Furure Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Pa

Or
Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

€

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

THOMAS H . CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

CLIFFORD STEIN

INTRODUCTION TO

THIRD ELCITION

Contents vii

12 Binary Search Trees 286
12.1 What is a binary search tree? 286
12.2 Querying a binary search tree 289
12.3 Insertion and deletion 294
* 12.4 Randomly built binary search trees 299

13 Red-Black Trees 308
13.1 Properties of red-black trees 308
13.2 Rotations 312
13.3 Insertion 315
13.4 Deletion 323

14 Augmenting Data Structures 339
14.1 Dynamic order statistics 339
14.2 How to augment a data structure 345
14.3 Interval trees 348

1V Advanced Design and Analysis Techniques

Introduction 357

15 Dynamic Programming 359
15.1 Rod cutting 360
15.2 Matrix-chain multiplication 370
15.3 Elements of dynamic programming 378
15.4 Longest common subsequence 390
15.5 Optimal binary search trees 397

16 Greedy Algorithms 414
16.1 An activity-selection problem 415
16.2 Elements of the greedy strategy 423
16.3 Huffman codes 428
* 16.4 Matroids and greedy methods 437
* 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451
17.1 Aggregate analysis 452
17.2 The accounting method 456
17.3 The potential method 459
17.4 Dynamic tables 463

heé¢eps:/hemanthrajhemu.github.io

X Contents

30 Polynomials and the FFT 898
30.1 Representing polynomials 900
30.2 The DFT and FFT 906
30.3 Efficient FFT implementations 915

31 Number-Theoretic Algorithms 926
31.1 Elementary number-theoretic notions 927
31.2 Greatest common divisor 933
31.3 Modular arithmetic 939
31.4 Solving modular linear equations 946
31.5 The Chinese remainder theorem 950
31.6 Powers of an element 954
31.7 The RSA public-key cryptosystem 958
* 31.8 Primality testing 965
* 31.9 Integer factorization 975

32 String Matching 985
32.1 The naive string-matching algorithm 988
32.2 The Rabin-Karp algorithm 990
32.3 String matching with finite automata 995
* 324 The Knuth-Morris-Pratt algorithm 7002

33 Computational Geometry 1014
33.1 Line-segment properties 1015
33.2 Determining whether any pair of segments intersects /021
33.3 Finding the convex hull 7029
33.4 Finding the closest pair of points /039

34 NP-Completeness 1048
34.1 Polynomial time 7053
34.2 Polynomial-time verification 1061/
34.3 NP-completeness and reducibility 1067
34.4 NP-completeness proofs 1078
34.5 NP-complete problems /086

35 Approximation Algorithms 1106
35.1 The vertex-cover problem /08
35.2 The traveling-salesman problem /711
35.3 The set-covering problem /17
35.4 Randomization and linear programming /723
35.5 The subset-sum problem /728

heé¢eps:/hemanthrajhemu.github.io

16 Greedy Algorithms

Algorithms for optimization problems typically go through a sequence of steps,
with a set of choices at each step. For many optimization problems, using dynamic
programming to determine the best choices is overkill; simpler, more efficient al-
gorithms will do. A greedy algorithm always makes the choice that looks best at
the moment. That is, it makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution. This chapter explores optimization prob-
lems for which greedy algorithms provide optimal solutions. Before reading this
chapter, you should read about dynamic programming in Chapter 15, particularly
Section 15.3.

Greedy algorithms do not always yield optimal solutions, but for many problems
they do. We shall first examine, in Section 16.1, a simple but nontrivial problem,
the activity-selection problem, for which a greedy algorithm efficiently computes
an optimal solution. We shall arrive at the greedy algorithm by first consider-
ing a dynamic-programming approach and then showing that we can always make
greedy choices to arrive at an optimal solution. Section 16.2 reviews the basic
elements of the greedy approach, giving a direct approach for proving greedy al-
gorithms correct. Section 16.3 presents an important application of greedy tech-
niques: designing data-compression (Huffman) codes. In Section 16.4, we inves-
tigate some of the theory underlying combinatorial structures called “matroids,”
for which a greedy algorithm always produces an optimal solution. Finally, Sec-
tion 16.5 applies matroids to solve a problem of scheduling unit-time tasks with
deadlines and penalties.

The greedy method is quite powerful and works well for a wide range of prob-
lems. Later chapters will present many algorithms that we can view as applica-
tions of the greedy method, including minimum-spanning-tree algorithms (Chap-
ter 23), Dijkstra’s algorithm for shortest paths from a single source (Chapter 24),
and Chvdtal’s greedy set-covering heuristic (Chapter 35). Minimum-spanning-tree
algorithms furnish a classic example of the greedy method. Although you can read

heé¢eps:/hemanthrajhemu.github.io

16.1 An activity-selection problem 415

this chapter and Chapter 23 independently of each other, you might find it useful
to read them together.

16.1 An activity-selection problem

Our first example is the problem of scheduling several competing activities that re-
quire exclusive use of a common resource, with a goal of selecting a maximum-size
set of mutually compatible activities. Suppose we have a set S = {a;,a,,...,a,}
of n proposed activities that wish to use a resource, such as a lecture hall, which
can serve only one activity at a time. Each activity a; has a start time s; and a finish
time f;, where 0 < s5; < f; < oo. If selected, activity a; takes place during the
half-open time interval [s;, f;). Activities a; and a; are compatible if the intervals
[s;, fi) and [s;, f;) do not overlap. That is, a; and a; are compatible if s, > f;
or s; > f;. In the activity-selection problem, we wish to select a maximum-size
subset of mutually compatible activities. We assume that the activities are sorted
in monotonically increasing order of finish time:

L= fuian Z S (16.1)

(We shall see later the advantage that this assumption provides.) For example,
consider the following set S of activities:

i|1234567891011

si |13 0 5 3 5 6 8 8 2 12
fild 5 6 7 9 9 10 11 12 14 16

For this example, the subset {as, ao, a1} consists of mutually compatible activities.
It is not a maximum subset, however, since the subset {a;, a4, ag, ay;} is larger. In
fact, {ay,aq4,as, a1} is a largest subset of mutually compatible activities; another
largest subset is {a», a4, aq, a1 }-

We shall solve this problem in several steps. We start by thinking about a
dynamic-programming solution, in which we consider several choices when deter-
mining which subproblems to use in an optimal solution. We shall then observe that
we need to consider only one choice—the greedy choice—and that when we make
the greedy choice, only one subproblem remains. Based on these observations, we
shall develop a recursive greedy algorithm to solve the activity-scheduling prob-
lem. We shall complete the process of developing a greedy solution by converting
the recursive algorithm to an iterative one. Although the steps we shall go through
in this section are slightly more involved than is typical when developing a greedy
algorithm, they illustrate the relationship between greedy algorithms and dynamic
programming.

heé¢eps:/hemanthrajhemu.github.io

416 Chapter 16 Greedy Algorithms

The optimal substructure of the activity-selection problem

We can easily verify that the activity-selection problem exhibits optimal substruc-
ture. Let us denote by S;; the set of activities that start after activity a; finishes and
that finish before activity a; starts. Suppose that we wish to find a maximum set of
mutually compatible activities in S;;, and suppose further that such a maximum set
is A;;, which includes some activity ax. By including a in an optimal solution, we
are left with two subproblems: finding mutually compatible activities in the set S;;
(activities that start after activity a; finishes and that finish before activity a; starts)
and finding mutually compatible activities in the set Sy; (activities that start after
activity ay finishes and that finish before activity a; starts). Let A;x = A;; N Six
and Ag; = A;; N Sk;, so that A;x contains the activities in A;; that finish before ay
starts and A, contains the activities in A;; that start after a; finishes. Thus, we
have A;; = A;x U {ax} U Ag;, and so the maximum-size set A;; of mutually com-
patible activities in S;; consists of |4;;| = |Aix| + |Axj| + 1 activities.

The usual cut-and-paste argument shows that the optimal solution A;; must also
include optimal solutions to the two subproblems for S;; and Sg;. If we could
find a set A} ; of mutually compatible activities in Sg; where |4} ;| > [A;], then
we could use A ;, rather than Ay, in a solution to the subproblem for S;;. We
would have constructed aset of [Aj| + [A);| + 1 > [Aig| + Ak | + 1 = |4;]
mutually compatible activities, which contradicts the assumption that A4;; is an
optimal solution. A symmetric argument applies to the activities in Sj.

This way of characterizing optimal substructure suggests that we might solve
the activity-selection problem by dynamic programming. If we denote the size of
an optimal solution for the set S;; by c[i, j], then we would have the recurrence

cli,jl=cli,k] +clk,j]+ 1.

Of course, if we did not know that an optimal solution for the set §;; includes
activity ax, we would have to examine all activities in S;; to find which one to
choose, so that

cl-71=) max {cli.k] +clk.j]+1} ifS, # 7. (16.2)
ar €S, ij

We could then develop a recursive algorithm and memoize it, or we could work
bottom-up and fill in table entries as we go along. But we would be overlooking
another important characteristic of the activity-selection problem that we can use
to great advantage.

heé¢eps:/hemanthrajhemu.github.io

16.1 An activity-selection problem 417

Making the greedy choice

What if we could choose an activity to add to our optimal solution without having
to first solve all the subproblems? That could save us from having to consider all
the choices inherent in recurrence (16.2). In fact, for the activity-selection problem,
we need consider only one choice: the greedy choice.

What do we mean by the greedy choice for the activity-selection problem? Intu-
ition suggests that we should choose an activity that leaves the resource available
for as many other activities as possible. Now, of the activities we end up choos-
ing, one of them must be the first one to finish. Our intuition tells us, therefore,
to choose the activity in S with the earliest finish time, since that would leave the
resource available for as many of the activities that follow it as possible. (If more
than one activity in S has the earliest finish time, then we can choose any such
activity.) In other words, since the activities are sorted in monotonically increasing
order by finish time, the greedy choice is activity a;. Choosing the first activity
to finish is not the only way to think of making a greedy choice for this problem;
Exercise 16.1-3 asks you to explore other possibilities.

If we make the greedy choice, we have only one remaining subproblem to solve:
finding activities that start after a; finishes. Why don’t we have to consider ac-
tivities that finish before a; starts? We have that s; < fi, and f; is the earliest
finish time of any activity, and therefore no activity can have a finish time less than
or equal to s;. Thus, all activities that are compatible with activity a; must start
after a, finishes.

Furthermore, we have already established that the activity-selection problem ex-
hibits optimal substructure. Let S, = {a; € S :5; > fi} be the set of activities that
start after activity ay finishes. If we make the greedy choice of activity a;, then S,
remains as the only subproblem to solve.! Optimal substructure tells us that if a;
is in the optimal solution, then an optimal solution to the original problem consists
of activity a; and all the activities in an optimal solution to the subproblem ;.

One big question remains: is our intuition correct? Is the greedy choice—in
which we choose the first activity to finish—always part of some optimal solution?
The following theorem shows that it is.

I'We sometimes refer to the sets Sy as subproblems rather than as just sets of activities. It will always
be clear from the context whether we are referring to S as a set of activities or as a subproblem
whose input is that set.

heé¢eps:/hemanthrajhemu.github.io

418 Chapter 16 Greedy Algorithms

Theorem 16.1

Consider any nonempty subproblem Sy, and let a,, be an activity in S; with the
earliest finish time. Then a,, is included in some maximum-size subset of mutually
compatible activities of Sy.

Proof Let Ay be a maximum-size subset of mutually compatible activities in Sy,
and let a; be the activity in Ay with the earliest finish time. If a; = a,,, we are
done, since we have shown that a,, is in some maximum-size subset of mutually
compatible activities of Sx. If a; # a,,, let the set A} = Ax —{a;} U {a,,} be A
but substituting a,, for a;. The activities in A are disjoint, which follows because
the activities in Ay are disjoint, a; is the first activity in A to finish, and Im < fJ
Since |A}| = |Ak|, we conclude that A4} is a maximum-size subset of mutually
compatible activities of Sy, and it includes a,,. [

Thus, we see that although we might be able to solve the activity-selection prob-
lem with dynamic programming, we don’t need to. (Besides, we have not yet
examined whether the activity-selection problem even has overlapping subprob-
lems.) Instead, we can repeatedly choose the activity that finishes first, keep only
the activities compatible with this activity, and repeat until no activities remain.
Moreover, because we always choose the activity with the earliest finish time, the
finish times of the activities we choose must strictly increase. We can consider
each activity just once overall, in monotonically increasing order of finish times.

An algorithm to solve the activity-selection problem does not need to work
bottom-up, like a table-based dynamic-programming algorithm. Instead, it can
work top-down, choosing an activity to put into the optimal solution and then solv-
ing the subproblem of choosing activities from those that are compatible with those
already chosen. Greedy algorithms typically have this top-down design: make a
choice and then solve a subproblem, rather than the bottom-up technique of solving
subproblems before making a choice.

A recursive greedy algorithm

Now that we have seen how to bypass the dynamic-programming approach and in-
stead use a top-down, greedy algorithm, we can write a straightforward, recursive
procedure to solve the activity-selection problem. The procedure RECURSIVE-
ACTIVITY-SELECTOR takes the start and finish times of the activities, represented
as arrays s and f,? the index k that defines the subproblem Sy it is to solve, and

2Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather
than subscripts.

heé¢eps:/hemanthrajhemu.github.io

16.1 An activity-selection problem 419

the size n of the original problem. It returns a maximum-size set of mutually com-
patible activities in S;. We assume that the n input activities are already ordered
by monotonically increasing finish time, according to equation (16.1). If not, we
can sort them into this order in O(n1gn) time, breaking ties arbitrarily. In order
to start, we add the fictitious activity ao with fy = 0, so that subproblem S, is
the entire set of activities S. The initial call, which solves the entire problem, is
RECURSIVE-ACTIVITY-SELECTOR (s, f,0,n).

RECURSIVE-ACTIVITY-SELECTOR (s, f, k,n)

1 m=k+1

2 while m < n and s[m] < f[k] // find the first activity in Sy to finish
3 m=m+1

4 ifm<n

5 return {a,,} U RECURSIVE-ACTIVITY-SELECTOR(s, f,m,n)

6 else return ¢

Figure 16.1 shows the operation of the algorithm. In a given recursive call
RECURSIVE-ACTIVITY-SELECTOR (s, f, k,n), the while loop of lines 2-3 looks
for the first activity in Sy to finish. The loop examines ax.1,dg+2,...,d,, Un-
til it finds the first activity a,, that is compatible with aj; such an activity has
Sm > fr. If the loop terminates because it finds such an activity, line 5 returns
the union of {a,,} and the maximum-size subset of S,, returned by the recursive
call RECURSIVE-ACTIVITY-SELECTOR(s, f,m,n). Alternatively, the loop may
terminate because m > n, in which case we have examined all activities in Sy
without finding one that is compatible with a;. In this case, Sy = @, and so the
procedure returns @ in line 6.

Assuming that the activities have already been sorted by finish times, the running
time of the call RECURSIVE-ACTIVITY-SELECTOR (s, f,0,n) is ®(n), which we
can see as follows. Over all recursive calls, each activity is examined exactly once
in the while loop test of line 2. In particular, activity a; is examined in the last call
made in which k < i.

An iterative greedy algorithm

We easily can convert our recursive procedure to an iterative one. The procedure
RECURSIVE-ACTIVITY-SELECTOR is almost “tail recursive” (see Problem 7-4):
it ends with a recursive call to itself followed by a union operation. It is usually a
straightforward task to transform a tail-recursive procedure to an iterative form; in
fact, some compilers for certain programming languages perform this task automat-
ically. As written, RECURSIVE-ACTIVITY-SELECTOR works for subproblems Sy,
i.e., subproblems that consist of the last activities to finish.

heé¢eps:/hemanthrajhemu.github.io

420 Chapter 16 Greedy Algorithms

ks K

0 - 0 '
a9

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11)

de
6 5 9 —
l a9 | [
7 6 10
l a] [a N
8 8 11 : : : . : . i i
b a | [a m=8§
S
9 3 12 RECURSIVE-ACTIVITY-SELECTOR(s, £, 8, 11) ;:)
b a | e] | ag —
. }(\ a
10 2 14 10 — \
l a9 | e | wm—
1 12 16 S SR
l a | [a] ag

SN SN wrromrs s srrmeys NS ppeer Pevsrots SR merrorm P meserrer S ‘ cadan
RECURSIVE-ACTIVITY-SELECTOR(s, f; 11, 11) : : : : : :
b a | [a] | ag | ar l

0 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16

Figure 16.1 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities given ear-
lier. Activities considered in each recursive call appear between horizontal lines. The fictitious
activity ag finishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11), se-
lects activity a1. In each recursive call, the activities that have already been selected are shaded,
and the activity shown in white is being considered. If the starting time of an activity occurs before
the finish time of the most recently added activity (the arrow between them points left), it is re-
jected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call,
RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11), returns @. The resulting set of selected activities is
{ai.asq,ag,a11}.

heé¢eps:/hemanthrajhemu.github.io

16.1 An activity-selection problem 421

The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the pro-
cedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activi-
ties are ordered by monotonically increasing finish time. It collects selected activ-
ities into a set A and returns this set when it is done.

GREEDY-ACTIVITY-SELECTOR (s, f)
1 n = s.length

2 A ={ai}

3 k=1

4 form = 2ton

5 if s[m] > f[k]

6 A = AU{ay}
7 k=m

8 return A

The procedure works as follows. The variable k indexes the most recent addition
to A, corresponding to the activity ay in the recursive version. Since we consider
the activities in order of monotonically increasing finish time, f; is always the
maximum finish time of any activity in A. That is,

fr =max{f;:a; € A} . (16.3)

Lines 2-3 select activity a1, initialize A to contain just this activity, and initialize k
to index this activity. The for loop of lines 4-7 finds the earliest activity in S to
finish. The loop considers each activity a,, in turn and adds a,, to A if it is compat-
ible with all previously selected activities; such an activity is the earliest in Sy to
finish. To see whether activity a,, is compatible with every activity currently in A,
it suffices by equation (16.3) to check (in line 5) that its start time s, is not earlier
than the finish time f; of the activity most recently added to A. If activity a,, is
compatible, then lines 67 add activity a,, to A and set k to m. The set A returned
by the call GREEDY-ACTIVITY-SELECTOR (s, f) is precisely the set returned by
the call RECURSIVE-ACTIVITY-SELECTOR (s, f,0,n).

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n
activities in ®(n) time, assuming that the activities were already sorted initially by
their finish times.

Exercises

16.1-1

Give a dynamic-programming algorithm for the activity-selection problem, based
on recurrence (16.2). Have your algorithm compute the sizes c[i, j] as defined
above and also produce the maximum-size subset of mutually compatible activities.

heé¢eps:/hemanthrajhemu.github.io

422 Chapter 16 Greedy Algorithms

Assume that the inputs have been sorted as in equation (16.1). Compare the running
time of your solution to the running time of GREEDY-ACTIVITY-SELECTOR.

16.1-2

Suppose that instead of always selecting the first activity to finish, we instead select
the last activity to start that is compatible with all previously selected activities. De-
scribe how this approach is a greedy algorithm, and prove that it yields an optimal
solution.

16.1-3

Not just any greedy approach to the activity-selection problem produces a max-
imum-size set of mutually compatible activities. Give an example to show that
the approach of selecting the activity of least duration from among those that are
compatible with previously selected activities does not work. Do the same for
the approaches of always selecting the compatible activity that overlaps the fewest
other remaining activities and always selecting the compatible remaining activity
with the earliest start time.

16.1-4

Suppose that we have a set of activities to schedule among a large number of lecture
halls, where any activity can take place in any lecture hall. We wish to schedule
all the activities using as few lecture halls as possible. Give an efficient greedy
algorithm to determine which activity should use which lecture hall.

(This problem is also known as the interval-graph coloring problem. We can
create an interval graph whose vertices are the given activities and whose edges
connect incompatible activities. The smallest number of colors required to color
every vertex so that no two adjacent vertices have the same color corresponds to
finding the fewest lecture halls needed to schedule all of the given activities.)

16.1-5

Consider a modification to the activity-selection problem in which each activity a;
has, in addition to a start and finish time, a value v;. The objective is no longer
to maximize the number of activities scheduled, but instead to maximize the total
value of the activities scheduled. That is, we wish to choose a set A of compatible
activities such that), ., vi is maximized. Give a polynomial-time algorithm for
this problem.

heé¢eps:/hemanthrajhemu.github.io

16.2 Elements of the greedy strategy 423

16.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence
of choices. At each decision point, the algorithm makes choice that seems best at
the moment. This heuristic strategy does not always produce an optimal solution,
but as we saw in the activity-selection problem, sometimes it does. This section
discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was
a bit more involved than is typical. We went through the following steps:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution. (For the activity-selection problem, we formu-
lated recurrence (16.2), but we bypassed developing a recursive algorithm based
on this recurrence.)

3. Show that if we make the greedy choice, then only one subproblem remains.

4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur
in either order.)

5. Develop a recursive algorithm that implements the greedy strategy.

6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming un-
derpinnings of a greedy algorithm. For example, in the activity-selection problem,
we first defined the subproblems S;;, where both i and j varied. We then found
that if we always made the greedy choice, we could restrict the subproblems to be
of the form Sg.

Alternatively, we could have fashioned our optimal substructure with a greedy
choice in mind, so that the choice leaves just one subproblem to solve. In the
activity-selection problem, we could have started by dropping the second subscript
and defining subproblems of the form Si. Then, we could have proven that a greedy
choice (the first activity a,, to finish in S;), combined with an optimal solution to
the remaining set S,, of compatible activities, yields an optimal solution to Sj.
More generally, we design greedy algorithms according to the following sequence
of steps:

1. Cast the optimization problem as one in which we make a choice and are left
with one subproblem to solve.

2. Prove that there is always an optimal solution to the original problem that makes
the greedy choice, so that the greedy choice is always safe.

heé¢eps:/hemanthrajhemu.github.io

424 Chapter 16 Greedy Algorithms

3. Demonstrate optimal substructure by showing that, having made the greedy
choice, what remains is a subproblem with the property that if we combine an
optimal solution to the subproblem with the greedy choice we have made, we
arrive at an optimal solution to the original problem.

We shall use this more direct process in later sections of this chapter. Neverthe-
less, beneath every greedy algorithm, there is almost always a more cumbersome
dynamic-programming solution.

How can we tell whether a greedy algorithm will solve a particular optimization
problem? No way works all the time, but the greedy-choice property and optimal
substructure are the two key ingredients. If we can demonstrate that the problem
has these properties, then we are well on the way to developing a greedy algorithm
for it.

Greedy-choice property

The first key ingredient is the greedy-choice property: we can assemble a globally
optimal solution by making locally optimal (greedy) choices. In other words, when
we are considering which choice to make, we make the choice that looks best in
the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic
programming, we make a choice at each step, but the choice usually depends on the
solutions to subproblems. Consequently, we typically solve dynamic-programming
problems in a bottom-up manner, progressing from smaller subproblems to larger
subproblems. (Alternatively, we can solve them top down, but memoizing. Of
course, even though the code works top down, we still must solve the subprob-
lems before making a choice.) In a greedy algorithm, we make whatever choice
seems best at the moment and then solve the subproblem that remains. The choice
made by a greedy algorithm may depend on choices so far, but it cannot depend on
any future choices or on the solutions to subproblems. Thus, unlike dynamic pro-
gramming, which solves the subproblems before making the first choice, a greedy
algorithm makes its first choice before solving any subproblems. A dynamic-
programming algorithm proceeds bottom up, whereas a greedy strategy usually
progresses in a top-down fashion, making one greedy choice after another, reduc-
ing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a globally
optimal solution. Typically, as in the case of Theorem 16.1, the proof examines
a globally optimal solution to some subproblem. It then shows how to modify
the solution to substitute the greedy choice for some other choice, resulting in one
similar, but smaller, subproblem.

We can usually make the greedy choice more efficiently than when we have to
consider a wider set of choices. For example, in the activity-selection problem, as-

heé¢eps:/hemanthrajhemu.github.io

16.2 Elements of the greedy strategy 425

suming that we had already sorted the activities in monotonically increasing order
of finish times, we needed to examine each activity just once. By preprocessing the
input or by using an appropriate data structure (often a priority queue), we often
can make greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

A problem exhibits optimal substructure if an optimal solution to the problem
contains within it optimal solutions to subproblems. This property is a key in-
gredient of assessing the applicability of dynamic programming as well as greedy
algorithms. As an example of optimal substructure, recall how we demonstrated in
Section 16.1 that if an optimal solution to subproblem S§;; includes an activity ag,
then it must also contain optimal solutions to the subproblems S, and Si;. Given
this optimal substructure, we argued that if we knew which activity to use as ag, we
could construct an optimal solution to S;; by selecting a; along with all activities
in optimal solutions to the subproblems S;x and Si;. Based on this observation of
optimal substructure, we were able to devise the recurrence (16.2) that described
the value of an optimal solution.

We usually use a more direct approach regarding optimal substructure when
applying it to greedy algorithms. As mentioned above, we have the luxury of
assuming that we arrived at a subproblem by having made the greedy choice in
the original problem. All we really need to do is argue that an optimal solution to
the subproblem, combined with the greedy choice already made, yields an optimal
solution to the original problem. This scheme implicitly uses induction on the
subproblems to prove that making the greedy choice at every step produces an
optimal solution.

Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal sub-
structure, you might be tempted to generate a dynamic-programming solution to a
problem when a greedy solution suffices or, conversely, you might mistakenly think
that a greedy solution works when in fact a dynamic-programming solution is re-
quired. To illustrate the subtleties between the two techniques, let us investigate
two variants of a classical optimization problem.

The 0-1 knapsack problem is the following. A thief robbing a store finds n
items. The ith item is worth v; dollars and weighs w; pounds, where v; and w; are
integers. The thief wants to take as valuable a load as possible, but he can carry at
most W pounds in his knapsack, for some integer W. Which items should he take?
(We call this the 0-1 knapsack problem because for each item, the thief must either

heé¢eps:/hemanthrajhemu.github.io

426 Chapter 16 Greedy Algorithms

take it or leave it behind; he cannot take a fractional amount of an item or take an
item more than once.)

In the fractional knapsack problem, the setup is the same, but the thief can take
fractions of items, rather than having to make a binary (0-1) choice for each item.
You can think of an item in the 0-1 knapsack problem as being like a gold ingot
and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1
problem, consider the most valuable load that weighs at most W pounds. If we
remove item j from this load, the remaining load must be the most valuable load
weighing at most W — w; that the thief can take from the n — 1 original items
excluding j. For the comparable fractional problem, consider that if we remove
a weight w of one item j from the optimal load, the remaining load must be the
most valuable load weighing at most W — w that the thief can take from the n — 1
original items plus w; — w pounds of item ;.

Although the problems are similar, we can solve the fractional knapsack problem
by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To
solve the fractional problem, we first compute the value per pound v; /w; for each
item. Obeying a greedy strategy, the thief begins by taking as much as possible of
the item with the greatest value per pound. If the supply of that item is exhausted
and he can still carry more, he takes as much as possible of the item with the next
greatest value per pound, and so forth, until he reaches his weight limit W. Thus,
by sorting the items by value per pound, the greedy algorithm runs in O(nlgn)
time. We leave the proof that the fractional knapsack problem has the greedy-
choice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack problem,
consider the problem instance illustrated in Figure 16.2(a). This example has 3
items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and
is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3
weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is
6 dollars per pound, which is greater than the value per pound of either item 2 (5
dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore,
would take item 1 first. As you can see from the case analysis in Figure 16.2(b),
however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two
possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which
takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Tak-
ing item 1 doesn’t work in the O-1 problem because the thief is unable to fill his
knapsack to capacity, and the empty space lowers the effective value per pound of
his load. In the 0-1 problem, when we consider whether to include an item in the
knapsack, we must compare the solution to the subproblem that includes the item
with the solution to the subproblem that excludes the item before we can make the

heé¢eps:/hemanthrajhemu.github.io

16.2 Elements of the greedy strategy 427

20
— 30 $80
item 3 301 $120
— — =+
em 2 50 . 30| $120
P 20| $100 20| $100
item 1 30 + + +
20 20| $100 - -]
10| $60 10| $60 10| $60
$60 $100 $120 knapsack =$220 =$160 = $180 = $240
(@) (b) (©)

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal,
even though item 1 has the greatest value per pound. (c¢) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

choice. The problem formulated in this way gives rise to many overlapping sub-
problems—a hallmark of dynamic programming, and indeed, as Exercise 16.2-2
asks you to show, we can use dynamic programming to solve the 0-1 problem.

Exercises

16.2-1
Prove that the fractional knapsack problem has the greedy-choice property.

16.2-2

Give a dynamic-programming solution to the 0-1 knapsack problem that runs in
O(n W) time, where n is the number of items and W is the maximum weight of
items that the thief can put in his knapsack.

16.2-3

Suppose that in a 0-1 knapsack problem, the order of the items when sorted by
increasing weight is the same as their order when sorted by decreasing value. Give
an efficient algorithm to find an optimal solution to this variant of the knapsack
problem, and argue that your algorithm is correct.

16.2-4

Professor Gekko has always dreamed of inline skating across North Dakota. He
plans to cross the state on highway U.S. 2, which runs from Grand Forks, on the
eastern border with Minnesota, to Williston, near the western border with Montana.

heé¢eps:/hemanthrajhemu.github.io

428 Chapter 16 Greedy Algorithms

The professor can carry two liters of water, and he can skate m miles before running
out of water. (Because North Dakota is relatively flat, the professor does not have
to worry about drinking water at a greater rate on uphill sections than on flat or
downhill sections.) The professor will start in Grand Forks with two full liters of
water. His official North Dakota state map shows all the places along U.S. 2 at
which he can refill his water and the distances between these locations.

The professor’s goal is to minimize the number of water stops along his route
across the state. Give an efficient method by which he can determine which water
stops he should make. Prove that your strategy yields an optimal solution, and give
its running time.

16.2-5

Describe an efficient algorithm that, given a set {xy, x5, ..., x,} of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is correct.

16.2-6
Show how to solve the fractional knapsack problem in O(n) time.

16.2-7

Suppose you are given two sets A and B, each containing n positive integers. You
can choose to reorder each set however you like. After reordering, let a; be the ith
element of set A, and let b; be the ith element of set B. You then receive a payoff
of []7_, @;%. Give an algorithm that will maximize your payoff. Prove that your
algorithm maximizes the payoff, and state its running time.

16.3 Huffman codes

Huffman codes compress data very effectively: savings of 20% to 90% are typical,
depending on the characteristics of the data being compressed. We consider the
data to be a sequence of characters. Huffman’s greedy algorithm uses a table giving
how often each character occurs (i.e., its frequency) to build up an optimal way of
representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly.
We observe that the characters in the file occur with the frequencies given by Fig-
ure 16.3. That is, only 6 different characters appear, and the character a occurs
45,000 times.

We have many options for how to represent such a file of information. Here,
we consider the problem of designing a binary character code (or code for short)

heé¢eps:/hemanthrajhemu.github.io

16.3 Huffman codes 429

a b c d e £
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the char-
acters a—f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can
encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only
224,000 bits.

in which each character is represented by a unique binary string, which we call a
codeword. 1f we use a fixed-length code, we need 3 bits to represent 6 characters:
a =000, b =001, ..., £ =101. This method requires 300,000 bits to code the
entire file. Can we do better?

A variable-length code can do considerably better than a fixed-length code, by
giving frequent characters short codewords and infrequent characters long code-
words. Figure 16.3 shows such a code; here the 1-bit string O represents a, and the
4-bit string 1100 represents £. This code requires

4514+ 13-3 +12-3 +16-3 + 9-4 + 5-4)-1,000 = 224,000 bits

to represent the file, a savings of approximately 25%. In fact, this is an optimal
character code for this file, as we shall see.

Prefix codes

We consider here only codes in which no codeword is also a prefix of some other
codeword. Such codes are called prefix codes.® Although we won’t prove it here, a
prefix code can always achieve the optimal data compression among any character
code, and so we suffer no loss of generality by restricting our attention to prefix
codes.

Encoding is always simple for any binary character code; we just concatenate the
codewords representing each character of the file. For example, with the variable-
length prefix code of Figure 16.3, we code the 3-character file abc as 0-101-100 =
0101100, where “-” denotes concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword
is a prefix of any other, the codeword that begins an encoded file is unambiguous.
We can simply identify the initial codeword, translate it back to the original char-

3Perhaps “prefix-free codes” would be a better name, but the term “prefix codes” is standard in the
literature.

heé¢eps:/hemanthrajhemu.github.io

430 Chapter 16 Greedy Algorithms

[a:45] [b:13] [c:12] [d:16] [e:9] [£:5]

(@ (b)

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with
a character and its frequency of occurrence. Each internal node is labeled with the sum of the fre-
quencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000, ...,
£ =101. (b) The tree corresponding to the optimal prefix code a =0,b =101, ..., £ = 1100.

acter, and repeat the decoding process on the remainder of the encoded file. In our
example, the string 001011101 parses uniquely as 0-0- 101 - 1101, which decodes
to aabe.

The decoding process needs a convenient representation for the prefix code so
that we can easily pick off the initial codeword. A binary tree whose leaves are
the given characters provides one such representation. We interpret the binary
codeword for a character as the simple path from the root to that character, where 0
means “go to the left child” and 1 means “go to the right child.” Figure 16.4 shows
the trees for the two codes of our example. Note that these are not binary search
trees, since the leaves need not appear in sorted order and internal nodes do not
contain character keys.

An optimal code for a file is always represented by a full binary tree, in which
every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code
in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full bi-
nary tree: it contains codewords beginning 10. .., but none beginning 11.... Since
we can now restrict our attention to full binary trees, we can say that if C is the
alphabet from which the characters are drawn and all character frequencies are pos-
itive, then the tree for an optimal prefix code has exactly |C| leaves, one for each
letter of the alphabet, and exactly |C| — 1 internal nodes (see Exercise B.5-3).

Given atree T corresponding to a prefix code, we can easily compute the number
of bits required to encode a file. For each character ¢ in the alphabet C, let the
attribute c.freq denote the frequency of ¢ in the file and let d7(c) denote the depth

heé¢eps:/hemanthrajhemu.github.io

16.3 Huffman codes 431

of ¢’s leaf in the tree. Note that dr(c) is also the length of the codeword for
character ¢. The number of bits required to encode a file is thus

B(T) = c.freq-dr(c). (16.4)

ceC

which we define as the cost of the tree T'.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix code called
a Huffman code. In line with our observations in Section 16.2, its proof of cor-
rectness relies on the greedy-choice property and optimal substructure. Rather
than demonstrating that these properties hold and then developing pseudocode, we
present the pseudocode first. Doing so will help clarify how the algorithm makes
greedy choices.

In the pseudocode that follows, we assume that C is a set of n characters and
that each character ¢ € C is an object with an attribute c.freq giving its frequency.
The algorithm builds the tree 7" corresponding to the optimal code in a bottom-up
manner. It begins with a set of |C| leaves and performs a sequence of |C| — 1
“merging” operations to create the final tree. The algorithm uses a min-priority
queue Q, keyed on the freq attribute, to identify the two least-frequent objects to
merge together. When we merge two objects, the result is a new object whose
frequency is the sum of the frequencies of the two objects that were merged.

HUFFMAN(C)

1 n=|C|

2 0=C

3 fori =1ton—1

4 allocate a new node z

5 Z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 Z.freq = x.freq + y.freq

8 INSERT(Q, 7)

9 return EXTRACT-MIN(Q) // return the root of the tree

For our example, Huffman’s algorithm proceeds as shown in Figure 16.5. Since
the alphabet contains 6 letters, the initial queue size is n = 6, and 5 merge steps
build the tree. The final tree represents the optimal prefix code. The codeword for
a letter is the sequence of edge labels on the simple path from the root to the letter.

Line 2 initializes the min-priority queue Q with the characters in C. The for
loop in lines 3-8 repeatedly extracts the two nodes x and y of lowest frequency

heé¢eps:/hemanthrajhemu.github.io

432 Chapter 16 Greedy Algorithms

@ [£5] [e9] [c:12] [b:13] [d:16] [a:45] () (14)
0 1

() (d)

© ®

Figure 16.5 The steps of Huffman’s algorithm for the frequencies given in Figure 16.3. Each part
shows the contents of the queue sorted into increasing order by frequency. At each step, the two
trees with lowest frequencies are merged. Leaves are shown as rectangles containing a character
and its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their
children. An edge connecting an internal node with its children is labeled O if it is an edge to a left
child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the
edges connecting the root to the leaf for that letter. (a) The initial set of n = 6 nodes, one for each
letter. (b)—(e) Intermediate stages. (f) The final tree.

from the queue, replacing them in the queue with a new node z representing their
merger. The frequency of z is computed as the sum of the frequencies of x and y
in line 7. The node z has x as its left child and y as its right child. (This order is
arbitrary; switching the left and right child of any node yields a different code of
the same cost.) After n — 1 mergers, line 9 returns the one node left in the queue,
which is the root of the code tree.

Although the algorithm would produce the same result if we were to excise the
variables x and y—assigning directly to z.left and z.right in lines 5 and 6, and
changing line 7 to z.freq = Zz.left.freq + z.right.freq—we shall use the node

heé¢eps:/hemanthrajhemu.github.io

16.3 Huffman codes 433

names x and y in the proof of correctness. Therefore, we find it convenient to
leave them in.

To analyze the running time of Huffman’s algorithm, we assume that Q is im-
plemented as a binary min-heap (see Chapter 6). For a set C of n characters, we
can initialize Q in line 2 in O(n) time using the BUILD-MIN-HEAP procedure dis-
cussed in Section 6.3. The for loop in lines 3-8 executes exactly n — 1 times, and
since each heap operation requires time O(lgn), the loop contributes O(n1gn) to
the running time. Thus, the total running time of HUFFMAN on a set of n charac-
ters is O(n lgn). We can reduce the running time to O(n lglgn) by replacing the
binary min-heap with a van Emde Boas tree (see Chapter 20).

Correctness of Huffman’s algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that the prob-
lem of determining an optimal prefix code exhibits the greedy-choice and optimal-
substructure properties. The next lemma shows that the greedy-choice property
holds.

Lemma 16.2

Let C be an alphabet in which each character ¢ € C has frequency c.freq. Let
x and y be two characters in C having the lowest frequencies. Then there exists
an optimal prefix code for C in which the codewords for x and y have the same
length and differ only in the last bit.

Proof The idea of the proof is to take the tree 7" representing an arbitrary optimal
prefix code and modify it to make a tree representing another optimal prefix code
such that the characters x and y appear as sibling leaves of maximum depth in the
new tree. If we can construct such a tree, then the codewords for x and y will have
the same length and differ only in the last bit.

Let @ and b be two characters that are sibling leaves of maximum depth in 7.
Without loss of generality, we assume that a.freq < b.freq and x.freq < y.freq.
Since x.freq and y.freq are the two lowest leaf frequencies, in order, and a.freq
and b.freq are two arbitrary frequencies, in order, we have x.freq < a.freq and
y.freq < b.freq.

In the remainder of the proof, it is possible that we could have x.freq = a.freq
or y.freq = b.freq. However, if we had x.freq = b.freq, then we would also have
a.freq = b.freq = x.freq = y.freq (see Exercise 16.3-1), and the lemma would
be trivially true. Thus, we will assume that x.freq # b.freq, which means that
x # b.

As Figure 16.6 shows, we exchange the positions in 7" of @ and x to produce a
tree 7', and then we exchange the positions in 7’ of b and y to produce a tree 7"

heé¢eps:/hemanthrajhemu.github.io

434 Chapter 16 Greedy Algorithms

Figure 16.6 An illustration of the key step in the proof of Lemma 16.2. In the optimal tree T,
leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the
lowest frequencies; they appear in arbitrary positions in 7. Assuming that x # b, swapping leaves a
and x produces tree 7”, and then swapping leaves b and y produces tree T”. Since each swap does
not increase the cost, the resulting tree 7" is also an optimal tree.

in which x and y are sibling leaves of maximum depth. (Note that if x = b but
y # a, then tree T” does not have x and y as sibling leaves of maximum depth.
Because we assume that x # b, this situation cannot occur.) By equation (16.4),
the difference in cost between 7 and 7" is

B(T)— B(T")
= E c.freq-dr(c) — E c.freq-dr(c)
ceC ceC

x.freq - dr(x) + a.freq - dr(a) — x.freq - dr/(x) — a.freq - dr(a)
= Xx.freq-dr(x)+ a.freq-dr(a) — x.freq-dr(a) —a.freq - dr(x)
= (a.freq — x.freq)(dr(a) — dr(x))

Z 0 b

because both a.freq — x.freq and dr(a) — dr(x) are nonnegative. More specifi-
cally, a.freq — x.freq is nonnegative because x is a minimum-frequency leaf, and
dr(a)—dr (x) is nonnegative because « is a leaf of maximum depth in 7'. Similarly,
exchanging y and b does not increase the cost, and so B(7’) — B(T") is nonnega-
tive. Therefore, B(T"”) < B(T), and since T is optimal, we have B(T) < B(T"),
which implies B(T”) = B(T). Thus, T” is an optimal tree in which x and y
appear as sibling leaves of maximum depth, from which the lemma follows. |

Lemma 16.2 implies that the process of building up an optimal tree by mergers
can, without loss of generality, begin with the greedy choice of merging together
those two characters of lowest frequency. Why is this a greedy choice? We can
view the cost of a single merger as being the sum of the frequencies of the two items
being merged. Exercise 16.3-4 shows that the total cost of the tree constructed
equals the sum of the costs of its mergers. Of all possible mergers at each step,
HUFFMAN chooses the one that incurs the least cost.

heé¢eps:/hemanthrajhemu.github.io

16.3 Huffman codes 435

The next lemma shows that the problem of constructing optimal prefix codes has
the optimal-substructure property.

Lemma 16.3

Let C be a given alphabet with frequency c.freq defined for each character ¢ € C.
Let x and y be two characters in C with minimum frequency. Let C’ be the
alphabet C with the characters x and y removed and a new character z added,
so that C' = C — {x,y} U {z}. Define f for C’ as for C, except that
z.freq = x.freq + y.freq. Let T’ be any tree representing an optimal prefix code
for the alphabet C’. Then the tree T, obtained from 7" by replacing the leaf node
for z with an internal node having x and y as children, represents an optimal prefix
code for the alphabet C.

Proof We first show how to express the cost B(T') of tree T in terms of the
cost B(T’) of tree T', by considering the component costs in equation (16.4).
For each character ¢ € C — {x, y}, we have that dr(c) = dr/(c), and hence
c.freq-dr(c) = c.freq - dr/(c). Since dr(x) = dr(y) = dr/(z) + 1, we have
x.freq - dr(x) + y.freq-dr(y) = (x.freq + y.freq)(dr(2) + 1)

= z.freq-dr/(2) + (x.freq + y.freq)
from which we conclude that

B(T) = B(T') + x.freq + y.freq
or, equivalently,

B(T') = B(T) — x.freq — y.freq .

We now prove the lemma by contradiction. Suppose that 7" does not repre-
sent an optimal prefix code for C. Then there exists an optimal tree 7" such that
B(T") < B(T). Without loss of generality (by Lemma 16.2), T” has x and y as
siblings. Let 7" be the tree T” with the common parent of x and y replaced by a
leaf z with frequency z.freq = x.freq + y.freq. Then

B(T") = B(T")—x.freq— y.freq

< B(T)—x.freq— y.freq

= B(T),
yielding a contradiction to the assumption that 7’ represents an optimal prefix code
for C’. Thus, T must represent an optimal prefix code for the alphabet C. |
Theorem 16.4

Procedure HUFFMAN produces an optimal prefix code.

Proof Immediate from Lemmas 16.2 and 16.3. |

heé¢eps:/hemanthrajhemu.github.io

436 Chapter 16 Greedy Algorithms

Exercises

16.3-1
Explain why, in the proof of Lemma 16.2, if x.freq = b.freq, then we must have

a.freq = b.freq = x.freq = y.freq.

16.3-2
Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

16.3-3
What is an optimal Huffman code for the following set of frequencies, based on
the first 8 Fibonacci numbers?

a:1 b:l c:2 d:3 e:5 £:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are
the first n Fibonacci numbers?

16.3-4
Prove that we can also express the total cost of a tree for a code as the sum, over
all internal nodes, of the combined frequencies of the two children of the node.

16.3-5

Prove that if we order the characters in an alphabet so that their frequencies
are monotonically decreasing, then there exists an optimal code whose codeword
lengths are monotonically increasing.

16.3-6

Suppose we have an optimal prefix code on a set C = {0, 1,...,n — 1} of charac-
ters and we wish to transmit this code using as few bits as possible. Show how to
represent any optimal prefix code on C using only 2n — 1 + n [Ign] bits. (Hint:
Use 2n — 1 bits to specify the structure of the tree, as discovered by a walk of the
tree.)

16.3-7
Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the
symbols 0, 1, and 2), and prove that it yields optimal ternary codes.

16.3-8

Suppose that a data file contains a sequence of 8-bit characters such that all 256
characters are about equally common: the maximum character frequency is less
than twice the minimum character frequency. Prove that Huffman coding in this
case is no more efficient than using an ordinary 8-bit fixed-length code.

heé¢eps:/hemanthrajhemu.github.io

16.4 Matroids and greedy methods 437

16.3-9

Show that no compression scheme can expect to compress a file of randomly cho-
sen 8-bit characters by even a single bit. (Hint: Compare the number of possible
files with the number of possible encoded files.)

* 16.4 Matroids and greedy methods

In this section, we sketch a beautiful theory about greedy algorithms. This theory
describes many situations in which the greedy method yields optimal solutions. It
involves combinatorial structures known as “matroids.” Although this theory does
not cover all cases for which a greedy method applies (for example, it does not
cover the activity-selection problem of Section 16.1 or the Huffman-coding prob-
lem of Section 16.3), it does cover many cases of practical interest. Furthermore,
this theory has been extended to cover many applications; see the notes at the end
of this chapter for references.

Matroids

A matroid is an ordered pair M = (S, I) satisfying the following conditions.

1. S is a finite set.

2. I is a nonempty family of subsets of S, called the independent subsets of S,
such that if B € T and A C B, then A € I. We say that I is hereditary if it
satisfies this property. Note that the empty set @ is necessarily a member of ..

3. If A € I,B € I,and |A| < |B], then there exists some element x € B — A
such that A U {x} € I. We say that M satisfies the exchange property.

The word “matroid” is due to Hassler Whitney. He was studying matric ma-
troids, in which the elements of S are the rows of a given matrix and a set of rows is
independent if they are linearly independent in the usual sense. As Exercise 16.4-2
asks you to show, this structure defines a matroid.

As another example of matroids, consider the graphic matroid Mg = (Sg, I¢)
defined in terms of a given undirected graph G = (V, E) as follows:

* The set S¢ is defined to be E, the set of edges of G.

* If Aisasubsetof E,then A € I if and only if A4 is acyclic. That is, a set of
edges A is independent if and only if the subgraph G4 = (V, A) forms a forest.

The graphic matroid Mg is closely related to the minimum-spanning-tree problem,
which Chapter 23 covers in detail.

heé¢eps:/hemanthrajhemu.github.io

438 Chapter 16 Greedy Algorithms

Theorem 16.5
If G = (V, E) is an undirected graph, then Mz = (Sg, L) is a matroid.

Proof Clearly, S¢ = E is a finite set. Furthermore, I is hereditary, since a
subset of a forest is a forest. Putting it another way, removing edges from an
acyclic set of edges cannot create cycles.

Thus, it remains to show that M satisfies the exchange property. Suppose that
G4 = (V,A) and Gg = (V, B) are forests of G and that |B| > |A|. Thatis, A
and B are acyclic sets of edges, and B contains more edges than A does.

We claim that a forest ¥ = (Vp, Ef) contains exactly |Vg| — |EF]| trees. To
see why, suppose that F' consists of ¢ trees, where the ith tree contains v; vertices
and e; edges. Then, we have

t
|EF| = Zé’i

i=1

t
= Z(v,- — 1) (by Theorem B.2)

i=1

t
= Zvi—t

i=1

= |Vr|—1,

which implies that t = |V | — | EF|. Thus, forest G4 contains |V | — | A] trees, and
forest Gp contains |V | — | B| trees.

Since forest Gp has fewer trees than forest G4 does, forest Gz must contain
some tree T whose vertices are in two different trees in forest G4. Moreover,
since T is connected, it must contain an edge (u,v) such that vertices u and v
are in different trees in forest G4. Since the edge (u, V) connects vertices in two
different trees in forest G4, we can add the edge (u, v) to forest G4 without creating
a cycle. Therefore, M satisfies the exchange property, completing the proof that
M is a matroid. [

Given a matroid M = (S, I), we call an element x ¢ A an extension of A € T
if we can add x to A while preserving independence; that is, x is an extension
of Aif AU {x} € I. As an example, consider a graphic matroid Mq. If 4 is an
independent set of edges, then edge e is an extension of A if and only if e is not
in A and the addition of e to A does not create a cycle.

If A is an independent subset in a matroid M, we say that A is maximal if it has
no extensions. That is, A is maximal if it is not contained in any larger independent
subset of M. The following property is often useful.

heé¢eps:/hemanthrajhemu.github.io

16.4 Matroids and greedy methods 439

Theorem 16.6
All maximal independent subsets in a matroid have the same size.

Proof Suppose to the contrary that A is a maximal independent subset of M
and there exists another larger maximal independent subset B of M. Then, the
exchange property implies that for some x € B — A, we can extend A to a larger
independent set A U {x}, contradicting the assumption that A is maximal. |

As an illustration of this theorem, consider a graphic matroid Mg for a con-
nected, undirected graph G. Every maximal independent subset of Mg must be a
free tree with exactly |V'| — 1 edges that connects all the vertices of G. Such a tree
is called a spanning tree of G.

We say that a matroid M = (S, 1) is weighted if it is associated with a weight
function w that assigns a strictly positive weight w(x) to each element x € S. The
weight function w extends to subsets of S by summation:

w(d) =) w(x)

x€A
for any A C S. For example, if we let w(e) denote the weight of an edge e in a
graphic matroid Mg, then w(A) is the total weight of the edges in edge set A.

Greedy algorithms on a weighted matroid

Many problems for which a greedy approach provides optimal solutions can be for-
mulated in terms of finding a maximum-weight independent subset in a weighted
matroid. That is, we are given a weighted matroid M = (S, I), and we wish to
find an independent set A € I such that w(A) is maximized. We call such a sub-
set that is independent and has maximum possible weight an optimal subset of the
matroid. Because the weight w(x) of any element x € § is positive, an optimal
subset is always a maximal independent subset—it always helps to make A as large
as possible.

For example, in the minimum-spanning-tree problem, we are given a connected
undirected graph G = (V, E) and a length function w such that w(e) is the (posi-
tive) length of edge e. (We use the term “length” here to refer to the original edge
weights for the graph, reserving the term “weight” to refer to the weights in the
associated matroid.) We wish to find a subset of the edges that connects all of
the vertices together and has minimum total length. To view this as a problem of
finding an optimal subset of a matroid, consider the weighted matroid Mg with
weight function w’, where w’(e) = wo — w(e) and wy is larger than the maximum
length of any edge. In this weighted matroid, all weights are positive and an opti-
mal subset is a spanning tree of minimum total length in the original graph. More
specifically, each maximal independent subset A corresponds to a spanning tree

heé¢eps:/hemanthrajhemu.github.io

440 Chapter 16 Greedy Algorithms

with |V| — 1 edges, and since

w'(d) =) w'e)

ecA
= D (wo—w(e))
ecA
= (IVI=Dwo— Y w(e)

ecA

= (VI=Dwo—w(4)

for any maximal independent subset A, an independent subset that maximizes the
quantity w’(A) must minimize w(A). Thus, any algorithm that can find an optimal
subset A in an arbitrary matroid can solve the minimum-spanning-tree problem.

Chapter 23 gives algorithms for the minimum-spanning-tree problem, but here
we give a greedy algorithm that works for any weighted matroid. The algorithm
takes as input a weighted matroid M = (S, I) with an associated positive weight
function w, and it returns an optimal subset A. In our pseudocode, we denote the
components of M by M.S and M. I and the weight function by w. The algorithm
is greedy because it considers in turn each element x € S, in order of monotoni-
cally decreasing weight, and immediately adds it to the set A being accumulated if
A U {x} is independent.

GREEDY (M, w)

1 A=90

2 sort M.S into monotonically decreasing order by weight w

3 for each x € M.S, taken in monotonically decreasing order by weight w(x)
4 ifAU{x}e M. I

5 A= AU{x}

6 return A

Line 4 checks whether adding each element x to 4 would maintain A as an inde-
pendent set. If A would remain independent, then line 5 adds x to A. Otherwise, x
is discarded. Since the empty set is independent, and since each iteration of the for
loop maintains A’s independence, the subset A is always independent, by induc-
tion. Therefore, GREEDY always returns an independent subset A. We shall see in
a moment that A4 is a subset of maximum possible weight, so that 4 is an optimal
subset.

The running time of GREEDY is easy to analyze. Let n denote |S|. The sorting
phase of GREEDY takes time O(n lgn). Line 4 executes exactly n times, once for
each element of S. Each execution of line 4 requires a check on whether or not
the set A U {x} is independent. If each such check takes time O(f(n)), the entire
algorithm runs in time O(nlgn + nf(n)).

heé¢eps:/hemanthrajhemu.github.io

16.4 Matroids and greedy methods 441

We now prove that GREEDY returns an optimal subset.

Lemma 16.7 (Matroids exhibit the greedy-choice property)

Suppose that M = (S, T) is a weighted matroid with weight function w and that S
is sorted into monotonically decreasing order by weight. Let x be the first element
of S such that {x} is independent, if any such x exists. If x exists, then there exists
an optimal subset A of S that contains x.

Proof If no such x exists, then the only independent subset is the empty set and
the lemma is vacuously true. Otherwise, let B be any nonempty optimal subset.
Assume that x ¢ B; otherwise, letting A = B gives an optimal subset of S that
contains x.

No element of B has weight greater than w(x). To see why, observe that y € B
implies that {y} is independent, since B € I and I is hereditary. Our choice of x
therefore ensures that w(x) > w(y) for any y € B.

Construct the set A as follows. Begin with A = {x}. By the choice of x, set A4 is
independent. Using the exchange property, repeatedly find a new element of B that
we can add to A until |A| = | B|, while preserving the independence of A. At that
point, A and B are the same except that A has x and B has some other element y.
Thatis, A = B —{y} U {x} for some y € B, and so

w(d) = w(B)—w(y)+ wx)
> w(B).

Because set B is optimal, set A, which contains x, must also be optimal. [

We next show that if an element is not an option initially, then it cannot be an
option later.

Lemma 16.8
Let M = (S, I) be any matroid. If x is an element of S that is an extension of
some independent subset A of S, then x is also an extension of @.

Proof Since x is an extension of A, we have that A U {x} is independent. Since I
is hereditary, {x} must be independent. Thus, x is an extension of . |

Corollary 16.9
Let M = (S, 1) be any matroid. If x is an element of S such that x is not an

extension of @, then x is not an extension of any independent subset A of S.

Proof This corollary is simply the contrapositive of Lemma 16.8. |

heé¢eps:/hemanthrajhemu.github.io

442 Chapter 16 Greedy Algorithms

Corollary 16.9 says that any element that cannot be used immediately can never
be used. Therefore, GREEDY cannot make an error by passing over any initial
elements in S that are not an extension of @, since they can never be used.

Lemma 16.10 (Matroids exhibit the optimal-substructure property)

Let x be the first element of S chosen by GREEDY for the weighted matroid
M = (S,I). The remaining problem of finding a maximum-weight indepen-
dent subset containing x reduces to finding a maximum-weight independent subset
of the weighted matroid M’ = (S’, I'), where

S = {yeS:{x,y}el},
I' = {BCS—{x}:BU{x}ell,

and the weight function for M is the weight function for M, restricted to S’. (We
call M’ the contraction of M by the element x.)

Proof If A is any maximum-weight independent subset of M containing x, then
A" = A — {x} is an independent subset of M'. Conversely, any independent sub-
set A" of M’ yields an independent subset A = A’ U {x} of M. Since we have in
both cases that w(A4) = w(A’) + w(x), a maximum-weight solution in M contain-
ing x yields a maximum-weight solution in M’, and vice versa. |

Theorem 16.11 (Correctness of the greedy algorithm on matroids)
If M = (S, I) is a weighted matroid with weight function w, then GREEDY (M, w)
returns an optimal subset.

Proof By Corollary 16.9, any elements that GREEDY passes over initially be-
cause they are not extensions of @ can be forgotten about, since they can never
be useful. Once GREEDY selects the first element x, Lemma 16.7 implies that
the algorithm does not err by adding x to A, since there exists an optimal subset
containing x. Finally, Lemma 16.10 implies that the remaining problem is one of
finding an optimal subset in the matroid M’ that is the contraction of M by x.
After the procedure GREEDY sets A to {x}, we can interpret all of its remaining
steps as acting in the matroid M’ = (S, I’), because B is independent in M’ if
and only if B U {x} is independent in M, for all sets B € I'. Thus, the subsequent
operation of GREEDY will find a maximum-weight independent subset for M’, and
the overall operation of GREEDY will find a maximum-weight independent subset
for M. |

heé¢eps:/hemanthrajhemu.github.io

16.5 A task-scheduling problem as a matroid 443

Exercises

16.4-1
Show that (S,) is a matroid, where S is any finite set and I is the set of all
subsets of S of size at most k, where k < |S].

16.4-2 %

Given an m x n matrix T over some field (such as the reals), show that (S, I) is a
matroid, where S is the set of columns of 7" and A € I if and only if the columns
in A are linearly independent.

16.4-3 *
Show that if (S, I) is a matroid, then (S, I’) is a matroid, where

I'={A": S — A’ contains some maximal 4 € I} .

That is, the maximal independent sets of (S, I’) are just the complements of the
maximal independent sets of (S, 7).

16.4-4 *

Let S be a finite set and let Sy, S, ..., Sk be a partition of S into nonempty disjoint
subsets. Define the structure (S, I) by the condition that T = {4 : |4 N S;| <1
for i =1,2,...,k}. Show that (S, I) is a matroid. That is, the set of all sets A
that contain at most one member of each subset in the partition determines the
independent sets of a matroid.

16.4-5

Show how to transform the weight function of a weighted matroid problem, where
the desired optimal solution is a minimum-weight maximal independent subset, to
make it a standard weighted-matroid problem. Argue carefully that your transfor-
mation is correct.

* 16.5 A task-scheduling problem as a matroid

An interesting problem that we can solve using matroids is the problem of op-
timally scheduling unit-time tasks on a single processor, where each task has a
deadline, along with a penalty paid if the task misses its deadline. The problem
looks complicated, but we can solve it in a surprisingly simple manner by casting
it as a matroid and using a greedy algorithm.

A unit-time task is a job, such as a program to be run on a computer, that requires
exactly one unit of time to complete. Given a finite set S of unit-time tasks, a

heé¢eps:/hemanthrajhemu.github.io

444 Chapter 16 Greedy Algorithms

schedule for S is a permutation of S specifying the order in which to perform
these tasks. The first task in the schedule begins at time O and finishes at time 1,
the second task begins at time 1 and finishes at time 2, and so on.

The problem of scheduling unit-time tasks with deadlines and penalties for a
single processor has the following inputs:

e asetS ={ay,a,,...,a,} of n unit-time tasks;

e asetof ninteger deadlines d,,d,, . .. ,d,, such that each d; satisfies | < d; <n
and task a; is supposed to finish by time d;; and

e aset of n nonnegative weights or penalties wi, w,, ..., w,, such that we incur
a penalty of w; if task a; is not finished by time d;, and we incur no penalty if
a task finishes by its deadline.

We wish to find a schedule for S that minimizes the total penalty incurred for
missed deadlines.

Consider a given schedule. We say that a task is lafe in this schedule if it finishes
after its deadline. Otherwise, the task is early in the schedule. We can always trans-
form an arbitrary schedule into early-first form, in which the early tasks precede
the late tasks. To see why, note that if some early task a; follows some late task a;,
then we can switch the positions of a; and a;, and a; will still be early and a; will
still be late.

Furthermore, we claim that we can always transform an arbitrary schedule into
canonical form, in which the early tasks precede the late tasks and we schedule
the early tasks in order of monotonically increasing deadlines. To do so, we put
the schedule into early-first form. Then, as long as there exist two early tasks a;
and a; finishing at respective times k and k + 1 in the schedule such that d; < d;,
we swap the positions of a; and a;. Since a; is early before the swap, k + 1 < d;.
Therefore, k + 1 < d;, and so q; is still early after the swap. Because task a; is
moved earlier in the schedule, it remains early after the swap.

The search for an optimal schedule thus reduces to finding a set A of tasks that
we assign to be early in the optimal schedule. Having determined A, we can create
the actual schedule by listing the elements of A in order of monotonically increas-
ing deadlines, then listing the late tasks (i.e., S — A) in any order, producing a
canonical ordering of the optimal schedule.

We say that a set A of tasks is independent if there exists a schedule for these
tasks such that no tasks are late. Clearly, the set of early tasks for a schedule forms
an independent set of tasks. Let I denote the set of all independent sets of tasks.

Consider the problem of determining whether a given set A of tasks is indepen-
dent. Fort = 0,1,2,...,n, let N,(A) denote the number of tasks in A whose
deadline is ¢ or earlier. Note that Ny(A) = 0 for any set A.

heé¢eps:/hemanthrajhemu.github.io

16.5 A task-scheduling problem as a matroid 445

Lemma 16.12
For any set of tasks A, the following statements are equivalent.

1. The set A4 is independent.
2. Fort =0,1,2,...,n, we have N,(A4) <t.

3. If the tasks in A are scheduled in order of monotonically increasing deadlines,
then no task is late.

Proof To show that (1) implies (2), we prove the contrapositive: if N,(A4) > ¢ for
some 7, then there is no way to make a schedule with no late tasks for set A, because
more than ¢ tasks must finish before time ¢. Therefore, (1) implies (2). If (2) holds,
then (3) must follow: there is no way to “get stuck” when scheduling the tasks in
order of monotonically increasing deadlines, since (2) implies that the ith largest
deadline is at least i. Finally, (3) trivially implies (1). (]

Using property 2 of Lemma 16.12, we can easily compute whether or not a given
set of tasks is independent (see Exercise 16.5-2).

The problem of minimizing the sum of the penalties of the late tasks is the same
as the problem of maximizing the sum of the penalties of the early tasks. The
following theorem thus ensures that we can use the greedy algorithm to find an
independent set A of tasks with the maximum total penalty.

Theorem 16.13
If S is a set of unit-time tasks with deadlines, and I is the set of all independent
sets of tasks, then the corresponding system (S, I) is a matroid.

Proof Every subset of an independent set of tasks is certainly independent. To
prove the exchange property, suppose that B and A are independent sets of tasks
and that | B| > |A|. Let k be the largest ¢ such that N,(B) < N;(A). (Such a value
of ¢ exists, since No(A) = No(B) = 0.) Since N,(B) = |B| and N, (A) = |A]|,
but |B| > |A|, we must have that k < n and that N;(B) > N;(A) for all j in
the range k + 1 < j < n. Therefore, B contains more tasks with deadline k + 1
than A does. Let a; be a task in B — A with deadline k + 1. Let A’ = A U {a;}.
We now show that A’ must be independent by using property 2 of Lemma 16.12.
For 0 <t < k, we have N,(A") = N,(A) < t, since A is independent. For
k <t < n,wehave N;(A") < N,(B) < t, since B is independent. Therefore, A’
is independent, completing our proof that (S, I) is a matroid. |

By Theorem 16.11, we can use a greedy algorithm to find a maximum-weight
independent set of tasks A. We can then create an optimal schedule having the
tasks in A as its early tasks. This method is an efficient algorithm for scheduling

heé¢eps:/hemanthrajhemu.github.io

446 Chapter 16 Greedy Algorithms

Task
ai | 3 4 5 6
d | 4 4 3 1 6

Figure 16.7 An instance of the problem of scheduling unit-time tasks with deadlines and penalties
for a single processor.

unit-time tasks with deadlines and penalties for a single processor. The running
time is O(n?) using GREEDY, since each of the O(n) independence checks made
by that algorithm takes time O(n) (see Exercise 16.5-2). Problem 16-4 gives a
faster implementation.

Figure 16.7 demonstrates an example of the problem of scheduling unit-time
tasks with deadlines and penalties for a single processor. In this example, the
greedy algorithm selects, in order, tasks a,, a,, as, and a4, then rejects as (because
Ni({aq,as,as3,a4,as}) = 5) and ag (because Ny({ai,as,as,aq4,a6}) = 5), and
finally accepts a;. The final optimal schedule is

(a27a47a17a37 a77 a57 aG))

which has a total penalty incurred of ws + we = 50.

Exercises

16.5-1
Solve the instance of the scheduling problem given in Figure 16.7, but with each
penalty w; replaced by 80 — w;.

16.5-2
Show how to use property 2 of Lemma 16.12 to determine in time O(| A|) whether
or not a given set A of tasks is independent.

Problems

16-1 Coin changing
Consider the problem of making change for n cents using the fewest number of
coins. Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes,
nickels, and pennies. Prove that your algorithm yields an optimal solution.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 16 447

b. Suppose that the available coins are in the denominations that are powers of c,
i.e., the denominations are ¢°,c!, ..., c* for some integers ¢ > 1 and k > 1.
Show that the greedy algorithm always yields an optimal solution.

¢. Give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution. Your set should include a penny so that there is a solution
for every value of n.

d. Give an O(nk)-time algorithm that makes change for any set of k different coin
denominations, assuming that one of the coins is a penny.

16-2 Scheduling to minimize average completion time

Suppose you are given a set S = {aj,d,,...,a,} of tasks, where task a; re-
quires p; units of processing time to complete, once it has started. You have one
computer on which to run these tasks, and the computer can run only one task at a
time. Let ¢; be the completion time of task a;, that is, the time at which task a; com-
pletes processing. Your goal is to minimize the average completion time, that is,
to minimize (1/n) >_;_, ¢;. For example, suppose there are two tasks, a; and a,,
with p; = 3 and p, = 5, and consider the schedule in which a, runs first, followed
by a,. Then ¢, = 5, ¢; = 8, and the average completion time is (5 + 8)/2 = 6.5.
If task @, runs first, however, then ¢; = 3, ¢, = 8, and the average completion
time is (3 + 8)/2 = 5.5.

a. Give an algorithm that schedules the tasks so as to minimize the average com-
pletion time. Each task must run non-preemptively, that is, once task a; starts, it
must run continuously for p; units of time. Prove that your algorithm minimizes
the average completion time, and state the running time of your algorithm.

b. Suppose now that the tasks are not all available at once. That is, each task
cannot start until its release time r;. Suppose also that we allow preemption, so
that a task can be suspended and restarted at a later time. For example, a task a;
with processing time p; = 6 and release time ; = 1 might start running at
time 1 and be preempted at time 4. It might then resume at time 10 but be
preempted at time 11, and it might finally resume at time 13 and complete at
time 15. Task a; has run for a total of 6 time units, but its running time has been
divided into three pieces. In this scenario, a;’s completion time is 15. Give
an algorithm that schedules the tasks so as to minimize the average completion
time in this new scenario. Prove that your algorithm minimizes the average
completion time, and state the running time of your algorithm.

heé¢eps:/hemanthrajhemu.github.io

448 Chapter 16 Greedy Algorithms

16-3 Acyclic subgraphs

a. The incidence matrix for an undirected graph G = (V, E) is a |V| x | E| ma-
trix M such that M,,, = 1 if edge e is incident on vertex v, and M,, = 0 other-
wise. Argue that a set of columns of M is linearly independent over the field
of integers modulo 2 if and only if the corresponding set of edges is acyclic.
Then, use the result of Exercise 16.4-2 to provide an alternate proof that (£, I)
of part (a) is a matroid.

b. Suppose that we associate a nonnegative weight w(e) with each edge in an
undirected graph G = (V, E). Give an efficient algorithm to find an acyclic
subset of £ of maximum total weight.

c. Let G(V, E) be an arbitrary directed graph, and let (£, I) be defined so that
A e I if and only if A does not contain any directed cycles. Give an example
of a directed graph G such that the associated system (£, I) is not a matroid.
Specify which defining condition for a matroid fails to hold.

d. The incidence matrix for a directed graph G = (V, E) with no self-loops is a
|[V| x | E| matrix M such that M,, = —1 if edge e leaves vertex v, M,, = 1 if
edge e enters vertex v, and M,, = 0 otherwise. Argue that if a set of columns
of M is linearly independent, then the corresponding set of edges does not
contain a directed cycle.

e. Exercise 16.4-2 tells us that the set of linearly independent sets of columns of
any matrix M forms a matroid. Explain carefully why the results of parts (d)
and (e) are not contradictory. How can there fail to be a perfect correspon-
dence between the notion of a set of edges being acyclic and the notion of the
associated set of columns of the incidence matrix being linearly independent?

16-4 Scheduling variations

Consider the following algorithm for the problem from Section 16.5 of scheduling
unit-time tasks with deadlines and penalties. Let all n time slots be initially empty,
where time slot i is the unit-length slot of time that finishes at time 7. We consider
the tasks in order of monotonically decreasing penalty. When considering task a;,
if there exists a time slot at or before a;’s deadline d; that is still empty, assign a;
to the latest such slot, filling it. If there is no such slot, assign task a; to the latest
of the as yet unfilled slots.

a. Argue that this algorithm always gives an optimal answer.

b. Use the fast disjoint-set forest presented in Section 21.3 to implement the algo-
rithm efficiently. Assume that the set of input tasks has already been sorted into

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 16 449

monotonically decreasing order by penalty. Analyze the running time of your
implementation.

16-5 Off-line caching

Modern computers use a cache to store a small amount of data in a fast memory.
Even though a program may access large amounts of data, by storing a small subset
of the main memory in the cache—a small but faster memory —overall access time
can greatly decrease. When a computer program executes, it makes a sequence
(ri, ra, ..., r,) of n memory requests, where each request is for a particular data
element. For example, a program that accesses 4 distinct elements {a,b,c,d}
might make the sequence of requests (d,b,d,b,d,a,c,d,b,a,c,b). Let k be the
size of the cache. When the cache contains k elements and the program requests the
(k + 1)st element, the system must decide, for this and each subsequent request,
which k elements to keep in the cache. More precisely, for each request r;, the
cache-management algorithm checks whether element r; is already in the cache. If
it is, then we have a cache hit; otherwise, we have a cache miss. Upon a cache
miss, the system retrieves r; from the main memory, and the cache-management
algorithm must decide whether to keep r; in the cache. If it decides to keep r; and
the cache already holds k elements, then it must evict one element to make room
for r;. The cache-management algorithm evicts data with the goal of minimizing
the number of cache misses over the entire sequence of requests.

Typically, caching is an on-line problem. That is, we have to make decisions
about which data to keep in the cache without knowing the future requests. Here,
however, we consider the off-line version of this problem, in which we are given
in advance the entire sequence of n requests and the cache size k, and we wish to
minimize the total number of cache misses.

We can solve this off-line problem by a greedy strategy called furthest-in-future,
which chooses to evict the item in the cache whose next access in the request
sequence comes furthest in the future.

a. Write pseudocode for a cache manager that uses the furthest-in-future strategy.
The input should be a sequence (ry, 1, ..., r,) of requests and a cache size k,
and the output should be a sequence of decisions about which data element (if
any) to evict upon each request. What is the running time of your algorithm?

b. Show that the off-line caching problem exhibits optimal substructure.

¢. Prove that furthest-in-future produces the minimum possible number of cache
misses.

heé¢eps:/hemanthrajhemu.github.io

450 Chapter 16 Greedy Algorithms

Chapter notes

Much more material on greedy algorithms and matroids can be found in Lawler
[224] and Papadimitriou and Steiglitz [271].

The greedy algorithm first appeared in the combinatorial optimization literature
in a 1971 article by Edmonds [101], though the theory of matroids dates back to
a 1935 article by Whitney [355].

Our proof of the correctness of the greedy algorithm for the activity-selection
problem is based on that of Gavril [131]. The task-scheduling problem is studied
in Lawler [224]; Horowitz, Sahni, and Rajasekaran [181]; and Brassard and Bratley
[54].

Huffman codes were invented in 1952 [185]; Lelewer and Hirschberg [231] sur-
veys data-compression techniques known as of 1987.

An extension of matroid theory to greedoid theory was pioneered by Korte and
Lovasz [216, 217, 218, 219], who greatly generalize the theory presented here.

heé¢eps:/hemanthrajhemu.github.io

30 Polynomials and the FFT

The straightforward method of adding two polynomials of degree n takes ®(n)
time, but the straightforward method of multiplying them takes ®(n?) time. In this
chapter, we shall show how the fast Fourier transform, or FFT, can reduce the time
to multiply polynomials to ®(nlgn).

The most common use for Fourier transforms, and hence the FFT, is in signal
processing. A signal is given in the fime domain: as a function mapping time to
amplitude. Fourier analysis allows us to express the signal as a weighted sum of
phase-shifted sinusoids of varying frequencies. The weights and phases associated
with the frequencies characterize the signal in the frequency domain. Among the
many everyday applications of FFT’s are compression techniques used to encode
digital video and audio information, including MP3 files. Several fine books delve
into the rich area of signal processing; the chapter notes reference a few of them.

Polynomials

A polynomial in the variable x over an algebraic field F' represents a function A(x)
as a formal sum:

n—1
A(x) = Zajxj .
j=0

We call the values ay,ay,...,a,—; the coefficients of the polynomial. The co-
efficients are drawn from a field F, typically the set C of complex numbers. A
polynomial A(x) has degree k if its highest nonzero coefficient is ay; we write
that degree(A) = k. Any integer strictly greater than the degree of a polynomial
is a degree-bound of that polynomial. Therefore, the degree of a polynomial of
degree-bound n may be any integer between 0 and n — 1, inclusive.

We can define a variety of operations on polynomials. For polynomial addi-
tion, if A(x) and B(x) are polynomials of degree-bound n, their sum is a polyno-

heé¢eps:/hemanthrajhemu.github.io

Chapter 30 Polynomials and the FFT 899

mial C(x), also of degree-bound 7, such that C(x) = A(x) + B(x) for all x in the
underlying field. That is, if

n—1
A(x) = Zajxj
j=0

and

n—1
B(x) = ijxj ,
j=0

then
n—1
C(x) = chxj ,
j=0
where ¢; = a; + b; for j = 0,1,...,n — 1. For example, if we have the

polynomials A(x) = 6x3 + 7x? — 10x + 9 and B(x) = —2x3 + 4x — 5, then
C(x) =4x® + 7x? — 6x + 4.

For polynomial multiplication, if A(x) and B(x) are polynomials of degree-
bound n, their product C(x) is a polynomial of degree-bound 2n — 1 such that
C(x) = A(x)B(x) for all x in the underlying field. You probably have multi-
plied polynomials before, by multiplying each term in A(x) by each term in B(x)
and then combining terms with equal powers. For example, we can multiply
A(x) = 6x3 + 7x% — 10x + 9 and B(x) = —2x> + 4x — 5 as follows:

6x3 + 7x2 —10x + 9
— 2x3 4+ 4x — 5
— 30x3 — 35x2 + 50x — 45

24x* + 28x3 — 40x2 + 36x
— 12x% — 14x> + 20x* — 18x3

— 12x% — 14x> + 44x* — 20x3 — 75x% + 86x — 45

Another way to express the product C(x) is

2n—2

Cx)=Y cjx/ . (30.1)
j=0
where
J
¢j=> arbj . (30.2)
k=0

heé¢eps:/hemanthrajhemu.github.io

900 Chapter 30 Polynomials and the FFT

Note that degree(C) = degree(A) + degree(B), implying that if A is a polyno-
mial of degree-bound 7, and B is a polynomial of degree-bound 7, then C is a
polynomial of degree-bound n, 4+ n, — 1. Since a polynomial of degree-bound k
is also a polynomial of degree-bound k + 1, we will normally say that the product
polynomial C is a polynomial of degree-bound n, + ny.

Chapter outline

Section 30.1 presents two ways to represent polynomials: the coefficient represen-
tation and the point-value representation. The straightforward methods for multi-
plying polynomials—equations (30.1) and (30.2)—take ®(n?) time when we rep-
resent polynomials in coefficient form, but only ®(n) time when we represent them
in point-value form. We can, however, multiply polynomials using the coefficient
representation in only ®(nlgn) time by converting between the two representa-
tions. To see why this approach works, we must first study complex roots of unity,
which we do in Section 30.2. Then, we use the FFT and its inverse, also described
in Section 30.2, to perform the conversions. Section 30.3 shows how to implement
the FFT quickly in both serial and parallel models.

This chapter uses complex numbers extensively, and within this chapter we use
the symbol i exclusively to denote v/—1.

30.1 Representing polynomials

The coefficient and point-value representations of polynomials are in a sense equiv-
alent; that is, a polynomial in point-value form has a unique counterpart in co-
efficient form. In this section, we introduce the two representations and show
how to combine them so that we can multiply two degree-bound n polynomials
in ®(nlgn) time.

Coefficient representation

" oa;x’ of degree-
bound 7 is a vector of coefficients ¢ = (ao,dy,...,d,—1). In matrix equations
in this chapter, we shall generally treat vectors as column vectors.

The coefficient representation is convenient for certain operations on polyno-
mials. For example, the operation of evaluating the polynomial A(x) at a given
point x, consists of computing the value of A(xy). We can evaluate a polynomial
in ©(n) time using Horner’s rule:

A coefficient representation of a polynomial A(x) = Y '_

A(xo) = ag + xo(ay; + xo(as + -+ + xo(an—2 + xo(@p_1))---)) .

heé¢eps:/hemanthrajhemu.github.io

30.1 Representing polynomials 901

Similarly, adding two polynomials represented by the coefficient vectors a =

(ag,ai,...,a,—) and b = (by,by,...,b,_1) takes @(n) time: we just produce
the coefficient vector ¢ = (co,Cy,...,Cn—1), Where ¢; = a; + b; for j =
0,1,....,n—1.

Now, consider multiplying two degree-bound n polynomials A(x) and B(x) rep-
resented in coefficient form. If we use the method described by equations (30.1)
and (30.2), multiplying polynomials takes time ®(n?), since we must multiply
each coefficient in the vector a by each coefficient in the vector b. The operation
of multiplying polynomials in coefficient form seems to be considerably more diffi-
cult than that of evaluating a polynomial or adding two polynomials. The resulting
coefficient vector ¢, given by equation (30.2), is also called the convolution of the
input vectors a and b, denoted ¢ = a ® b. Since multiplying polynomials and
computing convolutions are fundamental computational problems of considerable
practical importance, this chapter concentrates on efficient algorithms for them.

Point-value representation

A point-value representation of a polynomial A(x) of degree-bound 7 is a set of
n point-value pairs

{(XO,)’0)» (.XI,)’1)» ey (xn—l, J’n—l)}
such that all of the xj are distinct and

Vi = A(xk) (30.3)
fork =0,1,...,n — 1. A polynomial has many different point-value representa-
tions, since we can use any set of n distinct points xg, X1, ..., X,—; as a basis for

the representation.

Computing a point-value representation for a polynomial given in coefficient
form is in principle straightforward, since all we have to do is select n distinct
points xg, X1,...,Xx,_1 and then evaluate A(x;) for k = 0,1,...,n — 1. With
Horner’s method, evaluating a polynomial at n points takes time ®(n?). We shall
see later that if we choose the points x; cleverly, we can accelerate this computation
to run in time ®(n lgn).

The inverse of evaluation—determining the coefficient form of a polynomial
from a point-value representation—is interpolation. The following theorem shows
that interpolation is well defined when the desired interpolating polynomial must
have a degree-bound equal to the given number of point-value pairs.

Theorem 30.1 (Uniqueness of an interpolating polynomial)

For any set {(xo, yo), (X1, ¥1)s- -+, (Xpn—1, Yn—1)} of n point-value pairs such that
all the x; values are distinct, there is a unique polynomial A(x) of degree-bound n
such that y, = A(xg) fork =0,1,...,n— 1.

heé¢eps:/hemanthrajhemu.github.io

902 Chapter 30 Polynomials and the FFT

Proof The proof relies on the existence of the inverse of a certain matrix. Equa-
tion (30.3) is equivalent to the matrix equation

I xo xXg oo Xg ao Yo
1 x x2 ... xrl a; Y1
! ' = . (30.4)
I x4 Xi_l ce xﬁ:} ap—1 Yn—1
The matrix on the left is denoted V(xg, X1, ..., X,_1) and is known as a Vander-

monde matrix. By Problem D-1, this matrix has determinant

[T Ge—x.

0<j<k<n-—1

and therefore, by Theorem D.5, it is invertible (that is, nonsingular) if the x; are
distinct. Thus, we can solve for the coefficients a; uniquely given the point-value
representation:

a=V(xg,X1,... ,xn_l)_ly .]

The proof of Theorem 30.1 describes an algorithm for interpolation based on
solving the set (30.4) of linear equations. Using the LU decomposition algorithms
of Chapter 28, we can solve these equations in time O(n?).

A faster algorithm for n-point interpolation is based on Lagrange’s formula:

. [Te—xp

A(x) = 7k . 305
(x) = Zykl_[m_xj (30.5)

J#k

You may wish to verify that the right-hand side of equation (30.5) is a polynomial
of degree-bound n that satisfies A(xx) = yj for all k. Exercise 30.1-5 asks you
how to compute the coefficients of A using Lagrange’s formula in time ©(n?).

Thus, n-point evaluation and interpolation are well-defined inverse operations
that transform between the coefficient representation of a polynomial and a point-
value representation.! The algorithms described above for these problems take
time ©(n?).

The point-value representation is quite convenient for many operations on poly-
nomials. For addition, if C(x) = A(x) + B(x), then C(xx) = A(xx) + B(xx) for
any point x;. More precisely, if we have a point-value representation for A,

Unterpolation is a notoriously tricky problem from the point of view of numerical stability. Although
the approaches described here are mathematically correct, small differences in the inputs or round-off
errors during computation can cause large differences in the result.

heé¢eps:/hemanthrajhemu.github.io

30.1 Representing polynomials 903

{(x09 yO)v (x19 Y1)» ey (xn—l,Yn—l)})
and for B,

{(x0. ¥0)» (1. Y15+ o s (K12 Ypy)}

(note that A and B are evaluated at the same n points), then a point-value repre-
sentation for C is

{(XO»YO +Y(/)),(X1J’1 + YQ)»---»(xn—l,Yn—l +)’;,—1)} .

Thus, the time to add two polynomials of degree-bound 7 in point-value form
is O(n).

Similarly, the point-value representation is convenient for multiplying polyno-
mials. If C(x) = A(x)B(x), then C(x;) = A(x;)B(xy) for any point x;, and
we can pointwise multiply a point-value representation for A by a point-value rep-
resentation for B to obtain a point-value representation for C. We must face the
problem, however, that degree(C) = degree(A) + degree(B); if A and B are of
degree-bound 7, then C is of degree-bound 2n. A standard point-value represen-
tation for A and B consists of n point-value pairs for each polynomial. When we
multiply these together, we get n point-value pairs, but we need 2n pairs to interpo-
late a unique polynomial C of degree-bound 2n. (See Exercise 30.1-4.) We must
therefore begin with “extended” point-value representations for A and for B con-
sisting of 2n point-value pairs each. Given an extended point-value representation
for A,

{(x0, ¥0)s (X1, ¥1)s -+ s (X201, Y2n—1)}

and a corresponding extended point-value representation for B,
{(Xo,y(/))’(xhyi)w--,(in—1,y;n—1)} ,

then a point-value representation for C is
{(Xoy)’oy(l)),(xlvylyi),---,(xzn—hyzn—lyén_l)} .

Given two input polynomials in extended point-value form, we see that the time to
multiply them to obtain the point-value form of the result is ®(n), much less than
the time required to multiply polynomials in coefficient form.

Finally, we consider how to evaluate a polynomial given in point-value form at a
new point. For this problem, we know of no simpler approach than converting the
polynomial to coefficient form first, and then evaluating it at the new point.

Fast multiplication of polynomials in coefficient form

Can we use the linear-time multiplication method for polynomials in point-value
form to expedite polynomial multiplication in coefficient form? The answer hinges

heé¢eps:/hemanthrajhemu.github.io

904 Chapter 30 Polynomials and the FFT

do,dy, ... ,dp—1 Ordinary multiplication > [T } Coefﬁcientl
bo,bi, ... ba_y Time ©(n?) . representations
Evaluation Interpolation
Time O(nlgn) Time O(nlgn)
Y
A(w3,). B(@3,) C(w3,)
A(w3,), B(w},) Pointwise multiplication > C(w3,) Point-value
: Time O (n) : representations
A3, Bl ™) Clwz,™)

Figure 30.1 A graphical outline of an efficient polynomial-multiplication process. Representations
on the top are in coefficient form, while those on the bottom are in point-value form. The arrows
from left to right correspond to the multiplication operation. The w5, terms are complex (27)th roots
of unity.

on whether we can convert a polynomial quickly from coefficient form to point-
value form (evaluate) and vice versa (interpolate).

We can use any points we want as evaluation points, but by choosing the eval-
uation points carefully, we can convert between representations in only ®(n1gn)
time. As we shall see in Section 30.2, if we choose “complex roots of unity” as
the evaluation points, we can produce a point-value representation by taking the
discrete Fourier transform (or DFT) of a coefficient vector. We can perform the
inverse operation, interpolation, by taking the “inverse DFT” of point-value pairs,
yielding a coefficient vector. Section 30.2 will show how the FFT accomplishes
the DFT and inverse DFT operations in ®(n Ign) time.

Figure 30.1 shows this strategy graphically. One minor detail concerns degree-
bounds. The product of two polynomials of degree-bound n is a polynomial of
degree-bound 2n. Before evaluating the input polynomials A and B, therefore,
we first double their degree-bounds to 2n by adding n high-order coefficients of 0.
Because the vectors have 2n elements, we use “complex (2n)th roots of unity,”
which are denoted by the w,, terms in Figure 30.1.

Given the FFT, we have the following ®(n lg n)-time procedure for multiplying
two polynomials A(x) and B(x) of degree-bound n, where the input and output
representations are in coefficient form. We assume that n is a power of 2; we can
always meet this requirement by adding high-order zero coefficients.

1. Double degree-bound: Create coefficient representations of A(x) and B(x) as
degree-bound 27 polynomials by adding n high-order zero coefficients to each.

heé¢eps:/hemanthrajhemu.github.io

30.1 Representing polynomials 905

2. Evaluate: Compute point-value representations of A(x) and B(x) of length 2n
by applying the FFT of order 2n on each polynomial. These representations
contain the values of the two polynomials at the (27)th roots of unity.

3. Pointwise multiply: Compute a point-value representation for the polynomial
C(x) = A(x)B(x) by multiplying these values together pointwise. This repre-
sentation contains the value of C(x) at each (2n)th root of unity.

4. Interpolate: Create the coefficient representation of the polynomial C(x) by
applying the FFT on 27 point-value pairs to compute the inverse DFT.

Steps (1) and (3) take time ®(n), and steps (2) and (4) take time ®(nlgn). Thus,
once we show how to use the FFT, we will have proven the following.

Theorem 30.2

We can multiply two polynomials of degree-bound 7 in time ®(n lgn), with both
the input and output representations in coefficient form. |
Exercises

30.1-1

Multiply the polynomials A(x) = 7x> — x? + x — 10 and B(x) = 8x> — 6x + 3
using equations (30.1) and (30.2).

30.1-2

Another way to evaluate a polynomial A(x) of degree-bound # at a given point x,
is to divide A(x) by the polynomial (x — x,), obtaining a quotient polynomial ¢ (x)
of degree-bound n — 1 and a remainder r, such that

A(x) = q(x)(x —xo) + 1.

Clearly, A(xo) = r. Show how to compute the remainder r and the coefficients
of g(x) in time ®(n) from x, and the coefficients of A.

30.1-3
Derive a point-value representation for A™(x) = Z}:é ay—1—;x’ from a point-
value representation for A(x) = Z;-:(l) a;x’, assuming that none of the points is 0.

30.1-4

Prove that n distinct point-value pairs are necessary to uniquely specify a polyno-
mial of degree-bound 7, that is, if fewer than n distinct point-value pairs are given,
they fail to specify a unique polynomial of degree-bound n. (Hint: Using Theo-
rem 30.1, what can you say about a set of 7 — 1 point-value pairs to which you add
one more arbitrarily chosen point-value pair?)

heé¢eps:/hemanthrajhemu.github.io

906 Chapter 30 Polynomials and the FFT

30.1-5

Show how to use equation (30.5) to interpolate in time © (n?). (Hint: First compute
the coefficient representation of the polynomial 1_[_/- (x — x;) and then divide by
(x — xz) as necessary for the numerator of each term; see Exercise 30.1-2. You can
compute each of the n denominators in time O(#n).)

30.1-6

Explain what is wrong with the “obvious” approach to polynomial division using
a point-value representation, i.e., dividing the corresponding y values. Discuss
separately the case in which the division comes out exactly and the case in which
it doesn’t.

30.1-7
Consider two sets A and B, each having n integers in the range from O to 10n. We
wish to compute the Cartesian sum of A and B, defined by

C={x+y:xe€Aandy € B} .

Note that the integers in C are in the range from 0 to 20n. We want to find the
elements of C and the number of times each element of C is realized as a sum of
elements in A and B. Show how to solve the problem in O(nlgn) time. (Hint:
Represent A and B as polynomials of degree at most 10n.)

30.2 The DFT and FFT

In Section 30.1, we claimed that if we use complex roots of unity, we can evaluate
and interpolate polynomials in ®(n1gn) time. In this section, we define complex
roots of unity and study their properties, define the DFT, and then show how the
FFT computes the DFT and its inverse in ®(n1gn) time.

Complex roots of unity

A complex nth root of unity is a complex number w such that

o" =1.
There are exactly n complex nth roots of unity: e2mikin fork = 0,1,...,n — 1.
To interpret this formula, we use the definition of the exponential of a complex
number:

e = cos(u) + i sin(u) .

Figure 30.2 shows that the n complex roots of unity are equally spaced around the
circle of unit radius centered at the origin of the complex plane. The value

heé¢eps:/hemanthrajhemu.github.io

30.2 The DFT and FFT 907

i w?
3 1
Wg Wg
wg o) = v}
—1 1
e g
—i) §
Figure 30.2 The values of a)g , wé, R a)g in the complex plane, where wg = €2 /8 is the prin-
cipal 8th root of unity.
w, = e2miln (30.6)
is the principal nth root of unity;? all other complex nth roots of unity are powers
of w,.
The n complex nth roots of unity,
w,?,a),i,...,a),'l’_l ,

form a group under multiplication (see Section 31.3). This group has the same
structure as the additive group (Z,, +) modulo n, since ®” = w? = 1 implies that
wlwk = otk = @+ mdn Similarly, w;' = @"~!. The following lemmas
furnish some essential properties of the complex nth roots of unity.

Lemma 30.3 (Cancellation lemma)

For any integers n > 0,k > 0, and d > 0,

wik = k. (30.7)

Proof The lemma follows directly from equation (30.6), since

wik = (e2ni/dn)dk
_ (ezm'/n)k
3 .

2Many other authors define wy, differently: w, = e—27i/n This alternative definition tends to be
used for signal-processing applications. The underlying mathematics is substantially the same with
either definition of wy,.

heé¢eps:/hemanthrajhemu.github.io

908 Chapter 30 Polynomials and the FFT

Corollary 30.4
For any even integer n > 0,

a),’:/ 2=, =—1.
Proof The proof is left as Exercise 30.2-1. |

Lemma 30.5 (Halving lemma)
If n > 0 is even, then the squares of the n complex nth roots of unity are the n/2
complex (n/2)th roots of unity.

Proof By the cancellation lemma, we have (0¥)? = a)fl‘ /o> for any nonnegative
integer k. Note that if we square all of the complex nth roots of unity, then we
obtain each (n/2)th root of unity exactly twice, since

k+n/2\2 __ 2k+n
n) = o

(w
= oo

= w

Thus, wX and w*/2 have the same square. We could also have used Corol-
lary 30.4 to prove this property, since /2 = —1 implies w*™"/2 = —w*, and

thus (wk1/2)2 = (wk)2. n

As we shall see, the halving lemma is essential to our divide-and-conquer ap-
proach for converting between coefficient and point-value representations of poly-
nomials, since it guarantees that the recursive subproblems are only half as large.

Lemma 30.6 (Summation lemma)
For any integer n > 1 and nonzero integer k not divisible by 7,

Proof Equation (A.5) applies to complex values as well as to reals, and so we
have

heé¢eps:/hemanthrajhemu.github.io

30.2 The DFT and FFT 909

Sy = et
= wk —1
@k —1
wk —1
EROLES
ok -1
= 0.
Because we require that & is not divisible by 7, and because w* = 1 only when k
is divisible by n, we ensure that the denominator is not 0. |
The DFT

Recall that we wish to evaluate a polynomial

n—1
Ax) = Z a;x’
j=0

of degree-bound n at w?, w!, w2, ..., w""" (that is, at the n complex nth roots of
unity).> We assume that A4 is given in coefficient form: a = (a9, a;,...,a,_1). Let
us define the results y;, fork = 0,1,...,n — 1, by
i = A

n—1

= Zaja),’fj . (30.8)

j=0
The vector y = (Vo, V1, ..., Yn—1) is the discrete Fourier transform (DFT) of the
coefficient vector a = (ag, a1, ...,a,—1). We also write y = DFT, (a).
The FFT

By using a method known as the fast Fourier transform (FFT), which takes ad-
vantage of the special properties of the complex roots of unity, we can compute
DFT,(a) in time O(nlgn), as opposed to the ®(n?) time of the straightforward
method. We assume throughout that 7 is an exact power of 2. Although strategies

3The length n is actually what we referred to as 2 in Section 30.1, since we double the degree-bound
of the given polynomials prior to evaluation. In the context of polynomial multiplication, therefore,
we are actually working with complex (2n)th roots of unity.

heé¢eps:/hemanthrajhemu.github.io

910 Chapter 30 Polynomials and the FFT

for dealing with non-power-of-2 sizes are known, they are beyond the scope of this
book.

The FFT method employs a divide-and-conquer strategy, using the even-indexed
and odd-indexed coefficients of A(x) separately to define the two new polynomials
A (x) and AM(x) of degree-bound 7 /2:

AN x) = ag+arx +agxt + -+ aux™*!

A[I](x) = a;+asx+ a5x2 44 an_lxn/Z—l .

Note that A contains all the even-indexed coefficients of A4 (the binary represen-
tation of the index ends in 0) and A™ contains all the odd-indexed coefficients (the
binary representation of the index ends in 1). It follows that

A(x) = A?) + x AN (x?) (30.9)

n—1

7~ reduces to

so that the problem of evaluating A(x) at w2, w,,..., @

1. evaluating the degree-bound 7/2 polynomials A[(x) and A (x) at the points
(@)% (@)% (@) (30.10)

and then

2. combining the results according to equation (30.9).

By the halving lemma, the list of values (30.10) consists not of n distinct val-
ues but only of the n/2 complex (n/2)th roots of unity, with each root occurring
exactly twice. Therefore, we recursively evaluate the polynomials Al and Al
of degree-bound n/2 at the n/2 complex (n/2)th roots of unity. These subprob-
lems have exactly the same form as the original problem, but are half the size.
We have now successfully divided an n-element DFT,, computation into two n/2-
element DFT, , computations. This decomposition is the basis for the follow-
ing recursive FFT algorithm, which computes the DFT of an n-element vector
a = (ag,ay,...,a,—1), where n is a power of 2.

heé¢eps:/hemanthrajhemu.github.io

30.2 The DFT and FFT 911

RECURSIVE-FFT (a)

1 n = a.length // n is a power of 2
2 ifn==

3 return a

4 w, = e2ni/n

5 w=1

6 a = (ag,as,....a,_5)

7 a" = (ay.as,...,a,_1)

8 yl = RECURSIVE-FFT (a!)

9 yll = RECURSIVE-FFT(a!")
10 fork =0ton/2—1

11 e ="+ oyl

12 Yirtnny = Vi —w yp

13 w = ww,

14 return y // y is assumed to be a column vector

The RECURSIVE-FFT procedure works as follows. Lines 2-3 represent the basis
of the recursion; the DFT of one element is the element itself, since in this case

0
Yo = dow;
= (10'1

dp .

Lines 67 define the coefficient vectors for the polynomials A and A"}, Lines
4, 5, and 13 guarantee that w is updated properly so that whenever lines 11-12
are executed, we have @ = w*. (Keeping a running value of w from iteration
to iteration saves time over computing ¥ from scratch each time through the for
loop.) Lines 8-9 perform the recursive DFT,,, computations, setting, for k =

0,1,...,n/2—1,

J’I[CO] = A[O](wf/z))

)’1[:] = A[l](wf/z) ,

or, since a);c 1= a),fk by the cancellation lemma,
o= AN

o= AW

heé¢eps:/hemanthrajhemu.github.io

912 Chapter 30 Polynomials and the FFT

Lines 11-12 combine the results of the recursive DFT,,, calculations. For yy, y1,
.. Ynj2—1., line 11 yields

0 k1
e =y oy

= Aw) + of AN ()
A(0F) (by equation (30.9)) .

For /2. Ynja+1s- -+, Yn—1, lettingk = 0,1,...,n/2 — 1, line 12 yields

[0] k(1]
YVe+m/2)y = Vi — Wy)V
_ yl[col + w’116+(n/2)y1[€1] (since a)’llc+(n/2) — _w;]f)

— A[O](a)ﬁk) 4 a),]f+("/2)A[1](a)3k)
- A[OI(w2k+ﬂ) + a)k+("/2)A[1](a)2k+”) (since w2k = k)
A(a),’f T0/2) (by equation (30.9)) .

Thus, the vector y returned by RECURSIVE-FFT is indeed the DFT of the input
vector a.

Lines 11 and 12 multiply each value y,[:] by wk, fork = 0,1,...,n/2 — 1.
Line 11 adds this product to y,[CO], and line 12 subtracts it. Because we use each
factor ¥ in both its positive and negative forms, we call the factors w* twiddle
factors.

To determine the running time of procedure RECURSIVE-FFT, we note that
exclusive of the recursive calls, each invocation takes time ®(n), where n is the
length of the input vector. The recurrence for the running time is therefore

T(n) = 2T(n/2)+ 6(n)
= Omlgn).

Thus, we can evaluate a polynomial of degree-bound n at the complex nth roots of
unity in time ®(n 1gn) using the fast Fourier transform.

Interpolation at the complex roots of unity

We now complete the polynomial multiplication scheme by showing how to in-
terpolate the complex roots of unity by a polynomial, which enables us to convert
from point-value form back to coefficient form. We interpolate by writing the DFT
as a matrix equation and then looking at the form of the matrix inverse.

From equation (30.4), we can write the DFT as the matrix product y = V,a,
where V), is a Vandermonde matrix containing the appropriate powers of w,:

heé¢eps:/hemanthrajhemu.github.io

30.2 The DFT and FFT 913

Yo 1 1 1 1 1 do
1 1 Wy a)}% a)’—:' w}r;—l a
V2 B 1 w2 w? w? @2 a5
V3 1 o w$ w2 @3V a5
Yn-1 1 ! @2=D 3= (D@1 o

The (k, j) entry of V, is w¥/, for j,k = 0,1,...,n — 1. The exponents of the
entries of V,, form a multiplication table.

For the inverse operation, which we write as a = DFT;I(y), we proceed by
multiplying y by the matrix V!, the inverse of V,,.

Theorem 30.7
For j,k =0,1,...,n—1,the (j,k) entry of V"V is w;*/ /n.

Proof We show that V'V, = I, the n x n identity matrix. Consider the (J, j')
entry of V"1V,

Vo Vol = D (@, /) (@)

k=0
n—1

— k(j'=J)

= an /n .
k=0

This summation equals 1 if j = j, and it is 0 otherwise by the summation lemma
(Lemma 30.6). Note that werely on —(n — 1) < j'— j <n —1,sothat j' — j is
not divisible by 7, in order for the summation lemma to apply. |

Given the inverse matrix V!, we have that DFT, ' (y) is given by

1 n—1 '
a = > e, (30.11)
k=0

for j = 0,1,...,n — 1. By comparing equations (30.8) and (30.11), we see that
by modifying the FFT algorithm to switch the roles of a and y, replace w, by w,*,
and divide each element of the result by n, we compute the inverse DFT (see Ex-
ercise 30.2-4). Thus, we can compute DFT;1 in ©(nlgn) time as well.

We see that, by using the FFT and the inverse FFT, we can transform a poly-
nomial of degree-bound n back and forth between its coefficient representation
and a point-value representation in time ®(nlgn). In the context of polynomial
multiplication, we have shown the following.

heé¢eps:/hemanthrajhemu.github.io

914 Chapter 30 Polynomials and the FFT

Theorem 30.8 (Convolution theorem)
For any two vectors a and b of length n, where n is a power of 2,

a ® b = DFT,, (DFT,,(a) - DFT,,(b)) ,

where the vectors a and b are padded with Os to length 2n and - denotes the com-
ponentwise product of two 2n-element vectors. |

Exercises

30.2-1
Prove Corollary 30.4.

30.2-2
Compute the DFT of the vector (0, 1,2, 3).

30.2-3
Do Exercise 30.1-1 by using the ©(n lg n)-time scheme.

30.24
Write pseudocode to compute DFT, ! in ®(n 1gn) time.

30.2-5
Describe the generalization of the FFT procedure to the case in which n is a power
of 3. Give a recurrence for the running time, and solve the recurrence.

30.2-6 *

Suppose that instead of performing an n-element FFT over the field of complex
numbers (where n is even), we use the ring Z,, of integers modulo m, where
m = 2"/2 4+ 1 and ¢ is an arbitrary positive integer. Use @ = 2’ instead of w,
as a principal nth root of unity, modulo m. Prove that the DFT and the inverse DFT
are well defined in this system.

30.2-7

Given a list of values zg, 21, . .., Zy—1 (possibly with repetitions), show how to find
the coefficients of a polynomial P (x) of degree-bound n + 1 that has zeros only
at Zo,Z1,---,Zn—1 (possibly with repetitions). Your procedure should run in time
O(nlg*n). (Hint: The polynomial P(x) has a zero at z ; if and only if P(x) is a
multiple of (x —z;).)

30.2-8 %
The chirp transform of a vector a = (ag,a;,...,a,—1) is the vector y =
(Y0s V1»+++» Yn-1), Where y, = Z_;:(l, a;z¥ and z is any complex number. The

heé¢eps:/hemanthrajhemu.github.io

30.3 Efficient FFT implementations 915

DFT is therefore a special case of the chirp transform, obtained by taking z = w,,.
Show how to evaluate the chirp transform in time O(n 1g n) for any complex num-
ber z. (Hint: Use the equation

2 i2 —(k—7)2
=22y (a_,-zf /2) (z (k=) /z)

Jj=0

to view the chirp transform as a convolution.)

30.3 Efficient FFT implementations

Since the practical applications of the DFT, such as signal processing, demand the
utmost speed, this section examines two efficient FFT implementations. First, we
shall examine an iterative version of the FFT algorithm that runs in ®(n 1gn) time
but can have a lower constant hidden in the ®-notation than the recursive version
in Section 30.2. (Depending on the exact implementation, the recursive version
may use the hardware cache more efficiently.) Then, we shall use the insights that
led us to the iterative implementation to design an efficient parallel FFT circuit.

An iterative FFT implementation

We first note that the for loop of lines 10—13 of RECURSIVE-FFT involves com-
puting the value ¥ y,[:] twice. In compiler terminology, we call such a value a
common subexpression. We can change the loop to compute it only once, storing
it in a temporary variable 7.

fork =0ton/2—1
(1]

I = wy;
Ve = y][CO] +1

_ o
Vit = Vi — 1
0w = 0w,

The operation in this loop, multiplying the twiddle factor = w* by y,[cl], storing
the product into 7, and adding and subtracting ¢ from y,EO], is known as a butterfly
operation and is shown schematically in Figure 30.3.

We now show how to make the FFT algorithm iterative rather than recursive
in structure. In Figure 30.4, we have arranged the input vectors to the recursive
calls in an invocation of RECURSIVE-FFT in a tree structure, where the initial
call is for n = 8. The tree has one node for each call of the procedure, labeled

heé¢eps:/hemanthrajhemu.github.io

916 Chapter 30 Polynomials and the FFT

0 0 1 0 0 1
»w v+ by v > > 5+ ofy

)y >

S

1 [0] [1] 1 - - .,[0] [1]
! = ok y) e > i — wfy)

(@ (b)

Figure 30.3 A butterfly operation. (a) The two input values enter from the left, the twiddle fac-

tor wyX is multiplie , and the sum and difference are output on the right. simplifie
K is multiplied by yL'l, and th d diff p he right. (b) A simplified

drawing of a butterfly operation. We will use this representation in a parallel FFT circuit.

(ap,ay,a,,a3,a,4,a5,a¢,07)

(ay,a3,as,a;7)

Figure 30.4 The tree of input vectors to the recursive calls of the RECURSIVE-FFT procedure. The
initial invocation is for n = 8.

by the corresponding input vector. Each RECURSIVE-FFT invocation makes two
recursive calls, unless it has received a 1-element vector. The first call appears in
the left child, and the second call appears in the right child.

Looking at the tree, we observe that if we could arrange the elements of the
initial vector a into the order in which they appear in the leaves, we could trace
the execution of the RECURSIVE-FFT procedure, but bottom up instead of top
down. First, we take the elements in pairs, compute the DFT of each pair using
one butterfly operation, and replace the pair with its DFT. The vector then holds
n/2 2-element DFTs. Next, we take these n/2 DFTs in pairs and compute the
DFT of the four vector elements they come from by executing two butterfly oper-
ations, replacing two 2-element DFTs with one 4-element DFT. The vector then
holds n/4 4-element DFTs. We continue in this manner until the vector holds two
(n/2)-element DFTs, which we combine using n/2 butterfly operations into the
final n-element DFT.

To turn this bottom-up approach into code, we use an array A[0..n — 1] that
initially holds the elements of the input vector a in the order in which they appear

heé¢eps:/hemanthrajhemu.github.io

30.3 Efficient FFT implementations 917

in the leaves of the tree of Figure 30.4. (We shall show later how to determine this
order, which is known as a bit-reversal permutation.) Because we have to combine
DFTs on each level of the tree, we introduce a variable s to count the levels, ranging
from 1 (at the bottom, when we are combining pairs to form 2-element DFTs)
to Ign (at the top, when we are combining two (n/2)-element DFT's to produce the
final result). The algorithm therefore has the following structure:

1 fors =1tolgn

2 fork = 0ton —1by?2*

3 combine the two 25~ !-element DFTs in
Alk ..k +25V—1]and Alk + 2571 . .k +25 — 1]
into one 2°-element DFT in Ak ..k + 25 — 1]

We can express the body of the loop (line 3) as more precise pseudocode. We
copy the for loop from the RECURSIVE-FFT procedure, identifying y[® with
Alk ..k + 27t — 1] and y!! with A[k + 2°'..k + 2° — 1]. The twiddle fac-
tor used in each butterfly operation depends on the value of s; it is a power of w,,,
where m = 2°. (We introduce the variable m solely for the sake of readability.)
We introduce another temporary variable u that allows us to perform the butterfly
operation in place. When we replace line 3 of the overall structure by the loop
body, we get the following pseudocode, which forms the basis of the parallel im-
plementation we shall present later. The code first calls the auxiliary procedure
BIT-REVERSE-COPY (a, A) to copy vector a into array A in the initial order in
which we need the values.

ITERATIVE-FFT (a)
1 BIT-REVERSE-COPY (a, A)

2 n = a.length // n is a power of 2
3 fors = 1tolgn

4 m=2°

5 a)mzeZni/m

6 fork =0ton—1bym

7 w =1

8 for j =0tom/2—1

9 t =wAlk+j +m/2]
10 u = Alk + J]

11 Ak +jl=u+t

12 Alk+j+m/2l =u—t
13 W= 0wy,

14 return A

How does BIT-REVERSE-COPY get the elements of the input vector a into the
desired order in the array A? The order in which the leaves appear in Figure 30.4

heé¢eps:/hemanthrajhemu.github.io

918 Chapter 30 Polynomials and the FFT

is a bit-reversal permutation. That is, if we let rev(k) be the 1gn-bit integer
formed by reversing the bits of the binary representation of k, then we want to
place vector element aj in array position A[rev(k)]. In Figure 30.4, for exam-
ple, the leaves appear in the order 0,4,2,6,1,5,3,7; this sequence in binary is
000, 100,010, 110,001, 101,011, 111, and when we reverse the bits of each value
we get the sequence 000, 001,010,011, 100, 101,110, 111. To see that we want a
bit-reversal permutation in general, we note that at the top level of the tree, indices
whose low-order bit is 0 go into the left subtree and indices whose low-order bit
is 1 go into the right subtree. Stripping off the low-order bit at each level, we con-
tinue this process down the tree, until we get the order given by the bit-reversal
permutation at the leaves.

Since we can easily compute the function rev(k), the BIT-REVERSE-COPY pro-
cedure is simple:

BIT-REVERSE-COPY (a, A)

1 n = a.length
2 fork =0ton—1
3 Alrev(k)] = ay

The iterative FFT implementation runs in time ®(nlgn). The call to BIT-
REVERSE-COPY (a, A) certainly runs in O(nlgn) time, since we iterate n times
and can reverse an integer between 0 and n — 1, with Ign bits, in O(Ign) time.
(In practice, because we usually know the initial value of »n in advance, we would
probably code a table mapping k to rev(k), making BIT-REVERSE-COPY run in
©®(n) time with a low hidden constant. Alternatively, we could use the clever amor-
tized reverse binary counter scheme described in Problem 17-1.) To complete the
proof that ITERATIVE-FFT runs in time ®(n Ign), we show that L (), the number
of times the body of the innermost loop (lines 8—13) executes, is O(nlgn). The
for loop of lines 6-13 iterates n/m = n/2° times for each value of s, and the
innermost loop of lines 8—13 iterates m/2 = 257! times. Thus,

Ign

n -
L(n) = 25-2“
s=1

lgn
>3
s=1 2

= O(nlgn).

heé¢eps:/hemanthrajhemu.github.io

30.3 Efficient FFT implementations 919

dy o] — — Yo
) +><
a ;\ — T, 0 V1
0
w, >

az V2

NSO
f
=
&e—

as N V3

0
g —>
ag L Ye
) +>< o) >

as s

0 2
=

/ @y > g

de — Ve

az - - Y7

— —
stage s = 1 stage s = 2 stage s = 3

Figure 30.5 A circuit that computes the FFT in parallel, here shown on n = 8 inputs. Each
butterfly operation takes as input the values on two wires, along with a twiddle factor, and it produces
as outputs the values on two wires. The stages of butterflies are labeled to correspond to iterations
of the outermost loop of the ITERATIVE-FFT procedure. Only the top and bottom wires passing
through a butterfly interact with it; wires that pass through the middle of a butterfly do not affect
that butterfly, nor are their values changed by that butterfly. For example, the top butterfly in stage 2
has nothing to do with wire 1 (the wire whose output is labeled y1); its inputs and outputs are only
on wires 0 and 2 (labeled yo and y», respectively). This circuit has depth ®(lgn) and performs
®(nlgn) butterfly operations altogether.

A parallel FFT circuit

We can exploit many of the properties that allowed us to implement an efficient
iterative FFT algorithm to produce an efficient parallel algorithm for the FFT. We
will express the parallel FFT algorithm as a circuit. Figure 30.5 shows a parallel
FFT circuit, which computes the FFT on 7 inputs, for n = 8. The circuit begins
with a bit-reverse permutation of the inputs, followed by lgn stages, each stage
consisting of /2 butterflies executed in parallel. The depth of the circuit—the
maximum number of computational elements between any output and any input
that can reach it—is therefore ®(Ign).

The leftmost part of the parallel FFT circuit performs the bit-reverse permuta-
tion, and the remainder mimics the iterative ITERATIVE-FFT procedure. Because
each iteration of the outermost for loop performs 7 /2 independent butterfly opera-
tions, the circuit performs them in parallel. The value of s in each iteration within

heé¢eps:/hemanthrajhemu.github.io

920 Chapter 30 Polynomials and the FFT

ITERATIVE-FFT corresponds to a stage of butterflies shown in Figure 30.5. For
s =1,2,...,1gn, stage s consists of n/2* groups of butterflies (corresponding to
each value of k in ITERATIVE-FFT), with 257! butterflies per group (corresponding
to each value of j in ITERATIVE-FFT). The butterflies shown in Figure 30.5 corre-
spond to the butterfly operations of the innermost loop (lines 9-12 of ITERATIVE-
FFT). Note also that the twiddle factors used in the butterflies correspond to those

used in ITERATIVE-FFT: in stage s, we use 2, w),, ... ™/?7! where m = 2.
Exercises

30.3-1

Show how ITERATIVE-FFT computes the DFT of the input vector (0,2, 3, —1, 4,
5,7,9).

30.3-2

Show how to implement an FFT algorithm with the bit-reversal permutation occur-
ring at the end, rather than at the beginning, of the computation. (Hint: Consider
the inverse DFT.)

30.3-3
How many times does ITERATIVE-FFT compute twiddle factors in each stage?
Rewrite ITERATIVE-FFT to compute twiddle factors only 257! times in stage s.

30.3-4 *

Suppose that the adders within the butterfly operations of the FFT circuit some-
times fail in such a manner that they always produce a zero output, independent
of their inputs. Suppose that exactly one adder has failed, but that you don’t know
which one. Describe how you can identify the failed adder by supplying inputs to
the overall FFT circuit and observing the outputs. How efficient is your method?

Problems

30-1 Divide-and-conquer multiplication
a. Show how to multiply two linear polynomials ax + b and c¢x + d using only
three multiplications. (Hint: One of the multiplications is (a + b) - (¢ + d).)

b. Give two divide-and-conquer algorithms for multiplying two polynomials of
degree-bound 1 in ©(n'¢3) time. The first algorithm should divide the input
polynomial coefficients into a high half and a low half, and the second algorithm
should divide them according to whether their index is odd or even.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 30 921

¢. Show how to multiply two n-bit integers in O(n'¢®) steps, where each step
operates on at most a constant number of 1-bit values.

30-2 Toeplitz matrices
A Toeplitz matrix is an n x n matrix A = (a;;) such that a;; = a;_; ;—; for
i=23,....nand j =2,3,...,n.

a. Is the sum of two Toeplitz matrices necessarily Toeplitz? What about the prod-
uct?

b. Describe how to represent a Toeplitz matrix so that you can add two n X n
Toeplitz matrices in O(n) time.

¢. Give an O(n Ign)-time algorithm for multiplying an n x n Toeplitz matrix by a
vector of length n. Use your representation from part (b).

d. Give an efficient algorithm for multiplying two n xn Toeplitz matrices. Analyze
its running time.

30-3 Multidimensional fast Fourier transform

We can generalize the 1-dimensional discrete Fourier transform defined by equa-
tion (30.8) to d dimensions. The input is a d-dimensional array A = (a;, j,.....;,)
whose dimensions are nq,n,,...,ng, where nyn,---nz; = n. We define the
d-dimensional discrete Fourier transform by the equation

ni—1lny—1 ng—1

—E E E o . ok oka L aka
Vieydegsnka = Aj1j2ria®Pny Pns g,

J1=0 j>=0 Ja=0

for0 <k, <n,0<ky<n,, ...,0<kyg <ny.

a. Show that we can compute a d-dimensional DFT by computing 1-dimensional
DFTs on each dimension in turn. That is, we first compute n/n, separate
1-dimensional DFTs along dimension 1. Then, using the result of the DFTs
along dimension 1 as the input, we compute n/n, separate 1-dimensional DFT's
along dimension 2. Using this result as the input, we compute n/n; separate
1-dimensional DFTs along dimension 3, and so on, through dimension d.

b. Show that the ordering of dimensions does not matter, so that we can compute
a d-dimensional DFT by computing the 1-dimensional DFTs in any order of
the d dimensions.

heé¢eps:/hemanthrajhemu.github.io

922 Chapter 30 Polynomials and the FFT

c. Show that if we compute each 1-dimensional DFT by computing the fast Four-
ier transform, the total time to compute a d-dimensional DFT is O(nlgn),
independent of d.

30-4 Evaluating all derivatives of a polynomial at a point
Given a polynomial A(x) of degree-bound n, we define its ¢th derivative by

A(x) ift =0,
AO(x) = | =4(x) ifl<t<n—1,
0 ift >n.

From the coefficient representation (ag, a;,...,a,_1) of A(x) and a given point x,
we wish to determine A® (x,) fort =0,1,...,n — 1.

a. Given coefficients by, by, ..., b,_; such that
n—1
A(x) =) bi(x —x)
j=0

show how to compute A (x,), fort = 0,1,...,n —1,in O(n) time.

b. Explain how to find bg, by, ...,b,_; in O(nlgn) time, given A(xy + a),’f) for
k=0,1,...,.n—1.

c. Prove that

n—1 kr n—1
Ao+ o) =" (“;, > FGglr - j)) ,

r=0

where f(j) =a; - j! and

xg' /(=D if—(n—1)<1<0,

1) =
¢ go fl1<l<n—1.

d. Explain how to evaluate A(xy + o¥) for k = 0,1,...,n — 1 in O(nlgn)
time. Conclude that we can evaluate all nontrivial derivatives of A(x) at xq in
O(nlgn) time.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 30 923

30-5 Polynomial evaluation at multiple points
We have seen how to evaluate a polynomial of degree-bound 7 at a single point in
O(n) time using Horner’s rule. We have also discovered how to evaluate such a
polynomial at all » complex roots of unity in O(nlgn) time using the FFT. We
shall now show how to evaluate a polynomial of degree-bound n at n arbitrary
points in O(n 1g* n) time.

To do so, we shall assume that we can compute the polynomial remainder when
one such polynomial is divided by another in O(nlgn) time, a result that we state
without proof. For example, the remainder of 3x*® + x? — 3x + 1 when divided by

X2+ x +2is
GBx*+x2=3x+1)mod (x> +x+2)=—-Tx+5.

Given the coefficient representation of a polynomial A(x) = Z;L agx* and
n points Xo,Xp,...,X,—1, we wish to compute the n values A(xo), A(x1),...,

A(xp—1). For0 <i < j <n—1, define the polynomials P;;(x) = [];_,(x — xx)
and Q;;(x) = A(x) mod P;;(x). Note that Q;;(x) has degree at most j —i.

a. Prove that A(x) mod (x — z) = A(z) for any point z.
b. Prove that Qs (x) = A(xg) and that Q¢ ,—1 (x) = A(x).

c. Prove that for i < k < j, we have Q;x(x) = Q;;(x) mod Pir(x) and
Okj(x) = Q;j(x) mod Py;(x).

d. Give an O(n 1g? n)-time algorithm to evaluate A(xo), A(x1), ..., A(Xy_1).

30-6 FFT using modular arithmetic

As defined, the discrete Fourier transform requires us to compute with complex
numbers, which can result in a loss of precision due to round-off errors. For some
problems, the answer is known to contain only integers, and by using a variant of
the FFT based on modular arithmetic, we can guarantee that the answer is calcu-
lated exactly. An example of such a problem is that of multiplying two polynomials
with integer coefficients. Exercise 30.2-6 gives one approach, using a modulus of
length €2(n) bits to handle a DFT on n points. This problem gives another ap-
proach, which uses a modulus of the more reasonable length O(lgn); it requires
that you understand the material of Chapter 31. Let n be a power of 2.

a. Suppose that we search for the smallest k such that p = kn + 1 is prime. Give
a simple heuristic argument why we might expect k to be approximately Inn.
(The value of k might be much larger or smaller, but we can reasonably expect
to examine O(lgn) candidate values of k on average.) How does the expected
length of p compare to the length of n?

heé¢eps:/hemanthrajhemu.github.io

924 Chapter 30 Polynomials and the FFT

Let g be a generator of Z*, and let w = g* mod p.

b. Argue that the DFT and the inverse DFT are well-defined inverse operations
modulo p, where w is used as a principal nth root of unity.

¢. Show how to make the FFT and its inverse work modulo p in time O(nlgn),
where operations on words of O(lgn) bits take unit time. Assume that the
algorithm is given p and w.

d. Compute the DFT modulo p = 17 of the vector (0,5,3,7,7,2,1,6). Note that
g = 3 is a generator of Z7,.

Chapter notes

Van Loan’s book [343] provides an outstanding treatment of the fast Fourier trans-
form. Press, Teukolsky, Vetterling, and Flannery [283, 284] have a good descrip-
tion of the fast Fourier transform and its applications. For an excellent introduction
to signal processing, a popular FFT application area, see the texts by Oppenheim
and Schafer [266] and Oppenheim and Willsky [267]. The Oppenheim and Schafer
book also shows how to handle cases in which # is not an integer power of 2.

Fourier analysis is not limited to 1-dimensional data. It is widely used in image
processing to analyze data in 2 or more dimensions. The books by Gonzalez and
Woods [146] and Pratt [281] discuss multidimensional Fourier transforms and their
use in image processing, and books by Tolimieri, An, and Lu [338] and Van Loan
[343] discuss the mathematics of multidimensional fast Fourier transforms.

Cooley and Tukey [76] are widely credited with devising the FFT in the 1960s.
The FFT had in fact been discovered many times previously, but its importance was
not fully realized before the advent of modern digital computers. Although Press,
Teukolsky, Vetterling, and Flannery attribute the origins of the method to Runge
and Konig in 1924, an article by Heideman, Johnson, and Burrus [163] traces the
history of the FFT as far back as C. F. Gauss in 1805.

Frigo and Johnson [117] developed a fast and flexible implementation of the
FFT, called FFTW (“fastest Fourier transform in the West”). FFTW is designed for
situations requiring multiple DFT computations on the same problem size. Before
actually computing the DFTs, FFTW executes a “planner,” which, by a series of
trial runs, determines how best to decompose the FFT computation for the given
problem size on the host machine. FFTW adapts to use the hardware cache ef-
ficiently, and once subproblems are small enough, FFTW solves them with opti-
mized, straight-line code. Furthermore, FFTW has the unusual advantage of taking
®(n 1gn) time for any problem size n, even when # is a large prime.

heé¢eps:/hemanthrajhemu.github.io

Notes for Chapter 30 925

Although the standard Fourier transform assumes that the input represents points
that are uniformly spaced in the time domain, other techniques can approximate the
FFT on “nonequispaced” data. The article by Ware [348] provides an overview.

heé¢eps:/hemanthrajhemu.github.io

31 Number-Theoretic Algorithms

Number theory was once viewed as a beautiful but largely useless subject in pure
mathematics. Today number-theoretic algorithms are used widely, due in large part
to the invention of cryptographic schemes based on large prime numbers. These
schemes are feasible because we can find large primes easily, and they are secure
because we do not know how to factor the product of large primes (or solve related
problems, such as computing discrete logarithms) efficiently. This chapter presents
some of the number theory and related algorithms that underlie such applications.
Section 31.1 introduces basic concepts of number theory, such as divisibility,
modular equivalence, and unique factorization. Section 31.2 studies one of the
world’s oldest algorithms: Euclid’s algorithm for computing the greatest common
divisor of two integers. Section 31.3 reviews concepts of modular arithmetic. Sec-
tion 31.4 then studies the set of multiples of a given number @, modulo 7, and shows
how to find all solutions to the equation ax = b (mod n) by using Euclid’s algo-
rithm. The Chinese remainder theorem is presented in Section 31.5. Section 31.6
considers powers of a given number a, modulo 7, and presents a repeated-squaring
algorithm for efficiently computing a® mod n, given a, b, and n. This operation is
at the heart of efficient primality testing and of much modern cryptography. Sec-
tion 31.7 then describes the RSA public-key cryptosystem. Section 31.8 examines
a randomized primality test. We can use this test to find large primes efficiently,
which we need to do in order to create keys for the RSA cryptosystem. Finally,
Section 31.9 reviews a simple but effective heuristic for factoring small integers. It
is a curious fact that factoring is one problem people may wish to be intractable,
since the security of RSA depends on the difficulty of factoring large integers.

Size of inputs and cost of arithmetic computations

Because we shall be working with large integers, we need to adjust how we think

about the size of an input and about the cost of elementary arithmetic operations.
In this chapter, a “large input” typically means an input containing “large in-

tegers” rather than an input containing “many integers” (as for sorting). Thus,

heé¢eps:/hemanthrajhemu.github.io

31.1 Elementary number-theoretic notions 927

we shall measure the size of an input in terms of the number of bits required to
represent that input, not just the number of integers in the input. An algorithm
with integer inputs a, a,, ..., ay is a polynomial-time algorithm if it runs in time
polynomial in Igay,lga,,...,lgay, that is, polynomial in the lengths of its binary-
encoded inputs.

In most of this book, we have found it convenient to think of the elemen-
tary arithmetic operations (multiplications, divisions, or computing remainders)
as primitive operations that take one unit of time. By counting the number of such
arithmetic operations that an algorithm performs, we have a basis for making a
reasonable estimate of the algorithm’s actual running time on a computer. Elemen-
tary operations can be time-consuming, however, when their inputs are large. It
thus becomes convenient to measure how many bit operations a number-theoretic
algorithm requires. In this model, multiplying two S-bit integers by the ordinary
method uses ®(?) bit operations. Similarly, we can divide a B-bit integer by a
shorter integer or take the remainder of a 8-bit integer when divided by a shorter in-
teger in time ©(3?) by simple algorithms. (See Exercise 31.1-12.) Faster methods
are known. For example, a simple divide-and-conquer method for multiplying two
B-bit integers has a running time of ©(B'¢?), and the fastest known method has
a running time of O(B1g Blglg B). For practical purposes, however, the O(8?)
algorithm is often best, and we shall use this bound as a basis for our analyses.

We shall generally analyze algorithms in this chapter in terms of both the number
of arithmetic operations and the number of bit operations they require.

31.1 Elementary number-theoretic notions

This section provides a brief review of notions from elementary number theory
concerning the set Z = {...,—2,—1,0,1,2,...} of integers and the set N =
{0, 1,2, ...} of natural numbers.

Divisibility and divisors

The notion of one integer being divisible by another is key to the theory of numbers.
The notation d | a (read “d divides a”) means that a = kd for some integer k.
Every integer divides 0. If @ > 0 and d | a, then |d| < |a|. If d | a, then we also
say that a is a multiple of d. If d does not divide a, we write d } a.

If d | aand d > 0, we say that d is a divisor of a. Note that d | a if and only
if —d | a, so that no generality is lost by defining the divisors to be nonnegative,
with the understanding that the negative of any divisor of a also divides a. A

heé¢eps:/hemanthrajhemu.github.io

928 Chapter 31 Number-Theoretic Algorithms

divisor of a nonzero integer a is at least 1 but not greater than |a|. For example, the
divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

Every positive integer a is divisible by the trivial divisors 1 and a. The nontrivial
divisors of a are the factors of a. For example, the factors of 20 are 2, 4, 5, and 10.

Prime and composite numbers

An integer a > 1 whose only divisors are the trivial divisors 1 and a is a prime
number or, more simply, a prime. Primes have many special properties and play a
critical role in number theory. The first 20 primes, in order, are

2,3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.

Exercise 31.1-2 asks you to prove that there are infinitely many primes. An integer
a > 1 that is not prime is a composite number or, more simply, a composite. For
example, 39 is composite because 3 | 39. We call the integer 1 a unit, and it is
neither prime nor composite. Similarly, the integer 0 and all negative integers are
neither prime nor composite.

The division theorem, remainders, and modular equivalence

Given an integer 1, we can partition the integers into those that are multiples of n
and those that are not multiples of n. Much number theory is based upon refining
this partition by classifying the nonmultiples of n according to their remainders
when divided by n. The following theorem provides the basis for this refinement.
We omit the proof (but see, for example, Niven and Zuckerman [265]).

Theorem 31.1 (Division theorem)
For any integer a and any positive integer n, there exist unique integers ¢ and r
suchthat0 <r <nanda =gn +r. |

The value ¢ = |a/n| is the quotient of the division. The value r = ¢ mod n
is the remainder (or residue) of the division. We have that n | « if and only if
amodn = 0.

We can partition the integers into n equivalence classes according to their re-
mainders modulo 7. The equivalence class modulo n containing an integer a is

lal, ={a+kn:keZ} .

For example, [3]; = {...,—11,—4,3,10,17,...}; we can also denote this set by
[—4]; and [10];. Using the notation defined on page 54, we can say that writing
a € [b], is the same as writing a = b (mod n). The set of all such equivalence
classes is

heé¢eps:/hemanthrajhemu.github.io

31.1 Elementary number-theoretic notions 929

Zn ={lal,:0<a=n—1}. (31.1)
When you see the definition
Zn =1{0,1,...,n—1} , (31.2)

you should read it as equivalent to equation (31.1) with the understanding that O
represents [0],,, 1 represents [1],,, and so on; each class is represented by its smallest
nonnegative element. You should keep the underlying equivalence classes in mind,
however. For example, if we refer to —1 as a member of Z,,, we are really referring
to[n —1],,since =1 =n —1 (mod n).

Common divisors and greatest common divisors

If d is a divisor of a and d is also a divisor of b, then d is a common divisor of a
and b. For example, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30, and so the
common divisors of 24 and 30 are 1, 2, 3, and 6. Note that 1 is a common divisor
of any two integers.

An important property of common divisors is that

d|aandd | b implies d | (a +b)and d | (a —b) . (31.3)
More generally, we have that
d|aandd | b implies d | (ax + by) (31.4)

for any integers x and y. Also, if a | b, then either |a| < |b| or b = 0, which
implies that

a|bandb | a implies a = £b . (31.5)

The greatest common divisor of two integers a and b, not both zero, is the
largest of the common divisors of @ and b; we denote it by ged(a, b). For example,
gcd(24,30) = 6, ged(5,7) = 1, and ged(0,9) = 9. If @ and b are both nonzero,
then gcd(a, b) is an integer between 1 and min(|a|, |h|). We define gcd(0, 0) to
be 0; this definition is necessary to make standard properties of the gcd function
(such as equation (31.9) below) universally valid.

The following are elementary properties of the gcd function:

ged(a,b) = ged(b,a), (31.6)
gcd(a,b) = ged(—a,b), 317
ged(a,b) = ged(|al.[b]) . (31.8)
gcd(a,0) = |al ., (31.9)
ged(a,ka) = |a| forany k € Z . (31.10)

The following theorem provides an alternative and useful characterization of
gcd(a, b).

heé¢eps:/hemanthrajhemu.github.io

930 Chapter 31 Number-Theoretic Algorithms

Theorem 31.2
If a and b are any integers, not both zero, then gcd(a, b) is the smallest positive
element of the set {ax + by : x, y € Z} of linear combinations of a and b.

Proof Let s be the smallest positive such linear combination of @ and b, and let
s = ax + by for some x,y € Z. Let g = |a/s]. Equation (3.8) then implies

amods = a—gqs
= a—q(ax +by)
a(l—gx)+b(=qy) .

and so a mod s is a linear combination of ¢ and b as well. But, since 0 <
a mod s < s, we have that @ mod s = 0, because s is the smallest positive such lin-
ear combination. Therefore, we have that s | a and, by analogous reasoning, s | b.
Thus, s is a common divisor of a and b, and so ged(a,b) > s. Equation (31.4)
implies that gcd(a, b) | s, since ged(a, b) divides both a and b and s is a linear
combination of a and b. But ged(a,b) | s and s > 0 imply that ged(a,b) < s.
Combining ged(a, b) > s and ged(a, b) < s yields ged(a,b) = 5. We conclude
that s is the greatest common divisor of @ and b. |

Corollary 31.3
For any integers a and b, if d | a and d | b, then d | ged(a, b).

Proof This corollary follows from equation (31.4), because gcd(a, b) is a linear
combination of a and b by Theorem 31.2. |

Corollary 31.4
For all integers a and b and any nonnegative integer n,

gcd(an,bn) = nged(a,b) .

Proof Ifn = 0, the corollary is trivial. If n > 0, then gcd(an, bn) is the smallest
positive element of the set {anx + bny : x,y € Z}, which is n times the smallest
positive element of the set {ax + by : x,y € Z}. |

Corollary 31.5
For all positive integers n, a, and b, if n | ab and ged(a,n) = 1, thenn | b.

Proof We leave the proof as Exercise 31.1-5. |

heé¢eps:/hemanthrajhemu.github.io

31.1 Elementary number-theoretic notions 931

Relatively prime integers

Two integers a and b are relatively prime if their only common divisor is 1, that
is, if gcd(a, b) = 1. For example, 8 and 15 are relatively prime, since the divisors
of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5, and 15. The following
theorem states that if two integers are each relatively prime to an integer p, then
their product is relatively prime to p.

Theorem 31.6
For any integers a, b, and p, if both ged(a, p) = 1 and ged(b, p) = 1, then

ged(ab, p) = 1.

Proof 1t follows from Theorem 31.2 that there exist integers x, y, x’, and y’ such
that

ax+py = 1,

bx'"+ py’ = 1.

Multiplying these equations and rearranging, we have
ab(xx")y + p(ybx" + y'ax + pyy’) = 1.

Since 1 is thus a positive linear combination of ab and p, an appeal to Theo-
rem 31.2 completes the proof. |

Integers ny, n,, ..., ng are pairwise relatively prime if, whenever i # j, we
have ged(n;,n;) = 1.

Unique factorization

An elementary but important fact about divisibility by primes is the following.

Theorem 31.7
For all primes p and all integers a and b, if p | ab, then p | a or p | b (or both).

Proof Assume for the purpose of contradiction that p | ab, but that p + a and
p + b. Thus, gcd(a, p) = 1 and ged(b, p) = 1, since the only divisors of p are 1
and p, and we assume that p divides neither a nor . Theorem 31.6 then implies
that gcd(ab, p) = 1, contradicting our assumption that p | ab, since p | ab
implies gcd(ab, p) = p. This contradiction completes the proof. =

A consequence of Theorem 31.7 is that we can uniquely factor any composite
integer into a product of primes.

heé¢eps:/hemanthrajhemu.github.io

932 Chapter 31 Number-Theoretic Algorithms

Theorem 31.8 (Unique factorization)
There is exactly one way to write any composite integer a as a product of the form

— €1 €2 e
a=pypy P

where the p; are prime, p; < p, < -+ < p,, and the e; are positive integers.
Proof We leave the proof as Exercise 31.1-11. |

As an example, the number 6000 is uniquely factored into primes as 2% - 3 - 53,

Exercises

31.1-1
Prove thatifa > b > 0and ¢ = a + b, then ¢ mod a = b.

31.1-2
Prove that there are infinitely many primes. (Hint: Show that none of the primes

P1> P2, .- pr divide (p1pa--- px) + 1)

31.1-3
Prove thatifa | band b | ¢, thena | c.

31.1-4
Prove that if p is prime and 0 < k < p, then ged(k, p) = 1.

31.1-5
Prove Corollary 31.5.

31.1-6
Prove that if p is prime and 0 < k < p, then p | (f(’) Conclude that for all integers
a and b and all primes p,

(a+b)? =a? +b” (mod p).

31.1-7

Prove that if @ and b are any positive integers such that a | b, then
(x mod) mod a = x mod a

for any x. Prove, under the same assumptions, that

x =y (mod b) implies x =y (mod a)

for any integers x and y.

heé¢eps:/hemanthrajhemu.github.io

31.2 Greatest common divisor 933

31.1-8

For any integer k > 0, an integer 7 is a kth power if there exists an integer a such
that a* = n. Furthermore, n > 1 is a nontrivial power if it is a kth power for
some integer k > 1. Show how to determine whether a given B-bit integer n is a
nontrivial power in time polynomial in f3.

31.1-9
Prove equations (31.6)—(31.10).

31.1-10
Show that the ged operator is associative. That is, prove that for all integers a, b,
and c,

gcd(a, ged(b, ¢)) = ged(ged(a, b),c) .

31.1-11 *
Prove Theorem 31.8.

31.1-12

Give efficient algorithms for the operations of dividing a B-bit integer by a shorter
integer and of taking the remainder of a §-bit integer when divided by a shorter
integer. Your algorithms should run in time ®(B2).

31.1-13

Give an efficient algorithm to convert a given f-bit (binary) integer to a decimal
representation. Argue that if multiplication or division of integers whose length
is at most f takes time M(f), then we can convert binary to decimal in time
®O(M(B)1gpB). (Hint: Use a divide-and-conquer approach, obtaining the top and
bottom halves of the result with separate recursions.)

31.2 Greatest common divisor

In this section, we describe Euclid’s algorithm for efficiently computing the great-
est common divisor of two integers. When we analyze the running time, we shall
see a surprising connection with the Fibonacci numbers, which yield a worst-case
input for Euclid’s algorithm.

We restrict ourselves in this section to nonnegative integers. This restriction is
justified by equation (31.8), which states that gcd(a, b) = ged(|a], |b]).

heé¢eps:/hemanthrajhemu.github.io

934 Chapter 31 Number-Theoretic Algorithms

In principle, we can compute gcd(a, b) for positive integers a and b from the
prime factorizations of a and b. Indeed, if

a = pi'py-py, (31.11)
b = pl'pPpl, (31.12)
with zero exponents being used to make the set of primes py, p», ..., p, the same
for both @ and b, then, as Exercise 31.2-1 asks you to show,

ng(a, b) — pllnin(el,fl)p;nin(€2=f§) . p;niﬂ(er,fr) . (3113)

As we shall show in Section 31.9, however, the best algorithms to date for factoring
do not run in polynomial time. Thus, this approach to computing greatest common
divisors seems unlikely to yield an efficient algorithm.

Euclid’s algorithm for computing greatest common divisors relies on the follow-
ing theorem.

Theorem 31.9 (GCD recursion theorem)
For any nonnegative integer a and any positive integer b,

gcd(a, b) = ged(b,a mod b) .

Proof We shall show that ged(a, b) and ged(b,a mod b) divide each other, so
that by equation (31.5) they must be equal (since they are both nonnegative).

We first show that ged(a, b) | ged(b,a mod b). If we let d = ged(a, b), then
d | a and d | b. By equation (3.8), a mod b = a — gb, where ¢ = |a/b].
Since a mod b is thus a linear combination of a and b, equation (31.4) implies that
d | (@ mod b). Therefore, since d | b and d | (¢ mod b), Corollary 31.3 implies
that d | gcd(b, a mod b) or, equivalently, that

gcd(a, b) | ged(b,a mod b). (31.14)

Showing that gcd(b,a mod b) | ged(a, b) is almost the same. If we now let
d = ged(b,a mod b),thend | b and d | (a mod b). Since a = gb + (¢ mod b),
where ¢ = |a/b|, we have that a is a linear combination of » and (¢ mod b). By
equation (31.4), we conclude that d | a. Since d | b and d | a, we have that
d | ged(a, b) by Corollary 31.3 or, equivalently, that

ged(b,a mod b) | ged(a, b). (31.15)

Using equation (31.5) to combine equations (31.14) and (31.15) completes the
proof. |

heé¢eps:/hemanthrajhemu.github.io

31.2 Greatest common divisor 935

Euclid’s algorithm

The Elements of Euclid (circa 300 B.C.) describes the following gcd algorithm,
although it may be of even earlier origin. We express Euclid’s algorithm as a
recursive program based directly on Theorem 31.9. The inputs a and b are arbitrary
nonnegative integers.

EucCLID(a, b)

1 ifb==

2 return a

3 else return EUCLID (b, a mod b)

As an example of the running of EUCLID, consider the computation of ged(30, 21):

EucLIiD(30,21) = EucLID(21,9)
= EucLID(9,3)
= EucLID(3,0)

3.

This computation calls EUCLID recursively three times.

The correctness of EUCLID follows from Theorem 31.9 and the property that if
the algorithm returns « in line 2, then b = 0, so that equation (31.9) implies that
gcd(a,b) = ged(a,0) = a. The algorithm cannot recurse indefinitely, since the
second argument strictly decreases in each recursive call and is always nonnegative.
Therefore, EUCLID always terminates with the correct answer.

The running time of Euclid’s algorithm

We analyze the worst-case running time of EUCLID as a function of the size of
a and b. We assume with no loss of generality that ¢ > b > 0. To justify this
assumption, observe that if b > a > 0, then EUCLID(a, b) immediately makes the
recursive call EUCLID(b, a). That is, if the first argument is less than the second
argument, EUCLID spends one recursive call swapping its arguments and then pro-
ceeds. Similarly, if 5 = a > 0, the procedure terminates after one recursive call,
since a mod b = 0.

The overall running time of EUCLID is proportional to the number of recursive
calls it makes. Our analysis makes use of the Fibonacci numbers Fj, defined by
the recurrence (3.22).

Lemma 31.10
If a > b > 1 and the call EUCLID(a, b) performs k > 1 recursive calls, then
a> Fiipand b > Figg.

heé¢eps:/hemanthrajhemu.github.io

936 Chapter 31 Number-Theoretic Algorithms

Proof The proof proceeds by induction on k. For the basis of the induction, let
k =1. Then, b > 1 = F,, and since a > b, we must have ¢ > 2 = F;. Since
b > (a mod b), in each recursive call the first argument is strictly larger than the
second; the assumption that a > b therefore holds for each recursive call.

Assume inductively that the lemma holds if k — 1 recursive calls are made; we
shall then prove that the lemma holds for k recursive calls. Since k£ > 0, we have
b > 0, and EuCLID(a, b) calls EUCLID(b, a mod b) recursively, which in turn
makes k — 1 recursive calls. The inductive hypothesis then implies that b > Fy 1,
(thus proving part of the lemma), and @ mod b > Fj. We have

b+ (@modb) = b+ (a—bla/b))
E a b

since @ > b > 0 implies |a/b| > 1. Thus,

> b+ (a mod b)

> Frp1 + Fr

= Frya. u

a

The following theorem is an immediate corollary of this lemma.

Theorem 31.11 (Lamé’s theorem)
For any integer k > 1,ifa > b > 1 and b < Fjy, then the call EUCLID(a, b)
makes fewer than k recursive calls. (]

We can show that the upper bound of Theorem 31.11 is the best possible by
showing that the call EUCLID(Fy, F;) makes exactly k — 1 recursive calls
when k > 2. We use induction on k. For the base case, k = 2, and the call
EUCLID(F3, F,) makes exactly one recursive call, to EUCLID(1,0). (We have to
start at k = 2, because when £k = 1 we do not have F, > F;.) For the induc-
tive step, assume that EUCLID (Fy, Fj_1) makes exactly k — 2 recursive calls. For
k > 2,wehave Fy > F;_; > 0and Fy., = Fr+ Fix_1, and so by Exercise 31.1-1,
we have Fj; mod Fy = Fj_;. Thus, we have

ged(Fit1, Fr) = ged(F, Fier mod Fy)
= ged(F, Fr-1) -

Therefore, the call EUCLID(Fyy i, Fi) recurses one time more than the call
EUCLID(Fy, Fy—1), or exactly k — 1 times, meeting the upper bound of Theo-
rem 31.11.

Since Fy, is approximately ¢* /+/5, where ¢ is the golden ratio (1 + +/5)/2 de-
fined by equation (3.24), the number of recursive calls in EUCLID is O(lgb). (See

heé¢eps:/hemanthrajhemu.github.io

31.2 Greatest common divisor 937

a b |a/b] d X y
99 78 1 3 11 14
78 21 3 3 3 —11
21 15 1 3 =2 3
15 6 2 3 1 -2
6 3 2 3 0 1
30 — 3 1

Figure 31.1 How EXTENDED-EUCLID computes gcd(99, 78). Each line shows one level of the
recursion: the values of the inputs @ and b, the computed value |a/b], and the values d, x, and y
returned. The triple (d, x, y) returned becomes the triple (d’, x’, y’) used at the next higher level
of recursion. The call EXTENDED-EUCLID(99, 78) returns (3, —11, 14), so that gcd(99,78) = 3 =
99-(—11)+ 78 - 14.

Exercise 31.2-5 for a tighter bound.) Therefore, if we call EUCLID on two S-bit
numbers, then it performs O(B) arithmetic operations and O(fB>) bit operations
(assuming that multiplication and division of B-bit numbers take O(?) bit oper-
ations). Problem 31-2 asks you to show an O(2) bound on the number of bit
operations.

The extended form of Euclid’s algorithm

We now rewrite Euclid’s algorithm to compute additional useful information.
Specifically, we extend the algorithm to compute the integer coefficients x and y
such that

d = ged(a,b) = ax + by . (31.16)

Note that x and y may be zero or negative. We shall find these coefficients useful
later for computing modular multiplicative inverses. The procedure EXTENDED-
EUCLID takes as input a pair of nonnegative integers and returns a triple of the
form (d, x, y) that satisfies equation (31.16).

EXTENDED-EUCLID (a, b)

1 ifb==

2 return (a, 1,0)

3 else (d’,x’,y’) = EXTENDED-EUCLID (b, a mod b)
4 (d.x.y) =y .x"—|a/b]y)

5 return (d, x, y)

Figure 31.1 illustrates how EXTENDED-EUCLID computes gcd(99, 78).
The EXTENDED-EUCLID procedure is a variation of the EUCLID procedure.
Line 1 is equivalent to the test “b == 0” in line 1 of EUCLID. If b = 0, then

heé¢eps:/hemanthrajhemu.github.io

938 Chapter 31 Number-Theoretic Algorithms

EXTENDED-EUCLID returns not only d = a in line 2, but also the coefficients
x =1land y = 0,sothata = ax + by. If b # 0, EXTENDED-EUCLID first
computes (d’, x’, y") such that d’ = gcd(b, @ mod b) and

d' =bx"+ (amod b)y". (31.17)

As for EUCLID, we have in this case d = ged(a,b) = d’ = ged(b,a mod b).
To obtain x and y such that d = ax + by, we start by rewriting equation (31.17)
using the equation d = d’ and equation (3.8):

d = bx'+(a—bla/bl)y
ay'+b(x"—a/b]y’).
Thus, choosing x = y’and y = x"— |a/b] y’ satisfies the equation d = ax + by,
proving the correctness of EXTENDED-EUCLID.
Since the number of recursive calls made in EUCLID is equal to the number
of recursive calls made in EXTENDED-EUCLID, the running times of EUCLID

and EXTENDED-EUCLID are the same, to within a constant factor. That is, for
a > b > 0, the number of recursive calls is O(Ig b).

Exercises

31.2-1
Prove that equations (31.11) and (31.12) imply equation (31.13).

31.2-2
Compute the values (d, x, y) that the call EXTENDED-EUCLID (899, 493) returns.

31.2-3
Prove that for all integers a, k, and n,

ged(a,n) = ged(a + kn,n) .
31.2-4

Rewrite EUCLID in an iterative form that uses only a constant amount of memory
(that is, stores only a constant number of integer values).

31.2-5
If a > b > 0, show that the call EUCLID(a, b) makes at most 1 + log¢ b recursive
calls. Improve this bound to 1 + log,(b/ ged(a, b)).

31.2-6
What does EXTENDED-EUCLID (F 1, F) return? Prove your answer correct.

heé¢eps:/hemanthrajhemu.github.io

31.3 Modular arithmetic 939

31.2-7

Define the gcd function for more than two arguments by the recursive equation
gcd(ag, ay, ... a,) = ged(ag, ged(ay, as, ... ,a,)). Show that the ged function
returns the same answer independent of the order in which its arguments are speci-
fied. Also show how to find integers xg, X1, . .., X, such that gcd(ag,ay,...,a,) =
agXo + ayx; + -+ + a,x,. Show that the number of divisions performed by your
algorithm is O(n + 1g(max {ag,ay,...,a,})).

31.2-8

Define lcm(ay, as,,...,a,) to be the least common multiple of the n integers
a,a,,...,da,, thatis, the smallest nonnegative integer that is a multiple of each a;.
Show how to compute Icm(ay, a», . . ., a,) efficiently using the (two-argument) gcd
operation as a subroutine.

31.2-9
Prove that ny, n,, n3, and n4 are pairwise relatively prime if and only if
ged(nyny, nang) = ged(nyns, nyng) = 1.

More generally, show that ny,n,, ..., n; are pairwise relatively prime if and only
if a set of [1g k| pairs of numbers derived from the #; are relatively prime.

31.3 Modular arithmetic

Informally, we can think of modular arithmetic as arithmetic as usual over the
integers, except that if we are working modulo 7, then every result x is replaced
by the element of {0, 1,...,n — 1} that is equivalent to x, modulo n (that is, x is
replaced by x mod n). This informal model suffices if we stick to the operations
of addition, subtraction, and multiplication. A more formal model for modular
arithmetic, which we now give, is best described within the framework of group
theory.

Finite groups

A group (S, ®) is a set S together with a binary operation @ defined on S for
which the following properties hold:

1. Closure: Foralla,b € S,wehavea ® b € S.

2. Identity: There exists an element e € S, called the identity of the group, such
thate ®a =a@e =aforalla € S.

3. Associativity: Foralla,b,c € S, wehave (a ®b) ®Dc =a ®d (b P ¢).

heé¢eps:/hemanthrajhemu.github.io

940 Chapter 31 Number-Theoretic Algorithms

4. Inverses: For each a € §, there exists a unique element b € S, called the
inverse of a,suchthata @b =b ®a = e.

As an example, consider the familiar group (Z, +) of the integers Z under the
operation of addition: 0 is the identity, and the inverse of a is —a. If a group (S, &)
satisfies the commutative law a @b = b @ a forall a,b € S, then it is an abelian
group. If a group (S, @) satisfies | S| < oo, then it is a finite group.

The groups defined by modular addition and multiplication

We can form two finite abelian groups by using addition and multiplication mod-
ulo n, where n is a positive integer. These groups are based on the equivalence
classes of the integers modulo 7, defined in Section 31.1.

To define a group on Z,, we need to have suitable binary operations, which
we obtain by redefining the ordinary operations of addition and multiplication.
We can easily define addition and multiplication operations for Z,, because the
equivalence class of two integers uniquely determines the equivalence class of their
sum or product. That is, if ¢ = a’ (mod n) and b = b’ (mod n), then

a+b = a+b (modn),
ab = a'b (mod n) .

Thus, we define addition and multiplication modulo 7, denoted +, and -,, by

[a]n +n [b]n = [a + b]n ’ (31.18)
[a]n ‘n [b]n = [ab]n .

(We can define subtraction similarly on Z, by [a], —, [b], = [a — b],, but divi-
sion is more complicated, as we shall see.) These facts justify the common and
convenient practice of using the smallest nonnegative element of each equivalence
class as its representative when performing computations in Z,. We add, subtract,
and multiply as usual on the representatives, but we replace each result x by the
representative of its class, that is, by x mod n.

Using this definition of addition modulo n, we define the additive group
modulo n as (Z,,+,). The size of the additive group modulo »n is |Z,| = n.
Figure 31.2(a) gives the operation table for the group (Zs, +s).

Theorem 31.12
The system (Z,,, +) is a finite abelian group.

Proof Equation (31.18) shows that (Z,, +,) is closed. Associativity and com-
mutativity of +, follow from the associativity and commutativity of +:

heé¢eps:/hemanthrajhemu.github.io

31.3 Modular arithmetic 94]

+ |0 1 2 3 4 5 5112 4 7 8 11 13 14
00123 435 1|1 2 4 7 8 11 13 14
1|1 23 450 212 4 8 14 1 7 11 13
212 3 450 1 4 |4 8 1 13 2 14 7 11
313450012 7017 1413 4 11 2 8
414501 23 8 [8 1 2 11 4 13 14 7
51501 2 3 4 11|11 7 14 2 13 1 8 4

1313 11 7 14 8 2

14 114 13 11 8 7 4 2 1

(@) (b)

Figure 31.2 Two finite groups. Equivalence classes are denoted by their representative elements.
(a) The group (Ze, +6). (b) The group (Z}s. 15).

(laln +u [b]n) +n [c]n = [a+Dlu +4lcln
[(a+b)+cl,

= la+ (b +c)

[aln +n [b +cln

[aln +n ([D]n +n [€]n)

laly +n [Pl = [a+Dln

[b + al.

[b]n +n [aln -

The identity element of (Z,, +,) is O (that is, [0],). The (additive) inverse of

an element a (that is, of [a],) is the element —a (that is, [—a], or [n — a],), since
[aln +u [—aln = [a — al]n = [0],. L

Using the definition of multiplication modulo n, we define the multiplicative
group modulo n as (7}, -,). The elements of this group are the set Z of elements
in Z,, that are relatively prime to 7, so that each one has a unique inverse, modulo 7:

Z, ={lal, € Ly : ged(a,n) =1} .

To see that Z is well defined, note that for 0 < a < n, we have a = (a + kn)
(mod n) for all integers k. By Exercise 31.2-3, therefore, gcd(a,n) = 1 implies
ged(a + kn,n) = 1 for all integers k. Since [a], = {a + kn : k € Z}, the set Z}
is well defined. An example of such a group is

Zis =1{1,2,4,7.8,11,13,14} ,

heé¢eps:/hemanthrajhemu.github.io

942 Chapter 31 Number-Theoretic Algorithms

where the group operation is multiplication modulo 15. (Here we denote an el-
ement [a];s as a; for example, we denote [7];5 as 7.) Figure 31.2(b) shows the
group (Z7s.15). For example, 8 - 11 = 13 (mod 15), working in Zj,. The iden-
tity for this group is 1.

Theorem 31.13
The system (Z}, -,) is a finite abelian group.

Proof Theorem 31.6 implies that (Z},-,) is closed. Associativity and commu-
tativity can be proved for -, as they were for 4, in the proof of Theorem 31.12.
The identity element is [1],. To show the existence of inverses, let a be an element
of Z} and let (d, x, y) be returned by EXTENDED-EUCLID(a,n). Then, d = 1,
since a € Z}, and

ax +ny =1 (31.19)
or, equivalently,
ax =1 (modn).

Thus, [x], is a multiplicative inverse of [¢],, modulo n. Furthermore, we claim
that [x], € Z;. To see why, equation (31.19) demonstrates that the smallest pos-
itive linear combination of x and n must be 1. Therefore, Theorem 31.2 implies
that gcd(x,n) = 1. We defer the proof that inverses are uniquely defined until
Corollary 31.26. |

As an example of computing multiplicative inverses, suppose that ¢ = 5 and
n = 11. Then EXTENDED-EUCLID(a, n) returns (d, x,y) = (1,-2,1), so that
1 =5-(=2)+ 11-1. Thus, [-2];; (i.e., [9]11) is the multiplicative inverse of [5];;.

When working with the groups (Z,,+,) and (Z},-,) in the remainder of this
chapter, we follow the convenient practice of denoting equivalence classes by their
representative elements and denoting the operations 4+, and -, by the usual arith-
metic notations + and - (or juxtaposition, so that ab = a - b) respectively. Also,
equivalences modulo n may also be interpreted as equations in Z,. For example,
the following two statements are equivalent:

ax = b (mod n),
[a]n ‘n [x]n = [b]n .

As a further convenience, we sometimes refer to a group (S, @) merely as S
when the operation @ is understood from context. We may thus refer to the groups
(Zyn,+n) and (Z;;,) as Z, and Z},, respectively.

We denote the (multiplicative) inverse of an element a by (¢! mod n). Division
in Z* is defined by the equation a/b = ab™' (mod n). For example, in Z3s

heé¢eps:/hemanthrajhemu.github.io

31.3 Modular arithmetic 943

we have that 77! = 13 (mod 15), since 7-13 = 91 = 1 (mod 15), so that
4/7=4-13 =7 (mod 15).

The size of Z;, is denoted ¢ (n). This function, known as Euler’s phi function,
satisfies the equation

g =n [] (1—%) : (31.20)

p:pisprimeand p | n

so that p runs over all the primes dividing n (including #n itself, if n is prime).
We shall not prove this formula here. Intuitively, we begin with a list of the n
remainders {0, 1,...,n — 1} and then, for each prime p that divides n, cross out
every multiple of p in the list. For example, since the prime divisors of 45 are 3

and 5,
1 1
¢ (45) 45 (1 - 5) (1 — §)
2 4
on

= 24.
If p is prime, then Z; = {1,2,..., p — 1}, and

¢(p) = p(l—l)
p

= p—1. (31.21)
If n is composite, then ¢(n) < n — 1, although it can be shown that
n
> 31.22
o) e’Inlnn 4+ = ()

Inlnn
forn > 3, where y = 0.5772156649 . . . is Euler’s constant. A somewhat simpler
(but looser) lower bound for n > 5 is

n

o(n) > . (31.23)
6Inlnn

The lower bound (31.22) is essentially the best possible, since

lim infM =e 7. (31.24)

n—oo n/lInlnn

Subgroups

If (S, @) isagroup, S’ C S, and (S, @) is also a group, then (S,) is a subgroup
of (S, ®). For example, the even integers form a subgroup of the integers under the
operation of addition. The following theorem provides a useful tool for recognizing
subgroups.

heé¢eps:/hemanthrajhemu.github.io

944 Chapter 31 Number-Theoretic Algorithms

Theorem 31.14 (A nonempty closed subset of a finite group is a subgroup)
If (S, @) is a finite group and S’ is any nonempty subset of S such thata @ b € S’
forall a,b € §’, then (S’, @) is a subgroup of (S, B).

Proof We leave the proof as Exercise 31.3-3. |

For example, the set {0,2,4, 6} forms a subgroup of Zg, since it is nonempty
and closed under the operation + (that is, it is closed under +yg).

The following theorem provides an extremely useful constraint on the size of a
subgroup; we omit the proof.

Theorem 31.15 (Lagrange’s theorem)
If (S, @) is a finite group and (S, @) is a subgroup of (S, ®), then |S’| is a divisor
of |S]. m

A subgroup S’ of a group S is a proper subgroup if S’ # S. We shall use the
following corollary in our analysis in Section 31.8 of the Miller-Rabin primality
test procedure.

Corollary 31.16
If S’ is a proper subgroup of a finite group S, then |S’| < |S]| /2. |

Subgroups generated by an element

Theorem 31.14 gives us an easy way to produce a subgroup of a finite group (S, ®):
choose an element a and take all elements that can be generated from a using the
group operation. Specifically, define a® for k > 1 by

k
a(k)z@az a@a@...@a

i=1

k
For example, if we take @ = 2 in the group Z, the sequence ¢V, a®,a® ... is
2,4,0,2,4,0,2,4,0,... .

In the group Z,, we have a®® = ka mod n, and in the group Z*, we have a® =
a* mod n. We define the subgroup generated by a, denoted (a) or ((a), ®), by

(@) =1{a® k>1}.

We say that a generates the subgroup (a) or that a is a generator of (a). Since S is
finite, (a) is a finite subset of S, possibly including all of S. Since the associativity
of @ implies

heé¢eps:/hemanthrajhemu.github.io

31.3 Modular arithmetic 945

a® @ a¥) = g+

(a) is closed and therefore, by Theorem 31.14, (a) is a subgroup of S. For example,
in Zg¢, we have

(0) = {0},

(1) = {0,1,2,3,4,5} ,
(2) = {0,2,4} .
Similarly, in Z%, we have
1y = {1},

(2) = {1.2,4},

(3) = {1,2,3,4,5,6} .

The order of a (in the group S), denoted ord(a), is defined as the smallest posi-
tive integer ¢ such that a® = e.

Theorem 31.17
For any finite group (S, @) and any a € S, the order of a is equal to the size of the
subgroup it generates, or ord(a) = [{a)].

Proof Lett = ord(a). Since a” = e and a®*P = ¢ @ a® = 4® for
k > 1,if i > ¢, then a® = a) for some j < i. Thus, as we generate ele-
ments by a, we see no new elements after). Thus, (@) = {a®,a®,...,a®},
and so [(a)| < t. To show that |(a)| > ¢, we show that each element of the se-
quence aV,a@ ... a® is distinct. Suppose for the purpose of contradiction that
a® = a") for some i and j satisfying 1 < i < j < t. Then, a®*® = qU+k
for k > 0. But this equality implies that a/+@=1) = qU+=/) = ¢ a contradic-
tion, since i 4+ (1 — j) < ¢ but ¢ is the least positive value such that a® = e. There-
fore, each element of the sequence a,a®, ... a is distinct, and [{a)| > t. We
conclude that ord(a) = [{a)]. =

Corollary 31.18
The sequence a™,a®, ... is periodic with period t = ord(a); that is, a®) =)
ifand only if i = j (mod 1). =

Consistent with the above corollary, we define ¢ as e and ¢ as @t ™99,
where ¢t = ord(a), for all integers i.

Corollary 31.19
If (S, @) is a finite group with identity e, then for alla € S,

alsh — o

heé¢eps:/hemanthrajhemu.github.io

946 Chapter 31 Number-Theoretic Algorithms

Proof Lagrange’s theorem (Theorem 31.15) implies that ord(a) | |S|, and so
|S| =0 (mod t), where t = ord(a). Therefore, a5 = a©® = e. =

Exercises

31.3-1

Draw the group operation tables for the groups (Z4, +4) and (ZZ,-5). Show that
these groups are isomorphic by exhibiting a one-to-one correspondence o between
their elements such that a + b = ¢ (mod 4) if and only if a(a) - «(b) = «a(c)
(mod 5).

31.3-2
List all subgroups of Z and of Z7.

31.3-3
Prove Theorem 31.14.

31.3-4
Show that if p is prime and e is a positive integer, then

p(p)=p"'(p—1).

31.3-5
Show that for any integer n > 1 and for any a € Z, the function f, : Z, — Z;
defined by f,(x) = ax mod n is a permutation of Z.

31.4 Solving modular linear equations

We now consider the problem of finding solutions to the equation
ax =b (mod n), (31.25)

where @ > 0 and n > 0. This problem has several applications; for example,
we shall use it as part of the procedure for finding keys in the RSA public-key
cryptosystem in Section 31.7. We assume that a, b, and n are given, and we wish
to find all values of x, modulo 7, that satisfy equation (31.25). The equation may
have zero, one, or more than one such solution.

Let (a) denote the subgroup of Z,, generated by a. Since (a) = {a™ : x > 0} =
{ax mod n : x > 0}, equation (31.25) has a solution if and only if [b] € (a). La-
grange’s theorem (Theorem 31.15) tells us that |{a)| must be a divisor of n. The
following theorem gives us a precise characterization of {(a).

heé¢eps:/hemanthrajhemu.github.io

31.4 Solving modular linear equations 947

Theorem 31.20
For any positive integers a and n, if d = ged(a, n), then
(@) =(d)=10,d,2d,...,((n/d) —1)d} (31.26)

in Z,, and thus

(a)| =n/d.

Proof We begin by showing that d € (a). Recall that EXTENDED-EUCLID (a, 1)
produces integers x” and y’ such that ax’ 4+ ny’ = d. Thus, ax’ = d (mod n), so
that d € (a). In other words, d is a multiple of a in Z,,.

Since d € (a), it follows that every multiple of d belongs to (a), because any
multiple of a multiple of a is itself a multiple of a. Thus, (@) contains every element
in{0,d,2d,...,((n/d)— 1)d}. Thatis, (d) C {(a).

We now show that (@) € (d). If m € (a), then m = ax mod n for some
integer x, and so m = ax + ny for some integer y. However, d | a and d | n, and
so d | m by equation (31.4). Therefore, m € (d).

Combining these results, we have that (a) = (d). To see that |(a)| = n/d,
observe that there are exactly n/d multiples of d between 0 and n — 1, inclusive. m

Corollary 31.21
The equation ax = b (mod n) is solvable for the unknown x if and only if d | b,
where d = ged(a,n).

Proof The equation ax = b (mod n) is solvable if and only if [b] € (a), which
is the same as saying

(b mod n) € {0,d,2d, ..., ((n/d) — 1)d} ,

by Theorem 31.20. If 0 < b < n, then b € (a) if and only if d | b, since the
members of (a) are precisely the multiples of d. If b < 0 or b > n, the corollary
then follows from the observation that d | b if and only if d | (b mod n), since b
and b mod n differ by a multiple of n, which is itself a multiple of d. =

Corollary 31.22
The equation ax = b (mod n) either has d distinct solutions modulo n, where
d = gcd(a, n), or it has no solutions.

Proof 1f ax = b (mod n) has a solution, then b € (a). By Theorem 31.17,
ord(a) = |{a)|, and so Corollary 31.18 and Theorem 31.20 imply that the sequence
ai mod n, fori =0, 1,...,is periodic with period |(a)| = n/d. If b € (a), then b
appears exactly d times in the sequence ai mod n, fori = 0,1,...,n — 1, since

heé¢eps:/hemanthrajhemu.github.io

948 Chapter 31 Number-Theoretic Algorithms

the length-(n/d) block of values (a) repeats exactly d times as i increases from 0
to n—1. The indices x of the d positions for which ax mod n = b are the solutions
of the equation ax = b (mod n). =

Theorem 31.23

Let d = ged(a,n), and suppose that d = ax’ + ny’ for some integers x" and y’
(for example, as computed by EXTENDED-EUCLID). If d | b, then the equation
ax = b (mod n) has as one of its solutions the value x,, where

xo =x'(b/d) mod n .

Proof We have

axo = ax'(b/d) (mod n)
d(b/d) (mod n) (because ax’ = d (mod n))

= b (mod n) ,
and thus x, is a solution to ax = b (mod n). |
Theorem 31.24
Suppose that the equation ax = b (mod n) is solvable (that is, d | b, where
d = gcd(a,n)) and that xo is any solution to this equation. Then, this equa-
tion has exactly d distinct solutions, modulo 7, given by x; = xo + i(n/d) for

i=0,1,....d — 1.

Proof Because n/d > 0and 0 < i(n/d) < nfori = 0,1,...,d — 1, the

values xg, X1, ..., Xq—; are all distinct, modulo n. Since x, is a solution of ax = b
(mod n), we have axo modn = b (mod n). Thus, fori = 0,1,...,d — 1, we
have

ax; modn = a(xg+in/d) modn
= (axo +ain/d) mod n
= axomod n (because d | a implies that ain/d is a multiple of n)

= b (modn),
and hence ax; = b (mod n), making x; a solution, too. By Corollary 31.22, the
equation ax = b (mod n) has exactly d solutions, so that x,, xq,...,Xx;_; must
be all of them. L]

We have now developed the mathematics needed to solve the equation ax = b
(mod n); the following algorithm prints all solutions to this equation. The inputs
a and n are arbitrary positive integers, and b is an arbitrary integer.

heé¢eps:/hemanthrajhemu.github.io

31.4 Solving modular linear equations 949

MODULAR-LINEAR-EQUATION-SOLVER (a, b, n)

1 (d,x',y’) = EXTENDED-EUCLID (a, n)
2 ifd | b

3 xo = x'(b/d) mod n

4 fori =0tod — 1

5 print (xo + i(n/d)) mod n

6 else print “no solutions”

As an example of the operation of this procedure, consider the equation 14x =
30 (mod 100) (here, a = 14, b = 30, and n = 100). Calling EXTENDED-
EucCLID in line 1, we obtain (d,x’,y’) = (2,—7,1). Since 2 | 30, lines 3-5
execute. Line 3 computes xo = (—7)(15) mod 100 = 95. The loop on lines 4-5
prints the two solutions 95 and 45.

The procedure MODULAR-LINEAR-EQUATION-SOLVER works as follows.
Line 1 computes d = gcd(a,n), along with two values x” and y’ such that d =
ax’ + ny’, demonstrating that x’ is a solution to the equation ax’ = d (mod n).
If d does not divide b, then the equation ax = b (mod n) has no solution, by
Corollary 31.21. Line 2 checks to see whether d | b; if not, line 6 reports that there
are no solutions. Otherwise, line 3 computes a solution xy to ax = b (mod n),
in accordance with Theorem 31.23. Given one solution, Theorem 31.24 states that
adding multiples of (n/d), modulo n, yields the other d — 1 solutions. The for
loop of lines 4-5 prints out all d solutions, beginning with x, and spaced n/d
apart, modulo 7.

MODULAR-LINEAR-EQUATION-SOLVER performs O(Ign + ged(a,n)) arith-
metic operations, since EXTENDED-EUCLID performs O(lgn) arithmetic opera-
tions, and each iteration of the for loop of lines 4-5 performs a constant number of
arithmetic operations.

The following corollaries of Theorem 31.24 give specializations of particular

interest.

Corollary 31.25

For any n > 1, if gcd(a,n) = 1, then the equation ax = b (mod n) has a unique
solution, modulo 7. =

If b = 1, a common case of considerable interest, the x we are looking for is a
multiplicative inverse of a, modulo n.

Corollary 31.26
For any n > 1, if gcd(a,n) = 1, then the equation ax = 1 (mod n) has a unique
solution, modulo n. Otherwise, it has no solution. [

heé¢eps:/hemanthrajhemu.github.io

950 Chapter 31 Number-Theoretic Algorithms

Thanks to Corollary 31.26, we can use the notation a~! mod n to refer to the
multiplicative inverse of @, modulo n, when a and n are relatively prime. If
gcd(a,n) = 1, then the unique solution to the equation ax = 1 (mod n) is the
integer x returned by EXTENDED-EUCLID, since the equation

ged(a,n) =1 =ax +ny

implies ax = 1 (mod n). Thus, we can compute a ' mod n efficiently using
EXTENDED-EUCLID.

Exercises

314-1
Find all solutions to the equation 35x = 10 (mod 50).

31.4-2

Prove that the equation ax = ay (mod n) implies x = y (mod n) whenever
gcd(a,n) = 1. Show that the condition gcd(a,n) = 1 is necessary by supplying a
counterexample with ged(a,n) > 1.

31.4-3
Consider the following change to line 3 of the procedure MODULAR-LINEAR-
EQUATION-SOLVER:

3 xo = x'(b/d) mod (n/d)
Will this work? Explain why or why not.

31.4-4 x

Let p be prime and f(x) = fo + fix + --- + f;x' (mod p) be a polyno-
mial of degree ¢, with coefficients f; drawn from Z,. We say that a € Z,
is a zero of f if f(a) = 0 (mod p). Prove that if ¢ is a zero of f, then
f(x) = (x —a)g(x) (mod p) for some polynomial g(x) of degree t — 1. Prove
by induction on ¢ that if p is prime, then a polynomial f(x) of degree ¢ can have
at most ¢ distinct zeros modulo p.

31.5 The Chinese remainder theorem

Around A.D. 100, the Chinese mathematician Sun-Tsii solved the problem of find-
ing those integers x that leave remainders 2, 3, and 2 when divided by 3, 5, and 7
respectively. One such solution is x = 23; all solutions are of the form 23 + 105k

heé¢eps:/hemanthrajhemu.github.io

31.5 The Chinese remainder theorem 951

for arbitrary integers k. The “Chinese remainder theorem” provides a correspon-
dence between a system of equations modulo a set of pairwise relatively prime
moduli (for example, 3, 5, and 7) and an equation modulo their product (for exam-
ple, 105).

The Chinese remainder theorem has two major applications. Let the inte-
ger n be factored as n = nn, ---ny, where the factors n; are pairwise relatively
prime. First, the Chinese remainder theorem is a descriptive “structure theorem”
that describes the structure of Z, as identical to that of the Cartesian product
Ly, X Lip, X +++ X Ly, withcomponentwise addition and multiplication modulo 7;
in the ith component. Second, this description helps us to design efficient algo-
rithms, since working in each of the systems Z,, can be more efficient (in terms of
bit operations) than working modulo 7.

Theorem 31.27 (Chinese remainder theorem)

Let n = nyn,---ng, where the n; are pairwise relatively prime. Consider the
correspondence
a < (aj,as,...,ax), (31.27)

where a € Z,,a; € Z,,, and
a; = a mod n;

fori = 1,2,...,k. Then, mapping (31.27) is a one-to-one correspondence (bijec-
tion) between Z, and the Cartesian product Z,,, X Z,, X +++ X Zy, . Operations per-
formed on the elements of Z, can be equivalently performed on the corresponding
k-tuples by performing the operations independently in each coordinate position in
the appropriate system. That is, if

a < (aj,a,...,ax),

b < (b1,by,....by),

then

(a+b)modn <« ((a; +by) modny,...,(ar + bg) mod ny) , (31.28)
(a—b)modn < ((ay—by) modny,...,(ar— br) modnyg), (31.29)
(ab) mod n < (a1by mod ny,...,arby mod ny) . (31.30)

Proof Transforming between the two representations is fairly straightforward.

Going from a to (a;,a,, ..., ax) is quite easy and requires only k “mod” opera-
tions.
Computing a from inputs (a;, ds, ..., ax) is a bit more complicated. We begin

by defining m; = n/n; fori = 1,2,...,k; thus m; is the product of all of the ;s
other than n;: m; = nn,---n;_1n;11---ni. We next define

heé¢eps:/hemanthrajhemu.github.io

952 Chapter 31 Number-Theoretic Algorithms

¢; = m;(m;" mod n;) (31.31)
fori = 1,2,...,k. Equation (31.31) is always well defined: since m; and n; are
relatively prime (by Theorem 31.6), Corollary 31.26 guarantees that m; ' mod n;
exists. Finally, we can compute a as a function of ay, a,, ..., ai as follows:
a=(aic; +axe, +---+agcr) (mod n) . (31.32)
We now show that equation (31.32) ensures that a = a; (mod n;) for i =
1,2,...,k. Note that if j # i, then m; = 0 (mod n;), which implies that ¢; =
m; = 0 (mod n;). Note also that ¢; = 1 (mod n;), from equation (31.31). We
thus have the appealing and useful correspondence
¢ < (0,0,...,0,1,0,...,0),

a vector that has Os everywhere except in the i th coordinate, where it has a 1; the ¢;
thus form a “basis” for the representation, in a certain sense. For each 7, therefore,
we have

a = ac; (mod n;)

a;m;(m;" mod n;) (mod n;)

= g (mod n;) ,
which is what we wished to show: our method of computing a from the a;’s pro-
duces a result a that satisfies the constraints @ = a; (mod n;) fori = 1,2,... k.
The correspondence is one-to-one, since we can transform in both directions.
Finally, equations (31.28)—(31.30) follow directly from Exercise 31.1-7, since
x mod n; = (x mod n) mod n; forany x andi = 1,2,...,k. |

We shall use the following corollaries later in this chapter.

Corollary 31.28
If ny,n,,...,n; are pairwise relatively prime and n = nn,--- ng, then for any
integers ai, a,, ..., day, the set of simultaneous equations

X =a; (mod I’l,') 5

fori = 1,2,...,k, has a unique solution modulo n for the unknown x. [
Corollary 31.29
If ny,n,, ..., ng are pairwise relatively prime and n = nn,---nyg, then for all

integers x and a,
x =a (mod n;)
fori =1,2,...,k if and only if

x =a (modn). =

heé¢eps:/hemanthrajhemu.github.io

31.5 The Chinese remainder theorem 953

| 0 1 2 3 4 5 6 7 8 9 10 11 12
0 40 15 55 30 45 20 60 35 10 50 25
26 1 41 16 56 31 6 46 21 61 36 11 51
52 27 2 42 17 57 32 7 47 22 62 37 12
13 53 28 3 43 18 58 33 8 48 23 63 38
39 14 54 29 4 4 19 59 34 9 49 24 o4

9]

A W= O

Figure 31.3 An illustration of the Chinese remainder theorem for n; = 5 and n, = 13. For this
example, ¢1 = 26 and ¢ = 40. In row i, column j is shown the value of a, modulo 65, such
that @ mod 5 = i and @ mod 13 = j. Note that row 0, column O contains a 0. Similarly, row 4,
column 12 contains a 64 (equivalent to —1). Since ¢ = 26, moving down a row increases a by 26.
Similarly, ¢c; = 40 means that moving right by a column increases a by 40. Increasing a by 1
corresponds to moving diagonally downward and to the right, wrapping around from the bottom to
the top and from the right to the left.

As an example of the application of the Chinese remainder theorem, suppose we

are given the two equations

= 2 (mod5),

= 3 (mod 13),
sothat a; = 2, ny = m, = 5,a, = 3, and n, = m; = 13, and we wish
to compute a mod 65, since n = n;n, = 65. Because 137! = 2 (mod 5) and
571 =8 (mod 13), we have
¢ = 132mod5) = 26,
¢, = 58 mod13) = 40,

and
a = 2:-26+3-40 (mod 65)
= 524120 (mod 65)
42 (mod 65) .

See Figure 31.3 for an illustration of the Chinese remainder theorem, modulo 65.

Thus, we can work modulo # by working modulo 7 directly or by working in the
transformed representation using separate modulo n; computations, as convenient.
The computations are entirely equivalent.

Exercises

31.5-1
Find all solutions to the equations x = 4 (mod 5) and x =5 (mod 11).

heé¢eps:/hemanthrajhemu.github.io

954 Chapter 31 Number-Theoretic Algorithms

31.5-2

Find all integers x that leave remainders 1, 2, 3 when divided by 9, 8, 7 respectively.
31.5-3

Argue that, under the definitions of Theorem 31.27, if gcd(a,n) = 1, then

(@~ mod n) <> ((a;"' mod ny), (a;"' mod ny),..., (a;" modny)) .

31.5-4

Under the definitions of Theorem 31.27, prove that for any polynomial f, the num-
ber of roots of the equation f(x) = 0 (mod n) equals the product of the number
of roots of each of the equations f(x) = 0 (mod n,), f(x) =0 (mod n,), ...,
f(x) =0 (mod ny).

31.6 Powers of an element

Just as we often consider the multiples of a given element a, modulo n, we consider
the sequence of powers of @, modulo n, where a € Z:

a®.al,a?,a, ..., (31.33)

modulo 7. Indexing from 0, the Oth value in this sequence is ¢® mod n = 1, and
the ith value is ' mod n. For example, the powers of 3 modulo 7 are

i 01 2 3 45 6 7 8 9 10 11
3mod7 1 3 2 6 4 5 1 3 2 6 4 5
whereas the powers of 2 modulo 7 are

i 01 2 3 45 6 7 8 9 10 11
2mod7 1 2 4 1 2 4 1 2 4 1 2 4

In this section, let (a) denote the subgroup of Z generated by a by repeated
multiplication, and let ord, (a) (the “order of @, modulo n”’) denote the order of a
in Z;. For example, (2) = {1,2,4}in Z3, and ord,(2) = 3. Using the definition of
the Euler phi function ¢ (n) as the size of Z (see Section 31.3), we now translate
Corollary 31.19 into the notation of Z to obtain Euler’s theorem and specialize it
to Zy, where p is prime, to obtain Fermat’s theorem.

Theorem 31.30 (Euler’s theorem)
For any integer n > 1,

a®™ =1 (mod n)foralla e 7 . [

heé¢eps:/hemanthrajhemu.github.io

31.6 Powers of an element 955

Theorem 31.31 (Fermat’s theorem)
If p is prime, then

a’ ' =1 (mod p)foralla € Z7 .

Proof By equation (31.21), ¢(p) = p — 1 if p is prime. |

Fermat’s theorem applies to every element in Z, except 0, since 0 ¢ Z. For all
a € Z,, however, we have a” = a (mod p) if p is prime.

If ord,(g) = |Z}]|, then every element in Z is a power of g, modulo 7, and
g is a primitive root or a generator of 7). For example, 3 is a primitive root,
modulo 7, but 2 is not a primitive root, modulo 7. If Z; possesses a primitive
root, the group Z; is cyclic. We omit the proof of the following theorem, which is
proven by Niven and Zuckerman [265].

Theorem 31.32
The values of n > 1 for which Z7 is cyclic are 2, 4, p®, and 2p*®, for all primes
p > 2 and all positive integers e. |

If g is a primitive root of Z and a is any element of Z, then there exists a z such
that g = a (mod n). This z is a discrete logarithm or an index of a, modulo n,
to the base g; we denote this value as ind, 4 (a).

Theorem 31.33 (Discrete logarithmn theorem)
If g is a primitive root of Z7, then the equation g* = g” (mod n) holds if and
only if the equation x = y (mod ¢(n)) holds.

Proof Suppose first that x = y (mod ¢(n)). Then, x = y + k¢ (n) for some
integer k. Therefore,

gt = grtke® (mod n)
= ¢ (g*™)* (modn)
= g7-1¥ (mod n) (by Euler’s theorem)
g’ (mod n) .

Conversely, suppose that g*¥ = g” (mod n). Because the sequence of powers of g
generates every element of (g) and [(g)| = ¢(n), Corollary 31.18 implies that
the sequence of powers of g is periodic with period ¢ (n). Therefore, if g©¥ = g~
(mod n), then we must have x = y (mod ¢ (n)).]

We now turn our attention to the square roots of 1, modulo a prime power. The
following theorem will be useful in our development of a primality-testing algo-
rithm in Section 31.8.

heé¢eps:/hemanthrajhemu.github.io

956 Chapter 31 Number-Theoretic Algorithms

Theorem 31.34

If p is an odd prime and e > 1, then the equation

x>=1 (mod p°) (31.34)
has only two solutions, namely x = 1 and x = —1.

Proof Equation (31.34) is equivalent to

pflx—Dx+1).

Since p > 2, we can have p | (x — 1) or p | (x + 1), but not both. (Otherwise,
by property (31.3), p would also divide their difference (x + 1) — (x — 1) = 2.)
If pt (x—1),then gcd(p®,x — 1) = 1, and by Corollary 31.5, we would have
p¢ | (x +1). Thatis, x = —1 (mod p¢). Symmetrically, if p + (x + 1),
then ged(p¢, x + 1) = 1, and Corollary 31.5 implies that p¢ | (x — 1), so that
x =1 (mod p¢). Therefore, either x = —1 (mod p¢)orx =1 (mod p¢). m

A number x is a nontrivial square root of 1, modulo n, if it satisfies the equation
x? =1 (mod n) but x is equivalent to neither of the two “trivial” square roots:
1 or —1, modulo n. For example, 6 is a nontrivial square root of 1, modulo 35.
We shall use the following corollary to Theorem 31.34 in the correctness proof in
Section 31.8 for the Miller-Rabin primality-testing procedure.

Corollary 31.35
If there exists a nontrivial square root of 1, modulo »n, then n is composite.

Proof By the contrapositive of Theorem 31.34, if there exists a nontrivial square
root of 1, modulo n, then n cannot be an odd prime or a power of an odd prime.
If x2 =1 (mod 2), then x = 1 (mod 2), and so all square roots of 1, modulo 2,
are trivial. Thus, n cannot be prime. Finally, we must have n > 1 for a nontrivial
square root of 1 to exist. Therefore, n must be composite. |

Raising to powers with repeated squaring

A frequently occurring operation in number-theoretic computations is raising one
number to a power modulo another number, also known as modular exponentia-
tion. More precisely, we would like an efficient way to compute a® mod n, where
a and b are nonnegative integers and 7 is a positive integer. Modular exponenti-
ation is an essential operation in many primality-testing routines and in the RSA
public-key cryptosystem. The method of repeated squaring solves this problem
efficiently using the binary representation of b.

Let (bk, bx—1, ..., b1, bo) be the binary representation of b. (That is, the binary
representation is k + 1 bits long, by is the most significant bit, and by is the least

heé¢eps:/hemanthrajhemu.github.io

31.6 Powers of an element 957

i]9 8 71 6 5 4 3 2 1 0
bi|1T 0 0 0 1 I 0 0 0 0
c|1 2 4 8 17 35 70 140 280 560
d |7 49 157 526 160 241 298 166 67 1

Figure 31.4 The results of MODULAR-EXPONENTIATION when computing ab (mod n), where
a =7,b =560 = (1000110000), and n = 561. The values are shown after each execution of the
for loop. The final result is 1.

significant bit.) The following procedure computes ¢ mod 7 as c is increased by
doublings and incrementations from O to b.

MODULAR-EXPONENTIATION (a, b, n)

1 ¢=0

2 d=1

3 let (bg,bg_1,...,by) be the binary representation of b
4 fori = k downto 0

5 c =2c

6 d = (d-d)modn
7 if b, ==1

8 c=c+1

9 d = (d-a) modn
10 return d

The essential use of squaring in line 6 of each iteration explains the name “repeated
squaring.” As an example, fora = 7, b = 560, and n = 561, the algorithm
computes the sequence of values modulo 561 shown in Figure 31.4; the sequence
of exponents used appears in the row of the table labeled by c.

The variable ¢ is not really needed by the algorithm but is included for the fol-
lowing two-part loop invariant:

Just prior to each iteration of the for loop of lines 4-9,

1. The value of ¢ is the same as the prefix (bg,br_1,...,b;11) of the binary
representation of b, and

2. d = a‘ mod n.

We use this loop invariant as follows:

Initialization: Initially, i = k, so that the prefix (by, by_1, ..., b;i11) is empty,
which corresponds to ¢ = 0. Moreover, d = 1 = a° mod n.

heé¢eps:/hemanthrajhemu.github.io

958 Chapter 31 Number-Theoretic Algorithms

Maintenance: Let ¢’ and d’ denote the values of ¢ and d at the end of an iteration
of the for loop, and thus the values prior to the next iteration. Each iteration
updates ¢’ = 2¢ (if b; = 0)orc¢’ = 2¢ + 1 (if b; = 1), so that ¢ will be correct
prior to the next iteration. If b; = 0, then d’ = d? mod n = (a®)> mod n =
a* mod n = a® mod n. If b; = 1, then d’ = d?a mod n = (a®)?a mod n =
a**'modn = a“ mod n. In either case, d = a® mod n prior to the next
iteration.

Termination: At termination, i = —1. Thus, ¢ = b, since ¢ has the value of the
prefix (b, br_1,...,by) of b’s binary representation. Hence d = a mod n =
a® mod n.

If the inputs a, b, and n are B-bit numbers, then the total number of arith-
metic operations required is O(f) and the total number of bit operations required

is 0O(B3).
Exercises

31.6-1
Draw a table showing the order of every element in Z7,. Pick the smallest primitive
root g and compute a table giving ind;; ¢ (x) for all x € Z7,.

31.6-2
Give a modular exponentiation algorithm that examines the bits of b from right to
left instead of left to right.

31.6-3
Assuming that you know ¢ (1), explain how to compute ¢! mod n for any a € Z*
using the procedure MODULAR-EXPONENTIATION.

31.7 The RSA public-key cryptosystem

With a public-key cryptosystem, we can encrypt messages sent between two com-
municating parties so that an eavesdropper who overhears the encrypted messages
will not be able to decode them. A public-key cryptosystem also enables a party
to append an unforgeable “digital signature” to the end of an electronic message.
Such a signature is the electronic version of a handwritten signature on a paper doc-
ument. It can be easily checked by anyone, forged by no one, yet loses its validity
if any bit of the message is altered. It therefore provides authentication of both the
identity of the signer and the contents of the signed message. It is the perfect tool

heé¢eps:/hemanthrajhemu.github.io

31.7 The RSA public-key cryptosystem 959

for electronically signed business contracts, electronic checks, electronic purchase
orders, and other electronic communications that parties wish to authenticate.

The RSA public-key cryptosystem relies on the dramatic difference between the
ease of finding large prime numbers and the difficulty of factoring the product of
two large prime numbers. Section 31.8 describes an efficient procedure for finding
large prime numbers, and Section 31.9 discusses the problem of factoring large
integers.

Public-key cryptosystems

In a public-key cryptosystem, each participant has both a public key and a secret
key. Each key is a piece of information. For example, in the RSA cryptosystem,
each key consists of a pair of integers. The participants “Alice” and “Bob” are
traditionally used in cryptography examples; we denote their public and secret
keys as P4, S4 for Alice and Pg, Sp for Bob.

Each participant creates his or her own public and secret keys. Secret keys are
kept secret, but public keys can be revealed to anyone or even published. In fact,
it is often convenient to assume that everyone’s public key is available in a pub-
lic directory, so that any participant can easily obtain the public key of any other
participant.

The public and secret keys specify functions that can be applied to any message.
Let O denote the set of permissible messages. For example, £ might be the set of
all finite-length bit sequences. In the simplest, and original, formulation of public-
key cryptography, we require that the public and secret keys specify one-to-one
functions from D to itself. We denote the function corresponding to Alice’s public
key P4 by P4() and the function corresponding to her secret key S4 by S4(). The
functions P4() and S4() are thus permutations of . We assume that the functions
P4() and S4() are efficiently computable given the corresponding key P4 or Sy.

The public and secret keys for any participant are a “matched pair” in that they
specify functions that are inverses of each other. That is,

M = Si(PiM)), (31.35)
M = Py(S4(M)) (31.36)

for any message M € . Transforming M with the two keys P4 and S4 succes-
sively, in either order, yields the message M back.

In a public-key cryptosystem, we require that no one but Alice be able to com-
pute the function S, () in any practical amount of time. This assumption is crucial
to keeping encrypted mail sent to Alice private and to knowing that Alice’s digi-
tal signatures are authentic. Alice must keep Sy4 secret; if she does not, she loses
her uniqueness and the cryptosystem cannot provide her with unique capabilities.
The assumption that only Alice can compute S4() must hold even though everyone

heé¢eps:/hemanthrajhemu.github.io

960 Chapter 31 Number-Theoretic Algorithms

Bob Alice
communication channel
encrypt decrypt
C = Py(M)
M—> Py S4 ——>M
eavesdropper
C

Figure 31.5 Encryption in a public key system. Bob encrypts the message M using Alice’s public
key P4 and transmits the resulting ciphertext C = P4(M) over a communication channel to Al-
ice. An eavesdropper who captures the transmitted ciphertext gains no information about M. Alice
receives C and decrypts it using her secret key to obtain the original message M = S4(C).

knows P4 and can compute P4(), the inverse function to S4(), efficiently. In order
to design a workable public-key cryptosystem, we must figure out how to create
a system in which we can reveal a transformation P4() without thereby revealing
how to compute the corresponding inverse transformation S,4(). This task appears
formidable, but we shall see how to accomplish it.

In a public-key cryptosystem, encryption works as shown in Figure 31.5. Sup-
pose Bob wishes to send Alice a message M encrypted so that it will look like
unintelligible gibberish to an eavesdropper. The scenario for sending the message
goes as follows.

* Bob obtains Alice’s public key P4 (from a public directory or directly from
Alice).

* Bob computes the ciphertext C = P4(M) corresponding to the message M
and sends C to Alice.

* When Alice receives the ciphertext C, she applies her secret key S, to retrieve
the original message: S4(C) = Sq(P4(M)) =M.

Because S4() and P4() are inverse functions, Alice can compute M from C. Be-
cause only Alice is able to compute S4(), Alice is the only one who can compute M
from C. Because Bob encrypts M using P4(), only Alice can understand the trans-
mitted message.

We can just as easily implement digital signatures within our formulation of a
public-key cryptosystem. (There are other ways of approaching the problem of
constructing digital signatures, but we shall not go into them here.) Suppose now
that Alice wishes to send Bob a digitally signed response M’. Figure 31.6 shows
how the digital-signature scenario proceeds.

* Alice computes her digital signature o for the message M’ using her secret
key S4 and the equation o = S4(M").

heé¢eps:/hemanthrajhemu.github.io

31.7 The RSA public-key cryptosystem 961

Alice Bob
sign
S, o= Su(M") o
accept
M Y (M’,0)

communication channel

Figure 31.6 Digital signatures in a public-key system. Alice signs the message M’ by appending
her digital signature 0 = S4(M’) to it. She transmits the message/signature pair (M’, o) to Bob,
who verifies it by checking the equation M’ = P4 (o). If the equation holds, he accepts (M, o) as
a message that Alice has signed.

* Alice sends the message/signature pair (M’, o) to Bob.

* When Bob receives (M’, o), he can verify that it originated from Alice by us-
ing Alice’s public key to verify the equation M’ = P4(c). (Presumably, M’
contains Alice’s name, so Bob knows whose public key to use.) If the equation
holds, then Bob concludes that the message M’ was actually signed by Alice.
If the equation fails to hold, Bob concludes either that the message M’ or the
digital signature o was corrupted by transmission errors or that the pair (M, o)
is an attempted forgery.

Because a digital signature provides both authentication of the signer’s identity and
authentication of the contents of the signed message, it is analogous to a handwrit-
ten signature at the end of a written document.

A digital signature must be verifiable by anyone who has access to the signer’s
public key. A signed message can be verified by one party and then passed on to
other parties who can also verify the signature. For example, the message might
be an electronic check from Alice to Bob. After Bob verifies Alice’s signature on
the check, he can give the check to his bank, who can then also verify the signature
and effect the appropriate funds transfer.

A signed message is not necessarily encrypted; the message can be “in the clear”
and not protected from disclosure. By composing the above protocols for encryp-
tion and for signatures, we can create messages that are both signed and encrypted.
The signer first appends his or her digital signature to the message and then en-
crypts the resulting message/signature pair with the public key of the intended re-
cipient. The recipient decrypts the received message with his or her secret key to
obtain both the original message and its digital signature. The recipient can then
verify the signature using the public key of the signer. The corresponding com-
bined process using paper-based systems would be to sign the paper document and

heé¢eps:/hemanthrajhemu.github.io

962 Chapter 31 Number-Theoretic Algorithms

then seal the document inside a paper envelope that is opened only by the intended
recipient.

The RSA cryptosystem

In the RSA public-key cryptosystem, a participant creates his or her public and
secret keys with the following procedure:

1. Select at random two large prime numbers p and g such that p # ¢. The primes
p and g might be, say, 1024 bits each.

2. Compute n = pgq.

3. Select a small odd integer e that is relatively prime to ¢ (n), which, by equa-
tion (31.20), equals (p — 1)(g — 1).

4, Compute d as the multiplicative inverse of e, modulo ¢(n). (Corollary 31.26
guarantees that d exists and is uniquely defined. We can use the technique of
Section 31.4 to compute d, given e and ¢ (n).)

5. Publish the pair P = (e, n) as the participant’s RSA public key.
6. Keep secret the pair S = (d, n) as the participant’s RSA secret key.

For this scheme, the domain D is the set Z,,. To transform a message M asso-
ciated with a public key P = (e, n), compute

P(M)= M°modn . (31.37)
To transform a ciphertext C associated with a secret key S = (d, n), compute
S(C)=C%modn . (31.38)

These equations apply to both encryption and signatures. To create a signature, the
signer applies his or her secret key to the message to be signed, rather than to a
ciphertext. To verify a signature, the public key of the signer is applied to it, rather
than to a message to be encrypted.

We can implement the public-key and secret-key operations using the procedure
MODULAR-EXPONENTIATION described in Section 31.6. To analyze the running
time of these operations, assume that the public key (e, n) and secret key (d, n)
satisfy Ige = O(1), lgd < B, and Ilgn < B. Then, applying a public key requires
O(1) modular multiplications and uses O(f?) bit operations. Applying a secret
key requires O(B) modular multiplications, using O(8?) bit operations.

Theorem 31.36 (Correctness of RSA)
The RSA equations (31.37) and (31.38) define inverse transformations of Z,, satis-
fying equations (31.35) and (31.36).

heé¢eps:/hemanthrajhemu.github.io

31.7 The RSA public-key cryptosystem 963

Proof From equations (31.37) and (31.38), we have that for any M € Z,,
P(S(M)) = S(P(M)) = M*® (mod n) .

Since e and d are multiplicative inverses modulo ¢(n) = (p — 1)(g — 1),
ed=14+k(p—1D(@g-1

for some integer k. But then, if M # 0 (mod p), we have

M = M(MPTHED (mod p)
= M((M mod p)» Hk=D (mod p)
= M(1)ke=D (mod p) (by Theorem 31.31)
= M (mod p) .

Also, M¢ = M (mod p)if M =0 (mod p). Thus,

M =M (mod p)

for all M. Similarly,

M =M (mod q)

for all M. Thus, by Corollary 31.29 to the Chinese remainder theorem,

M =M (mod n)

for all M. |

The security of the RSA cryptosystem rests in large part on the difficulty of fac-
toring large integers. If an adversary can factor the modulus 7 in a public key, then
the adversary can derive the secret key from the public key, using the knowledge
of the factors p and ¢ in the same way that the creator of the public key used them.
Therefore, if factoring large integers is easy, then breaking the RSA cryptosystem
is easy. The converse statement, that if factoring large integers is hard, then break-
ing RSA is hard, is unproven. After two decades of research, however, no easier
method has been found to break the RSA public-key cryptosystem than to factor
the modulus n. And as we shall see in Section 31.9, factoring large integers is sur-
prisingly difficult. By randomly selecting and multiplying together two 1024-bit
primes, we can create a public key that cannot be “broken” in any feasible amount
of time with current technology. In the absence of a fundamental breakthrough in
the design of number-theoretic algorithms, and when implemented with care fol-
lowing recommended standards, the RSA cryptosystem is capable of providing a
high degree of security in applications.

In order to achieve security with the RSA cryptosystem, however, we should
use integers that are quite long—hundreds or even more than one thousand bits

heé¢eps:/hemanthrajhemu.github.io

964 Chapter 31 Number-Theoretic Algorithms

long—to resist possible advances in the art of factoring. At the time of this
writing (2009), RSA moduli were commonly in the range of 768 to 2048 bits.
To create moduli of such sizes, we must be able to find large primes efficiently.
Section 31.8 addresses this problem.

For efficiency, RSA is often used in a “hybrid” or “key-management” mode
with fast non-public-key cryptosystems. With such a system, the encryption and
decryption keys are identical. If Alice wishes to send a long message M to Bob
privately, she selects a random key K for the fast non-public-key cryptosystem and
encrypts M using K, obtaining ciphertext C. Here, C is as long as M, but K
is quite short. Then, she encrypts K using Bob’s public RSA key. Since K is
short, computing Pg(K) is fast (much faster than computing Pg(M)). She then
transmits (C, Pg(K)) to Bob, who decrypts Pg(K) to obtain K and then uses K
to decrypt C, obtaining M.

We can use a similar hybrid approach to make digital signatures efficiently.
This approach combines RSA with a public collision-resistant hash function h—a
function that is easy to compute but for which it is computationally infeasible to
find two messages M and M’ such that h(M) = h(M’). The value h(M) is
a short (say, 256-bit) “fingerprint” of the message M. If Alice wishes to sign a
message M, she first applies & to M to obtain the fingerprint #(M), which she
then encrypts with her secret key. She sends (M, S, (h(M))) to Bob as her signed
version of M. Bob can verify the signature by computing (M) and verifying
that P, applied to S4(h(M)) as received equals h(M). Because no one can create
two messages with the same fingerprint, it is computationally infeasible to alter a
signed message and preserve the validity of the signature.

Finally, we note that the use of cerfificates makes distributing public keys much
easier. For example, assume there is a “trusted authority” 7" whose public key
is known by everyone. Alice can obtain from 7" a signed message (her certificate)
stating that “Alice’s public key is P4.” This certificate is “self-authenticating” since
everyone knows Pr. Alice can include her certificate with her signed messages,
so that the recipient has Alice’s public key immediately available in order to verify
her signature. Because her key was signed by T, the recipient knows that Alice’s
key is really Alice’s.

Exercises

31.7-1

Consider an RSA key set with p = 11, ¢ = 29, n = 319, and e = 3. What
value of d should be used in the secret key? What is the encryption of the message
M = 1007

heé¢eps:/hemanthrajhemu.github.io

31.8 Primality testing 965

31.7-2

Prove that if Alice’s public exponent e is 3 and an adversary obtains Alice’s secret
exponent d, where 0 < d < ¢(n), then the adversary can factor Alice’s modulus n
in time polynomial in the number of bits in n. (Although you are not asked to prove
it, you may be interested to know that this result remains true even if the condition
e = 3 is removed. See Miller [255].)

31.7-3 %
Prove that RSA is multiplicative in the sense that

Py(My)Py(M,) = Py(MM,) (mod n) .

Use this fact to prove that if an adversary had a procedure that could efficiently
decrypt 1 percent of messages from Z, encrypted with P4, then he could employ
a probabilistic algorithm to decrypt every message encrypted with P4 with high
probability.

*x 31.8 Primality testing

In this section, we consider the problem of finding large primes. We begin with a
discussion of the density of primes, proceed to examine a plausible, but incomplete,
approach to primality testing, and then present an effective randomized primality
test due to Miller and Rabin.

The density of prime numbers

For many applications, such as cryptography, we need to find large “random”
primes. Fortunately, large primes are not too rare, so that it is feasible to test
random integers of the appropriate size until we find a prime. The prime distribu-
tion function it(n) specifies the number of primes that are less than or equal to .
For example, 7 (10) = 4, since there are 4 prime numbers less than or equal to 10,
namely, 2, 3, 5, and 7. The prime number theorem gives a useful approximation
to 7 (n).

Theorem 31.37 (Prime number theorem)
n(n)

im =1. n
n—oon/Inn

The approximation n/Inn gives reasonably accurate estimates of 7(n) even
for small n. For example, it is off by less than 6% at n = 10°, where mw(n) =

heé¢eps:/hemanthrajhemu.github.io

966 Chapter 31 Number-Theoretic Algorithms

50,847,534 and n/Inn ~ 48,254,942. (To a number theorist, 10° is a small num-
ber.)

We can view the process of randomly selecting an integer n and determining
whether it is prime as a Bernoulli trial (see Section C.4). By the prime number
theorem, the probability of a success—that is, the probability that n is prime—is
approximately 1/1In#n. The geometric distribution tells us how many trials we need
to obtain a success, and by equation (C.32), the expected number of trials is ap-
proximately Inn. Thus, we would expect to examine approximately In# integers
chosen randomly near n in order to find a prime that is of the same length as n.
For example, we expect that finding a 1024-bit prime would require testing ap-
proximately In 2'9%* ~ 710 randomly chosen 1024-bit numbers for primality. (Of
course, we can cut this figure in half by choosing only odd integers.)

In the remainder of this section, we consider the problem of determining whether
or not a large odd integer 7 is prime. For notational convenience, we assume that n
has the prime factorization

n=pi'py-pr, (31.39)

where r > 1, py, pa2, ..., p, are the prime factors of n, and ey, e,, ..., e, are posi-
tive integers. The integer # is prime if and only if » = 1 and e; = 1.

One simple approach to the problem of testing for primality is trial division. We
try dividing n by each integer 2,3,..., | +/n]. (Again, we may skip even integers
greater than 2.) It is easy to see that n is prime if and only if none of the trial divi-
sors divides n. Assuming that each trial division takes constant time, the worst-case
running time is ®(4/n), which is exponential in the length of n. (Recall that if n
is encoded in binary using S bits, then 8 = [lg(n + 1)], and so /n = ©(28/2).)
Thus, trial division works well only if 7 is very small or happens to have a small
prime factor. When it works, trial division has the advantage that it not only de-
termines whether 7 is prime or composite, but also determines one of n’s prime
factors if n is composite.

In this section, we are interested only in finding out whether a given number n
is prime; if n is composite, we are not concerned with finding its prime factor-
ization. As we shall see in Section 31.9, computing the prime factorization of a
number is computationally expensive. It is perhaps surprising that it is much easier
to tell whether or not a given number is prime than it is to determine the prime
factorization of the number if it is not prime.

Pseudoprimality testing

We now consider a method for primality testing that “almost works” and in fact
is good enough for many practical applications. Later on, we shall present a re-

heé¢eps:/hemanthrajhemu.github.io

31.8 Primality testing 967

finement of this method that removes the small defect. Let Z" denote the nonzero
elements of Z,,:

ZF={1,2,...,n—1} .

If n is prime, then Z} = Z.
We say that n is a base-a pseudoprime if n is composite and

a" '=1 (modn). (31.40)

Fermat’s theorem (Theorem 31.31) implies that if # is prime, then n satisfies equa-
tion (31.40) for every a in Z;. Thus, if we can find any a € Z; such that n does
not satisfy equation (31.40), then n is certainly composite. Surprisingly, the con-
verse almost holds, so that this criterion forms an almost perfect test for primality.
We test to see whether n satisfies equation (31.40) for @ = 2. If not, we declare n
to be composite by returning COMPOSITE. Otherwise, we return PRIME, guessing
that n is prime (when, in fact, all we know is that n is either prime or a base-2
pseudoprime).

The following procedure pretends in this manner to be checking the primality
of n. It uses the procedure MODULAR-EXPONENTIATION from Section 31.6. We
assume that the input # is an odd integer greater than 2.

PSEUDOPRIME (71)

1 if MODULAR-EXPONENTIATION (2,7 — 1,n) % 1 (mod n)
2 return COMPOSITE // definitely

3 else return PRIME // we hope!

This procedure can make errors, but only of one type. That is, if it says that n
is composite, then it is always correct. If it says that n is prime, however, then it
makes an error only if is a base-2 pseudoprime.

How often does this procedure err? Surprisingly rarely. There are only 22 values
of n less than 10,000 for which it errs; the first four such values are 341, 561,
645, and 1105. We won’t prove it, but the probability that this program makes an
error on a randomly chosen f-bit number goes to zero as f — oo. Using more
precise estimates due to Pomerance [279] of the number of base-2 pseudoprimes of
a given size, we may estimate that a randomly chosen 512-bit number that is called
prime by the above procedure has less than one chance in 10?° of being a base-2
pseudoprime, and a randomly chosen 1024-bit number that is called prime has less
than one chance in 10*! of being a base-2 pseudoprime. So if you are merely
trying to find a large prime for some application, for all practical purposes you
almost never go wrong by choosing large numbers at random until one of them
causes PSEUDOPRIME to return PRIME. But when the numbers being tested for
primality are not randomly chosen, we need a better approach for testing primality.

heé¢eps:/hemanthrajhemu.github.io

968 Chapter 31 Number-Theoretic Algorithms

As we shall see, a little more cleverness, and some randomization, will yield a
primality-testing routine that works well on all inputs.

Unfortunately, we cannot entirely eliminate all the errors by simply checking
equation (31.40) for a second base number, say a = 3, because there exist com-
posite integers n, known as Carmichael numbers, that satisty equation (31.40) for
all a € 7Z,. (We note that equation (31.40) does fail when ged(a,n) > 1—that
is, when a ¢ Z; —but hoping to demonstrate that n is composite by finding such
an a can be difficult if » has only large prime factors.) The first three Carmichael
numbers are 561, 1105, and 1729. Carmichael numbers are extremely rare; there
are, for example, only 255 of them less than 100,000,000. Exercise 31.8-2 helps
explain why they are so rare.

We next show how to improve our primality test so that it won’t be fooled by
Carmichael numbers.

The Miller-Rabin randomized primality test

The Miller-Rabin primality test overcomes the problems of the simple test PSEU-
DOPRIME with two modifications:

* It tries several randomly chosen base values a instead of just one base value.

* While computing each modular exponentiation, it looks for a nontrivial square
root of 1, modulo n, during the final set of squarings. If it finds one, it stops
and returns COMPOSITE. Corollary 31.35 from Section 31.6 justifies detecting
composites in this manner.

The pseudocode for the Miller-Rabin primality test follows. The input n > 2 is
the odd number to be tested for primality, and s is the number of randomly cho-
sen base values from Z to be tried. The code uses the random-number generator
RANDOM described on page 117: RANDOM(1,n — 1) returns a randomly chosen
integer a satisfying 1 < a < n—1. The code uses an auxiliary procedure WITNESS
such that WITNESS (a, n) is TRUE if and only if a is a “witness” to the composite-
ness of n—that is, if it is possible using a to prove (in a manner that we shall see)
that n is composite. The test WITNESS (a, n) is an extension of, but more effective
than, the test

a" ' #£1 (mod n)

that formed the basis (using a = 2) for PSEUDOPRIME. We first present and
justify the construction of WITNESS, and then we shall show how we use it in the
Miller-Rabin primality test. Let n — 1 = 2'u where t > 1 and u is odd; i.e.,
the binary representation of n — 1 is the binary representation of the odd integer u
followed by exactly ¢ zeros. Therefore, a”' = (a*)* (mod n), so that we can

heé¢eps:/hemanthrajhemu.github.io

31.8 Primality testing 969

compute a"~! mod n by first computing a* mod n and then squaring the result ¢
times successively.

WITNESS (a, n)

let r and u be such that f > 1, u isodd, andn — 1 = 2'u
X9 = MODULAR-EXPONENTIATION (&, U, n)
fori = 1tot

x; = x?, modn

ifx;==landx;_; #land x;_; #n —1

return TRUE

if x, #1

return TRUE
return FALSE

O 01N L B WIN —

This pseudocode for WITNESS computes a” ! mod n by first computing the
value xo = a” mod 7 in line 2 and then squaring the result ¢ times in a row in the
for loop of lines 3-6. By induction on i, the sequence xq, X1, ..., X; of values
computed satisfies the equation x; = a®' (mod n) fori = 0,1,...,¢, so that in
particular x, = @"! (mod n). After line 4 performs a squaring step, however,
the loop may terminate early if lines 5-6 detect that a nontrivial square root of 1
has just been discovered. (We shall explain these tests shortly.) If so, the algo-
rithm stops and returns TRUE. Lines 7-8 return TRUE if the value computed for
x; =a"!' (mod n) is not equal to 1, just as the PSEUDOPRIME procedure returns
COMPOSITE in this case. Line 9 returns FALSE if we haven’t returned TRUE in
lines 6 or 8.

We now argue that if WITNESS (a,n) returns TRUE, then we can construct a
proof that n is composite using a as a witness.

If WITNESS returns TRUE from line 8, then it has discovered that x, =
a”'modn # 1. If n is prime, however, we have by Fermat’s theorem (Theo-
rem 31.31) that a"~!' = 1 (mod n) for all @ € Z;. Therefore, n cannot be prime,
and the equation a”~! mod n # 1 proves this fact.

If WITNESS returns TRUE from line 6, then it has discovered that x;_; is a non-
trivial square root of 1, modulo n, since we have that x;_; # +1 (mod n) yet
x; = x>, =1 (mod n). Corollary 31.35 states that only if n is composite can
there exist a nontrivial square root of 1 modulo 7, so that demonstrating that x;_;
is a nontrivial square root of 1 modulo n proves that n is composite.

This completes our proof of the correctness of WITNESS. If we find that the call
WITNESS (a,) returns TRUE, then 7 is surely composite, and the witness a, along
with the reason that the procedure returns TRUE (did it return from line 6 or from
line 87?), provides a proof that n is composite.

heé¢eps:/hemanthrajhemu.github.io

970 Chapter 31 Number-Theoretic Algorithms

At this point, we briefly present an alternative description of the behavior of
WITNESS as a function of the sequence X = (xo, x1, ..., x;), which we shall find
useful later on, when we analyze the efficiency of the Miller-Rabin primality test.
Note that if x; = 1 for some 0 < i < ¢, WITNESS might not compute the rest

of the sequence. If it were to do so, however, each value x; 1, X;15,...,x; would
be 1, and we consider these positions in the sequence X as being all 1s. We have
four cases:

1. X =(...,d), where d # 1: the sequence X does not end in 1. Return TRUE
in line 8; a is a witness to the compositeness of n (by Fermat’s Theorem).

2. X =(1,1,...,1): the sequence X is all 1s. Return FALSE; « is not a witness
to the compositeness of 7.

3. X =(..,—1,1,...,1): the sequence X ends in 1, and the last non-1 is equal
to —1. Return FALSE; a is not a witness to the compositeness of 7.

4. X =(...,d,1,...,1), where d # *1: the sequence X ends in 1, but the last
non-1 is not —1. Return TRUE in line 6; a is a witness to the compositeness
of n, since d is a nontrivial square root of 1.

We now examine the Miller-Rabin primality test based on the use of WITNESS.
Again, we assume that # is an odd integer greater than 2.

MILLER-RABIN (7, 5)

1 forj =1tos

2 a = RANDOM(1,n — 1)

3 if WITNESS (a,n)

4 return COMPOSITE // definitely

5 return PRIME // almost surely

The procedure MILLER-RABIN is a probabilistic search for a proof that n is
composite. The main loop (beginning on line 1) picks up to s random values of a
from Z:{ (line 2). If one of the a’s picked is a witness to the compositeness of n,
then MILLER-RABIN returns COMPOSITE on line 4. Such a result is always cor-
rect, by the correctness of WITNESS. If MILLER-RABIN finds no witness in s
trials, then the procedure assumes that this is because no witnesses exist, and there-
fore it assumes that n is prime. We shall see that this result is likely to be correct
if s is large enough, but that there is still a tiny chance that the procedure may be
unlucky in its choice of a’s and that witnesses do exist even though none has been
found.

To illustrate the operation of MILLER-RABIN, let n be the Carmichael num-
ber 561, so that n — 1 = 560 = 2*.35 ¢t = 4, and u = 35. If the pro-
cedure chooses @ = 7 as a base, Figure 31.4 in Section 31.6 shows that WIT-
NESS computes xo = a>> = 241 (mod 561) and thus computes the sequence

heé¢eps:/hemanthrajhemu.github.io

31.8 Primality testing 971

X = (241, 298, 166, 67, 1). Thus, WITNESS discovers a nontrivial square root
of 1 in the last squaring step, since a?®® = 67 (mod n) and a°®° = 1 (mod n).
Therefore, a = 7 is a witness to the compositeness of 7, WITNESS (7, n) returns
TRUE, and MILLER-RABIN returns COMPOSITE.

If n is a B-bit number, MILLER-RABIN requires O(sf) arithmetic operations
and O(sB3) bit operations, since it requires asymptotically no more work than s
modular exponentiations.

Error rate of the Miller-Rabin primality test

If MILLER-RABIN returns PRIME, then there is a very slim chance that it has made
an error. Unlike PSEUDOPRIME, however, the chance of error does not depend
on n; there are no bad inputs for this procedure. Rather, it depends on the size of s
and the “luck of the draw” in choosing base values a. Moreover, since each test is
more stringent than a simple check of equation (31.40), we can expect on general
principles that the error rate should be small for randomly chosen integers 7. The
following theorem presents a more precise argument.

Theorem 31.38
If n is an odd composite number, then the number of witnesses to the composite-
ness of n is at least (n — 1)/2.

Proof The proof shows that the number of nonwitnesses is at most (n — 1)/2,
which implies the theorem.

We start by claiming that any nonwitness must be a member of Z. Why?
Consider any nonwitness a. It must satisfy a”~! = 1 (mod n) or, equivalently,
a-a"? =1 (mod n). Thus, the equation ax = 1 (mod n) has a solution,
namely a"2. By Corollary 31.21, ged(a,n) | 1, which in turn implies that
ged(a,n) = 1. Therefore, a is a member of Z; all nonwitnesses belong to Z.

To complete the proof, we show that not only are all nonwitnesses contained
in Z, they are all contained in a proper subgroup B of Z (recall that we say B
is a proper subgroup of Z; when B is subgroup of Z} but B is not equal to Z).
By Corollary 31.16, we then have |B| < |Z}| /2. Since |Z}| < n — 1, we obtain
|B| < (n — 1)/2. Therefore, the number of nonwitnesses is at most (n — 1)/2, so
that the number of witnesses must be at least (n — 1) /2.

We now show how to find a proper subgroup B of Z) containing all of the
nonwitnesses. We break the proof into two cases.

Case 1: There exists an x € Z such that

x" 11 (modn).

heé¢eps:/hemanthrajhemu.github.io

972 Chapter 31 Number-Theoretic Algorithms

In other words, n is not a Carmichael number. Because, as we noted earlier,
Carmichael numbers are extremely rare, case 1 is the main case that arises “in
practice” (e.g., when n has been chosen randomly and is being tested for primal-
ity).

Let B=1{beZ::b" ' =1 (mod n)}. Clearly, B is nonempty, since 1 € B.
Since B is closed under multiplication modulo 7, we have that B is a subgroup
of Z; by Theorem 31.14. Note that every nonwitness belongs to B, since a non-
witness a satisfies a”! = 1 (mod n). Since x € Z* — B, we have that B is a
proper subgroup of Z7.

Case 2: Forall x € Z,
xn—l =1 (mod I’l) . (3141)

In other words, n is a Carmichael number. This case is extremely rare in prac-
tice. However, the Miller-Rabin test (unlike a pseudo-primality test) can efficiently
determine that Carmichael numbers are composite, as we now show.

In this case, n cannot be a prime power. To see why, let us suppose to the
contrary that n = p®, where p is a prime and e > 1. We derive a contradiction
as follows. Since we assume that n is odd, p must also be odd. Theorem 31.32
implies that Z is a cyclic group: it contains a generator g such that ord,(g) =
|ZX| = ¢(n) = p*(1—1/p) = (p — 1)p*~". (The formula for ¢(n) comes from
equation (31.20).) By equation (31.41), we have g"~! = 1 (mod n). Then the
discrete logarithm theorem (Theorem 31.33, taking y = 0) implies thatn — 1 =0
(mod ¢ (n)), or

(p—Dp|p°—1.

This is a contradiction for e > 1, since (p — 1) p¢~! is divisible by the prime p
but p¢ — 1 is not. Thus, n is not a prime power.

Since the odd composite number 7 is not a prime power, we decompose it into
a product n1n,, where n; and n, are odd numbers greater than 1 that are relatively
prime to each other. (There may be several ways to decompose 7, and it does not
matter which one we choose. For example, if n = p{'p5?--- p¢, then we can
choose n; = pi' and n, = p5?p3* -+ pr.)

Recall that we define ¢ and u so thatn — 1 = 2'u, where r > 1 and u is odd, and
that for an input a, the procedure WITNESS computes the sequence

X = (a",az",azz",...,azt")

(all computations are performed modulo 7).
Let us call a pair (v, j) of integers acceptable if v € 77, j € {0,1,...,t}, and

v = (mod n) .

heé¢eps:/hemanthrajhemu.github.io

31.8 Primality testing 973

Acceptable pairs certainly exist since u is odd; we can choose v = n — 1 and
j = 0, sothat (n—1,0) is an acceptable pair. Now pick the largest possible j such
that there exists an acceptable pair (v, j), and fix v so that (v, j) is an acceptable
pair. Let

B={xeZ! cx¥* = 41 (mod n)} .

Since B is closed under multiplication modulo 7, it is a subgroup of Z>. By Theo-
rem 31.15, therefore, | B| divides |Z;|. Every nonwitness must be a member of B,
since the sequence X produced by a nonwitness must either be all 1s or else contain
a —1 no later than the j th position, by the maximality of j. (If (a, j’) is acceptable,
where a is a nonwitness, we must have j' < j by how we chose j.)

We now use the existence of v to demonstrate that there exists aw € Z; — B,

and hence that B is a proper subgroup of Z. Since p2u =

2y —

—1 (mod n), we have

v —1 (mod n,) by Corollary 31.29 to the Chinese remainder theorem. By
Corollary 31.28, there exists a w simultaneously satisfying the equations

w = v (modn,;),

w = 1 (modn,).
Therefore,

w¥r = 1 (mod n;) ,
w¥r =1 (mod n,) .

By Corollary 31.29, w*'* # 1 (mod n,) implies w?>'* # 1 (mod n), and
w?'* #£ —1 (mod n,) implies w?'* # —1 (mod n). Hence, we conclude that
w?’* % 41 (mod n), and sow ¢ B.

It remains to show that w € Z7, which we do by first working separately mod-
ulo 7; and modulo n,. Working modulo 7, we observe that since v € Z,, we
have that gcd(v,n) = 1, and so also ged(v,n;) = 1; if v does not have any com-
mon divisors with 7, then it certainly does not have any common divisors with 7.
Since w = v (mod n;), we see that gcd(w,n;) = 1. Working modulo 7n,, we
observe that w = 1 (mod n,) implies gcd(w, n,) = 1. To combine these results,
we use Theorem 31.6, which implies that gcd(w,n,n,) = ged(w,n) = 1. That is,

w e Zy.

Therefore w € Z; — B, and we finish case 2 with the conclusion that B is a
proper subgroup of Z.

In either case, we see that the number of witnesses to the compositeness of 7 is
at least (n — 1)/2. |
Theorem 31.39

For any odd integer n > 2 and positive integer s, the probability that MILLER-
RABIN(7, s) errs is at most 275,

heé¢eps:/hemanthrajhemu.github.io

974 Chapter 31 Number-Theoretic Algorithms

Proof Using Theorem 31.38, we see that if n is composite, then each execution of
the for loop of lines 1-4 has a probability of at least 1/2 of discovering a witness x
to the compositeness of 7. MILLER-RABIN makes an error only if it is so unlucky
as to miss discovering a witness to the compositeness of z# on each of the s iterations
of the main loop. The probability of such a sequence of misses is at most 27°. =

If n is prime, MILLER-RABIN always reports PRIME, and if n is composite, the
chance that MILLER-RABIN reports PRIME is at most 27°.

When applying MILLER-RABIN to a large randomly chosen integer n, however,
we need to consider as well the prior probability that n is prime, in order to cor-
rectly interpret MILLER-RABIN’s result. Suppose that we fix a bit length 8 and
choose at random an integer n of length B bits to be tested for primality. Let A
denote the event that n is prime. By the prime number theorem (Theorem 31.37),
the probability that n is prime is approximately

Pr{A} ~ 1/Inn
~ 1.443/8.

Now let B denote the event that MILLER-RABIN returns PRIME. We have that
Pr{B | A} = 0 (or equivalently, that Pr{B | A} = 1) and Pr {B | A} < 275 (or
equivalently, that Pr {E | Z} >1—=279).

But what is Pr{A | B}, the probability that n is prime, given that MILLER-
RABIN has returned PRIME? By the alternate form of Bayes’s theorem (equa-
tion (C.18)) we have

Pr{A}Pr{B | A}
Pr{A}Pr{B | A} +Pr{A}Pr{B | A}
1
1+25(Inn—1)"

Pr{A| B}

~

This probability does not exceed 1/2 until s exceeds lg(Inn — 1). Intuitively, that
many initial trials are needed just for the confidence derived from failing to find a
witness to the compositeness of n to overcome the prior bias in favor of n being
composite. For a number with 8 = 1024 bits, this initial testing requires about

lg(lnn — 1) =~ 1g(B/1.443)
~ 9

trials. In any case, choosing s = 50 should suffice for almost any imaginable
application.

In fact, the situation is much better. If we are trying to find large primes by
applying MILLER-RABIN to large randomly chosen odd integers, then choosing
a small value of s (say 3) is very unlikely to lead to erroneous results, though

heé¢eps:/hemanthrajhemu.github.io

31.9 Integer factorization 975

we won’t prove it here. The reason is that for a randomly chosen odd composite
integer n, the expected number of nonwitnesses to the compositeness of is likely
to be very much smaller than (n — 1)/2.

If the integer n is not chosen randomly, however, the best that can be proven is
that the number of nonwitnesses is at most (n — 1)/4, using an improved version
of Theorem 31.38. Furthermore, there do exist integers n for which the number of
nonwitnesses is (n — 1) /4.

Exercises

31.8-1
Prove that if an odd integer n > 1 is not a prime or a prime power, then there exists
a nontrivial square root of 1 modulo 7.

31.8-2 %
It is possible to strengthen Euler’s theorem slightly to the form

a*™ =1 (mod n) foralla € Z*,
where n = p{' -+ p¢r and A(n) is defined by
An) = lem(¢(pi'). ... ¢(py")) - (31.42)

Prove that A(n) | ¢(n). A composite number n is a Carmichael number if
A(n) | n—1. The smallest Carmichael number is 561 = 3 - 11 - 17; here,
A(n) = lem(2,10,16) = 80, which divides 560. Prove that Carmichael num-
bers must be both “square-free” (not divisible by the square of any prime) and the
product of at least three primes. (For this reason, they are not very common.)

31.8-3
Prove that if x is a nontrivial square root of 1, modulo 7, then gcd(x — 1,n) and
gcd(x + 1, n) are both nontrivial divisors of 7.

* 31.9 Integer factorization

Suppose we have an integer n that we wish to factor, that is, to decompose into a
product of primes. The primality test of the preceding section may tell us that n is
composite, but it does not tell us the prime factors of n. Factoring a large integer n
seems to be much more difficult than simply determining whether n is prime or
composite. Even with today’s supercomputers and the best algorithms to date, we
cannot feasibly factor an arbitrary 1024-bit number.

heé¢eps:/hemanthrajhemu.github.io

976 Chapter 31 Number-Theoretic Algorithms

Pollard’s rho heuristic

Trial division by all integers up to R is guaranteed to factor completely any number
up to R2. For the same amount of work, the following procedure, POLLARD-RHO,
factors any number up to R* (unless we are unlucky). Since the procedure is only
a heuristic, neither its running time nor its success is guaranteed, although the
procedure is highly effective in practice. Another advantage of the POLLARD-
RHO procedure is that it uses only a constant number of memory locations. (If you
wanted to, you could easily implement POLLARD-RHO on a programmable pocket
calculator to find factors of small numbers.)

POLLARD-RHO(1)

1 i=1

2 x; = RaNDOM(0,n — 1)
3 y =X

4 k=2

5 while TRUE

6 i=i+1

7 x; = (x*, — 1) mod n
8 d = ged(y — x;,n)
9 ifd #1andd #n
10 print d

11 ifi ==

12 y =X

13 k = 2k

The procedure works as follows. Lines 1-2 initialize i to 1 and x; to a randomly
chosen value in Z,,. The while loop beginning on line 5 iterates forever, searching
for factors of n. During each iteration of the while loop, line 7 uses the recurrence

x; = (x7_, — 1) mod n (31.43)
to produce the next value of x; in the infinite sequence
X1,X2,X3,X4,... , (3144)

with line 6 correspondingly incrementing i. The pseudocode is written using sub-
scripted variables x; for clarity, but the program works the same if all of the sub-
scripts are dropped, since only the most recent value of x; needs to be maintained.
With this modification, the procedure uses only a constant number of memory lo-
cations.

Every so often, the program saves the most recently generated x; value in the
variable y. Specifically, the values that are saved are the ones whose subscripts are
powers of 2:

heé¢eps:/hemanthrajhemu.github.io

31.9 Integer factorization 977

X1, X2, X4, X8, X165 -+ -

Line 3 saves the value x;, and line 12 saves x; whenever i is equal to k. The
variable k is initialized to 2 in line 4, and line 13 doubles it whenever line 12
updates y. Therefore, k follows the sequence 1,2,4,8, ... and always gives the
subscript of the next value x; to be saved in y.

Lines 8-10 try to find a factor of n, using the saved value of y and the cur-
rent value of x;. Specifically, line 8 computes the greatest common divisor
d = ged(y — x;,n). If line 9 finds d to be a nontrivial divisor of 7, then line 10
prints d.

This procedure for finding a factor may seem somewhat mysterious at first.
Note, however, that POLLARD-RHO never prints an incorrect answer; any num-
ber it prints is a nontrivial divisor of n. POLLARD-RHO might not print anything
at all, though; it comes with no guarantee that it will print any divisors. We shall
see, however, that we have good reason to expect POLLARD-RHO to print a fac-
tor p of n after ©(,/p) iterations of the while loop. Thus, if n is composite, we
can expect this procedure to discover enough divisors to factor n completely after
approximately n'/# updates, since every prime factor p of n except possibly the
largest one is less than /n.

We begin our analysis of how this procedure behaves by studying how long
it takes a random sequence modulo 7 to repeat a value. Since Z, is finite, and
since each value in the sequence (31.44) depends only on the previous value, the
sequence (31.44) eventually repeats itself. Once we reach an x; such that x; = x;
for some j < i, we are in a cycle, since X;41 = X;j41, Xi42 = X;j42, and so on.
The reason for the name “rho heuristic” is that, as Figure 31.7 shows, we can draw
the sequence xi, X5, ..., x;_; as the “tail” of the rho and the cycle x;, x;;1,...,X;
as the “body” of the rho.

Let us consider the question of how long it takes for the sequence of x; to repeat.
This information is not exactly what we need, but we shall see later how to modify
the argument. For the purpose of this estimation, let us assume that the function

fo(x) = (x> —1) mod n

behaves like a “random” function. Of course, it is not really random, but this as-
sumption yields results consistent with the observed behavior of POLLARD-RHO.
We can then consider each x; to have been independently drawn from Z, according
to a uniform distribution on Z,,. By the birthday-paradox analysis of Section 5.4.1,
we expect @(4/n) steps to be taken before the sequence cycles.

Now for the required modification. Let p be a nontrivial factor of n such that
ged(p,n/p) = 1. For example, if n has the factorization n = py' p5?--- p¢r, then
we may take p to be pi'. (If e; = 1, then p is just the smallest prime factor of n,
a good example to keep in mind.)

heé¢eps:/hemanthrajhemu.github.io

978 Chapter 31 Number-Theoretic Algorithms

996 — 310
814 396
/ \ x//
x; 177 84 3;
xs 1194 339\ /529 x! 26 47
595 <1053
x4 63 6%’; x] 63
f 7 /
X3 ’8 X5 ’8 (_— x5 ’8
X, 3 xy '3 l6xg x5 3
x; 2 x; (2 x{ (2
mod 1387 mod 19 mod 73
(a) (b) ©)

Figure 31.7 Pollard’s rho heuristic. (a) The values produced by the recurrence x;4; =
(xl.2 — 1) mod 1387, starting with x; = 2. The prime factorization of 1387 is 19 - 73. The heavy
arrows indicate the iteration steps that are executed before the factor 19 is discovered. The light
arrows point to unreached values in the iteration, to illustrate the “rho” shape. The shaded values are
the y values stored by POLLARD-RHO. The factor 19 is discovered upon reaching x7 = 177, when
gcd(63 — 177,1387) = 19 is computed. The first x value that would be repeated is 1186, but the
factor 19 is discovered before this value is repeated. (b) The values produced by the same recurrence,
modulo 19. Every value x; given in part (a) is equivalent, modulo 19, to the value xl{ shown here.
For example, both x4 = 63 and x7 = 177 are equivalent to 6, modulo 19. (¢) The values produced
by the same recurrence, modulo 73. Every value x; given in part (a) is equivalent, modulo 73, to the
value xlf’ shown here. By the Chinese remainder theorem, each node in part (a) corresponds to a pair
of nodes, one from part (b) and one from part (c).

The sequence (x;) induces a corresponding sequence (x;) modulo p, where

/_
x; = x; mod p

for all i.
Furthermore, because f, is defined using only arithmetic operations (squaring
and subtraction) modulo 7, we can compute x; ; from x/; the “modulo p” view of

heé¢eps:/hemanthrajhemu.github.io

31.9 Integer factorization 979

the sequence is a smaller version of what is happening modulo #:
Xiy1 = Xipimodp
= fu(x;) mod p
= ((x} — 1) mod n) mod p
= (x?—1)mod p (by Exercise 31.1-7)
= ((x; mod p)*> — 1) mod p
((x))* = 1) mod p
Tp(xi) -
Thus, although we are not explicitly computing the sequence (x), this sequence is
well defined and obeys the same recurrence as the sequence (x;).

Reasoning as before, we find that the expected number of steps before the se-
quence (x;) repeats is ©(/p). If p is small compared to 7, the sequence (x;) might
repeat much more quickly than the sequence (x;). Indeed, as parts (b) and (c) of
Figure 31.7 show, the (x]) sequence repeats as soon as two elements of the se-
quence (x;) are merely equivalent modulo p, rather than equivalent modulo 7.

Let ¢ denote the index of the first repeated value in the (x/) sequence, and let
u > 0 denote the length of the cycle that has been thereby produced. That is, ¢
and u > 0 are the smallest values such that x;; = x;,,,, foralli > 0. By the
above arguments, the expected values of 7 and u are both ®(,/p). Note that if
Xypi = Xppyqis then p | (Xpquti — Xr4). Thus, ged(xypyti — Xp4i,n) > 1.

Therefore, once POLLARD-RHO has saved as y any value xj such that k > ¢,
then y mod p is always on the cycle modulo p. (If a new value is saved as y,
that value is also on the cycle modulo p.) Eventually, k is set to a value that
is greater than u, and the procedure then makes an entire loop around the cycle
modulo p without changing the value of y. The procedure then discovers a factor
of n when x; “runs into” the previously stored value of y, modulo p, that is, when
x; =y (mod p).

Presumably, the factor found is the factor p, although it may occasionally hap-
pen that a multiple of p is discovered. Since the expected values of both ¢ and u are
©(/p), the expected number of steps required to produce the factor p is ©(,/p).

This algorithm might not perform quite as expected, for two reasons. First, the
heuristic analysis of the running time is not rigorous, and it is possible that the cycle
of values, modulo p, could be much larger than ,/p. In this case, the algorithm
performs correctly but much more slowly than desired. In practice, this issue seems
to be moot. Second, the divisors of n produced by this algorithm might always be
one of the trivial factors 1 or n. For example, suppose that n = pg, where p
and ¢ are prime. It can happen that the values of 7 and u for p are identical with
the values of ¢ and u for g, and thus the factor p is always revealed in the same
gcd operation that reveals the factor ¢. Since both factors are revealed at the same

heé¢eps:/hemanthrajhemu.github.io

980 Chapter 31 Number-Theoretic Algorithms

time, the trivial factor pg = n is revealed, which is useless. Again, this problem
seems to be insignificant in practice. If necessary, we can restart the heuristic with
a different recurrence of the form x;4; = (x? — ¢) mod n. (We should avoid the
values ¢ = 0 and ¢ = 2 for reasons we will not go into here, but other values are
fine.)

Of course, this analysis is heuristic and not rigorous, since the recurrence is
not really “random.” Nonetheless, the procedure performs well in practice, and
it seems to be as efficient as this heuristic analysis indicates. It is the method of
choice for finding small prime factors of a large number. To factor a B-bit compos-
ite number n completely, we only need to find all prime factors less than |n'/2],
and so we expect POLLARD-RHO to require at most n'/4 = 28/4 arithmetic opera-
tions and at most n'/# B2 = 28/4 82 bit operations. POLLARD-RHO’s ability to find
a small factor p of n with an expected number ®(,/p) of arithmetic operations is
often its most appealing feature.

Exercises

31.9-1
Referring to the execution history shown in Figure 31.7(a), when does POLLARD-
RHO print the factor 73 of 13877

31.9-2

Suppose that we are given a function f : Z, — 7Z, and an initial value xo € Z,.
Define x; = f(x;_y) fori = 1,2,.... Let¢ and u > 0 be the smallest values such
that x,4; = X;4,4; fori = 0,1,.... In the terminology of Pollard’s rho algorithm,
t is the length of the tail and u is the length of the cycle of the rho. Give an efficient
algorithm to determine 7 and u exactly, and analyze its running time.

31.9-3
How many steps would you expect POLLARD-RHO to require to discover a factor
of the form p¢, where p is prime and e > 17

31.94 %

One disadvantage of POLLARD-RHO as written is that it requires one gcd compu-
tation for each step of the recurrence. Instead, we could batch the gcd computa-
tions by accumulating the product of several x; values in a row and then using this
product instead of x; in the gcd computation. Describe carefully how you would
implement this idea, why it works, and what batch size you would pick as the most
effective when working on a B-bit number 7.

heé¢eps:/hemanthrajhemu.github.io

Problems for Chapter 31 981

Problems

31-1 Binary gcd algorithm

Most computers can perform the operations of subtraction, testing the parity (odd
or even) of a binary integer, and halving more quickly than computing remainders.
This problem investigates the binary ged algorithm, which avoids the remainder
computations used in Euclid’s algorithm.

a. Prove that if ¢ and b are both even, then gcd(a,b) = 2 - ged(a/2,b/2).
b. Prove that if ¢ is odd and b is even, then gcd(a, b) = ged(a,b/2).
¢. Prove that if @ and b are both odd, then ged(a, b) = ged((a — b)/2, b).

d. Design an efficient binary gcd algorithm for input integers a and b, where
a > b, that runs in O(lga) time. Assume that each subtraction, parity test,
and halving takes unit time.

31-2 Analysis of bit operations in Euclid’s algorithm

a. Consider the ordinary “paper and pencil” algorithm for long division: dividing
a by b, which yields a quotient ¢ and remainder r. Show that this method
requires O((1 + 1g ¢) lg b) bit operations.

b. Define u(a,b) = (1 +1ga)(1 + lgb). Show that the number of bit operations
performed by EUCLID in reducing the problem of computing gcd(a, b) to that
of computing ged(b, a mod b) is at most ¢(pu(a,b) — (b, a mod b)) for some
sufficiently large constant ¢ > 0.

¢. Show that EUCLID(a, b) requires O(u(a,b)) bit operations in general and
O(B?) bit operations when applied to two 8-bit inputs.

31-3 Three algorithms for Fibonacci numbers

This problem compares the efficiency of three methods for computing the nth Fi-
bonacci number F;,, given n. Assume that the cost of adding, subtracting, or mul-
tiplying two numbers is O(1), independent of the size of the numbers.

a. Show that the running time of the straightforward recursive method for com-
puting F;, based on recurrence (3.22) is exponential in n. (See, for example, the
FIB procedure on page 775.)

b. Show how to compute F, in O(n) time using memoization.

heé¢eps:/hemanthrajhemu.github.io

982 Chapter 31 Number-Theoretic Algorithms

¢. Show how to compute F, in O(Ign) time using only integer addition and mul-
tiplication. (Hint: Consider the matrix

0 1
11
and its powers.)

d. Assume now that adding two S-bit numbers takes ®(f8) time and that multi-
plying two B-bit numbers takes ®(32) time. What is the running time of these
three methods under this more reasonable cost measure for the elementary arith-
metic operations?

31-4 Quadratic residues
Let p be an odd prime. A number a € Z is a quadratic residue if the equation
x2 =a (mod p) has a solution for the unknown x.

a. Show that there are exactly (p — 1)/2 quadratic residues, modulo p.

b. If p is prime, we define the Legendre symbol (%), fora € Zy,tobe lifaisa
quadratic residue modulo p and —1 otherwise. Prove that if a € Z7, then

a
(—) = 4?2 (mod p) .
p

Give an efficient algorithm that determines whether a given number «a is a qua-
dratic residue modulo p. Analyze the efficiency of your algorithm.

¢. Prove that if p is a prime of the form 4k + 3 and a is a quadratic residue in Z7,
then a**! mod p is a square root of @, modulo p. How much time is required

to find the square root of a quadratic residue @ modulo p?

d. Describe an efficient randomized algorithm for finding a nonquadratic residue,
modulo an arbitrary prime p, that is, a member of Z that is not a quadratic
residue. How many arithmetic operations does your algorithm require on aver-
age?

Chapter notes

Niven and Zuckerman [265] provide an excellent introduction to elementary num-
ber theory. Knuth [210] contains a good discussion of algorithms for finding the

heé¢eps:/hemanthrajhemu.github.io

Notes for Chapter 31 983

greatest common divisor, as well as other basic number-theoretic algorithms. Bach
[30] and Riesel [295] provide more recent surveys of computational number the-
ory. Dixon [91] gives an overview of factorization and primality testing. The
conference proceedings edited by Pomerance [280] contains several excellent sur-
vey articles. More recently, Bach and Shallit [31] have provided an exceptional
overview of the basics of computational number theory.

Knuth [210] discusses the origin of Euclid’s algorithm. It appears in Book 7,
Propositions 1 and 2, of the Greek mathematician Euclid’s Elements, which was
written around 300 B.C. Euclid’s description may have been derived from an al-
gorithm due to Eudoxus around 375 B.C. Euclid’s algorithm may hold the honor
of being the oldest nontrivial algorithm; it is rivaled only by an algorithm for mul-
tiplication known to the ancient Egyptians. Shallit [312] chronicles the history of
the analysis of Euclid’s algorithm.

Knuth attributes a special case of the Chinese remainder theorem (Theo-
rem 31.27) to the Chinese mathematician Sun-Tstl, who lived sometime between
200 B.C. and A.D. 200—the date is quite uncertain. The same special case was
given by the Greek mathematician Nichomachus around A.D. 100. It was gener-
alized by Chhin Chiu-Shao in 1247. The Chinese remainder theorem was finally
stated and proved in its full generality by L. Euler in 1734.

The randomized primality-testing algorithm presented here is due to Miller [255]
and Rabin [289]; it is the fastest randomized primality-testing algorithm known,
to within constant factors. The proof of Theorem 31.39 is a slight adaptation of
one suggested by Bach [29]. A proof of a stronger result for MILLER-RABIN
was given by Monier [258, 259]. For many years primality-testing was the classic
example of a problem where randomization appeared to be necessary to obtain
an efficient (polynomial-time) algorithm. In 2002, however, Agrawal, Kayal, and
Saxema [4] surprised everyone with their deterministic polynomial-time primality-
testing algorithm. Until then, the fastest deterministic primality testing algorithm
known, due to Cohen and Lenstra [73], ran in time (Ig7)©%'2'2") on input 7, which
is just slightly superpolynomial. Nonetheless, for practical purposes randomized
primality-testing algorithms remain more efficient and are preferred.

The problem of finding large “random” primes is nicely discussed in an article
by Beauchemin, Brassard, Crépeau, Goutier, and Pomerance [36].

The concept of a public-key cryptosystem is due to Diffie and Hellman [87].
The RSA cryptosystem was proposed in 1977 by Rivest, Shamir, and Adleman
[296]. Since then, the field of cryptography has blossomed. Our understanding
of the RSA cryptosystem has deepened, and modern implementations use signif-
icant refinements of the basic techniques presented here. In addition, many new
techniques have been developed for proving cryptosystems to be secure. For ex-
ample, Goldwasser and Micali [142] show that randomization can be an effective
tool in the design of secure public-key encryption schemes. For signature schemes,

heé¢eps:/hemanthrajhemu.github.io

984 Chapter 31 Number-Theoretic Algorithms

Goldwasser, Micali, and Rivest [143] present a digital-signature scheme for which
every conceivable type of forgery is provably as difficult as factoring. Menezes,
van Oorschot, and Vanstone [254] provide an overview of applied cryptography.

The rho heuristic for integer factorization was invented by Pollard [277]. The
version presented here is a variant proposed by Brent [56].

The best algorithms for factoring large numbers have a running time that grows
roughly exponentially with the cube root of the length of the number 7 to be fac-
tored. The general number-field sieve factoring algorithm (as developed by Buh-
ler, Lenstra, and Pomerance [57] as an extension of the ideas in the number-field
sieve factoring algorithm by Pollard [278] and Lenstra et al. [232] and refined by
Coppersmith [77] and others) is perhaps the most efficient such algorithm in gen-
eral for large inputs. Although it is difficult to give a rigorous analysis of this
algorithm, under reasonable assumptions we can derive a running-time estimate of
L(1/3,}’l)1'902+0(1), where L(o,n) = e(nm)*(nlnn)! =

The elliptic-curve method due to Lenstra [233] may be more effective for some
inputs than the number-field sieve method, since, like Pollard’s rho method, it can
find a small prime factor p quite quickly. With this method, the time to find p is
estimated to be L(1/2, p)¥2to®.

heé¢eps:/hemanthrajhemu.github.io

