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Context-Free and Noncontext-Free
Languages

131

he language A'B" = {a@"b":n = 0} is context-free. The language A"B"C" =
{a"b"c" : n = 0} is not context free (intuitively because a PDA’s stack cannot count
all three of the letter regions and compare them). PalEven = {ww® : we {a.b}*} is
context-free. The similar language WW = {ww : we {a,b}*} is not context-free (again,
intuitively, because a stack cannot pop the characters of w off in the same order in which
they were pushed).
Given a new language L. how can we know whether or not it is context-free? In this
chapter, we present a collection of techniques that can be used to answer that question.

Where Do the Context-Free Languages Fit in the
Big Picture?

First, we consider the relationship between the regular languages and the context-free
languages.

THEOREM 13.1  The Context-Free Languages Properly Contain the Regular

Languages

Theorem: The regular languages are a proper subset of the context-free languages.
Proof: We first show that every regular language is context-free. We then show that
there exists at least one context-free language that is not regular.

We show that every regular language is context-free by construction. If L is
regular, then it is accepted by some DFSM M = (K, X, 6,5, A). From M we con-
structa PDA M" = (K'. X' T, A’,s", A") to accept L. In essence, M’ will simply
be M and will ignore the stack. Let M’ be (K. 2., A’ 5. A), where A' is con-
structed as follows: For every transition (g, c, g;) in 8, add to A’ the transition
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280 Chapter 13 Context-Free and Noncontext-Free Languages

((g: c. €), (g;. €)). M" behaves identically to M.so L (M) = [ (M"). So the regu=
lar languages are a subsct of the context-free languages.

The regular languages are a proper subset of the context-free languages be-
cause there exists at least one language, A"B", that is context-free but not regular.

Next, we observe that there are many more noncontext-lree languages than there
are context-free ones:

THEOREM 13.2 How Many Context-Free Languages are There?
Theorem: There is u countably infinite number ol context-free languages.

Proof: Every context-lree language is generated by some context-free grammar
G =(V, E R. S). We can encode the elements of Voas binary strings, so we can
lexicographically enumcrate all the syntactically legal context-free grammars.
There cannot be more context-free languages than there are context-free gram-
mars. so there is at most a countably infinite number of context-free languages.
There is not a one-to-one relationship hetween context-free languages and con-
text-free grammars since there is an infinite number of grammars that generate
any given language. But, by Theorem 13.1. every regular language is context-
free. And. by Theorem 8,1, there is a countably infinite number of regular lan-

guages. So there is at least and at most a countably infinite number of
context-free languages.

But. by Theorem 2.3. there 1s an uncountably inlinite number of languages over any

nonempty alphabet X. So there are many more noncontext-free languages than there
are regular ones.

13.2 Showing That a Language is Context-Free

We have so far seen two technigues that can be used to show that a language L is
context-free:

e Exhibit a context-free grammar lor it

s Exhibit a (possibly nondeterministic) PDA for it,

There are also closure theorems for context-frec languages and they can be used
to show that a language is context-free if it can be desceribed in terms of other lan-
guages whose status is already known. Unfortunately. there are fewer closure theo-
rems for the context-free languages than there are for the regular languages, In
order 10 be able to discuss both the closure theorems that exist. as well as the ones
we'd like but don't have. we will wait and consider the issue of closure theorems in

Section 13.4. after we have developed a technique for showing that a language is not
context-[ree.
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13.3 The Pumping Theorem for Context-Free Languages 281
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FIGURE 13.1 The structure of a parse tree,

13.3 The Pumping Theorem for Context-Free Languages

Suppose we are given a language and we want to prove that it is not context-free. Just
as with regular languages, it is not sufficient simply to claim that we tried to build a
grammar or a PDA and we failed. That doesn't show that there isn’t some other way to
approach the problem.

Instead. we will again approach this problem from the other direction. We will artic-
ulate a property that is provably true of all context-free languages. Then, if we can
show that a language L. does not possess this property, then we know that L is not con-
text-free. So, just as we did when we used the Pumping Theorem for regular languages,
we will construct proofs by contradiction. We will say, “1f L. were context-free, then it
would possess certain properties. But it does not possess those properties. Therefore, it
is not context-free.”

This time we exploit the fact that every context-free language is generated by some
context-free grammar. The argument we are about to make is based on the structure of
parse trees. Recall that a parse tree. derived by a grammar G = (V, X, R, §),1s a rooted,
ordered tree in which:

e Every leal node is labeled with an element of X U {&},

e The root node is labeled S,

¢ Every other node is labeled with some element of V. — . and
e |{m is a nonleaf node labeled X and the children of /n are labeled i P Xos
then the rule X — xx,..... v, isin R.

Consider an arbitrary parse tree, as shown in Figure 13.1 The height of a tree is the

length of the longest path from the root to any leaf. The branching factor of a tree is

the largest number of daughters of any node in the tree. The yield of a tree is the or-
dered sequence of its leaf nodes,

THEOREM 13.3  The Height of A Tree and its Branching Factor Put A
Bound On its Yield

Theorem:} The length of the yield of any tree T with height & and branching factor
his =b".
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Proof: The proof is by induction on /1. If /i is 1. then just a single rule applies. So the
longest yield is of length less than or equal to h. Assume the claim is true for
h = n. We show that it is true for h = n + 1. Consider any tree with h = n + I
[t consists of a root, and some number of subtrees, cach of which is of height =
By the induction hypothesis, the length of the yield of cach of those subtree

=b". The number of subtrees of the root is =b. So the length of the yield must be
=bh (bn) — bu+I = bl‘l.

Let G = (V, 2, R, S) be a context-free grammar. Let n = |V — X[ be the number
of nonterminal symbols in G. Let b be the branching factor of G, defined to be the
length of the longest right-hand side of any rule in R.

Now consider any parse tree T generated by (. Suppose that no nonterminal ap-
pears more than once on any one path from the root of 7 to a nonterminal. Then

height of T is <n. So the longest string that could correspond to the yield of T ha
length =b", '

generates for w must contain at least one path that contains at least one repeated no
terminal. Another way to think of this is that, to derive w , G must have used at least
one recursive rule. So any parse tree for w must look like the one shown in Figure 1

derivation may not be direct but may, instead, require several steps. So, for example, it
is possible that the tree shown here was derived using a grammar that contained th
rules X — aYb, Y — bXa,and X — ab.
Of course, it is possible that w has more than one parse tree. For the rest of this
cussion we will pick some tree such that GG generates no other parse tree for w that
fewer nodes. Within that tree it is possible that there are many repeated nontermin
and that some of them are repeated more than once. We will assume only that we have
chosen point [1] in the tree such that X is the first repeated nonterminal on any pa
coming up from the bottom, in the subtree rooted at [1]. We'll call the rule that was ap
plied at [1] rule; and the rule that was applied at (2] rule,.
We can sketch the derivation that produced this tree as;

§ =* uXz =* X yz =* noxyz.

FIGURE 13.2 A parse tree whose
heightis greater than n. '

w
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13.3 The Pumping Theorem for Context-Free Languages 283

So we have carved w up into five pieces: u, v, x, y, and z. We observe that:

There is another derivation in G, § =* uXz =>* uxz, in which, at the point labeled
[1], the nonrecursive rule, is used. So uxz is also in L(G).

There are infinitely many derivations in G, such as § =* uXz =* v X yz =*
uvv X yyz =* uvvxyyz, in which the recursive rule, is applied one or more addi-
tional times before the nonrecursive rule, is used. Those derivations produce the
strings, uv*xy*z, uv’xy*z, etc. So all of those strings are also in L(G).

Itis possible that v = &, as it would be, for example if rule; were X — Xa. It is also pos-
sible that y = &, as it would be, for example if rule; were X — aX.But it is not possible
that both v and y are &. If they were, then the derivation § =* uXz =* uxz would also
yield w and it would create a parse tree with fewer nodes. But that contradicts the as-
sumption that we started with a tree with the smallest possible number of nodes.

The height of the subtree rooted at [1] is at most n + 1 (since there is one repeated

nonterminal and every other nonterminal can occur no more than once). So
|?)X_}’I < b”+l.

These observations are the basis for the context-free Pumping Theorem, which we
state next.

THEOREM 13.4 The Pumping The_gl_'em for Context-Free Languages

Theorem: If L is a context-free language, then:

| 3k = 1 (Vstrings we L, where |w| = k (3u, v, x, y, z
(w = uwvxyz,
vy # &g,
| |vxy| = k, and
! Vg = 0 (uv?xy?zisin L)))).

. Proof: The proof is the argument that we gave above: If L is context-free, then it is gen-
’ erated by some context-free grammar G = (V, 2, R, §) with n nonterminal symbols
: and branching factor b. Let k be b"*!. Any string that can be generated by G and
| whose parse tree contains no paths with repeated nonterminals must have length less
| than or equal to b". Assuming that b = 2, it must be the case that »"*! > b". So let
' w be any string in L(G) where |w| = k. Let T be any smallest parse tree for w (ie.,
| a parse tree such that no other parse tree for w has fewer nodes). T must have height
' atleastn + 1. Choose some pathin T of length at least n + 1. Let X be the bottom-

most repeated nonterminal along that path. Then w can be rewritten as uvxyz as
| shown in the tree diagram of Figure 13.2. The tree rooted at [1] has height at most
. n + L. Thusits yield, vxy, has length less than or equal to b**!, which is k. Further,

vy # esince if vy were e then there would be a smaller parse tree for w and we chose
! T so that that wasn’t so. Finally, v and y can be pumped: uxz must be in L because

rule; could have been used immediately at [1). And, for any g = 1, uv’xy’z must be
in L because rule) could have been used g times before finally using rule,.
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So.if L is a context-free language. every “long” string in /. must be pumpable. Just as
with the Pumping Theorem for regular languages, the pumped region can be pumped
out once or pumped in any number of times. in all cases resulting in another string that
is also in L. So.if there is even one “long” string in . that is not pumpable, then L is not
context-free.

Note that the value k plays two roles in the Pumping Theorem. It defines what we
mean by a “long” string and it imposes an upper bound on [rxvl. When we set k to
p" ! we guaranteed that it was large enough so that we could prove that it served both
of those purposes. But we should point out that a smaller value would have sufficed as
the definition for a “long" string. since any string of length greater than b must be
pumpable.

There are a few important ways in which the context-free Pumping Theorem differs
from the regular one:

* The most obvious is that two regions, 1 and v, must be pumped in tandem.

¢ We don't know anything about where the strings ¢ and y will fall. All we know is
that they are reasonably “close together™. 1.c.. lexy| = &.
e Either v or y could be empty. although not both.

EXAMPLE 13.1 A"B"C" is Not Context-Free

Let L = A'B"C" = {a"b"c" :n = 0}. We can use the Pumping Theorem Lo show
that L is not context-free. If it were. then there would exist some A such that any
string w, where lwe| = k. must satisfy the conditions of the theorem. We show one
string w that does not. Let w = a*b*c*, where k is the constant from the Pump-
ing Theorem. For w to satisfy the conditions of the Pumping Theorem, there must
be some u, v, x, ¥, and z such that w = uvxyz, vy # e. [vxy| = k. and Vg =0
(uv’xy‘z is in L). We show that no such #, v, x, v, and z exist. If either v or y con-
tains two or more different characters, then set ¢ to 2 (i.¢.. pump in once) and the
resulting string will have letters out of order and thus not be in A"B"C". (For ex-
ample, if v is aabb and y is cc, then the string that results from pumping will look
like aaa... aaabbaabbccc...ccc.) If both v and vy each contain at most one dis-
tinct character then set g to 2. Additional copies of at most two different charac-
ters are added, leaving the third unchanged, There are no longer ¢qual numbers
of the three letters, so the resulting string is not in A"B"C". There is no way to di-

vide w into wwxyz such that all the conditions of the Pumping Theorem are met.
So A"B"C" is not context-free.

As with the Pumping Theorem for regular languages. it requires some skill to design
simple and effective proofs using the context-free Pumping Theorem. As before, the
choices that we can make, when trying to show that a language L01s not conlext-free are:

*  We choose w, the string to be pumped, It is important to choose w 5o that itis in the

part of L that captures the essence of why L is not context-free.
*  We choose a value for ¢ that shows that w isn’t pumpable.
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13.3 The Pumping Theorem for Context-Free Languages 285
* We may apply closure theorems before we start, so that we show that L is not con-

text-free by showing that some other language L' isn’t. We'll have more to say
about this technique later.

EXAMPLE 13.2 The Language of Strings with n? a's is Not Context-Free

Let L. = {a” n = 0}. We can use the Pumping Theorem to show that L is not
context-free. If it were, then there would exist some k such that any string w,
where |w| = k. must satisly the conditions of the lhcoum We show one stnng w
that does not. Let n (in the definition of L) be k% So n®> = k* and w = a* . For w
to satisfy the conditions of the Pumping Theorem, there must be some u, v, x, y,
and z,such that w = uvxyz, vy # & |vxy| = k,and Vg = 0 (uvfxy9zisin L). We
show that no such u, v, x, y, and z exist. Since w contains only a’s, vy = a”. for
some nonzero p. Set ¢ to 2. The resulting string, which we'll call s, is k"7 which
must be in L. But it isn’t because it is too short. lfa . which contains (k*)* a’s, is in
L. then the next longer element of L contains (k + 1)* a's. That's k* + 2k + 1
a’s. So there are no strings in L with length between k* and k* + 2k* + 1. But
|s| = &* + p.So,forstobein L,p = |vy| would have to be at least 2k*> + 1. But
|oxy| = k, so p can’t be that large. Thus s is not in L. There is no way to divide w

into ywvxyz such that all the conditions of the Pumping Theorem are met. So L is
not context-free.

When using the Pumping Theorem. we focus on v and y. Once they are specified, so
are i, x,and z.

To show that there exists no », v pair that satisfies all of the conditions of the Pump-
ing Theorem. it is sometimes necessary to enumerate a set of cases and rule them out
one at a time. Sometimes the easiest way to do this is to imagine the string to be

pumped as divided into a set of regions. Then we can consider all the ways in which v
and y can fall across those regions.

EXAMPLE 13.3 Dividing the String w Into Regions

Let L = {a"b"' a":n.m = 0and n = m}. We can use the Pumping Theorem to

show that L is not context-free. If it were, then there would exist some & such that

any string w, where lw| = k. must satisfy the conditions of the theorem. We show
one string w that does not. Let w = a*b*ak, where £ is the constant from the

Pumping Theorem. For w to satisfy the conditions of the Pumping Theorem, there

must be some u, v, x, y, and z, such that w = uwvxyz, vy # e, lvxy| = k, and
Vg = 0 (uvxyizisin L). We show that no such w, v.x, y. and z exist. Imagine w di-

vided into three regions as follows:

aaa ... aaabbb ... bbbaaa ...aaa
s TR TR 28 N s = o
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EXAMPLE 13.3 (Continued)

We consider all the cases for where v and y could fall and show that in none of

them are all the conditions of the theorem met:

If either v or y crosses regions. then set ¢ to 2 (thus pumping in once). The re-
sulting string will have letters out of order and so not be in L. So in all the re-
maining cases we assume that » and v each falls within a single region.

(1, 1): Both » and y fall in region 1. Set ¢ to 2, In the resulting string, the first
group of a’s is longer than the second group of a's. So the string is not in L.
(2,2): Both v and y fall in region 2. Set ¢ to 2. In the resulting string, the b re-
gion is longer than either of the a regions. So the string is not in L

(3,3): Both wand y fall in region 3. Set ¢ to 0. The same argument as for (1,1).
(1,2): Nonempty v falls in region 1 and nonempty y falls in region 2. (If either
v or y is empty, it does not matter where it falls. So we can treat it as though it
falls in the same region as the nonempty one. We have already considered all
of those cases.) Set ¢ to 2. In the resulting string. the first group of a’s is longer
than the second group of a’s. So the string is not in L.

(2,3): Nonempty v falls in region 2 and nonempty vy falls in region 3. Set g to 2.
In the resulting string the second group of a’s is longer than the first group of
a’s. So the string is not in L.

(1. 3): Nonempty v falls in region 1 and nonempty y falls in region 3. 1f this
were allowed by the other conditions of the Pumping Theorem, we could
pump in a's and still produce strings in L. But if we pumped out, we would vi-
olate the requirement that the a regions be at least as long as the b region.
More importantly, this case violates the requirement that |l.',1"\-'l = k. So it
need not be considered.

There is no way to divide w into nvxvz such that all the conditions of the

Pumping Theorem are met. So L is not context-free.

-

Consider the language PalEven = {ww® 1 we {a. b}*|, the language of even-
length palindromes of a’s and b’s, which we introduced in Example 11.3. Lel w be any
string in PalEven. Then substrings of w are related to each other in a perfectly nested
way, as shown in Figure 13.3 (a). Nested relationships of this sort can naturally be de-
scribed with a context-free grammar, so languages whose strings are structured in this
way are typically context-free.

But now consider the case in which the relationships are not properly nested but in-
stead cross. For example, consider the language WeW = {wcw:we {a.b}*}. Now let
w be any string in WcW. Then substrings of w are related 1o cach other as shown in
Figure 13.3 (b). We call such dependencies. where lines cross cach other, cross-serial
dependencies. Languages whose strings are characterized by cross serial dependencies
are lypically not context-free.
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(a)

a-a kg ata b

L*:t—"i—l FIGURE 13.3 Nested versus

(b) cross-serial dependencies.

EXAMPLE 13.4 WcW is Not Context-Free

Let WeW = {wcw:we{a, b}*}. WcW is not context-free. All its nonempty
strings contain cross-serial dependencies.

We can use the Pumping Theorem to show that WcW is not context-free. If it
were, then there would exist some k such that any string w, where |w| = k, must
satisfy the conditions of the theorem. We show one string w that does not. Let w =
a*b¥cafb*, where k is the constant from the Pumping Theorem, For w to satisfy the
conditions of the Pumping Theorem, there must be some u, v. x, y, and z, such that
w = uvxyz, vy # &, |oxy| = k, and Vg = 0 (uv'xy?z is in WcW). We show that
no such u, v, x,y,and z exist. Imagine w divided into five regions as follows:

aaa ... aaabbb ... bbbcaaa ... aaabbb ... bbb
s g l 2 |3| 4 | 5 I

Call the part before the c the left side and the part after the c the right side. We

consider all the cases for where v and y could fall and show that in none of them
are all the conditions of the theorem met;

e If cither v or y overlaps region 3, set ¢ to 0. The resulting string will no longer

contain a c and so i1s not in WcW.

If both v and y occur before region 3 or they both occur after region 3, then set

¢ to 2. One side will be longer than the other and so the resulting string is not
in WcW.

If either v or y overlaps region 1. then set ¢ to 2. In order to make the right side
match, something would have to be pumped into region 4. But any v, y pair
that did that would violate the requirement that |vxy| < k.

If either v or y overlaps region 2, then set ¢ to 2. In order to make the right
side match, something would have to be pumped into region 5. But any v, y
pair that did that would violate the requirement that |vxy| < .

There is no way to divide w into uvxyz such that all the conditions of the
Pumping Theorem are met. So WeW is not context-free.

(Are programming languages like C++ and Java context-free? (G.2)
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288 Chapter 13 Context-Free and Noncontext-Free Languages

The language WcW. which we just showed is not contexi-free. is important because of
its similarity to the structure of many common programming languages. Consider a pro-
gramming language that requires that variables be declared before they are used. If we
consider just a single variable 10 . then a program that declares 1w and then uses it hasa
structure very similar to the strings in the language WeW, since the string w must occur
in exactly the same form in both the declaration section and the body of the program.

13.4 Some Important Closure Properties of Context-Free
Languages

It helps to be able to analyze a complex language by decomposing it into simpler
picces. Closure theorems. when they exist, enable us to do that. We'll see in this sec-
tion that. while the context-free languages are closed under some common operations,
we cannot prove as strong a sct of closure theorems as we were able to prove for the
regular languages.

13.4.1 The Closure Theorems

THEOREM 13.5 Closure Under Union, Concatenation, Kleene Star, Reverse,
and Letter Substitution

Theorem: The context-free languages are closed under

union, concatenation,
Kleene star, reverse, and letter substitution.

Proof: We prove each of the claims separatcely by construction:

o The context-free languages are closed under union: It 1., and L, are context-
free languaees then there exist context-free grammars G, = (Vi, 2. R, §))
and G, = (V4, X5, Ry, S) such that L, = L(Gy) and L5 = L(G,). If necessary,
rename the nonterminals of Gy and (55 so that the two sets are disjoint and so
that neither includes the symbol S, We will build a new grammar G such that
L(G) = L(G)U L (GH). G will contain all the rules of both G, and G,. We
add to G a new start symbol. S. and two new rules. S — 8§, and § — S5. The two
new rules allow (& Lo generate a string il at least one of () or (7, generates it.
SoG=(VUWU{SL ZUZ,RURU{S—S5.5—51.9).
The context-free languages are closed under concatenation: If 1., and L, are
conu:xl free languages. lhen there exist context-free  grammars G1 = (W
. R S5)) and Gy = (Va, 25, Ry, S5) such that Ly = L(G)) and L, = L (G,). r
ll nccess.ar_v. rename the nonterminals ol Gy and (75 so that the two sets are dis-
joint and so that neither includes the symbol 5. We will build a new grammar G
such that L(G) = L(G)) L (Gs). G will contain all the rules of both Gy and G, !
We add to G a new start symbol, S, and one new rule, § — 5,5, So G = (Y
UWhU{S}L Z,UZ, RURU{S—5 5}.95)

The context-free languages are closed under Kleene star: IF L) is a context-
free language, then there exists a context-free grammar Gy = (Vi X Ry §))
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such that L, = L(G),). If necessary, rename the nonterminals of G, so that V;
does not include the symbol S. We will build a new grammar G such that
L (G) = L(G))*. G will contain all the rules of G;. We add to G a new start
symbol, §, and two new rules, S—& and S—SS5,. So G = (V,U {S§}. £,
RiU{S§—¢& 5§—>55}.5)

The context-free languages are closed under reverse: Recall that LR =
{we 2# 1w = x" forsome x e L}. If L is a context-free language, then it is
generated by some Chomsky normal form grammar G = (V. . R, §). Every
rule in G is of the form X — BC or X — a. where X, B, and C are elements of
V — S andae 2. In the latter case L (X) = {a}. {a}® = {a}. In the former
case, L(X) = L(B)L(C). By Theorem 2.4, (L(B)L(C))}? = L(C)RL(B)®. So
we construct, from G, a new grammar G', such that L(G") = LX. G' =
(Vo 2. R'.8¢), where R’ 1s constructed as follows:

e For every rule in G of the form X — BC, add to R’ the rule X — CB.
For every rule in G of the form X' — «, add to R' the rule X —a.

L
The context-free languages are closed under letter substitution, defined
as follows: Consider any two alphabets, ¥, and X,. Let sub be any func-
tion from X, to X,* Then letsub is a letter substitution function from L,
to Ly iff letsub (L)) ={we Z,*: 3y e L;(w=y except that every character

c of y has been replaced by sub (¢))}. We leave the proof of this as an ex-
ercise.

As with regular languages, we can use these closure theorems as a way to prove that
a more complex language is context-free if it can be shown to be built from simpler
ones using operations under which the context-free languages are closed.

THEOREM 13.6 Nonclosure Under Intersection, Complement, and Difference

Theorem: The context-free languages are not closed under intersection, comple-
ment, or difference.

Proof:

» The context-free languages are not closed under intersection: The proof is by
counterexample. Let:

Ly = {a"b"c" :n.n = 0}.

/* equal a’s and b’s.
Lz = {a"b"c" b = Q).

/* equal b’s and c’s.

Both L) and L, are context-free since there exist straightforward context-free
grammars for them.

But now consider:

L= L] nL'_u_
= a2 =0k

heteps:/hemanthrajhemu.github.io



290

Chapter 13 Context-Free and Noncontext-Free Languages

If the context-free languages were closed under intersection. L. would have 10
be context-free. But we proved, in Example 13.1. that it isn'L.

The context-free languages are not closed under complement: Given any sets
Ll and Ll*

Ly Ly = =(=L,U=Ly).

The context-free languages are closed under union. So. if they were also closed
under complement, they would necessarily be closed under intersection. But we

just showed that they are not. Thus they are not closed under complement either.

We've also seen an example that proves this claim directly. ~A"B"C" is con-

text-free. We showed a PDA that accepts it in Example 12.8. But ~(~A"B"C").
= A"B"C" is nol contexi-free.

The context-free languages are not closed under difference (subtraction):
Given any language L,

S PR S AR

3 * is context-free. So, if the context-free languages were closed under dif-
ference. the complement of any context-free language would necessarily be
context-free. But we just showed that that is not so.

Recall that, in using the regular Pumping Theorem to show that some language L
was not regular, we sometimes found it useful to begin by intersecting L. with another
regular language to create a new language L.". Since the regular languages are closed
under intersection, " would necessarily be regular if L. were. We then showed that L',
designed to be simpler to work with, was not regular. And so neither was L.

It would be very useful to be able to exploit this technique when using the context-
free Pumping Theorem. Unfortunately, as we have just shown, the context-free lan-
guages are not closed under intersection. Fortunately, however, they are closed under
intersection with the regular languages. We'll prove this result next and then, in Section
13.4.2, we'll show how it can be exploited in a proof that a language is not context-free.

THEOREM 13.7 Closure Under Intersection With the Regular Languages

Theorem: The context-free languages are closed under intersection with the regular
languages.

Proof: The proof is by construction. If L., is context-frec, then there exists some
PDA M, = (K, X,T',. A, 5, Ay) that accepts it If L, is regular then there exists
a DFSM M, = (K5, 2, 8, 55, Ay) that accepts it. We construct a new PDA; My
that accepts L, N L,. M5 will work by simulating the parallel execution of My
and M. The states of M5 will be ordered pairs of states of M, and M,. As each
input character is read, Ms will simulate hoth M, and M, moving appropriately
to a new state. Ms will have a single stack, which will be controlled by M,. The
only slightly tricky thing is that M, may contain &-transitions, So M will have 1o
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allow M, to follow them while M, just stays in the same state and waits until the
next input symbol is read.

M; = (K, X Ky, 2, T, As, (51, 5), A X Ay), where Aj is built as follows:

e For each transition ((q,, a, B), (py, v)) in Ay,
and each transition ((q-, - G O T ) in 8, add to Aj; the transition:

(((q1, 92), a, B), ((p1, P2), 7))-
¢ For each transition ((q;, e, B), (P v)in Ay,
and each state 4> in K5, add to Aj the transition:

(((‘hs QZ)'! £, B)* ((pl'! QZ)’ ')’))-
We define intersectPDAand FSM as follows:

intersectPDAandFSM (M,: PDA, M,: FSM) =
Build M, as defined in the proof of Theorem 13.7.

THEOREM 13.8 Closure Under Difference with the Regular Languages

Theorem: The difference (L, — L,) between a context-free language L, and a reg-
ular language L, is context-free.

Proof: L, — L, = L, N ~L,. If L, is regular, then, since the regular languages are

| closed under complement, =L, is also regular. Since L, is context-free, by Theorem
13.7, L, N =L, is context-free.

The last two theorems are important tools, both for showing that a language is
context-free and for showing that a language is not context-free.

EXAMPLE 13.5 Using Closure Theorems to Prove A Language
Context-Free

Consider the perhaps contrived language L = {a"b":n = 0 and n # 1776}. An-
other way to describe L is that it is {a"b":n = 0} — {amebma}. A'B" =
{a"p" : n = 0} is context-free, We have shown both a simple grammar that gener-
ates it and a simple PDA that accepts it. {a'”%b'77°} i finite and thus regular. So,
by Theorem 13.8, L is context free.

Generalizi_ng that example a bit, from Theorem 13.8 it follows that any language that
can be described as the result of subtracting a finite number of elements from some
language known to be context-free must also be context-free,
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13.4.2 Using the Pumping Theorem in Conjunction with the
Closure Properties

Languages that impose no specific order constraints on the symbols contained in their
strings are not always context-free. But it may be hard 1o prove that one isn't just
using the Pumping Theorem. In such a case. it is often useful to exploit Theorem
which tells us that the context-free languages are closed under intersection with the
regular languages.
Recall our notational convention from Section 13.3: (7. n) means that all nonempty.
substrings of vy occur in region n. This may happen cither because v and y are both
nonempty and they both occur in region n. Or it may happen because one or the other
is empty and the nonempty one occurs in region 1.

Are natural languages like English or Chinesc or German context-free? (L.3.3)

EXAMPLE 13.6 WW is Not Context-Free

Let WW = {ww:we {a,b}*}. WW issimilar to WecW = {wcw:we {a,b}*},
except that there is no longer a middle marker. Because, like WcW, it contains
cross-serial dependencies, it is not context-free. We could try proving that by

using the Pumping Theorem alone. Here are some attempts, using various choie-
es for w:

e Letw= (ab)®. If v = gand y = ab, pumping works fine.
e Letw = a*ba*b.If v = aandis in the first group of a’s and y = a and isin’
the second group of a’s, pumping works fine.

s Let w = afb¥a*b*. Now the constraint that |v_ry| = k prevents v and y from

cluding all those in which either or both of » and v occur on a region boundar
While it is possible to write out all those possibilities and show, one at a time,

that every one of them violates at least one condition of the Pumping Theo-
rem, there is an easier way.

If WW were context-free, then L' = WW N a#b*a*b* would also be context-
free. But it isn’t, which we can show using the Pumping Theorem. If it were, then
there would exist some k such that any string w, where |w| = k, must satisfy
conditions of the theorem. We show one string w that does not. Let w = a*b*akpk

where k is the constant from the Pumping Theorem. For w to satisfy the conditions
of the Pumping Theorem, there must be some w, v. x, y, and z, such tha
w = uoxyz, vy # g, |vxyl = k., and vg = 0 (uv'xy?zisin L'). We show that no.
such u, v, x,y,and z exist. Imagine 1w divided into four regions as follows:
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aaa ... aaabbb ... bbbaaa ... aaabbb ... bbb
Tk 1 y | 3 I 4 l

We consider all the cases for where v and y could fall and show that in none of
them are all the conditions of the theorem met:

¢ [f either v or y overlaps more than one region, set g to 2. The resulting string

will not be in a*b*a*b* and soisnotin L',

If |yl is not even then set g to 2. The resulting string will have odd length and
so not be in L'. We assume in all the other cases that |vy| is even.

(1,1).(2,2),(1,2): Set g to 2. The boundary between the first half and the sec-
ond half will shift into the first b region. So the second half will start with a b,
while the first half still starts with an a. So the resulting string is not in L".

(3,3),(4,4),(3.4): Set g to 2. This time the boundary shifts into the second a

region. The first half will end with an a while the second half still ends with a b.
So the resulting string is not in L'.

(2,3):Set g to 2.1f |v| # |y| then the boundary moves and, as argued above,
the resulting string is not in L'. If |v| = |y| then the first half contains more

b's and the second half contains more a’s. Since they are no longer the same,
the resulting string is not in L',

(1,3), (1,4),and (2,4) violate the requirement that |vxy| =< k.

There is no way to divide w into wvxyz such that all the conditions of the
Pumping Theorem are met. So L' is not context-free, So neither is WW.

One reason that context-free grammars are typically too weak to describe

musical structures is that they cannot describe constraints such as the one
that defines WW. (N.1.2)

EXAMPLE 13.7 A Simple Arithmetic Language is Not Context-Free

LetL = {x#y = z:x,y,ze{0,1}* and,if x, y and z are viewed as positive binary
numbers without leading zeros, then xy = z®}. For example, 100#111 = 00111
e L. (We do this example instead of the more natural one in which we require that
xy = z because it seems as though it might be more likely to be context-free. As
we’ll see, however, even this simpler variant is not.)

If L were context-free,then L' = L N 10*#1* = 0*1* would also be context-free.
But it isn’t, which we can show using the Pumping Theorem. If it were, then there
would exist some k such that any string w, where |w| = k, must satisfy the conditions
of the theorem. We show one string w that does not. Let w = 10 #1* = 0K1%, where k is
the constant from the Pumping Theorem. Note that w e L because 10+ 1¥ = 1%0%,
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EXAMPLE 13.7 (Continued)

For w to satisfy the conditions of the Pumping Theorem, there must be some i, ¥
x.y.and z, such that w = uvxyz, vy # &, loxy| = M, and vg = 0 (uolxy’z isin
L), We show that no such w, v, x. y, and z exist. Imagine w divided into seven re-
gions as follows:

1000 ... 000#111 ... 111 = 000 ... 000111 ... 111
5 L g .| S N 6 It AN

We consider all the cases for where v and y could fall and show that in none of
them are all the conditions of the theorem met:

e Ifeither v or y overlaps region 1.3.0r 5 then set g 1o 0. The resulting string will
not be in 10##1* = 0*1% and sois notin L'

e [feither v or y contains the boundary between 6 and 7.set ¢ to 2, The resulting
string will not be in 10%#1* = 0%1* and so is not in L". So the only cases left
to consider are those where v and y each occur within a single region.

e (2,2).(4.4),(2,4):Set ¢ to 2. Because there are no leading zeros, changing the
left side of the string changes its value. But the right side doesn’t change to
match. So the resulting string is not in L.

e (6,6),(7.7).(6.7):Set g to 2. The right side of the equality statement changes
value but the left side doesn’t. So the resulting string is not in L.

e (4,6): Note that, because of the first argument to the multiplication. the num-
ber of 1's in the second argument must equal the number of 1's after

the =. Set ¢ to 2. The number of 1's in the second argument changed but the
number of 1's in the result did not. So the resulting string is not in L.

(2,6),(2,7),and (4.7) violate the requirement that [oxy| = k.

There is no way to divide w into wwxyz such that all the conditions of the
Pumping Theorem are met. So L is not context-free.

Sometimes the closure thecorems can be used to reduce the proof that a new lan-
guage L is not context-free to the proof that some other language L. is not context-
free, where we have already proven the case for 1.,

EXAMPLE 13.8 Using Intersection to Force Order Constraints
Let L = {we{a,b,c}*:#,(w) = #,(w) = #(w)}. If L. were context-free, then

L' = LNa*b*c* would also be context-free. But L' = A"B"C", which is not
context-free, so neither is L.
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13.5 Deterministic Context-Free Languages #

The regular languages are closed under complement, intersection, and difference. Why
are the context-free languages different? In a nutshell. because the machines that ac-
cept them may necessarily be nondeterministic. Recall the technique that we used. in
the proof of Theorem 8.4, to show that the regular languages are closed under comple-

ment: Given a (possibly nondeterministic) FSM M, we used the following procedure
1o construct a new FSM M, such that L(M,) = - L(M,):

1. From M,. construct an equivalent DFSM M’, using the algorithm ndfsmtodfsm,
presented in the proof of Theorem 5.3. (If M, is already deterministic. M" = M,.)

2. M' must be stated completely, so if it is described with an implied dead state, add
the dead state and all required transitions to it.

3. Begin building M, by setting it equal to M'. Then swap the accepting and the

nonaccepting states. So My = (Kyp, Z, 8y 54 Ky — App).

We have no PDA equivalent of ndfsmiodfsm. so we cannot simply adapt this con-
struction for PDAs, Our prools that the regular languages are closed under intersec-
tion and difference relied on the fact that they were closed under complement, so we
cannot adapt those proofs here either.

We have no PDA equivalent of ndfsmtodfsm because there provably isn’'t one, as we
will show shortly. Recall that.in Section 12.2. we defined a PDA M to be deterministic iff:

Ay, contains no pairs of transitions that compelte with each other, and

» if ¢ is an accepting state of M, then there is no transition ((q, &, €), (p, a)) for any p or a.
In other words, M never has a choice between two or more moves, nor does it have

a choice between moving and accepting. There exist context-free languages that cannot

be accepted by any deterministic PDA. But suppose that we restrict our attention to
the ones that can.

What is a Deterministic Context-Free Language?

We are about to define the class of deterministic context-free languages. Because this
class is useful, we would like it to be as large as possible. So let § be an end-of-string
marker. We could use any symbol thatis notin X, (for example <line feed> or <cr>),

but § is easier to read. A language L is deterministic context-free iff L$ can be accepted
by some deterministic PDA.

To see why we have defined the deterministic context-free languages to exploit an

end-of-string marker, consider the following example of a straightforward language for
which no deterministic PDA exists unless an end-of-string marker is used.

EXAMPLE 13.9 Why an End-of-String Marker is Useful
Let L = a*U{a"b": n > (}. Consider any PDA M that accepts L. When it be-

gins reading a’s, M must push them onto the stack in case there are going 1o be b’s.
But. il it runs out of input without seeing b’s, it needs a way to pop those a’s from
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the stack before it can accept. Without an end-of-string marker, there is no way to
allow that popping to happen only when all the input has been read. So, for exam-
ple, the following PDA accepts L. but it is nondeterministic because the transition

to state 3 (where the a’s will be popped) can compete with both of the other tran-
sitions from state 1.

a/n/a

w55 |
@D g/ale

With an end-of-string marker, we can build the following deterministic PDA,
which can only take the transition to state 3. the a-popping state. when it sees the $:

Before we go any farther, we have to be sure of one thing. We introduced the end-
of-string marker to make it easier to build PDAs that are deterministic. We need to
make sure that it doesn’t make it possible to build a PDA for a language 1. that was not
already context-free. In other words, adding the end-of-string marker cannot convert a
language that was not context-free into one that is. We do that next,

THEOREM 13.9 CFLs and Deterministic CFLs

Theorem: Every deterministic context-free language (as just defined) is context-free.

Proof: If L is deterministic context-lree. then L% is accepted by some deterministie
PDA M = (K. X, I, A.s. A). From M. we construct M' such that L (M') = L.
The idea is that, whatever M can do on reading $. M’ can do on reading & (i.e., by
simply guessing that it is at the end of the input). But. as soon as M' makes that
guess, it cannot read any more input. It may perform the rest ol its computation
(such as popping its stack), but any path that pretends it has seen the $ before it
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has read all of its input will fail to accept. To enable M’ to perform whatever stack
operations M could have performed. but not to read any input, M' will be com-
posed of two copies of M: The first copy will be identical to M, and M’ will oper-
ate in that part of itself until it guesses that it is at the end of the input; the second
copy will be identical to M except that it contains only the transitions that do not
consume any input. The states in the first copy will be labeled as in M. Those in
the second copy will have the prime symbol appended to their names. So, if M
contains the transition ((q.&.v;),(p.vy>)), M'" will contain the transition
((¢',&.v1)- (P, ¥2)). The two copies will be connected by finding, in the first copy
of M, every $-transition from some state ¢ to some state p. We replace each such

transition with an e-transition into the second copy. So the new transition goes
from g top'.

We can define the following procedure to construct M';
without$(M: PDA) =
1. Initially,set M' 1o M.
/* Make the copy that does not read any input.
2, Forevery state ¢ in M, add to M' a new state ¢'.
3. For every transition ((q, &, y,), (p, y>)) in Ay, do:
3.1. Addto Ay the transition ((¢', £, v1). (p'. v2)).
/* Link up the two copies.
4. For every transition ((q. $.v,). (p. 1)) in A, do:
4.1. Add 1o A,y the transition ((g, &, y;), (p', v2)).
4.2. Remove ((¢q, $. ). (p, v2)) from A,
/* Set the accepting states of M’
5. Ay ={q':qeAl.

Closure Properties of the Deterministic Context-Free Languages

The deterministic context-free languages are practically very significant because it is
possible to build deterministic, linear time parsers for them. They also possess addi-
tional formal properties that are important, among other reasons. because they enable
us to prove that not all context-free languages are deterministic context-free. The most
important of these is that the deterministic context-free languages, unlike the larger
class of context-free languages, are closed under complement.

THEOREM 13.10  Closure Under Complement

Theorem: The deterministic context-free languages are closed under complement,

Proof: The proof is by construction. If 1. is a deterministic context-free language
over the alphabet X,

e =, then L§ is accepted by some deterministic PDA
M= (K, ZU{§}.I A, s A). We need to describe an algorithm that constructs
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a new deterministic PDA that accepts (—£.)$. To prove Theorem 8.4 (that the Teg
ular languages are closed under complement), we defined a construction

DFSM. and then swap accepting and nonaccepting states. We can skip the firs
step here, but we must solve a new problem. A deterministic PDA may fail to ac=
cept an input string w for any one of several reasons:

1. Its computation ends before it finishes reading w.
2. Its computation ends in an accepting state but the stack is not empty.

3. Its computation loops forever. following e-transitions, without ever halting
in either an accepting or a nonaccepting state.

4. Its computation ends in a nonaccepting state.

If we simply swap accepting and nonaccepting states we will correctly fail to
accept every string that M would have accepted (i.c., every string in L$). But

will not necessarily accept every string in (=L)$. To do that, we must also address
issues 1 through 3 above.

An additional problem is that we don't want to accept -1, (M). That includes strings.
that do not end in $. We must accept only strings that do end in $ and that are in (=L)$+
A construction that solves these problems is given in D.2.

What else can we say about the deterministic context-free languages? We know
they are closed under complement. What about union and intersection? We obse e
that L, N Ly = ~(-L,U=L;). So, if the deterministic context-free languages we
closed under union, they would necessarily be closed under intersection also. But lh' '
are not closed under union. The context-free languages are closed under union, so the

union of two deterministic context-free languages must be context-free. It may, howe
not be deterministic. The deterministic context-free languages are also not closed under

result may not even be context-free.

THEOREM 13.11 Nonclosure Under Union

Theorem: The deterministic context-free languages are not closed under union.

Proof: We show a counterexample:
Let L, = {a'b/c*:i,j,k = Oandi # j}.
Let L, = {a'b/c*:i,j.k = O0andj # k}.

Lap L

Ly ULy,

= {a'b/c*:i,j.k = Oand ((i # j)or(j # k))).
Lat L" = =L".

= {a'bic*:i,j,k =0andi=j=k}U
{we{a.b.c}*: the letters are out of order},
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Let L" = L" N a*b*c*.
= {a"b"¢":n = 0}.

L, and L, are deterministic context-free. Deterministic PDAs that accept L,$
and L,$ can be constructed using the same approach we used to build a deter-
ministic PDA for L = {a"b": m # n;m,n > 0} in Example 12.7. Their union
L' is context-free but it cannot be deterministic context-free. If it were, then its
complement L” would also be deterministic context-free and thus context-free.
But it isn’t. If it were context-free, then L"), the intersection of L" with a*b*c*,
would also be context-free since the context-free languages are closed under in-
tersection with the regular languages. But L” is A"B"C" = {a"b"c":n = 0},
which we have shown is not context-free.

THEOREM 13.12 Nonclosure Under Intersection

Theorem: The deterministic context-free languages are not closed under intersection.
Proof: We show a counterexample:

Let L, = {a'b/c*:i,j,k = 0andi = j}.
Let L, = {a'b/c*:i,j,k = O andj = k}.
Let 1" = LML

= {a"b"c":n = 0}.

Il

L, and L, are deterministic context-free. The deterministic PDA shown in
Figure 13.4 accepts L;$. A similar one accepts L,. But we have shown that their
intersection L' is not context-free. much less deterministic context-free.

A Hierarchy within the Class of Context-Free Languages

The most important result of this section is the following theorem: There are context-free
languages that are not deterministic context-free. Since there are context-free languages
for which no deterministic PDA exists, there can exist no equivalent of ndfsmtodfsm for
PDAs. Nondeterminism is a fact of life when working with PDAs unless we are willing to
work only with languages that have been designed to be deterministic.

FIGURE 134 A deterministic PDA \
that accepts {a'b/c* :i,j,k =0 |
andi = j.
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The fact that there are context-Iree languages that are not deterministic poses a A
problem for the design of efficient parsing algorithms. The best parsing algo- |
rithms we have sacrifice either generality (i.c., they cannot correctly parse all |
context-free languages) or efficiency (i.e.. they do not run in time that is linear in
the length of the input). In Chapter 15. we will describe some of these algorithms.

THEOREM 13.13 Some CFLs are not Deterministic

Theorem: The class of deterministic context-frec languages is a proper subset of he

class of context-free languages. Thus there exist nondeterministic PDAs for
which no equivalent deterministic PDA exists,

Proof: By Theorem 13.9. every deterministic context-free language is context-free.
So all that remains is to show that there exists at lcast one context-free lang
that is not deterministic context-free.

Consider L = {a'b/c*:i,j,k = Oand ((i # j) or (j # k))}. L is context-f e
The construction of a grammar for it was an exercise in Chapter 11. But we
show that L is not deterministic context-free by the same argument that we usé e']'
in the proof of Theorem 13.11.1f L wcrc deterministic context-free, then, by Theos
rem 13.10, its complement L" = {a'b/c*:i.j. k = 0andi = j = k} U {we{a,by

c}#: the letters are out of order} would also be deterministic context-free and
thus context-free. If L" were context-free, then L. = L' M a*b*c* would alsu_ »
context-free (since the context-free languages are closed under intersection with'
the regular languages). But L” = A'B"C" = {a"b"c”" : n = 0}, which is not context
free. So L is context-free but not deterministic context-frec ‘
Since L is context-free, it is accepted by some (nondeterministic) PDA M. Mis
an example of a nondeterministic PDA for which no equivalent deterministic PDA
exists. If such a deterministic PDA did exist and accept L. it could be converted into
a deterministic PDA that accepted L$. But. if that machine existed, L would be
deterministic context-free and we just showed that it is not.

[+
L

We get the class of deterministic context-free languages when we think about .-.Z__-‘
context-free languages from the perspective of PDAs that accept them. Recall from
Section 11.7.3 that, when we think about the context-free languages from the persp ec-
tive of the gr’tmmars that generate them, we also get a subclass of languages that are,
some sense, “easier” than others: There are context-free languages for which unam-
biguous grammars exist and there are others that are inherently ambiguous, by which
we mean that every corresponding grammar is ambiguous.

EXAMPLE 13.10 Inherent Ambiguity versus Nondeterminism

Recall the language L, = {a'b/c*:i,j,k = 0 and ((i = j) or (j = k))}, which can
also be described as {a"b"c”: n,m = 0} U {a"b”'c”: n,m = 0}. L, is inherently
ambiguous because every string that is also in A"B"C" = {a"b"c" :n = 0} is an el

ment of both sublanguages and so has at least two derivations in any grammar for _;5_'
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Now consider the slightly different language L, = {a"b"c"d:n,m = 0} U
{a"b"™c™e :n,m = 0}. L, is not inherently ambiguous. It is straightforward to
write an unambiguous grammar for each of the two sublanguages and any
string in L, is an element of only one of them (since each such string must end
in d or e but not both). L, is not, however, deterministic. There exists no PDA

that can decide which of the two sublanguages a particular string is in until it
has consumed the entire string.

What is the relationship between the deterministic context-free languages and the
languages that are not inherently ambiguous? The answer is shown in Figure 13.5.
The subset relations shown in the figure are proper:

* There exist deterministic context-free languages that are not regular. These lan-

guages are in the innermost donut in the figure. One example is A"B" = {a"b":
n = 0}.

e There exist languages that are not in the inner donut (i.e., they are not determin-

istic). But they are context-free and not inherently ambiguous. Two examples of
languages in this second donut are:

e PalEven = {ww® : we {a,b}*}. The grammar we showed for it in Example
11.3 is unambiguous.

e {a"b"c"d:n,m = 0} U {a"b"c"e:n,m = 0}.

* There exist languages that are in the outer donut because they are inherently
ambiguous. Two examples are:

o {ab/c*:i,j,k=0and ((i =j)or(j = k))}.
o {ab/c*:i,j,k=0and((i # j)or (j # k))}.

Context-free
Languages

Not inherently
Ambiguous CFLs

Deterministic
CFLs

FIGURE 13.5 A hierarchy
within the class of context-free
languages.
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To prove that the figure is properly drawn requires two additional results:

Theorem: Every regular language is deterministic context-free.

Proof: The proof is by construction. {$} is regular. So, if L is regular, then s0is. L$
(since the regular languages are closed under concatenation). So there is a DFSM
M that accepts it. Using the construction that we used in the proof of Theo

13.1 to show that every regular language is context-free, construct, from M aP
P that accepts L$. P will be deterministic.

ous grammar.

Proof: If a language L is deterministic context-free, then there exists a determin
PDA M that accepts L$. We prove the theorem by construction of an unambigl
grammar G such that L(M ) = L(G). We construct (i using approximately the s
technique that we used to build a grammar from a PDA in the proof of Theorem
The algorithm PDAroCFG that we presented there proceeded in two steps:

1. Invoke convertPDAtorestricted(M) to build M', an equivalent PDA in rests ~
ed normal form.

2. Invoke buildgrammar (M), to build an equivalent grammar G.

It is straightforward to show that,if M" is deterministic, then the grammar G that
buildgrammar constructs will be unambiguous: G produces derivations that
the operation of M'. Since M" is deterministic, on any input w it can follow only
path. So G will be able to produce only one leftmost derivation for w . Thus w
only one parse tree. If every string in L(G) has a single parse tree, then G is
biguous. Since M' accepts L$, G will generate L$. But we can build, from G, a

| mar G' that generates L by substituting & for $ in each rule in which $ occurs.

So it remains to show that, from any deterministic PDA M., it is possible to

terministic context-free languages are closed under complement). If M is de

ministic, then the PDA that is returned by convertP DAtodemormalform(M) will
be both deterministic and in restricted normal form.

So the construction that proves the theorem is:
buildunambiggrammar(M: deterministic PDA) =
1. Let G = buildgrammar (convertPDAtodetnormalform (M)).

2. Let G’ be the result of substituting & for $ in each rule in which $ occurs.
3. Return G'.
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13.6 Ogden’s Lemma #

The context-free Pumping Theorem is a useful tool for showing that a language is not
context-free. However, there are many languages that are not context-free but that
cannot be proven so just with the Pumping Theorem. In this section we consider a
more powerful technique that may be useful in those cases.

Recall that the Pumping Theorem for regular languages imposed the constraint
that the pumpable region y had to fall within the first k characters of any “long” string
w. We exploited that fact in many of our proofs. But notice that the Pumping Theorem
for context-free languages imposes no similar constraint. The two pumpable regions, v
and y must be reasonably close together, but, as a group, they can fall anywhere in w.
Sometimes there is a region that is pumpable, even though other regions aren’t, and

this can happen even in the case of long strings drawn from languages that are not
context-free.

EXAMPLE 13.11 Sometimes Pumping Isn’t Strong Enough

Let L = {a'b'd:i,j = 0,i # j}. We could attempt to use the context-free Pump-
ing Theorem to show that L is not context-free. Let w = a“b*c***, (The reason
for this choice will be clear soon.) Divide w into three regions, the a’s, the b’s, and
the c’s, which we’ll call regions 1, 2, and 3, respectively. If either v or y contains
two or more distinct symbols, then set g to 2. The resulting string will have letters
out of order and thus not be in L. We consider the remaining possibilities:

e (1,1),(2,2),(1,3),(2,3): Set g to 2. The number of a’s will no longer equal the
number of b’s, so the resulting string is not in L.

(1,2):If |v| # |yl then set g to 2. The number of a’s will no longer equal the
number of b’s, so the resulting string is not in L. If |»| = |y| then set g to
(k!/|v]) + 1. Note that (k!/|v|) must be an integer since |v| = k. The string
that results from pumping is a*b*c*** where X =k + (g — 1)-|v|
=k + (k!/Iv)*|v| = k + k!. So the number of a’s and of b’s equals the
number of c’s. This string is not in L. So far, the proof is going well. But now
we must consider:;

(3,3): Pumping in will result in even more c’s than a’s and b’s, so it will pro-
duce a string that is still in L. And, while pumplng out can reduce the number
of c’s,it can’t reduce it all the way down to k because |vxy| = k. So the maxi-
mum number of s that can be pumped out is k, which would result in a string

with k! ¢’s. But, as long as k = 3, k! > k. So the resulting string is in L and we
have failed to show that L is not context-free.

What we need is a way to prevent v and y from falling in the c region of w .

Ogden’s Lemma is a generalization of the Pumping Theorem. It lets us mark
some number of symbols in our chosen string w as distinguished. Then at least one

of v and y must contain at least one distinguished symbol. So, for example, we could
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complete the proof that we started in Example 13.11 if we could force at least oné of
v or y to contain at least one¢ a.

THEOREM 13.16 Ogden’s Lemma
Theorem: If L is a context-free language. then:

Jk = 1 (¥ strings w e L. where [w| = k. if we mark at least k symbols of w as
distinguished then:

Gup. x, v, z (w = noxyz,
py contains at least onc distinguished symbol,

vxy contains at most k distinguished symbols, and
Vg = 0 (uvixyizisin L))).

Proof: The proof is analogous to the one we did for the context-free Pumping Theo-
rem except that we consider only paths that generate the distinguished symbols..
If L is context-free, then it is generated by some context-free grammar

= (V. X, R.S) with n nonterminal symbols and branching factor b. Let k be
b”‘” Let w be any string in L(G) such that |w| = k. A parse tree T for w rmgh"
look like the one shown in Figure 13.6.

Suppose that we mark at least b"*' symbols as distinguished. The d:slmgumheﬂ’
symbols are marked with a v (lgnon. the fact that there aren’t enough of them in the
picture. Its only role is to make it easier to visualize the process.) Call the sequence of
distinguished nodes the distinguished subsequence of w . In this example, that is bje.»
Note that the distinguished subsequence is not necessarily a substring, The characters
in it need not be contiguous. The length of the distinguished subsequence is at 1 ast
h”*' We can now mark the nonleaf nodes that br.mchr.d in a way Lhal enabled

" 4

FIGURE 13.6 A parse tree with some symbols marked as distinguished,
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nonleaf nodes since its yield contains 5"*! distinguished symbols. Choose one such
path such that there is no longer one. That path must contain at least two nodes la-
beled with the same nonterminal symbol. Choose the two nodes that are labeled with
the bottom-most pair of repeated marked nonterminals. Call the lower one N and the
higher one M. In the example, M is X| and N is X;. As shown in the diagram, divide w
into uvxyz, such that x is the yield of N and vxy is the yield of M. Now observe that:

* py contains at least one distinguished symbol because the root of the subtree

with yield »vxy has at least two daughters that contain distinguished symbols.
One of them may be in the subtree whose yield is x, but that leaves at least
one that must be in either v or y. There may be distinguished symbols in both,
although, as in our example 7\ that is not necessary.

vxy contains at most k (b" ') distinguished symbols because there are at most
n + 1 marked internal nodes on a longest path in the subtree that dominates
it. Only marked internal nodes create branches that lead to more than one
distinguished symbol, and no internal node can create more than b branches.

Vg = 0 (uv?xy?z is in L), by the same argument that we used in the proof of
the context-free Pumping Theorem.

Notice that the context-free Pumping Theorem describes the special case in which
all symbols of the string w are marked.

Ogden’s Lemma is the tool that we need to complete the proof that we started in
Example 13.11.

EXAMPLE 13.12 Ogden’s Lemma May Work When Pumping Doesn’t

Now we can use Ogden’s Lemma to complete the proof that L = {a'bc’:
i,j = 0,i # j} is not context-free. Let w = a*b*c***' Mark all the a's in w as dis-
tinguished. If either v or y contains two or more distinct symbols, then set g to 2.

The resulting string will have letters out of order and thus not be in L. We consid-
er the remaining possibilities:

(1,1), (L, 3): Set g to 2. The number of a’s will no longer equal the number of
b’s, so the resulting string is not in L.

(1.2):1f [v] # |y| then set g to 2. The number of a’s will no longer equal the
number of b’s, so the resulting string is not in L. If |»| = |y| then set g to
(k!/Jvl) + 1. Note that (k!/|v]) must be an integer since |v| = k. The string
lhat results from pu]nping is ak']'{q_'”.h‘i bk+[q— H'IUI Ck +k! = ak+[”ﬂuh1”‘l bk"'(k‘ﬂﬂ)'l"—’!
itk = ak M pttR K S0 the number of a’s and of b's equals the number of
c¢’s. This string is not in L.

(2.2),(2,3),(3,3) fail to satisfy the requirement that at least one symbol in vy
be marked as distinguished.

There is no way to divide w into vxy such that all the conditions of Ogden’s
Lemma are met. So L is not context-free.
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13.7 Parikh's Theorem #

Suppose that we consider a language 1. not from the point of view of the exact
strings it contains but instead by simply counting, tor each string w in L, how many
instances of each character in X w contains. So. from this perspective, the strings
aaabbba and abababa are the same. If X is {a. b}. then both strings can be de-
scribed with the pair (4. 3) since they contain 4 a’s and 3 b’s. We can build such de-
scriptions by defining a family of functions ¢, with domain X* and range¢
{(iy. ir.... @) }. where k = ||

e () = (iy.iae.. iy ) where forall .7, = the number ol occurrences in

wof the j" element of 2.

So.if ¥ = {a,b.c.d}. then i (aabbbbddd) = (2. 4.0. 3).

Now consider some language L. which is a sct of strings over some alphabet 2. In-
stead of considering L as a set of strings. we can consider it as the set of vectors that alre
produced by applying s+ to the strings it contains. To do this. we define another family
of functions W+, with domain # (X%) and range P{(i\ iy, 1) |

Wy (L) = {(ij, .- ig) t Twe L (drx () = (iy, 5. . .04}

If ¥ is fixed. then there is a single function & and a single function W. In that case,
we will omit ¥ and refer to the functions just as  and W,

We will say that two languages L and L, over the alphabet 27 are letter-equivalent
i(f Wy (L) = Wy (L) Inother words. Ly and [ contain the same strings if we disre-
gard the order in which the symbols oceur in the strings.

EXAMPLE 13.13 Letter Equivalence

Let £ = {a,b}. Then, for example. (@) = (1.0).4(b) = (0. 1).d(ab) = (1.1).
y(aaabbbb) = (3.4).
Now consider V:

e Letl; = A"B"={a"h":n =0}. Then ¥ (L) = {(i,i):0 = i}.

o Letl,= (ab)* Then ¥ (Ly) = {(i,i):0 = f}.

e LetlLy={a"p"a":n = 0}. Then W (L3) = {(2i.i):0 = i},
o LetL;= {a’b":n=0}. Then ¥ (Ly) = {(2i,i):0 = i}.
o LetLs = (aba)*. Then W (Ls) = ((26,i):0 =i},

L, and L, are letter-equivalent. So are L+, 1., and Ls.

Just looking at the five languages we considered in Example 13,13, we can observe
that it 1s possible for two languages with different formal properties (for example a

regular language and a context-free but not regular one) to be letter equivalent to
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cach other. Ly is not context-free. L4 is context-free but not regular. is regular. But
the three of them are letter equivalent to each other.

Parikh’s Theorem, which we are about to state formally and then prove. tells us
that that example is far from unique. In fact, given any context-free language L.
there exists some regular language L' such that L and L' are letter-equivalent to
each other. So A"B" is letter equivalent to (ab)*. The language {a*'b": n = 0} is
letter equivalent to (aba)* and to (aab)*. And PalEven = {ww® 1 we {a, b}*} is
letter equivalent to (aa U bb)* since W(PalEven) = W((aa U bb)¥*)
= {(2i,2/):0 = i A0 = j}. The proof of Parikh’s Theorem is similar to the proofs
we have already given for the Context-free Pumping Theorem and for Ogden’s
Lemma. It is based on the fact that, if L is context-free, then all the strings in L can
be formed by starting with one of a finite set of “short™ strings in L and then pump-
ing in some finite number of strings (v, y pairs), all of which are chosen from a finite
library of possible values for v and y.

An interesting application of Parikh’s theorem is in the proof of a corollary that tells
us that every context-free language over a single character alphabet must also be regular.
We will add that corollary to our Kit of tools for proving that a language is not context-
free (by showing that. il it were. then it would also be regular but we know that it isn’t).

Notice, by the way, that while we are about to prove that if L is context-free
then it is letter-equivalent to some regular language, the converse of that claim is
false. A language can be letter-equivalent to some regular language and not be
context-free. We prove this by considering two of the languages from Example

13.13: Ly = {@"b"a": n = 0} is not context-free, but it is letter-equivalent to
l.s = (aba)*, which is regular.

THEOREM 13.17 Parikh's Theorem

Theorem: Every context-free language is letter-equivalent to some regular language.

Proof: The prool follows an argument similar to the one we used to prove the
context-free Pumping Theorem. It is given in D.3.

An algebraic approach to thinking about what s and W are doing is the following:
We can deseribe the standard way of looking at strings as starting with a set § of prim-
itive strings (£ and all the one-character strings drawn from ¥) and the single opera-
tion of concatenation, which is associative and has & as an identity. % is then the
closure of § under concatenation. ¢y« maps elements of 3* to elements of
{ (i), fay .. 1x) |, on which is defined the operation of pair wise addition, which is asso-
ciative and has (0, 0,...0) as an identity. But addition is also commutative. while con-
catenation is not. So, while, if we concatenate strings. it matters what order we do it in.
if we consider the images of strings under . the order in which we combine them
doesn’t matter. Parikh’s theorem can be described as a special case of more general
properties of commutative systems.

When X contains just a single character. the order of the characters in a string is ir-
relevant. So we have the following result:
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THEOREM 13.18  Every CFL Over A Single-Character Alphabet is Regular
Theorem: Any context-free language over a single-character alphabet is regular.

Proof: By Parikh’s Theorem. if L is context-free then L is letter-cquivalent 1o some
regular language £.'. Since the order of characters has no effect on strings when
all characters are the same, L. = L' Since L"is regular.sois L.

EXAMPLE 13.14 A"A" is Regular

Let ¥ = {a. b} and consider L = A"B" = {a"b": n = 0}. A"B" is context-free
but not regular.

I

Nowlet: £ = {a} and L' = {a"a".n = 0}.
{a*:n = 0}.

{we {a}*:|w|iseven}. L' is regular,

EXAMPLE 13.15 PalEven is Regularif 2 = {a}

Let £ = {a. b} and consider L. = PalEven = {ww": we {a, b}*}. PalEven is
context-free but not regular.
Nowlet: £ = {a}and L' = {ww®:we{a)*)

{we{a}*: lw|iseven}. L' is regular.

When we are considering only a single letter alphabet, we can use Theorem 13.18 to
show that a language that we already know not 1o be regular cannot be context-free either.

EXAMPLE 13.16 The Prime Number of a’s Language is Not Context-Free

Consider again Prime, = {a" : nis prime }. Prime, is not context-free. If it were,
then, by Theorem 13.18. it would also be regular. But we showed in Example 8.13
that it is not regular. So it is not context-free either.

13.8 Functions on Context-Free Languages #

In Section 13.4, we saw that the context-free languages are closed under some impor-
tant functions, including concatenation. union, and Kleene star. But their closure prop-
erties are substantially weaker than are the closure properties of the regular languages.
In this section, we consider some other functions that can be applied 1o languages and
we ask whether the context-free languages are closed under them. The proof strategies
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we will use are the same as the ones we used for the regular languages and for the
results we have already obtained for the context-free languages:

To show that the context-free languages are closed under some function f, we will
show an algorithm that constructs, given any context-free language L, either a
grammar or a PDA that describes f(L).

To show that the context-free languages are not closed under some function f, we will
exhibit a counterexample, i.e., a language L. where L is context-free but f(L) is not.

EXAMPLE 13.17 Firstchars

Consider again the function firstchars (L) = {w:3yeL(y =cxAceZ AXE
¥ ,% A wec*)}. The context-free languages are closed under firstchars(L). In
fact, if L is context-free then firstchars(L) is regular. We know that this must be
true by an argument similar to the one we used in Example 8.20 to show that the
regular languages are closed under firsichars. There must be some finite set of
characters {cj, ¢s, ..., ¢,} that can begin strings in L (since X, is finite). So there
exists some regular expression of the following form that describes firstchars(L):

a*Ug*U - Ug,*.

We can also show a constructive proof that firstchars(L) is context-free if L is.
If L is a context-free language, then there is some context-free grammar

G = (V,2,R,S) that generates it. We construct a context-free grammar
G' = (V',Z',R'.S") that generates firstchars(L):

1. Convert G to Greibach normal form wusing the procedure

converttoGreibach, defined in D.1,

2. Remove from G all unreachable nonterminals and all rules that mention
them.

Remove from G all unproductive nonterminals and all rules that mention
them.

4. Initialize V" to {S'}, 2" to {},and R" to {}.

For each remaining rule in G of the form § — ¢ y do:
5.1. AddtoR"therulesS'—=C,,C,—¢C,and C,— &.
5.2. Addto X' the symbol c.

5.3. Addto V'’ the symbol C..
6. Return G'.

The idea behind this construction is that, if G is in Greibach normal form, then.
cach time a rule is applied, the next terminal symbol is generated. So, if we look at

G's start symbol § and ask what terminals any of its rules can generate, we’ll know
exactly what terminals strings in L(G) can start with.
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EXAMPLE 13.18 Maxstring

Consider again the function maxstring(L) = {w:wel and Vze ¥z #&
— wz ¢ L)}. The context-free languages are not closed under maxstring(L). The
proof is by counterexample. Consider the language L = {a'b/c*: k = iork = j}
L is context-free but maxstring( L) is not. We leave the proof of this as an exercise.

Exercises

1. For each of the following languages [, state whether /- is regular, context-free but
not regular, or not context-free and prove your answer.
a. {xy:x.ye{a.b}*and |x| = |y|}.
b. {(ab)"a"b":n > 0}.
c. {x#y:x.ye{0,1}*andx # v}.
d. {ab”:i,n > 0Oandi = nori = 2n}.
e, {wx: |w| = 2+|xland we a’b” andxe a'b™}.
f. {a"b"c*:n.m.k = 0and m = min(n.k)}.
g. {xm®:xe{0.1} and ye {0.1}%}.
h. {xwx®:x. we{ab} and x| = |wl}.
i {wwRw:we {a.b}*}.
jo {wxw: lw| = 2+ |x]andwe{a.b}*andxe {c}*}.
k. {a%i= 0}{b:i=0}{a"i=0}
. {xe{a,b}*: [x| is even and the first half of x has one more a than does the
second half }.
m. {we {a, b}¥:#a(w) = #,(1w) and w does not contain either the substring
aaa or ababj.
. {2"b¥c" in,m = 0} N {a"b"c  nom = 0},
0. {xcy:x.ye{0,1}* and visaprefix of v}.
p- {wiw= w® orw = wa":n = |ul,uefa b}*).
q. L(G). where G = §— ala
§—+58
S—e

r. Jwe (A-Z a-z, . blank)" : there exists at least one duplicated, capitalized word
in w). For example, the string. The history of China can be viewed from
the perspective of an outsider or of someone 1living in China, € L.

s. =Ly where Ly = {ww:wela.b}*}.

t. L* where L = {0*1'0°1'0 ;i = ()}.

u. ~A"B".

v. {ba/b:j = n®for some n = 0}. For example, baaaab & L.

w. {we{a.b.c.d}* #,(w) = # () = #450w) = 0},
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Let L. = {we {a. b}*: the first, middle, and last characters of w are identical }.
a. Show a context-free grammar for L.

b. Show a natural PDA that accepts L.

¢. Prove that L is not regular.

Let L = {a""c"d™: n.m = 1}. L is interesting because of its similarity to a useful
fragment of a typical programming language in which one must declare procedures
before they can be invoked. The procedure declarations include a list of the formal
parameters. So now imagine that the characters in a" correspond to the formal pa-
rameter list in the declaration of procedure 1. The characters in b” correspond to the
formal parameter list in the declaration of procedure 2. Then the characters in ¢ and
d" correspond to the parameter lists in an invocation of procedure 1 and procedure 2
respectively, with the requirement that the number of parameters in the invocations
match the number of parameters in the declarations. Show that L is not context-free.
Without using the Pumping Theorem, prove that L={we{a.b, c}*: #,(w)=

#p(w) = #(w) and #,(w) > 50} is not context-free.

Give an example of a context-free language L (# £*) that contains a subset L
that is not context-free. Prove that L is context free. Describe L, and prove that it
is not context-free.

Let L] = L: N L_\.

a. Show values for L, L,, and L. such that L is context-free but neither L, nor L;is.
b. Show values for L, L,, and L3, such that L, is context-free but neither L, nor L3is.
Give an example of a context-free language L, other than one of the ones in the
book. where =L is not context-free,
Theorem 13.7 tells us that the context-free languages are closed under intersec-
tion with the regular languages. Prove that the context-free languages are also
closed under union with the regular languages.

Complete the proof that the context-free languages are not closed under
maxstring by showing that L = {a'b/c*: k =i or k < j} is context-free but
maxstring( L) 1s not context-free.

Use the Pumping Theorem to complete the proof, started in L.3.3, that English is
not context-free if we make the assumption that subjects and verbs must match in
a “respectively” construction.

In N.1.2, we give an example of a simple musical structure that cannot be de-
scribed with a context-free grammar. Describe another one, based on some musi-
cal genre with which you are familiar, Define a sublanguage that captures exactly
that phenomenon. In other words. ignore everything else about the music you are
considering and describe a set of strings that meets the one requirement you are
studying. Prove that your language is not context-free.
Define the leftmost maximal P subsequence m of a string w as follows:
* P must be a nonempty set of characters.

¢ Astring $is a P subsequence of w iff § is a substring of w and  is composed

entirely of clun‘aclers in P. For example 1,0,10,01.11.011,101,111.1111 and
1011 are {0.1} subsequences of 2312101121111,
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¢ Let § be the set of all P subsequences of w such that, for cach element £ 0l 5,

there is no P subsequence of w longer than £ In the example above, § = {1111
1011}.

* Then m is the leftmost (within ) element of S. In the example above,m =

a. Let L = {we {0-9}%:if yis the leftmost maximal {0. 1} subsequence

Prove your answer.

b. Let L = {we{a. b, c}*: the leftmost maximal {a. b} subsequence of
starts with a}. Is L regular (but not context free). context free or neither®
Prove your answer. :
13. Are the context-free languages closed under cach of the following functic ns?
Prove your answer.
a. chop(L) = {w:3xel(x=xicx AxjeX;* Ax,eZ;*Ace A
Il = |l Aw = xx))

b. mix(L) = {w:3x,y,z: (xel,x = yz, |yl = |z], w = yz})}
¢. pref(L) = {w:3xe Z*(wxe L)}

d. middle(L) = {x:3y,ze Z*(yxze L))}

e. Letter substitution

f. shuffle(L) = {w: 3xe L (wissome permutation of x)}

g. copyreverse (L) = {w:3xel (w = x.\'R)}

14, Let alt (L) = {x:3y.n(yeL, |yl =n.n >0,y =a, - a,vi = n(aeX), and
X = ayazas---ag, where k = (if nis even thenn — 1 ¢lse n))}.
a. Consider L = a"b". Clearly describe L, = ali(L).
b. Are the context free languages closed under the function al? Prove your answer.

15. Let L, = {a"b":n = m}. Let R, = {(a U b)*: there is an odd number of
and an even number of b's}. Use the construction that is described in the pr
of Theorem 13.7 to build a PDA that accepts L, N R,.

16. Let T be a set of languages defined as follows:
T = {L: Lis acontext-free language over the alphabet{a,b,c }
and, if xel, then |x| =; 0}.
Let P be the following function on languages:
P(L) = {w:3xe{a.b,c} and dyel and y = xw}.
Is the set T closed under P? Prove your answer.
17. Show that the following languages are deterministic context-free:
a. {w:we {a,b}* and each prefix of w has at least as many a’s as b's}
b. {a"b":n = 0} U {a"c":n = 0}
18. Showthat L = {a"b":n = 0} U {a"b™:n = 0} is not deterministic context-free,
19. Are the deterministic context-free languages closed under reverse? Prove
answer.

20. Prove that each of the following languages is not context-free. (Hint:
Ogden’s Lemma.)
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a. {ablck:i=0,j=0k=0,andi #j# k}
b. {a'b/ckd":i=0,j=0,k=0,n=0,and (i = Oorj = k = n)}
21. Let (L) be as defined in Section 13.7, in our discussion of Parikh’s Theorem.

For each of the following languages L, first state what W (L) is. Then give a regu-
lar language that is letter-equivalent to L.

a. Bal = {we {), (}*: the parentheses are balanced}
b. Pal = {we {a,b}*: wis a palindrome }
¢. {xR#y:x,ye{0,1}* and x is a substring of y}
22. For each of the following claims, state whether it is True or False. Prove your answer.
a. If L and L, are two context-free languages, L; — L, must also be context-free.

b. If L, and L, are two context-free languages and L; = L,L;, then L3 must
also be context-free.

¢. If L is context free and R is regular, R — L must be context-free.

If L, and L, are context-free languages and L, C L C L,, then L must be
context-free.

e. If L, is a context-free language and L, C L, then L, must be context-free.
If L, is a context-free language and L, C L, it is possible that L, is regular.
g. A context-free grammar in Chomsky normal form is always unambiguous.
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Algorithms and Decision Procedures
for Context-Free Languages

any questions that we could answer when asked about regular languages

are unanswerable for context-free ones. But a few important questions can

be answered and we have already presented a useful collection of algo-
rithms that can operate on context-free grammars and PDAs, We'll present a few
more here.

14.1 The Decidable Questions

Fortunately. the most important questions (Le.. the ones that must be answerable il
context-free grammars are 1o be of any practical use) are decidable.

14.1.1 Membership

314

We begin with the most fundamental question, “Given a language 1. and a string w, is w
in 1.7 Fortunately this question can be answered for every context-free language. By
Theorem 12.1, for every context-free language L. there exists a PDA M such that M ac-
cepts L. But we must be careful. As we showed in Section 12,4, PDASs are not guaranteed
1o halt. So the mere existence of a PDA that accepts 1. does not guarantee the existence
of a procedure that decides it (i.c.. always halts and savs yes or no appropriately).

It turns out that there are two alternative approaches 1o solving this problem, both
of which work:

e Use a grammar: Using facts about every derivation that is produced by a grammar

in Chomsky normal form, we can construct an algorithm that explores a finite num-

ber of derivation paths and finds one that derives a particular string w iff such a
path exists. |
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14.1 The Decidable Questions 315
* Use a PDA: While not all PDASs halt, it is possible, for any context-free language L.

to craft a PDA M that is guaranteed to halt on all inputs and that accepts all strings
in L. and rejects all strings that are not in L.

Using a Grammar to Decide

We begin by considering the first alternative. We show a straightforward algorithm for
deciding whether a string w is in a language L:

decideCFLusingGrammar(L: CFL, w: string) =

1. If L is specified as a PDA, use PDAtoCFG, presented in the proof of Theorem
12.2, to construct a grammar G such that L (G) = L (M).

2. If L is specified as a grammar G, simply use G.

3. If w = & then if S5 is nullable (as defined in the description of removeEps in
Section 11.7.4) then accept, otherwise reject.

4. If w # e then:

4.1. From G.construct G such that L (G') = L (G) — {e} and G"isn
Chomsky normal form.

4.2. If G derives w, it does so in 2+ |w| — 1 steps. Try all derivations in G of
that number of steps. If one of them derives w, accept. Otherwise reject.

The running time of decideCFLusingGrammar can be analyzed as follows: We as-
sume that the time required to build G’ is constant, since it does not depend on . Let
n = |wl. Let g be the search-branching factor of G', defined to be the maximum num-
ber of rules that share a left-hand side. Then the number of derivations of length 2n — 1
is bounded by g 211 and it takes at most 2n — 1 steps to check each one. So the worst-
case running time of decideCFLusingGrammar is Q(n2"). In Section 15.3.1, we will
present techniques that are substantially more efficient. We will describe the CKY algo-
rithm, which, given a grammar GG in Chomsky normal form, decides the membership
question for G in time that is o’ ). We will then describe an algorithm that can decide
the question in time that is linear in n if the grammar that is provided meets certain

requirements.
THEOREM 14.1  Decidability of Context-Free Languages

Theorem: Given a context-free language L (represented as either a context-free

grammar or a PDA) and a string w, there exists a decision procedure that an-
swers the question,“Is we L?7

Proof: The following algorithm, decideCFL. uses decideCFLusingGrammar 10
answer the question:

decideCFL(L: CFL, w: string) =

L. WdecideCFLusingGrammar(L, w) accepts, return Truee else return False.
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Using a PDA to Decide #

It is also possible to solve the membership problem using PDAs, We take a two-S ep
approach We flrsl show thal for L,VEI')’ context- fre&. languag. L,itis posslble to bull.

PDA with no e-transitions is guaranteud to hdll

THEOREM 14.2 Elimination of e-Transitions

((q1. £ @), (g2, B))- In other WOl‘dS every transition reads exactly one i
character.

Proof: The proof is by a construction that begins by converting G to Greibach nor=

; mal form. Recall that, in any grammar in Greibach normal form, all rules are of
the form X —a A, where ae X and A e (V — X)* Now consider again the alg

rithm ¢fgtoPDAtopdown, which builds, from any context-free grammar G, a PDA

M that, on input w0, simulates G deriving w, starting from S. M = ({p, q};
V,A,p.{q}), where A contains:

the stack and goes to state g.

2. For each rule X — 5,5,...5, In R, the transition ((q. &. X ). (¢. 5,57 . .. 5,)),

replaces X by s155...5,. If n = 0 (i.e., the right-hand side of the rule is &), th =-_'_E
the transition ((g, &, X), (¢, €)).

‘ 3, For each character ¢ € X, the transition ((q. ¢. ¢). (g. £)), which compares an

. expected character from the stack against the next input character and contin=
| ues if they match.

| The start-up transition, plus all the transitions generated in step 2, are
-. g-transitions, But now suppose that G is in Greibach normal form. If G con
the rule X —¢s,...s, (where c e £ and s, through s, are elements of V-Z),

stead, we collapse the push and the pop into a single transition. So we create a
| transition that can be taken only if the next input character is ¢. In that case, the
‘ string s, - . . s, is pushed onto the stack.

| Now we need only find a way to get rid of the start-up transition, whose job i§

! Greibach normal form, any rules with § on the left-hand side must have the form

' §— cs;...5,. So instead of reading no input and just pushing §, M will skip push-

, ing S and instead, if the first input character is ¢, read it and push the string
§2.-Sp-

Since terminal symbols are no longer pushed onto the stack, we no longer

need the transitions created in step 3 of the original algorithm.
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SoM = ({p.q}, =, V, A, p, {q}), where A contains:

1. The start-up transitions: For each rule S —cs,...s,, the transition ((p, ¢, &),
| (q‘SZ- ' .S”)).
i 2. For each rule X —c¢s,...s, (Where ce = and s, through s, are elements of
V — X),the transition ((g, ¢, X), (q, 53 . -.5,)).
The following algorithm builds the required PDA:

cfgtoPDAnoeps(G: context-free grammar) =
1. Convert G to Greibach normal form, producing G".
2. From G’ build the PDA M described above.

THEOREM 14.3 Halting Behavior of PDAs Without e-Transitions

| Theorem: Let M be a PDA that contains no transitions of the form
‘ ((q1 € 1), (g2, 52)), 1.€., nO e-transitions. Consider the operation of M on input

w e =%, M must halt and either accept or reject w. Let n = |w|. We make three
‘ additional claims:

a. Each individual computation of M must halt within n steps.

b. The total number of computations pursued by M must be less than or equal to b",
| where b is the maximum number of competing transitions from any state in M.
| ¢. The total number of steps that will be executed by all computations of M is
| bounded by nb".

i Proof:

'_ a. Since each computation of M must consume one character of w at each step
| and M will halt when it runs out of input, each computation must halt within
| n steps.

. M may split into at most b branches at each step in a computation. The num-

| ber of steps in a computation is less than or equal to n. So the total number of
| computations must be less than or equal to b”.

. Since the maximum number of computations is »” and the maximum length

of each is n, the maximum number of steps that can be executed before all
computations of M halt is nb",

So a second way to answer the question, “Given a context-free language L and a
string w, is w in L?” is to execute the following algorithm:

decideCFLusingPDA(L: CFL, w: string) =

L. If L is specified as a PDA, use PDAtoCFG, as presented in the proof of Theo-
rem 12.2, to construct a grammar G such that L (G) = L (M).

2. If L is specified as a grammar G, simply use G.
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3. If w = & then if S; is nullable (as defined in the description of removeEps n
Section 11.7.4) then accept. otherwise reject.
4. If w # & then:

4.1. From G.construct G’ such that L (G') = L (G) — {&} and G"isin
Greibach normal form.

4.2. From G’ construct, using cfgroPDAnoeps, the algorithm described in

the proof of Theorem 14.2,a PDA M’ such that L (M’) = L (G") and
M' has no e-transitions.

4.3. By Theorem 14.3, all paths of M" are guaranteed to halt within a
finite number of steps. So run M on w. Accept if M' accepts and
reject otherwise.

The running time of decideCFLusingPDA can be analyzed as follows: We will t2
as a constant the time required to build M', since that can be done once. It need no
be repeated for each string that is to be analyzed. Given M. the time required to an=
alyze a string w is then the time required to simulate all paths of M" on w. Let
n = |w|. From Theorem 14.3, we know that the total number of steps that will be ex-
ecuted by all paths of M is bounded by nb", where b is the maximum number of co;
peting transitions from any state in M'. But is that number of steps required? If .:.;}
state has a large number of competing transitions but the others do not, then the av=
erage branching factor will be less than b, so fewer steps will be necessary. But if
greater than 1, the number of steps still grows exponentially with 7. The exact num=
ber of steps also depends on how the simulation is done. A straightforward depth-

first search of the tree of possibilities will explore b" steps, which is less than nb™
because it does not start each path over at the beginning. But it still requires time
that is @(b"). In Section 15.2.3, we present an alternative approach to top-down pars=

ing that runs in time that is linear in n if the grammar that is provided meets certain
requirements.

14.1.2 Emptiness and Finiteness

While many interesting questions are not decidable for context-free languages, two
others, in addition to membership are: emptiness and finiteness,

THEOREM 14.4 Decidability of Emptiness and Finiteness

Theorem: Given a context-free language L. therc exists a decision procedure
answers each of the following questions;

1. Given a context-free language L,is L = ?
2. Given a context-free language L.is L infinite?

Since we have proven that there exists a grammar that generates L iff there
exists a PDA that accepts it, these questions will have the same answers whether
we ask them about grammars or about PDAs.
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Proof:

1.

Let G=(V,Z,R,§) be a context-free grammar that generates L.
L(G) = @ ift § is unproductive (i.e., not able to generate any terminal
strings). The following algorithm exploits the procedure removeunproductive,

defined in Section 11.4, to remove all unproductive nonterminals from G. It
answers the question, “Given a context-free language L,is L = J?”

decideCFLempty(G: context-free grammar) =
1. Let G’ = removeunproductive (G).

2. If S is not present in G' then return True else return False.

Let G = (V, 2, R, §) be a context-free grammar that generates L. We use an
argument similar to the one that we used to prove the context-free Pumping
Theorem. Let n be the number of nonterminals in G. Let b be the branching
factor of GG.The longest string that G can generate without creating a parse tree
with repeated nonterminals along some path is of length b". If G generates no
strings of length greater than ", then L(G) is finite. If G generates even one
string w of length greater than b", then, by the same argument we used to prove
the Pumping Theorem, it generates an infinite number of strings since
w = uvxyz, lvy| > 0,and Vg = 0 (uv’xy’z isin L). So we could try to test to
see whether L is infinite by invoking decideCFL(L, w) on all strings in Z* of

length greater than b". If it returns True for any such string, then L is infinite. If
it returns False on all such strings, then L is finite.

But, assuming 2 is not empty, there is an infinite number of such strings.
Fortunately, it is necessary to try only a finite number of them. Suppose that G
generates even one string of length greater than b"*' + b". Let ¢ be the short-
est such string. By the Pumping Theorem, t = uwxyz, [vy| > 0, and uxz (the
result of pumping vy out once) e L. Note that |uxz| < |t| since some non-
empty vy was pumped out of 7 to create it. Since, by assumption, ¢ is the shortest
string in L of length greater than b"*! + b", |uxz| must be less than or equal to
p"*! + b". But the Pumping Theorem also tells us that |vxy| = k (i.e., b"*),
s0 no more than b"*! strings could have been pumped out of . Thus we have
that b" < [uxz| = b"*' + b". So, if L contains any strings of length greater
than b", it must contain at least one string of length less than or equal to

b"! + b". We can now define decideCFLinfinite to answer the question,
“Given a context-free language L, is L infinite?™:

decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in £* of length greater than
b" and less than or equal to b"*' + b",

2. If, for any such string w, decideCFL(L, w) returns True then return
True. L is infinite.

3. If, for all such strings w, decideCFL(L, w) returns False then return
False. L is not infinite.
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14.1.3 Equality of Deterministic Context-Free languages

THEOREM 14.5 Decidability of Equivalence for Deterministic Context-
Free Languages

Theorem: Given two deterninistic context-free languages 1., and L5, there exists
decision procedure to determine whether Ly = L.

Proof: This claim was not proved until 1997 and the proot [Sénizergues 2001] is be-
vond the scope of this book, but see =,

14.2 The Undecidable Questions

Unfortunately, we will prove in Chapter 22 that there exists no decision procedure for
many other questions that we might like to be able 1o ask about context-free lan-
guages, including:

14.3

Given a context-free language L.is L = X7

Given a context-free language L. is the complement of 1. context-lree?

Given a context-free language L. is L regular?

Given two context-free languages Ly and Lo, is Ly = [, (Theorem 14.5 tells us
that this question is decidable for the restricted case of two deterministic context-
free languages. But it is undecidable in the more general case.)

Given two context-free languages Ly and Lo, is [, C [.5?

Given two context-free languages Ly and L. is L, M L, = 27

Given a context-Iree language L.1s L inherently ambiguous?

Given a context-free grammar G.is (G ambiguous?

summary of Algorithms and Decision Procedures
for Context-Free Languages
Although we have presented fewer algorithms and decision procedures for context-

free languages than we did for regular languages. there are many important ones,
which we summarize here:

Algorithms that transform grammars:
removeunproductive( G context-free grammar): Construct a grammar G that
contains no unproductive nonterminals and such that L (G") = L (G).

removeunreachable(G: context-free grammar): Construct a grammar (' that
contains no unrcachable nonterminals and such that L (") = L ().
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removeEps(G: context-free grammar): Construct a grammar G' that contains
no rules of the form X' — & and such that L (G') = L (G) — {e}.

o armostoneEps(G: context-free grammar): Construct a grammar G' that con-
tains no rules of the form X — & except possibly §* — g, in which case there
are no rules whose right-hand side contains § *, and such that L (G') = L (G).

o converttoChomsky(G: context-free grammar): Construct a grammar G' in
Chomsky normal form, where L (G") = L (G) — {&}.

o convertoGreibach(G: context-free grammar): Construct a grammar G’ in
Greibach normal form, where L (G') = L(G) — {&}-

L]

removeUnits(G: context-free grammar): Construct a grammar G’ that contains
no unit productions, where L (G') = L (G).

Algorithms that convert between context-free grammars and PDASs:

o cfetoPDAtopdown(G: context-free grammar): Construct a PDA M such that
L. (M) = L (G)and M operates top-down to simulate a left-most derivation in G.

e cfgtoPDAbottomup(G: context-free grammar): Construct a PDA M such that
L (M) = L(G)and M operates bottom up to simulate. backwards, a right-
most derivation in G.

L ]

cfgtoPDAnoeps(G: context-free grammar): Construct a PDA M such that M con-
tains no transitions of the form ((q,. &, 51). (2. 87)) and L (M ) = L (G) — {&}.

Algorithms that transform PDAs:

o convertPDAtorestricted(M: PDA): Construct a PDA M’ in restricted normal
form where L (M') = L (M).

Algorithms that compute functions of languages defined as context-free grammars:

e Given two grammars G; and G,, construct a new grammar G; such that

L (G3) = L(G)U L (G,).

e Given two grammars G; and (G, construct a new grammar Gj such that
L (Gs3) = L (G)LA(G,).

e Given a grammar G, construct a new grammar G’ such that L (G') = (L (G))*.

* Given agrammar G, construct a new grammar G' such that L (G') = (L (G))®.

L ]

Given a grammar G, construct a new grammar G' that accepts letsub(L(G)),
where letsub is a letter substitution function.

Miscellaneous algorithms for PDAs:

 intersectPDAand FSM (My: PDA, M,: FSM): Construct a PDA M; such that
L (M) = L (M) L (M).

o withouts(M:PDA): If M accepts L$. construct a PDA M’ such that L (M') = L.

L ]

complementdetPDA(M: DPDA): If M accepts L$. construct a PDA M’ such
that L (M") = (=L)$.
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* Decision procedures that answer questions about context-free languages:
e decideCFLusingPDA(L: CFL. w : string): Decide whether e is in L.
* decideCFLusingGrammar(L: CFL. w: string): Decide whether e is in L.
* decideCFL(L: CFL. w:string): Decide whether wis in /..
o decideCFLempty(G: context-ree grammar): Decide whether 1 (G) = @.
* decideCFLinfinite(G: context-free grammar ): Decide whether L(G) is infinite]

Exercises

1. Give a decision procedure to answer cach of the following questions:

a. Given a regular expression o and a PDA M, is the language accepted by M a
subset of the language generated by a?

b. Given a context-free grammar G and two strings s; and s,. does (7 generate
Sl.‘ig?

¢. Given a context-free grammar G, does (7 generate at least three strings?

d. Given a context-free grammar G, does G generate any even length strings?

e. Given a regular grammar G, is L(() context-free?
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Turing Machines
“and Linear Bounded
_ Automata

In the early 1930s. mathematicians were trying to define effective computation.
Alan Turing in 1936, Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel
in 1965 gave various models using the concept of Turing machines, A-calculus,
combinatory logic, post-systems and y-recursive functions. It is interesting to
note that these were formulated much before the electro-mechanical/electronic
computers were devised. Although these formalisms, describing effective
computations, are dissimilar, they turn to be equivalent.

Among these formalisms, the Turing’s formulation is accepted as a model
of algorithm or computation. The Church-Turing thesis states that any
algorithmic procedure that can be carried out by human beings/computer can be
carried out by a Turing machine. It has been universally accepted by computer
scientists that the Turing machine provides an ideal theoretical model of a
computer.

Turing machines are useful in several ways. As an automaton, the Turing
machine is the most general model. It accepts type-0 languages. It can also be
used for computing functions. It turns out to be a mathematical model of partial
recursive functions. Turing machines are also used for determining the un-
decidability of certain languages and measuring the space and time complexity
of problems. These are the topics of discussion in this chapter and some of the
subsequent chapters.

For formalizing computability, Turing assumed that, while computing,
a person writes symbols on a one-dimensional paper (instead of a two-
dimensional paper as is usually done) which can be viewed as a tape divided
into cells.

One scans the cells one at a time and usually performs one of the three
simple operations, namely (i) writing a new symbol in the cell being currently
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scanned, (i1) moving to the cell left of the present cell. and (iii) moving to the
cell right of the present cell. With these observations in mind, Turing proposed
his "computing machine.’

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W
(read/write) head. It has one tape which is divided into a number of cells. The
block diagram of the basic model for the Turing machine is given in Fig. 9.1.

R/W head Tape divided into cells
and of infinite length

Finite control

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite
state automaton are effected by the R/W head which can examine one cell at
a time. In one move, the machine examines the present symbol under the
R/W head on the tape and the present state of an automaton to determine

(1) anew symbol to be written on the tape in the cell under the R/W head,
(i1) a motion of the R/W head along the tape: either the head moves one
cell left (L). or one cell right (R),
(ii1) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:
Definition 9.1 A Turing machine M is a 7-tuple, namely (Q, X, T", 6, gy. b. F),
where

Q is a finite nonempty set of states,
I" is a finite nonempty set of tape symbols,

[

3. b e I is the blank,

4. X is a nonempty set of input symbols and is a subset of ' and b ¢ X.

5. 6 is the transition function mapping (g, x) onto (¢, v, D) where D
denotes the direction of movement of R/W head: D = L or R according
as the movement is to the left or right.

6. qg € 1s the initial state, and

0
7. F ¢ Q is the set of final states.
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Notes: (1) The acceptability of a string is decided by the reachability from the
initial state to some final state. So the final states are also called the accepting
states.

(2) & may not be defined for some elements of @ x T'.

9.2 REPRESENTATION OF TURING MACHINES

We can describe a Turing machine employing (i) instantaneous descriptions
using move-relations, (ii) transition table. and (iii) transition diagram (fransition
graph).

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

‘Snapshots” of a Turing machine in action can be used to describe a Turing
machine. These give ‘instantaneous descriptions’ of a Turing machine. We have
defined instantaneous descriptions of a pda in terms of the current state. the
input string to be processed, and the topmost symbol of the pushdown store.
But the input string to be processed is not sufficient to be defined as the D of
a Turing machine, for the R/W head can move to the left as well. So an ID of a
Turing machine is defined in terms of the entire input string and the current
state.

Definition 9.2 An ID of a Turing machine M is a string afy. where [ is the
present state of M, the entire input string is split as ¢y the first symbol of yis
the current symbol @ under the R/W head and y has all the subsequent symbols
of the input string, and the string o is the substring of the input string formed
by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous
description.

g b |aslai|alajla|ay|ajias|ax b|b ?

R/W head

State
a3

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the R/W head is a,. The present state is g3. So a
is written to the right of g;. The nonblank symbols to the left of «; form the
string ayaa,a,a-a-, which is written to the left of ¢;. The sequence of nonblank
symbols to the right of a, is asa-. Thus the ID is as given in Fig. 9.3.
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a4a4a,8,8,8y
Left sequence / \Rght sequence
Present Symbol under
state R/W head

Fig. 9.3 Representation of ID.

Notes: (1) For constructing the ID, we simply insert the current state in the
input string to the left of the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

Moves in a T™M

As in the case of pushdown automata, d(g, x) induces a change in ID of the
Turing machine. We call this change in ID a move.

Suppose 8(g, x;) = {(p, v, L). The input string to be processed is xx> . . . X,
and the present symbol under the R/W head is x;. So the ID before processing
X; 1S

After processing x;, the resulting ID is
XUoeo X2 PXadXey o0 Xy
This change of ID is represented by
XiXa oo XM (]Xi e .\'n "-— Xi .. x,--: pr_l yxl-H [N x,,
If i = 1, the resulting ID is py %2 %5 . .. X,
If 8(g. x;) = {p, y. R), then the change of ID is represented by
XI.\'Z . ,\'[‘_1([ .\‘I' e Xy l—— XiXa oL x,;lypxiﬂ PR x,,
If i = n, the resulting ID is xix> ... x,_; v p b.
We can denote an ID by /; for some j. /; |— 1, defines a relation among IDs.
So the symbol = denotes the reflexive-transitive closure of the relation |—.
In particular, [; = [;. Also, if I} = [, then we can split this as /) |— I, |—
Lit— ... =1, for some IDs, I, ..., I,;.

Note: The description of moves by IDs is very much useful to represent the
processing of input strings.

9.2.2 REPRESENTATION BY TRANSITION TABLE

We give the definition of & in the form of a table called the transition table. If
0(q, a) = (¥, a. B), we write offy under the o-column and in the g-row. So if
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we get affy in the table, it means that ¢ is written in the current cell, § gives
the movement of the head (L or R) and y denotes the new state into which the
Turing machine enters.

Consider, for example, a Turing machine with five states ¢, . . ., g5, where
g, 1s the initial state and g5 is the (only) final state. The tape symbols are 0. 1
and b. The transition table given in Table 9.1 describes o.

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol
b 0 1
G 1Lg, 0Rg,
G2 bRaq; 0Lg, 1Lg,
93 bRq, bRgs
Q4 0Rgs 0Rgq,4 1Rq,

OLqg,

As in Chapter 3, the initial state is marked with — and the final state
with ©.

EXAMPLE 9.2

Consider the TM description given in Table 9.1. Draw the computation
sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and
the current state. If the string in the tape is ajas . .. ¢;a;,; . . . a, and the TM
in state ¢ is to read aj,, then we write @1as ... 4G Qjzy - - - Gy,

For the input string 00b. we get the following sequence:
1006 |— 0g,0b |— 00g,b }— 0g:01 }— g,001
F— 26001 |— bq3001 |— bbqi01 }— bbygdl |— bbylqsb
t— bb010gs |— bb01¢,00 |— bb0g,100 |— bbg,0100
f— bq:b0100 }— bbq;0100 |— bbbg,100 |— bbb,q500
t— £bb10g,0 |— bbb100gsb +— bbb1000gsh
f— bbb100g,00 |— bbb10¢-000 |— bbb14g,0000
— bbbg-10000 |— bbg,b10000 |— bbbg;10000 |— bbbbgs0000

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing
machines. The states are represented by vertices. Directed edges are used to
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represent transition of states. The labels are triples of the form (o, B, 7), where
o. . e Tand ye {L. R}. When there is a directed edge from ¢; to g; with label
(¢, B. 7). it means that
' og;. ) = (q. B. y)

During the processing of an input string, suppose the Turing machine enters
g; and the R/W head scans the (present) symbol a. As a result, the symbol
is written in the cell under the R/W head. The R/W head moves to the left or
to the right. depending on y and the new state is g;.

Every edge in the transition system can be represented by a 5-tuple (g;, 0.
B. 7. g;). So each Turing machine can be described by the sequence of 5-tuples
representing all the directed edges. The initial state is indicated by — and any
final state is marked with ©.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain
the computation sequence of M for processing the input string 0011.

(b, b, R)

Fig. 8.4 Transition system for M.

Solution

The initial tape input is b0011b. Let us assume that M is in state g, and the
R/W head scans O (the first 0). We can represent this as in Fig. 9.5. The figure
can be represented by '

\:
b0011b
q1
From Fig. 9.4 we see that there is a directed edge from ¢; to g, with the label
(0. x. R). So the current symbol 0 is replaced by x and the head moves right.
The new state is ¢-». Thus. we get

bx011b
qn
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The change brought about by processing the symbol 0 can be represented as

J
p0011h OR L prO11b

q1 q>
b 0 0 f1 1 b
R/W head
State
a4

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

i | 4 g
p0011p DR pro11b OB px011h
G q g2
d l ‘ L
(vl o bxOvlb (90D o bxOylb ("'""'R), bx0vib
73 94 4
0.rR (v.R Loy v.L) ‘
(0.x.R) bravlb YOLR) bxvlb s pxyyb
g2 qz 93
(ryL TR (x.v.R)
SN bxxyvb BESLN bxxyyb IERIEN bxxyvb
q3 qs qs
(v.v.R) (bb.R 4
qs s

9.3 LANGUAGE ACCEPTABILITY BY TURING
MACHINES

L~t us consider the Turing machine M = (Q, Z. T, 4. gy, b, F). A string w in
Z* is said to be accepted by M if gow |~ oypos for some p € F and o, o
e T'*

M does not accept w if the machine M either halts in a nonaccepting state
or does not halt.
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It may be noted that though there are other equivalent definitions of
acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transition table given in
Table 9.2. Describe the processing of (a) 011, (b) 0011, (¢) 001 using IDs.
Which of the above strings are accepted by M?

TABLE 9.2 Transition Table for Example 9.4

Present state Tape symbol
0 1 x y b
— G xRq, bRgs
G2 O0Rg, yLgs yRq,
s 0Lg4 xRgs yLa;
Q4 OLg. xRq;
Js yxRqs bRge
@
Solution

(@) 011 = xq211 = gyl = xgsyl = xvgsl
As 0(gs. 1) is not defined. M halts; so the input string 011 is not accepted.
(®) ¢,0011 }— xg:011 |— x0g,11 }— xg:0v1 |— qsx0y1 |— xq,0v1.
F-xxgavl b= xxyqel = xxqayy = xqaxvy = xxgsyy
F—xxygsy = xxvvgsb |— xxyvbgg
M halts. As g, is an accepting state, the input string 0011 is accepted by M.
(¢) 1001 }— x¢:01 |— x0ga1 |— xq30v |— gsx0y
F— xq, 0y |— xxgayv |— xxyq»

M halts. As g, is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.

(1) The fundamental objective in scanning a symbol by the R/W head is
to "know’ what to do in the future. The machine must remember the
past symbols scanned. The Turing machine can remember this by
going to the next unique state.

(i1) The number of states must be minimized. This can be achieved by
changing the states only when there is a change in the written symbol
or when there is a change in the movement of the R/W head. We shall
explain the design by a simple example.
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EXAMPLE 9.5

Design a Turing machine to recognize all strings consisting of an even number
of I's.

Solution

The construction is made by defining moves in the following manner:
(a) g, is the initial state. M enters the state ¢, on scanning 1 and writes b.
(b) If M is in state g, and scans |, it enters ¢, and writes b.
(c) g is the only accepting state.

So M accepts a string if it exhausts all the input symbols and finally is in
state ¢;. Symbolically,

M = ({Q1 (12}: {1' b} {1? b}- 5& Qs b {QI})
where 0 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state 1
—) bQQR
o)} bChR

Let us obtain the computation sequence of 11. Thus, ¢,11 |~ bg~1 }|— bbg,.
As gy is an accepting state. 11 is accepted. ¢;111 | bg211 |— bbg,1 |— bbbg,.
M halts and as ¢- is not an accepting state. 111 is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over {1. &} which can compute a concatenation
function over X = {1}. If a pair of words (wy, w») is the mput. the output has
to be Winwa.

Solution

Let us assume that the two words w; and w, are written initially on the input
tape separated by the symbol b. For example, if w; = 11, w- = 111, then the
input and output tapes are as shown in Fig. 9.6.

golrfrfelnfofrifes  gefrfrfiofrfe]os

Fig. 9.6 Input and output tapes.

We observe that the main task is to remove the symbol b. This can be done
in the following manner:

(a) The separating symbol & is found and replaced by 1.
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(b) The rightmost 1 is found and replaced by a blank b.
{¢c) The R/W head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11b£111

Go11b111 = 1go1b111 = 11geh111 = 111g4111

— 11g 1 = 11111g1 — 111111g:b — 11111g.1b
— 1111g31bb — 111gs11bb — 11gs111bb |— 1g51111bb
— gs11111bb — gsb11111bb — bg,11111bb

From the above computation sequence for the input string 115111, we can
construct the transition table given in Table 9.5.
For the input string 151, the computation sequence is given as

Golbl |— 1gobl |— 11q;1 |— 111g,b | 11g:b |— 1¢;31bb
b= q311bb |— q3b11bb }— bg L 1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbol
1 b
0o 1Ry 1Rg;
G 1Rg, bLg,
G bLgs —
92 1Lg; bRg:
— —

EXAMPLE 9.7

Design a TM that accepts
{0"1"|n 2 1}.

Solution
We require the following moves:

(a) If the leftmost symbol in the given input string w is 0, replace it by x
and move right till we encounter a leftmost 1 in w. Change it to y and
move backwards.

(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or
1 remains. move to a final state.

(c) For strings not in the form 01" the resulting state has to be nonfinal.
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Keeping these ideas in our mind, we construct a TM M as follows:

M=(0, %1, 8 gy b, F)

where
0= {90 1> 92, g3 qp
F= {C]f}
Z=1{0.1}

I'=1{0, 1, x. v, b}

The transition diagram is given in Fig. 9.7. M accepts {0"1"|n 2 1}. The moves
for 0011 and 010 are given below just to familiarize the moves of M to the
reader.

Fig. 9.7 Transition diagram for Example 9.7.

qo0011 |— xq,011 |— x0g; 11 |— xq;0y1
= q2x0y1 |— xqo0y1 |— xxqiyl |— xxyg) 1
= xxgayy b= xgaxyy f— xxqoyy f— xxyqsy
= xxvygs = xxyvgab |— xxyybgub
Hence 0011 is accepted by M.
40010 |— x¢,10 }— g>xy0 = xgoy0 = xygs0
As 0(gs. 0) is not defined, M halts. So 010 is not accepted by M.

--EXAMPLE 9.8

Design a Turing machine M to recognize the language
{172"3"|n 2 1}.
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Solution

Before designing the required Turing machine M, let us evolve a procedure for
processing the input string 112233, After processing, we require the ID to be
of the form bbbbbbg-. The processing is done by using five steps:

Step 1 g, is the initial state. The R/W head scans the leftmost 1, replaces 1
by b, and moves to the right. M enters g-.

Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves
to the right. M enters gs.

Step 3 On scanning the leftmost 3, the R/W head replaces 3 by b, and moves
to the right. M enters g,.

Step 4 After scanning the rightmost 3, the R/W heads moves to the left until
it finds the leftmost 1. As a result. the leftmost 1, 2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until all I's, 2°s and 3’s are replaced by blanks.
The change of 1Ds due to processing of 112233 is given as

112233 |— bq-12233 |— blg22233 |— b1bqs233 | — b1b2¢333
— b1b2bq 3 |— blbagsh3 |— Dlbgs2b3 |— blqsb2b3 |— bqs1b2b3
F— qeblb2b3 |— bq 10263 |— bbq-b2b3 |— bbbg,2b3
p— bbbbg:b3 |- bbbbbqs3 |— bbbbbbqb |— bbbbbgbb
Thus.
q1112233 = g:bbbbbb

As ¢- is an accepting state. the input string 112233 is accepted.
Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol
| 2 3 b

—§s bRq, bRq,
gz 1Rq; bRg; bRg,
Gs 2Raq, bRy bRa,
Q. 3Lgs bLg;
s 1Lgs 2Lgs bLgs
9s 1Lgs bRa;
@
®

It can be seen from the table that strings other than those of the form 0"12"
are not accepted. It is advisable to compute the computation sequence for
strings like 1223, 1123, 1233 and then see that these strings are rejected by M.
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9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function ¢ was described as a
partial function (function 6: @ x T’ — Q x T' x {L. R} is not defined for all
(g. x)) by spelling out the current state, the input symbol, the resulting state. the
tape symbol replacing the input symbol and the movement of R/W head to the
left or right. We can call this a formal description of a TM. Just as we have the
machine language and higher level languages for a computer, we can have a
higher level of description, called the implementation description. In this case
we describe the movement of the head, the symbol stored ete. in English. For
example, a single instruction like ‘move to right till the end of the input string’
requires several moves. A single instruction in the implementation description
is equivalent to several moves of a standard TM (Hereafter a standard T™M
refers to the TM defined in Definition 9.1). At a higher level we can give
instructions in English language even without specifying the state or transition
function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give
implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the
construction of TMs easier. The Turing machine defined in Section 9.1 is called
the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 6(q. a) as (¢’, y, D) where D = L or R.
So the head moves to the left or right after reading an input symbol. Suppose,
we want to include the option that the head can continue to be in the same cell
for some input symbol. Then we define d(g, a) as (¢’, y. S). This means that
the TM, on reading the input symbol a, changes the state to ¢" and writes y in
the current cell in place of @ and continues to remain in the same cell. In terms
of IDs,
wgax |— wq'yx

Of course, this move can be simulated by the standard TM with two moves,

namely
wgax = wyq'x = wq'yx

That is, 8{q, @) = (¢, v. S) is replaced by 8(g. @) = (¢”, v, R) and 6(q¢”. X) =
(¢ . v. L) for any tape symbol X.

Thus in this model 8(g. a) = (¢, v, D) where D = L, R or §.
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9.6.2 STORAGE IN THE STATE

We are using a state, whether it is of a FA or pda or TM, to ‘remember’ things.
We can use a state to store a symbol as well. So the state becomes a pair
(g, a) where ¢ is the state (in the usual sense) and a is the tape symbol stored
in {g. a). So the new set of states becomes Q X T.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1% + 1 0%,

Solution

We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states, go. ¢1.
The tape symbols are 0, 1 and b. So the TM. having the ‘storage facility in
state’. is

M = ({qo. q1} x {0. L. b}, {0, 1}, {0, 1, b}. 6. lgo. DI {lg1. D1}

We describe 0 by its implementation description.

1. In the initial state, M is in g, and has b in its data portion. On seeing
the first symbol of the input sting w, M moves right, enters the state
¢, and the first symbol, say «, it has seen.

. M is now in gy, a]. (1) If its next symbol is b, M enters {g;. b], an
accepting state. (i1) If the next symbol is a. M halts without reaching

[\

the final state (i.e. § is not defined). (iii) If the next symbol is @
(a =0ifa=1and @ =1 if ¢ = 0), M moves right without changing
state.

3. Step 2 is repeated until M reaches [¢;. b] or halts (& is not defined for
an input symbol in w).

9.6.3 MULTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track
TM. a single tape is assumed to be divided into several tracks. Now the tape
alphabet is required to consist of i-tuples of tape symbols. k being the number
of tracks. Hence the only difference between the standard TM and the TM with
multiple tracks is the set of tape symbols. In the case of the standard Turing
machine, tape symbols are elements of I'; in the case of TM with multiple track,
it is I'*. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has
to be done repeatedly. We can implement this facility for TMs as well.
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First, a TM program for the subroutine is written. This will have an initial
state and a ‘return’ state. After reaching the return state. there is a temporary
halt. For using a subroutine, new states are introduced. When there is a need
for calling the subroutine, moves are effected to enter the initial state for the
subroutine (when the return state of the subroutine is reached) and to return to
the main program of TM.

We use this concept to design a TM for performing multiplication of two
positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m. n), m. n being given, the positive integers are represented by

010", M starts with 0710" in its tape. At the end of the computation,

0™"(mn in unary representation) surrounded by b's is obtained as the ouput.
The major steps in the construction are as follows:

1. 0"10"1 is placed on the tape (the output will be written after the
rightmost 1).

2. The leftmost O is erased.

3. A block of 12 0's is copied onto the right end.

4. Steps 2 and 3 are repeated m times and 10™10™" is obtained on the
tape.

5. The pretix 10"1 of 10™10™" is erased. leaving the product mn as the
output.

For every 0 in 0™, 0" is added onto the right end. This requires repetition
of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is ¢; and the final state is gs. 0
is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COPY

State Tape symbol
0 1 2 b
qs G22R g41L — -
G2 q20R RIR - G:0L
gs q:0L gs1L G12R -
Qs — gs1R q40L —
s - — — -

The Turing machine M has the initial state gy The initial ID for M is
qs0"10"1. On seeing 0. the following moves take place (g, is a state of M).
Gu0""10"1 = bg0" ' 10" 0™ gel0"L - b0 1g,0"1. gy is the initial state
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of COPY. The TM M, performs the subroutine COPY. The following moves
take place for M;: q,0"1 |— 2¢:0""'1 |- 20"'1g:b |—20""g310 |- 24,0"'10.
After exhausting 0's. ¢, encounters 1. M, moves to state g,. All 2’s are
converted back to 0’s and M| halts in gs. The TM M picks up the computation
by starting from ¢s. The g, and ¢, are the states of M. Additional states are
created to check whether each 0 in 0 gives rise to 0”7 -at the end of the
rightmost 1 in the input string. Once this is over, M erases 101 and finds O™
in the input tape.
M can be defined by

M= ({(/0 d1s -+ o Q13}~ {O 1} {O 1’ 27 b} 5= qdo» b7 {qu})
where § is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

0 1 2 b

Go qsbR - - -
Qs Gs0R G1R - —
gs g-0L - - -
gz - as1L — -
s gs0L — — GiobR
ds q50L — - GobR

10 - q1bR - -
oo gubR G12bR — -

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, @) is either a
single triple (p. v, D). where D = R or L, or is not defined. We introduce two
new models of TM:
(1) a TM with more than one tape
(i) a TM where 8(q. a@) = {(pi. ¥1, D). (P2, v2. Do), .. o (psy ¥, D3}, The
first model is called a multitape TM and the second a nondeterministic
™.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states, an initial state gg, a subset F of O
called the set of final states. a set P of tape symbols, a new symbol b, not in
P called the blank symbol. (We assume that Z c T"and b ¢ X.)
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There are k tapes. each divided into cells. The first tape holds the input
string w. Initially, all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input
w. All the other heads can be placed at any cell initially.

0 is a partial function from Q X ™ into 0 x T x {L, R. S}*. We use
implementation description to define 0. Figure 9.8 represents a multitape TM.
A move depends on the current state and & tape symbols under k tape heads.

Finite
control

N\

HEEED N
|

e

{

JEEEEEE

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.
(ii1) Each tape head moves to the left or right or remains stationary. The
heads move independently: some move to the left, some to the right
and the remaining heads do not move.

The initial ID has the initial state gg. the input string w in the first tape
(input tape). empty strings of b's in the remaining & — 1 tapes. An accepting ID
has a final state. some strings in each of the & tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by
some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a i-tape TM M. We simulate M
with a single-tape TM with 2k tracks. The second. fourth, . . .. (2k)th tracks hold
the contents of the k-tapes. The first. third, . ... (2k — D)th tracks hold a head
marker (a symbol say X) to indicate the position of the respective tape head.
We give an "implementation description’ of the simulation of M with a single-
tape TM M. We give it for the case & = 2. The construction can be extended
to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A, and Bs
are the current symbols to be scanned and so the headmarker X is above the two
symbols.
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Finite
control

By| Byj B3| By} Bs

Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and
fourth tracks of M,. The headmarkers of the first and third tracks are at the cells
containing the first symbol.

To simulate a move of M. the 2k-track TM M, has to visit the two
headmarkers and store the scanned symbols in its control. Keeping track of the
headmarkers visited and those to be visited is achieved by keeping a count and
storing it in the finite control of M;. Note that the finite control of M, has also
the information about the states of M and its moves. After visiting both head
markers. M, knows the tape symbols being scanned by the two heads of M.

Now M, revisits each of the headmarkers:

(1) It changes the tape symbol in the corresponding track of M based
on the information regarding the move of M corresponding to the state
(of M) and the tape symbol in the corresponding tape M.
(i1) It moves the headmarkers to the left or right.
(iii) M, changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M, is ready
to implement its next move based on the revised positions of its headmarkers
and the changed state available in its control.

M, accepts a string w if the new state of M. as recorded in its control at
the end of the processing of w. is a final state of M.

Definition 9.3 Let M be a TM and w an input string. The running time of M
on input w. is the number of steps that M takes before halting. If M does not
halt on an input string w, then the running time of M on w is infinite.

Note:  Some TMs may not halt on all inputs of length n. But we are interested
in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM M is the function 7(n), n being the
input size, where T(n) 1s defined as the maximum of the running time of M over
all inputs w of size n.

Theorem 9.2 If M, is the single-tape TM simulating multitape TM M, then
the time taken by M| to simulate n moves of M is O@°).
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Proof Tet M be a k-tape TM. After n moves of M, the head markers of M,
will be separated by 2n cells or less. (At the worst. one tape movement can be
-to the left by » cells and another can be to the right by n cells. In this case the
tape headmarkers are separated by 2n cells. In the other cases, the ‘gap’
- between them is less). To simulate a move of M, the TM M, must visit all the
k headmarkers. If M starts with the leftmost headmarker. M| will go through all
the headmarkers by moving right by at most 2n cells. To simulate the change
in each tape. M, has to move left by at most 2r cells; to simulate changes in
k tapes, it requires at most two moves in the reverse direction for each tape.
Thus the total number of moves by M, for simulating one move of M is
atmost 4n + 2k. (2n moves to right for locating all headmarkers, 2n + 2k moves
to the left for simulating the change in the content of k tapes.) So the number
of moves of M, for simulating » moves of M is n{d4n + 2k). As the constant k
is independent of n, the time taken by M; is OGr°).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as
deterministic TM). 6(g,;. a) was defined (for some elements of O X I') as an
element of 0 x I’ x {L, R}. Now we extend the definition of 8 In a
nondeterministic TM. 8(gy. «) is defined as a subset of O x ' x {L, R}.

Definition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, Z. T, 6, qo.
b, F) where
Q is a finite nonempty set of states
I' 1s a finite nonempty set ot tape symbols
b e T is called the blank symbol
Z is a nonempty subset of T'. called the set of input symbols. We
assume that b ¢ Z.
gp is the initial state
F < Q is the set of final states

7. 6 is a partial function from Q x T into the power set of O x T’ x

{L. R}.

Note: If g e Qand x € T and 6(q. x) = {(g,, v, D). (gs ¥y», Ds). ...,
(G ¥ D)} then the NTM can chose any one of the actions defined by
(g v, Dy fori=12.....n

We can also express this in terms of |— relation. If 6(q. x) = {(g;. ;. D))
i=1.2.... n} then the ID zgxw can change to any one of the n IDs specified
by the n-element set 6(q. x).

Suppose 6(q. x) = {(g1. ¥1. L), (g2 ¥2. R). (g3 ¥3. L)}. Then

:l:.pJ!\)H

IS

N B A S BRI B LA N A B SR B
or

B N R A S S e R L V1 O B
or

o Y A e T R S LRV T 1t LY FE R
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So on reading the input symbol, the NTM M whose current ID is 7,2 . . .
24X - - - I, can change to any one of the three IDs given earlier.

Remark When 6(¢q. x) = {(g;. v, D;)|i = 1.2... .. n} then NTM chooses any
one of the n triples totally (that is. it cannot take a state from one triple, another
tape symbol from a second triple and a third D(L or R) from a third triple, etc.

Definition 9.6 1w € X* is accepted by a nondeterministic TM M if gow |-
xgp for some final state gy
The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the form xgv (for some ¢ ¢ F) may
be reached as the result of applying the input string w. But w is accepted by M
as long as there is some sequence of moves leading to an ID with an accepting
state. It does not matter that there are other sequences of moves leading to an
ID with a nonfinal state or TM halts without processing the entire input string.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M|
such that T(M) = T(M,).

Proaf We construct M, as a multitape TM. Each symbol in the input string
leads to a change in ID. M, should be able to reach all IDs and stop when an
ID containing a final state is reached. So the first tape is used to store IDs of
M as a sequence and also the state of M. These IDs are separated by the symbol
% (included as a tape symbol). The current ID is known by marking an x along
with the ID-separator * (The symbol * marked with x is a new tape symbol.)
All IDs to the left of the current one have been explored already and so can be
ignored subsequently. Note that the current ID is decided by the current input
symbol of w.

Figure 9.10 illustrates the deterministic TM M.

Finite
control
RY
Tape 1
P ( ID4 1Dy -1D5 1D, -1D5-1Dg~ ...

\

Fig. 9.10 The deterministic TM simulating M.

Tape 2

To process the current ID, M, performs the following steps.

1. M, examines the state and the scanned symbol of the current ID. Using
the knowledge of moves of M stored in the finite control of M. M,
checks whether the state in the current ID is an accepting state of M.
In this case M, accepts and stops simulating M.
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2. If the state ¢ say in the current ID xgay is not an accepting state of M|
and 6(q. a) has k triples. M, copies the ID xgay in the second tape and
makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M, modifies these k IDs in tape 2 according to the k choices given by
o(g. a).

4. M, returns to the marked current ID. erases the mark x and marks the
next ID-separator * with x (to the * which is to the left of the next ID
to be processed). Then M, goes back to step 1.

M, stops when an accepting state of M is reached in step 1.

Now M, accepts an input string w only when it is able to find that M has
entered an accepting state, after a finite number of moves. This is clear from
the simulated sequence of moves of M, (ending in step 1)

We have to prove that M| will eventually reach an accepting ID (that is,
an ID having an accepting state of M) if M enters an accepting 1D after n
moves. Note each move of M is simulated by several moves of M.

Let m be the maximum number of choices that M has for various (g, a)’s.
(It is possible to find m since we have only finite number of pairs in Q X I'))
So for each initial ID of M, there are at most m IDs that M can reach after one
move, at most m~ IDs that M can reach after two moves. and so on. So
corresponding to # moves of M. there are at most 1 +m + m~ + - - - + m" Moves
of M;. Hence the number of IDs to be explored by M, is at most nm”.

We assume that M, explores these IDs. These IDs have a tree structure
having the initial ID as its root. We can apply breadth-first search of the nodes
of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,
and so on.) If M reaches an accepting ID after » moves. then M| has to search
atmost nm” IDs before reaching an accepting ID. So, if M accepts w, then M,
also accepts w (eventually). Hence T(M) = T(M)).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is
accepted by the model. and (b) the infinite storage is restricted in size but not
in accessibility to the storage in comparison with the Turing machine model. It
is called the linear bounded automaton (LBA) because a linear function is used
to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-sensitive
languages. It should be noted that the study of context-sensitive languages is
important from practical point of view because many compiler languages lie
between context-sensitive and context-tree languages.

A linear bounded automaton is a nondeterministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear function
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of the length of the input string. The models can be described formally by the
following set format:

M:(Q~ z-, r‘ 5~, q“' b9¢$~F)

All the symbols have the same meaning as in the basic model of Turing
machines with the difference that the input alphabet X contains two special
symbols € and $.  is called the left-end marker which is entered in the left-
most cell of the input tape and prevents the R/W head from getting off the left
end of the tape. $ is called the right-end marker which is entered in the right-
most cell of the input tape and prevents the R/W head from getting off the right
end of the tape. Both the endmarkers should not appear on any other cell within
the input tape, and the R/W head should not print any other symbol over both
the endmarkers.

Let us consider the input string w with |w| = n — 2. The input string w can
be recognized by an LBA if it can also be recognized by a Turing machine
using no more than kn cells of input tape, where k is a constant specified in the
description of LBA. The value of k does not depend on the input string but is
purely a property of the machine. Whenever we process any string in LBA, we
shall assume that the input string is enclosed within the endmarkers ¢ and $.
The above model of LBA can be represented by the block diagram of Fig. 9.11.
There are two tapes: one is called the input tape, and the other, working tape.
On the input tape the head never prints and never moves to the left. On the
working tape the head can modify the contents in any way, without any
restriction.

“«—— ncells

| § s
Z}M[TH Ll Isls

R head moving to the right only

input
tape

Finite state
control

head

kn cells

i
\
Working tape
Fig. 9.11 Model of linear bounded automaton.

In the case of LBA, an ID is denoted by (g, w. k), where g€ Q, w e T
and £ is some integer between 1 and #. The transition of IDs is similar except
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that k£ changes to k — 1 if the R/W head moves to the left and to & + 1 if the
head moves to the right.
The language accepted by LBA is defined as the set

C(we @-1{E $Hge Gws. D = (g o )
for some ¢ € F and for some integer 7 between 1 and n}.

Note: As anull string can be represented either by the absence of input string
or by a completely blank tape. an LBA may accept the null string.

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE
LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings
generated by the context-sensitive grammars, excluding the null strings. Now
we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded
automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines
with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by
a given Turing machine M. The productions are constructed in two steps. In
step 1 we construct productions which transform the string [¢,§ w$] into the
string [g,b]. where ¢, is the initial state. ¢~ is an accepting state, €is the left-
endmarker. and $ is the right-endmarker. The grammar obtained by applying
step 1 is called the rransformational grammar. In step 2 we obtain inverse
production rules by reversing the productions of the transformational grammar
to get the required type 0 grammar G. The construction is in such a way that
w is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING
TO TM

For understanding the construction. we have to note that a transition of ID
corresponds to a production. We enclose IDs within brackets. So acceptance of
w by M corresponds to the transformation of initial ID [g, ¢ w $] into [g.:b].
Also, the "length” of ID may change if the R/W head reaches the left-end or the
right-end. i.e. when the left-hand side or the right-hand side bracket is reached.
So we get productions corresponding to transition of IDs with (i) no change in
length, and (i) change in length. We assume that the transition table is given.
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We now describe the construction which involves two steps:
Step 1 (i) No change in length of IDs: (a) Right move. aRq; corresponding
to g;-row and a-column leads to the production
qid; — iy
(b) Left move.  a;Lq, corresponding to g;-row and a;-column yields several

productions
AQil; —> forall @, € T

(i1) Change in length of IDs: (a) Left-end. a,Lg; corresponding 1o g;-row
and a-column gives
[qia; — lgibay

When b occurs next to the left-bracket, it can be deleted. This is achieved
by including the production [b — [.

(b) Right-end. When b occurs to the left of ], it can be deleted. This is
achieved by the production

ab] — a] forall ¢ e T

When the R/W head moves to the right of ], the length increases.
Corresponding to this we have a production

g;] — gb] forallg, e Q

(iii) Inrroduction of endmarkers. For introducing endmarkers for the input
string, the following productions are included:

a; — g Ca forag,e T.a;# b
a; = a;%] forall g, e I, q; # b
For removing the brackets from [¢-b]. we include the production
[g-b] — S
Recall that ¢, and ¢- are the initial and final states, respectively.

Step 2 To get the required grammar, reverse the arrows of the productions
obtained in step 1. The productions we get can be called inverse productions.
The new grammar is called the generarive grammar. We illustrate the
construction with an example.

EXAMPLE 9.11

Consider the TM described by the transition table given in Table 9.9. Obtain
the inverse production rules.

Solution
In this example. g is both initial and final.
Step 1 (i) Productions corresponding to right moves

g €— Cq. gl - bgr, g2l — bg, 9.1)
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(i) {a) Productions corresponding ro left-end
-1 (9.2)
(b) Productions corresponding to rig’it-end
bb] —» b]. ] =1}, gl = qbl. g = q:b] 9.3)
(i) 1 — [¢¢1. 1 — 18], [gib] — S 9.4

TABLE 9.9 Transition Table for Example 9.11

Present state ¢ b 1
=@ CRyq, bRg»
9z bRQA,

Step 2 The inverse productions are obtained by reversing the arrows of the
productions (9.1)—(9.4).

¢q1 — q/Q bgr = q1, bgy = ¢-1
[ — [b, b] — bb], 1] — 1b]
qib — g1, g-b = ¢-]. [g:¢1 -1
18] — 1, S = [gb]

Thus we have shown that there exists a type 0 grammar corresponding to
a Turing machine. The converse is also true (we are not proving this), i.e. given
a type 0 grammar G, there exists a Turing machine accepting L(G). Actually,
the class of recursively enumerable sets, the type 0 languages, and the class of
sets accepted by TM are one and the same. We have shown that there exists
a recursively enumerable set which is not a context-sensitive language (see
Theorem 4.4). As a recursive set is recursively enumerable, Theorem 4.4 gives
a type O language which is not type 1. Hence. 7 < %, (cf Property 4.
Section 4.3) is established.

9.10 LINEAR BOUNDED AUTOMATA AND LANGUAGES

A linear bounded automaton M accepts a string w if. after starting at the initial
state with R/W head reading the left-endmarker, M halts over the right-end-
marker in a final state. Otherwise, w is rejected.

The production rules for the generative grammar are constructed as in the
case of Turing machines. The following additional productions are needed in
the case of LBA.

aiqrS — g% forall q; € T

QS — Qg G¢q; — g5



302 & Theory of Computer Science

EXAMPLE 9.12

Find the grammar generating the set accepted by a linear bounded automaton
M whose transition table is given in Table 9.10.

TABLE 9.10 Transition Table for Example 9.12

Present state Tape input symbol

¢ $ 0 1
=0 CRg, 1Lg, 0Rq,
9 CRa, 1Rg 1Lq,
g3 SLq-] 1 RQ3 1RQ3

N Halt oL OR
@ G4 Q4

Solution

Step 1 (A) (i) Productions corresponding to right moves. The seven right
moves in Table 9.10 give the following productions:

f]1¢—> (g g:0 — lg;

ql — 0g-. g3l — 1g; (9.5)
q-¢ — (g qs1 — Ogy

g0 — 1g3

(i) Productions corresponding to left moves. There are four left moves in
Table 9.10. Each left move yields four productions (corresponding to the four
tape symbols). These are:

(a) 1Lg-~ corresponding to g;-row and O-column gives

$q,0 = ¢-C1. Sq,0 = g-31, 09,0 — ¢-01, 1,0 — ¢.11 (9.6)
(b) 1Lq, corresponding to g;-row and 1-column yields

Gq-1 = q,¢1. Sg-1 = ¢;$1. 0g-1 — q,0L, 1g-1 — g,11 9.7
(c) $Lq, corresponding to g;-row and S-column gives

Tq:$ = q1€'S, $¢:8 — 188, 0g38 — ¢108. 1g5$ — ¢118  (9.8)
(d) OLgy corresponding to gs-row and O-column yields

Cq0 — .00, $g:0 — 4,50, 09,0 — g,00, 1,0 = 410 (9.9)

(B) There are no productions corresponding to change in length.
(C) The productions for introducing the endmarkers are

¢—[a¢¢ ¢ C3)

$ — [¢.¢S. $ — $$] (9.10)
0 — [¢:¢0, 0 — 0%]

g1 = S (9.11)
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(D) The LBA productions are

¢q:8 — q.8. g8 — Cgs

$9:3 = qu$. Cay — g4 (9.12)
0q.% — ¢.5.

1948 — q,8

Step 2 The productions of the generative grammar are obtained by reversing
the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of 1's.

Solution

We design a TM so that we have ww after copying w € {1}*. Define M by
M= ({QO' Gy 4o (13}- {l} {1‘ b}, 5~ qos bs {(13})

where & is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol
1 b a
ds GoaR q:bL -
g- gL G3bR 1R
op} 1R gL —
as —_ b —

The procedure is simple.

M replaces every 1 by the symbol a. Then M replaces the rightmost a by
1. It goes to the right end of the string and writes a I there. Thus M has added
a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches g; after replacing all 1's by a's and reading the blank at the end
of the input string. After replacing a by 1. M reaches ¢-. M reaches g5 at the
end of the process and halts. If w = 1. than we have 1" at the end of the
computation. A sample computation is given below.

Goll = aqol }— aaqeb t+— aq,a
b= alg:b |- aq1l |- gall
= lg-11 = 1lge1 | 111g:0
b= 11g-11 }— 1g,111
= q 1111 = q,p1111 |— g51111
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EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {0,1} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to
recognize L. Figure 9.12 gives a DFA accepting L.

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M, does the same; it reads an input
symbol. does not change the symbol and changes state. At the end of the
computation. the TM sees the first blank b and changes to its final state. The
initial ID of M, is ggw. By defining 0(qo. b) = (g1, b, R), M, reaches the initial
state of M. M, can be described by Fig. 9.13.

(0.0, R)

(1,1, R (0,0, R)

)
qu\(b, b R) ;q} (0.0.R)
\_ 3

(b, b, R

(1,1, R)
1,1.R

Fig. 9.13 TM for Example 9.14.

Note: g5 is the unique final state of M. By comparing Figs. 9.12 and 9.13 it
is easy to see that strings of L are accepted by M;.

EXAMPLE 9.15

Design a TM that reads a string in {0. 1}* and erases the rightmost symbol.

Solution
The required TM M is given by

M = ({QO7 q1s 425 g3 C]4} {Os 1} {O 1> b} 5., qo- b, {(]4}>
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where & is defined by

6(qp- 0) = (g1, 0. R) 0(go. 1) = (q1. 1, R Ry)
6(g,- 0)= (g1, 0, R) 8(g;- ) =(q. L, R) Ry
&g, D)= (g2 b, L) (Ra)
6(qs, 0) = (g3, b. L) 0(qa 1) = (g3, b. L) (Ry)
6(gs. 0) = (¢, 0. L) 0(gs D) = (ga. 1. L) (Rs)
0(qs, b) = (g4, b, R) (Re)

Let w be the input string. By (R;) and (R,), M reads the entire input string
w. At the end, M is in state ¢,. On seeing the blank to the right of w. M reaches
the state g> and moves left. The rightmost string in w is erased (by (Ry)) and
the state becomes g;. Afterwards M moves to the left until it reaches the left-
end of w. On seeing the blank b to the right of w. M changes its state to gy,
which is the final state of M. From the construction it is clear that the rightmost
symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {0% | n > 0}.

Solution
Let w be an input string in {0}*. The TM accepting L functions as follows:

1. It writes b (blank symbol) on the leftmost O of the input string w. This

is done to mark the left-end of w.

M reads the symbols of w from left to right and replaces the alternate

0’s with x’s.

If the tape contains a single 0 in step 2. M accepts w.

4. If the tape contains more than one 0 and the number of 0’s is odd in
step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in
step 1).

6. M goes to step 2.

[

(5]

Each iteration of step 2 reduces w to half its size. Also whether the number
of O's seen is even or odd is known after step 2. If that number is odd and
greater than 1, w cannot be 07 (step 4). In this case M rejects w. If the number
of 0's seen is 1 (step 3), M accepts w (In this case 0% is reduced to O in
successive stages of step 2).

We define M by

M = ({q0. q1- 42 43 G- g5 @:}s {0}, {0, x. b}, 6, qo. b {gs})
where 6 is defined by Table 9.12.

UL E—
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TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol
0 b X

9o bRa, bRa; xR,
G4 xRq, bRq; ¥Rg,

2 0Rgs bRq, xRqy
G *Rqy bR xRgs
e OLqgs4 bRg, xLgy
g: - - -
Qt - — -

From the construction, it is apparent that the states are used to know
whether the number of 0's read is odd or even.
We can see how M processes 0000.

¢,0000 }— bq;000 | bxq:00 |— bxq30 p— bxOxq,b
= bx0quxb |— bxqOxb bqx0xb |— qybx0xb
= bqx0xb |— bxq,0xb |— bxxqaxb bxxxq-b
— bxxqxb — bxquxxb }— bq soexb = qubxxxb
= bgoxxb = bxqxxb b= bxxqxb — bxxxqb
b= baxby;.

Hence M accepts w.

Also note that M always halts. If M reaches g5 the input string w 1s
accepted by M. If M reaches ¢, w is not accepted by M: in this case M halts
in the trap state.

EXAMPLE 9.17
Let M = ({go. q1, g-}. 10. 1}, {0. 1, b}. & go. {92}

where 0 is given by

0(qo- 0) = (g1, 1. B) (Rp
0(g1. 1) = (gp. 0, R) (R»)
0(qy. b) = (g». b, R) (Rj)
Find T(M).
Solution

Let w e T(M). As 8(go, 1) is not defined, w cannot start with 1. From (R;)
and (R»). we can conclude that M starts from ¢, and comes back to gq after
reaching 01.

So. qo(01)" = (10)"go. Also. qo0b |— 1gb |— 1bq2.
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So, (01)'0 € T(M). Also, (01)"0 is the ounly string that makes M move from
Go to g». Hence, T(M) = {{01Y'0 | n 2 O}.

SELF-TEST

Choose the correct answer te Questions 1-10:

1.

(=]

n

For the standard TM:

(ay 2 =T

b T'cX

) 2cl

(d) Z is a proper subset of T,

. In a standard TM. 6(q. a), g€ Q. a e T is

(a) defined for afl (q. @) € @ x T

(b} defined for some. not necessarily for all (¢, a) € O x T

(¢} defined for no element (¢. a) of @ x T
(d) a set of triples with more than one element.

If 8(g. x) = (p. v. L), then

(@) X1Xa oo X QX e Xy b XX XX W - Y,
(0) X XY Xy Xy L XN
iGN e Ny X XD XN
(d) xixoooxLgy X X XYY

(c) ¥x» ... x

If 8(g. x) = (p. v. R). then

x!?

(@) XpXa oo X gy - Xy e X e Xl P

(b) XX L Xgyy Ly, |>——— R AR I ¢ 22 SR I

(C) R G N I 17 A . i— LD o B IR 22 93 SVE TN
(d) XpXa o X gy Xy, i— XX o X VP -

If 8(g. x;) = (p. v. L). then

(@) g X, = pyxs X,

M) g ox, b= yprs L x,

(€) gvixa ... x, b pbxy ... x,

(d) goixy .o x =pbyy .y,

If 8(g. x,) = (p. v. R). then

(@) x; ... X00x, B pavods o,
() X1 Ly, P opyaxs L. X,
(€) ¥ . X%, = XX . xo0pb
(d) xp oo Xy, B oxxa L X 0pb
For the TM given in Example 9.6:

(@) golbll | bql1bbl

(b) galbll — bg,i1bbl

(©) gplbll |— 1gpblll

{(d) golbll |— g:b11bbl1
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8.

For the TM given in Example 9.4
(a) 011 is accepted by M

(b) 001 is accepted by M

(c¢) 00 is accepted by M

(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:

10.

923

9.4

9.5

9.6

9.7
9.8

9.9

9.10
9.11

(a) 1 is accepted by M

{b) 11 is accepted by M

{¢) 111 is accepted by M
(dy 11111 is accepted by M

In a standard TM (Q. . I", &. qq, b. F) the blank symbol b is

(a)y imnx-T
by inT - X
Iz

(d) none of these

EXERCISES

1 Draw the transition diagram of the Turing machine given in Table 9.1.

Represent the transition function of the Turing machine given in
Example 9.2 as a set of quintuples.

Construct the computation sequence for the input 111 for the Turing
machine given in Example 9.5.

Construct the computation sequence for strings 1213, 2133, 312 for the
Turing machine given in Example 9.8.

Explain how a Turing machine can be considered as a computer of integer
functions (i.e. as one that can compute integer functions; we shall discuss
more about this in Chapter 11).

Design a Turing machine that converts a binary string into its equivalent
unary string.

Construct a Turing machine that enumerates {0"1"|n = 1}.

Construct a Turing machine that can accept the set of all even
palindromes over {0, 1}.

Construct a Turing machine that can accept the strings over {0, 1}
containing even number of 1's.

Design a Turing machine to recognize the language {a"'b"c™|n.m > 1}.
Design a Turing machine that can compute proper subtraction. i.e.

m = n. where m and n are positive integers. m = n is defined as m — n
ifm>nand 01if m < n.



