FUTURE VISION BIE

One Stop for All Study Materials
8\% Lab Prograns

Firure Vision

By K B Hemanth Raj

Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Grain Access to All Study Materials accordling to $\mathbb{V T U}$, Currently for CSE - Computer Science Engineering...

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/

THOMAS H. CORMEN CHARLES E. LEISERSON RONALD L. RIVEST CLIFFORD STEIN

INTRODUCTION TO
V Advanced Data Structures
Introduction 481
18 B-Trees 484
18.1 Definition of B-trees 488
18.2 Basic operations on B-trees 491
18.3 Deleting a key from a B-tree 499
19 Fibonacci Heaps 505
19.1 Structure of Fibonacci heaps 507
19.2 Mergeable-heap operations 510
19.3 Decreasing a key and deleting a node 518
19.4 Bounding the maximum degree 523
20 van Emde Boas Trees 531
20.1 Preliminary approaches 532
20.2 A recursive structure 536
20.3 The van Emde Boas tree 545
21 Data Structures for Disjoint Sets 561
21.1 Disjoint-set operations 561
21.2 Linked-list representation of disjoint sets 564
21.3 Disjoint-set forests 568
^ 21.4 Analysis of union by rank with path compression 573
VI Graph Algorithms
Introduction 587
22 Elementary Graph Algorithms 589
22.1 Representations of graphs 589
22.2 Breadth-first search 594
22.3 Depth-first search 603
22.4 Topological sort 612
22.5 Strongly connected components 615
23 Minimum Spanning Trees 624
23.1 Growing a minimum spanning tree 625
23.2 The algorithms of Kruskal and Prim 631
24 Single-Source Shortest Paths 643
24.1 The Bellman-Ford algorithm 651
24.2 Single-source shortest paths in directed acyclic graphs 655
24.3 Dijkstra's algorithm 658
24.4 Difference constraints and shortest paths 664
24.5 Proofs of shortest-paths properties 671
25 All-Pairs Shortest Paths 684
25.1 Shortest paths and matrix multiplication 686
25.2 The Floyd-Warshall algorithm 693
25.3 Johnson's algorithm for sparse graphs 700
26 Maximum Flow 708
26.1 Flow networks 709
26.2 The Ford-Fulkerson method 714
26.3 Maximum bipartite matching 732
^ 26.4 Push-relabel algorithms 736
^ 26.5 The relabel-to-front algorithm 748
VII Selected Topics
Introduction 769
27 Multithreaded Algorithms 772
27.1 The basics of dynamic multithreading 774
27.2 Multithreaded matrix multiplication 792
27.3 Multithreaded merge sort 797
28 Matrix Operations 813
28.1 Solving systems of linear equations 813
28.2 Inverting matrices 827
28.3 Symmetric positive-definite matrices and least-squares approximation 832
29 Linear Programming 843
29.1 Standard and slack forms 850
29.2 Formulating problems as linear programs 859
29.3 The simplex algorithm 864
29.4 Duality 879
29.5 The initial basic feasible solution 886
30 Polynomials and the FFT 898
30.1 Representing polynomials 900
30.2 The DFT and FFT 906
30.3 Efficient FFT implementations 915
31 Number-Theoretic Algorithms 926
31.1 Elementary number-theoretic notions 927
31.2 Greatest common divisor 933
31.3 Modular arithmetic 939
31.4 Solving modular linear equations 946
31.5 The Chinese remainder theorem 950
31.6 Powers of an element 954
31.7 The RSA public-key cryptosystem 958
\star 31.8 Primality testing 965
^ 31.9 Integer factorization 975
32 String Matching 985
32.1 The naive string-matching algorithm 988
32.2 The Rabin-Karp algorithm 990
32.3 String matching with finite automata 995
ฝ 32.4 The Knuth-Morris-Pratt algorithm 1002
33 Computational Geometry 1014
33.1 Line-segment properties 1015
33.2 Determining whether any pair of segments intersects 1021
33.3 Finding the convex hull 1029
33.4 Finding the closest pair of points 1039
34 NP-Completeness 1048
34.1 Polynomial time 1053
34.2 Polynomial-time verification 1061
34.3 NP-completeness and reducibility 1067
34.4 NP-completeness proofs 1078
34.5 NP-complete problems 1086
35 Approximation Algorithms 1106
35.1 The vertex-cover problem 1108
35.2 The traveling-salesman problem 1111
35.3 The set-covering problem 1117
35.4 Randomization and linear programming 1123
35.5 The subset-sum problem 1128

VI Graph Algorithms

Introduction

Graph problems pervade computer science, and algorithms for working with them are fundamental to the field. Hundreds of interesting computational problems are couched in terms of graphs. In this part, we touch on a few of the more significant ones.

Chapter 22 shows how we can represent a graph in a computer and then discusses algorithms based on searching a graph using either breadth-first search or depthfirst search. The chapter gives two applications of depth-first search: topologically sorting a directed acyclic graph and decomposing a directed graph into its strongly connected components.

Chapter 23 describes how to compute a minimum-weight spanning tree of a graph: the least-weight way of connecting all of the vertices together when each edge has an associated weight. The algorithms for computing minimum spanning trees serve as good examples of greedy algorithms (see Chapter 16).

Chapters 24 and 25 consider how to compute shortest paths between vertices when each edge has an associated length or "weight." Chapter 24 shows how to find shortest paths from a given source vertex to all other vertices, and Chapter 25 examines methods to compute shortest paths between every pair of vertices.

Finally, Chapter 26 shows how to compute a maximum flow of material in a flow network, which is a directed graph having a specified source vertex of material, a specified sink vertex, and specified capacities for the amount of material that can traverse each directed edge. This general problem arises in many forms, and a good algorithm for computing maximum flows can help solve a variety of related problems efficiently.

When we characterize the running time of a graph algorithm on a given graph $G=(V, E)$, we usually measure the size of the input in terms of the number of vertices $|V|$ and the number of edges $|E|$ of the graph. That is, we describe the size of the input with two parameters, not just one. We adopt a common notational convention for these parameters. Inside asymptotic notation (such as O-notation or Θ-notation), and only inside such notation, the symbol V denotes $|V|$ and the symbol E denotes $|E|$. For example, we might say, "the algorithm runs in time $O(V E)$," meaning that the algorithm runs in time $O(|V||E|)$. This convention makes the running-time formulas easier to read, without risk of ambiguity.

Another convention we adopt appears in pseudocode. We denote the vertex set of a graph G by $G . V$ and its edge set by G.E. That is, the pseudocode views vertex and edge sets as attributes of a graph.

22 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph. Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph. A graph-searching algorithm can discover much about the structure of a graph. Many algorithms begin by searching their input graph to obtain this structural information. Several other graph algorithms elaborate on basic graph searching. Techniques for searching a graph lie at the heart of the field of graph algorithms.

Section 22.1 discusses the two most common computational representations of graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a simple graph-searching algorithm called breadth-first search and shows how to create a breadth-first tree. Section 22.3 presents depth-first search and proves some standard results about the order in which depth-first search visits vertices. Section 22.4 provides our first real application of depth-first search: topologically sorting a directed acyclic graph. A second application of depth-first search, finding the strongly connected components of a directed graph, is the topic of Section 22.5.

22.1 Representations of graphs

We can choose between two standard ways to represent a graph $G=(V, E)$: as a collection of adjacency lists or as an adjacency matrix. Either way applies to both directed and undirected graphs. Because the adjacency-list representation provides a compact way to represent sparse graphs-those for which $|E|$ is much less than $|V|^{2}$-it is usually the method of choice. Most of the graph algorithms presented in this book assume that an input graph is represented in adjacencylist form. We may prefer an adjacency-matrix representation, however, when the graph is dense $-|E|$ is close to $|V|^{2}$-or when we need to be able to tell quickly if there is an edge connecting two given vertices. For example, two of the all-pairs

(a)

(b)

	1	2	3	4	5
	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

(c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

(a)

(b)

	1	2	3	4	5	6
	1	0	1	0	1	0
0						
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

(c)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.
shortest-paths algorithms presented in Chapter 25 assume that their input graphs are represented by adjacency matrices.
The adjacency-list representation of a graph $G=(V, E)$ consists of an array $A d j$ of $|V|$ lists, one for each vertex in V. For each $u \in V$, the adjacency list $\operatorname{Adj}[u]$ contains all the vertices v such that there is an edge $(u, v) \in E$. That is, $\operatorname{Adj}[u]$ consists of all the vertices adjacent to u in G. (Alternatively, it may contain pointers to these vertices.) Since the adjacency lists represent the edges of a graph, in pseudocode we treat the array $A d j$ as an attribute of the graph, just as we treat the edge set E. In pseudocode, therefore, we will see notation such as G.Adj[u]. Figure 22.1(b) is an adjacency-list representation of the undirected graph in Figure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is $|E|$, since an edge of the form (u, v) is represented by having v appear in $\operatorname{Adj}[u]$. If G is
an undirected graph, the sum of the lengths of all the adjacency lists is $2|E|$, since if (u, v) is an undirected edge, then u appears in v 's adjacency list and vice versa. For both directed and undirected graphs, the adjacency-list representation has the desirable property that the amount of memory it requires is $\Theta(V+E)$.

We can readily adapt adjacency lists to represent weighted graphs, that is, graphs for which each edge has an associated weight, typically given by a weight function $w: E \rightarrow \mathbb{R}$. For example, let $G=(V, E)$ be a weighted graph with weight function w. We simply store the weight $w(u, v)$ of the edge $(u, v) \in E$ with vertex v in u 's adjacency list. The adjacency-list representation is quite robust in that we can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides no quicker way to determine whether a given edge (u, v) is present in the graph than to search for v in the adjacency list $\operatorname{Adj}[u]$. An adjacency-matrix representation of the graph remedies this disadvantage, but at the cost of using asymptotically more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists that permit faster edge lookup.)

For the adjacency-matrix representation of a graph $G=(V, E)$, we assume that the vertices are numbered $1,2, \ldots,|V|$ in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a $|V| \times|V|$ matrix $A=\left(a_{i j}\right)$ such that
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E, \\ 0 & \text { otherwise } .\end{cases}$
Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and directed graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of a graph requires $\Theta\left(V^{2}\right)$ memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Figure 22.1(c). Since in an undirected graph, (u, v) and (v, u) represent the same edge, the adjacency matrix A of an undirected graph is its own transpose: $A=A^{\mathrm{T}}$. In some applications, it pays to store only the entries on and above the diagonal of the adjacency matrix, thereby cutting the memory needed to store the graph almost in half.

Like the adjacency-list representation of a graph, an adjacency matrix can represent a weighted graph. For example, if $G=(V, E)$ is a weighted graph with edgeweight function w, we can simply store the weight $w(u, v)$ of the edge $(u, v) \in E$ as the entry in row u and column v of the adjacency matrix. If an edge does not exist, we can store a NIL value as its corresponding matrix entry, though for many problems it is convenient to use a value such as 0 or ∞.

Although the adjacency-list representation is asymptotically at least as spaceefficient as the adjacency-matrix representation, adjacency matrices are simpler, and so we may prefer them when graphs are reasonably small. Moreover, adja-
cency matrices carry a further advantage for unweighted graphs: they require only one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices and/or edges. We indicate these attributes using our usual notation, such as v.d for an attribute d of a vertex ν. When we indicate edges as pairs of vertices, we use the same style of notation. For example, if edges have an attribute f, then we denote this attribute for edge (u, v) by $(u, v) . f$. For the purpose of presenting and understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story entirely. There is no one best way to store and access vertex and edge attributes. For a given situation, your decision will likely depend on the programming language you are using, the algorithm you are implementing, and how the rest of your program uses the graph. If you represent a graph using adjacency lists, one design represents vertex attributes in additional arrays, such as an array $d[1 . .|V|]$ that parallels the Adj array. If the vertices adjacent to u are in $\operatorname{Adj}[u]$, then what we call the attribute $u . d$ would actually be stored in the array entry $d[u]$. Many other ways of implementing attributes are possible. For example, in an object-oriented programming language, vertex attributes might be represented as instance variables within a subclass of a Vertex class.

Exercises

22.1-1

Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees?

22.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7 as in a binary heap.

22.1-3

The transpose of a directed graph $G=(V, E)$ is the graph $G^{\mathrm{T}}=\left(V, E^{\mathrm{T}}\right)$, where $E^{\mathrm{T}}=\{(v, u) \in V \times V:(u, v) \in E\}$. Thus, G^{T} is G with all its edges reversed. Describe efficient algorithms for computing G^{T} from G, for both the adjacencylist and adjacency-matrix representations of G. Analyze the running times of your algorithms.

22.1-4

Given an adjacency-list representation of a multigraph $G=(V, E)$, describe an $O(V+E)$-time algorithm to compute the adjacency-list representation of the "equivalent" undirected graph $G^{\prime}=\left(V, E^{\prime}\right)$, where E^{\prime} consists of the edges in E with all multiple edges between two vertices replaced by a single edge and with all self-loops removed.

22.1-5

The square of a directed graph $G=(V, E)$ is the graph $G^{2}=\left(V, E^{2}\right)$ such that $(u, v) \in E^{2}$ if and only G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^{2} from G for both the adjacencylist and adjacency-matrix representations of G. Analyze the running times of your algorithms.

22.1-6

Most graph algorithms that take an adjacency-matrix representation as input require time $\Omega\left(V^{2}\right)$, but there are some exceptions. Show how to determine whether a directed graph G contains a universal sink-a vertex with in-degree $|V|-1$ and out-degree 0 -in time $O(V)$, given an adjacency matrix for G.

22.1-7

The incidence matrix of a directed graph $G=(V, E)$ with no self-loops is a $|V| \times|E|$ matrix $B=\left(b_{i j}\right)$ such that
$b_{i j}= \begin{cases}-1 & \text { if edge } j \text { leaves vertex } i, \\ 1 & \text { if edge } j \text { enters vertex } i, \\ 0 & \text { otherwise } .\end{cases}$
Describe what the entries of the matrix product $B B^{\mathrm{T}}$ represent, where B^{T} is the transpose of B.

22.1-8

Suppose that instead of a linked list, each array entry $\operatorname{Adj}[u]$ is a hash table containing the vertices v for which $(u, v) \in E$. If all edge lookups are equally likely, what is the expected time to determine whether an edge is in the graph? What disadvantages does this scheme have? Suggest an alternate data structure for each edge list that solves these problems. Does your alternative have disadvantages compared to the hash table?

22.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph and the archetype for many important graph algorithms. Prim's minimum-spanningtree algorithm (Section 23.2) and Dijkstra's single-source shortest-paths algorithm (Section 24.3) use ideas similar to those in breadth-first search.

Given a graph $G=(V, E)$ and a distinguished source vertex s, breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from s. It computes the distance (smallest number of edges) from s to each reachable vertex. It also produces a "breadth-first tree" with root s that contains all reachable vertices. For any vertex v reachable from s, the simple path in the breadth-first tree from s to v corresponds to a "shortest path" from s to v in G, that is, a path containing the smallest number of edges. The algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier. That is, the algorithm discovers all vertices at distance k from s before discovering any vertices at distance $k+1$.

To keep track of progress, breadth-first search colors each vertex white, gray, or black. All vertices start out white and may later become gray and then black. A vertex is discovered the first time it is encountered during the search, at which time it becomes nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first search distinguishes between them to ensure that the search proceeds in a breadth-first manner. ${ }^{1}$ If $(u, v) \in E$ and vertex u is black, then vertex v is either gray or black; that is, all vertices adjacent to black vertices have been discovered. Gray vertices may have some adjacent white vertices; they represent the frontier between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing only its root, which is the source vertex s. Whenever the search discovers a white vertex v in the course of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge (u, v) are added to the tree. We say that u is the predecessor or parent of v in the breadth-first tree. Since a vertex is discovered at most once, it has at most one parent. Ancestor and descendant relationships in the breadth-first tree are defined relative to the root s as usual: if u is on the simple path in the tree from the root s to vertex v, then u is an ancestor of v and v is a descendant of u.

[^0]The breadth-first-search procedure BFS below assumes that the input graph $G=(V, E)$ is represented using adjacency lists. It attaches several additional attributes to each vertex in the graph. We store the color of each vertex $u \in V$ in the attribute u.color and the predecessor of u in the attribute $u . \pi$. If u has no predecessor (for example, if $u=s$ or u has not been discovered), then $u . \pi=$ NIL. The attribute $u . d$ holds the distance from the source s to vertex u computed by the algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1) to manage the set of gray vertices.
$\operatorname{BFS}(G, s)$

```
for each vertex \(u \in G . V-\{s\}\)
    u.color \(=\) WHITE
    u. \(d=\infty\)
    \(u . \pi=\mathrm{NIL}\)
s.color \(=\) GRAY
s. \(d=0\)
\(s . \pi=\mathrm{NIL}\)
\(Q=\emptyset\)
Enqueue \((Q, s)\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{DEQUEUE}(Q)\)
    for each \(v \in G . \operatorname{Adj}[u]\)
        if \(v\). color \(==\) WHITE
            v.color \(=\) GRAY
            v. \(d=u . d+1\)
            \(\nu . \pi=u\)
            EnQueue \((Q, v)\)
    \(u\). color \(=\) BLACK
```

Figure 22.3 illustrates the progress of BFS on a sample graph.
The procedure BFS works as follows. With the exception of the source vertex s, lines 1-4 paint every vertex white, set u. d to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be discovered as the procedure begins. Line 6 initializes s.d to 0 , and line 7 sets the predecessor of the source to be NIL. Lines $8-9$ initialize Q to the queue containing just the vertex s.

The while loop of lines $10-18$ iterates as long as there remain gray vertices, which are discovered vertices that have not yet had their adjacency lists fully examined. This while loop maintains the following invariant:

At the test in line 10 , the queue Q consists of the set of gray vertices.
(a)

(b)

Q| w | r |
| :---: | :---: |
| 1 | 1 |

(d)

Q| t | x | v |
| :---: | :---: | :---: |
| 2 | 2 | 2 |

(c)

(f)

Q| v | u | y |
| :---: | :---: | :---: |
| 2 | 3 | 3 |

(h)

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. The value of u. d appears within each vertex u. The queue Q is shown at the beginning of each iteration of the while loop of lines $10-18$. Vertex distances appear below vertices in the queue.

Although we won't use this loop invariant to prove correctness, it is easy to see that it holds prior to the first iteration and that each iteration of the loop maintains the invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and removes it from Q. The for loop of lines 12-17 considers each vertex v in the adjacency list of u. If v is white, then it has not yet been discovered, and the procedure discovers it by executing lines $14-17$. The procedure paints vertex v gray, sets its distance $v . d$ to $u . d+1$, records u as its parent $v . \pi$, and places it at the tail of the queue Q. Once the procedure has examined all the vertices on u 's
adjacency list, it blackens u in line 18. The loop invariant is maintained because whenever a vertex is painted gray (in line 14) it is also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also painted black (in line 18).

The results of breadth-first search may depend upon the order in which the neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the distances d computed by the algorithm will not. (See Exercise 22.2-5.)

Analysis

Before proving the various properties of breadth-first search, we take on the somewhat easier job of analyzing its running time on an input graph $G=(V, E)$. We use aggregate analysis, as we saw in Section 17.1. After initialization, breadth-first search never whitens a vertex, and thus the test in line 13 ensures that each vertex is enqueued at most once, and hence dequeued at most once. The operations of enqueuing and dequeuing take $O(1)$ time, and so the total time devoted to queue operations is $O(V)$. Because the procedure scans the adjacency list of each vertex only when the vertex is dequeued, it scans each adjacency list at most once. Since the sum of the lengths of all the adjacency lists is $\Theta(E)$, the total time spent in scanning adjacency lists is $O(E)$. The overhead for initialization is $O(V)$, and thus the total running time of the BFS procedure is $O(V+E)$. Thus, breadth-first search runs in time linear in the size of the adjacency-list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds the distance to each reachable vertex in a graph $G=(V, E)$ from a given source vertex $s \in V$. Define the shortest-path distance $\delta(s, v)$ from s to v as the minimum number of edges in any path from vertex s to vertex v; if there is no path from s to v, then $\delta(s, v)=\infty$. We call a path of length $\delta(s, v)$ from s to v a shortest path ${ }^{2}$ from s to ν. Before showing that breadth-first search correctly computes shortestpath distances, we investigate an important property of shortest-path distances.

[^1]
Lemma 22.1

Let $G=(V, E)$ be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u, v) \in E$,
$\delta(s, v) \leq \delta(s, u)+1$.

Proof If u is reachable from s, then so is v. In this case, the shortest path from s to v cannot be longer than the shortest path from s to u followed by the edge (u, v), and thus the inequality holds. If u is not reachable from s, then $\delta(s, u)=\infty$, and the inequality holds.

We want to show that BFS properly computes $v . d=\delta(s, v)$ for each vertex $v \in V$. We first show that $v . d$ bounds $\delta(s, v)$ from above.

Lemma 22.2

Let $G=(V, E)$ be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then upon termination, for each vertex $v \in V$, the value $v . d$ computed by BFS satisfies $v . d \geq \delta(s, v)$.

Proof We use induction on the number of EnQUEUE operations. Our inductive hypothesis is that $v . d \geq \delta(s, v)$ for all $v \in V$.

The basis of the induction is the situation immediately after enqueuing s in line 9 of BFS. The inductive hypothesis holds here, because $s . d=0=\delta(s, s)$ and $v . d=\infty \geq \delta(s, v)$ for all $v \in V-\{s\}$.

For the inductive step, consider a white vertex v that is discovered during the search from a vertex u. The inductive hypothesis implies that $u . d \geq \delta(s, u)$. From the assignment performed by line 15 and from Lemma 22.1, we obtain

$$
\begin{aligned}
v . d & =u \cdot d+1 \\
& \geq \delta(s, u)+1 \\
& \geq \delta(s, v) .
\end{aligned}
$$

Vertex v is then enqueued, and it is never enqueued again because it is also grayed and the then clause of lines $14-17$ is executed only for white vertices. Thus, the value of $v . d$ never changes again, and the inductive hypothesis is maintained.

To prove that $v . d=\delta(s, v)$, we must first show more precisely how the queue Q operates during the course of BFS. The next lemma shows that at all times, the queue holds at most two distinct d values.

Lemma 22.3

Suppose that during the execution of BFS on a graph $G=(V, E)$, the queue Q contains the vertices $\left\langle v_{1}, \nu_{2}, \ldots, v_{r}\right\rangle$, where ν_{1} is the head of Q and ν_{r} is the tail. Then, $v_{r} . d \leq v_{1} . d+1$ and $v_{i} . d \leq v_{i+1} . d$ for $i=1,2, \ldots, r-1$.

Proof The proof is by induction on the number of queue operations. Initially, when the queue contains only s, the lemma certainly holds.

For the inductive step, we must prove that the lemma holds after both dequeuing and enqueuing a vertex. If the head ν_{1} of the queue is dequeued, ν_{2} becomes the new head. (If the queue becomes empty, then the lemma holds vacuously.) By the inductive hypothesis, $v_{1} . d \leq \nu_{2} . d$. But then we have $v_{r} . d \leq v_{1} . d+1 \leq \nu_{2} . d+1$, and the remaining inequalities are unaffected. Thus, the lemma follows with ν_{2} as the head.

In order to understand what happens upon enqueuing a vertex, we need to examine the code more closely. When we enqueue a vertex v in line 17 of BFS, it becomes v_{r+1}. At that time, we have already removed vertex u, whose adjacency list is currently being scanned, from the queue Q, and by the inductive hypothesis, the new head v_{1} has $v_{1} . d \geq u . d$. Thus, $v_{r+1} . d=v . d=u . d+1 \leq v_{1} . d+1$. From the inductive hypothesis, we also have $v_{r} . d \leq u . d+1$, and so $v_{r} . d \leq u . d+1=$ $v . d=v_{r+1} \cdot d$, and the remaining inequalities are unaffected. Thus, the lemma follows when v is enqueued.

The following corollary shows that the d values at the time that vertices are enqueued are monotonically increasing over time.

Corollary 22.4

Suppose that vertices v_{i} and v_{j} are enqueued during the execution of BFS, and that v_{i} is enqueued before v_{j}. Then $v_{i} . d \leq v_{j} . d$ at the time that v_{j} is enqueued.

Proof Immediate from Lemma 22.3 and the property that each vertex receives a finite d value at most once during the course of BFS.

We can now prove that breadth-first search correctly finds shortest-path distances.

Theorem 22.5 (Correctness of breadth-first search)

Let $G=(V, E)$ be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source s, and upon termination, $\nu . d=\delta(s, v)$ for all $v \in V$. Moreover, for any vertex $v \neq s$ that is reachable
from s, one of the shortest paths from s to v is a shortest path from s to $v . \pi$ followed by the edge ($\nu . \pi, \nu$).

Proof Assume, for the purpose of contradiction, that some vertex receives a d value not equal to its shortest-path distance. Let v be the vertex with minimum $\delta(s, v)$ that receives such an incorrect d value; clearly $v \neq s$. By Lemma 22.2, v. $d \geq \delta(s, v)$, and thus we have that $v . d>\delta(s, v)$. Vertex v must be reachable from s, for if it is not, then $\delta(s, v)=\infty \geq v . d$. Let u be the vertex immediately preceding v on a shortest path from s to v, so that $\delta(s, v)=\delta(s, u)+1$. Because $\delta(s, u)<\delta(s, v)$, and because of how we chose v, we have $u . d=\delta(s, u)$. Putting these properties together, we have
v. $d>\delta(s, v)=\delta(s, u)+1=u . d+1$.

Now consider the time when BFS chooses to dequeue vertex u from Q in line 11. At this time, vertex v is either white, gray, or black. We shall show that in each of these cases, we derive a contradiction to inequality (22.1). If v is white, then line 15 sets $v . d=u . d+1$, contradicting inequality (22.1). If v is black, then it was already removed from the queue and, by Corollary 22.4, we have $v . d \leq u . d$, again contradicting inequality (22.1). If v is gray, then it was painted gray upon dequeuing some vertex w, which was removed from Q earlier than u and for which $v . d=w . d+1$. By Corollary 22.4, however, $w . d \leq u . d$, and so we have $v . d=w \cdot d+1 \leq u . d+1$, once again contradicting inequality (22.1).

Thus we conclude that $v . d=\delta(s, v)$ for all $v \in V$. All vertices v reachable from s must be discovered, for otherwise they would have $\infty=v . d>\delta(s, v)$. To conclude the proof of the theorem, observe that if $v . \pi=u$, then $v . d=u . d+1$. Thus, we can obtain a shortest path from s to v by taking a shortest path from s to $v . \pi$ and then traversing the edge $(\nu . \pi, \nu)$.

Breadth-first trees

The procedure BFS builds a breadth-first tree as it searches the graph, as Figure 22.3 illustrates. The tree corresponds to the π attributes. More formally, for a graph $G=(V, E)$ with source s, we define the predecessor subgraph of G as $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, where
$V_{\pi}=\{\nu \in V: \nu . \pi \neq \mathrm{NIL}\} \cup\{s\}$
and
$E_{\pi}=\left\{(\nu . \pi, \nu): \nu \in V_{\pi}-\{s\}\right\}$.
The predecessor subgraph G_{π} is a breadth-first tree if V_{π} consists of the vertices reachable from s and, for all $\nu \in V_{\pi}$, the subgraph G_{π} contains a unique simple
path from s to v that is also a shortest path from s to v in G. A breadth-first tree is in fact a tree, since it is connected and $\left|E_{\pi}\right|=\left|V_{\pi}\right|-1$ (see Theorem B.2). We call the edges in E_{π} tree edges.

The following lemma shows that the predecessor subgraph produced by the BFS procedure is a breadth-first tree.

Lemma 22.6

When applied to a directed or undirected graph $G=(V, E)$, procedure BFS constructs π so that the predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ is a breadth-first tree.

Proof Line 16 of BFS sets $v . \pi=u$ if and only if $(u, v) \in E$ and $\delta(s, v)<\infty-$ that is, if v is reachable from s-and thus V_{π} consists of the vertices in V reachable from s. Since G_{π} forms a tree, by Theorem B.2, it contains a unique simple path from s to each vertex in V_{π}. By applying Theorem 22.5 inductively, we conclude that every such path is a shortest path in G.

The following procedure prints out the vertices on a shortest path from s to v, assuming that BFS has already computed a breadth-first tree:
$\operatorname{Print-Path~}(G, s, v)$

```
if \(v==s\)
    print \(s\)
elseif \(v . \pi==\mathrm{NIL}\)
    print "no path from" \(s\) "to" \(v\) "exists"
else PRInt-PATH ( \(G, s, \nu . \pi\) )
    print \(v\)
```

This procedure runs in time linear in the number of vertices in the path printed, since each recursive call is for a path one vertex shorter.

Exercises

22.2-1

Show the d and π values that result from running breadth-first search on the directed graph of Figure 22.2(a), using vertex 3 as the source.

22.2-2

Show the d and π values that result from running breadth-first search on the undirected graph of Figure 22.3, using vertex u as the source.

22.2-3

Show that using a single bit to store each vertex color suffices by arguing that the BFS procedure would produce the same result if lines 5 and 14 were removed.

22.2-4

What is the running time of BFS if we represent its input graph by an adjacency matrix and modify the algorithm to handle this form of input?

22.2-5

Argue that in a breadth-first search, the value $u . d$ assigned to a vertex u is independent of the order in which the vertices appear in each adjacency list. Using Figure 22.3 as an example, show that the breadth-first tree computed by BFS can depend on the ordering within adjacency lists.

22.2-6

Give an example of a directed graph $G=(V, E)$, a source vertex $s \in V$, and a set of tree edges $E_{\pi} \subseteq E$ such that for each vertex $v \in V$, the unique simple path in the graph $\left(V, E_{\pi}\right)$ from s to v is a shortest path in G, yet the set of edges E_{π} cannot be produced by running BFS on G, no matter how the vertices are ordered in each adjacency list.

22.2-7

There are two types of professional wrestlers: "babyfaces" ("good guys") and "heels" ("bad guys"). Between any pair of professional wrestlers, there may or may not be a rivalry. Suppose we have n professional wrestlers and we have a list of r pairs of wrestlers for which there are rivalries. Give an $O(n+r)$-time algorithm that determines whether it is possible to designate some of the wrestlers as babyfaces and the remainder as heels such that each rivalry is between a babyface and a heel. If it is possible to perform such a designation, your algorithm should produce it.

22.2-8 *

The diameter of a tree $T=(V, E)$ is defined as $\max _{u, v \in V} \delta(u, v)$, that is, the largest of all shortest-path distances in the tree. Give an efficient algorithm to compute the diameter of a tree, and analyze the running time of your algorithm.
22.2-9

Let $G=(V, E)$ be a connected, undirected graph. Give an $O(V+E)$-time algorithm to compute a path in G that traverses each edge in E exactly once in each direction. Describe how you can find your way out of a maze if you are given a large supply of pennies.

22.3 Depth-first search

The strategy followed by depth-first search is, as its name implies, to search "deeper" in the graph whenever possible. Depth-first search explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it. Once all of v 's edges have been explored, the search "backtracks" to explore edges leaving the vertex from which v was discovered. This process continues until we have discovered all the vertices that are reachable from the original source vertex. If any undiscovered vertices remain, then depth-first search selects one of them as a new source, and it repeats the search from that source. The algorithm repeats this entire process until it has discovered every vertex. ${ }^{3}$

As in breadth-first search, whenever depth-first search discovers a vertex v during a scan of the adjacency list of an already discovered vertex u, it records this event by setting v 's predecessor attribute $v . \pi$ to u. Unlike breadth-first search, whose predecessor subgraph forms a tree, the predecessor subgraph produced by a depth-first search may be composed of several trees, because the search may repeat from multiple sources. Therefore, we define the predecessor subgraph of a depth-first search slightly differently from that of a breadth-first search: we let $G_{\pi}=\left(V, E_{\pi}\right)$, where
$E_{\pi}=\{(\nu . \pi, \nu): \nu \in V$ and $\nu . \pi \neq \mathrm{NIL}\}$.
The predecessor subgraph of a depth-first search forms a depth-first forest comprising several depth-first trees. The edges in E_{π} are tree edges.

As in breadth-first search, depth-first search colors vertices during the search to indicate their state. Each vertex is initially white, is grayed when it is discovered in the search, and is blackened when it is finished, that is, when its adjacency list has been examined completely. This technique guarantees that each vertex ends up in exactly one depth-first tree, so that these trees are disjoint.

Besides creating a depth-first forest, depth-first search also timestamps each vertex. Each vertex v has two timestamps: the first timestamp $v . d$ records when v is first discovered (and grayed), and the second timestamp $\nu . f$ records when the search finishes examining v 's adjacency list (and blackens v). These timestamps

[^2]provide important information about the structure of the graph and are generally helpful in reasoning about the behavior of depth-first search.

The procedure DFS below records when it discovers vertex u in the attribute $u . d$ and when it finishes vertex u in the attribute u.f. These timestamps are integers between 1 and $2|V|$, since there is one discovery event and one finishing event for each of the $|V|$ vertices. For every vertex u,
$u . d<u . f$.
Vertex u is White before time $u . d$, GRAY between time $u . d$ and time $u . f$, and BLACK thereafter.

The following pseudocode is the basic depth-first-search algorithm. The input graph G may be undirected or directed. The variable time is a global variable that we use for timestamping.

DFS(G)

```
for each vertex \(u \in G . V\)
    u.color \(=\) WHITE
    \(u . \pi=\mathrm{NIL}\)
time \(=0\)
for each vertex \(u \in G . V\)
    if \(u\). color \(==\) WHITE
            \(\operatorname{DFS}-\operatorname{Visit}(G, u)\)
```

$\operatorname{DFS}-\operatorname{Visit}(G, u)$

```
time \(=\) time \(+1 \quad / /\) white vertex \(u\) has just been discovered
u.d \(=\) time
u.color \(=\) GRAY
for each \(v \in G . \operatorname{Adj}[u] \quad / /\) explore edge \((u, v)\)
    if \(v\). color \(==\) WHITE
        \(\nu . \pi=u\)
        \(\operatorname{DFS}-\operatorname{Visit}(G, \nu)\)
    \(u\).color \(=\) BLACK // blacken \(u\); it is finished
    time \(=\) time +1
    u. \(f=\) time
```

Figure 22.4 illustrates the progress of DFS on the graph shown in Figure 22.2.
Procedure DFS works as follows. Lines $1-3$ paint all vertices white and initialize their π attributes to NIL. Line 4 resets the global time counter. Lines 5-7 check each vertex in V in turn and, when a white vertex is found, visit it using DFS-Visit. Every time $\operatorname{DFS}-\operatorname{Visit}(G, u)$ is called in line 7, vertex u becomes

(a)

(e)

(b)

(f)

(j)

(n)

(c)

(g)

(k)

(o)

(d)

(h)

(1)

(p)

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Timestamps within vertices indicate discovery time/finishing times.
the root of a new tree in the depth-first forest. When DFS returns, every vertex u has been assigned a discovery time u.d and a finishing time u.f.

In each call DFS-Visit (G, u), vertex u is initially white. Line 1 increments the global variable time, line 2 records the new value of time as the discovery time $u . d$, and line 3 paints u gray. Lines 4-7 examine each vertex v adjacent to u and recursively visit v if it is white. As each vertex $v \in \operatorname{Adj}[u]$ is considered in line 4, we say that edge (u, v) is explored by the depth-first search. Finally, after every edge leaving u has been explored, lines $8-10$ paint u black, increment time, and record the finishing time in $u . f$.

Note that the results of depth-first search may depend upon the order in which line 5 of DFS examines the vertices and upon the order in which line 4 of DFSVISIT visits the neighbors of a vertex. These different visitation orders tend not
to cause problems in practice, as we can usually use any depth-first search result effectively, with essentially equivalent results.

What is the running time of DFS? The loops on lines $1-3$ and lines $5-7$ of DFS take time $\Theta(V)$, exclusive of the time to execute the calls to DFS-VISIT. As we did for breadth-first search, we use aggregate analysis. The procedure DFS-VISIT is called exactly once for each vertex $v \in V$, since the vertex u on which DFS-VISIT is invoked must be white and the first thing DFS-VISIT does is paint vertex u gray. During an execution of DFS-VISIT (G, v), the loop on lines 4-7 executes $|\operatorname{Adj}[\nu]|$ times. Since
$\sum_{v \in V}|\operatorname{Adj}[\nu]|=\Theta(E)$,
the total cost of executing lines 4-7 of DFS-Visit is $\Theta(E)$. The running time of DFS is therefore $\Theta(V+E)$.

Properties of depth-first search

Depth-first search yields valuable information about the structure of a graph. Perhaps the most basic property of depth-first search is that the predecessor subgraph G_{π} does indeed form a forest of trees, since the structure of the depthfirst trees exactly mirrors the structure of recursive calls of DFS-VISIT. That is, $u=\nu \cdot \pi$ if and only if $\operatorname{DFS}-\operatorname{Visit}(G, v)$ was called during a search of u 's adjacency list. Additionally, vertex v is a descendant of vertex u in the depth-first forest if and only if v is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery and finishing times have parenthesis structure. If we represent the discovery of vertex u with a left parenthesis " $(u$ " and represent its finishing by a right parenthesis " u)", then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested. For example, the depth-first search of Figure 22.5(a) corresponds to the parenthesization shown in Figure 22.5(b). The following theorem provides another way to characterize the parenthesis structure.

Theorem 22.7 (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph $G=(V, E)$, for any two vertices u and v, exactly one of the following three conditions holds:

- the intervals $[u . d, u . f]$ and $[v . d, v . f]$ are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest,
- the interval $[u . d, u . f]$ is contained entirely within the interval [v.d, v.f], and u is a descendant of v in a depth-first tree, or
- the interval $[v . d, v . f]$ is contained entirely within the interval [u.d,u.f], and v is a descendant of u in a depth-first tree.
(a)

(b)

Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each rectangle spans the interval given by the discovery and finishing times of the corresponding vertex. Only tree edges are shown. If two intervals overlap, then one is nested within the other, and the vertex corresponding to the smaller interval is a descendant of the vertex corresponding to the larger. (c) The graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree and all back edges going up from a descendant to an ancestor.

Proof We begin with the case in which $u . d<v . d$. We consider two subcases, according to whether v.d $<u$.f or not. The first subcase occurs when $v . d<u . f$, so v was discovered while u was still gray, which implies that v is a descendant of u. Moreover, since v was discovered more recently than u, all of its outgoing edges are explored, and v is finished, before the search returns to and finishes u. In this case, therefore, the interval $[\nu . d, v . f]$ is entirely contained within the interval $[u . d, u . f]$. In the other subcase, $u . f<v . d$, and by inequality (22.2), $u . d<u . f<v . d<v . f$; thus the intervals $[u . d, u . f]$ and $[v . d, v . f]$ are disjoint. Because the intervals are disjoint, neither vertex was discovered while the other was gray, and so neither vertex is a descendant of the other.

The case in which $v . d<u . d$ is similar, with the roles of u and v reversed in the above argument.

Corollary 22.8 (Nesting of descendants' intervals)

Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph G if and only if $u . d<v . d<v . f<u . f$.

Proof Immediate from Theorem 22.7.
The next theorem gives another important characterization of when one vertex is a descendant of another in the depth-first forest.

Theorem 22.9 (White-path theorem)

In a depth-first forest of a (directed or undirected) graph $G=(V, E)$, vertex v is a descendant of vertex u if and only if at the time u. d that the search discovers u, there is a path from u to v consisting entirely of white vertices.

Proof \Rightarrow : If $v=u$, then the path from u to v contains just vertex u, which is still white when we set the value of $u . d$. Now, suppose that v is a proper descendant of u in the depth-first forest. By Corollary 22.8, u.d $<v . d$, and so v is white at time u. d. Since v can be any descendant of u, all vertices on the unique simple path from u to v in the depth-first forest are white at time $u . d$.
\Leftarrow : Suppose that there is a path of white vertices from u to v at time $u . d$, but v does not become a descendant of u in the depth-first tree. Without loss of generality, assume that every vertex other than v along the path becomes a descendant of u. (Otherwise, let v be the closest vertex to u along the path that doesn't become a descendant of u.) Let w be the predecessor of v in the path, so that w is a descendant of u (w and u may in fact be the same vertex). By Corollary 22.8, w.f $\leq u . f$. Because v must be discovered after u is discovered, but before w is finished, we have $u . d<v . d<w . f \leq u . f$. Theorem 22.7 then implies that the interval [v.d,v.f]
is contained entirely within the interval $[u . d, u . f]$. By Corollary 22.8, v must after all be a descendant of u.

Classification of edges

Another interesting property of depth-first search is that the search can be used to classify the edges of the input graph $G=(V, E)$. The type of each edge can provide important information about a graph. For example, in the next section, we shall see that a directed graph is acyclic if and only if a depth-first search yields no "back" edges (Lemma 22.11).

We can define four edge types in terms of the depth-first forest G_{π} produced by a depth-first search on G :

1. Tree edges are edges in the depth-first forest G_{π}. Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, ν).
2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree. We consider self-loops, which may occur in directed graphs, to be back edges.
3. Forward edges are those nontree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first trees.

In Figures 22.4 and 22.5, edge labels indicate edge types. Figure 22.5(c) also shows how to redraw the graph of Figure 22.5(a) so that all tree and forward edges head downward in a depth-first tree and all back edges go up. We can redraw any graph in this fashion.

The DFS algorithm has enough information to classify some edges as it encounters them. The key idea is that when we first explore an edge (u, v), the color of vertex v tells us something about the edge:

1. WHITE indicates a tree edge,
2. GRAY indicates a back edge, and
3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm. For the second case, observe that the gray vertices always form a linear chain of descendants corresponding to the stack of active DFS-VISIT invocations; the number of gray vertices is one more than the depth in the depth-first forest of the vertex most recently discovered. Exploration always proceeds from the deepest gray vertex, so
an edge that reaches another gray vertex has reached an ancestor. The third case handles the remaining possibility; Exercise 22.3-5 asks you to show that such an edge (u, v) is a forward edge if $u . d<v . d$ and a cross edge if $u . d>v . d$.

An undirected graph may entail some ambiguity in how we classify edges, since (u, v) and (v, u) are really the same edge. In such a case, we classify the edge as the first type in the classification list that applies. Equivalently (see Exercise 22.3-6), we classify the edge according to whichever of (u, v) or (ν, u) the search encounters first.

We now show that forward and cross edges never occur in a depth-first search of an undirected graph.

Theorem 22.10

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof Let (u, v) be an arbitrary edge of G, and suppose without loss of generality that $u . d<v . d$. Then the search must discover and finish v before it finishes u (while u is gray), since v is on u 's adjacency list. If the first time that the search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from v to u. Thus, (u, v) becomes a tree edge. If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is still gray at the time the edge is first explored.

We shall see several applications of these theorems in the following sections.

Exercises

22.3-1

Make a 3-by-3 chart with row and column labels White, Gray, and black. In each cell (i, j), indicate whether, at any point during a depth-first search of a directed graph, there can be an edge from a vertex of color i to a vertex of color j. For each possible edge, indicate what edge types it can be. Make a second such chart for depth-first search of an undirected graph.

22.3-2

Show how depth-first search works on the graph of Figure 22.6. Assume that the for loop of lines 5-7 of the DFS procedure considers the vertices in alphabetical order, and assume that each adjacency list is ordered alphabetically. Show the discovery and finishing times for each vertex, and show the classification of each edge.

Figure 22.6 A directed graph for use in Exercises 22.3-2 and 22.5-2.

22.3-3

Show the parenthesis structure of the depth-first search of Figure 22.4.

22.3-4

Show that using a single bit to store each vertex color suffices by arguing that the DFS procedure would produce the same result if line 3 of DFS-VISIT was removed.

22.3-5

Show that edge (u, v) is
a. a tree edge or forward edge if and only if $u . d<v . d<v . f<u . f$,
b. a back edge if and only if $v . d \leq u . d<u$. $f \leq v . f$, and
c. a cross edge if and only if $v . d<v . f<u . d<u . f$.

22.3-6

Show that in an undirected graph, classifying an edge (u, v) as a tree edge or a back edge according to whether (u, v) or (v, u) is encountered first during the depth-first search is equivalent to classifying it according to the ordering of the four types in the classification scheme.

22.3-7

Rewrite the procedure DFS, using a stack to eliminate recursion.

22.3-8

Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, and if $u . d<v . d$ in a depth-first search of G, then v is a descendant of u in the depth-first forest produced.

22.3-9

Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, then any depth-first search must result in $v . d \leq u . f$.

22.3-10

Modify the pseudocode for depth-first search so that it prints out every edge in the directed graph G, together with its type. Show what modifications, if any, you need to make if G is undirected.

22.3-11

Explain how a vertex u of a directed graph can end up in a depth-first tree containing only u, even though u has both incoming and outgoing edges in G.

22.3-12

Show that we can use a depth-first search of an undirected graph G to identify the connected components of G, and that the depth-first forest contains as many trees as G has connected components. More precisely, show how to modify depth-first search so that it assigns to each vertex v an integer label $v . c c$ between 1 and k, where k is the number of connected components of G, such that $u . c c=v . c c$ if and only if u and v are in the same connected component.

22.3-13 *

A directed graph $G=(V, E)$ is singly connected if $u \sim v$ implies that G contains at most one simple path from u to v for all vertices $u, v \in V$. Give an efficient algorithm to determine whether or not a directed graph is singly connected.

22.4 Topological sort

This section shows how we can use depth-first search to perform a topological sort of a directed acyclic graph, or a "dag" as it is sometimes called. A topological sort of a dag $G=(V, E)$ is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering. (If the graph contains a cycle, then no linear ordering is possible.) We can view a topological sort of a graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to right. Topological sorting is thus different from the usual kind of "sorting" studied in Part II.

Many applications use directed acyclic graphs to indicate precedences among events. Figure 22.7 gives an example that arises when Professor Bumstead gets dressed in the morning. The professor must don certain garments before others (e.g., socks before shoes). Other items may be put on in any order (e.g., socks and
(a)

(b)

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each directed edge (u, v) means that garment u must be put on before garment v. The discovery and finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time. All directed edges go from left to right.
pants). A directed edge (u, v) in the dag of Figure 22.7(a) indicates that garment u must be donned before garment ν. A topological sort of this dag therefore gives an order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an ordering of vertices along a horizontal line such that all directed edges go from left to right.

The following simple algorithm topologically sorts a dag:

Topological-Sort (G)

call $\operatorname{DFS}(G)$ to compute finishing times $v . f$ for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices
Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order of their finishing times.

We can perform a topological sort in time $\Theta(V+E)$, since depth-first search takes $\Theta(V+E)$ time and it takes $O(1)$ time to insert each of the $|V|$ vertices onto the front of the linked list.

We prove the correctness of this algorithm using the following key lemma characterizing directed acyclic graphs.

Lemma 22.11

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Proof \Rightarrow : Suppose that a depth-first search produces a back edge (u, v). Then vertex v is an ancestor of vertex u in the depth-first forest. Thus, G contains a path from v to u, and the back edge (u, v) completes a cycle.
\Leftarrow : Suppose that G contains a cycle c. We show that a depth-first search of G yields a back edge. Let v be the first vertex to be discovered in c, and let (u, v) be the preceding edge in c. At time $v . d$, the vertices of c form a path of white vertices from v to u. By the white-path theorem, vertex u becomes a descendant of v in the depth-first forest. Therefore, (u, v) is a back edge.

Theorem 22.12

TOPOLOGICAL-SORT produces a topological sort of the directed acyclic graph provided as its input.

Proof Suppose that DFS is run on a given dag $G=(V, E)$ to determine finishing times for its vertices. It suffices to show that for any pair of distinct vertices $u, v \in V$, if G contains an edge from u to v, then $v . f<u$.f. Consider any edge (u, v) explored by $\operatorname{DFS}(G)$. When this edge is explored, v cannot be gray, since then v would be an ancestor of u and (u, v) would be a back edge, contradicting Lemma 22.11. Therefore, v must be either white or black. If v is white, it becomes a descendant of u, and so $v . f<u$.f. If v is black, it has already been finished, so that $\nu . f$ has already been set. Because we are still exploring from u, we have yet to assign a timestamp to $u . f$, and so once we do, we will have $v . f<u . f$ as well. Thus, for any edge (u, v) in the dag, we have $v . f<u . f$, proving the theorem.

Exercises

22.4-1

Show the ordering of vertices produced by Topological-Sort when it is run on the dag of Figure 22.8, under the assumption of Exercise 22.3-2.

22.4-2

Give a linear-time algorithm that takes as input a directed acyclic graph $G=$ (V, E) and two vertices s and t, and returns the number of simple paths from s to t in G. For example, the directed acyclic graph of Figure 22.8 contains exactly four simple paths from vertex p to vertex v : pov, poryv, posryv, and psryv. (Your algorithm needs only to count the simple paths, not list them.)

Figure 22.8 A dag for topological sorting.

22.4-3

Give an algorithm that determines whether or not a given undirected graph $G=$ (V, E) contains a cycle. Your algorithm should run in $O(V)$ time, independent of $|E|$.

22.4-4

Prove or disprove: If a directed graph G contains cycles, then Topological$\operatorname{SORT}(G)$ produces a vertex ordering that minimizes the number of "bad" edges that are inconsistent with the ordering produced.

22.4-5

Another way to perform topological sorting on a directed acyclic graph $G=$ (V, E) is to repeatedly find a vertex of in-degree 0 , output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time $O(V+E)$. What happens to this algorithm if G has cycles?

22.5 Strongly connected components

We now consider a classic application of depth-first search: decomposing a directed graph into its strongly connected components. This section shows how to do so using two depth-first searches. Many algorithms that work with directed graphs begin with such a decomposition. After decomposing the graph into strongly connected components, such algorithms run separately on each one and then combine the solutions according to the structure of connections among components.

Recall from Appendix B that a strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \leadsto v$ and $v \leadsto u$; that is, vertices u and v are reachable from each other. Figure 22.9 shows an example.
(a)

(b)

(c)

Figure 22.9 (a) A directed graph G. Each shaded region is a strongly connected component of G. Each vertex is labeled with its discovery and finishing times in a depth-first search, and tree edges are shaded. (b) The graph G^{T}, the transpose of G, with the depth-first forest computed in line 3 of Strongly-Connected-Components shown and tree edges shaded. Each strongly connected component corresponds to one depth-first tree. Vertices b, c, g, and h, which are heavily shaded, are the roots of the depth-first trees produced by the depth-first search of G^{T}. (c) The acyclic component graph $G^{\text {SCC }}$ obtained by contracting all edges within each strongly connected component of G so that only a single vertex remains in each component.

Our algorithm for finding strongly connected components of a graph $G=$ (V, E) uses the transpose of G, which we defined in Exercise 22.1-3 to be the graph $G^{\mathrm{T}}=\left(V, E^{\mathrm{T}}\right)$, where $E^{\mathrm{T}}=\{(u, v):(v, u) \in E\}$. That is, E^{T} consists of the edges of G with their directions reversed. Given an adjacency-list representation of G, the time to create G^{T} is $O(V+E)$. It is interesting to observe that G and G^{T} have exactly the same strongly connected components: u and v are reachable from each other in G if and only if they are reachable from each other in G^{T}. Figure 22.9(b) shows the transpose of the graph in Figure 22.9(a), with the strongly connected components shaded.

The following linear-time (i.e., $\Theta(V+E)$-time) algorithm computes the strongly connected components of a directed graph $G=(V, E)$ using two depth-first searches, one on G and one on G^{T}.

Strongly-Connected-Components (G)

1 call $\operatorname{DFS}(G)$ to compute finishing times u.f for each vertex u
compute $G^{\text {T }}$
3 call $\operatorname{DFS}\left(G^{\mathrm{T}}\right)$, but in the main loop of DFS, consider the vertices in order of decreasing $u . f$ (as computed in line 1) separate strongly connected component

The idea behind this algorithm comes from a key property of the component graph $G^{\mathrm{SCC}}=\left(V^{\mathrm{SCC}}, E^{\mathrm{SCC}}\right)$, which we define as follows. Suppose that G has strongly connected components $C_{1}, C_{2}, \ldots, C_{k}$. The vertex set $V^{\text {SCC }}$ is $\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\}$, and it contains a vertex ν_{i} for each strongly connected component C_{i} of G. There is an edge $\left(v_{i}, v_{j}\right) \in E^{\mathrm{SCC}}$ if G contains a directed edge (x, y) for some $x \in C_{i}$ and some $y \in C_{j}$. Looked at another way, by contracting all edges whose incident vertices are within the same strongly connected component of G, the resulting graph is G^{SCC}. Figure 22.9 (c) shows the component graph of the graph in Figure 22.9(a).

The key property is that the component graph is a dag, which the following lemma implies.

Lemma 22.13

Let C and C^{\prime} be distinct strongly connected components in directed graph $G=$ (V, E), let $u, v \in C$, let $u^{\prime}, v^{\prime} \in C^{\prime}$, and suppose that G contains a path $u \leadsto u^{\prime}$. Then G cannot also contain a path $\nu^{\prime} \leadsto \nu$.

Proof If G contains a path $v^{\prime} \leadsto v$, then it contains paths $u \leadsto u^{\prime} \leadsto v^{\prime}$ and $v^{\prime} \leadsto v \leadsto u$. Thus, u and v^{\prime} are reachable from each other, thereby contradicting the assumption that C and C^{\prime} are distinct strongly connected components.

We shall see that by considering vertices in the second depth-first search in decreasing order of the finishing times that were computed in the first depth-first search, we are, in essence, visiting the vertices of the component graph (each of which corresponds to a strongly connected component of G) in topologically sorted order.

Because the Strongly-Connected-Components procedure performs two depth-first searches, there is the potential for ambiguity when we discuss u.d or $u . f$. In this section, these values always refer to the discovery and finishing times as computed by the first call of DFS, in line 1 .

We extend the notation for discovery and finishing times to sets of vertices. If $U \subseteq V$, then we define $d(U)=\min _{u \in U}\{u . d\}$ and $f(U)=\max _{u \in U}\{u$.f $\}$. That is, $d(U)$ and $f(U)$ are the earliest discovery time and latest finishing time, respectively, of any vertex in U.

The following lemma and its corollary give a key property relating strongly connected components and finishing times in the first depth-first search.

Lemma 22.14

Let C and C^{\prime} be distinct strongly connected components in directed graph $G=$ (V, E). Suppose that there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C^{\prime}$. Then $f(C)>f\left(C^{\prime}\right)$.

Proof We consider two cases, depending on which strongly connected component, C or C^{\prime}, had the first discovered vertex during the depth-first search.

If $d(C)<d\left(C^{\prime}\right)$, let x be the first vertex discovered in C. At time $x . d$, all vertices in C and C^{\prime} are white. At that time, G contains a path from x to each vertex in C consisting only of white vertices. Because $(u, v) \in E$, for any vertex $w \in C^{\prime}$, there is also a path in G at time $x . d$ from x to w consisting only of white vertices: $x \leadsto u \rightarrow v \leadsto w$. By the white-path theorem, all vertices in C and C^{\prime} become descendants of x in the depth-first tree. By Corollary 22.8, x has the latest finishing time of any of its descendants, and so $x . f=f(C)>f\left(C^{\prime}\right)$.

If instead we have $d(C)>d\left(C^{\prime}\right)$, let y be the first vertex discovered in C^{\prime}. At time $y . d$, all vertices in C^{\prime} are white and G contains a path from y to each vertex in C^{\prime} consisting only of white vertices. By the white-path theorem, all vertices in C^{\prime} become descendants of y in the depth-first tree, and by Corollary 22.8, $y . f=f\left(C^{\prime}\right)$. At time $y . d$, all vertices in C are white. Since there is an edge (u, v) from C to C^{\prime}, Lemma 22.13 implies that there cannot be a path from C^{\prime} to C. Hence, no vertex in C is reachable from y. At time $y . f$, therefore, all vertices in C are still white. Thus, for any vertex $w \in C$, we have $w . f>y . f$, which implies that $f(C)>f\left(C^{\prime}\right)$.

The following corollary tells us that each edge in G^{T} that goes between different strongly connected components goes from a component with an earlier finishing time (in the first depth-first search) to a component with a later finishing time.

Corollary 22.15

Let C and C^{\prime} be distinct strongly connected components in directed graph $G=$ (V, E). Suppose that there is an edge $(u, v) \in E^{\mathrm{T}}$, where $u \in C$ and $v \in C^{\prime}$. Then $f(C)<f\left(C^{\prime}\right)$.

Proof Since $(u, v) \in E^{\mathrm{T}}$, we have $(v, u) \in E$. Because the strongly connected components of G and G^{T} are the same, Lemma 22.14 implies that $f(C)<f\left(C^{\prime}\right)$.

Corollary 22.15 provides the key to understanding why the strongly connected components algorithm works. Let us examine what happens when we perform the second depth-first search, which is on G^{T}. We start with the strongly connected component C whose finishing time $f(C)$ is maximum. The search starts from some vertex $x \in C$, and it visits all vertices in C. By Corollary $22.15, G^{\mathrm{T}}$ contains no edges from C to any other strongly connected component, and so the search from x will not visit vertices in any other component. Thus, the tree rooted at x contains exactly the vertices of C. Having completed visiting all vertices in C, the search in line 3 selects as a root a vertex from some other strongly connected component C^{\prime} whose finishing time $f\left(C^{\prime}\right)$ is maximum over all components other than C. Again, the search will visit all vertices in C^{\prime}, but by Corollary 22.15, the only edges in G^{T} from C^{\prime} to any other component must be to C, which we have already visited. In general, when the depth-first search of G^{T} in line 3 visits any strongly connected component, any edges out of that component must be to components that the search already visited. Each depth-first tree, therefore, will be exactly one strongly connected component. The following theorem formalizes this argument.

Theorem 22.16

The Strongly-Connected-Components procedure correctly computes the strongly connected components of the directed graph G provided as its input.

Proof We argue by induction on the number of depth-first trees found in the depth-first search of G^{T} in line 3 that the vertices of each tree form a strongly connected component. The inductive hypothesis is that the first k trees produced in line 3 are strongly connected components. The basis for the induction, when $k=0$, is trivial.

In the inductive step, we assume that each of the first k depth-first trees produced in line 3 is a strongly connected component, and we consider the $(k+1)$ st tree produced. Let the root of this tree be vertex u, and let u be in strongly connected component C. Because of how we choose roots in the depth-first search in line 3, u. $f=f(C)>f\left(C^{\prime}\right)$ for any strongly connected component C^{\prime} other than C that has yet to be visited. By the inductive hypothesis, at the time that the search visits u, all other vertices of C are white. By the white-path theorem, therefore, all other vertices of C are descendants of u in its depth-first tree. Moreover, by the inductive hypothesis and by Corollary 22.15, any edges in G^{T} that leave C must be to strongly connected components that have already been visited. Thus, no vertex
in any strongly connected component other than C will be a descendant of u during the depth-first search of G^{T}. Thus, the vertices of the depth-first tree in G^{T} that is rooted at u form exactly one strongly connected component, which completes the inductive step and the proof.

Here is another way to look at how the second depth-first search operates. Consider the component graph $\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}$ of G^{T}. If we map each strongly connected component visited in the second depth-first search to a vertex of $\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}$, the second depth-first search visits vertices of $\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}$ in the reverse of a topologically sorted order. If we reverse the edges of $\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}$, we get the graph $\left(\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}\right)^{\mathrm{T}}$. Because $\left(\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}\right)^{\mathrm{T}}=G^{\mathrm{SCC}}$ (see Exercise 22.5-4), the second depth-first search visits the vertices of $G^{\text {SCC }}$ in topologically sorted order.

Exercises

22.5-1

How can the number of strongly connected components of a graph change if a new edge is added?

22.5-2

Show how the procedure Strongly-Connected-Components works on the graph of Figure 22.6. Specifically, show the finishing times computed in line 1 and the forest produced in line 3. Assume that the loop of lines 5-7 of DFS considers vertices in alphabetical order and that the adjacency lists are in alphabetical order.

22.5-3

Professor Bacon claims that the algorithm for strongly connected components would be simpler if it used the original (instead of the transpose) graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Does this simpler algorithm always produce correct results?

22.5-4

Prove that for any directed graph G, we have $\left(\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}\right)^{\mathrm{T}}=G^{\mathrm{SCC}}$. That is, the transpose of the component graph of G^{T} is the same as the component graph of G.

22.5-5

Give an $O(V+E)$-time algorithm to compute the component graph of a directed graph $G=(V, E)$. Make sure that there is at most one edge between two vertices in the component graph your algorithm produces.

22.5-6

Given a directed graph $G=(V, E)$, explain how to create another graph $G^{\prime}=$ (V, E^{\prime}) such that (a) G^{\prime} has the same strongly connected components as G, (b) G^{\prime} has the same component graph as G, and (c) E^{\prime} is as small as possible. Describe a fast algorithm to compute G^{\prime}.

22.5-7

A directed graph $G=(V, E)$ is semiconnected if, for all pairs of vertices $u, \nu \in V$, we have $u \leadsto v$ or $v \leadsto u$. Give an efficient algorithm to determine whether or not G is semiconnected. Prove that your algorithm is correct, and analyze its running time.

Problems

22-1 Classifying edges by breadth-first search

A depth-first forest classifies the edges of a graph into tree, back, forward, and cross edges. A breadth-first tree can also be used to classify the edges reachable from the source of the search into the same four categories.
a. Prove that in a breadth-first search of an undirected graph, the following properties hold:

1. There are no back edges and no forward edges.
2. For each tree edge (u, v), we have $v . d=u . d+1$.
3. For each cross edge (u, v), we have $v . d=u . d$ or $v . d=u \cdot d+1$.
b. Prove that in a breadth-first search of a directed graph, the following properties hold:
4. There are no forward edges.
5. For each tree edge (u, v), we have $v . d=u \cdot d+1$.
6. For each cross edge (u, v), we have $v . d \leq u . d+1$.
7. For each back edge (u, v), we have $0 \leq v . d \leq u$. d.

22-2 Articulation points, bridges, and biconnected components

Let $G=(V, E)$ be a connected, undirected graph. An articulation point of G is a vertex whose removal disconnects G. A bridge of G is an edge whose removal disconnects G. A biconnected component of G is a maximal set of edges such that any two edges in the set lie on a common simple cycle. Figure 22.10 illustrates

Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undirected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded regions, with a $b c c$ numbering shown.
these definitions. We can determine articulation points, bridges, and biconnected components using depth-first search. Let $G_{\pi}=\left(V, E_{\pi}\right)$ be a depth-first tree of G.
a. Prove that the root of G_{π} is an articulation point of G if and only if it has at least two children in G_{π}.
b. Let v be a nonroot vertex of G_{π}. Prove that v is an articulation point of G if and only if v has a child s such that there is no back edge from s or any descendant of s to a proper ancestor of v.
c. Let
$v . l o w=\min \left\{\begin{array}{l}v . d, \\ w . d:(u, w) \text { is a back edge for some descendant } u \text { of } v .\end{array}\right.$
Show how to compute v.low for all vertices $v \in V$ in $O(E)$ time.
d. Show how to compute all articulation points in $O(E)$ time.
\boldsymbol{e}. Prove that an edge of G is a bridge if and only if it does not lie on any simple cycle of G.
f. Show how to compute all the bridges of G in $O(E)$ time.
g. Prove that the biconnected components of G partition the nonbridge edges of G.
\boldsymbol{h}. Give an $O(E)$-time algorithm to label each edge e of G with a positive integer $e . b c c$ such that $e . b c c=e^{\prime} . b c c$ if and only if e and e^{\prime} are in the same biconnected component.

22-3 Euler tour

An Euler tour of a strongly connected, directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once.
a. Show that G has an Euler tour if and only if in-degree $(\nu)=$ out-degree (ν) for each vertex $v \in V$.
b. Describe an $O(E)$-time algorithm to find an Euler tour of G if one exists. (Hint: Merge edge-disjoint cycles.)

22-4 Reachability

Let $G=(V, E)$ be a directed graph in which each vertex $u \in V$ is labeled with a unique integer $L(u)$ from the set $\{1,2, \ldots,|V|\}$. For each vertex $u \in V$, let $R(u)=\{v \in V: u \leadsto v\}$ be the set of vertices that are reachable from u. Define $\min (u)$ to be the vertex in $R(u)$ whose label is minimum, i.e., $\min (u)$ is the vertex v such that $L(v)=\min \{L(w): w \in R(u)\}$. Give an $O(V+E)$-time algorithm that computes $\min (u)$ for all vertices $u \in V$.

Chapter notes

Even [103] and Tarjan [330] are excellent references for graph algorithms.
Breadth-first search was discovered by Moore [260] in the context of finding paths through mazes. Lee [226] independently discovered the same algorithm in the context of routing wires on circuit boards.

Hopcroft and Tarjan [178] advocated the use of the adjacency-list representation over the adjacency-matrix representation for sparse graphs and were the first to recognize the algorithmic importance of depth-first search. Depth-first search has been widely used since the late 1950s, especially in artificial intelligence programs.

Tarjan [327] gave a linear-time algorithm for finding strongly connected components. The algorithm for strongly connected components in Section 22.5 is adapted from Aho, Hopcroft, and Ullman [6], who credit it to S. R. Kosaraju (unpublished) and M. Sharir [314]. Gabow [119] also developed an algorithm for strongly connected components that is based on contracting cycles and uses two stacks to make it run in linear time. Knuth [209] was the first to give a linear-time algorithm for topological sorting.

23 Minimum Spanning Trees

Electronic circuit designs often need to make the pins of several components electrically equivalent by wiring them together. To interconnect a set of n pins, we can use an arrangement of $n-1$ wires, each connecting two pins. Of all such arrangements, the one that uses the least amount of wire is usually the most desirable.

We can model this wiring problem with a connected, undirected graph $G=$ (V, E), where V is the set of pins, E is the set of possible interconnections between pairs of pins, and for each edge $(u, v) \in E$, we have a weight $w(u, v)$ specifying the cost (amount of wire needed) to connect u and v. We then wish to find an acyclic subset $T \subseteq E$ that connects all of the vertices and whose total weight
$w(T)=\sum_{(u, v) \in T} w(u, v)$
is minimized. Since T is acyclic and connects all of the vertices, it must form a tree, which we call a spanning tree since it "spans" the graph G. We call the problem of determining the tree T the minimum-spanning-tree problem. ${ }^{1}$ Figure 23.1 shows an example of a connected graph and a minimum spanning tree.

In this chapter, we shall examine two algorithms for solving the minimum-spanning-tree problem: Kruskal's algorithm and Prim's algorithm. We can easily make each of them run in time $O(E \lg V)$ using ordinary binary heaps. By using Fibonacci heaps, Prim's algorithm runs in time $O(E+V \lg V)$, which improves over the binary-heap implementation if $|V|$ is much smaller than $|E|$.

The two algorithms are greedy algorithms, as described in Chapter 16. Each step of a greedy algorithm must make one of several possible choices. The greedy strategy advocates making the choice that is the best at the moment. Such a strategy does not generally guarantee that it will always find globally optimal solutions

[^3]

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown, and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37 . This minimum spanning tree is not unique: removing the edge (b, c) and replacing it with the edge (a, h) yields another spanning tree with weight 37.
to problems. For the minimum-spanning-tree problem, however, we can prove that certain greedy strategies do yield a spanning tree with minimum weight. Although you can read this chapter independently of Chapter 16, the greedy methods presented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a "generic" minimum-spanning-tree method that grows a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms that implement the generic method. The first algorithm, due to Kruskal, is similar to the connected-components algorithm from Section 21.1. The second, due to Prim, resembles Dijkstra's shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in terms of not just its edges, but its vertices as well. Although this chapter focuses on trees in terms of their edges, we shall operate with the understanding that the vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph $G=(V, E)$ with a weight function $w: E \rightarrow \mathbb{R}$, and we wish to find a minimum spanning tree for G. The two algorithms we consider in this chapter use a greedy approach to the problem, although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows the minimum spanning tree one edge at a time. The generic method manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge (u, v) that we can add to A without violating this invariant, in the sense that $A \cup\{(u, v)\}$ is also a subset of a minimum spanning
tree. We call such an edge a safe edge for A, since we can add it safely to A while maintaining the invariant.
$\operatorname{Generic}-\operatorname{MST}(G, w)$

```
\(A=\emptyset\)
```

while A does not form a spanning tree
find an edge (u, v) that is safe for A
$A=A \cup\{(u, v)\}$
return A

We use the loop invariant as follows:
Initialization: After line 1 , the set A trivially satisfies the loop invariant.
Maintenance: The loop in lines 2-4 maintains the invariant by adding only safe edges.
Termination: All edges added to A are in a minimum spanning tree, and so the set A returned in line 5 must be a minimum spanning tree.

The tricky part is, of course, finding a safe edge in line 3. One must exist, since when line 3 is executed, the invariant dictates that there is a spanning tree T such that $A \subseteq T$. Within the while loop body, A must be a proper subset of T, and therefore there must be an edge $(u, v) \in T$ such that $(u, v) \notin A$ and (u, v) is safe for A.

In the remainder of this section, we provide a rule (Theorem 23.1) for recognizing safe edges. The next section describes two algorithms that use this rule to find safe edges efficiently.

We first need some definitions. A cut $(S, V-S)$ of an undirected graph $G=$ (V, E) is a partition of V. Figure 23.2 illustrates this notion. We say that an edge $(u, v) \in E$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in $V-S$. We say that a cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut. Note that there can be more than one light edge crossing a cut in the case of ties. More generally, we say that an edge is a light edge satisfying a given property if its weight is the minimum of any edge satisfying the property.

Our rule for recognizing safe edges is given by the following theorem.

Theorem 23.1

Let $G=(V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let $(S, V-S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V-S)$. Then, edge (u, v) is safe for A.

Figure 23.2 Two ways of viewing a cut $(S, V-S)$ of the graph from Figure 23.1. (a) Black vertices are in the set S, and white vertices are in $V-S$. The edges crossing the cut are those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing the cut. A subset A of the edges is shaded; note that the cut $(S, V-S)$ respects A, since no edge of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the set $V-S$ on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the right.

Proof Let T be a minimum spanning tree that includes A, and assume that T does not contain the light edge (u, v), since if it does, we are done. We shall construct another minimum spanning tree T^{\prime} that includes $A \cup\{(u, v)\}$ by using a cut-and-paste technique, thereby showing that (u, v) is a safe edge for A.

The edge (u, v) forms a cycle with the edges on the simple path p from u to v in T, as Figure 23.3 illustrates. Since u and v are on opposite sides of the cut ($S, V-S$), at least one edge in T lies on the simple path p and also crosses the cut. Let (x, y) be any such edge. The edge (x, y) is not in A, because the cut respects A. Since (x, y) is on the unique simple path from u to v in T, removing (x, y) breaks T into two components. Adding (u, v) reconnects them to form a new spanning tree $T^{\prime}=T-\{(x, y)\} \cup\{(u, v)\}$.

We next show that T^{\prime} is a minimum spanning tree. Since (u, v) is a light edge crossing $(S, V-S)$ and (x, y) also crosses this cut, $w(u, v) \leq w(x, y)$. Therefore,

$$
\begin{aligned}
w\left(T^{\prime}\right) & =w(T)-w(x, y)+w(u, v) \\
& \leq w(T)
\end{aligned}
$$

Figure 23.3 The proof of Theorem 23.1. Black vertices are in S, and white vertices are in $V-S$. The edges in the minimum spanning tree T are shown, but the edges in the graph G are not. The edges in A are shaded, and (u, v) is a light edge crossing the cut $(S, V-S)$. The edge (x, y) is an edge on the unique simple path p from u to v in T. To form a minimum spanning tree T^{\prime} that contains (u, v), remove the edge (x, y) from T and add the edge (u, v).

But T is a minimum spanning tree, so that $w(T) \leq w\left(T^{\prime}\right)$; thus, T^{\prime} must be a minimum spanning tree also.

It remains to show that (u, v) is actually a safe edge for A. We have $A \subseteq T^{\prime}$, since $A \subseteq T$ and $(x, y) \notin A$; thus, $A \cup\{(u, v)\} \subseteq T^{\prime}$. Consequently, since T^{\prime} is a minimum spanning tree, (u, v) is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERICMST method on a connected graph $G=(V, E)$. As the method proceeds, the set A is always acyclic; otherwise, a minimum spanning tree including A would contain a cycle, which is a contradiction. At any point in the execution, the graph $G_{A}=(V, A)$ is a forest, and each of the connected components of G_{A} is a tree. (Some of the trees may contain just one vertex, as is the case, for example, when the method begins: A is empty and the forest contains $|V|$ trees, one for each vertex.) Moreover, any safe edge (u, v) for A connects distinct components of G_{A}, since $A \cup\{(u, v)\}$ must be acyclic.

The while loop in lines 2-4 of GENERIC-MST executes $|V|-1$ times because it finds one of the $|V|-1$ edges of a minimum spanning tree in each iteration. Initially, when $A=\emptyset$, there are $|V|$ trees in G_{A}, and each iteration reduces that number by 1 . When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.

Corollary 23.2

Let $G=(V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C=\left(V_{C}, E_{C}\right)$ be a connected component (tree) in the forest $G_{A}=(V, A)$. If (u, ν) is a light edge connecting C to some other component in G_{A}, then (u, v) is safe for A.

Proof The cut $\left(V_{C}, V-V_{C}\right)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

Exercises

23.1-1

Let (u, v) be a minimum-weight edge in a connected graph G. Show that (u, v) belongs to some minimum spanning tree of G.

23.1-2

Professor Sabatier conjectures the following converse of Theorem 23.1. Let $G=$ (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let $(S, V-S)$ be any cut of G that respects A, and let (u, v) be a safe edge for A crossing $(S, V-S)$. Then, (u, v) is a light edge for the cut. Show that the professor's conjecture is incorrect by giving a counterexample.

23.1-3

Show that if an edge (u, v) is contained in some minimum spanning tree, then it is a light edge crossing some cut of the graph.

23.1-4

Give a simple example of a connected graph such that the set of edges $\{(u, v)$: there exists a cut $(S, V-S)$ such that (u, v) is a light edge crossing $(S, V-S)\}$ does not form a minimum spanning tree.

23.1-5

Let e be a maximum-weight edge on some cycle of connected graph $G=(V, E)$. Prove that there is a minimum spanning tree of $G^{\prime}=(V, E-\{e\})$ that is also a minimum spanning tree of G. That is, there is a minimum spanning tree of G that does not include e.

23.1-6

Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique light edge crossing the cut. Show that the converse is not true by giving a counterexample.

23.1-7

Argue that if all edge weights of a graph are positive, then any subset of edges that connects all vertices and has minimum total weight must be a tree. Give an example to show that the same conclusion does not follow if we allow some weights to be nonpositive.

23.1-8

Let T be a minimum spanning tree of a graph G, and let L be the sorted list of the edge weights of T. Show that for any other minimum spanning tree T^{\prime} of G, the list L is also the sorted list of edge weights of T^{\prime}.

23.1-9

Let T be a minimum spanning tree of a graph $G=(V, E)$, and let V^{\prime} be a subset of V. Let T^{\prime} be the subgraph of T induced by V^{\prime}, and let G^{\prime} be the subgraph of G induced by V^{\prime}. Show that if T^{\prime} is connected, then T^{\prime} is a minimum spanning tree of G^{\prime}.

23.1-10

Given a graph G and a minimum spanning tree T, suppose that we decrease the weight of one of the edges in T. Show that T is still a minimum spanning tree for G. More formally, let T be a minimum spanning tree for G with edge weights given by weight function w. Choose one edge $(x, y) \in T$ and a positive number k, and define the weight function w^{\prime} by

$$
w^{\prime}(u, v)= \begin{cases}w(u, v) & \text { if }(u, v) \neq(x, y) \\ w(x, y)-k & \text { if }(u, v)=(x, y)\end{cases}
$$

Show that T is a minimum spanning tree for G with edge weights given by w^{\prime}.

23.1-11 *

Given a graph G and a minimum spanning tree T, suppose that we decrease the weight of one of the edges not in T. Give an algorithm for finding the minimum spanning tree in the modified graph.

23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on the generic method. They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST. In Kruskal's algorithm, the set A is a forest whose vertices are all those of the given graph. The safe edge added to A is always a least-weight edge in the graph that connects two distinct components. In Prim's algorithm, the set A forms a single tree. The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

Kruskal's algorithm

Kruskal's algorithm finds a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge (u, v) of least weight. Let C_{1} and C_{2} denote the two trees that are connected by (u, v). Since (u, v) must be a light edge connecting C_{1} to some other tree, Corollary 23.2 implies that (u, v) is a safe edge for C_{1}. Kruskal's algorithm qualifies as a greedy algorithm because at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal's algorithm is like the algorithm to compute connected components from Section 21.1. It uses a disjoint-set data structure to maintain several disjoint sets of elements. Each set contains the vertices in one tree of the current forest. The operation $\operatorname{Find}-\operatorname{SET}(u)$ returns a representative element from the set that contains u. Thus, we can determine whether two vertices u and v belong to the same tree by testing whether $\operatorname{Find}-\operatorname{Set}(u)$ equals Find-Set (v). To combine trees, Kruskal's algorithm calls the Union procedure.

MST-Kruskal(G, w)

```
\(A=\emptyset\)
for each vertex \(v \in G . V\)
    Make-Set (v)
sort the edges of \(G . E\) into nondecreasing order by weight \(w\)
for each edge \((u, v) \in G . E\), taken in nondecreasing order by weight
    if Find-SET \((u) \neq \operatorname{Find}-\operatorname{Set}(v)\)
        \(A=A \cup\{(u, v)\}\)
        \(\operatorname{Union}(u, v)\)
return \(A\)
```

Figure 23.4 shows how Kruskal's algorithm works. Lines $1-3$ initialize the set A to the empty set and create $|V|$ trees, one containing each vertex. The for loop in lines 5-8 examines edges in order of weight, from lowest to highest. The loop
(a)

(b)

(c)

(e)

(f)

(d)

(h)

Figure 23.4 The execution of Kruskal's algorithm on the graph from Figure 23.1. Shaded edges belong to the forest A being grown. The algorithm considers each edge in sorted order by weight. An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.
checks, for each edge (u, v), whether the endpoints u and v belong to the same tree. If they do, then the edge (u, v) cannot be added to the forest without creating a cycle, and the edge is discarded. Otherwise, the two vertices belong to different trees. In this case, line 7 adds the edge (u, v) to A, and line 8 merges the vertices in the two trees.

Figure 23.4, continued Further steps in the execution of Kruskal's algorithm.

The running time of Kruskal's algorithm for a graph $G=(V, E)$ depends on how we implement the disjoint-set data structure. We assume that we use the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and path-compression heuristics, since it is the asymptotically fastest implementation known. Initializing the set A in line 1 takes $O(1)$ time, and the time to sort the edges in line 4 is $O(E \lg E)$. (We will account for the cost of the $|V|$ Make-Set operations in the for loop of lines $2-3$ in a moment.) The for loop of lines 5-8 performs $O(E)$ FInd-SET and Union operations on the disjoint-set forest. Along with the $|V|$ MAKe-Set operations, these take a total of $O((V+E) \alpha(V))$ time, where α is the very slowly growing function defined in Section 21.4. Because we assume that G is connected, we have $|E| \geq|V|-1$, and so the disjoint-set operations take $O(E \alpha(V))$ time. Moreover, since $\alpha(|V|)=O(\lg V)=O(\lg E)$, the total running time of Kruskal's algorithm is $O(E \lg E)$. Observing that $|E|<|V|^{2}$, we have $\lg |E|=O(\lg V)$, and so we can restate the running time of Kruskal's algorithm as $O(E \lg V)$.

Prim's algorithm

Like Kruskal's algorithm, Prim's algorithm is a special case of the generic min-imum-spanning-tree method from Section 23.1. Prim's algorithm operates much like Dijkstra's algorithm for finding shortest paths in a graph, which we shall see in Section 24.3. Prim's algorithm has the property that the edges in the set A always form a single tree. As Figure 23.5 shows, the tree starts from an arbitrary root vertex r and grows until the tree spans all the vertices in V. Each step adds to the tree A a light edge that connects A to an isolated vertex - one on which no edge of A is incident. By Corollary 23.2, this rule adds only edges that are safe for A; therefore, when the algorithm terminates, the edges in A form a minimum spanning tree. This strategy qualifies as greedy since at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight.

In order to implement Prim's algorithm efficiently, we need a fast way to select a new edge to add to the tree formed by the edges in A. In the pseudocode below, the connected graph G and the root r of the minimum spanning tree to be grown are inputs to the algorithm. During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue Q based on a key attribute. For each vertex v, the attribute ν.key is the minimum weight of any edge connecting v to a vertex in the tree; by convention, $\nu . k e y=\infty$ if there is no such edge. The attribute $\nu . \pi$ names the parent of v in the tree. The algorithm implicitly maintains the set A from Generic-MST as
$A=\{(\nu, \nu . \pi): \nu \in V-\{r\}-Q\}$.
When the algorithm terminates, the min-priority queue Q is empty; the minimum spanning tree A for G is thus

```
A={(\nu,\nu.\pi):v\inV-{r}}.
MST-Prim(G,w,r)
    for each }u\inG.
        u.key = \infty
        u.\pi= NIL
r.key = 0
Q = G.V
while Q\not=\emptyset
    u= Extract-Min(Q)
        for each v}\inG.Adj[u
            if v\inQ and w(u,v)<v.key
                v.\pi =u
                v.key = w(u,v)
```

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

Figure 23.5 The execution of Prim's algorithm on the graph from Figure 23.1. The root vertex is a. Shaded edges are in the tree being grown, and black vertices are in the tree. At each step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing the cut is added to the tree. In the second step, for example, the algorithm has a choice of adding either edge (b, c) or edge (a, h) to the tree since both are light edges crossing the cut.

Figure 23.5 shows how Prim's algorithm works. Lines $1-5$ set the key of each vertex to ∞ (except for the root r, whose key is set to 0 so that it will be the first vertex processed), set the parent of each vertex to NIL, and initialize the minpriority queue Q to contain all the vertices. The algorithm maintains the following three-part loop invariant:

Prior to each iteration of the while loop of lines 6-11,

1. $A=\{(\nu, \nu . \pi): \nu \in V-\{r\}-Q\}$.
2. The vertices already placed into the minimum spanning tree are those in $V-Q$.
3. For all vertices $v \in Q$, if $\nu . \pi \neq$ NIL, then $\nu . k e y<\infty$ and $\nu . k e y$ is the weight of a light edge $(\nu, \nu . \pi)$ connecting ν to some vertex already placed into the minimum spanning tree.

Line 7 identifies a vertex $u \in Q$ incident on a light edge that crosses the cut ($V-Q, Q$) (with the exception of the first iteration, in which $u=r$ due to line 4). Removing u from the set Q adds it to the set $V-Q$ of vertices in the tree, thus adding $(u, u . \pi)$ to A. The for loop of lines 8-11 updates the key and π attributes of every vertex v adjacent to u but not in the tree, thereby maintaining the third part of the loop invariant.

The running time of Prim's algorithm depends on how we implement the minpriority queue Q. If we implement Q as a binary min-heap (see Chapter 6), we can use the Build-Min-HEAP procedure to perform lines $1-5$ in $O(V)$ time. The body of the while loop executes $|V|$ times, and since each Extract-Min operation takes $O(\lg V)$ time, the total time for all calls to Extract-Min is $O(V \lg V)$. The for loop in lines $8-11$ executes $O(E)$ times altogether, since the sum of the lengths of all adjacency lists is $2|E|$. Within the for loop, we can implement the test for membership in Q in line 9 in constant time by keeping a bit for each vertex that tells whether or not it is in Q, and updating the bit when the vertex is removed from Q. The assignment in line 11 involves an implicit Decrease-Key operation on the min-heap, which a binary min-heap supports in $O(\lg V)$ time. Thus, the total time for Prim's algorithm is $O(V \lg V+E \lg V)=O(E \lg V)$, which is asymptotically the same as for our implementation of Kruskal's algorithm.

We can improve the asymptotic running time of Prim's algorithm by using Fibonacci heaps. Chapter 19 shows that if a Fibonacci heap holds $|V|$ elements, an Extract-Min operation takes $O(\lg V)$ amortized time and a Decrease-Key operation (to implement line 11) takes $O(1)$ amortized time. Therefore, if we use a Fibonacci heap to implement the min-priority queue Q, the running time of Prim's algorithm improves to $O(E+V \lg V)$.

Exercises

23.2-1

Kruskal's algorithm can return different spanning trees for the same input graph G, depending on how it breaks ties when the edges are sorted into order. Show that for each minimum spanning tree T of G, there is a way to sort the edges of G in Kruskal's algorithm so that the algorithm returns T.

23.2-2

Suppose that we represent the graph $G=(V, E)$ as an adjacency matrix. Give a simple implementation of Prim's algorithm for this case that runs in $O\left(V^{2}\right)$ time.

23.2-3

For a sparse graph $G=(V, E)$, where $|E|=\Theta(V)$, is the implementation of Prim's algorithm with a Fibonacci heap asymptotically faster than the binary-heap implementation? What about for a dense graph, where $|E|=\Theta\left(V^{2}\right)$? How must the sizes $|E|$ and $|V|$ be related for the Fibonacci-heap implementation to be asymptotically faster than the binary-heap implementation?

23.2-4

Suppose that all edge weights in a graph are integers in the range from 1 to $|V|$. How fast can you make Kruskal's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W ?

23.2-5

Suppose that all edge weights in a graph are integers in the range from 1 to $|V|$. How fast can you make Prim's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W ?

23.2-6 \star

Suppose that the edge weights in a graph are uniformly distributed over the halfopen interval $[0,1)$. Which algorithm, Kruskal's or Prim's, can you make run faster?

23.2-7 \star

Suppose that a graph G has a minimum spanning tree already computed. How quickly can we update the minimum spanning tree if we add a new vertex and incident edges to G ?

23.2-8

Professor Borden proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph $G=(V, E)$, partition the set V of vertices into two sets V_{1} and V_{2} such that $\left|V_{1}\right|$ and $\left|V_{2}\right|$ differ
by at most 1 . Let E_{1} be the set of edges that are incident only on vertices in V_{1}, and let E_{2} be the set of edges that are incident only on vertices in V_{2}. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Finally, select the minimum-weight edge in E that crosses the cut $\left(V_{1}, V_{2}\right)$, and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.

Problems

23-1 Second-best minimum spanning tree

Let $G=(V, E)$ be an undirected, connected graph whose weight function is $w: E \rightarrow \mathbb{R}$, and suppose that $|E| \geq|V|$ and all edge weights are distinct.

We define a second-best minimum spanning tree as follows. Let \mathcal{T} be the set of all spanning trees of G, and let T^{\prime} be a minimum spanning tree of G. Then a second-best minimum spanning tree is a spanning tree T such that $w(T)=$ $\min _{T^{\prime \prime} \in \mathcal{T}-\left\{T^{\prime}\right\}}\left\{w\left(T^{\prime \prime}\right)\right\}$.
a. Show that the minimum spanning tree is unique, but that the second-best minimum spanning tree need not be unique.
b. Let T be the minimum spanning tree of G. Prove that G contains edges $(u, v) \in T$ and $(x, y) \notin T$ such that $T-\{(u, v)\} \cup\{(x, y)\}$ is a second-best minimum spanning tree of G.
c. Let T be a spanning tree of G and, for any two vertices $u, v \in V$, let $\max [u, v]$ denote an edge of maximum weight on the unique simple path between u and v in T. Describe an $O\left(V^{2}\right)$-time algorithm that, given T, computes $\max [u, \nu]$ for all $u, v \in V$.
d. Give an efficient algorithm to compute the second-best minimum spanning tree of G.

23-2 Minimum spanning tree in sparse graphs

For a very sparse connected graph $G=(V, E)$, we can further improve upon the $O(E+V \lg V)$ running time of Prim's algorithm with Fibonacci heaps by preprocessing G to decrease the number of vertices before running Prim's algorithm. In particular, we choose, for each vertex u, the minimum-weight edge (u, v) incident on u, and we put (u, v) into the minimum spanning tree under construction. We
then contract all chosen edges (see Section B.4). Rather than contracting these edges one at a time, we first identify sets of vertices that are united into the same new vertex. Then we create the graph that would have resulted from contracting these edges one at a time, but we do so by "renaming" edges according to the sets into which their endpoints were placed. Several edges from the original graph may be renamed the same as each other. In such a case, only one edge results, and its weight is the minimum of the weights of the corresponding original edges.

Initially, we set the minimum spanning tree T being constructed to be empty, and for each edge $(u, v) \in E$, we initialize the attributes (u, v).orig $=(u, v)$ and $(u, v) \cdot c=w(u, v)$. We use the orig attribute to reference the edge from the initial graph that is associated with an edge in the contracted graph. The c attribute holds the weight of an edge, and as edges are contracted, we update it according to the above scheme for choosing edge weights. The procedure MST-REdUCE takes inputs G and T, and it returns a contracted graph G^{\prime} with updated attributes orig' and c^{\prime}. The procedure also accumulates edges of G into the minimum spanning tree T.
$\operatorname{MST}-\operatorname{Reduce}(G, T)$

```
for each \(v \in G . V\)
    \(\nu . m a r k=\) FALSE
    MaKe-Set (v)
for each \(u \in G . V\)
    if u.mark \(==\) FALSE
        choose \(v \in G . \operatorname{Adj}[u]\) such that \((u, v) . c\) is minimized
        Union ( \(u, v\) )
        \(T=T \cup\{(u, \nu)\). orig \(\}\)
        u.mark \(=\) v.mark \(=\) TRUE
\(G^{\prime} . V=\{\operatorname{Find}-\operatorname{Set}(\nu): \nu \in G . V\}\)
\(G^{\prime} . E=\emptyset\)
for each \((x, y) \in G . E\)
    \(u=\operatorname{Find}-\operatorname{Set}(x)\)
    \(v=\operatorname{Find}-\operatorname{Set}(y)\)
    if \((u, v) \notin G^{\prime} . E\)
            \(G^{\prime} \cdot E=G^{\prime} \cdot E \cup\{(u, v)\}\)
            \((u, v)\). orig \(^{\prime}=(x, y)\).orig
            \((u, v) \cdot c^{\prime}=(x, y) \cdot c\)
    else if \((x, y) . c<(u, v) \cdot c^{\prime}\)
                    \((u, v)\). orig \(^{\prime}=(x, y)\). orig
            \((u, v) \cdot c^{\prime}=(x, y) \cdot c\)
construct adjacency lists \(G^{\prime}\). Adj for \(G^{\prime}\)
return \(G^{\prime}\) and \(T\)
```

a. Let T be the set of edges returned by MST-REDUCE, and let A be the minimum spanning tree of the graph G^{\prime} formed by the call MST-Prim $\left(G^{\prime}, c^{\prime}, r\right)$, where c^{\prime} is the weight attribute on the edges of $G^{\prime} . E$ and r is any vertex in $G^{\prime} . V$. Prove that $T \cup\{(x, y)$.orig' $:(x, y) \in A\}$ is a minimum spanning tree of G.
b. Argue that $\left|G^{\prime} . V\right| \leq|V| / 2$.
c. Show how to implement MST-Reduce so that it runs in $O(E)$ time. (Hint: Use simple data structures.)
d. Suppose that we run k phases of MST-REDUCE, using the output G^{\prime} produced by one phase as the input G to the next phase and accumulating edges in T. Argue that the overall running time of the k phases is $O(k E)$.
\boldsymbol{e}. Suppose that after running k phases of MST-REDUCE, as in part (d), we run Prim's algorithm by calling MST-Prim $\left(G^{\prime}, c^{\prime}, r\right)$, where G^{\prime}, with weight attribute c^{\prime}, is returned by the last phase and r is any vertex in $G^{\prime} . V$. Show how to pick k so that the overall running time is $O(E \lg \lg V)$. Argue that your choice of k minimizes the overall asymptotic running time.
f. For what values of $|E|$ (in terms of $|V|$) does Prim's algorithm with preprocessing asymptotically beat Prim's algorithm without preprocessing?

23-3 Bottleneck spanning tree

A bottleneck spanning tree T of an undirected graph G is a spanning tree of G whose largest edge weight is minimum over all spanning trees of G. We say that the value of the bottleneck spanning tree is the weight of the maximum-weight edge in T.
\boldsymbol{a}. Argue that a minimum spanning tree is a bottleneck spanning tree.
Part (a) shows that finding a bottleneck spanning tree is no harder than finding a minimum spanning tree. In the remaining parts, we will show how to find a bottleneck spanning tree in linear time.
b. Give a linear-time algorithm that given a graph G and an integer b, determines whether the value of the bottleneck spanning tree is at most b.
c. Use your algorithm for part (b) as a subroutine in a linear-time algorithm for the bottleneck-spanning-tree problem. (Hint: You may want to use a subroutine that contracts sets of edges, as in the MST-Reduce procedure described in Problem 23-2.)

23-4 Alternative minimum-spanning-tree algorithms

In this problem, we give pseudocode for three different algorithms. Each one takes a connected graph and a weight function as input and returns a set of edges T. For each algorithm, either prove that T is a minimum spanning tree or prove that T is not a minimum spanning tree. Also describe the most efficient implementation of each algorithm, whether or not it computes a minimum spanning tree.
a. Maybe-MST-A (G, w)

```
sort the edges into nonincreasing order of edge weights \(w\)
\(T=E\)
for each edge \(e\), taken in nonincreasing order by weight
    if \(T-\{e\}\) is a connected graph
        \(T=T-\{e\}\)
return \(T\)
```

b. Maybe-MST-B (G, w)
$T=\emptyset$
for each edge e, taken in arbitrary order
if $T \cup\{e\}$ has no cycles
$T=T \cup\{e\}$
return T
c. Maybe-MST-C (G, w)
$T=\emptyset$
for each edge e, taken in arbitrary order
$T=T \cup\{e\}$
if T has a cycle c
let e^{\prime} be a maximum-weight edge on c
$T=T-\left\{e^{\prime}\right\}$
return T

Chapter notes

Tarjan [330] surveys the minimum-spanning-tree problem and provides excellent advanced material. Graham and Hell [151] compiled a history of the minimum-spanning-tree problem.

Tarjan attributes the first minimum-spanning-tree algorithm to a 1926 paper by O. Boru̇vka. Boru̇vka's algorithm consists of running $O(\lg V)$ iterations of the
procedure MST-Reduce described in Problem 23-2. Kruskal's algorithm was reported by Kruskal [222] in 1956. The algorithm commonly known as Prim's algorithm was indeed invented by Prim [285], but it was also invented earlier by V. Jarník in 1930.

The reason underlying why greedy algorithms are effective at finding minimum spanning trees is that the set of forests of a graph forms a graphic matroid. (See Section 16.4.)

When $|E|=\Omega(V \lg V)$, Prim's algorithm, implemented with Fibonacci heaps, runs in $O(E)$ time. For sparser graphs, using a combination of the ideas from Prim's algorithm, Kruskal's algorithm, and Boru̇vka's algorithm, together with advanced data structures, Fredman and Tarjan [114] give an algorithm that runs in $O\left(E \lg ^{*} V\right)$ time. Gabow, Galil, Spencer, and Tarjan [120] improved this algorithm to run in $O\left(E \lg \lg ^{*} V\right)$ time. Chazelle [60] gives an algorithm that runs in $O(E \widehat{\alpha}(E, V))$ time, where $\widehat{\alpha}(E, V)$ is the functional inverse of Ackermann's function. (See the chapter notes for Chapter 21 for a brief discussion of Ackermann's function and its inverse.) Unlike previous minimum-spanning-tree algorithms, Chazelle's algorithm does not follow the greedy method.

A related problem is spanning-tree verification, in which we are given a graph $G=(V, E)$ and a tree $T \subseteq E$, and we wish to determine whether T is a minimum spanning tree of G. King [203] gives a linear-time algorithm to verify a spanning tree, building on earlier work of Komlós [215] and Dixon, Rauch, and Tarjan [90].

The above algorithms are all deterministic and fall into the comparison-based model described in Chapter 8. Karger, Klein, and Tarjan [195] give a randomized minimum-spanning-tree algorithm that runs in $O(V+E)$ expected time. This algorithm uses recursion in a manner similar to the linear-time selection algorithm in Section 9.3: a recursive call on an auxiliary problem identifies a subset of the edges E^{\prime} that cannot be in any minimum spanning tree. Another recursive call on $E-E^{\prime}$ then finds the minimum spanning tree. The algorithm also uses ideas from Boru̇vka's algorithm and King's algorithm for spanning-tree verification.

Fredman and Willard [116] showed how to find a minimum spanning tree in $O(V+E)$ time using a deterministic algorithm that is not comparison based. Their algorithm assumes that the data are b-bit integers and that the computer memory consists of addressable b-bit words.

24 Single-Source Shortest Paths

Professor Patrick wishes to find the shortest possible route from Phoenix to Indianapolis. Given a road map of the United States on which the distance between each pair of adjacent intersections is marked, how can she determine this shortest route?

One possible way would be to enumerate all the routes from Phoenix to Indianapolis, add up the distances on each route, and select the shortest. It is easy to see, however, that even disallowing routes that contain cycles, Professor Patrick would have to examine an enormous number of possibilities, most of which are simply not worth considering. For example, a route from Phoenix to Indianapolis that passes through Seattle is obviously a poor choice, because Seattle is several hundred miles out of the way.

In this chapter and in Chapter 25, we show how to solve such problems efficiently. In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real-valued weights. The weight $w(p)$ of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is the sum of the weights of its constituent edges:
$w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$.
We define the shortest-path weight $\delta(u, v)$ from u to v by
$\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there is a path from } u \text { to } v, \\ \infty & \text { otherwise . }\end{cases}$
A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p)=\delta(u, v)$.

In the Phoenix-to-Indianapolis example, we can model the road map as a graph: vertices represent intersections, edges represent road segments between intersections, and edge weights represent road distances. Our goal is to find a shortest path from a given intersection in Phoenix to a given intersection in Indianapolis.

Edge weights can represent metrics other than distances, such as time, cost, penalties, loss, or any other quantity that accumulates linearly along a path and that we would want to minimize.

The breadth-first-search algorithm from Section 22.2 is a shortest-paths algorithm that works on unweighted graphs, that is, graphs in which each edge has unit weight. Because many of the concepts from breadth-first search arise in the study of shortest paths in weighted graphs, you might want to review Section 22.2 before proceeding.

Variants

In this chapter, we shall focus on the single-source shortest-paths problem: given a graph $G=(V, E)$, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$. The algorithm for the single-source problem can solve many other problems, including the following variants.

Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t from each vertex v. By reversing the direction of each edge in the graph, we can reduce this problem to a single-source problem.

Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v. If we solve the single-source problem with source vertex u, we solve this problem also. Moreover, all known algorithms for this problem have the same worst-case asymptotic running time as the best single-source algorithms.

All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v. Although we can solve this problem by running a singlesource algorithm once from each vertex, we usually can solve it faster. Additionally, its structure is interesting in its own right. Chapter 25 addresses the all-pairs problem in detail.

Optimal substructure of a shortest path

Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it. (The Edmonds-Karp maximum-flow algorithm in Chapter 26 also relies on this property.) Recall that optimal substructure is one of the key indicators that dynamic programming (Chapter 15) and the greedy method (Chapter 16) might apply. Dijkstra's algorithm, which we shall see in Section 24.3, is a greedy algorithm, and the FloydWarshall algorithm, which finds shortest paths between all pairs of vertices (see Section 25.2), is a dynamic-programming algorithm. The following lemma states the optimal-substructure property of shortest paths more precisely.

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from vertex ν_{0} to vertex v_{k} and, for any i and j such that $0 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from vertex v_{i} to vertex v_{j}. Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.

Proof If we decompose path p into $\nu_{0} \stackrel{p_{0 i}}{\sim} v_{i} \stackrel{p_{i j}}{\sim} v_{j} \stackrel{p_{j k}}{\sim} \nu_{k}$, then we have that $w(p)=w\left(p_{0 i}\right)+w\left(p_{i j}\right)+w\left(p_{j k}\right)$. Now, assume that there is a path $p_{i j}^{\prime}$ from v_{i} to v_{j} with weight $w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)$. Then, $v_{0} \stackrel{p_{0 i}}{\sim} v_{i} \stackrel{p_{i j}^{\prime}}{\sim} v_{j} \stackrel{p_{j k}}{\sim} v_{k}$ is a path from v_{0} to v_{k} whose weight $w\left(p_{0 i}\right)+w\left(p_{i j}^{\prime}\right)+w\left(p_{j k}\right)$ is less than $w(p)$, which contradicts the assumption that p is a shortest path from v_{0} to v_{k}.

Negative-weight edges

Some instances of the single-source shortest-paths problem may include edges whose weights are negative. If the graph $G=(V, E)$ contains no negativeweight cycles reachable from the source s, then for all $v \in V$, the shortest-path weight $\delta(s, v)$ remains well defined, even if it has a negative value. If the graph contains a negative-weight cycle reachable from s, however, shortest-path weights are not well defined. No path from s to a vertex on the cycle can be a shortest path-we can always find a path with lower weight by following the proposed "shortest" path and then traversing the negative-weight cycle. If there is a negativeweight cycle on some path from s to v, we define $\delta(s, v)=-\infty$.

Figure 24.1 illustrates the effect of negative weights and negative-weight cycles on shortest-path weights. Because there is only one path from s to a (the path $\langle s, a\rangle$), we have $\delta(s, a)=w(s, a)=3$. Similarly, there is only one path from s to b, and so $\delta(s, b)=w(s, a)+w(a, b)=3+(-4)=-1$. There are infinitely many paths from s to $c:\langle s, c\rangle,\langle s, c, d, c\rangle,\langle s, c, d, c, d, c\rangle$, and so on. Because the cycle $\langle c, d, c\rangle$ has weight $6+(-3)=3>0$, the shortest path from s to c is $\langle s, c\rangle$, with weight $\delta(s, c)=w(s, c)=5$. Similarly, the shortest path from s to d is $\langle s, c, d\rangle$, with weight $\delta(s, d)=w(s, c)+w(c, d)=11$. Analogously, there are infinitely many paths from s to $e:\langle s, e\rangle,\langle s, e, f, e\rangle,\langle s, e, f, e, f, e\rangle$, and so on. Because the cycle $\langle e, f, e\rangle$ has weight $3+(-6)=-3<0$, however, there is no shortest path from s to e. By traversing the negative-weight cycle $\langle e, f, e\rangle$ arbitrarily many times, we can find paths from s to e with arbitrarily large negative weights, and so $\delta(s, e)=-\infty$. Similarly, $\delta(s, f)=-\infty$. Because g is reachable from f, we can also find paths with arbitrarily large negative weights from s to g, and so $\delta(s, g)=-\infty$. Vertices h, i, and j also form a negative-weight cycle. They are not reachable from s, however, and so $\delta(s, h)=\delta(s, i)=\delta(s, j)=\infty$.

Figure 24.1 Negative edge weights in a directed graph. The shortest-path weight from source s appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from s, they have shortest-path weights of $-\infty$. Because vertex g is reachable from a vertex whose shortestpath weight is $-\infty$, it, too, has a shortest-path weight of $-\infty$. Vertices such as h, i, and j are not reachable from s, and so their shortest-path weights are ∞, even though they lie on a negative-weight cycle.

Some shortest-paths algorithms, such as Dijkstra's algorithm, assume that all edge weights in the input graph are nonnegative, as in the road-map example. Others, such as the Bellman-Ford algorithm, allow negative-weight edges in the input graph and produce a correct answer as long as no negative-weight cycles are reachable from the source. Typically, if there is such a negative-weight cycle, the algorithm can detect and report its existence.

Cycles

Can a shortest path contain a cycle? As we have just seen, it cannot contain a negative-weight cycle. Nor can it contain a positive-weight cycle, since removing the cycle from the path produces a path with the same source and destination vertices and a lower path weight. That is, if $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a path and $c=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ is a positive-weight cycle on this path (so that $v_{i}=v_{j}$ and $w(c)>0$), then the path $p^{\prime}=\left\langle v_{0}, v_{1}, \ldots, v_{i}, v_{j+1}, v_{j+2}, \ldots, v_{k}\right\rangle$ has weight $w\left(p^{\prime}\right)=w(p)-w(c)<w(p)$, and so p cannot be a shortest path from v_{0} to v_{k}.

That leaves only 0 -weight cycles. We can remove a 0 -weight cycle from any path to produce another path whose weight is the same. Thus, if there is a shortest path from a source vertex s to a destination vertex v that contains a 0 -weight cycle, then there is another shortest path from s to v without this cycle. As long as a shortest path has 0 -weight cycles, we can repeatedly remove these cycles from the path until we have a shortest path that is cycle-free. Therefore, without loss of generality we can assume that when we are finding shortest paths, they have no cycles, i.e., they are simple paths. Since any acyclic path in a graph $G=(V, E)$
contains at most $|V|$ distinct vertices, it also contains at most $|V|-1$ edges. Thus, we can restrict our attention to shortest paths of at most $|V|-1$ edges.

Representing shortest paths

We often wish to compute not only shortest-path weights, but the vertices on shortest paths as well. We represent shortest paths similarly to how we represented breadth-first trees in Section 22.2. Given a graph $G=(V, E)$, we maintain for each vertex $\nu \in V$ a predecessor $\nu . \pi$ that is either another vertex or NIL. The shortest-paths algorithms in this chapter set the π attributes so that the chain of predecessors originating at a vertex v runs backwards along a shortest path from s to v. Thus, given a vertex v for which $v . \pi \neq$ NiL, the procedure $\operatorname{Print-Path~}(G, s, v)$ from Section 22.2 will print a shortest path from s to ν.

In the midst of executing a shortest-paths algorithm, however, the π values might not indicate shortest paths. As in breadth-first search, we shall be interested in the predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ induced by the π values. Here again, we define the vertex set V_{π} to be the set of vertices of G with non-NIL predecessors, plus the source s :
$V_{\pi}=\{v \in V: v . \pi \neq \mathrm{NIL}\} \cup\{s\}$.
The directed edge set E_{π} is the set of edges induced by the π values for vertices in V_{π} :
$E_{\pi}=\left\{(\nu . \pi, \nu) \in E: \nu \in V_{\pi}-\{s\}\right\}$.
We shall prove that the π values produced by the algorithms in this chapter have the property that at termination G_{π} is a "shortest-paths tree"-informally, a rooted tree containing a shortest path from the source s to every vertex that is reachable from s. A shortest-paths tree is like the breadth-first tree from Section 22.2, but it contains shortest paths from the source defined in terms of edge weights instead of numbers of edges. To be precise, let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles reachable from the source vertex $s \in V$, so that shortest paths are well defined. A shortest-paths tree rooted at s is a directed subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, such that

1. V^{\prime} is the set of vertices reachable from s in G,
2. G^{\prime} forms a rooted tree with root s, and
3. for all $v \in V^{\prime}$, the unique simple path from s to v in G^{\prime} is a shortest path from s to v in G.

Figure 24.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The shaded edges form a shortest-paths tree rooted at the source s. (c) Another shortest-paths tree with the same root.

Shortest paths are not necessarily unique, and neither are shortest-paths trees. For example, Figure 24.2 shows a weighted, directed graph and two shortest-paths trees with the same root.

Relaxation

The algorithms in this chapter use the technique of relaxation. For each vertex $v \in V$, we maintain an attribute $v . d$, which is an upper bound on the weight of a shortest path from source s to v. We call $v . d$ a shortest-path estimate. We initialize the shortest-path estimates and predecessors by the following $\Theta(V)$-time procedure:

Initialize-Single-Source (G, s)
1 for each vertex $v \in G . V$
$2 \quad$ v.d $=\infty$
$3 \quad v \cdot \pi=$ NIL
$4 \quad s . d=0$
After initialization, we have $\nu . \pi=$ NIL for all $v \in V$, s. $d=0$, and $v . d=\infty$ for $v \in V-\{s\}$.
The process of relaxing an edge (u, v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating $\nu . d$ and $\nu . \pi$. A relaxation step ${ }^{1}$ may decrease the value of the shortest-path

[^4]

Figure 24.3 Relaxing an edge (u, v) with weight $w(u, v)=2$. The shortest-path estimate of each vertex appears within the vertex. (a) Because v.d>u.d+w(u,v) prior to relaxation, the value of $v . d$ decreases. (b) Here, $v . d \leq u . d+w(u, v)$ before relaxing the edge, and so the relaxation step leaves $v . d$ unchanged.
estimate $\nu . d$ and update ν 's predecessor attribute $v . \pi$. The following code performs a relaxation step on edge (u, v) in $O(1)$ time:
$\operatorname{Relax}(u, v, w)$

```
if \(v . d>u . d+w(u, v)\)
    \(\nu . d=u \cdot d+w(u, v)\)
    \(\nu . \pi=u\)
```

Figure 24.3 shows two examples of relaxing an edge, one in which a shortest-path estimate decreases and one in which no estimate changes.

Each algorithm in this chapter calls Initialize-Single-Source and then repeatedly relaxes edges. Moreover, relaxation is the only means by which shortestpath estimates and predecessors change. The algorithms in this chapter differ in how many times they relax each edge and the order in which they relax edges. Dijkstra's algorithm and the shortest-paths algorithm for directed acyclic graphs relax each edge exactly once. The Bellman-Ford algorithm relaxes each edge $|V|-1$ times.

Properties of shortest paths and relaxation

To prove the algorithms in this chapter correct, we shall appeal to several properties of shortest paths and relaxation. We state these properties here, and Section 24.5 proves them formally. For your reference, each property stated here includes the appropriate lemma or corollary number from Section 24.5. The latter five of these properties, which refer to shortest-path estimates or the predecessor subgraph, implicitly assume that the graph is initialized with a call to Initialize-$\operatorname{Single}-\operatorname{Source}(G, s)$ and that the only way that shortest-path estimates and the predecessor subgraph change are by some sequence of relaxation steps.

Triangle inequality (Lemma 24.10)
For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
Upper-bound property (Lemma 24.11)
We always have $v . d \geq \delta(s, v)$ for all vertices $v \in V$, and once $v . d$ achieves the value $\delta(s, \nu)$, it never changes.

No-path property (Corollary 24.12)
If there is no path from s to v, then we always have $v . d=\delta(s, v)=\infty$.
Convergence property (Lemma 24.14)
If $s \leadsto u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u . d=\delta(s, u)$ at any time prior to relaxing edge (u, v), then $v . d=\delta(s, v)$ at all times afterward.
Path-relaxation property (Lemma 24.15)
If $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a shortest path from $s=v_{0}$ to v_{k}, and we relax the edges of p in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, then $v_{k} \cdot d=\delta\left(s, v_{k}\right)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.
Predecessor-subgraph property (Lemma 24.17)
Once $v . d=\delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

Chapter outline

Section 24.1 presents the Bellman-Ford algorithm, which solves the single-source shortest-paths problem in the general case in which edges can have negative weight. The Bellman-Ford algorithm is remarkably simple, and it has the further benefit of detecting whether a negative-weight cycle is reachable from the source. Section 24.2 gives a linear-time algorithm for computing shortest paths from a single source in a directed acyclic graph. Section 24.3 covers Dijkstra's algorithm, which has a lower running time than the Bellman-Ford algorithm but requires the edge weights to be nonnegative. Section 24.4 shows how we can use the Bellman-Ford algorithm to solve a special case of linear programming. Finally, Section 24.5 proves the properties of shortest paths and relaxation stated above.

We require some conventions for doing arithmetic with infinities. We shall assume that for any real number $a \neq-\infty$, we have $a+\infty=\infty+a=\infty$. Also, to make our proofs hold in the presence of negative-weight cycles, we shall assume that for any real number $a \neq \infty$, we have $a+(-\infty)=(-\infty)+a=-\infty$.

All algorithms in this chapter assume that the directed graph G is stored in the adjacency-list representation. Additionally, stored with each edge is its weight, so that as we traverse each adjacency list, we can determine the edge weights in $O(1)$ time per edge.

24.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative. Given a weighted, directed graph $G=(V, E)$ with source s and weight function $w: E \rightarrow \mathbb{R}$, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

The algorithm relaxes edges, progressively decreasing an estimate $v . d$ on the weight of a shortest path from the source s to each vertex $v \in V$ until it achieves the actual shortest-path weight $\delta(s, v)$. The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.
$\operatorname{Bellman}-\operatorname{Ford}(G, w, s)$

```
Initialize-Single-Source \((G, s)\)
for \(i=1\) to \(|G . V|-1\)
    for each edge \((u, v) \in G . E\)
        \(\operatorname{Relax}(u, v, w)\)
for each edge \((u, v) \in G . E\)
    if \(v . d>u . d+w(u, v)\)
        return FALSE
return TRUE
```

Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After initializing the d and π values of all vertices in line 1 , the algorithm makes $|V|-1$ passes over the edges of the graph. Each pass is one iteration of the for loop of lines 2-4 and consists of relaxing each edge of the graph once. Figures 24.4(b)-(e) show the state of the algorithm after each of the four passes over the edges. After making $|V|-1$ passes, lines $5-8$ check for a negative-weight cycle and return the appropriate boolean value. (We'll see a little later why this check works.)

The Bellman-Ford algorithm runs in time $O(V E)$, since the initialization in line 1 takes $\Theta(V)$ time, each of the $|V|-1$ passes over the edges in lines 2-4 takes $\Theta(E)$ time, and the for loop of lines 5-7 takes $O(E)$ time.

To prove the correctness of the Bellman-Ford algorithm, we start by showing that if there are no negative-weight cycles, the algorithm computes correct shortest-path weights for all vertices reachable from the source.

Figure 24.4 The execution of the Bellman-Ford algorithm. The source is vertex s. The d values appear within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is shaded, then $\nu . \pi=u$. In this particular example, each pass relaxes the edges in the order $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$. (a) The situation just before the first pass over the edges. (b)-(e) The situation after each successive pass over the edges. The d and π values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this example.

Lemma 24.2

Let $G=(V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the $|V|-1$ iterations of the for loop of lines 2-4 of Bellman-Ford, we have $v . d=\delta(s, v)$ for all vertices v that are reachable from s.

Proof We prove the lemma by appealing to the path-relaxation property. Consider any vertex v that is reachable from s, and let $p=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{k}\right\rangle$, where $\nu_{0}=s$ and $\nu_{k}=v$, be any shortest path from s to v. Because shortest paths are simple, p has at most $|V|-1$ edges, and so $k \leq|V|-1$. Each of the $|V|-1$ iterations of the for loop of lines 2-4 relaxes all $|E|$ edges. Among the edges relaxed in the i th iteration, for $i=1,2, \ldots, k$, is $\left(v_{i-1}, v_{i}\right)$. By the path-relaxation property, therefore, $v . d=v_{k} \cdot d=\delta\left(s, v_{k}\right)=\delta(s, v)$.

Corollary 24.3

Let $G=(V, E)$ be a weighted, directed graph with source vertex s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, for each vertex $v \in V$, there is a path from s to v if and only if BeLLman-Ford terminates with $v . d<\infty$ when it is run on G.

Proof The proof is left as Exercise 24.1-2.

Theorem 24.4 (Correctness of the Bellman-Ford algorithm)

Let Bellman-Ford be run on a weighted, directed graph $G=(V, E)$ with source s and weight function $w: E \rightarrow \mathbb{R}$. If G contains no negative-weight cycles that are reachable from s, then the algorithm returns TRUE, we have $v . d=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof Suppose that graph G contains no negative-weight cycles that are reachable from the source s. We first prove the claim that at termination, v. $d=\delta(s, v)$ for all vertices $v \in V$. If vertex v is reachable from s, then Lemma 24.2 proves this claim. If v is not reachable from s, then the claim follows from the no-path property. Thus, the claim is proven. The predecessor-subgraph property, along with the claim, implies that G_{π} is a shortest-paths tree. Now we use the claim to show that Bellman-Ford returns true. At termination, we have for all edges $(u, v) \in E$,

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \quad \text { (by the triangle inequality) } \\
& =u \cdot d+w(u, v)
\end{aligned}
$$

and so none of the tests in line 6 causes BELLman-Ford to return FALSE. Therefore, it returns TRUE.

Now, suppose that graph G contains a negative-weight cycle that is reachable from the source s; let this cycle be $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=v_{k}$. Then,
$\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$.
Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE. Thus, $v_{i} . d \leq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$ for $i=1,2, \ldots, k$. Summing the inequalities around cycle c gives us

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Since $\nu_{0}=\nu_{k}$, each vertex in c appears exactly once in each of the summations $\sum_{i=1}^{k} v_{i} . d$ and $\sum_{i=1}^{k} v_{i-1} . d$, and so

$$
\sum_{i=1}^{k} v_{i} \cdot d=\sum_{i=1}^{k} v_{i-1} \cdot d
$$

Moreover, by Corollary 24.3, $v_{i} . d$ is finite for $i=1,2, \ldots, k$. Thus,

$$
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

which contradicts inequality (24.1). We conclude that the Bellman-Ford algorithm returns TRUE if graph G contains no negative-weight cycles reachable from the source, and FALSE otherwise.

Exercises

24.1-1

Run the Bellman-Ford algorithm on the directed graph of Figure 24.4, using vertex z as the source. In each pass, relax edges in the same order as in the figure, and show the d and π values after each pass. Now, change the weight of edge (z, x) to 4 and run the algorithm again, using s as the source.

24.1-2

Prove Corollary 24.3.

24.1-3

Given a weighted, directed graph $G=(V, E)$ with no negative-weight cycles, let m be the maximum over all vertices $v \in V$ of the minimum number of edges in a shortest path from the source s to v. (Here, the shortest path is by weight, not the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in $m+1$ passes, even if m is not known in advance.

24.1-4

Modify the Bellman-Ford algorithm so that it sets $v . d$ to $-\infty$ for all vertices v for which there is a negative-weight cycle on some path from the source to ν.

24.1-5 *

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Give an $O(V E)$-time algorithm to find, for each vertex $v \in V$, the value $\delta^{*}(\nu)=$ $\min _{u \in V}\{\delta(u, v)\}$.

24.1-6 *

Suppose that a weighted, directed graph $G=(V, E)$ has a negative-weight cycle. Give an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) $G=(V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V+E)$ time. Shortest paths are always well defined in a dag, since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to impose a linear ordering on the vertices. If the dag contains a path from vertex u to vertex v, then u precedes v in the topological sort. We make just one pass over the vertices in the topologically sorted order. As we process each vertex, we relax each edge that leaves the vertex.

DAG-Shortest-Paths (G, w, s)

```
topologically sort the vertices of \(G\)
Initialize-Single-Source \((G, s)\)
for each vertex \(u\), taken in topologically sorted order
    for each vertex \(v \in G . \operatorname{Adj}[u]\)
        \(\operatorname{Relax}(u, v, w)\)
```

Figure 24.5 shows the execution of this algorithm.
The running time of this algorithm is easy to analyze. As shown in Section 22.4, the topological sort of line 1 takes $\Theta(V+E)$ time. The call of Initialize-Single-Source in line 2 takes $\Theta(V)$ time. The for loop of lines 3-5 makes one iteration per vertex. Altogether, the for loop of lines 4-5 relaxes each edge exactly once. (We have used an aggregate analysis here.) Because each iteration of the inner for loop takes $\Theta(1)$ time, the total running time is $\Theta(V+E)$, which is linear in the size of an adjacency-list representation of the graph.

The following theorem shows that the DaG-Shortest-Paths procedure correctly computes the shortest paths.

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The vertices are topologically sorted from left to right. The source vertex is s. The d values appear within the vertices, and shaded edges indicate the π values. (a) The situation before the first iteration of the for loop of lines 3-5. (b)-(g) The situation after each iteration of the for loop of lines 3-5. The newly blackened vertex in each iteration was used as u in that iteration. The values shown in part (g) are the final values.

Theorem 24.5

If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the DAG-Shortest-Paths procedure, $v . d=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Proof We first show that $v . d=\delta(s, v)$ for all vertices $v \in V$ at termination. If v is not reachable from s, then $v . d=\delta(s, v)=\infty$ by the no-path property. Now, suppose that v is reachable from s, so that there is a shortest path $p=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{k}\right\rangle$, where $\nu_{0}=s$ and $\nu_{k}=v$. Because we pro-
cess the vertices in topologically sorted order, we relax the edges on p in the order $\left(v_{0}, \nu_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The path-relaxation property implies that $v_{i} . d=\delta\left(s, v_{i}\right)$ at termination for $i=0,1, \ldots, k$. Finally, by the predecessorsubgraph property, G_{π} is a shortest-paths tree.

An interesting application of this algorithm arises in determining critical paths in PERT chart 2 analysis. Edges represent jobs to be performed, and edge weights represent the times required to perform particular jobs. If edge (u, v) enters vertex v and edge (ν, x) leaves v, then job (u, v) must be performed before job (ν, x). A path through this dag represents a sequence of jobs that must be performed in a particular order. A critical path is a longest path through the dag, corresponding to the longest time to perform any sequence of jobs. Thus, the weight of a critical path provides a lower bound on the total time to perform all the jobs. We can find a critical path by either

- negating the edge weights and running DAG-Shortest-Paths, or
- running DAG-Shortest-PathS, with the modification that we replace " ∞ " by " $-\infty$ " in line 2 of Initialize-Single-Source and " $>$ " by " $<$ " in the RELAX procedure.

Exercises

24.2-1

Run Dag-Shortest-Paths on the directed graph of Figure 24.5, using vertex r as the source.

24.2-2

Suppose we change line 3 of DAG-Shortest-Paths to read
3 for the first $|V|-1$ vertices, taken in topologically sorted order
Show that the procedure would remain correct.

24.2-3

The PERT chart formulation given above is somewhat unnatural. In a more natural structure, vertices would represent jobs and edges would represent sequencing constraints; that is, edge (u, v) would indicate that job u must be performed before job ν. We would then assign weights to vertices, not edges. Modify the DAG-Shortest-Paths procedure so that it finds a longest path in a directed acyclic graph with weighted vertices in linear time.

2"PERT" is an acronym for "program evaluation and review technique."

24.2-4

Give an efficient algorithm to count the total number of paths in a directed acyclic graph. Analyze your algorithm.

24.3 Dijkstra's algorithm

Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted, directed graph $G=(V, E)$ for the case in which all edge weights are nonnegative. In this section, therefore, we assume that $w(u, v) \geq 0$ for each edge $(u, v) \in E$. As we shall see, with a good implementation, the running time of Dijkstra's algorithm is lower than that of the Bellman-Ford algorithm.

Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined. The algorithm repeatedly selects the vertex $u \in V-S$ with the minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u. In the following implementation, we use a min-priority queue Q of vertices, keyed by their d values.

Dijkstra (G, w, s)

```
Initialize-Single-Source \((G, s)\)
\(S=\emptyset\)
\(Q=G . V\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{Extract-Min}(Q)\)
    \(S=S \cup\{u\}\)
    for each vertex \(v \in G . \operatorname{Adj}[u]\)
        \(\operatorname{Relax}(u, v, w)\)
```

Dijkstra's algorithm relaxes edges as shown in Figure 24.6. Line 1 initializes the d and π values in the usual way, and line 2 initializes the set S to the empty set. The algorithm maintains the invariant that $Q=V-S$ at the start of each iteration of the while loop of lines 4-8. Line 3 initializes the min-priority queue Q to contain all the vertices in V; since $S=\emptyset$ at that time, the invariant is true after line 3. Each time through the while loop of lines $4-8$, line 5 extracts a vertex u from $Q=V-S$ and line 6 adds it to set S, thereby maintaining the invariant. (The first time through this loop, $u=s$.) Vertex u, therefore, has the smallest shortest-path estimate of any vertex in $V-S$. Then, lines 7-8 relax each edge (u, v) leaving u, thus updating the estimate $\nu . d$ and the predecessor $\nu . \pi$ if we can improve the shortest path to v found so far by going through u. Observe that the algorithm never inserts vertices into Q after line 3 and that each vertex is extracted from Q

Figure 24.6 The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set S, and white vertices are in the min-priority queue $Q=V-S$. (a) The situation just before the first iteration of the while loop of lines $4-8$. The shaded vertex has the minimum d value and is chosen as vertex u in line 5. (b)-(f) The situation after each successive iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration. The d values and predecessors shown in part (f) are the final values.
and added to S exactly once, so that the while loop of lines 4-8 iterates exactly $|V|$ times.

Because Dijkstra's algorithm always chooses the "lightest" or "closest" vertex in $V-S$ to add to set S, we say that it uses a greedy strategy. Chapter 16 explains greedy strategies in detail, but you need not have read that chapter to understand Dijkstra's algorithm. Greedy strategies do not always yield optimal results in general, but as the following theorem and its corollary show, Dijkstra's algorithm does indeed compute shortest paths. The key is to show that each time it adds a vertex u to set S, we have $u . d=\delta(s, u)$.

Theorem 24.6 (Correctness of Dijkstra's algorithm)

Dijkstra's algorithm, run on a weighted, directed graph $G=(V, E)$ with nonnegative weight function w and source s, terminates with $u . d=\delta(s, u)$ for all vertices $u \in V$.

Figure 24.7 The proof of Theorem 24.6. Set S is nonempty just before vertex u is added to it. We decompose a shortest path p from source s to vertex u into $s \stackrel{p_{1}}{\sim} x \rightarrow y \stackrel{p_{2}}{\sim} u$, where y is the first vertex on the path that is not in S and $x \in S$ immediately precedes y. Vertices x and y are distinct, but we may have $s=x$ or $y=u$. Path p_{2} may or may not reenter set S.

Proof We use the following loop invariant:
At the start of each iteration of the while loop of lines 4-8, v.d $=\delta(s, \nu)$ for each vertex $v \in S$.

It suffices to show for each vertex $u \in V$, we have $u . d=\delta(s, u)$ at the time when u is added to set S. Once we show that $u . d=\delta(s, u)$, we rely on the upper-bound property to show that the equality holds at all times thereafter.

Initialization: Initially, $S=\emptyset$, and so the invariant is trivially true.
Maintenance: We wish to show that in each iteration, $u . d=\delta(s, u)$ for the vertex added to set S. For the purpose of contradiction, let u be the first vertex for which $u . d \neq \delta(s, u)$ when it is added to set S. We shall focus our attention on the situation at the beginning of the iteration of the while loop in which u is added to S and derive the contradiction that $u . d=\delta(s, u)$ at that time by examining a shortest path from s to u. We must have $u \neq s$ because s is the first vertex added to set S and $s . d=\delta(s, s)=0$ at that time. Because $u \neq s$, we also have that $S \neq \emptyset$ just before u is added to S. There must be some path from s to u, for otherwise $u . d=\delta(s, u)=\infty$ by the no-path property, which would violate our assumption that $u \cdot d \neq \delta(s, u)$. Because there is at least one path, there is a shortest path p from s to u. Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in $V-S$, namely u. Let us consider the first vertex y along p such that $y \in V-S$, and let $x \in S$ be y 's predecessor along p. Thus, as Figure 24.7 illustrates, we can decompose path p into $s \stackrel{p_{1}}{\sim} x \rightarrow y \stackrel{p_{2}}{\sim} u$. (Either of paths p_{1} or p_{2} may have no edges.)
We claim that $y . d=\delta(s, y)$ when u is added to S. To prove this claim, observe that $x \in S$. Then, because we chose u as the first vertex for which $u . d \neq \delta(s, u)$ when it is added to S, we had $x . d=\delta(s, x)$ when x was added
to S. Edge (x, y) was relaxed at that time, and the claim follows from the convergence property.
We can now obtain a contradiction to prove that $u \cdot d=\delta(s, u)$. Because y appears before u on a shortest path from s to u and all edge weights are nonnegative (notably those on path p_{2}), we have $\delta(s, y) \leq \delta(s, u)$, and thus

$$
\begin{align*}
y . d & =\delta(s, y) \\
& \leq \delta(s, u) \tag{24.2}\\
& \leq u \cdot d \quad \text { (by the upper-bound property) } .
\end{align*}
$$

But because both vertices u and y were in $V-S$ when u was chosen in line 5, we have $u . d \leq y . d$. Thus, the two inequalities in (24.2) are in fact equalities, giving
$y . d=\delta(s, y)=\delta(s, u)=u . d$.
Consequently, $u . d=\delta(s, u)$, which contradicts our choice of u. We conclude that $u . d=\delta(s, u)$ when u is added to S, and that this equality is maintained at all times thereafter.

Termination: At termination, $Q=\emptyset$ which, along with our earlier invariant that $Q=V-S$, implies that $S=V$. Thus, $u . d=\delta(s, u)$ for all vertices $u \in V$.

Corollary 24.7

If we run Dijkstra's algorithm on a weighted, directed graph $G=(V, E)$ with nonnegative weight function w and source s, then at termination, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Proof Immediate from Theorem 24.6 and the predecessor-subgraph property.

Analysis

How fast is Dijkstra's algorithm? It maintains the min-priority queue Q by calling three priority-queue operations: Insert (implicit in line 3), EXTRACT-Min (line 5), and Decrease-Key (implicit in Relax, which is called in line 8). The algorithm calls both Insert and Extract-Min once per vertex. Because each vertex $u \in V$ is added to set S exactly once, each edge in the adjacency list $\operatorname{Adj}[u]$ is examined in the for loop of lines 7-8 exactly once during the course of the algorithm. Since the total number of edges in all the adjacency lists is $|E|$, this for loop iterates a total of $|E|$ times, and thus the algorithm calls DECREASE-KEY at most $|E|$ times overall. (Observe once again that we are using aggregate analysis.)

The running time of Dijkstra's algorithm depends on how we implement the min-priority queue. Consider first the case in which we maintain the min-priority
queue by taking advantage of the vertices being numbered 1 to $|V|$. We simply store $v . d$ in the ν th entry of an array. Each InSERT and DECREASE-KEY operation takes $O(1)$ time, and each Extract-Min operation takes $O(V)$ time (since we have to search through the entire array), for a total time of $O\left(V^{2}+E\right)=O\left(V^{2}\right)$.

If the graph is sufficiently sparse-in particular, $E=o\left(V^{2} / \lg V\right)$-we can improve the algorithm by implementing the min-priority queue with a binary minheap. (As discussed in Section 6.5, the implementation should make sure that vertices and corresponding heap elements maintain handles to each other.) Each Extract-Min operation then takes time $O(\lg V)$. As before, there are $|V|$ such operations. The time to build the binary min-heap is $O(V)$. Each Decrease-Key operation takes time $O(\lg V)$, and there are still at most $|E|$ such operations. The total running time is therefore $O((V+E) \lg V)$, which is $O(E \lg V)$ if all vertices are reachable from the source. This running time improves upon the straightforward $O\left(V^{2}\right)$-time implementation if $E=o\left(V^{2} / \lg V\right)$.

We can in fact achieve a running time of $O(V \lg V+E)$ by implementing the min-priority queue with a Fibonacci heap (see Chapter 19). The amortized cost of each of the $|V|$ Extract-Min operations is $O(\lg V)$, and each DecreaseKEY call, of which there are at most $|E|$, takes only $O(1)$ amortized time. Historically, the development of Fibonacci heaps was motivated by the observation that Dijkstra's algorithm typically makes many more DECREASE-KEY calls than EXTRACT-Min calls, so that any method of reducing the amortized time of each DECREASE-KEY operation to $o(\lg V)$ without increasing the amortized time of EXTRACT-Min would yield an asymptotically faster implementation than with binary heaps.

Dijkstra's algorithm resembles both breadth-first search (see Section 22.2) and Prim's algorithm for computing minimum spanning trees (see Section 23.2). It is like breadth-first search in that set S corresponds to the set of black vertices in a breadth-first search; just as vertices in S have their final shortest-path weights, so do black vertices in a breadth-first search have their correct breadth-first distances. Dijkstra's algorithm is like Prim's algorithm in that both algorithms use a minpriority queue to find the "lightest" vertex outside a given set (the set S in Dijkstra's algorithm and the tree being grown in Prim's algorithm), add this vertex into the set, and adjust the weights of the remaining vertices outside the set accordingly.

Exercises

24.3-1

Run Dijkstra's algorithm on the directed graph of Figure 24.2, first using vertex s as the source and then using vertex z as the source. In the style of Figure 24.6, show the d and π values and the vertices in set S after each iteration of the while loop.

24.3-2

Give a simple example of a directed graph with negative-weight edges for which Dijkstra's algorithm produces incorrect answers. Why doesn't the proof of Theorem 24.6 go through when negative-weight edges are allowed?

24.3-3

Suppose we change line 4 of Dijkstra's algorithm to the following.
4 while $|Q|>1$
This change causes the while loop to execute $|V|-1$ times instead of $|V|$ times. Is this proposed algorithm correct?

24.3-4

Professor Gaedel has written a program that he claims implements Dijkstra's algorithm. The program produces $\nu . d$ and $\nu . \pi$ for each vertex $v \in V$. Give an $O(V+E)$-time algorithm to check the output of the professor's program. It should determine whether the d and π attributes match those of some shortest-paths tree. You may assume that all edge weights are nonnegative.

24.3-5

Professor Newman thinks that he has worked out a simpler proof of correctness for Dijkstra's algorithm. He claims that Dijkstra's algorithm relaxes the edges of every shortest path in the graph in the order in which they appear on the path, and therefore the path-relaxation property applies to every vertex reachable from the source. Show that the professor is mistaken by constructing a directed graph for which Dijkstra's algorithm could relax the edges of a shortest path out of order.

24.3-6

We are given a directed graph $G=(V, E)$ on which each edge $(u, v) \in E$ has an associated value $r(u, v)$, which is a real number in the range $0 \leq r(u, v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret $r(u, v)$ as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.

24.3-7

Let $G=(V, E)$ be a weighted, directed graph with positive weight function $w: E \rightarrow\{1,2, \ldots, W\}$ for some positive integer W, and assume that no two vertices have the same shortest-path weights from source vertex s. Now suppose that we define an unweighted, directed graph $G^{\prime}=\left(V \cup V^{\prime}, E^{\prime}\right)$ by replacing each edge $(u, v) \in E$ with $w(u, v)$ unit-weight edges in series. How many vertices does G^{\prime} have? Now suppose that we run a breadth-first search on G^{\prime}. Show that
the order in which the breadth-first search of G^{\prime} colors vertices in V black is the same as the order in which Dijkstra's algorithm extracts the vertices of V from the priority queue when it runs on G.

24.3-8

Let $G=(V, E)$ be a weighted, directed graph with nonnegative weight function $w: E \rightarrow\{0,1, \ldots, W\}$ for some nonnegative integer W. Modify Dijkstra's algorithm to compute the shortest paths from a given source vertex s in $O(W V+E)$ time.

24.3-9

Modify your algorithm from Exercise 24.3-8 to run in $O((V+E) \lg W)$ time. (Hint: How many distinct shortest-path estimates can there be in $V-S$ at any point in time?)

24.3-10

Suppose that we are given a weighted, directed graph $G=(V, E)$ in which edges that leave the source vertex s may have negative weights, all other edge weights are nonnegative, and there are no negative-weight cycles. Argue that Dijkstra's algorithm correctly finds shortest paths from s in this graph.

24.4 Difference constraints and shortest paths

Chapter 29 studies the general linear-programming problem, in which we wish to optimize a linear function subject to a set of linear inequalities. In this section, we investigate a special case of linear programming that we reduce to finding shortest paths from a single source. We can then solve the single-source shortest-paths problem that results by running the Bellman-Ford algorithm, thereby also solving the linear-programming problem.

Linear programming

In the general linear-programming problem, we are given an $m \times n$ matrix A, an m-vector b, and an n-vector c. We wish to find a vector x of n elements that maximizes the objective function $\sum_{i=1}^{n} c_{i} x_{i}$ subject to the m constraints given by $A x \leq b$.

Although the simplex algorithm, which is the focus of Chapter 29, does not always run in time polynomial in the size of its input, there are other linearprogramming algorithms that do run in polynomial time. We offer here two reasons to understand the setup of linear-programming problems. First, if we know that we
can cast a given problem as a polynomial-sized linear-programming problem, then we immediately have a polynomial-time algorithm to solve the problem. Second, faster algorithms exist for many special cases of linear programming. For example, the single-pair shortest-path problem (Exercise 24.4-4) and the maximum-flow problem (Exercise 26.1-5) are special cases of linear programming.

Sometimes we don't really care about the objective function; we just wish to find any feasible solution, that is, any vector x that satisfies $A x \leq b$, or to determine that no feasible solution exists. We shall focus on one such feasibility problem.

Systems of difference constraints

In a system of difference constraints, each row of the linear-programming matrix A contains one 1 and one -1 , and all other entries of A are 0 . Thus, the constraints given by $A x \leq b$ are a set of m difference constraints involving n unknowns, in which each constraint is a simple linear inequality of the form
$x_{j}-x_{i} \leq b_{k}$,
where $1 \leq i, j \leq n, i \neq j$, and $1 \leq k \leq m$.
For example, consider the problem of finding a 5 -vector $x=\left(x_{i}\right)$ that satisfies

$$
\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \leq\left(\begin{array}{r}
0 \\
-1 \\
1 \\
5 \\
4 \\
-1 \\
-3 \\
-3
\end{array}\right) .
$$

This problem is equivalent to finding values for the unknowns $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, satisfying the following 8 difference constraints:

$$
\begin{align*}
& x_{1}-x_{2} \leq 0, \tag{24.3}\\
& x_{1}-x_{5} \leq-1, \tag{24.4}\\
& x_{2}-x_{5} \leq 1, \tag{24.5}\\
& x_{3}-x_{1} \leq 5, \tag{24.6}\\
& x_{4}-x_{1} \leq 4, \tag{24.7}\\
& x_{4}-x_{3} \leq-1, \tag{24.8}\\
& x_{5}-x_{3} \leq-3, \tag{24.9}\\
& x_{5}-x_{4} \leq-3 . \tag{24.10}
\end{align*}
$$

One solution to this problem is $x=(-5,-3,0,-1,-4)$, which you can verify directly by checking each inequality. In fact, this problem has more than one solution. Another is $x^{\prime}=(0,2,5,4,1)$. These two solutions are related: each component of x^{\prime} is 5 larger than the corresponding component of x. This fact is not mere coincidence.

Lemma 24.8

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a solution to a system $A x \leq b$ of difference constraints, and let d be any constant. Then $x+d=\left(x_{1}+d, x_{2}+d, \ldots, x_{n}+d\right)$ is a solution to $A x \leq b$ as well.

Proof For each x_{i} and x_{j}, we have $\left(x_{j}+d\right)-\left(x_{i}+d\right)=x_{j}-x_{i}$. Thus, if x satisfies $A x \leq b$, so does $x+d$.

Systems of difference constraints occur in many different applications. For example, the unknowns x_{i} may be times at which events are to occur. Each constraint states that at least a certain amount of time, or at most a certain amount of time, must elapse between two events. Perhaps the events are jobs to be performed during the assembly of a product. If we apply an adhesive that takes 2 hours to set at time x_{1} and we have to wait until it sets to install a part at time x_{2}, then we have the constraint that $x_{2} \geq x_{1}+2$ or, equivalently, that $x_{1}-x_{2} \leq-2$. Alternatively, we might require that the part be installed after the adhesive has been applied but no later than the time that the adhesive has set halfway. In this case, we get the pair of constraints $x_{2} \geq x_{1}$ and $x_{2} \leq x_{1}+1$ or, equivalently, $x_{1}-x_{2} \leq 0$ and $x_{2}-x_{1} \leq 1$.

Constraint graphs

We can interpret systems of difference constraints from a graph-theoretic point of view. In a system $A x \leq b$ of difference constraints, we view the $m \times n$ linear-programming matrix A as the transpose of an incidence matrix (see Exercise 22.1-7) for a graph with n vertices and m edges. Each vertex v_{i} in the graph, for $i=1,2, \ldots, n$, corresponds to one of the n unknown variables x_{i}. Each directed edge in the graph corresponds to one of the m inequalities involving two unknowns.

More formally, given a system $A x \leq b$ of difference constraints, the corresponding constraint graph is a weighted, directed graph $G=(V, E)$, where

$$
V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}
$$

and

$$
\begin{aligned}
& E=\left\{\left(v_{i}, v_{j}\right): x_{j}-x_{i} \leq b_{k} \text { is a constraint }\right\} \\
& \quad \cup\left\{\left(v_{0}, v_{1}\right),\left(v_{0}, v_{2}\right),\left(v_{0}, v_{3}\right), \ldots,\left(v_{0}, v_{n}\right)\right\} .
\end{aligned}
$$

Figure 24.8 The constraint graph corresponding to the system (24.3)-(24.10) of difference constraints. The value of $\delta\left(v_{0}, v_{i}\right)$ appears in each vertex v_{i}. One feasible solution to the system is $x=(-5,-3,0,-1,-4)$.

The constraint graph contains the additional vertex ν_{0}, as we shall see shortly, to guarantee that the graph has some vertex which can reach all other vertices. Thus, the vertex set V consists of a vertex v_{i} for each unknown x_{i}, plus an additional vertex ν_{0}. The edge set E contains an edge for each difference constraint, plus an edge (ν_{0}, ν_{i}) for each unknown x_{i}. If $x_{j}-x_{i} \leq b_{k}$ is a difference constraint, then the weight of edge $\left(v_{i}, v_{j}\right)$ is $w\left(v_{i}, v_{j}\right)=b_{k}$. The weight of each edge leaving v_{0} is 0 . Figure 24.8 shows the constraint graph for the system (24.3)-(24.10) of difference constraints.

The following theorem shows that we can find a solution to a system of difference constraints by finding shortest-path weights in the corresponding constraint graph.

Theorem 24.9

Given a system $A x \leq b$ of difference constraints, let $G=(V, E)$ be the corresponding constraint graph. If G contains no negative-weight cycles, then
$x=\left(\delta\left(v_{0}, v_{1}\right), \delta\left(v_{0}, \nu_{2}\right), \delta\left(v_{0}, \nu_{3}\right), \ldots, \delta\left(v_{0}, v_{n}\right)\right)$
is a feasible solution for the system. If G contains a negative-weight cycle, then there is no feasible solution for the system.

Proof We first show that if the constraint graph contains no negative-weight cycles, then equation (24.11) gives a feasible solution. Consider any edge $\left(v_{i}, v_{j}\right) \in E$. By the triangle inequality, $\delta\left(v_{0}, v_{j}\right) \leq \delta\left(v_{0}, v_{i}\right)+w\left(v_{i}, v_{j}\right)$ or, equivalently, $\delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{i}\right) \leq w\left(v_{i}, v_{j}\right)$. Thus, letting $x_{i}=\delta\left(v_{0}, v_{i}\right)$ and
$x_{j}=\delta\left(v_{0}, v_{j}\right)$ satisfies the difference constraint $x_{j}-x_{i} \leq w\left(v_{i}, v_{j}\right)$ that corresponds to edge $\left(v_{i}, v_{j}\right)$.

Now we show that if the constraint graph contains a negative-weight cycle, then the system of difference constraints has no feasible solution. Without loss of generality, let the negative-weight cycle be $c=\left\langle\nu_{1}, \nu_{2}, \ldots, v_{k}\right\rangle$, where $\nu_{1}=\nu_{k}$. (The vertex ν_{0} cannot be on cycle c, because it has no entering edges.) Cycle c corresponds to the following difference constraints:

$$
\begin{aligned}
x_{2}-x_{1} & \leq w\left(v_{1}, v_{2}\right) \\
x_{3}-x_{2} & \leq w\left(v_{2}, v_{3}\right) \\
& \vdots \\
x_{k-1}-x_{k-2} & \leq w\left(v_{k-2}, v_{k-1}\right) \\
x_{k}-x_{k-1} & \leq w\left(v_{k-1}, v_{k}\right)
\end{aligned}
$$

We will assume that x has a solution satisfying each of these k inequalities and then derive a contradiction. The solution must also satisfy the inequality that results when we sum the k inequalities together. If we sum the left-hand sides, each unknown x_{i} is added in once and subtracted out once (remember that $\nu_{1}=\nu_{k}$ implies $x_{1}=x_{k}$), so that the left-hand side of the sum is 0 . The right-hand side sums to $w(c)$, and thus we obtain $0 \leq w(c)$. But since c is a negative-weight cycle, $w(c)<0$, and we obtain the contradiction that $0 \leq w(c)<0$.

Solving systems of difference constraints

Theorem 24.9 tells us that we can use the Bellman-Ford algorithm to solve a system of difference constraints. Because the constraint graph contains edges from the source vertex ν_{0} to all other vertices, any negative-weight cycle in the constraint graph is reachable from ν_{0}. If the Bellman-Ford algorithm returns TRUE, then the shortest-path weights give a feasible solution to the system. In Figure 24.8 , for example, the shortest-path weights provide the feasible solution $x=(-5,-3,0,-1,-4)$, and by Lemma 24.8, $x=(d-5, d-3, d, d-1, d-4)$ is also a feasible solution for any constant d. If the Bellman-Ford algorithm returns FALSE, there is no feasible solution to the system of difference constraints.

A system of difference constraints with m constraints on n unknowns produces a graph with $n+1$ vertices and $n+m$ edges. Thus, using the Bellman-Ford algorithm, we can solve the system in $O((n+1)(n+m))=O\left(n^{2}+n m\right)$ time. Exercise 24.4-5 asks you to modify the algorithm to run in $O(\mathrm{~nm})$ time, even if m is much less than n.

Exercises

24.4-1

Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:

$$
\begin{array}{r}
x_{1}-x_{2} \leq 1, \\
x_{1}-x_{4} \leq-4, \\
x_{2}-x_{3} \leq 2, \\
x_{2}-x_{5} \leq 7, \\
x_{2}-x_{6} \leq 5, \\
x_{3}-x_{6} \leq 10, \\
x_{4}-x_{2} \leq 2, \\
x_{5}-x_{1} \leq-1, \\
x_{5}-x_{4} \leq 3, \\
x_{6}-x_{3} \leq-8 .
\end{array}
$$

24.4-2

Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:

$$
\begin{aligned}
& x_{1}-x_{2} \leq 4, \\
& x_{1}-x_{5} \leq 5, \\
& x_{2}-x_{4} \leq-6, \\
& x_{3}-x_{2} \leq 1, \\
& x_{4}-x_{1} \leq 3, \\
& x_{4}-x_{3} \leq 5, \\
& x_{4}-x_{5} \leq 10, \\
& x_{5}-x_{3} \leq-4, \\
& x_{5}-x_{4} \leq-8 .
\end{aligned}
$$

24.4-3

Can any shortest-path weight from the new vertex ν_{0} in a constraint graph be positive? Explain.

24.4-4

Express the single-pair shortest-path problem as a linear program.

24.4-5

Show how to modify the Bellman-Ford algorithm slightly so that when we use it to solve a system of difference constraints with m inequalities on n unknowns, the running time is $O(\mathrm{~nm})$.

24.4-6

Suppose that in addition to a system of difference constraints, we want to handle equality constraints of the form $x_{i}=x_{j}+b_{k}$. Show how to adapt the BellmanFord algorithm to solve this variety of constraint system.

24.4-7

Show how to solve a system of difference constraints by a Bellman-Ford-like algorithm that runs on a constraint graph without the extra vertex ν_{0}.

24.4-8 *

Let $A x \leq b$ be a system of m difference constraints in n unknowns. Show that the Bellman-Ford algorithm, when run on the corresponding constraint graph, maximizes $\sum_{i=1}^{n} x_{i}$ subject to $A x \leq b$ and $x_{i} \leq 0$ for all x_{i}.

24.4-9 *

Show that the Bellman-Ford algorithm, when run on the constraint graph for a system $A x \leq b$ of difference constraints, minimizes the quantity $\left(\max \left\{x_{i}\right\}-\min \left\{x_{i}\right\}\right)$ subject to $A x \leq b$. Explain how this fact might come in handy if the algorithm is used to schedule construction jobs.

24.4-10

Suppose that every row in the matrix A of a linear program $A x \leq b$ corresponds to a difference constraint, a single-variable constraint of the form $x_{i} \leq b_{k}$, or a singlevariable constraint of the form $-x_{i} \leq b_{k}$. Show how to adapt the Bellman-Ford algorithm to solve this variety of constraint system.

24.4-11

Give an efficient algorithm to solve a system $A x \leq b$ of difference constraints when all of the elements of b are real-valued and all of the unknowns x_{i} must be integers.

24.4-12 *

Give an efficient algorithm to solve a system $A x \leq b$ of difference constraints when all of the elements of b are real-valued and a specified subset of some, but not necessarily all, of the unknowns x_{i} must be integers.

24.5 Proofs of shortest-paths properties

Throughout this chapter, our correctness arguments have relied on the triangle inequality, upper-bound property, no-path property, convergence property, pathrelaxation property, and predecessor-subgraph property. We stated these properties without proof at the beginning of this chapter. In this section, we prove them.

The triangle inequality

In studying breadth-first search (Section 22.2), we proved as Lemma 22.1 a simple property of shortest distances in unweighted graphs. The triangle inequality generalizes the property to weighted graphs.

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have
$\delta(s, v) \leq \delta(s, u)+w(u, v)$.

Proof Suppose that p is a shortest path from source s to vertex v. Then p has no more weight than any other path from s to v. Specifically, path p has no more weight than the particular path that takes a shortest path from source s to vertex u and then takes edge (u, v).

Exercise 24.5-3 asks you to handle the case in which there is no shortest path from s to v.

Effects of relaxation on shortest-path estimates

The next group of lemmas describes how shortest-path estimates are affected when we execute a sequence of relaxation steps on the edges of a weighted, directed graph that has been initialized by Initialize-Single-Source.

Lemma 24.11 (Upper-bound property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and let the graph be initialized by Initialize-$\operatorname{Single}-\operatorname{Source}(G, s)$. Then, $v . d \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once $v . d$ achieves its lower bound $\delta(s, v)$, it never changes.

Proof We prove the invariant $v . d \geq \delta(s, v)$ for all vertices $v \in V$ by induction over the number of relaxation steps.

For the basis, $v . d \geq \delta(s, v)$ is certainly true after initialization, since $v . d=\infty$ implies $v . d \geq \delta(s, v)$ for all $v \in V-\{s\}$, and since $s . d=0 \geq \delta(s, s)$ (note that $\delta(s, s)=-\infty$ if s is on a negative-weight cycle and 0 otherwise).

For the inductive step, consider the relaxation of an edge (u, v). By the inductive hypothesis, $x . d \geq \delta(s, x)$ for all $x \in V$ prior to the relaxation. The only d value that may change is $v . d$. If it changes, we have

$$
\begin{aligned}
\nu . d & =u \cdot d+w(u, v) & & \\
& \geq \delta(s, u)+w(u, v) & & \text { (by the inductive hypothesis) } \\
& \geq \delta(s, v) & & \text { (by the triangle inequality) }
\end{aligned}
$$

and so the invariant is maintained.
To see that the value of $v . d$ never changes once $v . d=\delta(s, v)$, note that having achieved its lower bound, $v . d$ cannot decrease because we have just shown that $\nu . d \geq \delta(s, \nu)$, and it cannot increase because relaxation steps do not increase d values.

Corollary 24.12 (No-path property)

Suppose that in a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, no path connects a source vertex $s \in V$ to a given vertex $v \in V$. Then, after the graph is initialized by Initialize-Single-Source (G, s), we have v.d $=\delta(s, v)=\infty$, and this equality is maintained as an invariant over any sequence of relaxation steps on the edges of G.

Proof By the upper-bound property, we always have $\infty=\delta(s, v) \leq v . d$, and thus $v . d=\infty=\delta(s, v)$.

Lemma 24.13

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $(u, v) \in E$. Then, immediately after relaxing edge (u, v) by executing $\operatorname{ReLAx}(u, v, w)$, we have $v . d \leq u \cdot d+w(u, v)$.

Proof If, just prior to relaxing edge (u, ν), we have $v . d>u . d+w(u, v)$, then $\nu . d=u . d+w(u, \nu)$ afterward. If, instead, $\nu . d \leq u . d+w(u, \nu)$ just before the relaxation, then neither $u . d$ nor $v . d$ changes, and so $v . d \leq u . d+w(u, v)$ afterward.

Lemma 24.14 (Convergence property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, let $s \in V$ be a source vertex, and let $s \leadsto u \rightarrow v$ be a shortest path in G for
some vertices $u, v \in V$. Suppose that G is initialized by Initialize-Single$\operatorname{Source}(G, s)$ and then a sequence of relaxation steps that includes the call $\operatorname{Relax}(u, v, w)$ is executed on the edges of G. If $u . d=\delta(s, u)$ at any time prior to the call, then $v . d=\delta(s, v)$ at all times after the call.

Proof By the upper-bound property, if $u . d=\delta(s, u)$ at some point prior to relaxing edge (u, v), then this equality holds thereafter. In particular, after relaxing edge (u, v), we have

$$
\begin{aligned}
\nu . d & \leq u \cdot d+w(u, v) \quad(\text { by Lemma } 24.13) \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) \quad(\text { by Lemma 24.1) } .
\end{aligned}
$$

By the upper-bound property, v. $d \geq \delta(s, v)$, from which we conclude that $v . d=\delta(s, v)$, and this equality is maintained thereafter.

Lemma 24.15 (Path-relaxation property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $s \in V$ be a source vertex. Consider any shortest path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ from $s=v_{0}$ to v_{k}. If G is initialized by Initialize-Single-Source (G, s) and then a sequence of relaxation steps occurs that includes, in order, relaxing the edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, then $v_{k} . d=\delta\left(s, v_{k}\right)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur, including relaxations that are intermixed with relaxations of the edges of p.

Proof We show by induction that after the i th edge of path p is relaxed, we have $v_{i} . d=\delta\left(s, v_{i}\right)$. For the basis, $i=0$, and before any edges of p have been relaxed, we have from the initialization that $\nu_{0} . d=s . d=0=\delta(s, s)$. By the upper-bound property, the value of $s . d$ never changes after initialization.

For the inductive step, we assume that $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$, and we examine what happens when we relax edge $\left(v_{i-1}, v_{i}\right)$. By the convergence property, after relaxing this edge, we have $v_{i} . d=\delta\left(s, v_{i}\right)$, and this equality is maintained at all times thereafter.

Relaxation and shortest-paths trees

We now show that once a sequence of relaxations has caused the shortest-path estimates to converge to shortest-path weights, the predecessor subgraph G_{π} induced by the resulting π values is a shortest-paths tree for G. We start with the following lemma, which shows that the predecessor subgraph always forms a rooted tree whose root is the source.

Lemma 24.16

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, let $s \in V$ be a source vertex, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the graph is initialized by Initialize-$\operatorname{Single-Source}(G, s)$, the predecessor subgraph G_{π} forms a rooted tree with root s, and any sequence of relaxation steps on edges of G maintains this property as an invariant.

Proof Initially, the only vertex in G_{π} is the source vertex, and the lemma is trivially true. Consider a predecessor subgraph G_{π} that arises after a sequence of relaxation steps. We shall first prove that G_{π} is acyclic. Suppose for the sake of contradiction that some relaxation step creates a cycle in the graph G_{π}. Let the cycle be $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{k}=v_{0}$. Then, $v_{i} \cdot \pi=v_{i-1}$ for $i=1,2, \ldots, k$ and, without loss of generality, we can assume that relaxing edge (ν_{k-1}, v_{k}) created the cycle in G_{π}.

We claim that all vertices on cycle c are reachable from the source s. Why? Each vertex on c has a non-NIL predecessor, and so each vertex on c was assigned a finite shortest-path estimate when it was assigned its non-NIL π value. By the upper-bound property, each vertex on cycle c has a finite shortest-path weight, which implies that it is reachable from s.

We shall examine the shortest-path estimates on c just prior to the call $\operatorname{ReLax}\left(v_{k-1}, v_{k}, w\right)$ and show that c is a negative-weight cycle, thereby contradicting the assumption that G contains no negative-weight cycles that are reachable from the source. Just before the call, we have $v_{i} . \pi=v_{i-1}$ for $i=1,2, \ldots, k-1$. Thus, for $i=1,2, \ldots, k-1$, the last update to $v_{i} . d$ was by the assignment $v_{i} . d=v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$. If $v_{i-1} . d$ changed since then, it decreased. Therefore, just before the call $\operatorname{RELAx}\left(\nu_{k-1}, v_{k}, w\right)$, we have

$$
\begin{equation*}
v_{i} . d \geq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \quad \text { for all } i=1,2, \ldots, k-1 \tag{24.12}
\end{equation*}
$$

Because $\nu_{k} . \pi$ is changed by the call, immediately beforehand we also have the strict inequality
$v_{k} . d>v_{k-1} . d+w\left(v_{k-1}, v_{k}\right)$.
Summing this strict inequality with the $k-1$ inequalities (24.12), we obtain the sum of the shortest-path estimates around cycle c :

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & >\sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Figure 24.9 Showing that a simple path in $G_{\boldsymbol{\pi}}$ from source s to vertex v is unique. If there are two paths $p_{1}(s \leadsto u \leadsto x \rightarrow z \leadsto \nu)$ and $p_{2}(s \leadsto u \leadsto y \rightarrow z \leadsto \nu)$, where $x \neq y$, then $z . \pi=x$ and $z . \pi=y$, a contradiction.

But
$\sum_{i=1}^{k} v_{i} \cdot d=\sum_{i=1}^{k} v_{i-1} . d$,
since each vertex in the cycle c appears exactly once in each summation. This equality implies
$0>\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$.
Thus, the sum of weights around the cycle c is negative, which provides the desired contradiction.

We have now proven that G_{π} is a directed, acyclic graph. To show that it forms a rooted tree with root s, it suffices (see Exercise B.5-2) to prove that for each vertex $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π}.

We first must show that a path from s exists for each vertex in V_{π}. The vertices in V_{π} are those with non-NIL π values, plus s. The idea here is to prove by induction that a path exists from s to all vertices in V_{π}. We leave the details as Exercise 24.5-6.

To complete the proof of the lemma, we must now show that for any vertex $v \in V_{\pi}$, the graph G_{π} contains at most one simple path from s to v. Suppose otherwise. That is, suppose that, as Figure 24.9 illustrates, G_{π} contains two simple paths from s to some vertex $v: p_{1}$, which we decompose into $s \leadsto u \leadsto x \rightarrow z \leadsto \nu$, and p_{2}, which we decompose into $s \leadsto u \leadsto y \rightarrow z \leadsto v$, where $x \neq y$ (though u could be s and z could be ν). But then, $z \cdot \pi=x$ and $z \cdot \pi=y$, which implies the contradiction that $x=y$. We conclude that G_{π} contains a unique simple path from s to v, and thus G_{π} forms a rooted tree with root s.

We can now show that if, after we have performed a sequence of relaxation steps, all vertices have been assigned their true shortest-path weights, then the predecessor subgraph G_{π} is a shortest-paths tree.

Lemma 24.17 (Predecessor-subgraph property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, let $s \in V$ be a source vertex, and assume that G contains no negative-weight cycles that are reachable from s. Let us call Initialize- $\operatorname{Single-Source}(G, s)$ and then execute any sequence of relaxation steps on edges of G that produces $v . d=\delta(s, v)$ for all $v \in V$. Then, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Proof We must prove that the three properties of shortest-paths trees given on page 647 hold for G_{π}. To show the first property, we must show that V_{π} is the set of vertices reachable from s. By definition, a shortest-path weight $\delta(s, v)$ is finite if and only if v is reachable from s, and thus the vertices that are reachable from s are exactly those with finite d values. But a vertex $v \in V-\{s\}$ has been assigned a finite value for $\nu . d$ if and only if $\nu . \pi \neq$ NIL. Thus, the vertices in V_{π} are exactly those reachable from s.

The second property follows directly from Lemma 24.16.
It remains, therefore, to prove the last property of shortest-paths trees: for each vertex $v \in V_{\pi}$, the unique simple path $s \stackrel{p}{\sim} v$ in G_{π} is a shortest path from s to v in G. Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $\nu_{0}=s$ and $v_{k}=v$. For $i=1,2, \ldots, k$, we have both $v_{i} . d=\delta\left(s, v_{i}\right)$ and $v_{i} . d \geq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$, from which we conclude $w\left(v_{i-1}, v_{i}\right) \leq \delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)$. Summing the weights along path p yields

$$
\begin{array}{rlrl}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) & \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) & & \\
& =\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right) & & \text { (because the sum telescopes) } \\
& =\delta\left(s, v_{k}\right) & & \text { (because } \left.\delta\left(s, v_{0}\right)=\delta(s, s)=0\right)
\end{array}
$$

Thus, $w(p) \leq \delta\left(s, v_{k}\right)$. Since $\delta\left(s, v_{k}\right)$ is a lower bound on the weight of any path from s to v_{k}, we conclude that $w(p)=\delta\left(s, v_{k}\right)$, and thus p is a shortest path from s to $v=v_{k}$.

Exercises

24.5-1

Give two shortest-paths trees for the directed graph of Figure 24.2 (on page 648) other than the two shown.

24.5-2

Give an example of a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s such that G satisfies the following property: For every edge $(u, v) \in E$, there is a shortest-paths tree rooted at s that contains (u, v) and another shortest-paths tree rooted at s that does not contain (u, v).

24.5-3

Embellish the proof of Lemma 24.10 to handle cases in which shortest-path weights are ∞ or $-\infty$.

24.5-4

Let $G=(V, E)$ be a weighted, directed graph with source vertex s, and let G be initialized by Initialize-Single-Source (G, s). Prove that if a sequence of relaxation steps sets s. π to a non-NIL value, then G contains a negative-weight cycle.

24.5-5

Let $G=(V, E)$ be a weighted, directed graph with no negative-weight edges. Let $s \in V$ be the source vertex, and suppose that we allow $\nu . \pi$ to be the predecessor of v on any shortest path to v from source s if $v \in V-\{s\}$ is reachable from s, and NIL otherwise. Give an example of such a graph G and an assignment of π values that produces a cycle in G_{π}. (By Lemma 24.16, such an assignment cannot be produced by a sequence of relaxation steps.)

24.5-6

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and no negative-weight cycles. Let $s \in V$ be the source vertex, and let G be initialized by Initialize-Single-Source (G, s). Prove that for every vertex $v \in V_{\pi}$, there exists a path from s to v in G_{π} and that this property is maintained as an invariant over any sequence of relaxations.

24.5-7

Let $G=(V, E)$ be a weighted, directed graph that contains no negative-weight cycles. Let $s \in V$ be the source vertex, and let G be initialized by Initialize-$\operatorname{Single-Source}(G, s)$. Prove that there exists a sequence of $|V|-1$ relaxation steps that produces $v . d=\delta(s, v)$ for all $v \in V$.

24.5-8

Let G be an arbitrary weighted, directed graph with a negative-weight cycle reachable from the source vertex s. Show how to construct an infinite sequence of relaxations of the edges of G such that every relaxation causes a shortest-path estimate to change.

Problems

24-1 Yen's improvement to Bellman-Ford

Suppose that we order the edge relaxations in each pass of the Bellman-Ford algorithm as follows. Before the first pass, we assign an arbitrary linear order $\nu_{1}, \nu_{2}, \ldots, \nu_{|V|}$ to the vertices of the input graph $G=(V, E)$. Then, we partition the edge set E into $E_{f} \cup E_{b}$, where $E_{f}=\left\{\left(v_{i}, v_{j}\right) \in E: i<j\right\}$ and $E_{b}=\left\{\left(v_{i}, \nu_{j}\right) \in E: i>j\right\}$. (Assume that G contains no self-loops, so that every edge is in either E_{f} or E_{b}.) Define $G_{f}=\left(V, E_{f}\right)$ and $G_{b}=\left(V, E_{b}\right)$.
a. Prove that G_{f} is acyclic with topological sort $\left\langle v_{1}, \nu_{2}, \ldots, v_{|V|}\right\rangle$ and that G_{b} is acyclic with topological sort $\left\langle\nu_{|V|}, \nu_{|V|-1}, \ldots, v_{1}\right\rangle$.

Suppose that we implement each pass of the Bellman-Ford algorithm in the following way. We visit each vertex in the order $\nu_{1}, \nu_{2}, \ldots, \nu_{|V|}$, relaxing edges of E_{f} that leave the vertex. We then visit each vertex in the order $\nu_{|V|}, \nu_{|V|-1}, \ldots, \nu_{1}$, relaxing edges of E_{b} that leave the vertex.
b. Prove that with this scheme, if G contains no negative-weight cycles that are reachable from the source vertex s, then after only $\lceil|V| / 2\rceil$ passes over the edges, $v . d=\delta(s, v)$ for all vertices $v \in V$.
c. Does this scheme improve the asymptotic running time of the Bellman-Ford algorithm?

24-2 Nesting boxes

A d-dimensional box with dimensions $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ nests within another box with dimensions $\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ if there exists a permutation π on $\{1,2, \ldots, d\}$ such that $x_{\pi(1)}<y_{1}, x_{\pi(2)}<y_{2}, \ldots, x_{\pi(d)}<y_{d}$.
a. Argue that the nesting relation is transitive.
b. Describe an efficient method to determine whether or not one d-dimensional box nests inside another.
c. Suppose that you are given a set of $n d$-dimensional boxes $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$. Give an efficient algorithm to find the longest sequence $\left\langle B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k}}\right\rangle$ of boxes such that $B_{i_{j}}$ nests within $B_{i_{j+1}}$ for $j=1,2, \ldots, k-1$. Express the running time of your algorithm in terms of n and d.

24-3 Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107=1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies $c_{1}, c_{2}, \ldots, c_{n}$ and an $n \times n$ table R of exchange rates, such that one unit of currency c_{i} buys $R[i, j]$ units of currency c_{j}.
a. Give an efficient algorithm to determine whether or not there exists a sequence of currencies $\left\langle c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{k}}\right\rangle$ such that

$$
R\left[i_{1}, i_{2}\right] \cdot R\left[i_{2}, i_{3}\right] \cdots R\left[i_{k-1}, i_{k}\right] \cdot R\left[i_{k}, i_{1}\right]>1 .
$$

Analyze the running time of your algorithm.
b. Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

24-4 Gabow's scaling algorithm for single-source shortest paths

A scaling algorithm solves a problem by initially considering only the highestorder bit of each relevant input value (such as an edge weight). It then refines the initial solution by looking at the two highest-order bits. It progressively looks at more and more high-order bits, refining the solution each time, until it has examined all bits and computed the correct solution.

In this problem, we examine an algorithm for computing the shortest paths from a single source by scaling edge weights. We are given a directed graph $G=(V, E)$ with nonnegative integer edge weights w. Let $W=\max _{(u, v) \in E}\{w(u, v)\}$. Our goal is to develop an algorithm that runs in $O(E \lg W)$ time. We assume that all vertices are reachable from the source.

The algorithm uncovers the bits in the binary representation of the edge weights one at a time, from the most significant bit to the least significant bit. Specifically, let $k=\lceil\lg (W+1)\rceil$ be the number of bits in the binary representation of W, and for $i=1,2, \ldots, k$, let $w_{i}(u, v)=\left\lfloor w(u, v) / 2^{k-i}\right\rfloor$. That is, $w_{i}(u, v)$ is the "scaled-down" version of $w(u, \nu)$ given by the i most significant bits of $w(u, \nu)$. (Thus, $w_{k}(u, v)=w(u, v)$ for all $(u, v) \in E$.) For example, if $k=5$ and $w(u, v)=25$, which has the binary representation $\langle 11001\rangle$, then $w_{3}(u, v)=$ $\langle 110\rangle=6$. As another example with $k=5$, if $w(u, v)=\langle 00100\rangle=4$, then $w_{3}(u, v)=\langle 001\rangle=1$. Let us define $\delta_{i}(u, v)$ as the shortest-path weight from vertex u to vertex v using weight function w_{i}. Thus, $\delta_{k}(u, v)=\delta(u, v)$ for all $u, v \in V$. For a given source vertex s, the scaling algorithm first computes the
shortest-path weights $\delta_{1}(s, v)$ for all $v \in V$, then computes $\delta_{2}(s, v)$ for all $v \in V$, and so on, until it computes $\delta_{k}(s, v)$ for all $\nu \in V$. We assume throughout that $|E| \geq|V|-1$, and we shall see that computing δ_{i} from δ_{i-1} takes $O(E)$ time, so that the entire algorithm takes $O(k E)=O(E \lg W)$ time.
a. Suppose that for all vertices $v \in V$, we have $\delta(s, v) \leq|E|$. Show that we can compute $\delta(s, v)$ for all $v \in V$ in $O(E)$ time.
b. Show that we can compute $\delta_{1}(s, v)$ for all $v \in V$ in $O(E)$ time.

Let us now focus on computing δ_{i} from δ_{i-1}.
c. Prove that for $i=2,3, \ldots, k$, we have either $w_{i}(u, v)=2 w_{i-1}(u, v)$ or $w_{i}(u, v)=2 w_{i-1}(u, v)+1$. Then, prove that
$2 \delta_{i-1}(s, v) \leq \delta_{i}(s, v) \leq 2 \delta_{i-1}(s, v)+|V|-1$
for all $v \in V$.
d. Define for $i=2,3, \ldots, k$ and all $(u, v) \in E$,
$\widehat{w}_{i}(u, v)=w_{i}(u, v)+2 \delta_{i-1}(s, u)-2 \delta_{i-1}(s, v)$.
Prove that for $i=2,3, \ldots, k$ and all $u, v \in V$, the "reweighted" value $\widehat{w}_{i}(u, v)$ of edge (u, v) is a nonnegative integer.
\boldsymbol{e}. Now, define $\widehat{\delta}_{i}(s, v)$ as the shortest-path weight from s to v using the weight function \widehat{w}_{i}. Prove that for $i=2,3, \ldots, k$ and all $v \in V$,
$\delta_{i}(s, v)=\widehat{\delta}_{i}(s, v)+2 \delta_{i-1}(s, v)$
and that $\hat{\delta}_{i}(s, v) \leq|E|$.
f. Show how to compute $\delta_{i}(s, v)$ from $\delta_{i-1}(s, v)$ for all $v \in V$ in $O(E)$ time, and conclude that we can compute $\delta(s, v)$ for all $v \in V$ in $O(E \lg W)$ time.

24-5 Karp's minimum mean-weight cycle algorithm

Let $G=(V, E)$ be a directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $n=|V|$. We define the mean weight of a cycle $c=\left\langle e_{1}, e_{2}, \ldots, e_{k}\right\rangle$ of edges in E to be
$\mu(c)=\frac{1}{k} \sum_{i=1}^{k} w\left(e_{i}\right)$.

Let $\mu^{*}=\min _{c} \mu(c)$, where c ranges over all directed cycles in G. We call a cycle c for which $\mu(c)=\mu^{*}$ a minimum mean-weight cycle. This problem investigates an efficient algorithm for computing μ^{*}.

Assume without loss of generality that every vertex $v \in V$ is reachable from a source vertex $s \in V$. Let $\delta(s, v)$ be the weight of a shortest path from s to v, and let $\delta_{k}(s, v)$ be the weight of a shortest path from s to v consisting of exactly k edges. If there is no path from s to v with exactly k edges, then $\delta_{k}(s, v)=\infty$.
a. Show that if $\mu^{*}=0$, then G contains no negative-weight cycles and $\delta(s, v)=$ $\min _{0 \leq k \leq n-1} \delta_{k}(s, v)$ for all vertices $v \in V$.
b. Show that if $\mu^{*}=0$, then

$$
\max _{0 \leq k \leq n-1} \frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} \geq 0
$$

for all vertices $v \in V$. (Hint: Use both properties from part (a).)
c. Let c be a 0 -weight cycle, and let u and v be any two vertices on c. Suppose that $\mu^{*}=0$ and that the weight of the simple path from u to v along the cycle is x. Prove that $\delta(s, v)=\delta(s, u)+x$. (Hint: The weight of the simple path from v to u along the cycle is $-x$.)
d. Show that if $\mu^{*}=0$, then on each minimum mean-weight cycle there exists a vertex v such that

$$
\max _{0 \leq k \leq n-1} \frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k}=0
$$

(Hint: Show how to extend a shortest path to any vertex on a minimum meanweight cycle along the cycle to make a shortest path to the next vertex on the cycle.)
\boldsymbol{e}. Show that if $\mu^{*}=0$, then

$$
\min _{v \in V} \max _{0 \leq k \leq n-1} \frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k}=0 .
$$

f. Show that if we add a constant t to the weight of each edge of G, then μ^{*} increases by t. Use this fact to show that

$$
\mu^{*}=\min _{v \in V} \max _{0 \leq k \leq n-1} \frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} .
$$

g. Give an $O(V E)$-time algorithm to compute μ^{*}.

24-6 Bitonic shortest paths

A sequence is bitonic if it monotonically increases and then monotonically decreases, or if by a circular shift it monotonically increases and then monotonically decreases. For example the sequences $\langle 1,4,6,8,3,-2\rangle,\langle 9,2,-4,-10,-5\rangle$, and $\langle 1,2,3,4\rangle$ are bitonic, but $\langle 1,3,12,4,2,10\rangle$ is not bitonic. (See Problem 15-3 for the bitonic euclidean traveling-salesman problem.)

Suppose that we are given a directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, where all edge weights are unique, and we wish to find single-source shortest paths from a source vertex s. We are given one additional piece of information: for each vertex $\nu \in V$, the weights of the edges along any shortest path from s to v form a bitonic sequence.

Give the most efficient algorithm you can to solve this problem, and analyze its running time.

Chapter notes

Dijkstra's algorithm [88] appeared in 1959, but it contained no mention of a priority queue. The Bellman-Ford algorithm is based on separate algorithms by Bellman [38] and Ford [109]. Bellman describes the relation of shortest paths to difference constraints. Lawler [224] describes the linear-time algorithm for shortest paths in a dag, which he considers part of the folklore.

When edge weights are relatively small nonnegative integers, we have more efficient algorithms to solve the single-source shortest-paths problem. The sequence of values returned by the Extract-Min calls in Dijkstra's algorithm monotonically increases over time. As discussed in the chapter notes for Chapter 6, in this case several data structures can implement the various priority-queue operations more efficiently than a binary heap or a Fibonacci heap. Ahuja, Mehlhorn, Orlin, and Tarjan [8] give an algorithm that runs in $O(E+V \sqrt{\lg W})$ time on graphs with nonnegative edge weights, where W is the largest weight of any edge in the graph. The best bounds are by Thorup [337], who gives an algorithm that runs in $O(E \lg \lg V)$ time, and by Raman [291], who gives an algorithm that runs in $O\left(E+V \min \left\{(\lg V)^{1 / 3+\epsilon},(\lg W)^{1 / 4+\epsilon}\right\}\right)$ time. These two algorithms use an amount of space that depends on the word size of the underlying machine. Although the amount of space used can be unbounded in the size of the input, it can be reduced to be linear in the size of the input using randomized hashing.
For undirected graphs with integer weights, Thorup [336] gives an $O(V+E)$ time algorithm for single-source shortest paths. In contrast to the algorithms mentioned in the previous paragraph, this algorithm is not an implementation of Dijk-
stra's algorithm, since the sequence of values returned by Extract-Min calls does not monotonically increase over time.

For graphs with negative edge weights, an algorithm due to Gabow and Tarjan [122] runs in $O(\sqrt{V} E \lg (V W))$ time, and one by Goldberg [137] runs in $O(\sqrt{V} E \lg W)$ time, where $W=\max _{(u, v) \in E}\{|w(u, v)|\}$.

Cherkassky, Goldberg, and Radzik [64] conducted extensive experiments comparing various shortest-path algorithms.

25 All-Pairs Shortest Paths

In this chapter, we consider the problem of finding shortest paths between all pairs of vertices in a graph. This problem might arise in making a table of distances between all pairs of cities for a road atlas. As in Chapter 24, we are given a weighted, directed graph $G=(V, E)$ with a weight function $w: E \rightarrow \mathbb{R}$ that maps edges to real-valued weights. We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges. We typically want the output in tabular form: the entry in u 's row and v 's column should be the weight of a shortest path from u to ν.

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm $|V|$ times, once for each vertex as the source. If all edge weights are nonnegative, we can use Dijkstra's algorithm. If we use the linear-array implementation of the min-priority queue, the running time is $O\left(V^{3}+V E\right)=O\left(V^{3}\right)$. The binary min-heap implementation of the min-priority queue yields a running time of $O(V E \lg V)$, which is an improvement if the graph is sparse. Alternatively, we can implement the min-priority queue with a Fibonacci heap, yielding a running time of $O\left(V^{2} \lg V+V E\right)$.

If the graph has negative-weight edges, we cannot use Dijkstra's algorithm. Instead, we must run the slower Bellman-Ford algorithm once from each vertex. The resulting running time is $O\left(V^{2} E\right)$, which on a dense graph is $O\left(V^{4}\right)$. In this chapter we shall see how to do better. We also investigate the relation of the all-pairs shortest-paths problem to matrix multiplication and study its algebraic structure.

Unlike the single-source algorithms, which assume an adjacency-list representation of the graph, most of the algorithms in this chapter use an adjacencymatrix representation. (Johnson's algorithm for sparse graphs, in Section 25.3, uses adjacency lists.) For convenience, we assume that the vertices are numbered $1,2, \ldots,|V|$, so that the input is an $n \times n$ matrix W representing the edge weights of an n-vertex directed graph $G=(V, E)$. That is, $W=\left(w_{i j}\right)$, where
$w_{i j}= \begin{cases}0 & \text { if } i=j, \\ \text { the weight of directed edge }(i, j) & \text { if } i \neq j \text { and }(i, j) \in E, \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E .\end{cases}$
We allow negative-weight edges, but we assume for the time being that the input graph contains no negative-weight cycles.

The tabular output of the all-pairs shortest-paths algorithms presented in this chapter is an $n \times n$ matrix $D=\left(d_{i j}\right)$, where entry $d_{i j}$ contains the weight of a shortest path from vertex i to vertex j. That is, if we let $\delta(i, j)$ denote the shortestpath weight from vertex i to vertex j (as in Chapter 24), then $d_{i j}=\delta(i, j)$ at termination.

To solve the all-pairs shortest-paths problem on an input adjacency matrix, we need to compute not only the shortest-path weights but also a predecessor matrix $\Pi=\left(\pi_{i j}\right)$, where $\pi_{i j}$ is NIL if either $i=j$ or there is no path from i to j, and otherwise $\pi_{i j}$ is the predecessor of j on some shortest path from i. Just as the predecessor subgraph G_{π} from Chapter 24 is a shortest-paths tree for a given source vertex, the subgraph induced by the i th row of the Π matrix should be a shortest-paths tree with root i. For each vertex $i \in V$, we define the predecessor subgraph of G for i as $G_{\pi, i}=\left(V_{\pi, i}, E_{\pi, i}\right)$, where
$V_{\pi, i}=\left\{j \in V: \pi_{i j} \neq \mathrm{NIL}\right\} \cup\{i\}$
and
$E_{\pi, i}=\left\{\left(\pi_{i j}, j\right): j \in V_{\pi, i}-\{i\}\right\}$.
If $G_{\pi, i}$ is a shortest-paths tree, then the following procedure, which is a modified version of the Print-Path procedure from Chapter 22, prints a shortest path from vertex i to vertex j.

Print-All-Pairs-Shortest-Path (Π, i, j)

```
if \(i==j\)
        print \(i\)
elseif \(\pi_{i j}==\) NIL
        print "no path from" \(i\) "to" \(j\) "exists"
else Print-All-Pairs-Shortest-Path ( \(\Pi, i, \pi_{i j}\) )
    print \(j\)
```

In order to highlight the essential features of the all-pairs algorithms in this chapter, we won't cover the creation and properties of predecessor matrices as extensively as we dealt with predecessor subgraphs in Chapter 24. Some of the exercises cover the basics.

Chapter outline

Section 25.1 presents a dynamic-programming algorithm based on matrix multiplication to solve the all-pairs shortest-paths problem. Using the technique of "repeated squaring," we can achieve a running time of $\Theta\left(V^{3} \lg V\right)$. Section 25.2 gives another dynamic-programming algorithm, the Floyd-Warshall algorithm, which runs in time $\Theta\left(V^{3}\right)$. Section 25.2 also covers the problem of finding the transitive closure of a directed graph, which is related to the all-pairs shortest-paths problem. Finally, Section 25.3 presents Johnson's algorithm, which solves the allpairs shortest-paths problem in $O\left(V^{2} \lg V+V E\right)$ time and is a good choice for large, sparse graphs.

Before proceeding, we need to establish some conventions for adjacency-matrix representations. First, we shall generally assume that the input graph $G=(V, E)$ has n vertices, so that $n=|V|$. Second, we shall use the convention of denoting matrices by uppercase letters, such as W, L, or D, and their individual elements by subscripted lowercase letters, such as $w_{i j}, l_{i j}$, or $d_{i j}$. Some matrices will have parenthesized superscripts, as in $L^{(m)}=\left(l_{i j}^{(m)}\right)$ or $D^{(m)}=\left(d_{i j}^{(m)}\right)$, to indicate iterates. Finally, for a given $n \times n$ matrix A, we shall assume that the value of n is stored in the attribute A.rows.

25.1 Shortest paths and matrix multiplication

This section presents a dynamic-programming algorithm for the all-pairs shortestpaths problem on a directed graph $G=(V, E)$. Each major loop of the dynamic program will invoke an operation that is very similar to matrix multiplication, so that the algorithm will look like repeated matrix multiplication. We shall start by developing a $\Theta\left(V^{4}\right)$-time algorithm for the all-pairs shortest-paths problem and then improve its running time to $\Theta\left(V^{3} \lg V\right)$.

Before proceeding, let us briefly recap the steps given in Chapter 15 for developing a dynamic-programming algorithm.

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.

We reserve the fourth step-constructing an optimal solution from computed in-formation-for the exercises.

The structure of a shortest path

We start by characterizing the structure of an optimal solution. For the all-pairs shortest-paths problem on a graph $G=(V, E)$, we have proven (Lemma 24.1) that all subpaths of a shortest path are shortest paths. Suppose that we represent the graph by an adjacency matrix $W=\left(w_{i j}\right)$. Consider a shortest path p from vertex i to vertex j, and suppose that p contains at most m edges. Assuming that there are no negative-weight cycles, m is finite. If $i=j$, then p has weight 0 and no edges. If vertices i and j are distinct, then we decompose path p into $i \stackrel{p^{\prime}}{\sim} k \rightarrow j$, where path p^{\prime} now contains at most $m-1$ edges. By Lemma 24.1, p^{\prime} is a shortest path from i to k, and so $\delta(i, j)=\delta(i, k)+w_{k j}$.

A recursive solution to the all-pairs shortest-paths problem

Now, let $l_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. When $m=0$, there is a shortest path from i to j with no edges if and only if $i=j$. Thus,
$l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j, \\ \infty & \text { if } i \neq j .\end{cases}$
For $m \geq 1$, we compute $l_{i j}^{(m)}$ as the minimum of $l_{i j}^{(m-1)}$ (the weight of a shortest path from i to j consisting of at most $m-1$ edges) and the minimum weight of any path from i to j consisting of at most m edges, obtained by looking at all possible predecessors k of j. Thus, we recursively define

$$
\begin{align*}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\} . \tag{25.2}
\end{align*}
$$

The latter equality follows since $w_{j j}=0$ for all j.
What are the actual shortest-path weights $\delta(i, j)$? If the graph contains no negative-weight cycles, then for every pair of vertices i and j for which $\delta(i, j)<\infty$, there is a shortest path from i to j that is simple and thus contains at most $n-1$ edges. A path from vertex i to vertex j with more than $n-1$ edges cannot have lower weight than a shortest path from i to j. The actual shortest-path weights are therefore given by
$\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=\cdots$.

Computing the shortest-path weights bottom up

Taking as our input the matrix $W=\left(w_{i j}\right)$, we now compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where for $m=1,2, \ldots, n-1$, we have $L^{(m)}=\left(l_{i j}^{(m)}\right)$. The final matrix $L^{(n-1)}$ contains the actual shortest-path weights. Observe that $l_{i j}^{(1)}=w_{i j}$ for all vertices $i, j \in V$, and so $L^{(1)}=W$.

The heart of the algorithm is the following procedure, which, given matrices $L^{(m-1)}$ and W, returns the matrix $L^{(m)}$. That is, it extends the shortest paths computed so far by one more edge.

Extend-Shortest-Paths (L, W)

```
\(n=\) L.rows
let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                    \(l_{i j}^{\prime}=\infty\)
                    for \(k=1\) to \(n\)
                        \(l_{i j}^{\prime}=\min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)\)
return \(L^{\prime}\)
```

The procedure computes a matrix $L^{\prime}=\left(l_{i j}^{\prime}\right)$, which it returns at the end. It does so by computing equation (25.2) for all i and j, using L for $L^{(m-1)}$ and L^{\prime} for $L^{(m)}$. (It is written without the superscripts to make its input and output matrices independent of m.) Its running time is $\Theta\left(n^{3}\right)$ due to the three nested for loops.

Now we can see the relation to matrix multiplication. Suppose we wish to compute the matrix product $C=A \cdot B$ of two $n \times n$ matrices A and B. Then, for $i, j=1,2, \ldots, n$, we compute
$c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}$.
Observe that if we make the substitutions

$$
\begin{aligned}
l^{(m-1)} & \rightarrow a, \\
w & \rightarrow b, \\
l^{(m)} & \rightarrow c, \\
\min & \rightarrow+, \\
+ & \rightarrow
\end{aligned}
$$

in equation (25.2), we obtain equation (25.4). Thus, if we make these changes to EXTEND-SHORTEST-PATHS and also replace ∞ (the identity for min) by 0 (the
identity for +), we obtain the same $\Theta\left(n^{3}\right)$-time procedure for multiplying square matrices that we saw in Section 4.2:

SQuare-Matrix-Multiply (A, B)

```
\(n=A\) rows
let \(C\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
    for \(j=1\) to \(n\)
        \(c_{i j}=0\)
        for \(k=1\) to \(n\)
            \(c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}\)
return \(C\)
```

Returning to the all-pairs shortest-paths problem, we compute the shortest-path weights by extending shortest paths edge by edge. Letting $A \cdot B$ denote the matrix "product" returned by Extend-Shortest-Paths (A, B), we compute the sequence of $n-1$ matrices

```
    \(L^{(1)}=L^{(0)} \cdot W=W\)
    \(L^{(2)}=L^{(1)} \cdot W=W^{2}\),
    \(L^{(3)}=L^{(2)} \cdot W=W^{3}\),
\(L^{(n-1)}=L^{(n-2)} \cdot W=W^{n-1}\).
```

As we argued above, the matrix $L^{(n-1)}=W^{n-1}$ contains the shortest-path weights. The following procedure computes this sequence in $\Theta\left(n^{4}\right)$ time.

Slow-All-Pairs-Shortest-Paths (W)

```
\(n=W\). rows
\(L^{(1)}=W\)
for \(m=2\) to \(n-1\)
    let \(L^{(m)}\) be a new \(n \times n\) matrix
    \(L^{(m)}=\) EXTEND-SHORTEST-PATHS \(\left(L^{(m-1)}, W\right)\)
return \(L^{(n-1)}\)
```

Figure 25.1 shows a graph and the matrices $L^{(m)}$ computed by the procedure SLOW-ALL-PAIRS-SHORTEST-PATHS.

Improving the running time

Our goal, however, is not to compute all the $L^{(m)}$ matrices: we are interested only in matrix $L^{(n-1)}$. Recall that in the absence of negative-weight cycles, equa-

$L^{(1)}=\left(\begin{array}{rrrrr}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{rrrrr}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$
$L^{(3)}=\left(\begin{array}{rrrrr}0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right) \quad L^{(4)}=\left(\begin{array}{rrrrr}0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)$

Figure 25.1 A directed graph and the sequence of matrices $L^{(m)}$ computed by SLOW-ALL-PAIRS-Shortest-Paths. You might want to verify that $L^{(5)}$, defined as $L^{(4)} \cdot W$, equals $L^{(4)}$, and thus $L^{(m)}=L^{(4)}$ for all $m \geq 4$.
tion (25.3) implies $L^{(m)}=L^{(n-1)}$ for all integers $m \geq n-1$. Just as traditional matrix multiplication is associative, so is matrix multiplication defined by the Extend-Shortest-Paths procedure (see Exercise 25.1-4). Therefore, we can compute $L^{(n-1)}$ with only $\lceil\lg (n-1)\rceil$ matrix products by computing the sequence

$$
\begin{array}{rlll}
L^{(1)} & =W, & \\
L^{(2)} & =W^{2} & =W \cdot W, \\
L^{(4)} & =W^{4} & =W^{2} \cdot W^{2} \\
L^{(8)} & = & W^{8} & =W^{4} \cdot W^{4}, \\
& & \vdots \\
L^{\left(2^{[\lg (n-1)\rceil}\right)} & =W^{2^{\lceil\lg (n-1)\rceil}} & =W^{2^{\lceil\lg (n-1)\rceil-1}} \cdot W^{2^{\lceil[\lg (n-1)\rceil-1}} .
\end{array}
$$

Since $2^{\lceil\lg (n-1)\rceil} \geq n-1$, the final product $L^{\left(2^{[\lg (n-1)\rceil}\right)}$ is equal to $L^{(n-1)}$.
The following procedure computes the above sequence of matrices by using this technique of repeated squaring.

Figure 25.2 A weighted, directed graph for use in Exercises 25.1-1, 25.2-1, and 25.3-1.

Faster-All-Pairs-Shortest-Paths (W)

```
\(n=W\).rows
\(L^{(1)}=W\)
\(m=1\)
while \(m<n-1\)
    let \(L^{(2 m)}\) be a new \(n \times n\) matrix
    \(L^{(2 m)}=\) EXTEND-SHORTEST-PATHS \(\left(L^{(m)}, L^{(m)}\right)\)
    \(m=2 m\)
return \(L^{(m)}\)
```

In each iteration of the while loop of lines 4-7, we compute $L^{(2 m)}=\left(L^{(m)}\right)^{2}$, starting with $m=1$. At the end of each iteration, we double the value of m. The final iteration computes $L^{(n-1)}$ by actually computing $L^{(2 m)}$ for some $n-1 \leq 2 m<2 n-2$. By equation (25.3), $L^{(2 m)}=L^{(n-1)}$. The next time the test in line 4 is performed, m has been doubled, so now $m \geq n-1$, the test fails, and the procedure returns the last matrix it computed.

Because each of the $\lceil\lg (n-1)\rceil$ matrix products takes $\Theta\left(n^{3}\right)$ time, FASTER-All-Pairs-Shortest-Paths runs in $\Theta\left(n^{3} \lg n\right)$ time. Observe that the code is tight, containing no elaborate data structures, and the constant hidden in the Θ-notation is therefore small.

Exercises

25.1-1

Run Slow-All-Pairs-Shortest-Paths on the weighted, directed graph of Figure 25.2, showing the matrices that result for each iteration of the loop. Then do the same for Faster-All-Pairs-Shortest-Paths.

25.1-2

Why do we require that $w_{i i}=0$ for all $1 \leq i \leq n$?

25.1-3

What does the matrix
$L^{(0)}=\left(\begin{array}{ccccc}0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0\end{array}\right)$
used in the shortest-paths algorithms correspond to in regular matrix multiplication?

25.1-4

Show that matrix multiplication defined by Extend-Shortest-Paths is associative.

25.1-5

Show how to express the single-source shortest-paths problem as a product of matrices and a vector. Describe how evaluating this product corresponds to a Bellman-Ford-like algorithm (see Section 24.1).

25.1-6

Suppose we also wish to compute the vertices on shortest paths in the algorithms of this section. Show how to compute the predecessor matrix Π from the completed matrix L of shortest-path weights in $O\left(n^{3}\right)$ time.

25.1-7

We can also compute the vertices on shortest paths as we compute the shortestpath weights. Define $\pi_{i j}^{(m)}$ as the predecessor of vertex j on any minimum-weight path from i to j that contains at most m edges. Modify the Extend-ShortestPaths and Slow-All-Pairs-Shortest-Paths procedures to compute the matrices $\Pi^{(1)}, \Pi^{(2)}, \ldots, \Pi^{(n-1)}$ as the matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$ are computed.

25.1-8

The Faster-All-Pairs-Shortest-Paths procedure, as written, requires us to store $\lceil\lg (n-1)\rceil$ matrices, each with n^{2} elements, for a total space requirement of $\Theta\left(n^{2} \lg n\right)$. Modify the procedure to require only $\Theta\left(n^{2}\right)$ space by using only two $n \times n$ matrices.

25.1-9

Modify Faster-All-Pairs-Shortest-Paths so that it can determine whether the graph contains a negative-weight cycle.

25.1-10

Give an efficient algorithm to find the length (number of edges) of a minimumlength negative-weight cycle in a graph.

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph $G=(V, E)$. The resulting algorithm, known as the Floyd-Warshall algorithm, runs in $\Theta\left(V^{3}\right)$ time. As before, negative-weight edges may be present, but we assume that there are no negative-weight cycles. As in Section 25.1, we follow the dynamic-programming process to develop the algorithm. After studying the resulting algorithm, we present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a shortest path differently from how we characterized it in Section 25.1. The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a simple path $p=\left\langle v_{1}, v_{2}, \ldots, v_{l}\right\rangle$ is any vertex of p other than v_{1} or v_{l}, that is, any vertex in the set $\left\{v_{2}, v_{3}, \ldots, v_{l-1}\right\}$.

The Floyd-Warshall algorithm relies on the following observation. Under our assumption that the vertices of G are $V=\{1,2, \ldots, n\}$, let us consider a subset $\{1,2, \ldots, k\}$ of vertices for some k. For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1,2, \ldots, k\}$, and let p be a minimum-weight path from among them. (Path p is simple.) The FloydWarshall algorithm exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. The relationship depends on whether or not k is an intermediate vertex of path p.

- If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set $\{1,2, \ldots, k-1\}$. Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$ is also a shortest path from i to j with all intermediate vertices in the set $\{1,2, \ldots, k\}$.
- If k is an intermediate vertex of path p, then we decompose p into $i \stackrel{p_{1}}{\sim} k \stackrel{p_{2}}{\sim} j$, as Figure 25.3 illustrates. By Lemma 24.1, p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k\}$. In fact, we can make a slightly stronger statement. Because vertex k is not an intermediate vertex of path p_{1}, all intermediate vertices of p_{1} are in the set $\{1,2, \ldots, k-1\}$. There-
all intermediate vertices in $\{1,2, \ldots, k-1\}$ all intermediate vertices in $\{1,2, \ldots, k-1\}$

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p_{1}, the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. The same holds for path p_{2} from vertex k to vertex j.
fore, p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Similarly, p_{2} is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortestpath estimates that differs from the one in Section 25.1. Let $d_{i j}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$. When $k=0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all. Such a path has at most one edge, and hence $d_{i j}^{(0)}=w_{i j}$. Following the above discussion, we define $d_{i j}^{(k)}$ recursively by
$d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .\end{cases}$
Because for any path, all intermediate vertices are in the set $\{1,2, \ldots, n\}$, the matrix $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives the final answer: $d_{i j}^{(n)}=\delta(i, j)$ for all $i, j \in V$.

Computing the shortest-path weights bottom up

Based on recurrence (25.5), we can use the following bottom-up procedure to compute the values $d_{i j}^{(k)}$ in order of increasing values of k. Its input is an $n \times n$ matrix W defined as in equation (25.1). The procedure returns the matrix $D^{(n)}$ of shortestpath weights.

Floyd-Warshall (W)

```
\(n=W\).rows
\(D^{(0)}=W\)
for \(k=1\) to \(n\)
    let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
        for \(j=1\) to \(n\)
        \(d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
return \(D^{(n)}\)
```

Figure 25.4 shows the matrices $D^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply nested for loops of lines 3-7. Because each execution of line 7 takes $O(1)$ time, the algorithm runs in time $\Theta\left(n^{3}\right)$. As in the final algorithm in Section 25.1, the code is tight, with no elaborate data structures, and so the constant hidden in the Θ-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the FloydWarshall algorithm. One way is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix. Exercise 25.1-6 asks you to implement this method so that it runs in $O\left(n^{3}\right)$ time. Given the predecessor matrix Π, the Print-All-Pairs-Shortest-Path procedure will print the vertices on a given shortest path.

Alternatively, we can compute the predecessor matrix Π while the algorithm computes the matrices $D^{(k)}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\Pi=\Pi^{(n)}$ and we define $\pi_{i j}^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2, \ldots, k\}$.

We can give a recursive formulation of $\pi_{i j}^{(k)}$. When $k=0$, a shortest path from i to j has no intermediate vertices at all. Thus,
$\pi_{i j}^{(0)}= \begin{cases}\text { NIL } & \text { if } i=j \text { or } w_{i j}=\infty, \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty .\end{cases}$
For $k \geq 1$, if we take the path $i \leadsto k \leadsto j$, where $k \neq j$, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Otherwise, we

$$
\begin{aligned}
& D^{(0)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right) \\
& D^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

Figure 25.4 The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.
choose the same predecessor of j that we chose on a shortest path from i with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Formally, for $k \geq 1$,
$\pi_{i j}^{(k)}=\left\{\begin{array}{ll}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{array}\right.$,
We leave the incorporation of the $\Pi^{(k)}$ matrix computations into the FloydWARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of $\Pi^{(k)}$ matrices that the resulting algorithm computes for the graph of Figure 25.1. The exercise also asks for the more difficult task of proving that the predecessor subgraph $G_{\pi, i}$ is a shortest-paths tree with root i. Exercise 25.2-7 asks for yet another way to reconstruct shortest paths.

Transitive closure of a directed graph

Given a directed graph $G=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, we might wish to determine whether G contains a path from i to j for all vertex pairs $i, j \in V$. We define the transitive closure of G as the graph $G^{*}=\left(V, E^{*}\right)$, where $E^{*}=\{(i, j)$: there is a path from vertex i to vertex j in $G\}$.

One way to compute the transitive closure of a graph in $\Theta\left(n^{3}\right)$ time is to assign a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a path from vertex i to vertex j, we get $d_{i j}<n$. Otherwise, we get $d_{i j}=\infty$.

There is another, similar way to compute the transitive closure of G in $\Theta\left(n^{3}\right)$ time that can save time and space in practice. This method substitutes the logical operations \vee (logical OR) and \wedge (logical AND) for the arithmetic operations min and + in the Floyd-Warshall algorithm. For $i, j, k=1,2, \ldots, n$, we define $t_{i j}^{(k)}$ to be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k\}$, and 0 otherwise. We construct the transitive closure $G^{*}=\left(V, E^{*}\right)$ by putting edge (i, j) into E^{*} if and only if $t_{i j}^{(n)}=1$. A recursive definition of $t_{i j}^{(k)}$, analogous to recurrence (25.5), is
$t_{i j}^{(0)}= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \notin E, \\ 1 & \text { if } i=j \text { or }(i, j) \in E,\end{cases}$
and for $k \geq 1$,
$t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)$.
As in the Floyd-Warshall algorithm, we compute the matrices $T^{(k)}=\left(t_{i j}^{(k)}\right)$ in order of increasing k.

$T^{(0)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right) \quad T^{(1)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right) \quad T^{(2)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right)$
$T^{(3)}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad T^{(4)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$
Figure 25.5 A directed graph and the matrices $T^{(k)}$ computed by the transitive-closure algorithm.

Transitive-Closure (G)

```
\(n=|G . V|\)
let \(T^{(0)}=\left(t_{i j}^{(0)}\right)\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                if \(i==j\) or \((i, j) \in G . E\)
                    \(t_{i j}^{(0)}=1\)
            else \(t_{i j}^{(0)}=0\)
for \(k=1\) to \(n\)
    let \(T^{(k)}=\left(t_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
        for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                \(t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)\)
return \(T^{(n)}\)
```

Figure 25.5 shows the matrices $T^{(k)}$ computed by the Transitive-Closure procedure on a sample graph. The Transitive-Closure procedure, like the Floyd-Warshall algorithm, runs in $\Theta\left(n^{3}\right)$ time. On some computers, though, logical operations on single-bit values execute faster than arithmetic operations on integer words of data. Moreover, because the direct transitive-closure algorithm uses only boolean values rather than integer values, its space requirement is less
than the Floyd-Warshall algorithm's by a factor corresponding to the size of a word of computer storage.

Exercises

25.2-1

Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2. Show the matrix $D^{(k)}$ that results for each iteration of the outer loop.

25.2-2

Show how to compute the transitive closure using the technique of Section 25.1.

25.2-3

Modify the FLOYD-WARSHALL procedure to compute the $\Pi^{(k)}$ matrices according to equations (25.6) and (25.7). Prove rigorously that for all $i \in V$, the predecessor subgraph $G_{\pi, i}$ is a shortest-paths tree with root i. (Hint: To show that $G_{\pi, i}$ is acyclic, first show that $\pi_{i j}^{(k)}=l$ implies $d_{i j}^{(k)} \geq d_{i l}^{(k)}+w_{l j}$, according to the definition of $\pi_{i j}^{(k)}$. Then, adapt the proof of Lemma 24.16.)

25.2-4

As it appears above, the Floyd-Warshall algorithm requires $\Theta\left(n^{3}\right)$ space, since we compute $d_{i j}^{(k)}$ for $i, j, k=1,2, \ldots, n$. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta\left(n^{2}\right)$ space is required.

Floyd-Warshall' (W)

```
\(n=W\).rows
\(D=W\)
for \(k=1\) to \(n\)
    for \(i=1\) to \(n\)
        for \(j=1\) to \(n\)
            \(d_{i j}=\min \left(d_{i j}, d_{i k}+d_{k j}\right)\)
return \(D\)
```

25.2-5

Suppose that we modify the way in which equation (25.7) handles equality:
$\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}<d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \geq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} .\end{cases}$
Is this alternative definition of the predecessor matrix Π correct?

25.2-6

How can we use the output of the Floyd-Warshall algorithm to detect the presence of a negative-weight cycle?

25.2-7

Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses values $\phi_{i j}^{(k)}$ for $i, j, k=1,2, \ldots, n$, where $\phi_{i j}^{(k)}$ is the highest-numbered intermediate vertex of a shortest path from i to j in which all intermediate vertices are in the set $\{1,2, \ldots, k\}$. Give a recursive formulation for $\phi_{i j}^{(k)}$, modify the FloYdWARSHALL procedure to compute the $\phi_{i j}^{(k)}$ values, and rewrite the Print-All-Pairs-Shortest-Path procedure to take the matrix $\Phi=\left(\phi_{i j}^{(n)}\right)$ as an input. How is the matrix Φ like the s table in the matrix-chain multiplication problem of Section 15.2?

25.2-8

Give an $O(V E)$-time algorithm for computing the transitive closure of a directed graph $G=(V, E)$.

25.2-9

Suppose that we can compute the transitive closure of a directed acyclic graph in $f(|V|,|E|)$ time, where f is a monotonically increasing function of $|V|$ and $|E|$. Show that the time to compute the transitive closure $G^{*}=\left(V, E^{*}\right)$ of a general directed graph $G=(V, E)$ is then $f(|V|,|E|)+O\left(V+E^{*}\right)$.

25.3 Johnson's algorithm for sparse graphs

Johnson's algorithm finds shortest paths between all pairs in $O\left(V^{2} \lg V+V E\right)$ time. For sparse graphs, it is asymptotically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm. The algorithm either returns a matrix of shortest-path weights for all pairs of vertices or reports that the input graph contains a negative-weight cycle. Johnson's algorithm uses as subroutines both Dijkstra's algorithm and the Bellman-Ford algorithm, which Chapter 24 describes.

Johnson's algorithm uses the technique of reweighting, which works as follows. If all edge weights w in a graph $G=(V, E)$ are nonnegative, we can find shortest paths between all pairs of vertices by running Dijkstra's algorithm once from each vertex; with the Fibonacci-heap min-priority queue, the running time of this all-pairs algorithm is $O\left(V^{2} \lg V+V E\right)$. If G has negative-weight edges but no negative-weight cycles, we simply compute a new set of nonnegative edge weights
that allows us to use the same method. The new set of edge weights \widehat{w} must satisfy two important properties:

1. For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to v using weight function \widehat{w}.
2. For all edges (u, v), the new weight $\widehat{w}(u, v)$ is nonnegative.

As we shall see in a moment, we can preprocess G to determine the new weight function \widehat{w} in $O(V E)$ time.

Preserving shortest paths by reweighting

The following lemma shows how easily we can reweight the edges to satisfy the first property above. We use δ to denote shortest-path weights derived from weight function w and $\widehat{\delta}$ to denote shortest-path weights derived from weight function \widehat{w}.

Lemma 25.1 (Reweighting does not change shortest paths)

Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define
$\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$.
Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex ν_{0} to vertex v_{k}. Then p is a shortest path from v_{0} to v_{k} with weight function w if and only if it is a shortest path with weight function \widehat{w}. That is, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$. Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}.

Proof We start by showing that
$\widehat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$.
We have

$$
\begin{aligned}
\widehat{w}(p) & =\sum_{i=1}^{k} \hat{w}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{0}\right)-h\left(v_{k}\right) \quad \text { (because the sum telescopes) } \\
& =w(p)+h\left(v_{0}\right)-h\left(v_{k}\right) .
\end{aligned}
$$

Therefore, any path p from v_{0} to v_{k} has $\widehat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$. Because $h\left(v_{0}\right)$ and $h\left(v_{k}\right)$ do not depend on the path, if one path from v_{0} to v_{k} is shorter than another using weight function w, then it is also shorter using \widehat{w}. Thus, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.

Finally, we show that G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}. Consider any cycle $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=v_{k}$. By equation (25.10),

$$
\begin{aligned}
\widehat{w}(c) & =w(c)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(c),
\end{aligned}
$$

and thus c has negative weight using w if and only if it has negative weight using \widehat{w}.

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: we want $\widehat{w}(u, v)$ to be nonnegative for all edges $(u, v) \in E$. Given a weighted, directed graph $G=$ (V, E) with weight function $w: E \rightarrow \mathbb{R}$, we make a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V \cup\{s\}$ for some new vertex $s \notin V$ and $E^{\prime}=E \cup\{(s, v): v \in V\}$. We extend the weight function w so that $w(s, \nu)=0$ for all $v \in V$. Note that because s has no edges that enter it, no shortest paths in G^{\prime}, other than those with source s, contain s. Moreover, G^{\prime} has no negative-weight cycles if and only if G has no negative-weight cycles. Figure 25.6(a) shows the graph G^{\prime} corresponding to the graph G of Figure 25.1.

Now suppose that G and G^{\prime} have no negative-weight cycles. Let us define $h(v)=\delta(s, v)$ for all $v \in V^{\prime}$. By the triangle inequality (Lemma 24.10), we have $h(v) \leq h(u)+w(u, v)$ for all edges $(u, v) \in E^{\prime}$. Thus, if we define the new weights \widehat{w} by reweighting according to equation (25.9), we have $\widehat{w}(u, v)=w(u, v)+h(u)-h(v) \geq 0$, and we have satisfied the second property. Figure 25.6(b) shows the graph G^{\prime} from Figure 25.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson's algorithm to compute all-pairs shortest paths uses the Bellman-Ford algorithm (Section 24.1) and Dijkstra's algorithm (Section 24.3) as subroutines. It assumes implicitly that the edges are stored in adjacency lists. The algorithm returns the usual $|V| \times|V|$ matrix $D=d_{i j}$, where $d_{i j}=\delta(i, j)$, or it reports that the input graph contains a negative-weight cycle. As is typical for an all-pairs shortest-paths algorithm, we assume that the vertices are numbered from 1 to $|V|$.

Figure 25.6 Johnson's all-pairs shortest-paths algorithm run on the graph of Figure 25.1. Vertex numbers appear outside the vertices. (a) The graph G^{\prime} with the original weight function w. The new vertex s is black. Within each vertex v is $h(v)=\delta(s, v)$. (b) After reweighting each edge (u, v) with weight function $\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$. (c)-(g) The result of running Dijkstra's algorithm on each vertex of G using weight function \widehat{w}. In each part, the source vertex u is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each vertex v are the values $\hat{\delta}(u, v)$ and $\delta(u, v)$, separated by a slash. The value $d_{u v}=\delta(u, v)$ is equal to $\widehat{\delta}(u, v)+h(v)-h(u)$.

```
Johnson \((G, w)\)
    compute \(G^{\prime}\), where \(G^{\prime} . V=G . V \cup\{s\}\),
    \(G^{\prime} \cdot E=G \cdot E \cup\{(s, v): v \in G . V\}\), and
    \(w(s, \nu)=0\) for all \(\nu \in G . V\)
if Bellman-Ford \(\left(G^{\prime}, w, s\right)==\operatorname{FALSE}\)
    print "the input graph contains a negative-weight cycle"
else for each vertex \(v \in G^{\prime} . V\)
    set \(h(v)\) to the value of \(\delta(s, v)\)
        computed by the Bellman-Ford algorithm
    for each edge \((u, v) \in G^{\prime} . E\)
        \(\widehat{w}(u, v)=w(u, v)+h(u)-h(v)\)
    let \(D=\left(d_{u v}\right)\) be a new \(n \times n\) matrix
    for each vertex \(u \in G . V\)
        run \(\operatorname{DiJKStRA}(G, \hat{w}, u)\) to compute \(\hat{\delta}(u, v)\) for all \(v \in G . V\)
        for each vertex \(v \in G . V\)
            \(d_{u v}=\widehat{\delta}(u, v)+h(v)-h(u)\)
    return \(D\)
```

This code simply performs the actions we specified earlier. Line 1 produces G^{\prime}. Line 2 runs the Bellman-Ford algorithm on G^{\prime} with weight function w and source vertex s. If G^{\prime}, and hence G, contains a negative-weight cycle, line 3 reports the problem. Lines 4-12 assume that G^{\prime} contains no negative-weight cycles. Lines 4-5 set $h(v)$ to the shortest-path weight $\delta(s, v)$ computed by the Bellman-Ford algorithm for all $v \in V^{\prime}$. Lines 6-7 compute the new weights \widehat{w}. For each pair of vertices $u, v \in V$, the for loop of lines 9-12 computes the shortest-path weight $\hat{\delta}(u, v)$ by calling Dijkstra's algorithm once from each vertex in V. Line 12 stores in matrix entry $d_{u v}$ the correct shortest-path weight $\delta(u, v)$, calculated using equation (25.10). Finally, line 13 returns the completed D matrix. Figure 25.6 depicts the execution of Johnson's algorithm.

If we implement the min-priority queue in Dijkstra's algorithm by a Fibonacci heap, Johnson's algorithm runs in $O\left(V^{2} \lg V+V E\right)$ time. The simpler binary minheap implementation yields a running time of $O(V E \lg V)$, which is still asymptotically faster than the Floyd-Warshall algorithm if the graph is sparse.

Exercises

25.3-1

Use Johnson's algorithm to find the shortest paths between all pairs of vertices in the graph of Figure 25.2. Show the values of h and \hat{w} computed by the algorithm.

25.3-2

What is the purpose of adding the new vertex s to V, yielding V^{\prime} ?

25.3-3

Suppose that $w(u, v) \geq 0$ for all edges $(u, v) \in E$. What is the relationship between the weight functions w and \widehat{w} ?

25.3-4

Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting $w^{*}=\min _{(u, v) \in E}\{w(u, v)\}$, just define $\hat{w}(u, v)=w(u, v)-w^{*}$ for all edges $(u, v) \in E$. What is wrong with the professor's method of reweighting?

25.3-5

Suppose that we run Johnson's algorithm on a directed graph G with weight function w. Show that if G contains a 0 -weight cycle c, then $\widehat{w}(u, v)=0$ for every edge (u, v) in c.

25.3-6

Professor Michener claims that there is no need to create a new source vertex in line 1 of Johnson. He claims that instead we can just use $G^{\prime}=G$ and let s be any vertex. Give an example of a weighted, directed graph G for which incorporating the professor's idea into Johnson causes incorrect answers. Then show that if G is strongly connected (every vertex is reachable from every other vertex), the results returned by JOHNSON with the professor's modification are correct.

Problems

25-1 Transitive closure of a dynamic graph

Suppose that we wish to maintain the transitive closure of a directed graph $G=$ (V, E) as we insert edges into E. That is, after each edge has been inserted, we want to update the transitive closure of the edges inserted so far. Assume that the graph G has no edges initially and that we represent the transitive closure as a boolean matrix.
a. Show how to update the transitive closure $G^{*}=\left(V, E^{*}\right)$ of a graph $G=(V, E)$ in $O\left(V^{2}\right)$ time when a new edge is added to G.
b. Give an example of a graph G and an edge e such that $\Omega\left(V^{2}\right)$ time is required to update the transitive closure after the insertion of e into G, no matter what algorithm is used.
c. Describe an efficient algorithm for updating the transitive closure as edges are inserted into the graph. For any sequence of n insertions, your algorithm should run in total time $\sum_{i=1}^{n} t_{i}=O\left(V^{3}\right)$, where t_{i} is the time to update the transitive closure upon inserting the i th edge. Prove that your algorithm attains this time bound.

25-2 Shortest paths in ϵ-dense graphs

A graph $G=(V, E)$ is ϵ-dense if $|E|=\Theta\left(V^{1+\epsilon}\right)$ for some constant ϵ in the range $0<\epsilon \leq 1$. By using d-ary min-heaps (see Problem 6-2) in shortest-paths algorithms on ϵ-dense graphs, we can match the running times of Fibonacci-heapbased algorithms without using as complicated a data structure.
a. What are the asymptotic running times for Insert, Extract-Min, and DECREASE-KEY, as a function of d and the number n of elements in a d-ary min-heap? What are these running times if we choose $d=\Theta\left(n^{\alpha}\right)$ for some constant $0<\alpha \leq 1$? Compare these running times to the amortized costs of these operations for a Fibonacci heap.
b. Show how to compute shortest paths from a single source on an ϵ-dense directed graph $G=(V, E)$ with no negative-weight edges in $O(E)$ time. (Hint: Pick d as a function of ϵ.)
c. Show how to solve the all-pairs shortest-paths problem on an ϵ-dense directed graph $G=(V, E)$ with no negative-weight edges in $O(V E)$ time.
d. Show how to solve the all-pairs shortest-paths problem in $O(V E)$ time on an ϵ-dense directed graph $G=(V, E)$ that may have negative-weight edges but has no negative-weight cycles.

Chapter notes

Lawler [224] has a good discussion of the all-pairs shortest-paths problem, although he does not analyze solutions for sparse graphs. He attributes the matrixmultiplication algorithm to the folklore. The Floyd-Warshall algorithm is due to Floyd [105], who based it on a theorem of Warshall [349] that describes how to compute the transitive closure of boolean matrices. Johnson's algorithm is taken from [192].

Several researchers have given improved algorithms for computing shortest paths via matrix multiplication. Fredman [111] shows how to solve the allpairs shortest paths problem using $O\left(V^{5 / 2}\right)$ comparisons between sums of edge
weights and obtains an algorithm that runs in $O\left(V^{3}(\lg \lg V / \lg V)^{1 / 3}\right)$ time, which is slightly better than the running time of the Floyd-Warshall algorithm. Han [159] reduced the running time to $O\left(V^{3}(\lg \lg V / \lg V)^{5 / 4}\right)$. Another line of research demonstrates that we can apply algorithms for fast matrix multiplication (see the chapter notes for Chapter 4) to the all-pairs shortest paths problem. Let $O\left(n^{\omega}\right)$ be the running time of the fastest algorithm for multiplying $n \times n$ matrices; currently $\omega<2.376$ [78]. Galil and Margalit [123, 124] and Seidel [308] designed algorithms that solve the all-pairs shortest paths problem in undirected, unweighted graphs in $\left(V^{\omega} p(V)\right)$ time, where $p(n)$ denotes a particular function that is polylogarithmically bounded in n. In dense graphs, these algorithms are faster than the $O(V E)$ time needed to perform $|V|$ breadth-first searches. Several researchers have extended these results to give algorithms for solving the all-pairs shortest paths problem in undirected graphs in which the edge weights are integers in the range $\{1,2, \ldots, W\}$. The asymptotically fastest such algorithm, by Shoshan and Zwick [316], runs in time $O\left(W V^{\omega} p(V W)\right)$.

Karger, Koller, and Phillips [196] and independently McGeoch [247] have given a time bound that depends on E^{*}, the set of edges in E that participate in some shortest path. Given a graph with nonnegative edge weights, their algorithms run in $O\left(V E^{*}+V^{2} \lg V\right)$ time and improve upon running Dijkstra's algorithm $|V|$ times when $\left|E^{*}\right|=o(E)$.

Baswana, Hariharan, and Sen [33] examined decremental algorithms for maintaining all-pairs shortest paths and transitive-closure information. Decremental algorithms allow a sequence of intermixed edge deletions and queries; by comparison, Problem 25-1, in which edges are inserted, asks for an incremental algorithm. The algorithms by Baswana, Hariharan, and Sen are randomized and, when a path exists, their transitive-closure algorithm can fail to report it with probability $1 / n^{c}$ for an arbitrary $c>0$. The query times are $O(1)$ with high probability. For transitive closure, the amortized time for each update is $O\left(V^{4 / 3} \lg ^{1 / 3} V\right)$. For all-pairs shortest paths, the update times depend on the queries. For queries just giving the shortest-path weights, the amortized time per update is $O\left(V^{3} / E \lg ^{2} V\right)$. To report the actual shortest path, the amortized update time is $\min \left(O\left(V^{3 / 2} \sqrt{\lg V}\right), O\left(V^{3} / E \lg ^{2} V\right)\right)$. Demetrescu and Italiano [84] showed how to handle update and query operations when edges are both inserted and deleted, as long as each given edge has a bounded range of possible values drawn from the real numbers.

Aho, Hopcroft, and Ullman [5] defined an algebraic structure known as a "closed semiring," which serves as a general framework for solving path problems in directed graphs. Both the Floyd-Warshall algorithm and the transitive-closure algorithm from Section 25.2 are instantiations of an all-pairs algorithm based on closed semirings. Maggs and Plotkin [240] showed how to find minimum spanning trees using a closed semiring.

26 Maximum Flow

Just as we can model a road map as a directed graph in order to find the shortest path from one point to another, we can also interpret a directed graph as a "flow network" and use it to answer questions about material flows. Imagine a material coursing through a system from a source, where the material is produced, to a sink, where it is consumed. The source produces the material at some steady rate, and the sink consumes the material at the same rate. The "flow" of the material at any point in the system is intuitively the rate at which the material moves. Flow networks can model many problems, including liquids flowing through pipes, parts through assembly lines, current through electrical networks, and information through communication networks.

We can think of each directed edge in a flow network as a conduit for the material. Each conduit has a stated capacity, given as a maximum rate at which the material can flow through the conduit, such as 200 gallons of liquid per hour through a pipe or 20 amperes of electrical current through a wire. Vertices are conduit junctions, and other than the source and sink, material flows through the vertices without collecting in them. In other words, the rate at which material enters a vertex must equal the rate at which it leaves the vertex. We call this property "flow conservation," and it is equivalent to Kirchhoff's current law when the material is electrical current.

In the maximum-flow problem, we wish to compute the greatest rate at which we can ship material from the source to the sink without violating any capacity constraints. It is one of the simplest problems concerning flow networks and, as we shall see in this chapter, this problem can be solved by efficient algorithms. Moreover, we can adapt the basic techniques used in maximum-flow algorithms to solve other network-flow problems.

This chapter presents two general methods for solving the maximum-flow problem. Section 26.1 formalizes the notions of flow networks and flows, formally defining the maximum-flow problem. Section 26.2 describes the classical method of Ford and Fulkerson for finding maximum flows. An application of this method,
finding a maximum matching in an undirected bipartite graph, appears in Section 26.3. Section 26.4 presents the push-relabel method, which underlies many of the fastest algorithms for network-flow problems. Section 26.5 covers the "relabel-to-front" algorithm, a particular implementation of the push-relabel method that runs in time $O\left(V^{3}\right)$. Although this algorithm is not the fastest algorithm known, it illustrates some of the techniques used in the asymptotically fastest algorithms, and it is reasonably efficient in practice.

26.1 Flow networks

In this section, we give a graph-theoretic definition of flow networks, discuss their properties, and define the maximum-flow problem precisely. We also introduce some helpful notation.

Flow networks and flows

A flow network $G=(V, E)$ is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \geq 0$. We further require that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction. (We shall see shortly how to work around this restriction.) If ($u, v) \notin E$, then for convenience we define $c(u, v)=0$, and we disallow self-loops. We distinguish two vertices in a flow network: a source s and a sink t. For convenience, we assume that each vertex lies on some path from the source to the sink. That is, for each vertex $v \in V$, the flow network contains a path $s \leadsto v \leadsto t$. The graph is therefore connected and, since each vertex other than s has at least one entering edge, $|E| \geq|V|-1$. Figure 26.1 shows an example of a flow network.

We are now ready to define flows more formally. Let $G=(V, E)$ be a flow network with a capacity function c. Let s be the source of the network, and let t be the sink. A flow in G is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies the following two properties:

Capacity constraint: For all $u, v \in V$, we require $0 \leq f(u, v) \leq c(u, v)$.
Flow conservation: For all $u \in V-\{s, t\}$, we require

$$
\sum_{v \in V} f(v, u)=\sum_{v \in V} f(u, v) .
$$

When $(u, v) \notin E$, there can be no flow from u to v, and $f(u, v)=0$.

Figure 26.1 (a) A flow network $G=(V, E)$ for the Lucky Puck Company's trucking problem. The Vancouver factory is the source s, and the Winnipeg warehouse is the $\operatorname{sink} t$. The company ships pucks through intermediate cities, but only $c(u, v)$ crates per day can go from city u to city v. Each edge is labeled with its capacity. (b) A flow f in G with value $|f|=19$. Each edge (u, v) is labeled by $f(u, v) / c(u, v)$. The slash notation merely separates the flow and capacity; it does not indicate division.

We call the nonnegative quantity $f(u, v)$ the flow from vertex u to vertex v. The value $|f|$ of a flow f is defined as
$|f|=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)$,
that is, the total flow out of the source minus the flow into the source. (Here, the $|\cdot|$ notation denotes flow value, not absolute value or cardinality.) Typically, a flow network will not have any edges into the source, and the flow into the source, given by the summation $\sum_{v \in V} f(\nu, s)$, will be 0 . We include it, however, because when we introduce residual networks later in this chapter, the flow into the source will become significant. In the maximum-flow problem, we are given a flow network G with source s and $\operatorname{sink} t$, and we wish to find a flow of maximum value.

Before seeing an example of a network-flow problem, let us briefly explore the definition of flow and the two flow properties. The capacity constraint simply says that the flow from one vertex to another must be nonnegative and must not exceed the given capacity. The flow-conservation property says that the total flow into a vertex other than the source or sink must equal the total flow out of that vertex - informally, "flow in equals flow out."

An example of flow

A flow network can model the trucking problem shown in Figure 26.1(a). The Lucky Puck Company has a factory (source s) in Vancouver that manufactures hockey pucks, and it has a warehouse ($\operatorname{sink} t$) in Winnipeg that stocks them. Lucky

Figure 26.2 Converting a network with antiparallel edges to an equivalent one with no antiparallel edges. (a) A flow network containing both the edges $\left(v_{1}, v_{2}\right)$ and (ν_{2}, ν_{1}). (b) An equivalent network with no antiparallel edges. We add the new vertex ν^{\prime}, and we replace edge $\left(\nu_{1}, \nu_{2}\right)$ by the pair of edges $\left(v_{1}, v^{\prime}\right)$ and $\left(v^{\prime}, v_{2}\right)$, both with the same capacity as $\left(v_{1}, v_{2}\right)$.

Puck leases space on trucks from another firm to ship the pucks from the factory to the warehouse. Because the trucks travel over specified routes (edges) between cities (vertices) and have a limited capacity, Lucky Puck can ship at most $c(u, v)$ crates per day between each pair of cities u and v in Figure 26.1(a). Lucky Puck has no control over these routes and capacities, and so the company cannot alter the flow network shown in Figure 26.1(a). They need to determine the largest number p of crates per day that they can ship and then to produce this amount, since there is no point in producing more pucks than they can ship to their warehouse. Lucky Puck is not concerned with how long it takes for a given puck to get from the factory to the warehouse; they care only that p crates per day leave the factory and p crates per day arrive at the warehouse.

We can model the "flow" of shipments with a flow in this network because the number of crates shipped per day from one city to another is subject to a capacity constraint. Additionally, the model must obey flow conservation, for in a steady state, the rate at which pucks enter an intermediate city must equal the rate at which they leave. Otherwise, crates would accumulate at intermediate cities.

Modeling problems with antiparallel edges

Suppose that the trucking firm offered Lucky Puck the opportunity to lease space for 10 crates in trucks going from Edmonton to Calgary. It would seem natural to add this opportunity to our example and form the network shown in Figure 26.2(a). This network suffers from one problem, however: it violates our original assumption that if an edge $\left(\nu_{1}, \nu_{2}\right) \in E$, then $\left(\nu_{2}, \nu_{1}\right) \notin E$. We call the two edges $\left(\nu_{1}, \nu_{2}\right)$ and $\left(\nu_{2}, \nu_{1}\right)$ antiparallel. Thus, if we wish to model a flow problem with antiparallel edges, we must transform the network into an equivalent one containing no
antiparallel edges. Figure 26.2(b) displays this equivalent network. We choose one of the two antiparallel edges, in this case (ν_{1}, ν_{2}), and split it by adding a new vertex v^{\prime} and replacing edge (ν_{1}, ν_{2}) with the pair of edges $\left(\nu_{1}, \nu^{\prime}\right)$ and $\left(\nu^{\prime}, \nu_{2}\right)$. We also set the capacity of both new edges to the capacity of the original edge. The resulting network satisfies the property that if an edge is in the network, the reverse edge is not. Exercise 26.1-1 asks you to prove that the resulting network is equivalent to the original one.

Thus, we see that a real-world flow problem might be most naturally modeled by a network with antiparallel edges. It will be convenient to disallow antiparallel edges, however, and so we have a straightforward way to convert a network containing antiparallel edges into an equivalent one with no antiparallel edges.

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinks, rather than just one of each. The Lucky Puck Company, for example, might actually have a set of m factories $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ and a set of n warehouses $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, as shown in Figure 26.3(a). Fortunately, this problem is no harder than ordinary maximum flow.

We can reduce the problem of determining a maximum flow in a network with multiple sources and multiple sinks to an ordinary maximum-flow problem. Figure 26.3(b) shows how to convert the network from (a) to an ordinary flow network with only a single source and a single sink. We add a supersource s and add a directed edge $\left(s, s_{i}\right)$ with capacity $c\left(s, s_{i}\right)=\infty$ for each $i=1,2, \ldots, m$. We also create a new supersink t and add a directed edge ($\left.t_{i}, t\right)$ with capacity $c\left(t_{i}, t\right)=\infty$ for each $i=1,2, \ldots, n$. Intuitively, any flow in the network in (a) corresponds to a flow in the network in (b), and vice versa. The single source s simply provides as much flow as desired for the multiple sources s_{i}, and the single $\operatorname{sink} t$ likewise consumes as much flow as desired for the multiple sinks t_{i}. Exercise 26.1-2 asks you to prove formally that the two problems are equivalent.

Exercises

26.1-1

Show that splitting an edge in a flow network yields an equivalent network. More formally, suppose that flow network G contains edge (u, v), and we create a new flow network G^{\prime} by creating a new vertex x and replacing (u, v) by new edges (u, x) and (x, v) with $c(u, x)=c(x, v)=c(u, v)$. Show that a maximum flow in G^{\prime} has the same value as a maximum flow in G.

Figure 26.3 Converting a multiple-source, multiple-sink maximum-flow problem into a problem with a single source and a single sink. (a) A flow network with five sources $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ and three sinks $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. (b) An equivalent single-source, single-sink flow network. We add a supersource s and an edge with infinite capacity from s to each of the multiple sources. We also add a supersink t and an edge with infinite capacity from each of the multiple sinks to t.

26.1-2

Extend the flow properties and definitions to the multiple-source, multiple-sink problem. Show that any flow in a multiple-source, multiple-sink flow network corresponds to a flow of identical value in the single-source, single-sink network obtained by adding a supersource and a supersink, and vice versa.

26.1-3

Suppose that a flow network $G=(V, E)$ violates the assumption that the network contains a path $s \leadsto v \leadsto t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \leadsto u \leadsto t$. Show that there must exist a maximum flow f in G such that $f(u, v)=f(v, u)=0$ for all vertices $v \in V$.

26.1-4

Let f be a flow in a network, and let α be a real number. The scalar flow product, denoted αf, is a function from $V \times V$ to \mathbb{R} defined by
$(\alpha f)(u, v)=\alpha \cdot f(u, v)$.
Prove that the flows in a network form a convex set. That is, show that if f_{1} and f_{2} are flows, then so is $\alpha f_{1}+(1-\alpha) f_{2}$ for all α in the range $0 \leq \alpha \leq 1$.

26.1-5

State the maximum-flow problem as a linear-programming problem.

26.1-6

Professor Adam has two children who, unfortunately, dislike each other. The problem is so severe that not only do they refuse to walk to school together, but in fact each one refuses to walk on any block that the other child has stepped on that day. The children have no problem with their paths crossing at a corner. Fortunately both the professor's house and the school are on corners, but beyond that he is not sure if it is going to be possible to send both of his children to the same school. The professor has a map of his town. Show how to formulate the problem of determining whether both his children can go to the same school as a maximum-flow problem.

26.1-7

Suppose that, in addition to edge capacities, a flow network has vertex capacities. That is each vertex v has a limit $l(v)$ on how much flow can pass though v. Show how to transform a flow network $G=(V, E)$ with vertex capacities into an equivalent flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ without vertex capacities, such that a maximum flow in G^{\prime} has the same value as a maximum flow in G. How many vertices and edges does G^{\prime} have?

26.2 The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the maximum-flow problem. We call it a "method" rather than an "algorithm" because it encompasses several implementations with differing running times. The Ford-Fulkerson method depends on three important ideas that transcend the method and are relevant to many flow algorithms and problems: residual networks, augmenting paths, and cuts. These ideas are essential to the important max-flow min-cut theorem (Theorem 26.6), which characterizes the value of a maximum flow in terms of cuts of
the flow network. We end this section by presenting one specific implementation of the Ford-Fulkerson method and analyzing its running time.

The Ford-Fulkerson method iteratively increases the value of the flow. We start with $f(u, v)=0$ for all $u, v \in V$, giving an initial flow of value 0 . At each iteration, we increase the flow value in G by finding an "augmenting path" in an associated "residual network" G_{f}. Once we know the edges of an augmenting path in G_{f}, we can easily identify specific edges in G for which we can change the flow so that we increase the value of the flow. Although each iteration of the Ford-Fulkerson method increases the value of the flow, we shall see that the flow on any particular edge of G may increase or decrease; decreasing the flow on some edges may be necessary in order to enable an algorithm to send more flow from the source to the sink. We repeatedly augment the flow until the residual network has no more augmenting paths. The max-flow min-cut theorem will show that upon termination, this process yields a maximum flow.

Ford-Fulkerson-Method (G, s, t)

```
initialize flow \(f\) to 0
while there exists an augmenting path \(p\) in the residual network \(G_{f}\)
    augment flow \(f\) along \(p\)
return \(f\)
```

In order to implement and analyze the Ford-Fulkerson method, we need to introduce several additional concepts.

Residual networks

Intuitively, given a flow network G and a flow f, the residual network G_{f} consists of edges with capacities that represent how we can change the flow on edges of G. An edge of the flow network can admit an amount of additional flow equal to the edge's capacity minus the flow on that edge. If that value is positive, we place that edge into G_{f} with a "residual capacity" of $c_{f}(u, v)=c(u, v)-f(u, v)$. The only edges of G that are in G_{f} are those that can admit more flow; those edges (u, v) whose flow equals their capacity have $c_{f}(u, v)=0$, and they are not in G_{f}.

The residual network G_{f} may also contain edges that are not in G, however. As an algorithm manipulates the flow, with the goal of increasing the total flow, it might need to decrease the flow on a particular edge. In order to represent a possible decrease of a positive flow $f(u, v)$ on an edge in G, we place an edge (v, u) into G_{f} with residual capacity $c_{f}(v, u)=f(u, v)$-that is, an edge that can admit flow in the opposite direction to (u, v), at most canceling out the flow on (u, v). These reverse edges in the residual network allow an algorithm to send back flow
it has already sent along an edge. Sending flow back along an edge is equivalent to decreasing the flow on the edge, which is a necessary operation in many algorithms.

More formally, suppose that we have a flow network $G=(V, E)$ with source s and sink t. Let f be a flow in G, and consider a pair of vertices $u, v \in V$. We define the residual capacity $c_{f}(u, v)$ by
$c_{f}(u, v)= \begin{cases}c(u, v)-f(u, v) & \text { if }(u, v) \in E, \\ f(v, u) & \text { if }(v, u) \in E, \\ 0 & \text { otherwise } .\end{cases}$
Because of our assumption that $(u, v) \in E$ implies $(\nu, u) \notin E$, exactly one case in equation (26.2) applies to each ordered pair of vertices.

As an example of equation (26.2), if $c(u, v)=16$ and $f(u, v)=11$, then we can increase $f(u, v)$ by up to $c_{f}(u, v)=5$ units before we exceed the capacity constraint on edge (u, v). We also wish to allow an algorithm to return up to 11 units of flow from v to u, and hence $c_{f}(v, u)=11$.

Given a flow network $G=(V, E)$ and a flow f, the residual network of G induced by f is $G_{f}=\left(V, E_{f}\right)$, where
$E_{f}=\left\{(u, v) \in V \times V: c_{f}(u, v)>0\right\}$.
That is, as promised above, each edge of the residual network, or residual edge, can admit a flow that is greater than 0 . Figure 26.4(a) repeats the flow network G and flow f of Figure 26.1(b), and Figure 26.4(b) shows the corresponding residual network G_{f}. The edges in E_{f} are either edges in E or their reversals, and thus
$\left|E_{f}\right| \leq 2|E|$.
Observe that the residual network G_{f} is similar to a flow network with capacities given by c_{f}. It does not satisfy our definition of a flow network because it may contain both an edge (u, v) and its reversal (v, u). Other than this difference, a residual network has the same properties as a flow network, and we can define a flow in the residual network as one that satisfies the definition of a flow, but with respect to capacities c_{f} in the network G_{f}.

A flow in a residual network provides a roadmap for adding flow to the original flow network. If f is a flow in G and f^{\prime} is a flow in the corresponding residual network G_{f}, we define $f \uparrow f^{\prime}$, the augmentation of flow f by f^{\prime}, to be a function from $V \times V$ to \mathbb{R}, defined by
$\left(f \uparrow f^{\prime}\right)(u, v)= \begin{cases}f(u, v)+f^{\prime}(u, v)-f^{\prime}(v, u) & \text { if }(u, v) \in E, \\ 0 & \text { otherwise } .\end{cases}$

(a)

(c)

(b)

(d)

Figure 26.4 (a) The flow network G and flow f of Figure 26.1(b). (b) The residual network G_{f} with augmenting path p shaded; its residual capacity is $c_{f}(p)=c_{f}\left(\nu_{2}, v_{3}\right)=4$. Edges with residual capacity equal to 0 , such as $\left(\nu_{1}, \nu_{3}\right)$, are not shown, a convention we follow in the remainder of this section. (c) The flow in G that results from augmenting along path p by its residual capacity 4 . Edges carrying no flow, such as (ν_{3}, ν_{2}), are labeled only by their capacity, another convention we follow throughout. (d) The residual network induced by the flow in (c).

The intuition behind this definition follows the definition of the residual network. We increase the flow on (u, v) by $f^{\prime}(u, v)$ but decrease it by $f^{\prime}(v, u)$ because pushing flow on the reverse edge in the residual network signifies decreasing the flow in the original network. Pushing flow on the reverse edge in the residual network is also known as cancellation. For example, if we send 5 crates of hockey pucks from u to v and send 2 crates from v to u, we could equivalently (from the perspective of the final result) just send 3 creates from u to v and none from v to u. Cancellation of this type is crucial for any maximum-flow algorithm.

Lemma 26.1

Let $G=(V, E)$ be a flow network with source s and $\operatorname{sink} t$, and let f be a flow in G. Let G_{f} be the residual network of G induced by f, and let f^{\prime} be a flow in G_{f}. Then the function $f \uparrow f^{\prime}$ defined in equation (26.4) is a flow in G with value $\left|f \uparrow f^{\prime}\right|=|f|+\left|f^{\prime}\right|$.

Proof We first verify that $f \uparrow f^{\prime}$ obeys the capacity constraint for each edge in E and flow conservation at each vertex in $V-\{s, t\}$.

For the capacity constraint, first observe that if $(u, v) \in E$, then $c_{f}(v, u)=$ $f(u, v)$. Therefore, we have $f^{\prime}(v, u) \leq c_{f}(v, u)=f(u, v)$, and hence

$$
\begin{aligned}
\left(f \uparrow f^{\prime}\right)(u, v) & =f(u, v)+f^{\prime}(u, v)-f^{\prime}(v, u) \quad \text { (by equation (26.4)) } \\
& \left.\geq f(u, v)+f^{\prime}(u, v)-f(u, v) \quad \text { (because } f^{\prime}(v, u) \leq f(u, v)\right) \\
& =f^{\prime}(u, v) \\
& \geq 0
\end{aligned}
$$

In addition,

$$
\begin{array}{rlrl}
\left(f \uparrow f^{\prime}\right)(u, v) & & \\
& =f(u, v)+f^{\prime}(u, v)-f^{\prime}(v, u) & & \text { (by equation (26.4)) } \\
& \leq f(u, v)+f^{\prime}(u, v) & & \text { (because flows are nonnegative) } \\
& \leq f(u, v)+c_{f}(u, v) & & \text { (capacity constraint) } \\
& =f(u, v)+c(u, v)-f(u, v) & & \text { (definition of } \left.c_{f}\right) \\
& =c(u, v) & &
\end{array}
$$

For flow conservation, because both f and f^{\prime} obey flow conservation, we have that for all $u \in V-\{s, t\}$,

$$
\begin{aligned}
\sum_{v \in V}\left(f \uparrow f^{\prime}\right)(u, v) & =\sum_{v \in V}\left(f(u, v)+f^{\prime}(u, v)-f^{\prime}(v, u)\right) \\
& =\sum_{v \in V} f(u, v)+\sum_{v \in V} f^{\prime}(u, v)-\sum_{v \in V} f^{\prime}(v, u) \\
& =\sum_{v \in V} f(v, u)+\sum_{v \in V} f^{\prime}(v, u)-\sum_{v \in V} f^{\prime}(u, v) \\
& =\sum_{v \in V}\left(f(v, u)+f^{\prime}(v, u)-f^{\prime}(u, v)\right) \\
& =\sum_{v \in V}\left(f \uparrow f^{\prime}\right)(v, u),
\end{aligned}
$$

where the third line follows from the second by flow conservation.
Finally, we compute the value of $f \uparrow f^{\prime}$. Recall that we disallow antiparallel edges in G (but not in G_{f}), and hence for each vertex $v \in V$, we know that there can be an edge (s, ν) or (ν, s), but never both. We define $V_{1}=\{\nu:(s, v) \in E\}$ to be the set of vertices with edges from s, and $V_{2}=\{v:(\nu, s) \in E\}$ to be the set of vertices with edges to s. We have $V_{1} \cup V_{2} \subseteq V$ and, because we disallow antiparallel edges, $V_{1} \cap V_{2}=\emptyset$. We now compute

$$
\begin{align*}
\left|f \uparrow f^{\prime}\right| & =\sum_{v \in V}\left(f \uparrow f^{\prime}\right)(s, v)-\sum_{v \in V}\left(f \uparrow f^{\prime}\right)(v, s) \\
& =\sum_{v \in V_{1}}\left(f \uparrow f^{\prime}\right)(s, v)-\sum_{v \in V_{2}}\left(f \uparrow f^{\prime}\right)(v, s), \tag{26.5}
\end{align*}
$$

where the second line follows because $\left(f \uparrow f^{\prime}\right)(w, x)$ is 0 if $(w, x) \notin E$. We now apply the definition of $f \uparrow f^{\prime}$ to equation (26.5), and then reorder and group terms to obtain

$$
\begin{align*}
& \left|f \uparrow f^{\prime}\right| \\
& =\sum_{v \in V_{1}}\left(f(s, v)+f^{\prime}(s, v)-f^{\prime}(v, s)\right)-\sum_{v \in V_{2}}\left(f(v, s)+f^{\prime}(v, s)-f^{\prime}(s, v)\right) \\
& =\sum_{\nu \in V_{1}} f(s, v)+\sum_{v \in V_{1}} f^{\prime}(s, v)-\sum_{v \in V_{1}} f^{\prime}(\nu, s) \\
& -\sum_{v \in V_{2}} f(v, s)-\sum_{v \in V_{2}} f^{\prime}(\nu, s)+\sum_{v \in V_{2}} f^{\prime}(s, v) \\
& =\sum_{v \in V_{1}} f(s, v)-\sum_{v \in V_{2}} f(v, s) \\
& +\sum_{v \in V_{1}} f^{\prime}(s, v)+\sum_{\nu \in V_{2}} f^{\prime}(s, v)-\sum_{v \in V_{1}} f^{\prime}(\nu, s)-\sum_{\nu \in V_{2}} f^{\prime}(\nu, s) \\
& =\sum_{\nu \in V_{1}} f(s, v)-\sum_{\nu \in V_{2}} f(\nu, s)+\sum_{\nu \in V_{1} \cup V_{2}} f^{\prime}(s, \nu)-\sum_{\nu \in V_{1} \cup V_{2}} f^{\prime}(\nu, s) . \tag{26.6}
\end{align*}
$$

In equation (26.6), we can extend all four summations to sum over V, since each additional term has value 0 . (Exercise $26.2-1$ asks you to prove this formally.) We thus have

$$
\begin{align*}
\left|f \uparrow f^{\prime}\right| & =\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)+\sum_{v \in V} f^{\prime}(s, v)-\sum_{v \in V} f^{\prime}(v, s) \tag{26.7}\\
& =|f|+\left|f^{\prime}\right|
\end{align*}
$$

Augmenting paths

Given a flow network $G=(V, E)$ and a flow f, an augmenting path p is a simple path from s to t in the residual network G_{f}. By the definition of the residual network, we may increase the flow on an edge (u, v) of an augmenting path by up to $c_{f}(u, v)$ without violating the capacity constraint on whichever of (u, v) and (v, u) is in the original flow network G.

The shaded path in Figure 26.4(b) is an augmenting path. Treating the residual network G_{f} in the figure as a flow network, we can increase the flow through each edge of this path by up to 4 units without violating a capacity constraint, since the smallest residual capacity on this path is $c_{f}\left(\nu_{2}, \nu_{3}\right)=4$. We call the maximum amount by which we can increase the flow on each edge in an augmenting path p the residual capacity of p, given by $c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.$ is on $\left.p\right\}$.

The following lemma, whose proof we leave as Exercise 26.2-7, makes the above argument more precise.

Lemma 26.2

Let $G=(V, E)$ be a flow network, let f be a flow in G, and let p be an augmenting path in G_{f}. Define a function $f_{p}: V \times V \rightarrow \mathbb{R}$ by
$f_{p}(u, v)= \begin{cases}c_{f}(p) & \text { if }(u, v) \text { is on } p, \\ 0 & \text { otherwise } .\end{cases}$
Then, f_{p} is a flow in G_{f} with value $\left|f_{p}\right|=c_{f}(p)>0$.

The following corollary shows that if we augment f by f_{p}, we get another flow in G whose value is closer to the maximum. Figure 26.4(c) shows the result of augmenting the flow f from Figure 26.4(a) by the flow f_{p} in Figure 26.4(b), and Figure 26.4(d) shows the ensuing residual network.

Corollary 26.3

Let $G=(V, E)$ be a flow network, let f be a flow in G, and let p be an augmenting path in G_{f}. Let f_{p} be defined as in equation (26.8), and suppose that we augment f by f_{p}. Then the function $f \uparrow f_{p}$ is a flow in G with value $\left|f \uparrow f_{p}\right|=|f|+\left|f_{p}\right|>|f|$.

Proof Immediate from Lemmas 26.1 and 26.2.

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flow along augmenting paths until it has found a maximum flow. How do we know that when the algorithm terminates, we have actually found a maximum flow? The max-flow min-cut theorem, which we shall prove shortly, tells us that a flow is maximum if and only if its residual network contains no augmenting path. To prove this theorem, though, we must first explore the notion of a cut of a flow network.

A cut (S, T) of flow network $G=(V, E)$ is a partition of V into S and $T=V-S$ such that $s \in S$ and $t \in T$. (This definition is similar to the definition of "cut" that we used for minimum spanning trees in Chapter 23, except that here we are cutting a directed graph rather than an undirected graph, and we insist that $s \in S$ and $t \in T$.) If f is a flow, then the net flow $f(S, T)$ across the cut (S, T) is defined to be

$$
\begin{equation*}
f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u) . \tag{26.9}
\end{equation*}
$$

Figure 26.5 A cut (S, T) in the flow network of Figure 26.1(b), where $S=\left\{s, v_{1}, v_{2}\right\}$ and $T=\left\{\nu_{3}, \nu_{4}, t\right\}$. The vertices in S are black, and the vertices in T are white. The net flow across (S, T) is $f(S, T)=19$, and the capacity is $c(S, T)=26$.

The capacity of the cut (S, T) is
$c(S, T)=\sum_{u \in S} \sum_{v \in T} c(u, v)$.
A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

The asymmetry between the definitions of flow and capacity of a cut is intentional and important. For capacity, we count only the capacities of edges going from S to T, ignoring edges in the reverse direction. For flow, we consider the flow going from S to T minus the flow going in the reverse direction from T to S. The reason for this difference will become clear later in this section.

Figure 26.5 shows the cut $\left(\left\{s, v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}, t\right\}\right)$ in the flow network of Figure 26.1(b). The net flow across this cut is

$$
\begin{aligned}
f\left(\nu_{1}, \nu_{3}\right)+f\left(\nu_{2}, \nu_{4}\right)-f\left(\nu_{3}, \nu_{2}\right) & =12+11-4 \\
& =19,
\end{aligned}
$$

and the capacity of this cut is

$$
\begin{aligned}
c\left(\nu_{1}, \nu_{3}\right)+c\left(\nu_{2}, \nu_{4}\right) & =12+14 \\
& =26
\end{aligned}
$$

The following lemma shows that, for a given flow f, the net flow across any cut is the same, and it equals $|f|$, the value of the flow.

Lemma 26.4

Let f be a flow in a flow network G with source s and $\operatorname{sink} t$, and let (S, T) be any cut of G. Then the net flow across (S, T) is $f(S, T)=|f|$.

Proof We can rewrite the flow-conservation condition for any node $u \in V-\{s, t\}$ as
$\sum_{v \in V} f(u, v)-\sum_{v \in V} f(v, u)=0$.
Taking the definition of $|f|$ from equation (26.1) and adding the left-hand side of equation (26.11), which equals 0 , summed over all vertices in $S-\{s\}$, gives

$$
|f|=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)+\sum_{u \in S-\{s\}}\left(\sum_{v \in V} f(u, v)-\sum_{v \in V} f(v, u)\right) .
$$

Expanding the right-hand summation and regrouping terms yields

$$
\begin{aligned}
|f| & =\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)+\sum_{u \in S-\{s\}} \sum_{v \in V} f(u, v)-\sum_{u \in S-\{s\}} \sum_{v \in V} f(v, u) \\
& =\sum_{v \in V}\left(f(s, v)+\sum_{u \in S-\{s\}} f(u, v)\right)-\sum_{v \in V}\left(f(v, s)+\sum_{u \in S-\{s\}} f(v, u)\right) \\
& =\sum_{v \in V} \sum_{u \in S} f(u, v)-\sum_{v \in V} \sum_{u \in S} f(v, u) .
\end{aligned}
$$

Because $V=S \cup T$ and $S \cap T=\emptyset$, we can split each summation over V into summations over S and T to obtain

$$
\begin{aligned}
&|f|= \sum_{v \in S} \sum_{u \in S} f(u, v)+\sum_{v \in T} \sum_{u \in S} f(u, v)-\sum_{v \in S} \sum_{u \in S} f(v, u)-\sum_{v \in T} \sum_{u \in S} f(v, u) \\
&=\sum_{v \in T} \sum_{u \in S} f(u, v)-\sum_{v \in T} \sum_{u \in S} f(v, u) \\
&+\left(\sum_{v \in S} \sum_{u \in S} f(u, v)-\sum_{v \in S} \sum_{u \in S} f(v, u)\right)
\end{aligned}
$$

The two summations within the parentheses are actually the same, since for all vertices $x, y \in V$, the term $f(x, y)$ appears once in each summation. Hence, these summations cancel, and we have

$$
\begin{aligned}
|f| & =\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u) \\
& =f(S, T)
\end{aligned}
$$

A corollary to Lemma 26.4 shows how we can use cut capacities to bound the value of a flow.

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Proof Let (S, T) be any cut of G and let f be any flow. By Lemma 26.4 and the capacity constraint,

$$
\begin{aligned}
|f| & =f(S, T) \\
& =\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u) \\
& \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \\
& \leq \sum_{u \in S} \sum_{v \in T} c(u, v) \\
& =c(S, T) .
\end{aligned}
$$

Corollary 26.5 yields the immediate consequence that the value of a maximum flow in a network is bounded from above by the capacity of a minimum cut of the network. The important max-flow min-cut theorem, which we now state and prove, says that the value of a maximum flow is in fact equal to the capacity of a minimum cut.

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network $G=(V, E)$ with source s and $\operatorname{sink} t$, then the following conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network G_{f} contains no augmenting paths.
3. $|f|=c(S, T)$ for some cut (S, T) of G.

Proof (1) \Rightarrow (2): Suppose for the sake of contradiction that f is a maximum flow in G but that G_{f} has an augmenting path p. Then, by Corollary 26.3, the flow found by augmenting f by f_{p}, where f_{p} is given by equation (26.8), is a flow in G with value strictly greater than $|f|$, contradicting the assumption that f is a maximum flow.
$(2) \Rightarrow(3)$: Suppose that G_{f} has no augmenting path, that is, that G_{f} contains no path from s to t. Define
$S=\left\{v \in V:\right.$ there exists a path from s to v in $\left.G_{f}\right\}$
and $T=V-S$. The partition (S, T) is a cut: we have $s \in S$ trivially and $t \notin S$ because there is no path from s to t in G_{f}. Now consider a pair of vertices
$u \in S$ and $v \in T$. If $(u, v) \in E$, we must have $f(u, v)=c(u, v)$, since otherwise $(u, v) \in E_{f}$, which would place v in set S. If $(\nu, u) \in E$, we must have $f(\nu, u)=0$, because otherwise $c_{f}(u, v)=f(v, u)$ would be positive and we would have $(u, v) \in E_{f}$, which would place v in S. Of course, if neither (u, v) nor (v, u) is in E, then $f(u, v)=f(v, u)=0$. We thus have

$$
\begin{aligned}
f(S, T) & =\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{v \in T} \sum_{u \in S} f(v, u) \\
& =\sum_{u \in S} \sum_{v \in T} c(u, v)-\sum_{v \in T} \sum_{u \in S} 0 \\
& =c(S, T) .
\end{aligned}
$$

By Lemma 26.4, therefore, $|f|=f(S, T)=c(S, T)$.
$(3) \Rightarrow(1)$: By Corollary $26.5,|f| \leq c(S, T)$ for all cuts (S, T). The condition $|f|=c(S, T)$ thus implies that f is a maximum flow.

The basic Ford-Fulkerson algorithm

In each iteration of the Ford-Fulkerson method, we find some augmenting path p and use p to modify the flow f. As Lemma 26.2 and Corollary 26.3 suggest, we replace f by $f \uparrow f_{p}$, obtaining a new flow whose value is $|f|+\left|f_{p}\right|$. The following implementation of the method computes the maximum flow in a flow network $G=(V, E)$ by updating the flow attribute $(u, v) . f$ for each edge $(u, v) \in E .{ }^{1}$ If $(u, v) \notin E$, we assume implicitly that $(u, v) . f=0$. We also assume that we are given the capacities $c(u, v)$ along with the flow network, and $c(u, v)=0$ if $(u, v) \notin E$. We compute the residual capacity $c_{f}(u, v)$ in accordance with the formula (26.2). The expression $c_{f}(p)$ in the code is just a temporary variable that stores the residual capacity of the path p.

Ford-Fulkerson (G, s, t)

```
for each edge \((u, \nu) \in G . E\)
    \((u, v) \cdot f=0\)
    while there exists a path \(p\) from \(s\) to \(t\) in the residual network \(G_{f}\)
        \(c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.\) is in \(\left.p\right\}\)
        for each edge \((u, v)\) in \(p\)
            if \((u, v) \in E\)
                \((u, v) \cdot f=(u, v) \cdot f+c_{f}(p)\)
            else \((v, u) \cdot f=(v, u) \cdot f-c_{f}(p)\)
```

[^5]The Ford-Fulkerson algorithm simply expands on the Ford-FulkersonMethod pseudocode given earlier. Figure 26.6 shows the result of each iteration in a sample run. Lines $1-2$ initialize the flow f to 0 . The while loop of lines 3-8 repeatedly finds an augmenting path p in G_{f} and augments flow f along p by the residual capacity $c_{f}(p)$. Each residual edge in path p is either an edge in the original network or the reversal of an edge in the original network. Lines 6-8 update the flow in each case appropriately, adding flow when the residual edge is an original edge and subtracting it otherwise. When no augmenting paths exist, the flow f is a maximum flow.

Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on how we find the augmenting path p in line 3. If we choose it poorly, the algorithm might not even terminate: the value of the flow will increase with successive augmentations, but it need not even converge to the maximum flow value. ${ }^{2}$ If we find the augmenting path by using a breadth-first search (which we saw in Section 22.2), however, the algorithm runs in polynomial time. Before proving this result, we obtain a simple bound for the case in which we choose the augmenting path arbitrarily and all capacities are integers.

In practice, the maximum-flow problem often arises with integral capacities. If the capacities are rational numbers, we can apply an appropriate scaling transformation to make them all integral. If f^{*} denotes a maximum flow in the transformed network, then a straightforward implementation of FORD-FULKERSON executes the while loop of lines $3-8$ at most $\left|f^{*}\right|$ times, since the flow value increases by at least one unit in each iteration.

We can perform the work done within the while loop efficiently if we implement the flow network $G=(V, E)$ with the right data structure and find an augmenting path by a linear-time algorithm. Let us assume that we keep a data structure corresponding to a directed graph $G^{\prime}=\left(V, E^{\prime}\right)$, where $E^{\prime}=\{(u, v):(u, v) \in E$ or $(\nu, u) \in E\}$. Edges in the network G are also edges in G^{\prime}, and therefore we can easily maintain capacities and flows in this data structure. Given a flow f on G, the edges in the residual network G_{f} consist of all edges (u, v) of G^{\prime} such that $c_{f}(u, v)>0$, where c_{f} conforms to equation (26.2). The time to find a path in a residual network is therefore $O\left(V+E^{\prime}\right)=O(E)$ if we use either depth-first search or breadth-first search. Each iteration of the while loop thus takes $O(E)$ time, as does the initialization in lines $1-2$, making the total running time of the Ford-Fulkerson algorithm $O\left(E\left|f^{*}\right|\right)$.

[^6](a)

(b)

(c)

Figure 26.6 The execution of the basic Ford-Fulkerson algorithm. (a)-(e) Successive iterations of the while loop. The left side of each part shows the residual network G_{f} from line 3 with a shaded augmenting path p. The right side of each part shows the new flow f that results from augmenting f by f_{p}. The residual network in (a) is the input network G.

When the capacities are integral and the optimal flow value $\left|f^{*}\right|$ is small, the running time of the Ford-Fulkerson algorithm is good. Figure 26.7(a) shows an example of what can happen on a simple flow network for which $\left|f^{*}\right|$ is large. A maximum flow in this network has value 2,000,000: 1,000,000 units of flow traverse the path $s \rightarrow u \rightarrow t$, and another 1,000,000 units traverse the path $s \rightarrow v \rightarrow t$. If the first augmenting path found by FORD-FULKERSON is $s \rightarrow u \rightarrow v \rightarrow t$, shown in Figure 26.7(a), the flow has value 1 after the first iteration. The resulting residual network appears in Figure 26.7(b). If the second iteration finds the augmenting path $s \rightarrow v \rightarrow u \rightarrow t$, as shown in Figure 26.7(b), the flow then has value 2. Figure 26.7(c) shows the resulting residual network. We can continue, choosing the augmenting path $s \rightarrow u \rightarrow v \rightarrow t$ in the odd-numbered iterations and the augmenting path $s \rightarrow v \rightarrow u \rightarrow t$ in the even-numbered iterations. We would perform a total of $2,000,000$ augmentations, increasing the flow value by only 1 unit in each.
(d)

(e)

(f)

Figure 26.6, continued (f) The residual network at the last while loop test. It has no augmenting paths, and the flow f shown in (e) is therefore a maximum flow. The value of the maximum flow found is 23 .

The Edmonds-Karp algorithm

We can improve the bound on Ford-Fulkerson by finding the augmenting path p in line 3 with a breadth-first search. That is, we choose the augmenting path as a shortest path from s to t in the residual network, where each edge has unit distance (weight). We call the Ford-Fulkerson method so implemented the Edmonds-Karp algorithm. We now prove that the Edmonds-Karp algorithm runs in $O\left(V E^{2}\right)$ time.

The analysis depends on the distances to vertices in the residual network G_{f}. The following lemma uses the notation $\delta_{f}(u, v)$ for the shortest-path distance from u to v in G_{f}, where each edge has unit distance.

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network $G=(V, E)$ with source s and $\operatorname{sink} t$, then for all vertices $v \in V-\{s, t\}$, the shortest-path distance $\delta_{f}(s, v)$ in the residual network G_{f} increases monotonically with each flow augmentation.

Figure 26.7 (a) A flow network for which Ford-Fulkerson can take $\Theta\left(E\left|f^{*}\right|\right)$ time, where f^{*} is a maximum flow, shown here with $\left|f^{*}\right|=2,000,000$. The shaded path is an augmenting path with residual capacity 1. (b) The resulting residual network, with another augmenting path whose residual capacity is 1 . (c) The resulting residual network.

Proof We will suppose that for some vertex $v \in V-\{s, t\}$, there is a flow augmentation that causes the shortest-path distance from s to v to decrease, and then we will derive a contradiction. Let f be the flow just before the first augmentation that decreases some shortest-path distance, and let f^{\prime} be the flow just afterward. Let v be the vertex with the minimum $\delta_{f^{\prime}}(s, v)$ whose distance was decreased by the augmentation, so that $\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)$. Let $p=s \leadsto u \rightarrow v$ be a shortest path from s to v in $G_{f^{\prime}}$, so that $(u, \nu) \in E_{f^{\prime}}$ and
$\delta_{f^{\prime}}(s, u)=\delta_{f^{\prime}}(s, v)-1$.
Because of how we chose v, we know that the distance of vertex u from the source s did not decrease, i.e.,
$\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u)$.
We claim that $(u, v) \notin E_{f}$. Why? If we had $(u, v) \in E_{f}$, then we would also have

$$
\begin{aligned}
\delta_{f}(s, v) & \leq \delta_{f}(s, u)+1 & & (\text { by Lemma } 24.10, \text { the triangle inequality }) \\
& \leq \delta_{f^{\prime}}(s, u)+1 & & \text { (by inequality }(26.13)) \\
& =\delta_{f^{\prime}}(s, v) & & \text { (by equation }(26.12))
\end{aligned}
$$

which contradicts our assumption that $\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)$.
How can we have $(u, v) \notin E_{f}$ and $(u, v) \in E_{f^{\prime}}$? The augmentation must have increased the flow from v to u. The Edmonds-Karp algorithm always augments flow along shortest paths, and therefore the shortest path from s to u in G_{f} has (v, u) as its last edge. Therefore,

$$
\begin{aligned}
\delta_{f}(s, v) & =\delta_{f}(s, u)-1 \\
& \leq \delta_{f^{\prime}}(s, u)-1 \quad(\text { by inequality }(26.13)) \\
& =\delta_{f^{\prime}}(s, v)-2 \quad(\text { by equation }(26.12))
\end{aligned}
$$

which contradicts our assumption that $\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)$. We conclude that our assumption that such a vertex ν exists is incorrect.

The next theorem bounds the number of iterations of the Edmonds-Karp algorithm.

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network $G=(V, E)$ with source s and $\operatorname{sink} t$, then the total number of flow augmentations performed by the algorithm is $O(V E)$.

Proof We say that an edge (u, v) in a residual network G_{f} is critical on an augmenting path p if the residual capacity of p is the residual capacity of (u, v), that is, if $c_{f}(p)=c_{f}(u, v)$. After we have augmented flow along an augmenting path, any critical edge on the path disappears from the residual network. Moreover, at least one edge on any augmenting path must be critical. We will show that each of the $|E|$ edges can become critical at most $|V| / 2$ times.

Let u and v be vertices in V that are connected by an edge in E. Since augmenting paths are shortest paths, when (u, v) is critical for the first time, we have
$\delta_{f}(s, v)=\delta_{f}(s, u)+1$.
Once the flow is augmented, the edge (u, v) disappears from the residual network. It cannot reappear later on another augmenting path until after the flow from u to v is decreased, which occurs only if (ν, u) appears on an augmenting path. If f^{\prime} is the flow in G when this event occurs, then we have
$\delta_{f^{\prime}}(s, u)=\delta_{f^{\prime}}(s, v)+1$.
Since $\delta_{f}(s, v) \leq \delta_{f^{\prime}}(s, v)$ by Lemma 26.7, we have

$$
\begin{aligned}
\delta_{f^{\prime}}(s, u) & =\delta_{f^{\prime}}(s, v)+1 \\
& \geq \delta_{f}(s, v)+1 \\
& =\delta_{f}(s, u)+2
\end{aligned}
$$

Consequently, from the time (u, v) becomes critical to the time when it next becomes critical, the distance of u from the source increases by at least 2 . The distance of u from the source is initially at least 0 . The intermediate vertices on a shortest path from s to u cannot contain s, u, or t (since (u, v) on an augmenting path implies that $u \neq t$). Therefore, until u becomes unreachable from the source, if ever, its distance is at most $|V|-2$. Thus, after the first time that (u, v) becomes critical, it can become critical at most $(|V|-2) / 2=|V| / 2-1$ times more, for a total of at most $|V| / 2$ times. Since there are $O(E)$ pairs of vertices that can have an edge between them in a residual network, the total number of critical edges during
the entire execution of the Edmonds-Karp algorithm is $O(V E)$. Each augmenting path has at least one critical edge, and hence the theorem follows.

Because we can implement each iteration of Ford-Fulkerson in $O(E)$ time when we find the augmenting path by breadth-first search, the total running time of the Edmonds-Karp algorithm is $O\left(V E^{2}\right)$. We shall see that push-relabel algorithms can yield even better bounds. The algorithm of Section 26.4 gives a method for achieving an $O\left(V^{2} E\right)$ running time, which forms the basis for the $O\left(V^{3}\right)$-time algorithm of Section 26.5.

Exercises

26.2-1

Prove that the summations in equation (26.6) equal the summations in equation (26.7).

26.2-2

In Figure 26.1(b), what is the flow across the cut $\left(\left\{s, v_{2}, v_{4}\right\},\left\{v_{1}, v_{3}, t\right\}\right)$? What is the capacity of this cut?

26.2-3

Show the execution of the Edmonds-Karp algorithm on the flow network of Figure 26.1(a).

26.2-4

In the example of Figure 26.6, what is the minimum cut corresponding to the maximum flow shown? Of the augmenting paths appearing in the example, which one cancels flow?

26.2-5

Recall that the construction in Section 26.1 that converts a flow network with multiple sources and sinks into a single-source, single-sink network adds edges with infinite capacity. Prove that any flow in the resulting network has a finite value if the edges of the original network with multiple sources and sinks have finite capacity.

26.2-6

Suppose that each source s_{i} in a flow network with multiple sources and sinks produces exactly p_{i} units of flow, so that $\sum_{v \in V} f\left(s_{i}, v\right)=p_{i}$. Suppose also that each sink t_{j} consumes exactly q_{j} units, so that $\sum_{v \in V} f\left(v, t_{j}\right)=q_{j}$, where $\sum_{i} p_{i}=\sum_{j} q_{j}$. Show how to convert the problem of finding a flow f that obeys
these additional constraints into the problem of finding a maximum flow in a singlesource, single-sink flow network.

26.2-7

Prove Lemma 26.2.

26.2-8

Suppose that we redefine the residual network to disallow edges into s. Argue that the procedure FORD-FULKERSON still correctly computes a maximum flow.

26.2-9

Suppose that both f and f^{\prime} are flows in a network G and we compute flow $f \uparrow f^{\prime}$. Does the augmented flow satisfy the flow conservation property? Does it satisfy the capacity constraint?

26.2-10

Show how to find a maximum flow in a network $G=(V, E)$ by a sequence of at most $|E|$ augmenting paths. (Hint: Determine the paths after finding the maximum flow.)

26.2-11

The edge connectivity of an undirected graph is the minimum number k of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1 , and the edge connectivity of a cyclic chain of vertices is 2 . Show how to determine the edge connectivity of an undirected graph $G=(V, E)$ by running a maximum-flow algorithm on at most $|V|$ flow networks, each having $O(V)$ vertices and $O(E)$ edges.

26.2-12

Suppose that you are given a flow network G, and G has edges entering the source s. Let f be a flow in G in which one of the edges (v, s) entering the source has $f(\nu, s)=1$. Prove that there must exist another flow f^{\prime} with $f^{\prime}(\nu, s)=0$ such that $|f|=\left|f^{\prime}\right|$. Give an $O(E)$-time algorithm to compute f^{\prime}, given f, and assuming that all edge capacities are integers.

26.2-13

Suppose that you wish to find, among all minimum cuts in a flow network G with integral capacities, one that contains the smallest number of edges. Show how to modify the capacities of G to create a new flow network G^{\prime} in which any minimum cut in G^{\prime} is a minimum cut with the smallest number of edges in G.

26.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximum-flow problems. The multiple-source, multiple-sink maximum-flow problem from Section 26.1 gave us one example. Some other combinatorial problems seem on the surface to have little to do with flow networks, but can in fact be reduced to maximum-flow problems. This section presents one such problem: finding a maximum matching in a bipartite graph. In order to solve this problem, we shall take advantage of an integrality property provided by the Ford-Fulkerson method. We shall also see how to use the Ford-Fulkerson method to solve the maximum-bipartite-matching problem on a graph $G=(V, E)$ in $O(V E)$ time.

The maximum-bipartite-matching problem

Given an undirected graph $G=(V, E)$, a matching is a subset of edges $M \subseteq E$ such that for all vertices $v \in V$, at most one edge of M is incident on v. We say that a vertex $\nu \in V$ is matched by the matching M if some edge in M is incident on v; otherwise, v is unmatched. A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M^{\prime}, we have $|M| \geq\left|M^{\prime}\right|$. In this section, we shall restrict our attention to finding maximum matchings in bipartite graphs: graphs in which the vertex set can be partitioned into $V=L \cup R$, where L and R are disjoint and all edges in E go between L and R. We further assume that every vertex in V has at least one incident edge. Figure 26.8 illustrates the notion of a matching in a bipartite graph.

The problem of finding a maximum matching in a bipartite graph has many practical applications. As an example, we might consider matching a set L of machines with a set R of tasks to be performed simultaneously. We take the presence of edge (u, v) in E to mean that a particular machine $u \in L$ is capable of performing a particular task $v \in R$. A maximum matching provides work for as many machines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum matching in an undirected bipartite graph $G=(V, E)$ in time polynomial in $|V|$ and $|E|$. The trick is to construct a flow network in which flows correspond to matchings, as shown in Figure 26.8(c). We define the corresponding flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ for the bipartite graph G as follows. We let the source s and $\operatorname{sink} t$ be new vertices not in V, and we let $V^{\prime}=V \cup\{s, t\}$. If the vertex partition of G is $V=L \cup R$, the

Figure 26.8 A bipartite graph $G=(V, E)$ with vertex partition $V=L \cup R$. (a) A matching with cardinality 2 , indicated by shaded edges. (b) A maximum matching with cardinality 3 . (c) The corresponding flow network G^{\prime} with a maximum flow shown. Each edge has unit capacity. Shaded edges have a flow of 1 , and all other edges carry no flow. The shaded edges from L to R correspond to those in the maximum matching from (b).
directed edges of G^{\prime} are the edges of E, directed from L to R, along with $|V|$ new directed edges:
$E^{\prime}=\{(s, u): u \in L\} \cup\{(u, \nu):(u, v) \in E\} \cup\{(v, t): v \in R\}$.
To complete the construction, we assign unit capacity to each edge in E^{\prime}. Since each vertex in V has at least one incident edge, $|E| \geq|V| / 2$. Thus, $|E| \leq\left|E^{\prime}\right|=$ $|E|+|V| \leq 3|E|$, and so $\left|E^{\prime}\right|=\Theta(E)$.

The following lemma shows that a matching in G corresponds directly to a flow in G 's corresponding flow network G^{\prime}. We say that a flow f on a flow network $G=(V, E)$ is integer-valued if $f(u, v)$ is an integer for all $(u, v) \in V \times V$.

Lemma 26.9

Let $G=(V, E)$ be a bipartite graph with vertex partition $V=L \cup R$, and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G^{\prime} with value $|f|=|M|$. Conversely, if f is an integer-valued flow in G^{\prime}, then there is a matching M in G with cardinality $|M|=|f|$.

Proof We first show that a matching M in G corresponds to an integer-valued flow f in G^{\prime}. Define f as follows. If $(u, v) \in M$, then $f(s, u)=f(u, v)=$ $f(v, t)=1$. For all other edges $(u, v) \in E^{\prime}$, we define $f(u, v)=0$. It is simple to verify that f satisfies the capacity constraint and flow conservation.

Intuitively, each edge $(u, v) \in M$ corresponds to one unit of flow in G^{\prime} that traverses the path $s \rightarrow u \rightarrow v \rightarrow t$. Moreover, the paths induced by edges in M are vertex-disjoint, except for s and t. The net flow across cut $(L \cup\{s\}, R \cup\{t\})$ is equal to $|M|$; thus, by Lemma 26.4, the value of the flow is $|f|=|M|$.

To prove the converse, let f be an integer-valued flow in G^{\prime}, and let
$M=\{(u, v): u \in L, v \in R$, and $f(u, v)>0\}$.
Each vertex $u \in L$ has only one entering edge, namely (s, u), and its capacity is 1 . Thus, each $u \in L$ has at most one unit of flow entering it, and if one unit of flow does enter, by flow conservation, one unit of flow must leave. Furthermore, since f is integer-valued, for each $u \in L$, the one unit of flow can enter on at most one edge and can leave on at most one edge. Thus, one unit of flow enters u if and only if there is exactly one vertex $v \in R$ such that $f(u, v)=1$, and at most one edge leaving each $u \in L$ carries positive flow. A symmetric argument applies to each $v \in R$. The set M is therefore a matching.
To see that $|M|=|f|$, observe that for every matched vertex $u \in L$, we have $f(s, u)=1$, and for every edge $(u, v) \in E-M$, we have $f(u, v)=0$. Consequently, $f(L \cup\{s\}, R \cup\{t\})$, the net flow across cut $(L \cup\{s\}, R \cup\{t\})$, is equal to $|M|$. Applying Lemma 26.4, we have that $|f|=f(L \cup\{s\}, R \cup\{t\})=|M|$.

Based on Lemma 26.9, we would like to conclude that a maximum matching in a bipartite graph G corresponds to a maximum flow in its corresponding flow network G^{\prime}, and we can therefore compute a maximum matching in G by running a maximum-flow algorithm on G^{\prime}. The only hitch in this reasoning is that the maximum-flow algorithm might return a flow in G^{\prime} for which some $f(u, v)$ is not an integer, even though the flow value $|f|$ must be an integer. The following theorem shows that if we use the Ford-Fulkerson method, this difficulty cannot arise.

Theorem 26.10 (Integrality theorem)

If the capacity function c takes on only integral values, then the maximum flow f produced by the Ford-Fulkerson method has the property that $|f|$ is an integer. Moreover, for all vertices u and v, the value of $f(u, v)$ is an integer.

Proof The proof is by induction on the number of iterations. We leave it as Exercise 26.3-2.

We can now prove the following corollary to Lemma 26.9.

Corollary 26.11

The cardinality of a maximum matching M in a bipartite graph G equals the value of a maximum flow f in its corresponding flow network G^{\prime}.

Proof We use the nomenclature from Lemma 26.9. Suppose that M is a maximum matching in G and that the corresponding flow f in G^{\prime} is not maximum. Then there is a maximum flow f^{\prime} in G^{\prime} such that $\left|f^{\prime}\right|>|f|$. Since the capacities in G^{\prime} are integer-valued, by Theorem 26.10, we can assume that f^{\prime} is integer-valued. Thus, f^{\prime} corresponds to a matching M^{\prime} in G with cardinality $\left|M^{\prime}\right|=\left|f^{\prime}\right|>|f|=|M|$, contradicting our assumption that M is a maximum matching. In a similar manner, we can show that if f is a maximum flow in G^{\prime}, its corresponding matching is a maximum matching on G.

Thus, given a bipartite undirected graph G, we can find a maximum matching by creating the flow network G^{\prime}, running the Ford-Fulkerson method, and directly obtaining a maximum matching M from the integer-valued maximum flow f found. Since any matching in a bipartite graph has cardinality at most $\min (L, R)=O(V)$, the value of the maximum flow in G^{\prime} is $O(V)$. We can therefore find a maximum matching in a bipartite graph in time $O\left(V E^{\prime}\right)=O(V E)$, since $\left|E^{\prime}\right|=\Theta(E)$.

Exercises

26.3-1

Run the Ford-Fulkerson algorithm on the flow network in Figure 26.8(c) and show the residual network after each flow augmentation. Number the vertices in L top to bottom from 1 to 5 and in R top to bottom from 6 to 9 . For each iteration, pick the augmenting path that is lexicographically smallest.

26.3-2

Prove Theorem 26.10.

26.3-3

Let $G=(V, E)$ be a bipartite graph with vertex partition $V=L \cup R$, and let G^{\prime} be its corresponding flow network. Give a good upper bound on the length of any augmenting path found in G^{\prime} during the execution of FORD-FULKERSON.

26.3-4 *

A perfect matching is a matching in which every vertex is matched. Let $G=$ (V, E) be an undirected bipartite graph with vertex partition $V=L \cup R$, where $|L|=|R|$. For any $X \subseteq V$, define the neighborhood of X as
$N(X)=\{y \in V:(x, y) \in E$ for some $x \in X\}$,
that is, the set of vertices adjacent to some member of X. Prove Hall's theorem: there exists a perfect matching in G if and only if $|A| \leq|N(A)|$ for every subset $A \subseteq L$.

26.3-5 *

We say that a bipartite graph $G=(V, E)$, where $V=L \cup R$, is \boldsymbol{d}-regular if every vertex $v \in V$ has degree exactly d. Every d-regular bipartite graph has $|L|=|R|$. Prove that every d-regular bipartite graph has a matching of cardinality $|L|$ by arguing that a minimum cut of the corresponding flow network has capacity $|L|$.

^ 26.4 Push-relabel algorithms

In this section, we present the "push-relabel" approach to computing maximum flows. To date, many of the asymptotically fastest maximum-flow algorithms are push-relabel algorithms, and the fastest actual implementations of maximum-flow algorithms are based on the push-relabel method. Push-relabel methods also efficiently solve other flow problems, such as the minimum-cost flow problem. This section introduces Goldberg's "generic" maximum-flow algorithm, which has a simple implementation that runs in $O\left(V^{2} E\right)$ time, thereby improving upon the $O\left(V E^{2}\right)$ bound of the Edmonds-Karp algorithm. Section 26.5 refines the generic algorithm to obtain another push-relabel algorithm that runs in $O\left(V^{3}\right)$ time.

Push-relabel algorithms work in a more localized manner than the FordFulkerson method. Rather than examine the entire residual network to find an augmenting path, push-relabel algorithms work on one vertex at a time, looking only at the vertex's neighbors in the residual network. Furthermore, unlike the FordFulkerson method, push-relabel algorithms do not maintain the flow-conservation property throughout their execution. They do, however, maintain a preflow, which is a function $f: V \times V \rightarrow \mathbb{R}$ that satisfies the capacity constraint and the following relaxation of flow conservation:
$\sum_{\nu \in V} f(v, u)-\sum_{v \in V} f(u, v) \geq 0$
for all vertices $u \in V-\{s\}$. That is, the flow into a vertex may exceed the flow out. We call the quantity
$e(u)=\sum_{v \in V} f(v, u)-\sum_{v \in V} f(u, v)$
the excess flow into vertex u. The excess at a vertex is the amount by which the flow in exceeds the flow out. We say that a vertex $u \in V-\{s, t\}$ is overflowing if $e(u)>0$.

We shall begin this section by describing the intuition behind the push-relabel method. We shall then investigate the two operations employed by the method: "pushing" preflow and "relabeling" a vertex. Finally, we shall present a generic push-relabel algorithm and analyze its correctness and running time.

Intuition

You can understand the intuition behind the push-relabel method in terms of fluid flows: we consider a flow network $G=(V, E)$ to be a system of interconnected pipes of given capacities. Applying this analogy to the Ford-Fulkerson method, we might say that each augmenting path in the network gives rise to an additional stream of fluid, with no branch points, flowing from the source to the sink. The Ford-Fulkerson method iteratively adds more streams of flow until no more can be added.

The generic push-relabel algorithm has a rather different intuition. As before, directed edges correspond to pipes. Vertices, which are pipe junctions, have two interesting properties. First, to accommodate excess flow, each vertex has an outflow pipe leading to an arbitrarily large reservoir that can accumulate fluid. Second, each vertex, its reservoir, and all its pipe connections sit on a platform whose height increases as the algorithm progresses.

Vertex heights determine how flow is pushed: we push flow only downhill, that is, from a higher vertex to a lower vertex. The flow from a lower vertex to a higher vertex may be positive, but operations that push flow push it only downhill. We fix the height of the source at $|V|$ and the height of the sink at 0 . All other vertex heights start at 0 and increase with time. The algorithm first sends as much flow as possible downhill from the source toward the sink. The amount it sends is exactly enough to fill each outgoing pipe from the source to capacity; that is, it sends the capacity of the cut $(s, V-\{s\})$. When flow first enters an intermediate vertex, it collects in the vertex's reservoir. From there, we eventually push it downhill.

We may eventually find that the only pipes that leave a vertex u and are not already saturated with flow connect to vertices that are on the same level as u or are uphill from u. In this case, to rid an overflowing vertex u of its excess flow, we must increase its height-an operation called "relabeling" vertex u. We increase its height to one unit more than the height of the lowest of its neighbors to which it has an unsaturated pipe. After a vertex is relabeled, therefore, it has at least one outgoing pipe through which we can push more flow.

Eventually, all the flow that can possibly get through to the sink has arrived there. No more can arrive, because the pipes obey the capacity constraints; the amount of flow across any cut is still limited by the capacity of the cut. To make the preflow a "legal" flow, the algorithm then sends the excess collected in the reservoirs of overflowing vertices back to the source by continuing to relabel vertices to above
the fixed height $|V|$ of the source. As we shall see, once we have emptied all the reservoirs, the preflow is not only a "legal" flow, it is also a maximum flow.

The basic operations

From the preceding discussion, we see that a push-relabel algorithm performs two basic operations: pushing flow excess from a vertex to one of its neighbors and relabeling a vertex. The situations in which these operations apply depend on the heights of vertices, which we now define precisely.

Let $G=(V, E)$ be a flow network with source s and $\operatorname{sink} t$, and let f be a preflow in G. A function $h: V \rightarrow \mathbb{N}$ is a height function ${ }^{3}$ if $h(s)=|V|$, $h(t)=0$, and
$h(u) \leq h(v)+1$
for every residual edge $(u, v) \in E_{f}$. We immediately obtain the following lemma.

Lemma 26.12

Let $G=(V, E)$ be a flow network, let f be a preflow in G, and let h be a height function on V. For any two vertices $u, v \in V$, if $h(u)>h(v)+1$, then (u, v) is not an edge in the residual network.

The push operation

The basic operation $\operatorname{PuSh}(u, v)$ applies if u is an overflowing vertex, $c_{f}(u, v)>0$, and $h(u)=h(v)+1$. The pseudocode below updates the preflow f and the excess flows for u and ν. It assumes that we can compute residual capacity $c_{f}(u, \nu)$ in constant time given c and f. We maintain the excess flow stored at a vertex u as the attribute u.e and the height of u as the attribute u.h. The expression $\Delta_{f}(u, v)$ is a temporary variable that stores the amount of flow that we can push from u to v.

[^7]```
\(\operatorname{Push}(u, v)\)
// Applies when: \(u\) is overflowing, \(c_{f}(u, v)>0\), and \(u . h=v . h+1\).
// Action: Push \(\Delta_{f}(u, v)=\min \left(u . e, c_{f}(u, v)\right)\) units of flow from \(u\) to \(v\).
\(\Delta_{f}(u, v)=\min \left(u . e, c_{f}(u, v)\right)\)
if \((u, v) \in E\)
 \((u, v) \cdot f=(u, v) \cdot f+\Delta_{f}(u, v)\)
else \((v, u) \cdot f=(v, u) \cdot f-\Delta_{f}(u, v)\)
\(u . e=u . e-\Delta_{f}(u, v)\)
\(\nu . e=v . e+\Delta_{f}(u, v)\)
```

The code for PUSH operates as follows. Because vertex $u$ has a positive excess $u . e$ and the residual capacity of $(u, v)$ is positive, we can increase the flow from $u$ to $v$ by $\Delta_{f}(u, v)=\min \left(u . e, c_{f}(u, v)\right)$ without causing $u . e$ to become negative or the capacity $c(u, v)$ to be exceeded. Line 3 computes the value $\Delta_{f}(u, \nu)$, and lines 4-6 update $f$. Line 5 increases the flow on edge ( $u, \nu$ ), because we are pushing flow over a residual edge that is also an original edge. Line 6 decreases the flow on edge $(v, u)$, because the residual edge is actually the reverse of an edge in the original network. Finally, lines 7-8 update the excess flows into vertices $u$ and $v$. Thus, if $f$ is a preflow before PUSH is called, it remains a preflow afterward.

Observe that nothing in the code for PUSH depends on the heights of $u$ and $v$, yet we prohibit it from being invoked unless $u . h=v . h+1$. Thus, we push excess flow downhill only by a height differential of 1 . By Lemma 26.12, no residual edges exist between two vertices whose heights differ by more than 1 , and thus, as long as the attribute $h$ is indeed a height function, we would gain nothing by allowing flow to be pushed downhill by a height differential of more than 1.

We call the operation $\operatorname{PUSH}(u, v)$ a push from $u$ to $v$. If a push operation applies to some edge $(u, v)$ leaving a vertex $u$, we also say that the push operation applies to $u$. It is a saturating push if edge $(u, v)$ in the residual network becomes saturated $\left(c_{f}(u, v)=0\right.$ afterward); otherwise, it is a nonsaturating push. If an edge becomes saturated, it disappears from the residual network. A simple lemma characterizes one result of a nonsaturating push.

## Lemma 26.13

After a nonsaturating push from $u$ to $v$, the vertex $u$ is no longer overflowing.
Proof Since the push was nonsaturating, the amount of flow $\Delta_{f}(u, v)$ actually pushed must equal u.e prior to the push. Since $u . e$ is reduced by this amount, it becomes 0 after the push.

## The relabel operation

The basic operation Relabel $(u)$ applies if $u$ is overflowing and if $u . h \leq v . h$ for all edges $(u, v) \in E_{f}$. In other words, we can relabel an overflowing vertex $u$ if for every vertex $v$ for which there is residual capacity from $u$ to $v$, flow cannot be pushed from $u$ to $v$ because $v$ is not downhill from $u$. (Recall that by definition, neither the source $s$ nor the sink $t$ can be overflowing, and so $s$ and $t$ are ineligible for relabeling.)

Relabel(u)
1 // Applies when: $u$ is overflowing and for all $v \in V$ such that $(u, v) \in E_{f}$, we have $u . h \leq v . h$.
2 // Action: Increase the height of $u$.
$3 u . h=1+\min \left\{v . h:(u, v) \in E_{f}\right\}$
When we call the operation $\operatorname{Relabel}(u)$, we say that vertex $u$ is relabeled. Note that when $u$ is relabeled, $E_{f}$ must contain at least one edge that leaves $u$, so that the minimization in the code is over a nonempty set. This property follows from the assumption that $u$ is overflowing, which in turn tells us that
$u . e=\sum_{v \in V} f(v, u)-\sum_{v \in V} f(u, v)>0$.
Since all flows are nonnegative, we must therefore have at least one vertex $v$ such that $(v, u) . f>0$. But then, $c_{f}(u, v)>0$, which implies that $(u, v) \in E_{f}$. The operation RELAbel $(u)$ thus gives $u$ the greatest height allowed by the constraints on height functions.

## The generic algorithm

The generic push-relabel algorithm uses the following subroutine to create an initial preflow in the flow network.

Initialize-Preflow $(G, s)$

```
for each vertex \(v \in G . V\)
 v. \(h=0\)
 \(\nu . e=0\)
for each edge \((u, v) \in G . E\)
 \((u, v) \cdot f=0\)
\(s . h=|G . V|\)
for each vertex \(v \in s . A d j\)
 \((s, v) \cdot f=c(s, v)\)
 \(\nu . e=c(s, \nu)\)
 \(s . e=s . e-c(s, v)\)
```

Initialize-Preflow creates an initial preflow $f$ defined by
$(u, v) . f= \begin{cases}c(u, v) & \text { if } u=s, \\ 0 & \text { otherwise } .\end{cases}$
That is, we fill to capacity each edge leaving the source $s$, and all other edges carry no flow. For each vertex $v$ adjacent to the source, we initially have v.e $=c(s, \nu)$, and we initialize s.e to the negative of the sum of these capacities. The generic algorithm also begins with an initial height function $h$, given by
$u . h= \begin{cases}|V| & \text { if } u=s, \\ 0 & \text { otherwise } .\end{cases}$
Equation (26.16) defines a height function because the only edges ( $u, v$ ) for which $u . h>v . h+1$ are those for which $u=s$, and those edges are saturated, which means that they are not in the residual network.

Initialization, followed by a sequence of push and relabel operations, executed in no particular order, yields the GENERIC-PUSH-RELABEL algorithm:

Generic-Push-Relabel ( $G$ )

```
Initialize-Preflow (G,s)
while there exists an applicable push or relabel operation
 select an applicable push or relabel operation and perform it
```

The following lemma tells us that as long as an overflowing vertex exists, at least one of the two basic operations applies.

## Lemma 26.14 (An overflowing vertex can be either pushed or relabeled)

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$, let $f$ be a preflow, and let $h$ be any height function for $f$. If $u$ is any overflowing vertex, then either a push or relabel operation applies to it.

Proof For any residual edge $(u, v)$, we have $h(u) \leq h(v)+1$ because $h$ is a height function. If a push operation does not apply to an overflowing vertex $u$, then for all residual edges $(u, v)$, we must have $h(u)<h(v)+1$, which implies $h(u) \leq h(v)$. Thus, a relabel operation applies to $u$.

## Correctness of the push-relabel method

To show that the generic push-relabel algorithm solves the maximum-flow problem, we shall first prove that if it terminates, the preflow $f$ is a maximum flow. We shall later prove that it terminates. We start with some observations about the height function $h$.

## Lemma 26.15 (Vertex heights never decrease)

During the execution of the GENERIC-PUSH-RELABEL procedure on a flow network $G=(V, E)$, for each vertex $u \in V$, the height $u$.h never decreases. Moreover, whenever a relabel operation is applied to a vertex $u$, its height $u$. $h$ increases by at least 1 .

Proof Because vertex heights change only during relabel operations, it suffices to prove the second statement of the lemma. If vertex $u$ is about to be relabeled, then for all vertices $v$ such that $(u, v) \in E_{f}$, we have $u . h \leq v . h$. Thus, $u . h<1+\min \left\{v . h:(u, v) \in E_{f}\right\}$, and so the operation must increase u.h.

## Lemma 26.16

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$. Then the execution of Generic-Push-Relabel on $G$ maintains the attribute $h$ as a height function.

Proof The proof is by induction on the number of basic operations performed. Initially, $h$ is a height function, as we have already observed.

We claim that if $h$ is a height function, then an operation $\operatorname{Relabel}(u)$ leaves $h$ a height function. If we look at a residual edge $(u, v) \in E_{f}$ that leaves $u$, then the operation $\operatorname{Relabel}(u)$ ensures that $u . h \leq v . h+1$ afterward. Now consider a residual edge $(w, u)$ that enters $u$. By Lemma 26.15, w. $h \leq u . h+1$ before the operation RELABEL ( $u$ ) implies $w . h<u . h+1$ afterward. Thus, the operation Relabel( $u$ ) leaves $h$ a height function.

Now, consider an operation $\operatorname{PuSh}(u, v)$. This operation may add the edge $(\nu, u)$ to $E_{f}$, and it may remove $(u, v)$ from $E_{f}$. In the former case, we have $v . h=u . h-1<u . h+1$, and so $h$ remains a height function. In the latter case, removing $(u, v)$ from the residual network removes the corresponding constraint, and $h$ again remains a height function.

The following lemma gives an important property of height functions.

## Lemma 26.17

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$, let $f$ be a preflow in $G$, and let $h$ be a height function on $V$. Then there is no path from the source $s$ to the $\operatorname{sink} t$ in the residual network $G_{f}$.

Proof Assume for the sake of contradiction that $G_{f}$ contains a path $p$ from $s$ to $t$, where $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle, v_{0}=s$, and $v_{k}=t$. Without loss of generality, $p$ is a simple path, and so $k<|V|$. For $i=0,1, \ldots, k-1$, edge $\left(v_{i}, v_{i+1}\right) \in E_{f}$. Because $h$ is a height function, $h\left(v_{i}\right) \leq h\left(v_{i+1}\right)+1$ for $i=0,1, \ldots, k-1$. Combining these inequalities over path $p$ yields $h(s) \leq h(t)+k$. But because $h(t)=0$,
we have $h(s) \leq k<|V|$, which contradicts the requirement that $h(s)=|V|$ in a height function.

We are now ready to show that if the generic push-relabel algorithm terminates, the preflow it computes is a maximum flow.

## Theorem 26.18 (Correctness of the generic push-relabel algorithm)

If the algorithm GENERIC-PUSH-RELABEL terminates when run on a flow network $G=(V, E)$ with source $s$ and $\operatorname{sink} t$, then the preflow $f$ it computes is a maximum flow for $G$.

Proof We use the following loop invariant:
Each time the while loop test in line 2 in Generic-Push-Relabel is executed, $f$ is a preflow.

Initialization: Initialize-Preflow makes $f$ a preflow.
Maintenance: The only operations within the while loop of lines 2-3 are push and relabel. Relabel operations affect only height attributes and not the flow values; hence they do not affect whether $f$ is a preflow. As argued on page 739 , if $f$ is a preflow prior to a push operation, it remains a preflow afterward.
Termination: At termination, each vertex in $V-\{s, t\}$ must have an excess of 0 , because by Lemma 26.14 and the invariant that $f$ is always a preflow, there are no overflowing vertices. Therefore, $f$ is a flow. Lemma 26.16 shows that $h$ is a height function at termination, and thus Lemma 26.17 tells us that there is no path from $s$ to $t$ in the residual network $G_{f}$. By the max-flow min-cut theorem (Theorem 26.6), therefore, $f$ is a maximum flow.

## Analysis of the push-relabel method

To show that the generic push-relabel algorithm indeed terminates, we shall bound the number of operations it performs. We bound separately each of the three types of operations: relabels, saturating pushes, and nonsaturating pushes. With knowledge of these bounds, it is a straightforward problem to construct an algorithm that runs in $O\left(V^{2} E\right)$ time. Before beginning the analysis, however, we prove an important lemma. Recall that we allow edges into the source in the residual network.

## Lemma 26.19

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$, and let $f$ be a preflow in $G$. Then, for any overflowing vertex $x$, there is a simple path from $x$ to $s$ in the residual network $G_{f}$.

Proof For an overflowing vertex $x$, let $U=\{v$ : there exists a simple path from $x$ to $v$ in $\left.G_{f}\right\}$, and suppose for the sake of contradiction that $s \notin U$. Let $\bar{U}=V-U$.

We take the definition of excess from equation (26.14), sum over all vertices in $U$, and note that $V=U \cup \bar{U}$, to obtain

$$
\begin{aligned}
\sum_{u \in U} e & (u) \\
& =\sum_{u \in U}\left(\sum_{v \in V} f(v, u)-\sum_{v \in V} f(u, v)\right) \\
& =\sum_{u \in U}\left(\left(\sum_{v \in U} f(v, u)+\sum_{v \in \bar{U}} f(v, u)\right)-\left(\sum_{v \in U} f(u, v)+\sum_{v \in \bar{U}} f(u, v)\right)\right) \\
& =\sum_{u \in U} \sum_{v \in U} f(v, u)+\sum_{u \in U} \sum_{v \in \bar{U}} f(v, u)-\sum_{u \in U} \sum_{v \in U} f(u, v)-\sum_{u \in U} \sum_{v \in \bar{U}} f(u, v) \\
& =\sum_{u \in U} \sum_{v \in \bar{U}} f(v, u)-\sum_{u \in U} \sum_{v \in \bar{U}} f(u, v) .
\end{aligned}
$$

We know that the quantity $\sum_{u \in U} e(u)$ must be positive because $e(x)>0, x \in U$, all vertices other than $s$ have nonnegative excess, and, by assumption, $s \notin U$. Thus, we have
$\sum_{u \in U} \sum_{v \in \bar{U}} f(v, u)-\sum_{u \in U} \sum_{v \in \bar{U}} f(u, v)>0$.
All edge flows are nonnegative, and so for equation (26.17) to hold, we must have $\sum_{u \in U} \sum_{v \in \bar{U}} f(v, \underline{u})>0$. Hence, there must exist at least one pair of vertices $u^{\prime} \in U$ and $v^{\prime} \in \bar{U}$ with $f\left(v^{\prime}, u^{\prime}\right)>0$. But, if $f\left(v^{\prime}, u^{\prime}\right)>0$, there must be a residual edge $\left(u^{\prime}, v^{\prime}\right)$, which means that there is a simple path from $x$ to $v^{\prime}$ (the path $x \leadsto u^{\prime} \rightarrow v^{\prime}$ ), thus contradicting the definition of $U$.

The next lemma bounds the heights of vertices, and its corollary bounds the number of relabel operations that are performed in total.

## Lemma 26.20

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$. At any time during the execution of GENERIC-PUSH-RELABEL on $G$, we have $u . h \leq 2|V|-1$ for all vertices $u \in V$.

Proof The heights of the source $s$ and the sink $t$ never change because these vertices are by definition not overflowing. Thus, we always have $s . h=|V|$ and $t . h=0$, both of which are no greater than $2|V|-1$.

Now consider any vertex $u \in V-\{s, t\}$. Initially, $u . h=0 \leq 2|V|-1$. We shall show that after each relabeling operation, we still have $u . h \leq 2|V|-1$. When $u$ is
relabeled, it is overflowing, and Lemma 26.19 tells us that there is a simple path $p$ from $u$ to $s$ in $G_{f}$. Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=u, v_{k}=s$, and $k \leq|V|-1$ because $p$ is simple. For $i=0,1, \ldots, k-1$, we have $\left(v_{i}, v_{i+1}\right) \in E_{f}$, and therefore, by Lemma 26.16, $v_{i} . h \leq v_{i+1} . h+1$. Expanding these inequalities over path $p$ yields $u . h=v_{0} . h \leq v_{k} . h+k \leq s . h+(|V|-1)=2|V|-1$.

## Corollary 26.21 (Bound on relabel operations)

Let $G=(V, E)$ be a flow network with source $s$ and $\operatorname{sink} t$. Then, during the execution of Generic-Push-Relabel on $G$, the number of relabel operations is at most $2|V|-1$ per vertex and at most $(2|V|-1)(|V|-2)<2|V|^{2}$ overall.

Proof Only the $|V|-2$ vertices in $V-\{s, t\}$ may be relabeled. Let $u \in V-\{s, t\}$. The operation $\operatorname{Relabel}(u)$ increases $u . h$. The value of $u . h$ is initially 0 and by Lemma 26.20, it grows to at most $2|V|-1$. Thus, each vertex $u \in V-\{s, t\}$ is relabeled at most $2|V|-1$ times, and the total number of relabel operations performed is at most $(2|V|-1)(|V|-2)<2|V|^{2}$.

Lemma 26.20 also helps us to bound the number of saturating pushes.

## Lemma 26.22 (Bound on saturating pushes)

During the execution of Generic-Push-Relabel on any flow network $G=$ $(V, E)$, the number of saturating pushes is less than $2|V||E|$.

Proof For any pair of vertices $u, v \in V$, we will count the saturating pushes from $u$ to $v$ and from $v$ to $u$ together, calling them the saturating pushes between $u$ and $v$. If there are any such pushes, at least one of $(u, v)$ and $(\nu, u)$ is actually an edge in $E$. Now, suppose that a saturating push from $u$ to $v$ has occurred. At that time, v. $h=u . h-1$. In order for another push from $u$ to $v$ to occur later, the algorithm must first push flow from $v$ to $u$, which cannot happen until $v . h=u . h+1$. Since u.h never decreases, in order for v. $h=u . h+1$, the value of $v . h$ must increase by at least 2 . Likewise, $u . h$ must increase by at least 2 between saturating pushes from $v$ to $u$. Heights start at 0 and, by Lemma 26.20, never exceed $2|V|-1$, which implies that the number of times any vertex can have its height increase by 2 is less than $|V|$. Since at least one of $u . h$ and $v . h$ must increase by 2 between any two saturating pushes between $u$ and $v$, there are fewer than $2|V|$ saturating pushes between $u$ and $v$. Multiplying by the number of edges gives a bound of less than $2|V||E|$ on the total number of saturating pushes.

The following lemma bounds the number of nonsaturating pushes in the generic push-relabel algorithm.

## Lemma 26.23 (Bound on nonsaturating pushes)

During the execution of Generic-Push-Relabel on any flow network $G=$ $(V, E)$, the number of nonsaturating pushes is less than $4|V|^{2}(|V|+|E|)$.

Proof Define a potential function $\Phi=\sum_{v: e(v)>0} v . h$. Initially, $\Phi=0$, and the value of $\Phi$ may change after each relabeling, saturating push, and nonsaturating push. We will bound the amount that saturating pushes and relabelings can contribute to the increase of $\Phi$. Then we will show that each nonsaturating push must decrease $\Phi$ by at least 1, and will use these bounds to derive an upper bound on the number of nonsaturating pushes.

Let us examine the two ways in which $\Phi$ might increase. First, relabeling a vertex $u$ increases $\Phi$ by less than $2|V|$, since the set over which the sum is taken is the same and the relabeling cannot increase $u$ 's height by more than its maximum possible height, which, by Lemma 26.20 , is at most $2|V|-1$. Second, a saturating push from a vertex $u$ to a vertex $v$ increases $\Phi$ by less than $2|V|$, since no heights change and only vertex $\nu$, whose height is at most $2|V|-1$, can possibly become overflowing.

Now we show that a nonsaturating push from $u$ to $v$ decreases $\Phi$ by at least 1 . Why? Before the nonsaturating push, $u$ was overflowing, and $v$ may or may not have been overflowing. By Lemma 26.13, $u$ is no longer overflowing after the push. In addition, unless $v$ is the source, it may or may not be overflowing after the push. Therefore, the potential function $\Phi$ has decreased by exactly $u . h$, and it has increased by either 0 or $v . h$. Since $u . h-v . h=1$, the net effect is that the potential function has decreased by at least 1 .

Thus, during the course of the algorithm, the total amount of increase in $\Phi$ is due to relabelings and saturated pushes, and Corollary 26.21 and Lemma 26.22 constrain the increase to be less than $(2|V|)\left(2|V|^{2}\right)+(2|V|)(2|V||E|)=$ $4|V|^{2}(|V|+|E|)$. Since $\Phi \geq 0$, the total amount of decrease, and therefore the total number of nonsaturating pushes, is less than $4|V|^{2}(|V|+|E|)$.

Having bounded the number of relabelings, saturating pushes, and nonsaturating push, we have set the stage for the following analysis of the GENERIC-PUSH-RELABEL procedure, and hence of any algorithm based on the push-relabel method.

## Theorem 26.24

During the execution of Generic-Push-Relabel on any flow network $G=$ $(V, E)$, the number of basic operations is $O\left(V^{2} E\right)$.

Proof Immediate from Corollary 26.21 and Lemmas 26.22 and 26.23.

Thus, the algorithm terminates after $O\left(V^{2} E\right)$ operations. All that remains is to give an efficient method for implementing each operation and for choosing an appropriate operation to execute.

## Corollary 26.25

There is an implementation of the generic push-relabel algorithm that runs in $O\left(V^{2} E\right)$ time on any flow network $G=(V, E)$.

Proof Exercise 26.4-2 asks you to show how to implement the generic algorithm with an overhead of $O(V)$ per relabel operation and $O(1)$ per push. It also asks you to design a data structure that allows you to pick an applicable operation in $O(1)$ time. The corollary then follows.

## Exercises

## 26.4-1

Prove that, after the procedure Initialize-Preflow $(G, s)$ terminates, we have s.e $\leq-\left|f^{*}\right|$, where $f^{*}$ is a maximum flow for $G$.

## 26.4-2

Show how to implement the generic push-relabel algorithm using $O(V)$ time per relabel operation, $O(1)$ time per push, and $O(1)$ time to select an applicable operation, for a total time of $O\left(V^{2} E\right)$.

## 26.4-3

Prove that the generic push-relabel algorithm spends a total of only $O(V E)$ time in performing all the $O\left(V^{2}\right)$ relabel operations.

## 26.4-4

Suppose that we have found a maximum flow in a flow network $G=(V, E)$ using a push-relabel algorithm. Give a fast algorithm to find a minimum cut in $G$.

## 26.4-5

Give an efficient push-relabel algorithm to find a maximum matching in a bipartite graph. Analyze your algorithm.

## 26.4-6

Suppose that all edge capacities in a flow network $G=(V, E)$ are in the set $\{1,2, \ldots, k\}$. Analyze the running time of the generic push-relabel algorithm in terms of $|V|,|E|$, and $k$. (Hint: How many times can each edge support a nonsaturating push before it becomes saturated?)

## 26.4-7

Show that we could change line 6 of Initialize-Preflow to

$$
6 \quad \text { s.h }=|G . V|-2
$$

without affecting the correctness or asymptotic performance of the generic pushrelabel algorithm.

## 26.4-8

Let $\delta_{f}(u, v)$ be the distance (number of edges) from $u$ to $v$ in the residual network $G_{f}$. Show that the Generic-Push-Relabel procedure maintains the properties that $u . h<|V|$ implies $u . h \leq \delta_{f}(u, t)$ and that $u . h \geq|V|$ implies $u . h-|V| \leq \delta_{f}(u, s)$.

## 26.4-9 *

As in the previous exercise, let $\delta_{f}(u, v)$ be the distance from $u$ to $v$ in the residual network $G_{f}$. Show how to modify the generic push-relabel algorithm to maintain the property that $u . h<|V|$ implies $u . h=\delta_{f}(u, t)$ and that $u . h \geq|V|$ implies $u . h-|V|=\delta_{f}(u, s)$. The total time that your implementation dedicates to maintaining this property should be $O(V E)$.

## 26.4-10

Show that the number of nonsaturating pushes executed by the GENERIC-PuSHReLABEL procedure on a flow network $G=(V, E)$ is at most $4|V|^{2}|E|$ for $|V| \geq 4$.

## ^ 26.5 The relabel-to-front algorithm

The push-relabel method allows us to apply the basic operations in any order at all. By choosing the order carefully and managing the network data structure efficiently, however, we can solve the maximum-flow problem faster than the $O\left(V^{2} E\right)$ bound given by Corollary 26.25 . We shall now examine the relabel-to-front algorithm, a push-relabel algorithm whose running time is $O\left(V^{3}\right)$, which is asymptotically at least as good as $O\left(V^{2} E\right)$, and even better for dense networks.

The relabel-to-front algorithm maintains a list of the vertices in the network. Beginning at the front, the algorithm scans the list, repeatedly selecting an overflowing vertex $u$ and then "discharging" it, that is, performing push and relabel operations until $u$ no longer has a positive excess. Whenever we relabel a vertex, we move it to the front of the list (hence the name "relabel-to-front") and the algorithm begins its scan anew.

The correctness and analysis of the relabel-to-front algorithm depend on the notion of "admissible" edges: those edges in the residual network through which flow can be pushed. After proving some properties about the network of admissible edges, we shall investigate the discharge operation and then present and analyze the relabel-to-front algorithm itself.

## Admissible edges and networks

If $G=(V, E)$ is a flow network with source $s$ and $\operatorname{sink} t, f$ is a preflow in $G$, and $h$ is a height function, then we say that $(u, v)$ is an admissible edge if $c_{f}(u, v)>0$ and $h(u)=h(v)+1$. Otherwise, $(u, v)$ is inadmissible. The admissible network is $G_{f, h}=\left(V, E_{f, h}\right)$, where $E_{f, h}$ is the set of admissible edges.

The admissible network consists of those edges through which we can push flow. The following lemma shows that this network is a directed acyclic graph (dag).

## Lemma 26.26 (The admissible network is acyclic)

If $G=(V, E)$ is a flow network, $f$ is a preflow in $G$, and $h$ is a height function on $G$, then the admissible network $G_{f, h}=\left(V, E_{f, h}\right)$ is acyclic.

Proof The proof is by contradiction. Suppose that $G_{f, h}$ contains a cycle $p=$ $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $\nu_{0}=v_{k}$ and $k>0$. Since each edge in $p$ is admissible, we have $h\left(v_{i-1}\right)=h\left(v_{i}\right)+1$ for $i=1,2, \ldots, k$. Summing around the cycle gives

$$
\begin{aligned}
\sum_{i=1}^{k} h\left(v_{i-1}\right) & =\sum_{i=1}^{k}\left(h\left(v_{i}\right)+1\right) \\
& =\sum_{i=1}^{k} h\left(v_{i}\right)+k
\end{aligned}
$$

Because each vertex in cycle $p$ appears once in each of the summations, we derive the contradiction that $0=k$.

The next two lemmas show how push and relabel operations change the admissible network.

## Lemma 26.27

Let $G=(V, E)$ be a flow network, let $f$ be a preflow in $G$, and suppose that the attribute $h$ is a height function. If a vertex $u$ is overflowing and $(u, v)$ is an admissible edge, then $\operatorname{PuSH}(u, v)$ applies. The operation does not create any new admissible edges, but it may cause $(u, v)$ to become inadmissible.

Proof By the definition of an admissible edge, we can push flow from $u$ to $v$. Since $u$ is overflowing, the operation $\operatorname{PUSH}(u, v)$ applies. The only new residual edge that pushing flow from $u$ to $v$ can create is $(v, u)$. Since $v . h=u . h-1$, edge $(\nu, u)$ cannot become admissible. If the operation is a saturating push, then $c_{f}(u, v)=0$ afterward and $(u, v)$ becomes inadmissible.

## Lemma 26.28

Let $G=(V, E)$ be a flow network, let $f$ be a preflow in $G$, and suppose that the attribute $h$ is a height function. If a vertex $u$ is overflowing and there are no admissible edges leaving $u$, then $\operatorname{Relabel}(u)$ applies. After the relabel operation, there is at least one admissible edge leaving $u$, but there are no admissible edges entering $u$.

Proof If $u$ is overflowing, then by Lemma 26.14, either a push or a relabel operation applies to it. If there are no admissible edges leaving $u$, then no flow can be pushed from $u$ and so $\operatorname{Relabel}(u)$ applies. After the relabel operation, $u . h=1+\min \left\{v . h:(u, v) \in E_{f}\right\}$. Thus, if $v$ is a vertex that realizes the minimum in this set, the edge $(u, v)$ becomes admissible. Hence, after the relabel, there is at least one admissible edge leaving $u$.

To show that no admissible edges enter $u$ after a relabel operation, suppose that there is a vertex $v$ such that $(v, u)$ is admissible. Then, $v . h=u . h+1$ after the relabel, and so $v . h>u . h+1$ just before the relabel. But by Lemma 26.12, no residual edges exist between vertices whose heights differ by more than 1 . Moreover, relabeling a vertex does not change the residual network. Thus, $(v, u)$ is not in the residual network, and hence it cannot be in the admissible network.

## Neighbor lists

Edges in the relabel-to-front algorithm are organized into "neighbor lists." Given a flow network $G=(V, E)$, the neighbor list $u . N$ for a vertex $u \in V$ is a singly linked list of the neighbors of $u$ in $G$. Thus, vertex $v$ appears in the list $u . N$ if $(u, v) \in E$ or $(v, u) \in E$. The neighbor list $u . N$ contains exactly those vertices $v$ for which there may be a residual edge $(u, v)$. The attribute $u . N$.head points to the first vertex in $u . N$, and $v$.next-neighbor points to the vertex following $v$ in a neighbor list; this pointer is NIL if $v$ is the last vertex in the neighbor list.

The relabel-to-front algorithm cycles through each neighbor list in an arbitrary order that is fixed throughout the execution of the algorithm. For each vertex $u$, the attribute $u$.current points to the vertex currently under consideration in $u . N$. Initially, u.current is set to $u$.N.head.

## Discharging an overflowing vertex

An overflowing vertex $u$ is discharged by pushing all of its excess flow through admissible edges to neighboring vertices, relabeling $u$ as necessary to cause edges leaving $u$ to become admissible. The pseudocode goes as follows.

Discharge $(u)$

```
while \(u . e>0\)
 \(v=\) u.current
 if \(v==\) NIL
 Relabel(u)
 u.current \(=\) u.N.head
 elseif \(c_{f}(u, v)>0\) and \(u . h==v . h+1\)
 \(\operatorname{Push}(u, v)\)
 else \(u\).current \(=v\). next-neighbor
```

Figure 26.9 steps through several iterations of the while loop of lines $1-8$, which executes as long as vertex $u$ has positive excess. Each iteration performs exactly one of three actions, depending on the current vertex $v$ in the neighbor list $u . N$.

1. If $v$ is NIL, then we have run off the end of $u$.N. Line 4 relabels vertex $u$, and then line 5 resets the current neighbor of $u$ to be the first one in $u . N$. (Lemma 26.29 below states that the relabel operation applies in this situation.)
2. If $v$ is non-NIL and $(u, v)$ is an admissible edge (determined by the test in line 6 ), then line 7 pushes some (or possibly all) of $u$ 's excess to vertex $\nu$.
3. If $v$ is non-NIL but $(u, v)$ is inadmissible, then line 8 advances $u$.current one position further in the neighbor list $u . N$.

Observe that if Discharge is called on an overflowing vertex $u$, then the last action performed by Discharge must be a push from $u$. Why? The procedure terminates only when u.e becomes zero, and neither the relabel operation nor advancing the pointer $u$.current affects the value of $u . e$.

We must be sure that when Push or Relabel is called by Discharge, the operation applies. The next lemma proves this fact.

## Lemma 26.29

If Discharge calls $\operatorname{PuSh}(u, v)$ in line 7 , then a push operation applies to $(u, v)$. If Discharge calls $\operatorname{Relabel}(u)$ in line 4 , then a relabel operation applies to $u$.

Proof The tests in lines 1 and 6 ensure that a push operation occurs only if the operation applies, which proves the first statement in the lemma.
(a)


| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $s$ | $s$ | $s$ | $s$ |
| $x$ | $x$ | $x$ | $x$ |
| $z$ | $z$ | $z$ | $z$ |


| 5 | 6 | 7 |
| :---: | :---: | :---: |
| $s$ | $s$ | $s$ |
| $x$ | $x$ | $x$ |
| $z$ | $z$ | $z$ |

(c)


Figure 26.9 Discharging a vertex $y$. It takes 15 iterations of the while loop of DISCHARGE to push all the excess flow from $y$. Only the neighbors of $y$ and edges of the flow network that enter or leave $y$ are shown. In each part of the figure, the number inside each vertex is its excess at the beginning of the first iteration shown in the part, and each vertex is shown at its height throughout the part. The neighbor list $y . N$ at the beginning of each iteration appears on the right, with the iteration number on top. The shaded neighbor is $y . c u r r e n t$. (a) Initially, there are 19 units of excess to push from $y$, and $y$.current $=s$. Iterations 1,2 , and 3 just advance $y$.current, since there are no admissible edges leaving $y$. In iteration 4, $y$.current $=$ NIL (shown by the shading being below the neighbor list), and so $y$ is relabeled and $y$.current is reset to the head of the neighbor list. (b) After relabeling, vertex $y$ has height 1 . In iterations 5 and 6 , edges $(y, s)$ and $(y, x)$ are found to be inadmissible, but iteration 7 pushes 8 units of excess flow from $y$ to $z$. Because of the push, $y$.current does not advance in this iteration. (c) Because the push in iteration 7 saturated edge $(y, z)$, it is found inadmissible in iteration 8. In iteration 9, $y$.current $=$ NIL, and so vertex $y$ is again relabeled and $y$.current is reset.
(d)

(e)


| 12 | 13 | 14 |
| :---: | :---: | :---: |
| $s$ | $s$ | $s$ |
| $x$ | $x$ | $x$ |
| $z$ | $z$ | $z$ |

(f)

$\frac{15}{s}$
$x$
$z$
(g)


Figure 26.9, continued (d) In iteration $10,(y, s)$ is inadmissible, but iteration 11 pushes 5 units of excess flow from $y$ to $x$. (e) Because $y$.current did not advance in iteration 11, iteration 12 finds $(y, x)$ to be inadmissible. Iteration 13 finds $(y, z)$ inadmissible, and iteration 14 relabels vertex $y$ and resets $y$.current. (f) Iteration 15 pushes 6 units of excess flow from $y$ to $s$. (g) Vertex $y$ now has no excess flow, and Discharge terminates. In this example, Discharge both starts and finishes with the current pointer at the head of the neighbor list, but in general this need not be the case.

To prove the second statement, according to the test in line 1 and Lemma 26.28, we need only show that all edges leaving $u$ are inadmissible. If a call to Discharge $(u)$ starts with the pointer $u . c u r r e n t$ at the head of $u$ 's neighbor list and finishes with it off the end of the list, then all of $u$ 's outgoing edges are inadmissible and a relabel operation applies. It is possible, however, that during a call to Discharge ( $u$ ), the pointer u.current traverses only part of the list before the procedure returns. Calls to Discharge on other vertices may then occur, but u.current will continue moving through the list during the next call to Discharge $(u)$. We now consider what happens during a complete pass through the list, which begins at the head of $u . N$ and finishes with $u$.current $=$ NIL. Once u.current reaches the end of the list, the procedure relabels $u$ and begins a new pass. For the $u$.current pointer to advance past a vertex $v \in u . N$ during a pass, the edge $(u, v)$ must be deemed inadmissible by the test in line 6 . Thus, by the time the pass completes, every edge leaving $u$ has been determined to be inadmissible at some time during the pass. The key observation is that at the end of the pass, every edge leaving $u$ is still inadmissible. Why? By Lemma 26.27, pushes cannot create any admissible edges, regardless of which vertex the flow is pushed from. Thus, any admissible edge must be created by a relabel operation. But the vertex $u$ is not relabeled during the pass, and by Lemma 26.28, any other vertex $v$ that is relabeled during the pass (resulting from a call of Discharge $(v)$ ) has no entering admissible edges after relabeling. Thus, at the end of the pass, all edges leaving $u$ remain inadmissible, which completes the proof.

## The relabel-to-front algorithm

In the relabel-to-front algorithm, we maintain a linked list $L$ consisting of all vertices in $V-\{s, t\}$. A key property is that the vertices in $L$ are topologically sorted according to the admissible network, as we shall see in the loop invariant that follows. (Recall from Lemma 26.26 that the admissible network is a dag.)

The pseudocode for the relabel-to-front algorithm assumes that the neighbor lists $u$. $N$ have already been created for each vertex $u$. It also assumes that $u$.next points to the vertex that follows $u$ in list $L$ and that, as usual, $u$.next $=$ NIL if $u$ is the last vertex in the list.

Relabel-To-Front ( $G, s, t$ )

```
Initialize-Preflow \((G, s)\)
\(L=G . V-\{s, t\}\), in any order
for each vertex \(u \in G . V-\{s, t\}\)
 u.current \(=\) u.N.head
\(u=\) L.head
while \(u \neq\) NIL
 old-height \(=u . h\)
 DISCHARGE (\(u\))
 if \(u . h>\) old-height
 move \(u\) to the front of list \(L\)
 \(u=u\). next
```

The relabel-to-front algorithm works as follows. Line 1 initializes the preflow and heights to the same values as in the generic push-relabel algorithm. Line 2 initializes the list $L$ to contain all potentially overflowing vertices, in any order. Lines 3-4 initialize the current pointer of each vertex $u$ to the first vertex in $u$ 's neighbor list.

As Figure 26.10 illustrates, the while loop of lines 6-11 runs through the list $L$, discharging vertices. Line 5 makes it start with the first vertex in the list. Each time through the loop, line 8 discharges a vertex $u$. If $u$ was relabeled by the Discharge procedure, line 10 moves it to the front of list $L$. We can determine whether $u$ was relabeled by comparing its height before the discharge operation, saved into the variable old-height in line 7, with its height afterward, in line 9. Line 11 makes the next iteration of the while loop use the vertex following $u$ in list $L$. If line 10 moved $u$ to the front of the list, the vertex used in the next iteration is the one following $u$ in its new position in the list.

To show that Relabel-To-Front computes a maximum flow, we shall show that it is an implementation of the generic push-relabel algorithm. First, observe that it performs push and relabel operations only when they apply, since Lemma 26.29 guarantees that DiSCHARGE performs them only when they apply. It remains to show that when Relabel-To-Front terminates, no basic operations apply. The remainder of the correctness argument relies on the following loop invariant:

At each test in line 6 of Relabel-To-Front, list $L$ is a topological sort of the vertices in the admissible network $G_{f, h}=\left(V, E_{f, h}\right)$, and no vertex before $u$ in the list has excess flow.

Initialization: Immediately after Initialize-Preflow has been run, s.h $=|V|$ and $v . h=0$ for all $v \in V-\{s\}$. Since $|V| \geq 2$ (because $V$ contains at
(a)

(b)

(c)


Figure 26.10 The action of Relabel-To-Front. (a) A flow network just before the first iteration of the while loop. Initially, 26 units of flow leave source $s$. On the right is shown the initial list $L=\langle x, y, z\rangle$, where initially $u=x$. Under each vertex in list $L$ is its neighbor list, with the current neighbor shaded. Vertex $x$ is discharged. It is relabeled to height 1,5 units of excess flow are pushed to $y$, and the 7 remaining units of excess are pushed to the sink $t$. Because $x$ is relabeled, it moves to the head of $L$, which in this case does not change the structure of $L$. (b) After $x$, the next vertex in $L$ that is discharged is $y$. Figure 26.9 shows the detailed action of discharging $y$ in this situation. Because $y$ is relabeled, it is moved to the head of $L$. (c) Vertex $x$ now follows $y$ in $L$, and so it is again discharged, pushing all 5 units of excess flow to $t$. Because vertex $x$ is not relabeled in this discharge operation, it remains in place in list $L$.
(d)


| $L:$ | $y$ | $x$ | $z$ |
| :---: | :---: | :---: | :---: |
| $N:$ | $s$ | $s$ | $x$ |
|  | $x$ | $y$ | $y$ |
|  | $z$ | $z$ | $t$ |
|  |  | $t$ |  |
|  |  |  |  |


(e)

Figure 26.10, continued (d) Since vertex $z$ follows vertex $x$ in $L$, it is discharged. It is relabeled to height 1 and all 8 units of excess flow are pushed to $t$. Because $z$ is relabeled, it moves to the front of $L$. (e) Vertex $y$ now follows vertex $z$ in $L$ and is therefore discharged. But because $y$ has no excess, DISCHARGE immediately returns, and $y$ remains in place in $L$. Vertex $x$ is then discharged. Because it, too, has no excess, Discharge again returns, and $x$ remains in place in $L$. Relabel-To-Front has reached the end of list $L$ and terminates. There are no overflowing vertices, and the preflow is a maximum flow.
least $s$ and $t$ ), no edge can be admissible. Thus, $E_{f, h}=\emptyset$, and any ordering of $V-\{s, t\}$ is a topological sort of $G_{f, h}$.
Because $u$ is initially the head of the list $L$, there are no vertices before it and so there are none before it with excess flow.

Maintenance: To see that each iteration of the while loop maintains the topological sort, we start by observing that the admissible network is changed only by push and relabel operations. By Lemma 26.27, push operations do not cause edges to become admissible. Thus, only relabel operations can create admissible edges. After a vertex $u$ is relabeled, however, Lemma 26.28 states that there are no admissible edges entering $u$ but there may be admissible edges leaving $u$. Thus, by moving $u$ to the front of $L$, the algorithm ensures that any admissible edges leaving $u$ satisfy the topological sort ordering.

To see that no vertex preceding $u$ in $L$ has excess flow, we denote the vertex that will be $u$ in the next iteration by $u^{\prime}$. The vertices that will precede $u^{\prime}$ in the next iteration include the current $u$ (due to line 11) and either no other vertices (if $u$ is relabeled) or the same vertices as before (if $u$ is not relabeled). When $u$ is discharged, it has no excess flow afterward. Thus, if $u$ is relabeled during the discharge, no vertices preceding $u^{\prime}$ have excess flow. If $u$ is not relabeled during the discharge, no vertices before it on the list acquired excess flow during this discharge, because $L$ remained topologically sorted at all times during the discharge (as just pointed out, admissible edges are created only by relabeling, not pushing), and so each push operation causes excess flow to move only to vertices further down the list (or to $s$ or $t$ ). Again, no vertices preceding $u^{\prime}$ have excess flow.

Termination: When the loop terminates, $u$ is just past the end of $L$, and so the loop invariant ensures that the excess of every vertex is 0 . Thus, no basic operations apply.

## Analysis

We shall now show that Relabel-To-Front runs in $O\left(V^{3}\right)$ time on any flow network $G=(V, E)$. Since the algorithm is an implementation of the generic push-relabel algorithm, we shall take advantage of Corollary 26.21, which provides an $O(V)$ bound on the number of relabel operations executed per vertex and an $O\left(V^{2}\right)$ bound on the total number of relabel operations overall. In addition, Exercise 26.4-3 provides an $O(V E)$ bound on the total time spent performing relabel operations, and Lemma 26.22 provides an $O(V E)$ bound on the total number of saturating push operations.

## Theorem 26.30

The running time of Relabel-To-Front on any flow network $G=(V, E)$ is $O\left(V^{3}\right)$.

Proof Let us consider a "phase" of the relabel-to-front algorithm to be the time between two consecutive relabel operations. There are $O\left(V^{2}\right)$ phases, since there are $O\left(V^{2}\right)$ relabel operations. Each phase consists of at most $|V|$ calls to DisCHARGE, which we can see as follows. If Discharge does not perform a relabel operation, then the next call to Discharge is further down the list $L$, and the length of $L$ is less than $|V|$. If Discharge does perform a relabel, the next call to Discharge belongs to a different phase. Since each phase contains at most $|V|$ calls to Discharge and there are $O\left(V^{2}\right)$ phases, the number of times Discharge is called in line 8 of Relabel-To-Front is $O\left(V^{3}\right)$. Thus, the total
work performed by the while loop in Relabel-To-Front, excluding the work performed within DIScharge, is at most $O\left(V^{3}\right)$.

We must now bound the work performed within Discharge during the execution of the algorithm. Each iteration of the while loop within Discharge performs one of three actions. We shall analyze the total amount of work involved in performing each of these actions.

We start with relabel operations (lines 4-5). Exercise 26.4-3 provides an $O(V E)$ time bound on all the $O\left(V^{2}\right)$ relabels that are performed.

Now, suppose that the action updates the $u$.current pointer in line 8 . This action occurs $O($ degree $(u))$ times each time a vertex $u$ is relabeled, and $O(V \cdot$ degree $(u))$ times overall for the vertex. For all vertices, therefore, the total amount of work done in advancing pointers in neighbor lists is $O(V E)$ by the handshaking lemma (Exercise B.4-1).

The third type of action performed by Discharge is a push operation (line 7). We already know that the total number of saturating push operations is $O(V E)$. Observe that if a nonsaturating push is executed, DISCHARGE immediately returns, since the push reduces the excess to 0 . Thus, there can be at most one nonsaturating push per call to Discharge. As we have observed, Discharge is called $O\left(V^{3}\right)$ times, and thus the total time spent performing nonsaturating pushes is $O\left(V^{3}\right)$.

The running time of Relabel-To-Front is therefore $O\left(V^{3}+V E\right)$, which is $O\left(V^{3}\right)$.

## Exercises

## 26.5-1

Illustrate the execution of Relabel-To-Front in the manner of Figure 26.10 for the flow network in Figure 26.1(a). Assume that the initial ordering of vertices in $L$ is $\left\langle v_{1}, \nu_{2}, v_{3}, v_{4}\right\rangle$ and that the neighbor lists are
$\nu_{1} \cdot N=\left\langle s, \nu_{2}, \nu_{3}\right\rangle$,
$\nu_{2} . N=\left\langle s, \nu_{1}, \nu_{3}, \nu_{4}\right\rangle$,
$\nu_{3} \cdot N=\left\langle\nu_{1}, \nu_{2}, \nu_{4}, t\right\rangle$,
$\nu_{4} \cdot N=\left\langle\nu_{2}, \nu_{3}, t\right\rangle$.

## 26.5-2

We would like to implement a push-relabel algorithm in which we maintain a firstin, first-out queue of overflowing vertices. The algorithm repeatedly discharges the vertex at the head of the queue, and any vertices that were not overflowing before the discharge but are overflowing afterward are placed at the end of the queue. After the vertex at the head of the queue is discharged, it is removed. When the
queue is empty, the algorithm terminates. Show how to implement this algorithm to compute a maximum flow in $O\left(V^{3}\right)$ time.

## 26.5-3

Show that the generic algorithm still works if Relabel updates u.h by simply computing $u . h=u . h+1$. How would this change affect the analysis of Relabel-To-Front?

## 26.5-4 *

Show that if we always discharge a highest overflowing vertex, we can make the push-relabel method run in $O\left(V^{3}\right)$ time.

## 26.5-5

Suppose that at some point in the execution of a push-relabel algorithm, there exists an integer $0<k \leq|V|-1$ for which no vertex has $v . h=k$. Show that all vertices with $v . h>k$ are on the source side of a minimum cut. If such a $k$ exists, the gap heuristic updates every vertex $v \in V-\{s\}$ for which $v . h>k$, to set $v . h=\max (v . h,|V|+1)$. Show that the resulting attribute $h$ is a height function. (The gap heuristic is crucial in making implementations of the push-relabel method perform well in practice.)

## Problems

## 26-1 Escape problem

An $n \times n$ grid is an undirected graph consisting of $n$ rows and $n$ columns of vertices, as shown in Figure 26.11. We denote the vertex in the $i$ th row and the $j$ th column by $(i, j)$. All vertices in a grid have exactly four neighbors, except for the boundary vertices, which are the points $(i, j)$ for which $i=1, i=n, j=1$, or $j=n$.

Given $m \leq n^{2}$ starting points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$ in the grid, the escape problem is to determine whether or not there are $m$ vertex-disjoint paths from the starting points to any $m$ different points on the boundary. For example, the grid in Figure 26.11(a) has an escape, but the grid in Figure 26.11(b) does not.
a. Consider a flow network in which vertices, as well as edges, have capacities. That is, the total positive flow entering any given vertex is subject to a capacity constraint. Show that determining the maximum flow in a network with edge and vertex capacities can be reduced to an ordinary maximum-flow problem on a flow network of comparable size.


Figure 26.11 Grids for the escape problem. Starting points are black, and other grid vertices are white. (a) A grid with an escape, shown by shaded paths. (b) A grid with no escape.
b. Describe an efficient algorithm to solve the escape problem, and analyze its running time.

## 26-2 Minimum path cover

A path cover of a directed graph $G=(V, E)$ is a set $P$ of vertex-disjoint paths such that every vertex in $V$ is included in exactly one path in $P$. Paths may start and end anywhere, and they may be of any length, including 0 . A minimum path cover of $G$ is a path cover containing the fewest possible paths.
a. Give an efficient algorithm to find a minimum path cover of a directed acyclic graph $G=(V, E)$. (Hint: Assuming that $V=\{1,2, \ldots, n\}$, construct the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where

$$
\begin{aligned}
& V^{\prime}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{0}, y_{1}, \ldots, y_{n}\right\} \\
& E^{\prime}=\left\{\left(x_{0}, x_{i}\right): i \in V\right\} \cup\left\{\left(y_{i}, y_{0}\right): i \in V\right\} \cup\left\{\left(x_{i}, y_{j}\right):(i, j) \in E\right\},
\end{aligned}
$$

and run a maximum-flow algorithm.)
b. Does your algorithm work for directed graphs that contain cycles? Explain.

## 26-3 Algorithmic consulting

Professor Gore wants to open up an algorithmic consulting company. He has identified $n$ important subareas of algorithms (roughly corresponding to different portions of this textbook), which he represents by the set $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. In each subarea $A_{k}$, he can hire an expert in that area for $c_{k}$ dollars. The consulting company has lined up a set $J=\left\{J_{1}, J_{2}, \ldots, J_{m}\right\}$ of potential jobs. In order to perform job $J_{i}$, the company needs to have hired experts in a subset $R_{i} \subseteq A$ of
subareas. Each expert can work on multiple jobs simultaneously. If the company chooses to accept job $J_{i}$, it must have hired experts in all subareas in $R_{i}$, and it will take in revenue of $p_{i}$ dollars.

Professor Gore's job is to determine which subareas to hire experts in and which jobs to accept in order to maximize the net revenue, which is the total income from jobs accepted minus the total cost of employing the experts.

Consider the following flow network $G$. It contains a source vertex $s$, vertices $A_{1}, A_{2}, \ldots, A_{n}$, vertices $J_{1}, J_{2}, \ldots, J_{m}$, and a sink vertex $t$. For $k=1,2 \ldots, n$, the flow network contains an edge $\left(s, A_{k}\right)$ with capacity $c\left(s, A_{k}\right)=c_{k}$, and for $i=1,2, \ldots, m$, the flow network contains an edge ( $J_{i}, t$ ) with capacity $c\left(J_{i}, t\right)=p_{i}$. For $k=1,2, \ldots, n$ and $i=1,2, \ldots, m$, if $A_{k} \in R_{i}$, then $G$ contains an edge $\left(A_{k}, J_{i}\right)$ with capacity $c\left(A_{k}, J_{i}\right)=\infty$.
a. Show that if $J_{i} \in T$ for a finite-capacity cut $(S, T)$ of $G$, then $A_{k} \in T$ for each $A_{k} \in R_{i}$.
b. Show how to determine the maximum net revenue from the capacity of a minimum cut of $G$ and the given $p_{i}$ values.
c. Give an efficient algorithm to determine which jobs to accept and which experts to hire. Analyze the running time of your algorithm in terms of $m, n$, and $r=\sum_{i=1}^{m}\left|R_{i}\right|$.

## 26-4 Updating maximum flow

Let $G=(V, E)$ be a flow network with source $s$, $\operatorname{sink} t$, and integer capacities. Suppose that we are given a maximum flow in $G$.
a. Suppose that we increase the capacity of a single edge $(u, v) \in E$ by 1 . Give an $O(V+E)$-time algorithm to update the maximum flow.
b. Suppose that we decrease the capacity of a single edge $(u, v) \in E$ by 1 . Give an $O(V+E)$-time algorithm to update the maximum flow.

## 26-5 Maximum flow by scaling

Let $G=(V, E)$ be a flow network with source $s, \operatorname{sink} t$, and an integer capacity $c(u, v)$ on each edge $(u, v) \in E$. Let $C=\max _{(u, v) \in E} c(u, v)$.
a. Argue that a minimum cut of $G$ has capacity at most $C|E|$.
b. For a given number $K$, show how to find an augmenting path of capacity at least $K$ in $O(E)$ time, if such a path exists.

We can use the following modification of Ford-Fulkerson-Method to compute a maximum flow in $G$ :

Max-Flow-By-Scaling $(G, s, t)$

```
\(C=\max _{(u, v) \in E} c(u, v)\)
initialize flow \(f\) to 0
\(K=2^{\lfloor\lg C\rfloor}\)
while \(K \geq 1\)
 while there exists an augmenting path \(p\) of capacity at least \(K\)
 augment flow \(f\) along \(p\)
 \(K=K / 2\)
return \(f\)
```

c. Argue that MAX-FLOW-BY-SCALING returns a maximum flow.
d. Show that the capacity of a minimum cut of the residual network $G_{f}$ is at most $2 K|E|$ each time line 4 is executed.
e. Argue that the inner while loop of lines 5-6 executes $O(E)$ times for each value of $K$.
f. Conclude that Max-Flow-By-Scaling can be implemented so that it runs in $O\left(E^{2} \lg C\right)$ time.

## 26-6 The Hopcroft-Karp bipartite matching algorithm

In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for finding a maximum matching in a bipartite graph. The algorithm runs in $O(\sqrt{V} E)$ time. Given an undirected, bipartite graph $G=(V, E)$, where $V=L \cup R$ and all edges have exactly one endpoint in $L$, let $M$ be a matching in $G$. We say that a simple path $P$ in $G$ is angmenting path with respect to $M$ if it starts at an unmatched vertex in $L$, ends at an unmatched vertex in $R$, and its edges belong alternately to $M$ and $E-M$. (This definition of an augmenting path is related to, but different from, an augmenting path in a flow network.) In this problem, we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest augmenting path with respect to a matching $M$ is an augmenting path with a minimum number of edges.

Given two sets $A$ and $B$, the symmetric difference $A \oplus B$ is defined as $(A-B) \cup$ ( $B-A$ ), that is, the elements that are in exactly one of the two sets.
a. Show that if $M$ is a matching and $P$ is an augmenting path with respect to $M$, then the symmetric difference $M \oplus P$ is a matching and $|M \oplus P|=|M|+1$. Show that if $P_{1}, P_{2}, \ldots, P_{k}$ are vertex-disjoint augmenting paths with respect to $M$, then the symmetric difference $M \oplus\left(P_{1} \cup P_{2} \cup \cdots \cup P_{k}\right)$ is a matching with cardinality $|M|+k$.

The general structure of our algorithm is the following:
Hopcroft- $\operatorname{Karp}(G)$

```
\(M=\emptyset\)
repeat
 let \(\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}\) be a maximal set of vertex-disjoint
 shortest augmenting paths with respect to \(M\)
 \(M=M \oplus\left(P_{1} \cup P_{2} \cup \cdots \cup P_{k}\right)\)
until \(\mathcal{P}==\emptyset\)
return \(M\)
```

The remainder of this problem asks you to analyze the number of iterations in the algorithm (that is, the number of iterations in the repeat loop) and to describe an implementation of line 3 .
b. Given two matchings $M$ and $M^{*}$ in $G$, show that every vertex in the graph $G^{\prime}=\left(V, M \oplus M^{*}\right)$ has degree at most 2. Conclude that $G^{\prime}$ is a disjoint union of simple paths or cycles. Argue that edges in each such simple path or cycle belong alternately to $M$ or $M^{*}$. Prove that if $|M| \leq\left|M^{*}\right|$, then $M \oplus M^{*}$ contains at least $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths with respect to $M$.

Let $l$ be the length of a shortest augmenting path with respect to a matching $M$, and let $P_{1}, P_{2}, \ldots, P_{k}$ be a maximal set of vertex-disjoint augmenting paths of length $l$ with respect to $M$. Let $M^{\prime}=M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)$, and suppose that $P$ is a shortest augmenting path with respect to $M^{\prime}$.
c. Show that if $P$ is vertex-disjoint from $P_{1}, P_{2}, \ldots, P_{k}$, then $P$ has more than $l$ edges.
d. Now suppose that $P$ is not vertex-disjoint from $P_{1}, P_{2}, \ldots, P_{k}$. Let $A$ be the set of edges $\left(M \oplus M^{\prime}\right) \oplus P$. Show that $A=\left(P_{1} \cup P_{2} \cup \cdots \cup P_{k}\right) \oplus P$ and that $|A| \geq(k+1) l$. Conclude that $P$ has more than $l$ edges.
$\boldsymbol{e}$. Prove that if a shortest augmenting path with respect to $M$ has $l$ edges, the size of the maximum matching is at most $|M|+|V| /(l+1)$.
$f$. Show that the number of repeat loop iterations in the algorithm is at most $2 \sqrt{|V|}$. (Hint: By how much can $M$ grow after iteration number $\sqrt{|V|}$ ?)
g. Give an algorithm that runs in $O(E)$ time to find a maximal set of vertexdisjoint shortest augmenting paths $P_{1}, P_{2}, \ldots, P_{k}$ for a given matching $M$. Conclude that the total running time of HOPCROFT-KARP is $O(\sqrt{V} E)$.

## Chapter notes

Ahuja, Magnanti, and Orlin [7], Even [103], Lawler [224], Papadimitriou and Steiglitz [271], and Tarjan [330] are good references for network flow and related algorithms. Goldberg, Tardos, and Tarjan [139] also provide a nice survey of algorithms for network-flow problems, and Schrijver [304] has written an interesting review of historical developments in the field of network flows.

The Ford-Fulkerson method is due to Ford and Fulkerson [109], who originated the formal study of many of the problems in the area of network flow, including the maximum-flow and bipartite-matching problems. Many early implementations of the Ford-Fulkerson method found augmenting paths using breadth-first search; Edmonds and Karp [102], and independently Dinic [89], proved that this strategy yields a polynomial-time algorithm. A related idea, that of using "blocking flows," was also first developed by Dinic [89]. Karzanov [202] first developed the idea of preflows. The push-relabel method is due to Goldberg [136] and Goldberg and Tarjan [140]. Goldberg and Tarjan gave an $O\left(V^{3}\right)$-time algorithm that uses a queue to maintain the set of overflowing vertices, as well as an algorithm that uses dynamic trees to achieve a running time of $O\left(V E \lg \left(V^{2} / E+2\right)\right)$. Several other researchers have developed push-relabel maximum-flow algorithms. Ahuja and Orlin [9] and Ahuja, Orlin, and Tarjan [10] gave algorithms that used scaling. Cheriyan and Maheshwari [62] proposed pushing flow from the overflowing vertex of maximum height. Cheriyan and Hagerup [61] suggested randomly permuting the neighbor lists, and several researchers [14, 204, 276] developed clever derandomizations of this idea, leading to a sequence of faster algorithms. The algorithm of King, Rao, and Tarjan [204] is the fastest such algorithm and runs in $O\left(V E \log _{E /(V \lg V)} V\right)$ time.

The asymptotically fastest algorithm to date for the maximum-flow problem, by Goldberg and Rao [138], runs in time $O\left(\min \left(V^{2 / 3}, E^{1 / 2}\right) E \lg \left(V^{2} / E+2\right) \lg C\right)$, where $C=\max _{(u, v) \in E} c(u, v)$. This algorithm does not use the push-relabel method but instead is based on finding blocking flows. All previous maximumflow algorithms, including the ones in this chapter, use some notion of distance (the push-relabel algorithms use the analogous notion of height), with a length of 1
assigned implicitly to each edge. This new algorithm takes a different approach and assigns a length of 0 to high-capacity edges and a length of 1 to low-capacity edges. Informally, with respect to these lengths, shortest paths from the source to the sink tend have high capacity, which means that fewer iterations need be performed.

In practice, push-relabel algorithms currently dominate augmenting-path or linear-programming based algorithms for the maximum-flow problem. A study by Cherkassky and Goldberg [63] underscores the importance of using two heuristics when implementing a push-relabel algorithm. The first heuristic is to periodically perform a breadth-first search of the residual network in order to obtain more accurate height values. The second heuristic is the gap heuristic, described in Exercise 26.5-5. Cherkassky and Goldberg conclude that the best choice of pushrelabel variants is the one that chooses to discharge the overflowing vertex with the maximum height.

The best algorithm to date for maximum bipartite matching, discovered by Hopcroft and Karp [176], runs in $O(\sqrt{V} E)$ time and is described in Problem 26-6. The book by Lovász and Plummer [239] is an excellent reference on matching problems.

## 30 Polynomials and the FFT

The straightforward method of adding two polynomials of degree $n$ takes $\Theta(n)$ time, but the straightforward method of multiplying them takes $\Theta\left(n^{2}\right)$ time. In this chapter, we shall show how the fast Fourier transform, or FFT, can reduce the time to multiply polynomials to $\Theta(n \lg n)$.

The most common use for Fourier transforms, and hence the FFT, is in signal processing. A signal is given in the time domain: as a function mapping time to amplitude. Fourier analysis allows us to express the signal as a weighted sum of phase-shifted sinusoids of varying frequencies. The weights and phases associated with the frequencies characterize the signal in the frequency domain. Among the many everyday applications of FFT's are compression techniques used to encode digital video and audio information, including MP3 files. Several fine books delve into the rich area of signal processing; the chapter notes reference a few of them.

## Polynomials

A polynomial in the variable $x$ over an algebraic field $F$ represents a function $A(x)$ as a formal sum:
$A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$.
We call the values $a_{0}, a_{1}, \ldots, a_{n-1}$ the coefficients of the polynomial. The coefficients are drawn from a field $F$, typically the set $\mathbb{C}$ of complex numbers. A polynomial $A(x)$ has degree $k$ if its highest nonzero coefficient is $a_{k}$; we write that $\operatorname{degree}(A)=k$. Any integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial. Therefore, the degree of a polynomial of degree-bound $n$ may be any integer between 0 and $n-1$, inclusive.

We can define a variety of operations on polynomials. For polynomial addition, if $A(x)$ and $B(x)$ are polynomials of degree-bound $n$, their sum is a polyno-
mial $C(x)$, also of degree-bound $n$, such that $C(x)=A(x)+B(x)$ for all $x$ in the underlying field. That is, if
$A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$
and
$B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$,
then
$C(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$,
where $c_{j}=a_{j}+b_{j}$ for $j=0,1, \ldots, n-1$. For example, if we have the polynomials $A(x)=6 x^{3}+7 x^{2}-10 x+9$ and $B(x)=-2 x^{3}+4 x-5$, then $C(x)=4 x^{3}+7 x^{2}-6 x+4$.

For polynomial multiplication, if $A(x)$ and $B(x)$ are polynomials of degreebound $n$, their product $C(x)$ is a polynomial of degree-bound $2 n-1$ such that $C(x)=A(x) B(x)$ for all $x$ in the underlying field. You probably have multiplied polynomials before, by multiplying each term in $A(x)$ by each term in $B(x)$ and then combining terms with equal powers. For example, we can multiply $A(x)=6 x^{3}+7 x^{2}-10 x+9$ and $B(x)=-2 x^{3}+4 x-5$ as follows:

$$
\begin{array}{r}
6 x^{3}+7 x^{2}-10 x+9 \\
-2 x^{3}+4 x-5 \\
\hline-30 x^{3}-35 x^{2}+50 x-45 \\
24 x^{4}+28 x^{3}-40 x^{2}+36 x \\
-12 x^{6}-14 x^{5}+20 x^{4}-18 x^{3} \\
\hline-12 x^{6}-14 x^{5}+44 x^{4}-20 x^{3}-75 x^{2}+86 x-45
\end{array}
$$

Another way to express the product $C(x)$ is
$C(x)=\sum_{j=0}^{2 n-2} c_{j} x^{j}$,
where
$c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$.

Note that degree $(C)=\operatorname{degree}(A)+\operatorname{degree}(B)$, implying that if $A$ is a polynomial of degree-bound $n_{a}$ and $B$ is a polynomial of degree-bound $n_{b}$, then $C$ is a polynomial of degree-bound $n_{a}+n_{b}-1$. Since a polynomial of degree-bound $k$ is also a polynomial of degree-bound $k+1$, we will normally say that the product polynomial $C$ is a polynomial of degree-bound $n_{a}+n_{b}$.

## Chapter outline

Section 30.1 presents two ways to represent polynomials: the coefficient representation and the point-value representation. The straightforward methods for multiplying polynomials-equations (30.1) and (30.2)-take $\Theta\left(n^{2}\right)$ time when we represent polynomials in coefficient form, but only $\Theta(n)$ time when we represent them in point-value form. We can, however, multiply polynomials using the coefficient representation in only $\Theta(n \lg n)$ time by converting between the two representations. To see why this approach works, we must first study complex roots of unity, which we do in Section 30.2. Then, we use the FFT and its inverse, also described in Section 30.2, to perform the conversions. Section 30.3 shows how to implement the FFT quickly in both serial and parallel models.

This chapter uses complex numbers extensively, and within this chapter we use the symbol $i$ exclusively to denote $\sqrt{-1}$.

### 30.1 Representing polynomials

The coefficient and point-value representations of polynomials are in a sense equivalent; that is, a polynomial in point-value form has a unique counterpart in coefficient form. In this section, we introduce the two representations and show how to combine them so that we can multiply two degree-bound $n$ polynomials in $\Theta(n \lg n)$ time.

## Coefficient representation

A coefficient representation of a polynomial $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ of degreebound $n$ is a vector of coefficients $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. In matrix equations in this chapter, we shall generally treat vectors as column vectors.

The coefficient representation is convenient for certain operations on polynomials. For example, the operation of evaluating the polynomial $A(x)$ at a given point $x_{0}$ consists of computing the value of $A\left(x_{0}\right)$. We can evaluate a polynomial in $\Theta(n)$ time using Horner's rule:
$A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-2}+x_{0}\left(a_{n-1}\right)\right) \cdots\right)\right)$.

Similarly, adding two polynomials represented by the coefficient vectors $a=$ $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ takes $\Theta(n)$ time: we just produce the coefficient vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where $c_{j}=a_{j}+b_{j}$ for $j=$ $0,1, \ldots, n-1$.

Now, consider multiplying two degree-bound $n$ polynomials $A(x)$ and $B(x)$ represented in coefficient form. If we use the method described by equations (30.1) and (30.2), multiplying polynomials takes time $\Theta\left(n^{2}\right)$, since we must multiply each coefficient in the vector $a$ by each coefficient in the vector $b$. The operation of multiplying polynomials in coefficient form seems to be considerably more difficult than that of evaluating a polynomial or adding two polynomials. The resulting coefficient vector $c$, given by equation (30.2), is also called the convolution of the input vectors $a$ and $b$, denoted $c=a \otimes b$. Since multiplying polynomials and computing convolutions are fundamental computational problems of considerable practical importance, this chapter concentrates on efficient algorithms for them.

## Point-value representation

A point-value representation of a polynomial $A(x)$ of degree-bound $n$ is a set of n point-value pairs
$\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$
such that all of the $x_{k}$ are distinct and
$y_{k}=A\left(x_{k}\right)$
for $k=0,1, \ldots, n-1$. A polynomial has many different point-value representations, since we can use any set of $n$ distinct points $x_{0}, x_{1}, \ldots, x_{n-1}$ as a basis for the representation.

Computing a point-value representation for a polynomial given in coefficient form is in principle straightforward, since all we have to do is select $n$ distinct points $x_{0}, x_{1}, \ldots, x_{n-1}$ and then evaluate $A\left(x_{k}\right)$ for $k=0,1, \ldots, n-1$. With Horner's method, evaluating a polynomial at $n$ points takes time $\Theta\left(n^{2}\right)$. We shall see later that if we choose the points $x_{k}$ cleverly, we can accelerate this computation to run in time $\Theta(n \lg n)$.

The inverse of evaluation-determining the coefficient form of a polynomial from a point-value representation-is interpolation. The following theorem shows that interpolation is well defined when the desired interpolating polynomial must have a degree-bound equal to the given number of point-value pairs.

## Theorem 30.1 (Uniqueness of an interpolating polynomial)

For any set $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ of $n$ point-value pairs such that all the $x_{k}$ values are distinct, there is a unique polynomial $A(x)$ of degree-bound $n$ such that $y_{k}=A\left(x_{k}\right)$ for $k=0,1, \ldots, n-1$.

Proof The proof relies on the existence of the inverse of a certain matrix. Equation (30.3) is equivalent to the matrix equation
$\left(\begin{array}{ccccc}1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\ 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}\end{array}\right)\left(\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right)=\left(\begin{array}{c}y_{0} \\ y_{1} \\ \vdots \\ y_{n-1}\end{array}\right)$.
The matrix on the left is denoted $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and is known as a Vandermonde matrix. By Problem D-1, this matrix has determinant
$\prod_{0 \leq j<k \leq n-1}\left(x_{k}-x_{j}\right)$,
and therefore, by Theorem D.5, it is invertible (that is, nonsingular) if the $x_{k}$ are distinct. Thus, we can solve for the coefficients $a_{j}$ uniquely given the point-value representation:
$a=V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{-1} y$.
The proof of Theorem 30.1 describes an algorithm for interpolation based on solving the set (30.4) of linear equations. Using the LU decomposition algorithms of Chapter 28, we can solve these equations in time $O\left(n^{3}\right)$.

A faster algorithm for $n$-point interpolation is based on Lagrange's formula:
$A(x)=\sum_{k=0}^{n-1} y_{k} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}$.
You may wish to verify that the right-hand side of equation (30.5) is a polynomial of degree-bound $n$ that satisfies $A\left(x_{k}\right)=y_{k}$ for all $k$. Exercise 30.1-5 asks you how to compute the coefficients of $A$ using Lagrange's formula in time $\Theta\left(n^{2}\right)$.

Thus, $n$-point evaluation and interpolation are well-defined inverse operations that transform between the coefficient representation of a polynomial and a pointvalue representation. ${ }^{1}$ The algorithms described above for these problems take time $\Theta\left(n^{2}\right)$.

The point-value representation is quite convenient for many operations on polynomials. For addition, if $C(x)=A(x)+B(x)$, then $C\left(x_{k}\right)=A\left(x_{k}\right)+B\left(x_{k}\right)$ for any point $x_{k}$. More precisely, if we have a point-value representation for $A$,

[^8]$\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$,
and for $B$,
$\left\{\left(x_{0}, y_{0}^{\prime}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{n-1}^{\prime}\right)\right\}$
(note that $A$ and $B$ are evaluated at the same $n$ points), then a point-value representation for $C$ is
$\left\{\left(x_{0}, y_{0}+y_{0}^{\prime}\right),\left(x_{1}, y_{1}+y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{n-1}+y_{n-1}^{\prime}\right)\right\}$.
Thus, the time to add two polynomials of degree-bound $n$ in point-value form is $\Theta(n)$.

Similarly, the point-value representation is convenient for multiplying polynomials. If $C(x)=A(x) B(x)$, then $C\left(x_{k}\right)=A\left(x_{k}\right) B\left(x_{k}\right)$ for any point $x_{k}$, and we can pointwise multiply a point-value representation for $A$ by a point-value representation for $B$ to obtain a point-value representation for $C$. We must face the problem, however, that degree $(C)=\operatorname{degree}(A)+\operatorname{degree}(B)$; if $A$ and $B$ are of degree-bound $n$, then $C$ is of degree-bound $2 n$. A standard point-value representation for $A$ and $B$ consists of $n$ point-value pairs for each polynomial. When we multiply these together, we get $n$ point-value pairs, but we need $2 n$ pairs to interpolate a unique polynomial $C$ of degree-bound $2 n$. (See Exercise 30.1-4.) We must therefore begin with "extended" point-value representations for $A$ and for $B$ consisting of $2 n$ point-value pairs each. Given an extended point-value representation for $A$,
$\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}\right)\right\}$,
and a corresponding extended point-value representation for $B$,
$\left\{\left(x_{0}, y_{0}^{\prime}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{\prime}\right)\right\}$,
then a point-value representation for $C$ is
$\left\{\left(x_{0}, y_{0} y_{0}^{\prime}\right),\left(x_{1}, y_{1} y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1} y_{2 n-1}^{\prime}\right)\right\}$.
Given two input polynomials in extended point-value form, we see that the time to multiply them to obtain the point-value form of the result is $\Theta(n)$, much less than the time required to multiply polynomials in coefficient form.

Finally, we consider how to evaluate a polynomial given in point-value form at a new point. For this problem, we know of no simpler approach than converting the polynomial to coefficient form first, and then evaluating it at the new point.

## Fast multiplication of polynomials in coefficient form

Can we use the linear-time multiplication method for polynomials in point-value form to expedite polynomial multiplication in coefficient form? The answer hinges


Figure 30.1 A graphical outline of an efficient polynomial-multiplication process. Representations on the top are in coefficient form, while those on the bottom are in point-value form. The arrows from left to right correspond to the multiplication operation. The $\omega_{2 n}$ terms are complex (2n)th roots of unity.
on whether we can convert a polynomial quickly from coefficient form to pointvalue form (evaluate) and vice versa (interpolate).

We can use any points we want as evaluation points, but by choosing the evaluation points carefully, we can convert between representations in only $\Theta(n \lg n)$ time. As we shall see in Section 30.2, if we choose "complex roots of unity" as the evaluation points, we can produce a point-value representation by taking the discrete Fourier transform (or DFT) of a coefficient vector. We can perform the inverse operation, interpolation, by taking the "inverse DFT" of point-value pairs, yielding a coefficient vector. Section 30.2 will show how the FFT accomplishes the DFT and inverse DFT operations in $\Theta(n \lg n)$ time.

Figure 30.1 shows this strategy graphically. One minor detail concerns degreebounds. The product of two polynomials of degree-bound $n$ is a polynomial of degree-bound $2 n$. Before evaluating the input polynomials $A$ and $B$, therefore, we first double their degree-bounds to $2 n$ by adding $n$ high-order coefficients of 0 . Because the vectors have $2 n$ elements, we use "complex ( $2 n$ )th roots of unity," which are denoted by the $\omega_{2 n}$ terms in Figure 30.1.

Given the FFT, we have the following $\Theta(n \lg n)$-time procedure for multiplying two polynomials $A(x)$ and $B(x)$ of degree-bound $n$, where the input and output representations are in coefficient form. We assume that $n$ is a power of 2 ; we can always meet this requirement by adding high-order zero coefficients.

1. Double degree-bound: Create coefficient representations of $A(x)$ and $B(x)$ as degree-bound $2 n$ polynomials by adding $n$ high-order zero coefficients to each.
2. Evaluate: Compute point-value representations of $A(x)$ and $B(x)$ of length $2 n$ by applying the FFT of order $2 n$ on each polynomial. These representations contain the values of the two polynomials at the $(2 n)$ th roots of unity.
3. Pointwise multiply: Compute a point-value representation for the polynomial $C(x)=A(x) B(x)$ by multiplying these values together pointwise. This representation contains the value of $C(x)$ at each (2n)th root of unity.
4. Interpolate: Create the coefficient representation of the polynomial $C(x)$ by applying the FFT on $2 n$ point-value pairs to compute the inverse DFT.

Steps (1) and (3) take time $\Theta(n)$, and steps (2) and (4) take time $\Theta(n \lg n)$. Thus, once we show how to use the FFT, we will have proven the following.

## Theorem 30.2

We can multiply two polynomials of degree-bound $n$ in time $\Theta(n \lg n)$, with both the input and output representations in coefficient form.

## Exercises

## 30.1-1

Multiply the polynomials $A(x)=7 x^{3}-x^{2}+x-10$ and $B(x)=8 x^{3}-6 x+3$ using equations (30.1) and (30.2).

## 30.1-2

Another way to evaluate a polynomial $A(x)$ of degree-bound $n$ at a given point $x_{0}$ is to divide $A(x)$ by the polynomial $\left(x-x_{0}\right)$, obtaining a quotient polynomial $q(x)$ of degree-bound $n-1$ and a remainder $r$, such that
$A(x)=q(x)\left(x-x_{0}\right)+r$.
Clearly, $A\left(x_{0}\right)=r$. Show how to compute the remainder $r$ and the coefficients of $q(x)$ in time $\Theta(n)$ from $x_{0}$ and the coefficients of $A$.

## 30.1-3

Derive a point-value representation for $A^{\text {rev }}(x)=\sum_{j=0}^{n-1} a_{n-1-j} x^{j}$ from a pointvalue representation for $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$, assuming that none of the points is 0 .

## 30.1-4

Prove that $n$ distinct point-value pairs are necessary to uniquely specify a polynomial of degree-bound $n$, that is, if fewer than $n$ distinct point-value pairs are given, they fail to specify a unique polynomial of degree-bound $n$. (Hint: Using Theorem 30.1, what can you say about a set of $n-1$ point-value pairs to which you add one more arbitrarily chosen point-value pair?)

## 30.1-5

Show how to use equation (30.5) to interpolate in time $\Theta\left(n^{2}\right)$. (Hint: First compute the coefficient representation of the polynomial $\prod_{j}\left(x-x_{j}\right)$ and then divide by $\left(x-x_{k}\right)$ as necessary for the numerator of each term; see Exercise 30.1-2. You can compute each of the $n$ denominators in time $O(n)$.)

## 30.1-6

Explain what is wrong with the "obvious" approach to polynomial division using a point-value representation, i.e., dividing the corresponding $y$ values. Discuss separately the case in which the division comes out exactly and the case in which it doesn't.

## 30.1-7

Consider two sets $A$ and $B$, each having $n$ integers in the range from 0 to $10 n$. We wish to compute the Cartesian sum of $A$ and $B$, defined by

$$
C=\{x+y: x \in A \text { and } y \in B\} .
$$

Note that the integers in $C$ are in the range from 0 to $20 n$. We want to find the elements of $C$ and the number of times each element of $C$ is realized as a sum of elements in $A$ and $B$. Show how to solve the problem in $O(n \lg n)$ time. (Hint: Represent $A$ and $B$ as polynomials of degree at most 10n.)

### 30.2 The DFT and FFT

In Section 30.1, we claimed that if we use complex roots of unity, we can evaluate and interpolate polynomials in $\Theta(n \lg n)$ time. In this section, we define complex roots of unity and study their properties, define the DFT, and then show how the FFT computes the DFT and its inverse in $\Theta(n \lg n)$ time.

## Complex roots of unity

A complex nth root of unity is a complex number $\omega$ such that $\omega^{n}=1$.
There are exactly $n$ complex $n$th roots of unity: $e^{2 \pi i k / n}$ for $k=0,1, \ldots, n-1$. To interpret this formula, we use the definition of the exponential of a complex number:
$e^{i u}=\cos (u)+i \sin (u)$.
Figure 30.2 shows that the $n$ complex roots of unity are equally spaced around the circle of unit radius centered at the origin of the complex plane. The value


Figure 30.2 The values of $\omega_{8}^{0}, \omega_{8}^{1}, \ldots, \omega_{8}^{7}$ in the complex plane, where $\omega_{8}=e^{2 \pi i / 8}$ is the principal 8th root of unity.
$\omega_{n}=e^{2 \pi i / n}$
is the principal nth root of unity; ${ }^{2}$ all other complex $n$th roots of unity are powers of $\omega_{n}$.

The $n$ complex $n$th roots of unity,
$\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$,
form a group under multiplication (see Section 31.3). This group has the same structure as the additive group $\left(\mathbb{Z}_{n},+\right)$ modulo $n$, since $\omega_{n}^{n}=\omega_{n}^{0}=1$ implies that $\omega_{n}^{j} \omega_{n}^{k}=\omega_{n}^{j+k}=\omega_{n}^{(j+k) \bmod n}$. Similarly, $\omega_{n}^{-1}=\omega_{n}^{n-1}$. The following lemmas furnish some essential properties of the complex $n$th roots of unity.

## Lemma 30.3 (Cancellation lemma)

For any integers $n \geq 0, k \geq 0$, and $d>0$,
$\omega_{d n}^{d k}=\omega_{n}^{k}$.

Proof The lemma follows directly from equation (30.6), since

$$
\begin{aligned}
\omega_{d n}^{d k} & =\left(e^{2 \pi i / d n}\right)^{d k} \\
& =\left(e^{2 \pi i / n}\right)^{k} \\
& =\omega_{n}^{k}
\end{aligned}
$$

[^9]
## Corollary 30.4

For any even integer $n>0$,
$\omega_{n}^{n / 2}=\omega_{2}=-1$.

Proof The proof is left as Exercise 30.2-1.

## Lemma 30.5 (Halving lemma)

If $n>0$ is even, then the squares of the $n$ complex $n$th roots of unity are the $n / 2$ complex ( $n / 2$ )th roots of unity.

Proof By the cancellation lemma, we have $\left(\omega_{n}^{k}\right)^{2}=\omega_{n / 2}^{k}$, for any nonnegative integer $k$. Note that if we square all of the complex $n$th roots of unity, then we obtain each ( $n / 2$ )th root of unity exactly twice, since

$$
\begin{aligned}
\left(\omega_{n}^{k+n / 2}\right)^{2} & =\omega_{n}^{2 k+n} \\
& =\omega_{n}^{2 k} \omega_{n}^{n} \\
& =\omega_{n}^{2 k} \\
& =\left(\omega_{n}^{k}\right)^{2} .
\end{aligned}
$$

Thus, $\omega_{n}^{k}$ and $\omega_{n}^{k+n / 2}$ have the same square. We could also have used Corollary 30.4 to prove this property, since $\omega_{n}^{n / 2}=-1$ implies $\omega_{n}^{k+n / 2}=-\omega_{n}^{k}$, and thus $\left(\omega_{n}^{k+n / 2}\right)^{2}=\left(\omega_{n}^{k}\right)^{2}$.

As we shall see, the halving lemma is essential to our divide-and-conquer approach for converting between coefficient and point-value representations of polynomials, since it guarantees that the recursive subproblems are only half as large.

## Lemma 30.6 (Summation lemma)

For any integer $n \geq 1$ and nonzero integer $k$ not divisible by $n$,

$$
\sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j}=0
$$

Proof Equation (A.5) applies to complex values as well as to reals, and so we have

$$
\begin{aligned}
\sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j} & =\frac{\left(\omega_{n}^{k}\right)^{n}-1}{\omega_{n}^{k}-1} \\
& =\frac{\left(\omega_{n}^{n}\right)^{k}-1}{\omega_{n}^{k}-1} \\
& =\frac{(1)^{k}-1}{\omega_{n}^{k}-1} \\
& =0 .
\end{aligned}
$$

Because we require that $k$ is not divisible by $n$, and because $\omega_{n}^{k}=1$ only when $k$ is divisible by $n$, we ensure that the denominator is not 0 .

## The DFT

Recall that we wish to evaluate a polynomial

$$
A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}
$$

of degree-bound $n$ at $\omega_{n}^{0}, \omega_{n}^{1}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$ (that is, at the $n$ complex $n$th roots of unity). ${ }^{3}$ We assume that $A$ is given in coefficient form: $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Let us define the results $y_{k}$, for $k=0,1, \ldots, n-1$, by

$$
\begin{align*}
y_{k} & =A\left(\omega_{n}^{k}\right) \\
& =\sum_{j=0}^{n-1} a_{j} \omega_{n}^{k j} . \tag{30.8}
\end{align*}
$$

The vector $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is the discrete Fourier transform (DFT) of the coefficient vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. We also write $y=\operatorname{DFT}_{n}(a)$.

## The FFT

By using a method known as the fast Fourier transform (FFT), which takes advantage of the special properties of the complex roots of unity, we can compute $\mathrm{DFT}_{n}(a)$ in time $\Theta(n \lg n)$, as opposed to the $\Theta\left(n^{2}\right)$ time of the straightforward method. We assume throughout that $n$ is an exact power of 2. Although strategies

[^10]for dealing with non-power-of-2 sizes are known, they are beyond the scope of this book.

The FFT method employs a divide-and-conquer strategy, using the even-indexed and odd-indexed coefficients of $A(x)$ separately to define the two new polynomials $A^{[0]}(x)$ and $A^{[1]}(x)$ of degree-bound $n / 2$ :
$A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n-2} x^{n / 2-1}$,
$A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{n / 2-1}$.
Note that $A^{[0]}$ contains all the even-indexed coefficients of $A$ (the binary representation of the index ends in 0 ) and $A^{[1]}$ contains all the odd-indexed coefficients (the binary representation of the index ends in 1). It follows that
$A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)$,
so that the problem of evaluating $A(x)$ at $\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$ reduces to

1. evaluating the degree-bound $n / 2$ polynomials $A^{[0]}(x)$ and $A^{[1]}(x)$ at the points $\left(\omega_{n}^{0}\right)^{2},\left(\omega_{n}^{1}\right)^{2}, \ldots,\left(\omega_{n}^{n-1}\right)^{2}$,
and then
2. combining the results according to equation (30.9).

By the halving lemma, the list of values (30.10) consists not of $n$ distinct values but only of the $n / 2$ complex ( $n / 2$ )th roots of unity, with each root occurring exactly twice. Therefore, we recursively evaluate the polynomials $A^{[0]}$ and $A^{[1]}$ of degree-bound $n / 2$ at the $n / 2$ complex ( $n / 2$ )th roots of unity. These subproblems have exactly the same form as the original problem, but are half the size. We have now successfully divided an $n$-element $\mathrm{DFT}_{n}$ computation into two $n / 2$ element $\mathrm{DFT}_{n / 2}$ computations. This decomposition is the basis for the following recursive FFT algorithm, which computes the DFT of an $n$-element vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $n$ is a power of 2 .

## RECURSIVE-FFT ( $a$ )

```
\(n=\) a.length \(\quad / / n\) is a power of 2
if \(n==1\)
 return \(a\)
\(\omega_{n}=e^{2 \pi i / n}\)
\(\omega=1\)
\(a^{[0]}=\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)\)
\(a^{[1]}=\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)\)
\(y^{[0]}=\operatorname{RECURSIVE-FFT}\left(a^{[0]}\right)\)
\(y^{[1]}=\operatorname{RECURSIVE-FFT}\left(a^{[1]}\right)\)
for \(k=0\) to \(n / 2-1\)
 \(y_{k}=y_{k}^{[0]}+\omega y_{k}^{[1]}\)
 \(y_{k+(n / 2)}=y_{k}^{[0]}-\omega y_{k}^{[1]}\)
 \(\omega=\omega \omega_{n}\)
return \(y \quad / / y\) is assumed to be a column vector
```

The RECURSIVE-FFT procedure works as follows. Lines 2-3 represent the basis of the recursion; the DFT of one element is the element itself, since in this case

$$
\begin{aligned}
y_{0} & =a_{0} \omega_{1}^{0} \\
& =a_{0} \cdot 1 \\
& =a_{0} .
\end{aligned}
$$

Lines 6-7 define the coefficient vectors for the polynomials $A^{[0]}$ and $A^{[1]}$. Lines 4,5 , and 13 guarantee that $\omega$ is updated properly so that whenever lines $11-12$ are executed, we have $\omega=\omega_{n}^{k}$. (Keeping a running value of $\omega$ from iteration to iteration saves time over computing $\omega_{n}^{k}$ from scratch each time through the for loop.) Lines $8-9$ perform the recursive $\mathrm{DFT}_{n / 2}$ computations, setting, for $k=$ $0,1, \ldots, n / 2-1$,
$y_{k}^{[0]}=A^{[0]}\left(\omega_{n / 2}^{k}\right)$,
$y_{k}^{[1]}=A^{[1]}\left(\omega_{n / 2}^{k}\right)$,
or, since $\omega_{n / 2}^{k}=\omega_{n}^{2 k}$ by the cancellation lemma,
$y_{k}^{[0]}=A^{[0]}\left(\omega_{n}^{2 k}\right)$,
$y_{k}^{[1]}=A^{[1]}\left(\omega_{n}^{2 k}\right)$.

Lines 11-12 combine the results of the recursive $\mathrm{DFT}_{n / 2}$ calculations. For $y_{0}, y_{1}$, $\ldots, y_{n / 2-1}$, line 11 yields

$$
\begin{aligned}
y_{k} & =y_{k}^{[0]}+\omega_{n}^{k} y_{k}^{[1]} \\
& =A^{[0]}\left(\omega_{n}^{2 k}\right)+\omega_{n}^{k} A^{[1]}\left(\omega_{n}^{2 k}\right) \quad \text { (by equation (30.9)). }
\end{aligned}
$$

For $y_{n / 2}, y_{n / 2+1}, \ldots, y_{n-1}$, letting $k=0,1, \ldots, n / 2-1$, line 12 yields

$$
\begin{aligned}
y_{k+(n / 2)} & =y_{k}^{[0]}-\omega_{n}^{k} y_{k}^{[1]} & & \\
& =y_{k}^{[0]}+\omega_{n}^{k+(n / 2)} y_{k}^{[1]} & & \left(\text { since } \omega_{n}^{k+(n / 2)}=-\omega_{n}^{k}\right) \\
& =A^{[0]}\left(\omega_{n}^{2 k}\right)+\omega_{n}^{k+(n / 2)} A^{[1]}\left(\omega_{n}^{2 k}\right) & & \\
& =A^{[0]}\left(\omega_{n}^{2 k+n}\right)+\omega_{n}^{k+(n / 2)} A^{[1]}\left(\omega_{n}^{2 k+n}\right) & & \left(\text { since } \omega_{n}^{2 k+n}=\omega_{n}^{2 k}\right) \\
& =A\left(\omega_{n}^{k+(n / 2)}\right) & & (\text { by equation (30.9)) } .
\end{aligned}
$$

Thus, the vector $y$ returned by RECURSIVE-FFT is indeed the DFT of the input vector $a$.

Lines 11 and 12 multiply each value $y_{k}^{[1]}$ by $\omega_{n}^{k}$, for $k=0,1, \ldots, n / 2-1$. Line 11 adds this product to $y_{k}^{[0]}$, and line 12 subtracts it. Because we use each factor $\omega_{n}^{k}$ in both its positive and negative forms, we call the factors $\omega_{n}^{k}$ twiddle factors.

To determine the running time of procedure RECURSIVE-FFT, we note that exclusive of the recursive calls, each invocation takes time $\Theta(n)$, where $n$ is the length of the input vector. The recurrence for the running time is therefore

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Thus, we can evaluate a polynomial of degree-bound $n$ at the complex $n$th roots of unity in time $\Theta(n \lg n)$ using the fast Fourier transform.

## Interpolation at the complex roots of unity

We now complete the polynomial multiplication scheme by showing how to interpolate the complex roots of unity by a polynomial, which enables us to convert from point-value form back to coefficient form. We interpolate by writing the DFT as a matrix equation and then looking at the form of the matrix inverse.

From equation (30.4), we can write the DFT as the matrix product $y=V_{n} a$, where $V_{n}$ is a Vandermonde matrix containing the appropriate powers of $\omega_{n}$ :

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n-1}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\
1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

The $(k, j)$ entry of $V_{n}$ is $\omega_{n}^{k j}$, for $j, k=0,1, \ldots, n-1$. The exponents of the entries of $V_{n}$ form a multiplication table.

For the inverse operation, which we write as $a=\operatorname{DFT}_{n}^{-1}(y)$, we proceed by multiplying $y$ by the matrix $V_{n}^{-1}$, the inverse of $V_{n}$.

## Theorem 30.7

For $j, k=0,1, \ldots, n-1$, the $(j, k)$ entry of $V_{n}^{-1}$ is $\omega_{n}^{-k j} / n$.
Proof We show that $V_{n}^{-1} V_{n}=I_{n}$, the $n \times n$ identity matrix. Consider the $\left(j, j^{\prime}\right)$ entry of $V_{n}^{-1} V_{n}$ :

$$
\begin{aligned}
{\left[V_{n}^{-1} V_{n}\right]_{j j^{\prime}} } & =\sum_{k=0}^{n-1}\left(\omega_{n}^{-k j} / n\right)\left(\omega_{n}^{k j^{\prime}}\right) \\
& =\sum_{k=0}^{n-1} \omega_{n}^{k\left(j^{\prime}-j\right)} / n
\end{aligned}
$$

This summation equals 1 if $j^{\prime}=j$, and it is 0 otherwise by the summation lemma (Lemma 30.6). Note that we rely on $-(n-1) \leq j^{\prime}-j \leq n-1$, so that $j^{\prime}-j$ is not divisible by $n$, in order for the summation lemma to apply.

Given the inverse matrix $V_{n}^{-1}$, we have that $\mathrm{DFT}_{n}^{-1}(y)$ is given by
$a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-k j}$
for $j=0,1, \ldots, n-1$. By comparing equations (30.8) and (30.11), we see that by modifying the FFT algorithm to switch the roles of $a$ and $y$, replace $\omega_{n}$ by $\omega_{n}^{-1}$, and divide each element of the result by $n$, we compute the inverse DFT (see Exercise 30.2-4). Thus, we can compute $\mathrm{DFT}_{n}^{-1}$ in $\Theta(n \lg n)$ time as well.

We see that, by using the FFT and the inverse FFT, we can transform a polynomial of degree-bound $n$ back and forth between its coefficient representation and a point-value representation in time $\Theta(n \lg n)$. In the context of polynomial multiplication, we have shown the following.

## Theorem 30.8 (Convolution theorem)

For any two vectors $a$ and $b$ of length $n$, where $n$ is a power of 2 ,
$a \otimes b=\mathrm{DFT}_{2 n}^{-1}\left(\mathrm{DFT}_{2 n}(a) \cdot \mathrm{DFT}_{2 n}(b)\right)$,
where the vectors $a$ and $b$ are padded with 0 s to length $2 n$ and $\cdot$ denotes the componentwise product of two $2 n$-element vectors.

## Exercises

30.2-1

Prove Corollary 30.4.

## 30.2-2

Compute the DFT of the vector $(0,1,2,3)$.

## 30.2-3

Do Exercise $30.1-1$ by using the $\Theta(n \lg n)$-time scheme.

## 30.2-4

Write pseudocode to compute $\mathrm{DFT}_{n}^{-1}$ in $\Theta(n \lg n)$ time.

## 30.2-5

Describe the generalization of the FFT procedure to the case in which $n$ is a power of 3 . Give a recurrence for the running time, and solve the recurrence.

## 30.2-6 *

Suppose that instead of performing an $n$-element FFT over the field of complex numbers (where $n$ is even), we use the ring $\mathbb{Z}_{m}$ of integers modulo $m$, where $m=2^{t n / 2}+1$ and $t$ is an arbitrary positive integer. Use $\omega=2^{t}$ instead of $\omega_{n}$ as a principal $n$th root of unity, modulo $m$. Prove that the DFT and the inverse DFT are well defined in this system.

## 30.2-7

Given a list of values $z_{0}, z_{1}, \ldots, z_{n-1}$ (possibly with repetitions), show how to find the coefficients of a polynomial $P(x)$ of degree-bound $n+1$ that has zeros only at $z_{0}, z_{1}, \ldots, z_{n-1}$ (possibly with repetitions). Your procedure should run in time $O\left(n \lg ^{2} n\right)$. (Hint: The polynomial $P(x)$ has a zero at $z_{j}$ if and only if $P(x)$ is a multiple of $\left(x-z_{j}\right)$.)
30.2-8 $\star$

The chirp transform of a vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is the vector $y=$ $\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$, where $y_{k}=\sum_{j=0}^{n-1} a_{j} z^{k j}$ and $z$ is any complex number. The

DFT is therefore a special case of the chirp transform, obtained by taking $z=\omega_{n}$. Show how to evaluate the chirp transform in time $O(n \lg n)$ for any complex number $z$. (Hint: Use the equation
$y_{k}=z^{k^{2} / 2} \sum_{j=0}^{n-1}\left(a_{j} z^{j^{2} / 2}\right)\left(z^{-(k-j)^{2} / 2}\right)$
to view the chirp transform as a convolution.)

### 30.3 Efficient FFT implementations

Since the practical applications of the DFT, such as signal processing, demand the utmost speed, this section examines two efficient FFT implementations. First, we shall examine an iterative version of the FFT algorithm that runs in $\Theta(n \lg n)$ time but can have a lower constant hidden in the $\Theta$-notation than the recursive version in Section 30.2. (Depending on the exact implementation, the recursive version may use the hardware cache more efficiently.) Then, we shall use the insights that led us to the iterative implementation to design an efficient parallel FFT circuit.

## An iterative FFT implementation

We first note that the for loop of lines 10-13 of RECURSIVE-FFT involves computing the value $\omega_{n}^{k} y_{k}^{[1]}$ twice. In compiler terminology, we call such a value a common subexpression. We can change the loop to compute it only once, storing it in a temporary variable $t$.

$$
\begin{aligned}
& \text { for } k=0 \text { to } n / 2-1 \\
& \quad t=\omega y_{k}^{[1]} \\
& y_{k}=y_{k}^{[0]}+t \\
& y_{k+(n / 2)}=y_{k}^{[0]}-t \\
& \omega=\omega \omega_{n}
\end{aligned}
$$

The operation in this loop, multiplying the twiddle factor $\omega=\omega_{n}^{k}$ by $y_{k}^{[1]}$, storing the product into $t$, and adding and subtracting $t$ from $y_{k}^{[0]}$, is known as a butterfly operation and is shown schematically in Figure 30.3.

We now show how to make the FFT algorithm iterative rather than recursive in structure. In Figure 30.4, we have arranged the input vectors to the recursive calls in an invocation of RECURSIVE-FFT in a tree structure, where the initial call is for $n=8$. The tree has one node for each call of the procedure, labeled


Figure 30.3 A butterfly operation. (a) The two input values enter from the left, the twiddle factor $\omega_{n}^{k}$ is multiplied by $y_{k}^{[1]}$, and the sum and difference are output on the right. (b) A simplified drawing of a butterfly operation. We will use this representation in a parallel FFT circuit.


Figure 30.4 The tree of input vectors to the recursive calls of the RECURSIVE-FFT procedure. The initial invocation is for $n=8$.
by the corresponding input vector. Each Recursive-FFT invocation makes two recursive calls, unless it has received a 1 -element vector. The first call appears in the left child, and the second call appears in the right child.

Looking at the tree, we observe that if we could arrange the elements of the initial vector $a$ into the order in which they appear in the leaves, we could trace the execution of the Recursive-FFT procedure, but bottom up instead of top down. First, we take the elements in pairs, compute the DFT of each pair using one butterfly operation, and replace the pair with its DFT. The vector then holds $n / 2$ 2-element DFTs. Next, we take these $n / 2$ DFTs in pairs and compute the DFT of the four vector elements they come from by executing two butterfly operations, replacing two 2-element DFTs with one 4 -element DFT. The vector then holds $n / 44$-element DFTs. We continue in this manner until the vector holds two ( $n / 2$ )-element DFTs, which we combine using $n / 2$ butterfly operations into the final $n$-element DFT.

To turn this bottom-up approach into code, we use an array $A[0 . . n-1]$ that initially holds the elements of the input vector $a$ in the order in which they appear
in the leaves of the tree of Figure 30.4. (We shall show later how to determine this order, which is known as a bit-reversal permutation.) Because we have to combine DFTs on each level of the tree, we introduce a variable $s$ to count the levels, ranging from 1 (at the bottom, when we are combining pairs to form 2-element DFTs) to $\lg n$ (at the top, when we are combining two ( $n / 2$ )-element DFTs to produce the final result). The algorithm therefore has the following structure:

```
for \(s=1\) to \(\lg n\)
 for \(k=0\) to \(n-1\) by \(2^{s}\)
 combine the two \(2^{s-1}\)-element DFTs in
 \(A\left[k \ldots k+2^{s-1}-1\right]\) and \(A\left[k+2^{s-1} \ldots k+2^{s}-1\right]\)
 into one \(2^{s}\)-element DFT in \(A\left[k \ldots k+2^{s}-1\right]\)
```

We can express the body of the loop (line 3 ) as more precise pseudocode. We copy the for loop from the Recursive-FFT procedure, identifying $y^{[0]}$ with $A\left[k \ldots k+2^{s-1}-1\right]$ and $y^{[1]}$ with $A\left[k+2^{s-1} \ldots k+2^{s}-1\right]$. The twiddle factor used in each butterfly operation depends on the value of $s$; it is a power of $\omega_{m}$, where $m=2^{s}$. (We introduce the variable $m$ solely for the sake of readability.) We introduce another temporary variable $u$ that allows us to perform the butterfly operation in place. When we replace line 3 of the overall structure by the loop body, we get the following pseudocode, which forms the basis of the parallel implementation we shall present later. The code first calls the auxiliary procedure Bit-Reverse-Copy $(a, A)$ to copy vector $a$ into array $A$ in the initial order in which we need the values.

ItERATIVE-FFT (a)

```
Bit-Reverse-Copy \((a, A)\)
\(n=\) a.length \(\quad / / n\) is a power of 2
for \(s=1\) to \(\lg n\)
 \(m=2^{s}\)
 \(\omega_{m}=e^{2 \pi i / m}\)
 for \(k=0\) to \(n-1\) by \(m\)
 \(\omega=1\)
 for \(j=0\) to \(m / 2-1\)
 \(t=\omega A[k+j+m / 2]\)
 \(u=A[k+j]\)
 \(A[k+j]=u+t\)
 \(A[k+j+m / 2]=u-t\)
 \(\omega=\omega \omega_{m}\)
return \(A\)
```

How does Bit-Reverse-Copy get the elements of the input vector $a$ into the desired order in the array $A$ ? The order in which the leaves appear in Figure 30.4
is a bit-reversal permutation. That is, if we let $\operatorname{rev}(k)$ be the $\lg n$-bit integer formed by reversing the bits of the binary representation of $k$, then we want to place vector element $a_{k}$ in array position $A[\operatorname{rev}(k)]$. In Figure 30.4, for example, the leaves appear in the order $0,4,2,6,1,5,3,7$; this sequence in binary is $000,100,010,110,001,101,011,111$, and when we reverse the bits of each value we get the sequence $000,001,010,011,100,101,110,111$. To see that we want a bit-reversal permutation in general, we note that at the top level of the tree, indices whose low-order bit is 0 go into the left subtree and indices whose low-order bit is 1 go into the right subtree. Stripping off the low-order bit at each level, we continue this process down the tree, until we get the order given by the bit-reversal permutation at the leaves.

Since we can easily compute the function rev $(k)$, the Bit-REVERSE-Copy procedure is simple:

Bit-REVERSE-Copy $(a, A)$
$n=$ a.length for $k=0$ to $n-1$
$A[\operatorname{rev}(k)]=a_{k}$
The iterative FFT implementation runs in time $\Theta(n \lg n)$. The call to Bit-$\operatorname{REVERSE}-\operatorname{Copy}(a, A)$ certainly runs in $O(n \lg n)$ time, since we iterate $n$ times and can reverse an integer between 0 and $n-1$, with $\lg n$ bits, in $O(\lg n)$ time. (In practice, because we usually know the initial value of $n$ in advance, we would probably code a table mapping $k$ to rev $(k)$, making Bit-REVERSE-COPY run in $\Theta(n)$ time with a low hidden constant. Alternatively, we could use the clever amortized reverse binary counter scheme described in Problem 17-1.) To complete the proof that Iterative-FFT runs in time $\Theta(n \lg n)$, we show that $L(n)$, the number of times the body of the innermost loop (lines $8-13$ ) executes, is $\Theta(n \lg n)$. The for loop of lines 6-13 iterates $n / m=n / 2^{s}$ times for each value of $s$, and the innermost loop of lines $8-13$ iterates $m / 2=2^{s-1}$ times. Thus,

$$
\begin{aligned}
L(n) & =\sum_{s=1}^{\lg n} \frac{n}{2^{s}} \cdot 2^{s-1} \\
& =\sum_{s=1}^{\lg n} \frac{n}{2} \\
& =\Theta(n \lg n)
\end{aligned}
$$



Figure 30.5 A circuit that computes the FFT in parallel, here shown on $n=8$ inputs. Each butterfly operation takes as input the values on two wires, along with a twiddle factor, and it produces as outputs the values on two wires. The stages of butterflies are labeled to correspond to iterations of the outermost loop of the ITERATIVE-FFT procedure. Only the top and bottom wires passing through a butterfly interact with it; wires that pass through the middle of a butterfly do not affect that butterfly, nor are their values changed by that butterfly. For example, the top butterfly in stage 2 has nothing to do with wire 1 (the wire whose output is labeled $y_{1}$ ); its inputs and outputs are only on wires 0 and 2 (labeled $y_{0}$ and $y_{2}$, respectively). This circuit has depth $\Theta(\lg n)$ and performs $\Theta(n \lg n)$ butterfly operations altogether.

## A parallel FFT circuit

We can exploit many of the properties that allowed us to implement an efficient iterative FFT algorithm to produce an efficient parallel algorithm for the FFT. We will express the parallel FFT algorithm as a circuit. Figure 30.5 shows a parallel FFT circuit, which computes the FFT on $n$ inputs, for $n=8$. The circuit begins with a bit-reverse permutation of the inputs, followed by $\lg n$ stages, each stage consisting of $n / 2$ butterflies executed in parallel. The depth of the circuit-the maximum number of computational elements between any output and any input that can reach it-is therefore $\Theta(\lg n)$.

The leftmost part of the parallel FFT circuit performs the bit-reverse permutation, and the remainder mimics the iterative ITERATIVE-FFT procedure. Because each iteration of the outermost for loop performs $n / 2$ independent butterfly operations, the circuit performs them in parallel. The value of $s$ in each iteration within

Iterative-FFT corresponds to a stage of butterflies shown in Figure 30.5. For $s=1,2, \ldots, \lg n$, stage $s$ consists of $n / 2^{s}$ groups of butterflies (corresponding to each value of $k$ in ITERATIVE-FFT), with $2^{s-1}$ butterflies per group (corresponding to each value of $j$ in Iterative-FFT). The butterflies shown in Figure 30.5 correspond to the butterfly operations of the innermost loop (lines 9-12 of IterativeFFT). Note also that the twiddle factors used in the butterflies correspond to those used in ITERATIVE-FFT: in stage $s$, we use $\omega_{m}^{0}, \omega_{m}^{1}, \ldots, \omega_{m}^{m / 2-1}$, where $m=2^{s}$.

## Exercises

## 30.3-1

Show how Iterative-FFT computes the DFT of the input vector $(0,2,3,-1,4$, 5, 7, 9).

## 30.3-2

Show how to implement an FFT algorithm with the bit-reversal permutation occurring at the end, rather than at the beginning, of the computation. (Hint: Consider the inverse DFT.)

## 30.3-3

How many times does ItERative-FFT compute twiddle factors in each stage? Rewrite ITERATIVE-FFT to compute twiddle factors only $2^{s-1}$ times in stage $s$.

## 30.3-4 *

Suppose that the adders within the butterfly operations of the FFT circuit sometimes fail in such a manner that they always produce a zero output, independent of their inputs. Suppose that exactly one adder has failed, but that you don't know which one. Describe how you can identify the failed adder by supplying inputs to the overall FFT circuit and observing the outputs. How efficient is your method?

## Problems

## 30-1 Divide-and-conquer multiplication

a. Show how to multiply two linear polynomials $a x+b$ and $c x+d$ using only three multiplications. (Hint: One of the multiplications is $(a+b) \cdot(c+d)$.)
b. Give two divide-and-conquer algorithms for multiplying two polynomials of degree-bound $n$ in $\Theta\left(n^{\lg 3}\right)$ time. The first algorithm should divide the input polynomial coefficients into a high half and a low half, and the second algorithm should divide them according to whether their index is odd or even.
c. Show how to multiply two $n$-bit integers in $O\left(n^{\lg 3}\right)$ steps, where each step operates on at most a constant number of 1-bit values.

## 30-2 Toeplitz matrices

A Toeplitz matrix is an $n \times n$ matrix $A=\left(a_{i j}\right)$ such that $a_{i j}=a_{i-1, j-1}$ for $i=2,3, \ldots, n$ and $j=2,3, \ldots, n$.
a. Is the sum of two Toeplitz matrices necessarily Toeplitz? What about the product?
b. Describe how to represent a Toeplitz matrix so that you can add two $n \times n$ Toeplitz matrices in $O(n)$ time.
c. Give an $O(n \lg n)$-time algorithm for multiplying an $n \times n$ Toeplitz matrix by a vector of length $n$. Use your representation from part (b).
d. Give an efficient algorithm for multiplying two $n \times n$ Toeplitz matrices. Analyze its running time.

## 30-3 Multidimensional fast Fourier transform

We can generalize the 1-dimensional discrete Fourier transform defined by equation (30.8) to $d$ dimensions. The input is a $d$-dimensional array $A=\left(a_{j_{1}, j_{2}, \ldots, j_{d}}\right)$ whose dimensions are $n_{1}, n_{2}, \ldots, n_{d}$, where $n_{1} n_{2} \cdots n_{d}=n$. We define the $d$-dimensional discrete Fourier transform by the equation
$y_{k_{1}, k_{2}, \ldots, k_{d}}=\sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \cdots \sum_{j_{d}=0}^{n_{d}-1} a_{j_{1}, j_{2}, \ldots, j_{d}} \omega_{n_{1}}^{j_{1} k_{1}} \omega_{n_{2}}^{j_{2} k_{2}} \cdots \omega_{n_{d}}^{j_{d} k_{d}}$
for $0 \leq k_{1}<n_{1}, 0 \leq k_{2}<n_{2}, \ldots, 0 \leq k_{d}<n_{d}$.
a. Show that we can compute a $d$-dimensional DFT by computing 1-dimensional DFTs on each dimension in turn. That is, we first compute $n / n_{1}$ separate 1 -dimensional DFTs along dimension 1. Then, using the result of the DFTs along dimension 1 as the input, we compute $n / n_{2}$ separate 1 -dimensional DFTs along dimension 2. Using this result as the input, we compute $n / n_{3}$ separate 1 -dimensional DFTs along dimension 3, and so on, through dimension $d$.
b. Show that the ordering of dimensions does not matter, so that we can compute a $d$-dimensional DFT by computing the 1 -dimensional DFTs in any order of the $d$ dimensions.
c. Show that if we compute each 1-dimensional DFT by computing the fast Fourier transform, the total time to compute a $d$-dimensional DFT is $O(n \lg n)$, independent of $d$.

## 30-4 Evaluating all derivatives of a polynomial at a point

Given a polynomial $A(x)$ of degree-bound $n$, we define its $t$ th derivative by
$A^{(t)}(x)= \begin{cases}A(x) & \text { if } t=0, \\ \frac{d}{d x} A^{(t-1)}(x) & \text { if } 1 \leq t \leq n-1, \\ 0 & \text { if } t \geq n .\end{cases}$
From the coefficient representation $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ of $A(x)$ and a given point $x_{0}$, we wish to determine $A^{(t)}\left(x_{0}\right)$ for $t=0,1, \ldots, n-1$.
a. Given coefficients $b_{0}, b_{1}, \ldots, b_{n-1}$ such that
$A(x)=\sum_{j=0}^{n-1} b_{j}\left(x-x_{0}\right)^{j}$,
show how to compute $A^{(t)}\left(x_{0}\right)$, for $t=0,1, \ldots, n-1$, in $O(n)$ time.
b. Explain how to find $b_{0}, b_{1}, \ldots, b_{n-1}$ in $O(n \lg n)$ time, given $A\left(x_{0}+\omega_{n}^{k}\right)$ for $k=0,1, \ldots, n-1$.
c. Prove that

$$
A\left(x_{0}+\omega_{n}^{k}\right)=\sum_{r=0}^{n-1}\left(\frac{\omega_{n}^{k r}}{r!} \sum_{j=0}^{n-1} f(j) g(r-j)\right)
$$

where $f(j)=a_{j} \cdot j$ ! and
$g(l)= \begin{cases}x_{0}^{-l} /(-l)! & \text { if }-(n-1) \leq l \leq 0, \\ 0 & \text { if } 1 \leq l \leq n-1 .\end{cases}$
d. Explain how to evaluate $A\left(x_{0}+\omega_{n}^{k}\right)$ for $k=0,1, \ldots, n-1$ in $O(n \lg n)$ time. Conclude that we can evaluate all nontrivial derivatives of $A(x)$ at $x_{0}$ in $O(n \lg n)$ time.

## 30-5 Polynomial evaluation at multiple points

We have seen how to evaluate a polynomial of degree-bound $n$ at a single point in $O(n)$ time using Horner's rule. We have also discovered how to evaluate such a polynomial at all $n$ complex roots of unity in $O(n \lg n)$ time using the FFT. We shall now show how to evaluate a polynomial of degree-bound $n$ at $n$ arbitrary points in $O\left(n \lg ^{2} n\right)$ time.

To do so, we shall assume that we can compute the polynomial remainder when one such polynomial is divided by another in $O(n \lg n)$ time, a result that we state without proof. For example, the remainder of $3 x^{3}+x^{2}-3 x+1$ when divided by $x^{2}+x+2$ is
$\left(3 x^{3}+x^{2}-3 x+1\right) \bmod \left(x^{2}+x+2\right)=-7 x+5$.
Given the coefficient representation of a polynomial $A(x)=\sum_{k=0}^{n-1} a_{k} x^{k}$ and $n$ points $x_{0}, x_{1}, \ldots, x_{n-1}$, we wish to compute the $n$ values $A\left(x_{0}\right), A\left(x_{1}\right), \ldots$, $A\left(x_{n-1}\right)$. For $0 \leq i \leq j \leq n-1$, define the polynomials $P_{i j}(x)=\prod_{k=i}^{j}\left(x-x_{k}\right)$ and $Q_{i j}(x)=A(x) \bmod P_{i j}(x)$. Note that $Q_{i j}(x)$ has degree at most $j-i$.
a. Prove that $A(x) \bmod (x-z)=A(z)$ for any point $z$.
b. Prove that $Q_{k k}(x)=A\left(x_{k}\right)$ and that $Q_{0, n-1}(x)=A(x)$.
c. Prove that for $i \leq k \leq j$, we have $Q_{i k}(x)=Q_{i j}(x) \bmod P_{i k}(x)$ and $Q_{k j}(x)=Q_{i j}(x) \bmod P_{k j}(x)$.
d. Give an $O\left(n \lg ^{2} n\right)$-time algorithm to evaluate $A\left(x_{0}\right), A\left(x_{1}\right), \ldots, A\left(x_{n-1}\right)$.

## 30-6 FFT using modular arithmetic

As defined, the discrete Fourier transform requires us to compute with complex numbers, which can result in a loss of precision due to round-off errors. For some problems, the answer is known to contain only integers, and by using a variant of the FFT based on modular arithmetic, we can guarantee that the answer is calculated exactly. An example of such a problem is that of multiplying two polynomials with integer coefficients. Exercise 30.2-6 gives one approach, using a modulus of length $\Omega(n)$ bits to handle a DFT on $n$ points. This problem gives another approach, which uses a modulus of the more reasonable length $O(\lg n)$; it requires that you understand the material of Chapter 31. Let $n$ be a power of 2 .
a. Suppose that we search for the smallest $k$ such that $p=k n+1$ is prime. Give a simple heuristic argument why we might expect $k$ to be approximately $\ln n$. (The value of $k$ might be much larger or smaller, but we can reasonably expect to examine $O(\lg n)$ candidate values of $k$ on average.) How does the expected length of $p$ compare to the length of $n$ ?

Let $g$ be a generator of $\mathbb{Z}_{p}^{*}$, and let $w=g^{k} \bmod p$.
b. Argue that the DFT and the inverse DFT are well-defined inverse operations modulo $p$, where $w$ is used as a principal $n$th root of unity.
c. Show how to make the FFT and its inverse work modulo $p$ in time $O(n \lg n)$, where operations on words of $O(\lg n)$ bits take unit time. Assume that the algorithm is given $p$ and $w$.
d. Compute the DFT modulo $p=17$ of the vector $(0,5,3,7,7,2,1,6)$. Note that $g=3$ is a generator of $\mathbb{Z}_{17}^{*}$.

## Chapter notes

Van Loan's book [343] provides an outstanding treatment of the fast Fourier transform. Press, Teukolsky, Vetterling, and Flannery [283, 284] have a good description of the fast Fourier transform and its applications. For an excellent introduction to signal processing, a popular FFT application area, see the texts by Oppenheim and Schafer [266] and Oppenheim and Willsky [267]. The Oppenheim and Schafer book also shows how to handle cases in which $n$ is not an integer power of 2 .

Fourier analysis is not limited to 1 -dimensional data. It is widely used in image processing to analyze data in 2 or more dimensions. The books by Gonzalez and Woods [146] and Pratt [281] discuss multidimensional Fourier transforms and their use in image processing, and books by Tolimieri, An, and Lu [338] and Van Loan [343] discuss the mathematics of multidimensional fast Fourier transforms.

Cooley and Tukey [76] are widely credited with devising the FFT in the 1960s. The FFT had in fact been discovered many times previously, but its importance was not fully realized before the advent of modern digital computers. Although Press, Teukolsky, Vetterling, and Flannery attribute the origins of the method to Runge and König in 1924, an article by Heideman, Johnson, and Burrus [163] traces the history of the FFT as far back as C. F. Gauss in 1805.

Frigo and Johnson [117] developed a fast and flexible implementation of the FFT, called FFTW ("fastest Fourier transform in the West"). FFTW is designed for situations requiring multiple DFT computations on the same problem size. Before actually computing the DFTs, FFTW executes a "planner," which, by a series of trial runs, determines how best to decompose the FFT computation for the given problem size on the host machine. FFTW adapts to use the hardware cache efficiently, and once subproblems are small enough, FFTW solves them with optimized, straight-line code. Furthermore, FFTW has the unusual advantage of taking $\Theta(n \lg n)$ time for any problem size $n$, even when $n$ is a large prime.

Although the standard Fourier transform assumes that the input represents points that are uniformly spaced in the time domain, other techniques can approximate the FFT on "nonequispaced" data. The article by Ware [348] provides an overview.


[^0]:    ${ }^{1}$ We distinguish between gray and black vertices to help us understand how breadth-first search operates. In fact, as Exercise 22.2-3 shows, we would get the same result even if we did not distinguish between gray and black vertices.

[^1]:    ${ }^{2}$ In Chapters 24 and 25, we shall generalize our study of shortest paths to weighted graphs, in which every edge has a real-valued weight and the weight of a path is the sum of the weights of its constituent edges. The graphs considered in the present chapter are unweighted or, equivalently, all edges have unit weight.

[^2]:    ${ }^{3}$ It may seem arbitrary that breadth-first search is limited to only one source whereas depth-first search may search from multiple sources. Although conceptually, breadth-first search could proceed from multiple sources and depth-first search could be limited to one source, our approach reflects how the results of these searches are typically used. Breadth-first search usually serves to find shortestpath distances (and the associated predecessor subgraph) from a given source. Depth-first search is often a subroutine in another algorithm, as we shall see later in this chapter.

[^3]:    ${ }^{1}$ The phrase "minimum spanning tree" is a shortened form of the phrase "minimum-weight spanning tree." We are not, for example, minimizing the number of edges in $T$, since all spanning trees have exactly $|V|-1$ edges by Theorem B.2.

[^4]:    ${ }^{1}$ It may seem strange that the term "relaxation" is used for an operation that tightens an upper bound. The use of the term is historical. The outcome of a relaxation step can be viewed as a relaxation of the constraint $v . d \leq u . d+w(u, v)$, which, by the triangle inequality (Lemma 24.10), must be satisfied if $u \cdot d=\delta(s, u)$ and $v . d=\delta(s, v)$. That is, if $v . d \leq u \cdot d+w(u, v)$, there is no "pressure" to satisfy this constraint, so the constraint is "relaxed."

[^5]:    ${ }^{1}$ Recall from Section 22.1 that we represent an attribute $f$ for edge $(u, v)$ with the same style of notation - $(u, v) . f$-that we use for an attribute of any other object.

[^6]:    ${ }^{2}$ The Ford-Fulkerson method might fail to terminate only if edge capacities are irrational numbers.

[^7]:    ${ }^{3}$ In the literature, a height function is typically called a "distance function," and the height of a vertex is called a "distance label." We use the term "height" because it is more suggestive of the intuition behind the algorithm. We retain the use of the term "relabel" to refer to the operation that increases the height of a vertex. The height of a vertex is related to its distance from the $\operatorname{sink} t$, as would be found in a breadth-first search of the transpose $G^{\mathrm{T}}$.

[^8]:    ${ }^{1}$ Interpolation is a notoriously tricky problem from the point of view of numerical stability. Although the approaches described here are mathematically correct, small differences in the inputs or round-off errors during computation can cause large differences in the result.

[^9]:    ${ }^{2}$ Many other authors define $\omega_{n}$ differently: $\omega_{n}=e^{-2 \pi i / n}$. This alternative definition tends to be used for signal-processing applications. The underlying mathematics is substantially the same with either definition of $\omega_{n}$.

[^10]:    ${ }^{3}$ The length $n$ is actually what we referred to as $2 n$ in Section 30.1 , since we double the degree-bound of the given polynomials prior to evaluation. In the context of polynomial multiplication, therefore, we are actually working with complex (2n)th roots of unity.

