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C H A P T E R 13 

Context-Free and Noncontext-Free 

Languages 

T 
he language AIlB Il = { allbll

: n :::: O} is context-free. The language AIlBIlCIl = 
{ al'l b.

ll
cl' 

: ~1. ~ O} is no~ context (ree (intuitively because a PDA's st~c k cannot ~~t 

a11 three o( the letter regions and compare them). PalEven = {wwR 
. W E {a, b} .,. } IS 

context-free. The similar language WW = {ww : W E {a , b} "' } is not context-free (again, 

intuitively, because a stack cannot pop the characters o[ W off in the same order in which 

they were pushed). 

G iven a new language L , how can we know whether or not it is context-free? In this 

chapter, we present a collection of techniques that can be used to answer that question. 

13.1 Where Do the Context-Free Languages Fit In the 

Big Picture? 

First, we con ider the relationship between the regular languages and the context-free 

languages. 

THEOREM 13.1 The Context-Free Languages Properly Contain the Regular 
Languages 

Theorem: The regular languages are a proper subset of the context-free languages. 

Proof: We first show that every regular language is context-free. We then show that 

there exisls at least o ne context-free language that is not regular. 

We show that every regular language is context-free by construction. If L 1S 

regu lar, then it is accepted by some D FSM M = (K, L , 8, s, A). From M we con-

struct a PDA M' = (K' , L' , f' , t1 ' , Si , A') to accept L. In essence, M' W11l simply 

be M and will ignore the stack. Let M' be (K, L, 0, t1' ,s, A), where t1 ' is con-

structed as fo lI ows: For every transition (q i, c, q) in 8, add to t1 ' the transition 
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280 Chapter '3 Context-Free and Noncontext-Free La nguages 

«qj, c, c) , (qj, c)). M ' behaves ident ically to M . so L (/vi) = 1 (M') . So the regu-

lar languages are a subset of the context-free languagcs. 

The regular languages are a proper subse t 0 1' th e cOlllcx t-free languages be-

cause th ere exi sts at leas t one language, AI1 ß I1 . that i ' ont cx t-free but not regular. 

Next, we observe that there are many more noncont cx t-frec languages than there 

are context-free ones: 

THEOREM 13.2 How Many Context-Free Languages are There? 

i 

Theorem: There is a countably infinite number of contexl-frcc languages. 

Proof: Every contexl-free language is generatcel by somc cont cxt-fr e grammar 
G = (V, 2: , R, S) . We ca n encode th e elements 0 1' V as binary trin g . 0 we can 

lex icographicall y enum erate all th e sy nlac tica ll y lega l cont cx t-free grammar. 
There cannot be more context-free languages th an there are cOllt cx t-free gram-

mars so th ere is at most a cou ntab ly infinit e number of contcxt-fr ee languages. 

Th e r ~ is not a one-to-one relationship betwee n co ntext-fr ee language and con-

text-b'ee grammars since th ere is an infinite number 01' gra mmars th at generate 

any given language. But , by Theorem 13, 1, every reg ul ar language is context-

free. And , by Theorem 8.1, there is a count abl y infinite number of regular lao-

guages. So there is at least and at most a count ab ly infinite number of 

context-free languages. 
L ._ 

But, by Theorem 2.3 , there is an uncounl abl y infinite num b r of languages over any 

non empty alphabet 2: . So there are many more noncontcxt-free languaoes than there 

are regul ar ones. 

13.2 Showing That a Language is Context-Free 

We have so Ear see n two techniques th at ca n be usc el lO hO\ tlB t a language L i 

context-free: 

• Exhibit a context-free grammar for it. 

• Exhibit a (possibly nondelerministic) PDA fo r it. 

There are also closure th eorems for co ntexl-frec language anel th ey ca n be u ed 

to show that a language is co ntext-fr e if it can bc ele cribed in term of oth er lan-

guages whose statu is already kn own. nfo rlun ale ly. th re 'He few r closure th eo-

rems fa r the context-free languages than th ere a re for th c regul a r language . In 
order to be able to di scuss both th e cl os ure th eorem th at ex i t, as wei l a th on s 

we'd like but don 't have, we will wait anel consid r th e i ' ue 01' cl o ur theor 111 in 

Seetion J 3.4, after we have developed a techniqu e for h win th aI a l a n g u ' ~o i not 

con text -free. 
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13.3 The Pumping Theorem for Context-Free Languages 281 

rOOf 

Iz eight 

FIGURE 13.1 The slructure of a parse tree. 

13.3 The Pumping Theorem for Context-Free Languages 

Suppose we are given a language and we want to prove that it is not context-free. Just 

as with regular languages, it is not sufficient simply to claim that we tried to build a 

grammar 01' a PDA and we failed. That doesn 't show that there isn't some other way to 

approach the problem. 

lnstead , we will again approach this problem from the other direction. We will artic-

ulate a property that is provably true of all context-free languages. Then, if we can 

show that a language L does not possess this property, then we know that L is not con-

text-free. So, just as we did when we used the Pumping Theorem for regular languages, 

we will construct prooJs by contradiction. We will say, "It .L were context-free, then it 

would possess certain properties. But it does not possess those properties. Therefore, it 

is not con text-free." 

This time we exploit the fact that every context-free language is generated by some 

context-free grammar. The argument we are about to make is based on the structure of 

parse trees. Recall that a parse tree, derived by a gramm ar G = (V, 2:, R, S) , is a rooted, 

ordered tree in which: 

• Every leaf node is labeled with an element of 2: U {e}, 

• The root node is labeled S, 

• Every other node is labeled with some element of V - 2: , and 

• If m is a nonleaf node labeled X and the children of 111 are labeled Xl, X2, .•. ' X m 
then the rule X ~ X IX 2 ' .. , XII is in R. 

Consider an arbitrary parse tree, as shown in Figure 13.1 The height of a tree is the 

length of the longest path from the root to any leaf. The branclling Jactor of a tree is 

the largest number of daughters of any node in the tree. The yield of a tree is the or-
dered sequence of its lea f nodes. 

THEOREM 13.3 The Height of A Tree and its Branching Factor Put A 

Bound On its Yield 
- _._------------------------

Theorem: The length of the yield of any tree T with height hand branching factor 
bi 5,blt

. 
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282 Chapter 13 Context-Free and Noncontext-Free Languages 

Proof: The proof is by induction on h. Ir his 1, then just a singl rule applies. So tbe 

longest yield is of length less th an or equal to b. Assume the claim is true for 

h = n. We show that it is true for h = 11 + ] . Consider any tree with h = n + 1. 
lt consists of a root , and some number of subtrees, each of which is of height :Sn. 
By the induction hypothesis, the length of the yield 01' each of those subtrees is 
~bl1. The number of subtrees of the root is ~ b . So th e length of the yield must be 
~b (bl/) = bl/+1 = b". 

Let G = (V, L, R, 5) be a context-free grammar. Let /I = I V - LI be the number 

of nonterminal symbols in G. Let b be the branching factor of G, defined to be tbe 

length of the longest right-hand side of any rul e in R. 

Now consider any parse tree T generated by G. Suppose that no nonterminal ap-

pears more than once on any one path from the root of T to a non terminal. Then tbe 

height of T is '5on . So the longest string that could correspond to the yie l.d of T has 

length ~bl/. 

Now suppose that w is astring in L(G) and Iwl > b". ll, en any parse tree that G 

generates for w must contain at least one path that contains at least one repeated noo-

terminal. Another way to think of this is that, to derive w , G must have used at least 

one recursive ruie. So any parse tree for w must look lik e the one shown in Figure 13.2, 
where X is some repeated nonterminal. We use dotted lines to make it clear that the 

derivation may not be direct but may, instead, require several step . So, for example,it 

is possible that the tree shown here was derived using a gramm ar that contained the 

rules X ~ aYb, Y ~ bXa, and X ~ ab. 

Of course, it is possible that w has more than one parse tree. For the rest of this dis-

cussion we will pick some tree such that G generates no other par e tree for w that has 

fewer nodes. Within that tree it is possible that there are many repea ted nonterminals 

and that some of them are repeated more than once. We will assume on1y that we have 

chosen point [1] in the tree such that X is the first repea ted nonterminal on any path, 

coming up from the bottom, in the subtree rooted al [I] . We'll ca ll the rule that was ap-

plied at [1] rule] and the rule that was applied at [2] mle2' 

We can sketch the derivation that produced this tree as: 

w 

S ~ * uXz ~ * uv X yz ~ * I/ vxyz. 

5 

FIGURE 13.2 A parse tree whose 
heighl is greale r than 11 .. 
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13.3 The Pumping Theorem for Context-Free Languages 283 

So we have carved w up into five pieces: u, v, x, y, and z. We observe that: 

• There is another derivation in G, S ~* uXz ~* uxz, in which, at the point labeled 

[1], the nonrecursive rule2 is used. So uxz is also in L(G). 

• There are infinitely many derivations in G, such as S ~* uXz ~* uvX yz ~* 
uvvX yyz ~* uvvxyyz , in which the recursive rufet is applied one or more addi-
tional times before the nonrecursive rufe2 is used. Those derivations produce the 

strings, uv2 x l Z, uv3 xi z, etc. So all of those strings are also in L( G). 

• It is possible that v = 8, as it would be, for example if rufe} were X ~ Xa. It is also pos-
sible that y = e, as it would be, for example if ru/eI were X ~ aX. But it is not possible 

that both v and y are e. If they were, then the derivation S ~* uXz ~* uxz would also 

yield wand it would create a parse tree with fewer nodes. But that contradicts the as-

sumption that we started with a tree with the smallest possible number of nodes. 

• The height of the subtree rooted at [1] is at most n + 1 (since there is one repeated 

nonterminal and every other nonterminal can occur no more than once). So 

\vxy\ ::::; bn
+

1
. 

These observations are the basis for the context-free Pumping Theorem, which we 

state next. 

THEOREM 13.4 The Pumping Theorem for Context-Free Languages 

Theorem: If L is a context-free language, then: 

:Jk 2': 1 (\7' strings W E L, where \w\ 2': k (:Ju, v, x, y, z 
(w = uvxyz, 

vy * s, 

\vxyl < k, and 

\7'q 2': 0 (uvqxyqz is in L)). 

Proof: The proof is the argument that we gave above: If L is context-free, then it is gen-

erated by some context-free grammar G = (V, L, R, S) with n nonterminal symbols 

and branching factor b. Let k be bn
+

1
. Any string that can be generated by G and 

whose parse tree contains no paths with repeated nonterminals must have length less 

than or equal to b
ll

• Assuming that b 2': 2, it must be the case that bll + 1 > bn. So let 

w be any string in L( G) where \ w \ ;::: k. Let T be any smallest parse tree for w (i.e., 

a parse tree such that no other parse tree for w has fewer nodes). Tmust have height 

at least n + 1. Choose some path in T of length at least n + 1. Let X be the bottom-

most repeated nonterminal along that path. Then w can be rewritten as uvxyz as 

shown in the tree diagram of Figure 13.2. The tree rooted at [1] has height at most 

n + 1. Thus its yield, vxy, has length less than or equal to bll +1, which is k. Further, 

vy 1= e since if vy were ethen there would be a sm aller parse tree for wand we chose 

T so that that wasn't so. Finally, v and y can be pumped: uxz must be in L because 

rule2 could have been used immediately at [1]. And, for any q 2': 1, uvqxyqz must be 

in L because ruZel could have been used q times before finally using rule2' 

'I 
I 

I' 

I: 
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284 Chapter 13 Context-Free and Noncontext -Free La ng uages 

So, if L is a context-free language, every "Iong" string in L mu. t be pumpable. Just as 

with the Pumping Theorem for regul ar language . th e pumpecl region ca n be pumped 

out once or pumpecl in any numb r 01' times, in all cases resultin g in another string that 

is also in L. So, if Ihere is even one "Iong" string in L that is not pumpable. then L is not 

context-free. 

Note that the value k pl ays two ro les in th e Pum ping Theorel11 . I t clerines what we 

mean by a "Iong" string and it imposes an uppe r bo und on lux)' l. When we set k to 
bll + I , we guaranteed that it was large enough so th at we could prove th at it served both 

of those purposes. But we should point out th at a smaller va lue wou lcl have ufficed as 

the definition for a "Iong" string, 'ince any string of Icnglh grcatcr th an b
ll 

must be 

pumpable. 
There are a few important ways in which the context-frec Pum\ in g 1l1eorem differs 

from the regular one: 

• The most obvious is thaI two regions, v and y. must be pumpecl in tandem. 

• We don 't know anything about wh ere th e strin gs v ancl y will fa ll. All we know is 

that th ey are reasonably "elose together", i.e., Ivxy l - k. 

• Either vor y could be empty, although not bolh. 

EXAMPLE 13.1 AnBncn is Not Context-Free 

Let L = AnBncn = {at/bI/eil : n 2:: O}. We can u e the Pumping Theorem to show 

that L is not context-free. H it were, then there would exist ome k such that any 
string w, where Iwl 2:: k , must sati sfy the eonditions of the theorem. We how one 

kbk k . string w that does not. Let w = a e , where k IS the con tant from the Pump-

ing Theorem. For w to satisfy th e conditions of the Pumping The rem, there must 

be some u, v, x, y, and z such that w = uvxyz, vy "* c, Ivxyl ::; k , and \fq 2:: 0 
(uVqxyCfz is in L) . We show that no such u, v, x, y, and z exi t. 11' ither v or y con-

tains two or more different characters, then set q to 2 (i .. , pump in onee) and the 
resulting string will have letters out of order and thus not b in NBn 

n. (For ex-

ample, if v is aabb and y is ee, then the strin g that results from pumping will look 
like aaa ... aaabbaabbece ... cce.) 1f both v and y each contain at most une dis-

tinet character then set q to 2. Additional copies of at \11 t lwo different charac-
ters are added, leaving the third unch anged. There are no longer equal l1umbers 

of the three letters, so the resulting string is not in NBllen. There i 110 way to di-
vide w into uvxyz such that a11 the conditions of the Pumping Theorem are met. 
So ~Bllcn is not context-free. 

As with the Pumping Theorem for regular languages. it rcq ui rcs some kill to design 

simple and effective proofs using the contex t-free Pumping Theorcm. A b fore, th 
choices that we can make, when trying 10 show th at a languagc L is not e ntext-free are: 

• We choose w, th e string to be pum ped. It is important to choo c W 0 th at it is in the 
part of L that eaptures the essenee of why L is not e nlcx t-frec. 

• We ehoose a va lue für q that shows th at w isn't pumpablc. 
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• We may apply c\osure theorems before we start, so that we show that L is not con-

lexl-free by showing that some other language L' isn 't. We'll have more to say 

about this technique later. 

EXAMPlE 13.2 The Language of Strings with n2 a's is Not Context-Free 

Let L = {aI/
2

: n ~ O} . We can use the Pumping Theorem to show that L is not 

context-free. If it were, then there would exist some k such that any string w, 
where \w\ ~ k , must satisfy the conditions of the theorem. We show one string w 
that does not. Let n (in the definition of L) be k2

. So n2 = k4 and tu = a
k4

. For w 
to satisfy the conditions of the Pumping Theorem, there must be some Li , v , X, y, 

and Z, such that tu = uvxyz., vy * c, \vxy \ ~ k , and Vq ~ 0 (uvCJxllz is in L). We 

show that no such u, v, x, y, and z exist. Since w contains only a 's, vy = aP , for 

some nonzero p. Set q to 2. The resulting string, which we'll call s, is a
k4

+
p

, which 

must be in L. But it isn 't because it is too short. If a
k4

, which contains (k2)2 a 's, is in 

L, then the next longer element of L contains (k2 + 1)2 a 's. That's k 4 + 2k2 + 1 

a 's. So there are no strings in L with length between k4 and e + 2k2 + 1. But 

Isl = k4 + p. So, for 5 to be in L, p = Ivyl would have to be at least 2e + 1. But 

Ivxy l $ k, so p can't be that large. Thus s is not in L. There is no way to divide tu 

into uvxyz. such that all the conditions of the Pumping Theorem are met. So L is 

not context-free. 

When using the Pumping Theorem, we focus on v and y. Once they are specified , so 

are U,X, and z. 
To show that there exists no v,y pair that satisfies all of the conditions of the Pump-

ing Theorem, it is sometimes necessary to enumerate a set of ca ses and rule thern out 

one at a time. Sometimes the easiest way to do this is to irnagine the string to be 

pumped as divided into a set of regions. Then we can consider all th e ways in which v 

and y can fall across those regions. 

EXAMPlE 13.3 Dividing the String w Into Regions 

Let L = {al/bll/al!: 11 , In ~ 0 and 11 ~ m}. We can use the Pumping Theorem to 

show that L is not context-free.lf it were, then there would exist some k such that 

any string w, where Iwl ~ k, must satisfy the conditions of the theorem. We show 

one string w th at does not. Let w = akbka\ where k is the constant from the 

Pumping Theorem. For w to satisfy the conditions of the Pumping Theorem, there 

must be some u, v, x, y , and z, such that w = LlVXYZ , vy * c, Ivxy l ~ k , and 
O( Ci q .. L) W I Vq ~ uv xy Z 1S m . es 10W that no such Li , v,x,y, and z exist.lmagine w di-

vided into three regions as fo llows: 

aaa aaabbb bbbaaa " .aaa 

1 2 3 
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286 Chapter 13 Context-Free and Noncontext-Free Languages 

EXAMPLE 13.3 (Continued) 

We eonsider a ll the cases for where v and y could fa ll and show th at in none of 

thern are all the conditions of the theo rem me t: 

• If either v or y crosses regions, then se t q 102 (thus pumping in onee). The re-

sulting string will have lette rs out 01' order and so not be in L. So in all the re-

rnaining cases we assume that v and y eaeh fall s wilhin a single region. 

• (1,1): Both v and y fall in region 1. Set q to 2. In the resulting string, tbe first 

group of a 's is longer than the second group of a 's. So th e string is not in L. 

• (2,2): Both v and y fall in region 2. Set q to 2. In the re 'ultin g string, tbe b re-

gion is longer than e ither of the a regions. So the tring is not in L 

• (3,3): Both v and y fall in region 3. Set q to O. The same argumen t a for (1 , 1). 

• (1,2): Nonempty v fall s in region 1 and nonempty y falls in region 2. (If either 

vor y is empty, it does not matter where it falls. So we ean treal it as though it 

falls in the same region as the nonempty one. We have already considered all 

of those cases.) Set Cf to 2. In the resulting string, the fir t gro up 01' a's is longer 

than the second group 01' a 's. So th e string is not in L. 

• (2,3): Nonempty v falls in region 2 and nonempty y falls in region 3. Set q to 2. 

In the resulting string the second group of a 's is longer than the first group of 

a's. So the string is not in L. 

• (1 , 3): Nonempty v falls in region 1 and nonempty y falls in region 3. If this 

were allowed by the other conditions of the Pumping Theorem, we eould 

pump in a 's and still produee strings in L. But if we pumped out , we would vi-

olate the requirement that the a regions be at least as long as the b region. 

More importantly, this ease violates the requirement that Ivxyl ::5 k. So it 

need not be eonsidered. 

There is no way to divide w into Llvxyz such th at a ll the eonditions of the 

Pumping Theorem are met. So L is not context-free. 

Consider the Jangu age PalEven = { 101O
R 

: 10 E {a , b } * }, Ih e language of even-

length palindromes of a 's and b's, wh ich we introduced in Exa mple 11 .3. Let w be any 

string in PalEven. Then substrings of w are related to each other in a perfeetly nested 

way, as shown in Figure 13.3 (a). Nested re la ti onships of thi so rt ean naturally be de-

scribed with a eontext-free grammar, so lan guages whose trin are struetured in this 

way are typically context-free. 

But now eonsider the ca e in which the re lati o nships a re not propcrly ne ' t d but in-

stead cross. For example, consider the language W c W = {WC1{ : ?V E {a, b} * }. Now let 

10 be any string in WcW. Then substrings 01" 1.0 are re lated to each o lhcr a shown in 

Figure 13.3 (b). We call such depe ndenci es, where lincs ero s eaeh o the r, cross-serial 

dependencies. Languages whose str ings are charaeterized by ero s scria l dependencies 

are typically not context-free. 
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a a 

I 

a a b 

I I 
FIGURE 13.3 Nested verslIs 

cross-serial dependencies. 

EXAMPLE 13.4 WcW is Not Context-Free 

Let WcW = {wcw: WE {a, b}*}. WcW is not context-free. All its nonempty 

strings contain cross-serial dependencies. 
We can use the Pumping Theorem to show that WcW is not context-free. If it 

were, then there would exist some k such that any string w , where Iwi 2: k, must 

satisfy the conditions of the theorem. We show one string W that does not. Let w = 

akbkcakbk
, where k is the constant from the Pumping Theorem. For w to satisfy the 

conditions of the Pumping Theorem, there must be some u, v, x, y, and z, such that 

W = uvxyz, vy i= 8 , Ivxyl $ k , and Vq 2: 0 (uvCJxyqz is in WcW). We show that 

no such u, v, x, y, and z exist. 1magine W divided into five regions as follows: 

aaa aaabbb bbbcaaa aaabbb bbb 

1 2 131 4 5 I 

Call the part before the c the left side and the part after the c the right side. We 

consider a11 the cases for where v and y could fall and show that in none of them 

are all the conditions of the theorem met: 

• lf either v or y overlaps region 3, set q to O. The resulting string will no longer 

contain a c and so is not in WcW. 

• lf both v and y occur before region 3 or they both occur after region 3, then set 

q to 2. One side will be Ion ger than the other and so the resulting string is not 
inWcW. 

• 1f either vor y overlaps region 1, then set q to 2.1n order to make the right side 

match , something would have to be pumped into region 4. But any v, y pair 
that did that would violate the requirement that Ivxyl $ k. 

• If either v or y overlaps region 2, then set q to 2. In order to make the right 

side match, something would have to be pumped into region 5. But any v, y 

pair that did that would violate the requirement that Ivxyl $ k. 

There is no way to divide w into uvxyz such that all the conditions of the 
Pumping Theorem are met. So WcW is not context-free. 

Are programming languages like C++ and Java context-free? (G.2) 
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The language WcW, which we just howed is not contex t-free, is impor1ant because of 

its similarity to the structure of many comm on program ming languages. onsider a pro-

gramming language that requires th at vari ables be declared before th ey are used.lfwe 

consider just a single va ri able 10 , then a program that dec lare 10 and then u e it has a 

structure very simil ar to the strings in the language WcW. since the strin g w must occur 

in exactly the same fo rm in both the decl aration section and the body of the program. 

13.4 Some Important Closure Properties of Context-Free 

Languages 
It helps to be able to analyze a compl ex language by d -composing it into impler 

pi eces. Closure theorems, wh en th ey ex ist, enab le us to do th at. Wc' ll see in this sec-

ti on that whiIe the context-free languages are closed und er some eommon op rations, 

we e a nn ~ t prove as strong a se t oE elo ure theorem as we were ablc 10 prove fo r the 

regular Ianguages. 

13.4.1 The Closure Theorems 

THEOREM 13.5 Closure Under Union, Concatenation, Kleene Star, Reverse, 

and Letter Substitution 

Theorem: The context-free languages are elo cd un der union, concatenation, 

Kleene star, reverse, and letter substitution. 

Proof: We prove each of the claim separately by eonstruelion: 

• The context- free languages are closed under union: H L , and Lz are context-

free languages, then there ex ist contex1-frec grammar G, = (VI , L" Rh S1) 
and G2 = (\I2, L2, R2, 52)suchthal L, = L(G,)and 2 = L(G2)· lfnecessary, 

rename the nonterminals of G, ancl C2 so th at th 1wo se ts are di joint and so 

th at neither includes th e symbol 5. We will bu il d a new gramm ar G uch that 

L(G) = L (G, ) U L (G2) . G will conta in allth ades of b th G, and G_. We 

add to G a new start symbol, S, and two n w rul es, 5 ~ ,and 5 ~ 5_. The two 

new rules alI ow G to generale as tring ifr at least on f G, o r Gz g nerates it. 

So G = ( VI U \12 U {5}, 2:, U L 2, R I U R2 U {5 ~ SI' S ~ 52}. ). 

• The context-free languages ar closed und r concatenati n: 11' L, and L2 are 

context-free Janguages, then there exisl contexl-free °ra mmar G, = (VI 

2: " R" 51) and C2 = (\12 ,2:2, R2, 52) such thaI L , = L(G , and L2 = L (G2). 
If necessary, rename the nont rminals of G, and G2 0 that the t \ 0 sets are dis-

join t and so that neither includes the symbol S. We wi ll build a nev,l grammar G 
such that L(G) = L (G,) L (G2)· G will conlain allthc rul cs ofboth land G2. 

We add to G a new sta rt symbol, 5 , and one new rul c, S , _. So G = (Vt 
U \12 U {S}, 2:, U 2: 2, R 1 U R2 U {S - 5, S:d, ). 

• The contex t- free languages are clo ed under Kleenc ta r: Ir L, i a conte xt-

free language, then there exists a context-free grammar GI = (VI, ""'" R1, St) 
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such that LI = L(GI). Ifnecessary, rename the non terminals of GI so that VI 

does not include the symbol 5. We will build a new grammar G such that 

L (G) = L(G I)*. G will contain a ll the rutes of G L• We add to G a new start 

symbol, 5 , and two new rules, 5~c and 5~5 51. So G = (V) U {5} , 2:}, 

R I U {5 ~ c, 5 ~ 5 5 d, 5). 

• The context-free languages are closed under reverse: Recall that L R = 
{ W E 2: '" : W = xR for some x E L}. If L is a context -free language, then it is 

generated by some Chomsky normal form grammar G = (V, 2. , R, 5). Every 

rule in Gis oE the form X ~ BC or X ~ a, where X , B, and C are elements of 

V - 2: and a E 2.. In the latter ca se L (X) = {a}. {a}R = {a}. In the former 

case, L(X) = L(B)L(C). By Theorem 2.4, (L(B)L(C))R = L(CtL(B)R. So 

we construct, from G , a new grammar G' , such that L( G') = L
R

. G' 

(V c , 2. c, R ' , 5c) , where R ' is constructed as follows: 

• For every rule in G of the form X ~ BC, add to R ' the rule X ~ CB. 

• For every rule in Gof the form X ~ a, add to R' the rule X ~ a. 

• The context-free languages are c10sed under letter substitution , defined 

as follows: Conside r any two alphabets, 2: 1 and 2.2, Let sub be any func-

ti on from 2:] to 2: 2:;:. Then lelsub is a letter substitution function from L 1 

to L2 iff letsub (LI) = {w E 2: 2* : :Jy E LI (w= y except that every character 

e 01' y has been replaced by sub (e))}. We leave the proof of this as an ex-

ercise. 

As with regular languages, we can use these c\osure theorems as a way to prove that 

a more complex language is context-free if it can be shown to be built from simpler 

on es using operations under which the context-free languages are closed. 

THEOREM 13.6 Nonclosure Under Intersection, Complement, and Difference 
-------

Theorem: The context-free languages are not c\osed under intersection , comple-

ment , or difference. 

Proof: 

• The context-free languages are not c\osed under intersection: The proof is by 
counterexample. Let: 

LI = { al/bl/e'l/ : n,m ~ O} . 

L2 = {a'l/bl/el/: 11 , 111 ~ O}. 
1* equal a 's and b's. 

/* equal b's and e 's. 

80th LI and L 2 are context-free since there ex ist straightforward context-free 
grammars for them. 

But now con ider: 

L = L] n L2 

= { allb/e" n 2': O} . 
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• 

Context-Free and Noncontext-Free Languages 

[f the context-free languages were c10sed under inlersecti on, L would have to 

be context-free. But we proved, in Example 13. 1. th at it isn 't. 

The context-free languages are nol closed unde r compleme nt: Given any sets 

LI and L2, 

LI n L2 = ...,(...,L\ U ..., L2)· 

The eontext-free languages are c10sed under union. So, if they were also closed 

under complement, they would necessa ril y be c10sed under intersection. But we 

just showed that they are not. Thus they are nol closed unde r cOl11plement either. 

We've a lso seen an exal11ple that prove Ihi s claim direcll . ...,AIlBIlC
Il 

is coo-

text-free. We showed a PDA that accepts it in Examplc 12.8. But ..., ( ...,AIlBnC
Il
) 

= AIlBIlC Il is not context-free. 

• The context-free language are no t c1 0sed under difference (subtraction): 

Given any language L , 

2: * is context-free. So, if the context-free languages we re c1 0sed under dif-

ference, the cOl11plement of any context-free language would necessarily be 

context-free. But we just showed that that is not so. 

Recall that , in using the regular Pumping Theorem to show that ome language L 

was not regular, we sometimes found it useful to begin by inter ecting L with another 

regular language to create a new language L' . Since the regul ar languages are closed 

under intersection, L' would necessarily be regular jf L were. We then showed that L', 

designed to be simpler to work with , was not regular. And so ne ither was L. 
It would be very useful to be able 10 exploit thi s lechnique whe n using the context-

free Pumping Theorem. Unfortunately, as we havc jusl shown, the context-free lan-

guages are not c10sed unde r inte rsection . Fortunate ly, however. they are c\osed under 

intersection with the regular languages. We ' ll prove thi s re ult next a nd the n, in Section 

13.4.2, we'U show how it can be exploited in a proof th at a la nguage i not context-free. 

THEOREM 13.7 Closure Under Interseetion With the Regular Languages 

1-Theorem: The conte ~ t-fr e ; languages are c1 0sed unde r inte rseclion with the regular 

i languages. 

I Proof: The proof is by construction. If L\ is context-free. then there exists some 

I PDA MI = (K" 2:, f" Ll" s" Al) that acce pts i~.lf L2 is regul ar the n the re exists 

,. a DFSM M2 = (K2, L , 5,52, A2) that accep t 11. We construcl a new PDA M3 

I that accepts L, n L2. M3 will work by simul a ting the paralle l execution of MI 
! and M2- The states of M3 will be orde red pa irs of sta te of MI and M2· As each 

I input character is read , M3 will simula te both MI and M2 mo in g appropriately 

I to a new state. M3 will have a single stack , whieh will be cont ro lled by Mt- The 

l only slightly tricky thing is that MI may conta in c;- transiti n . So M3 will have to 
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allow MI to follow them while M2 just stays in the same state and waits until the 

next input symbol is read. 

M3 = (K I X K2, L , r], ß 3, (s] , S2), Al X A2) , where ß 3 is built as follows: 

• For each transition «qh a, ß), (Pb y)) in ßb 

and each transition «qb a), P2 ) in a, add to ß3 the transition: 

«(qb q2) , a, ß), «P] ,P2)' y)) . 

• For each transition «ql' e, ß), (Pl, y) in ß l' 
and each state q 2 in K2, add to ß 3 the transition: 

«(q], q2), e, ß), «Pb q2), y)). 

We define intersectPDAandFSM as follows: 

intersectPDAandFSM (MI: PDA, M2: FSM) = 
Build M3 as defined in the proof ofTheorem 13.7. 

THEOREM 13.8 Closure Under Difference with the Regular Languages 

Theorem: The difference (L l - L 2) between a context-free language L 1 and a reg-
ular language L 2 is context-free. 

Proof: LI - L2 = L 1 n ...,L2• If L 2 is regular, then, since the regular languages are 
c10sed under complement, ...,L2 is also regular. Since LI is context-free, by Theorem 
13.7, L] n ...,L2 is context-free. 

The last two theorems are important tools, both for showing that a language is 

context-free and far showing that a language is not context-free. 

EXAMPlE 13.5 Using Closure Theorems to Prove A Language 
Context-Free 

Consider the perhaps contrived language L = {allbll : n ~ 0 and n i= 1776}. An-
other way to describe L is that it is {allbll : n ~ O} - {al776b1776}. AnBn = 

{alibI! : n ~ O} is context-free. We have shown both a simple grammar that gener-

ates it and a simple PDA that accepts it. {a 1776b1776} is finite and thus regular. So, 

by Theorem 13.8, L is context free. 

Generalizing that example a bit, from Theorem 13.8 it follows that any language that 

can be described as the result of subtracting a finite number of elements from some 
language known to be context-free must also be context-free. 
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13.4.2 Using the Pumping Theorem in Conjunction with the 
Closure Properties 

Languages that im pose no specific order constra ints on the symbols contained in their 

strings are no t always contex t-free. But it may be hard to prove th at one isn't just by 

using the Pumping Theorem. In such a case, it is often useful to exploit Theorem 13.7, 

which teils us th at the contex t-free languages are closed under intersectiOll with the 

regular languages. 

Recall our nota tion al convention from Section 13.3: (n ./I ) means that all nanempty 

substrings of vy occur in region n. This may happen either beca use v and y are balh 

na nempty and they bath occur in region n. O r it may happe n beca usc a ne or the other 

is empty and the nonempty one occurs in region n. 

Are naturallanguages like English or Chinese 01' German contex t-free? (LJ .3) 

EXAMPLE 13.6 WW is Not Context-Free 

LetWW = {ww : wE{ a , b}*}. WWissimil arto WcW = {wc w : wE{a , b}*}, 

except th at there is no longer a middIe marke r. Because, like W cW, it contains 

cross-seri al dependencies, it is no t context-free. We could try proving thal by 

using the Pumping Theorem alo ne. Here are so me a tt empts. using various choie-

es for w : 

• Let W = (ab)2k. lf v = e and y = ab , pumping works fi ne. 

• Let W = akbakb. If v = a and is in the first gro up of a 's and y = a and is in 
the second group of a 's, pumping works fin e. 

• Let W = akbka kbk. Now the constraint that \vxy\ s k prevent v and y from 

both being in the two a regions or the two b regions. Th is choice of W will lead 

to a successful Pumping Theorem proof. But there are fo ur regions in w and 

we must conside r a11 the ways in which v and y could overlap those regions, in-

cluding all those in which eüher o r both of v and y occur on a region boundary. 

While it is possible to write out all those possibilities and show, one at a time, 

that every one of them viola tes at least one condition of the Pumping Theo-

rem, there is an easier way. 

If WW were con text-free, then L' = WW n a *b*a *b* wo uld also be context-

free. But it isn 't, which we can show using the Pumping Theorem. If it were, then 

there would exist some k such that any string w, where \w l ~ k , mu t satisfy the 

conditions of the theorem. We show one tring w that does not. Let w = akbkakbk , 

where k is the constant from the Pumping Theorem. For W to sati fy the conditions 

of the Pumping Theorem, there must be some 11 , v, X , y, and z, such that 

w = uvxyz, vy ::j::. s, \vxy \ S k, a nd Vq 2: 0 (uvqxi' z is in L') . We show that no 

such u, v, x, y, and z exist. Imagine w divided int o four regions as fo llow : 

I: 

I. 

.: 

: 

li 

: 
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aaa aaabbb bbbaaa aaabbb bbb 

1 2 3 4 I 

We consider all the cases for where v and y could fall and show that in none of 

them are all the conditions of the theorem met: 

• If either v or y overlaps more than one region, set q to 2. The resulting string 
will not be in a*b*a*b* and so is not in L'. 

• If Ivyl is not even then set q to 2. The resulting string will have odd length and 
so not be in L'. We assurne in an the other cases that Ivyl is even. 

• (1,1), (2,2), (1,2): Set q to 2. The boundary between the first half and the sec-
ond half will shift into the first b region. So the second half will start with a b, 
while the first half still starts with an a. So the resulting string is not in L'. 

• (3,3), (4,4) , (3 , 4): Set q to 2. This time the boundary shifts into the second a 
region. The first half will end with an a while the second half still ends with a b. 
So the resulting string is not in L'. 

• (2,3): Set q to 2. If lvi '* \y\ then the boundary moves and, as argued above, 
the resulting string is not in L'. If \ v \ = \ y \ then the first half contains more 
b's and the second half contains more a's. Since they are no longer the same, 
the resulting string is not in L' . 

• (1,3) , (1 , 4), and (2,4) violate the requirement that Ivxy\ ::; k. 

There is no way to divide w into uvxyz such that all the conditions of the 
Pumping Theorem are met. So L' is not context-free. So neither is WW. 

One reason that context-free grammars are typically too weak to describe 

musical structures is that they cannot describe constraints such as the one 
that defines WW. (N.1.2) 

EXAMPLE 13.7 A Simple Arithmetic Language is Not Context-Free 

Let L = {x # y = z : x, y, Z E {O, 1}* and, if x,y and z are viewed as positive binary 

numbers without leading zeros, then xy = ZR}. For example, 100#111 = 00111 

E L. (We do this example instead of the more natural one in which we require that 

xy = z because it seems as though it might be more likely to be context-free. As 
we'll see, however, even this simpler variant is not.) 

If L were context-free, then L' = Ln 10*#1* = 0*1* would also be context-free. 

But it isn't, which we can show using the Pumping Theorem. lf it were, then there 

would exist some k such that any string w, where \w\ :> k, must satisfy the conditions 
of the theorem. We show one string w that does not. Let w = lOk #lk = rflk , where k is 

the constant from the Pumping Theorem. Note that w E L because lOk ·lk = tok. 
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EXAMPLE 13.7 (Continued) 

For W to satisfy the cond itions of the Pumping Theorem, ther mu tb some u, v, 
x, y, and z, such that w = uvxyz, vy i' 8, Ivxyl ::; M, and \/q ~ 0 (uvqx qz is in 

L). We show that no such u, v, x, y, and z exist. Im agin w divided into seven re-

gions as fo lIows: 

1 000 ... 000 # 111 . . . 111 = 000 

111 2 131 4 Is 1 6 

000111 ... 111 

7 

We consider all the cases for where v and y could fall and show that in none of 

thern are all the conditions of the theorem met: 

• If either v or y overlaps region 1,3, or S then et q to O. The re ulting tring wül 

not be in 10*#1* = 0>':1* and so is not in L'. 

• If either v or y contains the boundary between 6 and 7, set q to 2. The resulting 

string will not be in 10*#1* = 0*1* and so is not in L '. S th on ly cases left 

to consider are those where v and y each occur within a ingle region. 

• (2, 2) , (4, 4) , (2,4): Set q to 2. Because there are no leading zeros, changing the 

left side of the string changes its value. But the righ t side doe n t change to 

match. So the resulting string is not in L'. 

• (6,6), (7,7), (6,7): Set q to 2. The right side of the equalit y statement changes 

value but the left side doesn ' t. So the resulting string is n01 in L'. 

• (4, 6): Note that, because of the first argument to the multiplication , the nurn-

ber of l 's in the second argument mu t equal the number of 1 s after 

the = . Set q to 2. The number of l 's in the second argument changed but the 

number of 1's in the result did not. So the resulting tring is not in L'. 

• (2,6) , (2, 7) , and (4,7) violate the requirement that Ivxyl ~ k. 

There is no way to divide w into uvxyz such that all the conditions of the 

Pumping Theorem are met. So L is not context-free. 

Sometimes the closure theorems can be used 10 rcducc the proof that a new 1an-

guage L is not context-free to th e proof lh at ome ther language L' i ' not context-

free, where we have already proven the case for L'. 

EXAMPLE 13.8 Using Intersection to Force Order Constraints 

Let L = {WE {a, b, c} * : #a(w) = #b(W) = #c(w)}, If L wer cont xt-fre then 

L' = Ln a*b*c* would also be contex t-free. But L ' = AIlB Il 
11 which is not 

context-free, so neither is L. 
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13.5 Deterministic Context-Free Languages • 

The regular languages are dosed under complement, intersection, and difference. Why 

are the context-free languages different? In a nutshell , because the machines that ac-

cept them may necessarily be nondeterministic. Recall the technique that we used , in 

the proof ofTheorem 8.4, to show that the regular languages are closed under comple-

menl: Given a (possibly nondeterministic) FSM M] , we used the fo llowing procedure 

to construct a new FSM M2 such that L(M2) = --,L(M I ): 

1. From MI, construct an equivalent DFSM M', using the algorithm ndfsmtodfsm, 

presented in the proof ofTheorem 5.3 . (Tf MI is already deterministic, M' = MI') 

2. M' must be stated completely, so if it is described with an implied dead state, add 

the dead state and alt required transitions to it. 

3. Begin building M2 by setting it equal to M'. Then swap the accepting and the 

nonaccepting states. So M2 = (KM', L , DM', SI\1' , KM' - AM')' 

We have no PDA equivalent of I1dfsmtodfsm so we cannot simply adapt this con-

struction for PDAs. Our proofs that the regular languages are dosed under intersec-

tion and difference relied on the fact that they were closed under complement, so we 

cannot adapt those proofs here either. 

We have no PDA equivalent of ndfsmlOdfsm because there provably isn't one, as we 

will show shortly. Recall that, in Section 12.2, we defined a PDA M to be deterministic iff: 

• 11 M contail1s no pairs of transitions that compete with each other, and 

• iE q is an accepting state of M, then there is no transition «q, e, e), (p, a» for any p or a. 

In other words, M never has a choice between two or more moves, nor does it have 

a choice between moving and accepting. There exist context-free languages that cannot 

be accepted by any determil1istic PDA. But suppose that we restrict our attention to 

the ones that can . 

What is a Deterministic Context-Free Language? 

We are about to define the dass of deterministic context-free languages. Because this 

dass is useful , we would like it to be as large as possible. So let $ be an end-of-string 

marker. We could use any symbol that is not in L L (for example <line feed > or <er», 

but $ is easier to read. A language L is deterministic context-Jree iff L$ can be accepted 
by some deterministic PDA. 

To see why we have defined the deterministic context-free languages to exploit an 

end-of-string marker, consider the following example of a straightforward language for 

which no deterministic PDA exists unle an end-of-string marker is used. 

EXAMPLE 13.9 Why an End-of-String Marker is Useful 

Let L = a* U {a"b" : n > O}. Consider any PDA M that accepts L. When it be-

gins reading a 's, M must push them onto the stack in case there are going to be b's. 

But, if it runs out of input without seeing b's, it needs a way to pop those a 's fram 
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the stack before it can accept. Without an end-or- (ring mark er.lh ere i 110 way to 

all ow that popping to happen on /y when all th e input has been r -ad. 0, for exam-

ple, the fo llowing PDA accepts L , but it i nondetermini tie be u e th transition 

to state 3 (where the a 's wi ll be popped) can eompete with b tl1 of the other tran-

si tions frol11 sta te 1. 

b/a/,,; 

e/a/e 

With an end-of-string mark er, we ean build the fo ll wing determini t ic PDA, 

which can only take the transition to tate 3, the a-p ppin g 'laIe, \ hen. il ee the $: 

b/a/e $/c/f:. 

$/e/e 

e/a/e 

Before we go any farth er, we have to be ure of one thin g. We introduced the end-

of-string marker to make il easie r to bui ld PDAs thai are dClcrministie. We need to 

make sure that it doesn't make it possibl e to bui ld a PDA for a language L that was not 

already context- free. In olh er words, add ing the end-of- ·tring mark er canno! convert a 

language that was not eontexl -free inlO one Ihal iso We do th at ne ' (. 

THEOREM 13.9 CFLs and Deterministic CFLs 

Theorem: Every delermi ni sti c cont ext-free language (as jU '1 dcfin ccl ) i ontext-Eree. 

Proof: If L is deterministie contex t-free, Ihen L is acccpt d b ome dei rministic 

PDA M = (K, L, r , /1 , s, A). From M, we construci M' uch Ih at L (M') = L. 

The idea is that , whatever M ca n do on reading $, M I ca n do on rcading e (i, " by 

simply guess ing th at it is at the end of th e input ). BUL a 0 n a M I mak s that 

guess, it cannot read any more input. It may perfo rm th rc ·t 0 1' ils c0l11putati n 

(such as popping its stack) , but any path th at pr tend il ha ' ee n Ih $ bef Te it 
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has read all of its input will fail to accept. To enable M' to pe rform whatever stack 

operations M could have performed , but not to read any input, M' will be com-

posed of two copies of M: The first copy will be identical to M , and M' will oper-

ate in tl1at part of itself unhl it guesses that it is a t the end of the input ; the second 

copy will be identical to M except that it contains onl y the transitions that do not 

consume any input. The states in the first copy will be labeled as in M . Those in 

the second copy will have the prime symbol appended to the ir names. So, if M 

contains the transition «q , 8, 'Yd , (p , 'Y2)) , M' will contain the transition 

«q' , 8, 'YI) , (pi , 'Y2))' The two copies wi ll be connected by find ing, in tl1e firs t copy 

of M , every $-transition from some state q to some state p. We replace each such 

tran ition with an 8-transitio n into the second copy. So the new transition goes 

from Cf to pi . 

We can define the foll owing procedure to construct M': 

withoU/$(M: PDA) = 

1. Initi ally, set M' to M. 

/* Make the copy that does not read any input. 

2. For every state Cf in M , add to M' a new state q'. 

3. For every transition «q, 8, 'YI) , (p, 'Y2» in ß M do: 

3.1. Add to ß M' the tra nsition «q' , 8, 'Yl) , (p', 'Y2» ' 

/* Link up the two copies. 

4. For every transition «q, $ , 'Yl ) , (p , 'Y2) in ß M do: 

4.1. Add to ß M , the transition «Cf, 8, 'Yl) , (p', 'Y2» ' 

4.2. R emove «q , $, 'Yl) , (p , 'Y2» from ß M,. 

r Set the accepting states of M' . 

5. AM' = {q': Cf E A}. 

Closure Properties of the Deterministic Context-Free languages 

The dete rministic context-free languages are practically ve ry significan t because it is 

poss ible to build deterministic, linear time parsers fo r them. They also possess addi-

tional formal pro pe rti es that are important , among othe r reasons, because they enable 

us to prove that not all contex t-free languages are deterministic context-free. The most 

important 01' these is that the dete rministic context-free languages, unlike the larger 

class of context-free languages, are closed under complement. 

THEOREM 13.10 Closure Under Complement 

Theorem: T he de termini stic context-free language are closed under complement. 

Proof: The proof is by construction. If L is a dete rministic contex t-free language 

ove r the a lphabet 2: , then L$ is accepted by some dete rmini stic PDA 

M = (K , 2: U {$}, r , ß, s, A). We need to describe an algorithm that constructs 
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298 Chapter 13 Context-Free and Noncontext-Free la nguages 

a new determinist ic PDA that accepts (-,L)$ . To prove Theorem 8.4 (that the reg-

ular languages are closed unde r complement), we defincd a construction that 

proceeded in two steps: G ive n a n arbitrary FSM , convert it to an equivalent 

D FS M, and then swap acce pting and nonaccepting sta tes. We ca n skip the first 

step here, but we must solve a new problem. A determini sti c PDA may fail to ac-

cept an input string tu fo r any one of several reasons: 

1. Its computati on ends before it fi ni shes reading w. 

2. Its computat ion e nds in an accepting sta te bul the tack is no t ernpty. 

3. Its computati on loops fo re ver , fo ll owing e-t ran it ions, witho ut ever halting 

in either an accepting or a nonacccptin g sta te. 

4. lts computation ends in a no nacceptin g sta te. 

lf we simply swap acce pting and nonaeccpting sta tes we will eorrectly fail to 

accept every string that M would have accepted (i.e., every string in L$). But we 

will not necessa rily accept every strin g in (.L)$ . To do thai, we must also address 

issues 1 through 3 abo ve. 
An additional problem 1S that we don't want to accept . L (M) .111at includes strings 

that do not end in $. We must accept on1y strings lhat do end in $ and that are in (.L)$. l _______ A construction that solves these probl ems is give n in D.2. 

What e lse can we say about the dete rministic context-free languages? We know that 

they are closed unde r complement. Wh at about union and intersecti on? We observe 

that L] n L 2 = ~ (.L I U .L2 ) · So, if the dete rministi c contex t-free languages were 

closed under union, they would necessarily be closed under inte r ection also. But they 

are not closed under union. The context-free languages a re closed under union, so the 

union of two deterministic context-free languages must be context-free. lt may, however 

not be deterministic. The deterministic context-free language. are a) 0 no t closed under 

intersection . In fact, when two dete rministi c contex t-free la nguages are intersected , the 

result may not even be context-free. 

THEOREM 13.11 Nonclosure Under Union 

r' ~heorem: The deterministic context.; ree languages are not clo cd under union. 

I Proof: We show a co unterexample: 

I Let LI = {aibick
: i , j , k 2= 0 a nd i '* j} . 

I Let L2 = {aib ick
: i ,j, k 2= 0 andj '* k}. 

I 
I 

Le t L ' = LI U L2· 

= {aibick
: i , j , k 2= 0 a nd «(i '* j) or (j '* k))}. 

Let L " = . L '. 

= {aibick 
: i , j , k 2= 0 a nd i = j = k} U 

{w E {a , b, c }* : the le tt e r a re out of o rd r}. 
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13.5 Deterministic Context-Free languages 299 

Let L'" = L" n a*b*e*. 

= {all bll eil : n ~ O}. 

LI and L 2 are deterministic context-free. Deterministic PDAs that accept L] $ 
and L 2$ can be constructed using the same approach we used to build a deter-

ministic PDA for L = {ambll : m *' n ; m , n > O} in Example 12.7. Their union 
L' is context-free but it cannot be deterministic context-free. If it were, then its 
complement L" would also be deterministic context-free and thus context-free. 
But it isn't. If it were context-free, then L''' , the interseetion of L" with a*b*e*, 

would also be context-free since the context-free languages are closed under in-
tersection with the regular languages. But L'" is AnBncn 

= {al1 bllel!: n ~ O}, 

which we have shown is not context-free. 

THEOREM 13.12 Nonclosure Under Intersection 

I Theorem: The deterministic context-free languages are not closed under intersection. 

Proof: We show a counterexample: 

Let LI = {aibiek
: i , j , k ~ 0 and i = j}. 

Let L2 = {aibiek
: i , j , k ~ 0 andj = k}. 

Let L' = LI n L2. 

= {a/'I b" eil : n ~ O}. 

LI and L 2 are deterministic context-free. The deterministic PDA shown in 
Figure 13.4 accepts L I $. A similar one accepts L 2. But we have shown that their 

intersection L' is not context-free, much less deterministic context-free. 

A Hierarchy within the Class of Context-Free Languages 

The most important result of this section is the following theorem:There are context-free 

languages that are not deterministic context-free. Since there are context-free languages 

for which no deterministic PDA exists, there can exist no equivalent of ndfsmtodfsm for 

PDAs. Nondeterminism is a fact of life when working with PDAs unless we are willing to 
work only with languages that have been designed to be deterministic. 

b/a/e 

$/e/e $/e/e 

FIGURE 13A A detenninistic PDA 

that accepts {aibic k 
: i , j , k 2! 0 

and i = j. 
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300 Chapter 13 Context-Free and Noncontext-Free Languages 

The fact that there are context-free languages that are not deterministic poses a 

problem for the design of efficient parsi ng algorithm . 11,e best parsing algo-

rithms we have sacrifice either generality (i.e. they cannot correctly parse all 

context-free languages) or efficiency (i.e., they do not run in time that is linear in 
the length of the input). In Chapter J 5, we will describe some of these algorithms. 

THEOREM 13.13 Some CFLs are not Deterministic 
r------ -- -
I Theorem: The class of deterministic context-free l a l~ g ua ges is a pr~p~,..subset ofthe 

class of context-free languages. Thus there eX lst no ndetermllllsttc PDAs for 

which no equiva1ent de te rmini stic PDA ex ists. 

Proof: By Theorem 13.9, every deterministic context-free language is context-free. 

So all that remains is to show that there exists at least one context-free language 

that is not deterministic context-free. 

Consider L = {aibie k
: i,j , k ~ 0 and ((i * 1) or U * k)) }. L is context-free. 

The construction of a grammar for it was an exercise in Chapter 11. But we can 

show that L is not deterministic context-free by the same argument that we used 

in the proof ofTheorem 13.11. If L were dete rministic context-free, then, byTheo-

rem 13.10, its complement L' = {aibiek
: i , j, k ~ 0 and i = j = k} U {WE {a,b, 

e} * : the letters are out of order} would also be deterministic context-free and 

thus context-free. If L' were context-free, then L" = L' n a *b*c* would also be 

context-free (since the context-free languages are cIosed under intersection with 

the regular languages). But L" = AIlBIlC Il = {a"b"cll
: 11 ~ O}, whichisnotcontext-

free. So L is context-free but not deterministic context-free. 

Since L is context-free, it is accepted by some (nondeterministic) PDA M. M is 
an example of a nondeterministic PDA for which no equivalent de terministic PDA 

exists.lf such a deterministic PDA did exist and accept L , it could be converted into 

a deterministic PDA that accepted L$. But, if that machine existed, L would be 

deterministic context-free and we just showed that it is not. 

We get the class of deterministic context-free languages when we think about the 

context-free languages from the perspective of PDAs that accept them. Recall from 

Section 11.7.3 that, when we think about the context-free languages from the perspec-

tive of the gramm ars that generate the m, we also get a subclas of languages that are, in 

some sense, "easier" than others: The re are context-free languages for which unam-

biguous gram m ars exist and the re are others that are inhe re nlly ambiguous, by which 

we me an that every corresponding grammar is ambiguous. 

EXAMPLE 13.10 Inherent Ambiguity versus Nondeterminism 

Recall the language LI = {aibjc k
: i , j , k :> 0 and ((i = j) or (j = k))}, which can 

also be described as {a"b"cl1l 
: n, m ~ O} U {a"b/llcm 

: n , m ~ O}. LI is inherently 

ambiguous because every string that is also in AIlBIlCIl = {a"bllc": n ~ O} is an ele-

ment of both sublanguages and so has at least two derivalions in any grammar for L l _ 

i: 
! 

!i 
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Now consider the. slightly different language L2 = {anbncmd : n, m 2:: O} U 

{allbmcme : n, m ::> O}. L 2 is not inherently ambiguous. It is straightforward to 

write an unambiguous grainmar for each of the two sublanguages and any 

string in L 2 is an element of only one of them (since each such string must end 

in d or e but not both). L2 is not, however, deterministic. There exists no PDA 
that can decide which of the two sublanguages a particular string is in until it 

has consumed the entire string. 

What is the relationship between the deterministic context-free languages and the 

languages that are not inherently ambiguous? The answer is shown in Figure 13.5. 

The subset relations shown in the figure are proper: 

• There exist deterministic context-free languages that are not regular. These lan-

guages are in the innermost donut in the figure. One example is AnBn = {a"bfl
: 

n ~ O}. 

• There exist languages that are not in the inner donut (i.e., they are not determin-

istic). But they are context-free and not inherently ambiguous. Two examples of 
languages in this second donut are: 

• PalEven = {ww R 
: w E { a, b} *}. The grammar we showed for it in Example 

11.3 is unambiguous. 

• {all bll c l1ld: n, m ~ O} U {al1 bm cm e: n, m ::> O}. 

• There exist languages that are in the outer donut because they are inherently 
ambiguous. Two examples are: 

• {aibjck:i , j,k::> Oand«i =j)or(j = k))}. 

• {aibjck : i , j, k ::> 0 and «i "* j) or (j "* k))} . 

Context-free 
Languages 

Not inherently 
Ambiguous CFLs 

Deterministic 
CFLs 

Regular 
Languages 

FIGURE 13.5 A hierarchy 

within the dass of context-free 

languages. 
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To prove that the figure is properly drawn requires two additional results: 

THEOREM 13.14 Every Regular Language is Deterministic Context-Free 

r-
i Theorem: Every regular language is deterrninistic context-free. 

Proof: Tbe proof is by construction. {$} is regular. So, if L is regular, then so is L$ 
(since the regular languages are closed under concatenation). So there is a DFSM 

M that accepts it. Using the construction that we used in the proof of Theorem 

13.1 to show that every regular language is context-free, eonstruet, frorn M a PDA 

P that accepts L$. P will be deterrninistic. 

THEOREM 13.15 Every Deterministic CFL has an Unambiguous Grammar 

r- Theorem: For every deterministic eontext-free language there exists an unambigu-

I 
i 

ous grarnmar. 

Proof: If a language L is deterministic context-free, then there exists a deterministic 

PDA M that accepts L$. We prove the theorem by construction of an unambiguous 

grammar G such that L(M) = L( G). We construct G using approxjmately the same 

technique that we used to build a gramrnar frorn a PDA in the proof ofTheorem 12.2 

Tbe algorithm PDAtoCFG that we presented there proceeded in two steps: 

1. Invoke convertPDAtorestricted(M) to build M' an equivalent PDA in restrict-

ed normal form. 

2. Invoke buildgrammar (M'), to build an equivalent grammar G. 

It is straightforward to show that, if M' is deterministic, then the grammar G that 

buildgrammar constructs will be unambiguous: G produces derivations that mimic 

the operation of M'. Since M' is deterministie, on any input w it can follow only one 

path. So G will be able to produce only one leftmost derivation for w . Thus w has 

only one parse tree. If every string in L( G) has a single parse tree, then G is unam-

biguous. Since M' accepts L$, G will genera te L$. But we can build, from G, a gram-

mar G' that generates L by substituting e for $ in each rule in which $ occurs. 

So it remains to show that , from any dete rministic PDA M , il is possible to 

build an equivalent PDA M' that is in restricted normal form and is still deter-

ministic. This can be done using the algorithrn convertPDArodemormalform. 

which is described in the proof, presented in 0.2, of Theorem 13.10 (that the de-

terministic context-free languages are closed und er complement). If M is deter-

ministic, then the PDA that is returned by cOl1vertPDAtodetnormalform(M) will 
be both deterministic and in restricted normal form. 

I 

L 

So the construction that proves the theoremis: 

buildunambiggrammar(M: deterministic PDA) ::.::: 

1. Let G = buildgrammar (convertPDAtodetnormal!orm (M»). 

2. Let G' be the result of substituting e for $ in each rule in which $ occurs. 

3. Return G'. 
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13.6 Ogden's Lemma. 

The context-free Pumping Theorem is a useful tool for showing that a language is not 
context-free. However, there are many languages that are not context-free but that 
cannot be proven so just with the Pumping Theorem. In this seetion we consider a 
more powerful technique that may be useful in those cases. 

Recall that the Pumping Theorem for regular languages imposed the constraint 
that the pumpable region y had to fall within the first k characters of any "long" string 
w. We exploited that fact in many of our proofs. But notice that the Pumping Theorem 
for context-free languages imposes no similar constraint. The two pumpable regions, v 
and y must be reasonably elose together, but, as a group, they can fall anywhere in w. 

Sometimes there is a region that is pumpable, even though other regions aren't, and 
this can happen even in the case of long strings drawn from languages that are not 
context -free. 

EXAMPLE 13.11 Sometimes Pumping Isn't Strang Enaugh 

Let L = {aibid: i, j 2::: 0, i =1= j}. We could attempt to use the context-free Pump-

ing Theorem to show that L is not context-free. Let w = akbkck+k!. (The reason 

for this choice will be dear soon.) Divide w into three regions, the a's, the b's, and 

the c's, which we'll call regions 1,2, and 3, respectively. lf either v or y contains 

two or more distinct symbols, then set q to 2. The resulting string will have letters 

out of order and thus not be in L. We consider the remaining possibilities: 

• (1,1), (2,2), (1, 3), (2, 3): Set q to 2. The number of a's will no longer equal the 
number of b's, so the resulting string is not in L. 

• (1,2): lf lvi =1= Iyl then set q to 2. The number of a's will no longer equal the 

number of b's, so the resulting string is not in L. If lvi = Iyl then set q to 

(k!/lvl) + 1. Note that (k!/lvl) must be an integer since lvi < k. The string 
that results from pumping is aXbxck+k!, where X = k + (q - 1) -lvi 
= k + (k!/Ivl) 'Ivl = k + kL So the number of a's and of b's equals the 

number of c's. This string is not in L. So far, the proof is going weil. But now 
we must consider: 

• (3,3): Pumping in will result in even more c's than a's and b's, so it will pro-
duce astring that is still in L. And, while pumping out can reduce the number 
of c's, it can't reduce it a11 the way down to k because Ivxyl < k. So the maxi-

mum number of c's that can be pumped out is k, which would result in astring 
with k! c's. But, as long as k 2::: 3, k! > k. So the resulting string is in Land we 
have failed to show that L is not context-free. 

What we need is a way to prevent v and y from fa11ing in the c region of w . 

Ogden 's Lemma is a generalization of the Pumping Theorem. It lets us mark 

some number of symbols in our chosen string w as distinguished. Then at least one 
of v and y must contain at least one distinguished symbol. So, for example, we could 
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complete the proof that we started in Example 1.3.1 j if we cou ld force at least one of 

vor y to contain at least one a. 

THEOREM 13.16 Ogden's Lemma 

Theorem: If L is a context-free language, then: 

~k :::: 1 (V strings W E L , where Iwl :::: k , if we mark at lea t k symbols of w as 
distinguished then: 

( 3u ,v, x, y, z (w = uvxyz 

vy contain at least one di tinguished symbol 

vxy contains a t mo t k di stingui hed ymbols, and 

Vq :::: 0 (u vqxf'z is in L ))). 

Proof: The proof is analogous to the one we did for the context-free Pumping Theo-

rem except that we consider only paths that generate the dislinguished symbols. 

If L is context-free, then it is genera ted by some contex t-free grammar 

G = (V, L, R, S) with n nonte rminal symbols and branching factor b. Let k be 

b l1 + 1• Let w be any string in L(G) such that Iwl :::: k. A parse tree Tfor w might 

look like the one shown in Figure 13.6. 

Suppose that we mark at least b" 1 symbols as distinguished.111e distinguished 

symbols are marked with a ,/ (Ignore the fact that there aren't enough of them in the 

picture. Its only role is to make it easier to visualize the proces .) Call the sequence of 

distinguished nodes the distinguished subsequence of w . In this xample, that is bje. 

Note that the distinguished subsequence is not necessarily a ubstring.ll1e characters 

in it need not be contiguous. The length of the distingui hed subsequence is at least 

b ll + I. We can now mark the nonleaf nodes thai branched in a way that enabled the 

distinguished subsequence to grow to at least length b" + I . Mark every nonleaf node 

that has at least two daughters that contain a di tinguished leaf. In thi. example, we 

mark X2, and X], as indicated by the symbol +. It is straight forward to prove by in-
duction that T must contain at least one path that c ntains at least 11 + 1 marked 

s 

A--------- ~~X~l~ . ~(M~)------------------ ----G 

J-I 

x3 

~ 
B C E F 

b ~ b I ~ ~ 
c J e e f f h a 9 9 

,/ ,/ ,/ 

u v x 

FIGURE 13.6 A parse tree with some symbols mark ed a di tingui hed. 
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nonleaf nodes since its yield contains b l1 + I distinguished symbols. Choose one such 

path such that there is no longer one. That path must contain at least two nodes la-
beled with the same nonterminal symbol. Choose the two nodes that are labeled with 
the bottom-most pair of repeated marked nonterminals. Call the lower one N and the 

higher one M. In the example, M is XI and N is X2. As shown in the diagram, divide w 
into uvxyz, such that xis the yield of N and vxy is the yield of M. Now observe that: 

• vy contains at least one distinguished symbol because the raot of the subtree 
with yield vxy has at least two daughters that contain distinguished symbols. 
One of them may be in the subtree whose yield is x, but that leaves at least 

one that must be in either v or y. There may be distinguished symbols in both, 

although , as in our example T, that is not necessary. 

• vxy contains at most k (b ll +1
) distinguished symbols because there are at most 

n + 1 marked internal nodes on a longest path in the subtree that dominates 
it. Only marked internal nodes create branches that lead to more than one 
distinguished symbol, and no internal node can create more than b branches. 

• Vq;::: 0 (uvqxyq z is in L), by the same argument that we used in the proof of 
the context-free Pumping Theorem. 

Notice that the context-free Pumping Theorem describes the special case in which 
a11 symbols of the string ware marked. 

Ogden's Lemma is the tool that we need to compiete the proof that we started in 

Example 13.11 . 

EXAMPLE 13.12 Ogden's Lemma May Work When Pumping Doesn't 

Now we can use Ogden's Lemma to complete the proof that L = {aibic j
: 

i, j ;::: 0, i 1= j} is not context-free. Let w = a kb kc k +k!. Mark a11 the a 's in w as dis-

tinguished. If either v or y contains two or more distinct symbols, then set q to 2. 

The resulting string will have letters out of order and thus not be in L. We consid-

er the remaining possibilities: 

• (1 , 1), (1, 3): Set q to 2. The number of a's will no longer equal the number of 
b's, so the resulting string is not in L. 

• (1 , 2): If lvi 1= Iyl then set q to 2. The number of a 's will no longer equal the 
number of b's, so the resulting string is not in L. If lvi = Iyl then set q to 

(k!/Ivl) + 1. Note that (k!/Iv l) must be an integer since lvi ~ k. The string 

that resuits from pumping is a k +(q - I)' lvl b k+(q - 1)'lvl ck +k! = a k+(k! ~v l) ' l vl b k+(k! ~v l)'l v l 
k+k' k +k' b k +k' k+k' S h c . = a . . . c '. 0 t e number of a's and of b's equals the number of 

c 's. This string is not in L. 

• (2, 2) , (2 , 3), (3, 3) fail to satisfy the requirement that at least one symbol in vy 

be marked as distinguished. 

There is no way to divide w into vxy such that a11 the conditions of Ogden's 
Lemma are met. So L is not context-free. 
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13.7 Parikh's Theorem. 

Suppo e th a t we conside r a language L not fr om th c point o f vic \V of the exact 

strin gs it co nta ins but instead by im ply countin g. for each slr ing 1/ ' in L. h w many 
in stances of each cha racter in 2: w conl ain ·. So. fr om lhi ' per pccti ve, th tring 

aaabbba and abababa are th e sa me. Ir :::: i {a . b }. lh en both str ings ca n be d -

sc ribed with the pair (4 , 3) sin ce th ey co nta in -t a' s an I :; b·,'. We a n build such de-

cripti ons by de fining a famil y of fun clion s 'ho' with domain 2: * and range 

{( i l · i2 .. .. ik)} . where k = 12: 1: 

VJ::, (10) = (i" i :. , . .. id where, fo r all j . i, = lht.: numbcr 01' oC'urrcnce in 

10 of the ph e leme nt 0 1' L. 

So, if L = {a, b, c. d}, th en l/J ::, (aabbbbddd ) = (2.4. O. 3). 

Now consider so me language L, which i: a 'C t of slrin g. over some alphabet 2:. In-
stead of considering L as a set of str in gs, we can co nsider il a. th c se t 0 1' veetor that are 

produced by appl ying VJ'i to th e t ring it cont ains. To d thi s. we dcf ine anoth r family 

of functi ons \]1 Y , with domain 0P (L *) and range /P{ (i l . i'2 . ... i" }: 

\}J :s:( L ) = {( i l , i2, · .. ik ) : 3w E L (lh. (1/') = (i ,. i2 .. ·· id)} · 

lf L: is fixed, then th ere is a single fun cti on l ~ and a in glc functio n \Ir. In that ca e, 

we will omit L: and refe r to the funclions just as IIJ and \j1 . 

We will say that two languages LI and L2 , over t he alphabet 2: *, 'n e letter- equivalent 

iff \]I ~ (L I) = \}1 2: (L 2). In o ther word , LI and L2 cOnLain thc amt; (rings if we disre-

ga rd the order in which the symbols oecm in th e tri ng. 

EXAMPLE 13.13 Letter Equivalence 

Let 2: = {a, b} . Then, for example tjJ(a) = (1 , 0). ljJ(b = (0. 1). tj; ab) = (1, 1). 

tj; (aaabbbb) = (3, 4) . 

Now consider 'I': 

• Let L I = AIlBl1 = {ali bI! : 11 ;:::= O} . 

• Let L2 = (ab)"' . 

• Let L3 = {a"blla" : n ;:::= O}. 

• Let L4 = {a2I1 bl1
: n ;:::= O}. 

• Let L s = (aba) *. 

Th n '\jf(L d = {(i.i) : O - i}. 

Then '11 (L 2 { i , i : 0 :;; i}. 

Then '11 CL) = { 2i. i : 0 :;; i}. 

Then \1' (L4 ({ _i , i ) : 0 :::; i}. 

Th n \ (1 (Ls) = { 2i, i : 0 :;; i}. 

LI and L 2 are letter-equi valent. So are 3, L 4 and L s. 

Just looking at the five language we ons id red in xamp\c 1 . . 1]. \ e 'Hl ob [ 

that it is possible fo r two languagcs with d iff re nt fonn 'l l prop rl .ic er r · "am p i a 

regul ar language and a co ntexl-free but no t re ula r o ne) I be le tte r equi a lent t 

--
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each other. L 3 is not context-free. L4 is context-free but not regular. is regular. But 

the three of them are le tter eq uiva lent to each oth er. 

Parikh 's Theorem, which we are about to state forma ll y and then prove, teil s us 

that th at example is (ar fro m unique. In fact, given any context-free language L , 

there exis ts same regular language L' such that Land L ' are letter-equivalent to 

each othe r. So ~lBn is letter eq ui valent to (ab )"'. The language { a2"b '1 : n ~ O} is 

le tter equiva lent to (aba)* and to (aab)* . And PalEven = {ww R
: WE {a , b}*} is 

le tter equivalent to (aa U bb)* since \{r(PaIEven) = W«aa U bb)*) 

= {(2i , 2j): 0 s i 1\ 0 S j}. The proof of Parikh 's Theorem is simil ar to the proofs 

we have already given for the Context-free Pumping Theorem and for O gden's 

Lemma. It is based o n the fact that , if L is context-free, then all the strings in L can 

be fo rmed by sta rtin g with one o( a fin ite set of "short" strin gs in Land then pump-

ing in same finite number of strings (v , y pairs) , aB of which are chosen from a finite 

lib ra ry of possible values fo r v and y. 

An interesting application of Parikh 's theorem is in the proof of a corollary that teils 

us that every context-free language over a single character alphabet must also be regular. 

We will add that corollary to our kit of tools for proving that a language is not context-

free (by showing that, if it were, then it would also be regular but we know that it isn't). 

Notice, by the way that whil e we are about to prove t hat if L is context-free 

th en it is let ter-e qui va lent to same regular language, the converse of that claim is 

fa lse. A langua ge can be lette r-equi va lent to same regular lan guage and not be 

context-free. We prove th1s by co nsid e rin g two of th e lan gu ages from Example 

13.13: L-y. = {a"b"a" : n ~ O} is not context-free, but it is lette r-eq uiva1ent to 

L s = (aba) *, which is regular. 

THEOREM 13.17 Parikh's Theorem 
- ----- -------- -

[ Theorem: Every cOlltext-free language is letter-equivalent to same regular language. 

Proof: The proof follows an argument imllar to the one we used to prove the 

context-free Pumping Theorem. It is given in D.3. 

An algebraic approach to thinking abo ut what i/J and Ware doing is the fo llowing: 

We can describe the tandaJ·d way of looking at strings as starting with a set S of prim-

itive strings (e and a1l the o ne-character strings drawn horn 2:) and the single opera-

tion of concatenation, which Is associative and has e as an identity. 2:* is then the 

c10sure of S under concatenatiol1 . ~f z. maps elements of 2: * to elements of 

{(i], i2,· .. ik)}, on which is de fin ed th e operation of pair wise add iti on, which is asso-

ciati ve and has (0, 0, . .. 0) as an identity. But addition is also commutative, while COI1-

catenation is not. So, while, if we concatenate strings, it matters wh at order we da it in 

if we con ider the images of strings under i/J, the order in which we combine them 

doesn't matter. Parikh ' th eorem can be described as a special ca e of more general 
prope rti es of commutative systems. 

Whel1 2: conta ins just a single character , the order of the characters in astring is ir-
relevant. So we have the fo llowing re ult: 

https://hemanthrajhemu.github.io



308 Chapter 13 Context-Free and Noncontext -Free Languages 

THEOREM 13.18 Every CFL Over A Sing le-Character Alphabet is Regular 

I Theorem: A ny context-free language over a ingle-char( t r alp habet i regular. 

Proof: By Parikh 's 1l1eorem, if Li contexl-fre then Li ' I 11 r-cqui valent to same 

regular language L' . Since the order of character ha n eH Cl on tr ings when 

all characters are the sam e. L = L ' . Since L ' is regu] r. ' 0 i L. 

EXAMPLE 13.14 AnAn is Regular 

Let L = {a, b} and consider L = NBn 
= {a"brl

: 11 ~ O}. n S n i ontext-free 

but not regular. 

Now let: L = {a l and L ' = {a"a", 11 ~ O}. 

{a211 
: n ~ O} . 

= {WE {a}*: Iwi is even}. L ' i re ula!'. 

EXAMPLE 13.15 PalEven is Regular if ~ = { a l 

Let L = {a, b} and consider L = PalEven = {1 R : W E {a. b} *}. PalEven is 

context-free but not regul ar. 
Now let: L = {al and L ' = {ww R

: W E {a }*} 

= {w E {a}* : 1 l i n}. L' i r gular. 

When we are considering only a single letter alphabe t, \ c ca n u ' ll1eor m 13.1 to 

show that a language that we already know not to be r gular cannot e cant xl-fre ither. 

EXAMPLE 13.16 The Prime Number of a's Language is Not Context-Free 

Consider again Primea = {a": n i prime} . Primea i not nt t-fr . If it \ ere, 

then , by Theorem 13.18, it w uld also be regular. Bul \ c h \ d in xampl .13 
that Lt is not regular. So it i not context-fr e eilh r. 

13.8 Functions on Context-Free Languages • 

In Section 13.4, we aw th at the c ntex t-fre languag are elo ed und r m 

tant functions, including concatenation, uni on , and KI nc tal'. SUI th ir 

erti es are substantial ly weaker than are the d o ure pr pertic f the r ular lan uag . 

In this section, we con ider some oth r fu nction th at ca n be apl li ed l I ngu 0' and 

we ask whether tb e eontext-free languages are elo cd und r lhcm. Th I r f tra t gi 
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we will use are the same as the ones we used for the regular languages and for the 

results we have already obtained for the context-free languages: 

• To show that the context-free languages are closed under some function [, we will 

show an algorirhm that constructs, given any context-free language L, either a 

grammar or a PDA that describes [(L) . 

• To show that the context-free language are not closed under some (unctionj: we will 

exhibit a counterexample, i.e., a language L where L is context-free but f(L) is not. 

EXAMPLE 13.17 Firstchars 

Consider again the function[irslchars (L) = {w: :ly E L (y = cx 1\ CE LL 1\ XE 

LL* 1\ WEC*)}. The context-free languages are closed under firstchars(L). In 

fact, if L is context-free then jZrstchars(L) is regular. We know that this must be 

true by an argument similar to the one we used in Example 8.20 to show that the 

regular languages are closed under firslchars. There must be so me finite set of 

characters {CI , C2, ' .. ,cll } that can begin strings in L (since L L is finite). So there 

exists some regular expression of the following form that describes firstchars(L): 

We can also show a constructive proof that Jirstchars(L) is context-free if L iso 

If L is a context-free language, then there is some context-free grarnmar 

G = (V, L, R, S) that generates it. We construct a context-free grarnrnar 

G ' = (V' , L',R',S') thatgenerates[irstchars(L): 

1. Convert G to Greibach normal form using the procedure 

convertloGreibach, defined in D.1. 

2. Remove frorn G all unreachable nonterminals and all rules that mention 

thern. 

3. Remove from G all unproductive nonterminals and all rules that mention 

thern. 

4. Initialize V' to {S'}, L' to {}, and R' to O. 
5. For each remaining rule in Gof the form S ~ c l' do: 

5.1. Add to R I the rules S I ~ Ce, Ce ~ C Ce and Ce ~ e. 

5.2. Add to L' the symbol c. 

5.3. Add to V' the symbol Ce. 

6. Return G'. 

The idea behind this construction is that, if G is in Greibach normal form, then, 

each time a rule is applied , the next terminal symbol is generated. So, if we look at 

G 's start symbol Sand ask what terminals any of its rules can generate, we'll know 

exactly wh at terminals strings in L( G) can start with. 
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EXAMPLE 13.1 8 Maxstring 

Consider again the funeti on maxstring( L ) = {1. : E L nd V E L *(z i= e 

~ wz fi L )}. The eontext-free language are not elo d und r /JI C1X rrirz (L) . The 

proof is by eounterexample. Con ider the languag L = {aib-' ek : k :S i er k :S j}. 
Li eontext-free but maxsrring( L ) is not. W lea e th pr f of thi a an exereise. 

Exercises 

1. For eaeh of the fo ll owing languages L , state wh ether L i regul ar. cont xt-free but 

not regular, or not contex t-fr and pro y ur an \ er. 

a. {xy :X, YE {a, b}:;: and lxi = Iyl}. 

b. {(abta"b" : n > O}. 

c. {x#y: x ,YE{O, l }*and x i=y}. 

d. {a ibl1
: i , n > 0 and i = 11 or i = 211 }. 

e. {wx: Iwl = 2 ' lxl and WE a b +- and XE a ' b }. 

i'. {alibI/l ek : 11 , 111 , k 2: 0 and J11 :S min (11 , k)}. 

g. {xyx R : XE {O, I } + and y E {O, l }*}. 

h. {xwx R : x, W E {a , b} + and lxi = Iwl} . 

i. {ww l\v : WE {a, b}*}. 

j. {wxw: Iwl = 2 ' lxl and '/..v E {a , b}* and x E {e }*}. 

k. {ai: i 2: OH bi
: i 2: OH a i

: i 2: O}. 

I. {x E {a, b}'" : lxi is even and th e first half f x ha nc more a tha11 doe the 

second half} . 

m. {WE {a, b}* : #a(w) = #b(1 ) and w d c no t nt ain ither the ub tring 

aaa or abab }. 

n. {a"b2"clll
: 11 , m 2: O} n {a"b'llc

2
/11: 17 , m 2: O}. 

o. {xc y : x,Y E {O, l }*and y isa pr fixof x}. 

p. {1,V : W = uuRor w = ua" :n = 1II I, II E {a, b}*}. 

q. L(G), where G = S ~ aSa 

S ~ SS 

S~ e 

r. {w E (A-Z, a-z , ., bl ank) : there exi t at lea t on dupl ica l d. apil aliz d word 

in w ). For example, the tring, The hi story of Chi na can be vi ewed from 

the perspective of an outsider or of someone li vi ng in China, E L. 

s. , L a, where La = {ww : w E { a , b} * } . 

t. L*, where L = {O*l iO*l iO* : i 2: O} . 

u. , AnBn. 

v. {balb: j = /1 2 for some 11 2: O}. Fo r ex mple, baaaab E L. 

w. {WE {a, b, c , d}*: #b(w) 2: #c(w) 2: #d(1.V) - O}. 

-
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2. Let L = {w E {a b} * : the first, middle, and last characters of ware identical}. 

a. Show a context-free grammar far L. 

b. Show a natural PDA that accepts L. 

c. Prove that L is not regular. 

3. Let L = {aI/bill eI/dill : n, In ~ 1}. L js interesting because of its similarity to a useful 

fragment of a typical programrning language in which one nmst dec1are procedures 

before they can be invoked. 111e procedure declarations include a list of the formal 

parameters. So now imagine that the characters in an correspond to the formal pa-

rameter list in the declaration of procedure 1. The characters in b l11 correspond to the 

formal parameter list in the declaration of procedure 2. 111en the characters in eil and 

dlll correspond to the parameter li ts in an invocation of procedure 1 and procedure 2 

respectively, with the requirement that the number of parameters in the invocations 

match the number of parameters in the declarations. Show that L is not context-free. 

4. Without u ing the Pumping Theorem , prove that L= {w E {a, b, e }* : #a(w) = 
#b(W) = #c(w) and #aew) > 50} is not context-free. 

5. Give an example of a context-free language L (* 2: *) that contains a subset LI 
that is not context-free. Pr ave that L is context free. Describe LI and prove that it 

is not context-free. 

6. Let LI = L 2 n L 3. 

a. Show values for LI , L 2, and L 3, such that LI is context-free but neither L 2 nor L 3 is. 

b. Show values for LI , L2, and L3, such that L2 is context-free but neither L L nor L3 iso 

7. Give an example of a context-free language L, other than one of the ones in the 

book, where -,L is not context-free. 

8. Theorem 13.7 tells us that the context-free languages are closed under intersec-

tion with the regular language . Prove that the context-free languages are also 

c10sed under union with the regular languages. 

9. Complete the proof that the context-free languages are not closed under 

maxstring by showing that L = {aibiek
: k ::; i 01' k ::; j} is context-free but 

maxslring(L) is not context-free. 

10. Use the Pumping Theorem to complete the proof, started in L.3.3, that English is 

not context-free iE we make the assumption that subj ects and verbs must match in 

a " respectively construction. 

11. In N.1 .2, we give an example of a simple musical structure that cannot be de-

scribed with a context-free grammar. Describe another one, based on same musi-

cal genre with which you are familiar. Define a sublanguage that captures exactly 

that phenomenon. In other words, ignare everything else about the rnusic you are 

considering and describe a set of strings that meets the one requirernent you are 

studyin g. Prove that your language is not context-free. 

12. D efine the leftmost maxima l P subsequence 111 of astring w as fallows: 

• P must be a nonempty set of characters. 

• A s.tring S is a P subsequence of w ifi S is a substring of wand S is composed 

entlrely of characters in P. For example 1, 0, 10, 01 11, 011, 101, 111, 1111, and 

1011 are {O, 1} sub equences of 2312101121111. 
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• Let S be the set of all P subseq uences of 1V such that, for each element t of S, 

there is no P subsequence of w longer than I. In the exampl above,5 = {1111, 

lOll} . 

• Then m is the leftmost (within w) element of 5. In the example above m = 1011 

a. Let L = {w E {0-9} * : iE y is the leftmost maximal {O. 1} ub equence of w 
then Iyl is even}. Is L regular (but not context free) . contex t free or neither? 

Prove your answer. 

b. Let L = {w E {a, b, c} '" : the leftmo t maximal {a, b} sub equence of w 
starts with a}. Is L regular (but not context free). cont xt free or neither? 

Prove your answer. 

13. Are the context-free languages c10sed under each of the fo llowing functions? 

Prove your ans wer. 

a. chop(L) = {w: :3 XE L (x = xlcx2 /\ XI E LL* X2E LL* /\ CE LL /\ 

lXII = Ix21/\ w = XI X 2)} 

b. mix(L) = {w: :3 x, y, z: (x E L, x = yz, Iyl = Izl, 10 = yz R)} 

c. pref(L) = {w : :3XE L*(WXE L)} 

d. middle(L) = {x: :3y, Z E L *(yXZ E L)} 

e. Letter substitution 

f. shuffle(L) = {w: :3 x E L (w is same permutation of x)} 

g. copyreverse (L) = {w: :3 x E L (w = xx R
)} 

14. Let alt(L) = {x: :3y, n(Y E L , Iyl = n, n > O,y = a\' " all , Vi ~ n (OiE L), and 
X = a1a3a5' .. ak, where k = (if n is eve n then 11 - I else I/))}. 

a. Consider L = arJb ll
. Clearly describe LI = all(L). 

b. Are the context free languages closed under the function all? Prove your answer. 

15. Let L 1 = {a/Jbl/1: n :2: m}. Let R\ = {Ca U b)* : there .i an odd number of a"s 
and an even number of b's}. Use the construction th at is described in the proof 
ofTheorem 13.7 to build a PDA th at accepts L 1 n R I . 

16. Let Tbe a set of languages defined as folIows: 

T = {L: L is a context-free language over the alph abet {a, b, c } 

and, if XE L , then lxi =J O}. 
Let P be the following function on languages: 

P(L) = {w: 3xE{a, b, c} and 3Y E L and y = X1V}. 

Is the set T closed under P? Prove your an wer. 

17. Show that the following languages are deterministic context-fr : 

a. {w:wE{a,b}*andeachprefixof w ha at lea t asman a'sa b s} 

b. {allb ll
: n ~ O} U {aI/eil: n :2: O} 

18. Show that L = {alibI!: 11 ~ O} U {a"b21!: 11 ~ O} i not dei rmini tie context-free. 

19. Are the deterministic context-free languages elo d und r rever e? Prove your 

answer. 

20. Prove that each 01' the following languages i 110t c nlext-fre . (Hint: Use 

Ogden 's Lemma.) 

-
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a. {aibick : i 2: O,j :> 0, k :> 0, and i =F- j =F- k} 

b. {aibickdll
: i 2: O,j 2: 0, k :> 0, n 2: 0, and (i = ° or j = k = n)} 

21. Let 'l'(L) be as defined in Seetion 13.7, in our discussion of Parikh's Theorem. 
For each of the following languages L, first state what 'l'(L) iso Then give a regu-
lar language that is leuer-equivalent to L. 

a. Bai = {w E {) , (} * : the parentheses are balanced} 

b. Pal = {w E { a, b } * : w is a palindrome} 

c. {xR#y :X,YE {O,l}* andxisasubstringofy} 

22. For each of the following claims, state whether it is True or False. Prove your answer. 

a. If L l and L 2 are two context-free languages, L l - L 2 must also be context-free. 

b. If LI and L 2 are two context-free languages and L l = L 2L 3, then L 3 must 
also be context-free. 

c. lf L is context free and R is regular, R - L must be context-free. 

d. If LI and L 2 are context-free languages and LI ~ L ~ L 2, then L must be 
context-free. 

e. If LI is a context-free language and L 2 ~ Li> then L 2 must be context-free. 

f. If LI is a context-free language and L 2 ~ Li> it is possible that L 2 is regular. 

g. A context-free grammar in Chomsky normal form is always unambiguous. 

I 
I· 

il 
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C H A P T E R 14 

Aigorithms and Decision Procedures 

for Context-Free Languages 

M 
a ny ques tions tha t we could a nswe r when a k cd abo ut r glilar language 

are lInanswerabl e for context-free one . But a fc \· import an t question can 

be answered a nd we have a lready prc nt ed a u cfu l co ll e ti on of algo-

rithms th a t can operate on conl ext-free gram ma r and PD . We'lI pr sent a few 

more here. 

14.1 The Decidable Questions 

Fortunately, the mos t important questi ons (i.e., the onc. th aI must l ~ an \ rabl if 
context-free gramm ars are to be of a ny pra ti ca l use ) a re decidab lc. 

14.1.1 Membership 

314 

We begin with the most fundamental que ti on , " i e n a languagc L a nd a Iring t , is w 
in L?" Fortunately this question can be an wered fo r e e r onl xt -fr c languag . B 

ll1eorem 12.1 , for every context-free la nguage L , the re exi I a PD M uch that M ac-

cepts L . But we must be careful. As we howed in ecti on 12.4. PD are n t ouarant d 

to halt. So the mere ex istence of a PDA thai acce pts L doe. n t uaranl th exi tence 

of a procedure that decides it (i.e. , a lways hall and a C o r no appropri a le l ) . 

It turns out th a t th ere are two a ltern a tive approachc to lin Ihi pr bl 01 , both 

of which work: 

• Use a gramm ar: Usin g fac ts aboul every d ri a li n th a t i. pr duc d b a grammar 

in C homsky norm a l fo rm we ca n con tru cl a n a lgorithm Ih a l cxp l rc a finit num-

ber of deri vatio n paths and rinds o n th at de ri e ' a pa rti u la r tr in o I ift u h a 

path exist . 

-
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• Use a PDA: While not all PDAs halt, it is possible, for any context-free Ianguage L, 

to cran a PDA M that is guaranteed to halt on all inputs and that accepts a11 strings 

in Land rejects all strings that are not in L. 

Using a Grammar to Decide 

We begin by considering the first alternative. We show a straightforward algorithm far 

deciding whether astring w is in a language L: 

decideCFLusingGrammar(L: CFL, w: string) = 

1. lf L is specified as a PDA, use PDAtoCFG , presented in the proof ofTheorem 

12.2, to construct a grammar G such that L (G) = L (M). 

2. If L is specified as a grammar G , simply use G. 

3. lf w = ethen if SG is nullabte (as defined in the description of removeEps in 

Section 11.7.4) then accept, otherwise reject. 

4. lf w *" ethen: 

4.1. FromG, constructG/suchthatL(G/) = L(G) - {e}andG/isin 

Chomsky normal form. 

4.2. If G derives w, it does so in 2 ·\w\ - 1 steps. Try all derivations in Gof 

that number of steps. If one of them derives w, accept. Otherwise reject. 

The running time of decideCFLusingGramnwr can be analyzed as follows: We as-

sume that the time required to build G / is constant, since it does not depend on w. Let 

n = \w\. Let g be the search-branching factor of G /, defined to be the maximum num-

ber oE rules that share a Ieft-hand side. T11en the number of derivations of tength 2n - 1 

is bounded by g 211 - 1, and it takes at most 2n - 1 steps to check each one. So the worst-

case running time of decideCFLusingGrammar is 0(n2'l In Section 15.3.1 , we will 

present techniques that are substantially more efficient. We will describe the CKY algo-

rith111 , which , given a gramm ar G in Chomsky normal form, decides the membership 

question far G in time that is 0(n3
) . We will then describe an a]gorithm that can decide 

the question in time that is linear in n if the grammal' that is provided meets certain 

requirements. 

THEOREM 14.1 Decidability of Context-Free Languages 

Theorem: Given a context-Eree language L (represented as either a context-free 

grammar or a PDA) and astring w, there exists adecision procedure that an-
wers the question , ']s W E L?' 

Proof: The following atgorithm , decideCFL , uses decideCFLusin.gGrammar to 
answer th question: 

decideCFL(L: CFL, w: string) = 

1. Lf decideCFLusingGramnwr( L, w) accepts, return True else return Pa rse. 
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Using a POA to Oecide • 

It is also possible to solve the membership problem using PDA . We take a two-step 

approach. We first show that , for every context-free language L, it is possible to build a 

PDA that accepts L - {E} and that has no c-transitions. Then we show that every 

PDA with no c-transitions is guaranteed to halt. 

THEOREM 14.2 Elimination of E-Transitions 

1

1 

Theorem: Given any context-free ;rammar G = (V ,. L , R, 5) , there exists a PDA 
M such that L (M) = L (G) - {E} and M contains no tran itions of the form 

«q" E, a), (q2, ß)). In other words, every transition reads exactly one input 

character. 

Proof: The proof is by a construction that begins by convening G to Greibach nor-

mal form. Recall that, in any grammar in Greibach normal form , all rules are of 

the form X -- a A , where a E Land A E (V - L)*. Now consider again the alge-

rithm cfgtoPDAtopdown, which builds, from any context-free grammar G, a PDA 
M that, on input w, simulates G deriving w, starting from S. M = ({p, q}. I. 
V, fl,p, {q}), where fl contains: 

1. The start-up transition «p, e, c), (q, 5)), which pushes the start symbol onto 

the stack and goes to state q. 

2. For each rule X -- 5\52' . . 5n in R, the transition «q , c, X), (q, 5\52 ' . . 5/1))' which 

replaces X by 5\52'" S//' If n = 0 (i.e. , the right-hand side of the rule is e), then 

the transition «q, e, X), (q , e)). 

3. For each character C E L , the transition «q c, c) , (q , e)) , wh ich compares an 

expected character from the stack again t the next input character and contin-

ues if they match. 

The start-up transition, plus all the tran thons generated in tep 2 are 
e-transitions. But now suppose that G is in Greibach normal form. [f G contains 
the rule X -- CS2' .. 5/1 (where CE Land 52 through ,';" are elements of V-l:), it is 
not necessary to push c onto the stack, only to pop it with a rule from step 3. In-
stead, we collapse the push and the popinto a single tran ition. So we ereate a 
transition that can be taken only if the next input character is c. In that ease, the 
string 52 ... Sn is pushed onto the stack. 

Now we need only find a way to get rid of the start-up transition , whose job is 

to push 5 onto the stack so that the derivation proce s can begin. Sinee G is in 
Greibach normal form, any rules with 5 on the left-hand side must have the form 

5 -- CS2 •.. SI/' SO instead of reading no input and just pushing 5 , M will skip push-

ing 5 and instead, if the first input character is c, read it and push the string 

52 ... SI!' 

Since terminal symbols are no longer pushed onto the lack, w no longer 

need the transitions created in step 3 of the original alg rithm. 

--
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So M = ({p , q}, 2:, V, 6., p, {q}), where 6. contains: 

1. The start-up transitions: For each rule S ~ CS2' .. Sn, the transition «p, c, s), 

(q, S2" . sn))' 

2. For each rule X ~ CS2'" Sn (where CE 2: and S2 through Sn are elements of 
V - 2:), the transition «q, c, X), (q , S2 '" sn))' 

The following algorithm builds the required PDA: 

cfgtoPDAnoeps(G: context-free grammar) = 
1. Convert G to Greibach normal form, producing G'. 

2. From G' build the PDA M described above. 

THEOREM 14.3 Halting Behavior of PDAs Without e-Transitions 

Theorem: Let M be a PDA that contains no transitions of the form 

«qt> s, S1), (q2' S2)), i.e., no s-transitions. Consider the operation of M on input 
w E 2:* . M must halt and either accept or reject w. Let n = Iwl. We make three 
additional claims: 

a. Each individual computation of M must halt within n steps. 

b. The total number of computations pursued by M must be less than or equal to bn
, 

where b is the maximum number of competing transitions from any state in M. 

c. The total number of steps that will be executed by a11 computations of M is 
bounded by nbn

. 

Proof: 

a. Since each computation of M must consume one character of w at each step 
and M will halt when it runs out of input, each computation must halt within 
n steps. 

b. M may split into at most b branches at each step in a computation. The num-
ber of steps in a computation is less than or equal to n. So the total number of 
computations must be less than or equal to bll

• 

c. Since the maximum number of computations is bll and the maximum length 
of each is n, the maximum number of steps that can be executed before a11 
computations of M halt is nb ll

• 

So a second way to answer the question, "Given a context-free language Land a 
string w, is w in L ?" is to execute the following algorithm: 

decideCFLusingPDA(L: CFL, w: string) = 

1. 1f L is specified as a PDA, use PDAloCFG , as presented in the proof ofTheo-
rem 12.2, to construct a grammar G such that L (G) = L (M). 

2. If L is specified as a grammar G, simply use G. 
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3. lf w = ethen if Sc is nullable (as defined in the de 'Cription of removeEps in 
Section 11.7.4) then accept , otherwise rejecL 

4. If w i= c: then: 

4.1. From G,construct G' such th at L (G/) = L (G) - {e} and G' is in 

Greibach normal form. 

4.2. From G' construct, usi ng cjgloPDAnoeps, the algorithm described in 

the proof ofTheorem 14.2, a PDA M' ueh that L (M') = L (G') and 

M' has no c:-transitions. 

4.3. By Theorem 14.3 , all path of M' are guaranteed to halt within a 

finite number of steps. So run M' on w. Aceept if M' aceepts and 

rejeet otherwise. 

The running time of decideCFLusingPDA can be analyzed as follows: We will take 

as a constant the time required to build M' , ince lhat ean be done once. lt need not 

be repeated for eaeh string that is 10 be analyzed. Given M' , the time required to an-

alyze astring w is then the time required to simulate all paths of M' on w. Let 

n = Iwl. From Theorem 14.3, we know that the tota l number of steps that will be ex-

ecuted by a11 paths of M is bounded by nh
ll

, where h is the max imum number of com-

peting transitions from any state in M'. But is that number of teps required? If one 

state has a large number of competing transitions but the üthers dü not , then the av-

erage branching factor will be less than h, so fewer step will be necessary. But if bis 

greater than 1, the number of steps still grows exponenti a lly with n. The exact num-

ber of steps also depends on how the simulati on is düne. A tr aightforward depth-

first search of the tree of possibilities will exp lo re /)" steps, whi h is less than nb
n 

beeause it does not start eaeh path over at the beginning. But it still requires time 

that is O(hn) . In Section 15.2.3, we present an alternative app roach to top-down pars-

ing that runs in time that is linear in n if the grammar th at is pr vided meets certain 

requirements. 

14.1.2 Emptiness and Finiteness 

While many interesting questions are not decidable for context-free languages, two 

others, in addition to membership are: emptiness and finitenes . 

THEOREM 14.4 Decidability of Emptiness and Finiteness 

Theorem: Given a context-free language L , there xi t a deci ion procedure that 

answers eaeh of the following questions: 

1. Given a cüntext-free language L, is L = 0 ? 

2. Given a context-free language L, is L infinit ? 

Since we have proven that there exists a grammar that gen rate L iff there 

exists a PDA that accepts it, these questions will ha e the ame an wers whether 

we ask them abüut grammars or about PDAs. 

--
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Proof: 

1. Let G = (V, L , R, S) be a context-free grammar that generates L. 

L (G) = 0 iff S is unproductive (i.e., not able to generate any terminal 
strings). The following algorithm exploits the procedure removeunproductive, 

defined in Section 11.4, to remove all unproductive nonterminals from G. It 

answers the question, "Given a context-free language L, is L = 0?" 

decideCFLempty(G: context-free grammar) = 

1. Let G' = removeunproductive (G). 

2. If S 1S not present in G' then return True else return False. 

2. Let G = (V, L, R, S) be a context-free gramm ar that generates L. We use an 
argument similar to the one that we used to prove the context-free Pumping 
Theorem. Let n be the number of nonterminals in G. Let b be the branching 

factor of G. The longest string that G can generate without creating a parse tree 
with repeated nonterminals along some path is of length bl!. If G generates no 

strings of length greater than bl!, then L( G) is finite. If G generates even one 
string W of length greater than bn

, then, by the same argument we used to prove 
the Pumping Th.eorem, it generates an infinite number of strings since 
W = uvxyz, lvyl > O,and\fq ~ O(uvqxyqzisinL).Sowecouldtrytotestto 
see whether L is infinite by invoking decideCFL(L, w) on all strings in L* of 

length greater than bl!. If it returns True for any such string, then L is infinite. If 
it returns False on aH such strings, then L is finite. 

But, assuming L is not empty, there is an infinite number of such strings. 
Fortunately, it is neeessary to try only a finite number of them. Suppose that G 
generates even one string of length greater than bl1 + 1 + bn

. Let t be the short-

est such string. By the Pumping Theorem, t = uvxyz, lvyl > 0, and uxz (the 
result of pumping vy out onee) E L. Note that luxzl < I tl since some non-

empty vy was pumped out of t to create it. Since, by assumption, t is the shortest 
string in L of length greater than bll 

+ 1 + bn
, I uxz I must be less than or equal to 

b"+1 + bll
• But the Pumping Theorem also teHs us that lvxyl :s; k (i.e. , bll +1), 

so no more than bll+l strings could have been pumped out of t. Thus we have 

that b" < luxzl :s; bll
+

1 + b". So, if L eontains any strings of length greater 
than b

ll
, it must contain at least one string of length less than or equal to 

b,,+l + bll
• We can now dehne decideCFLinfinite to answer the question, 

"Given a context-free language L, is L infinite?": 

decideCFLinfinite(G: context-free grammar) = 

1. Lexicographically enumerate all strings in L * of length greater than 
b" and less than or equal to b,, +l + bll

• 

2. lf, for any such string w, decideCFL(L, w) returns True then return 
True. L is infinite. 

3. If, for all such strings w, decideCFL(L, w) returns False then return 
False. L is not infinite. 
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14.1.3 Equality of Deterministic Context-Free languages 

THEOREM 14.5 Decidability of Equivalence for Deterministic Context-

Free Languages 

Theorem: Given two delerminisric contex t-free languag L , and L __ th re exists a 

decision procedure to determine wh elh er L , = L2-

Proof: This claim was not proved until 1997 and thc proof I ni zc roue 2001] is be-

yond the scope of thi s book, but ce 0 . 

14.2 The Undecidable Questions 
Unfortunately, we wi ll prove in Chapter 22 that there exi t no deei ion procedure for 

many other questions that we might like to be able t as k about context-free lao-

guages, inc\uding: 

• Given a context-free language L , is L = ~ *? 

• Given a context-fr ee langu ag L, is the eompl cment 01' L conl ext-fre ? 

• Given a context-free language L, is L regular? 

• G iven two context-free language L , and L2, i L , = L?·) (Theor m 14.- t lls us 

that thi s question is decidable for the rcstri cted ca c of twO d termini tie eontext-

free language . But it is undeeidable in th more g neral ca e. 

• 
• 
• 
• 

Given two context-free languages L , and L2. i L , <.: L'].? 

Given two context-free langu ages L , and L2, is L , n 1 :. = 0 ? 

Given a context-free language L , is L inherently ambi guou ? 

Given a eontext-free gramm ar G, is G ambiguous? 

14.3 Summary of Aigorithms and Decision Procedures 
for Context-Free Languages 

Although we have presented fewer algo rithm and d ci i n pr cdure ror on text-

free languages th an we did for regular languag , Ih ere are man importanl ones. 

which we summarize here: 

• Aigorithms that transform grammar : 

• removeunproducfi ve(G: conlexl-frce gramm ar): on tru t a )rammar ' that 

contains no unproductive nonlermin al and ueh th at L ') = L ( ) . 

• removeunreachable(G: eonlext -fr ee grammar : on trLl l Cl ramm ar G ' that 
contains no unreaeh able nonl rmin al and ·ueh th at L ' ;;::: L ( ). 

--
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• removeEps( G: context-free grammar): Construct a grammar G' that contains 

110 rules of the form X ~ 8 and such that L (G') = L (G) - {8}. 

• atmostoneEps( G: context-free gramm al-): Construct a grammar G' that con-

tains no rules of the form X ~ e except possibly S ~: ~ 8, in which ca se there 

are no rules whose right-hand side contains S *, and such that L (G') = L (G). 

• convertloChomsky( G: context-free grammar): Construct a grammar G' 111 

Chomsky normal form , where L (G') = L (G) - {e}. 

• converttoGreibach(G: context-free grammar): Construct a grammar G' in 

Greibach normal form , where L (G') = L (G) - {e} . 

• removeUnifs(G: context-free grammar): Construct a grammar G' that contains 

no unit productions, where L (G') = L (G) . 

• Algorithms that convert between context-free grammars and PDAs: 

• c.fgtoPDAtopdown(G: context-free grammar): Construct a PDA M such that 

L (M ) = L (G) and M operates top-down to simulate a left -most derivation in G. 

• cfgtoPDAbotfomup(G: context-free grammar): Construct a PDA M such that 

L (M) = L (G) and M operates bottom up to simulate, backwards, a right-

most derivation in G. 

• cfgroPDAnoeps(G: context-free grammar): Construct a PDA M such that M con-

tains no transitions 01' the form «qJ, 8, SI) , (q2, S2)) and L (M) = L (G) - {e} . 

• Aigorithms that transform PDAs: 

• convertPDAtorestricted(M: PDA): Construct a PDA M' in restricted normal 

form where L (M') = L (M) . 

• Aigorithms that compute functions of languages defined as context-free grammars: 

• Given two grammars GI and G2, construct a new grammar G3 such that 

L (G3) = L (GI) U L (G2) . 

• Given two grammars G I and Gb construct a new grammar G3 such that 

L (C3) = L (GI)L (C2). 

• Given a grammar G, construct a new grammar G' such that L (G') = (L (G»)*. 

• Given a grammar G,construct a new grammar G' such that L (G') = (L (G)t. 

• G iven a grammar G, construct a new grammar G' that accepts letsub(L(G)) , 
where letsu,b is a letter substitution function. 

• Miscell aneous algorithms far PDAs: 

• infersectPDAandFSM (MI: PDA, M2: FSM): Construct a PDA M3 such that 
L (MJ ) = L (MI) n L (M2), 

• without$(M: PDA): lf M accepts L$, construct a PDA M' such that L (M') = L. 

• complemenldetPDA(M: DPDA): l[ M accepts L$, construct a PDA M' such 
that L (M ' ) = (-, L)$. 
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• Oecision procedures th at answer que lion abo ut cont cxl-frce languages: 

• decideCFLlIsingPDA (L: CFL..?Il : string): Decide whd hcr lC i in L. 

• decideCFLlIsillgGrammar(L: CFL, 10: string) : Dccid wh ' th r 10 i in L. 

• decideCFL(L: CFL 10: string): Oe ide whcthcr /LI i: in L. 

• decideCFL empry(G: cOll lex t-frec grammar): Occidc whcth cr L (G = 0. 

• decideCFLin/inile(C: contexl-free grammar): Dccidc \ hClh er L(C) i infinite.j 

Exercises 

1. Give adecision proced ure ( 0 answcr eac h of the foll O\ ing qucsrion 

a. Given a regular exp ression Cl' and a PDA M. i ' thc languagc accepted by M a 

subset of the language generated by Cl'. 

b. Given a context-free gramm ar G and two strings 5, and '2 ' does C generate 

5,5'2 ? 

c. Given a context-free gramm ar C, doe G g ncralC at lea t three tring ? 

d. Given a contexl-free gramm ar C , do sC ge nerate an I c en length strings? 

e. Given a regul ar gramm ar G, i L( G) cont xt-frce? 

-
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Turing Machines

and Linear Bounded

Automata

In the early 1930s. mathematicians were trying to define effective computation.

Alan Turing in 1936. Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel

in 1965 gave various models using the concept of Turing machines, JL-calculus,

combinatory logic, post-systems and p-recursive functions. It is interesting to

note that these were formulated much before the electro-mechanicaVelectronic

computers were devised. Although these formalisms, describing effective

computations. are dissimilar, they tum to be equivalent.

Among these formalisms, the Turing's formulation is accepted as a model

of algorithm or computation. The Church-Turing thesis states that any

algorithmic procedure that can be carried out by human beings/computer can be

carried out by a Turing machine. It has been universally accepted by computer

scientists that the Turing machine provides an ideal theoretical model of a

computer.

Turing machines are useful in several ways. As an automaton, the Turing

machine is the most general model. It accepts type-O languages. It can also be

used for computing functions. It turns out to be a mathematical model of partial

recursive functions. Turing machines are also used for determining the un-

decidability of certain languages and measuring the space and time complexity

of problems. These are the topics of discussion in this chapter and some of the

subsequent chapters.

For fonnalizing computability, Turing assumed that, while computing,

a person writes symbols on a one-dimensional paper (instead of a two-

d;rnensional paper as is usually done) which can be viewed as a tape divided

into cells.

One scans the cells one at a time and usually performs one of the three

simple operations, namely (i) writing a new symbol in the cell being currently

277
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scanned, (ii) moving to the cell left of the present celL and (iii) moving to the

cell light of the present cell. With these observations in mind, Turing proposed

his 'computing machine.'

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W

(read/write) head. It has one tape which is divided into a number of cells. The

block diagram of the basic model for the Turing machine is given in Fig. 9.1.

RIW head

Finite control

Tape divided into cells
and of infinite length

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite

state automaton are effected by the R!W head which can examine one cell at

a time. In one move, the machine examines the present symbol under the

R!W head on the tape and the present state of an automaton to determine

(i) a new symbol to be written on the tape in the cell under the RAY head,

(ii) a motion of the RAY head along the tape: either the head moves one

cell left (L). or one cell right (R),

(iii) the next state of the automaton, and

(iv) whether to halt or not.

The above model can be rigorously defined as follows:

DefInition 9.1 A Turing machine M is a 7-tuple, namely (Q, :E, r, 8, qo. b, F),

where

1. Q is a finite nonempty set of states.

') r is a finite nonempty set of tape symbols,

3. b E r is the blank.

4. :E is a nonempty set of input symbols and is a subset of rand b E :E.

5. 8 is the transition function mapping (q, x) onto (qt, y, D) where D

denotes the direction of movement of R!W head: D =L or R according

as the movement is to the left or right.

6. qo E Q is the initial state, and

7. F r;;;; Q is the set of final states.
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Notes: (1) The acceptability of a string is decided by the reachability from the

initial state to some final state. So the final states are also called the accepting

states.

(2) (5 may not be defined for some elements of Q x r.

9.2 REPRESENTATION OF TURING MACHINES

We can describe a Turing machine employing (i) instantaneous descriptions

using move-relations. (ii) transition table. and (iii) transition diagram (transition

graph).

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

.Snapshots' of a Turing machine in action can be used to describe a Turing

machine. These give 'instantaneous descriptions' of a Turing machine. We have

defined instantaneous descriptions of a pda in terms of the cUITent state. the

input string to be processed, and the topmost symbol of the pushdown store.

But the input string to be processed is not sufficient to be defined as the ill of

a Turing machine, for the R1\V head can move to the left as well. So an ill of a

Turing machine is defined in terms of the entire input string and the current

state.

Defmition 9.2 An ill of a Turing machine M is a string af3y, where f3 is the

present state of M, the entire input string is split as (Xl, the first symbol of y is

the current symbol (l under the RJW head and y has all the subsequent symbols

of the input string, and the string ex is the substring of the input string formed

by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous

descliption.

~ ~ .LI_b----,--I_84----,FGJ;J 821 82 ~ bib I ~?

dj
IWhead

State

q3

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the RJW head is al' The present state is Q3' So al

is written to the right of Q3' The nonblank symbols to the left of al form the

string a4(lj(l2(lja2L72, which is written to the left of Q3' The sequence of nonblank

symbols to the right of (ll is (14(12. Thus the ill is as given in Fig. 9.3.
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Left sequence

I 8482 •

Right sequence

Present Symbol under
state RIW head

Fig. 9.3 Representation of 10.

Notes: (1) For constructing the ID, we simply insert the current state in the

input string to the left of the symbol under the RIW head.

(2) We observe that the blank symbol may occur as part of the left or right

substring.

Moves in a TM

As in the case of pushdown automata, 8(q, x) induces a change in ID of the

Turing machine. We call this change in ID a move.

Suppose 8(q, Xj) =(P, y, L). The input string to be processed is X1X2 ... Xn,

and the present symbol under the RIW head is Xi' So the ID before processing

Xi is

After processing Xi, the resulting ID is

This change of ID is represented by

If i = 1, the resulting ID is p Y X2 X3 ••. XI/'

If 8(q, xJ = (p, y, R), then the change of ID is represented by

Xj X2'" 'Yi-1q xi'" .In r- X j X2'" Xi-lypXi+l'" x"

If i = 11, the resulting ID is XjX2 ... Xn-l Y P b.

We can denote an ill by Ij for some j. Ij r- 1k defines a relation among IDs.

So the symbol f2- denotes the reflexive-transitive closure of the relation r-'
In particular, Ij f2- Ij . Also, if I] f2- In' then we can split this as II r- 12 r-
Io r- ... r- I" for some IDs, 12 , ... , 1,,-1'

Note: The description of moves by IDs is very much useful to represent the

processing of input strings.

9.2.2 REPRESENTATION BY TRANSITION TABLE

We give the definition of 8 in the form of a table called the transition table. If

8(q, a) = (y, a. (3). we write a(3yunder the a-column and in the q-row. So if
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we get exf3y in the table, it means that ex is written in the current cell, f3 gives

the movement of the head (L or R) and y denotes the new state into which the

Turing machine enters.

Consider, for example, a Turing machine with five states qj, ..., qs, where

ql is the initial state and qs is the (only) final state. The tape symbols are 0. 1

and b. The transition table given in Table 9.1 describes 8.

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol

b 0

-'7q1 1Lq2 ORq1

q2 bRq3 OLq2 1Lq2

q3 bRq4 bRq5

q4 ORq5 ORQ4 1RQ4

® OLQ2

As in Chapter 3. the initial state is marked with ~ and the final state

witho.

EXAMPLE 9.2

Consider the TM description given m Table 9.1. Draw the computation

sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and

the current state. If the string in the tape is al(l2 G;(l;+l ... alii and the TM

in state q is to read aj+ 1, then we write a 1a2 G; q (l;+ 1 ••• all/'

For the input string OOb, we get the following sequence:

qt OOb r- Oqt Ob r- OOq,b r- Oq201 r- q2001

r- q2bOOl r- bq3001 r- bbq401 r- bboq41 r- bbo1q4b

r- bbOlOqs r- bb01q200 r- bbOq2100 r- bbq20100

r- bq2bOlOO r- bbq30100 r- bbbq4100 r- bbb j q400

r- bbblOq40 r- bbblOOq4b r- bbblOOOqsb

r- bbb100q200 r- bbb lOq2000 r- bbb 1q20000

r-bbbq210000 r- bbq2b10000 r- bbbq310000 r- bbbbqsOOOO

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing

machines. The states are represented by veltices. Directed edges are used to
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represent transition of states. The labels are triples of the form (0::, [3, y), where

0::. [3. E rand y E {L R}. When there is a directed edge from q i to qj with label

(0::, [3. y), it means that

D(qi' 0::) = (qj, [3. y)

During the processing of an input string, suppose the Turing machine enters

qi and the RJW head scans the (present) symbol 0::. As a result the symbol [3
is written in the cell under the RJW head. The RJW head moves to the left: or

to the right depending on y, and the new state is CJj.

Every edge in the transition system can be represented by as-tuple (qi' 0::,

[3, y, qj)' So each Turing machine can be described by the sequence of 5-tuples

representing all the directed edges. The initial state is indicated by ~ and any

final state is marked with o.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain

the computation sequence of M for processing the input string 0011.

(b, b, R)

(y, y, R) (y, y, L) (y,y, R)

(x, x, R)
(0,0, L)

Fig. 9.4 Transition system for M.

Solution

t
bxOllb

The initial tape input is bOOllb. Let us assume that M is in state qj and the

RJW head scans 0 (the first 0). We can represent this as in Fig. 9.5. The figure

can be represented by
t

bOOllb
qj

From Fig. 9.4 we see that there is a directed edge from qj to q2 with the label

(0. x, R). So the current symbol 0 is replaced by x and the head moves right.

The new state is q2' Thus. we get
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The change brought about by processing the symbol 0 can be represented as

-t J-
bOOllb (O.x.R) > bxOllb
qj q2

~b
Rrw head

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

J- J- J-
bOOllb

(O.x.R!
bxOllb

(O.O.RI
bxOllb) ~

ql q2 q2

J- J- J-
(l.,\'.LI ) bxOylb (O.O.L) ) bxOylb (x.x.R) bxOvlb)

qo, q4 ql

J-
IO.x.R) 'b b
--~) xxvI

q2

J-
(\'.\'.R)
,. ) bxxylb

q2

J-
(1.\'.L)

, ) bxxyyb
qj

(".\,LI J- (x ..t.R) b J, (".".R) J,
" >bxxyyb ) xxyyb " ) bxxyyb

qo, qs qs

(\,. ,.R) J, (b.b.R) J,
" ) bxxyyb ) bxxyybb

qs q6

9.3 LANGUAGE ACCEPTABILITY BY TURING

MACHINES

I F't us consider the Turing machine M = (Q. '2:, 1. (5, qo, b. F). A string w in

'2:* is said to be accepted by M if qoVl' r- (XIP(X2 for some P E F and (x], (X:c

E r*.
M does not accept VI' if the machine M either halts in a nonaccepting state

or does not halt.
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It may be noted that though there are other equivalent definitions of

acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transltlOn table given III

Table 9.2. Describe the processing of (a) OIL (b) 0011, (c) 001 using IDs.

Which of the above stlings are accepted by M?

TABLE 9.2 Transition Table for Example 9.4

Present state

o

xRq2

ORQ2

OLQ4

OLQ4

Tape symbol

x y b

Solution

(a) qjOll f- xq:11 f- q3xy1 f- xqsy1 f- x-.vqs1

As a(qs. 1) is not defined, M halts; so the input string 011 is not accepted.

(b) qjOOll f- xq:011 f- xOq:11 f- xq30y1 f- q ~ \ : O y l f- xqjOyl.

f-xxq:y1 f- xX)·q:1 f- xxq3YY f- xq3'W y' f- xxqsYy

f- x.x;yqsY· f- xxyyqsb f- xxY.Vbq6

M halts. As q6 is an accepting state, the input string 0011 is accepted by M.

(c) Cf j OOl f- xq:01 f- xOq:1 f- .vq30y f- q4xOy

f- xqlOy f- x.\:q:y f- xxyq:

M halts. As q: is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.

(i) The fundamental objective in scanning a symbol by the RJW head is

to 'kno,," \'ihat to do in the future. The machine must remember the

past symbols scanned. The Turing machine can remember this by

going to the next unique state.

(ii) The number of states must be minimized. This can be achieved by

changing the states only when there is a change in the written symbol

or when there is a change in the movement of the RJW head. We shall

explain the design by a simple example.
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EXAMPLE 9.5

Design a TUling machine to recognize all stlings consisting of an even number

of 1's.

Solution

The construction is made by defining moves in the following manner:

(a) ql is the initial state. M enters the state q2 on scanning 1 and writes b.

(b) If M is in state q2 and scans 1, it enters q, and writes b.

(c) q] is the only accepting state.

So M accepts a stJing if it exhausts all the input symbols and finally is in

state qj. Symbolically,

M = ({qj, q2}, {I. b}, {l, b}, 8, q, b. {qd)

\"here 8 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state

Let us obtain the computation sequence of 11. Thus, q j ll f- bq21 f- bbql'

As ql is an accepting state. 11 is accepted. qllil f- bq2 11 f- bbq]l f- bbbq2'

Af halts and as q2 is not an accepting state, III is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over {I. b} which can compute a concatenation

function over L = {I}. If a pair of words (Wj. 11'2) is the input. the output has

to be W(H'2'

Solution

Let us assume that the two words ,Vj and W2 are written initially on the input

tape separated by the symbol b. For example, if 11'] = 11, W2 = 111. then the

input and output tapes are as shown in Fig. 9.6.

G]1!1=
Fig. 9.6 Input and output tapes.

We observe that the main task is to remove the symbol b. This can be done

in the following manner:

(a) The separating symbol b is found and replaced by 1.
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(b) The rightmost 1 is found and replaced by a blank b.

(c) The RJW head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11 h111

qo11b111 f- 1qo1b111 f- 11qob111 f- 111q1 111

f- 1111q1 11 f- 11111q1 1 f- 111111q1 b f- 11111q21b

f- 1111 q31 bb f- 111 q311 bb f- 11 q3111 bb f- 1q31111 bb

f- q311111bb f- q3b11111bb f- bqf11111bb

From the above computation sequence for the input string 11b11 L we can

construct the transition table given in Table 9.5.

For the input string Ibl, the computation sequence is given as

qolblI-lqobl 1- llql 1 1- 11lq j b r- 11q2b r- 1q3 1bb

r- q3 11bb r- q3b Ilbb r- bqfl1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbof

b

---'fqo 1Rqo 1Rq1

q1 1Rq1 bLq2

q2 bLq3

q3 1Lq3 bRqf

@

EXAMPLE 9.7

Design a TM that accepts

{O"I"ln 2: l}.

Solution

We require the following moves:

(a) If the leftmost symbol in the given input string IV is 0, replace it by x

and move right till we encounter a leftmost 1 in ).i'. Change it to y and

move backwards.

(b) Repeat (a) with the leftmost O. If we move back and forth and no 0 or

1 remains. move to a final state.

(c) For strings not in the form 0"1", the resulting state has to be nonfinal.
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Keeping these ideas in our mind, we construct a TM M as follows:

M = (Q, L, r, 0, qo, b, F)

Q = {qo, qj, q2' q3' qt)

F = {qt}

L = {O, I}

r = {O, 1, x, y, b}

The transition diagram is given in Fig. 9.7. M accepts {011 111
1n ;:::: I}. The moves

for 0011 and 010 are given below just to familiarize the moves of M to the

reader.

(0,0, R)

(y, y, R)

(x, x, R)

(y,y, R)

(y, Y, L)

(0,0, L)

Transition diagram for Example 9.7.

+rt:::\ (b, b, R) f0.,
(y, Y, R) ~f-----------I'~

Fig. 9.7

qo0011 r- xq j 011j- xOq j 11 1- xq20yl

r- q2xOy1 1- xqoOy1 1- xxqjy1 1- xxyq j l

r- xxq2..1')' r- xChJ:YY r- xxqoYy r- x·\yq3Y

r- :'oyyq3 = xxyyq3b r- xxyybq.<,b

Hence 0011 is accepted by M.

qoOlO r- xq j lO r- q2·rvO r- xqayO r- xyq30

As 0(Q3' 0) is not defined, M halts. So 010 is not accepted by M.

·-EXAMPLE 9.8

Design a Turing machine M to recognize the language

{1"2"3"ln ;:::: I}.
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Solution

Before designing the required Turing machine M, let us evolve a procedure for

processing the input stJing 112233. After processing, we require the ID to be

of the form bbbbbbq;. The processing is done by using five steps:

Step 1 qj is the initial state. The RJW head scans the leftmost 1, replaces 1

by b, and moves to the right. M enters q2'

Step 2 On scanning the leftmost 2, the RJW head replaces 2 by b and moves

to the right. M enters q3'

Step 3 On scanning the leftmost 3. the RJW head replaces 3 by b, and moves

to the right. M enters q4'

Step 4 After scanning the rightmost 3, the RJW heads moves to the left until

it finds the leftmost 1. As a result. the leftmost 1. 2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until alll's, 2's and 3's are replaced by blanks.

The change of IDs due to processing of 112233 is given as

q j 112233 1- bq212233 1- blq22233 1- blbq3233 1- blb2q333

r- blb2bq..j31- blb2qsb3 1- b1bqs2b3 1- b1qsb2b3 1- bqs1b2b3

r- q6b1b2b31- bq]lb2b31- bbq2b2b3 1- bbbq22b3

r- bbbbq3b3 1- bbbbbq33 1- bbbbbbq..jb r- bbbbbq;bb

Thus.

q\112233 ~ q7bbbbbb

As q7 is an accepting state, the input string 112233 is accepted.

Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol

2 3 b

-'>q., bRq2

q2 1Rq2 bRq3

q3 2Rq3 bRq4

q4 3Lqs

qs 1Lqa 2Lqs

qs 1Lqs

(~

bRq1

bRq2

bRq3

bLq7

bLQs

bRQ1

It can be seen from the table that strings other than those of the form 0"1"2"

are not accepted. It is advisable to compute the computation sequence for

strings like 1223, 1123. 1233 and then see that these strings are rejected by M.
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9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function 8 was described as a

partial function (function 8: Q x r ~ Q x r x {L. R} is not defined for all

(q, x» by spelling out the current state, the input symbol, the resulting state, the

tape symbol replacing the input symbol and the movement of R/W head to the

left or right. We can call this a formal description of a TM. Just as we have the

machine language and higher level languages for a computer. we can have a

higher level of description, called the implementation description. In this case

we describe the movement of the head, the symbol stored etc. in English. For

example, a single instruction like 'move to right till the end of the input string'

requires several moves. A single instruction in the implementation description

is equivalent to several moves of a standard TM (Hereafter a standard TM

refers to the TM defined in Definition 9.1). At a higher level we can give

instructions in English language even without specifying the state or transition

function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give

implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the

construction of TMs easier. The Turing machine defined in Section 9.1 is called

the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 8(q, a) as (q', y, D) where D =L or R.

So the head moves to the left or right after reading an input symbol. Suppose,

we want to include the option that the head can continue to be in the same cell

for some input symbol. Then we define 8(q, a) as (q', y, 5). This means that

the TM, on reading the input symbol a, changes the state to q' and writes y in

the current cell in place of a and continues to remain in the same cell. In terms

of IDs,

wqax r- 'wq'yX

Of course, this move can be simulated by the standard TM with two moves.

namely

H'qCV: r- vryq"x r- wq'yx

That is, 8(q, a) = (q', y, 5) is replaced by 8(q, a) = (q", y, R) and 8(q", X) =

(q. y, L) for any tape symbol X.

Thus in this model 8(q. a) = (q', y, D) where D =L. R or S.
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9.6.2 STORAGE IN THE STATE

Weare using a state, whether it is of a FA or pda or TM, to 'remember' things.

We can use a state to store a symbol as well. So the state becomes a pair

(q, a) where q is the state (in the usual sense) and a is the tape symbol stored

in (q, a). So the new set of states becomes Q x r.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1* + 1 0*.

Solution

We have to construct a TM that remembers the first symbol and checks that it

does not appear afterwards in the input string. So we require two states, qa, qj.

The tape symbols are 0, 1 and b. So the TM, having the 'storage facility in

state'. is

M = ({qa, qd x {O. L b}, {O, I}, {O, 1, b}, 0, [cIa, b], {[Cf], bJ})

We desClibe 0 by its implementation description.

L In the initial state, M is in qa and has b in its data portion. On seeing

the first symbol of the input sting w, M moves right, enters the state

Cft and the first symbol. say a, it has seen.

2. M is now in [q], a). (i) If its next symbol is b, M enters [cIt- b), an

accepting state. (ii) If the next symbol is a, M halts without reaching

the final state (i.e. 0 is not defined). (iii) If the next symbol is a
(a =°if a = 1 and a = 1 if a =0), M moves right without changing

state.

3. Step 2 is repeated until M reaches [qj, b) or halts (0 is not defined for

an input symbol in vv).

9.6.3 MULTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track

TM. a single tape is assumed to be divided into several tracks. Now the tape

alphabet is required to consist of k-tuples of tape symbols, k being the number

of tracks. Hence the only difference between the standard TM and the TM with

multiple tracks is the set of tape symbols. In the case of the standard Turing

machine, tape symbols are elements of r; in the case of TM with multiple track,

it is r k
. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has

to be done repeatedly. We can implement this facility for TMs as well.
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First a TM program for the subroutine is written. This will have an initial

state and a 'return' state. After reaching the return state. there is a temporary

halt. For using a subroutine, new states are introduced. When there is a need

for calling the subroutine, moves are effected to enter the initial state for the

subroutine (when the return state of the subroutine is reached) and to return to

the main program of TM.

We use this concept to design a TM for perfonning multiplication of two

positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m, 11). m. 11 being given, the positive integers are represented by

0 111 10". M starts with 0111 10" in its tape. At the end of the computation,

O"ill(mn in unary representation) sUlTounded by b's is obtained as the ouput

The major steps in the construction are as follows:

1. OIl! 1011 1 is placed on the tape (the output will be written after the

rightmost 1).

2. The leftmost °is erased.

3. A block of 11 O's is copied onto the right end.

4. Steps 2 and 3 are repeated 111 times and 101"10""1 is obtained on the

tape.

5. The prefix 101/11 of 101/110 /11
" is erased. leaving the product mn as the

output.

For every 0 in Olil. 0" is added onto the right end. This requires repetition

of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is qj and the final state is qs. (5

is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COpy

State Tape symbol

° 2 b

q22R q41L

q20R q21R q30L

q30L q3 1L q1 2R

Qs1R Q40L

The Turing machine M has the initial state qo. The initial ill for M is

CfoO
Ill 10"1. On seeing 0. the following moves take place (q6 is a state of M).

CfrP"101I 1 t- bq601ll-1101I1 ~ bOIll
-

1
q6 1O"1 t- bOIll

-
11q j O"1. qj is the initial state
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of COPY. The TM Ail performs the subroutine COPY. The following moves

take place for M 1: q101711- 2q=:017-11 P- 20n-11q3b f- 20n-1q31O P- 2q j O"-llO.

After exhausting O·s. q1 encounters 1. M 1 moves to state q4' All 2's are

converted back to 0' sand M 1 halts in qs. The TM M picks up the computation

by starting from qs. The qo and q6 are the states of M. Additional states are

created to check whether each ° in 011I gives rise to 011I at the end of the

rightmost 1 in the input string. Once this is over, M erases 10"1 and finds 0"111

in the input tape.

M can be defined by

M = ({qo. qj, .... qd· {O. I}, {O, 1,2, b}, 8, qo, b. {qd)

where 8 is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

° 2

qo q6bR

q6 q60R q, 1R

q5 q70L

q7 qs1L

qs qgOL

qg qgOL

q,0 q" bR

q,1 q" bR q,2bR

b

q1QbR

qobR

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, a) is either a

single triple (p, y, D), where D = R or L, or is not defined. We introduce two

new models of TM:

(i) a TM with more than one tape

(ii) a TM where 8(q. a) = {(PJo YJ, D j ), (P=:, Y=:. D 2), •••• (p,., Yn Dr)}' The

first model is called a multi tape TM and the second a nondeterministic

TM.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states. an initial state qo. a subset F of Q

called the set of final states. a set P of tape symbols. a new symbol b. not in

P called the blank symbol. (We assume that :2: ~ rand b EO :2:.)
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There are k tapes. each divided into cells. The first tape holds the input

string w. Initially. all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input

w. All the other heads can be placed at any cell initially.

(5 is a partial function from Q x rk into Q x r k x {L, R, S}k. We use

implementation description to define (5. Figure 9.8 represents a multitape TM.

A move depends on the current state and k tape symbols under k tape heads.

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.

(ii) On each tape. a new symbol is written in the cell under the head.

(iii) Each tape head moves to the left or right or remains stationary. The

heads move independently: some move to the left, some to the right

and the remaining heads do not move.

The initial ill has the initial state Cfo, the input string }v in the first tape

(input tape), empty strings of b's in the remaining k - 1 tapes. An accepting ill

has a final state. some strings in each of the k tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by

some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a k-tape TM M. We simulate M

with a single-tape TM with 2k tracks. The second. fourth, ... , (2k)th tracks hold

the contents of the k-tapes. The first. third, ... , (2k - l)th tracks hold a head

marker (a symbol say X) to indicate the position of the respective tape head.

We give an 'implementation description' of the simulation of M with a single-

tape TM MI' We give it for the case k =2. The construction can be extended

to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A 2 and B5

are the current symbols to be scanned and so the headmarker X is above the two

symbols.
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Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and

fourth tracks of MI' The headmarkers of the first and third tracks are at the cells

containing the first symbol.

To simulate a move of fill. the 2k-track TM M1 has to visit the two

headmarkers and store the scanned symbols in its control. Keeping track of the

headmarkers visited and those to be visited is achieved by keeping a count and

storing it in the finite control of MI' Note that the finite control of M1 has also

the infoffilation about the states of M and its moves. After visiting both head

markers. M1 knows the tape symbols being scanned by the two heads of M.

Now /'111 revisits each of the headmarkers:

(il It changes the tape symbol in the cOlTesponding track of M1 based

on the information regarding the move of M corresponding to the state

(of M) and the tape symbol in the corresponding tape M.

(ii) It moves the headmarkers to the left or right.

(iii) M1 changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M) is ready

to implement its next move based on the revised positions of its headmarkers

and the changed state available in its control.

M) accepts a string \t' if the new state of M, as recorded in its control at

the end of the processing of H'. is a final state of M.

Definition 9.3 Let M be a T~I and tV an input string. The running time of M

on input w. is the number of steps that A! takes before halting. If M does not

halt on an input string w, then the running time of M on 'v is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested

in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM 1''11 is the function T(n), n being the

input size, where T(n) is defined as the maximum of the running time of Mover

all inputs w of size n.

Theorem 9.2 If fv1) is the single-tape TA! simulating multitape TM M, then

the time taken by lli![ to simulate n moves of M is O(n~).
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Proof Let AI be a k-tape TM. After 11 moves of M, the head markers of M]

will be separated by 211 cells or less. (At the worst. one tape movement can be

to the left by 11 cells and another can be to the right by II cells. In this case the

tape headmarkers are separated by 211 cells. In the other cases, the 'gap'

between them is less). To simulate a move of M, the TM M] must visit all the

k headmarkers. If M starts with the leftmost headmarker, M I will go through all

the headmarkers by moving right by at most 211 cells. To simulate the change

in each tape. M] has to move left by at most 271 cells; to simulate changes in

k tapes, it requires at most two moves in the reverse direction for each tape.

Thus the total number of moves by M 1 for simulating one move of M is

atmost 411 + 2k. (211 moves to light for locating all headmarkers, 211 + 2k moves

to the left for simulating the change in the content of k tapes.) So the number

of moves of M] for simulating n moves of M is 11(411 + 2k). As the constant k

is independent of 11, the time taken by M] is O(n:;).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as

deterministic TM). 8(q). a) was defined (for some elements of Q x n as an

element of Q x r x {L R}. Now we extend the definition of 8. In a

nondetemlinistic TM. 8(ql, a) is defined as a subset of Q x r x {L R}.

Defmition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, L r. 8, qo.

b. F) where

1. Q is a finite nonempty set of states

2. r is a finite nonempty set of tape symbols

3. b E r is called the blank symbol

4. L is a nonempty subset of 1. called the set of input symbols. We

assume that bEL.

5. qo is the initial state

6. F r;;;; Q is the set of final states

7. 8 is a partial function from Q x r into the power set of Q x r x
{L. R}.

1Vote: If q E Q and x E rand 8(q. x) = {(ql. :\'), D 1). (q:;, .\':;, D:;) . ...,

(q", )'11' Dill) then the NTM can chose anyone of the actions defined by

(qi' )'i, DJ for i = 1. 2..... 11.

We can also express this in terms of f- relation. If 8(q. x) = {(qi, )ii, DJI
i =1. 2.... , 11} then the ID zq.nv can change to anyone of the 11 IDs specified

by the l1-element set 8(q. x).

Suppose 8(q, x) = {(q], .\'1, L). (q:;, ":;. R). (Q3, \'3, L)}. Then

or

or
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So on reading the input symbol, the NTM M whose cun-ent ID is 2]2: ...

ZkqxZk+] ... 2/1 can change to anyone of the three IDs given earlier.

Remark When o(q, x) = {(qi' Yi, D i) Ii = 1. 2, .... n} then NTM chooses any

one of the n triples totally (that is, it cannot take a state from one triple, another

tape symbol from a second tliple and a third D(L or R) from a third triple, etc.

Definition 9.6 W E L* is accepted by a nondetenninistic TM M if qaw ~

xqfY for some final state qt.

The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the fonn xqy (for some q tt: F) may

be reached as the result of applying the input string w. But 'v is accepted by M

as long as there is some sequence of moves leading to an ID with an accepting

state. It does not matter that there are other sequences of moves leading to an

ID with a nonfinal state or TM halts without processing the entire input stling.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M j

such that T(M) = TUY!I)'

Proof We constmct M] as a multitape TM. Each symbol in the input string

leads to a change in ID. M] should be able to reach all IDs and stop when an

ID containing a final state is reached. So the first tape is used to store IDs of

M as a sequence and also the state of M. These IDs are separated by the symbol

* (induded as a tape symbol). The cun-ent ID is known by marking an x along

with the ID-separator * (The symbol * marked with x is a new tape symbol.)

All IDs to the left of the cun-ent one have been explored already and so can be

ignored subsequently. Note that the cun-ent ID is decided by the cun-ent input

symbol of w.

Figure 9.10 illustrates the deterministic TM M j •

Tape 1

Tape 2

x

101 * 102 * 103 * 104 * 105 * 106 * •.•

Fig. 9.10 The deterministic TM simulating M.

To process the current ID. M] perfOlIDs the follO\ving steps.

1. M j examines the state and the scanned symbol of the cun-ent ID. Using

the knowledge of moves of M stored in the finite control of Mjo M]

checks whether the state in the cun-ent ID is an accepting state of M.

In this case M I accepts and stops simulating M.
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2. If the state q say in the current ID xqa), is not an accepting state of M 1

and O(q, a) has k triples, M 1 copies the ID xqay in the second tape and

makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M j modifies these k IDs in tape 2 according to the k choices given by

O(q, a).

4. M1 returns to the marked current ID. erases the mark x and marks the

next ID-separator * with x (to the * which is to the left of the next ID

to be processed). Then M j goes back to step 1.

M j stops when an accepting state of M is reached in step 1.

Now M 1 accepts an input string IV only when it is able to find that M has

entered an accepting state, after a finite number of moves. This is clear from

the simulated sequence of moves of M j (ending in step 1)

We have to prove that M j will eventually reach an accepting ID (that is,

an ID having an accepting state of M) if M enters an accepting ID after n

moves. Note each move of M is simulated by several moves of M j •

Let m be the maximum number of choices that M has for various (q, a)'s.

(It is possible to find m since we have only finite number of pairs in Q x r.)

So for each initial ID of M. there are at most m IDs that M can reach after one

move. at most m2 IDs that I'v! can reach after two moves. and so on. So

corresponding to n moves of M, there are at most 1 + m + m
2 + ... + mil moves

of M 1• Hence the number of IDs to be explored by M 1 is at most nm".

We assume that M] explores these IDs. These IDs have a tree structure

having the initial ID as its root. We can apply breadth-first search of the nodes

of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,

and so on.) If At reaches an accepting ID after n moves. then M1 has to search

atmost nm/! IDs before reaching an accepting ID. So. if M accepts lV, then M 1

also accepts lV (eventually). Hence T(M) = T(M j ).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is

accepted by the model. and (b) the infinite storage is restricted in size but not

in accessibility to the storage in comparison with the Turing machine model. It

is called the linear bounded automaton (LBA) because a linear function is used

to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and

develop the relation between the linear bounded automata and context-sensitive

languages. It should be noted that the study of context-sensitive languages is

important from practical point of view because many compiler languages lie

between context-sensitive and context-free languages.

A linear bounded automaton is a nondetelministic Turing machine which

has a single tape whose length is not infinite but bounded by a linear function

https://hemanthrajhemu.github.io



298 g Theory of Computer Science

of the length of the input string. The models can be described formally by the

following set format:

M = (Q. L, r. 8, qo, b, ¢ $, F)

All the symbols have the same meaning as in the basic model of Turing

machines with the difference that the input alphabet L contains two special

symbols ¢ and $. ¢ is called the left-end marker which is entered in the left-

most cell of the input tape and prevents the RIW head from getting off the left

end of the tape. $ is called the right-end marker which is entered in the right-

most cell of the input tape and prevents the RIW head from getting off the right

end of the tape. Both the endmarkers should not appear on any other cell within

the input tape, and the RIW head should not print any other symbol over both

the endmarkers.

Let us consider the input string w with II-vi = 11 - 2. The input string w can

be recognized by an LBA if it can also be recognized by a Turing machine

using no more than kn cells of input tape, where k is a constant specified in the

description of LBA. The value of k does not depend on the input string but is

purely a property of the machine. Wbenever we process any string in LBA, we

shall assume that the input string is enclosed within the endmarkers ¢ and $.

The above model ofLBA can be represented by the block diagram of Fig. 9.11.

There are t\\lO tapes: one is called the input tape, and the other, working tape.

On the input tape the head never prints and never moves to the left. On the

working tape the head can modify the contents in any way, without any

restriction.

n cells

cells

IR head moving to the right only

Finite state
RJW

lcontrol
head

kn

J
~
\

Working tape

Fig. 9.11 Model of linear bounded automaton.

Input
tape

In the case of LEA, an ID is denoted by (q, w. k), where q E O. w E r
and k is some integer between 1 and n. The transition of IDs is similar except
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that k changes to k - 1 if the RIW head moves to the left and to k + 1 if the

head moves to the right.

The language accepted by LBA is defined as the set

{w E (l: - {¢, $})*I(qo, ¢,v$, 1) rc- (q, ex, i)

for some q E F and for some integer i between 1 and n},

Note: As a null string can be represented either by the absence of input string

or by a completely blank tape, an LBA may accept the null string,

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE

LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings

generated by the context-sensitive grammars, excluding the null strings, Now

we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded

automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines

with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by

a given Turing machine M. The productions are constructed in two steps. In

step 1 we construct productions which transform the string [ql¢ w$] into the

string [q2bJ, where qj is the initial state, q2 is an accepting state, ¢ is the left-

endmarker. and $ is the right-endmarker. The grammar obtained by applying

step 1 is called the transfonnational grammar. In step 2 we obtain inverse

production rules by reversing the productions of the transformational grammar

to get the required type 0 grammar G. The construction is in such a way that

11' is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING

TO TM

For understanding the construction. we have to note that a transition of ID

corresponds to a production. We enclose IDs within brackets. So acceptance of

,\ by M corresponds to the transformation of initial ID [ql ¢ W $] into [q2b].

Also, the 'length' of ID may change if the RIW head reaches the left-end or the

right-end, i.e. when the left-hand side or the right-hand side bracket is reached.

So we get productions corresponding to transition of IDs with (i) no change in

length, and (ii) change in length, We assume that the transition table is given,
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We now describe the construction which involves two steps:

Step 1 (i) No change in length of IDs: (a) Right move. akRqt corresponding

to qt-row and arcolumn leads to the production

qta) -+ ak-Cft

(b) Left move. akLqt cOlTesponding to qt-row and arcolumn yields several

productions

for all am E r

(ii) Change in length of IDs: (a) Left-end. akLqt cOlTesponding to q/-row

and arcolumn gives

[q;a; -+ [cltbak

When b occurs next to the left-bracket, it can be deleted. This is achieved

by including the production [b -+ [.

(b) Right-end. When b occurs to the left of ], it can be deleted. This is

achieved by the production

a;b] -+ a;J for all aj E r

When the RJW head moves to the right of ], the length mcreases.

Corresponding to this \ve have a production

q;] -+ qtb] for all qt E Q

(iii) lmrodllction ofendmarkers. For introducing endmarkers for the input

string, the following productions are included:

at -+ [qj ¢ a; for at E r. at 1= b

for all at E r, at 1= b

For removing the brackets from [q2b], we include the production

[q2b] -+ S

Recall that qj and q2 are the initial and final states, respectively.

Step 2 To get the required grammar, reverse the arrows of the productions

obtained in step 1. The productions we get can be called inverse productions.

The new grammar is called the generative grammar. We illustrate the

construction \'lith an example.

EXAMPLE 9.11

Consider the TM described by the transition table given in Table 9.9. Obtain

the inverse production rules.

Solution

In this example. qj is both initial and final.

Step 1 (i) Prodllctions corresponding to right moves

(9.1)
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(ii) (a) Productions corresponding to left-end

[b ~ [

(b) Productions corresponding to rig',ot-end

(9.2)

bb] ~ b],

(iii) 1 ~ [qj¢1,

lb] ~ 1],

1 ~ IS],

ql] ~ qlb],

[qlb] ~ S

(9.3)

(9.4)

TABLE 9.9 Transition Table for Example 9.11

Present state b

Step 2 The inverse productions are obtained by reversing the arrows of the

productions (9.1)-(9.4).

¢ql ~ ql¢ b q ~ ~ ql l, bql ~ q~l

[ ~ [b, b] ~ bb], 1] ~ lb]

qlb ~ ql], q ~ b ~ q ~ ] . [cII¢l ~ 1

1$] ~ 1, S ~ [q1b]

Thus we have shown that there exists a type 0 grammar corresponding to

a Turing machine. The converse is also true (we are not proving this), i.e. given

a type 0 grammar G. there exists a Tming machine accepting L(G). Actually,

the class of recursively enumerable sets, the type 0 languages, and the class of

sets accepted by TM are one and the same. We have shown that there exists

a recursively enumerable set which is not a context-sensitive language (see

Theorem 4.4). As a recursive set is recursively enumerable, Theorem 4.4 gives

a type 0 language which is not type 1. Hence, 4s1 c.~ (d Property 4,

Section 4.3) is established.

9.10 LINEAR BOUNDED AUTOMATA AND LANGUAGES

A linear bounded automaton M accepts a string w if. after starting at the initial

state with RIW head reading the left-endmarker, M halts over the right-end-

marker in a final state. Otherwise, w is rejected.

The production rules for the generative grammar are constructed as in the

case of Turing machines. The following additional productions are needed in

the case of LBA.

Qiqr$ ~ qf$

¢lrS ~ ¢qr,

for all Qi E r

¢qf ~ qt
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EXAMPLE 9.12

Find the grammar generating the set accepted by a linear bounded automaton

M whose transition table is given in Table 9.10.

TABLE 9.10 Transition Table for Example 9.12

Present state Tape input symbol

~ $ 0

---7q1 ~Rq1 1Lq2 ORq2

q2 ~Rq4 1Rq3 1Lq1

q3 $Lq1 1Rq3 1Rq3.

® Halt OLq4 ORq4

Solution

Step 1 (A) (i) Productiolls corresponding to right moves. The seven right

moves in Table 9.10 give the following productions:

(9.5)

q30 ~ lq3

q3 1 ~ lq3

q.+l ~ Oq.+

qlc): ~ c):qj.

qjl ~ OC):.

q:c): ~ C):C).+,

q:O ~ lq3

(ii) Productions corresponding to left moves. There are four left moves in

Table 9.10. Each left move yields four productions (corresponding to the four

tape symbols). These are:

(a) lLq: corresponding to ql-row and O-column gives

c):qjO ~ q:¢l, SqjO ~ C)2$}, OqlO ~ q201, lq j O ~ q211 (9.6)

(b) lLql corresponding to qj-rmv and I-column yields

¢q:l ~ ql¢l, Sq:l ~ qjSL Oq:l ~ ql0!, lq:l ~ qlll (9.7)

(c) SLqj corresponding to qrro\V and $-column gives

c):q3$ ~ qj¢$, Sq3$ ~ CJlS$, 0CJ3$ ~ CJjO$, lCJ3$ ~ CJ l l$ (9.8)

(d) OLq.+ corresponding to CJ.+-row and O-column yields

¢CJ.+O ~ CJ.+¢O, $q.+O ~ q.+$O, Oq.+O ~ q.+OO, lq.+O ~ q410 (9.9)

(B) There are no productions corresponding to change in length.

(C) The productions for introducing the endmarkers are

¢ ~ [C)l¢¢

$ ~ [CJ1¢$,

°~ [(1J¢0,
1 ~ [ql¢L

[q.+] ~ S

¢ -+ ¢$]

$ ~ $$]

°~ OS]
1 ~ 1$]

(9.10)

(9.11)
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(9.12)

q: q4$ ---7 q:q4

q:q4 ---7 q4

(D) The LBA productions are

q:q.($ ---7 q4$,

$q4$ ---7 q4$,

Oq4$ ---7 q4$,

1q4$ ---7 q4$

Step 2 The productions of the generative grammar are obtained by reversing

the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of l·s.

Solution

\Ve design a TM so that we have ww after copying W E {I}*. Define M by

M = ({qa. CJI, CJ2' CJ3}' {l}. {L b}, 8. CJa, b, {q3})

where 8 is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol

b a

qo qoaR q,bL

q, q,1L q3bR q21R

q2 q21R q1 1L

q3

Tne procedure is simple.

M replaces every 1 by the symbol a. Then M replaces the lightmost a by

1. It goes to the light end of the string and writes a 1 there. Thus M has added

a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches CJI after replacing aU1's by a's and reading the blank at the end

of the input string. After replacing a by 1. M reaches q2' M reaches q3 at the

end of the process and halts. If H' = Iii. than we have 1211 at the end of the

computation. A sample computation is given below.

qa Il r- aqa 1 1-- aaqab r- aqja

r- a1qc.b r- aCJ I11 r- qIa11

r- 1qc.11 r- 11CJc. 1 r- 111qc.b

r- 11CJc. 11 r- 1qI111

r- qI111I r- q1b1111 r- q3 1111
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EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {O, I} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to

recognize L. Figure 9.12 gives a DFA accepting L.

° °

1

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to

the right. So the TM's move will always be to the right. Also M reads the input

symbol and changes state. So the TM M 1 does the same; it reads an input

symbol. does not change the symbol and changes state. At the end of the

computation. the TM sees the first blank b and changes to its final state. The

initial ill of M j is qoW. By defining 6(qo, b) =(qj, b, R), M j reaches the initial

state of M. M j can be described by Fig. 9.13.

(1.1.R) (0,0, R)
(0,0, R)

(1, 1, R)

(1,1,R)

Fig. 9.13 TM for Example 9.14.

Note: q) is the unique final state of M j • By comparing Figs. 9.12 and 9.13 it

is easy to see that strings of L are accepted by M j •

EXAMPLE 9.15

Design a TM that reads a string in {O, I}* and erases the rightmost symbol.

Solution

The required TM M is given by

M = ({qo, qj, q2, q3, q4}' {O, I}, {O. 1, b}, 6, qo. b, {q4})
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where 8 is defined by

8(qo, 0) = (e/j, 0, R)

8(q], 0) = (qj, 0, R)

8(q], b) = (q2' b, L)

8(q2, 0) = (q3' b, L)

8(q3' 0) = (q3' 0, L)

8(q3' b) = (q4' b, R)

8(qo, 1) = (qj, 1, R)

8(qj' 1) = (ql' 1, R)

8(q2' 1) = (q3' b, L)

8(q3' 1) = (q3' 1, L)

(R])

(R2)

(R3)

(R4)

(Rs)

(~)

Let w be the input string, By (R]) and (R2), M reads the entire input string

w. At the end, M is in state qj' On seeing the blank to the right of w, M reaches

the state q2 and moves left. The rightmost string in w is erased (by (R4)) and

the state becomes q3' Afterwards M moves to the left until it reaches the left-

end of w, On seeing the blank b to the right of w, M changes its state to q4'

which is the final state of M. From the construction it is clear that the rightmost

symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {02
1i I 11 2: O}.

Solution

Let ,v be an input string in {O} *. The TM accepting L functions as follows:

1. It wlites b (blank symbol) on the leftmost 0 of the input string w. This

is done to mark the left-end of w.

2. M reads the symbols of w from left to right and replaces the alternate

O's with x's.

3. If the tape contains a single 0 in step 2, M accepts w.

4. If the tape contains more than one 0 and the number of O's is odd in

step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in

step 1).

6. M goes to step 2.

Each iteration of step 2 reduces w to half its size. Also whether the number

of O's seen is even or odd is known after step 2. If that number is odd and

greater than 1, IV cannot be 02
1i

(step 4). In this case M rejects w. If the number

of 0' s seen is 1 (step 3), M accepts w (In this case 0
211

is reduced to 0 in

successive stages of step 2).

We define M by

M = ({qo, qj, (f2, q3' q4' ql' ql}, {O}, {O, x, b}, 8, qo, b, {qiD

where 8 is defined by Table 9.12.
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TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol

0 b .r

qo bRq1 bRqt xRqt

q1 .rRq2 bRqf xRq1

q2 ORq3 bRq4 xRq2

q3 xRq2 bRq6 xRq3

q4 OLQ4 bRQ1 xLQ4

Qr

Qt

From the construction, it is apparent that the states are used to know

whether the number of O's read is odd or even.

We can see how M processes 0000.

qoOOOO ~ bCf1000 ~ bJ.(1200 ~ b.xxl30 ~ bX{)XCf2b

~ bxOq.+xb ~ bxq.+Oxb ~ bq4--r:Oxb ~ q4bxOxb

~ bq1xO.-r:b ~ bxq10xb ~ bx.-r:Cf2Xb ~ bxxxq2b

~ bxxq4xb ~ bxq.+xxb ~ bqJ,xxxb ~ qJ,bxxxb

~ bqlxxxb ~ bXqlxxb ~ bxxqjxb ~ bxxxqjb

~ bxxxbCfI'

Hence M accepts \i'.

Also note that M always halts. If M reaches qt, the input stling 11' is

accepted by M. If M reaches qr- }t' is not accepted by M; in this case M halts

in the trap state.

EXAMPLE 9.17

Let M = ({qo, qj, q2}. {O. I}. {O, 1, b}. 8, qo, {q2})

where 8 is given by

8(qo, 0) = (qj, 1, R)

8(qj, 1) = (qo- 0, R)

8(qj. b) = (q2' b, R)

(R j )

(R2)

(R3)

Find T(M),

Solution

Let 11' E T(M), As 8(qo, 1) is not defined, w cannot start with 1. From (Rd

and (R2), we can conclude that M starts from qo and comes back to Cfo after

reaching 01.

So. qo(OI)" f-2- (lO)"qo· Also, qoOb ~ lq]b ~ Ibq2'
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So, (On"O E T(M). Also, (OltO is the only string that makes M move from

qo to C f ~ · Hence, T(M) = {(Olto In;:: O}.

SELF-TEST

Choose the correct answer to Questions 1-10:

1. For the standard TM:

(a) L =r
(b) r <;:;;; L

(c) L <;:;;; r
(d) L is a proper subset of r.

2. In a standard TM. D(q. a), q E Q, a E r is

(a) defined for all (q. a) E Q x r
(b) defined for some. not necessarily for all (q, a) E Q x r
(c) defined for no element (q. a) of Q >< r
(d) a set of triples with more than one element.

3. If D(q. .\J = (p. Y. I), then

(a) X l X ~ Xi-lqxi x" ~ XIX2 x i _ ~ p x i _ l . v x i + l ... .en

(b) X I X ~ xi_lqxi x" ~ Xl.Y2 'Yi-lYi'JXi+I ... x"

(c) X I X ~ xi_IqXi XI) ~ XI · ' ( i - 3 P . Y i - ~ X i - 1 Y X i + l ... XII

(d) X I X ~ xi-lqxi XII ~ XI X i + J 1 T \ ' X i + ~ ... Xn

4. If D(q. X;) = (p. y. R). then

(a) X I X ~ 'Yi-lqxi Xii ~ X I X ~ Xi-lypXi+l x"

(b) X 1 X ~ xi-lqxi Xli ~ X)X2 XiPXi+l .1'1/

(e) X,X2 xi-lq'Yi X" ~ X)'Y2 Xi-1PXiXi+l x"

(d) X ! X ~ Xi-1CfXi X1/ ~ .1'1"2 Xi-lypXi+J X1/

5. If D(q. Xl) = (p, y. I). then

(a) q X l x ~ Xii ~ p . v X ~ Xli

(b) q . Y I X ~ X" ~ y p . Y ~ Xli

(e) q X J X ~ X" ~ pbx] X I1

(d) q x ( r ~ X" ~ p b x ~ x"

6. If D(q. x
l1

) = (v. Y. R). then

(a) Xl ... x n_lqx" ~ PYX2J:3 Xn

(b) x • ... X1/-1q·\, p:- PYX~X3 XII

(c) Xl x n_lqxl1 ~ XIX~ X"_l)pb

(d) Xl X"_lqx,, p:- XIX~ xn_lypb

7. For the TM given in Example 9.6:

(a) qolbll p:- bqj llbbl

(b) qn lbll i- bqrllbhl

(c) Cj(Jlbll ~ lqoblll

(d) Cjolbll ~ (j3bllbbl
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8. For the TM given in Example 9.4:

(a) 011 is accepted by M

(b) 001 is accepted by M

(c) 00 is accepted by M

(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:

(a) 1 is accepted by M

(b) 11 is accepted by M

(c) 111 is accepted by M

Cd) 11111 is accepted by M

10. In a standard TM (Q. 2:. r, 8. qQ, b. F) the blank symbol b is

(a) in 2: - r
(b) in r - 2:

(c) r Ii 2:

(d) none of these

EXERCISES

9.1 Draw the transition diagram of the Turing machine given in Table 9.1.

9.2 Represent the transition function of the Turing machine given in

Example 9.2 as a set of quintuples.

9.3 Construct the computation sequence for the input 1b11 for the Turing

machine given in Example 9.5.

9.4 Construct the computation sequence for stlings 1213, 2133. 312 for the

Turing machine given in Example 9.8.

9.5 Explain how a Turing machine can be considered as a computer of integer

functions (i.e. as one that can compute integer functions; we shall discuss

more about this in Chapter 11).

9.6 Design a Turing machine that converts a binary stling into its equivalent

unary string.

9.7 Construct a Turing machine that enumerates {Oil 111 1/1 2': I}.

9.8 Construct a Turing machine that can accept the set of all even

palindromes over {O, I}.

9.9 Construct a Turing machine that can accept the strings over {O, I}

containing even number of l's.

9.10 Design a Turing machine to recognize the language {a''Y'cll1 In. m 2': I}.

9.11 Design a Turing machine that can compute proper subtraction. i.e.

111 -'- II, where m and n are positive integers. m -'- n is defined as m - n

if In > J7 and 0 if m ::; /1.
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