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Preface

The enlarged third edition of Thea/}' of Computer Science is the result of the
enthusiastic reception given to earlier editions of this book and the feedback
received from the students and teachers who used the second edition for
several years,

The new edition deals with all aspects of theoretical computer science,
namely automata, formal languages, computability and complexity, Very
few books combine all these theories and give/adequate examples. This book
provides numerous examples that illustrate the basic concepts. It is profusely
illustrated with diagrams. While dealing with theorems and algorithms, the
emphasis is on constructions. Each construction is immediately followed by an
example and only then the formal proof is given so that the student can master
the technique involved in the construction before taking up the formal proof.

The key feature of the book that sets it apart from other books is the
provision of detailed solutions (at the end of the book) to chapter-end
exercises.

The chapter on Propositions and Predicates (Chapter 10 of the second
edition) is now the first chapter in the new edition. The changes in other
chapters have been made without affecting the structure of the second edition.
The chapter on Turing machines (Chapter 7 of the second edition) has
undergone major changes.

A novel feature of the third edition is the addition of objective type
questions in each chapter under the heading Self-Test. This provides an
opportunity to the student to test whether he has fully grasped the fundamental
concepts. Besides, a total number of 83 additional solved examples have been
added as Supplementary Examples which enhance the variety of problems
dealt with in the book.

ix
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292 ~ Theory of Computer Science

of COPY. The TM Ail performs the subroutine COPY. The following moves
take place for M 1: q101711- 2q=:017-11 P- 20n-11q3b f- 20n-1q31O P- 2q j O"-llO.
After exhausting O·s. q1 encounters 1. M 1 moves to state q4' All 2's are
converted back to 0' sand M 1 halts in qs. The TM M picks up the computation
by starting from qs. The qo and q6 are the states of M. Additional states are
created to check whether each °in 011I gives rise to 011I at the end of the
rightmost 1 in the input string. Once this is over, M erases 10"1 and finds 0"111
in the input tape.

M can be defined by

M = ({qo. qj, .... qd· {O. I}, {O, 1,2, b}, 8, qo, b. {qd)

where 8 is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

° 2

qo q6bR

q6 q60R q, 1R

q5 q70L

q7 qs1L

qs qgOL

qg qgOL

q,0 q" bR

q,1 q" bR q,2bR

b

q1QbR

qobR

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, a) is either a
single triple (p, y, D), where D = R or L, or is not defined. We introduce two
new models of TM:

(i) a TM with more than one tape
(ii) a TM where 8(q. a) = {(PJo YJ, D j ), (P=:, Y=:. D 2), •••• (p,., Yn Dr)}' The

first model is called a multi tape TM and the second a nondeterministic
TM.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states. an initial state qo. a subset F of Q
called the set of final states. a set P of tape symbols. a new symbol b. not in
P called the blank symbol. (We assume that :2: ~ rand b EO :2:.)
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Chapter 9: Turing Machines and Linear Bounded Automata ,g 293

There are k tapes. each divided into cells. The first tape holds the input
string w. Initially. all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input
w. All the other heads can be placed at any cell initially.

(5 is a partial function from Q x rk into Q x r k x {L, R, S}k. We use
implementation description to define (5. Figure 9.8 represents a multitape TM.
A move depends on the current state and k tape symbols under k tape heads.

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.

(iii) Each tape head moves to the left or right or remains stationary. The
heads move independently: some move to the left, some to the right
and the remaining heads do not move.

The initial ill has the initial state Cfo, the input string }v in the first tape
(input tape), empty strings of b's in the remaining k - 1 tapes. An accepting ill
has a final state. some strings in each of the k tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by
some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a k-tape TM M. We simulate M
with a single-tape TM with 2k tracks. The second. fourth, ... , (2k)th tracks hold
the contents of the k-tapes. The first. third, ... , (2k - l)th tracks hold a head
marker (a symbol say X) to indicate the position of the respective tape head.
We give an 'implementation description' of the simulation of M with a single
tape TM MI' We give it for the case k =2. The construction can be extended
to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A 2 and B5

are the current symbols to be scanned and so the headmarker X is above the two
symbols.
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Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and
fourth tracks of MI' The headmarkers of the first and third tracks are at the cells
containing the first symbol.

To simulate a move of fill. the 2k-track TM M1 has to visit the two
headmarkers and store the scanned symbols in its control. Keeping track of the
headmarkers visited and those to be visited is achieved by keeping a count and
storing it in the finite control of MI' Note that the finite control of M1 has also
the infoffilation about the states of M and its moves. After visiting both head
markers. M1 knows the tape symbols being scanned by the two heads of M.

Now /'111 revisits each of the headmarkers:

(il It changes the tape symbol in the cOlTesponding track of M1 based
on the information regarding the move of M corresponding to the state
(of M) and the tape symbol in the corresponding tape M.

(ii) It moves the headmarkers to the left or right.
(iii) M1 changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M) is ready
to implement its next move based on the revised positions of its headmarkers
and the changed state available in its control.

M) accepts a string \t' if the new state of M, as recorded in its control at
the end of the processing of H'. is a final state of M.

Definition 9.3 Let M be a T~I and tV an input string. The running time of M
on input w. is the number of steps that A! takes before halting. If M does not
halt on an input string w, then the running time of M on 'v is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested
in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM 1''11 is the function T(n), n being the
input size, where T(n) is defined as the maximum of the running time of Mover
all inputs w of size n.

Theorem 9.2 If fv1) is the single-tape TA! simulating multitape TM M, then
the time taken by lli![ to simulate n moves of M is O(n~).
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Chapter 9: Turing Machines and Linear Bounded Automata J;\ 295

Proof Let AI be a k-tape TM. After 11 moves of M, the head markers of M]
will be separated by 211 cells or less. (At the worst. one tape movement can be
to the left by 11 cells and another can be to the right by II cells. In this case the
tape headmarkers are separated by 211 cells. In the other cases, the 'gap'
between them is less). To simulate a move of M, the TM M] must visit all the
k headmarkers. If M starts with the leftmost headmarker, M I will go through all
the headmarkers by moving right by at most 211 cells. To simulate the change
in each tape. M] has to move left by at most 271 cells; to simulate changes in
k tapes, it requires at most two moves in the reverse direction for each tape.

Thus the total number of moves by M 1 for simulating one move of M is
atmost 411 + 2k. (211 moves to light for locating all headmarkers, 211 + 2k moves
to the left for simulating the change in the content of k tapes.) So the number
of moves of M] for simulating n moves of M is 11(411 + 2k). As the constant k
is independent of 11, the time taken by M] is O(n:;).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as
deterministic TM). 8(q). a) was defined (for some elements of Q x n as an
element of Q x r x {L R}. Now we extend the definition of 8. In a
nondetemlinistic TM. 8(ql, a) is defined as a subset of Q x r x {L R}.

Defmition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, L r. 8, qo.
b. F) where

1. Q is a finite nonempty set of states
2. r is a finite nonempty set of tape symbols
3. b E r is called the blank symbol
4. L is a nonempty subset of 1. called the set of input symbols. We

assume that bEL.
5. qo is the initial state
6. F r;;;; Q is the set of final states
7. 8 is a partial function from Q x r into the power set of Q x r x

{L. R}.
1Vote: If q E Q and x E rand 8(q. x) = {(ql. :\'), D 1). (q:;, .\':;, D:;) . ...,

(q", )'11' Dill) then the NTM can chose anyone of the actions defined by
(qi' )'i, DJ for i = 1. 2..... 11.

We can also express this in terms of f- relation. If 8(q. x) = {(qi, )ii, DJI
i =1. 2.... , 11} then the ID zq.nv can change to anyone of the 11 IDs specified
by the l1-element set 8(q. x).

Suppose 8(q, x) = {(q], .\'1, L). (q:;, ":;. R). (Q3, \'3, L)}. Then

or

or
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296 ~ Theory of Computer Science

So on reading the input symbol, the NTM M whose cun-ent ID is 2]2: ...

ZkqxZk+] ... 2/1 can change to anyone of the three IDs given earlier.

Remark When o(q, x) = {(qi' Yi, D i) Ii = 1. 2, .... n} then NTM chooses any
one of the n triples totally (that is, it cannot take a state from one triple, another
tape symbol from a second tliple and a third D(L or R) from a third triple, etc.

Definition 9.6 W E L* is accepted by a nondetenninistic TM M if qaw ~
xqfY for some final state qt.

The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the fonn xqy (for some q tt: F) may
be reached as the result of applying the input string w. But 'v is accepted by M
as long as there is some sequence of moves leading to an ID with an accepting
state. It does not matter that there are other sequences of moves leading to an
ID with a nonfinal state or TM halts without processing the entire input stling.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M j

such that T(M) = TUY!I)'

Proof We constmct M] as a multitape TM. Each symbol in the input string
leads to a change in ID. M] should be able to reach all IDs and stop when an
ID containing a final state is reached. So the first tape is used to store IDs of
M as a sequence and also the state of M. These IDs are separated by the symbol
* (induded as a tape symbol). The cun-ent ID is known by marking an x along
with the ID-separator * (The symbol * marked with x is a new tape symbol.)
All IDs to the left of the cun-ent one have been explored already and so can be
ignored subsequently. Note that the cun-ent ID is decided by the cun-ent input
symbol of w.

Figure 9.10 illustrates the deterministic TM M j •

Tape 1

Tape 2

x
101 * 102 * 103 * 104 * 105 * 106 * •.•

Fig. 9.10 The deterministic TM simulating M.

To process the current ID. M] perfOlIDs the follO\ving steps.

1. M j examines the state and the scanned symbol of the cun-ent ID. Using
the knowledge of moves of M stored in the finite control of Mjo M]
checks whether the state in the cun-ent ID is an accepting state of M.
In this case M I accepts and stops simulating M.

https://hemanthrajhemu.github.io
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2. If the state q say in the current ID xqa), is not an accepting state of M 1

and O(q, a) has k triples, M 1 copies the ID xqay in the second tape and
makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M j modifies these k IDs in tape 2 according to the k choices given by
O(q, a).

4. M1 returns to the marked current ID. erases the mark x and marks the
next ID-separator * with x (to the * which is to the left of the next ID
to be processed). Then M j goes back to step 1.

M j stops when an accepting state of M is reached in step 1.
Now M 1 accepts an input string IV only when it is able to find that M has

entered an accepting state, after a finite number of moves. This is clear from
the simulated sequence of moves of M j (ending in step 1)

We have to prove that M j will eventually reach an accepting ID (that is,
an ID having an accepting state of M) if M enters an accepting ID after n
moves. Note each move of M is simulated by several moves of M j •

Let m be the maximum number of choices that M has for various (q, a)'s.

(It is possible to find m since we have only finite number of pairs in Q x r.)
So for each initial ID of M. there are at most m IDs that M can reach after one
move. at most m2 IDs that I'v! can reach after two moves. and so on. So
corresponding to n moves of M, there are at most 1 + m + m2 + ... + mil moves
of M 1• Hence the number of IDs to be explored by M 1 is at most nm".

We assume that M] explores these IDs. These IDs have a tree structure
having the initial ID as its root. We can apply breadth-first search of the nodes
of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,
and so on.) If At reaches an accepting ID after n moves. then M1 has to search
atmost nm/! IDs before reaching an accepting ID. So. if M accepts lV, then M 1

also accepts lV (eventually). Hence T(M) = T(M j ).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is
accepted by the model. and (b) the infinite storage is restricted in size but not
in accessibility to the storage in comparison with the Turing machine model. It
is called the linear bounded automaton (LBA) because a linear function is used
to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-sensitive
languages. It should be noted that the study of context-sensitive languages is
important from practical point of view because many compiler languages lie
between context-sensitive and context-free languages.

A linear bounded automaton is a nondetelministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear function
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of the length of the input string. The models can be described formally by the
following set format:

M = (Q. L, r. 8, qo, b, ¢ $, F)

All the symbols have the same meaning as in the basic model of Turing
machines with the difference that the input alphabet L contains two special
symbols ¢ and $. ¢ is called the left-end marker which is entered in the left
most cell of the input tape and prevents the RIW head from getting off the left
end of the tape. $ is called the right-end marker which is entered in the right
most cell of the input tape and prevents the RIW head from getting off the right
end of the tape. Both the endmarkers should not appear on any other cell within
the input tape, and the RIW head should not print any other symbol over both
the endmarkers.

Let us consider the input string w with II-vi = 11 - 2. The input string w can
be recognized by an LBA if it can also be recognized by a Turing machine
using no more than kn cells of input tape, where k is a constant specified in the
description of LBA. The value of k does not depend on the input string but is
purely a property of the machine. Wbenever we process any string in LBA, we
shall assume that the input string is enclosed within the endmarkers ¢ and $.
The above model ofLBA can be represented by the block diagram of Fig. 9.11.
There are t\\lO tapes: one is called the input tape, and the other, working tape.
On the input tape the head never prints and never moves to the left. On the
working tape the head can modify the contents in any way, without any
restriction.

n cells

cells

IR head moving to the right only

Finite state
RJW lcontrol
head

kn

J
~
\

Working tape

Fig. 9.11 Model of linear bounded automaton.

Input
tape

In the case of LEA, an ID is denoted by (q, w. k), where q E O. w E r
and k is some integer between 1 and n. The transition of IDs is similar except
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that k changes to k - 1 if the RIW head moves to the left and to k + 1 if the
head moves to the right.

The language accepted by LBA is defined as the set

{w E (l: - {¢, $})*I(qo, ¢,v$, 1) rc- (q, ex, i)

for some q E F and for some integer i between 1 and n},

Note: As a null string can be represented either by the absence of input string
or by a completely blank tape, an LBA may accept the null string,

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE

LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings
generated by the context-sensitive grammars, excluding the null strings, Now
we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded
automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines
with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by
a given Turing machine M. The productions are constructed in two steps. In
step 1 we construct productions which transform the string [ql¢ w$] into the
string [q2bJ, where qj is the initial state, q2 is an accepting state, ¢ is the left
endmarker. and $ is the right-endmarker. The grammar obtained by applying
step 1 is called the transfonnational grammar. In step 2 we obtain inverse
production rules by reversing the productions of the transformational grammar
to get the required type 0 grammar G. The construction is in such a way that
11' is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING

TO TM

For understanding the construction. we have to note that a transition of ID
corresponds to a production. We enclose IDs within brackets. So acceptance of
,\ by M corresponds to the transformation of initial ID [ql ¢ W $] into [q2b].
Also, the 'length' of ID may change if the RIW head reaches the left-end or the
right-end, i.e. when the left-hand side or the right-hand side bracket is reached.
So we get productions corresponding to transition of IDs with (i) no change in
length, and (ii) change in length, We assume that the transition table is given,
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We now describe the construction which involves two steps:

Step 1 (i) No change in length of IDs: (a) Right move. akRqt corresponding
to qt-row and arcolumn leads to the production

qta) -+ ak-Cft

(b) Left move. akLqt cOlTesponding to qt-row and arcolumn yields several
productions

for all am E r
(ii) Change in length of IDs: (a) Left-end. akLqt cOlTesponding to q/-row

and arcolumn gives
[q;a; -+ [cltbak

When b occurs next to the left-bracket, it can be deleted. This is achieved
by including the production [b -+ [.

(b) Right-end. When b occurs to the left of ], it can be deleted. This is
achieved by the production

a;b] -+ a;J for all aj E r
When the RJW head moves to the right of ], the length mcreases.
Corresponding to this \ve have a production

q;] -+ qtb] for all qt E Q

(iii) lmrodllction ofendmarkers. For introducing endmarkers for the input
string, the following productions are included:

at -+ [qj ¢ a; for at E r. at 1= b

for all at E r, at 1= b

For removing the brackets from [q2b], we include the production

[q2b] -+ S

Recall that qj and q2 are the initial and final states, respectively.

Step 2 To get the required grammar, reverse the arrows of the productions
obtained in step 1. The productions we get can be called inverse productions.
The new grammar is called the generative grammar. We illustrate the
construction \'lith an example.

EXAMPLE 9.11

Consider the TM described by the transition table given in Table 9.9. Obtain
the inverse production rules.

Solution

In this example. qj is both initial and final.

Step 1 (i) Prodllctions corresponding to right moves

(9.1)
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(ii) (a) Productions corresponding to left-end

[b ~ [

(b) Productions corresponding to rig',ot-end

(9.2)

bb] ~ b],

(iii) 1 ~ [qj ¢1,

lb] ~ 1],

1 ~ IS],

ql] ~ qlb],

[qlb] ~ S

(9.3)

(9.4)

TABLE 9.9 Transition Table for Example 9.11

Present state b

Step 2 The inverse productions are obtained by reversing the arrows of the
productions (9.1)-(9.4).

¢ql ~ ql¢ bq~ ~ ql l, bql ~ q~l

[ ~ [b, b] ~ bb], 1] ~ lb]

qlb ~ ql], q~b ~ q~]. [cII¢l ~ 1

1$] ~ 1, S ~ [q1b]

Thus we have shown that there exists a type 0 grammar corresponding to
a Turing machine. The converse is also true (we are not proving this), i.e. given
a type 0 grammar G. there exists a Tming machine accepting L(G). Actually,
the class of recursively enumerable sets, the type 0 languages, and the class of
sets accepted by TM are one and the same. We have shown that there exists
a recursively enumerable set which is not a context-sensitive language (see
Theorem 4.4). As a recursive set is recursively enumerable, Theorem 4.4 gives
a type 0 language which is not type 1. Hence, 4s1 c.~ (d Property 4,
Section 4.3) is established.

9.10 LINEAR BOUNDED AUTOMATA AND LANGUAGES

A linear bounded automaton M accepts a string w if. after starting at the initial
state with RIW head reading the left-endmarker, M halts over the right-end
marker in a final state. Otherwise, w is rejected.

The production rules for the generative grammar are constructed as in the
case of Turing machines. The following additional productions are needed in
the case of LBA.

Qiqr$ ~ qf$

¢lrS ~ ¢qr,

for all Qi E r
¢qf ~ qt
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EXAMPLE 9.12

Find the grammar generating the set accepted by a linear bounded automaton
M whose transition table is given in Table 9.10.

TABLE 9.10 Transition Table for Example 9.12

Present state Tape input symbol

~ $ 0

---7q1 ~Rq1 1Lq2 ORq2

q2 ~Rq4 1Rq3 1Lq1

q3 $Lq1 1Rq3 1Rq3.

® Halt OLq4 ORq4

Solution

Step 1 (A) (i) Productiolls corresponding to right moves. The seven right
moves in Table 9.10 give the following productions:

(9.5)

q30 ~ lq3

q3 1 ~ lq3

q.+l ~ Oq.+

qlc): ~ c):qj.

qjl ~ OC):.

q:c): ~ C):C).+,

q:O ~ lq3

(ii) Productions corresponding to left moves. There are four left moves in
Table 9.10. Each left move yields four productions (corresponding to the four
tape symbols). These are:

(a) lLq: corresponding to ql-row and O-column gives

c):qjO ~ q:¢l, SqjO ~ C)2$}, OqlO ~ q201, lq j O~ q211 (9.6)

(b) lLql corresponding to qj-rmv and I-column yields

¢q:l ~ ql¢l, Sq:l ~ qjSL Oq:l ~ ql0!, lq:l ~ qlll (9.7)

(c) SLqj corresponding to qrro\V and $-column gives

c):q3$ ~ qj¢$, Sq3$ ~ CJlS$, 0CJ3$ ~ CJjO$, lCJ3$ ~ CJ l l$ (9.8)

(d) OLq.+ corresponding to CJ.+-row and O-column yields

¢CJ.+O ~ CJ.+¢O, $q.+O ~ q.+$O, Oq.+O ~ q.+OO, lq.+O ~ q410 (9.9)

(B) There are no productions corresponding to change in length.
(C) The productions for introducing the endmarkers are

¢~ [C)l¢¢

$ ~ [CJ1¢$,

°~ [(1J¢0,
1 ~ [ql¢L

[q.+] ~ S

¢ -+ ¢$]

$ ~ $$]

°~ OS]
1 ~ 1$]

(9.10)

(9.11)
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(9.12)

q: q4$ ---7 q:q4

q:q4 ---7 q4

(D) The LBA productions are

q:q.($ ---7 q4$,

$q4$ ---7 q4$,

Oq4$ ---7 q4$,

1q4$ ---7 q4$

Step 2 The productions of the generative grammar are obtained by reversing
the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of l·s.

Solution

\Ve design a TM so that we have ww after copying W E {I}*. Define M by

M = ({qa. CJI, CJ2' CJ3}' {l}. {L b}, 8. CJa, b, {q3})

where 8 is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol

b a

qo qoaR q,bL

q, q,1L q3bR q21R

q2 q21R q1 1L

q3

Tne procedure is simple.
M replaces every 1 by the symbol a. Then M replaces the lightmost a by

1. It goes to the light end of the string and writes a 1 there. Thus M has added
a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches CJI after replacing aU1's by a's and reading the blank at the end
of the input string. After replacing a by 1. M reaches q2' M reaches q3 at the
end of the process and halts. If H' = Iii. than we have 1211 at the end of the
computation. A sample computation is given below.

qa Il r- aqa 1 1-- aaqab r- aqja

r- a1qc.b r- aCJ I11 r- qIa11

r- 1qc.11 r- 11CJc. 1 r- 111qc.b

r- 11CJc. 11 r- 1qI111

r- qI111I r- q1b1111 r- q3 1111
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EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {O, I} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to

recognize L. Figure 9.12 gives a DFA accepting L.

° °

1

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M 1 does the same; it reads an input
symbol. does not change the symbol and changes state. At the end of the
computation. the TM sees the first blank b and changes to its final state. The
initial ill of M j is qoW. By defining 6(qo, b) =(qj, b, R), M j reaches the initial
state of M. M j can be described by Fig. 9.13.

(1.1.R) (0,0, R)
(0,0, R)

(1, 1, R)

(1,1,R)

Fig. 9.13 TM for Example 9.14.

Note: q) is the unique final state of M j • By comparing Figs. 9.12 and 9.13 it
is easy to see that strings of L are accepted by M j •

EXAMPLE 9.15

Design a TM that reads a string in {O, I}* and erases the rightmost symbol.

Solution

The required TM M is given by

M = ({qo, qj, q2, q3, q4}' {O, I}, {O. 1, b}, 6, qo. b, {q4})
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where 8 is defined by

8(qo, 0) = (e/j, 0, R)

8(q], 0) = (qj, 0, R)

8(q], b) = (q2' b, L)

8(q2, 0) = (q3' b, L)

8(q3' 0) = (q3' 0, L)

8(q3' b) = (q4' b, R)

8(qo, 1) = (qj, 1, R)

8(qj' 1) = (ql' 1, R)

8(q2' 1) = (q3' b, L)

8(q3' 1) = (q3' 1, L)

(R])

(R2)

(R3)

(R4)

(Rs)

(~)

Let w be the input string, By (R]) and (R2), M reads the entire input string
w. At the end, M is in state qj' On seeing the blank to the right of w, M reaches
the state q2 and moves left. The rightmost string in w is erased (by (R4)) and
the state becomes q3' Afterwards M moves to the left until it reaches the left
end of w, On seeing the blank b to the right of w, M changes its state to q4'

which is the final state of M. From the construction it is clear that the rightmost
symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {02
1i I 11 2: O}.

Solution

Let ,v be an input string in {O} *. The TM accepting L functions as follows:

1. It wlites b (blank symbol) on the leftmost 0 of the input string w. This
is done to mark the left-end of w.

2. M reads the symbols of w from left to right and replaces the alternate
O's with x's.

3. If the tape contains a single 0 in step 2, M accepts w.

4. If the tape contains more than one 0 and the number of O's is odd in
step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in
step 1).

6. M goes to step 2.

Each iteration of step 2 reduces w to half its size. Also whether the number
of O's seen is even or odd is known after step 2. If that number is odd and
greater than 1, IV cannot be 02

1i

(step 4). In this case M rejects w. If the number
of 0' s seen is 1 (step 3), M accepts w (In this case 0211 is reduced to 0 in
successive stages of step 2).

We define M by

M = ({qo, qj, (f2, q3' q4' ql' ql}, {O}, {O, x, b}, 8, qo, b, {qiD

where 8 is defined by Table 9.12.
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TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol

0 b .r

qo bRq1 bRqt xRqt

q1 .rRq2 bRqf xRq1

q2 ORq3 bRq4 xRq2

q3 xRq2 bRq6 xRq3

q4 OLQ4 bRQ1 xLQ4

Qr

Qt

From the construction, it is apparent that the states are used to know
whether the number of O's read is odd or even.

We can see how M processes 0000.

qoOOOO ~ bCf1000 ~ bJ.(1200 ~ b.xxl30 ~ bX{)XCf2b

~ bxOq.+xb ~ bxq.+Oxb ~ bq4--r:Oxb ~ q4bxOxb

~ bq1xO.-r:b ~ bxq10xb ~ bx.-r:Cf2Xb ~ bxxxq2b

~ bxxq4xb ~ bxq.+xxb ~ bqJ,xxxb ~ qJ,bxxxb

~ bqlxxxb ~ bXqlxxb ~ bxxqjxb ~ bxxxqjb

~ bxxxbCfI'

Hence M accepts \i'.

Also note that M always halts. If M reaches qt, the input stling 11' is
accepted by M. If M reaches qr- }t' is not accepted by M; in this case M halts
in the trap state.

EXAMPLE 9.17

Let M = ({qo, qj, q2}. {O. I}. {O, 1, b}. 8, qo, {q2})

where 8 is given by

8(qo, 0) = (qj, 1, R)

8(qj, 1) = (qo- 0, R)

8(qj. b) = (q2' b, R)

(R j )

(R2)

(R3)

Find T(M),

Solution

Let 11' E T(M), As 8(qo, 1) is not defined, w cannot start with 1. From (Rd
and (R2), we can conclude that M starts from qo and comes back to Cfo after
reaching 01.

So. qo(OI)" f-2- (lO)"qo· Also, qoOb ~ lq]b ~ Ibq2'
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So, (On"O E T(M). Also, (OltO is the only string that makes M move from
qo to Cf~· Hence, T(M) = {(Olto In;:: O}.

SELF-TEST

Choose the correct answer to Questions 1-10:

1. For the standard TM:
(a) L =r
(b) r <;:;;; L
(c) L <;:;;; r
(d) L is a proper subset of r.

2. In a standard TM. D(q. a), q E Q, a E r is
(a) defined for all (q. a) E Q x r
(b) defined for some. not necessarily for all (q, a) E Q x r
(c) defined for no element (q. a) of Q >< r
(d) a set of triples with more than one element.

3. If D(q. .\J = (p. Y. I), then
(a) XlX~ Xi-lqxi x" ~ XIX2 xi_~pxi_l.vxi+l ... .en
(b) XIX~ xi_lqxi x" ~ Xl.Y2 'Yi-lYi'JXi+I ... x"

(c) XIX~ xi_IqXi XI) ~ XI ·'(i-3P.Yi-~Xi-1YXi+l ... XII

(d) XIX~ xi-lqxi XII ~ XI Xi+J1T\'Xi+~ ... Xn

4. If D(q. X;) = (p. y. R). then
(a) XIX~ 'Yi-lqxi Xii ~ XIX~ Xi-lypXi+l x"

(b) X1X~ xi-lqxi Xli ~ X)X2 XiPXi+l .1'1/

(e) X,X2 xi-lq'Yi X" ~ X)'Y2 Xi-1PXiXi+l x"
(d) X!X~ Xi-1CfXi X1/ ~ .1'1"2 Xi-lypXi+J X1/

5. If D(q. Xl) = (p, y. I). then
(a) qXlx~ Xii ~ p.vX~ Xli

(b) q.YIX~ X" ~ yp.Y~ Xli

(e) qXJX~ X" ~ pbx] XI1

(d) qx(r~ X" ~ pbx~ x"

6. If D(q. x l1 ) = (v. Y. R). then
(a) Xl ... x n_lqx" ~ PYX2J:3 Xn

(b) x • ... X1/-1q·\, p:- PYX~X3 XII

(c) Xl x n_lqxl1 ~ XIX~ X"_l)pb

(d) Xl X"_lqx,, p:- XIX~ xn_lypb

7. For the TM given in Example 9.6:
(a) qolbll p:- bqj llbbl
(b) qn lbll i- bqrllbhl
(c) Cj(Jlbll ~ lqoblll
(d) Cjolbll ~ (j3bllbbl
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8. For the TM given in Example 9.4:
(a) 011 is accepted by M
(b) 001 is accepted by M
(c) 00 is accepted by M
(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:
(a) 1 is accepted by M
(b) 11 is accepted by M
(c) 111 is accepted by M
Cd) 11111 is accepted by M

10. In a standard TM (Q. 2:. r, 8. qQ, b. F) the blank symbol b is
(a) in 2: - r
(b) in r - 2:
(c) r Ii 2:
(d) none of these

EXERCISES

9.1 Draw the transition diagram of the Turing machine given in Table 9.1.

9.2 Represent the transition function of the Turing machine given in
Example 9.2 as a set of quintuples.

9.3 Construct the computation sequence for the input 1b11 for the Turing
machine given in Example 9.5.

9.4 Construct the computation sequence for stlings 1213, 2133. 312 for the
Turing machine given in Example 9.8.

9.5 Explain how a Turing machine can be considered as a computer of integer
functions (i.e. as one that can compute integer functions; we shall discuss
more about this in Chapter 11).

9.6 Design a Turing machine that converts a binary stling into its equivalent
unary string.

9.7 Construct a Turing machine that enumerates {Oil 111 1/1 2': I}.

9.8 Construct a Turing machine that can accept the set of all even
palindromes over {O, I}.

9.9 Construct a Turing machine that can accept the strings over {O, I}
containing even number of l's.

9.10 Design a Turing machine to recognize the language {a''Y'cll1 In. m 2': I}.

9.11 Design a Turing machine that can compute proper subtraction. i.e.
111 -'- II, where m and n are positive integers. m -'- n is defined as m - n
if In > J7 and 0 if m ::; /1.
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Decidability and
Recursively Enumerable
Languages

In this chapter the fonnal definition of an algorithm is given. The problem of
decidability of various class of languages is discussed. The theorem on halting
problem of Turing machine is proved.

10.1 THE DEFINITION OF AN ALGORITHM

In Section 4.4, we gave the definition of an algorithm as a procedure (finite
sequence of instructions ""hich can be mechanically carried out) that tenninates
after a finite number of steps for any input. The earliest algorithm one can think
of is the Euclidean algorithm, for computing the greatest common divisor of
two natural numbers. In 1900, the mathematician David Hilbert, in his famous
address at the International congress of mathematicians in Paris, averred that
every definite mathematical problem must be susceptible for an exact settlement
either in the fonn of an exact answer or by the proof of the impossibility of its
solution. He identified 23 mathematical problems as a challenge for future
mathematicians; only ten of the problems have been solved so far.

Hilbert's tenth problem was to devise 'a process according to which it can
be detennined by a finite number of operations'. whether a polynomial over
Z has an integral root. (He did not use the word 'algorithm' but he meant the
same.) This was not answered until 1970.

The fonnal definition of algorithm emerged after the works of Alan Turing
and Alanzo Church in 1936. The Church-Turing thesis states that any
alEOlithmic procedure that can be carried out by a human or a computer, can
also be carried out by a Turing machine. Thus the Turing machine arose as
an ideal theoretical model for an algorithm. The Turing machine provided a
machinery to mathematicians for attacking the Hilberts' tenth problem, The
problem can be restated as follows: does there exist a TM that can accept a

309
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polynomial over n variables if it has an integral root and reject the polynomial
if it does not have one,

In 1970, Yuri Matijasevic. after studying the work of Martin Davis, Hilary
Putnam and Julia Robinson showed that no such algorithm (TUling machine)
exists for testing whether a polynomial over n vmiables has integral roots. Now
it is universally accepted by computer scientists that Turing machine is a
mathematical model of an algorithm.

10.2 DECIDABILITY

We are familiar with the recursive definition of a function or a set. We also
have the definitions of recursively enumerable set~ and recursive sets (refer to
Section 4.4). The notion of a recursively enumerable set (or language) and a
recursive set (or language) existed even before the dawn of computers.

Now these terms are also defined using Turing machines. When a Turing
machine reaches a final state. it ·halts.' We can also say that a Turing machine
M halts when Ai reaches a state q and a current symbol a to be scanned so
that O(q. a) is undefined. There are TMs that never halt on some inputs in any
one of these \vays, So we make a distinction between the languages accepted
by a TM that halts on all input strings and a TM that never halts on some input
strings.

DefInition 10.1 A language L ~ 2> is recursively enumerable if there exists
a TM M. such that L = rUvf).

DefInition 10.2 A language L ~ I* is recurslve if there exists some
TM M that satisfies the following two conditions.

(i) If V\' E L then M accepts H' (that is. reaches an accepting state on
processing !-t') and halts.

(ii) If 11' ~ L then Ai eventually halts. without reaching an accepting state.

Note: Definition 10.2 formalizes the notion of an 'algorithm'. An algorithm,
in the usual sense, is a well-defined sequence of steps that always terminates
and produces an answer. The Conditions (i) and (ii) of Definition 10.2 assure
us that the TM always halts. accepting H' under Condition (i) and not accepting
under Condition (ii). So a TM. defining a recursive language (Definition 10.2)
always halts eventually just as an algorithm eventually terminates.

A problem with only two answers Yes/No can be considered as a language
L. An instance of the problem with the answer 'Yes' can be considered as an
element of the corresponding language L; an instance with ans,ver 'No' is
considered as an element not in L.

DefInition 10.3 A problem with tvvo answers (Yes/No) is decidable if the
corresponding language is recursive. In this case, the language L is also called
decidable.
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Definition 10.4 A problemflanguage is undecidable if it is not decidable.

Note: A decidable problem is called a solvable problem and an undecidable
problem an unsolvable problem by some authors.

10.3 DECIDABLE LANGUAGES

In this section we consider the decidability of regular and context-free
languages.

First of all. we consider the problem of testing whether a detenninistic
finite automaton accepts a given input string lV,

Definition 10.5

Am; = {(B, lV) IB accepts the input string w}

Theorem 10.1 ADFA is decidable.

Proof To prove the theorem. we have to construct a TM that always halts
and also accepts ADf.-\' We describe the TM M using high level description
(refer to Section 9.5). Note that a DFM B always ends in some state of B after
n transitions for an input string of length n.

We defme a TM M as follows:

1. Let B be a DFA and w an input string. (B, w) is an input for the Turing
machine M.

2. Simulate B and input H' in the TM M.
3. If the simulation ends in an accepting state of B. then M accepts w.

If it ends in a nonaccepting state of B, then M rejects w.

We can discuss a few implementation details regarding steps 1. 2 and 3
above. The input (B, H') for 1\1 is represented by representing the five
components Q, L, 8, qo, f by strings of L* and input string W E L*. M checks
whether (B. w) is a valid input. If not. it rejectes (B, w) and halts. If (B, w)

is a valid input. ['vi writes the initial state qo and the leftmost input symbol of
w. It updates the state using 0 and then reads the next symbol in w. This
explains step 2.

If the simulation ends in an accepting state w' then M accepts (B, w)..
Otherwise, Iv! rejects (B, IV). This is the description of step 3.

It is evident that M accepts (B, if and only if H' is accepted by the
DFA B. I

Definition 10.6

ACFG = {(G, w) i the context-free grammar G accepts the input string w}

Theorem 10.2 ACFG IS decidable.

Proof We convert a CFG into Chomsky 110lmal form. Then any derivation
of H' of length k requires 2k - 1 steps if the grammar is in C]\IF (refer
to Example 6.18). So for checking whether the input string ft of length k is
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in L(G), it is enough to check derivations in 2k - 1 steps. We know that there
are only finitely many derivations in 2k - 1 steps. Now we design a TM M
that halts as follows.

1. Let G be a CFG in Chomsky normal form and w an input string.
(G, w) is an input for M.

2. If k = 0, list all the single-step delivations. If k '* 0, list all the
derivations with 2k - 1 steps.

3. If any of the derivations in step 2 generates the given string 'v, M
accepts (G, w). Otherwise M rejects.

The implementation of steps 1-3 is similar to the steps in Theorem 10.1.
(G, w) is represented by representing the four components ViV, L, P, S of G
and input string w. The next step of the derivation is got by the production
to be applied.

M accepts (G, w) if and only if w is accepted by the CFG G.
In Theorem 4.3, we proved that a context-sensitive language is recursive.

The main idea of the proof of Theorem 4.3 was to construct a sequence
{Wo, WI> ..., Wd of subsets of (VV u L)*, that terminates after a finite
number of iterations. The given string w E L* is in L(G) if and only if w E

WI.' With this idea in mind we can prove the decidability of the context
sensitive language. I

Defmition 10.7 ACSG = {(G, ,v) I the context-sensitive grammar G accepts
the input string w}.

Theroem 10.3 ACSG is decidable.

Proof The proof is a modification of the proof of Theorem 10.2. In
Theorem 10.2, we considered derivations with 2k - 1 steps for testing whether
an input string of length k was in L(G). In the case of context-sensitive

grammar we construct Wi = {a E (Vv u L)* IS ~ a in i or fewer steps and

Ia I :; n}. There exists a natural number k such that WI. =Wk+1 =Wk+2 =...
(refer to proof of Theorem 4.3).

So w E L(G) if and only if W E Wk' The construction of WI. is the key
idea used in the construction of a TM accepting AcsG . Now we can design a
Turing machine M as follows:

1. Let G be a context-sensitive grammar and w an input string of length
n. Then (G, w) is an input for TM.

2. Construct Wo = {S}. W'+l = W, U {{3 E (Vv u L)* I there exists
ai E Wi such that a=>{3 and I{3! :; n}. Continue until WI. = Wk+1

for some k. (This is possible by Theorem 4.3.)
3. If W E WI., 'v E L(G) and M accepts (G, w); otherwise M rejects

(G, w). I

Note: If cid denotes the class of all decidable languages over L, then
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10.4 UNDECIDABLE LANGUAGES

In this section we prove the existence of languages that are not recursively
enumerable and address the undecidability of recursively enumerable
languages.

Theorem 10.4 There exists a language over 2: that is not recursively
enumerable.

Proof A language L is recursively enumerable if there exists a TM M such
that L =T(M). As L is finite, 2:* is countable (that is, there exists a one-to
one correspondence between 2:* and N).

As a Turing machine M is a 7-tuple (Q. 2:, f', 8, qo. b, F) and each
member of the 7-tuple is a finite set M can be encoded as a string. So the
set I of all TMs is countable.

Let J: be the set of all languages over 2:. Then a member of J: is a subset

of P (Note that P is infinite even though I is finite), We show that ;i is
uncountable (that is, an infinite set not in one-to correspondence with N).

We prove this by contradiction. If ;L were countable then J: can be
written as a sequence {L[, L2• L3, ... }. We \\Tite 2:* as a sequence {11']. W2'

We, . ... }. So L i can be represented as an infinite binary sequence XnXi2Xi3' ..

where

r1 ihv} E L;

lO otherwise

Using this representation we write L; as an infinite binary sequence.

L] XI]X12X 13 x]i

L, x2I x ::x :3 x:}

L i Xil Xi2Xi3 xi)

Fig. 10.1 Representation of T

We define a subset L of 2:* by the binary sequence ."].":."3 ... where Y; =
1 - Xii' If Xii =0, Yi = 1 and if Xii = I, ."; =O. Thus according to our assumption
the subset L of I* represented by the infinite binary sequence YIY:Y3 ...

should be Lk for some natural number k. But L =f. Lt. since Wk E L if and only
if Hk It: Lk~ This contradicts our assumption that ci is countable. Therefore 1.
is uncountable. As J is countable. ;L should have some members not
corresponding to any TM in 1. This proves the existence of a language over
2: tnat is not recursively enumerable. I

Defmition 10.8 ATM = {(M, w) IThe TM M accepts w}.
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Theorem 10.5 An! is undecidable.

Proof We can prove that i'inl is recursively enumerable. Construct a TM U
as follows:

(M, 11') is an input to U. Simulate M on w. If M enters an accepting state,
L! accepts (lyl, wL Hence ADl is recursively enumerable. We prove that AT1I1

is undecidable by contradiction. We assume that Anl is decidable by a TM H
that eventually halts on all inputs. Then

{
accept if M accepts 1'1i

H(M, 1V) = reject if M does not accept Hi

We construct a new TM D with H as subroutine. D calls H to determine
what M does when it receives the input (M;, the encoded description of M as
a string. Based on the received information on (M, (I"1» , D rejects M if M
accepts (M) and accepts 1vl if 1v1 rejects (IVI). D is described as follows:

1, (A1) is an input to D, where (M) is the encoded string representing M.
2, D calls H to run on (M, (A1)
3. D rejects (M) if H accepts (M, (M» and accepts (M) if H rejects

(lvI, (AI».
Now step 3 can be described as follows:

raccept if M does not accept (M)
D(UvI») = ~'" lreject if M accepts (M)

Let us look at the action of D on the input (D). According to the
construction of D,

raccept if D does not accept (D)
== ~lreject if D accepts (0)

This means D accepts (D) if D does not accept (D), which is a
contradiction. Hence ATM is undecidable.

The Turing machine U used in the proof of Theorem 10.5 is called the
universal Turing machine. U is called universal since it is simulating any other
TUling machine.

10.5 HALTING PROBLEM OF TURING MACHINE

In this section \ve introduce the reduction technique. This technique is used to
prove the undecidability of halting problem of Turing machine.

We say that problem A is reducible to problem B if a solution to problem
B can be used to solve problem A.

For example, if A is the problem. of finding some root of x4
- 3xc + 2 = 0

and B is the problem of finding some root of XC - 2 = 0, then A is reducible
to B. As XC - 2 is a factor of x-+ - 3xc + 2. a root of XC - 2 = 0 is also a root
of x4

- 3.\-" + :2 = O.
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Note: If A is reducible to Band B is decidable then A is decidable. If A is
reducible to B and A is undecidable. then B is undecidable.

Theorem 10.6 HALTrM = {(M, w) IThe Turing machine M halts on input
11'} is undecidable.

Proof We assume that HALTTM is decidable, and get a contradiction. Let M j

be the TM such that T(MI ) = HALTrM and let M I halt eventually on aU
(M, w). We construct a TM M2 as follows:

1. For M2, (M, w) is an input.
2. The TM M I acts on (M, w).

3. If M I rejects (M, w) then M 2 rejects (M, ,v).
4. If MI accepts (M, w), simulate the TM M on the input string w until

M halts.
5. If M has accepted w, M2 accepts (M, w); otherwise M 2 rejects (M, w).

When MI accepts (M, iV) (in step 4), the Turing machine M halts on w.

In this case either an accepting state q or a state q' such that D(q', a) is
undefined tiU some symbol a in w is reached. In the first case (the first
alternative of step 5) M2 accepts (M. w). In the second case (the second
alternative of step 5) M2 rejects (M, w).

It follows from the definition of M 2 that M 2 halts eventually.

Also, T(M2) = {(M, vv) IThe Turing machine accepts w}

= ATM

This is a contradiction since An.1 is undecidable.

10.6 THE POST CORRESPONDENCE PROBLEM

The Post Correspondence Problem (PCP) was first introduced by Emil Post
in 1946. Later, the problem was found to have many applications in the theory
of formal languages. The problem over an alphabet 2: belongs to a class of
yes/no problems and is stated as foUows: Consider the two lists x =(Xl' .. Xn),

Y = (YI ... Yn) of nonempty strings over an alphabet 2: = {O, 1}. The PCP
is to determine whether or not there exist i lo ..•, im, where 1 S ii S n, such
that

Note: The indices ij ' s need not be distinct and m may be greater than n.
Also, if there exists a solution to PCP, there exist infinitely many solutions.

EXAMPLE 10.1

Does the PCP with two lists x = (b, bab3, ba) and v = (b3
, ba, a) have a

solution?
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Solution

We have to determine whether or not there exists a sequence of substrings of
x such that the string formed by this sequence and the string formed by the
sequence of corresponding substrings of yare identical. The required sequence
is given by i1 = 2, i2 = 1, i3 = 1, i4 = 3, i.e. (2, 1, 1,3), and m = 4. The
corresponding strings are

=

Thus the PCP has a solution.

EXAMPLE 10.2

Y2 Yl Yl Y3

Prove that PCP with two lists x = (01, 1, 1), Y = (012
, 10, 11) has no solution.

Solution

For each substring Xi E X and Yi E )', we have IXi I < IYi I for all i. Hence
the string generated by a sequence of substrings of X is shorter than the string
generated by the sequence of corresponding substrings of y. Therefore, the PCP
has no solution.

Note: If the first substring used in PCP is always Xl and Yb then the PCP
is known as the Modified Post Correspondence Problem.

EXAMPLE 10.3

Explain how a Post Correspondence Problem can be treated as a game of
dominoes.

Solution

The PCP may be thought of as a game of dominoes in the following way: Let
each domino contain some Xi in the upper-half, and the corresponding
substring of Y in the lower-half. A typical domino is shown as

o upper-half

~ lower-half

The PCP is equivalent to placing the dominoes one after another as a
sequence (of course repetitions are allowed). To win the game, the same string
should appear in the upper-half and in the lower-half. So winning the game
is equivalent to a solution of the PCP.

I
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We state the following theorem by Emil Post without proof.

Theorem 10.7 The PCP over 2: for 12:1 ;::: 2 is unsolvable.

It is possible to reduce the PCP to many classes of two outputs
(yes/no) problems in formal language theory. The following results can be
proved by the reduction technique applied to PCP.

1. If L 1 and L2 are any two context-free languages (type 2) over an
alphabet 2: and 12:1 ;::: 2, there is no algorithm to determine whether or
not
(a) L] (l L2 = 0,
(b) L 1 (l L2 is a context-free language,
(c) L] k L2, and
(d) L1 = L2•

2. If G is a context-sensitive grammar (type 1), there is no algorithm to
determine whether or not
(a) L(G) = 0,
(b) L(G) is infinite, and
(c) Xo E L(G) for a fixed string Xcr

3. If G is a type 0 grammar, there is no algorithm to determine whether
or not any string x E 2:* is in L(G).

10.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 10.4

If L is a recursive language over 2:, show that I (I is defined as 2:* - L) is
also recursive.

Solution

As L is recursive, there is a Turing machine M that halts and T(M) =L. We
have to construct a TM M 1, such that T(M1) = [ and M 1 eventually halts.

M] is obtained by modifying M as follows:

1. Accepting states of M are made nonaccepting states of MI'
2. Let M 1 have a new state qf After reaching qfi M] does not move in

further transitions.
3. If q is a nonaccepting state of M and 6(q, x) is not defined, add a

transition from q to qf for lvh

As M halts, M 1 also halts. (If M reaches an accepting state on w, then M]
d.~es not accept wand halts and conversely.)

Also M] accepts w if and only if M does not accept w. So I is recursive.
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EXAMPLE 10.5

If Land L are both recursively enumerable. show that Land L are recursive.

Solution

Let M 1 and M 2 be two TMs such that L =T(M1) and L =T(M2). We construct
a new two-tape TM M that simulates M] on one tape and M 2 on the otheL

If the input string w of M is in L, then M1 accepts wand we declare that
M accepts w. If w E [, then M2 accepts wand we declare that M halts without
accepting. Thus in both cases, M eventually halts. By the construction of M
it is clear that T(lvl) = T(M]) = L Hence L is recursive. We can show that
[ is recursive, either by applying Example lOA or by interchanging the roles
of M) and M 2 in defining acceptance by M.

EXAMPLE 10.6

Show that ATM is not recursively enumerable.

Solution

We have already seen that Anv! is recursively enumerable (by Theorem 10.5).
If it TIY! were also recursively enumerable, then ATM is recursive (by
Example 10.5). This ~ a contradiction since ATM is not recursive by
Theorem 10.5. Hence A TM is not recursively enumerable,

EXAMPLE 10.7

Show that the union of two recursively enumerable languages is recursively
enumerable and the union of two recursive languages is recursive.

Solution

Let L 1 and L2 be two recursive languages and M 1, M 2 be the corresponding
TMs that halt. We design a Th1 M as a two-tape TM as follows:

1. w is an input string to M.
2. M copies ,von its second tape.
3. M simulates M) on the first tape. If w is accepted by M10 then M

accepts ,v.
4. M simulates /'112 on the second tape. If w is accepted by M2, then M

accepts w.

M always halts for any input w.
Tnus LJ U L2 = T(M) and hence L J U L2 is recursive.
If L) and L2 are recursively enumerable. then the same conclusion gives

a proof for L) U L2 to be recursively enumerable. As M 1 and M 2 need not
halt, M need not halt.
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SELF-TEST

1. What is the difference between a recursive language and a recursively
enumerable language?

2. The DFA M is given by

M = ({Cia, % Q2, Ci3}, to, 1}, 0, qo, {Qo})

where {) is defined by the transition Table 10.1.

TABLE 10.1 Transition Table for Self-Test 2

State 0

-,>@ q2 q1
q1 q3 qo
q2 qo q3
q3 q1 q2

Answer the following:
(a) Is (A1, 001101) in AuA?
(b) Is (M, 01010101) in ADL;.?
(c) Does M E ADFA?
(d) Find w such that (lvI, w) E ADFA .

3. What do you mean by saying that the halting problem of TM is
undecidable?

4. Describe ADFA, ACFG , AcsG, ATM , and HALTTlv1 '

5. Give one language from each of ;i rl, ;i ell, ot c,I'

6. Give a language

(a) which is in ;f csl but not in ;r: rl

(b) which is in ;f ell but not in J: c51

(c) which is in ;i ell but not in ;irl'

EXERCISES

10.1 Describe the Euclid's algorithm for finding the greatest common
divisor of two natural numbers.

10.2 Show that A NDFA = {(B, w) IB is an NDFA and B accepts w} IS

decidable.

10.3 Show that EDFA = {M IM is a DFA and T(M) = 0} is decidable.

10.4 Show that EQDFA = {(A, B) IA and Bare DFAs and T(A) = T(B)} IS

decidable

10.5 Show that ECFG is decidable (ECFG is defined in a way similar to that
of EDFA).
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10.6 Give an example of a language that is not recursive but recursively
enumerable.

10.7 Do there exist languages that are not recursively enumerable?

10.8 Let L be a language over L. Show that only one of the following are
possible for Land r.
(a) Both Land r are recursive.
(b) Neither L nor r is recursive.
(c) L is recursively enumerable but L is not.
(d) r is recursively enumerable but L is not.

10.9 What is the difference between ATM and HALTTM?

10.10 Show that the set of all real numbers between 0 and 1 is uncountable.
(A set S is uncountable if S is infinite and there is no one-to-one
correspondence between S and the set of all natural numbers.)

10.11 Why should one study undecidability?

10.12 Prove that the recursiveness problem of type 0 grammar is unsolvable.

10.13 Prove that there exists a Turing machine M for which the halting
problem is unsolvable.

10.14 Show that there exists a Turing machine Mover {O, I} and a state qm
such that there is no algorithm to determine whether or not M will enter
the state ql11 when it begins with a given ill.

10.15 Prove that the problem of determining whether or not a TM over {O, 1}
will ever print the symbol 1, with a given tape configuration, is
unsolvable.

10.16 (a) Show that {x I x is a set and x ~ x} is not a set. (Note that this
seems to be well-defined. This is one version of Russell's paradox.)

(b) A village barber shaves those who do not shave themselves but no
others. Can he achieve his goal? For example, who is to shave the
barber? (This is a popular version of Russell's paradox.)

Hints: (a) Let S = {x I x be a set and x ~ x}. If S were a set, then S E S or
S ~ S. If S ~ S by the 'definition' of S, then S E S. On the other
hand, if S E S by the 'definition' of S, then S ~ S. Thus we can
neither assert that S ~ S nor S E S. (This is Russell's paradox.)
Therefore, S is not a set.

(b) Let S = {x Ix be a person and x does not shave himself}. Let b
denote the barber. Examine whether b E S. (The argument is
similar to that given for (a).) It will be instructive to read the proof
of HP of Turing machines and this example, in order to grasp the
similarity.

10.17 Comment on the following: "We have developed an algorithm so
complicated that no Turing machine can be constructed to execute the
algorithm no matter how much (tape) space and time is allowed."
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10.18 Prove that PCP is solvable if Il: I = l.

10.19 Let x =(Xl' .. X,,) and Y =(YI ... y,,) be two lists of nonempty strings
over l: and Il: I 2: 2. (i) Is PCP solvable for n = I? (ii) Is PCP solvable
for n = 2?

10.20 Prove that the PCP with {(01, 011), (1, 10), (I,ll)} has no solution.
(Here, Xl = 01, X2 = 1, X3 = 1, YI = 011, 1'2 = 10, Y3 = 11.)

10.21 Show that the PCP with S = {(O, 10), (1 20, 03), (021, IOn has no
solution. [Hint: No pair has common nonempty initial substring.]

10.22 Does the PCP with X = (b3
, ab2

) and Y = (b3
, bab3

) have a solution?

10.23 Find at least three solutions to PCP defined by the dominoes:

1

10m

I
10

10.24 (a) Can you simulate a Turing machine on a general-purpose
computer? Explain.

(b) Can you simulate a general-purpose computer on a Turing
machine'? Explain.
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Computability

In this chapter we shall discuss the class of primitive recursive functions-a
subclass of partial recursive functions. The Turing machine is viewed as a
mathematical model of a partial recursive function.

11.1 INTRODUCTION AND BASIC CONCEPTS

In Chapters 5, 7 and 9, we considered automata as the accepting devices. In
this chapter we will study automata as the computing machines. The problem
of finding out whether a given problem is 'solvable' by automata reduces to
the evaluation of functions on the set of natural numbers or a given alphabet
by mechanical means.

We start with the definition of partial and total functions.
A partial function f from X to Y is a rule which assigns to every element

of X at most one element of Y.
A total function from X to Y is a rule which assigns to every element of

X a unique element of Y. For example. if R denotes the set of all real numbers,
the rule f from R to itself given by fer) = +J; is a partial function since fer)
is not defined as a real number when r is negative. But g(r) = 21' is a total
function from R to itself. (Note that all the functions considered in the earlier
chapters were total functions.)

In this chapter we consider total functions from Xk to X, where
X = {O, 1, 2, 3, ... } or X = {a, b}*. Throughout this chapter we denote
(0, 1, 2, ...) by N and (a, b) by L. (Recall that Xk is the set of all k-tuples
of elements of X) For example, f(m, 17) = m - 11 defines a partial function
from N to itself as f(m, 11) is not defined when m - n < 0; gem, 17) = m + 11
defines a total function from N to itself.

322
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Remark A partial or total function f from Xk to X is also called a function
of k variables and denoted by f(x), Xc, .. " Xk)' For example. f(x)- X2) =
2Xl + X2 is a function of two variables: f(l, 2) = 4, 1 and 2 are called
arguments and 4 is called a value. g(H'j_ W2) = 11'JIV2 is a function of two
variables (H)'1/2 E L*); g(ab, aa) = abaa, ab, aa are called arguments and
abaa is a value.

11.2 PRIMITIVE RECURSIVE FUNCTIONS

In this section we construct primitive recursive functions over Nand L. We
define some initial functions and declare them as plimitive recursive functions.
By applying certain operations on the primitive recursive functions obtained so
far. we get the class of primitive recursive functions.

11.2.1 INITIAL FUNCTIONS

The initial functions over N are given in Table 11.1. In particular,

5(4) = 5. Z(7) = 0

U](2, 4, 7) = 4, U?(2, 4, 7) = 2, utO, 4, 7)
_ '7
-I

TABLE 11,1 Initial Functions Over tv

Zero function Z defined by Z(x) = 0,

Successor function S defined by S(x) = x + 1

Projection function U/" defined by Ur"(.'1 "" xn) = x"

Note: As Ul(x) = x for every x in N. ui is simply the identity function. So
Uf' is also termed a generalized identity function.

The initial functions over L are given in Table 11.2. In pmticular,

nil (abab) = A

cons a(abab) = aabab

cons b(abab) = babab

Note: We note that cons a(x) and cons b(x) simply denote the concatenation
of the 'constant' string a and X and the concatenation of the constant string
band x.

TABLE 11.2 Initial Functions Over {a, b}

nil (x) = A

cons a(x) = ax

cons b(x) = bx
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In the follO\ving definition, we introduce an operation on functions over X.

Definition 11.1 If fl. f2, ... , fk are partial functions of n variables and g is
a partial function of k variables, then the composition of g with f1, 12, .. .Jk
is a partial function of 11 variables defined by

g(j1(XI, Xl> •.. , x ll ), h(x1o X2, ... , XII)' ... , fk(.>::l, X2, ..., XII))

If. for example, f1, f2 and f, are partial functions of two variables and g
is a partial function of three variables, then the composition of g with f1, 12,
f, is given by g(jl (Xl, X2), h(x)o X2), f,(X1, X2))'

EXAMPLE 11.1

Let f1(X, y) =X + y, f2(x, y) = 2x,h(x, y) =.tT and g(.>::, y, z) =X + Y + z be
functions over N. Then

g(jI(X, y), f2(X, y),h(x, y)) = g(x + y, 2x, xy)

=x+y+2x+xy

Thus the composition of g with f1, .h. 13 is given by a function h:

hex, y) = x + y + 2x + xy

Note: Definition 11.1 generalizes the composition of two functions. The
concept is useful where a number of outputs become the inputs for a subsequent
step of a program.

The composition of g with!J. .. ·,fll is total when g,fj, f2, .. ·,fn are total.
The function given in Example 11.1 is total as !J. f2, 13 and g are total.

EXAMPLE 11.2

Let f1 (x, y) =X - y, f2(X, y) =Y - X and g(x, y) = x + y be functions over
N. The function fl is defined only when x ~ y and 12 is defined only when
y ~ x. So f1 and 12 are defined only when x = y. Hence when X = y,

g(jl (x. y), f2(X, y)) = g(x - x, x - x) = g(O, 0) = 0

Thus the composition of g with fl and 12 is defined only for (x, x), where
x E N.

EXAMPLE 11.3

Let fl (:>:1' X2) = X1 X2, h(x)o X2) = A, 13(x)o X2) = Xl> and g(x)o X2, x3) = X2X3
be functions over L. Then

g(jI(Xlo X2), h(xI, X2), 13(x1, X2)) = g(XIX2, A, x[) = Ax1 = Xl

So the composition of g with !J. 12, 13 is given by a function h, where
h(x)o x:) =Xl'
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The next definition gives a mechanical process of computing a function.

Definition 11.2 A function f(x) over N is defined by recursion if there exists
a constant k (a natural number) and a function hex, y) such that

flO) = k, fen + 1) = hen, fin)) (11.1)

By induction on n, we can define fen) for all n. As f (0) = k, there is basis
for induction. Oncef(n) is known,f(n + 1) can be evaluated by using (11.1).

E;XAMPLE 11.4

Define n! by recursion.

Solution

flO) = 1 and fen + 1) = hen, fen)), where hex, y) = Sex) * y.

The above definition can be generalized for f(x]o X2, ... , Xll' X,,+I)' We
fix n variables in f(XI, X2, ... , XII+I), say. XI, X2, ..., XII" We apply Definition
11.2 to f(x], X2, ... , XII' y). In place of k we get a function g(Xlo X2, ... , XII)
and in place of hex, y), we obtain hex], X2, ... , X", y, f(x], ... , Xll' y)).

Definition 11.3 A function f of n + 1 variables is defined by recursion if
there exists a function g of n variables, and a function lz of n + 2 variables,
and f is defined as follows:

fCx:], X2 • ... , XII' 0) = g(x]. X2, .... x,,) (11.2)

f(x] ... XII' Y + 1) = h(x]o X2, ... , X'I' y, f(XI, X2, ... , Xll' y)) (11.3)

We may note that f can be evaluated for all arguments (x]o X2, ... , x"' y)
by induction on y for fixed Xj. X2, ... , X/1" The process is repeated for every
Xl' X2, .... XII"

Now \ve can define the primitive recursive functions over N.

11.2.2 PRIMITIVE RECURSIVE FUNCTIONS OVER N

Definition 11.4 A total function f over N is called primitive recursive
(i) if it is anyone of the three initial functions, or (ii) if it can be obtained
by applying composition and recursion a finite number of times to the set of
initial functions.

EXAMPLE 11.5

Show that the function fl(X, y) = X + Y is ptimitive recursive.

Solution
fl is a function of two variables. If we want f] to be defined by recursion, we
need a function g of a single variable and a function h of three variables.

fleX, 0) = X + 0 = x
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By comparing fleX, 0) with L.H.S. of (11.2), we see that g can be defined by

g(x) = x = UlC"K)

Also. flex, :v + 1) = x + (:v + 1) = (x + y) + 1 = flex, y) + 1
By comparing fi(x, Y + 1) with L.R.S. of (11.3), we have

hex. y, flex, y) = fi(x, y) + 1 = Sifl(X, y)) = s(uiex, y, fleX, y)))

Define hex, :v, z) = s(U!(x, y, z)). As g = ul, it is an initial function. The
function lz is obtained from the initial functions ui and S by composition, and
by recursion using g and h. Thus fl is obtained by applying composition and
recursion a finite number of times to initial functions ui, Uj' and S. So fl is
primitive recursive.

Note: A total function is primitive recursive if it can be obtained by applying
composition and recursion a finite number of times to primitive recursive
functions fl' f2, ... , f;,,· This is clear as each fi is obtained by applying
composition and recursion a finite number of times to initial functions.

EXAMPLE 11.6

The function f2(x. y) = x * Y is primitive recursive.

Solution

As multiplication of two natural numbers is simply repeated addition, f2 has
to be primitive recursive. We prove this as follows:

f2(x, 0) = 0, hex, y + 1) =x * (:v + 1) =hex, y) + x

i.e. hex, y + 1) =flCf2(."K, y), x). Comparing these with (11.2) and (11.3), we
can write

hex. 0) = Z(x) andf2(x. y + 1) = fl(uj(x, Y,h(x, y)), u((x. y, f2(X, y))))

By taking g = Z and h defined by

hex, y. z) = fl (U!(x, y, z), U((x, y, z))

we see that f2 is defined by recursion. As g and h are primitive recursive, 12
is primitive recursive (by the above note).

EXAMPLE 11.7

Show that f(x, y) = x' is a primitive recursive function.

Solution

We define
f(x, 0) = 1

f(x, Y + 1) = x * f(x. y)

= U((x. y. f(x, y)) * uj(x. y. f(x, y))

Therefore. f(x. y) is primitive recursive.
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EXAMPLE 11.8

Show that the following functions are primitive recursive:

(a) The predecessor function p(x) defined by

p(x) =x-I if x :f:- 0, p(x) = 0 if x = O.

(b) The proper subtraction function ..:.. defined by

x ..:.. y = X - Y if x ~ v and x..:.. y = 0 if x < y.

(c) The absolute value function I I given by

Ix I = x if x ~ 0, Ix I = -x if x < O.

(d) min (x, y), i.e. minimum of x and y.

Solution

(a) p(O) = 0 and p(y + 1) = Uf(Y, p(y))

(b) x ..:.. 0 = x and x ..:.. (y + 1) = p(x y)

(c) Ix - y I = (x ..:.. y) + (y ..:.. x)

(d) win(x, y) = x ..:.. (:r ..:.. y)

The first function is defined by recursion using an initial function. So it is
primitive recursive.

The second function is defined by recursion using the primitive recursive
function p and so it is primitive recursive. Similarly. the last two functions are
primitive recursive.

11.2.3 PRIMITIVE RECURSIVE FUNCTIONS OVER {a, b}

For constructing the primitive recursive function over {a, b}, the process is
similar to that of function over N except for some minor modifications. It
should be noted that A plays the role of 0 in (11.2) and ax or bx plays the role
of y + 1 in (11.3). Recall that 2: denotes {a, b}.

DefInition 11.5 A function f(x) over 2: is defined by recursion if there exists
a 'constant" string 11' E 2:* and functions hl(x, y) and h2(x. y) such that

f(A) =w

f(ax) = hl(x, f(x))

f(bx) = h2(x, f(x))

(,k and h: may be functions in one variable.)

(11.4)

(11.5)
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Defmition 11.6 A function f(x) , x:> ... , x ll ) over 1: is defined by recursion
if there exist functions g(x), ..., xll_)), 11)(x), ..., Xll+l), h2(Xlo ..., xll+)),
such that

f(A, X2' ..., xll ) = g(X2' ..., XII)

f(ax), X2' XII) = 11 1(.:1:). X2' , Xil • f(Xlo X2' , XIl ))

f(bx), X2, .... x ll ) = 112(x), X2' , XIl ' fix), X2, , xll ))

(hI and h2 may be functions of m variables, where m < n + 1.)

Now we can define the class of primitive recursive functions over 1:.

Definition 11.7 A total function f is primitive recursive (i) if it is anyone
of the three initial functions (given in Table 11.2), or (ii) if it can be obtained
by applying composition and recursion a finite number of times to the initial
functions.

In Example 11.9 we give some primitive recursive functions over 1:.

Note: As in the case of functions over N. a total function over 1: is primitive
recursive if it is obtained by applying composition and recursion a finite number
of times to primitive recursive function flo f2, ..., fm'

EXAMPLE 11.9

Show that the following functions are primitive recursive:

(a) Constant functions a and b (i.e. a(x) = a, b(x) = b)

(b) Identity function
(c) Concatenation
(d) Transpose
(e) Head function (i.e. head (a)a2 ..., all) =a))
(f) Tail function (i.e. tail (a)a2 ... all) = a2 ... , an)
(g) The conditional function "if x) :;t A. then X2 else X3'"

Solution
(a) As a(x) =cons a (nil (x)). the function a(x) is the composition of the

initial function cons a with the initial function nil and is hence
primitive recursive.

(b) Let us denote the identity function by id. Then,

ideA) = A

id(ax) = cons a(x)

id(bx) = cons b(x)

So id is defined by recursion using cons a and cons b. Therefore, the
identity function is primitive recursive.

(c) The concatenation function can be defined by

concat(x). X2) =X)X2

concat(A, X2) = id(x2)
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concat(ax], X2) = cons a (concat(xb X2))

concat(bx] , X2) = cons b (concat(x], X2))

SO concat is defined by recursion using id, cons a and cons b.
Therefore, concat is primitive recursive.

(d) The transpose function can be defined by trans(x) = xT
. Then

trans(A) = A

trans(ax) = concat(trans(x), a(x))

trans(bx) = concat(trans(x), b(x))

Therefore, trans(x) is primitive recursive.
(e) The head function head(x) satisfies

head(A) = A

head(ax) = a(x)

head(bx) = b(x)

Therefore, head(x) is primitive recursive.
(f) The tail function tail(x) satisfies

tail(A) = A

tail(ax) = id(x)

tail(bx) = id(x)

Therefore, tailex-) is pnm]t]ve recursive.
(g) The conditional function can be defined by

cond(x], X2, X3) = "if x] "* A then X:; else X3"

Then,

cond(A, Xb x3) = id(x3)

cond(ax], X:;, X3) = id(x:;)

cond(bx], X2, X3) = id(x:;)

Therefore, id(x], x2. :\"3) is primitive recursive.

11.3 RECURSIVE FUNCTIONS

By introducing one more operation on functions, we define the class of
recursive functions, which includes the class of primitive recursive functions.

Def"mition 11.8 Let g(x], X2' ..., X/1' y) be a total function over N. g is a
regular function if there exists some natural number Yo such that g(x], X2, .. ",
XII' Yo) = 0 for all values X], X2, ..., X/1 in N.
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For instance, g(x, y) = min(x, y) is a regular function since g(x, 0) = 0
for all x in N. But lex, y) = I x-\' 1 is not regular since lex, y) = 0 only when
x = y, and so we cannot find a fixed y such that lex, y) = 0 for all x in N.

DefInition 11.9 A function !(X1' x2' ..., XII) over N is defined from a total
function g(Xl' X2' ... , XII' y) by minimization if

(a) f{XI' X2, .... Xl/) is the least value of all y's such that g(xj, X2, ... , Xll' y) = 0
if it exists. The least value is denoted by J.1,(g(xj, X2' ... , XII' y) = 0).

(b) fi."'Cj, X2, .... Xii) is undefined if there is no y such that g(xj, X2 ... Xll' y) = O.

Note: In general. ! is partial. But, if g is regular then! is total.

DefInition 11.10 A function is recursive if it can be obtained from the initial
functions by a finite number of applications of composition, recursion and
minimization over regular functions.

DefInition 11.11 A function is partial recursive if it can be obtained from
the initial functions by a finite number of applications of composition,
recursion and minimization.

EXAMPLE 1.1.10

fix) = x/2 is a partial recursive function over N.

Solution

Let g(x, y) = 12y - x I. where 2y - x = 0 for some y only when X is even.
LetNx) = ,uJI2y - xl = 0). Thenf!(x) is defined only for even values of X

and is equal to x/2. When x is odd, !1 (x) is not defined'!1 is partial recursive.
As lex) = x/2 =!1 (x), ! is a partial recursive function.

The following example gives a recursive function which is not primitive
recursive.

EXAMPLE 11.11

The Ackermann's function is defined by

A(O, y) = y + 1

A(x + 1. 0) = A(x, 1)

A(x + 1, y + 1) = A(x, A(x + 1. y))

(11.8)

(11.9)

(11.10)

A(x, y) can be computed for every (x, y), and hence A(x, y) is total.
The Ackermann's function is not primitive recursive but recursive.
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EXAMPLE 11.12

Compute A(1. 1). A(2, 1). A(l, 2), A(2, 2).

Solution

by (11.8)

by (11.8)

by (11.10)

by (11.10)

by (11.10)

by (11.8)

by (11.10)

by (l1.10)

by (11.9)

by (11.10)

by (11.9)

by 01.8)

A(1, 1)= A(O + 1, 0 + 1)

= A(O, A(1. 0»

= A(O, A(O, 1»
= A(O, 2)

= 3

A(l, =A(O + 1, 1 + 1)

=A(O, A(1, 1»

= A(O, 3)

= 4

A(2, 1) =A(l + 1. 0 + 1)

= .4(1, .4(2, 0»

=A(1. A(1. 1»

= A(l. 3)

=A(O + 1. 2 + 1)

= A(O. A(l, 2»
=A(O. 4)

= 5

A(2, 2) = A(l + 1. 1 + 1)

= A(1, A(2, 1»

= A(1, 5)

A(1. 5) = A(O + 1. 4 + 1)

= A(O. A(1, 4)

= 1 + A(l. 4)

= 1 + A(O + 1. 3 + 1)

= 1 + A(O. A(1. 3»

= 1 + 1 + A(1. 3)

= 1 + 1 + 1 + A(1. 2) = 1 + 1 + 1 + 4

= 7

As A(L 2) =A( 1. 5). we have A(2, 2) = 7

https://hemanthrajhemu.github.io



332 .\;l Theory ofComputer Science

So far we have dealt with recursive and partial recursive functions over
N. We can define partial recursive functions over L using the primitive
recursive predicates and the minimization process. As the process is similar,
we \vi11 discuss it here.

The concept of recursion occurs in some programming languages when a
procedure has a call to the same procedure for a different parameter. Such a
procedure is called a recursive procedure. Certain programming languages like
C, C++ allow recursive procedures.

11.4 PARTIAL RECURSIVE FUNCTIONS AND TURING
MACHINES

In this section we prove that partial recursive functions introduced in the earlier
sections are Turing-computable.

11.4.1 COMPUTABILITY

In mid 1930s. mathematicians and logicians were trying to rigorously define
computability and algOlithms. In 1934 Kurt GOdel pointed out that primitive
recursive functions can be computed by a finite procedure (i.e. an algorithm).
He also hypothesized that any fL1nction computable by a finite procedure can
be specified by a recursive function. Around 1936, Tming and Church
independently designed a 'computing machine' (later termed Turing machine)
\vhich can carry out a finite procedure.

For formalizing computability, Turing assumed that. while computing, a
person wlites symbols on a one-dimensional paper (instead of a two
dimensional paper as is usually done) which can be viewed as a tape divided
into cells. He scans the cells one at a time and usually peliorms one of the three
simple operations. namely (i) \vriting a new symbol in the cell he is scanning,
(ii) moving to the cell left of the present cell, and (iii) moving to the cell right
of the present cell. These observations led Turing to propose a computing
machine. The Turing machine model we have introduced in Chapter 9 is based
on these three simple operations but with slight variations. In order to introduce
computability, \ve consider the Turing machine model due to Post. In the
present model the transition function is represented by a set of quadruples (i.e.
4-tuples), whereas the transition function of the model we have introduced in
Chapter 9 can be represented by a set of quintuples (5-tuples). For example,
6(qj. a) = (qj, a, {3) is represented by the quintuple qjaa{3CJj. Using the model
specifying the transition function in terms of quadruples. we define Turing
computable functions and prove that partially recursive functions are Turing
computable.
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11.4.2 A TURING MODEL FOR COMPUTATION

As in the model introduced in Chapter 9, Q, qo and r denote the set of states.
the initial state, and the set of tape symbols, respectively. The blank symbol b
is in r. The only difference is in the transition function. In the present model
the transition function represents only one of the following three basic
operations:

(i) Writing a new symbol in the cell scanned
(ii) Moving to the left cell

(iii) Moving to the right cell

Each operation is followed by a change of state. Suppose the Turing machine
M is in state q and scans ai' If ai is written and M enters q', then this basic
operation is represemed by the quadruple qaiad. Similarly. the other two
operations are represented by the quadruples qaiLq' and qaiRq'. Thus the
transition function can be specified by a set P of quadruples. As in Chapter 9.
we can define instantaneous descriptions, i.e. IDs.

Each quadruple induces a change of IDs. For example, qa;ajq' induces

P. ' , [3CI.qail-' I aq ai

The quadruple qaiLq' induces

and qaiRq' induces

When we require M to perform some computation, we 'feed' the input by
initial tape expression denoted by X. So qaX is the initial ID for the given
input. For computing with the given input X. the Turing machine processes
X using appropriate quadruples in P. As a result. we have qoX =ID i r- ID2

r- .... When an ID. say IDil' is reached. which cannot be changed using any
quadruple in P, M halts. In this case, ID" is called a terminal ill. Actually,
aqj a[3 is a terminal ID if there is no quadruple starting with qi{l. The terminal
ID is called the result of X and denoted by Res(X). The computed value
cOlTesponding to input X can be obtained by deleting the state appeming in it
as also some more symbols from Res(X).

11.4.3 TURING-COMPUTABLE FUNCTIONS

Before developing the concept of Turing-computable functions. let us recall
Example 9.6. The TM developed in Example 9.6 concatenates two strings a
aej [3. Initially, a and [3 appear on the input tape separated by a blank b.
Finally, the concatenated string a[3 appears on the input tape. The same
method can be adopted with slight modifications for computing I(x] , ..., x,,')'

Suppose we want to construct a TM which can compute I(xl' ... , XII,) over
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N for given arguments a], .... am' Initially, the input OJ, a2' ..., am appears
on the input tape separated by markers Xj, ... , Xlii' The computed value
f(a] , ... , am)' say, c appears on the input tape, once the computation is over.
To locate c ,ve need another marker. say y. The value c appears to the right
of X m and to the left of v. To make the construction simpler, we use the tally
notation to represent the elements of N. In the tally notation, 0 is represented
by a string of b's. A positive integer n is represented by a string consisting
of II 1's. So the initial tape expression takes the form 1"lx,1{/2x: ... 1{/mxmby.
As a resulr of computation, the initial ID qOFtxll"2X2 ... l{/lI/xlII by is changed
to a terminal ID of the form 1{/lXl1{/2X: ... 11lmx",1'q'y for some q' E Q. In
fact, the position of q' in a tenninal ID is immaterial and it can appear
anywhere in Res(X). The computed value is found between XIII and y.

Sometimes we may have to omit the leading b's.
We say that a function f(x] . ... , x",) is Turing-computable for arguments

aj, .... (1m if there exists a Turing machine for which

where ID II is a terminal ID containing f(al' ... , alii) to the left of y.
Our ultimate aim is to prove that partial recursive functions are Turing

computable. For this purpose. first of all we prove that the three initial primitive
recursive functions are Turing-computable.

11.4.4 CONSTRUCTION OF THE TURING MACHINE THAT

CAN COMPUTE THE ZERO FUNCTION Z

The zero function Z is defined as Zeal) = 0 for all al :::: O. So the initial tape
expression can be taken as X = 11l'xlby. As we require the computed value
Zeal)' namely O. to appear to the left of y, we require the machine to halt
without changing the input. (Note that 0 IS represented by b in the tally
notation.)

Thus we define a TM by taking Q = {qo, qd, r = {b. LXI_ Y},

X = l"jx,by. P consists of qobRqo, qolRqo. q(~llx1ql' qobRqo and qolRqo are
used to move to the right until Xl is encountered. q~llx1ql enables the TM to
enter the state ql' M enters qj without altering the tape symbol. In terms of
change of IDs. we have

a l"lx by f.2- l"la-l i bv L- l"I('IX by10 I.; 1(} .. I 1. , .

As there is no quadruple starting with ql' M halts and Res(X) = 11Ij(11X1by.
By deleting ql in Res(X), we get l"lxlby (which is the same as X) yielding 0
(given by b).

Note: We can also represent the quadruples in a tabular form which is
similar to the transition table obtained in Chapter 9. In this case we have to
specify (i) the new symbol written. or (ii) the movement to the left (denoted
by L/. or (iii) the movement to the right (denoted by R). So we get
Table 11.3.
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TABLE 11.3 Representation of Quadruples

State b y

r = {h. 1. Xj. y},

11.4.5 CONSTRUCTION OF THE TURING MACHiNE FOR

COMPUTING-THE SUCCESSOR FUNCTION

The successor function S is defined by Sea)) = aj + 1 for all aj 2': O. So the
initial tape expression can be taken as X = 1({lX1by (as in the case of the zero
function). At the end of the computation. we require 1([1+1to appear to the left
of Y. Hence we define a TM by taking

Q = {qo . .. " q9},

where P consists of

(i) qobRqo. qolbql' q(}"t!Rqc;
(ii) q1bRqj. qjlRqj. qlxjRqj. qj\'lq~

(iii) q~ lRq~. C]~byq3'

(iy) q3bLq3' q31Lq3' q3yLq3. q,X1Lq.+
(v) qJ,lLqJ,. C]J,blq).

(vi) q)lRqo.

(vii) qc;bRq6' qc;lRq6' C]fY"tjRq6' q6yu 17
(viii) q71Lq7. q7b1qs.

(ix) qsbLqs. qslLqs· qsyLqs. q8x IX jq9'

The corresponding operations can be explained as follows:

(i) If :'v.f starts from the initial lD. the head replaces the first 1 it
encounters by b. Afterwards the head moves to the right until it
encounters Y (as a result of q()lbqj. qjbRql' qllRql. qlxlRql)'

(ii) y is replaced by 1 and M enters q~. Once the end of the input tape is
reached. y is added to the next cell. M enters q3 (qjylq~. q~lRq~.

q~byq3)'

(iii) Then the head moves to the left and the state is not changed until Xl

is encountered (q3)'Lq3. q3yLq3' q3bLq3)'
(iv) On encountering Xlo the head moves to the left and 1\1 enters qJ,. Once

again the head moves to the left till the left end of the input string is
reached (q3xjLqJ,. q)LqJ,).

(v) The leftmost blank (written in point (i)) is replaced by 1 and M enters
q) ((].+blq)).

Thus at the end of operations (i)-(v). the input part remains unaffected but
the first 1 is added to the left of y.
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(vi) Then the head scans the second 1 of the input string and moves right,
and M enters qo (qs1Rqo).

Operations (i)-(vi) are repeated until all the 1's of the input part
(i.e. in 1ii1 ) are exhausted and 11 ... 1 (al times) appear to the left
of y. Now the present state is qo, and the current symbol is Xj.

(vii) M in state qo scans Xl, moves right. and enters CJ6' It continues to move
to the right until it encounters y (CJox lRCJ6, q6bRCJ6, CJ6 1RCJ6, CJfrYIRCJ6)'

(viii) On encountering y. the head moves to the left and M enters CJ7, after
which the head moves to the left until it encounters b appearing to the
left of 1"1 of the output part. This b is changed to 1, and M enters

CJs (CJ6yLCJ7. q l lLq7, q7b jCJS)'
(ix) Once M is in qs, the head continues to move to the left and on scanning

Xl. M enters CJ9' As there is no quadruple starting with q9, M halts
(qsbLqs· CJsILqs, qsxIXICJ9)'

The machine halts, and the terminal ill is 1Ulq9Xjl"I+1y. For example, let
us compute S(I). In this case the initial ill is CJolx] by. As a result of the
computation, we have the following moves:

CJOlxlby 1- CJjbxjby r- bCJ]xjby

f- bXICJ/J)'I- bx1bqlY r- bx jbCJ:1

r- bx lblCJ2b r- bx lblq3Y r- bx l bCJ3 1y

r- bCJ,xlb1y r- CJ4bx l b1y r- qslx1b1y

r- 1CJ6-y j bh r- 1x jb1CJ6Y r- l.y lbq71y

r- LrjCJ7b1y r- lxjCJsllv r- 1Qsx j lly

r- lCJ9x j 11y

Thus. M halts and SO) = 2 (given by 11 to the left of y).

11.4.6 CONSTRUCTION OF THE TURING MACHINE FOR

COMPUTING THE PROJECTION Ur
Recall Ut'(al' .... a/l1) = ai' The initial tape expression can be taken as

We define a Turing machine by taking Q = {qo, ..., qs}

r = {b. L Xl> .... XII!' y}. P consists of

qozRqo

qoxiLqj.

CJ:;:RCJ:

CJ::vlCJ,·

for all ;: E r - {x;}

qlbbqg' qlbq:

for all ;: E r - {y}

q3 1Rq3' q3bYCJ4
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qJ.zLqJ. for all z E 1- {x;}

qJ.xiLqS, qsILqs, qsblq6' q6 ILq7, q7 Ibq2

q7zRqS for all z E f- {I}

The operations of M are as follows:

(i) M starts from the initial ill and the head moves to the right until it
encounters Xi (qozRqo)·

(ii) On seeing Xi, the head moves to the left (qoXiLql)'
(iii) The head replaces 1 (the rightmost 1 in l a

;) by b (q1lbq2)'
(iv) The head moves to the right until it encounters y and replaces y by 1

(q2zRq2' Z E f - {y} and q~vlq3)'

(v) On reaching the right end, the head scans b and replaces this b by
Y (q3byqJ.).

(vi) The head moves to the left until it scans the symbol b. This b is
replaced by 1 (qJ.zLqJ., Z E f - {x;}, qJ.xiLqS' qsblq6)'

(vii) The head moves to the left and one of the l' s in 1{/i is replaced by
b. M reaches q2 (q6ILq,. qilbq2)'
As a result of (i)-(vii), one of the 1's in l a

; is replaced by band
1 is added to the left of y. Steps (iv)-(vii) are repeated for all l' s
in I"i.

(viii) On scanning Xi-I' the head moves to the right and M enters
qs (q,xi-lRqS)'

As there are no quadruples starting with qs, the Turing machine M halts.
When i :j:. 1 and ai :j:. O. the telminal ill is I"lXI ... Xi-lq81";xi ... xl1blaiy.
For example, let us compute Ul(l. 2. 1):

qol.tlIl.c2Ix3by ~ Ix 1 llqox21.\:3by

r- Lt1lq1Ix2h 3by r- Ixllq2bx2Ix3by

~ IXllbx2Ix3bq2Y r- Ix[lbx2Ix)7q31

r- lxIlbx2Ix3blq3b r- lXllbx2lx}blq4Y

~ Ix 1lbq4x2Ix}bly r- Ix! Iqsbx21x}bly

r- Ixllq6Ix2Ix3blv r- lXlq711x2Ix3bly

r- b:lq2blx2Ix3blv

From the above derivation. we see that

l.Yjlq2bx2Ix3by ~ l.Ylq2bl.t21x3bIy

Repeating the above steps, we get

Ixlq2blx2lx}bl.v P- LCjqslh2Ix3blly

It should be noted that this construction is similar to that for the successor
function. While computing U/", the head skips the portion of the input
corresponding to ai. j :j:. i. For every 1 in l"i. 1 is added to the left of y.
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Thus we have shown that the three initial primitive recursive functions are
Turing-computable. Next we construct Turing machines that can perform
composition, recursion. and minimization.

11 .4.7 CONSTRUCTION OF THE TURING MACHINE THAT

CAN PERFORM COMPOSITION

Let fIC-'l' X.2' ..., .\,,)•...• fiJxI, .... XIII) be Turing-computable functions. Let
g(YI' .. " YI.) be Turing-computable. Let h("I, ... , XIII) = g(fl(XI ...• xm) .•••

.MXi' . , ., XIII»' We construct a Turing machine that can compute h(aj, ...• am)
for given arguments aj, .... am' This involves the following steps:

Step 1 Construct Turing machines All' .... Mk which can compute fl' ..., .I;.
respectively. For the TMs Mj, .... lvII.:' let T' = {I, b, Xl. X.:; • .... xn , y} and
X = 1°1,] 10m X in by. But the number of states for these TMs will vary.
Let 111 + 1. 11k + 1 be the number of states for /\.11, .... A'h. respectively.
As usuaL the initial state is (jo and the states for M i are qQ, ... , q,,;, As in the
earlier constructions. the set Pi of quadruples for Mi is constructed in such a
way that there is no quadruple starting with ql1;'

Step 2 Let f;(ai' ..., am) = bi for i = 1. 2, ... , k. At the end of step 1,
we have M;'s and the computed values bi's. As g is Turing-computable. we
can construct a TM A'h+l which can compute g(b] • .... bk)· For Mk+ l •

X , - I hl .' 10m ' l .- X \ ••• X III 7)

(\Ve use different markers for Mk+ 1 so that the TM computing h to be
constructed need not scan the inputs a] . ..., am') Let I1k+\ + 1 be the number
of states of M k+]. As in the earlier constructions, M k+ 1 has no quadruples
starting with qk+ I'

Step 3 At the end of step 2. we have TMs M I , ... , Mb lvh+1 which give
b l ..... bin and g(b] . .... bJ = c (say). respectively. So we are able to
compute h(al' .... am) using k + 1 Turing machines. Our objective is to
construct a single TM kh+.2 which can compute heal' ... , an,). We outline the
construction of M without giving the complete details of the encoding
mechanism. For M. let

T' = {1. b, Xi' " .. X"I' x'\.

(1) In the beginning, lv! simulates M j • As a result. the value b j =
fi(al' ..., am) is obtained as output. Thus we get the tape expression
1°\xI 1!!2x .:; ... 1(1mxml bly which is the same as that obtained by M 1

while halting. lv! does not halt but cbanges y to x'] and adds by to the
right of X'I' The head moves to the left to reach the beginning of X.
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(ii) The tape expression obtained at the end of (i) is

The construction given in (i) is repeated. i.e. M simulates M 2• .•.• Mk,

changes y to x;, and adds by to the right of x;. After simulating Mk>
the tape expression is

X' = I"IXl ... I"mxm 1btx'l ... 1bk-lXk_tlbkx'k by

Then the head moves to the left until it is positioned at the cell having
1 just to the right of xm .

(iii) M simulates Mk+1• Mk+1 with initial tape expression X' halts with the
tape expression Iblx'i ... Ibkx;" 1'y. As a result, the corresponding tape
expression for M is obtained as

·1"1.- I"2x 1"",.- 1b1 ,J Ibh-' Ii'v.,1 2' . . "", AI'" ., k ~

(iv) The required value is obtained to the left of y. but Ib
tx'l ... Ihkx'k also

appears to the left of c. M erases all these symbols and moves Iiy just
to the right of XIII' The head moves to the cell having x", and M halts.
The final tape expression is 1"lxJI"2x2 ... 1"mxm I(y.

11.4.8 CONSTRUCTION OF THE TURING MACHINE THAT
CAN PERFORM RECURSION

Let g(XI' .... x",). h(Yl' 1'2, .... Ym.d be Turing-computable. Let f(x[o ... ,
Xm+1) be defined by recursion as follows:

f(XI' .... Xm • 0) = g(x] ... XII,)

f(x) . ... , x"', I' + 1) = h(xio ... , xm, y, f(xJ' ... , Xm' Y»

For the Turing machine Ai, computing f(a1o .... am, c), (say k), X IS

taken as

As the construction is similar to the construction for computing
composition. \ve outline below the steps of the construction.

Step 1 Let l'vf simulate the Turing machine M' which computes g(at, ... , am)'
The computed value, namely g(a) , all,). is placed to the left of y. If
c = O. then the computed yalue g(a] , a,/i) is f(a]- .... am, 0). The head
is placed to the right of Xl/! and M halts.

Step 2 If c is not equal to zero, lito the left of Xm+1 is replaced by bi. The
marker Y is changed to Xm+2 and bv is added to the right of X",+2' The head
moves to the left of 1"1.

Step 3 h is computable. M is allowed to compute h for the arguments at •...,

a",_ O. g(at . ... , am) \vhich appear to the left of XJ' ... , xm' Xm+1o XII/+2,
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respectively. The computed value is f(a J •••• , 0.1/1' 1). And f(a], ... , 0.1/1' 2)

... f(a], .. " am. c) are computed successively by replacing the rightmost b
and computing h for the respective arguments.

The computation stops with a terminal ill. namely

bI"!>-I'" q··I'·y Ik,. k f( (C')-'I -... .t AI/+] ." =. a], ... , [m'

11.4.9 CONSTRUCTION OF THE TURING MACHINE THAT

CAN PERFORM MINIMIZATION

When f(x], ... , xm) is defined from g(x] . .. " X"1' y) by minimization,
f(xj . .... XI/) is the least of all k's such that g(xlo .... Xm' k) = O. So the
problem reduces to computing g(aj . .... 0. 111' k) for given arguments
a), ... , am and for values of k starting from O. f(aj, ... , am) is the first k
for which g(a], .... 0.111' k) = O. Hence as soon as the computed value of
g(a] . .... am' y) is zero, the required Turing machine M has to halt. Of
course, when no such y exists. M never halts, andf(a), ...• am) is not defined.

Thus the construction of M is in such a way that it simulates the TM that
computes g(a] . .... alii' k) for successive values of k. Once the computed value
g(al' .... am' k) =a for the first time. M erases by and changes xlll+I to y. The
head moves to the left of :r,n and M halts.

As partial recursive functions are obtained from the initial functions by a
finite number of applications of composition. recursion and minimization
(Definition 11.11) by the various constructions we have made in this section.
the partial recursive functions become Turing-computable.

Using Godel numbering \vhich converts operations of Turing machines
into numeric quantities. it can be proved that Turing-computable functions are
partial recursive. (For proof. refer Mendelson (1964).)

11.5 SUPPLEMENTARY EXAMPLES

EXAMPLE 11.1 3

Shmv that the function f(x), x~, ... , Xli) = 4 IS primitive recursive.

Solution
4 = 5"+(0)

= 5"\Z('YtJ)

= 5"+(Z(Uj'(x\. x~ . ... , XII»)

I.e.
f(x]. X~, .... XII) = S"+(Z( U{'(Xj, X~, ... , xl/)))'

As f is the composition of initial functions, f is primitive recursive.
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EXAMPLE 11.14

If I(X1' x2) is primitive recursIve, show that g(XI' x~, x" X4) = I(XI' X4) IS

primitive recursive.

Solution
g(xj, X2' x" X4)

= I(xl' X4)

=I(UI
4
(X\l X2, x" X4)' U}(Xl' X2' X3' X4))

U j-+ and uj are initial functions and hence primitive recursive. I is primitive
recursive. As the function g is obtained by applying composition to primitive
recursive functions, g is primitive recursive (by the Note appearing at the end
of Example 11.5).

EXAMPLE 11.15

If I(x, y) is primitive recursIve. show that g(x, y) =1(4. y) is primitive
recurSIve.

Solution

Let hex, y) = 4. h IS primitive recursive by Example 11.13.

g(x, y)

=1(4, 1')

=I(h(x, y). vl(x, .\'))

As I and g are primitive recursive and Co' IS an initial function, g IS
primitive recursive.

EXAMPLE 11.16

Show that I(x, y) =l\4 + 7-1.,,3 + 4y5 is primitive recursive.

Solution

As 11 (x, y) =x + y is primitive recursive (Example 9.5), it is enough to prove
that each summand of I(x, y) IS primitive recursive.

But.

As multiplication is primitive recursive, g(x, y) = x 2l is primitive recursive.
As hex, 1') = ,n' is primitive recursive, 7xy3 = .\}" + ' .. + xy3 is primitive

recursive. Similarly, 41'5 is primitive recursive.
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SELF-TEST

Choose the correct answer to Questions 1-10.

1. 5(Z(6» is equal to
(a) U1

3(L 2. 3)
(b) Ui'(L 2. 3)
(c) ufo, 2, 3)
(d) none of these.

2. Cons a(y) is equal to
(a) /\
(b) ya
(c) ay
(d) a

3. min(x, y) is equal to
(a) x -=-(x -=-y)

(b) y -=- (y -=- x)

(c) x - Y
(d) y - x

4. A(L 2) is equal to
(a) 3
(b) 4
(c) 5
(d) 6

5. f(x) = x/3 over N is
(a) total
(b) partial
(c) not partial
(d) total but not partial.

6. 1fI{4}(3) is equal to
(a) 0
(b) 3
(c) 4
(d) none of these.

7. sgn(x) takes the value 1 if
(a) x < 0
(b) x ::::; 0
(c) x > 0
(d) x 2': 0

8. IfIA + IfIB = 1f!,4uB if
(a) A u B = A
(b) A u B = B
(c) A II B = A

(d) A II B = 0
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9. U2'+C5(4), 5(5), 5(6), Z(7)) IS

(a) 6
(b) 5
(c) 4
(d) 0

10. If g(x, y) = min(x, y) and hex, y) = Ix - y I. then:
(a) Both functions are regular functions.
(b) The first function is regular and the second is not regular.
(c) Neither of the functions is regular.
(d) The second function is not regular.

State whether the Statements 11-15 are true or false.

11. f(x, y) = x + y is primitive recursive.

12. 3 -=- 4 = O.

13. The transpose function is not primitive recursive.

14. The Ackermann's function is recursive but not primitive recursive.

15. A(2, 2) = 7.

EXERCISES

11.1 Test which of the following functions are total. If a function is not
total. specify the arguments for which the function is defined.

(a) f(x) = x/3 over N

(b) fex) = 1/(x - 1) over N
(c) f(x) = _~ - 4 over N
(d) f(x) = x + lover N
(e) f(x) =rover N

11.2 Show that the following functions are primitive recursive:

r1 if x =0
(a) X{Oj(x) = ~

lO if x "# 0

(b) f(x) = r
(c) f(x, y) = maximum of x and y

{
X/2 when x is even

(d) f(x) =
(x - 1)/2 when x is odd

(e) The sign function defined by

sgn(O) = 0, sgn(x) = 1 if x> O.

https://hemanthrajhemu.github.io



344 i;1. Theory ofComputer Science

gif x> v
(f) L(x. ,) =

if x :S y

(1 if x = v
(g) Eer, v) = to if x *- v

11.3 Compute A(3, 2). A(2, 3), A(3, 3).

11.4 Show that the following functions are primitive recursive:

(a) q(x. y) = the quotient obtained when x is divided by y
(b) rex, y) = the remainder obtained when x is divided by y

{
2X if x is a perfect square

(c) f(x) =
2x + 1 otherwise

11.5 Show that f(x) = integral part of j; is patti'll recursive.

11.6 Show that the Fibonacci numbers are generated by a primitive recursive
function.

11.7 Let f(O) = 1, f(l) = 2, f(2) = 3 and f(x + 3) = f(x) + f(x + 1)1 +
fi.'( + 2)3. Shovv that f(:r) is primitive recursive.

11.8 The characteristic function XA of a given set A is defined as

ra if a ~ A
x\(a) = ~

II if a E A

If A, B are subsets of Nand XAo XB are recursive, show that X/, XAuB,
Xv.. B are also recursive.

11.9 Show that the characteristic function of the set of all even numbers is
recursive. Prove that the characteristic function of the set of all odd
integers is recursive.

11.10 Show that the function lex. .1') = x - v is partial recursive.

11.11 Show that a constant function over N. i.e. fen) =k for all n in N where
k is a fixed number. is primitive recursive.

11.12 Show that the characteristic function of a finite subset of N is primitive
recurSIve.

11.13 Show that the addition function fl (x, y) is Turing-computable.
(Represent x and v in tally notation and use concatenation.)

11.14 Show that the Tming machine 1'v1 in the Post notation (i.e. the transition
function specified by quadruples) can be simulated by a Turing
machine Iv! (as defined in Chapter 9).

[Hint: The transition given by a quadruple can be simulated by two
quintuples of i'v1' by adding new states to M~]
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11.15 Compute Z(4) using the TUling machine constructed for computing the
zero function.

11.16 Compute 5(3) using the Turing machine which computes 5.

11.17 Compute U?(2. 1. 1). Ui'(L 2, 1). U3\L 2, 1) using the Turing
machines which can compute the projection functions.

11.18 Construct a Turing machine which can compute lex) = x + 2.

11.19 Construct a Turing machine which can compute f{.ylo xJ = XI + 2 for
the arguments 1, 2 (i.e. Xl = 1, X2 = 2).

11.20 Construct a Turing machine which can compute l(xl' X2) =XI + Xo for
the arguments 2. 3 (i.e. Xl = 2. X2 = 3).
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12 Complexity

When a problem/language is decidable, it simply means that the problem is
computationally solvable in principle, It may not be solvable in practice in the
sense that it may require enormous amount of computation time and memory,
In this chapter we discuss the computational complexity of a problem, The
proofs of decidability/undecidability are quite rigorous, since they depend
solely on the definition of a Turing machine and rigorous mathematical
techniques. But the proof and the discussion in complexity theory rests on the
assumption that P -:;t NP. The computer scientists and mathematicians strongly
believe that P -:;t "Nt>. but this is still open.

This problem is one of the challenging problems of the 21st century. This
problem carries a prize money of $lM. P stands for the class of problems that
can be solved by a deterministic algorithm (i.e. by a Turing machine that
halts) in polynomial time: "Nt> stands for the class of problems that can be
solved by a nondeterministic algorithm (that is, by a nondeterministic TM) in
polynomial time; P stands for polynomial and ~TJ> for nondeterminisitc
polynomial. Another important class is the class of NP-complete problems
which is a subclass of "Nt>.

In this chapter these concepts are formalized and Cook's theorem on the
NP-completeness of SAT problem is proved.

12.1 GROWTH RATE OF FUNCTIONS

\Vhen we have two algorithms for the same problem, we may require a
comparison between the running time of these two algorithms. With this in
mind. we study the grO\vth rate of functions defined on the set of natural
numbers.

In this section. lv' denotes the set of natural numbers.
346
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Definition 12.1 Let ,j; g : N -7 R+ (R+ being the set of all positive real
numbers), We say that fen) = O(g(n» if there exist positive integers C and
No such that

f(n) S Cg(n) for all n ~ No,

In this case we say f is of the order of g (or f is 'big oh' of g)

Note: f(n) = O(g(n» is not an equation. It expresses a relation between two
functions f and g.

EXAMPLE 12.1

Let f(n) = 4n3 + 5112 + 7n + 3. Prove that f(n) = 0(n3
).

Solution

In order to prove that f(n) = 0(n3
), take C = 5 and No = 10. Then

f(n) = 4n3 + 5n2 + 7n + 3 S 5n3 for n ~ 10

\Vhen n = 10. 5112 + 7n + 3 = 573 < 103. For 11 > 10, 5n2 + 7n + 3 < n
3

•

Then, f(n) = 0(11\

Theorem 12.1 If pen) = Gk1/ + Gk_lnk-I + ... + ([In + Go is a polynomial
of degree k over Z and az, > 0, then pen) = O(nk).

Proof pen) = Qk1/ + aZ_ln
k
-

1 + ... + Gin + Go. As Qk is an integer and
positive, (lk ~ 1.

As {[i-i' aZ-2' ... , (Ii' ao and k are fixed integers, choose No such that for
all 11 ~ each of the numbers

Hence,

n
lak-21 la11 lao I 1
-~2-' .. ,,~. k is less than

n 11 n k
(*)

Also.

for all n 2 No

So,
S az + 1

pen) S 0/.

by (*)

where
Hence.

p(ll) = O(nk).
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Corollary The order of a polynomial is detennined by its degree.

Defmition 12.2 An exponential function is a function q : N -'7 N defined by

q(n) = a" for some fixed a > 1.

When n increases, each of n, n". 2" increases. But a comparison of these
functions for specific values of 11 will indicate the vast difference between the
growth rate of these functions.

TABLE 12.1 Growth Rate of Polynomial and Exponential Functions

n fen) = n2 g(n) = n2 + 3n + 9 q(n) = 2"

1 1 13 2

5 25 49 32

10 100 139 1024

50 2500 2659 (113)1015

100 10000 10309 (1.27)1030

1000 1000000 1003009 (1.07)10301

From Table 12.1. it is easy to see that the function q(ll) grows at a very fast
rate when compared to fen) or g(ll). In particular the exponential function
grows at a very fast rate when compared to any polynomial of large degree.
We prove a precise statement comparing the growth rate of polynomials and
exponential function.

Deftnition 12.3 We say g '* O(j), if for any constant C and No, there exists
n :2: No such that g(l1) > Cf(n).

Definition 12.4 If f and g are two functions and f = O(g), but g '* O(f),
we say that the growth rate of g is greater than that of.f (In this case
g(n)/f(n) becomes unbounded as 11 increases to 00.)

Theorem 12.2 The growth rate of any exponential function is greater than
that of any polynomial.

Proof Let pen) = ae/ + ak-lnk-1 + . , . + a1n + ao and q(n) = a" for some
a > 1.

As the growth rate of any polynomial is determined by its term with the
highest power, it is enough to prove that Ilk = O(a") and a" '* O(ll), By

L'Hospital's rule. log 11 tends to 0 as n -'7 00. (Here log n = 10gel1.) If
n

then.

I
(~(n»" = le

(log n 'I
As 11 gets large, k ~-'-l-) tends to 0 and hence ~(Il) tends to O.
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So we can choose No such that ::;(n) ::; a for all n 2: No. Hence n' =
::;(n)" ::; all, proving It' = Oed').

To prove a" i= O(n') , it is enough to show that a"hl is unbounded for
large n. But we have proved that n' ::; a" for large n and any positive integer

a"
k and hence for k + 1. SO ,/+J ::; d' or t:+l:::: 1.

n

Multiplying by n, n(~) 2: n, which means a~
nk+ l n

values of 11. I

Note: The function n1og " lies between any polynomial function and d 1 for
any constant a. As log n 2: k for a given constant k and large values of n,
nJog " ;:: 11' for large values of n. Hence nJog 11 dominates any polynomial. But

100 Joo , 1. 1 1 I' (log x)2 B L"H '1'n ,,11= (eJog ,,) "I =e(Jog"f.Letuscacuate 1m . y . ospnas
x~O) ex

. (logx)2 I' 21 lIx I' 210gx l' 2 0rule, 11m = 1m( ogx)- = 1m --- = 1m - = .
x~o: ex x~o: e X~O: ex X~O: ex

So (log n)2 grows more slowly than en. Hence I1
Jog " = e{]og 11)2 grows more

slowly than 2'''. The same holds good when logarithm is taken over base 2
since logell and lOg211 differ by a constant factor.

Hence there exist functions lying between polynomials and exponential
functions.

12.2 THE CLASSES P AND NP

In this section we introduce the classes P and l'Ii"'P of languages.

Definition 12.5 A Turing machine M is said to be of time complexity T(n)
if the following holds: Given an input 11' of length n. M halts after making at
most T(n) moves.

Note: In this case. lH eventually halts. Recall that the standard TM is called
a deterministic TM.

Definition 12.6 A language L is in class P if there exists some polynomial
T(n) such that L = TUI1) for some deterministic TM M of time complexity
T(n).

EXAMPLE 12.2

Construct the time complexity T(n) for the Turing machine M gIven in
Example 9,7.
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Solution

In Example 9.7. the step (i) consists of going through the input string (0"1")
forward and backward and replacing the leftmost 0 by x and the leftmost 1
by Y. SO we require at most 2n moves to match a 0 with a 1. Step (ii) is
repetition of step (i) 11 times. Hence the number of moves for accepting a"Yl
is at most (2n)(nl. For strings not of the form ailb", TM halts with less than
2n~ steps. Hence T(Al) = O(n~).

We can also define the complexity of algorithms. In the case of
algorithms. nn) denotes the running time for solving a problem \vith an input
of size n. using this algorithm.

In Example 12.2. we use the notation f- which is used in expressing
algorithm. For example. a f- b means replacing a by b.

iac denotes the smallest integer greater than or equal to a. This is called
the ceiling junction.

EXAMPLE 12.3

Find the running time for the Euclidean algorithm for evaluating gcd(a. b)

where a and 17 are positive integers expressed in binary representation.

Solution

The Euclidean algOlithm has the following steps:

1. The input is (a. b)

') Repeat until 17 = 0
3. Assign a f- a mod 17
-1-. Exchange a and b
5. Output a.

Step 3 replaces a by a mod b. If a/2 2 b, then a mod 17 < b :::; al2. If
a/2 < 17, then a < 217. Wlite a = 17 + r for some r < b. Then a mod b =
r < 17 < a/2. Hence ([ mod b :::; a/2. So a is reduced by at least half in size on
the application of step 3. Hence one iteration of step 3 and step 4 reduces a

and b by at least half in size. So the maximum number of times the steps 3
and -1- are executed is min {Dog~a1. 'log~bT If n denotes the maximum of the
number of digits of a and b. that is max{ilog~al. !log~bl} then the number of
iterations of steps 3 and 4 is O(ll). We have to perform step 2 at most
min {ilog~aI. ilog~b l} times or n times. Hence T(n) = nO(n) = O(n\

Note: The Euclidean algorithm is a polynomial algOlithm.

DefInition 12.7 A language L is in class NP if there is a nondeterministic
TIvl M and a polynomial time complexity T(n) such that L = T(lv1) and Ai
executes at most nn) moves for every input 1\' of length n.
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We have seen that a deterministic TM i'vJ I simulating a nondetenninistic
TM At exists (refer to Theorem 9.3). If T(n) is the complexity of M, then the
complexity of the equivalent deterministic TM M I is 2°!TIII)). This can be
justified as follows. The processing of an input string w of length n by M is
equivalent to a ·tree' of computations by M j • Let k be the maximum of the
number of choices forced by the nondeterministic transition function. (It is
maxlo(q, .1.')1, the maximum taken over all states q and all tape symbol K)
Every branch of the computation tree has a length T(n) or less. Hence the total
number of leaves is atmost kT(n). Hence the complexity of M I is at most
20ITII/I)

It is not known whether the complexity of M] is less than 2°([(11)). Once
again an answer to this question will prove or disprove P 1= NP. But there do
exist algorithms where T(n) lies between a polynomial and an exponential
function (refer to Section 12.1).

12.3 POLYNOMIAL TIME REDUCTION AND
NP-COMPLETENESS

If P j and P~ are t\vo problems and P~ EO P, then we can decide whether
Pi EO P by relating the t\VO problems P j and P~. If there is an algorithm for
obtaining an instance of P~ given any instance of Pj, then we can decide about
the problem P j' Intuitively if this algOlithm is a polynomial one, then the
problem PI can be decided in polynomial time.

DefInition 12.8 Let PI and P~ be two problems. A reduction from PI to P~

is an algorithm which converts an instance of PI to an instance of P~. If the
time taken by the algOlithm is a polynomial pen), n being the length of the
input of Pj. then the reduction is called a polynomial reduction PI to P~.

Theorem 12.3 If there is a polynomial time reduction from P j to P: and if
P: is in P then P j is in P.

Proof Let In denote the size of the input of PI' As there is a polynomial
time reduction of P j to P:. the corresponding instance of P~ can be got in
polynomial-time. Let it be O(;1'zi), So the size of the resulting input of P: is
atmost Cln! for some constant c. As P~ is in P. the time taken for deciding the
membership in P: is O(ni:} n being the size of the input of P:. So the total
time taken for deciding the membership of m-size input of P I is the sum of
the time taken for conversion into an instance of p, and the time for decision
of the corresponding input in P~. This is O[mi + (cmjll which is the same
as o (mfk ). So PI is in P.

Definition 12.9 Let L be a language or problem in NP. Then L is NP
complete if

1. L is in NP
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2. For every language L' in ~'P there exists a polynomial-time reduction
of L' to L.

Note: . The class of NP-complete languages is a subclass of I\TP.
The next theorem can be used to enlarge the class of NP-complete

problems provided we have some knO\vn NP-complete problems.

Theorem 12.4 If Pi is NP-complete, and there is a polynomial-time
reduction of Pi to P2, then P2 is NP-complete.

Proof If L is any language in NP, we show that there is a polynomial-time
reduction of L to P2. As P1 is NP-complete, there is a polynomial-time
reduction of L to P I' SO the time taken for converting an n-size input string
11' in L to a string x in PI is at most Pl (/1) for some polynomial Pl' As there
is a polynomial-time reduction of PI to P:c. there exists a polynomial P2 such
that the input x to Pi is transferred into input y to P2 in at most P2(n) time.
So the time taken for transfomling w to y is at most PI (n) + P2(Pl (n)). As
Pl(n) + p:c(PI(n)) is a polynomial. we get a polynomial-time reduction of
L to P2. Hence P2 is NP-complete. I

Theorem 12.5 If some NP-complete problem is in P, then P = NP.

Proof Let P be an NP-complete problem and PEP. Let L be any
NP-complete problem. By definition, there is a polynomial-time reduction of
L to P. As P is in P, L is also in P by Theorem 12.3. Hence NP = P.

12.4 IMPORTANCE OF NP-COMPLETE PROBLEMS

In Section 12.3, we proved theorems regarding the properties of NP-complete
problems. At the beginning of this chapter we noted that the computer
scientists and mathematicians strongly believe that P 7: NP. At the same time,
no problem in .N'P is proved to be in P. The entire complexity theory rests
on the strong belief that P 7: NP.

Theorem 12.4 enables us to extend the class of NP-complete problems,
while Theorem 12.5 asselts that the existence of one NP-complete problem
admitting a polynomial-time algorithm will prove P =NP. More than 2500
NP-complete problems in various fields have been found so far.

We will prove the existence of an NP-complete problem in Section 12.5.
We will give a list of NP-complete problems in Section 12.6. Thousands of
NP-complete problems in various branches such as Operations Research,
Logic, Graph Theory, Combinatorics. etc. have been constructed so far. A
polynomial-time algorithm for anyone of there problems will yield a proof
of P = NP. But such multitude of NP-complete problems only strengthens the
belief of the computer scientists that P 7:- 1'01'. We will discuss more about this
in Section 12.7.
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12.5 SAT IS NP-COMPLETE

In this section, we prove that the satisfiability problem for boolean expressions
(whether a boolean expression is satisfiable) is NP-complete. This is the first
problem to be proved NP-complete. Cook proved this theorem in 1971.

12.5.1 BOOLEAN EXPRESSIONS

In Section 1.1.2, we defined a well-formed formula involving propositional
variables. A boolean expression is a well-formed formula involving boolean
variables x, y, z replacing propositions P, Q, R and connectives v, 1\ and -,.
The truth value of a boolean expression in x, y, z is determined from the truth
values of x, y, z and the truth tables for v, 1\ and -,. For example, -, x 1\ -,

(y V ~) is a boolean expression. The expression -, x 1\ -, (y V z) is true when
x is false, y is false and ~ is false.

Defmition 12.10 (a) A truth assignment t for a boolean expression E is the
assignment of truth values T or F to each of the variables in E. For example,
t = (F, F, F) is a truth assignment for (x, y, ~) where .Y, y, Z are the variables
in a boolean expression E(x, y, ~) = -, X 1\ -, (y V ~).

The value E(t) of the boolean expression E given a truth assignment t is
the truth value of the expression of E, if the truth values give by t are assigned
to the respective vmiables.

If t = (F, F, F) then the truth values of -, x and -, (y v z) are T and T.
Hence the value of E = -, X /\ -, (v V z) is T. So E(t) = T.

Definition 12.11 A truth assignment t satisfies a boolean expression E if the
truth value of E(l) is T. In other words, the truth assignment t makes the
expression E true.

Defmition 12.12 A boolean expression E is satisfiable if there exists at least
one truth assignment t that satisfies E (that is E(t) = T). For example, E =
-, X 1\ -, (y V ~) is satisfiable since E(t) = T when t = (F, F, F).

12.5.2 CODING A BOOLEAN EXPRESSION

The symbols in a boolean expression are the variables .Y, y, z, etc. the
connectives v. /\, -,. and parantheses ( and ). Thus a boolean expression in
three variables will have eight distinct symbols. The variables are written as
Xl' x~, X3- etc. Also we use X" only after using XI, x~, ... , X,,_I for variables.

We encode a boolean expression as follows:

1. The variables Xl, x~, x3' ... are written as xl, xlO, ;d 1. .. _etc. (The
binary representation of the subscript is written after x.)

2. The connectives v, /\, -', (, and ) are retained in the encoded
expresslOn.
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For example, -, x 1\ -, (1' V z) is encoded as -, x11\ -, (xlO v xlI), (where
x, y, z are represented by Xl' x~, x:<).

Note: Any boolean expression is encoded as a stling over L = {x, 0, 1, v,
1\. -,. C (, )}

Consider a boolean expression having III occurrences of variables,
connectives and parantheses. The variable XIII can be represented using
1 + log~ III symbols (x together \vith the digits in the binary representation of
m). The other occurrences require less symbols. So any occurrence of a
variable. connective or a parenthesis requires at most 1 + log~ 111 symbols over
L. So the length of the encoded expression is at most Oem log 111).

As our interest is only in deciding whether a problem can be solved in
polynomial-time. we need not distinguish between the length of the coded
expression and the number of occurrences of variables etc. in a boolean
expression.

12.5.3 COOK'S THEOREM

In this section we define the SAT problem and prove the Cook's theorem that
SAT is NP-complete.

Definition 12.13 The satisfiability problem (SAT) is the problem:

Given a boolean expression. is it satisfiable?

Note: The SAT problem can also be formulated as a language. We can
define SAT as the set of all coded boolean expressions that are satisfiable. So
the problem is to decide whether a given coded boolean expression is in SAT.

Theorem 12.6 (Cook's theorem) SAT is NP-complete.

Proof PART I: SAT E ~T.

If the encoded expression E is of length n, then the number of variables is
lnlr Hence. for guessing a truth assignment t we can use multi tape TM for
E. The time taken by a multitape NTM M is O(n). Then M evaluates the
value of E for a truth assignment t. This is done in O(n~) time. An equivalent
single-tape TM takes 0(n4

) time. Once an accepting truth assignment is found,
M accepts E and I'v! and halts. Thus we have found a polynomial time
NTM for SAT. Hence SAT E NP.

PART II: POLYNOMIAL-TL\1E REDUCTION OF ANY L IN NP TO SAT.

1. Construction of NTM for L

Let L be any language in ~T. Then there exists a single-tape NTM M and a
polynomial pen) such that the time taken by M for an input of length n is at
most pen) along any branch. We can further assume that this M never writes
a blank on any move and never moves its head to the left of its initial tape
position (refer to Example 12.6).
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If M accepts an input 11' and I}v I= n. then there exists a sequence of moves
of M such that

1. O'{! is the initial ID of M with input w.

2. 0"0 ~ at ~ ... ~ (XI;, k ::; pen).
3. al; is an ID with an accepting state.
4. Each (Xi is a string of nonblanks, its leftmost symbol being the

leftmost symbol of w (the only exception occurs when the processing
of w is complete, in which case the ID is qb).

2. Representation of Sequence of Moves of M

As the maximum number of steps on w is pen) we need not bother about the
contents beyond pen) cells. We can write ai as a sequence of pen) + 1 symbols
(one symbol for the state and the remaining symbols for the tape symbols).
So Gi = XiOXil ... Xi, p(Il)'

By assuming Q n r = 0, we can locate the state in ai and hence the
position of the tape head. The length of some ID may be less than pen). In
this case we pad the ID on the right with blank symbols. so that all IDs are
of the same length pen) + 1. Also the acceptance may happen earlier. If alll

is an accepting ID in the course of processing 11', then we write O'{! 1- ... f
a;;! f- all! ... f- am = ai.pU/I·

Thus all IDs have pen) + 1 symbols and any computation has pen) moves.

TABLE 12.2 Array of IDs

ID 0

Ct.o .'1'00 .'1'01

Ct., .'1'10 .'1',1

Ct., .'1"0 X"

Ui+l X", 0 Xi+1 1

Cf.,D(ni

j - 1

X,j-1

X j+1,j-1

j j + 1 pen)

So we can represent any computation as an (p(n) +1) X (p(n) + 1) alTay
as in Table 12.2.

3. Representation of IDs in Terms of Boolean Variables

We define a boolean variable conesponding to ii, j)th entry in the ith ID.
The variable YiiA represents the proposition that =A. where A is a state or
tape symbol and 0 ::; i, j :; pen).

We simulate the sequence of IDs leading to the acceptance of an input
string w by a boolean expression. This is done in such a way that M accepts
1\' if an only if the simulated boolean expression El1 .\! is satisfiable.
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4. Polynomial Reduction of M to SAT

In order to check that the reduction of M to SAT is correct. we have to ensure
the correctness of

(a) the initial ID.
eb) the accepting ID. and
(c) the intermediate moves between successive IDs,

(al Simulation of initial ID

Xoo must start with the initial state qo of M followed by the symbols of
H' = ala: ' .. all of length n and ending with b's (blank symbol). The
cOlTesponding boolean expression S is defined as

S = )'00'10 i\ )'Ola; /\ )'O]a, /\ ... /\ )'Olla" /\ YO,II+1-I) /\ . .. /\ YO'P(III,b

Thus given an encoding of M and 1V, we can write S in a tape of a multiple
TM M t, This takes O(p(n)) time,

(b) Simulation of accepting ID

a')II" is the accepting ID. If Pi, P:. . , ., P, are the accepting states of M, then
~Ji'" contains one of Pi' s. 1 :S i :S k in any place j. If al'ill! contains an accepting
state Pi in jth position. then is the accepting state Pi' The corresponding
boolean expression covering all the cases (0 :S j :S pen), 1 :S i :S k) is given
by

F = Fo V F] v .. , V Fpinl

where

F· -,- v 1', V ... v

Each Fi has k variables and hence has constant number of symbols
depending on M but not on n. The number of F;'s in F is pen). Thus given
an encoding of M and H, F can be \V11tten in O(p(n)) time on the multiple
TMM I ,

(c) Simulation of intermediate moves

We have to simulate valid moves a i r ai+], i = 0, 1, 2, '" pen).
COlTesponding to each move. \ve have to define a boolean variable Ni. Hence
the entire sequence of IDs leading to acceptance of w is

N = No /\ Nt /\ ... /\ NpiliH

First of all note that the symbol X i+Lj can be determined from Xi,j-lo Xij,

X i.)+] by the move (if there is one changing a i to a different ai+i)' For every
position (i, j). we have t\\70 cases:

Case 1 The state of a i is at position j.
Case 2 The state of ai is not in any of the (j - l)th, jth and (j + l)th
positions.
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Case 1 is taken care of by a variable Ai} and Case 2 by a variable Bu.
The variable N i will be designed in such a way that it gurantees that ID

(X,+] is one of the IDs that follows the ID (Xi'

X i+l,j can be determined from

(i) the three symbols Xi,j_], Xi). Xi,I+] above it
(ii) the move chosen by the nondeterministic TM M when one of the three

symbols (in (i» is a state.

If the state of (Xi is not Xij, X i .j - 1 or X i. j + l • then Xi+],j = XU, This is taken
care of by the variable BU'

If Xu is the state of (Xi, then X i.I+1 is being scanned by the state Xu' The
move corresponding to the state-tape symbol pair (Xu' X i.i +]) will determine
the sequence X i+1•i - 1 Xi+l. j Xi+1,j+!' This is taken care of by the variable Au'

We write Ni = Ai (A ii v BIi), where A is taken over all is, 0 :::: j :::: pen).

(i) Formulation of Bij When the state of (Xi is none of Xi. i - b Xli' Xi. j +].

then the transition corresponding to (Xi r-- ai+l will not affect X i.i + l • In this
case Xi+l,i = Xij

Denote the tape symbols by ZI' Z:, ..., Z,. Then Xi,i-I' Xi,i and Xi,i+]

are the only tape symbols. So we ""Tite Bii as

Bij =(Yi.i-1. Zl V Yi.i-1. Z2 V ." V Yi.}-1. z) A

V Yi.j+1. z) A

C\'i,i, Z l A Zj) V Z2 A Yi+l.j,Z2 V '" V (Yi,j.z,. A Yi+J,j,Z)

This first line of Bij says that Xi. H is one of the tape symbols
ZI_ Z:, . , ., Zj" The second and third lines are regarding X i.i and Xi.i+]. The
fourth line says that Xli and Xi,j+1 are the same and the common value is any
one of Zj_ Z: . ..., Zj"

Recall that the head of M never moves to the left of O-cell and does not
have to move to the right of the p(n)-cell. So Bio will not have the first line
and Bi. jJlil will not have the third line.

(ii) Formulation of Ai} This step corresponds to the correctness of
the 2 x 3 array (see Table 12.3).

TABLE 12.3 Valid Computation
'I-----,--------,.------1

I Xi )-l Xfj, x i )+' I
~--- ----i---1
! X,r+1,j-1 Xi+1,.) xi+1 ,j+11
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The expression B U takes care of the case when the state of (Xi is not at the
position X i. j - I , X i. j or X i. j +!. The AU cOlTesponds to the case when the state
of (Xi is at the position Xi)' In this case we have to assign boolean variables
to six positions given in Table 12.3 so that the transition conesponding to

(Xi ~ (Xi+1 is described by the variables in the box correctly.
We say that that an assignment of symbols to the six variables in the box

IS valid if
1. Xu is a state but X i. j _1 and X i. j +! are tape symbols.
2. Exactly one of X i+ l . j - b Xi+l,j, Xi+l. j + i is a state.
3. There is a move which explains how (Xi. j _l , XU, Xi,j+l) changes to

(Xi+1.j-l, Xi+l,j, X i+1.j+l) in (Xi ~ (Xi+!'

There are only a finite number of valid assignments and AU is obtained
by applying OR (that is v) to these valid assignments. A valid assignment
conesponds to one of the fol1owing four cases:

Case A
Case B
Case C
Case D

(p, C, L) E O(q, A)
(p. C, R) E O(q, A)

(Xi = (Xi+! (when (Xi and (Xi"-l contain an accepting state)
j = 0 and j = pen)

Case A Let D be some tape symbol of Ai. Then Xi.j-1XijXi,j+1 = DqA and
X i+1. i-IXi+ Li X i+ Li+ 1 =pDC. This can be expressed by the boolean variable.

Yi.j-I, D ;\ Yi.j. '/ /\ Yi,j+L\ /\ Yi+J.j-l.p /\ Yi+l.j. D /\ Yi+Lj+L C

Case B As in case A, let D be any tape symbol. In this case Xi j-1XUXi,j+ I

= DqA and Xi-\. i-lXi+1 ,jXi+1.j+l = DCp. The corresponding boolean
expression is

D /\ q /\ )'i/+1.-1 /\ "i+J.!-J.D /\ Yi+J.j,C /\ Yi+l,j+J.p

Case C In this case Xij-1XUXi]+1 = Xi"-Li-lXi+l.jXi+l.j+I'

In this case the same tape symbol say D appears in Xi,j-J and Xi+Lj- i ; some
other tape symbol say D ' in X i. j +1 and X i+1.j+I' Xi,j and Xi+!,j contain the
same state. One typical boolean expression is

)'i,j-LZ,. /\ "i.j.'! /\ "i,]+J.Zi /\ Yi+l.j-LZk /\ Yi+Lj,'! /\ Yi+Lj+I'zi

Case D \Vhen j = 0, we have only X!C0il and Xi+l. 0 Xi+J. I' This is a special
case of Case B. j = pen) conesponds to a special case of Case A.

So. A ii is defined as the OR of all valid telTTIS obtained in Case A to
Case D.

(iii) Definition of N i and N We define Ni and N by

N i = (A iO v B iO ) /\ (Ail v B il ) /\ ... /\ (Ai. Pill) V B i,

N = /\ N I /\ No /\ , .. /\ NpIllJ-1
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(iv) Time taken for writing N The time taken to write Bii is a constant
depending on the number Ir I of tape symbols. (Actually the number of
variables in BU is SI r I). The time taken to write AU depends only on the
number of moves of M. As N; is obtained by applying OR to AU /\ Bij,

o ::; i ::; pen) - L 0 ::; j ::; pen) - 1, the time taken to write on N i is O(p(n».
As N is obtained by applying /\ to No, Nj, .. " Nl;ll1l~j' the time taken to write
N is p(n)O(p(n» = O(p~(n). .

5. Completion of Proof

Let EM. H = S /\ N /\ F.
We have seen that the time taken to write Sand Fare O(p(n» and the

time taken for N is O(p~(n», Hence the time taken to write Elf." is O(p~(n».

Also M accepts ]V if and only if EAt.\! is satisfiable.
Hence the deterministic multitape TM Mj can convert w to a boolean

expression EM. II in O(p~(n» time~ An equivalent single tape TM takes
01/'(11» time. This proves the Part II of the Cook's theorem. thus completing
the proof of this theorem. I

12.6 OTHER NP-COMPLETE PROBLEMS

In the last section, we proved the NP-completeness of SAT. Actually it is
difficult to prove the NP-completeness of any problem. But after getting one
NP-complete problem such as SAT. \ve can prove the NP-completeness of
problem P' by obtaining a polynomial reduction of SAT to P'. The
polynomial reduction of SAT to P' is relatively easy. In this section we give
a list of NP-complete problems without proving their NP-completeness. Many
of the NP-complete problems are of practical interest.

1. CSAT-Given a boolean expression in Cp,r (conjunctive normal
form-Definition 1.10), is it satisfiable?

We can prove that CSAT is NP-complete by proving that CSAT is
in NP and getting a polynomial reduction from SAT to CSAT,

'1 Hamiltonian circuit problem--Does G have a Hamiltonian circuit (i.e.
a circuit passing through each edge of G exactly once)?

3. Travelling salesman problem (TSP)-Given n cities, the distance
between them and a number D, does there exist a tour programme for
a salesman to visit all the cities exactly once so that the distance
travelled is at most D?

4. Vertex cover problem-Given a graph G and a natural number k, does
there exist a vertex cover for G with k vertices? (A subsets C of
vertices of G is a veltex cover for G if each edge of G has an odd
vertex in C.)
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5. Knapsack problem-Given a set A = {al' a2, ... , an} of nonnegative
integers. and an integer K, does there exist a subset B of A such that

~ b i = K?
!J,ER '

This list of NP-complete problems can be expanded by having a
polynomial reduction of known NP-complete problems to the problems which
are in I\it> and which are suspected to be NP-complete.

12.7 USE OF NP-COMPLETENESS

One practical use in discovering that problem is NP-complete is that it
prevents us from wasting our time and energy over finding polynomial or easy
algorithms for that problem.

Also \ve may not need the full generality of an NP-complete problem.
Particular cases may be useful and they may admit polynomial algOlithms.
Also there may exist polynomial algorithms for getting an approximate
optimal solution to a given NP-complete problem.

For example, the travelling salesman problem satisfying the triangular
inequality for distances between cities (i.e. dij ::; dik + dki for all i, j, k) has
approximate polynomial algorithm such that the ratio of the error to the
optimal values of total distance travelled is less than or equal to 1/2.

12.8 QUANTUM COMPUTATION

In the earlier sections we discussed the complexity of algorithm and the dead
end was the open problem P = I\it>. Also the class of NP-complete problems
provided us with a class of problems. If we get a polynomial algorithm for
solving one NP-complete problem we can get a polynomial algorithm for any
other NP-complete problem.

In 1982. Richard Feynmann, a Nobel laurate in physics suggested that
scientists should start thinking of building computers based on the principles
of quantum mechanics. The subject of physics studies elementary objects and
simple systems and the study becomes more intersting when things are larger
and more complicated. Quantum computation and information based on the
principles of Quantum Mechanics will provide tools to fill up the gulf between
the small and the relatively complex systems in physics. In this section we
provide a brief survey of quantum computation and information and its impact
on complexity theory.

Quantum mechanics arose in the early 1920s, when classical physics could
not explain everything even after adding ad hoc hypotheses. The rules of
quantum mechanics were simple but looked counterintuitive, and even Albert
Einstein reconciled himself with quantum mechanics only \vith a pinch of salt.

Quantum i'vfechanics is real black magic calculus.
-A. Einstein
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12.8.1 QUANTUM COMPUTERS

We know that a bit (a 0 or a 1) is the fundamental concept of classical
computation and information. Also a classical computer is built from an
electronic circuit containing wires and logical gates. Let us study quantum bits
and quantum circuits which are analogous to bits and (classical) circuits.

A quantum bit, or simply qubit can be described mathematically as

Ilf/) = alO; + 1310)
The qubit can be explained as follows. A classical bit has two states, a °and
a 1. Two possible states for a qubit are the states 10; and 11). (The notation
I-l is due to Dirac.) Unlike a classical bit, a qubit can be in infinite number
of states other than 10) and 11). It can be in a state IVJ> = alO) + 1310), where
a and 13 are complex numbers such that lal2 + 11312 = 1. The 0 and 1are called
the computational basis states and IVJ> is called a superposition. We can call
Ilf/) = alO) + 1310) a quantum state.

In the classical case, we can observe it as a 0 or a 1. But it is not possible
to determine the quantum state on observation. When we measure/observe a
qubit we get either the state 10; with probability lal2 or the state 11) with
probability 11312.

This is difficult to visualize. using our 'classical thinking' but this is the
source of power of the quantum computation.

Multiple qubits can be defined in a similar way. For example. a two-qubit
system has four computational basis states, 100), 1°1), 110; and Ill) and
quantum states Ilf/) = O'{)oIOO) + aodOl) + aiOlI0) + a11I11) with 10'{)o12 + lo:od2

+ la101
2 + lal112 = l.

Now we define the qubit gates. The classical NOT gate interchanges 0
and 1. In the case of the qubit the NOT gate, a 10) + 1311), is changed to
al1) + 1310;.

The action of the qubit NOT gate is linear on two-dimensional complex
vector spaces. So the qubit NOT gate can be described by

lal~[O 1]la]=[13]
L13 J 1 ° l13 a

The matrix [~ ~] is a unitary matrix. (A matrix A is unitary if A adjA = I.)

We have seen earlier that {NOR} is functionally complete (refer to
Exercises of Chapter 1). The qubit gate conesponding to NOR is the
cLntrolled-NOT or CNOT gate. It can be described by

IA. B) -7 IA. B EB A)
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where EB denotes addition modulo 2. The action on computational basis is
100) ~ 100). 101) ~ 101). 110) ~ Ill), Ill) ~ 110). It can be described by
the following 4 x 4 unitary matrix:

1 ° °
~I° 1 °u cx

° ° °
° ° 1 OJ

Now. we are in a position to define a quantum computer:

A quantum computer is a system built from quantllm circuits, contaznmg
wires and elementary quantum gates, to carry out manipulation of quantum
il(foJ7natiol/.

12.8.2 CHURCH-TURING THESIS

Since 1970s many techniques for controHing the single quantum systems have
been developed but with only modest success. But an experimental prototype
for performing quantum cryptography. even at the initial level may be useful
for some real-world applications.

Recall the Church-Turing thesis which asserts that any algorithm that can
be performed on any computing machine can be performed on a Turing
machine as well.

NIiniaturization of chips has increased the power of the computer. The
grmvth of computer power is now described by Moore's law. which states that
the computer power will double for constant cost once in every two years.
Now it is felt that a limit to this doubling power will be reached in two or
three decades. since the quantum effects will begin to interfere in the
functioning of electronic devices as they are made smaller and smaller. So
efforts are on to provide a theory of quantum computation \vhich wi]]
compensate for the possible failure of the Moore's law.

As an algorithm requiring polynomial time was considered as an efficient
algorithm. a strengthened version of the Church-TUling thesis was enunciated.

Any algorithmic process can be simulated efficiently by a Turing machine.
But a challenge to the strong Cburch-Turing thesis arose from analog
computation. Certain types of analog computers solved some problems
efficiently whereas these problems had no efficient solution on a TUling
machine. But when the presence of noise was taken into account, the power
of the analog computers disappeared.

In mid-1970s. Robert Soiovay and Volker Strassen gave a randomized
algorithm for testing the primality of a number. (A deterministic polynomial
algorithm was given by Manindra Agrawal. Neeraj Kayal and Nitein Saxena
of IIT Kanpur in 2003.) This led to the modification of the Church thesis.
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Strong Church-Turing Thesis

An\' algorithmic process can be simulated efficiently llsing a nondetenninistic
Turing machine.

In 1985, David Deutsch tried to build computing devices using quantum
mechanics.

Computers are ph}'sical o~jects, and computations are physical processes.
What computers can or callnot compute is determined by the lmv of
physics alone, and not by pure mathematics

-David Deutsch

But it is not known whether Deutsch's notion of universal quantum
computer will efficiently simulate any physical process. In 1994, Peter Shor
proved that finding the prime factors of a composite number and the discrete
logarithm problem (i.e. finding the positive value of s such that b =as for the
given positive integers a and b) could be solved efficiently by a quantum
computer. This may be a pointer to proving that quantum computers are more
efficient than Turing machines (and classical computers).

12.8.3 POWER OF QUANTUM COMPUTATION

In classical complexity theory, the classes P and NP play a major role, but
there are other classes of interest. Some of them are given below:

L - The class of all decision problems which may be decided by a TM
running in logarithmic space.

PSPACE- The class of decision problems which may be decided on a Turing
machine using a polynomial number of working bits, with no limitation on the
amount of time that may be used by the machine.

EXP - The class of all decision problems which may be decided by a TM in
exponential time, that is, O(2"

k
), k being a constant.

The hierarchy of these classes is given by

L <;;; P <;;; NP <;;; PSPACE <;;; EXP

The inclusions are strongly believed to be strict but none of them has been
proved so far in classical complexity theory.

We also have two more classes.

BPP- The class of problems that can be solved using the randomized
algorithm in polynomial time, if a bounded probability of error (say 1110) is
allowed in the solution of the problem.

Bnp-The class of all computational problems which can be solved
efficiently (in polynomial time) on a quantum computer where a bounded
probability of error is allowed. It is easy to see that BPP <;;; BQP. The class
BQP lies somewhere benveen P and PSPACE, but where exactly it lies with
respect to P, NP and PSPACE is not known,

l
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It is easy to give non-constructive proofs that many problems are in EXP,
but it seems very hard to prove that a particular class of problems is in EXP
(the possibility of a polynomial algorithm of these problems cannot be ruled
out).

As far as quantum computation is concemed. two important classes are
considered. One is BQP. which is analogous to BPP. The other is NPI
(Nt> intermediate) defined by

NPI - The class of problems which are neither in P nor NP-complete

Once again. no problem is shown to be in ~t>I. In that case P "* NP is
established.

Two problems are likely to be in NPI, one being the factoring problem
(i .e. given a composite number 11 to find its prime factors) and the other being
the graph isomorphism problems (i.e. to find whether the given undirected
graphs with the same set of vertices are isomorphic).

A quantum algorithm for factoring has been discovered. Peter Shor
announced a quantum order-finding algorithm and proved that factoring could
be reduced to order-finding. This has motivated a search for a fast quantum
algOlithm for other problems suspected to be in ~t>l.

Grover developed an algorithm called the quantum search algorithm. A
loose formulation of this means that a quantum computer can search a
pm1icular item in a list of N items in O(fN) time and no further improvement
is possible. If it were OOog N). then a quantum computer can solve an NP
complete problem in an efficient way. Based on this, some researchers feel that
the class BQP cannot contain the class of NP-complete problems.

If it is possible to find some structure in the class of NP-complete
problems then a more efficient algorithm may become possible. This may
result in finding efficient algorithms for NP-complete problems. If it is
possible to prove that quantum computers are strictly more powerful than
classical computers, then it \vill follow that P is properly contained in

PSPACE. Once again. there is no proof so far for P c PSPACE.
;=

12.8.4 CONCLUSION

Deutsch proposed the first blueprint of a quantum computer. As a single qubit
can store two states 0 and 1 in quantum superposition, adding more qubits to
the memory register will increase the storage capacity exponentially. When
this happens. exponential complexity will reduce to polynomial complexity.
Peter Shor' s algorithm led to the hope that quantum computer may work
efficiently on problems of exponential complexity.

But problems arise at the implementation stage. 'When more interacting
qubits are involved in a circuit, the surrounding environment is affected by
those interactions. It is difficult to prevent them. Also quantum computation
will spread outside the computational unit and will irreversibly dissipate useful
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information to the environment. This process is called decoherence. The
problem is to make qubits interact with themselves but not with the
environment. Some physicists are pessimistic and conclude that the efforts
cannot go beyond a few simple experiments involving only a few qubits.

But some researchers are optimistic and believe that efforts to control
decoherence will bear fruit in a few years rather than decades.

It remains a fact that optimism, however overstretched, makes things
happen. The proof of Fermat's last theorem and the four colour problem are
examples of these. Thomas Watson. the Chairman of IBM. predicted in 1943,
"1 think there is a world market for maybe five computers". But the growth
of computers has very much surpassed his prediction.

Charles Babbage (1791-1871) conceived of most of the essential elements
of a modem computer in his analytical engine. But there was not sufficient
technology available to implement his ideas. In 1930s, Alan Turing and
John von Neumann thought of a theoretical model. These developments in
'Software' were matched by 'Hardware' support. resulting in the first
computer in the early 1950s. Then. the microprocessors in 1970s led to the
design of smaller computers with more capacity and memory.

But computer scientists realized that hard\vare development will improve
the power of a computer only by a multiplicative constant factor. The study
of P and NP led to developing approximate polynomial algorithms to
NP-complete problems. Once again the importance of software arose. Now the
quantum computers may provide the impetus to the development of computers
from the hardware side.

The problem of developing quantum computers seems to be very hard but
the history of sciences indicates that quantum computers may rule the universe
in a few decades.

12.9 SUPPLEMENTARY EXAMPLES

EXAMPLE 12.4

Suppose that there is an NP-complete problem P that has a deterministic
solution taking 0(n1og 11) time (here log n denotes log2n). What can you say
about the running time of any other NP-complete problem Q?

Solution

As Q E NP. there exists a polynomial pen) such that the time for reduction
of Q to P is atmost pen). So the running time for Q is O(p(n) + p(n)logPIIII).
"'s p(n)iOgp[il( dominates pen), we can omit pen) in pen) + p(n)10gplil). If the
degree of pen) is k, then p(n), = O(ll). So we can replace pen) by It So
p(n)logpilll =0((n'f k1!"') = O(nHoglI ). Hence the running time of Q is Olrlogll)

for some constant c.

https://hemanthrajhemu.github.io



366 ~ Theory ofComputer Science

EXAMPLE 12.5

Show that P is closed under (a) union, (b) concatenation, and (c) comple
mentation.

Solution

Let L j and L2 be two languages in P. Let w be an input of length n.

(a) To test whether W E L j U L2, we test whether W E L j • This takes
polynomial time pen). If W eo L b test another W E L2. This takes
polynomial time q(n). The total time taken for testing whether
W E L j U L 2 is pen) + q(n), which is also a polynomial in n. Hence
L j U L 2 E P.

(b) Let w =xIX2 •.. x//, For each k, 1 ::; k ::; n - 1, test whether XjX2 •.• Xk

E L j and Xk+jXk+2 ... X/1 E L2• If this happens, W E L jL2. If the test
fails for all k, W eo L j L2• The time taken for this test for a particular
k is pen) + q(n), where pen) and q(n) are polynomials in n. Hence the
total time for testing for all k's is at most n times the polynomial
pen) + q(n). As n(pn) + q(n) is a polynomial, L]L2 E P.

(c) Let M be the polynomial time TM for Lt. We construct a new TM
AI j as follows:
1. Each accepting state of M is a nonaccepting state of M j from

which there are no further moves. So if M accepts w, M] on
reading W will halt without accepting.

2. Let qf be a ne\v state. which is the accepting state of M j • If
O(q, a) is not defined in M, define 0,\1

1
(q. a) = (qji a, R). So,

W e: L if and only if M accepts wand halts. Also M j is a
polynomial-time TM. Hence L{ E P.

EXAMPLE 12.6

Show that every language accepted by a standard TM M is also accepted by
a TM lvl] with the following conditions:

1. M j ' s head never moves to the left of its initial position.
2. M j will never write a blank.

Solution

It is easy to implement Condition 2 on the new machine. For the new TM,
create a new blank b'. If the blank is written by M, the new Turing machine
writes b'. The move of this new TM on seeing b' is the same as the move of
M for b. The new TM satisfies the Condition 2. Denote the modified TM by
M itself. Define the modified M by

M = (Q. 2:. r, 0, q2, b, F)

Define a new TM M j as

M j = (Qj. 2: x {b}, r i • OJ, qQ, [b, bJ, F j )
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where
QI = {qo, qd u (Q x {U. L})

Ij = (I x n u {[x, *] Ix E n
qo and ql are used to initiate the initial move of M. The two-way infinite tape
of M is divided into two tracks as in Table 12.4. Here * is the marker for the
leftmost cell of the lower track. The state [q, U] denotes that M 1 simulates M
on the upper track. [q, L] dentoes that M j simulates M on the lower track. If
M moves to the left of the cell with *, M 1 moves to the right of the lower
track.

TABLE 12.4 Folded Two-way Tape

Xo X1 X2 I
I

* K..1 K..2 K.:J
i
I

We can define F 1 of M j by

F1 = F x {U, L}
We can describe D as follows:

1. Dj(qo, [a, bJ) = (qj, [a. *], R)

D(qj. [X, bJ) = ([q:, U], [X, b], L)

By Rule 1, M j marks the leftmost cell in the lower track with * and
initiates the initial move of M.

2. If D(q, X) = (p, Y, D) and 2 E r. then:

(i) D1([q, [;1, [X, 2]) = ([P, [n [Y, 2], D) and

(ii) Dj([q, L], [2, X]) = ([P, L], [2, Y], 15)
where 15 = L if D = Rand 15 = R if D = L.

By Rule 2. M 1 simulates the moves of M on the appropriate track. In
(i) the action is on the upper track and 2 on the lower track is not
changed. In (ii) the action is on the lower track and hence the
movement is in the opposite direction 15; the symbol in the upper
track is not changed.

3. If D(q. X) = (p, Y, R) then

Dj([q. L], [X, *J) = D1([q, [;1, [X, *J) = ([P, [;1, [Y, ,,], R)

When M1 see * in the lower track. M moves right and simulates M
on the upper track.

4. If D(q, X) = (p. Y, L), then

D1([q, L], [X, *J) = D1([q, [;1, [X, "J) = ([P. L]. [1', *]. R)

When M j sees' in the lower track and M's movement is to the left
of the cell of the two-way tape corresponding to the ;, cell in the
lower track. the M's movement is to X_I and the M1's movement is
also to X_I but towards the right. As the tape of M is folded on the
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cell with *. the movement of M to the left of the *' cell is equivalent
to the movement of M I to the right.

M reaches q in F if and only if M] reaches [q, L) or [q, R). Hence
T(M) = T(ivI I ).

EXAMPLE 12.7

We can define the 2SAT problem as the satisfiability problem for boolean
expressions written as /\ of clauses having two or fewer variables. Show that
2SAT is in P.

Solution

Let the boolean expression E be an instance of the 2SAT problem having 11

variables.

Step 1 Let E have clauses consisting of a single variable (xi or x;). If (x;)

appears as a clause in E, then Xi has to be assigned the truth value T in order
to make E satisfiable. Assign the truth value T to Xi' Once Xi has the truth value
T, then (Xi V)) has the truth value T irrespective of the truth value of 'Yi (Note

that Xi can also be x). So (.I:i V x) or (Xi v x) can be deleted from E. If

E contains (x i V as a clause, then xi should be assigned the truth value T

in order to make E satisfiable. Hence we replace (Xi v Xi) by xi in E so that

.,> should be assigned the truth value T is order to make E satisfiable. Hence

we replace (x i V x) by ."li in E so that xi can be assigned the truth value T
later. If we repeat this process of eliminating clauses with a single variable (or
its negation). we end up in t\vo cases.

Case 1 We end up with (Xi) /\ (xJ In this case E is not satisfiable for any

assignment of truth values. We stop.

Case 2 In this case all clauses of E have two variables. (A typical clause is
xi v Xi or Xi v X

Step 2 We have the apply step 2 only in Case 2 of step 1. We have already
assigned truth values for variables not appealing in the reduced expression E.
Choose one of the remaining variables appearing in E. If we have chosen Xi,

assign the truth value T to Xi' Delete ''Ci v Xj or Xi v xi from E. If x i V Xj

appears in E, delete xi to get (Yi)' Repeat step 1 for clauses consisting of a
single variable. If Case 1 occurs. assign the truth value F for Xi and proceed
with E that \ve had before applying step 1.

Proceeding with these iterations, we end up either in unsatisfiability of E

or satisfiability of E.
Step 2 consists of repetition of step 1 at most 11 times and step 1 requires

0(11) basic steps.
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Let /1 be the number of clauses in E. Step 1 consists of deleting (x; v xi)

from E or deleting x i from (x; v xi)' This is done at most 11 times for each
clause. In step 2, step 1 is applied at most two times. one for Xi and the second
for Xi' As the number of variables appearing in E is less than or equal to n,

we delete (Xi v Xj) or delete Xi from (x; V),) at most O(n) times while
applying steps 1 and 2 repeatedly. Hence 2SAT is in P.

SELF-TEST

Choose the correct answer to Questions 1-7:

1. If f(l1) = 2n3 + 3 and g(n) = 10000n2 + 1000, then:
(a) the growth rate of g is greater than that of f
(b) the growth rate of f is greater than that of g.

(c) the growth rate of f is equal to that of g.

(d) none of these.

2. If fen) = n3 + 4/1 + 7 and g(n) = 1000n2 + 10000. then f(n) + g(n) is
(a) 0(/12)
(b) 0(11)

(c) 0(n3)

(d) 0(/15)

3. If f(n) = O(lh and g(n) = O(lh then f(n)g(/1) is
(a) max{k, l}
(b) k + 1

(c) kl

(d) none of these.

4. The gcd of (1024. 28) is
(al 2
(bl 4
(c) 7
(d) 14

S. 110.7: + '9.9l is equal to
(a) 19
(b) 20
(c) 18
(d) none of these.

6. log21024 is equal to
(a) 8
(b) 9
(c) 10
(d) none of these.
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7. The truth value of f(x, Y, .::) = (x v -,y) 1\ (-, X V y) 1\ .:: is T if x, y. z

have the truth values
(a) T. T. T
(b) F. F. F
(c) T, F. F
(d) F. T. F

State whether the following Statements 8-15 are true or false.

8. If the truth values of x, y. .:: are T. F. F respectively. then the truth value
of f(x. y, .::) = x 1\ -,(v v .::) is T.

9. The complexity of a k-tape TM and an equivalent standard TM are the
same.

10. If the time complexity of a standard TM is polynomial, then the time
complexity of an equivalent k-tape TM is exponential.

11. If the time complexity of a standard TM is polynomial. then the time
complexity of an equivalent 1'.TTM is exponential.

12. fix. y, .::) = (x v y v :::) 1\ (-, X 1\ -, Y 1\ -,.::) is satisfiable.

13. f(x. Y. .::) = (x v y) 1\ (-,.Y 1\ -, v) is satisfiable.

14. If f and g are satisfiable expressions, then f v g is satisfiable.

15. If f and g are satisfiable expressions. then f 1\ g is satisfiable.

EXERCISES

12.1 If fen) = O(ll) and g(n) = O(lh then show that fen) + g(n) = O(nt)
where t = max{k, l} and f(n)g(n) = O(nk

+
I
).

12.2 Evaluate the growth rates of (i) fin) = 2n2
. (ii) g(n) = 1On2 + 7n log n +

log 11. (iii) hen) = n210g n + 211 log n + 7n + 3 and compare them.

12.3 Use the O-notation to estimate (i) the sum of squares of first n natural
numbers. (ii) the sum of cubes of first n natural numbers, (iii) the sum
of the first n terms of a geometric progression whose first term is a and
the common ratio is r, and (iv) the sum of the first n terms of the
arithmetic progression whose first term is a and the common difference
is d.

12.4 Show that fen) = 3112log2 11 + 411 log3 11 + 5 log2log211 + log 11 + 100
dominates 11

2 but is dominated by 11'.

12.5 Find the gcd (294. 15) using the Euclid's algoritr,m.

12.6 Show that there are five truth assignments for (P, Q, R) satisfying
p v (-, P /\ -, Q 1\ R).
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12.7 Find whether (P /\ Q /\ R) /\ -, Q is satisfiable.

12.8 Is f(x, y, z, w) = (x v y v z) /\ (x V y v z) satisfiable?

12.9 The set of all languages whose complements are in NP is called
CO-NP. Prove that NP = CO-NP if and only if there is some
NP-complete problem whose complement is in NP.

12.10 Prove that a boolean expression E is a tautology if and only if -, E is
unsatisfiable (refer to Chapter 1 for the definition of tautology).
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