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4
Geometric Data Structures

In this chapter we define the classes we will need for working with geometric objects in two
and three dimensions. In two dimensions, the operations supported by these classes include
splitting a polygon along a chord into two smaller polygons, computing the intersection
point of two skew lines, and classifying a point relative to a line. In three dimensions they
include classifying a point relative to a plane and finding the intersection of a line and a
triangle. This chapter also provides what little linear algebra we will need.

4.1 Vectors

A coordinate system provides a frame of reference for specifying positions in the plane.
Under the Cartesian coordinate system, the plane is endowed with two coordinate axes with
the same origin (their point of intersection) and same unit length; the axes are perpendicular
to each other and oriented as in Figure 4. la. This establishes a one-to-one correspon-
dence between ordered pairs of numbers (x, y) and points in the plane. The point's first
coordinate x indicates its displacement along the horizontal axis, and the point's second
coordinate y its displacement along the vertical axis.

An ordered pair (x, y) can also be thought of as a vector, as shown in Figure 4. lb.
Geometrically, vector (x, y) is a directed line segment beginning at the origin (0, 0) and
ending at point (x, y). The origin (0, 0)-sometimes denoted 0-is called the zero vector.

Vector addition and scalar multiplication are two fundamental operations for working
with vectors (Figure 4.2). Given two vectors a = (Xa, ya) and b = (Xb, yb), vector addition
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Chap. 4: Geometric Data Structures

S
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(a) (b)

Figure 4.1: Interpreting the ordered pair (2, 1) as (a) a point and (b) a vector.

is defined by a + b = (Xa + Xb, Ya + yb). Geometrically, vectors a and b determine the
parallelogram with vertices 0, a, b, and a + b.

Scalar multiplication involves the multiplication of a vector by a real number, the
scalar (Figure 4.2). Given scalar t and vector b = (Xb, yb), scalar multiplication is defined
by tb = (txb, tyb). The operation scales the length of vector b by factor t. The direction of
the vector is unchanged if t > 0 and reversed if t < 0.

Since a vector begins at the origin, it is fully described by the point at which it
terminates. Alternatively, a vector can be characterized by its length and direction. The
length of vector a = (xa, ya), denoted Ilal, is defined by Iala = X +. This equals
the distance between point a and the origin 0. A unit vector is a vector with length one.
Scaling a nonzero vector a by the reciprocal of its length yields a unit vector - with the
same direction, an operation known as normalization.

The direction of vector a is described by its polar angle ea, the angle the vector makes
with the positive x-axis. Polar angles are measured in counterclockwise rotation starting
at the positive x-axis and lie in the range 0 < 6a < 360 (we will always measure angles in
degrees). Figure 4.3 gives some examples.

Vector subtraction is defined in terms of vector addition and scalar multiplication:
Given vectors a and b, we have b - a = b + (- 1)a. In practice, the operation is carried out
with coordinate-wise subtraction: b - a = (Xb - Xa, Yb - ya). Geometrically, the operation
identifies the directed line segment a, beginning at point a and ending at point b, with the
vector b - a (Figure 4.4).

Figure 4.2: Vector addition and scalar multiplica-
tion.
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Sec. 4.1 Vectors

(1.5,200)

(1,O)

Figure 4.3: Various vectors, given in polar coordinates a = (Ila I. 9a).

Figure 4.4: Vector subtraction.

A directed line segment al is a vector fixed in the plane. Endpoint a is called the
origin of al, and endpoint b the destination. Two directed line segments al and c that
have the same length and direction are translates of each other and can be identified with
the same canonical directed line segment, the vector b - a = d - c. Vector arithmetic
provides the machinery for solving problems involving directed line segments that remain
unchanged by translation. We illustrate this fact with the following example.

Given three non-collinear points po, Pl, p2, the triangle Apop, P2 they determine is
positively oriented if p2 lies to the left of POPI, and negatively oriented if p2 lies to the right
of poVI (Figure 4.5). The problem is to describe a procedure for deciding orientation. It is
reasonable to solve this problem using vectors since the orientation of a triangle does not
change under translation. Letting a = pi - po and b = p2- po, the problem reduces to one
involving the angle 0

ab between the vectors, measured counterclockwise starting at vector a.
If 0 < 6ab < 180, then Apoplp2 has positive orientation; otherwise (180 < Oab < 360)
the triangle has negative orientation.

Vectors a and b assume one of four possible configurations (Figure 4.6). In cases I
and 3 we have 0 < Oab < 180, and in cases 2 and 4 we have 180 < 0ab < 360; in cases I
and 2 the positive x-axis pierces the angle 0ab, and in cases 3 and 4 it does not. The four
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(a) (b)

Figure 4.5: Triangle is (a) positively oriented and (b) negatively oriented.
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Figure 4.6: The four configurations relevant for deciding a triangle's orientation.

possible configurations correspond to four possible ranges in which the value Q = Ob- a
lies:

To decide the orientation of the triangle, we could compute Q = Ob- a and then
answer based on which of the four ranges Q lies in. A better way makes use of the
observation that sin(Q) has the same sign as the triangle's orientation. Since

sin(Ob - Oa) = sinfOb cOsOa - cOSOb sin Oa

cos Oa = -X
jaill

sin Oa = Ya
11aill

cos b = b'

we have

sin(Ob - 0a) = I (x AYb - XbYa)
ca tll It a i

Because the lengths 11all and Ijb Il are positive constants, it follows that

sign(sin(Ob - Oa)) = sign(xayb - XbYa)

Case Range of Q = Ob - 0. Orientation of ApopI p2 sin Q I

1 -360< Q<-180 + +

2 -180<Q<O0 - -

3 O<Q<180 + +

4 180<Q<360 1 - -

and
sin Ob= Yb

[jbjj
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Sec. 4.2 Points 73

Hence xayb- Xbya has the same sign as the triangle's orientation. In the next section we will
formulate this as a C++ function which reports the orientation of a triangle. It is noteworthy
that the expression xayb - xbya has a simple geometric interpretation: It equals the signed
area of the parallelogram with vertices 0, a, b, and a + b.

4.2 Points

4.2.1 The Point Class

The class Point contains data members x and y to store a point's coordinates. Its member
functions support such operations as classifying this point relative to a given line segment
and computing the point's distance from a given line. Additional member functions treat
this point as a vector: operator functions for performing vector arithmetic, and functions
which return polar angle and length.

class Point {

public:

double x;

double y;

Point(double -x = 0.0, double _y = 0.0);

Point operator+(Point&);

Point operator-(Point&);

friend Point operator*(double, Point&);

double operator[](int);

int operator==(Point&);

int operator!=(Point&);

int operator<(Point&);

int operator>(Point&);

int classify(Point&, Point&);

int classify(Edge&);

double polarAngle(void);

double length(void);

double distance(Edge&);

};

4.2.2 Constructors

The constructor initializes a new point with x and y coordinates:

Point::Point(double -x, double _y)

x(-x), y(Y)

If arguments are not provided, default arguments initialize the point to (0, 0).
A point can also be initialized with a second point. For example, the declaration

Point p (q) initializes a new point p with the same coordinates as point q. In this case,
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74 Chap. 4: Geometric Data Structures

initialization is performed by the default copy constructor (supplied by the C++ compiler),
which performs a member-wise copy.

4.2.3 Vector Arithmetic

Vector addition and vector subtraction are invoked by the operators + and -:

Point Point::operator+(Point &p)

return Point(x + p.x, y + p.y);

Point Point::operator-(Point &p)

return Point(x - p.x, y - p.y);

The scalar multiplication operator is made a friend of class Point, rather than a
member of the class, because its first operand is not of type Point. The operator is defined
as follows:

Point operator*(double a, Point &p)

return Point(s * p.x, s * p.y);

The operator[I memberreturns this point'sx-coordinate if called with coordinate
index 0, or its y-coordinate if called with 1:

double Point::operator[](int i)

return (i == 0) ? x : y;

4.2.4 Relational Operators

The relational operators = = and = are used to determine whether two points are equivalent:

int Point::operator==(Point &p)

return (x == p.x) && (y == p.y);

int Point::operator!=(Point &p)

return !(*this == p);

https://hemanthrajhemu.github.io



Operators < and > implement the lexicographic order relation in which point a is less
than point b if either (1) a.x < b.x or (2) a.x = b.x and a.y < b.y. Given two points, we
first compare their x-coordinates; if their x-coordinates are equal, we then compare their
y-coordinates. This is sometimes called the dictionary order relation because the same rule
orders two-letter words in a dictionary.

int Point::operator<(Point &p)

{
return ((x < p.x) 1 ((x == p.x) && (y < p.y)));

int Point::operator>(Point &p)

(
return ((x > p.x) | ((X == p.x) && (y > p.y)));

}

Infinitely many other orderings of the points in the plane are possible. Nonetheless,
it is convenient to use operators < and > to establish a canonical ordering since we will
often be storing points in dictionaries, and these operators can be used to help define the
necessary comparison functions.

Before turning to the remaining member functions of class Point, let us consider
the following simple example, which illustrates the use of Point objects. The function
orientation returns I if the three points it is handed are positively oriented, -I if they
are negatively oriented, or 0 if they are collinear. The function implements the method
explained at the end of the previous section.

int orientation(Point &pO, Point &pl, Point &p2)

{
Point a = p2 - pO;

Point b = p2 - p0;

double sa = a.x * b.y - b.x * a.y;

if (Sa > 0.0)
return 1;

if (sa < 0.0)
return -1;

return 0;

4.2.5 Point-Line Classification

One important operation is that of classifying a point relative to a directed line segment. The
operation reports whether the point lies to the left or right of the directed line segment; and
if neither, whether the point lies beyond the directed line segment's destination or behind
its origin; and if neither of these, whether it coincides with the origin, coincides with the
destination, or lies between them. The directed line segment effectively partitions the plane
into seven non-overlapping regions, and the operation reports in which region the point lies
(Figure 4.7).

Sec. 4.2 Points 75
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Beyond -

Left -'

Between Destination

Behind, Origin Right

Figure 4.7: Partition of the plane into seven regions by a directed line segment.

Member function classify is used to classify this point relative to the directed

line segment PoPI from p0 to pi. It returns an enumeration value indicating the point's
classification:

enum { LEFT, RIGHT, BEYOND, BEHIND, BETWEEN, ORIGIN, DESTINATION 1;

int Point::classify(Point &pO, Point &pl)

Point p2 = *this;

Point a = pl - p0;

Point b = p2 - p0;
double sa = a.x * b.y - b.x * a.y;
if (sa > 0.0)

return LEFT;

if (sa < 0.0)
return RIGHT;

if ((a.x * b.x < 0.0) (a.y * b.y < 0.0))

return BEHIND;

if (a.length() < b.lengtho)
return BEYOND;

if (p0 == p2)
return ORIGIN;

if (pl == p2)
return DESTINATION

return BETWEEN;

}

The orientation of points p0, p1, and p2 is first used to decide whether point p2 lies to

the left of, to the right of, or collinear with p In the last case, additional calculations are
needed. If vectors aspl -p0 and b=p2 -pO point in opposite directions, then point p2 lies

behind directed segment p If vector a is shorter than vector b, then p2 lies beyond .
Otherwise p2 is compared to p0 and pl to decide whether it coincides with one of these
two endpoints or lies between them.

A second version of member function classify, which is passed an edge rather
than a pair of points, is provided for convenience:

int Point::classify(Edge &e)

{
return classify(e.org, e.dest);

I
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Point-line classification will be used frequently throughout this book. In some appli-
cations a more coarse classification suffices (such as deciding whether a point lies to the left
of a given directed line segment). Other applications will make full use of this classification
scheme.

4.2.6 Polar Coordinates

The polar coordinate system provides a second frame of reference for fixing positions in
the plane. Originating from the origin 0 is a polar axis, a rightward-pointing horizontal ray
as in Figure 4.8. A point a is represented by the pair (ra, 6a). Regarding point a as a vector
originating at the origin, ra is its length and 0a its polar angle (the angle that a makes with
the polar axis, measured in counterclockwise rotation).

The correspondence between pairs (ra, Ga) and points is not one to one; many pairs
can represent the same point. The pair (0, 0) corresponds to the origin for every value of S.
Moreover, (r, 0 + 360k) corresponds to the same point as k ranges over the integers.

Points can be represented in Cartesian coordinates or in polar coordinates, and it is
sometimes necessary to switch from one coordinate system to the other. As evident in
Figure 4.8, the two equations

x = rcosG, y = rsinG

transform a point from polar coordinates (r, 0) into Cartesian coordinates (x, y).
To transform back, the distance coordinate r is given by

r= y

To express polar angle 0 as a function of x and y, observe that the relation tan 0 = Y holds,
from which it follows that

Iy
0 =tan- -, x =A0 [4.1]

x
To use Equation 4.1 in function polarAngle, it is necessary to distinguish between the
quadrants of the plane and to handle the case in which x equals zero:

double Point: :polarAngle (void)

{
if ((x == 0.0) && (y == 0.0))

return -1.0;

if (x == 0.0)

return ((y > 0.0) ? 90 : 270);

Figure 4.8: Point p is described by polar coordi-
nates (r. 6) and Cartesian coordinates (x, y).

Sec. 4.2 Points 77
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double theta = atan(y / x); // in radians

theta *= 360 / (2 * 3.1415926); // convert to degrees

if (x > 0.0) // quadrants 1 and 4

return ((y >= 0.0) ? theta : 360 + theta);

else // quadrants 2 and 3

return (180 + theta);

}

Note that function polarAngle returns -1.0 if this vector is the zero vector (it
returns a nonnegative value otherwise). This will be used later to simplify the definition of
comparison functions based on polar angle.

Member function length returns the length of this vector:

double Point::length(void)

{
return sqrt(x*x + y*y);

Member function distance returns the signed distance from this point to an edge. We
will define the function in subsection 4.5.3.

4.3 Polygons

Polygons are fascinating-surprisingly so, given how simple they are in concept. In this
section we present basic definitions and concepts for talking about polygons and tools for
handling them.

4.3.1 What Are Polygons?

A polygon is a closed curve in the plane composed of straight line segments. The segments
are called the edges or sides of the polygon, and the endpoints where two segments meet are
called its vertices. The number of vertices (or, equivalently, sides) that a polygon possesses
is its size. For brevity, we will often use n-gon to mean a polygon of size n, and IPi to
denote the size of some polygon P.

A polygon is simple if it does not cross itself. A simple polygon encloses a connected
region of the plane, referred to as its interior. The unbounded region surrounding a simple
polygon forms its exterior, and the set of points lying on the polygon itself forms its
boundary. In this book we will take polygon to mean simple filled polygon: the union of
the boundary and interior of a simple polygon. To say, for instance, that a point lies in a
polygon means that the point belongs either to the (simple) polygon's boundary or interior.

Vertices are ordered cyclically around a polygon boundary. Two vertices that are the
endpoints of a common edge are neighbors and are said to be adjacent to one another. A
vertex's clockwise neighbor is called its successor, and its counterclockwise neighbor its
predecessor. A vertex chain, or simply chain, is a section of a polygon boundary. Polygon
traversal involves moving along a chain from vertex to adjacent vertex, in either clockwise
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Sec. 4.3 Polygons

or counterclockwise rotation. Traversal often proceeds full circle around the entire polygon
boundary, such as when it is necessary to visit every vertex.

The vertices of a polygon are classified as convex or reflex. A vertex is convex
if the interior angle at the vertex-through the polygon interior-measures less than or
equal to 180 degrees. A vertex is reflex otherwise (its interior angle measures greater than
180 degrees).

A line segment between any two nonadjacent vertices is called a diagonal. A diagonal
is called a chord or internal diagonal if it lies in the polygon, not crossing the polygon's
exterior. Adding a chord to a polygon splits it into smaller subpolygons. Figure 4.9
illustrates some of the notions we have covered relating to polygons.

It is sometimes convenient to regard a point or a line segment as a degenerate polygon.
A 1-gon consists of a single vertex and a single zero-length edge that connects the vertex
to itself. A 2-gon consists of two vertices and two coincident edges that connect the two
vertices. Among other benefits, the use of degenerate polygons often simplifies polygon
construction: Starting with a 1-gon, we insert a second vertex to form a 2-gon, followed by
additional vertices to form conventional polygons of size 3 or greater. By regarding points
and line segments as polygons, the initial stages of the process are no different in kind from
later stages: Every stage involves the manipulation of polygons.

4.3.2 Convex Polygons

A region in the plane is convex if for any two points in the region, the line segment between
the two points lies in the region. In Figure 4.9, polygon (a) is convex whereas polygon (b)
is not (since the line segment Tq leaves the polygon). Note that the boundary of a convex
polygon is not convex, but the interior of a convex polygon is.

Convexity has a number of properties that make convex polygons easier to work with
than arbitrary polygons. For example, every diagonal of a convex polygon is a chord. In
addition, every vertex of a convex polygon is convex. (In a nonconvex polygon, at least one
vertex is reflex.) From this it follows that a clockwise traversal of a convex polygon either
continues straight or turns right at every vertex.

Vertices
(a) (b)

Figure 4.9: Basic concepts involving polygons.
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Another property is that the intersection A n B of any two convex regions A and B is
convex. (To see why, suppose that p and q are any two points in A n B. Since both p and q
lie in A and A is convex, line segment pq lies in A. Similarly, Tq lies in B. Hence Tq lies in
A n B. so A n B must be convex.) It follows that the intersection of two convex polygons is
convex-in fact, a (possibly degenerate) convex polygon. Moreover, since a line is convex,
the intersection of a line and a convex polygon must be convex: a line segment, or a single
point if the line merely grazes the polygon at some vertex. For these and other properties,
we will often work with convex polygons in this book.

4.3.3 The Vertex Class

We will represent a polygon by its cycle of vertices, stored in a circular doubly linked
list. Each node corresponds to a vertex and links to its two neighbors. By following links
we can traverse the polygon boundary in either sense of rotation, and by inserting and
removing nodes-and updating links generally-we can create and dynamically modify
the polygon.

The classes Vertex and Polygon support this scheme. The polygon is stored in
a circular doubly linked list of Vertex objects. Since a vertex of a polygon behaves both
like a point in the plane and like a node in a linked list, class Vertex is derived from both
class Point and class Node. The Polygon class contains a data member which points
to some vertex of the linked list representing the polygon. Class Polygon serves as the
public interface for polygons.

Class Vertex inherits data members -next and _prev from base class Node, and
x and y from base class Point. By convention, - next points to this vertex's successor
(its clockwise neighbor), and _prev to this vertex's predecessor (its counterclockwise
neighbor).

class Vertex: public Node, public Point {
public:

Vertex(double x, double y);
Vertex(Point&);
Vertex *cw(void);
Vertex *ccw(void);
Vertex *neighbor(int rotation);
Point point(void);
Vertex *insert(Vertex*);
Vertex *remove(void);
void splice (Vertex*);
Vertex *split (Vertex*);
friend class Polygon;

A Vertex object can be initialized from a point or from x- and y-coordinates:

Vertex: :Vertex(double x, double y)
Point(x,y)

}
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Sec. 4.3 Polygons 81

Vertex::Vertex(Point &p)

Point (p)

Member functions cw and ccw yield this vertex's successor and predecessor, respec-
tively:

Vertex *Vertex::cw(void)

return (Vertex*)_next;

Vertex *Vertex::ccw(void)

return (Vertex*)_prev;

Member function neighbor returns whichever neighbor is specified by parameter
rotation, one of the enumeration values CLOCKWISE or COUNTER-CLOCKWISE:

Vertex *Vertex::neighbor(int rotation)

return ((rotation == CLOCKWISE) ? cw() : ccwo);

Member function point returns the point in the plane where this vertex lies:

Point Vertex::point(void)

return *((Point*)this);

Member functions insert, remove, and splice correspond to their counterparts
defined in base class Node:

Vertex *Vertex::insert(Vertex *v)

return (Vertex *)(Node::insert(v));

Vertex *Vertex::remove(void)

return (Vertex *)(Node::removeo);

void Vertex::splice(Vertex *b)

Node::splice(b);
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Note that remove and insert cast their return values to type pointer-to-Vertex
before returning. Explicit type coersion is needed here because C++ will not automatically
convert a pointer to the base class to point to a derived class object. The reason is that the
C++ compiler cannot be sure that there is a derived class object present to be pointed to,
since the base class object need not be part of a derived class object. (C++ will, on the other
hand, automatically convert a pointer to the derived class to point to a base class object
since every derived class object includes within itself a base class object.)

The last member function, Vertex: : split, will be defined shortly.

4.3.4 The Polygon Class

A polygon is represented by a Polygon object. The class contains two data members.
The first, _v, points to some vertex of the polygon, the current position of the polygon's
window. Most operations on polygons refer either to this window or to the vertex in the
window. We will sometimes refer to the vertex in the window as the current vertex. The
second data member, _size, holds the size of the polygon:

class Polygon
private:

Vertex *-v;
int -size;
void resize(void);

public:

Polygon (void);
Polygon ( Polygon&);
Polygon (Vertex*);
-Polygon(void);
Vertex *v(void);
int size(void);
Point point (void);
Edge edge(void);
Vertex *cw(void);
Vertex *ccw(void);
Vertex *neighbor(int rotation);
Vertex *advance(int rotation);
Vertex *setV(Vertex*);
Vertex *insert(Point&);
void remove(void);
Polygon *split (Vertex*);

CONSTRUCTORS AND DESTRUCTORS
There are several constructors for class Polygon. The constructor that takes no

arguments initializes an empty polygon:

Polygon :Polygon(void)
_v(NULL), -size(O)
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The copy constructor takes some polygon p and initializes a new polygon with p. It
performs a deep copy, duplicating the linked list in which p is stored. The new polygon's
window is placed over the vertex corresponding to p's current vertex:

Polygon::Polygon(Polygon &p)

{
size = p.-size;

if Size == 0)
v = NULL;

else {
-v = new Vertex(p.point());
for (int i = 1; i < -size; i++) {

p.advance(CLOCKWISE);

_v = _v->insert(new Vertex(p.point(o));

}
p.advance(CLOCKWISE);

v = _v->cwO;

}

The third constructor initializes a polygon with a circular doubly linked list of vertices:

Polygon::Polygon(Vertex *v)
_v(v)

{
resize 0;

}

The constuctor calls private member function resize to update member -si z e.
In general, resize must be called whenever a vertex chain of unknown length is added to
or removed from a polygon. Function resize is defined as follows:

void Polygon::resize(void)

{
if (-v == NULL)

size = 0;
else (

Vertex *v = -v->cw();

for (_size = 1; v != -v; ++size, v = v->cw())

The destructor Polygon deallocates this polygon's vertices before deleting the
Polygon object itself:

Polygon::-Polygon(void)

{
if (-v) {

Vertex *w = -v->cwO;
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while (_ !- w) (
delete w->removeo;

V = y--cw);

I
delete __;

ACCESS FUNCTIONS
The next several member functions access data about this polygon. Function v returns

this polygon's current vertex, and function size this polygon's size:

Vertex *Polygon::v(void)

return v;

int Polygon::size(void)

return size;

The pointer returned by member function v can be used as an additional window into the
polygon, to supplement the polygon's implicit window. Some applications will require the
simultaneous use of several windows into the same polygon-the sole window maintained
implicitly by the class does not always suffice.

Member function point returns the point in the plane where the current vertex lies.
Member function edge returns the current edge. The current edge originates at the current
vertex and terminates at the current vertex's successor:

Point Polygon::point(void)

{
return y->pointo;

Edge Polygon::edge(void)

return Edge(pointo, v->cw()->point0);

We will define the Edge class in the next section.
Member functions cw and ccw return the current vertex's successor and predeces-

sor without moving the window, and neighbor returns the current vertex's successor
or predecessor, depending on the argument it is called with (CLOCKWISE or
COUNTER-CLOCKWISE):

Vertex *Polygon::cw(void)

{

return v->cw();
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Vertex *Polygon::ccw(void)

I
return -v->ccw();

}

Vertex *Polygon::neighbor(int rotation)

{
return _v->neighbor(rotation);

UPDATE FUNCTIONS

Member functions advance and setV move the window over a different vertex;
advance moves it to the current vertex's successor or predecessor, as specified by the
argument:

Vertex *Polygon::advance(int rotation)

return _v = _v->neighbor(rotation);

}

Member function setV moves the window over the vertex v supplied as an argument:

Vertex *Polygon::setV(Vertex *v)

return -v = v;

It is the application's responsibility to ensure that v is a vertex of this polygon.
Member function insert inserts a new vertex after the current vertex and then

moves the window over the new vertex:

Vertex *Polygon::insert(Point &p)

{
if (-size++ == 0)

-v = new Vertex(p);

else

_v = _v->insert(new Vertex(p));

return _v;

Member function remove removes the current vertex. The window is moved over
the predecessor, or is undefined if the polygon is now empty:

void Polygon::remove(void)

{
Vertex *v = -V;

_v = (--_size == 0) ? NULL : -v->ccwCI;

delete v->removeo;

https://hemanthrajhemu.github.io



Chap. 4: Geometric Data Structures

SPLITTING POLYGONS
Polygon splitting involves subdividing a polygon into two smaller subpolygons. The

cut is made along some chord. To split along chord al, we first insert a duplicate of vertex a
after a and a duplicate of vertex b before b (call the duplicates ap and bp). Then we splice a
and bp. The process is illustrated in Figure 4.10.

Member function Polygon: :split is defined in terms of Vertex: :split.
The latter function partitions a polygon along the chord connecting this vertex (which plays
the role of a) to vertex b. It returns a pointer to vertex bp, the duplicate of b:

Vertex *Vertex::split(Vertex *b)

{ // insert bp before vertex b

Vertex *bp = b->ccw0->insert(new Vertex(b->pointo));

insert(new Vertex(pointo)); // insert ap after this vertex

splice(bp);

return bp;

}

Function Po lygon: : split splits this polygon along the chord connecting its cur-
rent vertex to vertex b. It returns a pointer to the new polygon, whose window is placed
over bp, the duplicate of b. This polygon's window is not moved:

Polygon *Polygon::split(Vertex *b)

{
Vertex *bp = _v->split(b);

resizeo;
return new Polygon(bp);

}

Function Polygon: : split must be used with some care. If vertex b is the suc-
cessor to the current vertex -v, the operation leaves this polygon unchanged. If the cut
occurs along a diagonal that is not a chord, one or both of the resulting "polygons" may
self-cross. If vertices b and _v belong to different polygons, the split operation joins the
two polygons by two coincident edges that connect the two vertices.

4.3.5 Point Enclosure in a Convex Polygon

In this and the following subsection, we present two simple programs involving polygons.
Program pointInConvexPolygon is handed a point s and convex polygon p, and

ap bp
a b

Figure 4.10: Splitting a polygon along chord ab. The current vertices (in each polygon's window) are circled.
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returns TRUE just if the point lies in (the interior or boundary of) polygon p:

bool pointInConvexPolygon(Point &s, Polygon &p)

(
if (p.size() == 1)

return (a == p.point(o);

if (p.size() == 2) 1

int c = s.classify(p.edge());

return ((c==BETWEEN) || (c==ORIGIN) | (c==DESTINATION));

}
Vertex *org =p.v();

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE))

if (s.classify(p.edgefl) == LEFT)

p.setV(org);

return FALSE;

}
return TRUE;

}

The preceding function first handles the special cases in which polygon p is a 1-gon or a 2-
gon. In the general case, the algorithm traverses the polygon boundary-moves the window
from vertex to adjecent vertex-while comparing point s to each edge in turn. Since p is
assumed to be convex, point s lies outside the polygon only if s lies to the left of some
edge. Note that the program restores the initial position of p's window upon returning.

4.3.6 Finding the Least Vertex in a Polygon

The following function is passed a polygon p and a comparison function cmp, and then
finds the least vertex in p. Here least vertex means whichever vertex is less than the others
under the linear ordering of points given by cmp. Function leastVertex moves p's
window over the least vertex and returns the vertex:

Vertex *leastvertex(Polygon &p, int (*cmp)(Point*,Point*))
(

Vertex *bestV = p.vo;

p.advance(CLOCKWISE);

for (int i = 1; i < p.sizeo; p.advance(CLOCKWISE), i+t)

if ((*cmp)(p.vo, bestV) < 0)

bestV = p.vo;

p.setV(bestV);

return bestV;

}

For instance, to find the leftmost vertex in a polygon, we call leastVertex with the
following comparison function:

int leftToRightCmp(Point *a, Point *b)

{
if (*a < *b) return -1;

if (*a > *b) return 1;

return 0;
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We use the following comparison function to find the rightmost vertex:

int rightToLeftCmp(Point *a, Point *b)

return leftToRightCmp(b, a);

}

We will use functions pointInConvexPolygon and leastVertex often in
this book. We will also use the two comparison functions defined here, as well as others to
be defined later as the need arises.

4.4 Edges

Most every algorithm we will cover involves lines in one form or another. The line seg-
ment popi consists of the endpoints po and pi together with the points that lie between
them. When the order of po and pi is important, we speak of the directed line segment popjI.
Endpoint pa is the origin of the directed line segment, and pi the destination. We will usu-
ally refer to a directed line segment as an edge when it is the side of some polygon; the
edge is directed so that the polygon's interior lies to its right. An infinite (directed) line
is determined by two points and is directed from the first point to the second. A ray is a
semi-infinite line starting at the origin and passing through the destination.

4.4.1 The Edge Class

The Edge class will be used to represent all forms of lines. The class is defined as follows:

class Edge {

public:
Point org;

Point dest;

Edge(Point &_org, Point &_dest);

Edge(void);

Edge &rot(void);

Edge &flip(void);

Point point(double);

int intersect(Edge&, double&);

int cross(Edge&, double&);

bool isVertical(void);

double slope(void);

double y(double);

I;

An edge's origin and destination endpoints are stored in data members org and dest,
respectively. The Edge constructor initializes these data members:

Edge::Edge(Point &-org, Point &-dest)

org(_org), dest(_dest)

}
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It is also useful to have a constructor for class Edge which takes no arguments:

Edge::Edge(void) :

org(Point(O,O)), org(Point(1,0))

)

4.4.2 Edge Rotations

An edge rotation pivots an edge 90 degrees clockwise around its midpoint. Two suc-
cessive edge rotations are called an edge flip since they reverse the direction of an edge.
Three successive rotations effectively pivot an edge 90 degrees counterclockwise around
its midpoint. Four successive edge rotations leave an edge unchanged. This is illustrated
in Figure 4.11.

Figure 4.12 shows how we rotate edge al into edge cd. Where vector b - a = (x, y),
the vectorn, perpendicularto vectorb-a, is given by n = (y, -x). The midpointm between
endpoints a and b is given by m = 2 (a + b). Points c and d are then given by c = m-2 n
and d = m + n. Rotation is implemented by member function rot as follows:

Edge &Edge::rot(void)

Point m = 0.5 * (org + dest);
Point v = dest - org;
Point n(v.y, -v.x);
org = m - 0.5 * n;

dest = a + 0.5 *n;

return *this;

?

Observe that function rot is destructive: It changes the current edge instead of
creating a new edge. The function returns a reference to this edge so calls to rot can be
readily employed in more complex expressions. This permits, for example, the following
concise definition of member function f lip, for flipping the direction of this edge:

Edge &Edge::flip(void)

{
return rot().rottl;

I

e3
C -

e,

Figure 4.11: Edge ei is the result of applying i suc-
a cessive edge rotations to edge eo.sS iS v
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d

Figure 4.12: Vectors involved in rotating edge ab.
The rotated edge cd has endpoints c = m - n and

d = m + 2 n.
2

Within the definition of member function flip, the first call to rot (to the left of the
member-access operator) rotates this edge; the second call to rot then rotates this edge
once again.

4.4.3 Finding the Intersection of Two Lines

The infinite line ab through points a and b can be written in parametric form as

P(t) = a + t(b-a) [4.2]

where the value of parameter t ranges over the real numbers. (If the value of t is restricted
to the range 0 < t < 1, Equation 4.2 represents the line segment ab.) The parametric
form of a line establishes a correspondence between the real numbers and the points on the
line. Figure 4.13 shows the points on an infinite line corresponding to various values of
parameter t.

Member functions Edge: : intersect and Edge: :point are designed to work
together to find the intersection point of two infinite lines e and f . Where e and f are Edge
objects, the code fragment

double t;

Point p;
if (e.intersect(f, t) == SKEW)

p = e.point(t);

assigns t the parametric value (along line e) of the point at which lines e and f intersect, and
then sets p to this point. Function intersect returns the enumeration value SKEW if the
infinite lines cross at a point, COLLINEAR if the lines are collinear, or PARALLEL if they
are parallel. Function point is handed a parametric value t and returns the corresponding
point. The task is performed by two coordinated functions, rather than by a single function,

P(0.5)- P(2)

P(-O.5) b= P(1)
~a =P(O)

Figure 4.13: Various points on the line through points a and b.
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because we are sometimes interested only in the parametric value of an intersection point
rather than in the intersection point itself.

The implementation of member function point is simple-the parametric value t
is substituted into the parametric equation for this line:

Point Edge: :point(double t)

return Point(org + t * (dest - org));

The implementation of member function intersect relies on the notion of the
dot product a - b of two vectors a = (xa, ya) and b = (Xb, Yb), which is defined by
a b = XaXb + YaYb. The dot product has a number of important properties, including the
following basic ones:

1. Where a, b, and c are vectors, we have a b = b a and

2. a (b+c) =a-b+a-c= (b+c)-a.

3. Where s is a scalar, (sa) . b = s(a - b) and a . (sb) = s(a b).

4. If a is the zero vector, then a . a = 0; otherwise a . a > O.

5. IlaI12 = a -a.

Using these basic properties, we can show the following property on which our line-
intersection technique depends: Two vectors a and b are perpendicular if and only if a b = 0.
To see why this is true, observe that a and b are perpendicular if and only if

Ila -bli = Ila + bll

This is illustrated in Figure 4.14a. Squaring both sides yields

(a - b) - (a - b) = (a + b) . (a + b)

Using the aforementioned properties 1 through 3, this expands to

a a - 2a . b + b -b = a a + 2a . b + b b

Making cancellations yields
4a b =0

or
a -b=0

Hence a - b = 0 if and only if vectors a and b are perpendicular.
We can say even more. If the angle between vectors a and b measures less than

90 degrees, then Ia - bll < Ia + bli (Figure 4.14b). The same sort of argument can be
used to show that this is equivalent to the condition a b > 0. It can be shown similarly
that the angle between a and b measures greater than 90 degrees if and only if a b < 0
(Figure 4.14c). These results are summarized by the following theorem:
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b
Ila - bil

a

1//

-D
(a) (b) (c)

Figure 4.14: The angle between vectors a and b measures (a) 90 degrees if ha-bll = ha + bhl, (b)
less than 90 if ha - bil < Ia + bhh, and (c) greater than 90 if Ia - bhl > Ia + bil.

Theorem 2 (Dot Product Theorem) Let a and b be vectors, and let 0 be the angle between
them. Then

a * b } Oif and only if { | } 90 degrees.

The dot product theorem can be used to find the intersection point of two lines ab

and d. Where b is described by P(t) = a + t(b - a), we seek the value of t such
that lines ab and cd cross at point P(t). Since vector P(t) - c is to coincide with

line cd , both P(t) - c and ed must be perpendicular to the same vector n. Therefore,
using the dot product theorem, we wish to solve for t in the equation

n (P(t)-c) = 0 [4.3]

Since P(t) = a + t (b - a), we can rewrite Equation 4.3 as

n * ((a +t(b-a)) -c) =0

Using the basic properties of dot product yields

n (a - c) + n * (t(b - a)) = 0

Then distributing out t gives us

n (a-c)+t[n-(b-a)] =0

From this it follows that

t = An . (a c) (b-a) 0 0 [4.41
n-(b-a)'

Equation 4.4 holds if and only if infinite lines ab and cd are skew, implying
that they intersect in a single point. If the two lines are parallel or coincident, the fact is
indicated by the condition that n . (b - a) = 0, since vectors b - a and d - c are then both
perpendicular to the same vector n. The following implementation of member function
intersect results:

Ila -
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enum ( COLLINZAR, PARALLEL, SKEW, SKZWCROSS, SKEWNOCROSS );

int Edge::intersect(Edge &e, double &t)

{
Point a = org;

Point b = dest;

Point c = e.org;

Point d = e.dest;

Point n = Point((d-c).y, (c-d).x);

double denom = dotProduct(n, b-a);

if (denom == 0.0) {

int aclass = org.classify(e);

if ((aclass==LEFT) || (aclass==RIGHT))

return PARALLEL;

else

return COLLINEAR;

)
double num = dotProduct(n, a-c);

t = -nun / denom;

return SKEW;

The implementation of function dotProduct is straightforward:

double dotProduct(Point &p, Point &q)

return (p.x * q.x + p.y * q.y);

}

Member function Edge: :cross returns SKEW-CROSS if and only if this line seg-
ment intersects line segment e. If the line segments do intersect, the parametric value
along this line segment corresponding to the point of intersection is returned through
reference parameter t. Otherwise the function returns COLLINEAR, PARALLEL, or
SKEW-NO-CROSS, as appropriate:

int Edge::cross(Edge &e, double &t)

{
double s;

int crossType = e.intersect(*this, s);

if ((crossType==COLLINEJR) I1 (crossType==PARALLEL))

return crossType;

if ((s < 0.0) 11 (a > 1.0))

return SKEW-NO-CROSS;

intersect(e, t);

if ((0.0 <= t) && (t <= 1.0))

return SKEWCROSS;

else

return SKEWNOCROSS;
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4.4.4 Distance from a Point to a Line

The definition of function Point:: distance illustrates some of the ideas we have just
covered. This member function of class Point is passed an edge e, and it returns the
signed distance from this point to edge e. Here the distance from point p to edge e equals
the minimum distance from p to any point along the infinite line determined by e. The
signed distance is positive if p lies to the right of e, negative if p lies to the left of e, and
zero if p is collinear with e.

Member function distance is defined as follows:

double Point::distance(Edge &e)

{
Edge ab = e;

ab.flip().roto; I/ rotate

Point n(ab.dest - ab.org);

n = (1.0 / n.lengtho) * n;

Edge f(*this, *this + n);

double t;

f.intersect(e, t);

ab 90 degrees counter-clockwise

// n = vector perpendicular to e
// normalize n

// f = n, positioned at this point

// t = signed distance along f

// at which f crosses edge e

The function first obtains the unit-length vector n, such that n is perpendicular to
edge e and n points to the left of e. It then translates n such that n's origin coincides with
this point, yielding edge f . Finally, the function computes the parametric value of edge f 's
intersection with edge e. Since f is perpendicular to e, is of unit length, and originates at
this point, parametric value t equals the signed distance from this point to edge e.

4.4.5 Additional Utilities

The last three member functions of class .Edge are provided for convenience. Member
function isVertical returns TRUE only if this edge is vertical:

bool Edge::isVertical(void)

{
return (org.x == dest.x);

Member function slope returns the slope of this edge, or DBL-MAX if this edge is
vertical:

double Edge::slope(void)

{

if (org.x != dest.x)

return (dest.y - org.y) / (dest.x - org.x);

return DBL-MAX;

}

return t;

)
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Member function y is passed a value x and returns the value y such that (x, y) is a
point on this infinite line. The function is defined only if this edge is not vertical:

double Edge::y(double x)

return slope() * (x - org.x) + org.Y;

4.5 Geometric Objects in Space

Although we will work mainly in the plane, a few sections of this book will involve geometric
objects in three-dimensional space. In this section we will present the classes Point3D,
Triangle3D, and Edge3D for manipulating points, triangles, and edges lying in space.
The class definitions will be bare bones, providing little more than the functionality we will
need. Moreover, for the sake of conciseness, many of the member functions will be defined
within the definition of their classes and will be described tersely. This should not hinder
clarity since most of the relevant concepts have already been explained in the setting of the
two-dimensional plane; new concepts will be discussed in more detail.

4.5.1 Points

Under the Cartesian coordinate system, a point in space is represented by an ordered triple
(x, y, z) of real numbers. The Point3D class contains data members x, y, and z to hold
a point's coordinates, a constructor, operator functions for the basic vector operations, the
operator function [ ] for coordinate access, a member function for computing dot product,
and one for classifying a point relative to a plane:

class Point3D {

public:

double x;
double y;

double z;

Point3D(double -x, double _y, double -z)

X(-x), y(-y), z(-z) {}
Point3D(void)

{}
Point3D operator+(Point3D &p)

{ return Point3D(x + p.x, y + p.y, z + p.z); }
Point3D operator-(Point3D &p)

I return Point3D(x - p.x, y - p.y, z - p.z); }
friend Point3D operator*(double, Point3D &);

int operator==(Point3D &p)
C return ((x == p.x) && (y == p.y) && (z == p.z)); I

int operator!=(Point3D &p)

{ return !(*this == p); ?
double operator~l(int i)

{ return ((i == 0) ? x : ((i == 1) ? y : z)); }
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double dotProduct(Point3D &p)

{ return (x*p.x + y*p.y + z*p.z); }

int classify(Triangle3D &t);

};

Scalar multiplication is implemented like this:

Point3D operator*(double s, Point3D &p)

{
return Point3D(s * p.x, S * p.y, s * p.z);

}

Member function classif y reports which side of the plane determined by triangle t
this point lies in. Its definition will be given in the following subsection.

4.5.2 Triangles

A triangle is determined by its three vertices. For working with triangles in space, it is useful
to keep track of each triangle's bounding box and normal vector, as well as its vertices. The
bounding box of a geometric object is the smallest box that contains the object, where the
edges of the box are parallel to the major axes. Figure 4.15 gives some examples.

A vector perpendicular to a given plane P is called a normal to P. Given any three
non-collinear points po, pl, and p2 lying in plane P, a normal to P is given by the cross
product vector a x b, where vectors a = pi -po and b = p,-po. Letting a = (Xa, Ya, Za)
and b = (Xb, yb, zb), the cross product vector is defined by

a x b = (Yazb - ZaYb, ZaXb -XaZb, XaYb - YaXb) [4.5]

The cross product of vectors a and b is returned by the following function:

Point3D crossProduct(Point3D &a, Point3D &b)
{

return Point3D(a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x);

}

/
(a) (b) (c)

Figure 4.15: Bounding box of(a) a blob in the plane, (b) a triangle in the plane, and (c) a triangle in space.
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To show that the cross product vector a x b is perpendicular to the plane spanned by
vectors a and b, we need only show that a . (a x b) = 0 and b. (a x b) = 0. We have

a (a x b) = (Xa, Ya., Za) * (YaZb - ZaYb, ZaXb - XaZb, XaYb - YaXb)

=0

since all terms cancel. That b- (a x b) = 0 is shown similarly.
The direction of the cross product vector is shown in Figure 4.16. When viewed from

point a x b in space, triangle Arab is positively oriented. The normal vector having the
same length but opposite direction is given by -a x b = b x a.

Observe that if vectors a and b lie in the xy-plane, then the length of their cross
product is Ia x bli = IXaYb - YaXbl, the area of the parallelogram with vertices 0, a, b,
and a + b.

Having discussed bounding boxes and normal vectors, wecan define the Triangle3D
class:

class Triangle3D (
private:

Point3D -v[3J;

Edge3D _boundingBox;

Point3D -n;

public:

int id;

int mark;

Triangle3D(Point3D &vO, Point3D &vl, Point3D &v2, int id);

Triangle3D(void)

Point3D operatort](int i)

( return -v[iI; 1

Edge3D boundingBox()
{ return _boundingBox; }

Point3D n(void)

{ return -n;

double length(void)
{ return sqrt(x*x + y*y + z*z);

};

ax

LAa =-a xu andb.
Figure 4.16: The cross product a x b of vectors a
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This triangle's vertices are stored in array _v. Its bounding box is represented by the edge
_boundingBox extending from the bounding box's minimum-coordinate corner to its
maximum-coordinate corner. The unit normal to the triangle, stored in data member _n,
equals the cross product vector (_-v [ 1] -v [ 0 ] ) x (-v [ 2 ] -- v [ 0 ] ), divided by its
length. Data member id is an identifier for this triangle.

The first constructor Triangle3 makes use of the macro functions max3 and min3
for finding the largest and smallest of three numbers:

#define min3(A,B,C) \\

((A)<(B) ? ((A)<(C)?(A):(C)) : ((B)<(C)?(B):(C)))

#define max3MA,BC) \

((A)>(B) ? ((A)>(C)?(A):(C)) : ((B)>(C)?(B):(CM)

Triangie3D::Triangle3D(Point3D &vO, Point3D &vl, Point3D &v2,

int _id)

id = _id;

mark = 0;

-vCO] = vO;

v1]0= vi;

v121 = v2;

-boundingBox.org.x = min3(vO.x, vl.x, v2.x);

-boundingBox.org.y = min3(vO.y, vl.y, v2.y);

-boundingBox.org.z = min3(vO.z, vl.z, v2.z);

_boundingBox.dest.x = max3(vO.x, vl.x, v2.x);

_boundingBox.dest.y = max3(vO.y, vl.y, v2.y);

boundingBox.dest.z = -ax3(vO.z, vl.z, v2.z);

-n = crossProduct(vl - vO, v2 - v0);

-n = (1.0 / _n.lengtho) * -n;

The vertices of a Triangle3D object are accessed through operator [], which
is passed the index of the vertex (0, 1, or 2). For instance, where t is a Triangle3D
object, t [ 0 ) yields t's first vertex. The bounding box and the unit normal vector are
accessed through member functions boundingBox and n, respectively. The geometric
data members are declared private so the class can ensure self-consistency.

The plane determined by a triangle subdivides space into two half-spaces. The
half-space into which the triangle's normal vector points is called the triangle's positive
half-space since the triangle appears to be positively oriented when viewed from this half-
space. The other half-space is called the triangle's negative half-space.

With the definition of class Triangl e3 D in hand, we are in a position to define mem-
ber function Point3D: : classify. Recall that the function reports the half-space-
relative to a given triangle p-in which this point lies. The function returns POSITIVE
or NEGATIVE if this point lies in p's positive or negative half-space; it returns ON if this
point lies on the plane determined by p:

#define EPSILON1 1E-12

enum { POSITIVE, NEGATIVE, ON };
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int Point3::classify(Triangle3 &p)

{
Point3 v = *this - pE0];

double len = v.lengtho;

if (len == 0.0)

return ON;

v = (1.0 / len) * v;

double d = v.dotProduct(p.no);

if (d > EPSILON1)

return POSITIVE;

else if (d < -EPSILONI)

return NEGATIVE;

else

return ON;

Vectorv represents a directed line segment which originates at some point on the plane
(p [ O ] ) and terminates at the point to be classified (*this). The dot product theorem is
used to decide whether the angle between v and the plane's normal vector n is less than,
equal to, or greater than 90 degrees.

The function centers the plane of triangle tri within a slab of width 2 *EPSILON1.

A point which lies within this slab is considered to lie on the plane. This is intended to
avoid faulty decisions attributable to round-off, such as when a point on the plane appears
to lie off the plane due to limitations of representation.

4.5.3 Edges

The Edge3D class is defined as follows:

class Edge3D (

public:

Point3D org;

Point3D dest;

Edge3D(Point3D &_org, Point3D &_dest)

org(_org), dest(_dest) C)

Edge3D(void)

0)

int intersect(Triangle3D &p, double &t);

Point3D point(double t);

};

The first constructor initializes an edge with origin and destination endpoints, which are
stored in data members org and dest. Member functions intersect and point
play the same role as their counterparts in class Edge. Function intersect finds the
parametric value of the infinite line determined by this edge, at the point where the line
crosses the plane of triangle p. If the line and plane intersect at a point, the function
passes back the parametric value via reference parameter t and returns the enumeration
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value SKEW; otherwise it returns either PARALLEL or COLLINEAR. Like its counterpart
Edge: : intersect, member function intersect is implemented using Equation 4.4:

int Edge3D::intersect(Triangle3D &p, double &t)

{
Point3D a = org;
Point3D b = dest;
Point3D c = p[O]; // some point on the plane

Point3 n = p.no;
double denom = n.dotProduct(b - a);

if (denom == 0.0) {
int aclass = org.classify(p);
if (aclass!=ON)

return PARALLEL;

else
return COLLINEAR;

}
double num = n.dotProduct(a - c);

t = -nun I denom;

return SKEW;

Member function po int returns the point along this line corresponding to parametric
value t:

Point3D Edge3D::point(double t)

{
return org 4 t * (dest - org);

4.6 Finding the Intersection of a Line and a Triangle

In this section we solve a problem using some of the tools presented in this chapter. Our
solution to the problem-that of deciding whether a line pierces a triangle in space-will
prove useful later in this book.

A projection is a mapping from a higher-dimensional space into a lower-dimensional
space. One of its uses is to transform a problem from a higher-dimensional setting to an
equivalent problem in a lower-dimensional setting, where there are techniques to solve it.
Consider the problem of deciding whether a given infinite line intersects a given triangle p
in space. Figure 4.17a depicts one approach to this problem. First compute the point q
where the infinite line pierces the plane of triangle p. Then perpendicularly project both p
and q into the xy-plane, yielding triangle p' and point q'. The resulting problem in two
dimensions-that of deciding whether p' contains q'-is equivalent to the original problem:
The answer to the two-dimensional problem is yes if and only if the answer to the original
three-dimensional problem is yes. The advantage in applying this transformation is that the
two-dimensional problem is easier to solve than the original three-dimensional problem.
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y

(a) (b)

Figure 4.17: (a) Deciding whether a line pierces triangle p. (b) Both triangles project degenerately
to the same line segment.

Projection is a many-to-one mapping, and difficulties can arise when too much infor-
mation is lost. In Figure 4.1 7b, both triangles project (degenerately) to the same line segment
in the xy-plane. It is not hard to see why this two-dimensional problem is not equivalent to
the original problem. Given two triangles pi and p2 that project to the same line segment
and an infinite line e in space, the two three-dimensional problems that result-one involv-
ing e and pi, the other involving e and p2-transform to the same two-dimensional problem
in the xy-plane. Yet if e pierces (say) triangle pi but not triangle p2, the two-dimensional
problem must report a wrong answer in one of the two cases.

To save the algorithm, we test for degeneracy before projecting. A triangle p projects
to a line segment in the xy-plane if the triangle's normal vector n is perpendicular to the z-
axis. Before projecting, we perform this test; if n is perpendicular to the z-axis, we consider
projecting into the yz-plane instead; and if this too would be degenerate, we finally project
into the zx-plane. Since vector n cannot be perpendicular to all three axes, at least one of
the three projections proves non-degenerate.

The algorithm is implemented by the following function, whose return value-
PARALLEL, COLLINEAR, SKEW-CROSS, or SKEW-NO-CROSS-indicates the relation-
ship between infinite line e and triangle p. If the function returns either SKEW -CROSS,
indicating that the line pierces the triangle, or SKEW-NO -CROSS, indicating that the line
crosses the plane of the triangle without piercing the triangle itself, then the parametric
value of the intersection point along e is passed back through reference parameter t:

int lineTriangleintersect(Edge3D &e, Triangle3D &p, double &t)

{
Point3D q;

int aclass = e.intersect(p, t);
if ((aclass==PARALLEL) || (aclass==COLLINEAR))

return aclass;

q = e.point(t);

int h, v;
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if (p.n().dotProduct(Point3D(0,0,1)) !- 0.0) {

h = 0;

v = 1;

} else if (p.n().dotProduct(Point3D(1,0,0)) != 0.0) (

h = 1;

v = 2;

} else {

h = 2;

v = 0;

Polygon *pp = project(p, h, v);

Point qp = Point(q[h], qlv]);

int answer = pointlnConvexPolygon(qp, *pp);

delete pp;

return (answer ? SKEW-CROSS : SKEWNOCROSS);

)

The function call proj ec t (p, h, v) returns a polygon representing the projec-
tion of triangle p into the hv-plane. Arguments h and v are axis indices; for instance,
project (p, 0, 1) projects p into the xy-plane. Function project assumes that the
projection of triangle p is non-degenerate, so its projection is a triangle. The function is
defined as follows:

Polygon *project(Triangle3D &p, int h, int v)

{
// project vertices of triangle p

Point3D a;

Point pts[31;

for (nt i = 0; i < 3; i++) {
a = p.v(i);

pts[i] = Point(aEh], aEvl);

}

// insert first two projected vertices into polygon

Polygon *pp = new Polygon;

for (i = 0; i < 2; i++)

pp->insert(pts[iJ);

// insert third projected vertex into polygon

if (pts[2J.classify(pts[0], ptstl]) == LEFT)

pp->advance (CLOCKWISE);

pp->insert(pts[2]);

return pp;

The only tricky part of function proj ect involves insertion of the last of the three
projected vertices (pts [ 2) into the polygon under construction. If the three projected
vertices are negatively oriented, then pt s [ 2 ] belongs after pt s [ 1]; if positively oriented,
pts [ 2 ] belongs after pts [ 0 ] . This ensures that the interior of the resulting polygon pp
lies to the right of each of its edges-that successive calls to pp - >advance (CLOCKWISE)
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corresponds to clockwise traversal. Advancing pp's window if the projected vertices are
positively oriented does the trick.

4.7 Chapter Notes

Most of the mathematics in this chapter comes from vector algebra, also known as linear
algebra. Vectors are the elements of an algebraic structure known as a vector space. Al-
though most aspects of linear algebra admit a geometric interpretation (and our presentation
has concentrated on such an interpretation), all the results of linear algebra can be derived
using algebra, without appealing to geometry. Introductions to linear algebra are provided
by [41, 441.

A number of other books present geometric tools at the level of working code and put
them to work in geometric algorithms [3, 20, 61, 66, 73]. Some of the ideas of this chapter
can be found in these sources.

4.8 Exercises

1. Show that xayb - Xbya equals the signed area of the parallelogram determined by
vectors a = (Xa, ya) and b = (Xb, Yb).

2. Given nonzero vectors a and b, show that a * b = Ila 11 Ilb 11 cos 6, where 6 is the angle
between a and b.

3. Show that sin(a - )=sina cosfi - cosa sing.

4. Show that the convex polygon with vertices v1, Vk consists of the set of points of
the form p = a I v I +- + akVk, where al +* + ak = I and each ai > 0. (This
expression is known as the convex combination of points v1, v . ., Vk.)

5. Show that the dot product theorem remains valid for vectors in three-dimensional
space.

6. Why does the copy constructor Po lygon: :Polygon (Polygon&) perform a deep
copy? (Hint: If two polygon objects referred to the same linked list of vertices, what
could go wrong?)

7. What are the advantages and disadvantages of representing the various kinds of lines
(infinite lines, line segments, rays, etc.) using a single Edge class?

8. Write a version of Polygon: : split that performs error checking.

9. Using the splice operation forcircular doubly linked lists, write a (destructive) function
join(Polygon &p, Polygon &q) which merges polygons p and q into a single
polygon and returns a pointer to the new polygon.

10. Write a function that decides whether a polygon is convex.

11(. Devise a data structure for representing a convex n-gon that permits us to decide in
O(logn) time whether a given point belongs to the polygon.

12. Write a function to determine whether a given diagonal of a given polygon is a chord.
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13. Write a function to determine whether a given Polygon object represents an illegal
n-gon, one that crosses itself. [The obvious approach, that of comparing all pairs of
edges, takes 0(n 2) time. Can you think of an algorithm that takes O(n logn) time?]

14. Devise an algorithm to decide whether a point belongs to an arbitrary (i.e., convex or
nonconvex) n-gon that runs in 0(n) time.

15. Devise an 0(n log n) time algorithm to decide whether two polygons intersect, where
n equals the sum of their sizes.

16. Devise an O(n) time algorithm to decide whether two convex polygons intersect,
where n equals the sum of their sizes.

17. Write a function to find the intersection point of a line and a triangle in space which
does not rely on projection into a plane.

18. Write a function to determine whether two triangles in space intersect.
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5
Incremental Insertion

The algorithmic design approach of incremental insertion examines the input to a problem
one item at a time while maintaining a current solution for those items seen so far. At
each increment, the next input item is examined and processed, and the current solution is
updated to accommodate the new item. When all the input has been processed, the problem
as a whole has been solved.

One reads a mystery novel in much the same manner. The reader maintains a working
hypothesis concerning who committed the murder and how and why it took place. Each
new clue either confirms the hypothesis or requires that it be revised, or even abandoned
and formulated anew. By the book's end when all the clues are in, the reader will have
solved the crime, assuming he or she is clever enough and the writer has been fair.

In some cases, the algorithm is capable of maintaining only a current state as opposed
to a current solution, since the portion of the input seen so far is too incomplete to represent
a coherent situation. This often happens, for instance, when solving problems involving
polygons: If the polygon boundary is processed a vertex at a time, we may not even have
our hands on a simple polygon until all the input has been processed. Returning to our
mystery novel analogy, we see this is similar to the way the reader's outlook develops even
before any murder has taken place-although there is not yet a problem to solve, early clues
and insights are organized and readied for use at the first sign of trouble.

The most obvious approach to finding the smallest integer in an array-stepping
down the array while keeping track of the smallest integer seen so far-is a computational
example of incremental insertion. Insertion involves a conditional assignment to the variable
holding the current minimum. At each stage, this variable holds the answer to the problem
involving those integers processed so far. Incremental insertion is not usually so simple.
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In this chapter we will study a number of (more interesting) algorithms that employ this
strategy. The first, insertion sort, is a well-known sorting method most useful for sorting a
relatively short list of items. The remaining algorithms solve geometric problems: finding
a star-shaped polygon in a finite set of points, finding the convex hull of a set of points,
deciding whether a given point lies in a polygon, clipping geometric objects (lines and
polygons) to a convex polygon, and triangulating a monotone polygon.

5.1 Insertion Sort

Insertion sort works the way a card player keeps a hand of cards. With the deck face down
on the table, the card player draws a number of cards; as the player draws each card, he or
she inserts it into the proper position in the hand. When each new card is about to be drawn,
the hand is sorted over all the cards that have been drawn so far.

Let us consider how to use insertion sort to arrange array items a [0 ],...,a [n-i]
in increasing order. (For brevity, we will refer to this range of items as a [0. . n-i J.) For
each i from I through n - 1, at the start of iteration i the subarray a [ 0 . . i -1 ] is sorted.
Our task in iteration i is to sort a [0. . iI by putting item a [iI in its proper position.
To do this, we save a [ i ] in some variable v and then move items a [ i -1 ], a[i-2 1...
in turn one position to the right until reaching the first item a[ j -1] not greater than v.
Finally, we copy v into the "hole" that has been created in position j. Figure 5.1 shows
how the algorithm sorts a short array of integers.

The algorithm is implemented by function template insertionSort, which sorts
the array a [0. . n-I]. Argument cmp is a comparison function that returns -1, 0, or I if
its first argument is less than, equal to, or greater than its second argument:

template<class T>
void insertionSort(T at]. int n, int (*cmp)(T,T))

{
for (int i = 1; i < n; i++) {

T v = a[il;

int j = i;
while ((j > 0) && ((*cmp)(v, atj-11) < 0)) {

at;] = a[j-l];

jo--;
}
a~j] v;

In each iteration i from I to n - 1, the while loop inserts item a iI into the sorted
subarray a [0.. i - ii. The test j > 0 of the while loop ensures that the program does
not fall off the left end of array a during insertion.

For the sorting programs presented in this book, we will assume that the template type
parameter T represents a pointer type. Nonetheless, function template insertionSort
can be used to sort objects of any type that defines both the assignment operator = and a copy

107

https://hemanthrajhemu.github.io



Chap. 5: Incremental Insertion

3 2 5 9 4

3 6 ( 5 9 4

2 3 6 ( 9 4

2 3 5 6 (D 4

2 3 5 6 9 (

2 3 4 5 6 9

Figure 5.1: Insertion sorting an array of six integers. The next number to be inserted at each step is circled.

constructor. For example, the following code fragment reads 100 strings into array s and
then sorts them using the standard C++ library function strcnp to compare two strings
by dictionary order:

char buffer[80];
char *s[100];
for (int i = 0; i < 100; i++) {

cin >> buffer;
svi] = new char[strlen(buffer)+1];
strcpy(s[i], buffer);

}
insertionSort(s, 100, strcmp);

Note that this code fragment sorts an array of pointer-to-strings (array s), rather than the
strings themselves. It is often more efficient to sort pointers instead of the objects pointed
to. Unless the objects are small (4 bytes or less), a sorting program can move pointers
around faster than the objects to which they point.

5.1.1 Analysis

To analyze insertion sort, it suffices to count the number of times the comparison function is
called (assuming acomparison takes constanttime). The running timeof insertionSort
is T(n) = Zn-1 1(i), where l(i) time is needed to insert the ith item. Since l(i) costs at
most i comparisons, insertion sort requires T(n) = En- = i ('! ±) comparisons, orabout
n2 /2 comparisons in the worst case. This worst-case behavior in fact occurs whenever the
input array is initially sorted in reverse (decreasing) order.

On average, the ith item is compared to about i/2 items before its insertion position is
found. Thus insertion sort performs about n2 /4 comparisons on average, twice as good as
the worst case. If the input array is initially almost sorted, the program's expected running
time is linear since the ith item is compared to only a constant number of items before
reaching its position, on average. Hence insertion sort is a good way to sort an input array
known to be almost sorted.
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5.2 Finding Star-Shaped Polygons

A finite set of points in the plane can be connected by edges to form a polygon in different
ways. Each such polygon is called a polygonization of the point set. In this section we
devise a method for constructing star-shaped polygonizations. More simply, our method
"connects the dots" (or points) to form star-shaped polygons.

5.2.1 What Are Star-Shaped Polygons?

Suppose points p and q lie in some polygon. We say that p sees q if the line segment Tq
lies in the polygon. Here we are imagining the boundary of polygon P to be composed
of opaque walls, and its interior some transparent medium such as air. One point can see
another only if no wall stands between them. Seeing is symmetric (if p sees q, then q
sees p) but not transitive (if p sees q and q sees point r, it does not follow that p sees r)
(Figure 5.2).

The set of those points in a polygon that see every point is called the kernel of
the polygon. A polygon is said to be star shaped (Figure 5.3) if its kernel is nonempty.
A polygon is fan shaped if its nonempty kernel contains one or more vertices (each such
vertex is called an apex of the polygon). Every convex polygon is fan shaped since the kernel
contains some vertex (in fact, every vertex). Every fan-shaped polygon is star shaped since
its kernel is nonempty.

Figure 5.2: Points p and q see one another as do points q and r, yet points p and r do not see each other.

(a) (b) (c) (d )

Figure 53: Polygons with darkened kernels: (a) a convex polygon; (b) a fan-shaped polygon that is
not convex; (c) a star-shaped polygon that is not fan shaped; and (d) a polygon that is not star shaped.
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Figure 5.4: Finding a star-shaped polygon in a point set.
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5.2.2 Finding Star-Shaped Polygonizations

Given a set S of points so, si.... s,_ in the plane, the problem is to construct a star-shaped
polygonization of set S. It is not difficult to see that there may exist more than one such
polygon. We will specifically seek one whose kernel contains the first point so.

The algorithm works by iteratively constructing a current polygon over the points
of S. Initially, the current polygon is the 1-gon so. In each iteration i from 1 to n - 1, the
next point si is inserted into the current polygon. At completion, the current polygon is the
star-shaped polygon we seek.

To insert each new point si into the current polygon, we perform a clockwise traversal
of the current polygon starting from vertex so. The traversal proceeds clockwise around
the polygon boundary until arriving at the vertex which is to become six's successor; si is
then inserted before this vertex. If the traversal proceeds full circle, returning to so, then si
is inserted before so. Here so serves as a sentinel which ensures that the traversal does not
proceed too far. Figure 5.4 shows snapshots of the algorithm running on a small problem.

Function starPolygon is handed an array s of n points and returns a star-shaped
polygon whose kernel contains point s [ ) ]:

Point originPt; // global: originPt = s[O]

Polygon *starPolygon(Point s[], int n)

Polygon *p = new Polygon;

p->insert(s[OJ);

S2l

https://hemanthrajhemu.github.io



Sec. 5.2 Finding Star-Shaped Polygons 111

Vertex *origin = p->vo;

originPt = origin->pointo;

for (int i = 1; i < a; i++) {

p->setV(origin);

p->advance(CLOCKWISE);

while (polarCmp(&8[i], p->v(-) < 0)

p->advance(CLOCKWISE);

p->advance(COUNTER-CLOCKWISE);

p->insert(s i]);
}
return p;

)

In each iteration i, how do we determine where to insert point si along the boundary
of the current polygon? We use the fact that the vertices of a star-shaped polygon are
ordered radially around each point in its kernel. Since point so is to lie in the kernel, we
define a comparison function polarCmp based on the polar coordinates of points relative
to point so (i.e., where so is regarded as the origin). Under this relation, point p = (rp, Op)
is considered less than point q = (rq, Oq) if (1) Op < Oq or (2) Op = Oq and rp < r,. With
respect to this ordering, clockwise traversal of the current polygon proceeds from greater
points to lesser points.

Comparison function polarCmp is passed two-points p and q and compares them
with respect to their radial ordering about point originPt, a global variable. It returns
-1, 0, or 1 depending on whether its first argument p is less than, equal to, or greater than
its second argument q:

int polarCmp(Point *p, Point *q)

{

Point VP = *p - originPt;

Point vq = v - origianPt;

double pPolar = vp.polarAngleo;

double qPolar < vq.polarAnglen;

if (pPolar < qPolar) return -1;

if (pPolar > qPolar) return 1;

if (vp.length() < vq.length()) return -1;

if (vp.length() > vq.length()) return 1;

return 0;

Under function polarCmp, originPt is less than every other point in the plane.
This is because function Point: :polarAngle returns -1.0 if this point equals
originPt, and returns a value in the range [0, 360) otherwise. This fact allows point
s [] (=originPt) to serve as a sentinel. Function starPolygon runs in O(n2

)

time. Iteration i requires as many as i comparisons, and there are n - 1 iterations (the
analysis parallels that of insertion sort).

The algorithm for finding star-shaped polygons closely parallels insertion sort. Both
algorithms incrementally grow a current solution, represented by an ordering of items, into
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a complete solution. To insert each new item into the current ordering, both algorithms
sequentially traverse the ordering from greatest to least until the item's proper position is
reached. Furthermore, both algorithms run in quadratic time in the worst case.

5.3 Finding Convex Hulls: Insertion Hull

The algorithm we consider in this section-for finding the convex hull of a set of points-is
more complicated than both insertion sort and our star-shaped polygonization algorithm.
First, finding the proper position of each new item is more involved. Second, it is sometimes
necessary to remove items from the current solution, so the current solution grows and
shrinks as the algorithm proceeds.

5.3.1 What Are Convex Hulls?

Let S be a finite set of points in the plane. The convex hull of set S. denoted CN(S),
equals the intersection of all convex polygons which contain S. Equivalently, C7-i(S) is the
convex polygon of minimum area which contains all the points of S. Yet another equivalent
definition states that C-t(S) equals the union of all triangles determined by points of S.

Imagine the plane to be a sheet of wood with a nail protruding from every point in S.
Now stretch a rubber band around all the nails and then release it, allowing it to snap taut
against the nails. The taut rubber band conforms to the convex hull boundary. Figure 5.5
gives some examples.

Because they provide a way to approximate a point set or other nonconvex set by
a convex region, convex hulls prove useful in a wide range of geometric applications.
In pattern recognition, an unknown shape may be represented by its convex hull or by a
hierarchy of convex hulls, which is then matched to a database of known shapes. As another
example, motion planning, required when a moving robot must negotiate a landscape of
obstacles, becomes much easier if the robot is approximated by its convex hull.

A useful scheme for classifying the points of a point set S refers to the convex
hull C/t(S). A point is a boundary point if it lies in the convex hull boundary, and an
interior point if it lies in the convex hull interior. Those boundary points which form the

Extreme

Points

Nonextreme Boundary Points

Figure 5.5: A finite set of points and its convex hull.
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"corner" vertices of the convex hull are known as extreme points. Equivalently, a boundary
point is extreme if it does not lie between any two other points of S. Figure 5.5 illustrates
these notions. Note that this scheme for classifying points applies even if we are not
interested in finding their convex hull per se.

5.3.2 Insertion Hull

Insertion hull, an incremental insertion approach to finding the convex hull of a finite set S
of points, inserts a point at a time while maintaining the convex hull of those points inserted
so far. We will refer to the convex hull built along the way as the current hull. Initially,
the current hull consists of a single point of S; at completion, when all points have been
inserted, the current hull equals CN(S) and we are done.

When a new point s is inserted into the current hull, one of two cases occurs. In the
first case, s may lie in (the boundary or interior of) the current hull, in which case the current
hull does not need to be updated.

In the second case, s lies outside the current hull, requiring that the current hull be
modified as in Figure 5.6. Through point s can be drawn two supporting lines, each tangent
to the current hull. (A line is a supporting line of a convex polygon P if the line passes
through a vertex of P and the interior of P lies entirely to one side of the line.) The left
(right) supporting line Tr passes through some vertex e (r) of the current hull and lies to
the left (right) of the current hull. If you were positioned at point s facing the convex hull,
the left supporting line would appear to your left and the right supporting line to your right.

The two supporting vertices e and r split the current hull boundary into two vertex
chains: a near chain that is nearer point s and afar chain that is farther from s. (The near
chain lies on the same side of line Tr as s, and the far chain lies on the other side of fr.) To
update the current hull, we first find the two vertices e and r which terminate the near and
far chains. Then we remove the vertices of the near chain (except for vertices e and r) and
insert point s in their place.

The following program insertionHull returns the convex hull of the n points of
array s:

Figure 5.6: Inserting point s into the current hull,
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Point somePoint; // global

Polygon *insertionHull(Point al], int n)

{
Polygon *p = new Polygon;

p->insert(s01°);

for (int i = 1; i < n; i++) {

if (pointInConvexPolygon(s[i], *p))

continue;

somePoint = s[i];

leastVertex(*p, closestToPolygonChV);

supportingLine(s[i], p, LEFT);

Vertex *l = p->vo;

supportingLine(s[i], p, RIGHT);

delete p->split(l);

p->insert(sti]);

}
return p;

}

In iteration i, point s [ i I is inserted into the current hull p. The call to function
leastVertex moves p's window over the vertex that is closest to point s [i] . This
prepares for the subsequent call to support ingLine (s : i , p, LEFT) , which moves
the window over the vertex e through which the left supporting line passes. The second
call to supportingLine then moves the window over vertex r. The split operation
is used to subdivide polygon p along the diagonal Tr, thereby separating the near chain
from the far chain. The subpolygon consisting of the near chain is returned by split and
deleted. Finally, point s [ i I is inserted into polygon p, which, after split is performed,
consists of the far chain.

Let us consider function supportingLine. To find the vertex e through which
the left supporting line passes, we start at some vertex of the near chain and then traverse
clockwise around the current hull until arriving at the first vertex v whose successor is
neither to the left of nor beyond directed line segment -so. Vertex v is e, the vertex we seek.
Note why the process continues if the successor to v (i.e., vertex w) is beyond sV: v cannot
be an extreme point if it lies between s and w, so we must search further.

Function supportingLine is called with a polygon p, a point s outside p, and
one of the enumeration values LEFT or RIGHT indicating which vertex (E or r) is being
sought. It assumes that the vertex in p's window belongs to the near chain, which is why
function leastVertex is called first. The function moves polygon p's window over the
vertex it finds (E or r):

void supportingLine(Point &s, Polygon *p, int side)

{
int rotation = (side == LEFT) ? CLOCKWISE : COUNTER-CLOCKWISE;

Vertex *a = p->vo;
Vertex *b = p->neighbor(rotation);

int c = b->classify(s, *a);
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while ((c == side) || (c == BEYOND) || (c == BETWEEN)) {

p->advance(rotation);

a = p->vo;

b = p->neighbor(rotation);

c = b->classify(s, *a);

)

Function leastVertex, which was defined in subsection 4.3.6, is used by program
insertionHull to find the vertex of polygonp that is closest to the point stored in global
variable somePoint. Comparison function closestToPolygonCmp, with which
leastvertex is called, compares two points to decide which is closest to somePoint:

int c1osestToPolygonQmp(Point *a, Point *b)

{
double distA = (somePoint - a).lengtho;

double distB = (somePoint - *b).length1;

ief (distA < distB) return -1;

else if (dictA > distB) return 1;

return 0;

}

5.3.3 Analysis

As it proceeds, program insertionHull may build large current hulls which are disas-
sembled by the time the program finishes. Consider the situation shown in Figure 5.7a, in
which all the points except p, q, and r have been inserted. Each of the last three insertions
removes a chain of vertices until only a triangular hull remains (Figures 5.7b - d). Clearly,
had p, q, and r been inserted first, before the other points, the triangular hull would be
constructed early and insertion of each remaining point would be faster, involving only the
determination that the point lies in the triangle. Thus the order in which points are inserted
affects efficiency.

Nonetheless, the cost of building the convex hull is in fact not dominated by the
operations insert and split used to assemble and disassemble the current hulls. After
all, every point can be inserted at most once and removed at most once. It follows that
the total cost for all insert and split operations over the course of the algorithm is
bounded above by 0(n).

Likewise, the calls to supportingLine are relatively inexpensive: The two calls
to supportingLine performed in an iteration together take time proportional to the
length of the near chain, and this work can be charged to the vertices of the near chain,
which are then removed in the same iteration. Since a vertex can be removed at most once,
the cost for all calls to supportingLine over the course of the algorithm is bounded
above by 0(n).

It turns out that insertionHull spends most of its time executing
pointInConvexPolygon and leastVertex. To process the ith point s,, the call
to each of the two functions takes time proportional to i in the worst case (when the convex
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(a) (b) (c) (d)

Figure 5.7: Points p, q, and r are inserted last.

hull possesses i vertices). This case occursfor every point s, if they are all extreme points be-
cause the current hull will then grow by one vertex per insertion. Hence insertionHul 1
runs in O(n

2 ) time in the worst case.
Later in this book we will cover two algorithms-Graham scan and merge hull-that

compute the convex hull of n points in optimal 0 (n log n) time.

5.4 Point Enclosure: The Ray-Shooting Method

In Chapter 4 we devised a simple algorithm for solving the point enclosure problem for
convex polygons: The algorithm decides whether a given point a lies inside, outside, or on
the boundary of a convex polygon p. It works by testing point a against each edge of p in
turn; if point a lies on the wrong side of some edge, the point has been shown to lie outside
polygon p; otherwise a has been shown to belong to p. The algorithm takes advantage of
the fact that the interior of a convex polygon lies entirely to one side of every edge-thus
a point which lies on the wrong side of some edge cannot lie in the polygon interior. The
algorithm, however, does not correctly solve the more general point enclosure problem,
which allows arbitrary (convex or nonconvex) polygons. In Figure 5.8, for example, the
interior of the polygon straddles both sides of the edge labeled e; since point a lies on the
"wrong" side of e, the algorithm mistakenly reports that a lies outside polygon.

Figure 5.8: How does one determine whether point a lies in the polygon?
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The problem of point enclosure relative to a convex polygon is like deciding whether
an unsorted list of numbers contains only numbers greater than or equal to zero. To solve
the problem, we step through the list until reaching some negative number, at which time we
report "no"; if none of the numbers turns out to be negative, we report "yes." The answer
is yes only if every one of a set of distinct conditions holds true.

Point enclosure relative to an arbitrary polygon, on the other hand, is more like the
problem of deciding whether the sum of an unsorted list of numbers is greater than or equal
to zero. The problem cannot be decided until all the numbers have been added together.
Adding just some of the numbers, or even all but one of them, cannot solve the problem since
the remaining number may change everything. In the same manner, partial examination
of a polygon may suggest that it does not contain some distant point, yet it may happen
that the last several edges to be examined form a "finger" that protrudes far from the rest
of the polygon, capturing the point. Deciding whether a point lies in an arbitrary polygon
involves a single condition encompassing the polygon as a whole.

In this section we present the ray-shooting method for solving the point enclosure
problem for arbitrary polygons. Imagine doing this to decide point enclosure for point a and
polygon p: Starting from some point far from the polygon, move in a straight line toward a.
Along the way we cross the polygon boundary zero or more times: the first time crossing
into the polygon, the second time crossing back out, the third time crossing back in once
again, and so forth, until arriving at a. In general, every odd-numbered crossing carries us
into polygon p, and every even-numbered crossing carries us back out of p. If we arrive
at a having undergone an odd number of crossings, a lies inside p; and if an even number
of crossings, a lies outside p. For example, in Figure 5.9, ray ray crosses the boundary
once; since one is odd, a lies inside the polygon. We can conclude that point b lies outside
the polygon since ray rb crosses the boundary an even number of times (twice).

Transforming this idea into an algorithm turns on two key observations. First, any
ray that originates at the point a to be classified will do (Figure 5.9). Being free to work
with any ray originating at a, we can, for simplicity, work with the right horizontal ray ra
originating at a (the unique ray starting at a and directed parallel to the positive x-axis).

The second key observation is that the order of boundary crossings along ray ra
is irrelevant; all that matters is the parity (oddness or evenness) of their total number.
Therefore, rather than simulate moving along ray 3ra, it is enough for the algorithm to

Figure 5.9: Every ray originating at a crosses the boundary an odd number of times, and every ray
originating at b crosses an even number of times.
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detect all edge crossings in any order, updating parity along the way. The easiest way to
do this is to traverse the polygon boundary, toggling a parity bit whenever we visit an edge
which ray ra crosses.

Relative to the right horizontal ray r+, we distinguish three types of polygon edges:
touching edges, which contain point a; crossing edges, which do not contain point a but
which ray ra crosses; and inessential edges, which ray r. does not meet at all. For
example, in Figure 5.10, edge c is a crossing edge, edge d is a touching edge, and edge e is
an inessential edge.

Function pointInPolygon solves the point enclosure problem for point a and
polygon p. The algorithm traverses the boundary of the polygon while toggling variable
parity for each crossing edge it encounters. It returns the enumeration value INSIDE

if the final value of parity is I (indicating odd), and OUTSIDE if its final value is 0
(indicating even). If a touching edge is discovered, the algorithm immediately returns the
enumeration value BOUNDARY.

enum { INSIDE, OUTSIDE, BOUNDARY }; // point classifications

enum { TOUCHING, CROSSING, INESSENTIAL }:// edge classifications

int pointInPolygon(Point &a, Polygon &p)

{
int parity = 0;
for (int i = 0; i < p.size(); i++, p.advance(CLOCKWISE)) {

Edge e = p.edgeo;
switch (edgeType(a, e))

case TOUCHING:

return BOUNDARY;

case CROSSING:

parity = 1 - parity;

}

return (parity ? INSIDE: OUTSIDE);

Function call edgeType (a, e) classifies edge e with respect to right horizontal ray
ra, returning one of the enumeration values TOUCHING, CROSSING, or INESSENTIAL.
Definition of edgeType is somewhat tricky because function pointInPolygon must
correctly handle the special cases that arise when ray ra pierces vertices. Consider Fig-
ure 5.1 1. In case (a) the parity should be toggled-the ray crosses the boundary only once

Figure 5.10: Edge c is a crossing edge. edged a touching edge. and edge e an inessential edge.
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(a) (b) (c) (d) (e) (f)

Figure 5.11: Special cases: parity is toggled one time in cases (a) and (d). zero times in cases (b)
and (e), and two times in cases (c) and (f).

even though, in doing so, it crosses two edges. In cases (b) and (c) the parity should not be
changed. This can be achieved by polishing our scheme for classifying edges as follows:

* Edge e is a touching edge if e contains point a.

* Edge e is a crossing edge if (1) e is not horizontal and (2) ray ra crosses e at some point
other than e's lower endpoint.

* Edge e is an inessential edge if e is neither a crossing nor a touching edge.

Referring to Figure 5.11, we see that in case (a), variable parity is toggled once;
in case (b), parity is not changed; and in case (c), parity is toggled twice with the
net effect of remaining unchanged. Note that horizontal edges not containing point a are
considered inessential and so are ignored by function pointInPolygon. Therefore,
cases (d), (e), and (f) are handled the same as cases (a), (b), and (c), respectively.

Function edgeType classifies edge e as CROSSING, TOUCHING, or
INESSENTIAL with respect to point a:

int edgeType(Point &a, Edge &e)

{
Point v = e.org;

Point w = e.dest;
switch (a.classify(e)) {

case LEFT:

return ((v.y<a.y) && (a.y<=w.x)) ? CROSSING INESSENTIAL;

case RIGHT:

return ((w.y<a.y) && (a.y<=v.y)) ? CROSSING INESSENTIAL;

case BETWEEN:

case ORIGIN:

case DESTINATION:

return TOUCHING;

default:

return INESSENTIAL;

}

}
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Note how function edgeType detects crossing edges. If point a lies to the left of edge e,
the edge is a crossing edge only if v (=e. org) lies below ray r. and w (=e. dest) lies
on or above the ray. For then the edge cannot be horizontal, and ray ra must cross the edge
at some point other than its lower endpoint. Alternatively, if a lies to the right of edge e,
the roles of v and w are interchanged.

Program pointInPolygon runs in time proportional to the size of the polygon in
the worst case (when point a does not lie on the polygon boundary).

5.5 Point Enclosure: The Signed Angle Method

Let us consider another approach to the point enclosure problem. This approach requires

the notion of a signed angle. Given directed segment bc and some point a, suppose that the

angle between vectors al and arc measures 0. The signed angle at point a relative to bc

then measures 0 if c lies to the left of or is collinear with la, and -0 if c lies to the right

of a. Note that the signed angle and the orientation of triangle Aabc have the same sign.
We can extend the definition of signed angle to vertex chains. The signed angle at

point a relative to a vertex chain is the sum of the signed angles at a relative to the chain's
edges. Figure 5.12 gives some examples.

Function s ignedAngle computes and returns the signed angle at point a relative to
edge e. After first treating the cases in which a is collinear with e, the function distinguishes
between the configurations shown in Figure 4.6:

double signedAngle(Point &a, Edge &e)
I

Point v = e.org - a;

Point w = e.dest - a;

double va = v.polarAngleo;

double wa = w.polarAngleo;

if ((va == -1.0) (wa == -1.0))

return 180.0;

double x = wa - va;

if ((x == 180.0) II (x == -180.0))

a b c

Figure 5.12: (a) The signed angle at point a is 20, (b) the signed angle at b is-90: and (c) the signed
angle at c is 20 - 90 + 40 = -30.
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return 180.0;

else if (x < -180.0)
return (x + 360.0);

else if (x > 180.0)
return (x - 360.0);

else

return x;

?

Let us consider how signed angles are used to classify a given point a with respect
to a given polygon p. Assume that a does not lie in the boundary of p. Let A denote the
signed angle at a relative to the boundary of p, where p has clockwise sense of rotation.
A is useful for classifying the point: A = -360 degrees if a is inside the polygon, and
A = 0 if a is outside the polygon. It is easy to see why this is true in the case of convex
polygons. If a is inside convex polygon p, the boundary of p encircles a a full 360 degrees.
Alternatively, if a is outside p, the boundary of p can be split into a near chain and a far
chain, relative to point a. (Near and far chains were defined in Section 5.3.) Where An
denotes the signed angle at p relative to the near chain and A f the signed angle relative to
the far chain, we have A, = -A f, from which it follows that A = A, + Af = 0.

That this also holds for nonconvex polygons is less obvious. Suppose first that a lies
outside the polygon. Imagine casting a ray from point a through every vertex of the poly-
gon, thereby partitioning the polygon into a number of triangles and convex quadrilaterals
PI, P2, Pk (Figure 5.1 3a). Since a lies outside each pi and each pi is convex, the signed
angle Ai at a relative to the boundary of pi is zero (i.e., Ai = 0). But A = AI + * + Ak
since the summation counts every edge of the original polygon p exactly once. Observe
that new edges introduced by the rays contribute zero to A. It follows that A = 0 if point a
is outside the polygon.

Figure 5.13b illustrates why A =-360 if a is inside polygon p. As before, imag-
ine partitioning the polygon by rays originating from a, but this time preserve a small
convex polygonal neighborhood around a (denoted P0 in the figure). Since pO is convex
and contains a, we know that AO =-360. Furthermore, since a lies outside the remaining

a

(a) (b)

Figure 5.13: (a) Point a is outside the polygon, so A = A I + A2 + A3 = 0 + 0 + 0 = 0; and (b)
point b is inside the polygon, so A = Ao + A 1 + A, + A3 + A4 = -360 + 0 + 0 + 0 + 0 = -360.
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(convex) polygons pi, we have Ai = 0 for each i = 1, 2, ... , k. It follows that A =

Ao+Ai+---+Ak=-360+0+* +0=-360.
Function pointInPolygon2 solves the point enclosure problem for point a and

polygon p. The signed angle at a relative to the polygon is accumulated in total as
each edge is visited in turn. If a is found to lie on some edge (the signed angle relative to
the edge equals 180), the function immediately returns the enumeration value BOUNDARY.
Otherwise, when all polygon edges have been processed, it returns INSIDE or OUTSIDE
depending on the final value of total.

int pointinPolygon2(Point &a, Polygon &p)

{
double total = 0.0;

for (int i = 0; i < p.sizeo; i++o V.advance(CLOCKWISE)) (

Edge e 5 p.edge();

double x = signedAngle(a, e);

if (x == 180.0)

return BOUNDARY;

total += x;

}
return ((total < -180.0) ? INSIDE: OUTSIDE);

}

Program pointInPolygon2 runs in time linear in the size of the polygon in the
worst case.

5.6 Line Clipping: The Cyrus-Beck Algorithm

The process of discarding that portion of a geometric object that lies outside a given region is
called clipping. Clipping is used for many purposes in computer graphics. In a windowing
system, a window may serve as a small aperture into a panorama that extends far beyond.
When drawing into the panorama, it is necessary to clip away those portions of objects
that do not fall under the purview of the window. In some text editors, it is necessary to
clip characters that do not fit on a line. In three-dimensional graphics, objects in space
are clipped to a volume before being projected into the image plane, to avoid wasting time
projecting things that will not be seen anyway.

In this section we present the Cyrus-Beck algorithm for clipping a line segment
to a convex polygon. In the subsequent section we will cover the Sutherland-Hodgman
algorithm for clipping an arbitrary polygon to a convex polygon.

Let s be a line segment and let p be a convex n-gon to which s is to be clipped. Here p
is called a clip polygon and s the subject. We seek s n p, that portion of s which lies inp.

Let s denote one of the two directed infinite lines determined by s. Suppose we
extend each of the n edges of polygon p to infinity, in both directions. Line s crosses all
these extended edges of p in no more than n distinct intersection points. (If s is parallel
to or collinear with some edge of p, the edge does not contribute an intersection point;
moreover, if s passes through a vertex of polygon p, two intersection points coincide.)
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