Furure Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Pa

Or
Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

€

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

THOMAS H . CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

CLIFFORD STEIN

INTRODUCTION TO

THIRD ELCITION

Contents

Preface XIiii

I Foundations

Introduction 3

1 The Role of Algorithms in Computing 5
1.1 Algorithms 5
1.2 Algorithms as a technology 7/

2 Getting Started 16
2.1 Insertion sort 16
2.2 Analyzing algorithms 23
2.3 Designing algorithms 29

3 Growth of Functions 43
3.1 Asymptotic notation 43
3.2 Standard notations and common functions 53

4 Divide-and-Conquer 65
4.1 The maximum-subarray problem 68
4.2 Strassen’s algorithm for matrix multiplication 75
4.3 The substitution method for solving recurrences 83
4.4 The recursion-tree method for solving recurrences 88
4.5 The master method for solving recurrences 93
4.6 Proof of the master theorem 97

5 Probabilistic Analysis and Randomized Algorithms 114
5.1 The hiring problem /74
5.2 Indicator random variables 778
5.3 Randomized algorithms /22
* 5.4 Probabilistic analysis and further uses of indicator random variables
130

heé¢eps:/hemanthrajhemu.github.io

Contents vii

12 Binary Search Trees 286
12.1 What is a binary search tree? 286
12.2 Querying a binary search tree 289
12.3 Insertion and deletion 294
* 12.4 Randomly built binary search trees 299

13 Red-Black Trees 308
13.1 Properties of red-black trees 308
13.2 Rotations 312
13.3 Insertion 315
13.4 Deletion 323

14 Augmenting Data Structures 339
14.1 Dynamic order statistics 339
14.2 How to augment a data structure 345
14.3 Interval trees 348

1V Advanced Design and Analysis Techniques

Introduction 357

15 Dynamic Programming 359
15.1 Rod cutting 360
15.2 Matrix-chain multiplication 370
15.3 Elements of dynamic programming 378
15.4 Longest common subsequence 390
15.5 Optimal binary search trees 397

16 Greedy Algorithms 414
16.1 An activity-selection problem 415
16.2 Elements of the greedy strategy 423
16.3 Huffman codes 428
* 16.4 Matroids and greedy methods 437
* 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451
17.1 Aggregate analysis 452
17.2 The accounting method 456
17.3 The potential method 459
17.4 Dynamic tables 463

heé¢eps:/hemanthrajhemu.github.io

X Contents

30 Polynomials and the FFT 898
30.1 Representing polynomials 900
30.2 The DFT and FFT 906
30.3 Efficient FFT implementations 915

31 Number-Theoretic Algorithms 926
31.1 Elementary number-theoretic notions 927
31.2 Greatest common divisor 933
31.3 Modular arithmetic 939
31.4 Solving modular linear equations 946
31.5 The Chinese remainder theorem 950
31.6 Powers of an element 954
31.7 The RSA public-key cryptosystem 958
* 31.8 Primality testing 965
* 31.9 Integer factorization 975

32 String Matching 985
32.1 The naive string-matching algorithm 988
32.2 The Rabin-Karp algorithm 990
32.3 String matching with finite automata 995
* 324 The Knuth-Morris-Pratt algorithm 7002

33 Computational Geometry 1014
33.1 Line-segment properties 1015
33.2 Determining whether any pair of segments intersects /021
33.3 Finding the convex hull 7029
33.4 Finding the closest pair of points /039

34 NP-Completeness 1048
34.1 Polynomial time 7053
34.2 Polynomial-time verification 1061/
34.3 NP-completeness and reducibility 1067
34.4 NP-completeness proofs 1078
34.5 NP-complete problems /086

35 Approximation Algorithms 1106
35.1 The vertex-cover problem /08
35.2 The traveling-salesman problem /711
35.3 The set-covering problem /17
35.4 Randomization and linear programming /723
35.5 The subset-sum problem /728

heé¢eps:/hemanthrajhemu.github.io

2 Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that we introduce in Chapters 3 and 4.
(It also contains several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to you if
you have done computer programming, and we use it to show how we shall specify
our algorithms. Having specified the insertion sort algorithm, we then argue that it
correctly sorts, and we analyze its running time. The analysis introduces a notation
that focuses on how that time increases with the number of items to be sorted.
Following our discussion of insertion sort, we introduce the divide-and-conquer
approach to the design of algorithms and use it to develop an algorithm called
merge sort. We end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-

ter 1:
Input: A sequence of n numbers (a;,d,,....a,).
Output: A permutation (reordering) (a}, a5, ..., a,) of the input sequence such

li i /
thata| <a, <--- <a,,.

The numbers that we wish to sort are also known as the keys. Although conceptu-
ally we are sorting a sequence, the input comes to us in the form of an array with n
elements.

In this book, we shall typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, C++, Java, Python, or Pascal. If
you have been introduced to any of these languages, you should have little trouble

heé¢eps:/hemanthrajhemu.github.io

2.1 Insertion sort 17

Figure 2.1 Sorting a hand of cards using insertion sort.

reading our algorithms. What separates pseudocode from “real” code is that in
pseudocode, we employ whatever expressive method is most clear and concise to
specify a given algorithm. Sometimes, the clearest method is English, so do not
be surprised if you come across an English phrase or sentence embedded within
a section of “real” code. Another difference between pseudocode and real code
is that pseudocode is not typically concerned with issues of software engineering.
Issues of data abstraction, modularity, and error handling are often ignored in order
to convey the essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

We present our pseudocode for insertion sort as a procedure called INSERTION-
SORT, which takes as a parameter an array A[l..n] containing a sequence of
length 7 that is to be sorted. (In the code, the number 7 of elements in A4 is denoted
by A.length.) The algorithm sorts the input numbers in place: it rearranges the
numbers within the array A, with at most a constant number of them stored outside
the array at any time. The input array A contains the sorted output sequence when
the INSERTION-SORT procedure is finished.

heé¢eps:/hemanthrajhemu.github.io

18 Chapter 2 Getting Started

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
@ [5PH4 113 (b)]2|@6|1|3\ ©)]2|4|5g1|3\

\4)J |

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
@ [2]4]5 1 [E (e) 45 3 (f)]1|2|3|4|5|6\

Figure 2.2 The operation of INSERTION-SORT on the array A = (5,2, 4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)—(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[;], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT(A)

1 for j = 2to A.length

2 key = AlJ]

3 // Tnsert A[j] into the sorted sequence A[1..j — 1].
4 i=j—1

5 while ; > 0 and A[i] > key

6 Ali + 1] = A]i]

7 i=i-1
8 Ali + 1] = key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for A = (5, 2, 4, 6, 1, 3). The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j, the subarray consisting
of elements A[l..j — 1] constitutes the currently sorted hand, and the remaining
subarray A[j + 1..n] corresponds to the pile of cards still on the table. In fact,
elements A[l..j — 1] are the elements originally in positions 1 through j — 1, but
now in sorted order. We state these properties of A[1..j — 1] formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1-8, the subarray
A[l..j —1] consists of the elements originally in A[1.. j — 1], but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

heé¢eps:/hemanthrajhemu.github.io

2.1 Insertion sort 19

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. (Of course, we are free to use established facts other than the loop
invariant itself to prove that the loop invariant remains true before each iteration.)
Note the similarity to mathematical induction, where to prove that a property holds,
you prove a base case and an inductive step. Here, showing that the invariant holds
before the first iteration corresponds to the base case, and showing that the invariant
holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. Typically, we use the loop invariant along with the
condition that caused the loop to terminate. The termination property differs from
how we usually use mathematical induction, in which we apply the inductive step
infinitely; here, we stop the “induction” when the loop terminates.

Let us see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before the first
loop iteration, when j = 2. The subarray A[l..j — 1], therefore, consists
of just the single element A[1], which is in fact the original element in A[1].
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the for loop works by
moving A[j — 1], A[j — 2], A[j — 3], and so on by one position to the right
until it finds the proper position for A[j] (lines 4-7), at which point it inserts
the value of A[j] (line 8). The subarray A[l .. j] then consists of the elements
originally in A[1.. j], but in sorted order. Incrementing j for the next iteration
of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and
show a loop invariant for the while loop of lines 5-7. At this point, however,

I'When the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j < A.length.

heé¢eps:/hemanthrajhemu.github.io

20 Chapter 2 Getting Started

we prefer not to get bogged down in such formalism, and so we rely on our
informal analysis to show that the second property holds for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. The
condition causing the for loop to terminate is that j > A.length = n. Because
each loop iteration increases j by 1, we must have j = n 4 1 at that time.
Substituting n 4 1 for j in the wording of loop invariant, we have that the
subarray A[l..n] consists of the elements originally in A[1..n], but in sorted
order. Observing that the subarray A[l .. n] is the entire array, we conclude that
the entire array is sorted. Hence, the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this
chapter and in other chapters as well.

Pseudocode conventions

We use the following conventions in our pseudocode.

* Indentation indicates block structure. For example, the body of the for loop that
begins on line 1 consists of lines 2—8, and the body of the while loop that begins
on line 5 contains lines 67 but not line 8. Our indentation style applies to
if-else statements” as well. Using indentation instead of conventional indicators
of block structure, such as begin and end statements, greatly reduces clutter
while preserving, or even enhancing, clarity.’

* The looping constructs while, for, and repeat-until and the if-else conditional
construct have interpretations similar to those in C, C++, Java, Python, and
Pascal.* In this book, the loop counter retains its value after exiting the loop,
unlike some situations that arise in C++, Java, and Pascal. Thus, immediately
after a for loop, the loop counter’s value is the value that first exceeded the for
loop bound. We used this property in our correctness argument for insertion
sort. The for loop header in line 1 is for j = 2 to A.length, and so when
this loop terminates, j = A.length 4+ 1 (or, equivalently, j = n + 1, since
n = A.length). We use the keyword to when a for loop increments its loop

2In an if-else statement, we indent else at the same level as its matching if. Although we omit the
keyword then, we occasionally refer to the portion executed when the test following if is true as a
then clause. For multiway tests, we use elseif for tests after the first one.

3Each pseudocode procedure in this book appears on one page so that you will not have to discern
levels of indentation in code that is split across pages.

4Most block-structured languages have equivalent constructs, though the exact syntax may differ.
Python lacks repeat-until loops, and its for loops operate a little differently from the for loops in
this book.

heé¢eps:/hemanthrajhemu.github.io

2.1 Insertion sort 21

counter in each iteration, and we use the keyword downto when a for loop
decrements its loop counter. When the loop counter changes by an amount
greater than 1, the amount of change follows the optional keyword by.

* The symbol “//” indicates that the remainder of the line is a comment.

* A multiple assignment of the formi = j = e assigns to both variables i and j
the value of expression e; it should be treated as equivalent to the assignment
j = e followed by the assignmenti = j.

* Variables (such as i, j, and key) are local to the given procedure. We shall not
use global variables without explicit indication.

* We access array elements by specifying the array name followed by the in-
dex in square brackets. For example, A[i] indicates the ith element of the
array A. The notation ““..” is used to indicate a range of values within an ar-
ray. Thus, A[l.. j] indicates the subarray of A consisting of the j elements

A[l], A[2], ..., ALJ]

* We typically organize compound data into objects, which are composed of
attributes. We access a particular attribute using the syntax found in many
object-oriented programming languages: the object name, followed by a dot,
followed by the attribute name. For example, we treat an array as an object
with the attribute length indicating how many elements it contains. To specify
the number of elements in an array A, we write A.length.

We treat a variable representing an array or object as a pointer to the data rep-
resenting the array or object. For all attributes f of an object x, setting y = x
causes y.f to equal x.f. Moreover, if we now set x.f = 3, then afterward not
only does x.f equal 3, but y.f equals 3 as well. In other words, x and y point
to the same object after the assignment y = x.

Our attribute notation can “cascade.” For example, suppose that the attribute f
is itself a pointer to some type of object that has an attribute g. Then the notation
x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned
y = x.f, then x.f.g is the same as y.g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

* We pass parameters to a procedure by value: the called procedure receives its
own copy of the parameters, and if it assigns a value to a parameter, the change
is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For
example, if x is a parameter of a called procedure, the assignment x = y within
the called procedure is not visible to the calling procedure. The assignment
x.f = 3, however, is visible. Similarly, arrays are passed by pointer, so that

heé¢eps:/hemanthrajhemu.github.io

22 Chapter 2 Getting Started

a pointer to the array is passed, rather than the entire array, and changes to
individual array elements are visible to the calling procedure.

* A return statement immediately transfers control back to the point of call in
the calling procedure. Most return statements also take a value to pass back to
the caller. Our pseudocode differs from many programming languages in that
we allow multiple values to be returned in a single return statement.

* The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x. If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we eval-
uate the expression y only if x evaluates to FALSE. Short-circuiting operators
allow us to write boolean expressions such as “x # NIL and x.f = y” without
worrying about what happens when we try to evaluate x.f when x is NIL.

e The keyword error indicates that an error occurred because conditions were
wrong for the procedure to have been called. The calling procedure is respon-
sible for handling the error, and so we do not specify what action to take.

Exercises

2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A = (31,41,59,26,41, 58).

2.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of non-
decreasing order.

2.1-3
Consider the searching problem:
Input: A sequence of n numbers A = (a;,ds,,...,a,) and a value v.

Output: An index i such that v = A[i] or the special value NIL if v does not
appear in A.

Write pseudocode for linear search, which scans through the sequence, looking
for v. Using a loop invariant, prove that your algorithm is correct. Make sure that
your loop invariant fulfills the three necessary properties.

2.1-4
Consider the problem of adding two n-bit binary integers, stored in two n-element
arrays A and B. The sum of the two integers should be stored in binary form in

heé¢eps:/hemanthrajhemu.github.io

2.2 Analyzing algorithms 23

an (n + 1)-element array C. State the problem formally and write pseudocode for
adding the two integers.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. Occasionally, resources such as memory, communication band-
width, or computer hardware are of primary concern, but most often it is compu-
tational time that we want to measure. Generally, by analyzing several candidate
algorithms for a problem, we can identify a most efficient one. Such analysis may
indicate more than one viable candidate, but we can often discard several inferior
algorithms in the process.

Before we can analyze an algorithm, we must have a model of the implemen-
tation technology that we will use, including a model for the resources of that
technology and their costs. For most of this book, we shall assume a generic one-
processor, random-access machine (RAM) model of computation as our imple-
mentation technology and understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are executed one after an-
other, with no concurrent operations.

Strictly speaking, we should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM
model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real computers
do not have such instructions. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real
numbers). Although we typically do not concern ourselves with precision in this
book, in some applications precision is crucial. We also assume a limit on the size
of each word of data. For example, when working with inputs of size n, we typ-
ically assume that integers are represented by c Ign bits for some constant ¢ > 1.
We require ¢ > 1 so that each word can hold the value of n, enabling us to index the
individual input elements, and we restrict ¢ to be a constant so that the word size
does not grow arbitrarily. (If the word size could grow arbitrarily, we could store
huge amounts of data in one word and operate on it all in constant time—clearly
an unrealistic scenario.)

heé¢eps:/hemanthrajhemu.github.io

24 Chapter 2 Getting Started

Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no; it takes several instructions to compute x”
when x and y are real numbers. In restricted situations, however, exponentiation is
a constant-time operation. Many computers have a “shift left” instruction, which
in constant time shifts the bits of an integer by k positions to the left. In most
computers, shifting the bits of an integer by one position to the left is equivalent
to multiplication by 2, so that shifting the bits by k positions to the left is equiv-
alent to multiplication by 2. Therefore, such computers can compute 2¥ in one
constant-time instruction by shifting the integer 1 by k positions to the left, as long
as k is no more than the number of bits in a computer word. We will endeavor to
avoid such gray areas in the RAM model, but we will treat computation of 2% as a
constant-time operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is
common in contemporary computers. That is, we do not model caches or virtual
memory. Several computational models attempt to account for memory-hierarchy
effects, which are sometimes significant in real programs on real machines. A
handful of problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book will not consider them. Models that include
the memory hierarchy are quite a bit more complex than the RAM model, and so
they can be difficult to work with. Moreover, RAM-model analyses are usually
excellent predictors of performance on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The
mathematical tools required may include combinatorics, probability theory, alge-
braic dexterity, and the ability to identify the most significant terms in a formula.
Because the behavior of an algorithm may be different for each possible input, we
need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given al-
gorithm, we still face many choices in deciding how to express our analysis. We
would like a way that is simple to write and manipulate, shows the important char-
acteristics of an algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a
thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-
SORT can take different amounts of time to sort two input sequences of the same
size depending on how nearly sorted they already are. In general, the time taken
by an algorithm grows with the size of the input, so it is traditional to describe the
running time of a program as a function of the size of its input. To do so, we need
to define the terms “running time” and “size of input” more carefully.

heé¢eps:/hemanthrajhemu.github.io

2.2 Analyzing algorithms 25

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input—for example, the array size n
for sorting. For many other problems, such as multiplying two integers, the best
measure of input size is the toral number of bits needed to represent the input in
ordinary binary notation. Sometimes, it is more appropriate to describe the size of
the input with two numbers rather than one. For instance, if the input to an algo-
rithm is a graph, the input size can be described by the numbers of vertices and
edges in the graph. We shall indicate which input size measure is being used with
each problem we study.

The running time of an algorithm on a particular input is the number of primitive
operations or “steps” executed. It is convenient to define the notion of step so
that it is as machine-independent as possible. For the moment, let us adopt the
following view. A constant amount of time is required to execute each line of our
pseudocode. One line may take a different amount of time than another line, but
we shall assume that each execution of the ith line takes time c;, where ¢; is a
constant. This viewpoint is in keeping with the RAM model, and it also reflects
how the pseudocode would be implemented on most actual computers.’

In the following discussion, our expression for the running time of INSERTION-
SORT will evolve from a messy formula that uses all the statement costs ¢; to a
much simpler notation that is more concise and more easily manipulated. This
simpler notation will also make it easy to determine whether one algorithm is more
efficient than another.

We start by presenting the INSERTION-SORT procedure with the time “cost”
of each statement and the number of times each statement is executed. For each
Jj =2,3,...,n, where n = A.length, we let t; denote the number of times the
while loop test in line 5 is executed for that value of j. When a for or while loop
exits in the usual way (i.e., due to the test in the loop header), the test is executed
one time more than the loop body. We assume that comments are not executable
statements, and so they take no time.

SThere are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, later in this
book we might say “sort the points by x-coordinate,” which, as we shall see, takes more than a
constant amount of time. Also, note that a statement that calls a subroutine takes constant time,
though the subroutine, once invoked, may take more. That is, we separate the process of calling the
subroutine — passing parameters to it, etc. —from the process of executing the subroutine.

heé¢eps:/hemanthrajhemu.github.io

26 Chapter 2 Getting Started

INSERTION-SORT (A) cost times
1 for j = 2to A.length cq n
2 key = A[J]] C n—1
3 // Insert A[j] into the sorted
sequence A[l..j —1]. 0 n—1
4 i=7j—1 Cyq n—1
5 while i > 0 and A[i] > key Cs Yot
6 Ali + 1] = Ali) 6 Yt -1
7 i=i—1 ¢y Z?zz(tj —1)
8 Ali + 1] = key cg n—1

The running time of the algorithm is the sum of running times for each state-
ment executed; a statement that takes ¢; steps to execute and executes n times will
contribute ¢;n to the total running time.® To compute T'(n), the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

T(n) = cin+em—1)+cn—1)+csY t;+c6» (1;—1)

j=2 j=2
+ ¢y Z(Zj — 1) + Cg(n — 1) .
j=2

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best

case occurs if the array is already sorted. For each j = 2,3,...,n, we then find
that A[i] < key in line 5 when i has its initial value of j — 1. Thus z; = 1 for
j =12,3,...,n, and the best-case running time is

T(n) = cin+can—1)+csn—1)+cs(m—1)4+cg(n—1)

= (cir+cy+cs+ces+cegn—(cy+cs+cs5s+cg).

We can express this running time as an + b for constants a and b that depend on
the statement costs ¢;; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element A[;] with each element in the entire
sorted subarray A[l..j —1],andsot; = j for j = 2,3,...,n. Noting that

This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.

heé¢eps:/hemanthrajhemu.github.io

2.2 Analyzing algorithms 27

Zj=n(n2+l)_1

j=2

and

S nn—1)
(-1 ="
2 >

(see Appendix A for a review of how to solve these summations), we find that in
the worst case, the running time of INSERTION-SORT is

T() = cin+can—1)+caln— 1)+ cs (@ ~ 1)

Ce (@) + ¢y (@) + Cg(l’l — 1)

c C C c C c
= (F+5+F)r+(atatats—F-F +a)n

—(C2+C4+C5+Cg).

We can express this worst-case running time as an? + bn + ¢ for constants a, b,
and ¢ that again depend on the statement costs ¢;; it is thus a quadratic function
of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a
given input, although in later chapters we shall see some interesting “randomized”
algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which the input
array was already sorted, and the worst case, in which the input array was reverse
sorted. For the remainder of this book, though, we shall usually concentrate on
finding only the worst-case running time, that is, the longest running time for any
input of size n. We give three reasons for this orientation.

* The worst-case running time of an algorithm gives us an upper bound on the
running time for any input. Knowing it provides a guarantee that the algorithm
will never take any longer. We need not make some educated guess about the
running time and hope that it never gets much worse.

* For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case will often occur when the information is not present in the database.
In some applications, searches for absent information may be frequent.

heé¢eps:/hemanthrajhemu.github.io

28 Chapter 2 Getting Started

* The “average case” is often roughly as bad as the worst case. Suppose that we
randomly choose n numbers and apply insertion sort. How long does it take to
determine where in subarray A[l..j — 1] to insert element A[;]? On average,
half the elements in A[1..j — 1] are less than A[], and half the elements are
greater. On average, therefore, we check half of the subarray A[l..j — 1], and
so ¢; is about j/2. The resulting average-case running time turns out to be a
quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case running time
of an algorithm; we shall see the technique of probabilistic analysis applied to
various algorithms throughout this book. The scope of average-case analysis is
limited, because it may not be apparent what constitutes an “average” input for
a particular problem. Often, we shall assume that all inputs of a given size are
equally likely. In practice, this assumption may be violated, but we can sometimes
use a randomized algorithm, which makes random choices, to allow a probabilistic
analysis and yield an expected running time. We explore randomized algorithms
more in Chapter 5 and in several other subsequent chapters.

Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-
SORT procedure. First, we ignored the actual cost of each statement, using the
constants ¢; to represent these costs. Then, we observed that even these constants
give us more detail than we really need: we expressed the worst-case running time
as an? + bn + c for some constants a, b, and ¢ that depend on the statement
costs ¢;. We thus ignored not only the actual statement costs, but also the abstract
COsts ¢;.

We shall now make one more simplifying abstraction: it is the rate of growth,
or order of growth, of the running time that really interests us. We therefore con-
sider only the leading term of a formula (e.g., an?), since the lower-order terms are
relatively insignificant for large values of n. We also ignore the leading term’s con-
stant coefficient, since constant factors are less significant than the rate of growth
in determining computational efficiency for large inputs. For insertion sort, when
we ignore the lower-order terms and the leading term’s constant coefficient, we are
left with the factor of n? from the leading term. We write that insertion sort has a
worst-case running time of ®(n?) (pronounced “theta of n-squared”). We shall use
®-notation informally in this chapter, and we will define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, an algorithm whose running time has a higher order of growth might
take less time for small inputs than an algorithm whose running time has a lower

heé¢eps:/hemanthrajhemu.github.io

2.3 Designing algorithms 29

order of growth. But for large enough inputs, a ®(n?) algorithm, for example, will
run more quickly in the worst case than a ®(n?) algorithm.

Exercises

2.2-1
Express the function 73 /1000 — 100n% — 1001 + 3 in terms of ®-notation.

2.2-2

Consider sorting n numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of A, and exchange it with A[2]. Continue in this manner for the first n — 1
elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first n — 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in ®-notation.

2.2-3

Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in ®-notation? Justify your answers.

2.24
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms

We can choose from a wide range of algorithm design techniques. For insertion
sort, we used an incremental approach: having sorted the subarray A[l..j — 1],
we inserted the single element A[j] into its proper place, yielding the sorted
subarray A[l .. j].

In this section, we examine an alternative design approach, known as “divide-
and-conquer,” which we shall explore in more detail in Chapter 4. We’ll use divide-
and-conquer to design a sorting algorithm whose worst-case running time is much
less than that of insertion sort. One advantage of divide-and-conquer algorithms is
that their running times are often easily determined using techniques that we will
see in Chapter 4.

heé¢eps:/hemanthrajhemu.github.io

30 Chapter 2 Getting Started

2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-clement sequence to be sorted into two subsequences of /2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE(A, p,q,r), where A is an array and p, g, and r are indices into the array
such that p < g < r. The procedure assumes that the subarrays A[p ..q] and
Alg + 1..r] are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray A[p ..r].

Our MERGE procedure takes time ®(n), where n = r — p + 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto

heé¢eps:/hemanthrajhemu.github.io

2.3 Designing algorithms 31

the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ©(n)
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use oo as the sentinel value, so that
whenever a card with oo is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r — p + 1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE(4, p.q,r)

2 np,=r—gq

3 letL[l..n;+ 1] and R[1..n, + 1] be new arrays
4 fori = 1ton,

5 Lli] = Alp+i—1]
6 forj = 1ton,

7 R[j] = Alg + j]

8 Lni+1] =00

9 Rny+1] = o0

10 i=1

1 j=1

12 fork = ptor

13 if L[i] < R[/]

14 Alk] = LJi]

15 i=i+1

16 else A[k] = R[J]
17 j=7J+1

In detail, the MERGE procedure works as follows. Line 1 computes the length 7,
of the subarray A[p..q], and line 2 computes the length n, of the subarray
Alg + 1..r]. We create arrays L and R (“left” and “right”), of lengths n; + 1
and n, + 1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4-5 copies the subarray A[p..q] into L[1..n,],
and the for loop of lines 6-7 copies the subarray A[g + 1..r] into R[1..n,].
Lines 8-9 put the sentinels at the ends of the arrays L and R. Lines 10-17, illus-

heé¢eps:/hemanthrajhemu.github.io

32 Chapter 2 Getting Started

12 13 14 15 16 17 8 9 11 12 13 14 15 16 17
|§|4|5|7|1|2|3|6| A~-~\1|k|5|7|1|2|3|6|
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
L2]4]s5]7]=] R[1]2]3]6]] r2]4]s]7]=] rRE2[3]6]]
i J 1 J
(a) (b)
8 10 11 12 13 14 15 16 17 8 10 11 12 13 14 15 16 17
A \1|2|5|7|1|2|3|6| A \1|2|2|7|1|2|3|6|
k k
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
c@4ls]7]=] rEL2[3]6][~] L R IIIHH
i j i
(c) (d

Figure 2.3 The operation of lines 10-17 in the call MERGE(A4, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1, 2, 3, 6). After copying and inserting sentinels, the
array L contains (2, 4,5, 7, 00), and the array R contains (1, 2, 3, 6, o). Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9..16], along with the two sentinels. Heavily shaded positions in 4 contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)-(h) The arrays A, L, and R, and their respective indices k, i, and j
prior to each iteration of the loop of lines 12—-17.

trated in Figure 2.3, perform the r — p + 1 basic steps by maintaining the following
loop invariant:

At the start of each iteration of the for loop of lines 12—17, the subarray
A[p ..k — 1] contains the k — p smallest elements of L[1..n; + 1] and
R[1..n, + 1], in sorted order. Moreover, L[i] and R[] are the smallest
elements of their arrays that have not been copied back into A4.

We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12—17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, we have k = p, so that the
subarray A[p ..k — 1] is empty. This empty subarray contains the k — p = 0
smallest elements of L and R, and since i = j = 1, both L[i] and R[] are the
smallest elements of their arrays that have not been copied back into A.

heé¢eps:/hemanthrajhemu.github.io

2.3 Designing algorithms

8 9 10 11 12 13 14 15 16 17
A ...\1|2|2|3|1|2|3|6|...
k

1 2 3 4 5

1 2 3 4 5
L@AT7]=] « [HIEIB]-]
4 J

1

(e)

10 11 12 13 14 15 16

33

8 10 11 12 13 14 15 16 17
A \1|2|2|3|4|2|3|6|

1 3
L|2|4|5_|7|°°\ R|1|2|3|6_|°°\
i j
()

10 11 12 13 14 15 16 17

\1|2|2|3|4|5|6E

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2
L ST 7 -] = [o ||
l

SSNEIEEICE B

~
~=
~

(® ()

A TiT2[2]3]4]5]6]7 .

1 2 3 4 5 1 2 3 4 5
r T -] & [E2]ET |
i J
()

Figure 2.3, continued (i) The arrays and indices at termination. At this point, the subarray in
A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that
have not been copied into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] < R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p ..k — 1] contains the kK — p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p ..k] will contain the k — p + 1
smallest elements. Incrementing & (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[]],
then lines 16—17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, kK = r + 1. By the loop invariant, the subarray
A[p ..k — 1], which is A[p..r], contains the k — p = r — p + | smallest
elements of L[l..n; + 1] and R[1..n, + 1], in sorted order. The arrays L
and R together contain n; + n, +2 = r — p + 3 elements. All but the two
largest have been copied back into A4, and these two largest elements are the
sentinels.

heé¢eps:/hemanthrajhemu.github.io

34 Chapter 2 Getting Started

To see that the MERGE procedure runs in ®(n) time, where n =r — p + 1,
observe that each of lines 1-3 and 8-11 takes constant time, the for loops of
lines 4-7 take ®(n, + n,) = O(n) time,” and there are n iterations of the for
loop of lines 12—17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the subar-
ray A[p..r]. If p > r, the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index ¢ that par-
titions A[p..r] into two subarrays: A[p..q], containing [n/2] elements, and
Alg + 1..r], containing |n/2] elements.?

MERGE-SORT(4, p,r)

1 ifp<r

2 q = [(p+r)/2]

3 MERGE-SORT(A4, p,q)

4 MERGE-SORT(A,q + 1,7)
5 MERGE(A, p,q,1)

To sort the entire sequence A = (A[l], A[2], ..., A[n]), we make the initial call
MERGE-SORT(A, 1, A.length), where once again A.length = n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when 7n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length 7 /2 are merged to form the final
sorted sequence of length 7.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ®-notation.

8The expression [x] denotes the least integer greater than or equal to x, and | x | denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting ¢ to | (p + r)/2] yields subarrays A[p..q] and A[g + 1..r] of sizes [n/2] and |n/2],
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

heé¢eps:/hemanthrajhemu.github.io

2.3 Designing algorithms 35

sorted sequence

1 2 2 3 4 5 6 1]
/ merge \

7] 1 2

4 3
/ merge \ / merge \
1

W

\ merge merg&
¢

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1,3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out
from the three steps of the basic paradigm. As before, we let 7'(n) be the running
time on a problem of size n. If the problem size is small enough, say n < ¢
for some constant ¢, the straightforward solution takes constant time, which we
write as ®(1). Suppose that our division of the problem yields a subproblems,
each of which is 1/b the size of the original. (For merge sort, both @ and b are 2,
but we shall see many divide-and-conquer algorithms in which a # b.) It takes
time 7' (n/b) to solve one subproblem of size n/b, and so it takes time a7 (n/b)
to solve a of them. If we take D(n) time to divide the problem into subproblems
and C(n) time to combine the solutions to the subproblems into the solution to the
original problem, we get the recurrence

e() ifn <c,

T'(n) = aT(n/b) + D(n) + C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that

heé¢eps:/hemanthrajhemu.github.io

36 Chapter 2 Getting Started

the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n/2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

We reason as follows to set up the recurrence for 7'(n), the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = ©(1).

Conquer: We recursively solve two subproblems, each of size n/2, which con-
tributes 27'(n/2) to the running time.

Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ®(n), and so C(n) = O(n).

When we add the functions D(n) and C(n) for the merge sort analysis, we are
adding a function that is ®(n) and a function that is ®(1). This sum is a linear
function of n, that is, ®(n). Adding it to the 27°(n/2) term from the “conquer”
step gives the recurrence for the worst-case running time 7'(n) of merge sort:

o1 ifn=1,
T(n) = M . (2.1)
2T (n/2) +O®m) ifn>1.
In Chapter 4, we shall see the “master theorem,” which we can use to show
that 7'(n) is ®(nlgn), where 1gn stands for log, n. Because the logarithm func-
tion grows more slowly than any linear function, for large enough inputs, merge
sort, with its ®(n1gn) running time, outperforms insertion sort, whose running
time is ®(n?), in the worst case.

We do not need the master theorem to intuitively understand why the solution to

the recurrence (2.1) is T'(n) = ®(nlgn). Let us rewrite recurrence (2.1) as
c ifn=1,
T'(n) = . (2.2)
2T (n/2) +cn ifn>1,
where the constant ¢ represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.’

91t is unlikely that the same constant exactly represents both the time to solve problems of size 1
and the time per array element of the divide and combine steps. We can get around this problem by
letting ¢ be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting ¢ be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds are on the order of n Ig n and, taken together,
give a ®(n Ign) running time.

heé¢eps:/hemanthrajhemu.github.io

2.3 Designing algorithms 37

Figure 2.5 shows how we can solve recurrence (2.2). For convenience, we as-
sume that n is an exact power of 2. Part (a) of the figure shows 7'(n), which we
expand in part (b) into an equivalent tree representing the recurrence. The cn term
is the root (the cost incurred at the top level of recursion), and the two subtrees of
the root are the two smaller recurrences 7'(n/2). Part (¢) shows this process carried
one step further by expanding 7'(n/2). The cost incurred at each of the two sub-
nodes at the second level of recursion is cn/2. We continue expanding each node
in the tree by breaking it into its constituent parts as determined by the recurrence,
until the problem sizes get down to 1, each with a cost of ¢. Part (d) shows the
resulting recursion tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost ¢c(n/2) + ¢(n/2) = cn, the level after
that has total cost c(n/4)+c(n/4)+c(n/4)+c(n/4) = cn, and so on. In general,
the level i below the top has 2’ nodes, each contributing a cost of ¢(n/2"), so that
the ith level below the top has total cost 2/ ¢(n/2") = cn. The bottom level has n
nodes, each contributing a cost of ¢, for a total cost of cn.

The total number of levels of the recursion tree in Figure 2.5 is Ign + 1, where
n is the number of leaves, corresponding to the input size. An informal inductive
argument justifies this claim. The base case occurs when n = 1, in which case the
tree has only one level. Since Ig1 = 0, we have that lgn + 1 gives the correct
number of levels. Now assume as an inductive hypothesis that the number of levels
of a recursion tree with 2! leaves is lg 2 +1 =i 4+ 1 (since for any value of i,
we have that 1g2° = i). Because we are assuming that the input size is a power
of 2, the next input size to consider is 2'T!. A tree with n = 2! leaves has
one more level than a tree with 2/ leaves, and so the total number of levels is
G+ +1=1g2' "t +1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. The recursion tree has Ign + 1 levels, each costing cn,
for a total cost of cn(lgn + 1) = cnlgn + cn. Ignoring the low-order term and
the constant ¢ gives the desired result of ®(nlgn).

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A = (3,41,52,26,38,57,9,49).

2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.

heé¢eps:/hemanthrajhemu.github.io

38 Chapter 2 Getting Started

T(n) cn cn
T(n/2) T(n/2) cnl2 cn/2
T(n/4) T(n/4) T(n/4) T(n/4)
(a) (b) ©
A cn ...E".. cn
cnf2 Cnf2 i cp
lgn / \
cn/4 cn/4 cnl4 cn/4 i cn
\J c c c c c c ¢ el cn
R/—/
n
) Total: cnlgn + cn
Figure 2.5 How to construct a recursion tree for the recurrence 7'(n) = 2T (n/2) + cn.

Part (a) shows 7'(n), which progressively expands in (b)—(d) to form the recursion tree. The fully
expanded tree in part (d) has lgn + 1 levels (i.e., it has height Ign, as indicated), and each level
contributes a total cost of c¢n. The total cost, therefore, is cn lgn + cn, which is ®(nlgn).

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 2 39

2.3-3
Use mathematical induction to show that when 7 is an exact power of 2, the solu-
tion of the recurrence

2 ifn =2,

T(n) =
) 2T(n/2) +n ifn =2% fork > 1

is T(n) =nlgn.

2.3-4

We can express insertion sort as a recursive procedure as follows. In order to sort
A[l..n], we recursively sort A[1..n — 1] and then insert A[n] into the sorted array
A[l..n — 1]. Write a recurrence for the running time of this recursive version of
insertion sort.

2.3-5

Referring back to the searching problem (see Exercise 2.1-3), observe that if the
sequence A is sorted, we can check the midpoint of the sequence against v and
eliminate half of the sequence from further consideration. The binary search al-
gorithm repeats this procedure, halving the size of the remaining portion of the
sequence each time. Write pseudocode, either iterative or recursive, for binary
search. Argue that the worst-case running time of binary search is ®@(Ign).

2.3-6

Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted subarray
A[l..j —1]. Can we use a binary search (see Exercise 2.3-5) instead to improve
the overall worst-case running time of insertion sort to ®(n 1gn)?

2.3-7 %
Describe a ©(n Ign)-time algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in .S whose sum is
exactly x.

Problems

2-1 Insertion sort on small arrays in merge sort

Although merge sort runs in ®(nlgn) worst-case time and insertion sort runs
in ®(n?) worst-case time, the constant factors in insertion sort can make it faster
in practice for small problem sizes on many machines. Thus, it makes sense to
coarsen the leaves of the recursion by using insertion sort within merge sort when

heé¢eps:/hemanthrajhemu.github.io

40 Chapter 2 Getting Started

subproblems become sufficiently small. Consider a modification to merge sort in
which n/k sublists of length k are sorted using insertion sort and then merged
using the standard merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length k, in ®(nk)
worst-case time.

b. Show how to merge the sublists in ®(n 1g(n/k)) worst-case time.

¢. Given that the modified algorithm runs in ®(nk + nlg(n/k)) worst-case time,
what is the largest value of k as a function of n for which the modified algorithm
has the same running time as standard merge sort, in terms of ®-notation?

d. How should we choose k in practice?

2-2 Correctness of bubblesort
Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

BUBBLESORT(A)

1 fori = 1to A.length— 1

2 for j = A.length downtoi + 1

3 if A[j] < A[j — 1]

4 exchange A[j] with A[j — 1]

a. Let A" denote the output of BUBBLESORT(A). To prove that BUBBLESORT is
correct, we need to prove that it terminates and that

AN <A <--- < An], (2.3)

where n = A.length. In order to show that BUBBLESORT actually sorts, what
else do we need to prove?

The next two parts will prove inequality (2.3).

b. State precisely a loop invariant for the for loop in lines 2—4, and prove that this
loop invariant holds. Your proof should use the structure of the loop invariant
proof presented in this chapter.

¢. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 14 that will allow you to prove in-
equality (2.3). Your proof should use the structure of the loop invariant proof
presented in this chapter.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 2 41

d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

n
P(x) = Zakxk
k=0
= aog+x(a;+x(az + -+ x(ap-1 + xa,) ")),

given the coefficients ag, ay,...,a, and a value for x:
1 y=0

for i = n downto 0
3 y=a +x-y

a. In terms of ®-notation, what is the running time of this code fragment for
Horner’s rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare to Horner’s rule?

¢. Consider the following loop invariant:

At the start of each iteration of the for loop of lines 2-3,

n—(+1)
— k
y = Ak+i+1 X .
k=0

Interpret a summation with no terms as equaling 0. Following the structure of
the loop invariant proof presented in this chapter, use this loop invariant to show
that, at termination, y = Y j_, axx*.

d. Conclude by arguing that the given code fragment correctly evaluates a poly-
nomial characterized by the coefficients ag, ay, ..., a,.

2-4 Inversions
Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[/], then the
pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2, 3, 8, 6, 1).

heé¢eps:/hemanthrajhemu.github.io

42 Chapter 2 Getting Started
b. What array with elements from the set {1,2,...,n} has the most inversions?
How many does it have?

¢. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation
on n elements in ®(n 1gn) worst-case time. (Hint: Modify merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of
Computer Programming [209, 210, 211]. The first volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time, and the
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word “algorithm” is derived from the
name “al-Khowarizmi,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algo-
rithms—using notations that Chapter 3 introduces, including ®-notation—as a
means of comparing relative performance. They also popularized the use of re-
currence relations to describe the running times of recursive algorithms.

Knuth [211] provides an encyclopedic treatment of many sorting algorithms. His
comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical colla-
tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [153], who
credits P. Naur with the first article in this field. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [256] describes more recent progress in
proving programs correct.

heé¢eps:/hemanthrajhemu.github.io

3 Growth of Functions

The order of growth of the running time of an algorithm, defined in Chapter 2,
gives a simple characterization of the algorithm’s efficiency and also allows us to
compare the relative performance of alternative algorithms. Once the input size n
becomes large enough, merge sort, with its ®(nlgn) worst-case running time,
beats insertion sort, whose worst-case running time is ®(n?). Although we can
sometimes determine the exact running time of an algorithm, as we did for insertion
sort in Chapter 2, the extra precision is not usually worth the effort of computing
it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of
the running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases with
the size of the input in the limit, as the size of the input increases without bound.
Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section begins by defining several types of “asymp-
totic notation,” of which we have already seen an example in ®-notation. We then
present several notational conventions used throughout this book, and finally we
review the behavior of functions that commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm
are defined in terms of functions whose domains are the set of natural numbers
N ={0,1,2,...}. Such notations are convenient for describing the worst-case
running-time function 7'(n), which usually is defined only on integer input sizes.
We sometimes find it convenient, however, to abuse asymptotic notation in a va-

heé¢eps:/hemanthrajhemu.github.io

44 Chapter 3 Growth of Functions

riety of ways. For example, we might extend the notation to the domain of real
numbers or, alternatively, restrict it to a subset of the natural numbers. We should
make sure, however, to understand the precise meaning of the notation so that when
we abuse, we do not misuse it. This section defines the basic asymptotic notations
and also introduces some common abuses.

Asymptotic notation, functions, and running times

We will use asymptotic notation primarily to describe the running times of algo-
rithms, as when we wrote that insertion sort’s worst-case running time is ®(n?).
Asymptotic notation actually applies to functions, however. Recall that we charac-
terized insertion sort’s worst-case running time as an?+bn + ¢, for some constants
a, b, and ¢. By writing that insertion sort’s running time is ®(n?), we abstracted
away some details of this function. Because asymptotic notation applies to func-
tions, what we were writing as ®(n?) was the function an? + bn + ¢, which in
that case happened to characterize the worst-case running time of insertion sort.

In this book, the functions to which we apply asymptotic notation will usually
characterize the running times of algorithms. But asymptotic notation can apply to
functions that characterize some other aspect of algorithms (the amount of space
they use, for example), or even to functions that have nothing whatsoever to do
with algorithms.

Even when we use asymptotic notation to apply to the running time of an al-
gorithm, we need to understand which running time we mean. Sometimes we are
interested in the worst-case running time. Often, however, we wish to characterize
the running time no matter what the input. In other words, we often wish to make
a blanket statement that covers all inputs, not just the worst case. We shall see
asymptotic notations that are well suited to characterizing running times no matter
what the input.

© -notation

In Chapter 2, we found that the worst-case running time of insertion sort is
T(n) = O(n?). Let us define what this notation means. For a given function g(n),
we denote by ©(g(n)) the set of functions

®(g(n)) = {f(n) : there exist positive constants ¢y, ¢,, and n, such that
0 <cig(n) < f(n) < cyg(n)foralln > ne} !

1'Within set notation, a colon means “such that.”

heé¢eps:/hemanthrajhemu.github.io

3.1 Asymptotic notation 45

c28(n) cg(n)
f(n)
S(n) fn)
c18(n) cg(n)
: n : n i n
no . no no

f(n) = O(g(n)) f(mn) = 0(g(n)) f(n) = Q(gn))
(@) (b) (©)

Figure 3.1 Graphic examples of the ®, O, and 2 notations. In each part, the value of n¢ shown
is the minimum possible value; any greater value would also work. (a) ®-notation bounds a func-
tion to within constant factors. We write f(n) = ©(g(n)) if there exist positive constants ng, c1,
and ¢ such that at and to the right of n¢, the value of f(n) always lies between c; g(n) and c2g(n)
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f(n) = O(g(n)) if there are positive constants 7¢ and ¢ such that at and to the right of n¢, the value
of f(n) always lies on or below cg(n). (¢) Q2-notation gives a lower bound for a function to within
a constant factor. We write f(n) = Q(g(n)) if there are positive constants ¢ and ¢ such that at and
to the right of ng, the value of f(n) always lies on or above cg(n).

A function f(n) belongs to the set ®(g(n)) if there exist positive constants ¢
and ¢, such that it can be “sandwiched” between c;g(n) and c,g(n), for suffi-
ciently large n. Because ®(g(n)) is a set, we could write “f(n) € ©(g(n))”
to indicate that f(n) is a member of ®(g(n)). Instead, we will usually write
“f(n) = O(g(n))” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f(n) and g(n), where
f(n) = ©(g(n)). For all values of n at and to the right of n,, the value of f(n)
lies at or above ¢, g(n) and at or below c,g(n). In other words, for all n > n,, the
function f(n) is equal to g(n) to within a constant factor. We say that g(n) is an
asymptotically tight bound for f(n).

The definition of ®(g(n)) requires that every member f(n) € ©O(g(n)) be
asymptotically nonnegative, that is, that f(n) be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g(n) itself must be asymptotically
nonnegative, or else the set ©(g(n)) is empty. We shall therefore assume that every
function used within ®-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

heé¢eps:/hemanthrajhemu.github.io

46 Chapter 3 Growth of Functions

In Chapter 2, we introduced an informal notion of ®-notation that amounted
to throwing away lower-order terms and ignoring the leading coefficient of the
highest-order term. Let us briefly justify this intuition by using the formal defi-
nition to show that %nz —3n = O(n?). To do so, we must determine positive
constants ¢y, ¢,, and n, such that

1
cn? < Enz —3n < ¢on?

for all n > ny. Dividing by n? yields
1 3

1 = 27 <.

We can make the right-hand inequality hold for any value of n > 1 by choosing any
constant ¢, > 1/2. Likewise, we can make the left-hand inequality hold for any
value of n > 7 by choosing any constant ¢; < 1/14. Thus, by choosing ¢; = 1/14,
¢, = 1/2, and ny = 7, we can verify that 1> — 3n = ©(n?). Certainly, other
choices for the constants exist, but the important thing is that some choice exists.
Note that these constants depend on the function %nz — 3n; a different function
belonging to ©(n?) would usually require different constants.

We can also use the formal definition to verify that 6n° # ®(n?). Suppose
for the purpose of contradiction that ¢, and nq exist such that 6n° < c¢,n? for
all n > ny. But then dividing by n? yields n < ¢,/6, which cannot possibly hold
for arbitrarily large n, since ¢, is constant.

Intuitively, the lower-order terms of an asymptotically positive function can be
ignored in determining asymptotically tight bounds because they are insignificant
for large n. When n is large, even a tiny fraction of the highest-order term suf-
fices to dominate the lower-order terms. Thus, setting c; to a value that is slightly
smaller than the coefficient of the highest-order term and setting ¢, to a value that
is slightly larger permits the inequalities in the definition of ®-notation to be sat-
isfied. The coefficient of the highest-order term can likewise be ignored, since it
only changes c; and c, by a constant factor equal to the coefficient.

As an example, consider any quadratic function f(n) = an® + bn + ¢, where
a, b, and ¢ are constants and @ > 0. Throwing away the lower-order terms and
ignoring the constant yields f(n) = ©(n?). Formally, to show the same thing, we
take the constants ¢; = a/4, ¢, = 7a/4, and ny = 2-max(|b| /a, /|c|/a). You
may verify that 0 < ¢;n? < an? + bn + ¢ < c,n? for all n > n,. In general,
for any polynomial p(n) = Zf:o a;n', where the a; are constants and ag > 0, we
have p(n) = ®(n?) (see Problem 3-1).

Since any constant is a degree-0 polynomial, we can express any constant func-
tion as ®(n°), or O(1). This latter notation is a minor abuse, however, because the

heé¢eps:/hemanthrajhemu.github.io

3.1 Asymptotic notation 47

expression does not indicate what variable is tending to infinity.> We shall often
use the notation ®(1) to mean either a constant or a constant function with respect
to some variable.

O-notation

The ®-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use O-notation. For a given func-
tion g(n), we denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes
just “oh of g of n”) the set of functions

O(g(n)) = {f(n) : there exist positive constants ¢ and n, such that
0< f(n) <cg(n)foralln >ny}.

We use O-notation to give an upper bound on a function, to within a constant
factor. Figure 3.1(b) shows the intuition behind O-notation. For all values n at and
to the right of n¢, the value of the function f(n) is on or below cg(n).

We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the
set O(g(n)). Note that f(n) = O(g(n)) implies f(n) = O(g(n)), since O-
notation is a stronger notion than O-notation. Written set-theoretically, we have
O(g(n)) € O(g(n)). Thus, our proof that any quadratic function an? + bn + c,
where a > 0, is in ©(n?) also shows that any such quadratic function is in O(n?).
What may be more surprising is that when a > 0, any linear function an + b is
in O(n?), which is easily verified by taking ¢ = a + |b| and ny = max(1,—b/a).

If you have seen O-notation before, you might find it strange that we should
write, for example, n = O(n?). In the literature, we sometimes find O-notation
informally describing asymptotically tight bounds, that is, what we have defined
using ®-notation. In this book, however, when we write f(n) = O(g(n)), we
are merely claiming that some constant multiple of g(n) is an asymptotic upper
bound on f(n), with no claim about how tight an upper bound it is. Distinguish-
ing asymptotic upper bounds from asymptotically tight bounds is standard in the
algorithms literature.

Using O-notation, we can often describe the running time of an algorithm
merely by inspecting the algorithm’s overall structure. For example, the doubly
nested loop structure of the insertion sort algorithm from Chapter 2 immediately
yields an O(n?) upper bound on the worst-case running time: the cost of each it-
eration of the inner loop is bounded from above by O(1) (constant), the indices i

2The real problem is that our ordinary notation for functions does not distinguish functions from
values. In A-calculus, the parameters to a function are clearly specified: the function n? could be
written as An.n2, or even Ar.r2. Adopting a more rigorous notation, however, would complicate
algebraic manipulations, and so we choose to tolerate the abuse.

heé¢eps:/hemanthrajhemu.github.io

48 Chapter 3 Growth of Functions

and j are both at most n, and the inner loop is executed at most once for each of
the n? pairs of values for i and ;.

Since O-notation describes an upper bound, when we use it to bound the worst-
case running time of an algorithm, we have a bound on the running time of the algo-
rithm on every input—the blanket statement we discussed earlier. Thus, the O(n?)
bound on worst-case running time of insertion sort also applies to its running time
on every input. The ®(n2) bound on the worst-case running time of insertion sort,
however, does not imply a ®(n2) bound on the running time of insertion sort on
every input. For example, we saw in Chapter 2 that when the input is already
sorted, insertion sort runs in ®(7) time.

Technically, it is an abuse to say that the running time of insertion sort is O (n?),
since for a given n, the actual running time varies, depending on the particular
input of size n. When we say “the running time is O(n?),” we mean that there is a
function f(n) that is O(n?) such that for any value of 7, no matter what particular
input of size n is chosen, the running time on that input is bounded from above by
the value f(n). Equivalently, we mean that the worst-case running time is O (n?).

Q -notation

Just as O-notation provides an asymptotic upper bound on a function, £2-notation
provides an asymptotic lower bound. For a given function g(n), we denote
by Q(g(n)) (pronounced “big-omega of g of n” or sometimes just “omega of g
of n”) the set of functions

Q(g(n)) = {f(n) : there exist positive constants ¢ and 7, such that
0<cgn) < f(n)foralln > ny}.

Figure 3.1(c) shows the intuition behind €2-notation. For all values n at or to the
right of ng, the value of f(n) is on or above cg(n).

From the definitions of the asymptotic notations we have seen thus far, it is easy
to prove the following important theorem (see Exercise 3.1-5).

Theorem 3.1
For any two functions f(n) and g(n), we have f(n) = ©(g(n)) if and only if
f(n) = 0(g(n)) and f(n) = Q2(g(n)). u

As an example of the application of this theorem, our proof that an® + bn + ¢ =
©(n?) for any constants a, b, and ¢, where a > 0, immediately implies that
an® 4+ bn + ¢ = Q(n®) and an® +bn +c¢ = O(n?). In practice, rather than using
Theorem 3.1 to obtain asymptotic upper and lower bounds from asymptotically
tight bounds, as we did for this example, we usually use it to prove asymptotically
tight bounds from asymptotic upper and lower bounds.

heé¢eps:/hemanthrajhemu.github.io

3.1 Asymptotic notation 49

When we say that the running time (no modifier) of an algorithm is (g(n)),
we mean that no matter what particular input of size n is chosen for each value
of n, the running time on that input is at least a constant times g (n), for sufficiently
large n. Equivalently, we are giving a lower bound on the best-case running time
of an algorithm. For example, the best-case running time of insertion sort is $2(n),
which implies that the running time of insertion sort is ().

The running time of insertion sort therefore belongs to both ©(n) and O(n?),
since it falls anywhere between a linear function of n and a quadratic function of .
Moreover, these bounds are asymptotically as tight as possible: for instance, the
running time of insertion sort is not £2(n?), since there exists an input for which
insertion sort runs in ®(n) time (e.g., when the input is already sorted). It is not
contradictory, however, to say that the worst-case running time of insertion sort
is (n?), since there exists an input that causes the algorithm to take (n?) time.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical
formulas. For example, in introducing O-notation, we wrote “n = 0(n?).” We
might also write 2n% +3n + 1 = 2n? + ©(n). How do we interpret such formulas?

When the asymptotic notation stands alone (that is, not within a larger formula)
on the right-hand side of an equation (or inequality), as in n = O(n?), we have
already defined the equal sign to mean set membership: n € O(n?). In general,
however, when asymptotic notation appears in a formula, we interpret it as stand-
ing for some anonymous function that we do not care to name. For example, the
formula 2n2 + 3n + 1 = 2n% + ©(n) means that 2n% + 3n + 1 = 2n2 + f(n),
where f(n) is some function in the set ®(n). In this case, we let f(n) = 3n + 1,
which indeed is in ©(n).

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence

T(n)=2Tn/2) 4+ O).

If we are interested only in the asymptotic behavior of 7' (n), there is no point in
specifying all the lower-order terms exactly; they are all understood to be included
in the anonymous function denoted by the term ®(n).

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression

Y. 06),

i=1

heé¢eps:/hemanthrajhemu.github.io

50 Chapter 3 Growth of Functions

there is only a single anonymous function (a function of 7). This expression is thus
not the same as O(1) + O(2) + --- + O(n), which doesn’t really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation,
as in

2n* + O(n) = O(n?) .

We interpret such equations using the following rule: No matter how the anony-
mous functions are chosen on the left of the equal sign, there is a way to choose
the anonymous functions on the right of the equal sign to make the equation valid.
Thus, our example means that for any function f(n) € ®(n), there is some func-
tion g(n) € O(n?) such that 2n* + f(n) = g(n) for all n. In other words, the
right-hand side of an equation provides a coarser level of detail than the left-hand
side.
We can chain together a number of such relationships, as in

2 +3n+1 = 2n>+0(n)
= 0@(?).

We can interpret each equation separately by the rules above. The first equa-
tion says that there is some function f(n) € ®(n) such that 2n> + 3n + 1 =
2n% + f(n) for all n. The second equation says that for any function g(n) € ©(n)
(such as the f(n) just mentioned), there is some function h(n) € ©(n?) such
that 2n2 + g(n) = h(n) for all n. Note that this interpretation implies that
2n? + 3n + 1 = ©(n?), which is what the chaining of equations intuitively gives
us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n? = O(n?) is asymptotically tight, but the bound
2n = O(n?) is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o(g(n)) (“little-oh of g of n”) as the set

0o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
ng > 0suchthat 0 < f(n) < cg(n) foralln > ny}.

For example, 2n = o(n?), but 2n? # o(n?).

The definitions of O-notation and o-notation are similar. The main difference
is that in f(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for some con-
stant ¢ > 0, but in f(n) = 0(g(n)), the bound 0 < f(n) < cg(n) holds for all
constants ¢ > 0. Intuitively, in o-notation, the function f(n) becomes insignificant
relative to g(n) as n approaches infinity; that is,

heé¢eps:/hemanthrajhemu.github.io

3.1 Asymptotic notation 51

LS
im =
n—oo g(n)
Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

0. (3.1

®-notation

By analogy, w-notation is to 2-notation as o-notation is to O-notation. We use
w-notation to denote a lower bound that is not asymptotically tight. One way to
define it is by

f(n) € w(g(n)) if and only if g(n) € o(f(n)) .
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set
w(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
no > 0 such that 0 < cg(n) < f(n) foralln > ny} .

For example, n?/2 = w(n), but n?/2 # w(n?). The relation f(n) = w(g(n))
implies that

N ON

im = 00
n—oo g(n)
if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

f(n) = O(g(n) and g(n) = O(h(n)) imply f(n) = O(h(»n)),
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)).
f(n) = Q(gn)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)),
Jf(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)).
f(n) = o(gn) and g(n) = w(h(n)) imply f(n) = w(h(n)).

Reflexivity:

fn) = ©(f(n),
fn) = 0(f(n),
fm) = Qf@).

heé¢eps:/hemanthrajhemu.github.io

52 Chapter 3 Growth of Functions

Symmetry:

f(n) = ©(g(n)) if and only if g(n) = O(f(n)).
Transpose symmetry:

f(n) = O(g(n)) ifandonlyif g(n) = Q(f(n)),
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n)).

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f(n) =0(gn)) islike a<b,
f(n)=Q(gn)) islike a=>b,
f(n)=0(gm) islike a=5h,
f(n)=o(g(n) islike a<b,
fn) =w(gm) islike a>b.
We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)), and f(n)
is asymptotically larger than g(n) if f(n) = w(g(n)).

One property of real numbers, however, does not carry over to asymptotic nota-
tion:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: a < b,a = b,ora > b.

Although any two real numbers can be compared, not all functions are asymptot-
ically comparable. That is, for two functions f(n) and g(n), it may be the case
that neither f(n) = O(g(n)) nor f(n) = Q(g(n)) holds. For example, we cannot
compare the functions 7 and n'**"” using asymptotic notation, since the value of
the exponent in n! 51" oscillates between 0 and 2, taking on all values in between.

Exercises

3.1-1
Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic defi-
nition of ®-notation, prove that max(f(n), g(n)) = O(f(n) + g(n)).

3.12
Show that for any real constants a and b, where b > 0,
(n+a)’ =0nb) . (3.2)

heé¢eps:/hemanthrajhemu.github.io

3.2 Standard notations and common functions 53

3.1-3
Explain why the statement, “The running time of algorithm A is at least O(n?),” is
meaningless.

3.14
Is 2"+ = 0(2")7 Is 22" = 0(2")?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is ®(g(n)) if and only if its worst-case
running time is O(g(n)) and its best-case running time is (g (n)).

3.1-7
Prove that 0(g(n)) N w(g(n)) is the empty set.

3.1-8

We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g(n,m), we denote
by O(g(n,m)) the set of functions

O(g(n,m)) = {f(n,m) : there exist positive constants ¢, ny, and m,
suchthat 0 < f(n,m) <cg(n,m)
foralln > ngorm > mgy} .

Give corresponding definitions for (g(n,m)) and ®(g(n, m)).

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f(n) is monotonically increasing it m < n implies f(m) < f(n).
Similarly, it is monotonically decreasing if m < n implies f(m) > f(n). A
function f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly
decreasing if m < n implies f(m) > f(n).

heé¢eps:/hemanthrajhemu.github.io

54 Chapter 3 Growth of Functions

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by | x |
(read “the floor of x”) and the least integer greater than or equal to x by [x] (read
“the ceiling of x”). For all real x,

x—1 < |x] <x < [x] < x+1. (3.3)
For any integer n,
[n/2]+ [n/2] =n.

and for any real number x > 0 and integers a, b > 0,

2] [x]
))

The floor function f(x) = |x] is monotonically increasing, as is the ceiling func-

tion f(x) = [x].

Modular arithmetic

For any integer a and any positive integer 7, the value a mod n is the remainder
(or residue) of the quotient a/n:

amodn =a—nla/n| . (3.8)
It follows that
O0<amodn <n. 3.9)

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.
If (¢ mod n) = (b mod n), we write a = b (mod n) and say that a is equivalent
to b, modulo n. In other words, a = b (mod n) if a and b have the same remain-
der when divided by n. Equivalently, a = b (mod n) if and only if n is a divisor
of b —a. We write a # b (mod n) if a is not equivalent to b, modulo 7.

heé¢eps:/hemanthrajhemu.github.io

3.2 Standard notations and common functions 55

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n)
of the form

d
p(n) =Y amn',
i=0

where the constants ag,ai,...,aq are the coefficients of the polynomial and
ag # 0. A polynomial is asymptotically positive if and only if a; > 0. For an
asymptotically positive polynomial p(n) of degree d, we have p(n) = ®(n¢). For
any real constant a > 0, the function n¢ is monotonically increasing, and for any
real constant @ < 0, the function n¢ is monotonically decreasing. We say that a
function f'(n) is polynomially bounded if f(n) = O(n*) for some constant k.

Exponentials

For all real a > 0, m, and n, we have the following identities:

a® = 1,
al = da,
-1
a = 1/a,
(am)n = g™
- k)
(am)n — (an)m ,
aman — am+n .

For all n and a > 1, the function a@” is monotonically increasing in n. When
convenient, we shall assume 0° = 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a and b such thata > 1,

I’lb

lim — =0, (3.10)

n—oo gl

from which we can conclude that
n® =o(a").

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.
Using e to denote 2.71828.. ., the base of the natural logarithm function, we
have for all real x,
2 3 00 i

X _ 1 X . X
e = +X+2—!+§+"'— i_!’
i =0

heé¢eps:/hemanthrajhemu.github.io

(3.11)

56 Chapter 3 Growth of Functions

[b

where denotes the factorial function defined later in this section. For all real x,
we have the inequality

e*>1+x, (3.12)
where equality holds only when x = 0. When |x| < 1, we have the approximation
l+x<e"<14+x+x2. (3.13)

When x — 0, the approximation of e* by 1 + x is quite good:
¥ =14+x+0(x?).

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x — 0 rather than as x — 00.) We have for all x,

lim (1 + f) = e, (3.14)
n—00 n

Logarithms

We shall use the following notations:

lgn = log,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
Ig¥n = (Ign)* (exponentiation) ,
lglgn = lg(lgn) (composition) .

An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that lgn + k will mean (Ign) + k
and not Ig(n + k). If we hold b > 1 constant, then for n > 0, the function log, n
is strictly increasing.

Forallreala > 0,b > 0,¢ > 0, and n,

a = blogha ,
log.(ab) = log.a +log. b,
log,a" = nlog,a,
log,. a
1 = <, 3.15
0gp d log, b (3.15)
log,(1/a) = —log,a,
1
1 = ,
08 4 log, b
alogb c Clogb a , (3 16)

where, in each equation above, logarithm bases are not 1.

heé¢eps:/hemanthrajhemu.github.io

3.2 Standard notations and common functions 57

By equation (3.15), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor, and so we shall
often use the notation “lgn” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 + x) when |x| < 1:

x2 X Xt X
In(1 +x)=x 2—|—3 4+5

We also have the following inequalities for x > —1:

< In(l+x) < x, 3.17
I+x — (I+x) < (.17)
where equality holds only for x = 0.

We say that a function f(n) is polylogarithmically bounded if f(n) = O(1g" n)
for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting lg n for n and 2¢ for a in equation (3.10), yielding

1g° n _lgbn

m = lim
n—o00 (2“)15:’" n—oo né

=0.

From this limit, we can conclude that

g n = o(n%)

for any constant @ > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.

Factorials

The notation n! (read “n factorial”) is defined for integers n > 0 as

ol = 1 ifn=0,
" ln-(n=1! ifn>0.

Thus,n!'=1-2-3..-n.
A weak upper bound on the factorial function is n! < n", since each of the n
terms in the factorial product is at most n. Stirling’s approximation,

n! = V2mn (g) (1+®(%)) : (3.18)

heé¢eps:/hemanthrajhemu.github.io

58 Chapter 3 Growth of Functions

where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. As Exercise 3.2-3 asks you to prove,

n! = o),
nl = w?"),
lg(n!) = O(nlgn), (3.19)

where Stirling’s approximation is helpful in proving equation (3.19). The following
equation also holds for alln > 1:

n n
nl = v2mn (—) g (3.20)
e
where
LR (3.21)
o . .
12n + 1 " T 12n

Functional iteration

We use the notation f @ (n) to denote the function f'(n) iteratively applied i times
to an initial value of n. Formally, let f(n) be a function over the reals. For non-
negative integers i, we recursively define

n ifi =0,
f(f9Dm)) ifi >0.
For example, if f(n) = 2n, then f@(n) = 2'n.

FOm =

The iterated logarithm function

We use the notation Ig" n (read “log star of n”") to denote the iterated logarithm, de-
fined as follows. Let lg(i) n be as defined above, with f(n) = Ign. Because the log-
arithm of a nonpositive number is undefined, lg(i) n is defined only if lg(i Dy >o.
Be sure to distinguish lg(i) n (the logarithm function applied i times in succession,
starting with argument n) from lg’ n (the logarithm of » raised to the ith power).
Then we define the iterated logarithm function as

lg*n = min {i >0:1gn < 1} .

The iterated logarithm is a very slowly growing function:

g2 = 1,
Ig"4 = 2,
g* 16 = 3,
Ig* 65536 = 4,
g* (2655%6) 5

heé¢eps:/hemanthrajhemu.github.io

3.2 Standard notations and common functions 59

Since the number of atoms in the observable universe is estimated to be about 103,
which is much less than 23336 we rarely encounter an input size n such that
Ig"n > 5.

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:

FO = 0 ’
FF =1, (3.22)
FF = F_,+F_ fori >2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0,1, 1,2, 3,5, 8, 13, 21, 34, 55,

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate qAS, which
are the two roots of the equation

x2=x+1 (3.23)

and are given by the following formulas (see Exercise 3.2-6):

14+ /5
¢ = +2f (3.24)
— 1.61803...,
R 1—-+/5
¢ = 5
— _.61803... .

Specifically, we have

F=2"7
NG
which we can prove by induction (Exercise 3.2-7). Since |$‘ < 1, we have
#'] !
< _
V5 V5
1
< A
2

which implies that

heé¢eps:/hemanthrajhemu.github.io

60 Chapter 3 Growth of Functions

p 1
F - Lfs + EJ , (3.25)

which is to say that the i th Fibonacci number F; is equal to ¢’ /+/5 rounded to the
nearest integer. Thus, Fibonacci numbers grow exponentially.

Exercises

3.2-1

Show that if f(n) and g(n) are monotonically increasing functions, then so are
the functions f(n) 4+ g(n) and f(g(n)), and if f(n) and g(n) are in addition
nonnegative, then f(n) - g(n) is monotonically increasing.

3.2-2
Prove equation (3.16).

3.2-3
Prove equation (3.19). Also prove that n! = @ (2") and n! = o(n").

324 %
Is the function [Ign]! polynomially bounded? Is the function [Iglgn]! polynomi-
ally bounded?

3.2-5 %
Which is asymptotically larger: 1g(1g* n) or Ig*(1gn)?

3.2-6
Show that the golden ratio ¢ and its conjugate $ both satisfy the equation
x2=x+1

3.2-7
Prove by induction that the ith Fibonacci number satisfies the equality

_ ¢ -9
N

where ¢ is the golden ratio and $ is its conjugate.

F;

3.2-8
Show that k Ink = ©(n) implies k = O(n/Inn).

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 3 61

Problems

3-1 Asymptotic behavior of polynomials
Let

d
p(n) = Zaini)
i=0

where a; > 0, be a degree-d polynomial in 7, and let k be a constant. Use the
definitions of the asymptotic notations to prove the following properties.

a. If k > d, then p(n) = O(n*).
b. If k < d,then p(n) = Qn*).
c. If k =d, then p(n) = O(n*).
d. If k > d, then p(n) = o(n).

e. Ifk < d, then p(n) = w(n*).

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A4, B) in the table below, whether 4 is O, o,
Q, w,or © of B. Assume that k > 1, € > 0, and ¢ > 1 are constants. Your answer
should be in the form of the table with “yes” or “no” written in each box.

A B 0] o Q 1) ®
a. lgk n n¢
b. nk c"
c. Jn psinn
d 2" 2n/2
e. nlgc Clgn
folgnY) Ig(n")

3-3 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement
1,82, ..., 830 of the functions satisfying g, = Q(g2), &2 = Q(g3), ...,
g29 = $2(g30). Partition your list into equivalence classes such that functions
f(n) and g(n) are in the same class if and only if f(n) = O(g(n)).

heé¢eps:/hemanthrajhemu.github.io

62 Chapter 3 Growth of Functions

lg(lg*n) 2" (V2)" n? n! (lgn)!
G)" n3 Ig2n lg(n!) 2% nl/len
Inlnn Ig*n n-2" plelen Inn 1
2len (Ign)'en e" 4em (n+ 1) Jign
Ig*(lgn) 2v2kn n 2n nlgn 22"

b. Give an example of a single nonnegative function f(n) such that for all func-
tions g;(n) in part (a), f(n) is neither O(g;(n)) nor Q(g; (n)).

3-4 Asymptotic notation properties
Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of
the following conjectures.

a. f(n) = 0(g(n)) implies g(n) = O(f(n)).
b. f(n) + g(n) = O(min(f(n),gn))).

c. f(n) = O(g(n)) implies 1g(f(n)) = O(lg(g(n))), where Ig(g(n)) = 1 and
f(n) > 1 for all sufficiently large n.

d. f(n) = O(g(n)) implies 27® = 0 (25®),
e. f(n)=0((f(n)>.

f. f(n) = O(g(n)) implies g(n) = Q(f(n)).
g f(n) =0(f(n/2)).

h. f(n)+o(f(n)) = O(f(n)).

3-5 Variations on O and $2 -
Some authors define 2 in a slightly different way than we do; let’s use €2 (read

“omega infinity”) for this alternative definition. We say that f(n) = ﬁ(g(n)) if
there exists a positive constant ¢ such that f(n) > cg(n) > 0 for infinitely many
integers 7.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonneg-
0
ative, either f(n) = O(g(n)) or f(n) = 2(g(n)) or both, whereas this is not
true if we use €2 in place of €2.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 3 63

b. Describe the potential advantages and disadvantages of using &% instead of Q to
characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O’ for the
alternative definition. We say that f(n) = O’(g(n)) if and only if | f(n)| =

0(g(n)).

¢. What happens to each direction of the “if and only if”” in Theorem 3.1 if we
substitute O’ for O but still use 7?

Some authors define O (read “soft-oh”) to mean O with logarithmic factors ig-
nored:

5(g(n)) = {f(n) : there exist positive constants ¢, k, and n such that
0< f(n) <cg(n)lg"(n) foralln > ny} .

d. Define Q and © in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-6 Iterated functions

We can apply the iteration operator * used in the 1g* function to any monotonically
increasing function f(n) over the reals. For a given constant ¢ € R, we define the
iterated function f.* by

frm)y=minf{i >0: fPm) <c},

which need not be well defined in all cases. In other words, the quantity f,*(n) is
the number of iterated applications of the function f required to reduce its argu-
ment down to ¢ or less.

For each of the following functions f(n) and constants c, give as tight a bound
as possible on f,*(n).

f(n)

n—1

fH(n)

s 8

c

0

lgn 1
n/2 1
n/2 2
2

1

2

2

& 9

Ji
Jn

1/3

n

AT

n/lgn

heé¢eps:/hemanthrajhemu.github.io

64 Chapter 3 Growth of Functions

Chapter notes

Knuth [209] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The 2 and ® notations were advocated by
Knuth [213] to correct the popular, but technically sloppy, practice in the literature
of using O-notation for both upper and lower bounds. Many people continue to
use the O-notation where the ®-notation is more technically precise. Further dis-
cussion of the history and development of asymptotic notations appears in works
by Knuth [209, 213] and Brassard and Bratley [54].

Not all authors define the asymptotic notations in the same way, although the
various definitions agree in most common situations. Some of the alternative def-
initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.

Equation (3.20) is due to Robbins [297]. Other properties of elementary math-
ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [362], or in a calculus book, such as
Apostol [18] or Thomas et al. [334]. Knuth [209] and Graham, Knuth, and Patash-
nik [152] contain a wealth of material on discrete mathematics as used in computer
science.

heé¢eps:/hemanthrajhemu.github.io

4 Divide-and-Conquer

In Section 2.3.1, we saw how merge sort serves as an example of the divide-and-
conquer paradigm. Recall that in divide-and-conquer, we solve a problem recur-
sively, applying three steps at each level of the recursion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

When the subproblems are large enough to solve recursively, we call that the recur-
sive case. Once the subproblems become small enough that we no longer recurse,
we say that the recursion “bottoms out” and that we have gotten down to the base
case. Sometimes, in addition to subproblems that are smaller instances of the same
problem, we have to solve subproblems that are not quite the same as the original
problem. We consider solving such subproblems as part of the combine step.

In this chapter, we shall see more algorithms based on divide-and-conquer. The
first one solves the maximum-subarray problem: it takes as input an array of num-
bers, and it determines the contiguous subarray whose values have the greatest sum.
Then we shall see two divide-and-conquer algorithms for multiplying n X n matri-
ces. One runs in ©(n?) time, which is no better than the straightforward method of
multiplying square matrices. But the other, Strassen’s algorithm, runs in O(n*3")
time, which beats the straightforward method asymptotically.

Recurrences

Recurrences go hand in hand with the divide-and-conquer paradigm, because they
give us a natural way to characterize the running times of divide-and-conquer algo-
rithms. A recurrence is an equation or inequality that describes a function in terms

heé¢eps:/hemanthrajhemu.github.io

66 Chapter 4 Divide-and-Conquer

of its value on smaller inputs. For example, in Section 2.3.2 we described the
worst-case running time 7'(n) of the MERGE-SORT procedure by the recurrence

e ifn=1,
L) = 0 y2) + ©@) itn>1. @D

whose solution we claimed to be 7'(n) = ®(nlgn).

Recurrences can take many forms. For example, a recursive algorithm might
divide subproblems into unequal sizes, such as a 2 /3-to-1/3 split. If the divide and
combine steps take linear time, such an algorithm would give rise to the recurrence
T(n)=T2n/3)+ T(n/3) + O(n).

Subproblems are not necessarily constrained to being a constant fraction of
the original problem size. For example, a recursive version of linear search
(see Exercise 2.1-3) would create just one subproblem containing only one el-
ement fewer than the original problem. Each recursive call would take con-
stant time plus the time for the recursive calls it makes, yielding the recurrence
Tn)=Th—-1)+ 6(1).

This chapter offers three methods for solving recurrences —that is, for obtaining
asymptotic “®” or “O” bounds on the solution:

e In the substitution method, we guess a bound and then use mathematical in-
duction to prove our guess correct.

e The recursion-tree method converts the recurrence into a tree whose nodes
represent the costs incurred at various levels of the recursion. We use techniques
for bounding summations to solve the recurrence.

* The master method provides bounds for recurrences of the form
T(n)=aT(n/b)+ f(n), 4.2)

where ¢ > 1, b > 1, and f(n) is a given function. Such recurrences arise
frequently. A recurrence of the form in equation (4.2) characterizes a divide-
and-conquer algorithm that creates a subproblems, each of which is 1/b the
size of the original problem, and in which the divide and combine steps together
take f(n) time.

To use the master method, you will need to memorize three cases, but once
you do that, you will easily be able to determine asymptotic bounds for many
simple recurrences. We will use the master method to determine the running
times of the divide-and-conquer algorithms for the maximum-subarray problem
and for matrix multiplication, as well as for other algorithms based on divide-
and-conquer elsewhere in this book.

heé¢eps:/hemanthrajhemu.github.io

Chapter 4 Divide-and-Conquer 67

Occasionally, we shall see recurrences that are not equalities but rather inequal-
ities, such as T(n) < 2T (n/2) + ©(n). Because such a recurrence states only
an upper bound on 7'(n), we will couch its solution using O-notation rather than
®-notation. Similarly, if the inequality were reversed to T'(n) > 2T (n/2) + ©(n),
then because the recurrence gives only a lower bound on 7'(n), we would use
Q2-notation in its solution.

Technicalities in recurrences

In practice, we neglect certain technical details when we state and solve recur-
rences. For example, if we call MERGE-SORT on n elements when n is odd, we
end up with subproblems of size |n/2] and [n/2]. Neither size is actually n/2,
because 7/2 is not an integer when 7 is odd. Technically, the recurrence describing
the worst-case running time of MERGE-SORT is really

(1) ifn=1,

T =0 1 (tn2)) + T(ln/2)) + ©) ifn > 1.

4.3)

Boundary conditions represent another class of details that we typically ignore.
Since the running time of an algorithm on a constant-sized input is a constant,
the recurrences that arise from the running times of algorithms generally have
T(n) = ©(1) for sufficiently small n. Consequently, for convenience, we shall
generally omit statements of the boundary conditions of recurrences and assume
that 7'(n) is constant for small n. For example, we normally state recurrence (4.1)
as

T(n)=2Tn/2)+0O0n), 4.4)

without explicitly giving values for small n. The reason is that although changing
the value of 7'(1) changes the exact solution to the recurrence, the solution typi-
cally doesn’t change by more than a constant factor, and so the order of growth is
unchanged.

When we state and solve recurrences, we often omit floors, ceilings, and bound-
ary conditions. We forge ahead without these details and later determine whether
or not they matter. They usually do not, but you should know when they do. Ex-
perience helps, and so do some theorems stating that these details do not affect the
asymptotic bounds of many recurrences characterizing divide-and-conquer algo-
rithms (see Theorem 4.1). In this chapter, however, we shall address some of these
details and illustrate the fine points of recurrence solution methods.

heé¢eps:/hemanthrajhemu.github.io

68 Chapter 4 Divide-and-Conquer

4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day O, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,

1(1)2 //\\ /T ~ ST~
% N/ \) N o~ —

80 v \ / \v/
70 N\ /
A4
60 T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 &1 101 94 106 101 79 94 90 97
Change 3 -3 =25 20 -3 —-16 =23 18 20 -7 12 -5 =22 15 —4 7

Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.

heé¢eps:/hemanthrajhemu.github.io

4.1 The maximum-subarray problem 69

ANEVAN
\ / \ Day | 0 1 2 3 4

Price 10 11 7 10 6

9
8
7 \/ \ Change 1 —4 3 —4
6 \
4

Figure 4.2 An example showing that the maximum profit does not always start at the lowest price
or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows
the price. Here, the maximum profit of $3 per share would be earned by buying after day 2 and
selling after day 3. The price of $7 after day 2 is not the lowest price overall, and the price of $10
after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.

A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n
days has (;) such pairs of dates. Since (;) is ©(n?), and the best we can hope for
is to evaluate each pair of dates in constant time, this approach would take 2(n?)
time. Can we do better?

A transformation

In order to design an algorithm with an o(n?) running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i — 1 and after day i. The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of A[l..16]is A[8..11], with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
profit of $43 per share.

At first glance, this transformation does not help. We still need to check

(" ;1) = ©O(n?) subarrays for a period of n days. Exercise 4.1-2 asks you to show

heé¢eps:/hemanthrajhemu.github.io

70 Chapter 4 Divide-and-Conquer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A] 13 | 3 |—25| 20 | 3 |—16|—23| 18 | 20 |-7 | 12 | -5 |-22| 15 |4| 7 \
—

maximum subarray

Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray A[8.. 11], with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ®(n?) subarray sums, we can orga-
nize the computation so that each subarray sum takes O(1) time, given the values
of previously computed subarray sums, so that the brute-force solution takes O (n?)
time.

So let us seek a more efficient solution to the maximum-subarray problem.
When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer

Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray A[low..high]. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays A[low .. mid)]
and A[mid + 1.. high]. As Figure 4.4(a) shows, any contiguous subarray A[i .. j]
of A[low .. high] must lie in exactly one of the following places:

* entirely in the subarray A[low ..mid], so that low <i < j < mid,
* entirely in the subarray A[mid + 1. . high], so that mid <i < j < high, or
¢ crossing the midpoint, so that low <i < mid < j < high.

Therefore, a maximum subarray of A[low .. high] must lie in exactly one of these
places. In fact, a maximum subarray of A[low..high] must have the greatest
sum over all subarrays entirely in A[low ..mid], entirely in A[mid + 1..high],
or crossing the midpoint. We can find maximum subarrays of A[low ..mid] and
A[mid+1 .. high] recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a

heé¢eps:/hemanthrajhemu.github.io

4.1 The maximum-subarray problem 71

crosses the midpoint

Pttt Almid +1.. j]
low mid_ high low i mid_f/R high
LTty L[s | | |
~— — mid+1 ~—— — S~ mid +1
entirely in A[low ..mid] entirely in A[mid + 1 .. high] Ali .. mid]

(@) (b)

Figure 4.4 (a) Possible locations of subarrays of A[low .. high]: entirely in A[low ..mid], entirely
in A[mid + 1..high], or crossing the midpoint mid. (b) Any subarray of A[low ..high] crossing
the midpoint comprises two subarrays A[i ..mid] and A[mid + 1.. j], where low < i < mid and
mid < j < high.

maximum subarray that crosses the midpoint, and take a subarray with the largest
sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear
in the size of the subarray A[low .. high]. This problem is notr a smaller instance
of our original problem, because it has the added restriction that the subarray it
chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing
the midpoint is itself made of two subarrays A[i ..mid] and A[mid + 1.. j], where
low < i < mid and mid < j < high. Therefore, we just need to find maximum
subarrays of the form A[i ..mid] and A[mid + 1.. j] and then combine them. The
procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the
indices low, mid, and high, and it returns a tuple containing the indices demarcating
a maximum subarray that crosses the midpoint, along with the sum of the values in
a maximum subarray.

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

1 left-sum = —o0

2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum

6 left-sum = sum
7 max-left = i

8 right-sum = —o0

9 sum =0
10 for j = mid + 1 to high

11 sum = sum + A[J]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

heé¢eps:/hemanthrajhemu.github.io

72 Chapter 4 Divide-and-Conquer

This procedure works as follows. Lines 1-7 find a maximum subarray of the
left half, A[low..mid]. Since this subarray must contain A[mid], the for loop of
lines 3—7 starts the index i at mid and works down to low, so that every subarray
it considers is of the form A[i ..mid]. Lines 1-2 initialize the variables left-sum,
which holds the greatest sum found so far, and sum, holding the sum of the entries
in A[i ..mid]. Whenever we find, in line 5, a subarray A[i ..mid] with a sum of
values greater than left-sum, we update left-sum to this subarray’s sum in line 6, and
in line 7 we update the variable max-left to record this index i. Lines 8—14 work
analogously for the right half, A[mid + 1. . high]. Here, the for loop of lines 10-14
starts the index j at mid+1 and works up to high, so that every subarray it considers
is of the form A[mid + 1..j]. Finally, line 15 returns the indices max-left and
max-right that demarcate a maximum subarray crossing the midpoint, along with
the sum left-sum + right-sum of the values in the subarray A[max-left . . max-right].

If the subarray A[low .. high] contains n entries (so that n = high — low + 1),
we claim that the call FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
takes ®(n) time. Since each iteration of each of the two for loops takes ®(1)
time, we just need to count up how many iterations there are altogether. The for
loop of lines 3—7 makes mid — low + 1 iterations, and the for loop of lines 10-14
makes high — mid iterations, and so the total number of iterations is

(mid — low + 1) + (high — mid) = high — low + 1
n.

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we
can write pseudocode for a divide-and-conquer algorithm to solve the maximum-
subarray problem:

FIND-MAXIMUM-SUBARRAY (A, low, high)
1 if high == low
2 return (low, high, A[low]) // base case: only one element
3 else mid = |(low + high)/2]
4 (left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

5 (right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
6 (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sunt)

heé¢eps:/hemanthrajhemu.github.io

— O O 0

1
1

4.1 The maximum-subarray problem 73

The initial call FIND-MAXIMUM-SUBARRAY (A4, 1, A.length) will find a maxi-
mum subarray of A[l..n].

Similar to FIND-MAX-CROSSING-SUBARRAY, the recursive procedure FIND-
MAXIMUM-SUBARRAY returns a tuple containing the indices that demarcate a
maximum subarray, along with the sum of the values in a maximum subarray.
Line 1 tests for the base case, where the subarray has just one element. A subar-
ray with just one element has only one subarray —itself—and so line 2 returns a
tuple with the starting and ending indices of just the one element, along with its
value. Lines 3—11 handle the recursive case. Line 3 does the divide part, comput-
ing the index mid of the midpoint. Let’s refer to the subarray A[low ..mid] as the
left subarray and to A[mid + 1..high] as the right subarray. Because we know
that the subarray A[low .. high] contains at least two elements, each of the left and
right subarrays must have at least one element. Lines 4 and 5 conquer by recur-
sively finding maximum subarrays within the left and right subarrays, respectively.
Lines 611 form the combine part. Line 6 finds a maximum subarray that crosses
the midpoint. (Recall that because line 6 solves a subproblem that is not a smaller
instance of the original problem, we consider it to be in the combine part.) Line 7
tests whether the left subarray contains a subarray with the maximum sum, and
line 8 returns that maximum subarray. Otherwise, line 9 tests whether the right
subarray contains a subarray with the maximum sum, and line 10 returns that max-
imum subarray. If neither the left nor right subarrays contain a subarray achieving
the maximum sum, then a maximum subarray must cross the midpoint, and line 11
returns it.

Analyzing the divide-and-conquer algorithm

Next we set up a recurrence that describes the running time of the recursive FIND-
MAXIMUM-SUBARRAY procedure. As we did when we analyzed merge sort in
Section 2.3.2, we make the simplifying assumption that the original problem size
is a power of 2, so that all subproblem sizes are integers. We denote by 7'(n) the
running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements. For
starters, line 1 takes constant time. The base case, when n = 1, is easy: line 2
takes constant time, and so

T(1) =0(1). (4.5)

The recursive case occurs when n > 1. Lines 1 and 3 take constant time. Each
of the subproblems solved in lines 4 and 5 is on a subarray of n/2 elements (our
assumption that the original problem size is a power of 2 ensures that /2 is an
integer), and so we spend 7' (n/2) time solving each of them. Because we have
to solve two subproblems—for the left subarray and for the right subarray —the
contribution to the running time from lines 4 and 5 comes to 27'(n/2). As we have

heé¢eps:/hemanthrajhemu.github.io

74 Chapter 4 Divide-and-Conquer

already seen, the call to FIND-MAX-CROSSING-SUBARRAY in line 6 takes ®(7)
time. Lines 7-11 take only ®(1) time. For the recursive case, therefore, we have

T(n) = O(1)+2T[n/2) + O(n) + O(1)
= 2T(n/2) + O(n). (4.6)

Combining equations (4.5) and (4.6) gives us a recurrence for the running
time 7'(n) of FIND-MAXIMUM-SUBARRAY:

e ifn=1,
| 2T(n/2) + O@m) ifn>1.

This recurrence is the same as recurrence (4.1) for merge sort. As we shall
see from the master method in Section 4.5, this recurrence has the solution
T(n) = ®(nlgn). You might also revisit the recursion tree in Figure 2.5 to un-
derstand why the solution should be 7'(n) = O(nlgn).

Thus, we see that the divide-and-conquer method yields an algorithm that is
asymptotically faster than the brute-force method. With merge sort and now the
maximum-subarray problem, we begin to get an idea of how powerful the divide-
and-conquer method can be. Sometimes it will yield the asymptotically fastest
algorithm for a problem, and other times we can do even better. As Exercise 4.1-5
shows, there is in fact a linear-time algorithm for the maximum-subarray problem,
and it does not use divide-and-conquer.

T(n) (4.7)

Exercises

4.1-1
What does FIND-MAXIMUM-SUBARRAY return when all elements of A are nega-
tive?

4.1-2
Write pseudocode for the brute-force method of solving the maximum-subarray
problem. Your procedure should run in ©(n?) time.

4.1-3

Implement both the brute-force and recursive algorithms for the maximum-
subarray problem on your own computer. What problem size n, gives the crossover
point at which the recursive algorithm beats the brute-force algorithm? Then,
change the base case of the recursive algorithm to use the brute-force algorithm
whenever the problem size is less than 4. Does that change the crossover point?

4.1-4
Suppose we change the definition of the maximum-subarray problem to allow the
result to be an empty subarray, where the sum of the values of an empty subar-

heé¢eps:/hemanthrajhemu.github.io

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?

4.1-5

Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of A[1.. j], extend the answer to find a maximum subarray ending at in-
dex j 41 by using the following observation: a maximum subarray of A[1..j + 1]
is either a maximum subarray of A[l.. j] or a subarray A[i..j + 1], for some
1 <i < j + 1. Determine a maximum subarray of the form A[i .. + 1] in
constant time based on knowing a maximum subarray ending at index ;.

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A = (a;;) and
B = (b;;) are square n x n matrices, then in the product C = A - B, we define the
entry ¢;;, fori, j =1,2,...,n,by

Cij = Zal’k . bkj . (48)
k=1

We must compute 72 matrix entries, and each is the sum of n values. The following
procedure takes n x n matrices A and B and multiplies them, returning their n x n
product C. We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.

SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 Cij = Cij + ik - bkj
8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3—7 computes the entries of each row i, and within a given row i, the

heé¢eps:/hemanthrajhemu.github.io

76 Chapter 4 Divide-and-Conquer

for loop of lines 4-7 computes each of the entries c;;, for each column j. Line 5
initializes ¢;; to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6—7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ©(n?) time.

You might at first think that any matrix multiplication algorithm must take Q(n?)
time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o(n?) time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n x n matrices. It runs in ®(n'¢”7) time, which we shall show
in Section 4.5. Since 1g 7 lies between 2.80 and 2.81, Strassen’s algorithm runs in
O(n*3") time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm

To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C = A - B, we assume that 7 is an exact power of 2 in each of
the n x n matrices. We make this assumption because in each divide step, we will
divide n x n matrices into four n/2 x n/2 matrices, and by assuming that 7 is an
exact power of 2, we are guaranteed that as long as n > 2, the dimension 7/2 is an

integer.
Suppose that we partition each of A, B, and C into four n/2 x n/2 matrices
An A B Bia Cn Cia
A= , B= , C= , 4.9
(Az Az B>1 By Cy Cx “9)
so that we rewrite the equation C = A - B as
Cn Cia An A B Biz
= .) 4.10
(Cy Cx Az A Bs1 B (4-10)
Equation (4.10) corresponds to the four equations
Cu = An-Bu+ A By, (4.11)
C = An-Bun+Apn-Bxn, (4.12)
Co1 = Az By + Axn- By, (4.13)
Cp = Ay -Bip+ Az By . (4.14)

Each of these four equations specifies two multiplications of 7/2 x n/2 matrices
and the addition of their n/2 x n/2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

heé¢eps:/hemanthrajhemu.github.io

4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn-==

4 el = an bn

5 else partition A, B, and C as in equations (4.9)

6 Ci1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B11)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By;)

7 Ci» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B1»)
4+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (45, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (455, By1)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (45, B;,)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A45,, Byy)

10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n/2 xn/2
matrices, we would spend ®(n?) time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ®(1) time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T'(n) be the time to multiply two n x n
matrices using this procedure. In the base case, when n = 1, we perform just the
one scalar multiplication in line 4, and so

T(1) = 9(1). (4.15)

The recursive case occurs whenn > 1. As discussed, partitioning the matrices in
line 5 takes ®(1) time, using index calculations. In lines 6-9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n/2 x n/2 matrices, thereby contributing 7'(n/2) to
the overall running time, the time taken by all eight recursive calls is 87 (n/2). We
also must account for the four matrix additions in lines 6-9. Each of these matrices
contains n2/4 entries, and so each of the four matrix additions takes ®(n?) time.
Since the number of matrix additions is a constant, the total time spent adding ma-

heé¢eps:/hemanthrajhemu.github.io

78 Chapter 4 Divide-and-Conquer

trices in lines 6-9 is ®(n?). (Again, we use index calculations to place the results
of the matrix additions into the correct positions of matrix C, with an overhead
of ®(1) time per entry.) The total time for the recursive case, therefore, is the sum
of the partitioning time, the time for all the recursive calls, and the time to add the
matrices resulting from the recursive calls:

T(n) = ©O()+8T(n/2)+ O(n?)
= 8T(n/2) + Om?). (4.16)

Notice that if we implemented partitioning by copying matrices, which would cost
©(n?) time, the recurrence would not change, and hence the overall running time
would increase by only a constant factor.

Combining equations (4.15) and (4.16) gives us the recurrence for the running
time of SQUARE-MATRIX-MULTIPLY-RECURSIVE:

(1) ifn=1,

T = s7m/2) + 002 itn>1.

4.17)

As we shall see from the master method in Section 4.5, recurrence (4.17) has the
solution T'(n) = ©O(n3). Thus, this simple divide-and-conquer approach is no
faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure.

Before we continue on to examining Strassen’s algorithm, let us review where
the components of equation (4.16) came from. Partitioning each n x n matrix by
index calculation takes ®(1) time, but we have two matrices to partition. Although
you could say that partitioning the two matrices takes ®(2) time, the constant of 2
is subsumed by the ®-notation. Adding two matrices, each with, say, k entries,
takes ©(k) time. Since the matrices we add each have n?/4 entries, you could
say that adding each pair takes ®(n?/4) time. Again, however, the ®-notation
subsumes the constant factor of 1/4, and we say that adding two n?/4 x n?/4
matrices takes ®(n?) time. We have four such matrix additions, and once again,
instead of saying that they take ©(4n?) time, we say that they take ©(n?) time.
(Of course, you might observe that we could say that the four matrix additions
take ©(4n?/4) time, and that 4n2/4 = n?, but the point here is that ®-notation
subsumes constant factors, whatever they are.) Thus, we end up with two terms
of ®(n?), which we can combine into one.

When we account for the eight recursive calls, however, we cannot just sub-
sume the constant factor of 8. In other words, we must say that together they take
8T (n/2) time, rather than just 7'(n/2) time. You can get a feel for why by looking
back at the recursion tree in Figure 2.5, for recurrence (2.1) (which is identical to
recurrence (4.7)), with the recursive case T (n) = 2T (n/2)+ ®(n). The factor of 2
determined how many children each tree node had, which in turn determined how
many terms contributed to the sum at each level of the tree. If we were to ignore

heé¢eps:/hemanthrajhemu.github.io

4.2 Strassen’s algorithm for matrix multiplication 79

the factor of 8 in equation (4.16) or the factor of 2 in recurrence (4.1), the recursion
tree would just be linear, rather than “bushy,” and each level would contribute only
one term to the sum.

Bear in mind, therefore, that although asymptotic notation subsumes constant
multiplicative factors, recursive notation such as 7'(n/2) does not.

Strassen’s method

The key to Strassen’s method is to make the recursion tree slightly less bushy. That
is, instead of performing eight recursive multiplications of n/2 x n/2 matrices,
it performs only seven. The cost of eliminating one matrix multiplication will be
several new additions of /2 x n/2 matrices, but still only a constant number of
additions. As before, the constant number of matrix additions will be subsumed
by ®-notation when we set up the recurrence equation to characterize the running
time.

Strassen’s method is not at all obvious. (This might be the biggest understate-
ment in this book.) It has four steps:

1. Divide the input matrices A and B and output matrix C into n/2 x n/2 subma-
trices, as in equation (4.9). This step takes ®(1) time by index calculation, just
as in SQUARE-MATRIX-MULTIPLY-RECURSIVE.

2. Create 10 matrices Sy, S,, ..., S1o, €ach of which is n/2 x n/2 and is the sum
or difference of two matrices created in step 1. We can create all 10 matrices in
©(n?) time.

3. Using the submatrices created in step 1 and the 10 matrices created in step 2,
recursively compute seven matrix products Py, P,, ..., P;. Each matrix P; is
n/2xn/2.

4. Compute the desired submatrices Cyq, Ci,, Cy1, Co, of the result matrix C by
adding and subtracting various combinations of the P; matrices. We can com-
pute all four submatrices in ®(n?) time.

We shall see the details of steps 2—4 in a moment, but we already have enough
information to set up a recurrence for the running time of Strassen’s method. Let us
assume that once the matrix size n gets down to 1, we perform a simple scalar mul-
tiplication, just as in line 4 of SQUARE-MATRIX-MULTIPLY-RECURSIVE. When
n > 1, steps 1, 2, and 4 take a total of ®(n?) time, and step 3 requires us to per-
form seven multiplications of n/2 x n /2 matrices. Hence, we obtain the following
recurrence for the running time 7'(n) of Strassen’s algorithm:

a(l) ifn=1,
7T (n/2) + ©(n?) ifn>1.

heé¢eps:/hemanthrajhemu.github.io

T(n) = (4.18)

\

80 Chapter 4 Divide-and-Conquer

We have traded off one matrix multiplication for a constant number of matrix ad-
ditions. Once we understand recurrences and their solutions, we shall see that this
tradeoff actually leads to a lower asymptotic running time. By the master method
in Section 4.5, recurrence (4.18) has the solution 7' (n) = O (n'¢7).

We now proceed to describe the details. In step 2, we create the following 10

matrices:

S1 = Bui—Bxn,
S, = Ap+ A,
S3 = Ayp+Axn,
S4 = By — B,
Ss = A+ Axn,
S¢ = Bu+ Bxn,
S; = Ap—Axn,
Ss = By + B,
So = An—Aax,
Sio = Bu+ Bz

Since we must add or subtract /2 x n/2 matrices 10 times, this step does indeed
take ©(n?) time.

In step 3, we recursively multiply /2 xn /2 matrices seven times to compute the
following n /2 x n/2 matrices, each of which is the sum or difference of products
of A and B submatrices:

Pl = All'Sl = All'B12_A11'B22,

P, Sy By = Ay Bn+ A Bas,
Py = S3-Bin = Aa- B+ Ay B,
Py = Az - Sy = Az By — Ay By,
Ps = Ss5-S¢ = Aun-Bii+ Ay Ba+ Ay - By + Axpy - By,
Ps = 87-Sg = Awp+Bayr+ A1z By — Asp Byy — Aya - Bay s

P7 = S9'S10 = All'Bll+A11'BIZ_A21'BII_AZI'BIZ~

Note that the only multiplications we need to perform are those in the middle col-
umn of the above equations. The right-hand column just shows what these products
equal in terms of the original submatrices created in step 1.

Step 4 adds and subtracts the P; matrices created in step 3 to construct the four
n/2 x n/2 submatrices of the product C. We start with

Ciy=Ps+Py— P, + Ps.

heé¢eps:/hemanthrajhemu.github.io

4.2 Strassen’s algorithm for matrix multiplication 81

Expanding out the right-hand side, with the expansion of each P; on its own line
and vertically aligning terms that cancel out, we see that C;; equals

Ay Bii+ A By + Ay By + Az By
— Ay By + Az By
— A1+ By — Az By
— Axy-Bos— Az Byi +A1n- Bos + Ayz- By

A+ Bn + A1z Bay
which corresponds to equation (4.11).

Similarly, we set

Co=Pi+ P,

and so Cy, equals

A1+ Bia— A1+ By
+ A11- B+ A2 Bas

A1+ Bz + A12- By,
corresponding to equation (4.12).
Setting

Cy =P+ Py

makes Cy; equal

Az By + Az Byy
— A By + Az By

Az1- Byy + Ay Bay
corresponding to equation (4.13).
Finally, we set
Cypy=Ps+ P, —P3— Py,

so that C,, equals

A1+ Bii+ A1 B+ Ay By + Ay - By
— Ay1- By + A11- Bz
— Ay By — A1 - By
— A1 B — Ay -Bia+ Az - By + Az - Bys

Az By + Az Bys

heé¢eps:/hemanthrajhemu.github.io

82 Chapter 4 Divide-and-Conquer

which corresponds to equation (4.14). Altogether, we add or subtract n/2 x n/2
matrices eight times in step 4, and so this step indeed takes ®(n?) time.

Thus, we see that Strassen’s algorithm, comprising steps 1-4, produces the cor-
rect matrix product and that recurrence (4.18) characterizes its running time. Since
we shall see in Section 4.5 that this recurrence has the solution 7'(n) = @(n'7),
Strassen’s method is asymptotically faster than the straightforward SQUARE-
MATRIX-MULTIPLY procedure. The notes at the end of this chapter discuss some
of the practical aspects of Strassen’s algorithm.

Exercises

Note: Although Exercises 4.2-3, 4.2-4, and 4.2-5 are about variants on Strassen’s
algorithm, you should read Section 4.5 before trying to solve them.

4.2-1
Use Strassen’s algorithm to compute the matrix product

1 3 6 8
7 5 4 2)°
Show your work.

4.2-2
Write pseudocode for Strassen’s algorithm.

4.2-3
How would you modify Strassen’s algorithm to multiply #n x n matrices in which n
is not an exact power of 2? Show that the resulting algorithm runs in time O (n'¢7).

4.2-4

What is the largest k such that if you can multiply 3 x 3 matrices using k multi-
plications (not assuming commutativity of multiplication), then you can multiply
n x n matrices in time o(n'¢7)? What would the running time of this algorithm be?

4.2-5

V. Pan has discovered a way of multiplying 68 x 68 matrices using 132,464 mul-
tiplications, a way of multiplying 70 x 70 matrices using 143,640 multiplications,
and a way of multiplying 72 x 72 matrices using 155,424 multiplications. Which
method yields the best asymptotic running time when used in a divide-and-conquer
matrix-multiplication algorithm? How does it compare to Strassen’s algorithm?

heé¢eps:/hemanthrajhemu.github.io

4.3 The substitution method for solving recurrences 83

4.2-6

How quickly can you multiply a k n xn matrix by an n xk n matrix, using Strassen’s
algorithm as a subroutine? Answer the same question with the order of the input
matrices reversed.

4.2-7

Show how to multiply the complex numbers a + bi and ¢ + di using only three
multiplications of real numbers. The algorithm should take a, b, ¢, and d as input
and produce the real component ac — bd and the imaginary component ad + bc
separately.

4.3 The substitution method for solving recurrences

Now that we have seen how recurrences characterize the running times of divide-
and-conquer algorithms, we will learn how to solve recurrences. We start in this
section with the “substitution” method.

The substitution method for solving recurrences comprises two steps:

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

We substitute the guessed solution for the function when applying the inductive
hypothesis to smaller values; hence the name “substitution method.” This method
is powerful, but we must be able to guess the form of the answer in order to apply it.
We can use the substitution method to establish either upper or lower bounds on
arecurrence. As an example, let us determine an upper bound on the recurrence

T(n) =2T(|n/2]) +n, (4.19)

which is similar to recurrences (4.3) and (4.4). We guess that the solution is
T(n) = O(nlgn). The substitution method requires us to prove that 7'(n) <
cnlgn for an appropriate choice of the constant ¢ > 0. We start by assuming
that this bound holds for all positive m < n, in particular for m = |n/2], yielding
T(|n/2]) <c|n/2]lg(|n/2]). Substituting into the recurrence yields

T(n) = 2(c|n/2]1g([n/2])) +n
cnlg(n/2) +n
cnlgn —cnlg2+n

IA

cnlgn—cn+n

IA

cnlgn ,

heé¢eps:/hemanthrajhemu.github.io

84 Chapter 4 Divide-and-Conquer

where the last step holds as long as ¢ > 1.

Mathematical induction now requires us to show that our solution holds for the
boundary conditions. Typically, we do so by showing that the boundary condi-
tions are suitable as base cases for the inductive proof. For the recurrence (4.19),
we must show that we can choose the constant ¢ large enough so that the bound
T(n) <cnlgn works for the boundary conditions as well. This requirement
can sometimes lead to problems. Let us assume, for the sake of argument, that
T (1) = 1 is the sole boundary condition of the recurrence. Then for n = 1, the
bound T'(n) < cnlgn yields T(1) < cllg1 = 0, which is at odds with 7'(1) = 1.
Consequently, the base case of our inductive proof fails to hold.

We can overcome this obstacle in proving an inductive hypothesis for a spe-
cific boundary condition with only a little more effort. In the recurrence (4.19),
for example, we take advantage of asymptotic notation requiring us only to prove
T(n) < cnlgn for n > ny, where ny is a constant that we get to choose. We
keep the troublesome boundary condition 7°(1) = 1, but remove it from consid-
eration in the inductive proof. We do so by first observing that for n > 3, the
recurrence does not depend directly on 7'(1). Thus, we can replace 7'(1) by T(2)
and T'(3) as the base cases in the inductive proof, letting no, = 2. Note that we
make a distinction between the base case of the recurrence (n = 1) and the base
cases of the inductive proof (n = 2 and n = 3). With T (1) = 1, we derive from
the recurrence that 7(2) = 4 and T(3) = 5. Now we can complete the inductive
proof that T(n) < cnlgn for some constant ¢ > 1 by choosing ¢ large enough
so that T(2) < ¢21g2 and T'(3) < ¢3lg3. As it turns out, any choice of ¢ > 2
suffices for the base cases of » = 2 and n = 3 to hold. For most of the recurrences
we shall examine, it is straightforward to extend boundary conditions to make the
inductive assumption work for small 7, and we shall not always explicitly work out
the details.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to recurrences.
Guessing a solution takes experience and, occasionally, creativity. Fortunately,
though, you can use some heuristics to help you become a good guesser. You
can also use recursion trees, which we shall see in Section 4.4, to generate good
guesses.

If a recurrence is similar to one you have seen before, then guessing a similar
solution is reasonable. As an example, consider the recurrence

T(n) =2T(|n/2] +17) +n,

which looks difficult because of the added “17” in the argument to 7" on the right-
hand side. Intuitively, however, this additional term cannot substantially affect the

heé¢eps:/hemanthrajhemu.github.io

4.3 The substitution method for solving recurrences 85

solution to the recurrence. When 7 is large, the difference between |n/2| and
[7/2] 4+ 17 is not that large: both cut n nearly evenly in half. Consequently, we
make the guess that 7'(n) = O(nlgn), which you can verify as correct by using
the substitution method (see Exercise 4.3-6).

Another way to make a good guess is to prove loose upper and lower bounds on
the recurrence and then reduce the range of uncertainty. For example, we might
start with a lower bound of T'(n) = Q(n) for the recurrence (4.19), since we
have the term n in the recurrence, and we can prove an initial upper bound of
T(n) = O(n?). Then, we can gradually lower the upper bound and raise the
lower bound until we converge on the correct, asymptotically tight solution of
T(n) = O(nlgn).

Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution of a
recurrence, but somehow the math fails to work out in the induction. The problem
frequently turns out to be that the inductive assumption is not strong enough to
prove the detailed bound. If you revise the guess by subtracting a lower-order term
when you hit such a snag, the math often goes through.

Consider the recurrence

T(n)y=T(n/2))+T(n/2])+1.

We guess that the solution is 7'(n) = O(n), and we try to show that 7'(n) < cn for
an appropriate choice of the constant ¢. Substituting our guess in the recurrence,
we obtain

T(n) < c|n/2]+c[n/2]1+1
= cn+1,

which does not imply 7'(n) < cn for any choice of ¢. We might be tempted to try
a larger guess, say T (n) = O(n?). Although we can make this larger guess work,
our original guess of 7'(n) = O(n) is correct. In order to show that it is correct,
however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by the constant 1, a
lower-order term. Nevertheless, mathematical induction does not work unless we
prove the exact form of the inductive hypothesis. We overcome our difficulty
by subtracting a lower-order term from our previous guess. Our new guess is
T(n) <cn—d,where d > 0is a constant. We now have

Tn) < (c|n/2]—=d)+(c[n/2]—-d)+1
= cn—2d+1
< c¢cn—d,

heé¢eps:/hemanthrajhemu.github.io

86 Chapter 4 Divide-and-Conquer

as long as d > 1. As before, we must choose the constant ¢ large enough to handle
the boundary conditions.

You might find the idea of subtracting a lower-order term counterintuitive. Af-
ter all, if the math does not work out, we should increase our guess, right?
Not necessarily! When proving an upper bound by induction, it may actually be
more difficult to prove that a weaker upper bound holds, because in order to prove
the weaker bound, we must use the same weaker bound inductively in the proof.
In our current example, when the recurrence has more than one recursive term, we
get to subtract out the lower-order term of the proposed bound once per recursive
term. In the above example, we subtracted out the constant d twice, once for the
T'(|n/2]) term and once for the 7'([n/2]) term. We ended up with the inequality
T(n) <cn—2d + 1, and it was easy to find values of d to make cn —2d + 1 be
less than or equal to cn — d.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the recur-
rence (4.19) we can falsely “prove” T(n) = O(n) by guessing T'(n) < c¢n and
then arguing

T'(n) = 2(c|n/2])+n
< c¢n+n
= O(n), < wrong!!

since ¢ is a constant. The error is that we have not proved the exact form of the
inductive hypothesis, that is, that 7'(n) < cn. We therefore will explicitly prove
that 7'(n) < c¢n when we want to show that 7'(n) = O(n).

Changing variables

Sometimes, a little algebraic manipulation can make an unknown recurrence simi-
lar to one you have seen before. As an example, consider the recurrence

T(n) =2T (L\/EJ) +lgn,

which looks difficult. We can simplify this recurrence, though, with a change of
variables. For convenience, we shall not worry about rounding off values, such
as /n, to be integers. Renaming m = Ign yields

T(2™) =2TQ2"%) +m.
We can now rename S(m) = T(2™) to produce the new recurrence

S(m) =28S(m/2) + m,

heé¢eps:/hemanthrajhemu.github.io

4.3 The substitution method for solving recurrences 87

which is very much like recurrence (4.19). Indeed, this new recurrence has the
same solution: S(m) = O(mlgm). Changing back from S(m) to T'(n), we obtain

T(n)y=T2")=Sm)=0(mlgm) = 0(gnlglgn) .

Exercises

4.3-1
Show that the solution of 7 (n) = T'(n — 1) + n is O(n?).

4.3-2
Show that the solution of 7'(n) = T([n/2]) + 1is O(Ilgn).

4.3-3
We saw that the solution of 7'(n) = 2T (|n/2]) +nis O(n lgn). Show that the so-
lution of this recurrence is also 2(n 1g n). Conclude that the solution is ®(n 1gn).

4.3-4

Show that by making a different inductive hypothesis, we can overcome the diffi-
culty with the boundary condition 7'(1) = 1 for recurrence (4.19) without adjusting
the boundary conditions for the inductive proof.

4.3-5
Show that ®(n Ign) is the solution to the “exact” recurrence (4.3) for merge sort.

4.3-6
Show that the solution to 7'(n) = 2T (|n/2] + 17) + nis O(nlgn).

4.3-7

Using the master method in Section 4.5, you can show that the solution to the
recurrence 7' (n) = 4T (n/3) + nis T(n) = O(n'°34). Show that a substitution
proof with the assumption 7'(n) < ¢n'°¢3* fails. Then show how to subtract off a
lower-order term to make a substitution proof work.

4.3-8

Using the master method in Section 4.5, you can show that the solution to the
recurrence T'(n) = 4T (n/2) + n?is T(n) = ©(n?). Show that a substitution
proof with the assumption 7'(n) < cn? fails. Then show how to subtract off a
lower-order term to make a substitution proof work.

heé¢eps:/hemanthrajhemu.github.io

88 Chapter 4 Divide-and-Conquer

4.3-9

Solve the recurrence T'(n) = 3T (4/n) + logn by making a change of variables.
Your solution should be asymptotically tight. Do not worry about whether values
are integral.

4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to provide a succinct proof that
a solution to a recurrence is correct, you might have trouble coming up with a
good guess. Drawing out a recursion tree, as we did in our analysis of the merge
sort recurrence in Section 2.3.2, serves as a straightforward way to devise a good
guess. In a recursion tree, each node represents the cost of a single subproblem
somewhere in the set of recursive function invocations. We sum the costs within
each level of the tree to obtain a set of per-level costs, and then we sum all the
per-level costs to determine the total cost of all levels of the recursion.

A recursion tree is best used to generate a good guess, which you can then verify
by the substitution method. When using a recursion tree to generate a good guess,
you can often tolerate a small amount of “sloppiness,” since you will be verifying
your guess later on. If you are very careful when drawing out a recursion tree and
summing the costs, however, you can use a recursion tree as a direct proof of a
solution to a recurrence. In this section, we will use recursion trees to generate
good guesses, and in Section 4.6, we will use recursion trees directly to prove the
theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for
the recurrence T'(n) = 3T (|n/4]) + ©(n?). We start by focusing on finding an
upper bound for the solution. Because we know that floors and ceilings usually do
not matter when solving recurrences (here’s an example of sloppiness that we can
tolerate), we create a recursion tree for the recurrence T (n) = 3T (n/4) + cn?,
having written out the implied constant coefficient ¢ > 0.

Figure 4.5 shows how we derive the recursion tree for 7'(n) = 3T (n/4) + cn?.
For convenience, we assume that n is an exact power of 4 (another example of
tolerable sloppiness) so that all subproblem sizes are integers. Part (a) of the figure
shows T'(n), which we expand in part (b) into an equivalent tree representing the
recurrence. The cn? term at the root represents the cost at the top level of recursion,
and the three subtrees of the root represent the costs incurred by the subproblems
of size n /4. Part (c) shows this process carried one step further by expanding each
node with cost 7'(n/4) from part (b). The cost for each of the three children of the
root is ¢(n/4)?. We continue expanding each node in the tree by breaking it into
its constituent parts as determined by the recurrence.

heé¢eps:/hemanthrajhemu.github.io

4.4 The recursion-tree method for solving recurrences 89

T (n) cn

(a) (b) (©)
| /an\ "E"h)
¢ (3’ ¢ (3’ ¢ (3)° o feen®
log, n / \ \ \
(1) () (@) (1) c() (@) () c(f) e(f) - ()7 en?
V T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) T(‘l) e T(‘l) T(‘l) T(‘l) wd e @(nlog43)
nlog43
() Total: O(n?)

Figure 4.5 Constructing a recursion tree for the recurrence T'(n) = 37T (n/4) + cn?. Part (a)
shows T'(n), which progressively expands in (b)—(d) to form the recursion tree. The fully expanded
tree in part (d) has height log, n (it has logy n + 1 levels).

heé¢eps:/hemanthrajhemu.github.io

90 Chapter 4 Divide-and-Conquer

Because subproblem sizes decrease by a factor of 4 each time we go down one
level, we eventually must reach a boundary condition. How far from the root do
we reach one? The subproblem size for a node at depth i is n/4'. Thus, the
subproblem size hits n = 1 when n/4° = 1 or, equivalently, when i = log, n.
Thus, the tree has log, n 4 1 levels (at depths 0, 1,2, ..., log, n).

Next we determine the cost at each level of the tree. Each level has three times
more nodes than the level above, and so the number of nodes at depth i is 3'.
Because subproblem sizes reduce by a factor of 4 for each level we go down
from the root, each node at depth i, fori = 0,1,2,...,log,n — 1, has a cost
of ¢(n/4")?. Multiplying, we see that the total cost over all nodes at depth i, for
i =0,1,2,...,log,n — 1, is 3'c(n/4")*> = (3/16)'cn®. The bottom level, at
depth log, n, has 3°e" = p'°243 podes, each contributing cost 7'(1), for a total
cost of n'°243T (1), which is ®(n'°¢+3), since we assume that 7'(1) is a constant.

Now we add up the costs over all levels to determine the cost for the entire tree:

2 3 2 3 ? 2 3 e 2 logy 3
T'(n) = cn +%cn+) <" +-+ 16 cn” 4+ O[m°)

loggn—1 3 i
= Z (—) cn? + @(n1°g4 3)
—~ \16
B/1e)e —1 logg 3 ;
= ———cn" +0n*™ by equation (A.5)) .
(3/16) =1 +0Om*7) (byeq (A.5))
This last formula looks somewhat messy until we realize that we can again take
advantage of small amounts of sloppiness and use an infinite decreasing geometric
series as an upper bound. Backing up one step and applying equation (A.6), we
have

g 3 : 2 log4 3
T(n) = Y) cn’ + 0w
i=0

[ee] 3 i
< > (E) cn® + O (n'*?)
i=0
1 2
— @ logy 3
= (/16) cn® 4+ O(n%”)
_ 16 2 logy 3
= T3 cn” 4 O(n)
= 0@n?.

Thus, we have derived a guess of 7 (n) = O(n?) for our original recurrence
T(n) = 3T(|n/4]) + ©(n?). In this example, the coefficients of ¢n? form a
decreasing geometric series and, by equation (A.6), the sum of these coefficients

heé¢eps:/hemanthrajhemu.github.io

4.4 The recursion-tree method for solving recurrences 91

\ /cn {.............................-uill. cn
g\ /o
@) B B o) e o
’ .

Total: O(nlgn)

Figure 4.6 A recursion tree for the recurrence 7'(n) = T (n/3) + T (2n/3) + cn.

is bounded from above by the constant 16/13. Since the root’s contribution to the
total cost is cn?, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O(n?) is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ®(n?), and so ©2(n?) must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T(n) = O(n?) is an upper bound for the recurrence T'(n) =
3T(|n/4]) + ©(n?). We want to show that 7'(n) < dn? for some constant d > 0.
Using the same constant ¢ > 0 as before, we have

T(n) 3T(|n/4]) + cn?
3d |n/4)* + cn?®
3d(n/4)* + cn?
3 2 2
T dn” +cn
dn?,

IAIA TA

where the last step holds as long as d > (16/13)c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T(n)=Tn/3)+T2n/3)+ O(n) .

(Again, we omit floor and ceiling functions for simplicity.) As before, we let ¢
represent the constant factor in the O(n) term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

heé¢eps:/hemanthrajhemu.github.io

92 Chapter 4 Divide-and-Conquer

The longest simple path from the root to a leaf is n — (2/3)n — (2/3)?’n —
.-~ — 1. Since (2/3)*n = 1 when k = logs,, n, the height of the tree is logs,, n.

Intuitively, we expect the solution to the recurrence to be at most the number
of levels times the cost of each level, or O(cnlogs,, n) = O(nlgn). Figure 4.6
shows only the top levels of the recursion tree, however, and not every level in the
tree contributes a cost of c¢n. Consider the cost of the leaves. If this recursion tree
were a complete binary tree of height log,,, , there would be 2'#3/2" = ploga/22
leaves. Since the cost of each leaf is a constant, the total cost of all leaves would
then be ©(n'3/22) which, since log, /22 is a constant strictly greater than I,
is w(nlgn). This recursion tree is not a complete binary tree, however, and so
it has fewer than n'°%3/22 leaves. Moreover, as we go down from the root, more
and more internal nodes are absent. Consequently, levels toward the bottom of the
recursion tree contribute less than c¢n to the total cost. We could work out an accu-
rate accounting of all costs, but remember that we are just trying to come up with a
guess to use in the substitution method. Let us tolerate the sloppiness and attempt
to show that a guess of O(n lgn) for the upper bound is correct.

Indeed, we can use the substitution method to verify that O(n Ign) is an upper
bound for the solution to the recurrence. We show that 7 (n) < dnlgn, where d is
a suitable positive constant. We have

T(n) < Tn/3)+TQ2n/3)+cn
< dn/3)lg(n/3)+d(2n/3)1g(2n/3) + cn
= (d@n/3)1gn—dn/3)1g3)
+ (dQ2n/3)1gn —d(2n/3)1g(3/2)) + cn
dnlgn—d((n/3)1g3 + (2n/3)1g(3/2)) + cn
= dnlgn—d((n/3)1g3+ (2n/3)1g3 — (2n/3)1g2) + cn
= dnlgn—dn(lg3—-2/3)+cn
< dnlgn,

aslongasd > c¢/(Ig3—(2/3)). Thus, we did not need to perform a more accurate
accounting of costs in the recursion tree.

Exercises

4.4-1
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) = 3T(|n/2]) + n. Use the substitution method to verify your answer.

4.4-2
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) = T(n/2) + n?. Use the substitution method to verify your answer.

heé¢eps:/hemanthrajhemu.github.io

4.5 The master method for solving recurrences 93

4.4-3
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) = 4T (n/2 4 2) 4+ n. Use the substitution method to verify your answer.

4.4-4
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) =2T(n — 1) + 1. Use the substitution method to verify your answer.

4.4-5
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) = T(n—1)+T(n/2)+n. Use the substitution method to verify your answer.

4.4-6
Argue that the solution to the recurrence T'(n) = T'(n/3)+ T (2n/3) +cn, where ¢
is a constant, is Q2(n 1gn) by appealing to a recursion tree.

4.4-7

Draw the recursion tree for 7'(n) = 4T (|n/2]) + cn, where ¢ is a constant, and
provide a tight asymptotic bound on its solution. Verify your bound by the substi-
tution method.

4.4-8
Use a recursion tree to give an asymptotically tight solution to the recurrence
T(n) =T —a)+ T(a) + cn, where a > 1 and ¢ > 0 are constants.

4.4-9

Use a recursion tree to give an asymptotically tight solution to the recurrence
T(n) = T(an)+ T((1 —a)n)+ cn, where « is a constant in the range 0 < o < 1
and ¢ > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a “cookbook” method for solving recurrences of the
form

Tn)=aTn/b)+ f(n), (4.20)

where @ > 1 and b > 1 are constants and f(n) is an asymptotically positive
function. To use the master method, you will need to memorize three cases, but
then you will be able to solve many recurrences quite easily, often without pencil
and paper.

heé¢eps:/hemanthrajhemu.github.io

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size 7 into a subproblems, each of size n/b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T'(n/b). The
function f(n) encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm hasa = 7, b = 2, and f(n) = O(n?).

As a matter of technical correctness, the recurrence is not actually well defined,
because n/b might not be an integer. Replacing each of the a terms 7' (n/b) with
either T'(|n/b]|) or T([n/b7]) will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Leta > 1 and b > 1 be constants, let f(n) be a function, and let 7'(n) be defined
on the nonnegative integers by the recurrence

T'(n) =aT(n/b) + f(n) .

where we interpret /b to mean either [n/b | or [n/b]. Then T (n) has the follow-
ing asymptotic bounds:

1. If f(n) = O(n' =) for some constant € > 0, then 7' (n) = O(n'°9),
2. If f(n) = O), then T(n) = O(n'°*»%1gn).

3. If f(n) = Q(n'™e»9%¢€) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)). |

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f(n) with the function n'°% . Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function n'°2 ¢ is the
larger, then the solution is T'(n) = ©(n'°%%). If, as in case 3, the function f(n)
is the larger, then the solution is 7'(n) = ®O(f(n)). If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T(n) = O(n'"2%1gn) = O(f(n)lgn).

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f(n) be smaller than n'°% ¢, it must be polynomially smaller.

heé¢eps:/hemanthrajhemu.github.io

4.5 The master method for solving recurrences 95

That is, f(n) must be asymptotically smaller than n'°% ¢ by a factor of n¢ for some
constant € > 0. In the third case, not only must f(n) be larger than n'°¢% 4, it also
must be polynomially larger and in addition satisfy the “regularity” condition that
af(n/b) < cf(n). This condition is satisfied by most of the polynomially bounded
functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f(n). There is
a gap between cases 1 and 2 when f(n) is smaller than 7'°% ¢ but not polynomi-
ally smaller. Similarly, there is a gap between cases 2 and 3 when f(n) is larger
than n'°¢» % but not polynomially larger. If the function f(n) falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master
method to solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the master
theorem applies and write down the answer.
As a first example, consider

T(n)=9T(n/3) +n.
For this recurrence, we have ¢ = 9, b = 3, f(n) = n, and thus we have that
n'oerd = plos® = @(n?). Since f(n) = O(n'°3°7¢), where € = 1, we can apply

case 1 of the master theorem and conclude that the solution is 7'(n) = ©(n?).
Now consider

Tn)=T2n/3) +1,

in whicha = 1, b = 3/2, f(n) = 1, and n'*%% = pl°=32! = % = 1, Case 2
applies, since f(n) = O(n'»%) = ©(1), and thus the solution to the recurrence
is T'(n) = ©(gn).

For the recurrence

T(n)=3Tn/4) +nlgn,

we have a = 3, b = 4, f(n) = nlgn, and n'°% = pla3 = On°%73).
Since f(n) = Q(n'°243t€), where ¢ ~ 0.2, case 3 applies if we can show that
the regularity condition holds for f(n). For sufficiently large n, we have that
af(n/b) = 3(n/4)lg(n/4) < (3/4)nlgn = cf(n) for c = 3/4. Consequently,
by case 3, the solution to the recurrence is 7'(n) = O(nlgn).

The master method does not apply to the recurrence

Tn)=2Tn/2)+nlgn,

even though it appears to have the proper form: ¢ = 2, b = 2, f(n) = nlgn,
and n'°¢? = p. You might mistakenly think that case 3 should apply, since

heé¢eps:/hemanthrajhemu.github.io

96 Chapter 4 Divide-and-Conquer

f(n) = nlgn is asymptotically larger than n'°2¢ = pn. The problem is that it
is not polynomially larger. The ratio f(n)/n"%% = (nlgn)/n = lgn is asymp-
totically less than n€ for any positive constant €. Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let’s use the master method to solve the recurrences we saw in Sections 4.1
and 4.2. Recurrence (4.7),

T(n) =2T(n/2) + O),

characterizes the running times of the divide-and-conquer algorithm for both the
maximum-subarray problem and merge sort. (As is our practice, we omit stating
the base case in the recurrence.) Here, we havea = 2, b = 2, f(n) = ©(n), and
thus we have that n'°% ¢ = p'°222 = p_ Case 2 applies, since f(n) = O(n), and so
we have the solution 7'(n) = ®(nlgn).

Recurrence (4.17),

T(n) =8T(n/2) + O(n?),

describes the running time of the first divide-and-conquer algorithm that we saw
for matrix multiplication. Now we have ¢ = 8, b = 2, and f(n) = O(n?),
and so n'&® = p'°28 = p3 Since n? is polynomially larger than f(n) (that is,
f(n) = O(n>¢) for e = 1), case 1 applies, and T'(n) = O(n?).

Finally, consider recurrence (4.18),
T(n) =7T(n/2) + O(n?),

which describes the running time of Strassen’s algorithm. Here, we have a = 7,
b =2, f(n) = O(n?), and thus n'& 9 = p'27 Rewriting log, 7 as 1g7 and
recalling that 2.80 < Ig7 < 2.81, we see that f(n) = O(n'¢"~¢) for e = 0.8.
Again, case 1 applies, and we have the solution 7'(n) = O(n'¢7).

Exercises

4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.

a. T(n)=2Tn/4) + 1.
b. T(n) =2T(n/4) + /n.
c. T(n)=2Tn/4) +n.
d. T(n)=2T(n/4) + n>

heé¢eps:/hemanthrajhemu.github.io

4.6 Proof of the master theorem 97

4.5-2

Professor Caesar wishes to develop a matrix-multiplication algorithm that is
asymptotically faster than Strassen’s algorithm. His algorithm will use the divide-
and-conquer method, dividing each matrix into pieces of size n/4 x n/4, and the
divide and combine steps together will take ®(n?) time. He needs to determine
how many subproblems his algorithm has to create in order to beat Strassen’s algo-
rithm. If his algorithm creates a subproblems, then the recurrence for the running
time 7'(n) becomes T'(n) = aT (n/4) + ©(n?). What is the largest integer value
of a for which Professor Caesar’s algorithm would be asymptotically faster than
Strassen’s algorithm?

4.5-3

Use the master method to show that the solution to the binary-search recurrence
Tn)=Tm/2)+ 6(1)is T(n) = O(gn). (See Exercise 2.3-5 for a description
of binary search.)

4.5-4
Can the master method be applied to the recurrence 7'(n) = 4T (n/2) + n?lgn?
Why or why not? Give an asymptotic upper bound for this recurrence.

4.5-5 *

Consider the regularity condition af(n/b) < c¢f(n) for some constant ¢ < 1,
which is part of case 3 of the master theorem. Give an example of constants a > 1
and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.

* 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not
need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recur-
rence (4.20), under the simplifying assumption that 7'(n) is defined only on ex-
act powers of b > 1, that is, for n = 1,b,b?,.... This part gives all the intuition
needed to understand why the master theorem is true. The second part shows how
to extend the analysis to all positive integers n; it applies mathematical technique
to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by
using it to describe the behavior of functions that are defined only over exact
powers of b. Recall that the definitions of asymptotic notations require that

heé¢eps:/hemanthrajhemu.github.io

98 Chapter 4 Divide-and-Conquer

bounds be proved for all sufficiently large numbers, not just those that are pow-
ers of . Since we could make new asymptotic notations that apply only to the set
{bi 11 =0,1,2,...}, instead of to the nonnegative numbers, this abuse is minor.

Nevertheless, we must always be on guard when we use asymptotic notation over
a limited domain lest we draw improper conclusions. For example, proving that
T (n) = O(n) when n is an exact power of 2 does not guarantee that 7(n) = O(n).
The function 7'(n) could be defined as

n ifn=172,4,8,...,
2

T(n) =

n* otherwise ,

in which case the best upper bound that applies to all values of n is T'(n) = O(n?).
Because of this sort of drastic consequence, we shall never use asymptotic notation
over a limited domain without making it absolutely clear from the context that we
are doing so.

4.6.1 The proof for exact powers

The first part of the proof of the master theorem analyzes the recurrence (4.20)
T(n)y=aT(n/b)+ f(n),

for the master method, under the assumption that n is an exact power of b > 1,
where b need not be an integer. We break the analysis into three lemmas. The first
reduces the problem of solving the master recurrence to the problem of evaluating
an expression that contains a summation. The second determines bounds on this
summation. The third lemma puts the first two together to prove a version of the
master theorem for the case in which 7 is an exact power of b.

Lemma 4.2
Leta > 1 and b > 1 be constants, and let f(n) be a nonnegative function defined
on exact powers of b. Define T'(n) on exact powers of b by the recurrence

(1) ifn=1,
aT(n/b) + f(n) ifn=>b",

where i is a positive integer. Then

T(n) =

log;, n—1

T(n) =0 ")+ Y a f(n/b’). (4.21)

Jj=0

Proof We use the recursion tree in Figure 4.7. The root of the tree has cost f(n),
and it has a children, each with cost f(n/b). (It is convenient to think of a as being

heé¢eps:/hemanthrajhemu.github.io

4.6 Proof of the master theorem 99

/q>\
Sfn/b) Sfn/b) .. f(n/b) - 4w af(n/b)

f(n/bz)f(n/bz) S(n/b?) f(n/b?) f(n/b?)f(n/b?) f(n/b?) f(n/b?)f(n/b?) wwsim a? f(n/b?)

\J @(1) @(1) @(1) @(1) @{1) @(1) @{1) @(1) @(1) @(1) @(1) @(1) @(1) i O(n'°29)

n1°gha
logp n—1
Total: ©(n'°®9) 4+ Z a’ f(n/b%)
j=0

Figure 4.7 The recursion tree generated by 7'(n) = aT(n/b) + f(n). The tree is a complete a-ary
tree with 7'°¢» @ leaves and height log, n. The cost of the nodes at each depth is shown at the right,
and their sum is given in equation (4.21).

an integer, especially when visualizing the recursion tree, but the mathematics does
not require it.) Each of these children has a children, making a2 nodes at depth 2,
and each of the a children has cost f(n/b?). In general, there are a’/ nodes at
depth j, and each has cost f(n/b’). The cost of each leaf is T(1) = ©(1), and
each leaf is at depth log, n, since n/b"°%" = 1. There are a'°%" = n'°¢» % Jeaves
in the tree.

We can obtain equation (4.21) by summing the costs of the nodes at each depth
in the tree, as shown in the figure. The cost for all internal nodes at depth j is
a’ f(n/b’), and so the total cost of all internal nodes is

log, n—1

> al f(n/b)

Jj=0

In the underlying divide-and-conquer algorithm, this sum represents the costs of
dividing problems into subproblems and then recombining the subproblems. The

heé¢eps:/hemanthrajhemu.github.io

100 Chapter 4 Divide-and-Conquer

cost of all the leaves, which is the cost of doing all n'°»¢ subproblems of size 1,
is O(n'oer), m

In terms of the recursion tree, the three cases of the master theorem correspond
to cases in which the total cost of the tree is (1) dominated by the costs in the
leaves, (2) evenly distributed among the levels of the tree, or (3) dominated by the
cost of the root.

The summation in equation (4.21) describes the cost of the dividing and com-
bining steps in the underlying divide-and-conquer algorithm. The next lemma pro-
vides asymptotic bounds on the summation’s growth.

Lemma 4.3
Leta > 1and b > 1 be constants, and let f(n) be a nonnegative function defined
on exact powers of b. A function g(n) defined over exact powers of b by

log;, n—1

gny=Y_ alfn/b’) (4.22)

j=0
has the following asymptotic bounds for exact powers of b:

1. If f(n) = O(n'9~¢) for some constant € > 0, then g(n) = O(n'°*%r).
2. If f(n) = O(n'°), then g(n) = O(n'e%Ign).

3. Ifaf(n/b) < cf(n) for some constant ¢ < 1 and for all sufficiently large n,
then g(n) = ©(f(n)).

Proof For case 1, we have f(n) = O(n'°%%~¢), which implies that f(n/b’) =
O((n/b’)"e»a=€) Substituting into equation (4.22) yields

log;, n—1 ogp a—€
g(n) = 0(Y (%)lg) . (4.23)

We bound the summation within the O-notation by factoring out terms and simpli-
fying, which leaves an increasing geometric series:

log, n—1 o\ logy a—e log n—1 abe j
J(_ logy, a—e€
a - = n 1
: b/ . blogya
Jj=0 j=0

log;, n—1

plogs a—e Z (bé)j
j=0

nlogb a—e belogbn —1
be —1

heé¢eps:/hemanthrajhemu.github.io

4.6 Proof of the master theorem 101

c—1
— logy, a—e€ n
e (51

Since b and € are constants, we can rewrite the last expression as n'°¢ 4~€Q(n€) =
O(n'# %), Substituting this expression for the summation in equation (4.23) yields

g(n) = O(n"),

thereby proving case 1.
Because case 2 assumes that f(n) = O(n'°%%), we have that f(n/b’/) =
O((n/b7)"°er 4. Substituting into equation (4.22) yields

logy, n—1 oz @
gn) = ®< Z a’ (;—j)l :)) (4.24)

Jj=0

We bound the summation within the ®-notation as in case 1, but this time we do not
obtain a geometric series. Instead, we discover that every term of the summation

is the same:
logy, n—1 log;, n—1 .
h L n \logpa 2p a j
) s)
b/ blogy a
Jj=0 Jj=0
logy, n—1

— nlogha E 1
j=0

= n'%%log,n .
Substituting this expression for the summation in equation (4.24) yields

g(n) = O®"°®%log, n)
On" 2% 1gn) ,

proving case 2.

We prove case 3 similarly. Since f(n) appears in the definition (4.22) of g(n)
and all terms of g(n) are nonnegative, we can conclude that g(n) = Q(f(n)) for
exact powers of b. We assume in the statement of the lemma that a f (n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large n. We rewrite this assumption
as f(n/b) < (c/a) f(n) and iterate j times, yielding f(n/b’) < (c/a)’ f(n) or,
equivalently, a’ f(n/b’) < ¢/ f(n), where we assume that the values we iterate
on are sufficiently large. Since the last, and smallest, such value is n/b/~!, it is
enough to assume that n/b/~! is sufficiently large.

Substituting into equation (4.22) and simplifying yields a geometric series, but
unlike the series in case 1, this one has decreasing terms. We use an O(1) term to

heé¢eps:/hemanthrajhemu.github.io

102 Chapter 4 Divide-and-Conquer

capture the terms that are not covered by our assumption that # is sufficiently large:

log, n—1

gy = Y alfn/b)
art
lOgjbn—l

> f) + o)

Jj=0

f)Y ¢l +0(1)

= f(n) (1—10)+0(1)
= 0(f(n) .

since ¢ is a constant. Thus, we can conclude that g(n) = ©(f(n)) for exact powers
of b. With case 3 proved, the proof of the lemma is complete. |

A

A

We can now prove a version of the master theorem for the case in which 7 is an
exact power of b.

Lemma 4.4

Leta > 1and b > 1 be constants, and let f(n) be a nonnegative function defined
on exact powers of b. Define T (n) on exact powers of b by the recurrence

e() ifn=1,

T = Ty + £y itn=b' .

where 7 is a positive integer. Then 7'(n) has the following asymptotic bounds for
exact powers of b:

1. If f(n) = O(n'29~¢) for some constant € > 0, then T'(n) = O(n'°4),
2. If f(n) = O(n'°), then T(n) = O(n'°»%1gn).

3. If f(n) = Q(n'™29%¢€) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)).

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.21) from
Lemma 4.2. For case 1, we have

T(n) = O®°%) + On'»9)
— @(nlogb a) ,

heé¢eps:/hemanthrajhemu.github.io

4.6 Proof of the master theorem 103

and for case 2,
T(n) = Om°®%) +Omn"*»*1gn)
On"%1gn) .
For case 3,
T(n) = O0")+ 60(f(n))
= O(f(n).

because f(n) = Q(n'oe»rate), m

4.6.2 Floors and ceilings

To complete the proof of the master theorem, we must now extend our analysis to
the situation in which floors and ceilings appear in the master recurrence, so that
the recurrence is defined for all integers, not for just exact powers of . Obtaining
a lower bound on

T'(n) =aT([n/b]) + f(n) (4.25)
and an upper bound on
T'(n) =aT(|n/b])+ f(n) (4.26)

is routine, since we can push through the bound [n/b] > n/b in the first case to
yield the desired result, and we can push through the bound |[n/b| < n/b in the
second case. We use much the same technique to lower-bound the recurrence (4.26)
as to upper-bound the recurrence (4.25), and so we shall present only this latter
bound.

We modify the recursion tree of Figure 4.7 to produce the recursion tree in Fig-
ure 4.8. As we go down in the recursion tree, we obtain a sequence of recursive
invocations on the arguments

n,
[n/b] .
[Tn/b]/bT,
[T[n/b1/b1/b]

Let us denote the jth element in the sequence by n;, where

P n ifj=0,
7) ny/b] it > 0.

heé¢eps:/hemanthrajhemu.github.io

(4.27)

104 Chapter 4 Divide-and-Conquer

/q>\
Sf(ny) Sf(n) f(m) - sl af(ny)

f(”z) f(ny) - f(n2) f(ny) f(ny) - f(n2) S(na) f(nz) = f(ng) i azf(nz)
\J @(1) @(1) @(1) @(1) @{1) @(1) @{1) @(1) @(1) @(1) @(1) @(1) @(1) il O (n'%9)
@(nlogba)
[logj n]—1
Total: O) + Y a’ f(n;)

j=0

Figure 4.8 The recursion tree generated by 7'(n) = aT ([n/b1)+ f(n). The recursive argument 7
is given by equation (4.27).

Our first goal is to determine the depth k such that ny is a constant. Using the
inequality [x] < x + 1, we obtain

ng = n,
n
1
n, = ﬁ‘i‘b-i-l
< +l+1+1
n — —
S opy T p2 T p

In general, we have

heé¢eps:/hemanthrajhemu.github.io

4.6 Proof of the master theorem 105

~.
|
-

n 1
YOSy T
i=0
< i—l—il
b/ l,=0b"
B n+ b
b b—1
Letting j = |log, n], we obtain
n b
nUOgh nj < bl.l"gb n) + b -1
n b
< bloghn—1+b_1
_n n b
~ n/b b—1
b
= b4 ——
+b—l
= 0(),

and thus we see that at depth |log;, n], the problem size is at most a constant.
From Figure 4.8, we see that

llog, n]—1
T(n) =0+ > alfin), (4.28)

Jj=0

which is much the same as equation (4.21), except that n is an arbitrary integer and
not restricted to be an exact power of b.
We can now evaluate the summation

Llogp n]—1

gmy= > d f(n) (4.29)

J=0

from equation (4.28) in a manner analogous to the proof of Lemma 4.3. Beginning
with case 3, ifaf([n/b]) < cf(n)forn > b+b/(b—1), where ¢ < 1 is aconstant,
then it follows that a’ f(n;) < ¢/ f(n). Therefore, we can evaluate the sum in
equation (4.29) just as in Lemma 4.3. For case 2, we have f(n) = O(n'°¢»%). If we
can show that f(n;) = O(n'*%%/a’) = O((n/b’)"¢»), then the proof for case 2
of Lemma 4.3 will go through. Observe that j < |log, n| implies b/ /n < 1. The
bound f(n) = O(n'°* %) implies that there exists a constant ¢ > 0 such that for all
sufficiently large n;,

heé¢eps:/hemanthrajhemu.github.io

106 Chapter 4 Divide-and-Conquer

logy a
fm;) < c (i + L)

A

plogs a bi b logp a
(o) 0 (5 0)
nlogba b logp a
< . 1 -
= <[) ()

= o(™).
a’

since ¢(1 + b/ (b — 1))"°# 4 is a constant. Thus, we have proved case 2. The proof
of case 1 is almost identical. The key is to prove the bound f(n;) = O(n'# 7€),
which is similar to the corresponding proof of case 2, though the algebra is more
intricate.

We have now proved the upper bounds in the master theorem for all integers 7.
The proof of the lower bounds is similar.

Exercises

4.6-1 *
Give a simple and exact expression for 7; in equation (4.27) for the case in which b
is a positive integer instead of an arbitrary real number.

4.6-2 %

Show that if f(n) = O(n'°#4 lgk n), where k > 0, then the master recurrence has
solution T'(n) = O(n"21g""!). For simplicity, confine your analysis to exact
powers of b.

4.6-3 *

Show that case 3 of the master theorem is overstated, in the sense that the regularity
condition af(n/b) < cf(n) for some constant ¢ < 1 implies that there exists a
constant € > 0 such that f(n) = Q(n'°e»4+¢),

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 4 107

Problems

4-1 Recurrence examples

Give asymptotic upper and lower bounds for 7'(n) in each of the following recur-
rences. Assume that 7'(n) is constant for n < 2. Make your bounds as tight as
possible, and justify your answers.

a. T(n) =2T(n/2) + n.
b. T(n) = T(Tn/10) + n.
c. T(n)=16T(n/4) + n>.
d. T(n) =7T(n/3) + nZ
e. T(n)=17T(n/2)+n

fo T(n) =2T(n/4) + /n.
g T(n)=T{n-2) +n%

4-2 Parameter-passing costs

Throughout this book, we assume that parameter passing during procedure calls
takes constant time, even if an /N -element array is being passed. This assumption
is valid in most systems because a pointer to the array is passed, not the array itself.
This problem examines the implications of three parameter-passing strategies:

1. An array is passed by pointer. Time = @(1).

2. An array is passed by copying. Time = ®(N), where N is the size of the array.

3. An array is passed by copying only the subrange that might be accessed by the
called procedure. Time = ®(q — p + 1) if the subarray A[p . .q] is passed.

a. Consider the recursive binary search algorithm for finding a number in a sorted
array (see Exercise 2.3-5). Give recurrences for the worst-case running times
of binary search when arrays are passed using each of the three methods above,
and give good upper bounds on the solutions of the recurrences. Let N be the
size of the original problem and n be the size of a subproblem.

b. Redo part (a) for the MERGE-SORT algorithm from Section 2.3.1.

heé¢eps:/hemanthrajhemu.github.io

108 Chapter 4 Divide-and-Conquer

4-3 More recurrence examples

Give asymptotic upper and lower bounds for 7'(n) in each of the following recur-
rences. Assume that 7'(n) is constant for sufficiently small n. Make your bounds
as tight as possible, and justify your answers.

a. T(n) =4T(n/3) +nlgn.
b. T(n)=3T(n/3) +n/lgn.

c. T(n)=4T(n/2) + n*n.

d. T(n) =3T(n/3—2)+n/2.

e. T(n)=2T(n/2)+n/lgn.

£ Tn) =T®m/2) + T(n/4) + T(n/8) +n.
g T(n)=Tm—1)+1/n.

h. T(n)=T(n— 1)+ lgn.

i. T(n)=T(n—2)+1/lgn.

J. T(n) = /nT(Jn)+n.

4-4 Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are defined
by recurrence (3.22). We shall use the technique of generating functions to solve
the Fibonacci recurrence. Define the generating function (or formal power se-
ries) ¥ as

F) = Y Fi
=0
= 0424224222 +32 +52°4+82° + 1377 + 2128 + -+,

where F; is the ith Fibonacci number.

a. Show that ¥ (z) = z + zF (2) + 2°F (2).

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 4 109

b. Show that
Z
F = —
(2) r—
. Z
(1—-9¢2)(1—¢2)
. 1 (1 1)
Vi\l=¢z 1-¢z/)"
where
1 5
¢ = + /5 = 1.61803...
2
and
~ 1—=4/5
¢ = Vs = —0.61803... .
2
c¢. Show that

[e'9) 1 . o
Fl)=) —F=(@" —9¢")".
L5

d. Use part (¢) to prove that F; = @' /+/5fori > 0, rounded to the nearest integer.
(Hint: Observe that |¢)‘ <1)

4-5 Chip testing

Professor Diogenes has n supposedly identical integrated-circuit chips that in prin-
ciple are capable of testing each other. The professor’s test jig accommodates two
chips at a time. When the jig is loaded, each chip tests the other and reports whether
it is good or bad. A good chip always reports accurately whether the other chip is
good or bad, but the professor cannot trust the answer of a bad chip. Thus, the four
possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion
B is good A is good both are good, or both are bad

B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad

a. Show that if more than n /2 chips are bad, the professor cannot necessarily de-
termine which chips are good using any strategy based on this kind of pairwise
test. Assume that the bad chips can conspire to fool the professor.

heé¢eps:/hemanthrajhemu.github.io

110 Chapter 4 Divide-and-Conquer

b. Consider the problem of finding a single good chip from among 7 chips, as-
suming that more than n/2 of the chips are good. Show that |n/2] pairwise
tests are sufficient to reduce the problem to one of nearly half the size.

c. Show that the good chips can be identified with ®(n) pairwise tests, assuming
that more than n/2 of the chips are good. Give and solve the recurrence that
describes the number of tests.

4-6 Monge arrays
An m x n array A of real numbers is a Monge array if for all i, j, k, and [such
that] <i <k <mand1 < j <[<n, wehave

Ali, j1+ Alk, 1) < A[i, 1] + Ak, j] .

In other words, whenever we pick two rows and two columns of a Monge array and
consider the four elements at the intersections of the rows and the columns, the sum
of the upper-left and lower-right elements is less than or equal to the sum of the
lower-left and upper-right elements. For example, the following array is Monge:

10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7

45 44 32 37 23
36 33 19 21 6

75 66 51 53 34

a. Prove that an array is Monge if and only if foralli = 1,2,....,m — 1 and
J=12,.,n—1,wehave

Ali, j1+ Al + 1, + 1] < A[i, j + 1]+ Ali + 1,] .
(Hint: For the “if” part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it
Monge. (Hint: Use part (a).)

37 23 22 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

heé¢eps:/hemanthrajhemu.github.io

Notes for Chapter 4 111

¢. Let f(i) be the index of the column containing the leftmost minimum element
of row i. Prove that /(1) < f(2) <--- < f(m) for any m x n Monge array.

d. Here is a description of a divide-and-conquer algorithm that computes the left-
most minimum element in each row of an m x n Monge array A:

Construct a submatrix A’ of A consisting of the even-numbered rows of A.
Recursively determine the leftmost minimum for each row of A’. Then
compute the leftmost minimum in the odd-numbered rows of A4.

Explain how to compute the leftmost minimum in the odd-numbered rows of A
(given that the leftmost minimum of the even-numbered rows is known) in
O(m + n) time.

e. Write the recurrence describing the running time of the algorithm described in
part (d). Show that its solution is O(m + n log m).

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back to at least
1962 in an article by Karatsuba and Ofman [194]. It might have been used well be-
fore then, however; according to Heideman, Johnson, and Burrus [163], C. F. Gauss
devised the first fast Fourier transform algorithm in 1805, and Gauss’s formulation
breaks the problem into smaller subproblems whose solutions are combined.

The maximum-subarray problem in Section 4.1 is a minor variation on a problem
studied by Bentley [43, Chapter 7].

Strassen’s algorithm [325] caused much excitement when it was published
in 1969. Before then, few imagined the possibility of an algorithm asymptotically
faster than the basic SQUARE-MATRIX-MULTIPLY procedure. The asymptotic
upper bound for matrix multiplication has been improved since then. The most
asymptotically efficient algorithm for multiplying n» x n matrices to date, due to
Coppersmith and Winograd [78], has a running time of O(n?-37¢). The best lower
bound known is just the obvious (7?) bound (obvious because we must fill in 12
elements of the product matrix).

From a practical point of view, Strassen’s algorithm is often not the method of
choice for matrix multiplication, for four reasons:

1. The constant factor hidden in the ®(n'¢7) running time of Strassen’s algo-
rithm is larger than the constant factor in the ®(n>)-time SQUARE-MATRIX-
MULTIPLY procedure.

2. When the matrices are sparse, methods tailored for sparse matrices are faster.

heé¢eps:/hemanthrajhemu.github.io

112 Chapter 4 Divide-and-Conquer

3. Strassen’s algorithm is not quite as numerically stable as SQUARE-MATRIX-
MULTIPLY. In other words, because of the limited precision of computer arith-
metic on noninteger values, larger errors accumulate in Strassen’s algorithm
than in SQUARE-MATRIX-MULTIPLY.

4. The submatrices formed at the levels of recursion consume space.

The latter two reasons were mitigated around 1990. Higham [167] demonstrated
that the difference in numerical stability had been overemphasized; although
Strassen’s algorithm is too numerically unstable for some applications, it is within
acceptable limits for others. Bailey, Lee, and Simon [32] discuss techniques for
reducing the memory requirements for Strassen’s algorithm.

In practice, fast matrix-multiplication implementations for dense matrices use
Strassen’s algorithm for matrix sizes above a “crossover point,” and they switch
to a simpler method once the subproblem size reduces to below the crossover
point. The exact value of the crossover point is highly system dependent. Analyses
that count operations but ignore effects from caches and pipelining have produced
crossover points as low as n = 8 (by Higham [167]) or n = 12 (by Huss-Lederman
et al. [186]). D’Alberto and Nicolau [81] developed an adaptive scheme, which
determines the crossover point by benchmarking when their software package is
installed. They found crossover points on various systems ranging from n = 400
to n = 2150, and they could not find a crossover point on a couple of systems.

Recurrences were studied as early as 1202 by L. Fibonacci, for whom the Fi-
bonacci numbers are named. A. De Moivre introduced the method of generating
functions (see Problem 4-4) for solving recurrences. The master method is adapted
from Bentley, Haken, and Saxe [44], which provides the extended method justified
by Exercise 4.6-2. Knuth [209] and Liu [237] show how to solve linear recurrences
using the method of generating functions. Purdom and Brown [287] and Graham,
Knuth, and Patashnik [152] contain extended discussions of recurrence solving.

Several researchers, including Akra and Bazzi [13], Roura [299], Verma [346],
and Yap [360], have given methods for solving more general divide-and-conquer
recurrences than are solved by the master method. We describe the result of Akra
and Bazzi here, as modified by Leighton [228]. The Akra-Bazzi method works for
recurrences of the form

O(1) ifl <x =<xo,

T(x) = Y aiT(hix) + f(x) ifx > xp .,

(4.30)

where

* x > 11is areal number,
* X is a constant such that xo > 1/b; and xo > 1/(1 —b;) fori =1,2,...,k,

* q; is apositive constant fori = 1,2,...,k,

heé¢eps:/hemanthrajhemu.github.io

Notes for Chapter 4 113

e b; is aconstant in the range 0 < b; < 1 fori = 1,2,...,k,
* k > 1is an integer constant, and

* f(x) is a nonnegative function that satisfies the polynomial-growth condi-
tion: there exist positive constants ¢; and ¢, such that for all x > 1, for
i = 1,2,...,k, and for all u such that b;x < u < x, we have ¢, f(x) <
f) < crf(x). (If | f'(x)| is upper-bounded by some polynomial in x, then
f(x) satisfies the polynomial-growth condition. For example, f(x) = x* lgB X
satisfies this condition for any real constants « and .)

Although the master method does not apply to a recurrence such as 7'(n) =
T(|n/3]) + T(|2n/3]) + O(n), the Akra-Bazzi method does. To solve the re-
currence (4.30), we first find the unique real number p such that Zf;l a;b? = 1.
(Such a p always exists.) The solution to the recurrence is then

X
S
— p
T(n)-@(x (l+ 1 ul’+1du .
The Akra-Bazzi method can be somewhat difficult to use, but it serves in solving
recurrences that model division of the problem into substantially unequally sized

subproblems. The master method is simpler to use, but it applies only when sub-
problem sizes are equal.

heé¢eps:/hemanthrajhemu.github.io

17 Amortized Analysis

In an amortized analysis, we average the time required to perform a sequence of
data-structure operations over all the operations performed. With amortized analy-
sis, we can show that the average cost of an operation is small, if we average over a
sequence of operations, even though a single operation within the sequence might
be expensive. Amortized analysis differs from average-case analysis in that prob-
ability is not involved; an amortized analysis guarantees the average performance
of each operation in the worst case.

The first three sections of this chapter cover the three most common techniques
used in amortized analysis. Section 17.1 starts with aggregate analysis, in which
we determine an upper bound 7'(n) on the total cost of a sequence of n operations.
The average cost per operation is then 7(n)/n. We take the average cost as the
amortized cost of each operation, so that all operations have the same amortized
cost.

Section 17.2 covers the accounting method, in which we determine an amortized
cost of each operation. When there is more than one type of operation, each type of
operation may have a different amortized cost. The accounting method overcharges
some operations early in the sequence, storing the overcharge as “prepaid credit”
on specific objects in the data structure. Later in the sequence, the credit pays for
operations that are charged less than they actually cost.

Section 17.3 discusses the potential method, which is like the accounting method
in that we determine the amortized cost of each operation and may overcharge op-
erations early on to compensate for undercharges later. The potential method main-
tains the credit as the “potential energy” of the data structure as a whole instead of
associating the credit with individual objects within the data structure.

We shall use two examples to examine these three methods. One is a stack
with the additional operation MULTIPOP, which pops several objects at once. The
other is a binary counter that counts up from 0 by means of the single operation
INCREMENT.

heé¢eps:/hemanthrajhemu.github.io

452 Chapter 17 Amortized Analysis

While reading this chapter, bear in mind that the charges assigned during an
amortized analysis are for analysis purposes only. They need not—and should
not—appear in the code. If, for example, we assign a credit to an object x when
using the accounting method, we have no need to assign an appropriate amount to
some attribute, such as x.credit, in the code.

When we perform an amortized analysis, we often gain insight into a particular
data structure, and this insight can help us optimize the design. In Section 17.4,
for example, we shall use the potential method to analyze a dynamically expanding
and contracting table.

17.1 Aggregate analysis

In aggregate analysis, we show that for all n, a sequence of n operations takes
worst-case time T'(n) in total. In the worst case, the average cost, or amortized
cost, per operation is therefore T'(n)/n. Note that this amortized cost applies to
each operation, even when there are several types of operations in the sequence.
The other two methods we shall study in this chapter, the accounting method and
the potential method, may assign different amortized costs to different types of
operations.

Stack operations

In our first example of aggregate analysis, we analyze stacks that have been aug-
mented with a new operation. Section 10.1 presented the two fundamental stack
operations, each of which takes O(1) time:

PUSH(S, x) pushes object x onto stack S.

POP(S) pops the top of stack S and returns the popped object. Calling POP on an
empty stack generates an error.

Since each of these operations runs in O(1) time, let us consider the cost of each
to be 1. The total cost of a sequence of n PUSH and POP operations is therefore n,
and the actual running time for n operations is therefore ®(n).

Now we add the stack operation MULTIPOP(S, k), which removes the k top ob-
jects of stack S, popping the entire stack if the stack contains fewer than k objects.
Of course, we assume that k is positive; otherwise the MULTIPOP operation leaves
the stack unchanged. In the following pseudocode, the operation STACK-EMPTY
returns TRUE if there are no objects currently on the stack, and FALSE otherwise.

heé¢eps:/hemanthrajhemu.github.io

17.1 Aggregate analysis 453

top > 23
17
6
39
10 top > 10
47 47

(a) (b) O

Figure 17.1 The action of MULTIPOP on a stack S, shown initially in (a). The top 4 objects are
popped by MULTIPOP(S, 4), whose result is shown in (b). The next operation is MULTIPOP(S, 7),
which empties the stack—shown in (¢) —since there were fewer than 7 objects remaining.

MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0
2 Por(S)
3 k=k—1

Figure 17.1 shows an example of MULTIPOP.

What is the running time of MULTIPOP(S, k) on a stack of s objects? The
actual running time is linear in the number of POP operations actually executed,
and thus we can analyze MULTIPOP in terms of the abstract costs of 1 each for
PUSH and PoP. The number of iterations of the while loop is the number min(s, k)
of objects popped off the stack. Each iteration of the loop makes one call to POP in
line 2. Thus, the total cost of MULTIPOP is min(s, k), and the actual running time
is a linear function of this cost.

Let us analyze a sequence of n PUSH, POP, and MULTIPOP operations on an ini-
tially empty stack. The worst-case cost of a MULTIPOP operation in the sequence
is O(n), since the stack size is at most n. The worst-case time of any stack opera-
tion is therefore O(n), and hence a sequence of n operations costs O(n?), since we
may have O(n) MULTIPOP operations costing O(n) each. Although this analysis
is correct, the O(n?) result, which we obtained by considering the worst-case cost
of each operation individually, is not tight.

Using aggregate analysis, we can obtain a better upper bound that considers the
entire sequence of n operations. In fact, although a single MULTIPOP operation
can be expensive, any sequence of n PUSH, POP, and MULTIPOP operations on an
initially empty stack can cost at most O(n). Why? We can pop each object from the
stack at most once for each time we have pushed it onto the stack. Therefore, the
number of times that POP can be called on a nonempty stack, including calls within
MULTIPOP, is at most the number of PUSH operations, which is at most 7. For any
value of n, any sequence of n PUSH, POP, and MULTIPOP operations takes a total
of O(n) time. The average cost of an operation is O(n)/n = O(1). In aggregate

heé¢eps:/hemanthrajhemu.github.io

454 Chapter 17 Amortized Analysis

analysis, we assign the amortized cost of each operation to be the average cost. In
this example, therefore, all three stack operations have an amortized cost of O(1).

We emphasize again that although we have just shown that the average cost, and
hence the running time, of a stack operation is O(1), we did not use probabilistic
reasoning. We actually showed a worst-case bound of O(n) on a sequence of n
operations. Dividing this total cost by 7 yielded the average cost per operation, or
the amortized cost.

Incrementing a binary counter

As another example of aggregate analysis, consider the problem of implementing
a k-bit binary counter that counts upward from 0. We use an array A[0..k — 1] of
bits, where A.length = k, as the counter. A binary number x that is stored in the
counter has its lowest-order bit in A[0] and its highest-order bit in A[k — 1], so that
X = Zf:é Ali]- 2. Initially, x = 0, and thus A[i] = 0fori =0,1,...,k—1. To
add 1 (modulo 2%) to the value in the counter, we use the following procedure.

INCREMENT(A)

1 i=0

2 whilei < A.length and A[i] ==
3 Ali] =0

4 i=i+1

5 ifi < A.length

6 Alil =1

Figure 17.2 shows what happens to a binary counter as we increment it 16 times,
starting with the initial value O and ending with the value 16. At the start of
each iteration of the while loop in lines 2—4, we wish to add a 1 into position i.
If A[i] = 1, then adding 1 flips the bit to 0 in position i and yields a carry of 1,
to be added into position i + 1 on the next iteration of the loop. Otherwise, the
loop ends, and then, if i < k, we know that A[i] = 0, so that line 6 adds a 1 into
position 7, flipping the 0 to a 1. The cost of each INCREMENT operation is linear
in the number of bits flipped.

As with the stack example, a cursory analysis yields a bound that is correct but
not tight. A single execution of INCREMENT takes time ® (k) in the worst case, in
which array A contains all 1s. Thus, a sequence of # INCREMENT operations on
an initially zero counter takes time O(nk) in the worst case.

We can tighten our analysis to yield a worst-case cost of O(n) for a sequence of
INCREMENT operations by observing that not all bits flip each time INCREMENT
is called. As Figure 17.2 shows, A[0] does flip each time INCREMENT is called.
The next bit up, A[1], flips only every other time: a sequence of # INCREMENT

heé¢eps:/hemanthrajhemu.github.io

17.1 Aggregate analysis 455

s’ OSSO ot
0 0000O0OO0OO0I0 0
1 0000O0O0O0 1 1
2 00000O0T10 3
3 0000O0O0TI 1 4
4 00000T1O00O0 7
5 0000O0OT1TO01 8
6 0000O0T1T10 10
7 00000111 11
8 0000T1O0O00 15
9 00001001 16
10 00001O0T1!0 18
11 000010T11 19
12 000O0T1T1O00 22
13 00001101 23
14 000O0T1T1T1!0 25
15 00001111 26
16 00010O0O00 31

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is always less than twice the total number of INCREMENT
operations.

operations on an initially zero counter causes A[1] to flip [n/2] times. Similarly,
bit A[2] flips only every fourth time, or [7/4] times in a sequence of n INCREMENT
operations. In general, for i = 0,1,...,k — 1, bit A[i] flips [n/2'] times in a
sequence of n INCREMENT operations on an initially zero counter. Fori > k,
bit A[i] does not exist, and so it cannot flip. The total number of flips in the
sequence is thus

n 21
7] < X3
i=0

= 2n,

bl

-1

Il
o

by equation (A.6). The worst-case time for a sequence of # INCREMENT operations
on an initially zero counter is therefore O(n). The average cost of each operation,
and therefore the amortized cost per operation, is O(n)/n = O(1).

heé¢eps:/hemanthrajhemu.github.io

456 Chapter 17 Amortized Analysis

Exercises

17.1-1

If the set of stack operations included a MULTIPUSH operation, which pushes k
items onto the stack, would the O(1) bound on the amortized cost of stack opera-
tions continue to hold?

17.1-2
Show that if a DECREMENT operation were included in the k-bit counter example,
n operations could cost as much as ®(nk) time.

17.1-3

Suppose we perform a sequence of n operations on a data structure in which the i th
operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis
to determine the amortized cost per operation.

17.2 The accounting method

In the accounting method of amortized analysis, we assign differing charges to
different operations, with some operations charged more or less than they actu-
ally cost. We call the amount we charge an operation its amortized cost. When
an operation’s amortized cost exceeds its actual cost, we assign the difference to
specific objects in the data structure as credit. Credit can help pay for later oper-
ations whose amortized cost is less than their actual cost. Thus, we can view the
amortized cost of an operation as being split between its actual cost and credit that
is either deposited or used up. Different operations may have different amortized
costs. This method differs from aggregate analysis, in which all operations have
the same amortized cost.

We must choose the amortized costs of operations carefully. If we want to show
that in the worst case the average cost per operation is small by analyzing with
amortized costs, we must ensure that the total amortized cost of a sequence of oper-
ations provides an upper bound on the total actual cost of the sequence. Moreover,
as in aggregate analysis, this relationship must hold for all sequences of opera-
tions. If we denote the actual cost of the ith operation by ¢; and the amortized cost
of the i th operation by ¢;, we require

n n

dYaz=Y e (17.1)
i=1 i=1
for all sequences of n operations. The total credit stored in the data structure
is the difference between the total amortized cost and the total actual cost, or

heé¢eps:/hemanthrajhemu.github.io

17.2 The accounting method 457

S & —Y."_, ci. By inequality (17.1), the total credit associated with the data
structure must be nonnegative at all times. If we ever were to allow the total credit
to become negative (the result of undercharging early operations with the promise
of repaying the account later on), then the total amortized costs incurred at that
time would be below the total actual costs incurred; for the sequence of operations
up to that time, the total amortized cost would not be an upper bound on the total
actual cost. Thus, we must take care that the total credit in the data structure never
becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis, let us return to the stack
example. Recall that the actual costs of the operations were

PUSH 1,
Popr 1,
MULTIPOP min(k,s) ,

where k is the argument supplied to MULTIPOP and s is the stack size when it is
called. Let us assign the following amortized costs:

PUSH 2,
Pop 0,
MvuLrieor 0.

Note that the amortized cost of MULTIPOP is a constant (0), whereas the actual cost
is variable. Here, all three amortized costs are constant. In general, the amortized
costs of the operations under consideration may differ from each other, and they
may even differ asymptotically.

We shall now show that we can pay for any sequence of stack operations by
charging the amortized costs. Suppose we use a dollar bill to represent each unit
of cost. We start with an empty stack. Recall the analogy of Section 10.1 between
the stack data structure and a stack of plates in a cafeteria. When we push a plate
on the stack, we use 1 dollar to pay the actual cost of the push and are left with a
credit of 1 dollar (out of the 2 dollars charged), which we leave on top of the plate.
At any point in time, every plate on the stack has a dollar of credit on it.

The dollar stored on the plate serves as prepayment for the cost of popping it
from the stack. When we execute a POP operation, we charge the operation nothing
and pay its actual cost using the credit stored in the stack. To pop a plate, we take
the dollar of credit off the plate and use it to pay the actual cost of the operation.
Thus, by charging the PUSH operation a little bit more, we can charge the PoP
operation nothing.

heé¢eps:/hemanthrajhemu.github.io

458 Chapter 17 Amortized Analysis

Moreover, we can also charge MULTIPOP operations nothing. To pop the first
plate, we take the dollar of credit off the plate and use it to pay the actual cost of a
PopP operation. To pop a second plate, we again have a dollar of credit on the plate
to pay for the POP operation, and so on. Thus, we have always charged enough
up front to pay for MULTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always has a nonnegative number of
plates, we have ensured that the amount of credit is always nonnegative. Thus, for
any sequence of n PUSH, POP, and MULTIPOP operations, the total amortized cost
is an upper bound on the total actual cost. Since the total amortized cost is O(n),
so is the total actual cost.

Incrementing a binary counter

As another illustration of the accounting method, we analyze the INCREMENT op-
eration on a binary counter that starts at zero. As we observed earlier, the running
time of this operation is proportional to the number of bits flipped, which we shall
use as our cost for this example. Let us once again use a dollar bill to represent
each unit of cost (the flipping of a bit in this example).

For the amortized analysis, let us charge an amortized cost of 2 dollars to set a
bit to 1. When a bit is set, we use 1 dollar (out of the 2 dollars charged) to pay
for the actual setting of the bit, and we place the other dollar on the bit as credit to
be used later when we flip the bit back to 0. At any point in time, every 1 in the
counter has a dollar of credit on it, and thus we can charge nothing to reset a bit
to 0; we just pay for the reset with the dollar bill on the bit.

Now we can determine the amortized cost of INCREMENT. The cost of resetting
the bits within the while loop is paid for by the dollars on the bits that are reset. The
INCREMENT procedure sets at most one bit, in line 6, and therefore the amortized
cost of an INCREMENT operation is at most 2 dollars. The number of 1s in the
counter never becomes negative, and thus the amount of credit stays nonnegative
at all times. Thus, for n INCREMENT operations, the total amortized cost is O(n),
which bounds the total actual cost.

Exercises

17.2-1

Suppose we perform a sequence of stack operations on a stack whose size never
exceeds k. After every k operations, we make a copy of the entire stack for backup
purposes. Show that the cost of n stack operations, including copying the stack,
is O(n) by assigning suitable amortized costs to the various stack operations.

heé¢eps:/hemanthrajhemu.github.io

17.3 The potential method 459

17.2-2
Redo Exercise 17.1-3 using an accounting method of analysis.

17.2-3

Suppose we wish not only to increment a counter but also to reset it to zero (i.e.,
make all bits in it 0). Counting the time to examine or modify a bit as ®(1),
show how to implement a counter as an array of bits so that any sequence of n
INCREMENT and RESET operations takes time O(n) on an initially zero counter.
(Hint: Keep a pointer to the high-order 1.)

17.3 The potential method

Instead of representing prepaid work as credit stored with specific objects in the
data structure, the potential method of amortized analysis represents the prepaid
work as “potential energy,” or just “potential,” which can be released to pay for
future operations. We associate the potential with the data structure as a whole
rather than with specific objects within the data structure.

The potential method works as follows. We will perform n operations, starting
with an initial data structure D,. Foreachi = 1,2,...,n, we let ¢; be the actual
cost of the ith operation and D; be the data structure that results after applying
the ith operation to data structure D;_;. A potential function ® maps each data
structure D; to a real number ®(D;), which is the potential associated with data
structure D;. The amortized cost ¢; of the ith operation with respect to potential
function ® is defined by

¢ =¢ +P(D;) —d(Di_y) . (17.2)

The amortized cost of each operation is therefore its actual cost plus the change in
potential due to the operation. By equation (17.2), the total amortized cost of the n
operations is

Za = Z(ci + ®(D;) — (D))

= > ¢+ ®(Dy) — D(Dy) . (17.3)
i=1

The second equality follows from equation (A.9) because the ®(D;) terms tele-
scope.

If we can define a potential function ® so that ®(D,) > d(D,), then the total
amortized cost Y ;_, ¢; gives an upper bound on the total actual cost Y ;_, ¢;.

heé¢eps:/hemanthrajhemu.github.io

460 Chapter 17 Amortized Analysis

In practice, we do not always know how many operations might be performed.
Therefore, if we require that ®(D;) > ®(D,) for all i, then we guarantee, as in
the accounting method, that we pay in advance. We usually just define ®(Dy) to
be 0 and then show that ®(D;) > 0 for all i. (See Exercise 17.3-1 for an easy way
to handle cases in which ®(Dg) # 0.)

Intuitively, if the potential difference ®(D;) — ®(D;_,) of the ith operation is
positive, then the amortized cost ¢; represents an overcharge to the ith operation,
and the potential of the data structure increases. If the potential difference is neg-
ative, then the amortized cost represents an undercharge to the ith operation, and
the decrease in the potential pays for the actual cost of the operation.

The amortized costs defined by equations (17.2) and (17.3) depend on the choice
of the potential function ®. Different potential functions may yield different amor-
tized costs yet still be upper bounds on the actual costs. We often find trade-offs
that we can make in choosing a potential function; the best potential function to
use depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once again to the example of the stack
operations PUSH, POP, and MULTIPOP. We define the potential function & on a
stack to be the number of objects in the stack. For the empty stack D, with which
we start, we have ®(Dy) = 0. Since the number of objects in the stack is never
negative, the stack D; that results after the i th operation has nonnegative potential,
and thus

D)) = 0

= O(Dy).
The total amortized cost of n operations with respect to ® therefore represents an
upper bound on the actual cost.

Let us now compute the amortized costs of the various stack operations. If the ith
operation on a stack containing s objects is a PUSH operation, then the potential
difference is
®(D;) —P(Dj-1) = (s+1)—s

1.

By equation (17.2), the amortized cost of this PUSH operation is

¢ = ¢ +P(D;)—P(D;)
= 141
= 2.

heé¢eps:/hemanthrajhemu.github.io

17.3 The potential method 461

Suppose that the ith operation on the stack is MULTIPOP(S, k), which causes
k’ = min(k, s) objects to be popped off the stack. The actual cost of the opera-
tion is k', and the potential difference is

O(D;) — ®(D;—y) = —k'.

Thus, the amortized cost of the MULTIPOP operation is

G = ¢+ P(D;)—D(Dj—y)
= Kk -k
0.

Similarly, the amortized cost of an ordinary POP operation is 0.

The amortized cost of each of the three operations is O(1), and thus the total
amortized cost of a sequence of n operations is O(n). Since we have already argued
that ®(D;) > P(D,), the total amortized cost of n operations is an upper bound
on the total actual cost. The worst-case cost of n operations is therefore O(n).

Incrementing a binary counter

As another example of the potential method, we again look at incrementing a binary
counter. This time, we define the potential of the counter after the i th INCREMENT
operation to be b;, the number of 1s in the counter after the ith operation.

Let us compute the amortized cost of an INCREMENT operation. Suppose that
the ith INCREMENT operation resets #; bits. The actual cost of the operation is
therefore at most #; + 1, since in addition to resetting #; bits, it sets at most one
bit to 1. If b; = 0, then the ith operation resets all k bits, and so b, = t; = k.
If b, > 0, then b; = b;_; — t; + 1. In either case, b; < b;_; — t; + 1, and the
potential difference is

®(D;)—d(Di—y) < (hioi—ti+1)—biy
= 1—¢.

The amortized cost is therefore

G = ¢+ P(D;)—D(D;y)
< G+DH+A-1)
= 2.

If the counter starts at zero, then ®(Dgy) = 0. Since ©(D;) > 0 for all i, the total
amortized cost of a sequence of 7 INCREMENT operations is an upper bound on the
total actual cost, and so the worst-case cost of # INCREMENT operations is O(n).
The potential method gives us an easy way to analyze the counter even when
it does not start at zero. The counter starts with by 1s, and after n INCREMENT

heé¢eps:/hemanthrajhemu.github.io

462 Chapter 17 Amortized Analysis

operations it has b, 1s, where 0 < by, b, < k. (Recall that k is the number of bits
in the counter.) We can rewrite equation (17.3) as

Y o= & —0(Dy) + B(Do) . (17.4)
i=1

i=1

We have ¢; < 2forall 1 <i < n. Since ®(Dy) = by and ®(D,,) = b,, the total
actual cost of n INCREMENT operations is

Xn:C,‘ Xn:z—bn+b0
i=1 i=1

= 2n—bn+b0

IA

Note in particular that since by < k, as long as k = O(n), the total actual cost
is O(n). In other words, if we execute at least n = (k) INCREMENT operations,
the total actual cost is O(n), no matter what initial value the counter contains.

Exercises

17.3-1

Suppose we have a potential function @ such that ®(D;) > ®(D,) for all i, but
®(Dy) # 0. Show that there exists a potential function @ such that ®'(Dy) = 0,
®'(D;) > 0 for all i > 1, and the amortized costs using @ are the same as the
amortized costs using .

17.3-2
Redo Exercise 17.1-3 using a potential method of analysis.

17.3-3

Consider an ordinary binary min-heap data structure with n elements supporting
the instructions INSERT and EXTRACT-MIN in O(lgn) worst-case time. Give a
potential function ® such that the amortized cost of INSERT is O(lgn) and the
amortized cost of EXTRACT-MIN is O(1), and show that it works.

17.3-4

What is the total cost of executing n of the stack operations PUSH, PoP, and
MULTIPOP, assuming that the stack begins with sy objects and finishes with s,
objects?

17.3-5

Suppose that a counter begins at a number with » 1Is in its binary representa-
tion, rather than at 0. Show that the cost of performing » INCREMENT operations
is O(n) if n = Q(b). (Do not assume that b is constant.)

heé¢eps:/hemanthrajhemu.github.io

17.4 Dynamic tables 463

17.3-6

Show how to implement a queue with two ordinary stacks (Exercise 10.1-6) so that
the amortized cost of each ENQUEUE and each DEQUEUE operation is O(1).

1D7e:gig7n a data structure to support the following two operations for a dynamic
multiset S of integers, which allows duplicate values:

INSERT(S, x) inserts x into S.

DELETE-LARGER-HALF(S) deletes the largest [|S| /2] elements from S.
Explain how to implement this data structure so that any sequence of m INSERT

and DELETE-LARGER-HALF operations runs in O(m) time. Your implementation
should also include a way to output the elements of S in O(|S]) time.

17.4 Dynamic tables

We do not always know in advance how many objects some applications will store
in a table. We might allocate space for a table, only to find out later that it is not
enough. We must then reallocate the table with a larger size and copy all objects
stored in the original table over into the new, larger table. Similarly, if many objects
have been deleted from the table, it may be worthwhile to reallocate the table with
a smaller size. In this section, we study this problem of dynamically expanding and
contracting a table. Using amortized analysis, we shall show that the amortized cost
of insertion and deletion is only O(1), even though the actual cost of an operation
is large when it triggers an expansion or a contraction. Moreover, we shall see how
to guarantee that the unused space in a dynamic table never exceeds a constant
fraction of the total space.

We assume that the dynamic table supports the operations TABLE-INSERT and
TABLE-DELETE. TABLE-INSERT inserts into the table an item that occupies a sin-
gle slot, that is, a space for one item. Likewise, TABLE-DELETE removes an item
from the table, thereby freeing a slot. The details of the data-structuring method
used to organize the table are unimportant; we might use a stack (Section 10.1),
a heap (Chapter 6), or a hash table (Chapter 11). We might also use an array or
collection of arrays to implement object storage, as we did in Section 10.3.

We shall find it convenient to use a concept introduced in our analysis of hashing
(Chapter 11). We define the load factor «(T) of a nonempty table 7' to be the
number of items stored in the table divided by the size (number of slots) of the
table. We assign an empty table (one with no items) size 0, and we define its load
factor to be 1. If the load factor of a dynamic table is bounded below by a constant,

heé¢eps:/hemanthrajhemu.github.io

464 Chapter 17 Amortized Analysis

the unused space in the table is never more than a constant fraction of the total
amount of space.

We start by analyzing a dynamic table in which we only insert items. We then
consider the more general case in which we both insert and delete items.

17.4.1 Table expansion

Let us assume that storage for a table is allocated as an array of slots. A table fills
up when all slots have been used or, equivalently, when its load factor is 1.! In some
software environments, upon attempting to insert an item into a full table, the only
alternative is to abort with an error. We shall assume, however, that our software
environment, like many modern ones, provides a memory-management system that
can allocate and free blocks of storage on request. Thus, upon inserting an item
into a full table, we can expand the table by allocating a new table with more slots
than the old table had. Because we always need the table to reside in contiguous
memory, we must allocate a new array for the larger table and then copy items from
the old table into the new table.

A common heuristic allocates a new table with twice as many slots as the old
one. If the only table operations are insertions, then the load factor of the table is
always at least 1/2, and thus the amount of wasted space never exceeds half the
total space in the table.

In the following pseudocode, we assume that 7" is an object representing the
table. The attribute 7.table contains a pointer to the block of storage representing
the table, 7. num contains the number of items in the table, and 7. size gives the total
number of slots in the table. Initially, the table is empty: T.num = T.size = 0.

TABLE-INSERT (7, x)

p—

if 7.size ==
allocate T.table with 1 slot
T.size = 1
if T.num == T.size
allocate new-table with 2 - T.size slots
insert all items in 7. table into new-table
free T.table
T.table = new-table
T.size = 2 - T.size
insert x into 7.table
T.num = T.num + 1

SO0 NN BN

[S—
—_—

n some situations, such as an open-address hash table, we may wish to consider a table to be full if
its load factor equals some constant strictly less than 1. (See Exercise 17.4-1.)

heé¢eps:/hemanthrajhemu.github.io

17.4 Dynamic tables 465

Notice that we have two “insertion” procedures here: the TABLE-INSERT proce-
dure itself and the elementary insertion into a table in lines 6 and 10. We can
analyze the running time of TABLE-INSERT in terms of the number of elementary
insertions by assigning a cost of 1 to each elementary insertion. We assume that
the actual running time of TABLE-INSERT is linear in the time to insert individual
items, so that the overhead for allocating an initial table in line 2 is constant and
the overhead for allocating and freeing storage in lines 5 and 7 is dominated by
the cost of transferring items in line 6. We call the event in which lines 5-9 are
executed an expansion.

Let us analyze a sequence of n TABLE-INSERT operations on an initially empty
table. What is the cost ¢; of the ith operation? If the current table has room for the
new item (or if this is the first operation), then ¢; = 1, since we need only perform
the one elementary insertion in line 10. If the current table is full, however, and an
expansion occurs, then ¢; = i: the cost is 1 for the elementary insertion in line 10
plus i — 1 for the items that we must copy from the old table to the new table in
line 6. If we perform n operations, the worst-case cost of an operation is O(n),
which leads to an upper bound of O(n?) on the total running time for n operations.

This bound is not tight, because we rarely expand the table in the course of n
TABLE-INSERT operations. Specifically, the ith operation causes an expansion
only when i — 1 is an exact power of 2. The amortized cost of an operation is in
fact O(1), as we can show using aggregate analysis. The cost of the i th operation

is
i if i — 1 is an exact power of 2,
Ci = .
1 otherwise .

The total cost of n TABLE-INSERT operations is therefore

n llgn]
ZC,‘ < n+ Z 2j
i=1 Jj=0

< n+2n

= 3n,

because at most n operations cost 1 and the costs of the remaining operations form
a geometric series. Since the total cost of # TABLE-INSERT operations is bounded
by 3n, the amortized cost of a single operation is at most 3.

By using the accounting method, we can gain some feeling for why the amor-
tized cost of a TABLE-INSERT operation should be 3. Intuitively, each item pays
for 3 elementary insertions: inserting itself into the current table, moving itself
when the table expands, and moving another item that has already been moved
once when the table expands. For example, suppose that the size of the table is m
immediately after an expansion. Then the table holds m /2 items, and it contains

heé¢eps:/hemanthrajhemu.github.io

466 Chapter 17 Amortized Analysis

no credit. We charge 3 dollars for each insertion. The elementary insertion that
occurs immediately costs 1 dollar. We place another dollar as credit on the item
inserted. We place the third dollar as credit on one of the m /2 items already in the
table. The table will not fill again until we have inserted another m/2 — 1 items,
and thus, by the time the table contains m items and is full, we will have placed a
dollar on each item to pay to reinsert it during the expansion.

We can use the potential method to analyze a sequence of n TABLE-INSERT
operations, and we shall use it in Section 17.4.2 to design a TABLE-DELETE op-
eration that has an O(1) amortized cost as well. We start by defining a potential
function @ that is 0 immediately after an expansion but builds to the table size by
the time the table is full, so that we can pay for the next expansion by the potential.
The function

®(T) =2 T.num — T.size (17.5)
is one possibility. Immediately after an expansion, we have T.num = T.size/2,
and thus ®(7) = 0, as desired. Immediately before an expansion, we have

T.num = T.size, and thus ®(T) = T.num, as desired. The initial value of the
potential is 0, and since the table is always at least half full, T.num > T.size/2,
which implies that ®(7") is always nonnegative. Thus, the sum of the amortized
costs of n TABLE-INSERT operations gives an upper bound on the sum of the actual
costs.

To analyze the amortized cost of the ith TABLE-INSERT operation, we let num;
denote the number of items stored in the table after the ith operation, size; denote
the total size of the table after the ith operation, and ®; denote the potential after
the ith operation. Initially, we have numy = 0, sizey = 0, and &, = 0.

If the i th TABLE-INSERT operation does not trigger an expansion, then we have
size; = size;—; and the amortized cost of the operation is

G = ¢+ -0,
= 14+ (2-num; — size;) — (2 - num;_, — size;_1)

= 1+ (2-num; — size;) — 2(num; — 1) — size;)

3.
If the i th operation does trigger an expansion, then we have size; = 2 - size;_; and
size;j_y = num;_; = num; — 1, which implies that size; = 2 - (num; — 1). Thus,
the amortized cost of the operation is
G = ¢ +d—-d,

= num; + (2 - num; — size;) — (2 - num;_ — size;_y)
= num; + (2 -num; — 2 - (num; — 1)) — 2(num; — 1) — (num; — 1))
= num; + 2 — (num; — 1)

3.

heé¢eps:/hemanthrajhemu.github.io

17.4 Dynamic tables 467

32
size; num;
24 i
16
@;
8
0 i
0 8 16 24 32

Figure 17.3 The effect of a sequence of n TABLE-INSERT operations on the number num; of items
in the table, the number size; of slots in the table, and the potential ®; = 2 - num; — size;, each
being measured after the ith operation. The thin line shows num;, the dashed line shows size;, and
the thick line shows ®;. Notice that immediately before an expansion, the potential has built up to
the number of items in the table, and therefore it can pay for moving all the items to the new table.
Afterwards, the potential drops to 0, but it is immediately increased by 2 upon inserting the item that
caused the expansion.

Figure 17.3 plots the values of num;, size;, and ®; against i. Notice how the
potential builds to pay for expanding the table.

17.4.2 Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to remove the spec-
ified item from the table. In order to limit the amount of wasted space, however,
we might wish to contract the table when the load factor becomes too small. Table
contraction is analogous to table expansion: when the number of items in the table
drops too low, we allocate a new, smaller table and then copy the items from the
old table into the new one. We can then free the storage for the old table by return-
ing it to the memory-management system. Ideally, we would like to preserve two
properties:

* the load factor of the dynamic table is bounded below by a positive constant,
and

* the amortized cost of a table operation is bounded above by a constant.

heé¢eps:/hemanthrajhemu.github.io

468 Chapter 17 Amortized Analysis

We assume that we measure the cost in terms of elementary insertions and dele-
tions.

You might think that we should double the table size upon inserting an item into
a full table and halve the size when a deleting an item would cause the table to
become less than half full. This strategy would guarantee that the load factor of
the table never drops below 1/2, but unfortunately, it can cause the amortized cost
of an operation to be quite large. Consider the following scenario. We perform n
operations on a table 7', where n is an exact power of 2. The first n/2 operations are
insertions, which by our previous analysis cost a total of ®(n). At the end of this
sequence of insertions, T.num = T.size = n/2. For the second n/2 operations,
we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,

The first insertion causes the table to expand to size n. The two following deletions
cause the table to contract back to size n/2. Two further insertions cause another
expansion, and so forth. The cost of each expansion and contraction is ®(n), and
there are ®(n) of them. Thus, the total cost of the n operations is ®(n?), making
the amortized cost of an operation ®(n).

The downside of this strategy is obvious: after expanding the table, we do not
delete enough items to pay for a contraction. Likewise, after contracting the table,
we do not insert enough items to pay for an expansion.

We can improve upon this strategy by allowing the load factor of the table to
drop below 1/2. Specifically, we continue to double the table size upon inserting
an item into a full table, but we halve the table size when deleting an item causes
the table to become less than 1/4 full, rather than 1/2 full as before. The load
factor of the table is therefore bounded below by the constant 1/4.

Intuitively, we would consider a load factor of 1/2 to be ideal, and the table’s
potential would then be 0. As the load factor deviates from 1/2, the potential
increases so that by the time we expand or contract the table, the table has garnered
sufficient potential to pay for copying all the items into the newly allocated table.
Thus, we will need a potential function that has grown to 7.num by the time that
the load factor has either increased to 1 or decreased to 1/4. After either expanding
or contracting the table, the load factor goes back to 1/2 and the table’s potential
reduces back to 0.

We omit the code for TABLE-DELETE, since it is analogous to TABLE-INSERT.
For our analysis, we shall assume that whenever the number of items in the table
drops to 0, we free the storage for the table. That is, if 7. num = 0, then 7. size = 0.

We can now use the potential method to analyze the cost of a sequence of n
TABLE-INSERT and TABLE-DELETE operations. We start by defining a poten-
tial function @ that is O immediately after an expansion or contraction and builds
as the load factor increases to 1 or decreases to 1/4. Let us denote the load fac-

heé¢eps:/hemanthrajhemu.github.io

17.4 Dynamic tables 469

32

24 i
size; |i

16

num

V /

0 8 16 2

A e A .
' \

32 40 48

Figure 17.4 The effect of a sequence of 7 TABLE-INSERT and TABLE-DELETE operations on the
number num; of items in the table, the number size; of slots in the table, and the potential

& — 2 -num; — size; ifo; >1/2,
B sizej /2 —num; ifa; < 1/2,

each measured after the ith operation. The thin line shows num;, the dashed line shows size;, and
the thick line shows ®;. Notice that immediately before an expansion, the potential has built up to
the number of items in the table, and therefore it can pay for moving all the items to the new table.
Likewise, immediately before a contraction, the potential has built up to the number of items in the
table.

tor of a nonempty table 7 by «(T) = T.num/T.size. Since for an empty table,
T.num = T.size =0 and «(T) = 1, we always have T.num = «(T) - T.size,
whether the table is empty or not. We shall use as our potential function

O(T) = 2-T.num — T.size ifo(T)>1/2, (17.6)
| Tusize/2 — Tonum if a(T) < 1/2. '

Observe that the potential of an empty table is 0 and that the potential is never
negative. Thus, the total amortized cost of a sequence of operations with respect
to @ provides an upper bound on the actual cost of the sequence.

Before proceeding with a precise analysis, we pause to observe some properties
of the potential function, as illustrated in Figure 17.4. Notice that when the load
factor is 1/2, the potential is 0. When the load factor is 1, we have T.size = T.num,
which implies ®(7") = T.num, and thus the potential can pay for an expansion if
an item is inserted. When the load factor is 1/4, we have T.size = 4-T.num, which

heé¢eps:/hemanthrajhemu.github.io

470 Chapter 17 Amortized Analysis

implies ®(T') = T.num, and thus the potential can pay for a contraction if an item
is deleted.

To analyze a sequence of n TABLE-INSERT and TABLE-DELETE operations,
we let ¢; denote the actual cost of the ith operation, ¢; denote its amortized cost
with respect to @, num; denote the number of items stored in the table after the i th
operation, size; denote the total size of the table after the ith operation, «; denote
the load factor of the table after the ith operation, and ®; denote the potential after
the ith operation. Initially, numgy = 0, sizeg = 0, g = 1, and &y = 0.

We start with the case in which the ith operation is TABLE-INSERT. The analy-
sis is identical to that for table expansion in Section 17.4.1 if o;_; > 1/2. Whether
the table expands or not, the amortized cost ¢; of the operation is at most 3.
If o;—; < 1/2, the table cannot expand as a result of the operation, since the ta-
ble expands only when «;—; = 1. If o; < 1/2 as well, then the amortized cost of
the 7th operation is

¢ = ¢ + qu — qu—l
= 14 (size; /2 — num;) — (size;—1/2 — num; _y)
= 1+ (size; /2 — num;) — (size; /2 — (num; — 1))

= 0.
Ifoa;y <1/2buta; > 1/2, then
G = ¢ +d -,

1 4+ (2 - num; — size;) — (size;—1/2 — num;_y)
1 4+ Q(num;_y + 1) — size; 1) — (size;—1 /2 — num;_y)

3
= 3-numj_, — Esizei_l +3

. 3.
= 3aj_ySizej_1 — S Sizei-1 +3

3si 35 +3
—Size; 1 — —Size;—
5 2€i—1 5 2€i—1

= 3.
Thus, the amortized cost of a TABLE-INSERT operation is at most 3.

We now turn to the case in which the ith operation is TABLE-DELETE. In this
case, num; = num;—; — 1. If @;_1 < 1/2, then we must consider whether the
operation causes the table to contract. If it does not, then size; = size;—; and the
amortized cost of the operation is

G = ¢ +o -0,
= 1+ (size; /2 — num;) — (size;_1/2 — num;_,)

= 1+ (size; /2 — num;) — (size; /2 — (num; + 1))

https:llh_emanthrajhemu.sithub.io

17.4 Dynamic tables 471

If ;1 < 1/2 and the ith operation does trigger a contraction, then the actual cost
of the operation is ¢; = num; + 1, since we delete one item and move num; items.
We have size; /2 = size;_1/4 = num;_; = num; + 1, and the amortized cost of
the operation is

~

¢ = ¢+ (Dl' - (Di—l

= (num; + 1) + (size; /2 — num;) — (size;_1 /2 — num;_y)

= (num; + 1) + ((num; + 1) — num;) — (2 - num; + 2) — (num; + 1))
1.

When the ith operation is a TABLE-DELETE and o;_; > 1/2, the amortized cost
is also bounded above by a constant. We leave the analysis as Exercise 17.4-2.

In summary, since the amortized cost of each operation is bounded above by
a constant, the actual time for any sequence of n operations on a dynamic table
is O(n).

Exercises

17.4-1

Suppose that we wish to implement a dynamic, open-address hash table. Why
might we consider the table to be full when its load factor reaches some value o
that is strictly less than 1? Describe briefly how to make insertion into a dynamic,
open-address hash table run in such a way that the expected value of the amortized
cost per insertion is O(1). Why is the expected value of the actual cost per insertion
not necessarily O(1) for all insertions?

17.4-2

Show that if ;—; > 1/2 and the ith operation on a dynamic table is TABLE-
DELETE, then the amortized cost of the operation with respect to the potential
function (17.6) is bounded above by a constant.

17.4-3

Suppose that instead of contracting a table by halving its size when its load factor
drops below 1/4, we contract it by multiplying its size by 2/3 when its load factor
drops below 1/3. Using the potential function

®(T) = |2 T.num — T.size| ,

show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded
above by a constant.

heé¢eps:/hemanthrajhemu.github.io

472 Chapter 17 Amortized Analysis

Problems

17-1 Bit-reversed binary counter
Chapter 30 examines an important algorithm called the fast Fourier transform,
or FFT. The first step of the FFT algorithm performs a bit-reversal permutation on
an input array A[0..n — 1] whose length is n = 2¥ for some nonnegative integer k.
This permutation swaps elements whose indices have binary representations that
are the reverse of each other.

We can express each index a as a k-bit sequence (ax_1, dg_s. ..., do), Where
a=Y"%0a; 2. We define

rev ((@k—1.ak—2, ..., ao)) = (ao.ar,...,ax—1):

thus,
k—1

revi(a) = Zak_i_ﬂ’ .
i=0

For example, if n = 16 (or, equivalently, k = 4), then rev(3) = 12, since
the 4-bit representation of 3 is 0011, which when reversed gives 1100, the 4-bit
representation of 12.

a. Given a function revy that runs in ®(k) time, write an algorithm to perform the
bit-reversal permutation on an array of length n = 2% in O(nk) time.

We can use an algorithm based on an amortized analysis to improve the running
time of the bit-reversal permutation. We maintain a “bit-reversed counter” and a
procedure BIT-REVERSED-INCREMENT that, when given a bit-reversed-counter
value a, produces revg (revg(a) + 1). If k = 4, for example, and the bit-reversed
counter starts at 0, then successive calls to BIT-REVERSED-INCREMENT produce
the sequence

0000, 1000, 0100, 1100, 0010, 1010, ... = 0,8,4,12,2,10,... .

b. Assume that the words in your computer store k-bit values and that in unit time,
your computer can manipulate the binary values with operations such as shifting
left or right by arbitrary amounts, bitwise-AND, bitwise-OR, etc. Describe
an implementation of the BIT-REVERSED-INCREMENT procedure that allows
the bit-reversal permutation on an n-element array to be performed in a total
of O(n) time.

¢. Suppose that you can shift a word left or right by only one bit in unit time. Is it
still possible to implement an O(n)-time bit-reversal permutation?

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 17 473

17-2 Making binary search dynamic
Binary search of a sorted array takes logarithmic search time, but the time to insert
a new element is linear in the size of the array. We can improve the time for
insertion by keeping several sorted arrays.

Specifically, suppose that we wish to support SEARCH and INSERT on a set

of n elements. Let k = [lg(n + 1)], and let the binary representation of n

be (ng_1, Ng_a, ..., ng). We have k sorted arrays Agy, Ay,..., Ar_1, where for

i =0,1,...,k — 1, the length of array A; is 2'. Each array is either full or empty,

depending on whether n; = 1 or n; = 0, respectively. The total number of ele-
k—

ments held in all k arrays is therefore Zi=1 n; 2 = n. Although each individual
array is sorted, elements in different arrays bear no particular relationship to each
other.

a. Describe how to perform the SEARCH operation for this data structure. Analyze
its worst-case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-case and
amortized running times.

¢. Discuss how to implement DELETE.

17-3 Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by adding to each node x the
attribute x.size giving the number of keys stored in the subtree rooted at x. Let «
be a constant in the range 1/2 < o < 1. We say that a given node x is a-balanced
if x.left.size < « - x.size and x.right.size < « - x.size. The tree as a whole
is a-balanced if every node in the tree is a-balanced. The following amortized
approach to maintaining weight-balanced trees was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given a node x
in an arbitrary binary search tree, show how to rebuild the subtree rooted at x
so that it becomes 1/2-balanced. Your algorithm should run in time ®(x. size),
and it can use O(x.size) auxiliary storage.

b. Show that performing a search in an n-node «-balanced binary search tree
takes O(lgn) worst-case time.

For the remainder of this problem, assume that the constant « is strictly greater
than 1/2. Suppose that we implement INSERT and DELETE as usual for an n-node
binary search tree, except that after every such operation, if any node in the tree
is no longer a-balanced, then we “rebuild” the subtree rooted at the highest such
node in the tree so that it becomes 1/2-balanced.

heé¢eps:/hemanthrajhemu.github.io

474 Chapter 17 Amortized Analysis

We shall analyze this rebuilding scheme using the potential method. For a node x
in a binary search tree 7', we define

A(x) = |x.left.size — x.right.size| ,

and we define the potential of 7" as

O(T)=c Y Alx),

x€T:A(x)>2

where c is a sufficiently large constant that depends on «.

c¢. Argue that any binary search tree has nonnegative potential and that a 1/2-
balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node subtree.
How large must ¢ be in terms of « in order for it to take O(1) amortized time
to rebuild a subtree that is not «-balanced?

e. Show that inserting a node into or deleting a node from an n-node «-balanced
tree costs O(lgn) amortized time.

17-4 The cost of restructuring red-black trees

There are four basic operations on red-black trees that perform structural modi-
fications: node insertions, node deletions, rotations, and color changes. We have
seen that RB-INSERT and RB-DELETE use only O(1) rotations, node insertions,
and node deletions to maintain the red-black properties, but they may make many
more color changes.

a. Describe a legal red-black tree with n nodes such that calling RB-INSERT to
add the (n + 1)st node causes 2(lgn) color changes. Then describe a legal
red-black tree with n nodes for which calling RB-DELETE on a particular node
causes 2(lgn) color changes.

Although the worst-case number of color changes per operation can be logarithmic,
we shall prove that any sequence of m RB-INSERT and RB-DELETE operations on
an initially empty red-black tree causes O(m) structural modifications in the worst
case. Note that we count each color change as a structural modification.

b. Some of the cases handled by the main loop of the code of both RB-INSERT-
Fixup and RB-DELETE-FIXUP are terminating: once encountered, they cause
the loop to terminate after a constant number of additional operations. For each
of the cases of RB-INSERT-FIXUP and RB-DELETE-FIXUP, specify which are
terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7.)

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 17 475

We shall first analyze the structural modifications when only insertions are per-
formed. Let T be a red-black tree, and define ®(7") to be the number of red nodes
in T. Assume that 1 unit of potential can pay for the structural modifications per-
formed by any of the three cases of RB-INSERT-FIXUP.

c. Let T’ be the result of applying Case 1 of RB-INSERT-FIXUP to 7. Argue that
D(T") =d(T) — 1.

d. When we insert a node into a red-black tree using RB-INSERT, we can break
the operation into three parts. List the structural modifications and potential
changes resulting from lines 1-16 of RB-INSERT, from nonterminating cases
of RB-INSERT-FIXUP, and from terminating cases of RB-INSERT-FIXUP.

e. Using part (d), argue that the amortized number of structural modifications per-
formed by any call of RB-INSERT is O(1).

We now wish to prove that there are O(m) structural modifications when there are
both insertions and deletions. Let us define, for each node x,

0 ifxisred,

1 if x is black and has no red children ,
0 if x is black and has one red child ,

2 if x is black and has two red children .

w(x) =

Now we redefine the potential of a red-black tree 7" as
O(T) =Y w(x),
xeT

and let 77 be the tree that results from applying any nonterminating case of RB-
INSERT-FIXUP or RB-DELETE-FIXUP to T.

f. Show that ®(T’) < ®(T) — 1 for all nonterminating cases of RB-INSERT-
FIXuP. Argue that the amortized number of structural modifications performed
by any call of RB-INSERT-FIXUP is O(1).

g. Show that ®(7’) < &(T) — 1 for all nonterminating cases of RB-DELETE-
FIxup. Argue that the amortized number of structural modifications performed
by any call of RB-DELETE-FIXUP is O(1).

h. Complete the proof that in the worst case, any sequence of m RB-INSERT and
RB-DELETE operations performs O (m) structural modifications.

heé¢eps:/hemanthrajhemu.github.io

476 Chapter 17 Amortized Analysis

17-5 Competitive analysis of self-organizing lists with move-to-front
A self-organizing list is a linked list of n elements, in which each element has a
unique key. When we search for an element in the list, we are given a key, and we
want to find an element with that key.

A self-organizing list has two important properties:

1. To find an element in the list, given its key, we must traverse the list from the
beginning until we encounter the element with the given key. If that element is
the kth element from the start of the list, then the cost to find the element is k.

2. We may reorder the list elements after any operation, according to a given rule
with a given cost. We may choose any heuristic we like to decide how to reorder
the list.

Assume that we start with a given list of n elements, and we are given an access
sequence 0 = (07, 02, ..., 0,) of keys to find, in order. The cost of the sequence
is the sum of the costs of the individual accesses in the sequence.

Out of the various possible ways to reorder the list after an operation, this prob-
lem focuses on transposing adjacent list elements—switching their positions in the
list—with a unit cost for each transpose operation. You will show, by means of a
potential function, that a particular heuristic for reordering the list, move-to-front,
entails a total cost no worse than 4 times that of any other heuristic for maintaining
the list order—even if the other heuristic knows the access sequence in advance!
We call this type of analysis a competitive analysis.

For a heuristic H and a given initial ordering of the list, denote the access cost of
sequence o by Cy (o). Let m be the number of accesses in 0.

a. Argue that if heuristic H does not know the access sequence in advance, then
the worst-case cost for H on an access sequence o is Cy (0) = Q(mn).

With the move-to-front heuristic, immediately after searching for an element x,
we move x to the first position on the list (i.e., the front of the list).

Let rank; (x) denote the rank of element x in list L, that is, the position of x in
list L. For example, if x is the fourth element in L, then rank; (x) = 4. Let ¢;
denote the cost of access o; using the move-to-front heuristic, which includes the
cost of finding the element in the list and the cost of moving it to the front of the
list by a series of transpositions of adjacent list elements.

b. Show that if o; accesses element x in list L using the move-to-front heuristic,
then ¢; = 2 -ranky (x) — 1.

Now we compare move-to-front with any other heuristic H that processes an
access sequence according to the two properties above. Heuristic H may transpose

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 17 477

elements in the list in any way it wants, and it might even know the entire access
sequence in advance.

Let L; be the list after access o; using move-to-front, and let L be the list after
access o; using heuristic H. We denote the cost of access o; by ¢; for move-to-
front and by ¢;* for heuristic H. Suppose that heuristic H performs #;* transpositions
during access o;.

c. In part (b), you showed that ¢; = 2 -rank;, (x) — 1. Now show that ¢/ =
rankzx (x) + .

We define an inversion in list L; as a pair of elements y and z such that y
precedes z in L; and z precedes y in list L}. Suppose that list L; has g; inversions
after processing the access sequence (0q, 0, ..., 0;). Then, we define a potential
function ® that maps L; to a real number by ®(L;) = 2¢;. For example, if L; has
the elements (e, ¢, a, d, b) and L} has the elements (c, a, b, d, e), then L; has 5
inversions ((e, ¢), (e, a), (e,d), (e, b), (d, b)), and so ®(L;) = 10. Observe that
®(L;) > 0 for all i and that, if move-to-front and heuristic H start with the same
list Ly, then ®(Ly) = 0.

d. Argue that a transposition either increases the potential by 2 or decreases the
potential by 2.

Suppose that access o; finds the element x. To understand how the potential
changes due to o;, let us partition the elements other than x into four sets, depend-
ing on where they are in the lists just before the ith access:

* Set A consists of elements that precede x in both L;_; and L}_,.
* Set B consists of elements that precede x in L;_; and follow x in L}_,.
* Set C consists of elements that follow x in L;_; and precede x in L}_,.

* Set D consists of elements that follow x in both L;_; and L} ;.
e. Argue thatranky, (x) = |A|+ |B|+ 1 and rank.x (x) = [A] 4+ [C[+ 1.
J. Show that access o; causes a change in potential of
O(L;) — D(Li—1) =2(|A| = |B| + 1),
where, as before, heuristic H performs #* transpositions during access o;.
Define the amortized cost ¢; of access o; by ¢; = ¢; + ®(L;) — P(L,;_y).

g. Show that the amortized cost ¢; of access o; is bounded from above by 4c¢;".

h. Conclude that the cost Cyrr(0) of access sequence o with move-to-front is at
most 4 times the cost Cy (o) of o with any other heuristic H, assuming that
both heuristics start with the same list.

heé¢eps:/hemanthrajhemu.github.io

478 Chapter 17 Amortized Analysis

Chapter notes

Aho, Hopcroft, and Ullman [5] used aggregate analysis to determine the running
time of operations on a disjoint-set forest; we shall analyze this data structure us-
ing the potential method in Chapter 21. Tarjan [331] surveys the accounting and
potential methods of amortized analysis and presents several applications. He at-
tributes the accounting method to several authors, including M. R. Brown, R. E.
Tarjan, S. Huddleston, and K. Mehlhorn. He attributes the potential method to
D. D. Sleator. The term “amortized” is due to D. D. Sleator and R. E. Tarjan.

Potential functions are also useful for proving lower bounds for certain types of
problems. For each configuration of the problem, we define a potential function
that maps the configuration to a real number. Then we determine the potential ®;;,
of the initial configuration, the potential ®g,, of the final configuration, and the
maximum change in potential A®,,,, due to any step. The number of steps must
therefore be at least |Pgua — Pinit| / |APrax|- Examples of potential functions to
prove lower bounds in I/O complexity appear in works by Cormen, Sundquist, and
Wisniewski [79]; Floyd [107]; and Aggarwal and Vitter [3]. Krumme, Cybenko,
and Venkataraman [221] applied potential functions to prove lower bounds on gos-
siping: communicating a unique item from each vertex in a graph to every other
vertex.

The move-to-front heuristic from Problem 17-5 works quite well in practice.
Moreover, if we recognize that when we find an element, we can splice it out of its
position in the list and relocate it to the front of the list in constant time, we can
show that the cost of move-to-front is at most twice the cost of any other heuristic
including, again, one that knows the entire access sequence in advance.

heé¢eps:/hemanthrajhemu.github.io

heé¢eps:/hemanthrajhemu.github.io

32 String Matching

Text-editing programs frequently need to find all occurrences of a pattern in the
text. Typically, the text is a document being edited, and the pattern searched for is a
particular word supplied by the user. Efficient algorithms for this problem —called
“string matching” —can greatly aid the responsiveness of the text-editing program.
Among their many other applications, string-matching algorithms search for par-
ticular patterns in DNA sequences. Internet search engines also use them to find
Web pages relevant to queries.

We formalize the string-matching problem as follows. We assume that the
text is an array 7'[1..n] of length n and that the pattern is an array P[1..m]
of length m < n. We further assume that the elements of P and 7 are char-
acters drawn from a finite alphabet 3. For example, we may have ¥ = {0, 1}
or ¥ = {a,b,...,z}. The character arrays P and T are often called strings of
characters.

Referring to Figure 32.1, we say that pattern P occurs with shift s in text T
(or, equivalently, that pattern P occurs beginning at position s + 1 in text T') if
O0<s<n—mandT[s+1..s+m]= P[l..m] (thatis, if T'[s + j] = P[j], for
1 < j < m). If P occurs with shift s in 7', then we call s a valid shift, otherwise,
we call s an invalid shift. The string-matching problem is the problem of finding
all valid shifts with which a given pattern P occurs in a given text 7.

text T ’alblclalblalalblcIalblalc‘

pattern P $=3 EEEE

Figure 32.1 An example of the string-matching problem, where we want to find all occurrences of
the pattern P = abaa in the text 7 = abcabaabcabac. The pattern occurs only once in the text,
at shift s = 3, which we call a valid shift. A vertical line connects each character of the pattern to its
matching character in the text, and all matched characters are shaded.

heé¢eps:/hemanthrajhemu.github.io

986 Chapter 32 String Matching

Algorithm Preprocessing time Matching time
Naive 0 O((n—m+ 1)m)
Rabin-Karp ®(m) O((n —m+ 1)m)
Finite automaton O(m|X)) On)
Knuth-Morris-Pratt O(m) Q)

Figure 32.2 The string-matching algorithms in this chapter and their preprocessing and matching
times.

Except for the naive brute-force algorithm, which we review in Section 32.1,
each string-matching algorithm in this chapter performs some preprocessing based
on the pattern and then finds all valid shifts; we call this latter phase “matching.”
Figure 32.2 shows the preprocessing and matching times for each of the algorithms
in this chapter. The total running time of each algorithm is the sum of the prepro-
cessing and matching times. Section 32.2 presents an interesting string-matching
algorithm, due to Rabin and Karp. Although the ®((n — m + 1)m) worst-case
running time of this algorithm is no better than that of the naive method, it works
much better on average and in practice. It also generalizes nicely to other pattern-
matching problems. Section 32.3 then describes a string-matching algorithm that
begins by constructing a finite automaton specifically designed to search for occur-
rences of the given pattern P in a text. This algorithm takes O(m |X|) preprocess-
ing time, but only ®(n) matching time. Section 32.4 presents the similar, but much
cleverer, Knuth-Morris-Pratt (or KMP) algorithm; it has the same ®(n) matching
time, and it reduces the preprocessing time to only ® (m).

Notation and terminology

We denote by X* (read “sigma-star”) the set of all finite-length strings formed
using characters from the alphabet X. In this chapter, we consider only finite-
length strings. The zero-length empty string, denoted &, also belongs to X*. The
length of a string x is denoted |x|. The concatenation of two strings x and y,
denoted xy, has length |x| + || and consists of the characters from x followed by
the characters from y.

We say that a string w is a prefix of a string x, denoted w C x, if x = wy for
some string y € X*. Note that if w T x, then |w| < |x|. Similarly, we say that a
string w is a suffix of a string x, denoted w 1 x, if x = yw for some y € X*. As
with a prefix, w 3 x implies |w| < |x|. For example, we have ab abcca and
cca J abcca. The empty string ¢ is both a suffix and a prefix of every string. For
any strings x and y and any character a, we have x 1 y if and only if xa J ya.

heé¢eps:/hemanthrajhemu.github.io

Chapter 32 String Matching 987
- I :
N
y ﬁ y

X

X
y y

(a) (b) (©)

P

=

2~

ik

Figure 32.3 A graphical proof of Lemma 32.1. We suppose that x 7] z and y J z. The three parts
of the figure illustrate the three cases of the lemma. Vertical lines connect matching regions (shown
shaded) of the strings. (a) If |x| < |y|, then x T y. (b) If [x| > |y|, then y T x. (¢) If |x| = |y|,
then x = y.

Also note that _ and J are transitive relations. The following lemma will be useful
later.

Lemma 32.1 (Overlapping-suffix lemma)
Suppose that x, y, and z are strings such that x J z and y O z. If |x| < |y|,
then x 1 y. If |[x| > |y|, then y O x. If |[x| = |y|, then x = y.

Proof See Figure 32.3 for a graphical proof. |

For brevity of notation, we denote the k-character prefix P[1..k] of the pattern
P[1..m] by Py. Thus, Py = € and P,, = P = P[l..m]. Similarly, we denote
the k-character prefix of the text 7 by Tj. Using this notation, we can state the
string-matching problem as that of finding all shifts s in the range 0 < s <n —m
such that P 3 Ty ,y.

In our pseudocode, we allow two equal-length strings to be compared for equal-
ity as a primitive operation. If the strings are compared from left to right and the
comparison stops when a mismatch is discovered, we assume that the time taken
by such a test is a linear function of the number of matching characters discovered.
To be precise, the test “x == y” is assumed to take time @ (¢ + 1), where ¢ is the
length of the longest string z such that z — x and z T y. (We write (¢ + 1)
rather than ®(¢) to handle the case in which ¢ = 0; the first characters compared
do not match, but it takes a positive amount of time to perform this comparison.)

heé¢eps:/hemanthrajhemu.github.io

988 Chapter 32 String Matching

32.1 The naive string-matching algorithm

The naive algorithm finds all valid shifts using a loop that checks the condition
P[l1..m]=T[s+ 1..s 4+ m] for each of the n — m + 1 possible values of s.

NAIVE-STRING-MATCHER (T, P)
= T.length
= P.length
fors =0ton—m
if P[1..ml==T[s+1..5 +m]
print “Pattern occurs with shift” s

O R N N R S

Figure 32.4 portrays the naive string-matching procedure as sliding a “template”
containing the pattern over the text, noting for which shifts all of the characters
on the template equal the corresponding characters in the text. The for loop of
lines 3-5 considers each possible shift explicitly. The test in line 4 determines
whether the current shift is valid; this test implicitly loops to check corresponding
character positions until all positions match successfully or a mismatch is found.
Line 5 prints out each valid shift s.

Procedure NAIVE-STRING-MATCHER takes time O((n — m + 1)m), and this
bound is tight in the worst case. For example, consider the text string a” (a string
of n a’s) and the pattern a”. For each of the n —m + 1 possible values of the shift s,
the implicit loop on line 4 to compare corresponding characters must execute m
times to validate the shift. The worst-case running time is thus ®((n — m + 1)m),
which is ®(n?) if m = |n/2]. Because it requires no preprocessing, NAIVE-
STRING-MATCHER’s running time equals its matching time.

[elelalafpfe] [afc[a]a[p[e] [a]c[a]a]B]c| [a]c|afa[b]c]
=0 =1 =2 =3
! S
(a) (c)
Figure 32.4 The operation of the naive string matcher for the pattern P = aab and the text

T = acaabc. We can imagine the pattern P as a template that we slide next to the text. (a)—(d) The
four successive alignments tried by the naive string matcher. In each part, vertical lines connect cor-
responding regions found to match (shown shaded), and a jagged line connects the first mismatched
character found, if any. The algorithm finds one occurrence of the pattern, at shift s = 2, shown in
part (c).

heé¢eps:/hemanthrajhemu.github.io

32.1 The naive string-matching algorithm 989

As we shall see, NAIVE-STRING-MATCHER is not an optimal procedure for this
problem. Indeed, in this chapter we shall see that the Knuth-Morris-Pratt algorithm
is much better in the worst case. The naive string-matcher is inefficient because
it entirely ignores information gained about the text for one value of s when it
considers other values of s. Such information can be quite valuable, however. For
example, if P = aaab and we find that s = 0 is valid, then none of the shifts 1, 2,
or 3 are valid, since T'[4] = b. In the following sections, we examine several ways
to make effective use of this sort of information.

Exercises

32.1-1
Show the comparisons the naive string matcher makes for the pattern P = 0001
in the text 77 = 000010001010001.

32.1-2
Suppose that all characters in the pattern P are different. Show how to accelerate
NAIVE-STRING-MATCHER to run in time O(n) on an n-character text 7.

32.1-3

Suppose that pattern P and text 7" are randomly chosen strings of length m and n,
respectively, from the d -ary alphabet ¥; = {0, 1,...,d — 1}, where d > 2. Show
that the expected number of character-to-character comparisons made by the im-
plicit loop in line 4 of the naive algorithm is

1 _ —m
1—d!
over all executions of this loop. (Assume that the naive algorithm stops comparing

characters for a given shift once it finds a mismatch or matches the entire pattern.)
Thus, for randomly chosen strings, the naive algorithm is quite efficient.

m—m+1) <2(n—m-+1)

32.1-4

Suppose we allow the pattern P to contain occurrences of a gap character <> that
can match an arbitrary string of characters (even one of zero length). For example,
the pattern ab<ba<{>c occurs in the text cabccbacbacab as

c ab cc ba cba c ab

N N N e e e’

ab ¢ ba ¢ c

and as

c ab ccbac ba c ab.

N N, N e N o N e’

ab & ba ¢ c

heé¢eps:/hemanthrajhemu.github.io

990 Chapter 32 String Matching

Note that the gap character may occur an arbitrary number of times in the pattern
but not at all in the text. Give a polynomial-time algorithm to determine whether
such a pattern P occurs in a given text 7', and analyze the running time of your
algorithm.

32.2 The Rabin-Karp algorithm

Rabin and Karp proposed a string-matching algorithm that performs well in prac-
tice and that also generalizes to other algorithms for related problems, such as
two-dimensional pattern matching. The Rabin-Karp algorithm uses ®(m) prepro-
cessing time, and its worst-case running time is ®((n —m + 1)m). Based on certain
assumptions, however, its average-case running time is better.

This algorithm makes use of elementary number-theoretic notions such as the
equivalence of two numbers modulo a third number. You might want to refer to
Section 31.1 for the relevant definitions.

For expository purposes, let us assume that ¥ = {0, 1, 2,..., 9}, so that each
character is a decimal digit. (In the general case, we can assume that each charac-
ter is a digit in radix-d notation, where d = |X|.) We can then view a string of k
consecutive characters as representing a length-k decimal number. The character
string 31415 thus corresponds to the decimal number 31,415. Because we inter-
pret the input characters as both graphical symbols and digits, we find it convenient
in this section to denote them as we would digits, in our standard text font.

Given a pattern P[1..m],let p denote its corresponding decimal value. In a sim-
ilar manner, given a text T'[1..n], let z; denote the decimal value of the length-m
substring T'[s + 1..s +m],fors =0, 1,...,n —m. Certainly, t;, = p if and only
if T[s+1..5s+m]= P[l..m]; thus, s is a valid shift if and only if £, = p. If we
could compute p in time ®(m) and all the 7, values in a total of ®(n—m +1) time,'
then we could determine all valid shifts s in time @(m) + O(n —m + 1) = O(n)
by comparing p with each of the #; values. (For the moment, let’s not worry about
the possibility that p and the ¢, values might be very large numbers.)

We can compute p in time ®(m) using Horner’s rule (see Section 30.1):

p = P[m]+10(P[m— 1]+ 10(P[m —2] + --- + 10(P[2] + 10P[1])---)) .

Similarly, we can compute ¢y from 71 ..m] in time © (m).

IWwe write ©(n — m + 1) instead of ®(n — m) because s takes on n — m + 1 different values. The
“41” is significant in an asymptotic sense because when m = n, computing the lone #; value takes
®(1) time, not ®(0) time.

heé¢eps:/hemanthrajhemu.github.io

32.2 The Rabin-Karp algorithm 991

To compute the remaining values 1, 2,, ... ,t,_, in time ®(n — m), we observe
that we can compute ;1 from ¢, in constant time, since

tox1 = 10(ts — 10" ' T[s + 1)) + T[s +m + 1] . (32.1)

Subtracting 10! T'[s + 1] removes the high-order digit from z,, multiplying the
result by 10 shifts the number left by one digit position, and adding 7'[s + m + 1]
brings in the appropriate low-order digit. For example, if m = 5 and 7, = 31415,
then we wish to remove the high-order digit 7'[s + 1] = 3 and bring in the new
low-order digit (suppose itis T[s + 5 + 1] = 2) to obtain

tsy1 = 10(31415 —10000-3) +2
14152 .

If we precompute the constant 10™~! (which we can do in time O(Igm) using the
techniques of Section 31.6, although for this application a straightforward O(m)-
time method suffices), then each execution of equation (32.1) takes a constant num-
ber of arithmetic operations. Thus, we can compute p in time ®(m), and we can
compute all of #y,t1,...,t,_, in time ®(n —m + 1). Therefore, we can find all
occurrences of the pattern P[1..m] in the text T'[1..n] with ®(m) preprocessing
time and ®(n — m + 1) matching time.

Until now, we have intentionally overlooked one problem: p and #; may be
too large to work with conveniently. If P contains m characters, then we cannot
reasonably assume that each arithmetic operation on p (which is m digits long)
takes “constant time.” Fortunately, we can solve this problem easily, as Figure 32.5
shows: compute p and the #; values modulo a suitable modulus g. We can compute
p modulo ¢ in ®(m) time and all the #; values modulo ¢ in ®(n —m + 1) time.
If we choose the modulus ¢ as a prime such that 10g just fits within one computer
word, then we can perform all the necessary computations with single-precision
arithmetic. In general, with a d-ary alphabet {0, 1,...,d — 1}, we choose ¢ so
that dg fits within a computer word and adjust the recurrence equation (32.1) to
work modulo ¢, so that it becomes

tis1 = (d(t; = T[s + 1Jh) + T[s +m + 1)) mod q . (32.2)

where i = d™ ' (mod q) is the value of the digit “1” in the high-order position
of an m-digit text window.

The solution of working modulo ¢ is not perfect, however: , = p (mod q)
does not imply that z;, = p. On the other hand, if z; # p (mod g), then we
definitely have that #; # p, so that shift s is invalid. We can thus use the test
t;, = p (mod g) as a fast heuristic test to rule out invalid shifts s. Any shift s for
which t;, = p (mod g) must be tested further to see whether s is really valid or
we just have a spurious hit. This additional test explicitly checks the condition

heé¢eps:/hemanthrajhemu.github.io

992 Chapter 32 String Matching

(2[3]s]ofof2[a]xf4f1]s]2]e[7][3]o]o]2]1]

mod 13

(a)

EEEE ARG EEERE

mod 13
[s]o3]ifo]1]7][8]4]5]t0[11]7]9]11]
valid spurious
match hit
(b)
old new old new
high-order low-order high-order low-order
digit digit digii shift digit
’ 3 I 1 |4 I 1 I 5 I 2 ‘ 14152 = (31415 —-3-10000)-10 + 2 (mod 13)
— = (7-33)10+2 (mod 13)
l = 8 (mod 13)
73]
(©

Figure 32.5 The Rabin-Karp algorithm. Each character is a decimal digit, and we compute values
modulo 13. (a) A text string. A window of length 5 is shown shaded. The numerical value of the
shaded number, computed modulo 13, yields the value 7. (b) The same text string with values com-
puted modulo 13 for each possible position of a length-5 window. Assuming the pattern P = 31415,
we look for windows whose value modulo 13 is 7, since 31415 = 7 (mod 13). The algorithm finds
two such windows, shown shaded in the figure. The first, beginning at text position 7, is indeed an
occurrence of the pattern, while the second, beginning at text position 13, is a spurious hit. (¢) How
to compute the value for a window in constant time, given the value for the previous window. The
first window has value 31415. Dropping the high-order digit 3, shifting left (multiplying by 10), and
then adding in the low-order digit 2 gives us the new value 14152. Because all computations are
performed modulo 13, the value for the first window is 7, and the value for the new window is 8.

heé¢eps:/hemanthrajhemu.github.io

32.2 The Rabin-Karp algorithm 993

P[l..m] = T[s+ 1..5s +m]. If g is large enough, then we hope that spurious
hits occur infrequently enough that the cost of the extra checking is low.

The following procedure makes these ideas precise. The inputs to the procedure
are the text 7', the pattern P, the radix d to use (which is typically taken to be | X)),
and the prime ¢ to use.

RABIN-KARP-MATCHER(T, P,d, q)

1 n = T.length

2 m = P.length

3 h=d" " modq

4 p=20

5 to - O

6 fori = 1tom // preprocessing
7 p = (dp + PJ[i]) mod g

8 to = (dty + T[i]) mod ¢q

9 fors =0ton—m // matching

10 if p==1,

11 if P[1..ml==T[s+1..5 +m]

12 print “Pattern occurs with shift” s
13 ifs<n—m

14 ts+1 = (d(ts = T[s + 1]h) + T[s + m + 1]) mod ¢

The procedure RABIN-KARP-MATCHER works as follows. All characters are
interpreted as radix-d digits. The subscripts on ¢ are provided only for clarity; the
program works correctly if all the subscripts are dropped. Line 3 initializes /4 to the
value of the high-order digit position of an m-digit window. Lines 4-8 compute p
as the value of P[1..m] mod ¢ and ¢, as the value of T'[1..m] mod ¢. The for
loop of lines 9-14 iterates through all possible shifts s, maintaining the following
invariant:

Whenever line 10 is executed, t, = T'[s + 1..s + m] mod gq.

If p = t; in line 10 (a “hit”), then line 11 checks to see whether P[1..m] =
T[s+1..s+m] in order to rule out the possibility of a spurious hit. Line 12 prints
out any valid shifts that are found. If s < n — m (checked in line 13), then the for
loop will execute at least one more time, and so line 14 first executes to ensure that
the loop invariant holds when we get back to line 10. Line 14 computes the value
of #,4+1; mod g from the value of 7, mod ¢ in constant time using equation (32.2)
directly.

RABIN-KARP-MATCHER takes ® (m) preprocessing time, and its matching time
is ®((n —m 4+ 1)m) in the worst case, since (like the naive string-matching algo-
rithm) the Rabin-Karp algorithm explicitly verifies every valid shift. If P = a™

heé¢eps:/hemanthrajhemu.github.io

994 Chapter 32 String Matching

and T = a”, then verifying takes time ®((n —m 4 1)m), since each of the n—m + 1
possible shifts is valid.

In many applications, we expect few valid shifts—perhaps some constant ¢ of
them. In such applications, the expected matching time of the algorithm is only
O((n—m+ 1)+ cm) = O(n + m), plus the time required to process spurious
hits. We can base a heuristic analysis on the assumption that reducing values mod-
ulo g acts like a random mapping from X* to Z,. (See the discussion on the use of
division for hashing in Section 11.3.1. It is difficult to formalize and prove such an
assumption, although one viable approach is to assume that ¢ is chosen randomly
from integers of the appropriate size. We shall not pursue this formalization here.)
We can then expect that the number of spurious hits is O(n/q), since we can es-
timate the chance that an arbitrary 7, will be equivalent to p, modulo ¢, as 1/gq.
Since there are O(n) positions at which the test of line 10 fails and we spend O (m)
time for each hit, the expected matching time taken by the Rabin-Karp algorithm
is

O(n) + O(m(v +n/q)) .

where v is the number of valid shifts. This running time is O(n) if v = O(1) and
we choose ¢ > m. That is, if the expected number of valid shifts is small (O(1))
and we choose the prime ¢ to be larger than the length of the pattern, then we
can expect the Rabin-Karp procedure to use only O(n 4+ m) matching time. Since
m < n, this expected matching time is O(n).

Exercises

32.2-1
Working modulo ¢ = 11, how many spurious hits does the Rabin-Karp matcher en-
counter in the text 7 = 3141592653589793 when looking for the pattern P = 267

32.2-2

How would you extend the Rabin-Karp method to the problem of searching a text
string for an occurrence of any one of a given set of k patterns? Start by assuming
that all k patterns have the same length. Then generalize your solution to allow the
patterns to have different lengths.

32.2-3

Show how to extend the Rabin-Karp method to handle the problem of looking for
a given m X m pattern in an n X n array of characters. (The pattern may be shifted
vertically and horizontally, but it may not be rotated.)

heé¢eps:/hemanthrajhemu.github.io

32.3 String matching with finite automata 995

32.24

Alice has a copy of a long n-bit file A = {(a,_1,d,—»,...,dy), and Bob similarly
has an n-bit file B = (b,_1, b2, ..., by). Alice and Bob wish to know if their
files are identical. To avoid transmitting all of A or B, they use the following fast
probabilistic check. Together, they select a prime ¢ > 1000n and randomly select
an integer x from {0, 1,...,q — 1}. Then, Alice evaluates

n—1
A(x) = (Zaixi) mod ¢
i=0

and Bob similarly evaluates B(x). Prove that if A # B, there is at most one
chance in 1000 that A(x) = B(x), whereas if the two files are the same, A(x) is
necessarily the same as B(x). (Hint: See Exercise 31.4-4.)

32.3 String matching with finite automata

Many string-matching algorithms build a finite automaton—a simple machine for
processing information—that scans the text string 7" for all occurrences of the pat-
tern P. This section presents a method for building such an automaton. These
string-matching automata are very efficient: they examine each text character ex-
actly once, taking constant time per text character. The matching time used — after
preprocessing the pattern to build the automaton—is therefore ®(n). The time to
build the automaton, however, can be large if X is large. Section 32.4 describes a
clever way around this problem.

We begin this section with the definition of a finite automaton. We then examine
a special string-matching automaton and show how to use it to find occurrences
of a pattern in a text. Finally, we shall show how to construct the string-matching
automaton for a given input pattern.

Finite automata

A finite automaton M, illustrated in Figure 32.6, is a 5-tuple (Q, qo, 4, X, 6),
where

* Q is afinite set of states,

* go € Q is the start state,

* A C Q is adistinguished set of accepting states,
* X is a finite input alphabet,

* §is afunction from Q x X into Q, called the transition function of M .

heé¢eps:/hemanthrajhemu.github.io

996 Chapter 32 String Matching

a

input b
state a b ‘ |
o [1]o v

1 0]0 b

(a) (b)

Figure 32.6 A simple two-state finite automaton with state set Q = {0, 1}, start state go = 0,
and input alphabet ¥ = {a,b}. (a) A tabular representation of the transition function §. (b) An
equivalent state-transition diagram. State 1, shown blackend, is the only accepting state. Directed
edges represent transitions. For example, the edge from state 1 to state 0 labeled b indicates that
8(1,b) = 0. This automaton accepts those strings that end in an odd number of a’s. More precisely,
it accepts a string x if and only if x = yz, where y = g or y ends withab, and z = ak, where k is
odd. For example, on input abaaa, including the start state, this automaton enters the sequence of
states (0, 1,0, 1,0, 1), and so it accepts this input. For input abbaa, it enters the sequence of states
(0, 1,0,0, 1,0), and so it rejects this input.

The finite automaton begins in state g, and reads the characters of its input string
one at a time. If the automaton is in state ¢ and reads input character a, it moves
(“makes a transition”) from state ¢ to state 6(q, @). Whenever its current state g is
a member of A, the machine M has accepted the string read so far. An input that
is not accepted is rejected.

A finite automaton M induces a function ¢, called the final-state function,
from X* to O such that ¢ (w) is the state M ends up in after scanning the string w.
Thus, M accepts a string w if and only if ¢p(w) € A. We define the function ¢
recursively, using the transition function:

#(e) = qo,
p(wa) = §(p(w),a) forwe T*,aeX .

String-matching automata

For a given pattern P, we construct a string-matching automaton in a preprocess-
ing step before using it to search the text string. Figure 32.7 illustrates how we
construct the automaton for the pattern P = ababaca. From now on, we shall
assume that P is a given fixed pattern string; for brevity, we shall not indicate the
dependence upon P in our notation.

In order to specify the string-matching automaton corresponding to a given pat-
tern P[1..m], we first define an auxiliary function o, called the suffix function

corresponding to P. The function o maps X* to {0, 1, ..., m} such that o (x) is the
length of the longest prefix of P that is also a suffix of x:
o(x)=max{k : P, O x} . (32.3)

heé¢eps:/hemanthrajhemu.github.io

32.3 String matching with finite automata 997

(@
input
state a b ¢ P
0 |[1|0|0]| a
1 |1]2]|0| b
2 |3/0(0| a
3 |1]4(0| b
4 |5/0|0| a
5 |1]4]6| ¢ i — 12 3 45 6 7 8 91011
6 |7/0[0]| a Tli] — a b a b a b a ¢ a b a
7 |1]2]0 statep(7;) O 1 2 3 4 5 4 5 6M?2 3
(b) (©

Figure 32.7 (a) A state-transition diagram for the string-matching automaton that accepts all
strings ending in the string ababaca. State 0 is the start state, and state 7 (shown blackened) is
the only accepting state. A directed edge from state i to state j labeled a represents §(i,a) = j. The
right-going edges forming the “spine” of the automaton, shown heavy in the figure, correspond to
successful matches between pattern and input characters. The left-going edges correspond to failing
matches. Some edges corresponding to failing matches are omitted; by convention, if a state i has
no outgoing edge labeled a for some a € X, then §(i,a) = 0. (b) The corresponding transition
function §, and the pattern string P = ababaca. The entries corresponding to successful matches
between pattern and input characters are shown shaded. (c¢) The operation of the automaton on the
text T = abababacaba. Under each text character T [i] appears the state ¢ (7;) that the automa-
ton is in after processing the prefix 7;. The automaton finds one occurrence of the pattern, ending in
position 9.

The suffix function o is well defined since the empty string P, = ¢ is a suf-
fix of every string. As examples, for the pattern P = ab, we have o(¢) = 0,
o(ccaca) = 1, and o(ccab) = 2. For a pattern P of length m, we have
o(x) = m if and only if P I x. From the definition of the suffix function,
x 1y implies o(x) < o(y).

We define the string-matching automaton that corresponds to a given pattern
P[1..m] as follows:

heé¢eps:/hemanthrajhemu.github.io

998 Chapter 32 String Matching

e The state set Q is {0, 1,...,m}. The start state g is state 0, and state m is the
only accepting state.

* The transition function § is defined by the following equation, for any state ¢
and character a:

8(q.a) = o(Pya) . (32.4)

We define §(q,a) = o(P,a) because we want to keep track of the longest pre-
fix of the pattern P that has matched the text string 7" so far. We consider the
most recently read characters of 7. In order for a substring of 7 —Ilet’s say the
substring ending at 7 [i]—to match some prefix P; of P, this prefix P; must be a
suffix of 7;. Suppose that ¢ = ¢(7;), so that after reading 7}, the automaton is in
state ¢g. We design the transition function § so that this state number, ¢, tells us the
length of the longest prefix of P that matches a suffix of 7;. That is, in state g,
P, 1 T; and g = o(T;). (Whenever ¢ = m, all m characters of P match a suffix
of T;, and so we have found a match.) Thus, since ¢(7;) and o (7;) both equal ¢,
we shall see (in Theorem 32.4, below) that the automaton maintains the following
invariant:

¢(T;) =o(Ty) . (32.5)

If the automaton is in state ¢ and reads the next character T'[i + 1] = a, then we
want the transition to lead to the state corresponding to the longest prefix of P that
is a suffix of T;a, and that state is 0 (7;a). Because P, is the longest prefix of P
that is a suffix of 7;, the longest prefix of P that is a suffix of 7;a is not only o (T;a),
but also o(P,a). (Lemma 32.3, on page 1000, proves that o(7;a) = o(P,a).)
Thus, when the automaton is in state g, we want the transition function on charac-
ter a to take the automaton to state o (P,a).

There are two cases to consider. In the first case, a = P[q + 1], so that the
character a continues to match the pattern; in this case, because §(¢,a) = g+1, the
transition continues to go along the “spine” of the automaton (the heavy edges in
Figure 32.7). In the second case, a # P [q+1], so that a does not continue to match
the pattern. Here, we must find a smaller prefix of P that is also a suffix of 7;.
Because the preprocessing step matches the pattern against itself when creating the
string-matching automaton, the transition function quickly identifies the longest
such smaller prefix of P.

Let’s look at an example. The string-matching automaton of Figure 32.7 has
8(5,¢) = 6, illustrating the first case, in which the match continues. To illus-
trate the second case, observe that the automaton of Figure 32.7 has §(5,b) = 4.
We make this transition because if the automaton reads a b in state ¢ = 5, then
P,b = ababab, and the longest prefix of P that is also a suffix of ababab is
P 4 = abab.

heé¢eps:/hemanthrajhemu.github.io

32.3 String matching with finite automata 999

| |
|

B ‘a
HHPHH

Figure 32.8 An illustration for the proof of Lemma 32.2. The figure shows that r < o(x) + 1,
where r = o(xa).

To clarify the operation of a string-matching automaton, we now give a simple,
efficient program for simulating the behavior of such an automaton (represented
by its transition function §) in finding occurrences of a pattern P of length m in an
input text 7'[1 . . n]. As for any string-matching automaton for a pattern of length m,
the state set Q is {0, 1,...,m}, the start state is 0, and the only accepting state is
state m.

FINITE-AUTOMATON-MATCHER (T, §, m)

1 n = T.length

2 ¢g=0

3 fori =1ton

4 q = 8(q. T[i])

5 ifg==m

6 print “Pattern occurs with shift” i — m

From the simple loop structure of FINITE-AUTOMATON-MATCHER, we can easily
see that its matching time on a text string of length n is ®(n). This matching
time, however, does not include the preprocessing time required to compute the
transition function §. We address this problem later, after first proving that the
procedure FINITE-AUTOMATON-MATCHER operates correctly.

Consider how the automaton operates on an input text 7°[1 .. n]. We shall prove
that the automaton is in state o (77) after scanning character 7'[i]. Since o (7;) = m
if and only if P 1 T}, the machine is in the accepting state m if and only if it has
just scanned the pattern P. To prove this result, we make use of the following two
lemmas about the suffix function o.

Lemma 32.2 (Suffix-function inequality)
For any string x and character a, we have o(xa) < o(x) + 1.

Proof Referring to Figure 32.8, let r = o(xa). If r = 0, then the conclusion

o(xa) = r < o(x)+ 1 is trivially satisfied, by the nonnegativity of o(x). Now
assume that r > 0. Then, P, 1 xa, by the definition of ¢. Thus, P,_; 1 x, by

heé¢eps:/hemanthrajhemu.github.io

1000 Chapter 32 String Matching

Figure 32.9 An illustration for the proof of Lemma 32.3. The figure shows that r = o(P4a),
where ¢ = o(x) and r = o (xa).

dropping the a from the end of P, and from the end of xa. Therefore, r—1 < o (x),
since o (x) is the largest k such that P, J x,and thuso(xa) =r <o(x)+1. =

Lemma 32.3 (Suffix-function recursion lemma)
For any string x and character a, if ¢ = o(x), then o(xa) = o(P,a).

Proof From the definition of o, we have P, 7 x. As Figure 32.9 shows, we
also have P,a 3 xa. If we let r = o(xa), then P, J xa and, by Lemma 32.2,
r <q+ 1. Thus, we have |P,| =r < g+ 1 = | P,a|. Since P,a 3 xa, P, 1 xa,
and |P,| < |P,a|, Lemma 32.1 implies that P, 3 P,a. Therefore, r < o(P,a),
that is, o (xa) < o(P,a). But we also have o(P,a) < o(xa), since Pya 7 xa.
Thus, o(xa) = o(Pya). |

We are now ready to prove our main theorem characterizing the behavior of a
string-matching automaton on a given input text. As noted above, this theorem
shows that the automaton is merely keeping track, at each step, of the longest
prefix of the pattern that is a suffix of what has been read so far. In other words,
the automaton maintains the invariant (32.5).

Theorem 32.4
If ¢ is the final-state function of a string-matching automaton for a given pattern P
and T[1..n] is an input text for the automaton, then

¢(T;) = o(T)

fori =0,1,...,n.

Proof The proof is by induction on i. Fori = 0, the theorem is trivially true,
since Ty = &. Thus, ¢(Ty) = 0 = o (7).

heé¢eps:/hemanthrajhemu.github.io

32.3 String matching with finite automata 1001

Now, we assume that ¢(7;) = o(7;) and prove that ¢(7;4,) = 0(T;+1). Let g
denote ¢(T;), and let a denote T'[i + 1]. Then,

o(Tiv1) = ¢(Tia) (by the definitions of 7}, and a)
= 38(¢(T;),a) (by the definition of ¢)
= 6(q.a) (by the definition of ¢)
= o(Pya) (by the definition (32.4) of §)
= o(T;a) (by Lemma 32.3 and induction)
= o(Ti11) (by the definition of 7;,,) . (]

By Theorem 32.4, if the machine enters state ¢ on line 4, then ¢ is the largest
value such that P, 3 7;. Thus, we have ¢ = m on line 5 if and only if the ma-
chine has just scanned an occurrence of the pattern P. We conclude that FINITE-
AUTOMATON-MATCHER operates correctly.

Computing the transition function

The following procedure computes the transition function § from a given pattern
P[1..m].

COMPUTE-TRANSITION-FUNCTION (P, X)

1 m = P.length
2 forg =0tom

3 for each character a € X

4 k = min(m + 1,9 + 2)
5 repeat

6 k=k—1

7 until P, 3 Pa

8 8(g,a) = k

9 return §

This procedure computes 6(¢g, @) in a straightforward manner according to its def-
inition in equation (32.4). The nested loops beginning on lines 2 and 3 consider
all states ¢ and all characters a, and lines 4-8 set §(g, @) to be the largest k such
that P 3 Pya. The code starts with the largest conceivable value of k, which is
min(m, g + 1). It then decreases k until P, 3 P,a, which must eventually occur,
since Py = ¢ is a suffix of every string.

The running time of COMPUTE-TRANSITION-FUNCTION is O(m? |X|), be-
cause the outer loops contribute a factor of m |X|, the inner repeat loop can run
at most m + 1 times, and the test Py 3 P,a on line 7 can require comparing up

heé¢eps:/hemanthrajhemu.github.io

1002 Chapter 32 String Matching

to m characters. Much faster procedures exist; by utilizing some cleverly com-
puted information about the pattern P (see Exercise 32.4-8), we can improve the
time required to compute § from P to O(m |X|). With this improved procedure for
computing 8, we can find all occurrences of a length-m pattern in a length-n text
over an alphabet ¥ with O(m |X]|) preprocessing time and ®(n) matching time.

Exercises

32.3-1
Construct the string-matching automaton for the pattern P = aabab and illustrate
its operation on the text string 7 = aaababaabaababaab.

32.3-2
Draw a state-transition diagram for a string-matching automaton for the pattern
ababbabbababbababbabb over the alphabet ¥ = {a, b}.

32.3-3

We call a pattern P nonoverlappable if Py T P, implies k = 0 or k = q. De-
scribe the state-transition diagram of the string-matching automaton for a nonover-
lappable pattern.

3234 %

Given two patterns P and P’, describe how to construct a finite automaton that
determines all occurrences of either pattern. Try to minimize the number of states
in your automaton.

32.3-5

Given a pattern P containing gap characters (see Exercise 32.1-4), show how to
build a finite automaton that can find an occurrence of P in a text 7 in O(n)
matching time, where n = |T'|.

*x 32.4 The Knuth-Morris-Pratt algorithm

We now present a linear-time string-matching algorithm due to Knuth, Morris, and
Pratt. This algorithm avoids computing the transition function § altogether, and its
matching time is ®(n) using just an auxiliary function 7z, which we precompute
from the pattern in time ®(m) and store in an array 7 [1..m]. The array 7 allows
us to compute the transition function § efficiently (in an amortized sense) “on the
fly” as needed. Loosely speaking, for any state ¢ = 0, 1, ..., m and any character

heé¢eps:/hemanthrajhemu.github.io

32.4 The Knuth-Morris-Pratt algorithm 1003

a € X, the value m[g] contains the information we need to compute §(¢g,a) but
that does not depend on a. Since the array 7 has only m entries, whereas § has
®(m | X|) entries, we save a factor of | X| in the preprocessing time by computing 7
rather than §.

The prefix function for a pattern

The prefix function 7 for a pattern encapsulates knowledge about how the pat-
tern matches against shifts of itself. We can take advantage of this information to
avoid testing useless shifts in the naive pattern-matching algorithm and to avoid
precomputing the full transition function § for a string-matching automaton.

Consider the operation of the naive string matcher. Figure 32.10(a) shows a
particular shift s of a template containing the pattern P = ababaca against a
text 7. For this example, ¢ = 5 of the characters have matched successfully, but
the 6th pattern character fails to match the corresponding text character. The infor-
mation that ¢ characters have matched successfully determines the corresponding
text characters. Knowing these ¢ text characters allows us to determine immedi-
ately that certain shifts are invalid. In the example of the figure, the shift s + 1 is
necessarily invalid, since the first pattern character (a) would be aligned with a text
character that we know does not match the first pattern character, but does match
the second pattern character (b). The shift 5" = s + 2 shown in part (b) of the fig-
ure, however, aligns the first three pattern characters with three text characters that
must necessarily match. In general, it is useful to know the answer to the following
question:

Given that pattern characters P 1 ..g] match text characters T'[s+1..s+¢],
what is the least shift s’ > s such that for some k < ¢,

Pll..k|=T[s +1..5 +k], (32.6)

where s' + k =5 4+ g?

In other words, knowing that P, 3 T,,,, we want the longest proper prefix Py
of P, that is also a suffix of T;4,. (Since s’ + k = s + ¢, if we are given s
and ¢, then finding the smallest shift s” is tantamount to finding the longest prefix
length k.) We add the difference g — k in the lengths of these prefixes of P to the
shift s to arrive at our new shift s’, so that s’ = s 4 (¢ — k). In the best case, k = 0,
so that s = s 4 ¢, and we immediately rule out shifts s + 1,5 +2,...,5s +¢g — 1.
In any case, at the new shift s we don’t need to compare the first k characters of P
with the corresponding characters of 7, since equation (32.6) guarantees that they
match.

We can precompute the necessary information by comparing the pattern against
itself, as Figure 32.10(c) demonstrates. Since T'[s" + 1..s" + k] is part of the

heé¢eps:/hemanthrajhemu.github.io

1004 Chapter 32 String Matching

[blajc[pfafp]a[bfalalb[c[plalb]| T
[[[[[7%
%ﬁalblalblalcla‘P

(a)

[o[a[c[p[a|p[a]p]a]a[b]c|p[a]b] T

el ‘{aI:IalblaICIa\P

(b)

2 [=[S
[]
EElE -

(©)

»]
<

Figure 32.10 The prefix function 7. (a) The pattern P = ababaca aligns with a text 7" so that
the first g = 5 characters match. Matching characters, shown shaded, are connected by vertical lines.
(b) Using only our knowledge of the 5 matched characters, we can deduce that a shift of s + 1 is
invalid, but that a shift of s’ = s+2 is consistent with everything we know about the text and therefore
is potentially valid. (¢) We can precompute useful information for such deductions by comparing the
pattern with itself. Here, we see that the longest prefix of P that is also a proper suffix of Ps is P3.
We represent this precomputed information in the array m, so that [5] = 3. Given that ¢ characters
have matched successfully at shift s, the next potentially valid shift is at s’ = s + (¢ —[q]) as shown
in part (b).

known portion of the text, it is a suffix of the string P,. Therefore, we can interpret
equation (32.6) as asking for the greatest k < g such that Py 3 P,. Then, the new
shift s" = s+ (¢ —k) is the next potentially valid shift. We will find it convenient to
store, for each value of ¢, the number k of matching characters at the new shift s,
rather than storing, say, s’ — s.

We formalize the information that we precompute as follows. Given a pattern
P[1..m], the prefix function for the pattern P is the function 7 : {1,2,...,m} —
{0,1,...,m — 1} such that

w[g) = max{k : k <qgand Py O P,} .

That is, m[g] is the length of the longest prefix of P that is a proper suffix of P,.
Figure 32.11(a) gives the complete prefix function for the pattern ababaca.

heé¢eps:/hemanthrajhemu.github.io

32.4 The Knuth-Morris-Pratt algorithm 1005

P5 a
P a c a w[5] =3
i T2 2 P, a b ac a w3l =1
Pli] |lalbla|b|alc|a P : b b =0
il lo]ol1]2[3]0[1 o fie P @ a ca =

(a) (b)

Figure 32.11 An illustration of Lemma 32.5 for the pattern P = ababaca and ¢ = 5. (a) The &
function for the given pattern. Since 7[5] = 3, 7[3] = 1, and x[1] = 0, by iterating 7= we obtain
7*[5] = {3, 1,0}. (b) We slide the template containing the pattern P to the right and note when some
prefix Py, of P matches up with some proper suffix of Ps; we get matches when & = 3, 1, and 0. In
the figure, the first row gives P, and the dotted vertical line is drawn just after Ps. Successive rows
show all the shifts of P that cause some prefix P, of P to match some suffix of P5. Successfully
matched characters are shown shaded. Vertical lines connect aligned matching characters. Thus,
{k :k <5and P 3 Ps} = {3.1,0}. Lemma 32.5 claims that 7*[¢] = {k : k < g and Py 0 Py}
for all g.

The pseudocode below gives the Knuth-Morris-Pratt matching algorithm as
the procedure KMP-MATCHER. For the most part, the procedure follows from
FINITE-AUTOMATON-MATCHER, as we shall sese. KMP-MATCHER calls the aux-
iliary procedure COMPUTE-PREFIX-FUNCTION to compute 7.

KMP-MATCHER(T, P)

1 n = T.length

2 m = P.length

3 1w = COMPUTE-PREFIX-FUNCTION(P)

4 ¢g=0 // number of characters matched
5 fori = 1ton // scan the text from left to right
6 while ¢ > 0 and Pg + 1] # T[]

7 qg = n|q] // next character does not match
8 if Plg+ 1] ==T1i]

9 q=q+1 // next character matches
10 ifg==m // is all of P matched?
11 print “Pattern occurs with shift” i — m
12 q = n|q] // 1ook for the next match

heé¢eps:/hemanthrajhemu.github.io

1006 Chapter 32 String Matching

COMPUTE-PREFIX-FUNCTION(P)

1 m = P.length

2 let [1..m] be a new array
3 #[1] =0

4 k=0

5 forg =2tom

6 while k > 0 and P[k + 1] # P|q]
7 k = nlk]

8 if P[k + 1] == P|q]

9 k=k+1

10 wlg]l =k

11 return

These two procedures have much in common, because both match a string against
the pattern P: KMP-MATCHER matches the text 7" against P, and COMPUTE-
PREFIX-FUNCTION matches P against itself.

We begin with an analysis of the running times of these procedures. Proving
these procedures correct will be more complicated.

Running-time analysis

The running time of COMPUTE-PREFIX-FUNCTION is ®(m), which we show by
using the aggregate method of amortized analysis (see Section 17.1). The only
tricky part is showing that the while loop of lines 67 executes O(m) times alto-
gether. We shall show that it makes at most m — 1 iterations. We start by making
some observations about k. First, line 4 starts k at 0, and the only way that k
increases is by the increment operation in line 9, which executes at most once per
iteration of the for loop of lines 5—-10. Thus, the total increase in & is at most m — 1.
Second, since k < g upon entering the for loop and each iteration of the loop in-
crements ¢, we always have k < g. Therefore, the assignments in lines 3 and 10
ensure that w[g] < ¢ forall ¢ = 1,2,...,m, which means that each iteration of
the while loop decreases k. Third, k never becomes negative. Putting these facts
together, we see that the total decrease in k from the while loop is bounded from
above by the total increase in k over all iterations of the for loop, which is m — 1.
Thus, the while loop iterates at most m — 1 times in all, and COMPUTE-PREFIX-
FUNCTION runs in time ®(m).

Exercise 32.4-4 asks you to show, by a similar aggregate analysis, that the match-
ing time of KMP-MATCHER is ©(n).

Compared with FINITE-AUTOMATON-MATCHER, by using 7 rather than §, we
have reduced the time for preprocessing the pattern from O (m |X|) to ®(m), while
keeping the actual matching time bounded by ®(n).

heé¢eps:/hemanthrajhemu.github.io

32.4 The Knuth-Morris-Pratt algorithm 1007

Correctness of the prefix-function computation

We shall see a little later that the prefix function s helps us simulate the transition
function § in a string-matching automaton. But first, we need to prove that the
procedure COMPUTE-PREFIX-FUNCTION does indeed compute the prefix func-
tion correctly. In order to do so, we will need to find all prefixes P that are proper
suffixes of a given prefix P,. The value of 7 [g] gives us the longest such prefix, but
the following lemma, illustrated in Figure 32.11, shows that by iterating the prefix
function 7, we can indeed enumerate all the prefixes Pj that are proper suffixes
of P,. Let

7*[q] = {=[ql. 7®[q). 7 P[q]..... 7 [q]} .

where 7[q] is defined in terms of functional iteration, so that 7®[¢] = ¢ and
7D[g] = n[x@V[q]] for i > 1, and where the sequence in 7*[¢] stops upon
reaching 7®[g] = 0.

Lemma 32.5 (Prefix-function iteration lemma)
Let P be a pattern of length m with prefix function . Then, forq = 1,2,...,m,
we have n*[g] = {k : k < g and P, 3 P,}.

Proof We first prove that 7*[q] € {k : k < g and Py 1 P,} or, equivalently,
i € m*[g] implies P; 7 P, . (32.7)

If i € n*[q], then i = 7w®][q] for some u > 0. We prove equation (32.7) by
induction on u. For u = 1, we have i = m[q], and the claim follows since i < ¢
and P, 3 P, by the definition of 7. Using the relations 7 [i] < i and P} 3 P;
and the transitivity of < and 3 establishes the claim for all i in 7 *[¢]. Therefore,
n*[g] € {k : k <qand P, O Pg}.

We now prove that {k : k < g and Py O P;} € m*[q] by contradiction. Sup-
pose to the contrary that the set {k : k < g and Py O P,;} — w*[q] is nonempty,
and let j be the largest number in the set. Because m[g] is the largest value in
{k 1k <gqand Py 3 P,} and 7[g] € n*[g], we must have j < m[g], and so we
let j' denote the smallest integer in 7 *[¢] that is greater than j. (We can choose
J' = m[q] if no other number in 7 *[g] is greater than j.) We have P; 7 P, because
Jj €tk :k <qand Py O P,}, and from j' € 7*[g] and equation (32.7), we have
P;; 3 P,. Thus, P; 1 P; by Lemma 32.1, and j is the largest value less than j’
with this property. Therefore, we must have 7[j'] = j and, since j' € 7*[gq], we
must have j € 7*[q] as well. This contradiction proves the lemma. |

The algorithm COMPUTE-PREFIX-FUNCTION computes 7 [g], in order, for g =
1,2,...,m. Setting 7r[1] to O in line 3 of COMPUTE-PREFIX-FUNCTION is cer-
tainly correct, since w[g] < ¢ for all g. We shall use the following lemma and

heé¢eps:/hemanthrajhemu.github.io

1008 Chapter 32 String Matching

its corollary to prove that COMPUTE-PREFIX-FUNCTION computes 7 [¢] correctly
forg > 1.

Lemma 32.6
Let P be a pattern of length m, and let & be the prefix function for P. For ¢ =
1,2,...,m,if r[q] > 0,then w[g] — | € n*[q — 1].

Proof Letr = m[q] > 0,sothatr < g and P, 1 Py;thus,r —1 < g —1 and
P,y 3 P, (by dropping the last character from P, and P,, which we can do
because r > 0). By Lemma 32.5, therefore, r — 1 € 7*[g — 1]. Thus, we have
wlgl—-1=r—1en*[qg—1]. [

Forg = 2,3,...,m, define the subset E,_; C w*[q — 1] by
Eq=tkeng—1]: Plk+1] = Plql]}
={k:k <g—1and P, J P;,_y and P[k + 1] = P[q]} (by Lemma 32.5)
={k:k <g—1and Pry; I P,} .
The set E,_; consists of the values k < g — 1 for which Py 3 P,_; and for which,
because P[k 4+ 1] = Plq], we have Py, 3 P,. Thus, E,_; consists of those

values k € w*[q — 1] such that we can extend Py to Pr; and get a proper suffix
of P,.

Corollary 32.7
Let P be a pattern of length m, and let & be the prefix function for P. For ¢ =
2,3,...,m,
0 itE, 1 =90,
nlq] = .
l+max{k e E,.,} itE,1#0.

Proof 1f E,_, is empty, there is no k € 7*[g — 1] (including k = 0) for which
we can extend Py to Py, and get a proper suffix of P,. Therefore 7 [q] = 0.

If E,_, is nonempty, then foreach k € E,_; wehave k+1 < g and Pr4; 3 P,.
Therefore, from the definition of 7 [g], we have
wlg) > 1 + max{k € E,_} . (32.8)

Note that w[g] > 0. Let r = m[gq] — 1, so that r + 1 = m[g] and there-
fore P,4y 3 P,. Since r + 1 > 0, we have P[r + 1] = P|[q]. Furthermore,
by Lemma 32.6, we have r € n*[g — 1]. Therefore, r € E,_;, and so r <
max {k € E,_;} or, equivalently,

wlg) <1 +max{k € E,_} . (32.9)

Combining equations (32.8) and (32.9) completes the proof. |

heé¢eps:/hemanthrajhemu.github.io

32.4 The Knuth-Morris-Pratt algorithm 1009

We now finish the proof that COMPUTE-PREFIX-FUNCTION computes 7 cor-
rectly. In the procedure COMPUTE-PREFIX-FUNCTION, at the start of each iter-
ation of the for loop of lines 5-10, we have that k = m[¢g — 1]. This condition
is enforced by lines 3 and 4 when the loop is first entered, and it remains true in
each successive iteration because of line 10. Lines 6-9 adjust k so that it becomes
the correct value of 7[¢]. The while loop of lines 67 searches through all values
k € n*[g — 1] until it finds a value of k for which P[k + 1] = P[q]; at that point,
k is the largest value in the set E,_;, so that, by Corollary 32.7, we can set 7[g]
to k + 1. If the while loop cannot find a k € 7*[g — 1] such that P[k + 1] = P[q],
then k equals O at line 8. If P[1] = P[gq], then we should set both k and 7 [g] to 1;
otherwise we should leave k alone and set 7[g] to 0. Lines 8-10 set k and 7[q]
correctly in either case. This completes our proof of the correctness of COMPUTE-
PREFIX-FUNCTION.

Correctness of the Knuth-Morris-Pratt algorithm

We can think of the procedure KMP-MATCHER as a reimplemented version of
the procedure FINITE-AUTOMATON-MATCHER, but using the prefix function
to compute state transitions. Specifically, we shall prove that in the i th iteration of
the for loops of both KMP-MATCHER and FINITE-AUTOMATON-MATCHER, the
state g has the same value when we test for equality with m (at line 10 in KMP-
MATCHER and at line 5 in FINITE-AUTOMATON-MATCHER). Once we have
argued that KMP-MATCHER simulates the behavior of FINITE-AUTOMATON-
MATCHER, the correctness of KMP-MATCHER follows from the correctness of
FINITE-AUTOMATON-MATCHER (though we shall see a little later why line 12 in
KMP-MATCHER is necessary).

Before we formally prove that KMP-MATCHER correctly simulates FINITE-
AUTOMATON-MATCHER, let’s take a moment to understand how the prefix func-
tion 7 replaces the § transition function. Recall that when a string-matching
automaton is in state ¢ and it scans a character ¢ = T[i], it moves to a new
state §(q,a). If a = P[q + 1], so that a continues to match the pattern, then
8(q,a) = q + 1. Otherwise, a # P[q + 1], so that a does not continue to match
the pattern, and 0 < §(g,a) < ¢q. In the first case, when @ continues to match,
KMP-MATCHER moves to state ¢ + 1 without referring to the 7 function: the
while loop test in line 6 comes up false the first time, the test in line 8 comes up
true, and line 9 increments ¢.

The 7 function comes into play when the character a does not continue to match
the pattern, so that the new state §(¢, a) is either ¢ or to the left of ¢ along the spine
of the automaton. The while loop of lines 6—7 in KMP-MATCHER iterates through
the states in 7*[g], stopping either when it arrives in a state, say ¢’, such that a
matches P[q’ + 1] or ¢’ has gone all the way down to 0. If @ matches P[q’ + 1],

heé¢eps:/hemanthrajhemu.github.io

1010 Chapter 32 String Matching

then line 9 sets the new state to ¢’ + 1, which should equal 6(g, a) for the simulation
to work correctly. In other words, the new state 6(¢q, @) should be either state 0 or
one greater than some state in 7 *[g].

Let’s look at the example in Figures 32.7 and 32.11, which are for the pattern
P = ababaca. Suppose that the automaton is in state ¢ = 5; the states in
*[5] are, in descending order, 3, 1, and 0. If the next character scanned is c, then
we can easily see that the automaton moves to state §(5, c) = 6 in both FINITE-
AUTOMATON-MATCHER and KMP-MATCHER. Now suppose that the next char-
acter scanned is instead b, so that the automaton should move to state §(5,b) = 4.
The while loop in KMP-MATCHER exits having executed line 7 once, and it ar-
rives in state ¢’ = 7[5] = 3. Since P[¢’ + 1] = P[4] = Db, the test in line 8
comes up true, and KMP-MATCHER moves to the new state ¢’ + 1 = 4 = §(5,b).
Finally, suppose that the next character scanned is instead a, so that the automa-
ton should move to state §(5,a) = 1. The first three times that the test in line 6
executes, the test comes up true. The first time, we find that P[6] = ¢ # a, and
KMP-MATCHER moves to state [5] = 3 (the first state in 7*[5]). The second
time, we find that P[4] = b # a and move to state 7[3] = 1 (the second state
in 7*[5]). The third time, we find that P[2] = b # a and move to state 7[1] = 0
(the last state in 77*[5]). The while loop exits once it arrives in state ¢' = 0. Now,
line 8 finds that P[¢" + 1] = P[1] = a, and line 9 moves the automaton to the new
state ¢’ + 1 =1 =§(5, a).

Thus, our intuition is that KMP-MATCHER iterates through the states in 7*[¢] in
decreasing order, stopping at some state g’ and then possibly moving to state g’ + 1.
Although that might seem like a lot of work just to simulate computing 6(q, @),
bear in mind that asymptotically, KMP-MATCHER is no slower than FINITE-
AUTOMATON-MATCHER.

We are now ready to formally prove the correctness of the Knuth-Morris-Pratt
algorithm. By Theorem 32.4, we have that ¢ = o (7;) after each time we execute
line 4 of FINITE-AUTOMATON-MATCHER. Therefore, it suffices to show that the
same property holds with regard to the for loop in KMP-MATCHER. The proof
proceeds by induction on the number of loop iterations. Initially, both procedures
set g to 0 as they enter their respective for loops for the first time. Consider itera-
tion i of the for loop in KMP-MATCHER, and let ¢’ be state at the start of this loop
iteration. By the inductive hypothesis, we have ¢’ = o(7;_;). We need to show
that ¢ = o(7;) at line 10. (Again, we shall handle line 12 separately.)

When we consider the character T'[i], the longest prefix of P that is a suffix of T;
is either P, 4y (if P[q' 4+ 1] = T[i]) or some prefix (not necessarily proper, and
possibly empty) of P,,. We consider separately the three cases in which o (7;) = 0,
o(Ti)=¢'+1,and 0 < o(T}) = ¢".

heé¢eps:/hemanthrajhemu.github.io

32.4 The Knuth-Morris-Pratt algorithm 1011

e Ifo(T;) = 0,then Py, = eisthe only prefix of P thatis a suffix of 7;. The while
loop of lines 67 iterates through the values in 7 *[g’], but although P, T 7; for
every g € *[q’], the loop never finds a ¢ such that P[g + 1] = T[i]. The loop
terminates when ¢ reaches 0, and of course line 9 does not execute. Therefore,
g = O at line 10, so that ¢ = o (T;).

* Ifo(T;) = q + 1, then P[g’ + 1] = T|i], and the while loop test in line 6
fails the first time through. Line 9 executes, incrementing ¢ so that afterward
wehave g = q¢' + 1 = o(Ty).

e If0 < o(T;) < ¢, then the while loop of lines 6-7 iterates at least once,
checking in decreasing order each value g € 7*[¢'] until it stops at some g < ¢’.
Thus, P, is the longest prefix of P, for which P[g+1] = T'[i], so that when the
while loop terminates, ¢ + 1 = o (P, T[i]). Since ¢’ = 0(T;—;), Lemma 32.3
implies that o (T;_T'[i]) = o (P, T[i]). Thus, we have

g+1 = o(P,yT[i])
= o(T;,TIi])
= o(Ty)

when the while loop terminates. After line 9 increments ¢, we have ¢ = o(7;).

Line 12 is necessary in KMP-MATCHER, because otherwise, we might refer-
ence P[m + 1] on line 6 after finding an occurrence of P. (The argument that
q = o(T;_,) upon the next execution of line 6 remains valid by the hint given in
Exercise 32.4-8: §(m,a) = &(w[m], a) or, equivalently, o (Pa) = o (Prma) for
any a € X.) The remaining argument for the correctness of the Knuth-Morris-
Pratt algorithm follows from the correctness of FINITE-AUTOMATON-MATCHER,
since we have shown that KMP-MATCHER simulates the behavior of FINITE-
AUTOMATON-MATCHER.

Exercises

32.4-1
Compute the prefix function 7 for the pattern ababbabbabbababbabb.

32.4-2
Give an upper bound on the size of 7*[¢g] as a function of ¢. Give an example to
show that your bound is tight.

32.4-3
Explain how to determine the occurrences of pattern P in the text 7 by examining

the 7 function for the string P T (the string of length m +n that is the concatenation
of Pand 7).

heé¢eps:/hemanthrajhemu.github.io

1012 Chapter 32 String Matching

32.4-4
Use an aggregate analysis to show that the running time of KMP-MATCHER
is ©(n).

32.4-5
Use a potential function to show that the running time of KMP-MATCHER is ©(n).

32.4-6

Show how to improve KMP-MATCHER by replacing the occurrence of 7 in line 7
(but not line 12) by 7/, where 7’ is defined recursively for¢ = 1,2,...,m — 1 by
the equation

0 if 7lg] =0,
n'lql = { #'[x[q]] if x[q] # 0 and P[r[g] + 1] = Plg + 1],
7q] if wlg] # 0and P[r[q] + 1] # Plg + 1] .

Explain why the modified algorithm is correct, and explain in what sense this
change constitutes an improvement.

32.4-7
Give a linear-time algorithm to determine whether a text 7" is a cyclic rotation of
another string 7. For example, arc and car are cyclic rotations of each other.

32.4-8 *

Give an O(m |X|)-time algorithm for computing the transition function ¢ for the
string-matching automaton corresponding to a given pattern P. (Hint: Prove that
8(q.a) = 8(xlq).a) if g = mor Plq + 1] # a.)

Problems

32-1 String matching based on repetition factors

Let y’ denote the concatenation of string y with itself i times. For example,
(ab)® = ababab. We say that a string x € X* has repetition factor r if x = y"
for some string y € ¥* and some r > 0. Let p(x) denote the largest r such that x
has repetition factor r.

a. Give an efficient algorithm that takes as input a pattern P[1..m] and computes
the value p(P;) fori = 1,2,...,m. What is the running time of your algo-
rithm?

heé¢eps:/hemanthrajhemu.github.io

Notes for Chapter 32 1013

b. Forany pattern P[1..m],let p*(P) be defined as max;<; <, p(P;). Prove that if
the pattern P is chosen randomly from the set of all binary strings of length m,
then the expected value of p*(P) is O(1).

c. Argue that the following string-matching algorithm correctly finds all occur-
rences of pattern P in atext 7'[1..n] in time O(p*(P)n + m):

REPETITION-MATCHER (P, T')
1 m = P.length

2 n = T.length

3 k=14 p*(P)

4 qg=0

5 §s=0

6 whiles <n—-—m

7 ifT[s+q+1]==Plg+1]

8 q=q+1

9 ifg==m

10 print “Pattern occurs with shift” s
11 ifg==morT[s+q+ 1] # Plg + 1]
12 s = s+ max(1,[g/k])

13 q=0

This algorithm is due to Galil and Seiferas. By extending these ideas greatly,
they obtained a linear-time string-matching algorithm that uses only O(1) stor-
age beyond what is required for P and 7.

Chapter notes

The relation of string matching to the theory of finite automata is discussed by
Aho, Hopcroft, and Ullman [5]. The Knuth-Morris-Pratt algorithm [214] was
invented independently by Knuth and Pratt and by Morris; they published their
work jointly. Reingold, Urban, and Gries [294] give an alternative treatment of the
Knuth-Morris-Pratt algorithm. The Rabin-Karp algorithm was proposed by Karp
and Rabin [201]. Galil and Seiferas [126] give an interesting deterministic linear-
time string-matching algorithm that uses only O(1) space beyond that required to
store the pattern and text.

heé¢eps:/hemanthrajhemu.github.io

