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PAR T I I 

CONTEXT-FREE LANGUAGES AND 
PUSHDOWN AUTOMATA 

In this section, we move out one level and explore the class of context-free 
languages. 

This c\ass is important. For most programming languages, the set of syntactically 
legal statements is (except possibly for type checking) a context-free language. 
The set of wel\-formed Boolean queries is a context-free language. A great deal 
of the syntax of English can be described in the context-free framework that we 
are about to discuss. To describe these languages, we need more power than the 
regular language definition al\ows. For example, to describe both programming 
language statements and Boolean queries requires the ability to specify that 
parentheses be balanced. Yet we 
showed in Section 8.4 that it is not 
possible to define a regular lan- so Language 

guage that contains exactly the set 
of strings of balanced parentheses. 

We will begin our discussion of 
the context-free languages by 
defining a grammatical formal
ism that can be used to describe 
every language in the class 
(which, by the way, does include 
the language of balanced paren
theses). Then, in Chapter 12, we 
will return to the question of 
defining machines that can ac
cept strings in the language. At 
that point, we'll see that the 
pushdown automaton, an NDFSM 
augmented with a single stack, 
can accept 

o Languages 

COllleX I-Free 
Languages 

PDAs 

Turing Machines 
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202 Part 111 Context-Free Languag es and Pushd own Automata 

exactly the dass of context-free languages that we are about t o describe. In 
Chapter 13, we will see that the formalisms that we have presented stop short 
of the full power that is provided by a more general computational model. So 
we'll see that there are straightforward languages that are not context-free. 
But, because of the restrictions that the context-free formal ism imposes, it will 
turn out to be possible to define algorithms that perform at least the most basic 
operations on context-free languages, includ ing deciding whether astring is in 
a language. We'lI summarize those algorithms in Chapters 14 and 15. 

The theory that we are about to present for the cont ext-free languages is 
not as straightforward and elegant as the one that we have just described for 
the regular languages. We'lI see, for example, that there doesn 't exist an al
gorithm that compares two pushdown automata to see if they are equivalent. 
Given an arbitrary context-free grammar G, there doesn 't exist a linear-time 
algorithm that decides whether astring w is an element of L(G) . But there 
does exist such an algorithm if we restriet our attention to a useful subset of 
the context-free languages. The context-free languages are not closed under 
many common operations like intersection and complement. 

On the other hand, because the class of context-free languages includes 
most programming languages, query languages, and a host of other lan
guages that we use daily to communicate with computers, it is worth taking 
the time to work through the theory that is presented here, even though it is 
less clear than the one we were able to build in Part 11. 
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C H A P T E R 11 

Context-Free Grammars 

W
e saw, in our discussion of the regular languages in Part II, that there are 
substantial advantages to using descriptive frameworks (in that case, FSMs, 
regular expressions, and regular grammars) that offer less power and flexi

bility than a general purpose programming language provides. Because the fr ame
works were res trictive, we were able to describe a large dass of useful operations that 
could be performed on the languages that we defin ed. 

We will begin our discussion of the context-free languages with another restricted 
fo rmalism, the context-free grammar. But before we defin e it , we will pause and an
swer the more general question, "Wh at is a grammar?" 

11 .1 lntroduction to Rewrite Systems and Grammars 
We'1I begin with a very general computational model: Define a rewrite system (also 
ealled a productioll system or a rule-based system) to be a list of rules and an algorithm 
fo r applying them. E ach rule has a left-hand side and a right-hand side. For example, 
the fo llowing could be rewrite-system rules: 

S~ aSb 
aS~c 

aSb ~ bSabSa 

In the discussion that follows, we will foeu on rewrite system that operate on 
strings. But the eore ideas th at we will present can be used 10 define rewrite systems 
that operate on richer data structures. Of course, such data struetures ean be represented 
as string , but the power of many practica l rule-based systems comes frorn the ir ability 
to manipulate other struetures direetl y. 
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204 Chapter 11 Context-Free Grammars 

Expert systems, (M.3.3) are programs that pe rform ta ks in domains like en
gineering, medicine, and business, that req uire expe rti se when done by peo
pie. Many kinds of expertise can naturall y be modeled a sets of 
condition/action rules. So many expert system are built using t ols that sup
port rule-based programming. 

Rule based systems are also used to model busine practices (M.3.4) and 
as the basis far reasoning about the behavior of no npl ayer characte rs in com
puter games. (N.3.3) 

When a rewrite system R is invoked on some initial string w, it operates as follows: 

simple-rewrile(R: rewrite system , w : initia l string) = 

1. Set working-scring to w. 

':: 

2. Until told by R to halt da: i 

2.1. Match the left-hand side of same rule against same part f working-string. 

2.2. Replace the matched part of working-slring with the ri ght-hand side of i 

the rule that was match ed. . •• 

3. Return working-sfring. 

If simple-rewrite(R, w) can return same string s the n we 'll say that R can derive s 
from w or that there exists a derivation in R of s from w. 

Rewrite systems can model natural growth processes, as occur, for example, 
in plants. In addition , evolutionary algorithms can be applied to rule sets. 
Thus rewrite systems can mode l evolutionary processe. (Q.2.2) 

We can define a particular rewrite-systemJormalism by specify ing th form of the rules 
that are allowed and the algorithm by which they will be applied. In most of the rewrite
system formalisms that we will consider, a rul e is simply a pair f tring. If the strmg on 
the left-hand side matches, it is repl aced by the string on the ri ght-hand side. But more 
flexible forms are also possible. For example, variable may be a llowed. Let x be a 
variable. Then consider the rule: 

axa ~ aa 

This rule will squeeze out whatever comes between a pair of a 's. 
Another useful form allows regular expressions as le fl-h and sidc . If we do that we : 

can write rules Iike the following, which squeezes out b' between a 's: 

ab *ab*a ---+ aaa 

The extended form of regular expressio n th at is support ed in programming 
languages like Perl is often used lo write substitutio n rules. (Appe ndix 0) 
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11 .1 Introduction to Rewrite Systems and Grammars 205 

In addition to describing the form of its rules, a rewrite-system formalism must de
scribe how its rules will be applied. In partieuIar, a rewrite-system formalism will define 
the conditions under which simple-rewrite will halt and the method by which it will 
choose a match in step 2.1. For example; one rewrite-system formalism rnight specify 
that any rule that matches may be chosen. A different formalism might specify that the i: 
rules have to be tried in the order in which they are written, with the first one that 
matches being the one that is chosen next 

Rewrite systems can be used to define functions. In this ca se, we write rules that op
erate on an input string to produce the required output string. Rewrite systems can 
also be used to define languages. In this case, we define a unique start symbol. The rules 
then apply and we will say that the language L that is generated by the system is exactly 
the set of strings, over L 's alphabet, that can be derived by simple-rewrite from the start 
symbol. 

A rewrite-system formalism can be viewed as a programming Ianguage and 
some such languages turn out to be useful. For example, Prolog (M.2.3) sup
ports a style of programming ealled logic programming. A logic program is a 
set of ruIes that correspond to logical statements of the form A if B. The in
terpreter for a logic program reasons backwards from a goal (such as A), 
chaining rules together until each right-hand side has been reduced to a set 
of facts (axioms) that are already known to be true. 

The study of rewrite systems has played an important role in the development of the 
theory of computability. We'H see in Part V that there exist rewrite-system formalisms 
that have the same computational power as the Turing machine, both with respect to 
computing functions and with respect to defining languages. In the rest of our discus
si on in this chapter, however, we will foeus just on their use to define languages. 

A rewrite system that is used to define a language is called a grammar. If G is a 
grammar, let L( G) be the language that G generates. Like every rewrite system, every 
grammar contains a list (almost always treated as a set , i.e., as an unordered list) of 
rules. Also, Iike every rewrite system, every gramm ar works with an alphabet, which we 
can call V. In the case of grammars, we will divide V into two subsets: 

• a terminal alphabet, generally called L , wh ich contains the symbols that make up 
the strings in L( G) , and 

• a nonterminal alphabet, the elements of which will function as working symbols 
that will be used while the grammar is operating. These symbols will disappear by 
the time the grammar finishes its job and generates astring. 

One final thing is required to specify a grammar. Each grammar has a unique start 
symbol, often called S. r,r 

Grammars can be used to describe phenomena as different as English (L.3), il: 
programming Ianguages Iike Java (G.1), music (N.1), dance (Q.2.1), the 
growth of living organisms (Q.2.2), and the structure of RNA. (K.4) 
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206 Chapter 11 Context-Free Grammars 

Agrammar formalism (like any rewrite-system fonnali m) specifie the form ofthe 
rules that are allowed and the algorithm by which they will be appli d. The grammar 
formalisms that we will consider vary in the form of the rules that they allow. With one 
exception (Lindenmayer systems, which we' ll describe in Section 24.4), a11 of the gram
mar formalisms that we will consider include a control algorilhm that ignores rule 
order. Any rule that matches may be applied next. 

To generate strings in L( G) , we invoke simple-rewrife (C, S). Simple-rewrite will 
begin with Sand will apply the rules of G , which can be thoughl of (given the control 
algorithm we just described) as licenses to replace one string by another. At eacb step 
of one of its derivations, some rule whose left-hand side matches somewhere in 
working-string is selected. The substring that matched is replaced by the rule's right
hand side, generating a new value for working slring. 

Grammars can be used to define languages that , in turn , define sets of things 
that don 't look at alllike strings. For example, SVG (0.1.3) is a language that 
is used to describe two-dimensiona l graphics. SVG can be described with a 
context-free grammar. 

We will use the symbol => to indicate steps in a derivation . So, for example, suppose 
that G has the start symbol Sand the rules S -- aSb , S -- bSa, and S -- c. Then a der
ivation could begin with: 

S => aSb => aaSbb ==> . .. 

At each step, it is possible that more than one rule's left-hand side matches the 
working string.1t is also possible that a rule 's left-hand ide matches the working string 
in more than one way. In either case, there is a derivation corre ponding to each alter
native. It is precisely the existence of these choices that enables a grammar to generate 
more than one string. 

Continuing with our example, there are three choices at the next ste p: 

S => aSb => aaSbb => aaaSbbb 

S => aSb => aaSbb => aabSabb 

S => aSb => aaSbb => aabb 

(using the first rule) , 

(using the second rule) , and 

(u ing the third rul e). 

The derivation process may end whenever one of the fol .lowin g things happens: 

1. The working string no longer contains any nonterminal ymbols (including, as a 
special case, when the working string is c), or 

2. There are nonterminal symbols in the working string but there i 
the left-hand side of any rule in the grammar. For example, if th 
were AaBb, this would happen if the only Jeft-hand ide were . 

In the first case, but not the second, we say that the working tring i gelleratedby 
the grammar. Thus, the language that a grammar generates inc1ud onJY strings over 
the terminal alphabet (i.e., strings in 2:*). In the secondca e, we have a blocked or non
terminated derivation but no generated string. 
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11.2 Context-Free Grammars and Languages 207 

It is also possible that, in a particular case, neither 1 nor 2 is achieved. Suppose, for 
example, that a gramm ar contained only the rules S - Ba and B - bB, with S the 
start symbol. Then all derivations proceed in the following way: 

S ~ Ba ~ bBa ~ bbBa ~ bbbBa ~ bbbbBa ~ ... 

The working string is always rewriteable (in only one way, as it happens), and so this 
grammar can produce no terminated derivations consisting entirely of terminal sym
bols (i.e., generated strings). Thus this grammar generates the language 0. 

11.2 Context-Free Grammars and Languages 
We've already seen our first specific grammar formalism. In Chapter 7, we defined a 
regular grammar to be one in which every rule must: 

• have a left-hand side that is a single nonterminal, and 

• have a right-hand side that is e or a single terminal or a single terminal followed by .' 
a single nonterminal. 

We now define a context-free grammar (or CFG) to be a grammar in which each 
rule must: 

• have a left-hand side that is a single nonterminal, and 

• have a right-hand side. 

To simplify the discussion that follows, define an A rule, for any nonterrninal symbol 
A, to be a rule whose left-hand side is A. 

Next we must define a control algorithm of the sort we described at the end of the 
last section. A derivation will halt whenever no rule's left-hand side matches against 
working-string. At every step, any rule that matches may be chosen. 

Context-free grammar rules may have any (possibly empty) sequence of symbols on the 
right-hand side. Because the rule format is more flexible than it is for regular grammars, the 
rules are more powerful. We will soon show some examples of languages that can be gen
erated with context-free grammars but that can not be generated with regular ones. 

All of the following are allowable context-free grammar rules (assuming appropri
ate alphabets): 

S-aSb 
S-e 
T-T 
S-aSbbTT 

The following are not allowable context-free grammar rules: 

ST- aSb 
a -aSb 
B-a 

The name for these gramm ars, "context-free," makes sense because, using these 
rules, the decision to replace a nonterminal by some other sequence is made without 
looking at the context in which the non terminal occurs. In Chapters 23 and 24 we will 
consider less restrictive grammar formalisms in which the left-hand sides of the rules 
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208 Chapter 11 Context-Free Grammars 

may contain several symbols. For example, the rule aSa ~ a Ta would be allowed. 'Ibis 
rule says that S can be replaced by T when it is surrounded by a 's. One of those for
malisms is called "context-sensitive" because it mies allow context to be considered. 

Programming language syntax is typically descr ibed using context-free 
grammars, as we 'll see below and in Appendix G. 

Formally, a context-free grammar C is a quadruple (V. L. R, S) , where: 

• V is the rule alphabet, which contains non terminals ( ymbols that are used in the 
grammar but that do not appear in strings in the language) and te rminals, 

• L (the set of terminals) is a subset of V, 

• R(thesetofrules)isafinitesubsetof(V - L) x V*, and 

• S (the start symbol) can be any element of V - L. 

Given a grammar C, define x ~e Y (abbreviated => when Gis d ea r from context) 
to be the binary relation derives-in-one-step , defined so thaI: 

'l/x, y E V :;:(x ~e Y iff x = aA ß, y = a"'!ß , and Ihere ex ists a rul e A ~ 'Y in Re)· 

Any sequence of the form Wo ~e Wl =>c W2 ~e ... =>G W II is called a derivation 
in C. Let =>e'" be the reflexive, transitive c10sure of ~G. We'll call ~e* the derivts 
relation. 

The language generated by G , denoted L( C) , is {1V E L * : S ~ * w} . In other 
words, the language generated by C is the set of all strings of terminals that can be de
rived from S using zero or more applications of rules in G . 

A language L is context-free iff it is generated by some context-free grammar G. 
The context-free languages (or CFLs) are a proper superset of the regular languages. 
In the next several examples, we will see languages that are context-free but not regu
lar. Then, in Chapter 13, we will prove the other part of thi s claim, namely that every 
regular language is also context-free. 

EXAMPLE 11.1 The Balanced Parentheses Language 

Consider BaI = {WE {) , 0 * : the parentheses are balanced}. We showed in 
Example 8.10 that BaI is not regular. But it is context-free because it can be gen
erated by the grammar G = {{ S, ), (), 0, (), R, S), where: 

R = {5~(S) 

5~SS 

5~8}. 

Some example derivations in G: 

5~(S)~O· 
5 ~ (S) ~ (5S) ~ «S)S) ~ (OS) ~ (0(5» ~ (00)· 

So, S ===> * 0 and 5 ~ * (00)· 

... 
! 

i ' 

: 
; 

. 

: 

! 

I'· 

.' 

. 

.... 
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11.2 Context-Free Grammars and Languages 209 

The syntax of Boolean query languages is describable with a context-free 
grammar. (Q.ll) 

EXAMPLE 11.2 AnBn 

Consider AnBn = {anbn: n 2': O}. We showed in Example 8.8 that AnBn is not 
regular. But it is context-free because it can be generated by the grammar 
G = {{S, a, b} , {a, b} , R, S} , where: 

R = {S~aSb 

S~B}. 

What is it about context-free grammars that gives them the power to define lan
guages like BaI and AI1B I1? 

We can begin answering that question by defining a rule in a grammar G to be 
recursive iff it is of the form X ~ WIYW2 , where Y ~G* W3 XW4 and aB of Wl , W z, W3 , 

and W 4 may be any element of V*. A grammar is recursive iff it contains at least one re
cursive rule. For example, the grammar we just presented for Bal is recursive because it 
contains the rule S ~ (S). The grammar we presented for AnBn is recursive because it 
contains the rule S ~ aSb. A grammar that contained the rule S ~ aS would also be 
recursive. So the regular grammar whose rules are {S ~ aT, T ~ a W , W ~ aS, W ~ a} I, I 

is recursive. Recursive rules make it possible for a finite grammar to generate an infi-
nite set of strings. 

Let's now look at an important property that gives context-free gramm ars the 
power to define languages that aren't regular. A rule in a grammar G is self-embedding 
iff it is of the form X ~ W jYW2, where Y~G* W 3XW4 and both W IW 3 and W4W2 are in 
L +. A grammar is self-embedding iff it contains at least one self-embedding rule. So 
now we require that a nonempty string be genera ted on each side of the nested X. The 
grammar we presented for Bai is self-embedding because it contains the rule S ~ (S) . 
The grammar we presented for ~lBn is self-embedding because it contains the rule 
S ~ aSb. The presence of a rule like S ~ aS does not by itself make a grammar self
embedding. But the rule S ~ aT is self-embedding in any grammar G that also con
tains the rule T~ Sb , since S ~ aT and T~G* Sb. Self-embedding grammars are 
able to define languages like Bai, AnBn, a~d others whose strings must contain pairs of 
matching regions, often of the form u V i x Y I Z. No regular language can impose such a re
quirement on its strings. 

The fact that a gramm ar G is self-embedding does not guarantee that L( G) isn't regular. 
There might be a different grammar G' that also defines L( G) and that is not self
embedding. For example, G1 = ({ S, a} , {a} , {S ~ B, S ~ a, S ~ aSa}, S) is self
embedding, yet it defines the regular language a *. However, we note the following two 
important facts: 

• If a gramm ar G is not self-embedding then L(G) is regular. Recall that our defini
tion of regular gramm ars did not allow self-embedding. 
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210 Chapter 11 Context-Free Grammars 

• If a language L has the property that every grammar that dcfincs it is scl f-embedding, 
then L is not regular. 

The res t of the grammars that we will prese nt in this chapt er are sclf-cmbcclcling. 

EXAMPlE 11.3 Even Length Palindromes 

Consider PalEven = {ww R : w E {a, b} *}, the language of even-Iength palindromes 
of a 's and b's. We showed in Example 801 1 that PalEven is not regular. But it is context
free because it can be generated by the grammar G = {{ 5, a, b}. {a, b} R 5}, 
where: 

R = {5~a5a 

5~b5b 

S~ d· 

EXAMPlE 11.4 Equal Numbers of a's and b's 

Let L = {WE {a, b}*: #aew) = #b(W)} , We showed in Example 8.14 that L is 
not regular. But it is context-free because it can be generated by the gramma.r 
G = {{S,a,b} , {a, b} , R, S},where: 

R = {S~ a5b 
S~bSa 

S~SS 

S~e}. 

These simple examples are interesting because they ca pturc. in a couple of lines the 
power of the context-free grammar formali sIll . But o ur real intercst in context-free 
grammars comes from the fact that they can describc uscful and powcrful languages 
that are substantially more complex. 

It quickly becomes apparent, when we star t to build large r grammar. that we need 
a more flexible grammar-writing notation. We' ll u e Ihe fo ll owin g IwO eXl ensions when 
they are helpful: 

• The symbol 1 should be read as "or". 11 allows two or more rules 10 be collapsed 
into one. So the fo llowing single rule is equivalent to 111 rour rul c we wrote in 
Example 11.4: 

5 ~ aSblbSa \SS le 

• We often require nonterminal alphabets thaI contain III rc . mbols than ther are 
letters. To solve lhat problem, we will a ll ow a nonl ermin al symbol 10 be any se
quence of characters surrou nded by angle brack I . SO program> and 
< variable > could be nonterminal symbols using this conventioll . 
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BNF (or Backus Naur form) is a widely used grammatical formalism that ex
ploits both of these extensions. It was created in the late 1950s as a way to de
scribe the programming language ALGOL 60. It has since been extended 
and several dialects developed. (G.l.1) 

EXAMPLE 11.5 BNF for a Small Java Fragment 

Because BNF was originally designed when only a small character set was avail
able, it uses the three symbol sequence : : = in place of ~. The following BNF
style grammar describes a highly simplified and very small subset of Java: 

<block> ::= {<stmt-list>} I {} 
<stmt-list> ::= <stmt> I <stmt-list> <stmt> 
<stmt> ::= <block> I while «cond» <stmt> I 

if «cond» <stmt> I 
do <stmt> while «cond»; I <assignment-stmt>; 
return I return <expression> I 
<method-invocation>; 

The rules of this grammar make it dear that the following block may be legal in 
Java (assuming that the appropriate declarations have occurred): 

{ wh; 1 e (x < 12) { 

}} 

hippo.pretend(x); 
x = x + 2; 

On the other hand, the following block is not legal: 

{ while x < 12}) ( 

}} 

hippo.pretend(x); 
x = x + 2; 

Many other kinds of practical languages are also context-free. For example, 
HTML can be described with a context-free grammar using a BNF-style 
grammar. (Q.1.2) 

EXAMPLE 11.6 A Fragment of an English Grammar 

Much of the structure of an English senten ce can be described by a (large) context
free grammar. For historical reasons, linguistic gramm ars typically use a 
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212 Chapter 11 Context-Free Grammars 

EXAMPLE 11.6 (Continued) 

slightly different notational convention. Nonterminals will be written as strings 
whose first symbol is an upper ca se letter. So the foll owing grammar describes a 
tiny fragment of English. The symbol NP will derive noun phrases; the symbol VP 
will derive verb phrases: 

S~NP VP 
NP~ the Nominal I a Nominal I Nominal I ProperNo 11 11 INP pp 
Nominal ~ N IAdjs N 
N~ cat I dogs I bear I girl I chocolate I rifle 
ProperNoun ~ Chri s I Fl uffy 
Adjs ~ Adj Adjs IAdj 
Adj~ young I older I smart 
VP~VIVNPlvPPP 
V~ like Ilikes I thinks I shot I smells 
PP~Prep NP 
Prep ~ with 

Is English (or German or Chinese) rea ll y contex t-free? (L.3 .3) 

11.3 Designing Context-Free Grammars 
In this section, we offer a few simple strategies fo r des igning straightforward context
free grammars. Later we' lI see that some grammars are bett er than others (for various 
reasons) and we'll look at techniques for finding "good" gra mmars. For now, we will 
focus on finding some grammar. 

The most important rul e to remember in designing a context-frcc grammar to gen-
erate a language L is the following: 

• If L has the property that every string in it has two regions and those regions roust 
bear some relationship to each other (such as being o f the same I ngth) . then the 
two regions must be genera ted in tandem. Otherwise, there is no wa )' to enforce the 
necessary constraint. 

Keeping that rule in mind , there are two simple ways to generate strings: 

• To genera te astring with multiple regions th at must occur in some fi xed o rder hut 
do not have to correspond to each other, use a rulc of the form : 

A~BC . .. 

This rule generates two regions, and the grammar that contain it will then rely on 
additional rules to describe how to form aBregion and how to form a C region. 
Longer rules, like A ~ BCDE, can be used if additional regions are necessary. 
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• To generate astring with two regions that must occur in some fixed order and that 
must correspond to each other, start at the outside edges of the string and generate 
toward the middle. If there is an unrelated region in between the related on es, it 
must be genera ted after the related regions have been produced. 

The outside-in structure of context-free gramm ars makes them weil suited to 
describing physical things, like RNA molecules, that fold. (K.4) 

EXAMPLE 11.7 Concatenating Independent Sublanguages 

Let L = {al1bllcm : n, m ~ O}. Here, the cm portion of any string in L is completely 
independent of the a'1bn portion, so we should genera te the two portions separately 
and concatenate them together. So let G = ({ S, N, C, a, b, c}, {a, b, e}, R, S} where: 

R={S--NC 
N-- aNb 
N--g 
C-- eC 
C--e}. 

1* Generate the two independent portions. 
1* Generate the al1 bll portion, from the outside in. 

1* Generate the em portion. 

EXAMPLE 11.8 The Kleene Star of a Language 

Let L = {aI11bllla/2bI12 ... a'lkb/k : k ~ 0 and "i/i (ni ~ O)}. For example, the follow
ing strings are in L: e, abab, aabbaaabbbabab. Note that L = {allbll

: n ~ O}*, 
which gives a clue how to write the grammar we need. We know how to produce 
individual elements of {allbn 

: n ?:!: O}, and we know how to concatenate regions 
together. So a solution is G = ({ S, M, a, b}, {a, b}, R, S} where: 

R = {S--MS 1* Each M will generate one {allbn : n ?:!: O} 
region. 

1* Generate one region. 

11.4 Simplifying Context-Free Grammars • 
In this section, we present two algorithms that may be useful for simplifying context
free grammars. 

Consider the grammar G = ({S , A, B, C, D, a, b}, {a, b}, R, S), where: 

R = {S--AB!AC 

A--aAb!E 

\ 

I. 
r I 
I 
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B-bA 
C- bCa 
D-AB}. 

G contains two use1ess variables: Cis useless becau e it is not able to generate any 
strings in 2: *. (Every time a rule is applied to a C, a new Cis added.) Dis useless be
cause it is unreachable, via any derivation , from S. So any rul es th at mention eitber C 
or D can be removed from G without changing the language that is generated. We 
present two algorithms, one to find and remove variables like C that a re unproductive, 
and one to find and remove variables like D that are unreachab le. 

Given a grammar G = (V, 2: , R , S), we define removeunproduclive(G) to creale a 
new gramm ar G' , where L (G') = L (G) and G' does not contain any unproductive sym
bols. Rather than trying to find the unproductive symbols directly, removel/l1productive will 
find and mark all the productive ones. Any that are leh unmarked at the end are unproduc
tive. lnitially, all terminal symbols will be marked as productive ince ach of them gener
ates a terminal string (itself). A nonterminal symbol will be marked as productive when it 
is discovered that there is at least one way to rewrite it as a sequence of productive symbols. 
So removeunproductive effectively moves backwards from terminals, marking nontermi
nals along the way. 

removeunproductive( G: CFG) = 

1. G' = G. 

2. Mark every non terminal symbol in G' as unproductive. 

3. Mark every terminal symbol in G' as productive. 

4. Until one entire pass has bee n made without any new symbol being 
marked do: 

For each rule X - Q' in R do: 

lf every symbol in Q' has been marked as productive and X has not yet 
been marked as productive, then mark X as productive. 

5. Remove from Vc ' every unproductive symbo l. 

6. Remove from RC' every rul e with an unproductive s mbol on ei.ther the left
hand side or the right-hand side. 

7. Return Gr 

Removeunproductive must halt because there is on ly som finit number of nonter
minals that can be marked as productive. So the maximum number of tim it can exe
cute step 4 is 1 V - 2: I. Clearly L (G') c;;, L (G) si nce G' ca n produc ~ no derivations 
that G could not have produced. And L (G') = L (G) beca u e thc o nl y de rivations 
that G can perform but G' cannot a re tho e that do not end with a te rmina l tring. 

Notice that it is possible that S 1S unproductive. 111is \ ill happe n pr cisely in case 
L (G) = 0. We will use this fact in Section 14.1.2 to sh w the ex ist nc 01' a procedure 
that decides whether or not a context-free language i empt y. 

Next we'll define an algorithm for getting rid of unreachabl ymbol like D in the 
grammar we presented above. Given a grammar G = V, L. R, S) , we define 
removeunreachable(G) 10 create a new gram ma r G' , wh re L (G') = L (G) and G ' 
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does not contain any unreachable nonterminal symbols. What removeunreachable does 
is to move forward from S, marking reachable symbols along the way. 

removeunreachable(G: CFG) = 

1. G' = G. 

2. Mark S as reachable. 

3. Mark every other nonterminal symbol as unreachable. 

4. Until one entire pass has been made without any new symbol being marked do: 

For each rule X ~ aAß (where A E V - Land a, ß E V *) in R do: 

If X has been marked as reachable and A has not, then mark A as 
reachable. 

5. Remove from Vc ' every unreachable symbol. 

6. Remove from R c ' every rule with an unreachable symbol on the left-hand side. 

7. Return G' . 

Removeunreachable must halt because there is only so me finite number of nonter
minals that ean be marked as reaehable. So the maximum number of times it can exe
eute step 4 is I V - LI. Clearly L (G ') ~ L (G) since G' ean produee no derivations 
that G eould not have produeed. And L (G') = L (G) because every derivation that 
can be produced by G can also be produced by G'. 

11.5 Proving That a Grammar is Correct. 
In the last couple of sections, we described some techniques that are useful in designing 
context-free languages and we argued that the gramm ars that we built were correct 
(i.e., that they correctly describe languages with certain properties). But, given some 
language Land a grammar G, can we actually prove that Gis correct (i.e., that it gen
erates exactly the strings in L)? To do so, we need to prove two things: 

1. G generates only strings in L , and 

2. G generates all the strings in L. 

The most straightforward way to do step 1 is to imagine the process by which G gen
erates astring as the following loop (a version of simple-rewrite, using st in pI ace of 
working-string): 

1. st = S. 

2. Until no nonterminals are left in st do: 
Apply some rule in R to s1. 

3. Output st. 

Then we construct a loop invariant I and show that: 

• I is true when the loop begins, 

• I is maintained at each step through the loop (i.e., by each rule application), and 

• 11\ (st contains only terminal symbols) ~ sI E L. 

Step 2 is generally done by induction on the length of the generated strings. 
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EXAMPLE 11.9 The (orreetness of the AnBn Grammar 

In Example 11.2, we considered the language AIlB Il . We built for it the grammar 
G = {{ S, a , b}, {a, b}, R, S}, where: 

R = {S~ aSb (1) 

S-e}. (2) 

We now show that G is correct. We first show that every string 1U in L(G) is in 
AIlBIl : Let sI be the working string at any point in a derivation in G. We need to de
fine I so that it captures the two features of every string in AIlB Il : The number of 
a 's equals the number of b's and the letters are in the conect order. So we let I be: 

(#a(st) = #b(S/)) I\ (Sf E a*(S U e)b*). 

Now we prove: 

• I is true when st = S: In thi s case , #a(SI) = #b(S/) ) = 0 and SI is 01' the correct 
form. 

• If I is true before a rule fires, then it is true after the rul e fires: To prove this, 
we consider the rules one at a time and show tha t each of the m preserves 1. 
Rule (1) adds one a and one b to st , so it does not change the difference be
tween the number of a 's and the number of b·s. Further, it adds the a to the left 
of Sand the b to the right of S, so if the form constraint wa sa ti . fi ed before ap
plying the rule it still is a ft erwards. Rule (2) adds not hing so it d not change 
either the number of a's or b's or their locations. 

• lf I is true and SI contains only terminal symbols, then sc E AIlBn
: In thi case, st 

possesses the three properties required of all strin gs in AnB n: TIley are com
posed only of a 's and b's, (#a(st) = #b(St)) , and all a 's come bef r a ll b 's. 

Next we show that every string w in AnBIl ca n be g ne rated by G: Every 
string in AIlBIl is of even length , so we will prove th claim o nl y for trings of even 
length. The proof is by induction on Iwl : 
• Base case: If Iwl = 0, then w = e , which ca n be ge ne ra ted by applying rule 

(2) to S. 

• Prove: If every string in AIlBn of length k , where k is e n. an be ge ne rated by 
G, then every string in AnB n of length k + 2 can a l 0 b g n rated. Notice 
that, for any even k, there is exactly one string in AllBn of Icngth k : a k bkf2 • 

There is also only one string of length k + 2, namely aak bk -b, that can be 
generated by first applying rule (J) to produce aSb a nd thn ap plying to S 
whatever rule sequence generated ak

/
2bk

/
2

. By th inductio n hyp th i5, such a 

sequence must exist. 
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EXAMPlE 11.10 The Correctness of the Equal a's and b's Grammar 

In Example 11.4 we considered the language L = {w E {a, b} * : #a( w) = #b( w)}. 
We buiLt for it the grammar G = {{ S, a, b} , {a, b}, R, S}, where: 

R = {S~aSb (1) 
S~bSa (2) 
S~SS (3) 
S~B}. (4) 

This time it is perhaps less obvious that G is eorrect. In partieular, does it gen
erate every sequence where the number of a's equals the number of b's? The an
swer is yes, which we now prove. 

To make it easy to describe this proof, we define the following funetion: 

d(W) = #a(w) - #b(W) , 

Note that astring W 1S in L iff W E {a, b}* and d(w) = O. 
We begin by showing that every string W in L( G) is in L: Again, let st be the 

working string at any point in a derivation in G. Let I be: 

stE {a, b,S}* 1\ d(st) = O. 

Now we prove: 

• I is true when sC = S: In this case, #a(st) = #b(st» = O. So d (st) = O. 

• lf I is true before a rule fires, then it is true after the rule fires: The only sym
bols that can be added by any rule are a, b, and S. Rules (1) and (2) each add 
one a and one b to sc, so neither of them changes d(st). Rules (3) and (4) add 
neither a's nor b's to the working string, so d(st) does not change. 

• If 1 is true and st contains only terminal symbols, then sl E L: In this case, st 
possesses the two properties required of a11 strings in L: They are composed 
only of a 's and b's and d(st) = O. 

It is perhaps less obviously true that G generates every string in L. Can we be sure 
that there are no permutations that it misses? Yes, we can. We next we show that 
every string W in L can be generated by G. Every string in L is of even length, so we 
will prove the claim only for strings of even length. The proof is by induction on I W I. 
• Base case: If Iwi = 0, W = s , which can be generated by applying rule (4) to S. 

• Prove that if every string in L of length S k , where k is even, can be generated 
by G, then every string w in L of length k + 2 can also be generated: Since W 

has length k + 2, it can be rewritten as one of the following: axb, bxa, axa, or 
bxb, for some X E {a, b} *. Ix I = k. We consider two cases: 

• W = axb or bxa. If W E L , then d(w) = 0 and so A(x) must also be O. 
lxi = k . So, by the induction hypothesis, G generates x. Thus G can also 
generate w: It first applies either rule (1) (if W = axb) or rule (2) (if W = 
bxa). It then applies to S whatever rule sequence generated x. By the induc
tion hypo thesis, such a sequence must exist. 
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EXAMPLE 11.10 (Continued) 

• W = axa, or bxb. We consider the former case. The argument is parallel for 
the latter. Note that any string in L , of either of these forms must have 
length at least 4. We will show that W = vy, where bOlh v and y are in L, 
2 :5 lvi :5 k , and 2 :5 Iyl :5 k. If that is so, then G can generate W by first 
applying rule (3) to produce 55, and then generating v trom the first 5 and 
y from the second 5. By the induction hypothesis, it mu t be possible for it 
to do that since both v and y have length :5 k. 

To find v and y, we can imagine building W (which we've rewritten as axa) 
up by concatenating one character at a time on the right. After addiog only 
one character, we have just a . ß(a) = 1. Since 1. E L , ß(1.v) = 0. So tJ. 
(ax) = -1 (since it is missing the final a of w).111e value of ß changes byex
actly 1 each time a symbol is added 10 astring. Since ß i positive when onlya 
single character has been added and becomes negative by the time the string 
ax has been built, it must at some point before 1hen have been O. Let v be the 
shortest nonempty prefix of w to have a value of 0 for ß . Since v is nonempty 
and only even length strings can have ß equal to 0, 2 :5 I v I. Since ß became 0 
sometime before w became ax, v must be at lea t two characters shorter than 
w (it must be missing at least the last character of x plus the final a), so 
lvi :5 k. Since d(V) = 0, V E L. Since w = vy , we know bounds 00 the 
lengthofy:2 :5lyl:5 k.Sinced(w) = Oandd(V) = O, ß( y) mustalsobeO 
and so y E L. 

11.6 Derivations and Parse Trees 
Context-free grammars do more than just describe the set of "trings in a language. 
They provide a way of assigning an internal structure 10 th slrings thal they derive. 
This structure is important because il , in turn , provides thc tarting point for assigning 
meanings to the strings that the grammar can produce. 

The grammatical structure of astring is captured by a parse Iree , which records 
which rules were applied to which nonte rminals during the trin g's derivation. In 
Chapter 15, we will explore the design of programs, called parsers. th at, given a gram
mar G and astring w, decide whether W E L (G) and , if it i , create a par e tree that 
captures the process by which G could have de rived w. 

A parse tree,derived by a grammar G = (V, L, R , 5), i a rooted,ordered tree in which: 

• Every leaf node is labeled with an element of L U {e} , 

• The root node is labeled 5, 

• Every other node is labeled with some element of V - 1 . a nd 

• If m is a nonleaf node labeled X and the children of 11/ are labeled x .. X2,' .. XII 

then R contains the rule X - x" X2, . .. 'XI1' 
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Define the branching Jactor of a grammar G to be length (the number of symbols) 
of the longest right-hand side of any rule in G. Then the branching factor of any parse 
tree generated by Gis less than or equal to the branching factor of G. 

EXAMPlE 11.11 The Pars~ Tree of a Simple English Sentence 

Consider again the fragment of an English grammar that we wrote in Example 11.6. 
That grammar can be used to produce the following parse tree for the sentence 
the smart cat smells chocolate: 

S 

NP VP 

~ 
V NP 

Adjs N NOn~il1al 
A~' I 

I 
N 

1
1 I 

the smart cat smells chocolate 

Notice that , in Example 11.11, the constituents (the subtrees) correspond to objects 
(like some particular cat) that have meaning in the world that is being described. lt is 
clear from the tree that this sentence is not about cat smells or smart cat smells. 

Because parse trees matter, it makes sense,given a grammar G, to distinguish between: 

• G's weak generative cap a city , defined to be the set of strings, L( G), that G gen
erates, and 

• G's strong generative capacity, defined to be the set of parse trees that G generates. 

When we design grammars it will be important that we consider both their weak and 
their strong generative capacities. 

In OUT last example, the process of deriving the sentence the smart cat sme 11 s 
choco 1 ate began with: 

S~NPVP~ ' " 

Looking at the parse tree, it isn't possible to tell which of the following happened next: 

S~ NP VP~The Nominal VP~ 
S~NPVP~NPV NP~ 

Parse trees are useful precisely because they capture the important structural facts 
about a derivation but throw away the details of the order in which the non terminals 
were expanded. 

While it's true that the order in which nonterminals are expanded has no bearing 
on the structure that we wish to assign to astring, order will become important when 

-I 
I 
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we attempt to define algorithms that work with context-free grammars. For example, 
in Chapter 15 we will consider various parsing algorithm for context-free languages. 
Given an input string w, such algorithms must work systematically through tbe space 
of possible derivations in search of one that could have generated 'W . To make it eas
ier to describe such algorithms, we will define two useful families of derivations: 

• A feIt-most derivation is one in which, at each step, the leftmost nonterminal in the 
working string is chosen for expansion. 

• A right-most derivation is one in which , at each step, the rightmost non terminal in 
the working string is chosen for expansion. 

Returning to the smart cat example above: 

• A left-most derivation is: 

S ==> NP VP ==> The Nominal V P ==> The Adjs N V P ==> The Adj N V P ==> 
The smart N VP==> the smart cat VP==> the smart cat V NP==> 

the smart cat smells NP==> the smart cat smel1s Nominal==> 
the smart cat sme 11 sN==> the smart cat sme 11 s choco 1 ate 

• A right-most derivation is: 

S ==> NP VP ==> NP V NP ==> NP V Nominal ==> NP V N ==> NP V choco1 ate => 
NP sme 11 s choco 1 ate ==> the Nominal sme 115 choco 1 ate ==> 

the Adjs N sme 11 s choco 1 ate ==> The Adjs cat sme 11 s choco 1 ate ==> 
the Adj cat sme 11 s choco 1 ate ==> the smart cat sme 11 s choco 1 ate 

11.7 Ambiguity 
Sometimes a grammar may produce more than one parse tree for some (or all) of the 
strings it generates. When this happens, we say that the grammar is ambiguous. More 
precisely, a grammar G is ambiguous iff there is at least one string in L( G) for which G 
produces more than one parse tree. lt is easy to write ambiguous grammars if we are 
not careful. In fact, we already have. 

EXAMPLE 11.12 The Balanced Parentheses Grammar is Ambiguous 

Recall tbe language BaI = {w E 0, (} * : the parentheses are balanced}, for 
which we wrote the gramm ar G = {{ S, ),0, 0 , (}, R, S), where: 

R = {S -+ (S) 
S-+SS 
S-+e}. 

G can produce both of the following parse trees for the string (0)0: 
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( S ) (S) 
/J"...,. I 

( S ) e 

I 
e 
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s 
S-------S 
~ ~ 

S S (S ) 
I ~ I 
e ( S ) e 

I ( 1 ) 
e 

In fact, G can produce an infinite number of parse trees for the string (0)0. 

A grammar G is unambiguous iff, for all strings w, at every point in a leftmost or 
rightmost derivation of w, only one rule in G can be applied. The grammar that we just 
presented in Example 11.12 c1early fails to meet this requirement. For example, here 
are two leftmost derivations of the string (0)0: 

• S ~ SS ~ (S)S ~ «S»S ~ (O)S ~ (O)(S) ~ (0)0. 

• S ~ SS ~ SSS ~ SS ~ (S)S ~ «S)S ~ (O)S ~ (O)(S) ~ (0)0. 

11.7.1 Why Is Ambiguity a Problem? 
Why are we suddenly concerned with ambiguity? Regular grammars can also be am
biguous. And regular expressions can often derive a single string in several distinct ways. 

EXAMPLE 11.13 Regular Expressions and Grammars (an Be Ambiguous 

Let L = {w E { a, b} * : w contains at least one a}. L is regular. It can be defined 
with both a regular expression and a regular grammar. We show two ways in 
which the string aaa can be generated from the regular expression we have writ
ten and two ways in which it can be generated by the regular grammar: 

Regular Expression Regular Grammar 

(a U b)* a (a U b)*. S-a 

S - bS 
choose a from (a U b), then S - aS 
choose a from (aU b), then S - aT 
choose a , then T-a 
choose e from (a U b)*. T-b 

or T- aT 

T-- bT 
choose e from (aU b) *, then 

S S 
choose a, then a"' ..... s '" " a T 
choose a from (aU b) , then /' , ..... 

a S a T 
choose a from (aU b). I I 

a ;:! 
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We had no reason to be concerned with ambiguity when we were discussing reg
ular languages because, for most applications of th em. we don't ca re about assigning 
internal structure to strings. With contex t-free languages, we u 'ually do care about 
internal structure because, given astring w, we wa nt LO assign meaning to w. We al
most always want to assign a unique such meanin g. lt is ge nerall y difficult if not im
possible, to assign a unique meaning without a unique parse tree. So an ambiguous 
grammar, which fails to produce a unique parse tree, is a problem, as we' ll see in our 
next example. 

EXAMPLE 11.14 An Ambiguous Expression Grammar 

Consider Expp wh ich we'll define to be the language of simple arithmetic expressions 
of the kind that could be part of anything from a small calculator to a programming 
language. We can define Expr with the following context-free grammar G = {{ E, i d, 
+, *, (,)}, {id, +, *, (,)}, R, E}, where: 

R={E~E+E 

E~E * E 

E~(E) 

E~ id}. 

So that we can focus on the issues we care about, we've used the terminal sym
bol; d as a shorthand for any of the numbers or variables that can actually occur 
as the operands in the expressions that G generates. Most compilers and inter
preters for expression languages handle the parsing of individual operands in a 
first pass, called lexical analysis, which can be done with an FSM . We'll return to 
this topic in Chapter 15. 

Consider the string 2 + 3 * 5, which we will write as i d + ; d * ; d. Using G, we 
can get two parses for this string: 

E 

id 
2 

E 

+ 

E 

/~ 
E E 

I I 
id * id 
3 5 

E 

/I~ 
E E 

I I 
id + id 
2 3 

E 

.. 

E 

id 

5 

Should an evaluation of this expression return 17 or 25? (See Example 11.19 
fora different expression grammar that fixes this problem.) 
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Naturallanguages, like English and Chinese, are not explicitly designed. So it 
isn't possible to go in and remove ambiguity from them. See Example 11.22 
and L.3.4. 

Designers of practical languages must be careful that they create languages for 
which they can write unambiguous grammars. 

11.7.2 Inherent Ambiguity 
In many cases, when confronted with an ambiguous gramm ar G, it is possible to con
struct a new grammar G' that generates L( G) and that has less (or no) ambiguity. Un
fortunately, it is not always possible to do this. There exist context-free languages for 
which no unambiguous grammar exists. We call such languages inherently ambiguous. 

EXAMPLE 11.15 An Inherently Ambiguous Language 

Let L = {aibiek 
: i, j, k ?: 0, i = j or j = k}. An alternative way to describe it is 

{a"bllem : n, m ?: O} U {all bl7lel1l
: n, m ?: O}. Every string in L has either (or 

both) the same number of a's and b's or the same number of b's and e 's. L is in
herently ambiguous. One grammar that describes it is G = ({ S, Sl' Sz, A, B, a, b, 
e}, {a, b, e}, R, S}, where: 

R = {S~ S11 S2 
SI ~ SIe IA 
A~ aAb I e 

S2~ aSzi B 
B~ bBe I e}. 

1* Generate all strings in {a"b"em 
: n, m > O}. 

1* Generate all strings in {a"bmem: n, m > O}. 

Now eonsider the strings in AnBncn = {aflblle/: n ~ O}. They have two dis
tinct derivations, one through SI and the other through S2' It is possible to prove 
that L is inherently ambiguous: Given any grammar G that generates L there is at 
least one string with two derivations in G. 

EXAMPLE 11.16 Another Inherently Ambiguous Language 

Let L = {aibiakbl
: i,j , k , l ?: 0, i = k or j = l}. L is also inherently ambiguous. 

Unfortunately, there are no clean fixes for the ambiguity problem for context-free 
languages.ln Seetion 22.5 we 'll see that both of the following problems are undecidable: 

• Given a context-free grammar G, is G ambiguous? 
• Given a context-free language L , is L inherently ambiguous? 
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11.7.3 Techniques for Reducing Ambiguity • 
Despite the negative theoretical results that we have ju t mentioned, it i usually very 
important, when we are designing practical languages and lhe ir grammars, that we 
eome up with a language that is not inherently ambiguous and a gramm ar fo r it that is 
unambiguous. Although there exists no general purpose algor ithm to te t for ambigui
ty in a grammar or to remove it when it is found (sinee removal is not always possible), 
there do exist heuristics that we can use to find some of the more cOllllllon sourees of 
ambiguity and remove them. We' lI consider here three grammar truct ure that often 
lead to alllbiguity: 

1. c rules like 5 ---? c. 

2. Rules like 5 ---? 55 or E ---? E + E. In othe r words reeursive rul e whose right
hand sides are symmetrie and eontain a t least two copies of lhe nonterminal on 
the left-hand side. 

3. Rule sets that lead to ambiguous attachment of optional postfixes. 

Eliminating E-Rules 
In Example 11.12, we showed a grammar for the bal anced parentheses language. That 
grammar is highly ambiguous. Its major problem is that it is poss ible to apply the rule 
5 ---? 55 arbitrarily often , generating unneeessary instances of S, which can then be 
wiped out without a trace using the rule 5 ---? c. If we eould eliminate the rul e 5 ---? c, we 
eould eliminate that source of ambiguity. We'lI call any rule who e ri ght-hand side is € 

an E-rule. 
We'd like to define an algorithm that eould remove e- rules from a gramlllar G with-

out changing the language that G generates. Clearl y if e E L (G), th at won 't be possi
ble. Only an e-rule ean generate e. However, it is poss ible to defin e an algorithm that 
eliminates e-rules from G and leaves L( G) unchanged excepl th at if c E L (G), it will 
be absent from the language genera ted by th e new grammar. We will sh w uch an a1-
gorithm. Then we ' lI show a simple way to add e back in , when neee ary, without 
adding baek the kind of e-rules that eause ambiguity. 

Let G = (V, ~, R, S) be any context-free grammar. The followin g algorithm eoo
structs a new gramm ar G' such that L (G') = L (G) - {e} and I c nt ains no e-rules: 

removeEps (G: CFG) = 
1. Let G' = G. 

2. Find the set N of nullable variables in G'. A vari abl Xi IIl1l1abJe iff either: 
(1) there is a rul e X ---? c, or 
(2) there is a rule X ---? PQR . .. such thaI P Q R . ... ar aU nullable. 

So eompute N as folIows: 
2.1. Set N to the set of variables that ali fy ( I). 

2.2. Until an entire pass is made without adding an thing to do: 

Evaluate all ather vari ables wilh respect t (2). Ir any vari
able satisfi es (2) and is not in N, insert it. 
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3. Define a rule to be modifiahle iff it is of the form P ~ aQß for some Q in N 
and any a , ß in V *. Since Q is nullable, it could be wiped out by the applica
tion of s -rules. But those rules are about to be deleted. So one possibility 
should be that Q just doesn 't get generated in the first place. To make that hap
pen requires adding new rules. So, repeat until G' contains no modifiable rules 
that haven't been processed: 

3.1. Given the rule P ~ aQß, where Q E N , add the rule P ~ aß if it is not al
ready present and if aß *- 8 and if P *- aß. This last check prevents adding 
the useless rule P ~ P, which would otherwise be generated if the original 
grammar contained, for example, the rule P ~ PQ and Q were nullable. 

4. Delete from G' all rul es of the form X ~ 8. 

5. Return G'. 

lt remo veEps halts, L (G') = L (G) - {8} and G' contains no s-rules. And 
removeEps must halt. Since step 2 must add a nonterminal to N at each pass and it ean
not add any symbol more than onee, it must halt within I V - L I passes. Step 3 may 
have to be done once for every rule in G and onee for every new rule that it adds. But 
note that, whenever it adds a new rule, that rule has a shorter right-hand side than the 
rule from whieh it came. So the number of new rules that can be generated by some 
original rule in G is finite. So step 3 can execute only a finite number of times. 

EXAMPlE 11.17 Eliminating e-Rules 

Let G = {{S, T, A , B, C, a , b, c}, {a , b, cl , R, S) , where: 

R = {S~ aTa 
T~ABC 

A ~ aA I C 
B~Bb I C 
c~ cI8}. 

On input G , removeEps behaves as folIows: Step 2 finds the set N of nullable 
variables by initially setting N to {C} . On its first pass through step 2.2 it adds A 
and B to N. On the next pass, it adds T (since now A, B , and C are all in N). On the 
next pass, no new elements are found, so step 2 halts with N = {C, A , B, T}. Step 3 
adds the foJlowing new rules to G': 

S ~ aa /* Since T is nullable. 
T ~ BC /* Since A is nullable. 
T~ AC /* Since B is nullable. 
T ~ AB /* Since C is nullable. 
T ~ C /* From T ~ BC, since B is nullable. Or from 

T~B 
T~AC. 

/* FromT ~ BC, since Cis nullable. Or from 
T~AB. 
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EXAMPLE 11.17 (Continued) 

f FromT ~ AC, since C is nullable_ Or trom 
T~AB. 

A ~ a /* Since A is nullable. 
B ~ b /* Since B is nullable. 

Finally, step 4 deletes the rul e C ~ s. 

Sometimes L( G) contains E and it is important to retain il. To hand le this case, we 
present the following algorithm, which constructs a new grammar G" , such that 
L (G") = L (G). I f L(G) contains E, then G" wi ll contain a singl s-rule that can be 
thought of as being "quarantined" .lts sole job is to genera le the string s. It can have no 
interaction with the other rules of the grammar. 

atmostoneEps (G : CFG) = 

1. G" = removeEps (G) . 

2. If Sc is nullable then: /* 1l1is means that E E L (G) . 
2.1. Create in G" a new start symbolS :;' . 

2.2. Add to Rc" the two rules: 5 * ~ E and 5 * ~ Sr;. 

3. Return G". 

EXAMPLE 11.18 Eliminating E-Rules from the Balanced Parens Grammar 

We aga in consider Bai = {w E {), (} * : the parentheses are balanced} and the 
grammar G = {{5,), 0 , {), (}, R, 5), where: 

R = {5~(5) (1) 
5-SS (2) 
5~€}. (3) 

We would like to eliminate the ambiguity in G. Since SE L (G) , we call 
atmostoneEps( G), which begins by applying removeEps to G: 

• In step 2, N = {5}. 

• In step 3, rule (1) causes us to add the rule 5 ~ O. Rule (2) cau es u to con
sider adding the rule S - S, but we omit adding ru]e who e right-hand sides 
and left-hand sides are the same. 

• In step 4, we delete the rule 5 - 13. 

So removeEps( G) returns the grammar G' = ({ S, ), () , {) (}, R , S) where R = 

{5- (5) 
5-0 
5-SS}. 
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In its step 2, atmostoneEps creates the new start symbol S *. In step 3, it adds 
the two rules S * ~ e, S * ~ S. So atmostoneEps returns the grammar G" = 

{{S *, S,) , (}, {), (} , R, S*), where: 

R = {S*~e 

S*~S 

S~(S) 

S~O 
S~SS}. 

The string (0)0 has only one parse in G". 

Eliminating Symmetrie Recursive Rules 

The new grammar that we just built for Bai is better than our original one. But it is still 
ambiguous. The string 000 has two parses, shown in Figure 11.1. The problem now is 
the rule S ~ SS, which must be applied n - 1 times to generate a sequence of n bal
anced parentheses substrings. But, at each time after the first, there is a choice of which 
existing S to split. 

S· S' 
I I 
s S 

~ ~ 
S S S s 

("'A !\ !\ A~A 
() () () () 

FIGURE 11.1 Two parse trees for the 
string OO(). 

The solution to this problem is to rewrite the grammar so that there is no Ion ger a 
choice. We replace the rule S ~ SS with one of the following rules: 

S ~ SS) /* force branching to the left. 

S ~ SlS /* force branching to the right. 

Then we add the rule S ~ SI and replace the rules S ~ (S) and S ~ 0 with the rules 
S\ ~ (S) and S\ ~ O. What we have done is to change the grammar so that branching can 
occur only in one direction. Every S that is genera ted can branch, but no Si can. When an 
the branching has happened, S rewrites to S) and the rest of the derivation can occur. 

So one unambiguous grammar for BaI is G = {{S,), (}, {), (} , R, S), where: 

R={S* ~B (1) 
S* ~ S (2) 
S ~ SS) (3) /* Force branching to the left. 
S~S) (4) 
SI ~ (S) (5) 
S. ~(H It:..\ 
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Th e techniqu e that we just used fo r Ba i is use ful in a ny . itu a tion in which ambi

guity arises from a recursive rul e whose ri ght-h and sidc oIl lai ns two o r more 

copies of th e le ft-h a nd sid e. An impo rl a nl ap pli ca ti n of thi ic.l ea i 10 xpre ion 

languages, like tb e language of a rithlll c li c expre sion th a t \vc introduced in 

Exa mpl e 11.14. 

EXAMPlE 11.19 An Unambiguous Expression Grammar 

Conside r again the language Expn which we de fin ed \. ith th c f Il owing context

free grammar G = { {E, id , + , ", (, ) }, { id , ,;;; , (. ) }, R. E}. wh e r : 

R = {E~ E+E 

E~E *E 

E~(E) 

E -~ id}. 

G is ambiguous in two ways: 

1. It fail s to specify associ a tivity. So fo r exampl e, th e re a re two pa r for the 

string i d + i d + i d, corresponding to th e b racketing (i d i d) ; d and 

id + (id + id). 

2. lt fails to de fine a precede nce hi erarch y fo r th e pera to r a nd *. 0, for ex-

ample, there a re two pa rses for the string i d + i d * i d , corres \ o n ding to the 

bracketings (id + id) * id a nd id + (id * id). 

The first of these proble ms is an alogo lls to th e on \ ju t o lved fo r BaI. We 

could apply that solution here, but th en w 'd still have the o nd problem. We 

can solve botb of them with tbe foJl owing gramm a r G ' = {{ , T F, ; d, 
+, *, (,)} , {id , +, ;!', (, ) }, R, E} , wlle re: 

R ={E~E + T 

E~T 

T~T * F 

T~ F 

F~ (E) 

F~id } . 

lust as we did for Bai, we bave fo rced branchin g to go in a in I dir c tion ( to 

the left) whe n identical ope rators are invo lv d . nd , badd ing th I 

term) and F (for facto r) we hav defin e d a prec d n hi ra r h : T im ha 
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higher precedence than plus does. Using G', there is now a single parse for the 

string i d + i d * i d: 

E 

E T 

I 
T T 

\ \ 
F F 

\ \ 

F 

id + id * id 

Ambiguous Attachment 
The third source of ambiguity th at we will consider ari es when constructs with option
al fragments are nested. The problem in such cases is then , "Given an instance of the 
optional fragment, at what level of the parse tree should it be attached?" 

Probably the most often describedinstance of this kind of ambiguity is known as the 
dangling else problem. Suppose th at we define a programming language with an i f 
statement that can have either of the fo llowing fonns: 

<stmt> ::= i f <cond> then <stmt> 

<stmt> ::= i f <cond> then <stmt> el se <strnt> 

[n other words, the else clause is option al. Then the following statement, with just a 
single el se c1 ause, has two parses: 

i f cond, then i f cond2 then 51, else 512 

In the fir t parse, the single else clause goes with the first i f. (So it attaches high in 
the parse tree.) ]n the second parse, the single el se c1 ause go es with the second i f. (In 
this case, it a ttaches lower in the parse tree.) 

EXAMPLE 11.20 The Dangling Else Problem in Java 

Most programming languages that have the dangling else problem (including C, 
C++, and Java) specify th at each else goes with the innermost ; f to which it can 
be attached. The Java grammar torces this to happen by changing the rules to 
omething like these (presented hefe in a simplified form that omits many of the 

statement types that are allowed): 

<Statement> ::= <lfThenStatement> 1 <lIThenElseStatement> 1 

<lIThenE lseStatementN oShortIf> I ... 
<StatementNoShortIf> ::= <block> 1 <lfTb enE lseStatementNoShortlf> I ... 

<1fTh enStatement> ::= i f «Expre ion» <Statement> 
<lIThenEI eS tatement> ::= i f ( <Expres ion> ) <StatementNoShortIf> el se 

<Statement> 
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EXAMPLE 11.20 (Continued) 

dIThenElseStatementNoShort]f> ::= i f ( <Expre StOIl > ) 
<StatemelltNoShortlf> else <State ment Short If> 

In this grammar. there is a specia l cl as o f stat e ment ca ll cl < Statem nt 
NoShortlf> . These are stateme nt s that a re guara nteed not 10 end with a short 
(i.e. , el se-Iess i f statement). Th e grammar uses lhi cl a I ouara ntee that, if a 
top-level i f stateme nt has an el se cla use, th en any emb ddccl i f must a lso have 
one. To see how this works, con ide r th e foll owing par e Ir c: 

<Sta tement> 

<I rfhen EIseStatement> 

i f (cond) <SlatemenI NoShonlf> el se < tall:l11<.: nl> 

The top-level i f stateme nt claims th e el se clause fo r il e lf by guaranteeing 
that there will not be an e mbedded i f th a t is missing an else . [ I' the re we r , Ihen 
tha t embedded i f would grab th e one el se clause ther i . 

For a discussion of other ways in whieh prog ramlllin g la nguage - ea n so lve 

this problem , see G.3 . 

Attachme nt ambiguil y is a lso a probl em fo r parse rs fot' na tura l lan gua ge such a 
English, as we' lI see in Examplc 11.22 

Proving that a Grammar is Unambiguous 
While it is undeeidable, in general, whelhe r a gra mma r i. 'l lllbi ouo u ' or lI11 '\lllb iguou ,ir 
may be pos ible to prove tha t a par/iclilar gramma r is e ithc r 3lllhi gll( u: r lIna mbigu
ous. A gra mm ar G can be shown to be ambi guo lls by c ' hibitin ) Cl single Irino far 
whieh G prodllees two pa r e trees. To see 11 0w it might bc pos.-ibl ' to pro c that G i 
unambiguous, reeall th at G is lInambi guous irr eve r slrino de ri able in I ha a ingt 
leftmost derivation. So, if we ean how th at , during a ny Icftm os l de ri a lio n 0 1' an string 
W E L (G), exaetly one rul e ean be appliecl , th e n C is un a lllbigllo lls. ~ 

EXAMPLE 11.21 The Final Balanced Pa rens Grammar is Unambiguous 

We return to the final gramm ar G tha t we producecl f r BaI. G = {{, (} . O. 
0 , R, S), where: 
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R = {S*~c (1) 
S*~S (2) 
S ~ SSI (3) 
S~SI (4) 
SI ~ (S) (5) 
SI~O}. (6) 

We prove that Gis unambiguous. Given the leftmost derivation of any string 
w in L( G), there is, at each step of the derivation , a unique symbol , which we'll 
caH X, that is the leHmost nonterminal in the working string. Whatever Xis, it 
must be ex panded by the next rule application, so the only rules that may be 
applied next are those with X on the left-hand side. There are three nontermi
nals in G . We show, for each of them , that the rules that expand them never 
compete in the leHmost derivation of a particul ar string w. We do the two easy 
ca ses first: 

• S *: The only place that S;;: may occur in a derivation is at the beginning. If w = c, 
then rule (1) is the only one that can be applied. If w '* c, then rule (2) is the only 
one that can be applied. 

• SI: If the nex t two characters to be derived are 0, SI must expand by rule (6). 
Otherwise, it must expand by rule (5) . 

In order discuss S, we first define, for any matched set of parentheses In, the 
siblings of In to be the smallest set that includes any matched set p adjacent, on 
the right, to In and alt of p's sibling . So, for example, consider the string: 

(UU)uu 
1 2 3 4 

5 

The se t 0 labe1ed 1 has a single ibling 2. The set (00) labeled 5 has two sib
lings, 3 and 4. Now we can consider S. We observe that: 

• 5 must generate astring in Bai and so it must generate a matched set , possibly 
with siblings. 

• So the [1rst terminal character in any string that S generates is (. Call the string 
that starts with that ( and ends with the ) that matches it , s. 

• The only thing that SI can generate is a single matched set of parentheses that 
has no siblings. 

• Let n. be the number of siblings of s. In order to generate those siblings, S must 
expand by ru]e (3) exactly 11 times (producing 11 copies of 5 I) before it expands 
by rule (4) to produce a single S1 , wlüch will produce s. So at every step in a 
derivation , let p be the number of occurrences of 51 to the right of S. If p < 11 , 

5 must expand by rule (3) . 11' p = 11 , S must expand by rule (4). 
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Going Too Far 

We must be careful , in ge tting rid of ambiguity, that we don't do so at the expense of 
being able to generate the parse trees that we want. [n bolh the arithmetic expression 
example and the dangling e lse case, we we re willing to force one inte rpretation. Some
times, however, that is not an acceptable solution . 

EXAMPlE 11.22 Throwing Away The Parses That We Want 

Let 's return to the small English grammar that we showed in Example 11.6. That 
grammar is ambiguous. It has an ambiguous attachm n1 problem, similar to tbe 
dangling else problem. Consider the following two senlences: 

Chris likes the girl with a cat. 

Chris shot the bear with a rifle. 

Each of these sentences has two parse trees because, in each case, the preposi
tional phrase wi th aN, can be a ttached either to th immediately preceding NP 
(the gi rl or the bear) or to the VP. The correct interpretation for the first sen
tence is that there is a girl with a cat and C hri s like her. In o ther words, the prepo
sitional phrase attaches to the NP. Almost cerla inly, the correct interpretation for 
the second sentence is that there is a bea r (with no rine) and Chris used a rifle to 
shoot it.ln other words, the prepositional phrase aHaehe to the V P. See L.3.4 for 
additional discussion of this example. 

For now, the key point is that we could solve the ambiguity problem by elimi
nating one of the choices for pp attachment. But th en. for one of our two sen
tences, we'd get a parse tree that correspond to nonsense. In o ther words, we 
might still have a grammar with the required weak generative capacity, but we 
would no longer have one with the required stro ng generat ive capacity. The solu
tion to this problem is to add some additional mechani m to th context-free 
framework. That mechanism must be able to choose the par e that corresponds to 
the most likely meaning. 

English parsers must have ways to handl e va ri o us kinds f a tt achme nt am
biguities, including those ca used by pre posilional phra es and re la tive 
clauses. (L.3.4) 

11.8 Normal Forms • 
So far, we 've imposed no restrieti on on the form of the ri ght -hand ides 01' aur gram
mar rules, although we have seen th at some kinds of rul es, lik tho e \ ho e right-hand 
side is c, can make grammars harder to use. In this secti on, we con ide r what happens 
if we carry the idea oE getting rid of e-productio ns a few step fanher. 

, ~ 

" 

, 

I: 
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Normal forms for queries and data can simplify database processing. (H.5) 
Normal forms for logical formulas can simplify automated reasoning in arti
ficial intelligence systems (M.2) and in pro gram verification systems. (H.1.1) 

Let C be any set of data objects. For example, C might be the set of context-free 
grammars. Or it could be the set of syntactically valid logical expressions or a set of 
database queries. We'll say that a set Fis anormalform for C iff it possesses the follow
ing two properties: 

• For every element C of C, except possibly a finite set of special cases, tbere exists 
some element.f of F such that.f is equivalent to c witb respect to some set of tasks. 

• Fis simpler tban tbe original form in which the elements of C are written. By "sim
pler" we mean that at least some tasks are easier to perform on elements of F than 
they would be on elements of C. 

We define normal forms in order to make other tasks easier. For example, it might 
be easier to build a parser if we could make so me assumptions about the form of the 
grammar rules that the parser will use. Recall that, in Section 5.8, we introduced the 
notion of a canonical form for a set of objects. A normal form is a weaker notion, since 
it does not require that there be a unique representation for each object in C, nor does 
it require that "equivalent" objects map to the same representation. So it is sometimes 
possible to define useful normal forms when no useful canonical form exists. We'll now 
do that for context-free grammars. 

11.8.1 Normal Forms for Grammars 

We'll define the following two useful normal forms for context-free grammars: 

• Chomsky Normal Form: In a Chomsky normal form grammar G = (V, L , R , S), 
a1l rules have one of the f01l0wing two forms: 

• X ~ a, where a E L , or 

• X ~ BC, where Band C are elements of V - L. 

Every parse tree that is generated by a grammar in Chomsky normal form has a 
branching factor of exact1y 2, except at the branches that lead to the terminal 
nodes, where the branching factor is 1. This property makes Chomsky normal form 
grammars useful in several ways, including: 

• Parsers can exploit efficient data structures for storing and manipulating binary 
trees. 

• Every derivation of astring w contains Iwl - 1 applications of some rule of the 
form X ~ BC, and Iwl applications of some rule of the form X ~ a. So it is 
straightforward to define adecision procedure to determine wh ether w can be 
generated by a Chomsky normal form grammar G. 
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In addit ion, because the form of all the rul e is ' 0 rcs triclcd. il is ea ier than it 
would otherwise be to define other algor ithm. that manipulatc grammar . 

• Greibach Normal Form : In a G reibach normal form ramm ar G = (V. L, R, S) , 
all rules have th e following form: 

• X~aß,where a E 2:andß E (V - 2:r. 
In every deri va tion that is produced by a gram mar in rciba h no rmal form, pre
cisely one termin al is generated for each rule app li cat ion.l11i 1 ropen y i u e(ul in 
several ways, including: 

• Every derivation of astring 'LU co ntai n ' 11(11 ru lc app li ca lion . aga in it is 
straightforward to defin e a dcc i ion procedure to dctcrmin c whether 7 can be 
generated by a Greibach norm al form grammar G. 

• As we 'lI see in Theorem 14.2, G reibach norm al form gralllm ar' ca n asily be 
converted to pushdown au tomata with 11 0 e-t ransili ons. Thi. i ' U ' ful because 
such PDAs are guarant eed to hall. 

THEOREM 11.1 Chomsky Normal Form 

Theorem: Given a context-free grammar G, there cxis!. a e h m ky normal form 
grammar C such th at L (Ge) = L (Ge) - {e} . 

Proof: The proof is by co nstructi on, using th e algo rithm COll l'errrO hOll1sk pre

sen ted below. 

THEOREM 11.2 Greibach Normal Form 

Theorem: Given a context-free gramm ar C, thcre ex i. t. ·l re ibach normal form 
grammar Ge such th at L (Ge) = L (G) - {c l · 

Proof: The proof is also by construction. W 1 rc ent it in 0 .1. 

11.8.2 Converting to a Normal Form 
Normal form s are useful if lhere exisls a proccdurc for con c rting an arbilrar bj t 

into a corresponding obj ect th at meets the requiremcnt · of th norm al form. AIgo~ 

rithms to convert grammars into normal forms generall be in wi lh a rammar G and 
then operate in aseri es of teps as fol low : 

1. Apply some transform ation to C 10 ge t rid of undcsirablc prop ' rL I. that 
the language generated by G is un changcd. 

2. Apply another tran formation to G to ge t rid or undc 'irable prop rt 

that the language generated by G is un changcd (lml th aI unde 'irabl pr 
has not been reintroduced. 

3. Continue until the gramm ar is in th de ired f rm . 

Because it is possibl e for one tr an form ali on lO undo thc \ ork )f an ear lier 
order in which the transformation step ar pcrform cd i. ort 11 rit i al 10 th rr t-
ness of th e transformation alg rithm . 
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One transformation that we will exploit in converting grammars both to Chomsky 
normal form and to Greibach normal form is based on the following observation. Con
sider a grammar that contains the three rules: 

X~aYc 

Y~ b 

Y~ZZ 

We can construct an equivalent grammar by replacing the X rule with the ruIes: 

X~abc 

X~aZZc 

In tead of letting X generate an instance of Y, X immediately generates whatever Y 
could have generated . The following theorem generalizes this claim. 

THEOREM 11.3 Rule Substitution 

Theorem: Let G = (V , L , R, S) be a context-free grammar that contains a rule r of 
the form X ~ a Yß , where a and ß are elements of V * and Y E (V - L). Let 
y ~ y,ly21 .. . IYIl be an of G 's rules whose left-hand side is Y. And let G' be the 
result of removing (rom R the rule rand replacing it by the rules 
X ~ aY,ß , X ~ aY2ß , .. ·, X ~ aYnß. Then L (G') = L (G). 

Proof: We first show that every string in L( G) is also in L (Gf): Suppose that w is in 
L( G). If G can derive w without using rule r, then G' can do so in exactly the 
same way. H G can derive w using rule r, then one of its derivations has the fol
lowing form , for some value of k between 1 and 11: 

Then G' can derive w with the derivation: 

Next we show th at on ly strings in L( G) can be in L( Gf). This must be so be
cause the action of every new rule X ~ a Ykß could have been performed in G by 
applying the rule X ~ a Yß and then the rule Y ~ Yk. 

11.8.3 Converting to Chomsky Normal Form 

There exists a straightforward rour-step algorithm that converts a grammar 
G = (V, L, R, S) into a new grammar G such that G is in Chomsky normal form and 
L (Ge) = L (G) - {e}. Define: 

co 17 vertl0 Chom.sky ( G: CFG) = 

1. Let G be the result of removing from G all e-rules, using the algorithm 
ren10veEps defi ned in Section 11.7.4. 

2. Let Ge be the re ult of removing from Ge all unit productions (rules of the 
form A ~ B) , using th e algorithm removeUnits defined below. It is important 
tha1 removP1 lnit<· ,."" ~ f.. _ _ .. - ' 
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productions. Once this step has been completed, a11 rules whose right-hand 
sides have length 1 are in Chomsky normal form (i.e., they are eomposed of a 
single terminal symbol). 

3. Let Ge be the result of removing from Ge a ll rul es who e right-hand sides 
have length greater than 1 and include a terminal (e.g. , A - aB or A - BaC). 
This step is simple and can be performed by the algorithm removeMixed given 
below. Onee this step has been comple ted, all rules whose right-hand sides 
have length 1 or 2 are in Chomsky normal form. 

4. Let Ge be the result of removing from G all rules whose right-hand sides 
have length greater than 2 (e.g. , A - BeDE). This step too is simple. It can be 
performed by the algorithm rem oveLong given below. 

5. Return Ge. 

A unil produclion is a rule whose right-hand side eonsists of a single non terminal 
symbol. The job of removeUnits is to remove all unit produetions and to replace them by 
a set of other rules that aecomplish the job previously done by the unit productions. SOt 

for example, suppose that we start with a grammar G that contains the following ruIes: 

S--Xy 
X--A 
A-BI a 
B- b 

Once we get rid of unit productions, it will no longer be possible for X to becorne A 
(and then B) and thus to go on to generate a or b. So X will need the ability to go directly 
to a and b, without any intermediate steps. We ean define removeUnits as folIows: 

removeUnits(G: CFG) = 

1. Let G' = G. 

2. Until no unit produetions remain in G' do: 
2.1. Choose some unit production X -- Y. 
2.2. Remove it from G'. 
2.3. Consider only rules that still remain in G'. For every rule Y -- ß where 

ß E V*, do: 

Add to G' the rule X - ß unless that is a rule that has already been 
removed onee. 

3. Return G'. 

Notice that we have not bothered to check to make sure th at we don 't insert a rule 
that is already present. Since R, the set of rules, is a set, inse rting an e leme nt that is al
ready in the set has no effect. 

At each step of Üs operation , removeUnits is performing the kind of rule substitution 
described in Theorem 11.3. (It happens that both a and ß are empty.) So that theorem 
teUs us that, at eaeh step, the language generated by G' is unchanged from the previous 
step. If removeUnits halts, it is dear that all unit productions have been removed. It is 
less obvious that removeUnits can be guaranteed to halt. At each step, one unit produc
tion is removed, but several new rules may be added including n w unit productions. To 
see that removeUnit must halt , we observe that there is a bound = I V - 2: 1

2 on the 
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number of unit productions that can be formed from a fixed set V - L of nonterminals. 
At each step, removeUnits removes one element from that set and that element can 
never be reinserted. So removeUnits must halt in at most 1 V - L 1

2 steps. 

EXAMPLE 11.23 Removing Unit Productions 

Let G = (V, L, R, S), where: 

R = {S~XY 
X~A 

A~Bla 
B~b 

Y~T 

T~Ylc}. 

The order in which removeUnits chooses unit productions to remove doesn't 
matter. We'll consider one order it could choose: 

Remove X ~ A. Since A ~ B 1 a, add X ~ B I a. 
Remove X ~ B. Add X ~ b. 

Remove Y ~ T. Add Y ~ Y I c. Notice that we've added Y ~ Y, which is 
useless, but it will be removed later. 

RemoveY ~Y. Consider addingY ~ T, but don't since it has previously been 
removed. 

Remove A ~ B. Add A ~ b. 

Remove T ~ Y. Add T ~ c, but with no effect since it was already present. 

At this point, the rules of Gare: 

S~XY 

A~al b 
B~b 

T~c 

X~al b 
Y~c 

No unit productions remain, so removeUnits halts. 

We must now define the two straightforward algorithms that are required by steps 3 
and 4 of the conversion algorithm that we sketched above. We begin by defining: 

removeMixed (G: CFG) = 
1. Let G' = G. 

2. Create a new nonterminal 7;, for each terminal a in L. 

3. Modify each rule in G' whose right-hand side has length greater than 1 and that 
contains a terminal symbol by substituting 7;, for each occurrence of the terminal a. 

4. Add to G', for each 7;" the rule 7;, ~ a. 
5. Return G'. 
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EXAMPLE 11.24 Removing Mixed Productions 

The result of applying removeMixed to the grammar: 

A-a 
A-aB 
A -BaC 
A -BbC 

is the grammar: 

A -a 
A-TaB 
A-BTaC 
A-BT/JC 
Ta-a 
T/J -b 

Fina lly we define remove Long. The idea fo r removeLong is simple. If there is a rule 
with n symbols on its ri ght-h and side, replace it with a se t of rules. 1l1e first rule gener
ates the first symbol fo Ilowed by a new symbol that will correspo nd to " the rest '. The 
next rule rewrites tha t symbol as the seco nd of th c origin al symbo ls. fo ll owed by yet 
another new one, again corresponding to " the rest". and so fo rth , llntil there are only 
two symbols left to generate. So we define: 

removeLong (G: CFG) = 

1. Let G' = G. 

2. For each G ' rul e r k of the fo rm A - NIN2N.,N-\ .. . N" . 11 > 2, create new non-
. I M k M k M k te rmma s 2, 3, . . . 11 - 1' 

3. In G' , replace r k with the rule A - NIM \ . 

4. To G' , add the rul es M \ - NzM k
J, M \ - N.1M\ , .. . M \ _I - N" - IN,,. 

5. R eturn G '. 

When we illustrate this algorithm , we typica ll y o mit the super. crip ts on the M's, and, 
instead , guarantee that we use di stinct nontermin als by llsing distinct subscripts. 

EXAMPLE 11.25 Removing Rules with Long Right-hand Sides 

The result of applying removeLong to the single rule grammar: 

is the grammar with rules: 

A -BCD EF 

A- BM2 

M2 - CM3 

M3 -DM 4 

M4 - EF 
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We can now illustrate the four steps of converttoChomsky. 

EXAMPlE 11.26 Converting a Grammar to Chomsky Normal Form 

Let G = ({S, A, B, C, a, cl , {A , B, Cl, R, S), where: 

R = {S~aACa 

A~Bla 

B~cl c 

C~cCle}. 

We convert G to Chomsky normal form. Step 1 applies removeEps to eliminate 
e-productions. We compute N, the set of nullable variables. Initially N = {C}. 
Because of the rule B ~ C, we add B. Then, because of the rule A ~ B, we add A . 
So N = {A, B, Cl. Since both A and C are nullable, we derive three new rules 
from the first original rule, giving us: 

S~ aACa I aAa I aCa I aa 

We add A ~ e and B ~ e, but both of them will disappear at the end of this 
step. We also add C ~ c. So removeEps returns the rule set: 

S ~ aACa I aAa I aCa I aa 

A~Bla 

B~clc 

C~cC I c 

Next we apply removeUnits: 

Remove A ~ B. Add A ~ C I c. 
Remove B ~ C. Add B ~ cC (and B ~ c, but it was already there). 
Remove A ~ C. Add A ~ cC (and A ~ c, but it was already there). 

So removeUnits returns the rule set: 

S ~ aACa I aAa I aCa I aa 
A~a I cl cC 
B~c I cC 
c~cci c 

Next we apply removeMixed, which returns the ruie set: 

S ~ TaACTa I TaATa I TaCTa I TaTa 
A~a I cl TeC 

B~c I TeC 

C~TcC I c 
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EXAMPLE 11.26 (Continued) 

Finally, we apply removeLong which returns the rule set: 

S -7 r;,St 
SI -7 AS2 

S2 -7 Cr;, 
A -7 ale 1 TeC 
8-7 cl TeC 
C -7 TeC 1 c 
Ta -7 a 
Tc -7 c 

From Example '] 1.26 we see that the Chomsky normal form ver 'ion of a grammar 
may be longer than the original grammar was. How much Ion ge r? And how much time 
may be required to execute the conversion algorithm? We can answer both of these 
questions by answering them far eaeh of the steps that the conve rsion alg rithm exe
eutes. Let 11 be the length of an original gramm ar G.1l1en we have: 

1. Use removeEps to remove c-rules: Suppose tha t G conta ins a rul of the form 
X -7 A]A2A 3 . . . Ak . 1f all of the variables Al through Ak are null able, this single 
rule will be rewritte n as 2k -l rules (sinee each of th e k n ntcrminals can either 
be present or not, except that they cannot all be absent ). Since k ca n grow as n, 
we have that the length of the gramm ar that rem oveEps produces (and thus the 
amount of time that removeEps req uires) i 0 (2") In this wor t ca e, the con
version algorithm beeomes impractical for all but toy gramm ars. We can prevent 
this worst case from occurring though . Suppose th at all ri ght-hand ides can be 
guaranteed to be short. For example, suppose they all have length at most 2. 
Then no rule will be rewritten as more than 3 rul es. We can make thi guarantee 
if we modify convertto Chomsky slightl y. Wc will run rel1lo veLong as step 1 
rat her than as step 4. Note that none of the ot her steps an create a rute whose 
right-hand side is longer than the right-hand side of me rulc that aIr adyex
ists. So it is not necessary to rerun remo ve Long la le r. With lhi change 
removeEps runs in lin ear time. 

2. Use removeUnits to remove unit productions: We' e Iready " hown that this step 
must halt in at most I V - L 12 steps. Each of those tep ta ke. con ta nt time and 
may create one new rul e. So the length of the grammar that rellloveUnirs pro
duces, as weil as the time req uired forit to run is 0 (11

2
) . 

3. Use removeMixed to remove rules with ri ght-h and side of length reat r than 1 
and that contain a terminal symbol: This step runs in linea r til11e and con tructs a 
grammar whose size grows Iinearly. 
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4. Use removeLong to remove rules with long right-hand sides:This step runs in lin
ear time and constructs a gramm ar whose size grows linearly. 

So, if we change converttoChomsky so that it does step 4 first, its time complexity is 
o (n 2

) and the size of the grammal' that it produces is also 0 (n2). 

11.8.4 The Price of Normal Forms 

While normal fonns are useful for many things, as we will see over the next few chap
ters, it is important to keep in mind that they exact a price and it 's one that we may or 
may not be willing to pay, depending on the application. If G is an arbitrary context-free 
grammar and G' is an equivalent grammar in Chomsky (or Greibach) normal form, 
then G and G' genera te the same set of strings, but only in rare cases (for example if G 
happened al ready to be in normal form) do they assign to those strings the same parse 
trees. Thus, while converting a grammar to a normal form has no effect on its weak gen
erative capacity, it may have a significant effect on its strong generative capacity. 

11.9 Island Grammars • 
Suppose that we want to parse strings that possess one or more of the following 
properties: 

• Some (perhaps many) of them are ill-formed. In other words, while there may be a 
gramm ar that describes what strings are "supposed to look like", there is no guar
antee that the actual strings we'll see conform to those rules. Consider, for example, 
any grammar you can imagine for English. Now imagine picking up the phone and 
hearing something like, "Um, I uh need a copy of uh my bill for er Ap, no May, I 
think , or June, maybe all of them uh, 1 guess that would work." Or consider a gram
mal' for HTML. It will require that tags be properly nested. But strings like 
<b><i >bo 1 d i ta 1 i c</b></i > show up not infrequently in HTML documents. 
Most browsers will do the right thing with them, so they never get debugged. 

• We simply don't know enough about them to build an exact model , although we do 
know something about some patterns that we think the strings will contain. 

• They may contain substrings in more than one language. For example, bi(multi)lin
gual people often mix their speech. We even give names to some of the resulting hy
brids: Spanglish, Japlish, Hinglish , etc. Or consider a typical Web page. It may 
contain fragments of HTML, Java script , 01' other languages, interleaved with each 
other. Even when parsing strings that are aB in the same "language" , dialectical is
sues may arise. For example, in response to the question , "Are you going to fix din
ner tonight?" an American speaker of English might say, "I could," while a British 
speaker of English might say, "1 could do." Similarly, in analyzing legacy software, 
there are countless dialects of languages like Fortran and Cobol. 

• They may contain some substrings we care about, interleaved with other substrings 
we don 't ca re about and don 't want to waste time parsing. For example, when pars
ing an XML document to determine its top level structure, we may have no interest 
in the lext or even in many of the tags. 
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Island gramm ars can playa useful role in reverse engineering oftware sys
tems. (H.4.2) 

In all of these ca ses, the role of any grammar we might build i differ nt than the 

I 

role a grammar plays, say, in a compiler. In the latter case, thc gramma r i pre criptive. I, 

A compiler can simply reject inputs that do not conform to th e grammar it i given. I! : 

Contrast that with a tool whose job is to analyze legacy software 01' handle customer 
phone calls. Such a tool must do the best it can with the input that it ces. When build
ing tools of that sort, it may make sense to exploit wh at is called an i hnd grammar.AD 
island grammar is a grammar that has two parts: 

• A set of detailed rules that describe the fragments that we care about. We'll call 
these fragments islands. 

• A set of flexible rules that can match everything else. We 11 ca ll eve rything else the 
water. 

A very simple form of island grammar is a regular express io n th at ju t describes the 
patterns that we seek. A regular expression matcher igno res thos parts of the input 
string that do not match the patterns. But suppose that the patterns we are looking fOT 

cannot be described with regular expressions. For exampl e, they may req uire balanced 
parentheses. 01' suppose that we want to assign structure to the islands. In that case, we 
need something more powerful than a regular expression (01' a regular grammar). ODe 
way to view a context-free island grammar is that it is a hybrid between a context-free 
grammar and a set of regular expressions. 

To see how island grammars work, consider the problem of examining legacy soft
ware to determine patterns of static subroutine invocation. To olve this problem, we 
could use the following island grammar, which is a simplification and modification of 
one presented in [Moonen 2001]: 

[1] 

[2] 
[3] 
[4] 

[5J 

<input> ~ <chunk>* 

<chunk> ~ (ALL <id> «expr> ) 

<chunk> ~ (ALL ERROR «expr» 

<chunk> ~ <wale r> 

<water> ~ L* 

lcon ( ALL)I 

lrejectl 

la oid l 

Rule 1 says that a complete input fi le is a se t of chunks. The n xt threc rules describe 
three kinds of chunks: 

• Rule 2 describes the chunks we are tryin g to find . A sum c th a t ano th r set of 
rules (such as the ones we considered in Example 11.19) defin c th e valid syn
tax for expressions. Those rules may exp loit th e full pm er of a context-free 
grammar, for example to guarantee that pare nthe iz d expr ion are proper
Iy nested. Then rule 2 will find well-formed funetion calls. The action a ociated 
with it , {cons (CALL)}, teils the par er what kind of n de to build wh never 

this rule is used . 
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• Rule 3 describes chunks that, although they could be formed by rule 2, are struc
tures that we know we are not interested in. In this case, there is a special kind of 
error call that we want to ignore. The action {reject} says that whenever this rule 
matches, its result should be ignored. 

• Rule 4 describes water, Le., the chunks that correspond to the parts of the pro gram 
that aren 't CALL statements. Rule 5 is used to generate the water. But notice that 
it has the {avoid} action associated with it. That means that it will not be used to 
match any text that can be matched by some other, non-avoiding rule. 

Island grammars can be exploited by appropriately crafted parsers. But we should 
note here, to avoid confusion, that there is also a somewhat different notion, called 
island parsing, in which the goal is to use a standard gramm ar to produce a compiete 
parse given an input string. But, while conventional parsers read and analyze their in
puts Ieft-to-right, an island parser first scans its input looking for one or more regions 
where it seems likely that a correct parse tree can be built. Then it grows the parse tree 
outward from those " islands" of (relative) certainty. If the input is ill-formed (as is likely 
to happen, for example, in the case of spoken language understanding) , then the final 
output of the parser will be a sequence of islands, rat her than a complete parse. So is
land gramm ars and island parsing are both techniques for coping with ill-formed and 
unpredictable inputs. Island grammars approach the task by specifying, at grammar
writing time, which parts of the input should be analyzed and which should be ignored. 
Island parsers, in this other sense, approach the task by using a full grammar and decid
ing, at parse time, which input fragments appear to be parsable and which don't. 

11.10 Stochastic Context-Free Grammars • 
Recall that, at the end of our discussion of finite state machines in Chapter 5, we intro
duced the idea of a stochastic FSM: an NDFSM whose transitions have been augment
ed with probabilities that describe some phenomenon that we want to model. We can 
apply that same idea to context-free grammars: We can add probabilities to grammar 
rules and so create a stochastic context-free grammar (also called a probabilistic con
text-Jree grammar) that generates strings whose distribution matches some naturally 
occurring distribution with which we are concerned. 

A stochastic context-free grammar can be used to generate random Eng
lish text that may seem real enough to fool some people Q . 

A stochastic context-free grammar G is a quintuple (V, L , R, 5, D) , where: 

• V is the rule alphabet , which contains non terminals (symbols that are used in the 
grammar but that do not appear in strings in the language) and terminals, 

• L (the set of terminals) is a subset of V, 

• R (the set ofrules) is a finite subset of(V - L) X V *, 

• 5 (the start symbol) can be any element of V - L , and 
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• D is a function from R to [0 - 1] . So D assigns a probability to each rule in R. D 
must satisfy the requirement that, for every non terminal ymbol X. the sum of the 
probabilities associated with all rules whose left.-hand side is X must be 1. 

EXAMPLE 11.21 A Simple Stochastic Grammar 

Recall PalEven = {ww R : w E {a, b} *}, the language of even-Iength palin
dromes of a's and b's. Suppose that we want to describe the specific case in whicb 
a's occur three times as often as b's do. Then we might write the grammar 
G = ({S, a, b}, {a, b}, R, S, D), where Rand D are defined a folIows: 

S ~ aSa [.72] 
S ~ bSb [.24] 
S~8 [.04] 

Given a grammar G and astring s, the probability of a particular parse tree t is tbe 
product of the probabilities associated with the rules that were used to generate it. In 
other words, if we let C be the collection (in which duplicates count) of rules that were 
used to generate t and we let Pr(r) be the probability associated with rule r, then: 

Pr (t) = IIpr (r) . 
r EC 

Stochastic context-free grammars play an important role in naturallanguage 
processing. (L.3.6) 

Stochastic grammars can be used to answer two important kinds of questions: 

• In an error-free environment, we know that we need to analyze a particular string s. So 
we want to solve the following problem: Given s, find the most likely parse tree for it. 

• In a noisy environment, we may not be sure exactly what string we need to analyze. 
For example, suppose that it is possible that the re have b n spelling err rs so tbe 
true string is similar but not identicallO the one we have b er ed.Or uppose tbat 
there may have been transmission errors. Or suppo e that we have transcribed a 
spoken string and it is possible that we didn 't hea r it correctly. In all of these cases 
we want to solve the following problem: Given a se t of possible true string X and 
an observed string 0 , find the particular string s (and po sibly also the most likely 
parse for it) that is most likely to have been the one that wa actually generated. 
Note that the probability of generating any particular string w i the sum of the 
probabilities of generating each possible parse tree for 1 . In o the r words, if T is the 
set of possible parse trees for w, then the total probability of g nerating w is: 

Pr (w) = ~ Pr (t ). 
( E T 

I! ' 

, 

I : 

!I : 

I, ' 
I: . 
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Then the sentence s that is most likely to have been generated, given the obser
vation 0, is the one with the highest conditional probability given o. Recall that 
argmax of w returns the value of the argument w that maximizes the value of the 
function it is given. So the highest prob ability sentence s is: 

s = argmax Pr (wlo) 
W€x 

Pr (olw)Pr (w) 
= argmax ()' Pr 0 

W€x 

Stochastic context-free grammars can be used model the three-dimensional 
structure of RNA. (K.4) 

In Chapter 15, we will discuss techniques for parsing context-free languages that are 
defined by standard (i.e. , without probabilistic information) context-free grammars. 
Those techniques can be extended to create techniques for parsing using stochastic 
grammars. So they can be used to answer both of the questions that we just presented. 

Exercises 
1. Let L = {a, b}. For the languages that are defined by each of the following 

grammars, do each of the following: 

I. List five strings that are in L. 

ii. List five strings that are not in L (or as many as there are, whichever is 
greater). 

iii. Describe L concisely. You can use regular expressions, expressions using 
variables (e.g., a"b'\ or set theoretic expressions (e.g., {x: ... }). 

iv. Indicate whether or not L is regular. Prove your answer. 

a. S --+ aS I Sb \ 8 

b. S --+ aSa \ bSb I alb 
c. S --+ aS I bS I 8 

d. S --+ aS I aSbS I B 

2. Let G be the gramm ar of Example 11.12. Show a third parse tree that G can pro
duce for the string (0)0. 

3. Consider the following grammar G: 

S --+ OS1\SS\10 

Show a parse tree produced by G far each of the following strings: 
a. 010110. 

b. 00101101. 

4. Consider the following context free grammar G: 

S-aSa 

https://hemanthrajhemu.github.io



246 Chapter 11 Context-Free Grammars 

S - T 
S- c; 
T- bT 
T - cT 
T- c; 

One 01' these rules is redundant and could be removed without altering L(G). 
Which one? 

5. Us ing the simple English gramm ar th at we showed in Example 11 .6. how two 
parse trees for each of th e following sentence. In ach ca e. indicate which parse 
tree alm ost certainl y corresponds to lhe intended m aning of the senlence: 
a. The bear shot Fl uffy wi th the ri fl e. 

b. Fluffy likes the girl with the chocolate. 

6. Show a context-free grammar for each of th e fo ll owing language L: 

a. BalDelim = {w : where w is a strin g of delimiters: (. ). LI, {, }. 111 t ar 
properl y balanced}. 

b. { ai[)i :2i = 3j + l }. 
c. {ai[)i: 2i =I: 3j + 1}. 
d. {w E {a, b}*:#a(W) = 2' #b(W) } ,}, 
e. L = {W E {a, b}"' : w = w R

} . 

f. { ai[)ic k : i , j , k 2: 0 and (i =I: j orj =I: k)}. 

g. { ai[)ic k : i , j , k 2: 0 and (k $ i or k $ j) }. 
h. eW E Ca, b}* : every prefi x of w has at lea t as many a' as b's}. 
I. {al1bl1l

: 111 2: n , l11-n is even}. 

j. { aJ1l bl1 cp dQ : m , n , p , q 2: Oa nd m +n = p + q } . 

k. {xcl1 :x E {a, b}* and (#a(x) = n or #b(x) = n)} . 
I. {b;#b i + I

R
: bi is the binary representation of ome int g r i , i 2: 0, without 

leading zeros}. (For example 101#011 E L. ) 
m. {xR#y : x, y E {O, 1}* and x is a ubstring of }. 

7. Let G be the ambiguous expression grammar f xample 11 .14. Show at I. a t 
three different parse trees that can be generaled from r r Ih string 
i d+i d"'i d'"i d. 

8. Consider the unambiguous expression grammar G ' of ' ampie 11 .19. 

a. Trace a deriva tion of the string i d+ i d*i d*i d in 

b. Add exponenti ation (** ) and unary minu (- ) 10 G', as i ning 1h highe t 
precedence to unary minu , fo ll wed by exponentiation, multip li ali on, and 
additi on, in th at order. 

9. Let L = {w E {a , b, U , 8, (, ) , *, +} * : W is a . 'nl a li all legal r ular 
expression } . 
a. Write an un ambiguous conlext-free grammar that enerat L. Y ur oram

mar should have a tructure similar to the arithm cti c cx pre " i n oramm ar 
that we presented in Exampl e l 1.1 9. ]t hould crea t par e tre th at: 
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• Associate left given operators of equal precedence, and 

• Correspond to assigning the following precedence levels to the operators 
(from highest to lowest): 

• * and + 

• concatenati on 

• U 
b. Show the parse tree that your grammar will produce for the string (a U b) ba*. 

10. Let L = {'W E {A - Z, -', A, V, ~ , (,)}:;:: 'W is a syntactically legal Boolean 
expression} . 
a. Write an unambiguous context-free grammar that generates Land that cre

ates parse trees that: 

• As ociate left given operators of equal precedence, and 

• Correspond to assigning the following precedence levels to the operators 
(from highest to lowest): -' , A, V, and ~. 

b. Show the parse tree that yo ur grammar will produce for the string: 

--,PvR --'> Q --'> 5 

11. In 1.3.1, we present a simplified gramrnar for URIs (U niform R esomee Identi
bers), the names that we use to refer to objeets on the Web. 

a. Using that grarnmar, show a parse tree for: 

https:!!www.mystuff.wow!widgets!fradgit#sword 

b. Write a regular expression that is equivalent to the grammar that we present. 

12. Prove that eaeh of the following grarnmars is eorreet: 

a. The grammar, shown in Example 11.3, for the language PalEven. 

b. The grammar, shown in Example 11.1, for the language Bal. 

13. For each 01' the fo llowing grammars G, show that G is ambiguous. Then find an 
equivalent grammal' that is not ambiguous. 

3. ({S , A , B,T, a, c } , {a , c }, R , S) ,whereR = {S ~AB , S~BA,A~ aA , 
A ~ aC, B ~ Tc, T~ aT, T~ a}. 

b. ({S, a , b}, {a , b}, R, S),where R = {S~c, S~ aSa, S~ bSb , S~ aSb, 
S~ bSa , S~SS}. 

c. {{S , A , B , T , a , cl, {a , cl, R , S) , where R = {S~AB,A~AA , A~ a , 
B ~ Tc, T~ aT, T~ a}. 

d. ( {S, a , b}, {a , b}, R,S), whereR = {S ~ aSb,S~ bSa, S~SS, S~c}.(G 
is the grammal' that we presented in Example 11.10 for the language 
L = {W E {a b}* : #a(W) = #b(W)},) . 

e. ({S, a , b}, {a , b}, R,S) , where R = {S~ aSb , S~ aaSb, S~c} . 

14. Let G be any context-free grammar. Show that the number of strings that have a 
derivation in G of length n 0 1' less, fo r any 11 > 0 is finite. 

15. Consider the fragment of a Java grammal' that is presented in Example 11.20. 
How could it be changed to force eaeh el se clause to be attaehed to the outer
mo t possible i f taternent? 
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16. How does the COND form in Li sp, as described in .::. avo id the dangling else 
problem? 

17. Consider the grammar G' o f Example L] . 19. 

a. Convert G ' to Cho msky no rm al fo rm . 

b. Consider the strin g ; d ~' ; d+; d. 

i. Show the parse tree th a t G ' produces far it. 

ii. Show the parse tree th a t yo ur ho msky no rm a l fo rm gra mmar pro
duces for it. 

18. Convert each of the following grammars to homsky no rma l fo rm : 

a. S~ aSa 
S~B 

B -'» bbC 
B~bb 

C~f; 

C -'» cC 
b. S~ ABC 
A~ aC I 0 
B -'» bB I € I A 
C-'»Ac I € I Ce 
D -'» aa 

c. S~ aTVa 
T-'»aTa I bTh I e I V 
V -'» cVc I f; 
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C H A P T E R 12 

Pushdown Automata 

Gra.ll1mars defin e context- tree languages. We'd also like a comp. utational formal
ism thatis powerful enough to enable us to build an acceptor for every con
text-free language. In this chapter, we describe such a form alism. 

12.1 Definition of a (Nondeterministic) PDA 
A pushdown autom aton , or PDA, is a finite state machine that has been augmented by 
a single stack . In a minute, we will present the formal definition of the PDA model that 
we will use. But, before we do that, one caveat to readers of other books is in order. 
There are several competing PDA definitions, from which we have chosen one to pres
ent here. All are provably equivalent, in the sense that, for all i and j , if there exists a 
versionj POA th at accepts some language L then there also exists a version} PDA that 
accepts L. We' ll return to thi issue in Section 12.5, where we will mention a few of the 
othe r models and ketch an equivalence proo f. For now, simply beware of the fact that 
oth er definitions are also in widespread use. 

We will use the to llowing definition: Apushdown automaton (or PDA) M is a sex
tuple (K , L , r , ß , s, A ), where: 

• K is a finit e set of states, 

• L is the input alphabet 

• r 1S the stack alphabet, 

• S E K is the start state, 

• A ~ K i th e set of accepting states, and 

• ß is the transition relation. lt is a fini te subset of: 

(K x (L U {e} ) X ) x 

state input or e string of symbols 
to pop from 
top of stack 

(K 

sta te 

x r * ). 

string of symbols 
to push on top 

n f c t ~,....lr 

https://hemanthrajhemu.github.io



250 Chapter 12 Pushdown Automata 

A configuration of a PDA M is an element of K X 2 * x r *. lt captures the three 
things that can make a difference to M's future behavior: 

• its current state, 

• the input that is stillIeft to read , and 

• the contents of its stack. 

The initial configuration of a PDA M, on input w, is (s , w, e). 
We will use the following notational convention for describing M's stack as astring: 

The top of the stack is to the left of the string. So: 

will be written as cab 

lf a sequence Clc2 ' .. Cn of characters is pushed onto the stack , they will be pushed 
rightmost first , so if the value of the stack before the push was 5, the value after the 
push will be CtC2' .. C/1S' 

Analogously to what we did far FSMs, we define the relation yields-in-ol1e-step, 
written I-M . Yields-in-one-step re tat es configurationl to configuralion2 iff M can move 
from configurationl to configuratiol12 in one step. Let c be any element of ~ U {e}, let 
'Yb 'Y2 and 'Y be any elements off*, and let w be any element of 2 *. Then: 

Note two things about what a transition «qj , C 'YI) , (q 2, 'Y2)) says about how M ma
nipulates its stack: 

• M may only take the transition if the string 'Yl matches the current top of the stack. 
lf it does, and the transition is taken, then M pops 'Yl and then pu hes 'Y2' M cannot 
"peek" at the top of its stack without popping off the value that it examines. 

• If 'Yl = c, then M must match e against the top of the stack. BUI € matches every
where. So letting 'Yl be e is equivalent to saying "without bothering to check the 
current value of the stack." It is not equivalent to saying, "i f the stack is mpty." In 
our definition, there is no way to say that directly, although we will ee that we can 
create a way by letting M , before it does anything else, pu h a pecial marker onto 
the stack. Then, whenever that marker is on the top of the stack, th tack is other
wise empty. 

The relation yields, written I-M*, is the reflexive, transitive do ur f hl' So config
uration CI yields configuration C2 iff: 
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A computation by M is a finite sequence of configurations Co, Cl> . . . , Cn for some 
n 2: 0 such that: 

• Co is an initial configuration, 

• CII is of the form (q , c, Y), for some state q E K and some string y in f *, and 

• cOI-M cll-M c2 1-M · · .I-M C,!' 

Note that we have defined the behavior of a PDA M by a transition relation ß , not 
a transition function. Thus we allow nondeterminism. If M is in some configuration 
(q), s, y) , it is possible that: 

• ß contains exactly one transition that matches. In that case, M makes the specified 
move. 

• ß contains more than one transition that matches. In that case, M chooses one of 
them. Each choice defines one computation that M may perform. 

• ß contains no transition that matches. In that case, the computation that led to that 
configuration halts. 

Let C be a computation of M on input W E L*. Then we will say that: 

• Cis an accepting computation iff C = (s , W , s)I-M* (q , s , s) , for some q EA. Note 
the strength of this requirement: A computation accepts only if it runs out of input 
when it is in an accepting state and the stack is ernpty. 

• Cis a rejecting computation iff C = (s , w , e)I-M* (q , w' , 0'), where Cis not an ae
eepting computation and where M has no moves that it can make from (q , w' , 0'). A 
eomputation can reject only if the criteria for accepting have not been met and 
there are no further moves (inc\uding following s-transitions) that can be taken. 

Let w be astring that is an element of L*. Then we will say that: 

• M accepts w iff at least one of its eomputations accepts. 

• M rejects w iff all of its computations rejecL 

The language accepted by M, denoted L(M) , is the set of all strings accepted by M. 
Note that it is possible that, on input w, M neither accepts nor rejects. 

In all the examples that follow, we will draw a transition «ql' c, 'Yl) , (q2' 'Y2)) as an 
are from q\ to q2, labeled C IY1/Y2' So such a transition should be read to say, HIf c 
matches the input and Yl matches the top of the stack , the transition from ql to q2 can 
be taken, in which case c should be removed from the input, 'Yl should be popped trom 
the stack, and 'Y2 should be pushed onto it." If c = e, then the transition can be taken 
without consuming any input. If 'Y l = e, the transition can be taken without ehecking 
the stack or popping anything. If Y2 = s , nothing is pushed onto the stack when the 
transition is taken. As we did with FSMs, we will use a double eircle to indicate accept
ing states. 

Even very simple PDAs may be able to accept languages that cannot be accepted by 
any FSM. The power of such machines comes from the ability of the stack to count. 
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EXAMPlE 12.1 The Balanced Parentheses Language 

Consider again BaI = {w E {), (} * : the parenthe es are balanced}. The follow
ing one-state PDA M accepts BaI. Muses its stack to count t.he number of left 
parentheses that have not yet been matched. We show M graphicall y and then as 
a sextuple: 

~(/eI( 
)/(JeCM-

M = (K, 2::, r , ~ , s, A) , where: 

K = {s}, 

2:: = {(, )}, 

r = {() , 

A = {s}, and 

~ = {«s, (, e), (s , ()), 

«s, ), ( ), (s , e))} . 

(the states) 

(the inpul alphabet) 

( the stack alphabet) 

(the accepting state) 

If M sees a (, it pushes it onto the stack (regardless of what was a lready there). 
If it sees a ) and there is a ( that can be popped off the stack, M does so. If it sees 
a ) and there is no ( to pop, M halts without accepting. [f, after consuming its en
tire input string, M's stack is empty, M accepts. lf the stack is not empty, M rejects. 

PDAs, like FSMs, can use the ir sta tes to reme mbe r fact a boll l the truclur of the 
string that has been read so far. We see thi s in the Il ext exa mpl e. 

EXAMPlE 12.2 AnBn 

Consider again AnBn = {aIJ bJ1
: n 2: O}. The following PDA M accept AnBn. M 

uses its states to guarantee that it only accepls string that belo ng La a *b*. It uses 
its stack to count a 's so that it can compare them lO the b s. We how M graphically: 

b/a/e 
a/e~1 b/a/e8 

0.....-------.:-~~ 0) 
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Writing it out, we have M = (K, L, r, d , s, A), where: 

K = {s,f}, (the states) 

L = {a, b)}, 

r = {a}, 

A = {s,f}, and 

ß = {«s , a, e) , (s, a)), 

«s, b, a), (J, e)) , 

(U; b, a), U: e))}. 

(the input alphabet) 

(the stack alphabet) 

(the accepting states) 

Remember that M only accepts if, when it has consumed its entire input string, 
it is in an accepting state and its stack is empty. So, far example, M will reject aaa, 
even though it will be in state s, an accepting state, when it runs out of input. Tbe 
stack at that point will contain aaa. 

EXAMPlE 12.3 WcWR 

Let WcW R = {wcw R
: w E {a, b }*}. Tbe following PDA M accepts WcW R

: 

C/e/e 

M moves from state s, in which it is recording w, to state f , in which it is check
ing for w R

, when it sees the character c. Since every string in WcW R must contain 
the middle c, state s is not an accepting state. 

The definition that we have chosen to use far a PDA 1S flexible; it aUows several 
symbols to be pushed or popped from the stack in one move. This will turn out to be 
particularly useful when we attempt to build PDAs that correspond to practical gram
mars that contain rules like T ~ T * F (the multiplication rule that was part of the 
arithmetic expression grammar that we defined in Example 11.19). But we illustrate 
the use of this flexibility here on a simple case. 

Let ~lB2n = {all b2/1: n ~ O}. The following PDA M accepts AI1 B21l by pushing two 
a's onto the stack far every a in the input string;. Tben each b non!'; ::l !<inolp ::I' 
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EXAMPlE 12.4 (Continued) 

b/a/e 
a/e/a~ b/a/e8 

8 --'----'--------. 0 

12.2 Deterministic and Nondeterministic PDAs 
The definition of a PDA that we have presented allows nondeterminism. It sometimes 
makes sense, however, to restriet our attention to determini tie PDAs. In this section 
we will define what we mean by a deterministic PDA. We also show some examples of 
the power of nondeterminism in PDAs. Unfortun ate ly, in contrast to the ituation with 
FSMs, and as we will prove in Theorem 13.13, there exist nondeterministic PDAs for 
which no eguivalent deterministic PDA exists. 

12.2.1 Definition of a Deterministic PDA 
Define a PDA M to be deterministic iff there exists no configuration of M in which 
M has a choice of what to do next. For this to be true, two cond it ions must hold: 

1. dM eontains no pairs of transitions that eompete with eaeh other. 

2. If q is an aceepting state of M, then there i no transit ion ((q, 10, e) , (p , a)) for 
any p or a. In other words, M is never forced to choose between accepting and 
continuing. Any transitions out of an accepting state must e ithe r eonsume input 
(sinee, if there is remaining input , M does not have the opt ion of aceepting) or 
pop something from the stack (since, if the stack j not empl y, M does not have 
the option of aeeepting). 

So far, all of the PDAs that we have built have been determini lic. 0 ach machine 
followed only a single computational path. 

12.2.2 Exploiting Nondeterminism 
But a PDA may be designed to have multiple competing movc from a ingl configu
ration. As with FSMs, the easiest way to envision the operation of a nondetenninistic 
PDA M is as a tree, as shown in Figure 12.1. Each node in th t re corre p nds to a 
eonfiguration of M and each path from the root to a leaf nod may corre p nd to one 
computation that M might perform. 

Notice that the state, the stack, and the remaining input can be different along dif
ferent paths. As a result, it will not be possible to simulate al l path in parallel , the way 

we did for NDFSMs. 
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q\ , abab, e 

Q2, abab, # qh bab, a# 

q\ , ab, ab# 

FIGURE 12.1 Viewing nondeterminism as search through aspace of computation 
paths. 

EXAMPlE 12.5 Even Length Palindromes 

Consider again PalEven = {ww R 
: w E {a, b }*}, the language of even-length 

palindromes of a's and b's. The following nondeterministic PDA M accepts 
PalEven: 

elele 

M is nondeterministic because it cannot know when it has reached the middle 
of its input. Before each character is read, it has two choices: It can guess that it 
has not yet gotten to the middle. In that case, it stays in state s, where it pushes 
each symbol it reads. Or it can guess that it has reached the middle. In that case, it 
takes the e-transition to state f, where it pops one symbol for each symbol that it 
reads. 

EXAMPLE 12.6 Equal Numbers of a's and b's 

Let L = {WE {a, b}*: #a(w) = #b(W)}, Now we don't know the order in which 
the a's and b's will occur. They can be interleaved. So for example, any PDA to ac
cept L must accept aabbba. The only way to count the number of characters that 
have not yet found their mates is to use the stack. So the stack will sometimes 
count a's and sometimes count b's. It will count whatever it has seen more of. The 
following simple PDA accepts L: 
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EXAMPlE 12.6 (Continued) 

a/bh; 

b/a/t: 

This machine is highly nondete rmini stic. Whenever it ee an a in the input, it 
can either push it (which is the right thing to do if it sho uld be counting a 's) or at
tempt to pop a b (which is the right thing to do if it should be cOllnting b's) . All the 
complltations that make the wrang guess will fa il to accept since they will not suc
ceed in clearing the stack. But if #a( w) = #b( w ), there will be one computation 
that will accept. 

EXAMPlE 12.7 The a Region and the b Region are Different 

Let L = {all1 b": m i= n; m, n > O} . We want to bllild a PDA M to accept L. It is 
hard to build a machine that looks for something negative like =f: . But we can 
break L into two sublanguages: {a Ill IJI1: 0 < 111 < 11} and { a"'IJ": 0 < n < m}. 
Either there are more a 's or more b's. M must accep! any string th at is in either of 
those sublanguages. So M is: 

b/a/e 

b/a/t: e/a/e 
E/a/es 

~--0 

b/f:/ f: 

As long as M sees a 's, it stays in state 1 and pushes eac ll a nt thc tack. When 
it sees the first b, it goes to state 2. It will accept nothing but b's from th at point on. 
So far, its behavior has been deterministic. But , from tate 2, il muSl mak choice 
Each time it sees another band tllere is an a on the tack it hould con urne the b 
and pop the a and stay in state 2. But , in o rder to accept, it mu t cven tllally e ither 
read at least one b that does not have a matching a 0 1' pop an a that doe not have 
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a matching b. It should do the former (and go to state 4) if there is ab in the input 
stream when the stack is empty. But we have no way to specify that a move can be 
taken only if the stack is empty. It should do the latter (and go to state 3) if there is 
an a on the stack but the input stream is empty. But we have no way to specify that 
the input stream is empty. 

As a result , in most of its moves in state 2, M will have a choice of three paths 
to take. All but the correct one will die out without accepting. But a good deal of 
computational eUort will be wasted first. 

In the next section , we present techniques for reducing nondeterminism caused by 
the two problems we've just presented: 

• A transition that should be taken only if the stack is empty, and 

• A transition that should be taken only if the input stream is empty. 

But first we present one additional example of the power of nondeterminism. 

Let's first consider ~IBIlCIl = {a"b"cn
: n ;::= O}. lf we try to think about building 

a PDA to accept AIlBnCIl , we immediately run into trouble. We can use the stack 
to count a 's and then compare them to the b's. But then the stack will be empty 
and it won 't be possible to compare the c 's. We can try to think of something 
clever to get around this problem, but we will fail. We'll prove in Chapter 13 that 
no PDA exists to accept this language. 

But now let L = -.AIlBIlCIl . There is a PDA that accepts L. L = LI U L 2, where: 

• LI = {w E {a, b, c}* : the letters are out of order}. 

• L2 = {aibick
: i , j , k ;::= 0 and (i t=- j or j t=- k)} (in other words, not equal num

bers of a 's, b's, and c 's). 

A simple FSM can accept LI' So we focus on L 2. It turns out to be easier to 
check for amismatch in the number of a 's, b's, and c 's than to check for a match 
because, 1O detect amismatch, it is sufficient to find one thing wrong. It is not nec
essary to compare everything. So astring w is in L 2 iff either (or both) the a 's and 
b's don't match 01' the b's and c 's don 't match. We can build PDAs such as the one , 
we built in Example 12.7, to check each of those conditions. So we can build a 
straightforward PDA for L. It first guesses which condition to check for. Then 
submachines do the checking. We sketch a PDA for L hefe and leave the details 
as an exercise: 

https://hemanthrajhemu.github.io



258 

.' h ,n 
• h ru .. · Ih.il I 

pt..: 11\\: r'll \ l: '1\ , 

12.2.3 Techniqu _ s for R 
In E~ m h: 1_ , 

• 

https://hemanthrajhemu.github.io



Ih n 
lh m 

159 

https://hemanthrajhemu.github.io



260 Chapter 12 Pushdown Automata 

EXAMPLE 12.10 (Continued) 

a/e/a b/ a/c 

b/ a/c 

b/ #/ e 

blEIe 
$/ e/E:. 

el#le 

Now the transition back to state 2 no longer compete with the transition to 
state 3, since the latter can only be taken wh en the $ is read. Notic lhat we must 
be careful to read the $ on alt paths, not ju t th e one where w needed it. 

Adding an end-of-string marker to th e languag lO be acceplcd i ' a powerfullOol for 
reducing nondeterminisl11. In Section 13.5, we' l] definc the cl ass o r det rmini tic con
tex t-free languages lO be exactly the set o r conlexl-rree languagcs L such that L$ can be 
accepled by so me deterministic PDA . We' ll do thai beca u ·e. fo r practi cal rea ons, " e 
would lik e the dass of deterministic context-free Ianguagcs 10 bc a large as possible. 

12.3 Equivalence of Context-Free Grammars and PDAs 
So Ear, we have shown PDAs to accept everal of th e contex l-fre language for which 
we wrote grammars in Chapter 11. This is no accident. In thi s e ti n we'lI prove, a 
usua l by construction , that context-free gra mmars and pu. hdo\ n aut mata d scribe 
exact ly the same c\ass of langu ages. 

12.3.1 Building a PDA fram a Grammar 

THEOREM 12.1 Für Every CFG There Exists an Equivalent PDA 

Theorem: Given a cOlltext-free grammar G == (V ~. R. ). Ih rc cxi 1 PDA M 
such th at L (M) == L (G) . 

Proof: The proof is by construction. The re a re t 0 equal.l y ·traighl fo l'\ ard .. a s to 
do thi s construction , so we wi ll describe bOlh of th em. i.lhcr of Ihem an be con
verted to a practical par er (a recognizer that return a par. e Lr e if it ac pt) by 
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adding simple tree-building operations associated with each stack operation. 
We'll see how in Chapter 15. 

Top-down parsing: A top-down parser answers the question, "Could G gen
erate 'LV? " by starting wi.th 5 , applying the rules of R, and seeing whether w can 
be derived. We can build a PDA that does exactly that. We will define the algo
rithm cIgwPDAropdm'lln( G) , which, from a grammar G, builds a corresponding 
PDA M that, on input 'LV , simulates G attempting to produce a leftmost deriva
tion of 'LV. M will have two states. The cnly purpose of the first state is to push 5 
onto the stack and then go to the second state. M's stack will actually do all the 
work by keeping track of what G is trying derive. Initially, of course, that is 5, 
which is why M begins by pushing 5 onto the stack. But suppose that R contains 
a rule of the form 5 ~ 1'11'2 ' .. 'Yn' Then M can replace its goal of generating an 5 
by the goal of generating a 'Yb followed by a 1'2, and so forth. So M can pop 5 off 
the stack and replace it by the sequence of symbols 1'11'2 ... 1'11 (with 1'1 on top). 
A long as the symbol on the top of the stack is a nonterminal in G, this process 
continues, effectively applying the rules of G to the top of the stack (thus pro
ducing a left-most derivation) . 

The appearance of a terminal symbol c on the top of the stack means that Gis 
attempting to generate c. M only wants to pursue paths that generate its input 
·tring w. So, at that point , it pops the top symbol off the stack, reads its next input 
character, and compares the two. If they match , the derivation that M is pursuing 
is consistent with generating 'LV and the process continues. If they don' t match, the 
path that M is currently fol1owing ends without accepting. So, at each step, M ei
ther applies a grammar rule, without consuming any input, 01' it reads an input 
character and pops one terminal symbol off the stack. 

When M has finished generating each of the constituents of the 5 it pushed 
initially, its stack will become empty. If that happens at the same time that M 
has read all the characters of w , G can generate w, so M accepts. It will do so 
since its second state will be an accepting state. Parsers with a structure like M's 
are called top-down parsers. We'll have more to say about them in Section 15.2. 

As an example, suppose that R contains the rules A ~ a , B ~ b and 
5 ~ AAB. Assurne that the input to M is aab. Then M first shifts 5 onto the 
stack. Next it applies its third rule, pops 5 off, and replaces it by AA B. Then it ap
pliesits first rule, pops off A and replaces it by a. The stack is then aAB. At that 
point , it reads the first character of its input, pops a , compares the two charac
ters, sees that they match, and continues. The stack is then AB. Again M applies 
its first rule, pops off A , and replaces it by a. The stack then is aB. Then it reads 
the next character of its input , pops a , compares the two characters, sees that 
they match, and continues. The stack is then B. M applies its second rule, pops 
off B, and replaces it by b. lt reads the last input character, pops off b, compares 
the two characters, and sees that they match. At that point, M is in an accepting 
state and both the stack and the input stream are empty, so M accepts. The out
lin e of M is shown in Figure 12.2. 
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B----el-e-1 s ___ • a ," b", ' h, fi ,·" of 'h, ' " oilioo, d,,,"bod b,low 

FIGURE 12.2 A POA that parses top-down . 

Formally, M = ({p, q}, 2:, V, /1 , p, {q}) , where /1 contains: 

• The start-up transition «(p, 8, B), (q, S)) , which pushe · th e sta rt symbol onto 
the stack and goes to state q. 

• For each rule X ---71'11'2· .. 1'". in R , the transitio n ((q, c, X), (q, 1'11'2· .. 1't))' 
which replaces X by 1'11'2 ... 1'11" If n = 0 (i.e., the ri ght-hand side of the ru.le is 
s), then the transition is «q, B, X) , (q , s)). 

• For each character CE 2: , the transition (q, ce), (q, B» which compares an 
expected character from the stack against the nex t input character and con
tinues if they match. 

So we can define: 

cfgLOPDAtopdown (G: CFG) = 

From G , construct M as defin ed above. 

Bottom-up parsing: A bottom-up parser answers the ques tion, " ould G gen
erate w?" by starting with w, applying the rul es of R backwards, and seeing 
wh ether S can be reached. We can build a PDA that does exactly that. We will de
fine the algorithm cfgLOPDAboltomup(G) , which ,from a gramm ar G , builds a COf

responding PDA M that, on input w, simulates the con truction , backwards, of a 
rightmost derivation oE w in G. Again , M will have two sta te , but this time all the 
work will happen in the first one. In the top-down approach that we described 
above, the entries in the stack corresponded to expecta ti ons: to constituents that 
G was trying to derive. ln the bottom-up approach that we are describing now, the 
objects in the stack will correspond to const ituent. that have actua lly been found 
in the input.1f M ever finds a complete S that covers its entire input , the n it should 
accept. So if, when M runs out of input, the stack contains a ingle S, it will accept. 

M will be able to perform two kinds of action : 

• M can read an input symbol and shi/t it onlO the stack. 

• Whenever a sequence of elements at the top of the stack matche, in reverse, 
the right-hand side of some rule r in R, M can po p that equence off and re
place it by the left-hand side oE r. When thi s happe ns \ say that M has 
reduced by rule r. 

Because of the two actions that it can perform a pa r e r based on a PDA like 
M is called a shift-reduce parser. We'll have more to say ab ut how such parsers 
work in Section 15.3. For now, we just observe th at th ey sill1ul ale. backwards, a 

right-most derivation . 
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,11 butthe ",' 01 .he p 
transitions described 

below 

e/S/e 

FIGURE 12.3 A PDA that parses bottom-up. 

To see how M might work , suppose that R contains the rules A ~ a, B ~ b 
and S ~ AAB. Assume that the input to M is aab. Then M first shifts a onto the 
stack. The top of the stack matches the right-hand side of the first rule. So M can 
apply the rute, pop off a , and replace it with A. Then it shifts the next a , so the 
stack is aA. It reduces by the first rule again , so the stack is AA. It shifts the b, ap
plies the second rule, and leaves the stack as BAA . At that point, the top of the 
stack matches, in reverse, the right-hand side of the third rule. The string is re
versed because the leftmost symbol was read first and so is at the bottom of the 
stack. M will pop off BAA and replace it by S. 

To accept, M must pop S off the stack, leave the stack empty, and go to its sec
ond state, which will accept. The outline of M is shown in Figure 12.3. 

Formally, M = ({p,q} , L, V , ß ,p, {q}) , where A contains: 

• The shift transitions: «p, c, 8) , (p, c)), for each CE L. 

• The reduce transitions: «(P , 8 , (YIY2 '" Yn)R), (p, X)), for each rule: 
X~YIY2 " 'YrI in R . 

• The finish up transition: «P, 8 , S), (q , 8)) . 

So we can define: 

c.fgtoPDAbottomup (G: CFG) = 

From G, construct M as defined above. 

EXAMPLE 12.11 Using cfgtoPDAtopdown and cfgtoPDAbottomup 

Consider E xpn our simple expression language, defined by G = {{ E, T, F, i d, 
+ , *, (,)} , {id, + , *, (,)}, R, E}, where: 

R= E~E+T 

E--+T 

T--+T*F 

T--+ F 
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EXAMPLE 12.11 (Continued) 

F~ E 

F~ i d } . 

We show (wo PDAs, Mo and Mb that acce pt E xpr o Wc ca n U Ihe functioll 
clgtoPDAtopdown(G) to bui ld Mo = 

(1) (q , c, E), (q, E + T) 

(2) (q, c, E), (q , T) 

(3) (q , c, T) , (q , T:;: F) 

(4) (q , c, T) , (q , F) 

(5) (q, c, F) , (q, (E» 

(6) (q , c, F) , (q, i d) 

(7) (q, i d, i d), (q, c) 

(8) (q , (, ( ) , (q , c) 

(9) (q, ),) ) , (q , e) 

(10) (q, +, +), (q , e) 

(11) (q , *, *), (q, e) 

We can use clgIOPDAbOI1Ol11up(G) to build Mb = 

f 

Y 

~ 
./ 

(1) (p, i d, e) (p , i d ) 

(2) (p, (, e), (p , 0 

e/E/f; 
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(3) VJ,),8) ,(P ,) 
(4) (p, +,8), (p , +) 

(5) (p, *,8), (p , *) 
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(6) VJ, 8, T + E) , (p, E) 

(7) VJ, 8 , T) , VJ, E) 

(8) VJ, 8, F :I< T ) , (p, T) 

(9) VJ, 8 , F) , (p, T) 

(10) VJ, 8 , )E ( ) , (p , F) 

(11) VJ, 8 , i d), (p , F) 

The theorem that we just proved is important fo r two very different kinds of reasons: 

• It is theoret ically important because we will use it to prove one di rection of the 
claim that contex t-free grammars and PDAs describe the same d ass of languages. 
For thi s p urpose, all we care about is the truth of the theorem . 

• lt is 01' great practical signi ficance. The languages we use to communicate with pro
grams are, in the l1l a in , context-free. Before an application can assign meaning to 
our progral1ls, our queri es, and our marked up documents, it must parse the state
ments that we have written. Consider e ither of the PDAs that we built in our proo( 
01' thi s theorem. Each stack operation of either of them corresponds to the building 
01' a piece of the parse tree that corresponds to the derivation that the PDA found. 
So we can go a long way toward building a parser by simply augmenting one of the 
PDAs that we just built with a l1lechanism that associa tes a tree-building ope ration 
with each stack action. B ecause the PDAs fo llow the structure of the grammar, we 
can guarantee that we get the parses we want by writing appropria te grammars. In 
truth , b uildin g efficient parsers is more cOl1lplica ted than this. We'H have more to 
say about the issues in Chapter 15 . 

12.3.2 Building a Grammar from a PDA • 

We next show that it is possible to go the other way, [rom a P OA to a grammar. U nfor
tun ately, the process is not as straightforward as the grammar-to-PDA process. Fortu
nate ly, fo r applica tio ns, it is rarely (if ever) necessary to go in this direction. 

Restricted Normal Form 

The grammar-creation algorithm that we are abo ut to define must make some assump
tio ns abo ut the structure of the P OA to which it is app lied. So, before we present that 
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a lgorithm, we will de hn e what we'll ca ll restricted flormaljorm for PDAs. A POA M is 
in restricted normal form iff: 

1. M has astart sta te s' th at does nOlh ing except push a sp cia l symbol onto the 
stack and th e n transfer to astate s fro m whi ch the res t o f the computation begins. 
The re must be no trans itions back to s'. The spec ial ymbo l must not be used in 
an y othe r way in M. We will use # to tand for such a ymbol. 

2. M has a single accept ing state a. A ll tran il.i ons int o a pop # and read 11 0 input. 

3. Every transition in M, except the o ne from s', pop exactly o ne ymbol from the 
stack. 

As with other no rm al !'orms, in o rde r for re tricled no rm al fo rm to be u eful , we 
must de fin e an algorithm that converts an a rbitrary PDA M = (K. L. r , t1 s A) into 
it. Give n M, converfPDAtoreS fricred build a n ew POA M' uch th at L (M') = L (M) 
and M' is in restricted normal fo rm. 

convertPDAtorestricJed (M: POA ) = 

1. Initi a lly, le t M' = M . 

r Establish prope rty 1: 

2. Create a new star t state Si. 

3. Add th e transit io n (s' , 8, 8), (s , #». 

/* Es tablish property 2: 

4. C reate a new accepting state a. 

5. For each accept ing state q in M do: 

5.1. Crea te the transition «q , 8, #), (a, 8». 

5.2. R emove q from th e set oE accepti ng sta tes (ma king a th e o nly accepting 
state in M'). 

/* Esta blish property 3: 

/* Ass ure th at no more than o ne symbo l is po pped a t each tra n i ti o n: 

6. For every tran ition l th a t pops k symbo ls, \ he re k > I do: 

6.1. R e place t with k transiti o n , each of which p p a ~ i no l e ymbo l. Create 
additional states as neces a ry to do thi . On ly if t he I st o f the k ymbols 
can b e popped should an y input be read o r any ne" mb I pushed. 
Specifically, Je t qq \, qq2,' .. , qqk - \ be ne w sla te na me. T hc n: 

R e place «q), c, 1'11'2"'1',,), (q 2' I'p» wi th : 

«q\ , 8, 1'\ ), (qq\, 8» , «qq\ , c , 1'2), (QCJ2' 8», . . . , 

«qqk- J, C, 1',,) , (CJ 2, I'p». 

/* A ssure th a t exactl y o ne symbo l i popped al each tra n i ti o n . W a Ir ad 
kn ow th a t no m o re lhan o ne will be. Bu t pe rh aps no ne \l re . In th a t ca what 
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M' needs to do instead is to pop whatever was on the top of the stack and then 
just push it right back. So we'll need one new transition for every symbol that 
might be on the top of the stack. Note that, because of existence of the bottom 
or stack marker #, we are guaranteed that the stack will not be empty so there 
will always be a symbol that can be popped. 

7. For every transition I = «q\l C, 8), (q2, y)) do: 

7.1. Replace t with Ir M,I transitions, each of wh ich pops a single symbol and 
then pushes it back on. Specifically, for each symbol a in r M U {#}, add 
the transition «qj, C, a), (q2, ya)). 

8. Return M' . 

EXAMPLE 12.12 Converting to Restricted Normal Form 

Let WcWR = {wcwR 
: w E {a, b V }. A straightforward PDA M that accepts 

WcW R is the one we showed in Example 12.3: 

a/s/a 

eisi s 

M is not in restricted normal form . To create an equivalent PDA M' , we first 
create new start and accepting states and connect them to M: 

a/a/e 

s/#/e 

M' contains no transitions that pop more than one symbol. And it contains no 
transitions that push more than one symbol. But it does contain transitions that 
pop nothing. Since r M' = {a, b, #} ' the three transitions from state s must be re
placed by the fo llowing nine transitions: 

((s , a, #), (s , a#)), #((s , a, a), (s , aa)), #((s , a, b), ( s , ab)), 

((s , b, #),(s, b#)) , #((s , b, a),(s , ba)), #((s , b, b),(s, bb)), 

((s , c, #),([ , #)), #((s, c, a),([, a)), #((s, c, b),([ , b)). 

1 
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Building the Grammar 
Since we have now shown that any PDA can be converted into an equivalent one in re
stricted normal form , we can show that , for any PDA M , th ere exists a context-free 
grammar that generates L(M) by first converting M to restricted normal form and then 
constructing a grammar. 

THEOREM 12.2 Für Every PDA There Exists an Equivalent CFG ------
Theorem: Given a PDA M = (K, 2: , r , ~ ,5, A), there exists a CFG G = (V, 'E , R, S) 

such that L (G) = L (M). 
Proof: The proof is by construction . In the proof of Theorem 12. 1, we showed how 

to use a PDA to simulate a gramm ar. Now we show how to use a gramm ar to sim
ulate a PDA. The basic idea is simple: The productions of th e grammar will simu
late the moves of the PDA. Unfortunately, the details get messy. 

The first step of the construction of G will be to build from M , using the algo
rithm convertPDAtorestricted that we just defined, an equivalent PDA M' , where 
M' is in restricted normal form. So every machine tha t the grammar-construction 
algorithm must deal with will look like this (with th e part in the middle that actu
ally does the work indicated with ... ): 

~ ~~ 0 
G , the grammar that we will build, will exploit a collection of nonterminal sym

bols to which we will give names of the following form: 

The job of a non terminal <q;, y, qj> is to generate a 11 and only the strings that 
can drive M from state qi with the symbol y on the stack to state qj. having 
popped off the stack y and anything else that got pushed on top of it in the 
process of going from qi to qj. So, for example, in th e machine M' that we de
scribed above in Example 12.12, the job of <s, #, a> is to gene rate an the strings 
that could take M' from 5 with # on the top of the stack to a, having popped the # 
(and anything else that got pushed along the way) off the tack. But notice that 
that is exactly the set of strings that M' will accept. So G will contain the rule: 

5- <s, #, a>. 

Now we need to describe the rul es that will have <s, #, a> on their left-hand 
sides. They will make use of additional nonterminal . For example, M' from 
Example 12.12 must go through state lon its way to a. So there will be the non
terminal <l, #, a>, which describes the se t of strings that can drive M' from fto 
a, popping #. That set is, of course, {E:}. 
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How can an arbitrary machine M get from one state to another? Because M is 
in restricted normal form, we must consider only the following three kinds of 
transitions, aB of which pop exactly one symbol: 

• Transitions that push no symbols: Suppose that there is a such a transition 
« q, c, )'), (r, B), where C E L U {B}. We consider how such a transition can 
participate in a computation of M: 

G 
If this transition is taken, then M reads c, pops)', and then moves to r. After 

doing that, it may follow any available paths from r to any next state w, where 
w may be q or r or any other state. So consider the nonterminal <q, )', w>, for 
any state w. I ts job is to generate all strings that drive M from q to w while pop
ping off )'. We now know how to describe at least some of those strings: They 
are the ones that start with c and are followed by any string that could drive M 
from r to w without popping anything (since the only thing we need to pop, ,)" 
has already been popped). So we can write the rule: 

<q,)" w> - c<r, B, W>. 

Read this rule to say that M can go from q to w, leaving the stack just as it 
was except that a )' on the top has been popped, by reading c, popping )" 
going to r, and then somehow getting from r to w, leaving the stack just as it 
was. Since M reads c, G must generate it. 

Every transition in M of the form «q, c, )'), (r, B» generates one grammar 
rule,like the one above, for every state w in M, except s'. 

• Transitions that push one symbol: This situation is similar to the case where M 
pushes no symbols except that whatever computation follows must pop the 
symbol that this transition pushes. So, suppose that M contains: 

G 
lf this transition is taken, then M reads the character c, pops '}', pushes er, 

and then moves to r. After doing that, it may follow any available paths from r 
to any next state w, where W may be q or r or any other state. So consider the 
nonterminal <q,)" w>, for any state w. Its job is to generate all strings that 
drive M from q to W while popping off)'. We now know how to describe at 
least so me of those strings: They are the ones that start with c and are followed 

\ ~ I 
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by any string that could drive M from r to w while popping the a that just got 
pushed. So we can write the rule: 

<q, y , w> --"" c<r, a, W>. 

Read this rule to say that M can go from q 10 W, leav ing the stack just as it 
was except that a y on the top has been popped, by reading c, popping 'Y, 
pushing a, going to r, and then somehow getting from r to 1V, leaving the stack 
just as it was except that a a on the top has been popped. 

Every transition in M of the form ((q c, y) , (I', a)) generales one grammar 
rule, like the one above, for every state W in M , except s'. 

• Transitions that push two symbols: This situation is a bit more complicated 
since two symbols are pushed and must then be popped. 

eh/aß ,. o 
If this transition is taken , then M reads c pops y , pushes two characters 

aß, and then moves to r. Now suppose that we again want to consider strings 
that drive M from q to w, where the only change to the stack is to pop the 'Y 
that gets popped on the way from q to r. This time, two symbols have been 
pushed, so both must subsequently be popped. Since M is in restricted normal 
form, it can pop only a single symbol on each transition. So the only way to go 
from r to wand pop both symbols is to visit another state in between the two. 
Call it v, as shown in the figure. We now know how 10 describe at least some 
of the strings that drive M from q to w, popping y: 1l1ey are the ones that start 
with c and are followed first by any string that could drive M from r to v while 
popping a and then by any string that could drive M from v to w while pop
ping ß. SO we can write the rule: 

<q, y , w> --"" c<r, a, v><v, ß , tv> 

Every transition in M of the form ((q , c, X), (r , aß)) generates one 
grammar rule, like the one above, for every pair of tales v and w in M, ex
cept s'. Note that v and w may be th e same and e ith er 01' both of them 
couId be q or r. 

• Transitions that push more than two symbols: These transi tions can be treated 
by extending the technique for two symbols, adding one additi nal state for 
each additional symbol. 

The last situation that we need to consider is how to stop. So far, every rule we 
have created has some nonterminal on its right-hand side. If G is going to gener
ate strings composed solely of terminal symbols, it must hav a way to elirninate 
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the final nonterminals onee all the terminal symbols have been generated. It ean 
do this with one rule for every state q in M: 

<q,e,q>~e. 

Read these rules to say that M ean start in q, remain in q, having popped nothing, 
without eonsuming any input. 

We can now define buildgrammar(M), which assumes that M is in restricted 
normal form: 

buildgrammar(M: PDA in restricted normal form) 

1. Set LG to LM' 
2. Set the start symbol of G to S. 

3. Build R as folIows: 

3.1. Insert the rule S ~ <s, #, a> . 
3.2. For every transition «q, c, y), (r, e» (i.e., every transition that 

pushes no symbols), and every state w, except s', in M do: 
Insert the rule <q, y, W> ~ c<r, e, w>. 

3.3. For every transition «q, c, y), (r, a» (i.e., every transition that 
pushes one symbol), exeept the one from s', and every state w, 
except s' , in M do: 

Insert the rule <q, y, W> ~ c<r, a, W>. 

3.4. For every transition «q, c, y), (r, aß» (i.e., every transition that 
pushes two symbols), except the one from s', and every pair of 
states v and w, except s', in M do: 

Insert the rule <q, y, W> ~ c<r, a, v><v, ß, w>. 

3.5. In a similar way, create rules for transitions that push more than 
two symbols. 

3.6. For every state q, except s' , in M do: 
Insert the rule <q, e, q> ~ e. 

4. Set V G to 2: M U {nonterminal symbols mentioned in the rules insert
ed into R}. 

The algorithm buildgrammar creates alt the non terminals and all the rules re
quired for G to generate exaetly the strings in L(M). We should note, however, 
that it generally also creates many nonterminals that are useless because they are 
either unreachable or unproductive (or both). For example, suppose that, in M, 
there is a transition «q6, c, y), (q7, a)) from state q6 to state q7, but no path from 
state q7 to state qs· Nevertheless, in step 3.3, buildgrammar will insert the rule 
<q6, y, qs> ~ C<q7, a, qs>· But <q7, a, qs> is unproductive since there are no 
strings that drive M trom q7 to qs. 

Finally, for an arbitrary PDA M, we define PDAtoCFG: 

PDAtoCFG (M: PDA) = 
1. Return buildgrammar(convertPDAtorestricted(M)). 

I 
I 

J 
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EXAMPlE 12.13 Building a Grammar fram a PDA 

In Example 12.12, we showed a simple PDA for WeW R = {tuCW R : W E {a, b }*}. 
Then we eonverted that PDA to restricted normal form and got M': 

1***] 

Eaeh of the bracket-labeled ares eorresponds to: 

[*] «s, a , #) , (s, a#)) , «s, a, a) , (s, aa)) , «s, a, b), (s , ab), 

[**] «s, b, #), (s, b#» , «s, b, a) , (s, ba») , «s , b, b) , (s , bb» , and 

[***] «s, C, #) , (1, #» , «s, c, a) , (f, a») , «s , c, b) , (1, b»). 

Buildgrammar eonstructs a gramm ar G from M'. To see how G works, consider 
the parse tree that it builds for the input string abcba. The numbers in brackets at 
each node indicate the rule that is applied to the non terminal at the node. 

a 

b 

5 [I] 

1 

<s, #, a> [2J 

<S, a,f> [4] 

<.5, b,f> [5] <f, a,f> 17] 

~ 
c <f, b, [ > [8] 

~ 
a <f, e,f> 19] 

/\ 1 

b <I, e,f> 19] 

1 

<I. #. a> [6 1 

~ 
e <a, e, a> [10] 

1 

Here are some of the rules in G. On the left are the trans ition of M' . The mid
die column contains the rules derived from each transition . ' he ones marked [xl 
in the right column contain useless nOl1terminals and s canno t be part f any der
ivation of astring in L(G). Beeause there are so many use less rules, we have omit
ted the ones generated from all transitions after the first. 
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s- <s, #, a> [1] 
((s', G, G), (s, #)) no rules based on the transition from s" 

[*] ((s, a, #), (s, a#)) <S, #, S> - a <S, a, s> <S, #, s> [x] 
<S, #, s> - a <S, a, f> <t, #, s> [x] 
<s, #, s> - a <s, a, a> <a, #, s> [x] 

<s, #, f> - a <S, a, s> <S, #, f> [x] 

<S, #, f> - a <S, a, f> <t, #, f> [x] 

<S, #, f> - a <S, a, a> <a, #, f> [x] 
<S, #, a> - a <s, a, s> <S, #, a> [x] 
<S, #, a> - a <S, a, f> <f, #, a> [2] 

<S, #, a> - a <s, a, a> <a, #, a> [x] 
((s, a, a), (s, aa)) <S, a,f> - a<s, a, f> <t, a,f> [3] 
((s , a, b), (s, ab)) <s, b, f> - a <s, a, f> <t, b,f> [14] 

[**] «s, b, #), (s, b#)) <s, #,f> - b <s, b, f> <t, #,f> [15] 
«s, b, a), (s, ba)) <s, a,f>- b <s, b,f> <J, a,f> [4] 
«(s, b, b), (s, bb)) <s, b,f> - b <s, b, f> <J, b, f> [16] 

[** *] ((s, C, #) , (f, #)) <s, #, f> - C <t, #,f> [17] 
(s, c, a), (f, a)) <s, a,f> - C <J, a, f> [18] 
(s, c, b), (f, b)) <s, b,f> - C <J, b, f> [5] 
«(f, e, #), (a, e)) <1: #, a> - e <a, G, a> [6] 
«(f, a, a),(f, 8)) <J, a,f> - a <J, 8,f> [7] 
((f, b, b),(f, 8)) <f, b, f> - b <J, B, f> [8] 

<s, 8, S>-1': [19] 

<J, B,f> - I': [9] 

<a,B, a> -B [10] 
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12.3.3 The Equivalence of Context-free Grammars and PDAs 

THEOREM 12.3 PDAs and CFGs Describe the Same Class of Languages 

Theorem: A language is context-free irr it i accep t d hy s mc PD . 

Proof: Theorem 12.1 proves the only ifpar1. 1 hco rcl1l 12.2 provc th ifpart. 

12.4 Nondeterminism and Halting 
Recall that a computat ion C of a PDA M = (K, L, r. ~ . s, A) Oll a tring?V is an ac
cepting computation iff: 

C = (5, 'W , c)I -M* (q, c, c), for omc Cf E A. 

We' ll say th at a computation C of M halls iff al lea t Olle 01" th c follow ing condition 
holds: 

• Cis an accepting computation , or 

• C ends in a configuratio n from wh ich th ere i no tran iti on 111 t1 that can be 
taken. 

We'1l say that M halts on w iff every computation of Mon 1{' halt . 11' M halts on 1. 

and does not accept, then we say that M rejects w. 
For every contex t-free language L, we've proven Ih at Ih ere ex i t a PDA M lieh 

that L (M) = L. Suppose that we would like to be ab le 10: 

• Examine astring and decide wheth er or not il i in L. 

• Examin e astring th at is in L and crea te a parse tree fo r it. 

• Examine astring that is in Land crea le a parse tree fo r il in time th at is linear in the 
length of the string. 

• Examin e astring and decide whether or not it is in th e complem nt of L. 

00 PDAs provide the tools we need to do lho e things? Wh n wc wcre at a imilar 
point in our di scussion oE regul ar languages, the answer 10 th at que ·ti n wa y . For 
every regular language L , there exists a minimal d termini ti c F M that accept it. 
That minim al DFSM halts on all inputs, accep ts all tr ing · thaI are in L. and reject all 
strings that are not in L. 

U nfortunately, the facts about context-free language and P are d iff r I1t from 
the facts about regular languages and FSMs. ow we mu t face the fo ll O\ ing: 

1. Th ere are context-free languages for wh ich no determini ti PD 
prove this as Theorem] 3.13. 

2. It is poss ible that a POA may 

• not halt , or 

• not ever fin ish reading its input . 

xi t . W 'll 
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12.5 Alternative Equivalent Definitions of a PDA 275 

So, let M be a PDA that accepts some language L. Then, on input w, if W E L 
then M will halt and accept. But iE W rt. L, while M will not accept w, it is possible 
that it will not reject it either. To see how this could happen, let L = {a } and con
sider the PDA M , shown in Figure 12.4. L (M) = {a }. The computation (1, a, f:) 
1- (2, a , a) 1- (3 , c, E) will cause M to accept a. But consider any other input ex
cept a . Observe that: 

• M will never halt. There is no accepting configuration, but there is always at 
least one computational path that has not yet halted. For example, on input aa, 
one such path is: 

Cl, aa, e ) 1- C2, aa, a) 1- (1, aa, aa) 1- (2, aa, aaa) 1-
Cl, aa, aaaa) 1- (2, aa, aaaaa) 1- ... 

• M will never finish reading its input unless its input is f: . On input aa , fo r ex
ample, there is no computation th at will read the second a. 

3. There exists no algorithm to minimize a PDA. In fact, it is undecidable whether a 
PDA is already minimal. 

~ 
e/e/ a ~ 

1 ),-" ---»( 2 
e/ e/ a 

a/ a/e .@ FIGURE 12.~ A POA that may neither 
~ accept nor reJect. 

Problem 2 is especially critical. This same problem also arose with NDFSMs. But 
there we had a choice of two solutions: 

• Use ndfsm todfsm to convert the NDFSM to an equivalent deterrninistic one. A 
DFSM halts on input W in Iwl steps. 

• Simulate the NDFSM using ndfsmsimulate, which ran a1l computational paths in 
parallel and handled E-transitions in a way th at guaranteed that the simulation of 
an NDFSM M on input w halted in Iwi steps. 

Neither of those approaches works for PDAs. There may not be an equivalent de
terministic PDA . And it is not possible to simulate an paths in paraDeI on a single PDA 
because each path would need its own stack. So what can we do? Solutions to these 
problems fal1 into two c1asses: 

• Formal ones that do not restrict the class of languages th at are being considered. 
Unfortunately, these approach es generally do restrict the form of the grammars 
and PDAs that can be used. For example, they may require that grammars be in 
Chomsky or Greibach normal for m. As a result, parse trees may not make much 
sense. We'll see some of these techniques in Chapter 14. 

• Practical ones that work only on a subclass of the context-free languages. But 
the subset is large enough to be useful anel the techniques can use grammars in 
their natural forms. We 'll see some of these techniques in Chapters 13 anel 15. 

12.5 Alternative Equivalent Definitions of a PDA. 
We could have defined a PDA somewhat differentl y. We list here a few reasonable al
tern ative definitions. In all of them a POA M is a sextuple (K , L , r , 11 , s, A): 
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276 Chapter 12 Pushdown Automata 

• We allow M to pOp and to push any string in f *. In some definition , M may pop 
only a single symbol but it may push any number of th em. In some definitions, M 
may pop and push only a single symbol. 

• In our definition, M accepts its input tu only if, when it fini hc reading tu, it is in an 
accepting state and its stack is empt y. There are two altern atives to this: 

• Accept if, when the input has been consumed , M lands in an accepting state, re
gardless of the contents of the tack. 

• Accept if, when the input has been con umcd. the stack is mpt y, regardless of 
the state M is in . 

All of these definitions are equivalent in the sense th at, if some language L is ac
cepted by a POA using one definiti on, it can be acce pt ed by some PDA using each of 
the other definitions. 

We can prove this claim for any pair of definitions by constructi n. To do so, we show 
an algorithm that tranSfOrIllS a POA of one sort into an eq ui va lent PDA of the other sort. 

EXAMPLE 12.14 Accepting by Final State Alone 

Define a PDA M = (K, :2:, r , 1::. , s, A) in exactl y the way we have except that it 
will accept iff it lands in an accepting state regardle of the contents of the stack. 
In other words, if (s, tu, c) I-M* (q, 8, y) and q E A, then M accepts. 

To show that this model is equivalent to ours, we musl how two things: For 
each of our machines, the re ex ists an equivalent one o f these, and for each of 
these, there exists an equivalent one of ours. We' lI do the first part to show how 
such a construction can be done. We leave the second a an exercise. 

Given a PDA M that accepts by accepting state and empty tack , construct a 
new PDA M' that accepts by accepting state alone, where L (M') = L (M). M' 
will have a single accepting state qa' The only way for M' to gel to qa will be to 
land in an accepting state of M when the stack is logica ll y empty. But there is no 
way to check that the stack is empty. So M ' wi1\ begin by pushing a bottom-of
stack marker #, onto the stack. Whenever # is the top symbol o n the stack, the 
stack is logically empty. 

So the construction proceeds as folIows: 

1. Initially, let M' = M. 

2. Create a new start state s'. Add the transition «s' 8, 8), (s #». 
3. Create a new accepting state q{J" 

4. FOT each accepting state a in M do: 

Add the transition «a, 8, #), (qa> c»). 
5. Make qa the on1y accepting state in M'. 

It is easy to see that M' lands in its only accepting tale (qa) iff M land in some 
accepting state with an empty stack. Thus M' and M accept the ' ame strings. 
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As an example, we apply this algorithm to tbe PDA we built for the balanced 
parentheses language BaI: 

~(/I( 
)/(/~-

(1/( 

becomes 
sl#1e 

Notice, by the way, that while M is deterministic, M' is not. 

12.6 Alternatives that are Not Equivalent to the PDA • 
We defined a PDA to be a finite state machine to which we add a single stack. We men
tion here two variants of that definition , each of which turns out to define a more pow
erful dass of machine. In both cases, we'll still start with an FSM. 

For the first variation, we add a first-in, first-out (FIFO) queue in place of the stack. 
Such machines are called tag systems or Post machines. As we'll see in Section 18.2.3, 
tag systems are equivalent to Turing machines in computational power. 

For the second variation, we add two stacks instead of one. Again, the resulting ma
chines are equivalent in computational power to Turing machines, as we'll see in 
Section 17.5.2. 

Exercises 
1. Build a PDA to accept each of the following languages L: 

a. BalDelim = {w: where W is astring of delimiters: (,), [,], {, }, that are prop-
erly balanced}. 

b. {aibi: 2i = 3j + I} . 

c. {wE{a,b} * :#a(w) = 2'#b(W)}, 
d. {a/l bll1 

: m s n s 2m}. 

e. {w E {a, b} * : W = w R
}. 

f. {aibick
: i , j , k 2: 0 and Ci :f: j or j "* k)}. 

g. {w E {a, b} * : every prefix of W has at least as many a 's as b's}. 
h. {a/lblllall

: n, m 2: 0 and m is even}. 

I. {xc/l:xE{a, b} *, #a(x) = nor#b(x) = n} . 
j. {a/bl'l1: m 2: n, m-n is even}. 

k { IIIb ll cJl dCJ • 0 d } • a . m, n, p , q 2: an m + n = p + q . 
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I. {bi#b i+ I
R

: b; is the binary representati on of some integer i , i 2: 0, without 
leading zeros}. (For exa mple 101#011 E L.) 

m. {xR#y: x, y E {0,1 }* and x is a substring of y} . 
n. L 1*, where LI = {xx R 

: X E { a , b }:~} . 

2. Complete the PDA that we sketch ed, in Example 12.8. for , NBIlC Il where 
AIlBIlC n = {aI/ bI/ eil: n 2: O}. 

3. Let L = {ba'll lba'1l2baIl/1 ... ba"I" : n 2:: 2 , 1/1 ,, 111 2 ... . . /11
11 

2:: 0, and 111 ; ::j::. mj for 
some i,j}. 
a. Showa PDA th at accep ts L. 

b. Showa context-free grammar th at generate L. 

c. Prove that L is not regul ar. 

4. Consider the language L = LI n L 2, wh ere L I = {'W1V
R

: 10 E {a, b} :;: } and 
L 2 = { allb* all : n 2:: O}. 
a. List the first foUl' strings in th e lex icograp hic enumeration f L. 

b. Write a context-free grammar to generate L. 

c. Showa natural PDA for L. ( In other wo rds. don't jU '1 build it from the gram
mar using one of the two-state con tructi on prese ntcd in lhi chapter.) 

d. Prove that L is not regul ar. 
5. Build a deterministic PDA to accep t each of th followin g language : 

a. L$, where L = {w E {a, b}* : #a( w) = #b(?V)} . 
b. L$ where L = { allb+a/ll : 11 2:: 0 and 3/\ 2:: 0 (171 = 2k n)}, 

6. Complete th e proof that we started in Exampl e 12. 14. Sp cifica ll y, how that if 
M is a PDA th at accepts by accep ting sta te alon , then there exists a PDA M' 
that accepts by accepting stale and empt y stack Co ur definition) where 
L (M') = L (M). 
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