FUTURE VISION BIE

One Stop for All Study Materials
8\% Lab Prograns

Firure Vision

By K B Hemanth Raj

Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Grain Access to All Study Materials accordling to $\mathbb{V T U}$, Currently for CSE - Computer Science Engineering...

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
9.6 Techniques for TM Construction 289
9.6.1 Turing Machine with Stationary Head 289
9.6.2 Storage in the State 290
9.6.3 Multiple Track Turing Machine 290
9.6.4 Subroutines 290
9.7 Variants of Turing Machines 292
9.7.1 Multitape Turing Machines 292
9.7.2 Nondeterministic Turing Machines 295
9.8 The Model of Linear Bounded Automaton 297
9.8.1 Relation Between LBA and Context-sensitive Languages 299
9.9 Turing Machines and Type 0 Grammars 299
9.9.1 Construction of a Grammar Corresponding to $T M$ 299
9.10 Linear Bounded Automata and Languages 301
9.11 Supplementary Examples 303
Self-Test 307
Exercises 308
10. DECIDABILITY AND RECURSIVELY ENUMERABLE LANGUAGES 309-321
10.1 The Definition of an Algorithm 309
10.2 Decidability 310
10.3 Decidable Languages 311
10.4 Undecidable Languages 313
10.5 Halting Problem of Turing Machine 314
10.6 The Post Correspondence Problem 315
10.7 Supplementary Examples 317
Self-Test 319
Exercises 319
11. COMPUTABILITY 322-345
11.1 Introduction and Basic Concepts 322
11.2 Primitive Recursive Functions 323
11.2.1 Initial Functions 323
11.2.2 Primitive Recursive Functions Over N 325
11.2.3 Primitive Recursive Functions Over $\{a, b\}$ 327
11.3 Recursive Functions 329
11.4 Partial Recursive Functions and Turing Machines 332
11.4.1 Computability 332
11.4.2 A Turing Model for Computation 333
11.4.3 Turing-computable Functions 333
11.4.4 Construction of the Turing Machine That Can Compute the Zero Function Z 334
11.4.5 Construction of the Turing Machine for Computing- The Successor Function 335
11.4.6 Construction of the Turing Machine for Computing the Projection U_{i}^{m} 336
11.4.7 Construction of the Turing Machine That Can Perform Composition 338
11.4.8 Construction of the Turing Machine That Can Perform Recursion 339
11.4.9 Construction of the Turing Machine That Can Perform Minimization 340
11.5 Supplementary Examples 340
Self-Test 342
Exercises 343
12. COMPLEXITY 346-371
12.1 Growth Rate of Functions 346
12.2 The Classes \mathbf{P} and NP 349
12.3 Polynomial Time Reduction and $N P$-completeness 351
12.4 Importance of $N P$-complete Problems 352
12.5 SAT is NP-complete 353
12.5.1 Boolean Expressions 353
12.5.2 Coding a Boolean Expression 353
12.5.3 Cook's Theorem 354
12.6 Other $N P$-complete Problems 359
12.7 Use of $N P$-completeness 360
12.8 Quantum Computation 360
12.8.1 Quantum Computers 361
12.8.2 Church-Turing Thesis 362
12.8.3 Power of Quantum Computation 363
12.8.4 Conclusion 364
12.9 Supplementary Examples 365
Self-Test 369
Exercises 370
Answers to Self-Tests 373-374
Solutions (or Hints) to Chapter-end Exercises 375-415
Further Reading 417-418
Index 419-422

Preface

The enlarged third edition of Theory of Computer Science is the result of the enthusiastic reception given to earlier editions of this book and the feedback received from the students and teachers who used the second edition for several years.

The new edition deals with all aspects of theoretical computer science, namely automata, formal languages, computability and complexity. Very few books combine all these theories and give adequate examples. This book provides numerous examples that illustrate the basic concepts. It is profusely illustrated with diagrams. While dealing with theorems and algorithms, the emphasis is on constructions. Each construction is immediately followed by an example and only then the formal proof is given so that the student can master the technique involved in the construction before taking up the formal proof.

The key feature of the book that sets it apart from other books is the provision of detailed solutions (at the end of the book) to chapter-end exercises.

The chapter on Propositions and Predicates (Chapter 10 of the second edition) is now the first chapter in the new edition. The changes in other chapters have been made without affecting the structure of the second edition. The chapter on Turing machines (Chapter 7 of the second edition) has undergone major changes.

A novel feature of the third edition is the addition of objective type questions in each chapter under the heading Self-Test. This provides an opportunity to the student to test whether he has fully grasped the fundamental concepts. Besides, a total number of 83 additional solved examples have been added as Supplementary Examples which enhance the variety of problems dealt with in the book.
of COPY. The TM M_{1} performs the subroutine COPY. The following moves take place for $M_{1}: q_{1} 0^{n} 1 \not-2 q_{2} 0^{n-1} 1 \nLeftarrow 20^{n-1} 1 q_{3} b \vdash 20^{n-1} q_{3} 10 \vdash^{*} 2 q_{1} 0^{n-1} 10$. After exhausting 0 's. q_{1} encounters 1. M_{1} moves to state q_{4}. All 2 's are converted back to 0 's and M_{1} halts in q_{5}. The TM M picks up the computation by starting from q_{5}. The q_{0} and q_{6} are the states of M. Additional states are created to check whether each 0 in $0^{n h}$ gives rise to $0^{m n}$ at the end of the rightmost 1 in the input string. Once this is over, M erases $10^{n} 1$ and finds $0^{n m}$ in the input tape.
M can be defined by

$$
M=\left(\left\{q_{0}, q_{1}, \ldots, q_{12}\right\},\{0,1\},\{0,1,2, b\}, \delta, q_{0}, b,\left\{q_{12}\right\}\right)
$$

where δ is defined by Table 9.8 .
TABLE 9.8 Transition Table for Example 9.10

	0	1	2	b
q_{0}	$q_{6} b R$	-	-	-
q_{6}	$q_{5} 0 R$	$q_{1} 1 R$	-	-
q_{5}	$q_{7} 0 L$	-	-	-
q_{7}	-	$q_{8} 1 L$	-	-
q_{8}	$q_{9} 0 L$	-	-	$q_{10} b R$
q_{5}	$q_{5} 0 L$	-	-	$q_{0} b R$
q_{10}	-	$q_{11} b R$	-	-
q_{11}	$q_{11} b R$	$q_{12} b R$	-	-

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. $\delta(q, a)$ is either a single triple (p, y, D), where $D=R$ or L, or is not defined. We introduce two new models of TM:
(i) a TM with more than one tape
(ii) a TM where $\delta(q, a)=\left\{\left(p_{1}, y_{1}, D_{1}\right),\left(p_{2}, y_{2}, D_{2}\right), \ldots,\left(p_{r}, y_{r}, D_{i}\right)\right\}$. The first model is called a multitape TM and the second a nondeterministic TM.

9.7.1 Multitape Turing Machines

A multitape TM has a finite set Q of states, an initial state q_{0}, a subset F of Q called the set of final states. a set P of tape symbols, a new symbol b, not in P called the blank symbol. (We assume that $\Sigma \subseteq \Gamma$ and $b \notin \Sigma$.)

There are k tapes, each divided into cells. The first tape holds the input string w. Initially, all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input w. All the other heads can be placed at any cell initially.
δ is a partial function from $Q \times \Gamma^{k}$ into $Q \times \Gamma^{k} \times\{L, R, S\}^{k}$. We use implementation description to define δ. Figure 9.8 represents a multitape TM. A move depends on the current state and k tape symbols under k tape heads.

Fig. 9.8 Multitape Turing machine.
In a typical move:
(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.
(iii) Each tape head moves to the left or right or remains stationary. The heads move independently: some move to the left, some to the right and the remaining heads do not move.

The initial ID has the initial state q_{0}, the input string w in the first tape (input tape), empty strings of b 's in the remaining $k-1$ tapes. An accepting ID has a final state, some strings in each of the k tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by some single-tape TM (that is, the standard TM).
Proof Suppose a language L is accepted by a k-tape TM M. We simulate M with a single-tape TM with $2 k$ tracks. The second. fourth, ..., (2k)th tracks hold the contents of the k-tapes. The first. third, ..., $(2 k-1)$ th tracks hold a head marker (a symbol say X) to indicate the position of the respective tape head. We give an 'implementation description' of the simulation of M with a singletape TM M_{1}. We give it for the case $k=2$. The construction can be extended to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A_{2} and B_{5} are the current symbols to be scanned and so the headmarker X is above the two symbols.

Fig. 9.9 Simulation of multitape TM.
Initially the contents of tapes 1 and 2 of M are stored in the second and fourth tracks of M_{1}. The headmarkers of the first and third tracks are at the cells containing the first symbol.

To simulate a move of M, the $2 k$-track TM M_{1} has to visit the two headmarkers and store the scanned symbols in its control. Keeping track of the headmarkers visited and those to be visited is achieved by keeping a count and storing it in the finite control of M_{1}. Note that the finite control of M_{1} has also the information about the states of M and its moves. After visiting both head markers, M_{1} knows the tape symbols being scanned by the two heads of M.

Now M_{1} revisits each of the headmarkers:
(i) It changes the tape symbol in the corresponding track of M_{1} based on the information regarding the move of M corresponding to the state (of M) and the tape symbol in the corresponding tape M.
(ii) It moves the headmarkers to the left or right.
(iii) M_{1} changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M_{1} is ready to implement its next move based on the revised positions of its headmarkers and the changed state available in its control.
M_{1} accepts a string w if the new state of M, as recorded in its control at the end of the processing of ω, is a final state of M.
Definition 9.3 Let M be a TM and w an input string. The running time of M on input w, is the number of steps that M takes before halting. If M does not halt on an input string w, then the running time of M on w is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested in computing the running time, only when the TM halts.
Definition 9.4 The time complexity of TM M is the function $T(n), n$ being the input size, where $T(n)$ is defined as the maximum of the running time of M over all inputs w of size n.
Theorem 9.2 If M_{1} is the single-tape $T M$ simulating multitape TM M, then the time taken by M_{1} to simulate n moves of M is $O\left(n^{2}\right)$.

Proof Let M be a k-tape TM. After n moves of M, the head markers of M_{1} will be separated by $2 n$ cells or less. (At the worst. one tape movement can be to the left by n cells and another can be to the right by n cells. In this case the tape headmarkers are separated by $2 n$ cells. In the other cases, the 'gap' between them is less). To simulate a move of M, the TM M_{1} must visit all the k headmarkers. If M starts with the leftmost headmarker, M_{1} will go through all the headmarkers by moving right by at most $2 n$ cells. To simulate the change in each tape. M_{1} has to move left by at most $2 n$ cells; to simulate changes in k tapes, it requires at most two moves in the reverse direction for each tape.

Thus the total number of moves by M_{1} for simulating one move of M is atmost $4 n+2 k$. ($2 n$ moves to right for locating all headmarkers, $2 n+2 k$ moves to the left for simulating the change in the content of k tapes.) So the number of moves of M_{1} for simulating n moves of M is $n(4 n+2 k)$. As the constant k is independent of n, the time taken by M_{1} is $O\left(n^{2}\right)$.

9.7.2 Nondeterministic Turing Machines

In the case of standard Turing machines (hereafter we refer to this machine as deterministic TM). $\delta\left(q_{1}, a\right)$ was defined (for some elements of $Q \times \Gamma$) as an element of $Q \times \Gamma \times\{L, R\}$. Now we extend the definition of δ. In a nondeterministic TM. $\delta\left(q_{1}, a\right)$ is defined as a subset of $Q \times \Gamma \times\{L, R\}$.

Definition 9.5 A nondeterministic Turing machine is a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_{0}$, b, F) where

1. Q is a finite nonempty set of states
2. Γ is a finite nonempty set of tape symbols
3. $b \in \Gamma$ is called the blank symbol
4. Σ is a nonempty subset of Γ. called the set of input symbols. We assume that $b \notin \Sigma$.
5. q_{0} is the initial state
6. $F \subseteq Q$ is the set of fimal states
7. δ is a partial function from $Q \times \Gamma$ into the power set of $Q \times \Gamma \times$ $\{L, R\}$.
Note: If $q \in Q$ and $x \in \Gamma$ and $\delta(q, x)=\left\{\left(q_{1}, y_{1}, D_{1}\right) .\left(q_{2}, y_{2}, D_{2}\right) \ldots\right.$, $\left.\left(q_{n}, y_{n} . D_{n}\right)\right\}$ then the NTM can chose any one of the actions defined by $\left(q_{i}, y_{i}, D_{i}\right)$ for $i=1,2, \ldots n$.

We can also express this in terms of - relation. If $\delta(q . x)=\left\{\left(q_{i}, y_{i}, D_{i}\right)\right\}$ $i=1,2 \ldots, n\}$ then the D zqxw can change to any one of the $n \mathrm{D}$ specified by the n-element set $\delta(q, x)$.

Suppose $\delta(q, x)=\left\{\left(q_{1}, y_{1}, L\right),\left(q_{2}, y_{2}, R\right) .\left(q_{3}, y_{3}, L\right)\right\}$. Then

$$
\begin{aligned}
& z_{1} z_{2} \ldots z_{k} q x_{k+1} \ldots z_{n} \vdash z_{I_{2}} \ldots z_{k-1} q_{1} z_{k} v_{1} z_{k+1} \ldots z_{n} \\
& z_{1} z_{2} \ldots z_{k} q x_{z_{k+1}} \ldots z_{n} \vdash z_{z_{2}} \ldots z_{z_{k}} z_{2} q_{2} z_{k+1} \ldots z_{n} \\
& z_{1} z_{2} \ldots z_{k} q x_{k+1} \ldots z_{n} \vdash z_{1} z_{2} \ldots z_{k-1} q_{3} z_{k} y_{j_{j}+1} \ldots z_{n} .
\end{aligned}
$$

or
or

So on reading the input symbol, the NTM M whose current ID is $z_{1} z_{2} \ldots$ $z_{k} q x z_{k+1} \ldots \bar{z}_{n}$ can change to any one of the three IDs given earlier.
Remark When $\delta(q, x)=\left\{\left(q_{i}, y_{i}, D_{i}\right) \mid i=1,2, \ldots, n\right\}$ then NTM chooses any one of the n triples totally (that is, it cannot take a state from one triple, another tape symbol from a second triple and a third $D(L$ or $R)$ from a third triple, etc.

Definition $9.6 w \in \Sigma^{*}$ is accepted by a nondeterministic TM M if $q_{0} w ⺊^{*}$ $x q_{f}$ for some final state q_{f}.

The set of all strings accepted by M is denoted by $T(M)$.
Note: As in the case of NDFA, an ID of the form $x q y$ (for some $q \notin F$) may be reached as the result of applying the input string w. But w is accepted by M as long as there is some sequence of moves leading to an ID with an accepting state. It does not matter that there are other sequences of moves leading to an ID with a nonfinal state or TM halts without processing the entire input string.
Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M_{1} such that $T(M)=T\left(M_{1}\right)$.
Proof We construct M_{1} as a multitape TM. Each symbol in the input string leads to a change in ID. M_{1} should be able to reach all IDs and stop when an ID containing a final state is reached. So the first tape is used to store IDs of M as a sequence and also the state of M. These IDs are separated by the symbol * (included as a tape symbol). The current ID is known by marking an x along with the ID-separator * (The symbol * marked with x is a new tape symbol.) All IDs to the left of the current one have been explored already and so can be ignored subsequently. Note that the current $I D$ is decided by the current input symbol of w.

Figure 9.10 illustrates the deterministic $\mathrm{TM} M_{1}$.

Fig. 9.10 The deterministic TM simulating M.
To process the current ID, M_{1} performs the following steps.

1. M_{1} examines the state and the scanned symbol of the current ID. Using the knowledge of moves of M stored in the finite control of M_{1}, M_{1} checks whether the state in the current ID is an accepting state of M. In this case M_{1} accepts and stops simulating M.
2. If the state q say in the current ID xqay is not an accepting state of M_{\mid} and $\delta(q, a)$ has k triples, M_{1} copies the ID xqay in the second tape and makes k copies of this ID at the end of the sequence of IDs in tape 2 .
3. M_{1} modifies these k IDs in tape 2 according to the k choices given by $\delta(q, a)$.
4. M_{1} returns to the marked current ID. erases the mark x and marks the next ID -separator $*$ with x (to the $*$ which is to the left of the next D to be processed). Then M_{1} goes back to step 1 .
M_{1} stops when an accepting state of M is reached in step 1 .
Now M_{1} accepts an input string w only when it is able to find that M has entered an accepting state, after a finite number of moves. This is clear from the simulated sequence of moves of M_{1} (ending in step 1)

We have to prove that M_{1} will eventually reach an accepting D (that is, an ID having an accepting state of M) if M enters an accepting ID after n moves. Note each move of M is simulated by several moves of M_{1}.

Let m be the maximum number of choices that M has for various (q, a) 's. (It is possible to find m since we have only finite number of pairs in $Q \times \Gamma$.) So for each initial ID of M, there are at most m IDs that M can reach after one move, at most $m^{2} \mathrm{ID}$ shat M can reach after two moves. and so on. So corresponding to n moves of M, there are at most $1+m+m^{2}+\cdots+m^{n}$ moves of M_{1}. Hence the number of ID to be explored by M_{1} is at most $n m^{n}$.

We assume that M_{1} explores these IDs. These IDs have a tree structure having the initial ID as its root. We can apply breadth-first search of the nodes of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2 , and so on.) If M reaches an accepting \mathbb{D} after n moves. then M_{1} has to search atmost $n m^{n}$ IDs before reaching an accepting ID. So, if M accepts w, then M_{1} also accepts \mathfrak{w} (eventually). Hence $T(M)=T\left(M_{1}\right)$.

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is accepted by the model, and (b) the infinite storage is restricted in size but not in accessibility to the storage in comparison with the Turing machine model. It is called the linear bounded automaton (LBA) because a linear function is used to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and develop the relation between the linear bounded automata and context-sensitive languages. It should be noted that the study of context-sensitive languages is important from practical point of view because many compiler languages lie between context-sensitive and context-free languages.

A linear bounded automaton is a nondeterministic Turing machine which has a single tape whose length is not infinite but bounded by a linear function
of the length of the input string. The models can be described formally by the following set format:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, b, \not \subset \$, F\right)
$$

All the symbols have the same meaning as in the basic model of Turing machines with the difference that the input alphabet Σ contains two special symbols $\mathbb{\$}$ and $\$. \mathbb{T}$ is called the left-end marker which is entered in the leftmost cell of the input tape and prevents the R/W head from getting off the left end of the tape. $\$$ is called the right-end marker which is entered in the rightmost cell of the input tape and prevents the R / W head from getting off the right end of the tape. Both the endmarkers should not appear on any other cell within the input tape, and the R/W head should not print any other symbol over both the endmarkers.

Let us consider the input string w with $|w|=n-2$. The input string w can be recognized by an LBA if it can also be recognized by a Turing machine using no more than $k n$ cells of input tape, where k is a constant specified in the description of LBA. The value of k does not depend on the input string but is purely a property of the machine. Whenever we process any string in LBA, we shall assume that the input string is enclosed within the endmarkers \mathbb{Q} and $\$$. The above model of LBA can be represented by the block diagram of Fig. 9.11. There are two tapes: one is called the input tape, and the other, working tape. On the input tape the head never prints and never moves to the left. On the working tape the head can modify the contents in any way, without any restriction.

Fig. 9.11 Model of linear bounded automaton.
In the case of LBA, an ID is denoted by (q, w, k), where $q \in Q, w \in \Gamma$ and k is some integer between 1 and n. The transition of Ds is similar except
that k changes to $k-1$ if the R / W head moves to the left and to $k+1$ if the head moves to the right.

The language accepted by LBA is defined as the set

$$
\left\{w \in(\Sigma-\{\Phi, \$\}) *\left(q_{0}, \not \subset w \$, 1\right) \mid(q, \alpha, i)\right.
$$

for some $q \in F$ and for some integer i between 1 and $n\}$.
Note: As a null string can be represented either by the absence of input string or by a completely blank tape, an LBA may accept the null string.

9.8.1 Relation Between LBA and Context-sensitive Languages

The set of strings accepted by nondeterministic LBA is the set of strings generated by the context-sensitive grammars, excluding the null strings. Now we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by a given Turing machine M. The productions are constructed in two steps. In step 1 we construct productions which transform the string $\left[q_{1} \mathbb{Q} w \$\right]$ into the string $\left[q_{2} b\right]$, where q_{1} is the initial state, q_{2} is an accepting state, ϕ is the leftendmarker, and $\$$ is the right-endmarker. The grammar obtained by applying step 1 is called the transformational grammar. In step 2 we obtain inverse production rules by reversing the productions of the transformational grammar to get the required type 0 grammar G. The construction is in such a way that w is accepted by M if and only if w is in $L(G)$.

9.9.1 Construction of a Grammar Corresponding то ТМ

For understanding the construction. we have to note that a transition of D corresponds to a production. We enclose IDs within brackets. So acceptance of i_{i} by M corresponds to the transformation of initial $\operatorname{ID}\left[q_{1} \Phi w \$\right]$ into $\left[q_{2} b\right]$. Also, the 'length' of ID may change if the R/W head reaches the left-end or the right-end. i.e. when the left-hand side or the right-hand side bracket is reached. So we get productions corresponding to transition of IDs with (i) no change in length, and (ii) change in length. We assume that the transition table is given.

We now describe the construction which involves two steps:
Step 1 (i) No change in length of IDs: (a) Right move. $a_{k} R q_{l}$ corresponding to q_{i}-row and a_{j}-column leads to the production

$$
q_{i} a_{j} \rightarrow a_{k} q_{l}
$$

(b) Left move. $\quad a_{k} L q_{l}$ corresponding to q_{i}-row and a_{j}-column yields several productions

$$
a_{m} q_{i} a_{j} \rightarrow q_{l} a_{m} a_{k} \quad \text { for all } a_{m} \in \Gamma
$$

(ii) Change in length of IDs: (a) Left-end. $a_{k} L q_{l}$ corresponding to q_{i}-row and a_{j}-column gives

$$
\left[q _ { i } a _ { j } \rightarrow \left[q_{i} b a_{k}\right.\right.
$$

When b occurs next to the left-bracket, it can be deleted. This is achieved by including the production $[b \rightarrow[$.
(b) Right-end. When b occurs to the left of], it can be deleted. This is achieved by the production

$$
\left.\left.a_{j} b\right] \rightarrow a_{j}\right] \quad \text { for all } a_{j} \in \Gamma
$$

When the R/W head moves to the right of], the length increases. Corresponding to this we have a production

$$
\left.\left.q_{i}\right] \rightarrow q_{i} b\right] \quad \text { for all } q_{i} \in Q
$$

(iii) Introduction of endmarkers. For introducing endmarkers for the input string, the following productions are included:

$$
\begin{array}{ll}
a_{i} \rightarrow\left[q_{1} \Phi a_{i}\right. & \text { for } a_{i} \in \Gamma, a_{i} \neq b \\
\left.a_{i} \rightarrow a_{i} \$\right] & \text { for all } a_{i} \in \Gamma, a_{i} \neq b
\end{array}
$$

For removing the brackets from $\left[q_{2} b\right]$, we include the production

$$
\left[q_{2} b\right] \rightarrow S
$$

Recall that q_{1} and q_{2} are the initial and final states, respectively.
Step 2 To get the required grammar, reverse the arrows of the productions obtained in step 1. The productions we get can be called inverse productions. The new grammar is called the generative grammar. We illustrate the construction with an example.

EXAMPLE 9.11

Consider the TM described by the transition table given in Table 9.9. Obtain the inverse production rules.

Solution

In this example, q_{1} is both initial and final.
Step 1 (i) Productions corresponding to right moves

$$
\begin{equation*}
q_{1} \Phi \rightarrow \Phi q_{1}, \quad q_{1} 1 \rightarrow b q_{2}, \quad q_{2} 1 \rightarrow b q_{1} \tag{9.1}
\end{equation*}
$$

(ii) (a) Productions corresponding to left-end

$$
\begin{equation*}
[b \rightarrow[\tag{9.2}
\end{equation*}
$$

(b) Productions corresponding to rig'it-end

$$
\begin{array}{llll}
& b b] \rightarrow b], & 1 b] \rightarrow 1], & \left.\left.q_{1}\right] \rightarrow q_{1} b\right], \\
\text { (iii) } 1 \rightarrow\left[q_{1} \mathbb{C},\right. & 1 \rightarrow 1 \$], & {\left[q_{1} b\right] \rightarrow S} & \tag{9.4}
\end{array}
$$

TABLE 9.9. Transition Table for Example 9.11

Present state	\mathbb{C}	b	1
$\rightarrow\left(q_{1}\right)$	$\Phi R q_{1}$		$b R q_{2}$
q_{2}		$b R q_{1}$	

Step 2 The inverse productions are obtained by reversing the arrows of the productions (9.1)-(9.4).

$$
\begin{gathered}
\Phi q_{1} \rightarrow q_{1} \Phi \quad b q_{2} \rightarrow q_{1} 1, \quad b q_{1} \rightarrow q_{2} 1 \\
[\rightarrow[b, b] \rightarrow b b], \quad 1] \rightarrow 1 b] \\
\left.\left.q_{1} b \rightarrow q_{1}\right], \quad q_{2} b \rightarrow q_{2}\right] . \quad\left[q_{1} \not \subset 1 \rightarrow 1\right. \\
1 \$] \rightarrow 1, \quad S \rightarrow\left[q_{1} b\right]
\end{gathered}
$$

Thus we have shown that there exists a type 0 grammar corresponding to a Turing machine. The converse is also true (we are not proving this), i.e. given a type 0 grammar G, there exists a Turing machine accepting $L(G)$. Actually, the class of recursively enumerable sets, the type 0 languages, and the class of sets accepted by TM are one and the same. We have shown that there exists a recursively enumerable set which is not a context-sensitive language (see Theorem 4.4). As a recursive set is recursively enumerable, Theorem 4.4 gives a type 0 language which is not type 1 . Hence, $f_{\mathrm{cs} 1} \subset \mathscr{L}_{0}$ (cf Property 4 , Section 4.3) is established.

9.10 LINEAR BOUNDED AUTOMATA AND LANGUAGES

A linear bounded automaton M accepts a string w if, after starting at the initial state with R/W head reading the left-endmarker, M halts over the right-endmarker in a final state. Otherwise, w is rejected.

The production rules for the generative grammar are constructed as in the case of Turing machines. The following additional productions are needed in the case of LBA.

$$
\begin{array}{ll}
a_{i} q_{f} \$ \rightarrow q_{f} \$ & \text { for all } a_{i} \in \Gamma \\
\Phi_{q_{f}} \$ \rightarrow \Phi_{f}, & \Phi_{q_{f}} \rightarrow q_{f}
\end{array}
$$

EXAMPLE 9.12

Find the grammar generating the set accepted by a linear bounded automaton M whose transition table is given in Table 9.10.

TABLE 9.10 Transition Table for Example 9.12

Present state	Tape input symbol			
	Φ	$\$$	0	1
$\rightarrow q_{1}$	$\Phi R q_{1}$		$1 L q_{2}$	$0 R q_{2}$
q_{2}	$\Phi R q_{4}$		$1 R q_{3}$	$1 L q_{1}$
q_{3}		$\$ L q_{1}$	$1 R q_{3}$	$1 R q_{3}$
q_{4}		$H a l t$	$0 L q_{4}$	$0 R q_{4}$

Solution

Step 1 (A) (i) Productions corresponding to right moves. The seven right moves in Table 9.10 give the following productions:

$$
\begin{array}{ll}
q_{1} \phi \rightarrow \phi q_{1} . & q_{3} 0 \rightarrow 1 q_{3} \\
q_{1} 1 \rightarrow 0 q_{2} . & q_{3} 1 \rightarrow 1 q_{3} \\
q_{2} \phi \rightarrow \phi q_{4}, & q_{4} 1 \rightarrow 0 q_{4} \\
q_{2} 0 \rightarrow 1 q_{3} &
\end{array}
$$

(ii) Productions corresponding to left moves. There are four left moves in Table 9.10. Each left move yields four productions (corresponding to the four tape symbols). These are:
(a) $L L q_{2}$ corresponding to q_{1}-row and 0 -column gives

$$
\begin{equation*}
\mathbb{T} q_{1} 0 \rightarrow q_{2} \mathbb{Q} 1, \$ q_{1} 0 \rightarrow q_{2} \$ 1,0 q_{1} 0 \rightarrow q_{2} 01,1 q_{1} 0 \rightarrow q_{2} 11 \tag{9.6}
\end{equation*}
$$

(b) $1 L q_{1}$ corresponding to q_{1}-row and 1 -column yields

$$
\begin{equation*}
\phi q_{2} 1 \rightarrow q_{1} \$ 1, \$ q_{2} 1 \rightarrow q_{1} \$ 1,0 q_{2} 1 \rightarrow q_{1} 01,1 q_{2} 1 \rightarrow q_{1} 11 \tag{9.7}
\end{equation*}
$$

(c) $\$ L q_{1}$ corresponding to q_{3}-row and $\$$-column gives

$$
\begin{equation*}
\Phi q_{3} \$ \rightarrow q_{1} \mathbb{\$} \$, \$ q_{3} \$ \rightarrow q_{1} \$ \$, 0 q_{3} \$ \rightarrow q_{1} 0 \$, 1 q_{3} \$ \rightarrow q_{1} 1 \$ \tag{9.8}
\end{equation*}
$$

(d) $0 L q_{4}$ corresponding to q_{4}-row and 0 -column yields

$$
\begin{equation*}
\Phi q_{4} 0 \rightarrow q_{4} \$ 0, \$ q_{4} 0 \rightarrow q_{4} \$ 0,0 q_{4} 0 \rightarrow q_{4} 00,1 q_{4} 0 \rightarrow q_{4} 10 \tag{9.9}
\end{equation*}
$$

(B) There are no productions corresponding to change in length.
(C) The productions for introducing the endmarkers are

$$
\begin{align*}
\Phi & \rightarrow\left[q_{1} \Phi \mathbb{C},\right. & & \Phi \rightarrow \Phi \$] \\
\$ & \rightarrow\left[q_{1} \Phi \$,\right. & & \$ \rightarrow \$ \$] \tag{9.10}\\
0 & \rightarrow\left[q_{1} \pitchfork 0,\right. & & 0 \rightarrow 0 \$] \\
1 & \rightarrow\left[q_{1} \mathbb{C} 1 .\right. & & 1 \rightarrow 1 \$] \\
{\left[q_{4}\right] } & \rightarrow S & & \tag{9.11}
\end{align*}
$$

(D) The LBA productions are

$$
\begin{array}{ll}
\Phi q_{4} \$ \rightarrow q_{4} \$, & \Phi q_{4} \$ \rightarrow \$ q_{4} \\
\$ q_{4} \$ \rightarrow q_{4} \$, & \Phi q_{4} \rightarrow q_{4} \tag{9.12}\\
0 q_{4} \$ \rightarrow q_{4} \$, & \\
1 q_{4} \$ \rightarrow q_{4} \$ &
\end{array}
$$

Step 2 The productions of the generative grammar are obtained by reversing the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of 1 s.

Solution

We design a TM so that we have ww after copying $w \in\{1\}^{*}$. Define M by

$$
M=\left(\left\{q_{0} \cdot q_{1}, q_{2}, q_{3}\right\} \cdot\{1\},\{1 . b\}, \delta, q_{0}, b,\left\{q_{3}\right\}\right)
$$

where δ is defined by Table 9.11.
TABLE 9.11 Transition Table for Example 9.13

Fresent state	Tape symbol		
	1	b	a
q_{0}	$q_{0} a R$	$q_{1} b L$	-
q_{1}	$q_{1} 1 L$	$q_{3} b R$	$q_{2} 1 R$
q_{2}	$q_{2} 1 R$	$q_{1} 1 L$	-
q_{3}	-	-	-

The procedure is simple.
M replaces every 1 by the symbol a. Then M replaces the rightmost a by 1. It goes to the right end of the string and writes a 1 there. Thus M has added a 1 for the rightmost 1 in the input string w. This process can be repeated.
M reaches q_{1} after replacing all 1 's by a 's and reading the blank at the end of the input string. After replacing a by $1, M$ reaches $q_{2} . M$ reaches q_{3} at the end of the process and halts. If $w=1^{n}$. than we have $1^{2 n}$ at the end of the computation. A sample computation is given below.

$$
\begin{aligned}
& q_{0} 11 \vdash a q_{0} 1 \vdash a a q_{0} b \vdash a q_{1} a \\
& \vdash a 1 q_{2} b \vdash a q_{1} 11 \vdash q_{1} a 11 \\
& \vdash 1 q_{2} 11 \vdash 11 q_{2} 1 \vdash 111 q_{2} b \\
& \vdash 11 q_{2} 11 \vdash 1 q_{1} 111 \\
& \vdash q_{1} 1111 \vdash q_{1} b 1111 \vdash q_{2} 1111
\end{aligned}
$$

EXAMPLE 9.14

Construct a TM to accept the set L of all strings over $\{0,1\}$ ending with 010 .

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to recognize L. Figure 9.12 gives a DFA accepting L.

Fig. 9.12 DFA for Example 9.14.
Converting this DFA to a TM is simple. In a DFA M, the move is always to the right. So the TM's move will always be to the right. Also M reads the input symbol and changes state. So the TM M_{1} does the same; it reads an input symbol. does not change the symbol and changes state. At the end of the computation, the TM sees the first blank b and changes to its final state. The initial ID of M_{1} is $q_{0} w$. By defining $\delta\left(q_{0}, b\right)=\left(q_{1}, b, R\right), M_{1}$ reaches the initial state of $M . M_{1}$ can be described by Fig. 9.13.

Fig. 9.13 TM for Example 9.14.
Note: q_{5} is the unique final state of M_{1}. By comparing Figs. 9.12 and 9.13 it is easy to see that strings of L are accepted by M_{1}.

EXAMPLE 9.15

Design a TM that reads a string in $\{0,1\}^{*}$ and erases the rightmost symbol.

Solution

The required TM M is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} .\{0,1\},\{0,1, b\}, \delta, q_{0}, b,\left\{q_{4}\right\}\right)
$$

where δ is defined by

$$
\begin{array}{lll}
\delta\left(q_{0}, 0\right)=\left(q_{1}, 0, R\right) & \delta\left(q_{0}, 1\right)=\left(q_{1}, 1, R\right) & \left(\mathrm{R}_{1}\right) \\
\delta\left(q_{1}, 0\right)=\left(q_{1}, 0, R\right) & \delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right) & \left(\mathrm{R}_{2}\right) \\
\delta\left(q_{1}, b\right)=\left(q_{2}, b, L\right) & & \left(\mathrm{R}_{3}\right) \\
\delta\left(q_{2}, 0\right)=\left(q_{3}, b, L\right) & \delta\left(q_{2}, 1\right)=\left(q_{3}, b, L\right) & \left(\mathrm{R}_{4}\right) \\
\delta\left(q_{3}, 0\right)=\left(q_{3}, 0, L\right) & \delta\left(q_{3}, 1\right)=\left(q_{3}, 1, L\right) & \left(\mathrm{R}_{5}\right) \\
\delta\left(q_{3}, b\right)=\left(q_{4}, b, R\right) & & \left(\mathrm{R}_{6}\right) \tag{6}
\end{array}
$$

Let w be the input string. By $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{R}_{2}\right), M$ reads the entire input string w. At the end, M is in state q_{1}. On seeing the blank to the right of w, M reaches the state q_{2} and moves left. The rightmost string in w is erased (by $\left(\mathrm{R}_{4}\right)$) and the state becomes q_{3}. Afterwards M moves to the left until it reaches the leftend of w. On seeing the blank b to the right of w, M changes its state to q_{4}, which is the final state of M. From the construction it is clear that the rightmost symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$.

Solution

Let w be an input string in $\{0\}^{*}$. The TM accepting L functions as follows:

1. It writes b (blank symbol) on the leftmost 0 of the input string w. This is done to mark the left-end of w.
2. M reads the symbols of w from left to right and replaces the alternate 0 's with x 's.
3. If the tape contains a single 0 in step $2, M$ accepts w.
4. If the tape contains more than one 0 and the number of 0 's is odd in step $2, M$ rejects w.
5. M returns the head to the left-end of the tape (marked by blank b in step 1).
6. M goes to step 2.

Each iteration of step 2 reduces w to half its size. Also whether the number of 0 's seen is even or odd is known after step 2 . If that number is odd and greater than $1, w$ cannot be $0^{2 n}$ (step 4). In this case M rejects w. If the number of 0 s seen is 1 (step 3), M accepts w (In this case $0^{2^{n}}$ is reduced to 0 in successive stages of step 2).

We define M by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{f}, q_{t}\right\},\{0\},\{0, x, b\}, \delta, q_{0}, b,\left\{q_{f}\right\}\right)
$$

where δ is defined by Table 9.12 .

TABLE 9.12 Transition Table for Example 9.16

Present state	Tape symbol			
	0	b	$x R q_{t}$	
q_{0}	$b R q_{1}$	$b R q_{f}$	$x R q_{t}$	
q_{1}	$x R q_{2}$	$b R q_{4}$	$x R q_{1}$	
q_{2}	$0 R q_{3}$	$b R q_{6}$	$x R q_{2}$	
q_{3}	$x R q_{2}$	$b R q_{1}$	$x R q_{3}$	
q_{4}	$0 L q_{4}$	-	$x L q_{4}$	
q_{f}	-	-	-	
q_{i}	-	-		

From the construction, it is apparent that the states are used to know whether the number of 0 s read is odd or even.

We can see how M processes 0000 .

$$
\begin{aligned}
q_{0} 0000 & \vdash b q_{1} 000 \vdash b x q_{2} 00 \vdash b x q_{3} 0 \vdash b x 0 x q_{2} b \\
& \vdash b x 0 q_{4} x b \vdash b x q_{4} 0 x b \vdash b q_{4} x 0 x b \vdash q_{4} b x 0 x b \\
& \vdash b q_{1} x 0 x b \vdash b x q_{1} 0 x b \vdash b x x q_{2} x b \vdash b x x q_{2} b \\
& \vdash b x x q_{4} x b \vdash b x q_{4} x x b \vdash b q_{4} x x x b \vdash q_{4} b x x x b \\
& \vdash b q_{1} x x x b \vdash b x q_{1} x x b \vdash b x x q_{1} x b \vdash b x x x q_{1} b \\
& \vdash b x x b q_{f}
\end{aligned}
$$

Hence M accepts w.
Also note that M always halts. If M reaches q_{f}, the input string w is accepted by M. If M reaches q_{r}, w is not accepted by M; in this case M halts in the trap state.

EXAMPLE 9.17

Let $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\{0,1, b\}, \delta, q_{0},\left\{q_{2}\right\}\right)$
where δ is given by

$$
\begin{align*}
& \delta\left(q_{0}, 0\right)=\left(q_{1}, 1, R\right) \tag{1}\\
& \delta\left(q_{1}, 1\right)=\left(q_{0}, 0, R\right) \tag{2}\\
& \delta\left(q_{1}, b\right)=\left(q_{2}, b, R\right) \tag{3}
\end{align*}
$$

Find $T(M)$.

Solution

Let $w \in T(M)$. As $\delta\left(q_{0}, 1\right)$ is not defined, w cannot start with 1 . From $\left(\mathrm{R}_{1}\right)$ and (R_{2}), we can conclude that M starts from q_{0} and comes back to q_{0} after reaching 01 .

So, $q_{0}(01)^{n} \vdash^{*}(10)^{n} q_{0}$. Also, $q_{0} 0 b \vdash 1 q_{1} b \vdash 1 b q_{2}$.

So, $(01)^{n} 0 \in T(M)$. Also, $(01)^{n} 0$ is the only string that makes M move from q_{0} to q_{2}. Hence, $T(M)=\left\{(01)^{n} 0 \mid n \geq 0\right\}$.

SELF-TEST

Choose the correct answer to Questions 1-10:

1. For the standard TM:
(a) $\Sigma=\Gamma$
(b) $\Gamma \subseteq \Sigma$
(c) $\Sigma \subseteq \Gamma$
(d) Σ is a proper subset of Γ.
2. In a standard TM, $\delta(q, a), q \in Q, a \in \Gamma$ is
(a) defined for all $(q, a) \in Q \times \Gamma$
(b) defined for some. not necessarily for all $(q, a) \in Q \times \Gamma$
(c) defined for no element (q. a) of $Q \times \Gamma$
(d) a set of triples with more than one element.
3. If $\delta\left(q, x_{i}\right)=(p, y, L)$, then
(a) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{i}+x_{1} x_{2} \ldots x_{i-2} p x_{i-1} 1 x_{i+1} \ldots x_{n}$
(b) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} y p x_{i+1} \ldots x_{n}$
(c) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} \ldots x_{i-2} p x_{i-2} x_{i-1} p x_{i+1} \ldots x_{n}$
(d) $x_{1} x_{2} \ldots x_{i-1} g x_{i} \ldots x_{n} \vdash x_{1} \ldots x_{i+1} p x_{i+2} \ldots x_{n}$
4. If $\delta\left(q, x_{i}\right)=(p, y, R)$, then
(a) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} p p x_{i+1} \ldots x_{n}$
(b) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n}-x_{1} x_{2} \ldots x_{i} p x_{i+1} \ldots x_{n}$
(c) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n}-x_{1} x_{2} \ldots x_{i-1} p x_{i} x_{i+1} \ldots x_{n}$
(d) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} y p x_{i+1} \ldots x_{n}$
5. If $\delta\left(q, x_{1}\right)=(p, y, L)$, then
(a) $q x_{1} x_{2} \ldots x_{n}-p v x_{2} \ldots x_{n}$
(b) $q x_{1} x_{2} \ldots x_{n} \vdash y p x_{2} \ldots x_{n}$
(c) $q x_{1} x_{2} \ldots x_{n} \downharpoonright p b x_{1} \ldots x_{n}$
(d) $q x_{1} x_{2} \ldots x_{n} \vdash p b x_{2} \ldots x_{n}$
6. If $\delta\left(q, x_{n}\right)=(p, y, R)$, then
(a) $x_{1} \ldots x_{n-1} q x_{n} \vdash p x_{2} x_{3} \ldots x_{n}$
(b) $x_{1} \ldots x_{n-1} q x_{n} \not p x_{2} x_{3} \ldots x_{n}$
(c) $x_{1} \ldots x_{n-1} q x_{n} \vdash x_{1} x_{2} \ldots x_{n-1}$ ypb
(d) $x_{1} \ldots x_{n-1} q x_{n} \vdash^{*} x_{1} x_{2} \ldots x_{n-1} y p b$
7. For the TM given in Example 9.6:
(a) $q_{0} 1 b 11 * b q_{f} 11 b b 1$
(b) $q_{0} 1 b 11 \leftarrow b q_{f} 11 b b 1$
(c) $q_{0} 1 b 11 \vdash 1 q_{0} b 111$
(d) $q_{0} 1 b 11 \longmapsto q_{3} b 11 b b 1$
8. For the TM given in Example 9.4:
(a) 011 is accepted by M
(b) 001 is accepted by M
(c) 00 is accepted by M
(d) 0011 is accepted by M.
9. For the TM given in Example 9.5:
(a) 1 is accepted by M
(b) 11 is accepted by M
(c) 111 is accepted by M
(d) 11111 is accepted by M
10. In a standard $\mathrm{TM}\left(\mathrm{Q}, \Sigma, \Gamma, \delta . q_{0}, b, F\right)$ the blank symbol b is
(a) in $\Sigma-\Gamma$
(b) in $\Gamma-\Sigma$
(c) $\Gamma \cap \Sigma$
(d) none of these

EXERCISES

9.1 Draw the transition diagram of the Turing machine given in Table 9.1.
9.2 Represent the transition function of the Turing machine given in Example 9.2 as a set of quintuples.
9.3 Construct the computation sequence for the input $1 b 11$ for the Turing machine given in Example 9.5.
9.4 Construct the computation sequence for strings $1213,2133,312$ for the Turing machine given in Example 9.8.
9.5 Explain how a Turing machine can be considered as a computer of integer functions (i.e. as one that can compute integer functions; we shall discuss more about this in Chapter 11).
9.6 Design a Turing machine that converts a binary string into its equivalent unary string.
9.7 Construct a Turing machine that enumerates $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
9.8 Construct a Turing machine that can accept the set of all even palindromes over $\{0,1\}$.
9.9 Construct a Turing machine that can accept the strings over $\{0,1\}$ containing even number of 1 's.
9.10 Design a Turing machine to recognize the language $\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\}$.
9.11 Design a Turing machine that can compute proper subtraction, i.e. $m-n$. where m and n are positive integers. $m-n$ is defined as $m-n$ if $m>n$ and 0 if $m \leq n$.

1 Decidability and Recursively Enumerable Languages

In this chapter the formal definition of an algorithm is given. The problem of decidability of various class of languages is discussed. The theorem on halting problem of Turing machine is proved.

10.1 THE DEFINITION OF AN ALGORITHM

In Section 4.4, we gave the definition of an algorithm as a procedure (finite sequence of instructions which can be mechanically carried out) that terminates after a finite number of steps for any input. The earliest algorithm one can think of is the Euclidean algorithm, for computing the greatest common divisor of two natural numbers. In 1900, the mathematician David Hilbert, in his famous address at the International congress of mathematicians in Paris, averred that every definite mathematical problem must be susceptible for an exact settlement either in the form of an exact answer or by the proof of the impossibility of its solution. He identified 23 mathematical problems as a challenge for future mathematicians; only ten of the problems have been solved so far.

Hilbert's tenth problem was to devise 'a process according to which it can be determined by a finite number of operations', whether a polynomial over Z has an integral root. (He did not use the word 'algorithm' but he meant the same.) This was not answered until 1970.

The formal definition of algorithm emerged after the works of Alan Turing and Alanzo Church in 1936. The Church-Turing thesis states that any algorithmic procedure that can be carried out by a human or a computer, can also be carried out by a Turing machine. Thus the Turing machine arose as an ideal theoretical model for an algorithm. The Turing machine provided a machinery to mathematicians for attacking the Hilberts' tenth problem. The problem can be restated as follows: does there exist a TM that can accept a
polynomial over n variables if it has an integral root and reject the polynomial if it does not have one.

In 1970, Yuri Matijasevic. after studying the work of Martin Davis, Hilary Putnam and Julia Robinson showed that no such algorithm (Turing machine) exists for testing whether a polynomial over n variables has integral roots. Now it is universally accepted by computer scientists that Turing machine is a mathematical model of an algorithm.

10.2 DECIDABILITY

We are familiar with the recursive definition of a function or a set. We also have the definitions of recursively enumerable setş and recursive sets (refer to Section 4.4). The notion of a recursively enumerable set (or language) and a recursive set (or language) existed even before the dawn of computers.

Now these terms are also defined using Turing machines. When a Turing machine reaches a final state, it 'halts.' We can also say that a Turing machine M halts when M reaches a state q and a current symbol a to be scanned so that $\delta(q, a)$ is undefined. There are TMs that never halt on some inputs in any one of these ways. So we make a distinction between the languages accepted by a TM that halts on all input strings and a TM that never halts on some input strings.

Definition 10.1 A language $L \subseteq \Sigma^{*}$ is recursively enumerable if there exists a TM M, such that $L=T(M)$.

Definition 10.2 A language $L \subseteq \Sigma^{*}$ is recursive if there exists some TM M that satisfies the following two conditions.
(i) If $w \in L$ then M accepts w (that is, reaches an accepting state on processing w) and halts.
(ii) If $w \notin L$ then M eventually halts, without reaching an accepting state.

Note: Definition 10.2 formalizes the notion of an 'algorithm'. An algorithm, in the usual sense, is a well-defined sequence of steps that always terminates and produces an answer. The Conditions (i) and (ii) of Definition 10.2 assure us that the TM always halts, accepting w under Condition (i) and not accepting under Condition (ii). So a TM, defining a recursive language (Definition 10.2) always haits eventually just as an algorithm eventually terminates.

A problem with only two answers $\mathrm{Yes} / \mathrm{No}$ can be considered as a language L. An instance of the problem with the answer 'Yes' can be considered as an element of the corresponding language L; an instance with answer ' No ' is considered as an element not in L.

Definition 10.3 A problem with two answers (Yes/No) is decidable if the corresponding language is recursive. In this case, the language L is also called decidable.

Definition 10.4 A problem/language is undecidable if it is not decidable.
Note: A decidable problem is called a solvable problem and an undecidable problem an unsolvable problem by some authors.

10.3 DECIDABLE LANGUAGES

In this section we consider the decidability of regular and context-free languages.

First of all. we consider the problem of testing whether a deterministic finite automaton accepts a given input string w.

Definition 10.5

$$
A_{\mathrm{DFA}}=\{(B, w) \mid B \text { accepts the input string } w\}
$$

Theorem 10.1 A_{DFA} is decidable.
Proof To prove the theorem, we have to construct a TM that always halts and also accepts $A_{\text {DFA }}$. We describe the TM M using high level description (refer to Section 9.5). Note that a DFM B always ends in some state of B after n transitions for an input string of length n.

We define a TM M as follows:

1. Let B be a DFA and w an input string. (B, w) is an input for the Turing machine M.
2. Simulate B and input w in the TM M.
3. If the simulation ends in an accepting state of B. then M accepts w. If it ends in a nonaccepting state of B, then M rejects w.
We can discuss a few implementation details regarding steps 1.2 and 3 above. The input (B, w) for M is represented by representing the five components $Q, \Sigma, \delta, q_{9}, f$ by strings of Σ^{*} and input string $w \in \Sigma^{*} . M$ checks whether (B, w) is a valid input. If not, it rejectes (B, w) and halts. If (B, w) is a valid input. M writes the initial state q_{0} and the leftmost input symbol of w. It updates the state using δ and then reads the next symbol in w. This explains step 2.

If the simulation ends in an accepting state w, then M accepts (B, w). Otherwise, M rejects (B, w). This is the description of step 3.

It is evident that M accepts ($B, w)$ if and only if w is accepted by the DFA B. I

Definition 10.6

$$
A_{\mathrm{CFG}}=\{(G, w) \mid \text { the context-free grammar } G \text { accepts the input string } w\}
$$

Theorem 10.2 $A_{\text {CFG }}$ is decidable.
Proof We convert a CFG into Chomsky normal form. Then any derivation of w of length k requires $2 k-1$ steps if the grammar is in CNF (refer to Example 6.18). So for checking whether the input string w of length k is
in $L(G)$, it is enough to check derivations in $2 k-1$ steps. We know that there are only finitely many derivations in $2 k-1$ steps. Now we design a TM M that halts as follows.

1. Let G be a CFG in Chomsky normal form and w an input string. (G, w) is an input for M.
2. If $k=0$, list all the single-step derivations. If $k \neq 0$, list all the derivations with $2 k-1$ steps.
3. If any of the derivations in step 2 generates the given string w, M accepts (G, w). Otherwise M rejects.

The implementation of steps $1-3$ is similar to the steps in Theorem 10.1. (G, w) is represented by representing the four components V_{N}, Σ, P, S of G and input string w. The next step of the derivation is got by the production to be applied.
M accepts (G, w) if and only if w is accepted by the CFG G.
In Theorem 4.3, we proved that a context-sensitive language is recursive. The main idea of the proof of Theorem 4.3 was to construct a sequence $\left\{W_{0}, W_{1}, \ldots, W_{h}\right\}$ of subsets of $\left(V_{N} \cup \Sigma\right)^{*}$, that terminates after a finite number of iterations. The given string $w \in \Sigma^{*}$ is in $L(G)$ if and only if $w \in$ W_{k} With this idea in mind we can prove the decidability of the contextsensitive language.

Definition 10.7 $A_{C S G}=\{(G, w) \mid$ the context-sensitive grammar G accepts the input string $w\}$.

Theroem 10.3 A_{CSG} is decidable.
Proof The proof is a modification of the proof of Theorem 10.2. In Theorem 10.2, we considered derivations with $2 k-1$ steps for testing whether an input string of length k was in $L(G)$. In the case of context-sensitive grammar we construct $W_{i}=\left\{\alpha \in\left(V_{N} \cup \Sigma\right)^{*} \mid S \underset{G}{\Rightarrow} \alpha\right.$ in i or fewer steps and $|\alpha| \leq n\}$. There exists a natural number k such that $W_{k}=W_{k+1}=W_{k+2}=\ldots$ (refer to proof of Theorem 4.3).

So $w \in L(G)$ if and only if $w \in W_{k}$. The construction of W_{k} is the key idea used in the construction of a TM accepting $A_{\text {CSG }}$. Now we can design a Turing machine M as follows:

1. Let G be a context-sensitive grammar and w an input string of length n. Then (G, w) is an input for TM.
2. Construct $W_{0}=\{S\} . W_{i+1}=W_{i} \cup\left\{\beta \in\left(V_{N} \cup \Sigma\right)^{*} \mid\right.$ there exists $\alpha_{i} \in W_{i}$ such that $\alpha \Rightarrow \beta$ and $\left.|\beta| \leq n\right\}$. Continue until $W_{k}=W_{k+1}$ for some k. (This is possible by Theorem 4.3.)
3. If $w \in W_{k}, w \in L(G)$ and M accepts (G, w); otherwise M rejects (G, w). I
Note: If \mathscr{L}_{d} denotes the class of all decidable languages over Σ, then

$$
\mathscr{L}_{\mathrm{rl}} \subseteq \mathscr{x}_{\mathrm{cf1}} \subseteq \mathscr{L}_{\mathrm{cs} 1} \subseteq \mathscr{L}_{\mathrm{d}}
$$

10.4 UNDECIDABLE LANGUAGES

In this section we prove the existence of languages that are not recursively enumerable and address the undecidability of recursively enumerable languages.

Theorem 10.4 There exists a language over Σ that is not recursively enumerable.

Proof A language L is recursively enumerable if there exists a TM M such that $L=T(M)$. As Σ is finite, Σ^{*} is countable (that is, there exists a one-toone correspondence between Σ^{*} and N).

As a Turing machine M is a 7 -tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, b, F$) and each member of the 7 -tuple is a finite set, M can be encoded as a string. So the set I of all TMs is countable.

Let \mathcal{L} be the set of all languages over Σ. Then a member of \mathscr{L} is a subset of Σ^{*} (Note that Σ^{*} is infinite even though Σ is finite). We show that \mathscr{L} is uncountable (that is, an infinite set not in one-to correspondence with N).

We prove this by contradiction. If \mathscr{L} were countable then \mathscr{L} can be written as a sequence $\left\{L_{i}, L_{2}, L_{3}, \ldots\right\}$. We write Σ^{*} as a sequence $\left\{w_{1}, w_{2}\right.$, $\left.w_{3} \ldots\right\}$. So L_{i} can be represented as an infinite binary sequence $x_{i 1} x_{i 2} x_{i 3} \ldots$ where

$$
x_{i j}= \begin{cases}1 & \text { if } w_{j} \in L_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Using this representation we write L_{i} as an infinite binary sequence.

$$
\begin{aligned}
& L_{1}: x_{11} x_{12} x_{13} \ldots x_{1 ;} \ldots \\
& L_{2}: x_{21} x_{22} x_{23} \ldots x_{2 j} \ldots \\
& \begin{array}{ccc}
\vdots & & \\
L_{i}: & x_{i 1} 1_{i 2} x_{i 3} & \ldots \\
x_{i j} & \ldots
\end{array}
\end{aligned}
$$

Fig. 10.1 Representation of \neq.
We define a subset L of Σ^{*} by the binary sequence $y_{1} y_{2} y_{3} \ldots$ where $y_{i}=$ $1-x_{i i}$. If $x_{i i}=0, y_{i}=1$ and if $x_{i i}=1, y_{i}=0$. Thus according to our assumption the subset L of Σ^{*} represented by the infinite binary sequence $y_{1} y_{2} y_{3} \ldots$ should be L_{k} for some natural number k. But $L \neq L_{k}$, since $w_{k} \in L$ if and only if $w_{k} \notin L_{k}$. This contradicts our assumption that \mathscr{E} is countable. Therefore \mathscr{E} is uncountable. As I is countable. $\dot{\mathscr{L}}$ should have some members not corresponding to any TM in I. This proves the existence of a language over Σ that is not recursively enumerable. I

Definition 10.8 $A_{\mathrm{TM}}=\{(M, w) \mid$ The TM M accepts $w\}$.

Theorem $10.5 \quad A_{\mathrm{TM}}$ is undecidable.
Proof We can prove that $A_{T M}$ is recursively enumerable. Construct a TM U as follows:
(M, n) is an input to U. Simulate M on w. If M enters an acceping state, U accepts (M, w). Hence $A_{T M}$ is recursively enumerable. We prove that $A_{T M}$ is undecidable by contradiction. We assume that A_{TM} is decidable by a TM H that eventually halts on all inputs. Then

$$
H(M, w)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

We construct a new TM D with H as subroutine. D calls H to determine what M does when it receives the input $\langle M\rangle$, the encoded description of M as a string. Based on the received information on ($M,\langle M\rangle$), D rejects M if M accepts $\langle M\rangle$ and accepts M if M rejects $\langle M\rangle . D$ is described as follows:

1. $\langle M\rangle$ is an input to D, where $\langle M\rangle$ is the encoded string representing M.
2. D calls H to run on $(M,\langle M\rangle)$
3. D rejects $\langle M\rangle$ if H accepts $(M,\langle M\rangle)$ and accepts $\langle M\rangle$ if H rejects ($M,\langle M\rangle$).
Now step 3 can be described as follows:

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

Let us look at the action of D on the input $\langle D\rangle$. According to the construction of D.

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

This means D accepts $\langle D\rangle$ if D does not accept $\langle D\rangle$, which is a contradiction. Hence ATM is undecidable.

The Turing machine U used in the proof of Theorem 10.5 is called the universal Turing machine. U is called universal since it is simulating any other Turing machine.

10.5 HALTING PROBLEM OF TURING MACHINE

In this section we introduce the reduction technique. This technique is used to prove the undecidability of halting problem of Turing machine.

We say that problem A is reducible to problem B if a solution to problem B can be used to solve problem A.

For example, if A is the problem of finding some root of $x^{4}-3 x^{2}+2=0$ and B is the problem of finding some root of $x^{2}-2=0$, then A is reducible to B. As $x^{2}-2$ is a factor of $x^{4}-3 x^{2}+2$, a root of $x^{2}-2=0$ is also a root of $x^{4}-3 x^{2}+2=0$.

Note: If A is reducible to B and B is decidable then A is decidable. If A is reducible to B and A is undecidable, then B is undecidable.
Theorem 10.6 $H A L T_{\mathrm{TM}}=\{(M, w) \mid$ The Turing machine M halts on input $w\}$ is undecidable.
Proof We assume that $H A L T_{\mathrm{TM}}$ is decidable, and get a contradiction. Let M_{1} be the $T M$ such that $T\left(M_{1}\right)=H A L T_{\mathrm{TM}}$ and let M_{1} halt eventually on all (M,w). We construct a TM M_{2} as follows:

1. For $M_{2},(M, w)$ is an input.
2. The TM M_{1} acts on (M, w).
3. If M_{1} rejects (M, w) then M_{2} rejects ($\left.M, w\right)$.
4. If M_{1} accepts (M, w), simulate the $\mathrm{TM} M$ on the input string w until M halts.
5. If M has accepted w, M_{2} accepts (M, w); otherwise M_{2} rejects (M, w).

When M_{1} accepts (M, w) (in step 4), the Turing machine M halts on w. In this case either an accepting state q or a state q^{\prime} such that $\delta\left(q^{\prime}, a\right)$ is undefined till some symbol a in w is reached. In the first case (the first alternative of step 5) M_{2} accepts (M, w). In the second case (the second alternative of step 5) M_{2} rejects (M, w).

It follows from the definition of M_{2} that M_{2} halts eventually.
Also,

$$
\begin{aligned}
T\left(M_{2}\right) & =\{(M, w) \mid \text { The Turing machine accepts } w\} \\
& =A_{\mathrm{TM}}
\end{aligned}
$$

This is a contradiction since A_{TM} is undecidable. I

10.6 THE POST CORRESPONDENCE PROBLEM

The Post Correspondence Problem (PCP) was first introduced by Emil Post in 1946. Later, the problem was found to have many applications in the theory of formal languages. The problem over an alphabet Σ belongs to a class of yes/no problems and is stated as follows: Consider the two lists $x=\left(x_{1} \ldots x_{n}\right)$, $y=\left(y_{1} \ldots y_{n}\right)$ of nonempty strings over an alphabet $\Sigma=\{0,1\}$. The PCP is to determine whether or not there exist i_{1}, \ldots, i_{m}, where $1 \leq i_{j} \leq n$, such that

$$
x_{i_{1}} \ldots x_{i_{n}}=y_{i_{1}} \ldots y_{i_{m}}
$$

Note: The indices i_{j} 's need not be distinct and m may be greater than n. Also, if there exists a solution to PCP, there exist infinitely many solutions.

EXAMPLE 10.1

Does the PCP with two lists $x=\left(b, b a b^{3}, b a\right)$ and $y=\left(b^{3}, b a, a\right)$ have a solution?

Solution

We have to determine whether or not there exists a sequence of substrings of x such that the string formed by this sequence and the string formed by the sequence of corresponding substrings of y are identical. The required sequence is given by $i_{1}=2, i_{2}=1, i_{3}=1, i_{4}=3$, i.e. $(2,1,1,3)$, and $m=4$. The corresponding strings are

Thus the PCP has a solution.

EXAMPLE 10.2

Prove that PCP with two lists $x=(01,1,1), y=\left(01^{2}, 10,1^{1}\right)$ has no solution.

Solution

For each substring $x_{i} \in x$ and $y_{i} \in y$, we have $\left|x_{i}\right|<\left|y_{i}\right|$ for all i. Hence the string generated by a sequence of substrings of x is shorter than the string generated by the sequence of corresponding substrings of y. Therefore, the PCP has no solution.

Note: If the first substring used in PCP is always x_{1} and y_{1}, then the PCP is known as the Modified Post Correspondence Problem.

EXAMPLE 10.3

Explain how a Post Correspondence Problem can be treated as a game of dominoes.

Solution

The PCP may be thought of as a game of dominoes in the following way: Let each domino contain some x_{i} in the upper-half, and the corresponding substring of y in the lower-half. A typical domino is shown as

x_{i}	upper-half
y	y_{i}
	lower-half

The PCP is equivalent to placing the dominoes one after another as a sequence (of course repetitions are allowed). To win the game, the same string should appear in the upper-half and in the lower-half. So winning the game is equivalent to a solution of the PCP.

We state the following theorem by Emil Post without proof.
Theorem 10.7 The PCP over Σ for $|\Sigma| \geq 2$ is unsolvable.
It is possible to reduce the PCP to many classes of two outputs (yes/no) problems in formal language theory. The following results can be proved by the reduction technique applied to PCP .

1. If L_{1} and L_{2} are any two context-free languages (type 2) over an alphabet Σ and $|\Sigma| \geq 2$, there is no algorithm to determine whether or not
(a) $L_{1} \cap L_{2}=\emptyset$,
(b) $L_{1} \cap L_{2}$ is a context-free language,
(c) $L_{1} \subseteq L_{2}$, and
(d) $L_{1}=L_{2}$.
2. If G is a context-sensitive grammar (type 1), there is no algorithm to determine whether or not
(a) $L(G)=\emptyset$,
(b) $L(G)$ is infinite, and
(c) $x_{0} \in L(G)$ for a fixed string x_{0}.
3. If G is a type 0 grammar, there is no algorithm to determine whether or not any string $x \in \Sigma^{*}$ is in $L(G)$.

10.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 10.4

If L is a recursive language over Σ, show that $\bar{L}\left(\bar{L}\right.$ is defined as $\left.\Sigma^{*}-L\right)$ is also recursive.

Solution

As L is recursive, there is a Turing machine M that halts and $T(M)=L$. We have to construct a $\mathrm{TM} M_{1}$, such that $T\left(M_{1}\right)=\bar{L}$ and M_{1} eventually halts.
M_{1} is obtained by modifying M as follows:

1. Accepting states of M are made nonaccepting states of M_{1}.
2. Let M_{1} have a new state q_{f} After reaching $q_{p} M_{1}$ does not move in further transitions.
3. If q is a nonaccepting state of M and $\delta(q, x)$ is not defined, add a transition from q to q_{f} for M_{1}.
As M halts, M_{1} also halts. (If M reaches an accepting state on w, then M_{1} dees not accept w and halts and conversely.)

Also M_{1} accepts w if and only if M does not accept w. So I is recursive.

EXAMPLE 10.5

If L and \bar{L} are both recursively enumerable, show that L and \bar{L} are recursive.

Solution

Let M_{1} and M_{2} be two TMs such that $L=T\left(M_{1}\right)$ and $\bar{L}=T\left(M_{2}\right)$. We construct a new two-tape TM M that simulates M_{1} on one tape and M_{2} on the other.

If the input string w of M is in L, then M_{1} accepts w and we declare that M accepts w. If $w \in \bar{L}$, then M_{2} accepts w and we declare that M halts without accepting. Thus in both cases, M eventually halts. By the construction of M it is clear that $T(M)=T\left(M_{1}\right)=L$. Hence L is recursive. We can show that \bar{L} is recursive, either by applying Example 10.4 or by interchanging the roles of M_{1} and M_{2} in defining acceptance by M.

EXAMPLE 10.6

Show that $\bar{A}_{\text {TM }}$ is not recursively enumerable.

Solution

We have already seen that A_{TM} is recursively enumerable (by Theorem 10.5). If \bar{A}_{TM} were also recursively enumerable, then A_{TM} is recursive (by Example 10.5). This is a contradiction since A_{TM} is not recursive by Theorem 10.5 . Hence \bar{A}_{TM} is not recursively enumerable.

EXAMPLE 10.7

Show that the union of two recursively enumerable languages is recursively enumerable and the union of two recursive languages is recursive.

Solution

Let L_{1} and L_{2} be two recursive languages and M_{1}, M_{2} be the corresponding TMs that halt. We design a TM M as a two-tape TM as follows:

1. w is an input string to M.
2. M copies w on its second tape.
3. M simulates M_{1} on the first tape. If w is accepted by M_{1}, then M accepts w.
4. M simulates M_{2} on the second tape. If w is accepted by M_{2}, then M accepts w.
M always halts for any input w.
Thus $L_{1} \cup L_{2}=T(M)$ and hence $L_{1} \cup L_{2}$ is recursive.
If L_{1} and L_{2} are recursively enumerable, then the same conclusion gives a proof for $L_{1} \cup L_{2}$ to be recursively enumerable. As M_{1} and M_{2} need not halt, M need not halt.

SELF-TEST

1. What is the difference between a recursive language and a recursively enumerable language?
2. The DFA M is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

where δ is defined by the transition Tabie 10.1.
TABLE 10.1 Transition Table for Self-Test 2

State	0	1
$\rightarrow\left(q_{0}\right)$	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

Answer the following:
(a) Is ($M, 001101$) in A_{DFA} ?
(b) Is $(M, 01010101)$ in $A_{D F A}$?
(c) Does $M \in A_{\mathrm{DFA}}$?
(d) Find w such that $(M, w) \notin A_{\text {DFA }}$.
3. What do you mean by saying that the halting problem of TM is undecidable?
4. Describe $A_{\mathrm{DFA}}, A_{\mathrm{CFG}}, A_{\mathrm{CSG}}, A_{\mathrm{TM}}$, and $H A L T_{\mathrm{TM}}$.
5. Give one language from each of $\mathscr{L}_{\mathrm{rl}}, \mathscr{L}_{\mathrm{cf1}}, \mathscr{L}_{\mathrm{csl}}$.
6. Give a language
(a) which is in $\mathcal{X}_{\text {cs! }}$ but not in \mathscr{X}_{r}
(b) which is in $\mathscr{x}_{\text {cil }}$ but not in $\mathscr{x}_{\text {csl }}$
(c) which is in $\mathscr{L}_{\text {cfl }}$ but not in $\mathscr{L}_{\mathrm{rl}}$.

EXERCISES

10.1 Describe the Euclid's algorithm for finding the greatest common divisor of two natural numbers.
10.2 Show that $A_{\text {NDFA }}=\left\{(B, w) \mid B\right.$ is an $N_{\text {DFA }}$ and B accepts $\left.w\right\}$ is decidable.
10.3 Show that $E_{\mathrm{DFA}}=\left\{M \mid M\right.$ is a D_{FA} and $\left.T(M)=\emptyset\right\}$ is decidable.
10.4 Show that $E Q_{\mathrm{DFA}}=\{(A, B) \mid A$ and B are DFAs and $T(A)=T(B)\}$ is decidable
10.5 Show that E_{CFG} is decidable (E_{CFG} is defined in a way similar to that of E_{DFA}).
10.6 Give an example of a language that is not recursive but recursively enumerable.
10.7 Do there exist languages that are not recursively enumerable?
10.8 Let L be a language over Σ. Show that only one of the following are possible for L and \bar{L}.
(a) Both L and \bar{L} are recursive.
(b) Neither L nor \bar{L} is recursive.
(c) L is recursively enumerable but \bar{L} is not.
(d) \bar{L} is recursively enumerable but L is not.
10.9 What is the difference between A_{TM} and $H A L T_{\mathrm{TM}}$?
10.10 Show that the set of all real numbers between 0 and 1 is uncountable. (A set S is uncountable if S is infinite and there is no one-to-one correspondence between S and the set of all natural numbers.)
10.11 Why should one study undecidability?
10.12 Prove that the recursiveness problem of type 0 grammar is unsolvable.
10.13 Prove that there exists a Turing machine M for which the halting problem is unsolvable.
10.14 Show that there exists a Turing machine M over $\{0,1\}$ and a state q_{m} such that there is no algorithm to determine whether or not M will enter the state q_{m} when it begins with a given ID.
10.15 Prove that the problem of determining whether or not a TM over $\{0,1\}$ will ever print the symbol 1, with a given tape configuration, is unsolvable.
10.16 (a) Show that $\{x \mid x$ is a set and $x \notin x\}$ is not a set. (Note that this seems to be well-defined. This is one version of Russell's paradox.)
(b) A village barber shaves those who do not shave themselves but no others. Can he achieve his goal? For example, who is to shave the barber? (This is a popular version of Russell's paradox.)
Hints: (a) Let $S=\{x \mid x$ be a set and $x \notin x\}$. If S were a set, then $S \in S$ or $S \notin S$. If $S \notin S$ by the 'definition' of S, then $S \in S$. On the other hand, if $S \in S$ by the 'definition' of S, then $S \notin S$. Thus we can neither assert that $S \notin S$ nor $S \in S$. (This is Russell's paradox.) Therefore, S is not a set.
(b) Let $S=\{x \mid x$ be a person and x does not shave himself $\}$. Let b denote the barber. Examine whether $b \in S$. (The argument is similar to that given for (a).) It will be instructive to read the proof of HP of Turing machines and this example, in order to grasp the similarity.
10.17 Comment on the following: "We have developed an algorithm so complicated that no Turing machine can be constructed to execute the algorithm no matter how much (tape) space and time is allowed."
10.18 Prove that PCP is solvable if $|\Sigma|=1$.
10.19 Let $x=\left(x_{1} \ldots x_{n}\right)$ and $y=\left(y_{1} \ldots y_{n}\right)$ be two lists of nonempty strings over Σ and $|\Sigma| \geq 2$. (i) Is PCP solvable for $n=1$? (ii) Is PCP solvable for $n=2$?
10.20 Prove that the PCP with $\{(01,011),(1,10),(1,11)\}$ has no solution. (Here, $x_{1}=01, x_{2}=1, x_{3}=1, y_{1}=011, y_{2}=10, y_{3}=11$.)
10.21 Show that the PCP with $S=\left\{(0,10),\left(1^{2} 0,0^{3}\right),\left(0^{2} 1,10\right)\right\}$ has no solution. [Hint: No pair has common nonempty initial substring.]
10.22 Does the PCP with $x=\left(b^{3}, a b^{2}\right)$ and $y=\left(b^{3}, b a b^{3}\right)$ have a solution?
10.23 Find at least three solutions to PCP defined by the dominoes:

1
111

10
0

10111
10

10.24 (a) Can you simulate a Turing machine on a general-purpose computer? Explain.
(b) Can you simulate a general-purpose computer on a Turing machine? Explain.

11
 Computability

In this chapter we shall discuss the class of primitive recursive functions-a subclass of partial recursive functions. The Turing machine is viewed as a mathematical model of a partial recursive function.

11.1 INTRODUCTION AND BASIC CONCEPTS

In Chapters 5, 7 and 9, we considered automata as the accepting devices. In this chapter we will study automata as the computing machines. The problem of finding out whether a given problem is 'solvable' by automata reduces to the evaluation of functions on the set of natural numbers or a given alphabet by mechanical means.

We start with the definition of partial and total functions.
A partial function f from X to Y is a rule which assigns to every element of X at most one element of Y.

A total function from X to Y is a rule which assigns to every element of X a unique element of Y. For example, if R denotes the set of all real numbers, the rule f from R to itself given by $f(r)=+\sqrt{r}$ is a partial function since $f(r)$ is not defined as a real number when r is negative. But $g(r)=2 r$ is a total function from R to itself. (Note that all the functions considered in the earlier chapters were total functions.)

In this chapter we consider total functions from X^{k} to X, where $X=\{0,1,2,3, \ldots\}$ or $X=\{a, b\}^{*}$. Throughout this chapter we denote $(0,1,2, \ldots)$ by N and (a, b) by Σ. (Recall that X^{k} is the set of all k-tuples of elements of X.) For example, $f(m, n)=m-n$ defines a partial function from N to itself as $f(m, n)$ is not defined when $m-n<0 ; g(m, n)=m+n$ defines a total function from N to itself.

Remark A partial or total function f from X^{k} to X is also called a function of k variables and denoted by $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. For example. $f\left(x_{1}, x_{2}\right)=$ $2 x_{1}+x_{2}$ is a function of two variables: $f(1,2)=4,1$ and 2 are called arguments and 4 is called a value. $g\left(w_{1}, w_{2}\right)=w_{\mathrm{T}} w_{2}$ is a function of two variables $\left(w_{1} w_{2} \in \Sigma^{*}\right) ; g(a b, a a)=a b a a, a b, a a$ are called arguments and $a b a a$ is a value.

11.2 PRIMITIVE RECURSIVE FUNCTIONS

In this section we construct primitive recursive functions over N and Σ. We define some initial functions and declare them as primitive recursive functions. By applying certain operations on the primitive recursive functions obtained so far. we get the class of primitive recursive functions.

11.2.1 Initial Functions

The initial functions over N are given in Table 11.1. In particular,

$$
\begin{gathered}
S(4)=5 . \quad Z(7)=0 \\
U_{2}^{3}(2,4,7)=4, \quad U_{1}^{3}(2,4,7)=2, \quad U_{3}^{3}(2,4,7)=7
\end{gathered}
$$

TABLE 11.1 Initial Functions Over N
Zero function Z defined by $Z(x)=0$.
Successor function S defined by $S(x)=x+1$.
Projection function U_{i}^{n} defined by $U_{i}^{\eta}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.
Note: As $U_{1}^{1}(x)=x$ for every x in N, U_{1}^{1} is simply the identity function. So U_{i}^{n} is also termed a generalized identity function.

The initial functions over Σ are given in Table 11.2. In particular,

$$
\begin{aligned}
\text { nil }(a b a b) & =\Lambda \\
\text { cons } a(a b a b) & =a a b a b \\
\text { cons } b(a b a b) & =b a b a b
\end{aligned}
$$

Note: We note that cons $a(x)$ and cons $b(x)$ simply denote the concatenation of the 'constant' string a and x and the concatenation of the constant string b and x.

TABLE 11.2 Initial Functions Over $\{a, b\}$	
nil (x)	$=A$
cons $a(x)$	$=a x$
cons $b(x)$	$=b x$

In the following definition, we introduce an operation on functions over X.
Definition 11.1 If $f_{1}, f_{2}, \ldots, f_{k}$ are partial functions of n variables and g is a partial function of k variables, then the composition of g with $f_{1}, f_{2}, \ldots, f_{k}$ is a partial function of n variables defined by

$$
g\left(f_{1}\left(x_{1}, x_{1}, \ldots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

If, for example, f_{1}, f_{2} and f_{3} are partial functions of two variables and g is a partial function of three variables, then the composition of g with f_{1}, f_{2}, f_{3} is given by $g\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right), f_{3}\left(x_{1}, x_{2}\right)\right)$.

EXAMPLE 11.1

Let $f_{1}(x, y)=x+y, f_{2}(x, y)=2 x, f_{3}(x, y)=x y$ and $g(x, y, z)=x+y+z$ be functions over N. Then

$$
\begin{aligned}
g\left(f_{1}(x, y), f_{2}(x, y), f_{3}(x, y)\right) & =g(x+y, 2 x, x y) \\
& =x+y+2 x+x y
\end{aligned}
$$

Thus the composition of g with f_{1}, f_{2}, f_{3} is given by a function h :

$$
h(x, y)=x+y+2 x+x y
$$

Note: Definition 11.1 generalizes the composition of two functions. The concept is useful where a number of outputs become the inputs for a subsequent step of a program.

The composition of g with f_{1}, \ldots, f_{n} is total when $g, f_{1}, f_{2}, \ldots, f_{n}$ are total. The function given in Example 11.1 is total as f_{1}, f_{2}, f_{3} and g are total.

EXAMPLE 11.2

Let $f_{1}(x, y)=x-y, f_{2}(x, y)=y-x$ and $g(x, y)=x+y$ be functions over N. The function f_{1} is defined only when $x \geq y$ and f_{2} is defined only when $y \geq x$. So f_{1} and f_{2} are defined only when $x=y$. Hence when $x=y$,

$$
g\left(f_{1}(x, y), f_{2}(x, y)\right)=g(x-x, x-x)=g(0,0)=0
$$

Thus the composition of g with f_{1} and f_{2} is defined only for (x, x), where $x \in N$.

EXAMPLE 11.3

Let $f_{1}\left(x_{1}, x_{2}\right)=x_{1} x_{2}, f_{2}\left(x_{1}, x_{2}\right)=\Lambda, f_{3}\left(x_{1}, x_{2}\right)=x_{1}$, and $g\left(x_{1}, x_{2}, x_{3}\right)=x_{2} x_{3}$ be functions over Σ. Then

$$
g\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right), f_{3}\left(x_{1}, x_{2}\right)\right)=g\left(x_{1} x_{2}, \Lambda, x_{1}\right)=\Lambda x_{1}=x_{1}
$$

So the composition of g with f_{1}, f_{2}, f_{3} is given by a function h, where $h\left(x_{1}, x_{2}\right)=x_{1}$.

The next definition gives a mechanical process of computing a function.
Definition 11.2 A function $f(x)$ over N is defined by recursion if there exists a constant k (a natural number) and a function $h(x, y)$ such that

$$
\begin{equation*}
f(0)=k, \quad f(n+1)=h(n, f(n)) \tag{11.1}
\end{equation*}
$$

By induction on n, we can define $f(n)$ for all n. As $f(0)=k$, there is basis for induction. Once $f(n)$ is known, $f(n+1)$ can be evaluated by using (11.1).

EXAMPLE 11.4

Define n ! by recursion.

Solution

$f(0)=1$ and $f(n+1)=h(n, f(n))$, where $h(x, y)=S(x) * y$.
The above definition can be generalized for $f\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$. We fix n variables in $f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$, say. $x_{1}, x_{2}, \ldots, x_{n}$. We apply Definition 11.2 to $f\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$. In place of k we get a function $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and in place of $h(x, y)$, we obtain $h\left(x_{1}, x_{2}, \ldots, x_{n}, y, f\left(x_{1}, \ldots, x_{n}, y\right)\right)$.
Definition 11.3 A function f of $n+1$ variables is defined by recursion if there exists a function g of n variables, and a function h of $n+2$ variables, and f is defined as follows:

$$
\begin{gather*}
f\left(x_{1}, x_{2}, \ldots, x_{n}, 0\right)=g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{11.2}\\
f\left(x_{1} \ldots x_{n}, y+1\right)=h\left(x_{1}, x_{2}, \ldots, x_{n}, y, f\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)\right) \tag{11.3}
\end{gather*}
$$

We may note that f can be evaluated for all arguments $\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ by induction on y for fixed $x_{1}, x_{2}, \ldots, x_{n}$. The process is repeated for every $x_{1}, x_{2}, \ldots, x_{i n}$.

Now we can define the primitive recursive functions over N.

11.2.2 Primitive Recursive Functions Over N

Definition 11.4 A total function f over N is called primitive recursive (i) if it is any one of the three initial functions, or (ii) if it can be obtained by applying composition and recursion a finite number of times to the set of initial functions.

EXAMPLE 11.5

Show that the function $f_{1}(x, y)=x+y$ is primitive recursive.

Solution

f_{1} is a function of two variables. If we want f_{1} to be defined by recursion, we need a function g of a single variable and a function h of three variables.

$$
f_{1}(x, 0)=x+0=x
$$

By comparing $f_{1}(x, 0)$ with L.H.S. of (11.2), we see that g can be defined by

$$
g(x)=x=U_{1}^{1}(x)
$$

Also, $f_{1}(x, y+1)=x+(y+1)=(x+y)+1=f_{1}(x, y)+1$ By comparing $f_{1}(x, y+1)$ with L.H.S. of (11.3), we have

$$
h\left(x, y, f_{1}(x, y)\right)=f_{1}(x, y)+1=S\left(f_{1}(x, y)\right)=S\left(U_{3}^{3}\left(x, y, f_{1}(x, y)\right)\right)
$$

Define $h(x, y, z)=S\left(U_{3}^{3}(x, y, z)\right)$. As $g=U_{1}^{1}$, it is an initial function. The function h is obtained from the initial functions U_{3}^{3} and S by composition, and by recursion using g and h. Thus f_{1} is obtained by applying composition and recursion a finite number of times to initial functions U_{1}^{1}, U_{3}^{3} and S. So f_{1} is primitive recursive.
Note: A total function is primitive recursive if it can be obtained by applying composition and recursion a finite number of times to primitive recursive functions $f_{1}, f_{2}, \ldots, f_{m}$. This is clear as each f_{i} is obtained by applying composition and recursion a finite number of times to initial functions.

EXAMPLE 11.6

The function $f_{2}(x, y)=x * y$ is primitive recursive.

Solution

As multiplication of two natural numbers is simply repeated addition, f_{2} has to be primitive recursive. We prove this as follows:

$$
f_{2}(x, 0)=0, \quad f_{2}(x, y+1)=x *(y+1)=f_{2}(x, y)+x
$$

i.e. $f_{2}(x, y+1)=f_{1}\left(f_{2}(x, y), x\right)$. Comparing these with (11.2) and (11.3), we can write
$f_{2}(x, 0)=Z(x)$ and $\left.f_{2}(x, y+1)=f_{1}\left(U_{3}^{3}\left(x, y, f_{2}(x, y)\right), U_{1}^{3}\left(x, y, f_{2}(x, y)\right)\right)\right)$
By taking $g=Z$ and h defined by

$$
h(x, y, z)=f_{1}\left(U_{3}^{3}(x, y, z), U_{1}^{3}(x, y, z)\right)
$$

we see that f_{2} is defined by recursion. As g and h are primitive recursive, f_{2} is primitive recursive (by the above note).

EXAMPLE 11.7

Show that $f(x, y)=x$ is a primitive recursive function.

Solution

We define

$$
\begin{aligned}
f(x, 0) & =1 \\
f(x, y+1) & =x * f(x, y) \\
& =U_{1}^{3}(x, y, f(x, y)) * U_{3}^{3}(x, y, f(x, y))
\end{aligned}
$$

Therefore, $f(x, y)$ is primitive recursive.

EXAMPLE 11.8

Show that the following functions are primitive recursive:
(a) The predecessor function $p(x)$ defined by

$$
p(x)=x-1 \quad \text { if } x \neq 0, \quad p(x)=0 \quad \text { if } x=0 .
$$

(b) The proper subtraction function - defined by

$$
x-y=x-y \quad \text { if } x \geq y \quad \text { and } \quad x-y=0 \quad \text { if } x<y .
$$

(c) The absolute value function $\|$ given by

$$
|x|=x \quad \text { if } x \geq 0, \quad|x|=-x \quad \text { if } x<0 .
$$

(d) $\min (x, y)$, i.e. minimum of x and y.

Solution

(a) $p(0)=0$ and $p(y+1)=U_{1}^{2}(y, p(y))$
(b) $x \doteq 0=x$ and $x \doteq(y+1)=p(x \dot{-})$
(c) $|x-y|=(x-y)+(y-x)$
(d) $\min (x, y)=x-(x-y)$

The first function is defined by recursion using an initial function. So it is primitive recursive.

The second function is defined by recursion using the primitive recursive function p and so it is primitive recursive. Similarly, the last two functions are primitive recursive.

11.2.3 Primitive Recursive Functions Over $\{\boldsymbol{a}, \boldsymbol{b}\}$

For constructing the primitive recursive function over $\{a, b\}$, the process is similar to that of function over N except for some minor modifications. It should be noted that Λ plays the role of 0 in (11.2) and $a x$ or $b x$ plays the role of $y+1$ in (11.3). Recall that Σ denotes $\{a, b\}$.
Definition 11.5 A function $f(x)$ over Σ is defined by recursion if there exists a 'constant' string $w \in \Sigma^{*}$ and functions $h_{1}(x, y)$ and $h_{2}(x, y)$ such that

$$
\begin{align*}
& f(\Lambda)=w \tag{11.4}\\
& f(a x)=h_{1}(x, f(x)) \tag{11.5}\\
& f(b x)=h_{2}(x, f(x))
\end{align*}
$$

(h. and h_{2} may be functions in one variable.)

Definition 11.6 A function $f\left(x_{1}, \mathrm{x}_{2}, \ldots, x_{n}\right)$ over Σ is defined by recursion if there exist functions $g\left(x_{1}, \ldots, x_{n-1}\right), h_{1}\left(x_{1}, \ldots, x_{n+1}\right), h_{2}\left(x_{1}, \ldots, x_{n+1}\right)$, such that

$$
\begin{align*}
& f\left(\Lambda, x_{2}, \ldots, x_{n}\right)=g\left(x_{2}, \ldots, x_{n}\right) \tag{11.6}\\
& f\left(a x_{1}, x_{2}, \ldots . x_{n}\right)=h_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \tag{11.7}\\
& f\left(b x_{1}, x_{2}, \ldots, x_{n}\right)=h_{2}\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{align*}
$$

(h_{1} and h_{2} may be functions of m variables, where $m<n+1$.)
Now we can define the class of primitive recursive functions over Σ.
Definition 11.7 A total function f is primitive recursive (i) if it is any one of the three initial functions (given in Table 11.2), or (ii) if it can be obtained by applying composition and recursion a finite number of times to the initial functions.

In Example 11.9 we give some primitive recursive functions over Σ.
Note: As in the case of functions over N, a total function over Σ is primitive recursive if it is obtained by applying composition and recursion a finite number of times to primitive recursive function $f_{1}, f_{2}, \ldots, f_{m}$.

EXAMPLE 11.9

Show that the following functions are primitive recursive:
(a) Constant functions a and b (i.e. $a(x)=a, b(x)=b$)
(b) Identity function
(c) Concatenation
(d) Transpose
(e) Head function (i.e. head $\left.\left(a_{1} a_{2} \ldots, a_{n}\right)=a_{1}\right)$
(f) Tail function (i.e. tail $\left.\left(a_{1} a_{2} \ldots a_{n}\right)=a_{2} \ldots, a_{n}\right)$
(g) The conditional function "if $x_{1} \neq \Lambda$. then x_{2} else x_{3}."

Solution

(a) As $a(x)=$ cons a (nil (x)). the function $a(x)$ is the composition of the initial function cons a with the initial function nil and is hence primitive recursive.
(b) Let us denote the identity function by id. Then,

$$
\begin{aligned}
\operatorname{id}(\Lambda) & =\Lambda \\
\operatorname{id}(a x) & =\operatorname{cons} a(x) \\
\operatorname{id}(b x) & =\operatorname{cons} b(x)
\end{aligned}
$$

So id is defined by recursion using cons a and cons b. Therefore, the identity function is primitive recursive.
(c) The concatenation function can be defined by

$$
\begin{array}{ll}
\operatorname{concat}\left(x_{1},\right. & \left.x_{2}\right)=x_{1} x_{2} \\
\operatorname{concat}(\Lambda, & \left.x_{2}\right)=\operatorname{id}\left(x_{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \operatorname{concat}\left(a x_{1}, x_{2}\right)=\operatorname{cons} a\left(\operatorname{concat}\left(x_{1}, x_{2}\right)\right) \\
& \operatorname{concat}\left(b x_{1}, x_{2}\right)=\operatorname{cons} b\left(\operatorname{concat}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

So concat is defined by recursion using id, cons a and cons b. Therefore, concat is primitive recursive.
(d) The transpose function can be defined by $\operatorname{trans}(x)=x^{T}$. Then

$$
\begin{aligned}
\operatorname{trans}(\Lambda) & =\Lambda \\
\operatorname{trans}(a x) & =\operatorname{concat}(\operatorname{trans}(x), a(x)) \\
\operatorname{trans}(b x) & =\operatorname{concat}(\operatorname{trans}(x), b(x))
\end{aligned}
$$

Therefore, $\operatorname{trans}(x)$ is primitive recursive.
(e) The head function head (x) satisfies

$$
\begin{aligned}
\text { head }(\Lambda) & =\Lambda \\
\operatorname{head}(a x) & =a(x) \\
\operatorname{head}(b x) & =b(x)
\end{aligned}
$$

Therefore, head (x) is primitive recursive.
(f) The tail function tail(x) satisfies

$$
\begin{aligned}
\operatorname{tail}(\Lambda) & =\Lambda \\
\operatorname{tail}(a x) & =\operatorname{id}(x) \\
\operatorname{tail}(b x) & =\operatorname{id}(x)
\end{aligned}
$$

Therefore, $\operatorname{tail}(x)$ is primitive recursive.
(g) The conditional function can be defined by

$$
\operatorname{cond}\left(x_{1}, x_{2}, x_{3}\right)=" \text { if } x_{1} \neq \Lambda \text { then } x_{2} \text { else } x_{3} "
$$

Then,

$$
\begin{aligned}
\operatorname{cond}\left(\Lambda, x_{2}, x_{3}\right) & =\operatorname{id}\left(x_{3}\right) \\
\operatorname{cond}\left(a x_{1}, x_{2}, x_{3}\right) & =\operatorname{id}\left(x_{2}\right) \\
\operatorname{cond}\left(b x_{1}, x_{2}, x_{3}\right) & =\operatorname{id}\left(x_{2}\right)
\end{aligned}
$$

Therefore, $\operatorname{id}\left(x_{1}, x_{2}, x_{3}\right)$ is primitive recursive.

11.3 RECURSIVE FUNCTIONS

By introducing one more operation on functions, we define the class of recursive functions, which includes the class of primitive recursive functions.
Definition 11.8 Let $g\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ be a total function over $N . g$ is a regular function if there exists some natural number y_{0} such that $g\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}, y_{0}\right)=0$ for all values $x_{1}, x_{2}, \ldots, x_{n}$ in N.

For instance, $g(x, y)=\min (x, y)$ is a regular function since $g(x, 0)=0$ for all x in N. But $f(x, y)=|x-y|$ is not regular since $f(x, y)=0$ only when $x=y$, and so we cannot find a fixed y such that $f(x, y)=0$ for all x in N.

Definition 11.9 A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over N is defined from a total function $g\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ by minimization if
(a) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the least value of all y 's such that $g\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=0$ if it exists. The least value is denoted by $\mu_{y}\left(g\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=0\right)$.
(b) $f\left(x_{1}, x_{2}, \ldots x_{i}\right)$ is undefined if there is no y such that $g\left(x_{1}, x_{2} \ldots x_{n}, y\right)=0$.

Note: In general, f is partial. But, if g is regular then f is total.
Definition 11.10 A function is recursive if it can be obtained from the initial functions by a finite number of applications of composition, recursion and minimization over regular functions.

Definition 11.11 A function is partial recursive if it can be obtained from the initial functions by a finite number of applications of composition, recursion and minimization.

EXAMPLE 11.10

$f(x)=x / 2$ is a partial recursive function over N.

Solution

Let $g(x, y)=|2 y-x|$, where $2 y-x=0$ for some y only when x is even. Let $f_{1}(x)=\mu_{y}(|2 y-x|=0)$. Then $f_{1}(x)$ is defined only for even values of x and is equal to $x / 2$. When x is odd, $f_{1}(x)$ is not defined. f_{1} is partial recursive. As $f(x)=x / 2=f_{1}(x), f$ is a partial recursive function.

The following example gives a recursive function which is not primitive recursive.

EXAMPLE 11.11

The Ackermann's function is defined by

$$
\begin{align*}
A(0, y) & =y+1 \tag{11.8}\\
A(x+1,0) & =A(x, 1) \tag{11.9}\\
A(x+1, y+1) & =A(x . A(x+1, y)) \tag{11.10}
\end{align*}
$$

$A(x, y)$ can be computed for every (x, y), and hence $A(x, y)$ is total. The Ackermann's function is not primitive recursive but recursive.

EXAMPLE 11.12

Compute $A(1,1), A(2,1), A(1,2), A(2,2)$.

Solution

$$
\begin{aligned}
& A(1,1)=A(0+1.0+1) \\
& =A(0, A(1.0)) \\
& =A(0, A(0,1)) \\
& =A(0,2) \\
& =3 \\
& A(1,2)=A(0+1,1+1) \\
& =A(0, A(1,1)) \\
& \text { by (11.10) } \\
& =A(0,3) \\
& =4 \\
& \text { by (11.8) } \\
& A(2,1)=A(1+1.0+1) \\
& =A(1, A(2,0)) \quad \text { by }(11.10) \\
& =A(1 . A(1.1)) \quad \text { by }(11.9) \\
& =A(1,3) \\
& =A(0+1.2+1) \\
& =A(0 . A(1,2)) \\
& =A(0,4) \\
& =5 \\
& A(2,2)=A(1+1,1+1) \\
& =A(1, A(2,1)) \quad \text { by }(11.10) \\
& =A(1,5) \\
& A(1.5)=A(0+1.4+1) \\
& =A(0, A(1,4)) \\
& \text { by (11.10) } \\
& =1+A(1,4) \\
& \text { by (11.8) } \\
& =1+A(0+1.3+1) \\
& =1+A(0 . A(1,3)) \\
& =1+1+A(1,3) \\
& =1+1+1+A(1,2)=1+1+1+4 \\
& =7
\end{aligned}
$$

As $A(2,2)=A(1,5)$. we have $A(2,2)=7$

So far we have dealt with recursive and partial recursive functions over N. We can define partial recursive functions over Σ using the primitive recursive predicates and the minimization process. As the process is similar, we will discuss it here.

The concept of recursion occurs in some programming languages when a procedure has a call to the same procedure for a different parameter. Such a procedure is called a recursive procedure. Certain programming languages like $\mathrm{C}, \mathrm{C}++$ allow recursive procedures.

11.4 PARTIAL RECURSIVE FUNCTIONS AND TURING MACHINES

In this section we prove that partial recursive functions introduced in the earlier sections are Turing-computable.

11.4.1 COMPUTABILITY

In mid 1930s. mathematicians and logicians were trying to rigorously define computability and algorithms. In 1934 Kurt Gödel pointed out that primitive recursive functions can be computed by a finite procedure (i.e. an algorithm). He also hypothesized that any function computable by a finite procedure can be specified by a recursive function. Around 1936, Turing and Church independently designed a 'computing machine' (later termed Turing machine) which can carry out a finite procedure.

For formalizing computability, Turing assumed that, while computing, a person writes symbols on a one-dimensional paper (instead of a twodimensional paper as is usually done) which can be viewed as a tape divided into cells. He scans the cells one at a time and usually performs one of the three simple operations, namely (i) writing a new symbol in the cell he is scanning, (ii) moving to the cell left of the present cell, and (iii) moving to the cell right of the present cell. These observations led Turing to propose a computing machine. The Turing machine model we have introduced in Chapter 9 is based on these three simple operations but with slight variations. In order to introduce computability, we consider the Turing machine model due to Post. In the present model the transition function is represented by a set of quadruples (i.e. 4 -tuples), whereas the transition function of the model we have introduced in Chapter 9 can be represented by a set of quintuples (5-tuples). For example, $\delta\left(q_{i}, a\right)=\left(q_{j}, \alpha, \beta\right)$ is represented by the quintuple $q_{j} a \alpha \beta q_{j}$. Using the model specifying the transition function in terms of quadruples, we define Turingcomputable functions and prove that partially recursive functions are Turingcomputable.

11.4.2 A Turing Model for Computation

As in the model introduced in Chapter 9, Q, qo and Γ denote the set of states, the initial state, and the set of tape symbols, respectively. The blank symbol b is in Γ. The only difference is in the ransition function. In the present model the transition function represents only one of the following three basic operations:
(i) Writing a new symbol in the cell scanned
(ii) Moving to the left cell
(iii) Moving to the right cell

Each operation is followed by a change of state. Suppose the Turing machine M is in state q and scans a_{i}. If a_{i} is written and M enters q^{\prime}, then this basic operation is represented by the quadruple $q a_{i} a_{j} q^{\prime}$. Similarly, the other two operations are represented by the quadruples $q a_{i} L q^{\prime}$ and $q a_{i} R q^{\prime}$. Thus the transition function can be specified by a set P of quadruples. As in Chapter 9 . we can define instantaneous descriptions, i.e. Ds.

Each quadruple induces a change of IDs. For example, $q a_{i} a_{j} q^{\prime}$ induces

$$
\alpha q a_{i} \beta \vdash \alpha q^{\prime} a_{j} \beta
$$

The quadruple $q a_{i} L q^{\prime}$ induces

$$
a_{1} a_{2} \ldots a_{i-1} q a_{i} \ldots a_{n} \vdash a_{1} a_{2} \ldots a_{i-2} q^{\prime} a_{i-1} a_{i} \ldots a_{n}
$$

and $q a_{i} R q^{\prime}$ induces

$$
a_{1} \ldots a_{i-1} q a_{i} \ldots a_{n} \vdash a_{1} \ldots a_{i} q^{\prime} a_{i+1} \ldots a_{n}
$$

When we require M to perform some computation, we 'feed' the input by initial tape expression denoted by X. So $q_{0} X$ is the initial D for the given input. For computing with the given input X, the Turing machine processes X using appropriate quadruples in P. As a result, we have $q_{0} X=\mathrm{ID}_{1} \vdash \mathrm{ID}_{2}$ $\vdash \ldots$. When an ID . say ID_{n}. is reached. which cannot be changed using any quadruple in P, M halts. In this case, ID_{n} is called a terminal D . Actually, $a q_{1} \alpha \beta$ is a terminal ID if there is no quadruple starting with $q_{i} a$. The terminal ID is called the result of X and denoted by $\operatorname{Res}(X)$. The computed value corresponding to input X can be obtained by deleting the state appearing in it as also some more symbols from $\operatorname{Res}(X)$.

11.4.3 Turing-computable Functions

Before developing the concept of Turing-computable functions, let us recall Example 9.6. The TM developed in Example 9.6 concatenates two strings α and β. Initially, α and β appear on the input tape separated by a blank b. Finally, the concatenated string $\alpha \beta$ appears on the input tape. The same method can be adopted with slight modifications for computing $f\left(x_{1}, \ldots, x_{m}\right)$. Suppose we want to construct a TM which can compute $f\left(x_{1}, \ldots, x_{n}\right)$ over
N for given arguments $a_{1}, \ldots a_{m}$. Initially, the input $a_{1}, a_{2}, \ldots, a_{m}$ appears on the input tape separated by markers x_{1}, \ldots, x_{m}. The computed value $f\left(a_{1}, \ldots, a_{m}\right)$, say, c appears on the input tape, once the computation is over. To locate c we need another marker, say γ. The value c appears to the right of x_{m} and to the left of y. To make the construction simpler, we use the tally notation to represent the elements of N. In the tally notation, 0 is represented by a string of b^{\prime} s. A positive integer n is represented by a string consisting of $n 1$ s. So the initial tape expression takes the form $1^{a_{1}} x_{1} 1^{a_{2}} x_{2} \ldots 1^{a_{m}} x_{m} b y$. As a result of computation, the initial $\mathrm{D} q_{0} 1^{a_{1}} x_{1} 1^{u_{2}} x_{2} \ldots 1^{a_{m}} x_{n}$ by is changed to a terminal D of the form $1^{a_{1}} x_{1} 1^{a_{2}} x_{2} \ldots 1^{a_{n}} x_{m} 1^{c} q^{\prime} y$ for some $q^{\prime} \in Q$. In fact, the position of q^{\prime} in a terminal D is immaterial and it can appear anywhere in $\operatorname{Res}(X)$. The computed value is found between x_{n} and y. Sometimes we may have to omit the leading b 's.

We say that a function $f\left(x_{1}, \ldots, x_{m}\right)$ is Turing-computable for arguments $a_{1}, \ldots a_{m}$ if there exists a Turing machine for which

$$
q_{0} 1^{a_{1}} x_{1} 1^{a}-\left.x_{2} \ldots 1^{a_{m} x_{m} b y}\right|^{*} \mathrm{D}_{n}
$$

where D_{n} is a terminal D containing $f\left(a_{1}, \ldots, a_{m}\right)$ to the left of y.
Our ultimate aim is to prove that partial recursive functions are Turingcomputable. For this purpose, first of all we prove that the three initial primitive recursive functions are Turing-computable.

11.4.4 Construction of the Turing Machine That Can Compute the Zero Function Z

The zero function Z is defined as $Z\left(a_{1}\right)=0$ for all $a_{1} \geq 0$. So the initial tape expression can be taken as $X=1^{a_{1}} x_{1} b y$. As we require the computed value $Z\left(a_{1}\right)$. namely 0 , to appear to the left of $)$, we require the machine to halt without changing the input. (Note that 0 is represented by b in the tally notation.)

Thus we define a TM by taking $Q=\left\{q_{0}, q_{1}\right\}, \Gamma=\left\{b, 1, x_{1}, y\right\}$, $X=1^{a_{1}} x_{1} b y . P$ consists of $q_{0} b R q_{0}, q_{0} 1 R q_{0}, q_{0} x_{1} x_{1} q_{1} \cdot q_{0} b R q_{0}$ and $q_{0} 1 R q_{0}$ are used to move to the right until x_{1} is encountered. $q_{0} x_{1} x_{1} q_{1}$ enables the TM to enter the state $q_{1} . M$ enters q_{1} without altering the tape symbol. In terms of change of IDs, we have

$$
q_{0} 1^{u_{1} x_{1} b y} \vdash 1^{a_{1}} q_{0} x_{1} b y \vdash 1^{u_{1}} q_{1} x_{1} b y
$$

As there is no quadruple starting with q_{1}, M halts and $\operatorname{Res}(X)=1^{a_{1}} q_{1} x_{1} b y$. By deleting q_{1} in $\operatorname{Res}(X)$, we get $1^{a_{1}} X_{1} b y$ (which is the same as X) yielding 0 (given by b).
Note: We can also represent the quadruples in a tabular form which is similar to the transition table obtained in Chapter 9. In this case we have to specify (i) the new symbol written. or (ii) the movement to the left (denoted by L), or (iii) the movement to the right (denoted by R). So we get Table 11.3.

TABLE 11.3 Representation of Quadruples

State	b	1	r_{1}	y
q_{0}	$\left(R, q_{0}\right)$	$\left(R, q_{0}\right)$	$\left(x_{1}, q_{1}\right)$	
q_{1}				

11.4.5 Construction of the Turing Machine for Computing-The Successor Function

The successor function S is defined by $S\left(a_{1}\right)=a_{1}+1$ for all $a_{1} \geq 0$. So the initial tape expression can be taken as $X=1^{a_{1}} x_{1} b y$ (as in the case of the zero function). At the end of the computation, we require $1^{a_{i}+1}$ to appear to the left of y. Hence we define a TM by taking

$$
Q=\left\{q_{0}, \ldots, q_{0}\right\}, \quad \Gamma=\left\{b, 1, x_{1}, y\right\}, \quad X=1^{a} x_{1} b y
$$

where P consists of
(i) $q_{0} b R q_{0} \cdot q_{0} l b q_{1}, q_{0} x_{1} R q_{6}$
(ii) $q_{1} b R q_{1}, q_{1} R q_{1}, q_{1} x_{1} R q_{1}, q_{1} 1 q_{2}$
(iii) $q_{2} 1 R q_{2}, q_{2} b q_{3}$,
(iv) $q_{3} b L q_{3}, q_{3} 1 L q_{3}, q_{3} y L q_{3}, q_{3} x_{1} L q_{4}$
(v) $q_{4} 1 L q_{4}, q_{4} b 1 q_{5}$.
(vi) $q_{5} 1 R q_{0}$.
(vii) $q_{6} b R q_{6} \cdot q_{6} 1 R q_{6} \cdot q_{6} r_{1} R q_{6} \cdot q_{6} \cdot L q_{7}$
(viii) $q_{7} 1 L q_{7}, q_{7} b 1 q_{8}$.
(ix) $q_{8} b L q_{8}, q_{8} 1 L q_{8}, q_{8} v L q_{8}, q_{8} x_{1} x_{1} q_{9}$.

The corresponding operations can be explained as follows:
(i) If M starts from the initial ID , the head replaces the first 1 it encounters by b. Afterwards the head moves to the right until it encounters y (as a result of $q_{0} 1 b q_{1}, q_{1} b R q_{1}, q_{1} 1 R q_{1}, q_{1} x_{1} R q_{1}$).
(ii) y is replaced by 1 and M enters q_{2}. Once the end of the input tape is reached. y is added to the next cell. M enters $q_{3}\left(q_{1} y 1 q_{2}, q_{2} 1 R q_{2}\right.$, $q_{2} b q_{q_{3}}$.
(iii) Then the head moves to the left and the state is not changed until x_{1} is encountered $\left(q_{3} y L q_{3}, q_{3} y L q_{3} . q_{3} b L q_{3}\right)$.
(iv) On encountering x_{1}, the head moves to the left and M enters q_{4}. Once again the head moves to the left till the left end of the input string is reached $\left(q_{3} x_{1} L q_{4}, q_{1} 1 L q_{4}\right)$.
(v) The leftmost blank (written in point (i)) is replaced by 1 and M enters $q_{5}\left(q_{4} b 1 q_{5}\right)$.

Thus at the end of operations (i)-(v), the input part remains unaffected but the first 1 is added to the left of y.
(vi) Then the head scans the second 1 of the input string and moves right, and M enters $q_{0}\left(q_{5} I R q_{0}\right)$.

Operations (i)-(vi) are repeated until all the 1 's of the input part (i.e. in $1^{a_{1}}$) are exhausted and $11 \ldots 1$ (a_{1} times) appear to the left of y. Now the present state is q_{0}, and the current symbol is x_{1}.
(vii) M in state q_{0} scans x_{1}, moves right. and enters q_{6}. It continues to move to the right until it encounters $y\left(q_{0} x_{1} R q_{6}, q_{6} b R q_{6}, q_{6} 1 R q_{6}, q_{6} x_{1} R q_{6}\right)$.
(viii) On encountering y, the head moves to the left and M enters q_{7}, after which the head moves to the left until it encounters b appearing to the left of $1^{a}:$ of the output part. This b is changed to 1 , and M enters $q_{8}\left(q_{6} \cup L q_{7}, q_{1} 1 L q_{7}, q_{7} b_{1} q_{8}\right)$.
(ix) Once M is in q_{8}, the head continues to move to the left and on scanning x_{1}, M enters q_{9}. As there is no quadruple starting with q_{9}, M halts $\left(q_{8} b L q_{8} . q_{8} 1 L q_{8}, q_{8} x_{1} x_{1} q_{9}\right)$.
The machine halts, and the terminal ID is $1^{a_{1}} q_{9} x_{1} 1^{a_{1}+1} y$. For example, let us compute $S(1)$. In this case the initial ID is $q_{0} 1 x_{1} b y$. As a result of the computation, we have the following moves:

$$
\begin{aligned}
& q_{0} 1 x_{1} b y-q_{1} b x_{1} b y \vdash b q_{1} x_{1} b y \\
- & b x_{1} q_{1} b y-b x_{1} b q_{1} y \vdash b x_{1} b q_{2} 1 \\
\vdash & b x_{1} b q_{2} b \vdash-b x_{1} b 1 q_{3} y \vdash b x_{1} b q_{3} 1 y \\
\vdash & b q_{2} x_{1} b 1 y \vdash q_{4} b x_{1} b 1 y \vdash q_{5} 1 x_{1} b 1 y \\
\vdash & 1 q_{6} x_{1} b 1 y \vdash 1 x_{1} b 1 q_{6} y \vdash 1 x_{1} b q_{7} 1 y \\
\vdash & 1 x_{1} q_{7} b 1 y \vdash 1 x_{1} q_{8} 11 y \vdash 1 q_{8} x_{1} 11 y \\
\vdash & 1 q_{9} x_{1} 11 y
\end{aligned}
$$

Thus, M halts and $S(1)=2$ (given by 11 to the left of y).

11.4.6 Construction of the Turing Machine for Computing the Projection U_{i}^{m}

Recall $U_{i}^{m}\left(a_{1}, \ldots . a_{m}\right)=a_{i}$. The initial tape expression can be taken as $X=1^{a_{1}} x_{1} 1^{c_{2}} x_{2} \ldots 1^{a_{m}} x_{m} b y$
We define a Turing machine by taking $Q=\left\{q_{0}, \ldots, q_{8}\right\}$

$$
\begin{aligned}
\Gamma= & \left\{b, 1, x_{1}, \ldots, x_{m}, y\right\} \quad P \text { consists of } \\
& q_{0}=R q_{0} \\
& \text { for all } z \in \Gamma-\left\{x_{i}\right\} \\
& q_{0} x_{i} L q_{1}, \\
& q_{1} b b q_{3}, q_{2} 1 b q_{2} \\
& q_{2} z q_{2},
\end{aligned} \text { for all } z \in \Gamma-\{y\}
$$

$$
\begin{array}{llll}
q_{4}-L q_{4} & \text { for all } z \in \Gamma-\left\{x_{i}\right\} & & \\
q_{4} x_{i} L q_{5}, & q_{5} 1 L q_{5}, \quad q_{5} b 1 q_{6}, & q_{6} 1 L q_{7}, & q_{7} l b q_{2} \\
q_{7}-R q_{8} & \text { for all } z \in \Gamma-\{1\} & &
\end{array}
$$

The operations of M are as follows:
(i) M starts from the initial ID and the head moves to the right until it encounters $x_{i}\left(q_{0} z R q_{0}\right)$.
(ii) On seeing x_{i}, the head moves to the left $\left(q_{0} x_{i} L q_{1}\right)$.
(iii) The head replaces 1 (the rightmost 1 in $\left.1^{a_{i}}\right)$ by $b\left(q_{1} 1 b q_{2}\right)$.
(iv) The head moves to the right until it encounters y and replaces y by 1 $\left(q_{2} z R q_{2}, z \in \Gamma-\{y\}\right.$ and $\left.q_{2} y 1 q_{3}\right)$.
(v) On reaching the right end, the head scans b and replaces this b by $y\left(q_{3} b y q_{4}\right)$.
(vi) The head moves to the left until it scans the symbol b. This b is replaced by $1\left(q_{4} \Sigma L q_{4}, z \in \Gamma-\left\{x_{i}\right\}, q_{4} x_{i} L q_{5}, q_{5} b 1 q_{6}\right)$.
(vii) The head moves to the left and one of the 1 's in $1^{a_{i}}$ is replaced by b. M reaches $q_{2}\left(q_{6} 1 L q_{7} . q_{7} 1 b q_{2}\right)$.

As a result of (i)-(vii), one of the 1^{\prime} 's in $1^{a_{i}}$ is replaced by b and 1 is added to the left of y Steps (iv)-(vii) are repeated for all 1 's in $1^{a_{i}}$.
(viii) On scanning x_{i-1}. the head moves to the right and M enters $q_{8}\left(q_{7} x_{i-1} R q_{8}\right)$.
As there are no quadruples starting with q_{8}, the Turing machine M halts. When $i \neq 1$ and $a_{i} \neq 0$. the terminal D is $1^{a_{i}} x_{1} \ldots x_{i-1} q_{8} 1^{a_{i}} x_{i} \ldots x_{n} b 1^{a_{i}} y$. For example, let us compute $U_{2}^{3}(1,2,1)$:

$$
\begin{aligned}
& q_{0} 1 x_{1} 11 x_{2} 1 x_{3} b y \\
\vdash & \vdash 1 x_{1} 11 q_{0} x_{2} 1 x_{3} b y \\
\vdash 1 x_{1} 1 q_{1} 1 x_{2} 1 x_{3} b y & \vdash 1 x_{1} 1 q_{2} b x_{2} 1 x_{3} b y \\
\vdash 1 x_{1} 1 b x_{2} 1 x_{3} b q_{2} y & \vdash 1 x_{1} 1 b x_{2} 1 x_{3} b q_{3} 1 \\
\vdash-1 x_{1} 1 b x_{2} 1 x_{3} b 1 q_{3} b & \vdash 1 x_{1} 1 b x_{2} 1 x_{3} b 1 q_{4} y \\
\vdash-1 x_{1} 1 b q_{4} x_{2} 1 x_{3} b 1 y & \vdash 1 x_{1} 1 q_{3} b x_{2} 1 x_{3} b 1 y \\
\vdash-1 x_{1} 1 q_{6} 1 x_{2} 1 x_{3} b 1 y & \vdash 1 x_{1} q_{7} 11 x_{2} 1 x_{3} b 1 y \\
\vdash 1 x_{1} q_{2} b 1 x_{2} 1 x_{3} b 1 y &
\end{aligned}
$$

From the above derivation, we see that

$$
1 x_{1} 1 a_{2} b x_{2} 1 x_{3} b y \vdash 1 x_{1} q_{2} b 1 x_{2} 1 x_{3} b 1 y
$$

Repeating the above steps, we get

$$
1 x_{1} q_{2} b 1 x_{2} 1 x_{3} b 1 y \vdash^{*} 1 x_{1} q_{8} 11 x_{2} 1 x_{3} b 11 y
$$

It should be noted that this construction is similar to that for the successor function. While computing U_{i}^{m}, the head skips the portion of the input corresponding to $a_{i}, j \neq i$. For every 1 in $1^{a_{i}}, 1$ is added to the left of y.

Thus we have shown that the three initial primitive recursive functions are Turing-computable. Next we construct Turing machines that can perform composition, recursion. and minimization.

11.4.7 Construction of the Turing Machine That Can Perform Composition

Let $f_{1}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \ldots, f_{k}\left(x_{1}, \ldots, x_{m}\right)$ be Turing-computable functions. Let $g\left(y_{1}, \ldots, y_{k}\right)$ be Turing-computable. Let $h\left(x_{1}, \ldots, x_{m}\right)=g\left(f_{1}\left(x_{1}, \ldots, x_{n}\right) \ldots\right.$, $\left.f_{k}\left(x_{1}, \ldots, x_{m}\right)\right)$. We construct a Turing machine that can compute $h\left(a_{1}, \ldots, a_{m}\right)$ for given arguments a_{1}, \ldots, a_{m}. This involves the following steps:
Step 1 Construct Turing machines M_{1}, \ldots, M_{k} which can compute $f_{1} \ldots, f_{k}$. respectively. For the TMs $M_{1}, \ldots M_{k}$, let $\Gamma=\left\{1, b, x_{1}, x_{2}, \ldots, x_{n}, y\right\}$ and $X=1^{a_{1}} x_{1} \ldots 1^{a_{n}} x_{i n} b y$. But the number of states for these TMs will vary. Let $n_{1}+1, \ldots n_{k}+1$ be the number of states for $M_{1}, \ldots . M_{k}$, respectively. As usual, the initial state is q_{0} and the states for M_{i} are $q_{0}, \ldots, q_{n_{i}}$. As in the earlier constructions, the set P_{i} of quadruples for M_{i} is constructed in such a way that there is no quadruple starting with $q_{n_{i}}$.
Step 2 Let $f_{i}\left(a_{1}, \ldots, a_{n}\right)=b_{i}$ for $i=1,2, \ldots, k$. At the end of step 1 , we have M_{i} 's and the computed values b_{i} 's. As g is Turing-computable, we can construct a TM M_{k+1} which can compute $g\left(b_{1}, \ldots, b_{k}\right)$. For M_{k+1},

$$
\Gamma=\left\{1, b, x_{1}^{\prime}, \ldots . x_{m}^{\prime} \cdot y\right\}, \quad X^{\prime}=1^{b_{1}} x_{1}^{\prime} \ldots 1^{a_{m}} x_{m}^{\prime} b y
$$

(We use different markers for M_{k+1} so that the TM computing h to be constructed need not scan the inputs $a_{1} \ldots . . a_{m}$.) Let $n_{k+1}+1$ be the number of states of M_{k+1}. As in the earlier constructions, M_{k+1} has no quadruples starting with q_{k+1}.

Step 3 At the end of step 2, we have TMs $M_{1}, \ldots, M_{k}, M_{k+1}$ which give b_{1}, \ldots, b_{m} and $g\left(b_{1}, \ldots . b_{k}\right)=c$ (say), respectively. So we are able to compute $h\left(a_{1} \ldots a_{m}\right)$ using $k+1$ Turing machines. Our objective is to construct a single TM M_{k+2} which can compute $h\left(a_{1}, \ldots, a_{n}\right)$. We outline the construction of M without giving the complete details of the encoding mechanism. For M. let

$$
\begin{aligned}
& \Gamma=\left\{1, b, x_{1}, \ldots, x_{m}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}, y\right\} \\
& X=1^{{ }_{1}} x_{1} 1^{a_{2}} x_{2} \ldots 1^{a_{m}} x_{m} b y
\end{aligned}
$$

(i) In the beginning, M simulates M_{1}. As a result, the value $b_{1}=$ $f_{1}\left(a_{1}, \ldots, a_{m}\right)$ is obtained as output. Thus we get the tape expression $1^{a_{1}} x_{1} 1^{a} x_{2} \ldots 1^{a_{m}} x_{m} 1^{b}{ }^{b} y$ which is the same as that obtained by M_{1} while halting. M does not halt but changes y to x_{1}^{\prime} and adds $b y$ to the right of x_{1}^{\prime}. The head moves to the left to reach the beginning of X,
(ii) The tape expression obtained at the end of (i) is

$$
1^{a_{1}} x_{1} 1^{a_{2}} x_{2} \ldots 1^{a_{m}} x_{m} 1^{b_{1}} x_{1}^{\prime} b y
$$

The construction given in (i) is repeated, i.e. M simulates $M_{2} \ldots, M_{k}$, changes y to x_{i}^{\prime}, and adds by to the right of x_{i}^{\prime}. After simulating M_{k}, the tape expression is

$$
X^{\prime}=1^{a_{1}} x_{1} \ldots 1^{a_{m}} x_{m} 1^{b_{1}} x_{1}^{\prime} \ldots 1^{b_{k-1}} x_{k-1} 1^{b_{k}} x_{k}^{\prime} b y
$$

Then the head moves to the left until it is positioned at the cell having 1 just to the right of x_{m}.
(iii) M simulates $M_{k+1} \cdot M_{k+1}$ with initial tape expression X^{\prime} halts with the tape expression $1^{b} x_{1}^{\prime} \ldots 1^{b} x_{m}^{\prime} 1^{c} y$. As a result, the corresponding tape expression for M is obtained as

$$
1^{a_{1}} x_{1} 1^{a_{2}} x_{2} \ldots 1^{a_{m}} x_{m} 1^{b_{1}} x_{1}^{\prime} \ldots 1^{b_{k}} x_{k}^{\prime} 1^{r} y
$$

(iv) The required value is obtained to the left of y, but $1^{b_{1}} x_{1}^{\prime} \ldots 1^{b} x_{k}^{\prime}$ also appears to the left of $c . M$ erases all these symbols and moves $1^{c} y$ just to the right of x_{m}. The head moves to the cell having x_{m} and M halts. The final tape expression is $1^{{ }^{l} 1} x_{1} 1^{d_{2}} x_{2} \ldots 1^{a_{m}} x_{m}{ }^{1} y$.

11.4.8 Construction of the Turing Machine That Can Perform Recursion

Let $g\left(x_{1} . \ldots x_{m}\right) . h\left(y_{1}, y_{2}, \ldots . y_{m+2}\right)$ be Turing-computable. Let $f\left(x_{1}, \ldots\right.$, x_{m+1}) be defined by recursion as follows:

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{m}, 0\right)=g\left(x_{1} \ldots x_{m}\right) \\
f\left(x_{1}, \ldots, x_{m}, y+1\right)=h\left(x_{1}, \ldots, x_{m}, y, f\left(x_{1}, \ldots, x_{m}, y\right)\right)
\end{gathered}
$$

For the Turing machine M, computing $f\left(a_{1}, \ldots, a_{m}, c\right)$, (say k), X is taken as

$$
1^{a_{1}} x_{1} \ldots 1^{a_{m}} x_{m} 1^{c} x_{m+1} b y
$$

As the construction is similar to the construction for computing composition, we outline below the steps of the construction.
Step 1 Let M simulate the Turing machine M^{\prime} which computes $g\left(a_{1}, \ldots, a_{n}\right)$. The computed value, namely $g\left(a_{1}, \ldots, a_{m}\right)$. is placed to the left of y. If $c=0$, then the computed value $g\left(a_{1} \ldots, a_{m}\right)$ is $f\left(a_{1}, \ldots, a_{m}, 0\right)$. The head is placed to the right of x_{m} and M halts.
Step 2 If c is not equal to zero, 1^{r} to the left of x_{m+1} is replaced by b^{r}. The marker y is changed to x_{m+2} and $b y$ is added to the right of x_{m+2}. The head moves to the left of $1^{a_{1}}$.

Step $3 h$ is computable. M is allowed to compute h for the arguments a_{1}, \ldots, $a_{m}, 0 . g\left(a_{1}, \ldots, a_{m}\right)$ which appear to the left of $x_{1}, \ldots, x_{m}, x_{m+1}, x_{m+2}$,
respectively. The computed value is $f\left(a_{1}, \ldots, a_{m}, 1\right)$. And $f\left(a_{1}, \ldots, a_{m}, 2\right)$ $\ldots f\left(a_{1}, \ldots . a_{m}, c\right)$ are computed successively by replacing the rightmost b and computing h for the respective arguments.

The computation stops with a terminal ID. namely

$$
b 1^{a_{1}} x_{1} 1^{d_{2}} \ldots q_{f} 1^{c} x_{n+1} 1^{k} y, \quad k=f\left(a_{1}, \ldots, a_{m}, c\right)
$$

11.4.9 Construction of the Turing Machine That Can Perform Minimization

When $f\left(x_{1}, \ldots, x_{m}\right)$ is defined from $g\left(x_{1}, \ldots, x_{m}, y\right)$ by minimization, $f\left(x_{1} \ldots, x_{m}\right)$ is the least of all k 's such that $g\left(x_{1}, \ldots, x_{m}, k\right)=0$. So the problem reduces to computing $g\left(a_{1}, \ldots a_{m}, k\right)$ for given arguments a_{1}, \ldots, a_{m} and for values of k starting from $0 . f\left(a_{1}, \ldots, a_{m}\right)$ is the first k for which $g\left(a_{1}, \ldots a_{m}, k\right)=0$. Hence as soon as the computed value of $g\left(a_{1} \ldots . . a_{m} . y\right)$ is zero, the required Turing machine M has to halt. Of course, when no such y exists. M never halts, and $f\left(a_{1}, \ldots, a_{m}\right)$ is not defined.

Thus the construction of M is in such a way that it simulates the TM that computes $g\left(a_{1}, \ldots a_{i n}, k\right)$ for successive values of k. Once the computed value $g\left(a_{1} \ldots, a_{m}, k\right)=0$ for the first time, M erases $b y$ and changes x_{m+1} to y. The head moves to the left of x_{m} and M halts.

As partial recursive functions are obtained from the initial functions by a finite number of applications of composition, recursion and minimization (Definition 11.11) by the various constructions we have made in this section. the partial recursive functions become Turing-computable.

Using Godel numbering which converts operations of Turing machines into numeric quantities. it can be proved that Turing-computable functions are partial recursive. (For proof, refer Mendelson (1964).)

11.5 SUPPLEMENTARY EXAMPLES

EXAMPLE 11.13

Show that the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=4$ is primitive recursive.

Solution

$$
\begin{aligned}
4 & =S^{+}(0) \\
& =S^{+}\left(Z\left(x_{1}\right)\right) \\
& =S^{+}\left(Z\left(U_{1}^{n}\left(x_{1} . x_{2} \ldots, x_{n}\right)\right)\right)
\end{aligned}
$$

i.e.

$$
f\left(x_{1}, x_{2}, \ldots . . x_{n}\right)=S^{4}\left(Z\left(U_{1}^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) .
$$

As f is the composition of initial functions, f is primitive recursive.

EXAMPLE 11.14

If $f\left(x_{1}, x_{2}\right)$ is primitive recursive, show that $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f\left(x_{1}, x_{4}\right)$ is primitive recursive.

Solution

$$
\begin{aligned}
& g\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =f\left(x_{1}, x_{4}\right) \\
& =f\left(U_{1}^{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), U_{4}^{\ddagger}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{aligned}
$$

U_{1}^{+}and U_{4}^{+}are initial functions and hence primitive recursive. f is primitive recursive. As the function g is obtained by applying composition to primitive recursive functions, g is primitive recursive (by the Note appearing at the end of Example 11.5).

EXAMPLE 11.15

If $f(x, y)$ is primitive recursive, show that $g(x, y)=f(4, y)$ is primitive recursive.

Solution

Let $h(x, y)=4 . h$ is primitive recursive by Example 11.13.

$$
\begin{aligned}
& g(x, y) \\
& =f(4, y) \\
& =f\left(h(x, y) \cdot U_{2}^{2}(x, y)\right)
\end{aligned}
$$

As f and g are primitive recursive and U_{2}^{2} is an initial function, g is primitive recursive.

EXAMPLE 11.16

Show that $f(x, y)=x^{2} y^{+}+7 x y^{3}+4 y^{5}$ is primitive recursive.

Solution

As $f_{1}(x, y)=x+y$ is primitive recursive (Example 9.5), it is enough to prove that each summand of $f(x, y)$ is primitive recursive.

But,

$$
x^{2} y^{+}=U_{1}^{2}(x, y) * U_{1}^{2}(x, y) * U_{2}^{2}(x, y) * U_{2}^{2}(x, y) * U_{2}^{2}(x, y) * U_{2}^{2}(x, y)
$$

As multiplication is primitive recursive, $g(x, y)=x^{2} y^{4}$ is primitive recursive.
As $h(x, y)=x y^{3}$ is primitive recursive, $7 x y^{3}=x y^{3}+\cdots+x y^{3}$ is primitive recursive. Similarly, $4 y^{5}$ is primitive recursive.

SELF-TEST

Choose the correct answer to Questions 1-10.

1. $S(Z(6))$ is equal to
(a) $U_{1}^{3}(1,2,3)$
(b) $U_{2}^{3}(1,2,3)$
(c) $U_{3}^{3}(1,2,3)$
(d) none of these.
2. Cons $a(y)$ is equal to
(a) \wedge
(b) $y a$
(c) $a y$
(d) a
3. $\min (x, y)$ is equal to
(a) $x \doteq(x \doteq y)$
(b) $y-(y-x)$
(c) $x-y$
(d) $y-x$
4. $A(1,2)$ is equal to
(a) 3
(b) 4
(c) 5
(d) 6
5. $f(x)=x / 3$ over N is
(a) total
(b) partial
(c) not partial
(d) total but not partial.
6. $\psi_{\{4\}}(3)$ is equal to
(a) 0
(b) 3
(c) 4
(d) none of these.
7. $\operatorname{sgn}(x)$ takes the value 1 if
(a) $x<0$
(b) $x \leq 0$
(c) $x>0$
(d) $x \geq 0$
8. $\psi_{A}+\psi_{B}=\psi_{A \cup B}$ if
(a) $A \cup B=A$
(b) $A \cup B=B$
(c) $A \cap B=A$
(d) $A \cap B=\emptyset$
9. $U_{2}^{4}(S(4), S(5), S(6), Z(7))$ is
(a) 6
(b) 5
(c) 4
(d) 0
10. If $g(x, y)=\min (x, y)$ and $h(x, y)=|x-y|$, then:
(a) Both functions are regular functions.
(b) The first function is regular and the second is not regular.
(c) Neither of the functions is regular.
(d) The second function is not regular.

State whether the Statements 11-15 are true or false.

11. $f(x, y)=x+y$ is primitive recursive.
12. $3-4=0$.
13. The transpose function is not primitive recursive.
14. The Ackermann's function is recursive but not primitive recursive.
15. $A(2,2)=7$.

EXERCISES

11.1 Test which of the following functions are total. If a function is not total, specify the arguments for which the function is defined.
(a) $f(x)=x / 3$ over N
(b) $f(x)=1 /(x-1)$ over N
(c) $f(x)=x^{2}-4$ over N
(d) $f(x)=x+1$ over N
(e) $f(x)=x^{2}$ over N
11.2 Show that the following functions are primitive recursive:
(a) $\chi_{\{0\}}(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}$
(b) $f(x)=x^{2}$
(c) $f(x, y)=$ maximum of x and y
(d) $f(x)=\left\{\begin{array}{cl}x / 2 & \text { when } x \text { is even } \\ (x-1) / 2 & \text { when } x \text { is odd }\end{array}\right.$
(e) The sign function defined by

$$
\operatorname{sgn}(0)=0, \quad \operatorname{sgn}(x)=1 \quad \text { if } \quad x>0
$$

(f) $L(x . y)= \begin{cases}1 & \text { if } x>y \\ 0 & \text { if } x \leq y\end{cases}$
(g) $E(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}$
11.3 Compute $A(3,2), A(2,3), A(3,3)$.
11.4 Show that the following functions are primitive recursive:
(a) $q(x, y)=$ the quotient obtained when x is divided by y
(b) $r(x, y)=$ the remainder obtained when x is divided by y
(c) $f(x)=\left\{\begin{array}{cc}2 x & \text { if } x \text { is a perfect square } \\ 2 x+1 & \text { otherwise }\end{array}\right.$
11.5 Show that $f(x)=$ integral part of \sqrt{x} is partial recursive.
11.6 Show that the Fibonacci numbers are generated by a primitive recursive function.
11.7 Let $f(0)=1, f(1)=2, f(2)=3$ and $f(x+3)=f(x)+f(x+1)^{2}+$ $f(x+2)^{3}$. Show that $f(x)$ is primitive recursive.
11.8 The characteristic function χ_{A} of a given set A is defined as

$$
\chi_{A}(a)= \begin{cases}0 & \text { if } a \notin A \\ 1 & \text { if } a \in A\end{cases}
$$

If A, B are subsets of N and $\chi_{A} \cdot \chi_{B}$ are recursive, show that $\chi_{A}{ }^{c}, \chi_{A \cup B}$, $\chi_{A \cap B}$ are also recursive.
11.9 Show that the characteristic function of the set of all even numbers is recursive. Prove that the characteristic function of the set of all odd integers is recursive.
11.10 Show that the function $f(x, y)=x-y$ is partial recursive.
11.11 Show that a constant function over N, i.e. $f(n)=k$ for all n in N where k is a fixed number, is primitive recursive.
11.12 Show that the characteristic function of a finite subset of N is primitive recursive.
11.13 Show that the addition function $f_{1}(x, y)$ is Turing-computable. (Represent x and y in tally notation and use concatenation.)
11.14 Show that the Turing machine M in the Post notation (i.e. the transition function specified by quadruples) can be simulated by a Turing machine M (as defined in Chapter 9).
[Hint: The transition given by a quadruple can be simulated by two quintuples of M^{\prime} by adding new states to M^{\prime}.]
11.15 Compute $Z(4)$ using the Turing machine constructed for computing the zero function.
11.16 Compute $S(3)$ using the Turing machine which computes S.
11.17 Compute $U_{1}^{3}(2,1,1), U_{2}^{3}(1,2,1), U_{3}^{3}(1.2,1)$ using the Turing machines which can compute the projection functions.
11.18 Construct a Turing machine which can compute $f(x)=x+2$.
11.19 Construct a Turing machine which can compute $f\left(x_{1}, x_{2}\right)=x_{1}+2$ for the arguments 1,2 (i.e. $x_{1}=1, x_{2}=2$).
11.20 Construct a Turing machine which can compute $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ for the arguments 2.3 (i.e. $x_{1}=2, x_{2}=3$).

12
 Complexity

When a problem/language is decidable, it simply means that the problem is computationally solvable in principle. It may not be solvable in practice in the sense that it may require enormous amount of computation time and memory. In this chapter we discuss the computational complexity of a problem. The proofs of decidability/undecidability are quite rigorous, since they depend solely on the definition of a Turing machine and rigorous mathematical techniques. But the proof and the discussion in complexity theory rests on the assumption that $\mathbf{P} \neq \mathbf{N P}$. The computer scientists and mathematicians strongly believe that $\mathbf{P} \neq \mathbf{N P}$. but this is still open.

This problem is one of the challenging problems of the 21st century. This problem carries a prize money of $\$ 1 \mathrm{M}$. \mathbf{P} stands for the class of problems that can be solved by a deterministic algorithm (i.e by a Turing machine that halts) in polynomial time: $\mathbf{N P}$ stands for the class of problems that can be solved by a nondeterministic algorithm (that is, by a nondeterministic TM) in polynomial time; \mathbf{P} stands for polynomial and $\mathbf{N P}$ for nondeterminisite polynomial. Another important class is the class of $N P$-complete problems which is a subclass of NP.

In this chapter these concepts are formalized and Cook's theorem on the $N P$-completeness of SAT problem is proved.

12.1 GROWTH RATE OF FUNCTIONS

When we have two algorithms for the same problem, we may require a comparison between the running time of these two algorithms. With this in mind. we study the growth rate of functions defined on the set of natural numbers.

In this section. N denotes the set of natural numbers.

Definition 12.1 Let $f, g: N \rightarrow R^{+}$(R^{+}being the set of all positive real numbers). We say that $f(n)=O(g(n))$ if there exist positive integers C and N_{0} such that

$$
f(n) \leq C g(n) \quad \text { for all } n \geq N_{0}
$$

In this case we say f is of the order of g (or f is 'big oh' of g)
Note: $f(n)=O(g(n))$ is not an equation. It expresses a relation between two functions f and g.

EXAMPLE 12.1

Let $f(n)=4 n^{3}+5 n^{2}+7 n+3$. Prove that $f(n)=O\left(n^{3}\right)$.

Solution

In order to prove that $f(n)=O\left(n^{3}\right)$, take $C=5$ and $N_{0}=10$. Then

$$
f(n)=4 n^{3}+5 n^{2}+7 n+3 \leq 5 n^{3} \quad \text { for } n \geq 10
$$

When $n=10.5 n^{2}+7 n+3=573<10^{3}$. For $n>10,5 n^{2}+7 n+3<n^{3}$. Then, $f(n)=O\left(n^{3}\right)$.
Theorem 12.1 If $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n+a_{0}$ is a polynomial of degree k over Z and $a_{k}>0$, then $p(n)=O\left(n^{k}\right)$.
Proof $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n+a_{0}$. As a_{k} is an integer and positive, $a_{k} \geq 1$.

As $a_{k-1}, a_{k-2}, \ldots, a_{1}, a_{0}$ and k are fixed integers, choose N_{0} such that for all $n \geq N_{0}$ each of the numbers

$$
\begin{equation*}
\frac{\left|a_{k-1}\right|}{n}, \frac{\left|a_{k-2}\right|}{n^{2}}, \ldots \cdot \frac{\left|a_{1}\right|}{n^{k-1}}, \frac{\left|a_{0}\right|}{n^{k}} \text { is less than } \frac{1}{k} \tag{*}
\end{equation*}
$$

Hence.

$$
\left|\frac{a_{k-1}}{n}+\frac{a_{k-2}}{n^{2}}+\cdots+\frac{a_{0}}{n^{k}}\right|<1
$$

As $a_{k} \geq 1 . \frac{p(n)}{n^{k}}=a_{k}+\frac{a_{k-1}}{n}+\cdots+\frac{a_{1}}{n^{k-1}}+\frac{a_{0}}{n^{k}}>0 \quad$ for all $n \geq N_{0}$
Also,

$$
\begin{aligned}
\frac{p(n)}{n^{k}} & =a_{k}+\left(\frac{a_{k-1}}{n}+\cdots+\frac{a_{1}}{n^{k-1}}+\frac{a_{0}}{n^{k}}\right) \\
& \leq a_{k}+1 \quad \text { by }(*)
\end{aligned}
$$

So,

$$
p(n) \leq C n^{k}, \quad \text { where } \quad C=a_{k}+1
$$

Hence.

$$
p(n)=O\left(n^{k}\right) . \quad \mid
$$

Corollary The order of a polynomial is determined by its degree.
Definition 12.2 An exponential function is a function $q: N \rightarrow N$ defined by $q(n)=a^{n} \quad$ for some fixed $a>1$.
When n increases, each of $n, n^{2}, 2^{n}$ increases. But a comparison of these functions for specific values of n will indicate the vast difference between the growth rate of these functions.

TABLE 12.1 Growth Rate of Polynomial and Exponential Functions

n	$f(n)=n^{2}$	$g(n)=n^{2}+3 n+9$	$q(n)=2^{n}$
1	1	13	2
5	25	49	32
10	100	139	1024
50	2500	2659	$(1.13) 10^{15}$
100	10000	10309	$(1.27) 10^{30}$
1000	1000000	1003009	$(1.07) 10^{301}$

From Table 12.1. it is easy to see that the function $q(n)$ grows at a very fast rate when compared to $f(n)$ or $g(n)$. In particular the exponential function grows at a very fast rate when compared to any polynomial of large degree. We prove a precise statement comparing the growth rate of polynomials and exponential function.
Definition 12.3 We say $g \neq O(f)$, if for any constant C and N_{0}, there exists $n \geq N_{0}$ such that $g(n)>C f(n)$.
Definition 12.4 If f and g are two functions and $f=O(g)$, but $g \neq O(f)$, we say that the growth rate of g is greater than that of f. (In this case $g(n) / f(n)$ becomes unbounded as n increases to ∞.)
Theorem 12.2 The growth rate of any exponential function is greater than that of any polynomial.
Proof Let $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0}$ and $q(n)=a^{n}$ for some $a>1$.

As the growth rate of any polynomial is determined by its term with the highest power, it is enough to prove that $n^{k}=O\left(a^{n}\right)$ and $a^{n} \neq O\left(n^{k}\right)$. By L'Hospital's rule, $\frac{\log n}{n}$ tends to 0 as $n \rightarrow \infty$. (Here $\log n=\log _{e} n$.) If

$$
z(n)=\left[e^{k\left(\frac{\log n}{n}\right)}\right]
$$

then.

$$
(\sigma(n))^{n}=\left[e^{\left.k\left(\frac{\log n}{n}\right)\right]^{n}}=e^{k \log n}=e^{\log n^{k}}=n^{k}\right.
$$

As n gets large, $k\left(\frac{\log n}{n}\right)$ tends to 0 and hence $z(n)$ tends to 0 .

So we can choose N_{0} such that $z(n) \leq a$ for all $n \geq N_{0}$. Hence $n^{k}=$ $z(n)^{n} \leq a^{n}$, proving $n^{k}=O\left(a^{i}\right)$.

To prove $a^{n} \neq O\left(n^{k}\right)$, it is enough to show that a^{n} / n^{k} is unbounded for large n. But we have proved that $n^{k} \leq a^{n}$ for large n and any positive integer k and hence for $k+1$. So $n^{k+1} \leq a^{n}$ or $\frac{a^{n}}{n^{k+1}} \geq 1$.

Multiplying by $n, n\left(\frac{a^{n}}{n^{k+1}}\right) \geq n$, which means $\frac{a^{n}}{n^{k}}$ is unbounded for large values of n. 1
Note: The function $n^{\log n}$ lies between any polynomial function and a^{n} for any constant a. As $\log n \geq k$ for a given constant k and large values of n, $n^{\log n} \geq n^{k}$ for large values of n. Hence $n^{\log n}$ dominates any polynomial. But $n^{\log n}=\left(e^{\log n}\right)^{\log n}=e\left(\log n^{2}\right)^{2}$. Let us calculate $\lim _{x \rightarrow \infty} \frac{(\log x)^{2}}{c x}$. By L'Hospital's rule, $\lim _{x \rightarrow \infty} \frac{(\log x)^{2}}{c x}=\lim _{x \rightarrow \infty}(2 \log x) \frac{1 / x}{c}=\lim _{x \rightarrow \infty} \frac{2 \log x}{c x}=\lim _{x \rightarrow \infty} \frac{2}{c x}=0$.

So $(\log n)^{2}$ grows more slowly than $c n$. Hence $n^{\log n}=e^{(\log n)^{2}}$ grows more slowly than $2^{\text {ch }}$. The same holds good when logarithm is taken over base 2 since $\log _{e} n$ and $\log _{2} n$ differ by a constant factor.

Hence there exist functions lying between polynomials and exponential functions.

12.2 THE CLASSES P AND NP

In this section we introduce the classes \mathbf{P} and $\mathbf{N P}$ of languages.
Definition 12.5 A Turing machine M is said to be of time complexity $T(n)$ if the following holds: Given an input w of length n, M halts after making at most $T(n)$ moves.

Note: In this case, M eventually halts. Recall that the standard TM is called a deterministic TM.
Definition 12.6 A language L is in class \mathbf{P} if there exists some polynomial $T(n)$ such that $L=T(M)$ for some deterministic TM M of time complexity $T(n)$.

EXAMPLE 12.2

Construct the time complexity $T(n)$ for the Turing machine M given in Example 9.7.

Solution

In Example 9.7, the step (i) consists of going through the input string ($0^{\prime \prime} 1^{\prime \prime}$) forward and backward and replacing the leftmost 0 by x and the leftmost 1 by y. So we require at most $2 n$ moves to match a 0 with a 1 . Step (ii) is repetition of step (i) n times. Hence the number of moves for accepting $a^{n} b^{n}$ is at most $(2 n)(n)$. For strings not of the form $a^{n} b^{n}$, TM halts with less than $2 n^{2}$ steps. Hence $T(M)=O\left(n^{2}\right)$.

We can also define the complexity of algorithms. In the case of algorithms. $T(n)$ denotes the running time for solving a problem with an input of size n, using this algorithm.

In Example 12.2. we use the notation \leftarrow which is used in expressing algorithm. For example. $a \leftarrow b$ means replacing a by b.
$\lceil a$ denotes the smallest integer greater than or equal to a. This is called the ceiling function.

EXAMPLE 12.3

Find the running time for the Euclidean algorithm for evaluating $\operatorname{gcd}(a, b)$ where a and b are positive integers expressed in binary representation.

Solution

The Euclidean algorithm has the following steps:

1. The input is (a, b)
2. Repeat until $b=0$
3. Assign $a \leftarrow a \bmod b$
4. Exchange a and b
5. Output a.

Step 3 replaces a by $a \bmod b$. If $a / 2 \geq b$, then $a \bmod b<b \leq a / 2$. If $a / 2<b$, then $a<2 b$. Wtite $a=b+r$ for some $r<b$. Then $a \bmod b=$ $r<b<a / 2$. Hence $a \bmod b \leq a / 2$. So a is reduced by at least half in size on the application of step 3. Hence one iteration of step 3 and step 4 reduces a and b by at least half in size. So the maximum number of times the steps 3 and 4 are executed is $\min \left\{\left\lceil\log _{2} a\right\rceil,\left\lceil\log _{2} b\right\rceil\right.$. If n denotes the maximum of the number of digits of a and b. that is $\max \left\{\left[\log _{2} a\right\rceil .\left\lceil\log _{2} b\right\rceil\right\}$ then the number of iterations of steps 3 and 4 is $O(n)$. We have to perform step 2 at most $\min \left\{\left\lceil\log _{2} a\right\rceil .\left\lceil\log _{2} b\right]\right\}$ times or n times. Hence $T(n)=n O(n)=O\left(n^{2}\right)$.
Note: The Euclidean algorithm is a polynomial algorithm.
Definition 12.7 A language L is in class $\mathbf{N P}$ if there is a nondeterministic TM M and a polynomial time complexity $T(n)$ such that $L=T(M)$ and M executes at most $T(n)$ moves for every input w of length n.

We have seen that a deterministic TM M_{t} simulating a nondeterministic TM M exists (refer to Theorem 9.3). If $T(n)$ is the complexity of M, then the complexity of the equivalent deterministic TM M_{1} is $2^{\text {OT(M) })}$. This can be justified as follows. The processing of an input string w of length n by M is equivalent to a tree' of computations by M_{1}. Let k be the maximum of the number of choices forced by the nondeterministic transition function. (It is $\max |\delta(q, x)|$, the maximum taken over all states q and all tape symbol X.) Every branch of the computation tree has a length $T(n)$ or less. Hence the total number of leaves is atmost $k T(n)$. Hence the complexity of M_{1} is at most $2^{\text {(TMI). }}$

It is not known whether the complexity of M_{1} is less than $2^{\text {OTT(n). }}$. Once again an answer to this question will prove or disprove $\mathbf{P} \neq \mathbf{N P}$. But there do exist algorithms where $T(n)$ lies between a polynomial and an exponential function (refer to Section 12.1).

12.3 POLYNOMIAL TIME REDUCTION AND NP-COMPLETENESS

If P_{1} and P_{2} are two problems and $P_{2} \in \mathbf{P}$, then we can decide whether $P_{1} \in \mathbf{P}$ by relating the two problems P_{1} and P_{2}. If there is an algorithm for obtaining an instance of P_{2} given any instance of P_{1}, then we can decide about the problem P_{1}. Intuitively if this algorithm is a polynomial one, then the problem P_{1} can be decided in polynomial time.
Definition 12.8 Let P_{1} and P_{2} be two problems. A reduction from P_{1} to P_{2} is an algorithm which converts an instance of P_{1} to an instance of P_{2}. If the time taken by the algorithm is a polynomial $p(n), n$ being the length of the input of P_{1}, then the reduction is called a polynomial reduction P_{1} to P_{2}.
Theorem 12.3 If there is a polynomial time reduction from P_{1} to P_{2} and if P_{2} is in \mathbf{P} then P_{1} is in \mathbf{P}.
Proof Let m denote the size of the input of P_{1}. As there is a polynomialtime reduction of P_{1} to P_{2}, the corresponding instance of P_{2} can be got in polynomial-time. Let it be $O\left(m^{i}\right)$, So the size of the resulting input of P_{2} is atmost $c m^{i}$ for some constant c. As P_{2} is in \mathbf{P}, the time taken for deciding the membership in P_{2} is $O\left(n^{k}\right)$. n being the size of the input of P_{2}. So the total time taken for deciding the membership of m-size input of P_{1} is the sum of the time taken for conversion into an instance of P_{2} and the time for decision of the corresponding input in P_{2}. This is $O\left[\mathrm{~m}^{j}+\left(\mathrm{cm}^{j}\right)^{h}\right]$. which is the same as $O\left(m^{f k}\right)$. So P_{1} is in \mathbf{P}. I

Definition 12.9 Let L be a language or problem in NP. Then L is NPcomplete if 1. L is in $\mathbf{N P}$
2. For every language L^{\prime} in $\mathbf{N P}$ there exists a polynomial-time reduction of L^{\prime} to L.

Note: . The class of $N P$-complete languages is a subclass of $\mathbf{N P}$.
The next theorem can be used to enlarge the class of $N P$-complete problems provided we have some known $N P$-complete problems.

Theorem 12.4 If P_{1} is $N P$-complete, and there is a polynomial-time reduction of P_{1} to P_{2}, then P_{2} is $N P$-complete.
Proof If L is any language in NP, we show that there is a polynomial-time reduction of L to P_{2}. As P_{1} is $N P$-complete, there is a polynomial-time reduction of L to P_{1}. So the time taken for converting an n-size input string w in L to a string x in P_{1} is at most $p_{1}(n)$ for some polynomial p_{1}. As there is a polynomial-time reduction of P_{1} to P_{2}, there exists a polynomial p_{2} such that the input x to P_{1} is transferred into input y to P_{2} in at most $p_{2}(n)$ time. So the time taken for transforming w to y is at most $p_{1}(n)+p_{2}\left(p_{1}(n)\right)$. As $p_{1}(n)+p_{2}\left(p_{1}(n)\right)$ is a polynomial. we get a polynomial-time reduction of L to P_{2}. Hence P_{2} is $N P$-complete.

Theorem 12.5 If some $N P$-complete problem is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof Let P be an $N P$-complete problem and $P \in \mathbf{P}$. Let L be any $N P$-complete problem. By definition, there is a polynomial-time reduction of L to P. As P is in \mathbf{P}, L is also in \mathbf{P} by Theorem 12.3. Hence $\mathbf{N P}=\mathbf{P}$.

12.4 IMPORTANCE OF NP-COMPLETE PROBLEMS

In Section 12.3, we proved theorems regarding the properties of $N P$-complete problems. At the beginning of this chapter we noted that the computer scientists and mathematicians strongly believe that $\mathbf{P} \neq \mathbf{N P}$. At the same time, no problem in $\mathbf{N P}$ is proved to be in \mathbf{P}. The entire complexity theory rests on the strong belief that $\mathbf{P} \neq \mathbf{N P}$.

Theorem 12.4 enables us to extend the class of $N P$-complete problems, while Theorem 12.5 asserts that the existence of one $N P$-complete problem admitting a polynomial-time algorithm will prove $\mathbf{P}=\mathbf{N P}$. More than 2500 $N P$-complete problems in various fields have been found so far.

We will prove the existence of an $N P$-complete problem in Section 12.5. We will give a list of $N P$-complete problems in Section 12.6. Thousands of $N P$-complete problems in various branches such as Operations Research, Logic, Graph Theory, Combinatorics, etc. have been constructed so far. A polynomial-time algorithm for any one of there problems will yield a proof of $\mathbf{P}=\mathbf{N P}$. But such multitude of $N P$-complete problems only strengthens the belief of the computer scientists that $\mathbf{P} \neq \mathbf{N P}$. We will discuss more about this in Section 12.7.

12.5 SAT IS NP-COMPLETE

In this section, we prove that the satisfiability problem for boolean expressions (whether a boolean expression is satisfiable) is $N P$-complete. This is the first problem to be proved NP-complete. Cook proved this theorem in 1971.

12.5.1 Boolean Expressions

In Section 1.1.2, we defined a well-formed formula involving propositional variables. A boolean expression is a well-formed formula involving boolean variables x, y, z replacing propositions P, Q, R and connectives \vee, \wedge and \neg. The truth value of a boolean expression in x, y, z is determined from the truth values of x, y, z and the truth tables for \vee, \wedge and \neg. For example, $\neg x \wedge \neg$ $(y \vee z)$ is a boolean expression. The expression $\neg x \wedge \neg(y \vee z)$ is true when x is false, y is false and z is false.
Definition 12.10 (a) A truth assignment t for a boolean expression E is the assignment of truth values T or F to each of the variables in E. For example, $t=(F, F, F)$ is a truth assignment for (x, y, z) where x, y, z are the variables in a boolean expression $E(x, y, z)=\neg x \wedge \neg(y \vee z)$.

The value $E(t)$ of the boolean expression E given a truth assignment t is the truth value of the expression of E, if the truth values give by t are assigned to the respective variables.

If $t=(F, F, F)$ then the truth values of $\neg x$ and $\neg(y \vee z)$ are T and T. Hence the value of $E=\neg x \wedge \neg(y \vee z)$ is T. So $E(t)=T$.

Definition 12.11 A truth assignment t satisfies a boolean expression E if the truth value of $E(t)$ is T. In other words, the truth assignment t makes the expression E true.

Definition 12.12 A boolean expression E is satisfiable if there exists at least one truth assignment t that satisfies E (that is $E(t)=T$). For example, $E=$ $\neg x \wedge \neg(y \vee z)$ is satisfiable since $E(t)=T$ when $t=(F, F, F)$.

12.5.2 Coding a Boolean Expression

The symbols in a boolean expression are the variables x, y, z, etc. the connectives \vee, \wedge, \neg. and parantheses (and). Thus a boolean expression in three variables will have eight distinct symbols. The variables are written as x_{1}, x_{2}, x_{3}, etc. Also we use x_{n} only after using $x_{1}, x_{2}, \ldots, x_{n-1}$ for variables.

We encode a boolean expression as follows:

1. The variables $x_{1}, x_{2}, x_{3}, \ldots$ are written as $x 1, x 10, x 11, \ldots$ etc. (The binary representation of the subscript is written after x.)
2. The connectives $\vee, \wedge, \neg,($, and $)$ are retained in the encoded expression.

For example, $\neg x \wedge \neg(y \vee z)$ is encoded as $\neg x 1 \wedge \neg(x 10 \vee x 11)$, (where $x, y,=$ are represented by $\left.x_{1}, x_{2}, x_{3}\right)$.
Note: Any boolean expression is encoded as a string over $\Sigma=\{x, 0,1, \vee$, $\wedge, \neg . c()$,

Consider a boolean expression having m occurrences of variables, connectives and parantheses. The variable x_{m} can be represented using $1+\log _{2} m$ symbols (x together with the digits in the binary representation of m). The other occurrences require less symbols. So any occurrence of a variable. connective or a parenthesis requires at most $1+\log _{2} m$ symbols over Σ So the length of the encoded expression is at most $O(m \log m)$.

As our interest is only in deciding whether a problem can be solved in polynomial-time, we need not distinguish between the length of the coded expression and the number of occurrences of variables etc. in a boolean expression.

12.5.3 Cook's Theorem

In this section we define the SAT problem and prove the Cook's theorem that SAT is NP-complete.
Definition 12.13 The satisfiability problem (SAT) is the problem: Given a boolean expression, is it satisfiable?
Note: The SAT problem can also be formulated as a language. We can define SAT as the set of all coded boolean expressions that are satisfiable. So the problem is to decide whether a given coded boolean expression is in SAT.

Theorem 12.6 (Cook's theorem) SAT is $N P$-complete.

Proof PART I: SAT \in NP.

If the encoded expression E is of length n, then the number of variables is $\left\lceil n / 2^{-}\right.$. Hence, for guessing a truth assignment t we can use multitape TM for E. The time taken by a multitape NTM M is $O(n)$. Then M evaluates the value of E for a truth assignment t. This is done in $O\left(n^{2}\right)$ time. An equivalent single-tape TM takes $O\left(n^{4}\right)$ time. Once an accepting truth assignment is found, M accepts E and M and halts. Thus we have found a polynomial time NTM for SAT. Hence SAT $\in \mathbf{N P}$.

PART II: POLYNOMIAL-TIME REDUCTION OF ANY L IN NP TO SAT.

1. Construction of NTM for L

Let L be any language in NP. Then there exists a single-tape NTM M and a polynomial $p(n)$ such that the time taken by M for an input of length n is at most $p(n)$ along any branch. We can further assume that this M never writes a blank on any move and never moves its head to the left of its initial tape position (refer to Example 12.6).

If M accepts an input w and $|w|=n$, then there exists a sequence of moves of M such that

1. α_{0} is the initial D of M with input w.
2. $\alpha_{0} \vdash \alpha_{1} \vdash \cdots \vdash \alpha_{k}, k \leq p(n)$.
3. α_{k} is an ID with an accepting state.
4. Each α_{i} is a string of nonblanks, its leftmost symbol being the leftmost symbol of w (the only exception occurs when the processing of w is complete, in which case the ID is $q b$).

2. Representation of Sequence of Moves of M

As the maximum number of steps on w is $p(n)$ we need not bother about the contents beyond $p(n)$ cells. We can write α_{i} as a sequence of $p(n)+1$ symbols (one symbol for the state and the remaining symbols for the tape symbols). So $a_{i}=X_{i 0} X_{i 1} \ldots X_{i p(n)}$.

By assuming $Q \cap \Gamma=\emptyset$, we can locate the state in α_{i} and hence the position of the tape head. The length of some ID may be less than $p(n)$. In this case we pad the ID on the right with blank symbols, so that all IDs are of the same length $p(n)+1$. Also the acceptance may happen earlier. If α_{n} is an accepting D in the course of processing w, then we write $\alpha_{0} \vdash \ldots \vdash$ $\alpha_{m} \vdash-\alpha_{m} \ldots \vdash \alpha_{m i}=\alpha_{i p(n)}$.

Thus all IDs have $p(n)+1$ symbols and any computation has $p(n)$ moves.
TABLE 12.2 Array of IDs

ID	0	1		j-1	j	$j+1$. .	$p(n)$
α_{0}	x_{00}	X_{01}		. \cdot				$X_{0, p(n)}$
a_{1}	X_{10}	X_{11}						$X_{1, p(n)}$
α_{i}	$X_{i 0}$	X_{11}		$X_{i j-1}$	X_{j}	$X_{i, i+1}$...	$X_{i j p(n)}$
α_{i+1}	$X_{i+1.0}$	$X_{i+1,1}$		$X_{i+1, j-1}$	$X_{i+1 . j}$	$x_{i+1}+1+1$	\ldots	$X_{i+1,0,(m)}$
$\alpha_{p(n)}$. \cdot				$X_{\text {p(n) }}$ (n) ${ }^{\text {n }}$

So we can represent any computation as an $(p(n)+1) \times(p(n)+1)$ array as in Table 12.2.

3. Representation of IDs in Terms of Boolean Variables

We define a boolean variable $y_{i j}$ corresponding to (i, j) th entry in the i th D . The variable $y_{i, A}$ represents the proposition that $x_{i j}=A$. where A is a state or tape symbol and $0 \leq i, j \leq p(n)$.

We simulate the sequence of DDs leading to the acceptance of an input sring w by a boolean expression. This is done in such a way that M accepts w if an only if the simulated boolean expression $E_{M,:}$ is satisfiable.

4. Polynomial Reduction of M to SAT

In order to check that the reduction of M to SAT is correct, we have to ensure the correctness of
(a) the initial ID,
(b) the accepting \mathbb{D}, and
(c) the intermediate moves between successive IDs.
(a) Simulation of initial ID
X_{00} must start with the initial state q_{0} of M followed by the symbols of $w=a_{1} a_{2} \ldots a_{n}$ of length n and ending with b s (blank symbol). The corresponding boolean expression S is defined as

$$
S=y_{00 q_{0}} \wedge y_{01 a_{1}} \wedge y_{01 a_{2}} \wedge \ldots \wedge y_{0 n a_{i:}} \wedge y_{0, n+1 \cdot b} \wedge \ldots \wedge y_{0, p(n), b}
$$

Thus given an encoding of M and w, we can write S in a tape of a multiple TM M_{1}. This takes $O(p(n))$ time.
(b) Simulation of accepting ID
$\alpha_{p ; m}$ is the accepting ID. If $p_{1}, p_{2} \ldots, p_{k}$ are the accepting states of M, then $\alpha_{p m}$ contains one of $p_{i}{ }^{\cdot} s, 1 \leq i \leq k$ in any place j. If $\alpha_{p(n)}$ contains an accepting state p_{i} in j th position, then $x_{p(n, j}$ is the accepting state p_{i}. The corresponding boolean expression covering all the cases $(0 \leq j \leq p(n), 1 \leq i \leq k)$ is given by

$$
F=F_{0} \vee F_{i} \vee \ldots \vee F_{p(n)}
$$

where

$$
F_{f}=y_{p(n), 1 p_{1}} \vee y_{p(n), j, p_{2}} \vee \ldots \vee y_{p(n), j, p_{k}}
$$

Each F_{j} has k variables and hence has constant number of symbols depending on M but not on n. The number of F_{j} s in F is $p(n)$. Thus given an encoding of M and w, F can be written in $O(p(n))$ time on the multiple TM M_{1}.
(c) Simulation of intermediate moves

We have to simulate valid moves $\alpha_{i}-\alpha_{i+1}, i=0,1,2, \ldots p(n)$. Corresponding to each move. we have to define a boolean variable N_{i}. Hence the entire sequence of DDs leading to acceptance of w is

$$
N=N_{0} \wedge N_{1} \wedge \ldots \wedge N_{p(n)-1}
$$

First of all note that the symbol $X_{i+1, j}$ can be determined from $X_{i, j-1}, X_{i j}$, $X_{i, j+1}$ by the move (if there is one changing α_{i} to a different α_{i+1}). For every position (i, j), we have two cases:
Case 1 The state of α_{i} is at position j.
Case 2 The state of α_{i} is not in any of the $(j-1)$ th, j th and $(j+1)$ th positions.

Case 1 is taken care of by a variable $A_{i j}$ and Case 2 by a variable $B_{i j}$.
The variable N_{i} will be designed in such a way that it gurantees that ID α_{i+1} is one of the IDs that follows the ID α_{i}.
$X_{i+1, j}$ can be determined from
(i) the three symbols $X_{i, j-1}, X_{i j}, X_{i, j+1}$ above it
(ii) the move chosen by the nondeterministic TM M when one of the three symbols (in (i)) is a state.
If the state of α_{i} is not $X_{i j}, X_{i, j-1}$ or $X_{i, j+1}$, then $X_{i+1, j}=X_{i j}$. This is taken care of by the variable $B_{i j}$.

If $X_{i j}$ is the state of α_{i}, then $X_{i, j+1}$ is being scanned by the state $X_{i j}$. The move corresponding to the state-tape symbol pair ($X_{i j}, X_{i, j+1}$) will determine the sequence $X_{i+1, j-1} X_{i+1 . j} X_{i+1, j+1}$. This is taken care of by the variable $A_{i j}$.

We write $N_{i}=\wedge_{j}\left(A_{i j} \vee B_{i j}\right)$, where \wedge is taken over all j s, $0 \leq j \leq p(n)$.
(i) Formulation of $\boldsymbol{B}_{\boldsymbol{i j}}$ When the state of α_{i} is none of $X_{i, j-1}, X_{i j}, X_{i, j+1}$, then the transition corresponding to $\alpha_{i} \vdash \alpha_{i+1}$ will not affect $X_{i, j+1}$. In this case $X_{i+1 . j}=X_{i j}$

Denote the tape symbols by $Z_{1}, Z_{2}, \ldots, Z_{i}$ Then $X_{i, j-1}, X_{i, j}$ and $X_{i, j+1}$ are the only tape symbols. So we write $B_{i j}$ as

$$
\begin{aligned}
B_{i j}= & \left(y_{i, j-1, z_{1}} \vee y_{i, j-1, z_{2}} \vee \ldots \vee y_{i, i-1, z_{l}}\right) \wedge \\
& \left(y_{i, j, z_{1}} \vee y_{i, j, z_{2}} \cdots \vee y_{i, j, z_{l}}\right) \wedge \\
& \left(y_{i, j+1, z_{1}}, \vee y_{i, j+1, z_{2}} \ldots \vee y_{i, j+1, z_{p}}\right) \wedge \\
& \left(y_{i, j, z_{1}} \wedge y_{i+1, j, z_{1}}\right) \vee\left(y_{i, j, z_{2}} \wedge y_{i+1, j, z_{2}} \vee \ldots \vee\left(y_{i, j, z_{r}} \wedge y_{i+1, j, z_{r}}\right)\right.
\end{aligned}
$$

This first line of $B_{i j}$ says that $X_{i . j-1}$ is one of the tape symbols $Z_{1}, Z_{2}, \ldots, Z_{r}$. The second and third lines are regarding $X_{i, j}$ and $X_{i, j+1}$. The fourth line says that $X_{i j}$ and $X_{i, j+1}$ are the same and the common value is any one of $Z_{1}, Z_{2} \ldots, Z_{r}$.

Recall that the head of M never moves to the left of 0 -cell and does not have to move to the right of the $p(n)$-cell. So $B_{i 0}$ will not have the first line and $B_{i, p t i,}$ will not have the third line.
(ii) Formulation of $\boldsymbol{A}_{i j}$ This step corresponds to the correctness of the 2×3 array (see Table 12.3).

TABLE 12.3 Valid Computation

$X_{i, j-1}$	$X_{i j}$	$X_{i, j+1}$
$X_{i+1, j-1}-$	-1	-1

The expression $B_{i j}$ takes care of the case when the state of α_{i} is not at the position $X_{i, j-1}, X_{i . j}$ or $X_{i, j+1}$. The $A_{i j}$ corresponds to the case when the state of α_{i} is at the position $X_{i j}$. In this case we have to assign boolean variables to six positions given in Table 12.3 so that the transition corresponding to $\alpha_{i} \vdash-\alpha_{i+1}$ is described by the variables in the box correctily.

We say that that an assignment of symbols to the six variables in the box is valid if

1. $X_{i j}$ is a state but $X_{i, j-1}$ and $X_{i, j+1}$ are tape symbols.
2. Exactly one of $X_{i+1, j-1}, X_{i+1, j}, X_{i+1, j+1}$ is a state.
3. There is a move which explains how $\left(X_{i, j-1}, X_{i, j}, X_{i, j+1}\right)$ changes to $\left(X_{i+1, j-1}, X_{i+1, j}, X_{i+1, j+1}\right)$ in $\alpha_{i} \vdash \alpha_{i+1}$.
There are only a finite number of valid assignments and $A_{i j}$ is obtained by applying OR (that is v) to these valid assignments. A valid assignment corresponds to one of the following four cases:

Case $A \quad(p, C, L) \in \delta(q, A)$
Case $B \quad(p, C, R) \in \delta(q, A)$
Case $C \quad \alpha_{i}=\alpha_{i+1}$ (when α_{i} and α_{i+1} contain an accepting state)
Case $D \quad j=0$ and $j=p(n)$
Case A Let D be some tape symbol of M. Then $X_{i, j-1} X_{i j} X_{i, j+1}=D q A$ and $X_{i+1 . j-1} X_{i+1 . j} X_{i+1 . j+1}=p D C$. This can be expressed by the boolean variable.

$$
y_{i, j-1}, D \wedge y_{i, j, q} \wedge y_{i, j+1,3} \wedge y_{i+1 . j-1 . p} \wedge y_{i+1 . j, D} \wedge y_{i+1 . j+1, C}
$$

Case B As in case A, let D be any tape symbol. In this case $X_{i, j-1} X_{i j} X_{i, j+1}$ $=D q A$ and $X_{i+1, j-1} X_{i+1, j} X_{i+i, j+1}=D C p$. The corresponding boolean expression is

$$
y_{i, j-1, D} \wedge y_{i . j, q} \wedge y_{i, j+1, A} \wedge y_{i+1 . j-1 . D} \wedge y_{i+1, j, C} \wedge y_{i+1, j+1, p}
$$

Case C In this case $X_{i, j-1} X_{i j} X_{i, j+1}=X_{i+1, j-1} X_{i+1, j} X_{i+1, j+1}$.
In this case the same tape symbol say D appears in $X_{i, j-1}$ and $X_{i+1, j-1}$; some other tape symbol say D^{\prime} in $X_{i, j+1}$ and $X_{i+1 . j+1} . X_{i, j}$ and $X_{i+1, j}$ contain the same state. One typical boolean expression is

$$
y_{i, j-1, z_{k}} \wedge y_{i, j, q} \wedge y_{i, j+1, z_{l}} \wedge y_{i+1, j-1, z_{k}} \wedge y_{i+1, j, q} \wedge y_{i+1, j+1, z_{i}}
$$

Case $D \quad$ When $j=0$. we have only $X_{i 0} X_{i 1}$ and $X_{i+1.0} X_{i+1,1}$. This is a special case of Case $B . j=p(n)$ corresponds to a special case of Case A.

So, $A_{i i}$ is defined as the OR of all valid terms obtained in Case A to Case D.
(iii) Definition of $\boldsymbol{N}_{\boldsymbol{i}}$ and \boldsymbol{N} we define N_{i} and N by

$$
\begin{aligned}
N_{i} & =\left(A_{i 0} \vee B_{i 0}\right) \wedge\left(A_{i 1} \vee B_{i 1}\right) \wedge \ldots \wedge\left(A_{i, p(m)} \vee B_{i, p(n)}\right) \\
N & =N_{0} \wedge N_{1} \wedge N_{2} \wedge \ldots \wedge N_{p(m-1}
\end{aligned}
$$

(iv) Time taken for writing N The time taken to write $B_{i j}$ is a constant depending on the number $|\Gamma|$ of tape symbols. (Actually the number of variables in $B_{i j}$ is $5|\Gamma|$). The time taken to write $A_{i j}$ depends only on the number of moves of M. As N_{i} is obtained by applying OR to $A_{i j} \wedge B_{i j}$, $0 \leq i \leq p(n)-1,0 \leq j \leq p(n)-1$, the time taken to write on N_{i} is $O(p(n))$. As N is obtained by applying \wedge to $N_{0}, N_{1}, \ldots . . N_{p n,-1}$. the time taken to write N is $p(n) O(p(n))=O\left(p^{2}(n)\right)$.

5. Completion of Proof

Let $E_{M, u}=S \wedge N \wedge F$.
We have seen that the time taken to write S and F are $O(p(n))$ and the time taken for N is $O\left(p^{2}(n)\right)$. Hence the time taken to write $E_{M, w}$ is $O\left(p^{2}(n)\right)$.

Also M accepts w if and only if $E_{M . w}$ is satisfiable.
Hence the deterministic multitape TM M_{1} can convert w to a boolean expression $E_{M, w}$ in $O\left(p^{2}(n)\right)$ time. An equivalent single tape TM takes $O\left(p^{+}(n)\right)$ time. This proves the Part II of the Cook's theorem, thus completing the proof of this theorem. I

12.6 OTHER NP-COMPLETE PROBLEMS

In the last section. we proved the $N P$-completeness of SAT. Actually it is difficuit to prove the NP-completeness of any problem. But after getting one $N P$-complete problem such as SAT, we can prove the $N P$-completeness of problem P^{\prime} by obtaining a polynomial reduction of SAT to P^{\prime}. The polynomial reduction of SAT to P^{\prime} is relatively easy. In this section we give a list of $N P$-complete problems without proving their $N P$-completeness. Many of the $N P$-complete problems are of practical interest.

1. CSAT-Given a boolean expression in CNF (conjunctive normal form-Definition 1.10), is it satisfiable?

We can prove that CSAT is NP-complete by proving that CSAT is in NP and getting a polynomial reduction from SAT to CSAT.
2. Hamiltonian circuit problem-Does G have a Hamiltonian circuit (i.e. a circuit passing through each edge of G exactly once)?
3. Travelling salesman problem (TSP)-Given n cities, the distance between them and a number D, does there exist a tour programme for a salesman to visit all the cities exactly once so that the distance travelled is at most D ?
4. Vertex cover problem-Given a graph G and a natural number k, does there exist a vertex cover for G with k vertices? (A subsets C of vertices of G is a vertex cover for G if each edge of G has an odd vertex in C.)
5. Knapsack problem-Given a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of nonnegative integers. and an integer K, does there exist a subset B of A such that

$$
\sum_{b_{i} \in B} b_{j}=K ?
$$

This list of $N P$-complete problems can be expanded by having a polynomial reduction of known $N P$-complete problems to the problems which are in NP and which are suspected to be NP-complete.

12.7 USE OF NP-COMPLETENESS

One practical use in discovering that problem is $N P$-complete is that it prevents us from wasting our time and energy over finding polynomial or easy algorithms for that problem.

Also we may not need the full generality of an $N P$-complete problem. Particular cases may be useful and they may admit polynomial algorithms. Also there may exist polynomial algorithms for getting an approximate optimal solution to a given $N P$-complete problem.

For example, the travelling salesman problem satisfying the triangular inequality for distances between cities (i.e. $d_{i j} \leq d_{i k}+d_{k j}$ for all i, j, k) has approximate polynomial algorithm such that the ratio of the error to the optimal values of total distance travelled is less than or equal to $1 / 2$.

12.8 QUANTUM COMPUTATION

In the earlier sections we discussed the complexity of algorithm and the dead end was the open problem $\mathbf{P}=\mathbf{N P}$. Also the class of $N P$-complete problems provided us with a class of problems. If we get a polynomial algorithm for solving one $N P$-complete problem we can get a polynomial algorithm for any other $N P$-complete problem.

In 1982. Richard Feynmann, a Nobel laurate in physics suggested that scientists should start thinking of building computers based on the principles of quantum mechanics. The subject of physics studies elementary objects and simple systems and the study becomes more intersting when things are larger and more complicated. Quantum computation and information based on the principles of Quantum Mechanics will provide tools to fill up the gulf between the small and the relatively complex systems in physics. In this section we provide a brief survey of quantum computation and information and its impact on complexity theory.

Quantum mechanics arose in the early 1920s, when classical physics could not explain everything even after adding ad hoc hypotheses. The rules of quantum mechanics were simple but looked counterintuitive, and even Albert Einstein reconciled himself with quantum mechanics only with a pinch of salt.

-A. Einstein

12.8.1 Quantum Computers

We know that a bit (a 0 or a 1) is the fundamental concept of classical computation and information. Also a classical computer is built from an electronic circuit containing wires and logical gates. Let us study quantum bits and quantum circuits which are analogous to bits and (classical) circuits.

A quantum bit, or simply qubit can be described mathematically as

$$
|\psi\rangle=\alpha|0\rangle+\beta|0\rangle
$$

The qubit can be explained as follows. A classical bit has two states, a 0 and a 1. Two possible states for a qubit are the states $|0\rangle$ and $|1\rangle$. (The notation |.) is due to Dirac.) Unlike a classical bit, a qubit can be in infinite number of states other than $|0\rangle$ and $|1\rangle$. It can be in a state $|\psi\rangle=\alpha|0\rangle+\beta|0\rangle$, where α and β are complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$. The 0 and 1 are called the computational basis states and $|\psi\rangle$ is called a superposition. We can call $|\psi\rangle=\alpha|0\rangle+\beta|0\rangle$ a quantum state.

In the classical case, we can observe it as a 0 or a 1 . But it is not possible to determine the quantum state on observation. When we measure/observe a qubit, we get either the state $|0\rangle$ with probability $|\alpha|^{2}$ or the state $|1\rangle$ with probability $|\beta|^{-}$.

This is difficult to visualize, using our 'classical thinking' but this is the source of power of the quantum computation.

Multiple qubits can be defined in a similar way. For example, a two-qubit system has four computational basis states, $|00\rangle,|01\rangle,|10\rangle$ and $|11\rangle$ and quantum states $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{i 0}|10\rangle+\alpha_{11}|11\rangle$ with $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$ $+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1$.

Now we define the qubit gates. The classical NOT gate interchanges 0 and 1. In the case of the qubit the NOT gate, $\alpha|0\rangle+\beta|1\rangle$, is changed to $\alpha|1\rangle+\beta|0\rangle$.

The action of the qubit NOT gate is linear on two-dimensional complex vector spaces. So the qubit NOT gate can be described by

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

The matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a unitary matrix. (A matrix A is unitary if $A \operatorname{adj} A=I$.)
We have seen earlier that $\{N O R\}$ is functionally complete (refer to Exercises of Chapter 1). The qubit gate corresponding to NOR is the cuntrolled-NOT or CNOT gate. It can be described by

$$
|A, B\rangle \rightarrow|A . B \oplus A\rangle
$$

where \oplus denotes addition modulo 2. The action on computational basis is $|00\rangle \rightarrow|00\rangle,|01\rangle \rightarrow|01\rangle .|10\rangle \rightarrow|11\rangle,|11\rangle \rightarrow|10\rangle$. It can be described by the following 4×4 unitary matrix:

$$
\cup_{C N}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Now, we are in a position to define a quantum computer:
A quantum computer is a system built from quantum circuits, containing wires and elementary quantum gates, to carry out manipulation of quantum information.

12.8.2 Church-Turing Thesis

Since 1970s many techniques for controlling the single quantum systems have been developed but with only modest success. But an experimental prototype for performing quantum cryptography, even at the initial level may be useful for some real-world applications.

Recall the Church-Turing thesis which asserts that any algorithm that can be performed on any computing machine can be performed on a Turing machine as well.

Miniaturization of chips has increased the power of the computer. The growth of computer power is now described by Moore's law. which states that the computer power will double for constant cost once in every two years. Now it is felt that a limit to this doubling power will be reached in two or three decades, since the quantum effects will begin to interfere in the functioning of electronic devices as they are made smaller and smaller. So efforts are on to provide a theory of quantum computation which will compensate for the possible failure of the Moore's law.

As an algorithm requiring polynomial time was considered as an efficient algorithm. a strengthened version of the Church-Turing thesis was enunciated.

Any algorithmic process can be simulated efficiently by a Turing machine. But a challenge to the strong Church-Turing thesis arose from analog computation. Certain types of analog computers solved some problems efficiently whereas these problems had no efficient solution on a Turing machine. But when the presence of noise was taken into account, the power of the analog computers disappeared.

In mid-1970s. Robert Soloyay and Volker Strassen gave a randomized algorithm for testing the primality of a number. (A deterministic polynomial algorithm was given by Manindra Agrawal. Neeraj Kayal and Nitein Saxena of IIT Kanpur in 2003.) This led to the modification of the Church thesis.

Strong Church-Turing Thesis

Any algorithmic process can be simulated efficiently using a nondeterministic Turing machine.

In 1985, David Deutsch tried to build computing devices using quantum mechanics.

Computers are physical objects, and computations are physical processes. What computers can or cannot compute is determined by the law of physics alone, and not by pure mathematics
--David Deutsch
But it is not known whether Deutsch's notion of universal quantum computer will efficiently simulate any physical process. In 1994, Peter Shor proved that finding the prime factors of a composite number and the discrete logarithm problem (i.e. finding the positive value of s such that $b=a^{s}$ for the given positive integers a and b) could be solved efficiently by a quantum computer. This may be a pointer to proving that quantum computers are more efficient than Turing machines (and classical computers).

12.8.3 Power of Quantum Computation

In classical complexity theory, the classes \mathbf{P} and $\mathbf{N P}$ play a major role, but there are other classes of interest. Some of them are given below:
L-The class of all decision problems which may be decided by a TM running in logarithmic space.
PSPACE - The class of decision problems which may be decided on a Turing machine using a polynomial number of working bits, with no limitation on the amount of time that may be used by the machine.
EXP - The class of all decision problems which may be decided by a TM in exponential time, that is, $O\left(2^{p k}\right), k$ being a constant.

The hierarchy of these classes is given by

$$
\mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P}
$$

The inclusions are strongly believed to be strict but none of them has been proved so far in classical complexity theory.

We also have two more classes.
BPP - The class of problems that can be solved using the randomized algorithm in polynomial time, if a bounded probability of error (say $1 / 10$) is allowed in the solution of the problem.
BOP-The class of all computational problems which can be solved efficiently (in polynomial time) on a quantum computer where a bounded probability of error is allowed. It is easy to see that $\mathbf{B P P} \subseteq \mathbf{B Q P}$. The class BQP lies somewhere between \mathbf{P} and PSPACE, but where exactly it lies with respect to $\mathbf{P}, \mathbf{N P}$ and PSPACE is not known.

It is easy to give non-constructive proofs that many problems are in EXP, but it seems very hard to prove that a particular class of problems is in EXP (the possibility of a polynomial algorithm of these problems cannot be ruled out).

As far as quantum computation is concerned. two important classes are considered. One is BQP. which is analogous to BPP. The other is NPI ($\mathbf{N P}$ intermediate) defined by

NPI - The class of problems which are neither in \mathbf{P} nor $N P$-complete
Once again, no problem is shown to be in NPI. In that case $\mathbf{P} \neq \mathbf{N P}$ is established.

Two problems are likely to be in NPI, one being the factoring problem (i.e. given a composite number n to find its prime factors) and the other being the graph isomorphism problems (i.e. to find whether the given undirected graphs with the same set of vertices are isomorphic).

A quantum algorithm for factoring has been discovered. Peter Shor announced a quantum order-finding algorithm and proved that factoring could be reduced to order-finding. This has motivated a search for a fast quantum algorithm for other problems suspected to be in NPI.

Grover developed an algorithm called the quantum search algorithm. A loose formulation of this means that a quantum computer can search a particular item in a list of N items in $O(\sqrt{N})$ time and no further improvement is possible. If it were $O(\log N)$. then a quantum computer can solve an $N P$ complete problem in an efficient way. Based on this, some researchers feel that the class BQP cannot contain the class of $N P$-complete problems.

If it is possible to find some structure in the class of NP-complete problems then a more efficient algorithm may become possible. This may result in finding efficient algorithms for $N P$-complete problems. If it is possible to prove that quantum computers are strictly more powerful than classical computers, then it will follow that \mathbf{P} is properly contained in PSPACE. Once again. there is no proof so far for $\mathbf{P} \underset{\neq}{ }$ PSPACE.

12.8.4 CONCLUSION

Deutsch proposed the first blueprint of a quantum computer. As a single qubit can store two states 0 and 1 in quantum superposition, adding more qubits to the memory register will increase the storage capacity exponentially. When this happens. exponential complexity will reduce to polynomial complexity. Peter Shor's algorithm led to the hope that quantum computer may work efficiently on problems of exponential complexity.

But problems arise at the implementation stage. When more interacting qubits are involved in a circuit, the surrounding environment is affected by those interactions. It is difficult to prevent them. Also quantum computation will spread outside the computational unit and will irreversibly dissipate useful
information to the environment. This process is called decoherence. The problem is to make qubits interact with themselves but not with the environment. Some physicists are pessimistic and conclude that the efforts cannot go beyond a few simple experiments involving only a few qubits.

But some researchers are optimistic and believe that efforts to control decoherence will bear fruit in a few years rather than decades.

It remains a fact that optimism, however overstretched, makes things happen. The proof of Fermat's last theorem and the four colour problem are examples of these. Thomas Watson, the Chairman of IBM, predicted in 1943, "I think there is a world market for maybe five computers". But the growth of computers has very much surpassed his prediction.

Charles Babbage (1791-1871) conceived of most of the essential elements of a modem computer in his analytical engine. But there was not sufficient technology available to implement his ideas. In 1930s, Alan Turing and John von Neumann thought of a theoretical model. These developments in 'Software' were matched by 'Hardware' support, resulting in the first computer in the early 1950s. Then. the microprocessors in 1970s led to the design of smaller computers with more capacity and memory.

But computer scientists realized that hardware development will improve the power of a computer only by a multiplicative constant factor. The study of \mathbf{P} and NP led to developing approximate polynomial algorithms to $N P$-complete problems. Once again the importance of software arose. Now the quantum computers may provide the impetus to the development of computers from the hardware side.

The problem of developing quantum computers seems to be very hard but the history of sciences indicates that quantum computers may rule the universe in a few decades.

12.9 SUPPLEMENTARY EXAMPLES

EXAMPLE 12.4

Suppose that there is an $N P$-complete problem P that has a deterministic solution taking $O\left(n^{\log }{ }^{n}\right)$ time (here $\log n$ denotes $\left.\log _{2} n\right)$. What can you say about the running time of any other $N P$-complete problem Q ?

Solution

As $Q \in \mathbf{N P}$, there exists a polynomial $p(n)$ such that the time for reduction of Q to P is atmost $p(n)$. So the running time for Q is $O\left(p(n)+p(n)^{\log p(n)}\right)$. $\Delta \mathrm{s} p(n)^{\log p(n)}$ dominates $p(n)$, we can omit $p(n)$ in $p(n)+p(n)^{\log p(n)}$. If the degree of $p(n)$ is k, then $p(n)=O\left(n^{k}\right)$. So we can replace $p(n)$ by n^{k}. So $p(n)^{\left.\log p^{\prime n}\right)}=O\left(\left(n^{k}\right)^{k \log n}\right)=O\left(n^{k-\log n}\right)$. Hence the running time of Q is $O^{(c \log n)}$ for some constant c.

EXAMPLE 12.5

Show that \mathbf{P} is closed under (a) union, (b) concatenation, and (c) complementation.

Solution

Let L_{1} and L_{2} be two languages in \mathbf{P}. Let w be an input of length n.
(a) To test whether $w \in L_{1} \cup L_{2}$, we test whether $w \in L_{1}$. This takes polynomial time $p(n)$. If $w \notin L_{1}$, test another $w \in L_{2}$. This takes polynomial time $q(n)$. The total time taken for testing whether $w \in L_{1} \cup L_{2}$ is $p(n)+q(n)$, which is also a polynomial in n. Hence $L_{1} \cup L_{2} \in \mathbf{P}$.
(b) Let $w=x_{1} x_{2} \ldots x_{n}$. For each $k, 1 \leq k \leq n-1$, test whether $x_{1} x_{2} \ldots x_{k}$ $\in L_{1}$ and $x_{k+1} x_{k+2} \ldots x_{n} \in L_{2}$. If this happens, $w \in L_{1} L_{2}$. If the test fails for all $k, w \notin L_{1} L_{2}$. The time taken for this test for a particular k is $p(n)+q(n)$, where $p(n)$ and $q(n)$ are polynomials in n. Hence the total time for testing for all k 's is at most n times the polynomial $p(n)+q(n)$. As $n(p n)+q(n)$ is a polynomial, $L_{1} L_{2} \in \mathbf{P}$.
(c) Let M be the polynomial time TM for L_{1}. We construct a new TM M_{1} as follows:

1. Each accepting state of M is a nonaccepting state of M_{1} from which there are no further moves. So if M accepts w, M_{1} on reading w will halt without accepting.
2. Let q_{f} be a new state, which is the accepting state of M_{1}. If $\delta(q, a)$ is not defined in M, define $\delta_{M_{1}}(q, a)=\left(q_{p} a, R\right)$. So, $w \notin L$ if and only if M accepts w and halts. Also M_{1} is a polynomial-time TM. Hence $L_{1}^{c} \in \mathbf{P}$.

EXAMPLE 12.6

Show that every language accepted by a standard $\mathrm{TM} M$ is also accepted by a TM M_{1} with the following conditions:

1. M_{1} 's head never moves to the left of its initial position.
2. M_{1} will never write a blank.

Solution

It is easy to implement Condition 2 on the new machine. For the new TM, create a new blank b^{\prime}. If the blank is written by M, the new Turing machine writes b^{\prime}. The move of this new TM on seeing b^{\prime} is the same as the move of M for b. The new TM satisfies the Condition 2. Denote the modified TM by M itself. Define the modified M by

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{2}, b, F\right)
$$

Define a new TM M_{1} as

$$
M_{1}=\left(Q_{1}, \Sigma \times\{b\}, \Gamma_{1}, \delta_{1}, q_{0},[b, b], F_{1}\right)
$$

where

$$
\begin{aligned}
& Q_{1}=\left\{q_{0}, q_{1}\right\} \cup(Q \times\{U, L\}) \\
& \Gamma_{1}=(\Gamma \times \Gamma) \cup\{[x, *] \mid x \in \Gamma\}
\end{aligned}
$$

q_{0} and q_{1} are used to initiate the initial move of M. The two-way infinite tape of M is divided into two tracks as in Table 12.4. Here * is the marker for the leftmost cell of the lower track. The state $[q, U]$ denotes that M_{1} simulates M on the upper track. $[q, L]$ dentoes that M_{1} simulates M on the lower track. If M moves to the left of the cell with $*, M_{1}$ moves to the right of the lower track.

TABLE 12.4 Folded Two-way Tape

X_{0}	X_{1}	X_{2}	.	\cdots	
$*$	X_{-1}	X_{-2}	X_{-3}	.	\cdots

We can define F_{1} of M_{1} by

$$
F_{1}=F \times\{U, L\}
$$

We can describe δ as follows:

1. $\delta_{1}\left(q_{0},[a, b]\right)=\left(q_{1},[a, *], R\right)$

$$
\delta\left(q_{1},[X, b]\right)=\left(\left[q_{2}, U\right],[X, b], L\right)
$$

By Rule $1, M_{1}$ marks the leftmost cell in the lower track with $*$ and initiates the initial move of M.
2. If $\delta(q, X)=(p, Y, D)$ and $Z \in \Gamma$. then:
(i) $\delta_{1}([q, U],[X, Z])=([p, U],[Y, Z], D)$ and
(ii) $\delta_{1}([q, L],[Z, X])=([p, L],[Z, Y], \bar{D})$
where $\bar{D}=L$ if $D=R$ and $\bar{D}=R$ if $D=L$.
By Rule 2, M_{1} simulates the moves of M on the appropriate track. In (i) the action is on the upper track and Z on the lower track is not changed. In (ii) the action is on the lower track and hence the movement is in the opposite direction \bar{D}; the symbol in the upper track is not changed.
3. If $\delta(q, X)=(p, Y, R)$ then

$$
\delta_{1}([q, L],[X, *])=\delta_{1}([q, U],[X, *])=([p, U],[Y, *], R)
$$

When M_{1} see * in the lower track, M moves right and simulates M on the upper track.
4. If $\delta(q, X)=(p, Y, L)$, then

$$
\delta_{1}([q, L],[X, *])=\delta_{1}([q, U],[X, *])=([p, L] .[Y, *], R)
$$

When M_{1} sees * in the lower track and M 's movement is to the left of the cell of the two-way tape corresponding to the * cell in the lower track. the M s movement is to X_{-1} and the M_{1} 's movement is also to X_{-1} but towards the right. As the tape of M is folded on the
cell with *. the movement of M to the left of the * cell is equivalent to the movement of M_{1} to the right.
M reaches q in F if and only if M_{1} reaches $[q, L]$ or $[q, R]$. Hence $T(M)=T\left(M_{1}\right)$.

EXAMPLE 12.7

We can define the 2SAT problem as the satisfiability problem for boolean expressions written as \wedge of clauses having two or fewer variables. Show that 2 SAT is in \mathbf{P}.

Solution

Let the boolean expression E be an instance of the 2 SAT problem having n variables.

Step 1 Let E have clauses consisting of a single variable (x_{i} or \bar{x}_{i}). If (x_{i}) appears as a clause in E, then x_{i} has to be assigned the truth value T in order to make E satisfiable. Assign the truth value T to x_{i}. Once x_{i} has the truth value T, then $\left(x_{i} \vee x_{j}\right)$ has the truth value T irrespective of the truth value of x_{j} (Note that x_{j} can also be $\left.\bar{x}_{j}\right)$. So $\left(x_{i} \vee x_{j}\right)$ or $\left(x_{i} \vee \bar{x}_{j}\right)$ can be deleted from E. If E contains $\left(\bar{x}_{i} \vee x_{j}\right)$ as a clause, then x_{j} should be assigned the truth value T in order to make E satisfiable. Hence we replace $\left(\bar{x}_{i} \vee x_{j}\right)$ by x_{j} in E so that x_{j} should be assigned the truth value T is order to make E satisfiable. Hence we replace $\left(\bar{x}_{i} \vee x_{j}\right)$ by x_{j} in E so that x_{j} can be assigned the truth value T later. If we repeat this process of eliminating clauses with a single variable (or its negation), we end up in two cases.
Case 1 We end up with $\left(x_{i}\right) \wedge\left(\bar{x}_{i}\right)$. In this case E is not satisfiable for any assignment of truth values. We stop.
Case 2 In this case all clauses of E have two variables. (A typical clause is $x_{i} \vee x_{j}$ or $x_{i} \vee \bar{x}_{j}$)
Step 2 We have the apply step 2 only in Case 2 of step 1. We have already assigned truth values for variables not appearing in the reduced expression E. Choose one of the remaining variables appearing in E. If we have chosen x_{i}, assign the truth value T to x_{i}. Delete $x_{i} \vee x_{j}$ or $x_{i} \vee \bar{x}_{j}$ from E. If $\bar{x}_{i} \vee x_{j}$ appears in E, delete \bar{x}_{i} to get $\left(x_{j}\right)$. Repeat step 1 for clauses consisting of a single variable. If Case 1 occurs, assign the truth value F for x_{i} and proceed with E that we had before applying step 1.

Proceeding with these iterations, we end up either in unsatisfiability of E or satisfiability of E.

Step 2 consists of repetition of step 1 at most n times and step 1 requires $O(n)$ basic steps.

Let n be the number of clauses in E. Step 1 consists of deleting $\left(x_{i} \vee x_{j}\right)$ from E or deleting \bar{x}_{i} from $\left(\bar{x}_{i} \vee x_{j}\right)$. This is done at most n times for each clause. In step 2. step 1 is applied at most two times, one for x_{i} and the second for \bar{x}_{i}. As the number of variables appearing in E is less than or equal to n, we delete $\left(x_{i} \vee x_{j}\right)$ or delete \bar{x}_{i} from $\left(\bar{x}_{i} \vee x_{j}\right)$ at most $O(n)$ times while applying steps 1 and 2 repeatedly. Hence 2 SAT is in \mathbf{P}.

SELF-TEST

Choose the correct answer to Questions 1-7:

1. If $f(n)=2 n^{3}+3$ and $g(n)=10000 n^{2}+1000$, then:
(a) the growth rate of g is greater than that of f.
(b) the growth rate of f is greater than that of g.
(c) the growth rate of f is equal to that of g.
(d) none of these.
2. If $f(n)=n^{3}+4 n+7$ and $g(n)=1000 n^{2}+10000$, then $f(n)+g(n)$ is
(a) $O\left(n^{2}\right)$
(b) $O(n)$
(c) $O\left(n^{3}\right)$
(d) $O\left(n^{5}\right)$
3. If $f(n)=O\left(n^{k}\right)$ and $g(n)=O\left(n^{l}\right)$, then $f(n) g(n)$ is
(a) $\max \{k, l\}$
(b) $k+l$
(c) $k l$
(d) none of these.
4. The gcd of (1024. 28) is
(a) 2
(b) 4
(c) 7
(d) 14
5. $[10.7\rceil+\lceil 9.9]$ is equal to
(a) 19
(b) 20
(c) 18
(d) none of these.
6. $\log _{2} 1024$ is equal to
(a) 8
(b) 9
(c) 10
(d) none of these.
7. The truth value of $f(x, y, z)=(x \vee \neg y) \wedge(\neg x \vee y) \wedge z$ is T if x, y, z have the truth values
(a) T, T, T
(b) F, F, F
(c) T, F, F
(d) F, T, F

State whether the following Statements $8 \mathbf{- 1 5}$ are true or false.

8. If the truth values of x, y, z are T, F, F respectively. then the truth value of $f(x, y, z)=x \wedge \neg(y \vee z)$ is T.
9. The complexity of a k-tape TM and an equivalent standard TM are the same.
10. If the time complexity of a standard TM is polynomial, then the time complexity of an equivalent k-tape TM is exponential.
11. If the time complexity of a standard TM is polynomial, then the time complexity of an equivalent NTM is exponential.
12. $f(x, y, z)=(x \vee y \vee z) \wedge(\neg x \wedge \neg y \wedge \neg z)$ is satisfiable.
13. $f(x, y, z)=(x \vee y) \wedge(-x \wedge \neg y)$ is satisfiable.
14. If f and g are satisfiable expressions, then $f \vee g$ is satisfiable.
15. If f and g are satisfiable expressions, then $f \wedge g$ is satisfiable.

EXERCISES

12.1 If $f(n)=O\left(n^{h}\right)$ and $g(n)=O\left(n^{l}\right)$, then show that $f(n)+g(n)=O\left(n^{t}\right)$ where $t=\max \{k, l\}$ and $f(n) g(n)=O\left(n^{k+l}\right)$.
12.2 Evaluate the growth rates of (i) $f(n)=2 n^{2}$. (ii) $g(n)=10 n^{2}+7 n \log n+$ $\log n$. (iii) $h(n)=n^{2} \log n+2 n \log n+7 n+3$ and compare them.
12.3 Use the O-notation to estimate (i) the sum of squares of first n natural numbers. (ii) the sum of cubes of first n natural numbers, (iii) the sum of the first n terms of a geometric progression whose first term is a and the common ratio is r, and (iv) the sum of the first n terms of the arithmetic progression whose first term is a and the common difference is d.
12.4 Show that $f(n)=3 n^{2} \log _{2} n+4 n \log _{3} n+5 \log _{2} \log _{2} n+\log n+100$ dominates n^{2} but is dominated by n^{3}.
12.5 Find the gcd (294. 15) using the Euclid's algorithm.
12.6 Show that there are five truth assignments for (P, Q, R) satisfying $P \vee(\neg P \wedge \neg Q \wedge R)$.
12.7 Find whether $(P \wedge Q \wedge R) \wedge \neg Q$ is satisfiable.
12.8 Is $f(x, y, z, w)=(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$ satisfiable?
12.9 The set of all languages whose complements are in NP is called $\mathbf{C O}-\mathbf{N P}$. Prove that $\mathbf{N P}=\mathbf{C O}-\mathbf{N P}$ if and only if there is some $N P$-complete problem whose complement is in NP.
12.10 Prove that a boolean expression E is a tautology if and only if $\neg E$ is unsatisfiable (refer to Chapter 1 for the definition of tautology).

