accepts -, L (M). 

16. Given the following DFSM M , write a regular expre si on th at describe -, L (M): 

17. Add the keyword ab 1 e to the set in ExampIe 6.13 and how thc F M th at will be 
built by buildkeywordFSM from the expanded keyword se t. 

18. Let 2: = {a , b}.LetL = {8, a , b}.LetR bear la ti ondefin edon 2: * a follow: 
\lxy (xRy iff y = xb). Let R' be th e reflex ive, transiti ve elo ure f R. Let L' = 

{x : :J y E L (y R'x)}. Write a regular ex pres ion for L'. 

19. In Appendix 0 we summ3l'ize the main featur o f th e regular c 'pre ion lal1-
guage in Perl. What feature of that regular expression languag make it po ible 
to write regular express ions that deseribe language th at are n' l r gu lar ? 

20. For each of the following statements, stat e whe th e r it i Tru e r fo lse , Prove our 
answer. 

a. (ab) *a = a(ba)*. 

b. (a U b)* b (a U b)* = a* b (a U b)*. 

c. (a U b)* b (a U b)* U (a U b)* a (a U b)* = (a U b *. 

d. (a U b) * b (a U b) :;: U (a U b) * a (a U b) * = (a U b) . 

e. (a U b)* ba (a U b)* U a *b* = (a U b)*. 

f. a * b (a U b) :;: = (a U b) :;: b (a U b) :;: . 

g. If a and ß are any two regular exp ression s th n (a U ß )* = a (ßa U a). 

h. lf a a nd ß are any two regul a r ex pre ions, the n (aß)*a = a ( ß )*. 

--
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CHAPTER 7 

Regular Grammars • 

SO ra r, we have considered two equivalent ways to describe exactly the c1 ass of 
regul ar languages: 

• Finite state machines. 

• Regular expressions. 

We now introduce a third : 

• Regul ar grammars (sometimes also ca lied right linear grammars). 

7.1 Definition of a Regular Grammar 
A regular grammar G is a quadl'uple ( V, L , R, S), where: 

• V is the rule alphabet , which contains nontermin als (symbols that are used in the 
gl'ammar but that do not appeal' in strings in the language) and terminals (symbols 
th at can appeal' in strings genera ted by G), 

• L (the set of terminals) is a subset of V, 

• R (the set of rules) is a finite set of rul es of the fo rm X ~ Y, and 

• S (the start symbol) is a non terminal. 

In a regular grammar, all rules in R must: 

• have a left-hand ide that is a single nonterminal, and 

• have a ri ght-hand ide that i s or a single terminal or a single terminal fo llowed by 
a single nonterminal. 
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So 5 ~ a , 5 ~ 8, and T ~ a5 are legal rules in a regular grammar. 5 ~ aSa and aSa - T 
are not legal rules in a regular gram mar. 

We will formalize the notion of a grammar ge nerating a langllage in Chapter 11 , 
when we introduce a more powerflll grammati cal framework , the cont cxt-frce gram
mar. For now, an informal notion will do. The languagc ge nerated by a gramm ar 
G = (V, 2:, R, 5), denoted L(G), is the set of all string tu in 2> such th at it is possible 
to start with 5, apply some finite set of rul es in R , and de rive w. 

To make writing grammars easy, we will adopt th e conventi on th at, unl css otherwise 
specified, the start symbol of any gram mar G wi ll be thc symbol on the left-hand side 
of the first rule in Re. 

EXAMPLE 7.1 Even Length Strings 

Let L = {w E {a, b}*: Iwl is even} . The fo llowing regular expre ion defines L: 

((aa) U (ab) U (ba) U (bb))*. 

Tbe fo llowing DFSM M accepts L: 

~ a,b ~f:'\ 

~-0 a,b 

Tbe following regular gramm ar G also defines L: 

S~e 

5-aT 
5- bT 
T~aS 

T~b5 

In G, the job of the non terminal 5 is to generate an even length tring. Ir does 
this either by generating the empty string or by generating a single character and 
then creating T. The job of T is to gene rate an odd length tring. Il does this by 
generating a single character and then creating 5. 5 generates e, the hortest pos
sible even length string. So, if T can be shown to genera te all and on ly th odd 
length strings, we can show that 5 generates all and on ly the remaining even 
length strings. T generates every stri ng whose length is on greater than the 
length of some strjng S generates. So, if 5 generates all and on l the even length 
strings, then T generates all and only the other odd length strin gs. 

Notice the c1ear correspondence between M and G, which we have high li ghted 
by naming M's states 5 and T. Even length strings drive M t tate S. Even length 
strings are generated by G starting with 5. Odd length string drive M to state T. 
Odd length strings are genera ted by G starting with T. 

--
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7.2 Regular Grammars and Regular Languages 

THEOREM 7.1 Regular Grammars Define Exactly the Regular Languages 

r ~heorem: The d ass of languages that can be defined with regular grammars is exactly 
the regular languages. 

Proof: We fi rst show that any langu age that can be defined with a regular gramm ar 
can be accepted by same FSM and so is regular. Then we must show that every 
regul ar language ( i. e., every language that can be accepted by some FSM) can be 
defined with a regul ar grammar. Bo th proofs are by construction. 

Regular grammar ~ FSM: The fo llowing algorithm constructs an FSM M 
fr om a regular grammar 0 = (V, L , R, S) and ass ures that L (M) = L (0 ): 

gramma rto.f.~m(G: regular grammar) = 

1. Crea te in M aseparate sta te fo r each no n te rminal in V. 

2. Make the state corresponding to S the start state. 

3. H the re are any rules in R of the fo rm X ~ w, for some W E L, then create 
an addition al state labe led #. 

4. For each rul e of the fo rm X ~ w Y , add a transition from X to Y labeled w . 

5. For each rule of the form X ~ w , add a transition from X to # labe led w. 

6. Fo r each rul e of the form X ~ 8 , mark sta te X as accepting. 

7. Mark state # as accepting. 

8. lf M is incomplete (i. e., th ere are some (s tate, input) pairs far which no 
transition is defined) , M requires a dead sta te. Add a new state D . For 
every (q, i) pair fo r whi ch no transiti on has already been defin ed , create a 
transitio n from q to D labeled i. Far every i in L, create a transition from 
D to D labe led i. 

FSM ~ Regular grammar: The constructi on is effectively the reverse of the 
o ne we just did . We leave this step as an exercise. 

EXAMPlE 7.2 Strings that End with aaaa 

Let L = { w E {a, b }*: W ends with the pattern aaaa}. Alternatively, L = 
aaaa. The following regular grammar defines L: 

(a U b)* 

S ~ aS 
S~ bS 

/* An arbitrary number of a 's and b's can be generated 
before the patte rn starts. 

S~ aB /* Generate the first a of the patte rn . 
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EXAMPLE 7.2 (Continued) 

B ---') aC 

C ---') aD 

/* Generate the second a of the pattern. 

/* Generate the third a of the pattern. 

/* Generate the last a of the pattern and quit. 

Applying grammartofsm to this grammar, we get, omitting the dead state: 

a,b 

Notice that the machine that granunartofsm builds is not necessarily deterministic. 

EXAMPLE 7.3 The Missing Letter Language 

Let ~ = {a, b, c}. Let L be LMissil1g = {w: there is a symbol ai E ~ not appear
ing in w}, which we defined in ExampLe 5.12. The following grammar G generates 

LMissing : 

S---')8 

S ---') aB 

S- aC 
S ---') bA 

S ---') bC 

S ---') cA 

S- eR 

A- bA 

A- cA 

A-B 

B ---') aB 

B- cB 
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The job of S is to generate some string in LMissing' It does that by choosing a first 
character of the string and then choosing which other character will be missing. 
The job of A is to generate an strings that do not contain any a's. The job of B is to 
genera te all strings that do not contain any b's. And the job of C is to generate all 
strings that do not contain any c's. 

If we apply grammartofsm to G, we get M = 

b,c b,c 

a,c a,e 

a,b 
a,b 

M is identical to the NDFSM we had previously built for LMissillg except that it 
waits to guess whether to go to A, B or C until it has seen its first input character. 

Our proof of the first half ofTheorem 7.1 clearly describes the correspondence be
tween the nonterminals in a regular grammar and the states in a corresponding FSM. 
This correspondence suggests a natural way to think about the design of a regular 
grammar. The nonterminals in such a gramm ar need to "remember" the relevant state 
of a left-to-right analysis of astring. 

EXAMPLE 7.4 Satisfying Multiple Criteria 

Let L = {w E {a, b} *: w contains an odd number of a's and w ends in a}. We can 
write a regular gramrnar G that defines L. G will contain four nonterminals, each 
with a unique function (corresponding to the states of a simple FSM that accepts 
L). So, in any derived string, if the remaining nonterminal is: 

• S, then the number of a's so far is even. We don't have worry about whether 
the string ends in a since, to derive astring in L, it will be necessary to gener
ate at least one more a anyway. 

. I , I 
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EXAMPLE 7.4 (Continued) 

• T, then the number of a's so far is odd and the derived string ends in a. 

• X , then the number of a's so far is odd and the derived string does not end in a. 

Since only T captures the situation in which the number of a 's so far is odd and 
the derived string ends in a, T is the only nonterminal that can generate 8. G 
contains the following rules: 

S~bS 

S~aT 

T~aS 

T~bX 

X~aS 

X~bX 

/* Initial b's don't matter. 

/* After this, the number of a's is odd and the generated 
string ends in a. 

/* Since the number of a 's is odd, and the string ends in 
a, it 's okay to quit. 

/* After this, the number of a 's will be even again. 

/ * After this, the number of a 's is still odd but the gener
ated string no longer ends in a. 

/* After this, the number of a 's will be even. 

/* After this, the number of a 's is still odd and the gen
erated string still does not end in a. 

To see how this grammar works, we can watch it generate the string baaba: 

S ~ bS /* Still an even number of a's. 

=> baT /* Now an odd number of a 's and ends in a. The process 
could quit now since the derived string, ba, is in L. 

=> baaS /* Back to having an even number of a 's, so it doesn't 
matter what the last character iso 

=> baabS /* Still even a 's. 

=> baabaT /* Now an odd number of a 's and ends in a. The 
process can quit, by applying the rule T ~ 8. 

=> baaba 

So now we know that regular grammars define exactly the regular languages. But 
regular grammars are not often used in practice. The reason, though , is not that they 
couldn't be. It is simply that there is something bett er. Given some regular language 
L, the structure of a reasonable FSM for L very c10sely mirror the structure of a 
reasonable regular grammar for it. And FSMs are easier to work with. In addition, 
there exist regular expressions. In Parts III and IV, as we move outward to larger 
classes of languages, there will no longer exist a technique like regular expressions. 
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At that point, particularly as we are considering the context-free languages, we will 
see that gramm ars are a very important and useful way to define languages. 

Exercises 
1. Show a regular grammar for each of the following languages: 

a. {w E {a, b }*: w contains an even number of a's and an odd number of b's}. 

b. {w E {a, b }*: w does not end in aal. 
c. {w E {a, b }*: w contains the substring abb}. 

d. {w E {a, b }*: if w contains the substring aa then Iwl is odd}. 
e. {w E {a, b }*: w does not contain the substring aabb}. 

2. Consider the following regular grammar G: 
S~ aT 

T~ bT 
T~ a 
T~ aW 

W~e 

W~ aT 

a. Write a regular expression that generates L( G). 

b. Use grammartofsm to generate an FSM M that accepts L( G). 
3. Consider again the FSM M shown in Exercise 5.1. Show a regular grammar that 

generates L(M). 
4. Show by construction that, for every FSM M there exists a regular grammar G 

such that L (G) = L (M). 

5. Let L = {w E {a, b} *: every a in w is immediately followed by at least one b}. 
a. Write a regular expression that describes L. 
b. Write a regular grammar that generates L. 
c. Construct an FSM that accepts L. 
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CHAPTER 8 

Regular and Nonregular Languages 

T 
he language a*b* is regul ar. The language AI1 BI1 

= {a"b": n ~ O} i not regu
lar (intuitively because it is not possible, give n some finite num ber o f states, to 
count an arbitrary number of a 's and then compare that count to the number of 

b's). The language {w E {a , b} * : every a is immediately fo llowed by a b} is regular. The 
similar sounding language {w E {a , b }:;: : every a has a matching b somewhere and no b 
matches more than one a} is not regular (again because it is now necessary to count the 
a 's and make sure that the number of b's is at least as great as the number of a 's.) 

G iven a new language L, how can we know whether or not it i regular? In this 
chapter, we present a collection of techniques that can be used to answer th at question. 

8.1 How Many Regular Languages Are There? 

162 

First , we observe that there are many more nonregular languages th an there are regu

lar ones: 

THEOREM 8.1 The Regular Languages are Countably Infinite 

Theorem: There is a countably in fini te number of regul ar languages. 

Proof: We can lexicographica lly enumerate all the syntactically lega l DFSMs with 
input alphabet ~ . Every regular language is accepted by at lea t one of them. So 
there cannot be more regul ar languages than the re are DFSMs. Thus th re are at 
most a countably infini te number of regular languages. The r is not a o ne-to-one 
relationship between regular languages and DFSM ince there is an infini.te 
number of machines that accept any give n language. But the num ber of regular 
languages is infinite because it includes the fo ll owing in fin ite et of languages: 

{a }, {aal, {aaa }, {aaaa }, {aaaaa}, {aaaaaa } . .. 
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8.2 Showing That a Language 15 Regular 163 

But, by Theorem 2.3, there is an uncountably infinite number of languages over any 
nonempty alphabet So there are many more nonregular languages than there are reg
ular ones. 

8.2 Showing That a Language Is Regular 
But rnany languages are regular. How can we know which ones? We start with the sim
plest cases. 

THEOREM 8.2 The Finite Languages 

Theorem: Every finite language is regular. 

Proof: If L is the empty set, then it is defined by the regular expression 0 and so is 
regular. If it is any finite language composed of the strings Sb S2, ... Sn for some 
positive integer n, then it is defined by the regular expression: 

S1 U S2 U ... U SIl 

So it too is regular. 

EXAMPLE 8.1 The Intersection of Two Infinite Languages 

Let L = L1 n L 2, where LI = {allbll
: n :> O} and L 2 = {bllall

: n ~ O}. As we 
will soon be able to prove, neither LI nor L 2 is regular. But L iso L = {8} , 
which is finite. 

EXAMPLE 8.2 A Finite Language We May Not Be Able to Write Down 

Let L = {w E {O - 9} * : w is the social security number of a living US resident}. 
L is regular because it is finite.1t doesn't matter that no individual or organization 
happens, at any given instant, to know wh at strings are in L. 

Note, however, that although the language in Example 8.2 is formally regular, the 
techniques that we have described for recognizing regular languages would not be very 
useful in building a program to check for a valid social security number. Regular ex
pressions are most useful when the elements of L match one or more patterns. FSMs 
are most useful when the elements of L share some simple structural properties. Other 
techniques, like hash tables, are better suited to handling finite languages whose ele
ments are chosen by our world, rather than by rule. 
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EXAMPLE 8.3 Santa (lause, God, and the History of the Americas 

Let: 

• LI = {WE{O - 9}*:wisthesocialsecuritynumberofthecurr ntUSpres-
ident }. 

• L 2 = {1 if Santa Claus exists and 0 otherwise}. 

• L 3 = {I if God exists and 0 otherwise} . 

• L 4 = {I if there were people in North America more than 10,000 years ago 
and 0 otherwise}. 

• L5 = {I if there were people in North America more than .15 ,000 years ago 
and 0 otherwise}. 

• L 6 = {w E {o - 9} + : W is the decimal representation without lead ing O's, of 
a prime Fermat number}. 

L 1 is c1early finüe, and thus regular. There exists a imple FSM to accept it even 
though none of us happens to know what that FSM iso L 2 and L 3 are perhaps a tittle 
less clear, but that is because the meanings oE "Santa CI au " and" od" are less 
c1ear. Pick a definition for either of them. Then something that atisfies that defini
tion either does or does not ex ist. So either the simple FSM that accepts {O} and 
nothing else or the simple FSM that accepts {I} and nothing else accepts L 2. And 
one of them (possibly the same one, possibly the other one) accepts L 3· L4 is elear. 
It is the set {I}. L5 is also finite, and thus regular. Either there were people in Nortb 
America by 15,000 years ago or there were not, although the currently available fos
sil evidence ,\;l, is unclear as to which. So we (collectively) just don't know yet which 
machine to build. L6 is similar, although this time wh at is lacking is mathematics, as 
opposed to fossils. Recall from Section 4.1 that the Fermat numbers are defined by 

2" Fil = 2 + 1, 11 ~ O. 

The first five elements oE F" are {3, 5, 17, 257, 65 ,537} . All oE them are prime. It 
appears likely ~ that no other Fermat numbers are prime. [ f that i true, theu L6 
is finite and thus regular.lf it turns out that the set of Fermat numbers is infinite, 
then it is almost surely not regular. 

Not every regular language is computationally tractab le. Con ide r the Tow
ers of Hanoi language. (P. 2) 

But, of course, most interes tin g regul ar languages are infinite. So far. we've devel
oped four techniques for showing that a (finite 0 1' infinit e) languagc L is regular: 

• Exhibit a regular expression for L. 

• Exhibit an FSM for L. 
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• Show that the number of equivalence classes of ~ L is finite. 

• Exhibit a regular grammar for L. 

8.3 Some Important Closure Properties of Regular 
Languages 
We now consider one final technique, which allows us, when analyzing complex lan
guages, to exploit the other techniques as subroutines. The regular languages are closed 
under many common and useful operations. So, if we wish to show that some language 
L is regular and we can show that L can be constructed from other regular languages 
using those operations, then L must also be regular. 

THEOREM 8.3 Closure under Union, Concatenation and Kleene Star 
------------------------------------

Theorem: Tbe regular languages are closed under union , concatenation, and Kleene 
star. 

Proof: By tbe same constructions tbat were used in the proof of Kleene's theorem. 

THEOREM 8.4 Closure under Complement, Intersection, Difference, Reverse 
and Letter Substitution 

Theorem: The regular languages are closed under complement, interseetion, differ
ence, reverse, and letter substitution. 

Proof: 

• The regular languages are closed under complement. If L l is regular, then 
there exists a DFSM MI = (K , 2:. , 0, s, A) that accepts it. The DFSM 
M2 = (K, 2:. , 8, s, K - A), namely Mj with accepting and nonaccepting states 
swapped, accepts .(L(M])) because it rejects all strings that MI accepts and 
rejeets all strings that MI aceepts. 

Given an arbitrary (possibly nondeterministic) FSM MI = (KJ, 2:. , ß b Sb A1) , 

we ean construet a DFSM M2 = (K2, 2:. , 0 2, S2 , A2) such that L(M2) = .(L(Mj )). 

We do so as follows: From MI, construct an equivalent deterministic FSM M' = 
(KM " 2:. , OM " SM', AM ,), using the algorithm ndfsmtodfsm, presented in the proof 
ofTheorem 5.3. (If MI is already deterrninistic, M' = Md M' must be stated eom
pletely, so if it is described with an implied dead state, add tbe dead state and all re
quired transitions to it. Begin building M2 by setting it equal to M'. Then swap the 
accepting and the nonaccepting states. So Mz = (KM', 2:. , 0M', SM', KM' - AM')' 

• The regular languages are closed und er intersection. We note that: 

L(M]) n L(M2) = .(.L(M1) U -,L(M2)). 

We have already shown that the regular languages are closed under both com
plement and union. Thus they are also closed under intersection. 
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1 .. __ .. 

It is also possible to prove this claim by construction of an FSM that accepts 
L(M]) n L(M2) . We leave that proof as an exercise. 

• The regular languages are closed under se t difference (subtract ion). We note 
that: 

We have already shown that the regular languages are closed under botb 
complement and intersection. Thus they are also closed under set difference. 

This claim too can also be proved by construction, which we leave as an 
exercise. 

• The regular languages are closed under reverse. Reca ll that L R = {w E ~* : 
w = x R for some x E L}. We leave the proof of thi s as an exercise. 

• The regular languages are closed under letter substitution, defined as folIows: 
Consider any two alphabets, 2: 1 and 2: 2. Let sub be any function from 2: 1 to 
2:2*, Then letsub is a letter substitution function from L] to L] ifr letsub(L1) = 
{w E 2: 2* : 3y E L] (w = y except that every character C of y has been replaced 
by sub(c»}. For example, suppose that 2: 1 = {a, b} , 2: 2 = {O, 1}, sub(a) = 0, 
and sub(b) = 11. Then fetsub( {al1 b" : n ;::: O}) = {0"12 1

: n ;::: O}. We leave 
the proof that the regular languages are closed under letter substitution as an 
exercise. 

EXAMPLE 8.4 Closure Under Complement 

Consider the following NDFSM M = 

a 

If we use the algorithm that we just described to convert M to a new machine 
M r that accepts .., L(M), the last step is to swap the accepting and the nonaccept
ing states. A quick look at M makes it c1ear why it is necessary first to make M de
terministic and then to complete it by adding the dead state. M accepts the input 
a in state 4. If we simply swapped accepting and nonaccepting states, without 
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making the other changes, M' would also accept a. It would do so in state 2. The 
problem is that M is nondeterministic, and has one path along which a is accepted 
and one along which it is rejected. 

To see why it is necessary to add the dead state, consider the input string 
aba. M rejects it since the path from state 3 dies when Mattempts to read the 
final a and the path from state 4 dies when it attempts to read the b. But, if we 
don't add the dead state, M' will also reject it since, in it too, both paths will die. 

The closure theorems that we have now proved make it easy to take a divide-and
conquer approach to showing that a language is regular. They also let us reuse proofs 
and constructions that we've already done. 

EXAMPLE 8.5 The Divide-and-Conquer Approach 

Let L = {w E { a, b} * : w contains an even number of a's and an odd number of 
b's and all a's co me in runs of three}. L is regular because it is the intersection of 
two regular languages. L = LI n L 2• where: 

• L 1 = {w E {a, b} * : w contains an even number of a's and an odd number of 
b's }, and 

• L 2 = {w E {a, b}* : all a's come in runs of three}. 

We already know that LI is regular, since we showed an FSM that accepts it in 
Example 5.9: 

a 

---even a 's ) C odd a 's 
even b' s even b'S 

a 

b b 
b b 

C ~~ 
a 

evena's )) 
~ 

odd a's 
odd b's odd b's 

a -
Of course, we could start with this machine and modify it so that it accepts L. 

But an easier way is exploit a divide-and-conquer approach. We'll just use the 
machine we have and then build a second simple machine, this one to accept L 2• 

.1 

I 

\ 
1

1 

! 

I 
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EXAMPLE 8.5 (Continued) 

Then we can prove that L is regular by exploiting the fact tha t the regular languages 
are closed under intersection. TIle following macbine ace pt L 2: 

The closure theorems a re powerful, but lhey ay nl y what th e sa . We have tated 
each of the closure theorems in as strang a fo rm as po sibl c. An imil a r cla ims that are 
not implied by th e theorems as we have stated Ih em are alm o t cc rt ain ly false, which 
can usually be shown eas il y by fin din g a sim ple cou nl erexample. 

EXAMPLE 8.6 What the Closure Theorem for Union Does Not Say 

The closure theorem for unio n says that: 

ii LI and L 2 are regul ar riten L = L I U L 2 is regula r. 

The theorem says nothing, for example, about wh at happens if L is regular. Does 
that mean that LI and L 2 are also? The answer is maybe. We know that a+ is reg
ular. We will consider two cases for LI and L 2· First, let them be: 

a + = {aP : p > 0 and p is prime} U {aP : p > 0 and p is not prime}. 

U 

As we will see in the next section, neither L I nor L? i regular. Bur now consider: 

a+ = {aP:p > Oandpiseven} U {aP:p > Oandpisodd }. 

u 

In this case, both LI and L 2 are regula r. 

EXAMPLE 8.7 Wh at the Closure Theorem for Concatenation Does Not Say 

The c10sure theorem for concatenation says that: 

ii LI and L 2 are regular then L = LI L2 i regula r. 

But the theorem says nothing, for example, abo ut what happen if L2 i not regu
l~r. Does. that mean tha.t L isn't regular eithe r . Aga in , lhe an wer i maybe. We 
fust eonslder the followmg example: . 

a a : 11 2. 0. { abatl brl ·.n >_ O}· { b}{ Ilbn } 

L 
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As we '1l see in the next section, L 2 is not regular. And, in this case, neither 1S L. 
But now consider: 

{aaa*} = {a*}{ aP : pis prime} . 

L = L 1 L2. 

While again L2 is not regular, now L iso 

8.4 Showing That a Language is Not Regular 
We can show that a language is regular by exh ibiting a regular expression or an FSM or 
a finite list of the equivalence clas es of ~ L or a regular grammar, or by using the clo
sure properties that we have proved hold fo r the regular languages. But how shall we . 
show that a language is not regular? In othe r words, how can we show that none of 
those descriptions ex ists fo r it? It is not sufficient to argue that we tried to find one of 
them and fa iled. Perhaps we didn't look in the right place. We need a technique that 
does not rely on our cleve rness (or lack of it). 

What we can do is to make use of the fo llowing observation about the regula r languages: 
Every regular language L can be accepted by an FSM M with a fini te number of states.lf L 
is in finite, then there must be at least one loop in M. All sufficiently long strings in L must 
be characterized by one or more repeating patterns, corresponding to the substrings that 
drive M through its loops. lt is also true that, if L is infinite, then any regular expression that 
describes L must contain at least one Kleene star, but we will focus here on FSMs. 

To help us visualize the rest of this discussion, consider the FSM M LOOP, shown in 
Figure 8.1 (a) . M LOOP has 5 states. It can accept an infinite number of strings. But the 
longest one that it can accept without going th rough any loops has length 4. Now consider 
the slightl y different FSM ME' shown in Figure 8.1 (b). Me also has 5 states and one loop. 
But it accepts only one string, aab. The only string that can drive Me through its loop is e. 

No matter how many times ME goes through the loop, it cannot accept any longer strings. 
To simpli fy the following discussion, we will consider only DFSMs, which have no 

e-transitions. Each transition step that a D FSM takes corresponds to exactly one char
acter in its input. Since any language that can be accepted by an NDFSM can also be 
accepted by a DFSM, this rest rietion will not aUect our conclusions. 

(a) 

(b) 

FIGURE 8.1 What is the 
langest string that a 5-state 
FSM can accept? 
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THEOREM 8.5 Long Strings Force Repeated States 

Theorem: Let M = (K , L , 8,s , A) be any DFSM . If M accept any string of 
length IKI or greater, then that string will fo rce M to isit some stat more than 
onee (thus traversing at least one loop). 

Proof: M must start in one of its states. Eaeh time it reads an input eharaeter, it vis
its some state. So, in proeessing astring of length 11 , M erea tes a total of n + 1 
state visits (the initia l one plus one fo r eaeh eharaeter it reads). If n + 1 > IKI. 
then, by the pigeonhole principle, some state must ge t more th an one visit. So, if 
n ~ I K I, then M must visit at least one state more than onee. 

l ____ _ 

Let M = (K, L, 8, s, A) be any DFSM . Suppose th at there exists some "Iong' string 
w (i.e., Iwl 2': I K I) such that w E L( M ). Then M must go through at least one loop 
when it reads w. So there is some substring y of tu th at drove M through at least oue 
loop. Suppose we excise y from w. The resulting string must also be in L(M) sinee M 
ean accept it just as it accepts w but skipping one pass through one I op. Further, sup
pose that we spliee in one or more extra copies of y, immed iately adj aeent to the origi
nal one. All the resulting strings must also be in L(M) since M ca n aecept them by 
going through its loop one or more additional times. Using an analogy with a pump, 
we 'll say that we can pump y out onee or in an arbi trary number of time and the re
sulting string must still be in L. 

To make this eonerete, let's look aga in at MLOO P, wh ich aecepts, for example, tbe 
string babbab. babbab is "long" since its length is 6 and I K I = 5. The second b drove 
M LOOP through its loop. Call the string (in this ease b) that drove MLOOP through its 
loop y . We can pump it out , producing babab, which is also acc pted by Mwop. Or we 
can pump in as many copies of b as we like, genera ting such strings as babbbab, 
babbbbbab, and so forth . M LOOP also accepts all of th em. Returning to the original 
string babbab, the third b also drove Mwop through its loop. We could also pump it (in 
or out) and get a similar result. 

This property of FSMs, and the languages that they can accep t. is the basis far a 
powerful too1 for showing that a language is not regul ar. If a language conlains even 
one long (to be defined precise ly below) string that cannot be pumped in the fashion 
that we have just described, then it is not aceepted by any FSM and so i not regular. 
We formalize this idea, as the Pumping Theorem, in th next cti n. 

8.4.1 The Pumping Theorem for Regular Languages 

THEOREM 8.6 The Pumping Theorem for Regular Languages 

Theorem: If L is a regular language, then: 

:Jk ~ 1 (\I strin gs w E L , where Iwl 2': k ( :Jx , y, Z ( tu = xyz , 

Ix) I - k , 

Y * f;,a nd 
q 2': 0 (xy '1- E L»)). 
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Proof: The proof is the argument that we gave above: If L is regular then it is accepted 
by some DFSM M = (K, L, 8, s, A). Let k be IKI. Let w be any string in L of length 
k or greater. By Theorem 8.5, to accept w, M must traverse some loop at least once. 
We can carve w up and assign the name y to the first substring to drive M through a 
loop. Then xis the part of w that precedes y and z is the part of w that follows y. We 
show that each of the last three conditions must then hold: 

• Ixyl::; k : M must not only traverse a loop eventually when reading w, it must 
do so for the first time by at least the time it has read k characters. It can read 
k - 1 characters without revisiting any states. But the kth character must, if 
no earlier character already has, take M to astate it has visited before. What
ever character does that is the last in one pass through some loop. 

• y -=1= e: Since M is deterministic, there are no loops that can be traversed by e. 

• \fq ~ 0 (xl1 z E L): y can be pumped out once (which is what happens if q = 0) 
or in any number of times (which happens if q is greater than 1) and the result
ing string must be in L since it will be accepted by M.1t is possible that we could 
chop y out more than once and still generate astring in L, but without knowing 
how much longer w is than k , we don't know any more than that it can be 
pumped out once. 

The Pumping Theorem teUs us something that is true of every regular language. Gen
erally, if we al ready know that a language is regular, we won 't particularly care about 
what the Pumping Theorem teils us about it. But suppose that we are interested in 
some language Land we want to know whether or not it is regular. If we could show 
that the claims made in the Pumping Theorem are not true of L, then we would know 
that L is not regular. lt is in arguments such as this that we will find the Pumping The
orem very useful. In particular, we will use it to construct proofs by contradiction. We 
will say, " If L were regular, then it would possess certain properties. But it does not 
possess those properties. Therefore, it is not regular." 

EXAMPlE 8.8 AnBn is not Regular 

Let L be AnBn 
= {allbll

: n ~ O}. We can use the PumpingTheorem to show that 
L is not regular. If it were, then there would exist so me k such that any string w, 
where Iwl ~ k , must satisfy the conditions of the theorem. We show one string w 
that does not. Let w = akbk. Since Iwl = 2k , w is long enough and it is in L , so it 
must satisfy the conditions of the Pumping Theorem. So there must exist x, y, and 
z, such that w = xyz, Ixyl ::; k, y -=1= e, and \fq ~ 0 (xy qz E L). But we show that 
no such x, y, and z exist. Since we must guarantee that Ixyl ::; k, y must occur 
within the first k characters and so y = aP for some p. Since we must guarantee 
that y -=1= e, p must be greater than O. Let q = 2. (In other words, we pump in one 
extra copy of y.) The resulting string is ak+pbk . The last condition of the Pumping 
Theorem states that this string must be in L , but it is not since it has more a's than 
b's. Thus there exists at least one long string in L that faBs to satisfy the conditions 
of the Pumping Theorem. So L = ~lBn is not regular. 
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The Pumping Theorem is a powerful tool for showing that a language is not regular. 
But, as with any tool , using it effeetively requires some skilI . To ee how the theorem 
ean be used, let's state it again in its most general terms: 

For any language L , if L is regular, then every " Iong" string in L is pumpable. 

So, to show that L is not regular, it suffices to find a ingl e long string w that is in 
L but is not pumpable. To show that astring is n01 pumpable, we must show that 
there is no way to carve it up into x , y, and z in such a way that all three of the condi
tions of the theorem are met.lt is not suffieient to pick a particular y and show that it 
doesn ' t work. (We focus on y since, once it has been chosen , eve rything to the left of 
it is x and everything to the right of it is z). We must show tha t th e re is no value for y 
that works. To do that , we consider all the logicall y possible classe of values for y 
(sometimes there is only one such dass, but sometimes several must be considered). 
Then we show that each of them fails to satisfy a1 least one of th e three conditions of 
the theorem. Generally we do that by assuming that y does sa tisfy the first two con
ditions, namely that it occurs within the first k charaeters and is not e. Then we con
sider the third requirement, namely that, for all values of q, xy q z is in L. To show that 
it is not possible to satisfy that requirement , it is suffieient to find a single value of q 
such that the resulting string is not in L. Typically, this can be done by setting q to 0 
(thus pumping out onee) or to 2 (pumping in once) , although sometime some other 
value of q must be considered. 

In a nutshell then, to use the PumpingTheorem to show that a language L is not reg
ular, we must: 

1. Choose astring w, where w E Land Iwl :2: k . Note that we do not know what k 
is; we know only that it exists. So we must state IV in terms of k. 

2. Divide the possibilities for y into a set of equivalence cla es so that a11 strings in 
a dass can be considered together. 

3. For each such dass of possible y values, where Ixyl ::s k and y ~ g: 

Choose a value for q such that x/'z is not in L. 

In Example 8.8,y had to fall in the initial a region of w, so that was the only case that 
needed to be eonsidered. But, had we made a less judicious choice fo r w, our proof 
would not have been so simple. Let's look at another proof, with a different tu: 

EXAMPlE 8.9 A Less Judicious Choice for w 

Again let L be fttB n = {al1b": n 2: O}. If ~Bn were regular then there would 

exist so me k such that an~ string w, where Iwl 2: k, must satisfy the conditions of 

the theorem. Let w = a kjzl bfk/zl. (We must use r kl 2 l i.e. the mallest integer 
greater than k12 , rather than truncating the division , since k might be odd.) Since 
Iwl 2: k and w is in L, w must satisfy the conditions of the Pumping Theorem. So, 
there must exist x, y, and z, such that w = xyz , Ixyl :5 k , * sand 
Yq :> 0 (xy qz E L). We show that no such x , y, and z exist. This time, if they did,y 
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could be almost anywhere in w (since all the Pumping Theorem requires is that it 
occur in the first k characters and there are ~~Iy at most k + 1 chai-acters). So we 
must consider three cases and show that, in all three, there is no y that satisfies all 
conditions of the Pumping Theorem. A useful way to describe the cases is to imag
ine w divided into two regions: 

aaaaa ..... aaaaaa \ bbbbb ..... bbbbbb 

1 \ 2 

Now we see that y can fall: 

• Exc1usively in region 1: In this case, the proof is identical to the proof we did 
for Example 8.8. 

• Exc1usively in region 2: then y = b P for some p. Since y * e, p must be greater 
than O. Let q = 2. The resulting string is akbk+P. But this string is not in L, since 
it has more b's than a's. 

• Straddling the boundary between regions 1 and 2: Then y = aPbr for some 
non-zero p and r. Let q = 2. The resulting string will have interleaved a's and 
b's, and so is not in L. 

There exists at least one long string in L that fails to satisfy the conditions of 
the Pumping Theorem. So L = AnBD is not regular. 

To make maximum use of the Pumping Theorem's requirement that y fall in the first 
k characters, it is often a good idea to choose astring w that is substantially longer than 
the k characters required by the theorem. In particular, if w can be chosen so that there 
is a uniform first region of length at least k, it may be possible to consider just a single 
case for where y can fall. 

The Pumping Theorem inspires poets Q, as we'll see in Chapter 10. 

~1Bn is a simple language that illustrates the kind of property that characterizes lan
guages that aren't regular. It isn't of much practical importance, but it is typical of a fam
ily of languages, many of which are of more practical significance. In the next example, 
we consider BaI, the language of balanced parentheses. The structure of BaI is very sim
ilar to that of AnBn

. BaI is important because most languages for describing arithmetic 
expressions, Boolean queries, and markup systems require balanced delirniters. 

EXAMPLE 8.10 The Balanced Parenthesis Language is Not Regular 

Let L be BaI = {w E {), (}* : the parentheses are balanced}. lf L were regular, 
then there would exist some k such that any string w, where \w\ ~ k, must satisfy 
the conditions of the theorem. BaI contains complex strings like (0)(00). But it is 

I 
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EXAMPLE 8.10 (Continued) 

almost always easier to use the Pumping Theorem if we pick as imple astring as 
possible. So, let w = (k)k. Since Iwl = 2k and w is in L, w must sa tisfy the eondi
tions of the Pumping Theorem. So there must exist x , ) , and Z, ueh that 
w = xyz, Ixyl :s k , y *- e, and Vq 2:: 0 (xy qz E L). But we show that no x, y, and 
z exist. Since Ixy l :s k, y must occur within the first k characte rs and 0 y = CI' for 
some p). Since y *- 8, p must be greater than O. Let q = 2. (In other words, we 
pump in one extra copy of y.) The resulting string is (k +p ) k. The las t condition of 
the Pumping Theorem states that this string must be in L, bm it is not inee it has 
more ('S than )'s. There exists at least one long string in L th at fai ls to satisfy the 
conditions of the Pumping Theorem. So L = Bai is not regular. 

EXAMPLE 8.11 The Even Palindrome Language is Not Regular 

Let L be PalEven = {ww R : w E {a, b} *}. PalEven is the language of even
length palindromes of a 's and b's. We can use the Pumping Theorem 10 show that 
PalEven is not regular. If it were, then there would exist ome k such that any 
string w, where Iwl 2:: k , must satisfy the conditions of the theorem. We show une 
string w that does not. (Note here lhat the variable w used in the definition of L 
is different from the variable w mentioned in the Pumping Theorem.) We will 
choose w so that we only have to consider one case for where y could fall. Let 
w = akbkbkak • Since Iwl = 4k and w is in L, w must sa tisfy the conditions of the 
Pumping Theorem. So there must exist x, y, and z, such that 10 = xyz, Ixy l :s k 
y *- 8 , and Vq 2:: 0 (xyqz E L ). Since Ixy l :s k , y must occur within the first k 

characters and so y = aP for some p. Since y *- 8, P mus! be grea ter than O. Let 
q = 2. The resulting string is ak+Pbkbkak. [f p is odd , then thi ' string is not in 
PalEven because all strings in PalEven have even length . If p i even then it is at 
least 2 so the first half of the string has more a 's than the second half doe, 0 it is , 
not in PalEven. So L = PalEven is not regular. 

The Pumping Theorem says that , for any language L. if 1 is regular. then all long 
strings in L must be pumpable. Our strategy in using it to show that CI language L is not 
regular is to find one string th at fails to meet that requirement. Orten, there are many 
long strings that are pumpable. [I' we try to work with thcm, we will fail to derive the 
contradiction that we seek. In that case, we will know nothing about wh ether or not L 
is regular. To find a w th at is not pumpable, think abaut what properly of L is not 
checkable by an FSM and choose a w th at exhibits that property. on 'ider again our 
last example. The thing that an FSM cannot do is to remember an arbitrar ily long first 
half and eheck it against the second half. So we chose a w that would have forced it to 
do that. Suppose instead that we had let w = akak. It is in L and long cnough. But y 
could be aa and we could pump it out or in and allthe rc ulting trings would be in L. 
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So far, all of our Pumping Theorem proofs have set q to 2. But that is not always 
the thing to do. Sometimes it will be necessary to set it to O. (In other words, we will 
pump y out). 

EXAMPlE 8.12 The Language with More a's Than b's is Not Regular 

Let L = {a"bnJ
: n > m}. We can use the Pumping Theorem to show that L is 

not regular. If it were, then there would exist some k such that any string w, 
where Iwl ;:::: k, must satisfy the conditions of the theorem. We show one string 
w that does not. Let w = ak+ 1bk

• Since Iwl = 2k + 1 and w is in L, w must sat
isfy the conditions of the Pumping Theorem. So there must exist x, y, and z, 
such that w = xyz, Ixyl ::s; k, y i=- 8 , and \/q ;:::: 0 (xy qz E L). Since Ixyl ::s; k , y 
must oecur within the first k eharacters and so y = aP for some p. Since y i=- 8, P 
must be greater than O. There are already more a 's than b's, as required by the 
definition of L. If we pump in, there will be even more a 's and the resulting 
string will still be in L. But we can set q to 0 (and so pump out). The resulting 
string is then a k+l-Pbk . Since p > 0, k + 1 - P ::s; k, so the resulting string no 
longer has more a 's than b's and so is not in L. There exists at least one long 
string in L that fails to satisfy the conditions of the Pumping Theorem. So L is 
not regular. 

Notice that the proof that we just did depended on our having chosen a w that is just 
barely in L. It had exactly one more a than b. So y could be any string of up to k a's. If 
we pumped in extra copies of y, we would have gotten strings that were still in L. But if 
we pumped out even a single a , we got astring that was not in L, and so we were able 
to compIete the proof.. Suppose, though, that we had chosen w = a2kbk . Again, pump
ing in results in strings in L. And now, if y were simply a , we could pump out and get a 
string that was still in L. So that proof attempt fails. In general , it is a good idea to 
choose a w that barely meets the requirements for L. That makes it more likely that 
pumping will ereate astring that is not in L. 

Sometimes values of q other than 0 or 2 mayaiso be required. 

EXAMPlE 8.13 The Prime Number of a's Language is Not Regular 

Let L be Primea = {an: n is prime}. We can use the Pumping Theorem to show 
that L is not regular. If it were, then there would exist some k such that any string 
w, where Iwl ;:::: k, must satisfy the conditions of the theorem. We show one string 
w that does not. Let w = aj

, where j is the smallest prime number greater than 

k + 1. Since \w\ > k, w must satisfy the conditions of the Pumping Theorem. So 
theremustexistx,y,andZ,suchthatw = xyz, Ixyl ::s; kandy i=- B.y = aPforsome 

p. The Pumping Theorem further requires that \/q ;:::: 0 (xy qz E L). So, \/q ;:::: 0 
(alt 1+lz I+q lY I must be in L). That means that lxi + I z I + q' Iy I must be prime. 
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EXAMPLE 8.13 (Continued) 

But suppose that q = lxi + Izl. Then: 

lxi + Izl + q · Iyl = lxi + Izl + ( lx i + Izl) ' y 

= (lx i + Iz l) ' ( 1 + I I), 

wh ich is composite (non-prime) if both factor are grea ter thall 1. <lxi + Izl ) > 1 
because Iwl > k + 1, and Iyl :5: k. (1 +Iyl ) > J b cau I) I > O. 0 , f r at least 
that one value of q, the re ulting string i not in L. 0 Li n t r gular. 

When we do a Pum ping Theorem proof that a langua c L i n t regular w have 
two choices to make: a valu e for wand a va lue for q. As we have just eil , there ar 
some useful heuristics that can guide ou r choice : 

• To choose w: 

• Choose a w that is in the part of L that makes it not regular. 

• Choose a w that i on ly barel.y in L. 
• Choose a w with as homogeneous as pos ibl e an initial r gi n [ Iength at lea t k. 

• To choose q: 

• Try letting q be either 0 or 2. 
• lf th at doesn 't work, ana lyze L to see if th ere is some olh r I cific alu that 

will work . 

8.4.2 Using Closure Properties 
Sometimes the easiest way to prove that a language L is 11 1 regul ar i 10 us th cIo
sure theorems for regular languages, either alone 0 1' in conjun ti on with the Pumping 
Theorem. The fact that the regular language are c.losed und er interse ti on is particu
larly useful. 

EXAMPLE 8.14 Using Interseetion to Force Order Constraints 

Let L = {WE {a, b} * : #a(w) = #b (w)}. ]f L wer regular, lh n L ' = Ln a*b* 
would also be regular. B LI t L' = {al/b": 11 ~ O}, wh ich e ha e al r ad I hown i not 
regular. So L isn't either. 

EXAMPLE 8.15 Using Closure Under Complement 

Let L = {ai b j : i , j ~ 0 and i =1= j }. It e m unlik I th at L i r gular in any 
machine to accept it would have to count th a'. It i p ibl t u 1h Pumping 
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Theorem to prove that L is not regular but it is not easy to see how. Suppose, for 
example, that we let w = ak + 1bk

. But then y could be aa and it would pump since 
ak - 1bk is in L , and so is ak+ I+2(q- l) bk, for all nonnegaüve values of q. 

Instead, let w = akbk+
k

!. Then y = aP for some nonzero p. Let q = (k! /p) + 1 
(in other words, pump in (k! / p) times). Note that (k !/ p) must be an integer because 
p < k. The number of a 's in the resulting string is k + (k! / p)p = k + k!. So the 
resulting stringis ak+ k! bk+k! , which has equal numbers of a 's and b's and so is not in L. 

The c10sure theorems provide an easier way. We observe that if L were regu
lar, then -,L would also be regular, since the regular languages are closed under 
complement. ,L = {a" bn 

: n 2": O} U { strings of a 's and b's that do not have a11 
a 's in front of all b's}. If -,L is regular, then ,L n a *b* must also be regular. But 
,L n a*b* = {a/'l b/: n 2": O} , which we have already shown is not regular. So 
neither is -,L or L . 

Sometimes, using the c10sure theorems is more than a convenience. There are lan
guages that are not regular but that do meet alt th e conditions of the Pumping Theo
rem. The Pumping Theorem alone is insufficient to prove that those languages are not 
regular, but it may be possible to complete a proof by exploiting the closure properties 
of the regul ar languages. 

EXAMPLE 8.16 Sometimes We Must Use the Closure Theorems 

Let L = {ai b j ck 
: i , j , k 2": 0 and (if i = 1 then j = k)}. Every string of length at 

least 1 that is in L is pumpable. It is easier to see this if we rewrite the final condi
tion as (i *- 1) 01' (j = k). Then we observe: 

• If i = 0 then: If j *- 0, let y be b; otherwise, let y be c. Pump in or out. Then i 
wilt still be 0 and thus not equal to 1, so the resulting string is in L. 

• lf i = 1 then: Let y be a. Pump in or out. Then i will no longer equal 1, so the 
resulting string is in L. 

• If i = 2 then: Let y be aa. Pump in 01' out. Then i cannot equal 1, so the result
ing string is in L. 

• If i > 2 then: Let y be a. Pump out once or in any nurnber of times. Then i can
not eq ual 1, so the resulting string is in L. 

But L is not regular. One way to prove this is to use the fact that the regular lan
guages a re closed under interseetion. So, if L were regular, then L' = Ln ab*c* 
= { abl ck 

: j , k :> 0 and j = k } would also be regular. But it is not, which we can 
how using the Pumping Theorem. Let w = abkc k. Then y must occur in the first 

k characters of w. If y includes the initial a , pump in once. The resulting string is not 
in L' because it contains more than one a . If y does not include the initial a, then it 
must be bP

, where 0 < p < k. Pump in once. The resulting string is not in L' be
cause it contains more b's than c's. Since L' is not regular, neither is L. 
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EXAMPlE 8.16 (Continued) 

Another way to show that L is not regular is to use the fact that the regular lan
guages are closed under reverse. LI? = {(k b i a i : i , j , k 2: 0 and (if i = 1 then 
j = k)}. If L were regular then L R woul.d also be regular. But it is not, which we 
can show using the Pumping Theorem. Let w = ck bk a. y must occur in the first 
k characters of w, so y = cP, where 0 < p :::; k . Set q to O. The resulting string 
contains a single a , so the number of b's and c 's must be eq ual for it to be in L R

. 

But there are fewer ( 'S than b's. So the resulting string is not in L R. L R is not reg
uLar. Since L R is not regular, neither is L. 

8.5 Exploiting Problem-Specific Knowledge 
Given some new language L , the theory that we have beeIl clescribing provides tbe 
skeleton for an analysis of L. If L is simple, th at may be enough. But if L is based on a 
real problem, any analysis of it will also depend on knowl edge of the task domain. We 
got a hint of this in Example 8.13, where we had to use some knowledge about num
bers and algebra. Other problems also require mathematica l facts. 

EXAMPlE 8.17 The Octal Representation of a Number Divisible by 7 

Let L = {w E {O, 1, 2, 3, 4 ,5, 6, 7} * : w is the octal representation of a nonnega
tive integer that is divisible by 7} . The first several strings in L are: 0, 7, 16, 25 , 34, 
43,52, and 61. Is L regular? Yes, because there is a simple, 7-state DFSM M that 
accepts L. The structure of M takes advantage of the fact that w is in L iff the sum 
of its digits, viewed as numbers, is divisible by 7. So the slates of M correspond to 
the modulo 7 sum of the digits so far. We omit the details. 

Sometimes L corresponds to a problem from a domain ot he r than math ematics, in 
which case facts from that domain will be importan t. 

EXAMPlE 8.18 A Music Language 

Let ~ = {u .J I jl ~ ~} Let L = {w: w represents a song written in 4/4 time}. L is , ," > ,.,. . 
regular. It can be accepted by an FSM that checks for 4 beats be tween measure 
bars, where., counts as 4, J counts as 2, J counts as 1,. counts as 1/2, .~ counts as Ik anel ! 

.~ counts as 1/8. 

Other techniques described in this book can also be appli ed to the language 
of music. (N.1 ) 

, 
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EXAMPLE 8.19 English 

Is English a regular language? If we assurne that there is a longest sentence, then 
English is regular because it is finite. If we ass urne that there is not a longest sen
tence and that the recursive constructs in English can be arbitrarily nested, then it 
is easy to show that English is not regular. We consider a very small subset of Eng
lish, sentences such as: 

• The rat ran. 
• The rat that the cat saw ran. 

• The rat that the cat that the dog chased saw ran. 

There is a limit on how deeply nested sentences such as this can be if people 
are going to be able to understand them easily. But the grammar of English im
poses no hard upper bound. So we must allow any number of embedded sen
tences. Let A = {cat, rat , dog, bi rd, bug, pony} and let V = {ran, saw, chased , 
flew, sang, frolicked} . If English were regular, then L = English n {The A 
(that the A)*V*V} would also be regular. But every English sentence of this 
form has the same number of nouns as verbs. So we have that: 

L = {The A(that the At V 11 V, n ;::: O}. 

We can show that L is not regular by pumping. The outline of the proof is the 
same as the one we used in Example 8.9 to show that ~Bn is not regular. Let 
w = The cat (that the rat)k sawk ran. y must oceur within the first k charae
ters of w. If y is anything other than (the A that)p, or (A that the)p, or (that 
the A)p, for some nonzero p, pump in onee and the resulting string will not be of 
the eorrect form. If y is equal to one of those strings, pump in onee and the num
ber of nouns will no longer equal the number of verbs. In either ease the resulting 
string is not in L. So English is not regular. 

Is there a longest English sentence? Are there other ways of showing that 
English isn 't regular? Would it be useful to deseribe English as a regular lan
guage even if we could? (L.3.1) 

8.6 Functions on Regular Languages 
In Section 8.3, we considered so me important functions that ean be applied to the reg
ular languages and we showed that the dass of regular languages is closed under 
them. In this section, we will look at some additional functions and ask whether the 
regular languages are closed under them. In some cases, we will see that the answer is 
yes. We will prove that the answer is yes by showing a construction that builds one 
FSM from another. In other cases, we will see that the answer is no, which we now 
have the tools to prove. 
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EXAMPLE 8.20 The Function firstchars 

Consider again the fun ction jlrslchars, which we dcfined in xample 4.1 1. Recall 
that jlrslchars(L) = {w : 3 YE L (y = e X ,C E LL, X E L L*' and 1l.' E '* )}. Inother 
words, to compute ji'rstchars(L) , we find all th e c1lara te l' lh at can be initial char
acters of some string in L. For each such characte r e, e* Cfirslc!wrs(L) . 

The regular languages are c1 0sed under jirstc!/{/ rs. 'n, e proof i b con truction. 
If L is a regular language, then th ere ex ists so me DF M M = (K, L, 8. s, A) that 
accepts L. We construct , from M, a new DFSM M ' = (K' , :S. ' . s'. A ' ) that ac
cepts j irslchars( L). The algorithm 10 construct M' i : 

1. Mark all the states in M fro m which thcr exists some path to ome accept
iog state. 

/* Find alJ the ch aracters th at are initi al characters in olll e tring in L. 

2. clist = 0 . 

3. For each character c in L do: 

lf th ere is a transition from s, wilh label c, to . ome tate q, and q \ as 
marked in step 1 th en: 

clist = clisl U {c}. 

r Build M ' . 

4. If clist = 0 then construct M ' with a single tale s', \l hich is not accepting. 

5. Else do: 
Create astart state s' and make it the fi rst state in A '. 

For each character c in clist do: 
Create a new state qc and add it to A ' . 
Add a transition fro m s' to qc labe led c. 
Add a transition from qc to qc labe l d c. 

M ' accepts exact1y the trings in jlrslehars(L) ,sofirsrcJ/Ors( L) i regul ar. 
We can also prove that j7rstehar '(L) must be regul ar by 11m ing how to 0 truct 

a regular expression tl1atdescribes iLWe begin bycomputi ng c/isl = {C I'C_" '" II} 
as described above. Then a regular expre ion lhat de cribe ' jlrslclwr '(L) i : 

CI * U c2* U '" U c,,*. 

The algorithm that we just presented constructs onc program (a DF M). u 'ing an
a ther program (another D FSM) as a ·tarting po int. Thc algo ri th m is traightfo1'\ ' rd . 
We have omit ted a detailed proof of its co rrectn e . b ut th a I. proof is al 'o lraight f, [ 
ward . Suppase th at inslead of represe nting an input langua 'c L as a 0 M. we had 
represented it as an arbitrary program (wrin en in 0 1' J-\ ' j or whate er) th at ac
cepted it. It would not have been as stra ighlfo rward to ha c des ignL:d Cl corre p nding 
algarithm 10 convert th at program into one that accepl ed fi rslclw /'s( L) . \ e ha ju t 
seen another adva ntage 01' th e FSM form ali m. 
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EXAMPLE 8.21 The Function chop 

Consider again the function chop, defined in Example 4.10. Chop(L) = {w: :Jx E 

L(x = X tCX2, x , E LL*, X 2 E LL*' C E LL, lXII = Ix21, and w = X]X2)}' In other 
words, chop( L) is a11 the odd length strings in L with their middle character 
chopped out. 

The regular languages are not closed under chop. To show this, it suffices to 
show one counterexa mple, i.e., one regular language L such that chop(L) is not 
regular. Let L = a*db *. L is regular since it can be described with a regular ex
pression . 

What is chop(a*db*)? Let w be some string in a*db*. Now we observe: 

• lf Iwl is even, then there is no middle character to chop so w contributes no 
string to chop (a*db*) . 

• lf Iw \ is odd and w has an equal number of a 's and b's, then its middle charac
ter is d. Chopping out the d produces, and contributes to chop(a*db*), astring 
in { all bll 

: n ;::: O}. 

• 1f \wl is odd and w does not have an equal number of a 's and b's, then its mid
die character is not d. Chopping out the middle character produces astring 
that still contains one d. Also note that, since Iwl is odd and the number of a 's 
differs from the number of b's, it must differ by at least two. So, when w's mid
dIe characte r is chopped out, the resulting string will still have different num
bers of a 's and b's. 

So chop(a*db*) contains all strings in {a" bll 
: n ;::: O} plus so me strings in 

{WE a*db * : Iw \ is even and #a(w) ::j:. #b(W)}. We can now show that chop(a* 
db *) is not regular. If it were, then the language L' = chop(a*db*) n a*b*, 
would also be regular since th e regular languages are closed under intersection. 
But L' = {alibI! : n ;::: O} , which we have already shown is not regular. So neither 
is chop(a*db*). Since there exists at least one regular language L with the prop
erty that chop(L) is not regular, the regular languages are not closed und er chop. 

EXAMPLE 8.22 The Function maxstring 

D efin e I1wxstring( L) = {w: w E Land 'l/z E L *(z ::j:. B ~ wz g L)}. In other 
words, maxstring(L) contains exactly those strings in L that cannot be extended 
on the right and still be in L. Let 's look at mQxslring applied to some languages: 

L maxstring(L) 
o 0 
a*b* 0 
ab *a ab*a 

a*b*a a*b+a 
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EXAMPLE 8.23 The Function mix 

Definemix(L) = {w : 3x,y,z(xE L, x = yz,lyl = I I, t = yz R)} . [n oth rwords, 
mix(L) contains exactly those strings that can be for med by takin g ome even 
length string in Land reversing its second half. Let's l.ook al mix applied to ome 
languages: 

L 
o 
(a U b)* 

(ab)* 
(ab)"' a(ab)* 

mix(L) 
o 
«(a U b)(a U b))* 
{(ab)21l 1: 1'/ ?: O} U {(ab )"(ba)": 11 ?: O} 

o 

The regul ar languages are c10sed under maxs/ring. They are nOl closed under mix. 
We leave the proof of these claims as an exerci e. 

Exercises 
1. For each of the followin g language ' L , state wh elher L i, regular or not and 

prove your answer: 
a. { aibj : i , j ;;::: 0 and i + j = 5}. 

b. { aibj : i , j ;;::: 0 and i - j = 5}. 

c. { aib j: i , j ;;::: Oand li - j l =s O} . 
d. {wE{O, l ,#}": :'/,/} = x#y, wherex,YE{ O, l }* and Ixl ' lyl =s O}. 
e. {ai bj : 0 ~ i < j < 2000}. 

f. {WE {Y, N}", : w containsat lea tt woY' and atmo tlw N'}. 

g. {w = xy : x , YE {a, bY and lxi = Iyl and #a (x) ;;::: ltaCv)}. 
h. {w = xyzlx:X,y,ZE {a, bY} . 

i. {w = xyzy : x , y, z E {O, l V}· 
J. {w E {O, l }*: #o(w) =I #l(W)} , 

k. {w E {a, b} * : W = wR
} . 

I. { W E {a , b} * : 3x E {a , b } + (w = X xRx) }. 

m. {w E {a, b}* : th e number of occurrence of th e ub trin o ab cqua l th num 
ber of occurrences of the subslrin g ba }. 

n. {w E {a b};]: : w contain exacLl y t wo more b 's th an a ' }. 

o. {W E {a, b}"' : w = xyz, lxi = Iyl = Izl, and z = x wi th CI' ar plac d b 
b and every b replaced by a }. xample: abbbabbaa E L, with x = 
abb, y = bab, and z = baa. 

p. {w : WE {a - z }* al1d th e lelters of w ppea r 111 re er alph abcti ca l ord T} . 

For exampl e, spoonfeed E L. 
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q. {w: W E {a - z} * every letter in W appears at least twice}. For example, 
unprosperousness E L. 

f. {w: W is the decimal encoding oE a natural number in which the digits appear 
in a non-decreasing order without leading zeros}. 

s. {w of the form: <integer, > + <integer2> = <integer3>' where each of the 
substrings <integer, >, <integer2>' and < integer3> is an element of {O -
9} :;: and integer3 is the sum of integer] and integer2}' For example, 
124+5=129 E L. 

t. L o*, where Lo = {bai t>i ak , j ~ 0, 0::; i::; k}. 

u. {W: W is the encoding of a date that occurs in a year that is a prime number} . 
A date will be encoded as astring of the form rnm/dd/yyyy , where each m, d , 
and y is drawn (rom {O - 9}. 

v. {w E {l} *:w is, for some n ~ 1, the unary encoding of lOIl}. (So L = 

{1111111111, 1' 00, 1 lO00, .. . }.) 

2. Far each of the following languages L, state wh ether L is regular or not and prove 
your answer: 

a. {wE{a , b, c} * :ineachprefixxoEw,#a(x) = #b(X) = #c(x))}. 

b. {w E {a, b, c}* : :3 some prefix x of W (#a(x) = #b(X) = #c(x))}. 

c. {w E {a, b, c} * : :3 so me prefix x of W (x * e and #a(x) = #b(X) = #c(x))}. 
3. Define the Eollowing two languages: 

La = {wE{a, b} * :ineachprefixxoE w,#a(x) ~ #b(X)} , 

Lb = {wE{ a, b} *: ineachprefix xof w,#b(x) ~ #a(x)}. 

a. Let L, = La n L b. 1s L] regular? Prove your answer. 

b. Let L2 = La U L b• Is L 2 regular? Prove your answer. 

4. For each of the following languages L , state whether L is regular or not and prove 
your an wer: 

a. {uwwRv:U,v,wE{a, b}+}. 
b. {xY Zy Rx:x,y,zE {a , bt }. 

5. Use the Pumping Theorem to complete the proof, given in L.3.1, that English 
isn't regular. 

6. Prove by conSlruCl ion that the regular languages are closed under: 
a. intersection. 

b. set difference. 

7. Prove that the regular languages are closed under each of the following operations: 
a. pref (L) = {w: :3XE 2: *(wx E L)}. 
b. suff'(L) = {w: :3 x E2:* (xw E L)} . 
c. reverse(L) = {X E 2:*: X = wRfor somewEL}. 

d. letter substitution (as deEined in Section 8.3). 

8. U ing the defintions of maxstring and mix given in Section 8.6, give apreeise def
inition 01' each of the following languages: 
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a. maxslring(N1 BI/) . 

b. maxslring( ai bj ck
, 1 :s k :s j :s i). 

c. maxslring(L j L2) , where LI = {WE {a , b}*: W contains exactly Olle a} and 
L 2 = {al· 

d. mix(aba)*). 

e. mix(a*b*). 
9. Prove that the regular languages are not closed under mix. 

10. Recallthatmaxstring( L) = {w:wELand VzE~>(Z *' g~wz~L)}. 
a. Prove that the regular languages are c\osed under maxsrring. 
b. If maxstring(L) is regular, must L also be regular? Prove your answer. 

11. Define the function midchar CL) = {c: 3w E L( W = ycz , CE LL, y E LL *, z e 
L L*' Iyl = Izl) }. Answer each of the following questions and prove your answer: 

a. Are the regular languages closed under midchar? 
b. Are the nonregular languages closed under midchar? 

12. Define the function lwice(L) = {w: 3x E L (x can be written as C\C2" . C", for 
somen ~ 1, whereeach ciELL, and w = C)C)C2C2 .. · CI/C,,)} , 

a. Let L = (1 U 0)*1. Write a regular expression for rwice(L). 
b. Are the regular languages closed under LWice? Prove you r answer. 

13. Define the function shuffle( L) = {w : 3x E L (w is some pe rmut ation of x)}. For 
example, if L = {ab, abc} , then shuffle( L) = {ab , abc , ba , acb , bac bca, cab, 
cba}. Are the regular languages closed under shuffle? Prove your answer. 

14. Define the function copyandreverse( L) = {w : 3x E L( w = xx Ho )}. Are the reg
ular languages closed under copyandreverse? Prove your answer. 

15. Let LI and L 2 be regular languages. Let L be the language consisting of strings 
that are contained in exactly one of L) and L 2. Prove that L is regular. 

16. Define two integers i and j to be twin primes Q iff both i and j are prime and 
\j - il = 2. 

a. Let L = { w E {1}* : w is the unary notation for a natura l number 11 such 
that there exists a pair p and q of twin primes, bOlh > n. } I L regul.ar? 

b. Let L = {x, y : xis the decimal encoding of a positive integer i , y is the deci
mal encoding of a positive integer j , and i and j are twin primes}. ]s L regular? 

17. Consider any function feLl) = L2, where L I and L2 are both languages over the 
alphabet L = {O, 1}. A function fis niee iff whenever L 2 is regular, L) is regular. 
For each of the following functions, J, state whether or not it is nice and prove 
your answer. 

a. f(L) = L R. 

b. f(L) = {w: w is formed by taking astring in Land replacing all1's with O's 
and leaving the O's unchanged}. 

c. f (L) = L U 0*. 

d. f(L) = {w: w is formed by taking astring in Land replacing a1l1's with O's 
and all O's with l 's (simultaneously)}. 
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e. teL) = {w: :lxEL (w = xOO)}. 
f. teL) = {w: w is formed by taking astring in Land removing the last 

character} . 
18. We 'll say that a language Lover an alphabet L is splitable iff the following prop

erty holds: Let w be any string in L that can be written as cIC2' . . C2m for some 
n ;::: 1, where each Ci E L. Then x = c]e3'" C2n-l is also in L. 
a. Give an example of a splitable regular language. 
b. Is every regular language splitable? 
c. Does there exist a nonregular language that is splitable? 

19. Define the dass IR to be the dass of languages that are both infinite and regular. 
Tell whether the dass IR dosed under: 
a. union. 
b. intersection. 
c. Kleene star. 

20. Consider the language L = {xOlly 111z : n ;::: 0, x E P, Y E Q, zER, where P, Q, 
and Rare nonempty sets over the alphabet {O, l}}. Can you find regular sets P, 
Q, and R such that L is not regular? Can you find regular sets P, Q, and R such 
that L is regular? 

21. For each of the following claims, state whether it is True or False. Prove your 
answer. 
a. There are uncountably many non-regular languages over L = {a, b}. 
b. The union of an infinite number of regular languages must be regular. 
c. The union of an infinite number of regular languages is never regular. 
d. lf L Land L 2 are not regular languages, then LI U L 2 is not regular. 
e. lf L] and L 2 are regular languages, then L 1 @ L 2 = {w: W E (L t - L 2) or 

w E (L2 - LI)} is regular. 

f. If LI and L 2 are regular languages and L t ~ L ~ L 2, then L must be regular. 
g. The interseetion of a regular language and a nonregular language must be 

regular. 

h. The intersection of a regular language and a nonregular language must not be 
regular. 

i. The intersection of two nonregular languages must not be regular. 

J. The intersection of a finite number of nonregular languages must not be 
regular. 

k. The intersection of an infinite number of regular languages must be regular. 

I. It is possible that the concatenation of two nonregular languages is regular. 
m. It is possible that the union of a regular language and a nonregular language 

is regular. 

ß. Every nonregular language can be described as the interseetion of an infinite 
number of regular languages. 

o. lf L is a language that is not regular, then L * is not regular. 
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p. H L* is regular, th en L is regular. 

q. The nonregular language are elo ed under inter eetion. 

r. Every subset of a regular language is regul ar. 
s. Let L4 = L I L2L 3. lf LI and L 2 are regular and L3 is not regular. it i possible 

that L4 is regular. 

t. If L is regular, then so is {xy : XE L and y fi L }. 
u. Every infinite regular language properl y eo ntain . ano th r in fini te r gular 

language. 
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