

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

COMPUTATIONAL
GEOMETRY

AND

COMPUTER
GRAPHICS IN C++

MICHAEL J. LASZLO
https://hemanthrajhemu.github.io

viii Contents

Part 11 APPLICATIONS, 105

5 INCREMENTAL INSERTION, 106

5.1 Insertion Sort, 107
5.1.1 Analysis, 108

5.2 Finding Star-Shaped Polygons, 109
5.2.1 What are Star-Shaped Polygons? 109
5.2.2 Finding Star-Shaped Polygonizations, 110

5.3 Finding Convex Hulls: Insertion Hull, 112
5.3.1 What are Convex Hulls? 112
5.3.2 Insertion Hull, 113
5.3.3 Analysis, 115

5.4 Point Enclosure: The Ray-Shooting Method, 116

5.5 Point Enclosure: The Signed Angle Method, 120

5.6 Line Clipping: The Cyrus-Beck Algorithm, 122

5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm, 125

5.8 Triangulating Monotone Polygons, 128
5.8.1 What are Monotone Polygons? 129
5.8.2 The Triangulation Algorithm, 129
5.8.3 Correctness, 134
5.8.4 Analysis, 135

5.9 Chapter Notes, 135

5.10 Exercises, 136

6 INCREMENTAL SELECTION, 137

6.1 Selection Sort, 137
6.1.1 Off-Line and On-Line Programs, 138

6.2 Finding Convex Hulls: Gift- Wrapping, 139
6.2.1 Analysis, 141

6.3 Finding Convex Hulls: Graham Scan, 141

6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm, 145
6.4.1 Preliminaries, 145
6.4.2 The Depth-Sort Algorithm, 146
6.4.3 Comparing Two Triangles, 150
6.4.4 Refining a List of Triangles, 152

https://hemanthrajhemu.github.io

Contents ix

6.5 Intersection of Convex Polygons, 154
6.5.1 Analysis and Correctness, 160
6.5.2 Robustness, 161

6.6 Finding Delaunay Triangulations, 162
6.6.1 Finding the Mate of an Edge, 168

6.7 Chapter Notes, 170

6.8 Exercises, 172

7 PLANE-SWEEP ALGORITHMS, 173

7.1 Finding the Intersections of Line Segments, 174
7.1.1 Representing Event-Points, 174
7.1.2 The Top-Level Program, 176
7.1.3 The Sweepline Structure, 177
7.1.4 Transitions, 178
7.1.5 Analysis, 181

7.2 Finding Convex Hulls: Insertion Hull Revisited, 182
7.2.1 Analysis, 183

7.3 Contour of the Union of Rectangles, 183
7.3.1 Representing Rectangles, 184
7.3.2 The Top-Level Program, 186
7.3.3 Transitions, 188
7.3.4 Analysis, 191

7.4 Decomposing Polygons into Monotone Pieces, 191
7.4.1 The Top-Level Program, 192
7.4.2 The Sweepline Structure, 195
7.4.3 Transitions, 198
7.4.4 Analysis, 201

7.5 Chapter Notes, 201

7.6 Exercises, 201

8 DIVIDE-AND CONQUER ALGORITHMS, 203

8.1 Merge Sort, 204

8.2 Computing the Intersection of Half-Planes, 206
8.2.1 Analysis, 208

8.3 Finding the Kernel of a Polygon, 208
8.3.1 Analysis, 209

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

(convex) polygons pi, we have Ai = 0 for each i = 1, 2, ... , k. It follows that A =

Ao+Ai+---+Ak=-360+0+* +0=-360.
Function pointInPolygon2 solves the point enclosure problem for point a and

polygon p. The signed angle at a relative to the polygon is accumulated in total as
each edge is visited in turn. If a is found to lie on some edge (the signed angle relative to
the edge equals 180), the function immediately returns the enumeration value BOUNDARY.
Otherwise, when all polygon edges have been processed, it returns INSIDE or OUTSIDE
depending on the final value of total.

int pointinPolygon2(Point &a, Polygon &p)

{
double total = 0.0;

for (int i = 0; i < p.sizeo; i++o V.advance(CLOCKWISE)) (

Edge e 5 p.edge();

double x = signedAngle(a, e);

if (x == 180.0)

return BOUNDARY;

total += x;

}
return ((total < -180.0) ? INSIDE: OUTSIDE);

}

Program pointInPolygon2 runs in time linear in the size of the polygon in the
worst case.

5.6 Line Clipping: The Cyrus-Beck Algorithm

The process of discarding that portion of a geometric object that lies outside a given region is
called clipping. Clipping is used for many purposes in computer graphics. In a windowing
system, a window may serve as a small aperture into a panorama that extends far beyond.
When drawing into the panorama, it is necessary to clip away those portions of objects
that do not fall under the purview of the window. In some text editors, it is necessary to
clip characters that do not fit on a line. In three-dimensional graphics, objects in space
are clipped to a volume before being projected into the image plane, to avoid wasting time
projecting things that will not be seen anyway.

In this section we present the Cyrus-Beck algorithm for clipping a line segment
to a convex polygon. In the subsequent section we will cover the Sutherland-Hodgman
algorithm for clipping an arbitrary polygon to a convex polygon.

Let s be a line segment and let p be a convex n-gon to which s is to be clipped. Here p
is called a clip polygon and s the subject. We seek s n p, that portion of s which lies inp.

Let s denote one of the two directed infinite lines determined by s. Suppose we
extend each of the n edges of polygon p to infinity, in both directions. Line s crosses all
these extended edges of p in no more than n distinct intersection points. (If s is parallel
to or collinear with some edge of p, the edge does not contribute an intersection point;
moreover, if s passes through a vertex of polygon p, two intersection points coincide.)

122

https://hemanthrajhemu.github.io

Sec. 5.6 Line Clipping: The Cyrus-Beck Algorithm

The Cyrus-Beck clipping algorithm finds these intersection points and classifies each
as either potentially entering (PE) or potentially leaving (PL). Suppose s crosses an
extended edge e at intersection point i. Then point i is PE if s passes from the left of e
to the right of e. Given our convention that the polygon interior lies to the right of each of
its edges, s "potentially enters" the polygon at intersection point i. That is, if s n p is
nonempty, s n p must lie beyond point i (see Figure 5.14). An intersection point i is PL
if s passes from the right of e to the left of e. In this case, line s "potentially leaves"
polygon p-if s n p is nonempty, s n p must lie behind point i.

Intersection points are easily classified as PE or PL. Let vector n be perpendicular to
some edge e of the clip polygon, pointing to the right of e. Let vector v = b - a, where

s = a. Then intersection point i (at which s crosses e) is PE if the angle between n
and v measures less than 90 degrees, and PL if this angle measures greater than 90 degrees.
(If the angle measures 90 degrees, the intersection point does not exist since s must then
be parallel to or collinear with edge e.) In terms of the dot product, point i is PE if n v > 0
andPLifn . v <0.

How is classification of the intersection points used? Suppose we order the inter-
section points along s . Then line s intersects clip polygon p only if the intersection
points comprise a sequence of PE intersection points followed by a sequence of PL inter-
section points. Moreover, the clipped line segment s n p we seek extends from the last PE
intersection point to the first PL intersection point (segments st and s2 of Figure 5.14).

On the other hand, if the PE and PL intersection points are interspersed along s,
clipped line segment sf np is empty (s3 of Figure 5.14). For in this case there must exist some
point a along s such that some PL point lies behind a and some PE point lies beyond a.
But since s n p lies behind the PL point, s n p must lie behind a; and since s n p lies beyond
the PE point, s n p must lie beyond a. This is possible only if s n p is empty.

Rather than work with intersection points directly, the Cyrus-Beck algorithm works
with the parametric values (along s1) of these intersection points. The algorithm maintains

Figure 5.14: Clipping line segments si, S2. and S3 to a square clip polygon. Intersection points are
labeled according to their order along each s,. and the labels of potentially entering (PE) intersection
points are encircled; the remaining intersection points are potentially leaving (PL).

123

.

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

a range [to, ta t of parametric values corresponding to the current line segment, which con-
verges to the clipped segment s n p we seek as the algorithm proceeds. Initially, the current
line segment is line segment s, represented by the range [0, 11. As the algorithm processes
each edge e of the clip polygon, the current range either remains unchanged or shrinks (its
lower limit increases or its upper limit decreases). Specifically, whenever a PE intersection
point with parametric value t is discovered, the lower limit to of the current range is updated:
to = max(to, t). Similarly, finding a PL intersection point with parametric value t requires
that we update the upper limit of the current range: t1 = min(t1 , t). When all edges have
been processed (and consequently all intersection points found), the current range [to, t,]
represents the clipped segment s n p we seek. If to < t1, this clipped segment is nonempty;
otherwise (to > ti) it is empty.

The following function clips subject line segment s to clip polygon p and returns
TRUE if the result is nonempty and FALSE otherwise. If nonempty, the clipped line segment
is passed back through reference parameter result:

bool clipLineSegment(Edge &s, Polygon &p. Edge &result)

{

double tO = 0.0;

double ti = 1.0;

double t;

Point v = s.dest - s.org;

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE)) {

Edge e = p.edge();

if (s.intersect(e, t)==SKEW) { // s and e cross at a point

Edge f = e;
f.roto0;

Point n = f.dest - f.org;

if (dotProduct(n, v) > 0.0) {
if (t > to)

to = t;

) else {
if (t < t1)

tl =t;

?
} else { // s and e are parallel or collinear

if (s.org.classify(e) == LEFT)

return FALSE;

if (to <= t1) {

result = Edge(s.point(tO), s.point(tl));

return TRUE;

}
return FALSE;

Observe how function clipLineSegment handles the case where s is parallel to
some edge e of the clip polygon. If s lies to the left of e, the function immediately returns

124

https://hemanthrajhemu.github.io

Sec. 5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

FALSE and exits. Otherwise the function ignores e and goes on to the next edge. The
algorithm clearly runs in time proportional to the size of the clip polygon.

5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

Polygon clipping, the process of clipping a subject polygon to a clip polygon, is more
interesting than line clipping, for what results from the process is not just a collection of
line segments, but a collection of polygons. Moreover, the problem of polygon clipping
challenges us to exploit the structure inherent in the subject polygon, to treat it as more than a
mere collection of line segments. In this section we cover the Sutherland-Hodgman polygon
clipping algorithm. Given a convex clip polygon p and an arbitrary subject polygon s, the
algorithm constructs the region s n p, a collection of zero or more polygons.

The Sutherland-Hodgman algorithm clips the subject polygon to each edge of the
convex clip polygon in turn. The subject polygon is first clipped to one edge of the clip
polygon, then the polygon that results is clipped to the next edge, and so on: The polygon
that results from each clip operation is "piped" into the next clip operation. We are done
when the subject polygon has been clipped to every edge of the clip polygon. The algorithm
is illustrated in Figure 5.15, where the clip polygon is a square.

The algorithm is implemented by function c 1 ipPo lygon, which is passed a subject
polygon s and a convex clip polygon p. The result is passed back through reference
parameter result. The function returns TRUE only if the result is nonempty:

bool clipPolygon(Polygon &s, Polygon ap, Polygon* &result)

{
Polygon *q = new Polygon(s);

Polygon *r;

int flag = TRUE;

(a) (b) (c)

(d) (e) (f)

Figure 5.15: The Sutherland-Hodgman clipping algorithm.

125

I---- <I

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE)) {

Edge e 5 p.edgeo;

if (clipPolygonToEdge(*q, e, r)) (

delete q;

q = r;

} else {

delete q;

flag = FALSE;

break;

}

if (flag) {
result =q;

return TRUE;

}
return FALSE;

}

In each iteration of clipPolygon, variable q points to the current subject polygon
and variable r to the polygon that results from clipping q to edge e of the clip polygon.
Initially, q is made to point to a copy of subject polygon s (it points to a copy of s
so s is not destroyed). Clipping q to edge e is accomplished by the call to function
clipPolygonToEdge, which returns TRUE if the polygon r which results is nonempty.
If r turns out to be nonempty, it is piped into the next clip operation by the assignment
instruction q=r; otherwise function clipPolygon exits, returning FALSE.

Function cl ipPolygonToEdge clips subject polygon s to the right side of an
edge e of the clip polygon. An output polygon is grown incrementally into the clipped
polygon we seek. The idea is to compare each edge of s to edge e in turn. Depending on the
result of each comparison, zero, one, or two vertices are inserted into the output polygon
under construction.

The four possible relationships between e and an edge of s are shown in Figure 5.16.

Where ab is the current edge of s, the contribution to the output polygon resulting in each
case is as follows:

Ou

Ins

Case 1 Case 2 Case 3 Case 4
Output b Output i No Output Output i, b

Figure 5.16: Possible relationships between an edge and the clip half-plane: (Case 1) output b; (Case
2) output i; (Case 3) no output; (Case 4) output i, then b.

126

https://hemanthrajhemu.github.io

Sec. 5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

1. Edge ab lies to the right of e. Output vertex b.

2. Edge ab crosses from the right of e to the left of e. Output the point i where ab
crosses e.

3. Edge ab lies to the left of e. No output.

4. Edge ab crosses from the left of e to the right of e. Output i, then b, where ab crosses
edge e at point i.

Function clipPolygonToEdge clips subject polygon s to edge e. It returns the
resulting polygon through reference parameter result, and returns TRUE only if polygon
result is nonempty:

bool clipPolygonToEdge(Polygon &s, Edge &e, Polygon* &result)

{
Polygon *p = new Polygon;
Point crossingPt;

for (int i = 0; i < s.size(); s.advance(CLOCKWISE), i++)

Point org = s.pointo;

Point dest = s.cw0->pointfl;

int orgIsinside = (org.classify(e) 1= LEFT);

int destIsInside = (dest.classify(e) != LEFT);

if (orgIsinside != destIsinside) t

double t;

e.intersect(s.edge(), t);

crossingPt = e.point(t);

}
if (orglslnside && destIsInside) // case 1

p->insert(dest);

else if (orgIsInside && !destlslnside) { // case 2

if (org != crossingPt)

V->insert(crossingPt);

}
else if (!orgIsInside && !destIslnside) // case 3

else { // case 4

p->insert(crossingPt);

if (dest != crossingPt)

p->insert(dest);

}

result = p;
return (p->size() > 0);

What happens if clipPolygonToEdge is handed a problem whose solution con-
sists of multiple polygons? In this case, clipPolygonToEdge produces a single poly-
gon that contains degenerate boundary edges. The situation is depicted in Figure 5.17.

127

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

(a) (b) (c)

Figure 5.17: (a) A clipping problem; (b) the resulting polygon with three degenerate edges (displaced
horizontally in the figure); and (c) the collection of two polygons it represents.

To partition the polygon into non-degenerate pieces, we first sort the endpoints of the
degenerate edges along the common line with which they are all collinear. We then
apply Vertex: :splice repeatedly to excise the degenerate edges. Since this refine-
ment will not be needed for the applications in Chapter 8 that makes use of function
clipPolygonToEdge, we will not pursue it further.

Let us analyze program ci ipPolygon in terms of the size Is5 of subject polygon s
and the size JpJ of clip polygon p. Function clipPolygonToEdge runs in 0(1s5) time
and is called at most once per edge of the clip polygon, or at most I pi times. Hence program
clipPolygon runs in °(1s5 IPI) time in the worst case.

5.8 Triangulating Monotone Polygons

A triangulation of a polygon is a decomposition of the polygon into a set of triangles.
Triangulations are often used to reduce problems involving complicated regions to problems
involving triangles, which, because triangles are among the simplest of regions, are generally
easier to solve. For instance. to determine whether a given point lies in a nonconvex polygon,
we can triangulate the polygon and then answer yes only if the point belongs to at least one
of the triangles. Or to render a higher-order surface embedded in space, we can approximate
the surface by a mesh of triangles, which can be rendered more easily.

In this section we present a linear-time algorithm to triangulate polygons of a special
type, known as monotone polygons. With this algorithm's appearance in 1978, researchers
achieved the first method for triangulating arbritary n-gons in 0(n log n) time:

1. Decompose the polygon into monotone pieces in O(n logn) time.

2. Triangulate the monotone pieces in total 0(n) time.

In Chapter7 we will present an O(n logn)-time algorithm for decomposing apolygon into
monotone pieces.

An important question, which has been settled only recently, is whether a general
triangulation algorithm faster than 0(n logn) is possible. Faster triangulation algorithms
have been developed, but some solve only special cases in which the input polygon is
constrained, and the improved performance of others depends on additional properties of
the polygon (such as the number of reflex vertices it possesses). Yet in recent years several
general triangulation algorithms which run in o(n log n) time have been developed. In 1991
Bernard Chazelle devised an optimal 0(n)-time algorithm.

128

https://hemanthrajhemu.github.io

Sec. 5.8 Triangulating Monotone Polygons

5.8.1 What Are Monotone Polygons?

A vertex chain is said to be monotone if every vertical line crosses it in at most one point.
When a monotone chain is traversed beginning from its leftmost vertex, its vertices are
visited by increasing x-coordinates.

A polygon is monotone if its boundary is composed of two monotone chains: the
polygon's upper chain and lower chain. Each chain terminates at the polygon's leftmost
vertex and rightmost vertex and contains zero or more vertices in between. Figure 5.18
gives some examples. Observe that the (nonempty) intersection of a vertical line and a
monotone polygon consists of either a vertical line segment or a point.

5.8.2 The Triangulation Algorithm

Let p be a monotone polygon, and let us relabel its vertices as VI, V2 ... v, by increasing
x-coordinates since our algorithm will examine the vertices in this order. The algorithm
produces a succession of monotone polygons p = po, p,. , p, = 0. Polygon pi, the
result of examining vertex vi, is obtained by splitting zero or more triangles from the previous
polygon pi-,. The algorithm is finished when we are left with pn, the empty polygon-the
collection of triangles accumulated along the way represents the triangulation of the original
polygon p.

The algorithm maintains a stack s of vertices that have been examined but not yet
fully processed (some as yet undiscovered triangles may meet these vertices). As vertex vi
is about to be examined, the stack contains some of the vertices of polygon pi-,. Certain
stack invariants are maintained as the algorithm proceeds.' Specifically, where the vertices
on the stack are labeled sl, 52, s, from the bottom of the stack to the top, the following
conditions are maintained:

1I. s2, .. S., St are ordered by increasing x-coordinates and includes every vertex of pi- I
that lies both to the right of s, and to the left of st,

2. sl, s2 , .. ., s, are consecutive vertices in either pi- I's upper chain or its lower chain,

3. vertices s2, s3, . . , st-I are reflex vertices in pi-, (the measure of each of their interior
angles exceeds 180 degrees), and

(a) (b)

Figure 5.18: Two monotone polygons. The upper chain of polygon (b) consists of a single edge only.

'An invariant is a condition that holds true at specific points of the algorithm, such as at the start
of every iteration of a given loop.

129

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

4. in polygon Pi-i, the next vertex v; to be examined stands in one of these relations to
vertices St and SI:

(a) vi is adjacent to st but not to s1, or

(b) vi is adjacent to s1 but not to s,, or

(c) vi is adjacent to both s1 and s,.

The three cases of condition 4 are shown in Figure 5.19.
The action taken when vertex vi is examined depends on which one of stack condi-

tions 4a, 4b, or 4c currently holds. The actions, illustrated in Figure 5.19, are as follows:

Case 4a Vertex vs is adjacent to st but not to sI: While t > I and internal angle ZViStSt-I
measures less than 180 degrees, split off triangle Av istst-, then pop st from the stack.
Finally, push vi. The algorithm uses the fact that vistst-I < 180 only if either (1) St-,
lies to the left of A if vi belongs to polygon Pi-i's upper chain or (2) St-I lies to the right
of viT7 if vi belongs to the lower chain.

Case 4b Vertex vi is adjacent to si but not to st: Split off the polygon determined by vertices
Vi, SI, 52, .- , St, then empty the stack, then push St followed by vi. The polygon defined by
the vertices vi, SI, s2- . . , St is in fact fan shaped with apex vi (i.e., vi belongs to its kernel).
The algorithm then triangulates this polygon.

Case 4c Vertex vi is adjacent to both SI and st: In this case vi = Vn and polygon pi- i, deter-
mined by vertices vi, SI, 52, . ., St, is fan shaped with apex v,. The algorithm triangulates
this polygon directly, and exits.

Figure 5.20 runs the algorithm on a small problem (the stages are ordered top to
bottom, left to right). In each stage, the vertex being examined is circled, and the vertices
on the stack are labeled sI, . . ., st.

The following program, triangulateMonotonePolygon, is passed a mono-
tone polygon p and returns a list of triangles representing a triangulation of the polygon.
The program assumes that polygon p's window is positioned over its leftmost vertex:

enum (UPPER, LOWER);

List<Polygon*> *triangulateEonotonePolygon(Polygon &p)

S4 \

Si S2 S3 \\ \

- - - \ -
V

1
VI

(a) (b) (c)

Figure 5.19: The three cases that occur while triangulating a monotone polygon: Vertex v is (a)
adjacent to st but not to si, (b) adjacent to s, but not to s,, or (c) adjacent to both s, and s,.

130

-1

https://hemanthrajhemu.github.io

131Sec. 5.8 Triangulating Monotone Polygons

Figure 5.20: Triangulating a small monotone polygon. The triangles discovered at each stage are
highlighted. The stages proceed from top to bottom, left to right.

Stack<Vertex*> s;

List<Polygon*> *triangles = new List<Polygon*>;

Vertex *v, *VU, *v;

leastVertex(p, leftToRightCmp);

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

v = vu = vl = v

s.push(v);

int chain = advancePtr(vl, vu, v);

s.push(v);

while (1) { /* outer while loop */

chain = advancePtr(vl, vu, v);

if (adjacent(v, s.topo) &&

!adjacent(v, s.bottom())) t // case 4a

int side = (chain == UPPER) ? LEFT : RIGHT;

Vertex *a = s.top();

Vertex *b = s.nextToTopo;

while ((s.size() > 1) &&

(b->classify(v->pointo),a->pointo) == side)) {

if (chain == UPPER) {

p.setV(b);

triangles->append(p.split(v));

} else {
p.setv(v);

triangles->append(p.split(b));

}
s.poPO;

a = b;

b = s.nextToTopo;

}
s.push(v);

} else if (!adjacent(v, s.top()) { // case 4b

Polygon *q;

Vertex *t = s.pop(;

if (chain == UPPER) {

p.setV(t);

q = p.split(v);

} else (
p.setV(v);

q = p.split(t);

q->advance(CLOCKWISE);

triangulateFanPolygon(*q, triangles);

while (!s.empty())

5 .POPM0

s.push(t);

s.push(v);

I else { // case 4c

p.setV(v);

triangulateFanPolygon(p, triangles);

return triangles;

I
} /* end of outer while */

}

132

https://hemanthrajhemu.github.io

Sec. 5.8 Triangulating Monotone Polygons

Function adjacent returns TRUE just if the two vertices it is passed are adjacent:

bool adjacent(Vertex *v, Vertex *w)

{
return ((v == v->cw()) 11 (w == v->ccw()));

)

Program triangulateMonotonePolygon merges the upper and lower chains
of polygon p as it proceeds, thereby taking advantage of the fact that the vertices in each
chain are already ordered by increasing x-coordinates [otherwise an O(n log n) time sort
would be necessary]. In each iteration, variable v points to the vertex to be examined. The
program maintains two variables, vu and vl, which point to the last vertex examined in p's
upper and lower chains, respectively. As the program proceeds, these pointers are marched
left to right by function advancePtr. Each time advancePtr is called, it advances
either vu or vl and updates v to point to whichever is advanced:

int advancePtr(Vertex* &vu, Vertex* &vl, Vertex* &v)

{
Vertex *vun = vu->cwo;
Vertex *vln = vl->ccw0;
if (vun->point() < vln->pointo)) {

v = vu = vun;
return UPPER;

} else {
v = vl = vln;
return LOWER;

}

Function advancePtr returns UPPER or LOWER, indicating which of the two
chains v belongs to. Program triangulateMonotonePolygon uses this value to
ensure that its subsequent call to split returns the piece detached from the main polygon,
rather than the main polygon from which the piece was detached.

To triangulate a fan shaped polygon, we iteratively find the triangles which fan out
from some common apex v. To do this, we traverse the polygon starting from v, and at
each vertex w that is not adjacent to v, we split along the chord connecting v to w. This
is performed by function triangulateFanPolygon, which destructively decomposes
the n-gon p into n - 2 triangles and appends these to list triangles. The function
assumes that polygon p is fan shaped, and its window is positioned over some apex:

void triangulateFanPolygon(Polygon &p, List<Polygon*> *triangles)

{
Vertex *w = p.v0->cwv)->cw0;
int size = p.sizeo;

for (int i = 3; i < size; i++)

133

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

triangles->append(p.split(w));

w = v->cw();

triangles->append(&p);

Figure 5.21 depicts a triangulation produced by the algorithm. The monotone polygon
contains 35 vertices.

5.8.3 Correctness

We must show two things: (1) that every diagonal the algorithm finds in iteration i is (a
chord) internal to polygon pi-,; (2) that the algorithm restores the four stack conditions
from one iteration to the next. (That the chords which are found decompose the original
polygon into triangles is apparent from Figure 5.19.)

First consider diagonal VTsjt- 1 of Figure 5.19a (here t = 5). Letting triangle T =

Lst-istvj, observe that no vertex of polygon pi-l can lie in T: The vertices so, * *, St-2
lie to the left of T's leftmost vertex St-,, and vertices vj for j > i lie to the right of T's
rightmost vertex vi. Hence any edge that crosses diagonal vis1t. 1 must leave triangle T by
one of the edges sol St or St, which is impossible since these are boundary edges of pi- l.
Thus diagonal)j is a chord. Now split triangle T from pi.- * The same argument shows
that the remaining diagonals introduced in Case 4a are also chords.

Next consider Case 4b, depicted in Figure 5.19b. By stack conditions 2 and 3,
polygon T, determined by vertices vi, sI, .. ., st, is fan shaped with apex vi. Observe that
no vertex of Pi-, can lie in the interior of T-were one or more vertices to do so, the
rightmost such vertex would currently be on the stack, and hence on the boundary of pi- l
Since the interior of T is free of vertices, any edge which crosses V-t must also cross one
of the edges Visl, SI.02, .St-St, which is impossible since these are boundary edges of
pi-. It is shown similarly that, in Case 4c (Figure 5.19c), Pi-, is fan shaped with apex vi
and interior free of vertices.

Next we argue that the stack conditions are maintained from one iteration to the next.
At most vi and st are pushed on the stack, and when they are both pushed, they are pushed
in the correct horizontal order. Thus stack condition I is maintained. The vertices comprise
a vertex chain in Pi - by induction (in Case 4a) or by the fact that the stack is reset to two
adjacent vertices (in Case 4b), so condition 2 is satisfied. The stack's vertices are reflex
(except for top and bottom vertices) because vi is pushed only when the vertex on the top

Figure 5.21: Triangulation of a monotone 35-gon.

134

https://hemanthrajhemu.github.io

of the stack (onto which it gets pushed) would become a reflex angle. Hence condition 3 is
met (it is vacuously satisfied in Case 4b since the stack contains only two items.) Finally,
vi must be adjacent to at least one of s, or s, because the monotonicity of Pi- I guarantees
that v; has a neighbor to its left, and all the stack's vertices except s1 and s, already have
both neighbors accounted for. Hence stack condition 4 is satisfied.

5.8.4 Analysis

Program triangulateMonotonePolygon runs in 0(n) time, where the input mono-
tone polygon contains n vertices. To see the upper bound 0(n), observe that each iteration
of the two inner while loops (in Cases 4a and 4b) pops a vertex from the stack. Yet every
vertex is pushed onto the stack at most once (when it is first examined) and hence can be
popped from the stack at most once. Since the algorithm (1) performs 0(n) constant-time
stack operations and (2) spends constant time between successive stack operations, it runs
in 0(n) time. The lower bound follows from the fact that each of the n vertices must be
examined.

5.9 Chapter Notes

The need to sort arises in many settings and is ancient, predating computers and possibly
even written language. Not surprisingly, many of the algorithms we cover in this book rely
on sorting. During the course of this book, we present three sorting methods that belong to
every computer scientist's repertoire-insertion sort, selection sort, and merge sort. These
methods are so fundamental that they are all but unattributable. Yet despite their seeming
simplicity, research continues to this day into the complexity of these and other basic sorting
algorithms.

The number of polygonizations of a set of n points is exponential in n; however, the
number of star-shaped polygonizations is bounded above by 0(n 4). If no three points in
the point set are collinear, the kernels of the different star-shaped polygonizations partition
the point set's convex hull. An algorithm for constructing this partition in 0(n 4

) time
is presented in [22], which leads to an 0(n5)-time algorithm for finding all star-shaped
polygons. An algorithm for finding the kernel of any n-sided polygon in 0(n) time is
presented in [531; we present a simpler but less efficient 0(n log n) algorithm in Chapter
8. The superb book Art Gallery Theorems and Algorithms by Joseph O'Rourke explores
problems related to visibility inside a polygon [601.

The notion of convex hull makes sense for sets of points in d-dimensional space for
any d > 1: The convex hull is the intersection of all convex polytopes that contain the
points. Some methods for finding the convex hull of planar point sets are framed in terms
of d-dimensional space. Insertion hull, for example, is a special case of the beneath-beyond
method for finding the convex hull of points in d-dimensional space [45].

The line clipping method of section 5.6 is known as the Cyrus-Beck clipping algo-
rithm, and the polygon clipping method of section 5.7 as the Sutherland-Hodgman algorithm
[75]. Other well-known clipping methods include the Cohen-Sutherland and the midpoint
subdivision [77] line clipping algorithms, and the Weiler-Atherton [88] polygon clipping
algorithm. This last algorithm is general, allowing both subject and clip polygons to be non-

Sec. 5.9 Chapter Notes 135

https://hemanthrajhemu.github.io

Chap. 5: Incremental Insertion

convex and to possess holes. This generality permits its use in an algorithm for performing
hidden surface removal, also presented in [88].

The algorithm for triangulating monotone polygons is given in [31], which gives a
more general definition of monotone than we have assumed: A vertex chain c is monotone
relative to some line e if every line perpendicular to e intersects c in at most one point. A
polygon is monotone if its boundary is composed of two vertex chains that are monotone
relative to the same line. Our monotone polygons are actually polygons that are monotone
relative to the horizontal axis. The article [67] presents a linear-time algorithm for deciding
whether there exists a line relative to which a polygon is monotone.

Chazelle's [19] triangulation algorithm runs in optimal 0(n) time. A survey of
polygon partitioning techniques is presented in [60, 61].

5.10 Exercises

1. Program starPolygon finds only fan-shaped polygons. Generalize the program
so, when passed any point s lying in the convex hull of the set of points, it finds a
star-shaped polygon containing s in its kernel.

2. Devise an 0(n log n)-time algorithm for finding a star-shaped polygon in a point set.

3. Prove that the kernel of a polygon is convex.

4. Write a version of insertion hull that runs in 0(n log n) time. (Hint: Presort the points
so the calls to pointInConvexPolygon and closestVertex are unnecessary.)

5. Show that Q (n log n) time is necessary to solve the convex hull finding problem. [Hint:
Devise an efficient reduction from sorting to convex hull finding. Use the fact that
Q (n log n) is a lower bound for sorting.]

6. Show that point p belongs to convex hull C7l (S) if and only if there exist three points
of S such that the triangle they determine contains p.

7. This question involves the Cyrus-Beck line clipping algorithm. Show that a line s
intersects a convex polygon p only if the intersection points, when ordered along 3-,
consist of a subsequence of PE intersection points followed by a subsequence of PL
intersection points.

8. Modify program clipLineSegment so it clips an infinite line, rather than a line
segment, to a convex polygon.

9. Devise an algorithm to remove the degenerate edges which are sometimes produced
by clipPolygonToEdge.

10. Given a polygon p and some point a inside p, devise a method for finding some ray
that originates at a and crosses the minimum number of p's edges. (Hint: Consider
sorting the vertices of p radially around a.)

11. Show that any triangulation of an n-gon uses n - 3 chords to decompose the polygon
into n - 2 triangles.

136

https://hemanthrajhemu.github.io

6
Incremental Selection

Incremental selection methods solve problems incrementally, a little at a time. These
methods, however, process the input in an order of their own making, rather than in the
order in which the input is presented. Incremental selection involves scanning the input to
"select" the best item to process next.

In some applications of incremental selection, the order in which items are to be
processed can be determined in advance. In such cases the input can be presorted. In other
applications the order cannot be anticipated, and each decision concerning which item to
process next depends on what has been achieved so far.

In this chapter we will look at both kinds of applications. We will start with selection
sort, an exemplar for incremental selection. We will then consider two more methods for
constructing the convex hull of a finite point set: the gift-wrapping method and the Graham
scan. The third geometric algorithm we will cover is the depth-sort method for performing
hidden surface removal given a collection of triangles in space. Our next algorithm computes
the intersection of two convex polygons in the plane. Our last algorithm constructs a special
triangulation of a finite point set in the plane, known as the Delaunay triangulation.

6.1 Selection Sort

Selection sort, another sorting algorithm, repeatedly extracts the smallest item from a set
until the set is empty. For sorting an array of items, it works as follows: Find the smallest
item and exchange it with the item in the array's first position. Then find the smallest of

137

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

the remaining items (to the right of the first position) and exchange it with the item in the
second position. Continue in this manner until the array is sorted.

The function template selectionSort sorts the items in array a [0 . . n- 1 i . For
each i from 0 through n -1, iteration i selects the smallest item from among a [i. n- I1
and then exchanges this item with a [i I:

template<class T>

void selectionSort(T a[], int n, int (*cmp)(T,T))

{
for (int i = 0; i < n-1; i+n) {

int min = i;

for (int j = i+l; j < n; j++)

if ((*cmp)(a[j], almin]) < 0)

min = j

swap(aui], amin]);

The body of the inner for loop performs the selection for each increment of i.
Variable min holds the index of the smallest item examined in the current scan. We
maintain the index of the item, rather than the item itself, so the subsequent exchange can
be performed.

Function swap exchanges its two arguments:

template <class T> void swap(T &a, T &b)

T t = a;

a =b

b =t

The running time of selection sort is T(n) = Z7 1(i), where I(i) time is needed to
select the ith smallest item. Since selecting this item takes n - i comparisons, the program
performs T(n) = (n - 1) + (n - 2) + - - + 1 = n(n - 1)/2, or about n2 /2, comparisons
in total. Although this running time is comparable to that of insertion sort, selection sort
is generally preferable: Selection sort performs only n exchanges, whereas insertion sort
performs about n2 /2 half-exchanges in the worst case (where shifting an item one position
to the right counts as a half-exchange).

6.1.1 Off-Line and On-Line Programs

Selection sort is an example of an off-line method. This means that all its input data must be
available from the start. It is easy to see why: If the smallest item were to arrive only after
some other (larger) item were already selected, the opportunity to put the smallest item in
the first position of the array would be lost. All incremental selection methods are in fact
off-line since selection of the correct item at each stage cannot be guaranteed if all items
are not accessible.

138

https://hemanthrajhemu.github.io

Sec. 6.2 Finding Convex Hulls: Gift Wrapping

Insertion sort, like all incremental insertion methods, is an example of an on-line
method. An on-line program does not look ahead at its input. This means that its input can
arrive as a stream over time and does not have to be available in its entirety from the start.
Although insertionSort happens to have access to the entire input array, it does not
scan the array prior to inserting items; rather, it peels off one item at a time without looking
ahead.

On-line programs are most useful in real-time settings, where the input data are
generated on the fly. Text editors and flight simulators are on-line, since input to these
programs is generated in real time by a user whose decisions cannot be anticipated. On
the down side, on-line programs may do work which, on the basis of input data that arrives
only later (too late), turns out to have been wasted effort. An example is the convex hull
program insertionHull of the previous chapter, which sometimes assembles large
current hulls only to disassemble them later. We now turn to a method for constructing
convex hulls which avoids this sort of wasted work because it is based on the incremental
selection approach.

6.2 Finding Convex Hulls: Gift Wrapping

One way to construct the convex hull of a finite point set S in the plane mimics how one
would go about drawing it with straightedge and pencil. First select some point a E S that
clearly belongs to the convex hull boundary-the leftmost vertex suffices. Then pivot a
vertical ray clockwise around a until it first hits some other point b in S; segment ab is an
edge of the convex hull. To find the next edge, continue pivoting the ray clockwise, this
time around b, until the ray encounters some other point c; segment bc is the next edge of
the convex hull. Continue in this fashion until returning to point a. Figure 6.1 depicts the
process, which is known as the gift-wrapping method.

The process of pivoting the ray around each point is the "selection" part of the algo-
rithm. To select the point that follows point a on the convex hull boundary, we seek point b

such that no point lies to the left of ray ab. The points are examined in turn, while the
algorithm keeps track of the leftmost candidate encountered so far. Only those points not
yet known to lie on the convex hull boundary need be examined.

The following program gi f twrapHul 1 returns a polygon representing the convex
hull of the n points in array s. The array s should have length n + 1 since the program
places a sentinel point in s [n]:

Polygon *giftwrapHull(Point s[], int n)

int a, i;

for (a = 0, i = 1; i < n; i++)

if (sBi] < s[a])

a = i;

sin] = s[a];

Polygon *p = new Polygon;

for (int m = 0; m < n; m++)

swap(s[a], s~m]);

139

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

p->insert(s[mJ);

a = 2 + 1;

for (int i = m + 2; i <= n; i++) {
int c = sti].classify(s[in], spa]);

if (c == LEFT || c == BEYOND)

a =i;

}
if (a == n)

return p;

}
return NULL;

}

Pivoting the ray around some point s [m] is simulated by the inner for loop. Point
s [a] is the leftmost point the ray has encountered so far. If a new point s [i] lies to the
left of the ray that originates at s [im] and passes through s [a], then the pivoting ray would
hit s [i] before s [a], so a is updated. Variable a is also updated if s [i] lies beyond
s [a] -point s [a] cannot be a vertex of the convex hull if it lies between points s [nm]
and s [i] .

Observe that function gi ftwrapHul 1 rearranges the points in array s. At the
end of iteration m, subarray s [0 . . mi] contains the known vertices of the convex hull in
clockwise rotation, and s [m+1 . . n- 1] contains the remaining points, which may or may
not prove to be vertices of the convex hull. It is these latter points which must be examined
in subsequent iterations.

a
0

0

C
b

a -

*0

(a) (b) (c)

aQ<

(d) (e) (f)

Figure 6.1: Gift wrapping a set of points in the plane.

140

I

https://hemanthrajhemu.github.io

Sec. 6.3 Finding Convex Hulls: Graham Scan

6.2.1 Analysis

To analyze the gift-wrapping method, note that pivoting around the mth point requires
n - m - 2 (constant-time) point-line classifications. Since only h pivots are performed
[where h is the number of vertices in convex hull CHX(S)], the total running time is O (hn).
If every one of the n points is a vertex of C/t(S) (i.e., if h = n), the running time is 0(n 2),
comparable to that of insertionHull. On the otherhand, whenever h is small compared
to n, the gift-wrapping method is faster than the insertion hull method.

A running time like O(hn) is said to be output sensitive since it includes a factor h
that depends on the size of the output. For analyzing programs which run more quickly
the less output they produce (not all programs behave like this), output-sensitive bounds
provide a tighter estimate of behavior than do bounds not sensitive to output size. In the
case of gift wrapping, the 0(hn) running time indicates that the program is efficient when
the convex hull is small; this fact is not captured by the 0(n2) estimate of running time,
which is sensitive only to input size but not to output size.

6.3 Finding Convex Hulls: Graham Scan

In this section we cover the Graham scan, a convex-hull finding method named for its
inventor, R. L. Graham. The Graham scan finds the convex hull of a finite point set S in
two phases. In the presorting phase, the algorithm selects an extreme point P0 E S and
sorts the remaining points of S radially around Po. In the hull finding phase, the algorithm
iteratively processes the sorted points, thereby producing a sequence of current hulls which
converges to convex hull CH(S). Presorting simplifies the hull finding phase: Each point
processed during the hull finding phase gets inserted into the current hull, no questions asked;
moreover, the vertices to be removed from the current hull are easy to find. This compares
favorably with the way that the insertion hull method of the previous chapter processes each
point: It must decide whether to insert the point into the current hull and, if so, traverse the
current hull boundary full circle to determine which vertices are to be removed.

Given point set S, Graham scan first finds some extreme point P0 E S. We will take Po
to be the point of S with minimum y-coordinate, or the rightmost such point in the case of
a tie. The remaining points are then sorted by polar angle around Po. If two points have the
same polar angle, the point closer to P0 is considered less than the more distant point. This
is the dictionary order relation for points based on their polar coordinates relative to po.

realized by comparison function polarCmp of section 5.2. Let us relabel the remaining
points PI, P2 . Pn-l according to this ordering, as in Figure 6.2.

Po

Figure 6.2: Labeling of points based on their polar
coordinates relative to pt.

141

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

During the hull finding phase, Graham scan maintains a current hull over those points
that have already been inserted. Figure 6.3 illustrates the algorithm in action. Consider the
insertion of point pa (Figure 6.3f). Because the points are ordered radially around po, it is

P70 P3

0P5 P4

. P6 P20 Pi

P8

Pa

(a)

(c)

P70 P3

* P6 P2. u p 1

P8

(e)

(g)

P7* P3

P5 P4
S

. *P6 P2a Pi

P8P

Po

(b)

P7 . P3

P5 P4
0

* P6 P20 Pi
P8

P0

(d)

(f)

(h)

Figure 6.3: The Graham scan in action.

142

P7.

PB

I. I

F p7 ---- P3

-- P5 / P4
O'I" I

"�P6

PS11 Pi

PO

https://hemanthrajhemu.github.io

Sec. 6.3 Finding Convex Hulls: Graham Scan

clear that p7 is to be inserted and that po is to become its predecessor. But which point is
to become p7'S successor? To answer this, we make use of the fact that every vertex must
represent a left turn in a counterclockwise traversal of the convex hull boundary. Consider
point P6. our first candidate. Since the angle LP5P6 P7 represents a non-left turn (p7 lies to
the right of edge P5A), we remove P6 from the current hull. Next we consider p5. Since
angle Zp4p5 p7 also represents a non-left turn, we similarly remove p5 from the current
hull. Similarly, we remove p4 as well since angle Zp3p4p7 is also not a left turn. When we
consider point p3, things are different: Angle Z p p3 p7 does in fact represent a left turn, so
we have found P7'S successor in the updated current hull (p3).

Program grahamScan is passed an array pts of n points and returns a polygon
representing pts's convex hull. The program works in five stages-the first two comprise
the presorting phase, and the remaining three the hull finding phase:

1. Find extreme point po.

2. Sort the remaining sites by their polar coordinates relative to p(.

3. Initialize the current hull.

4. Grow the current hull until it equals the convex hull of all n sites.

5. Convert the current hull to a Polygon object and return it.

The program is defined as follows:

Point originPt;

Polygon *grahamscan(Point pts l, int n)

{
// stage 1

int m = 0;
for (nt i = 1; i < n; i++)

if ((pts[i].y < ptstml-y)

((pts[i].y == ptstmj.y) && (ptsti].x < pts[m].x)))

m = i;
swap(ptstO], pts[mJ);

originPt = ptsaO];

// stage 2

Point **p = new (Point*)[n];

for (i = 0; i < n; i++)

phi] = &ptsti];

selectionSort(&pl], n-1, polarcmp); // or any sorting method

// stage 3
for (i = 1; p[i+1]->classify(*p[O], *p[i]) == BEYOND; i++)

Stack<Point*> s;

s.push(p1O]);

s.push(ptil);

// stage 4

for (i = i+l; i < n; i++) {

while (p(i]->c1assify(*s.nextToTop(), *s.topo) != LEFT)

s pop();

143

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

s.push(pli]);

stage 5
Polygon *q = new Polygon;
while (!s.empty())

q->insert(*s.POP());
delete p;

return q;

?

Stage 1 is straightforward. In stage 2 we allocate array p and initialize its elements to
point to the Points in array pts. We require an array of pointers so we can employ one
of our generalized sorting routines. Then we sort array p based on comparison function
polarCmp, which was defined in section 5.2 in the context of finding star polygons in
point sets. Recall that the global variable originPt is used to communicate the origin
point-in this case point po-to function polarCmp.

Stages 3 and 4 maintain the current hull in a stack s. Letting set Si = {po, p, . p, i},
the stack represents the current hull CH(Si) as follows. Where the points in the stack are
labeled s1, s2, ... , st from the bottom of the stack to the top, the stack satisfies these two
stack conditions:

1. P= sI, s2 , . s = Pi are the vertices of current hull C-(Si) in counterclockwise
rotation, and

2. edge SI S2is an edge of the final convex hull CH(S).

Stage 3 establishes these conditions initially. The for loop steps along ray _p*p until
arriving at the last (most distant) pi along the ray; then it pushes pO and pi onto the stack.
Stack condition 1 is satisfied because line segment pope is the convex hull of Si since points
Pl, *.*, pi-, lie between po and pi. Stack condition 2 is satisfied because pTopi is an edge
of C-(S).

In stage 4, illustrated in Figure 6.4, point pi is processed to produce current hull
Ct(S,). Program grahamScanpopsst, st-1,..., sk+I from the stack until reaching Sk, the
topmost point of the stack such that angle Zsk- I sk pi represents a left turn. Since these points
that are popped lie in the interior of triangle Apo pi sk or along one of the edges po pi or pisk,
none ofthem can be a vertex of C7(S,). Since only these points and none others are removed
from the stack, the points that remain, together with pi, are the vertices of CH-(Si). Because
stack condition I ensures that Sj, . . ., Sk are ordered correctly within the stack and pi follows
these in the polar angle ordering, the new stack contents (si, . . ., Sk, pi) are correctly ordered
in counterclockwise rotation. It follows that stack condition I is maintained.

The purpose of stack condition 2 is to guarantee that Sk exists. Since edge SS12 is an

edge of CK(S), every pi that gets processed lies to the left of S152. Since angle Zsls2pi

represents a left turn, it follows that Sk exists for some k > 2. Moreover, since the original sI
and S2 are never popped from the stack, stack condition 2 is maintained.

Stage 5 of grahamScan grows a Polygon object q by iteratively popping a point
from the stack and inserting it into q. By stack condition 1, the points are popped in
clockwise order.

144

https://hemanthrajhemu.github.io

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

Figure 6.4: Inserting point pi to produce current
I.. red w -I

- 1 = Po null L, rki).

With regard to running time, it is easy to see that stages 1, 3, and 5 each take O(n)
time. In stage 4, the body of the while loop is performed at most once per point (once
popped from the stack, a point never returns to the stack a second time). Hence stage 4 also
takes O(n) time. Therefore, total running time is dominated by the initial sort (stage 2),
so Graham scan runs in O(n logn) time if an appropriate sorting method is used. It is
noteworthy that Graham scan runs in linear time if the point set is known to be sorted
initially.

6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

6.4.1 Preliminaries

Three-dimensional computer graphics typically involves modeling a scene in space and
then forming an image of the scene in a process known as rendering. To render, we select
a position in space from which to view the scene and, based on this viewing position and
several additional viewing parameters, project the scene into a plane, where the image is
formed.

What makes rendering challenging is that some of the objects in the scene, and portions
of other objects, are hidden from view and so should not appear in the final image. Some
of the objects may lie outside the field of view (identifying these objects is the problem
of clipping). In addition, some objects (and portions of objects) may be hidden by other
opaque objects that lie between them and the viewing position. The problem of identifying
these hidden objects is known as the hidden surface removal problem.

In this section we solve the hidden surface removal problem through depth sorting.
The scene will be represented by a collection of triangles in space. This model is in wide
use, in large part because it accommodates a wide range of scenes. For instance, any surface
can be approximated by a mesh of triangles which, by making the mesh sufficiently fine,
can be made to resemble the surface as closely as desired. Even relatively coarse meshes
are useful in practice since shading methods applied during rendering can greatly enhance
the impression of the surface's curvature.

The projection we will employ maps points in space along lines parallel to the z-axis:
Point (x,y,z) projects to point (x,y,O). This projection, known as orthographic parallel
projection, can be assumed without loss of generality: Given the set of viewing parame-
ters describing some desired view, a sequence of transformations can be performed which
reduces the original rendering problem to one involving orthographic parallel projection.

145

Pi

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

By convention, we will assume that the viewing position is in the -z-half-space (behind
the xy-plane), that the scene lies in the +z-half-space (beyond the xy-plane), and that depth
increases-objects are farther away-as z increases.

We will further assume that the triangles in the scene are oriented such that they are
viewed from their negative half-spaces-their normal vectors point away from the viewing
position (Figure 6.5). This assumption is less limiting than might first appear. When using
a mesh of triangles to model the surface of a solid, the triangles are oriented consistently,
relative to the solid's interior: for example, the normals all point toward the interior of
the solid. In a prerendering step known as backface culling, we discard those triangles
whose normals point toward the viewing position since they cannot be seen-the solid's
interior lies between each such triangle and the viewing position. We are left with only
those triangles whose normals point away from the viewing position. Even when a mesh
of triangles is used to represent a "free-floating" surface that is not the boundary of a solid
(so there exists no solid to occlude triangles), the triangles can be reoriented to ensure that
their normals point away from the viewing position.

6.4.2 The Depth-Sort Algorithm

Hidden surface removal is most easily performed on a set of triangles which do not overlap
in z-coordinate. First sort the triangles by decreasing z (from far to near), and then paint
them in this order. If a triangle is visible, it will paint over whatever it hides, and nothing
will be painted over it. This approach is sometimes called the painter's algorithm since
it is how a painter might first paint the background, then the scene at intermediate depth,
and finally the foreground. Each layer is painted on top of the previous, more distant
layer.

The painter's algorithm exploits the fact that it is safe to paint something if it does
not hide anything to be painted later. We will say that a list of triangles is visibility ordered
if it is safe to paint each one in the given order-that is, no triangle hides any that follow.
More formally, a list of triangles P1 -< P2 -< -*-- *< Pn is visibility ordered with respect to
viewpoint p if and only if this holds: If Pi -< Pj, then Pi does not obscure Pj when viewed
from p. Depth sorting is the process of arranging a set of triangles into visibility order.

Some sets of triangles admit more than one visibility ordering. A simple example
is that of two triangles, neither of which obscures the other. Other sets admit a unique
visibility ordering, and others, as we shall see shortly, admit none at all.

Y.

x

Figure 6.5: The setting for hidden surface removal.

146

https://hemanthrajhemu.github.io

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

Hidden surface removal is more difficult to perform on a set of triangles which overlap
in z-coordinate. Based on the painter's algorithm, we would like to determine which of
two given triangles obscures the other by comparing canonical values selected from each
triangle's z-extent. (A triangle's z-extent is the range of z-coordinates it spans; equivalently,
it is the perpendicular projection of the triangle's bounding box into the z-axis.) However,
this does not work. If, for example, we use zm, the maximum value in each triangle's
z-extent, the triangles in Figure 6.6 would be ordered A -< B since zA > zu. But this
is not a visibility ordering since A obscures B and so cannot be safely painted first (their
actual visibility ordering is B -< A). This example illustrates that depth sorting generally
requires that a given list of triangles be rearranged, even if the original list is tentatively
ordered from far to near. The algorithm we will present rearranges the order of a tentatively
ordered list by performing a sequence of shuffle operations.

Some sets of triangles admit no visibility ordering at all. If two triangles in the
set interpenetrate each other as in Figure 6.7a, no visibility ordering is possible-neither
triangle can precede the other in any legal visibility ordering since each obscures the other. A
visibility ordering may be impossible even if the triangles are assumed not to interpenetrate
each other. None of the triangles of Figure 6.7b can precede the other two in any legal
visibility ordering since each obscures one of the remaining two.

The way out of this impasse involves refining the original set of triangles: splitting
certain triangles into triangular pieces so the set of triangles which results can be depth
sorted. If triangle A of Figure 6.7a is split by the plane of triangle B into pieces Al,
A2, and A3 (as in Figure 6.8a), the set of triangles that results is visibility ordered by
AI -< B -< A2 -< A3. If triangle C of Figure 6.7b is split by the plane of D into Cl, C2,
and C3 (Figure 6.8b), we have the visibility ordering Cl -< D -< E -< C2 -< C3 . The set of

I Figure 6.6: The visibility ordering of these trian-
XY gles is B -< A even though zM > z'

IL

Figure 6.7: No collection of triangles containing either of these configurations can be visibility ordered.

147

z ,

1__�

IF

. s -

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

Figure 6.8: Refinements of Figure 6.7 are visibility ordered by (a) AI -< B -< A2 -< A3 and (b)
Cl -< D -< E -< C2 -< C3 .

triangles that results from splitting a set of triangles into pieces is known as a refinement of
the original set.

The aforementioned ideas form the basis of our algorithm for depth sorting a set of
triangles. First, we sort the triangles according to their maximum depths zM from far to
near. The resulting list represents a first approximation (or tentative) visibility ordering.
Then we transform this into a true visibility ordering by incrementally shuffling the list and,
whenever necessary, refining the list.

The algorithm works like this. Let S be the tentatively visibility ordered list, and let p
be the first triangle in S. We wish to decide whether it is safe to paint p-that is, whether
p does not obscure q for every q E S. To do so, we compare p to each triangle q in list S
whose z-extent overlaps that of p. For each triangle q, we ask whether it is possible for p
to hide q. If it turns out that p obscures none of the triangles q, it is safe to paint p; hence
we remove p from S and paint it, and then resume the algorithm using the first element in
list S as the new p.

Alternatively, if it happens that p obscures some triangle q, we check whether q also
obscures p or whether q has already been shuffled once. If either condition holds, we split q
into pieces by the plane of p and then, within list S, replace q by its pieces (the refinement
operation). (It is necessary to check whether q has already been shuffled in order to prevent
an infinite loop to which configurations like those of Figure 6.7 would otherwise lead.) If
neither condition holds, then the positions of p and q are interchanged in list S (the shuffle
operation), and the algorithm resumes with q, now the first element of list S. serving as the
new p.

Program depthSort depth sorts an array tri of n pointer-to-triangles and returns
a visibility-ordered list of triangles. The tentatively ordered list of triangles is pointed to by
local variable s, and the final depth-ordered list by variable result:

List<Triangle3D*> *depthSort(Triangle3D trite] , int n)

{
List<Triangle3D*> *result = new List<Triangle3D*>;

Triangle3D **t = new (Triangle3D*)[n];

for Uint i = 0; i < n; i++)

t[i] = new Triangle3D(*tri[i]);

insertionSort(t, n, trianglecmp);

List<Triangle3D*> *s = arrayToList(t, n);

while (s->length() > 0) { /* while */

148

I

.0

https://hemanthrajhemu.github.io

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 149

Triangle3D *p = s->firsto;

Triangle3D *q = s->nexto;

int hasShuffled = FALSE;

for (; !s->isHeado)&&overlappingExtent(pq,2); qps->nextO)

if (mayObscure(p, q)) {

if (q->mark II mayobscure(q, p))

refineList(s, p);

else {

shuffleList(s, p);

hasShuffled = TRUE;

break;

}
}

if (!hasShuffled) (
s->firsto0;

s->removeo0;

result->append(p);

)
} /* while */
return result;

}

Sorting is used to construct the initial tentatively ordered list. The comparison function
triangleCmp compares two Triangle3Ds according to their maximum depth:

int triangleCmp(Triangle3D *a, Triangle3D *b)

{
if (a->boundingBox().dest.z > b->boundingBox().dest.z)

return -1;

else if (a->boundingBoxO.dest.z < b->boundingBoxO.dest.z)

return 1;

else

return 0;

}

Function arrayToList, which was defined in Chapter 3, is then used to transform the
sorted array of pointers into a list.

Function call overlappingExtent (p, q, 2) returns TRUE if triangles p and q
overlap in z-coordinate (the third argument specifies the coordinate via one of the indices 0,
1, or 2). The implementation of function overlappingExtent uses the fact that two
intervals in the real number line intersect if and only if the left endpoint of one of the
intervals is contained in the other interval:

bool overlappingExtent(Triangle3D *p, Triangle3D *q, int i)

{
Edge3D pbox = p->boundingBoxO;

Edge3D qbox = q->boundingBox();

return (((pbox.org[i] <= qbox.org[i]) &&

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

(qbox.org[i] <= pbox.dest[i])) ||

((qbox.org[i] <= pbox.org[i]) &&

(pbox.org[i] <= qbox.dest[i])));

We shuffle list s with function shuf f leList, which exchanges the first item p in
the list with the item q occurring in the list's window:

void shuffleList(List<Triangle3D*> *s, Triangle3D *p)

{
Triangle3D *q = s->val();

q->mark = TRUE;

s->val(p);

s->firstoU;

s->val(q);

6.4.3 Comparing Two Triangles

The depthSort program uses the function callmayObscure (p, q) todetermine whether
triangle p potentially hides triangle q. Function mayObs cure performs five tests in order
of increasing complexity. As soon as one of these tests succeeds, p has been shown not to
obscure q. Alternatively, if none of the five tests succeeds, then p potentially obscures q.
The five tests are as follows:

I. Do the x-extents of p and q not overlap?
2. Do the y-extents of p and q not overlap?

3. Is p entirely behind or on the plane of q?

4. Is q entirely in front of or on the plane of p?

5. Do the projections of p and q not overlap?

Tests 3 and 4 are shown in Figure 6.9.
Most of the machinery for performing the tests is already in place. Tests I and 2

make use of the triangles' bounding boxes to compare x-extents and y-extents, respectively.

z,

kp

/S
,.-xy

Test 3 Test 4

Figure 6.9: Two of the tests checked by mayObscure: (Test 3) p is behind the plane of q; (test 4)
q is in front of the plane of p.

150

https://hemanthrajhemu.github.io

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 151

Test 3 classifies the three vertices of p with respect to the plane of q, and it succeeds if
none of the vertices lies in front of the plane (in q's negative half-space). Similarly, test 4
succeeds if none of q's vertices lies behind the plane of p (in p's positive half-space).
Test 5 is performed using function projectionsOverlap, which returns TRUE if the
two triangles it is passed overlap in their projection.

Function mayObscure applies the tests to triangles p and q until one of the tests
succeeds. If none succeeds, the function returns TRUE, indicating that it is possible for p
to obscure q.

bool mayObscure(Triangle3D *p, Triangle3D *q)

int i;

// case 1
if (IoverlappingExtent(p, q, 0))

return FALSE;

// case 2
if (!overlappingExtent(p, q, 1))

return FALSE;

// case 3

for (i = 0; i < 3; i++)

if ((*p)[i].classify(*q) == NEGATIVE)

break;

if (i == 3) return FALSE;

// case 4

for (i = 0; i < 3; i++)

if ((q)[iJ.classify(*p) == POSITIVE)

break;

if (i == 3) return FALSE;

// case 5

if (!projectionsOverlap(p, q))

return FALSE;

return TRUE;

Let us focus on test 5. To decide whether the projections of triangles p and q overlap,
we first project the triangles into the xy-plane, producing the plane triangles P and Q. We
then apply three tests to P and Q to see if they overlap. If any of the tests succeed, the
projections of p and q overlap; otherwise they do not. The three tests are as follows:

1. Does some vertex of P lie in Q?

2. Does some vertex of Q lie in P?

3. Does some edge of P intersect some edge of Q?

The first test detects the case that P is contained in the interior of Q, and the second
test detects the case that Q is contained in the interior of P. Overlap due to any remaining
configuration is detected by the third test (although some of these configurations will first
be picked up by the first or second test).

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

Function proj ectionsOverlap is passed triangles p and q and returns TRUE if
and only if their projections overlap. It uses function proj ect (defined in section 4.6) to
obtain the projections of p and q:

bool projectionsOverlap(Triangle3D *p, Triangle3D *q)

int answer = TRVE;

Polygon *P = project(*p, 0, 1);

Polygon *Q = project(*q, 0, 1);

for (int i = 0; i < 3; i++, P->advance(CLOCKWISE))

if (pointInConvexPolygon(P->pointo0, *Q))

goto finish;

for (i = 0; i < 3; i++, Q->advance(CLOCKWISE))

if (pointInConvexPolygon(Q->pointo, *P))

goto finish;

for (i = 0; i < 3; i++, P->advance(CLOCKWISE)) {

double t;

Edge ep = P->edgeo);

for (int j = 0; j < 3; j++, Q->advance(CLOCKWISE))

Edge eq = Q->edgeo;

if (ep.cross(eq, t) == SKEW-CROSS)

goto finish;

?
?
answer = FALSE;

finish:

delete P;

delete Q;

return answer;

}

6.4.4 Refining a List of Triangles

In the depth-sort algorithm, refining list s involves splitting triangle q by the plane of
candidate polygon p and then replacing q (within list s) by the two or three pieces into
which it has been split. This is accomplished by function refineList, which is passed
the current list s and the candidate triangle p. Triangle q is assumed to be the current item
of list s:

void refineList(List<Triangle3D*> *s, Triangle3D *p)

{
Triangle3D q = s->val();

Triangle3D *ql, *q2, *q3;

int nbrPieces = splitTriangleByPlane(*q, *p, ql, q2, q3);

if (nbrPieces > 1) {

delete s->removeo;

s->insert(ql);

s->insert(q2);

152

https://hemanthrajhemu.github.io

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 153

if (nbrPieces == 3)

s->insert(q3);

}
}

Triangle splitting is performed by function splitTriangleByPlane, defined

next. Input parameters consist of triangle q to be split and splitter triangle p. The pieces of
q produced by the function are passed back through the reference parameters ql, q2, and
q3. (Parameter q3 is not used if q is split into only two pieces.) The function returns the
number of pieces it yields:

int splitTriangleByPlane(Triangle3D &q, Triangle3D &p,

Triangle3D* &ql, Triangle3D* &q2, Triangle3D* &q3)

{
Point3D crossingPts[2];

int edgelds[2], cl[3];

double t;

int nbrPts = 0;
for (int i = 0; i < 3; i++)

clri] = qti].classify(p);
for (i = 0; i < 3; i++)

if (((cl[i]==POSITIVE) && (cl[(i+l)%3]==NEGATIVE))

((cl[i]==NEGATIVE) && (cl[(i+l)%3J==POSITIVE))) {
Edge3D e(q~i], qE(i+l)%3]);

e.intersect(p, t);

crossingPtstnbrPts] = e.point(t);

edgeldsrnbrPts++] = i;

}
if (nbrPts == 0)

return 1;

Point3D a = q[edgelds[0]1;
Point3D b = q[(edgeIds[0]+l) % 3];

Point3D c = q[(edgelds[0]+2) % 3];
if (nbrPts == 1) {

Point3D d = crossingPts[O];

ql = new Triangle3D(d, b, c, q.id);
q2 = new Triangle3D(a, d, c, q.id);

} else {

Point3D d = crossingPts[0];

Point3D e = crossingPtstl];

if (edgeldsal] == (edgeldst0]+l)%3) {
ql = new Triangle3D(d, b, e, q.id);

q2 = new Triangle3D(a, d, e, q.id);

q3 = new Triangle3D(a, e, c, q.id);
} else {

ql = new Triangle3D(a, d, e, q.id);
q2 = new Triangle3D(b, e, d, q.id);
q3 = new Triangle3D(c, e, b, q.id);

}

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

return (nbrPts + 1);

In the first of two phases, function spl itTriangleByPlane computes the points
at which the plane of p crosses the edges of q. These crossing points are stored in array
crossingPts, and the edges of q which contain the crossing points are stored in array
edgeIds. Here an edge is identified by the identifier of its origin vertex (0, 1, or 2) within
triangle q.

In its second phase, splitTriangleByPlane computes the pieces of q. The
vertices of triangle q are labeled a, b, and c relative to the first crossing point d, as in
Figure 6.10. Under this labeling scheme, triangle q is then split according to diagram (a)
of Figure 6.10 if there is one crossing point d, and according to diagram (b) or (c) if there
are two crossing points d and e.

With regard to performance of depth sorting, some configurations of n triangles in
space require the algorithm to split the list into as many as 8(n 2) pieces. Since the list s
can become as long as 0(n 2) and processing each candidate triangle p can take time
proportional to the length of the list, depth sorting runs in 0(n 4) time at worst. However,
such configurations are rare, and the algorithm performs well in practice. Furthermore,
the list of polygons produced by depth sorting can be piped into any graphics system for
display; the same cannot be said of all hidden surface removal methods, for some methods
depend on the resolution of the display device.

6.5 Intersection of Convex Polygons

In this section we consider the problem of forming the intersection polygon P n Q of two
convex polygons P and Q. Except where noted, we will assume that the two polygons
intersect non-degenerately: When two edges intersect, they do so at a single point which
is not a vertex of either polygon. Given this assumption of non-degeneracy, intersection
polygon P n Q consists of alternating chains of P and Q. Each pair of consecutive chains
is joined at an intersection point, at which the boundaries of P and Q cross (Figure 6.11).

There are several solutions to this problem that run in time linear in the total number of
vertices. The algorithm we present here is especially clever and easy to implement. Given
two convex polygons P and Q as input, the algorithm maintains a window over an edge
of P and one over an edge of Q. The idea is to advance these windows around the polygon
boundaries while growing the intersection polygon P n Q: The windows chase each other

b b b

dd d

a a a

(a) (b) (c)

Figure 6.10: Splitting a triangle into (a) two pieces and (b and c) three pieces,

154

https://hemanthrajhemu.github.io

Sec. 6.5 Intersection of Convex Polygons

Point

Figure 6.11: Structure of the intersection polygon P n Q.

clockwise around their respective polygons in search of intersection points. Since intersec-
tion points are discovered in the order they occur around P n Q, the intersection polygon is
complete when some intersection point is discovered for the second time. Alternatively, if
not a single intersection point is found after so many iterations, then the polygon boundaries
do not intersect. In this case, simple tests are used to determine whether one of the polygons
contains the other in its interior or if they do not intersect at all.

The notion of a sickle is handy for explaining the algorithm. In Figure 6.12, the
sickles are the six shaded regions. Each is bounded by a chain from P and a chain from Q,
and each terminates in two consecutive intersection points. The inner chain of a sickle
is that chain which lies along the boundary of the intersection polygon. Observe that an
intersection polygon is encircled by an even number of sickles whose inner chains alternate
between P and Q.

In terms of sickles, the algorithm for finding the intersection polygon proceeds in
two phases. In phase 1, P's window p and Q's window q are advanced clockwise until
positioned over edges that belong to the same sickle. Each window starts off in arbitrary
position. (For brevity, we will use p to denote both P's window as well as the edge in the
window. Thus "the origin of p" refers to the origin of the edge in P's window, and the
instruction "advance p" means we are to advance P's window to the next edge. Similarly,
q denotes both Q's window as well as the edge in the window. We will also sometimes
refer to edges p and q as current edges.)

In phase 2, p and q continue to be advanced clockwise, but this time moving in
unison from sickle to adjacent sickle. Before either window leaves the current sickle
for the next, edges p and q cross at the intersection point where the two sickles meet.

Figure 6.12: The sickles encircling the intersection polygon.

155

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

The intersection polygon is grown during this second phase. Whenever p is about to be
advanced, edge p's destination endpoint is inserted into the intersection polygon if edge p
belongs to the current sickle's inner chain. Similarly, when q is to be advanced, edge q's
destination endpoint is inserted if q belongs to the current sickle's inner chain. Whenever
p and q cross, the intersection point at which they cross is inserted into the intersection
polygon.

The algorithm employs advance rules to decide which window to advance in each
iteration. The advance rules depend on the following notion: An edge a is said to aim at
edge b if the infinite line determined by b lies in front of a (Figure 6.13). Edge a aims at b
if either of these conditions hold:

* a x b> 0 and point a.dest does not lie to the right of b, or

* d x b 0 and point a.dest does not lie to the left of b.

Note that a x b > 0 corresponds to the case in which the counterclockwise angle from
vector a to 1 measures less than 180 degrees.

Function aimsAt returns TRUE if and only if edge a aims at edge b. The param-
eter ac lass indicates the classification of endpoint a. des t relative to edge b. The
parameter crossType equals COLLINEAR if and only if edges a and b are collinear:

bool aimsAt(Edge &a, Edge &b, int aclass, int crossType)

{
Point2 va = a.dest - a.org;
Point2 vb = b.dest - b.org;

if (crosaType != COLLINZAR) {
if ((va.x * vb.y) >= (vb.x * va.y))

return (aclass 1= RIGHT);

else

return (aclass != LEFT);
) else {

return (aclass != BEYOND);

)

If edges a and b are collinear, a aims at b if endpoint a. dest does not lie beyond b. This
is used to ensure that a is advanced, rather than b, when the two edges intersect degenerately

q - - - -

Figure 6.13: Only the thickened edges aim at edge q; the other edges do not.

156

https://hemanthrajhemu.github.io

Sec. 6.5 Intersection of Convex Polygons

in more than one point. By allowing a to "catch up" with b, we ensure that no intersection
points are skipped over.

Let us return to our discussion of the advance rules. The advance rules are designed so
that the intersection point which should be found next is not skipped over. They distinguish
between the current edge which may contain the next intersection point and the current edge
which cannot possibly contain the next intersection point; the window over the latter edge
is then (safely) advanced. The advance rules distinguish between the following four cases,
illustrated in Figure 6.14. In this account, edge a is considered outside edge b if endpoint
a.dest lies to the left of b.

1. p and q aim at each other: Advance the window over whichever edge, p or q, is outside
the other. In Figure 6.14a, we advance the window over p. The next intersection point
cannot lie on edge p since p is outside the intersection polygon.

2. p aims at q but q does not aim at p: Insert p's destination endpoint into the intersection
polygon if p is not outside q, and then advance window p. In Figure 6.14b, p cannot
contain the next intersection point (although it may contain some intersection point if
p is not outside q). The figure shows the situation in which edge p, whose window is
to be advanced, is not outside edge q.

3. q aims at p but p does not aim at q: Insert q 's destination endpoint into the intersection
polygon if q is not outside p, and then advance window q (Figure 6.14c). This case
is symmetric to the previous case. The figure shows the situation in which edge q,
whose window is to be advanced, is outside edge p.

4. p and q do not aim at each other: Advance the window over whichever current edge
is outside the other. In Figure 6.14d we advance window p since edge p is outside
edge q.

Figure 6.15 illustrates the algorithm at work. Each edge bears label i if reached in
iteration i (some edges bear two labels since they are reached twice). The two initial edges
are labeled 0. In this figure, phase 2-when the two current edges belong to the same
sickle-begins after three iterations.

Program convexPolygonIntersect implements the algorithm. The program
is passed polygons P and Q and returns a pointer to the resulting intersection polygon R.

The call to function advance is used to advance one of the two current edges and to insert

Case 1 Case 2 Case 3 Case 4

Figure 6.14: The four advance rules: (Case I) Advance p, (Case 2) advance p. (Case 3) advance q.
and (Case 4) advance p.

157

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

11

Figure 6.15: Finding the intersection polygon. An edge bears label i if it is reached in iteration i.
The two initial edges are labeled 0.

conditionally the edge's destination endpoint into polygon R. The windows built into class
Polygon are used.

enm { UNKNOWN, P-IS-INSIDE, QISINSIDE };

Polygon *convexPolygonIntersect(Polygon &P, Polygon &Q)

Polygon *R;

Point iPnt, startPnt;

int inflag = UNKNOWN;

int phase = 1;

int maxItns = 2 * (P.size() + Q.sizeo);

for (int i = 1; (i<=maxltns) || (phase==2); i++) { // for
Edge p = P.edge(;

Edge q = Q.edge(;

int pclass = p.dest.classify(q);

int qclass = q.dest.classify(p);

int crossType = crossingPoint(p, q, iPnt);

if (crossType == SKEW-CROSS)

if (phase == 1) {

phase = 2;

R = new Polygon;

R->insert(iPnt);

startPnt = iPnt;

? else if (iPnt != R->point() {
if (iPnt != startPnt)

R->insert(iPnt);

else

return R;

i

if (pclass==RIGHT) inflag = P-IS-INSIDE;

else if (qclass==RIGHtT) inf lag = Q-IS-INSIDE;

else inflag = UNKNOWN;

} else if ((crossType==COLLINEAR) &&

(pclass!=BEHIND) &&

(qclass!=BEEIND))

158

https://hemanthrajhemu.github.io

Sec. 6.5 Intersection of Convex Polygons 159

inf lag = UNKNOWN;
bool pAIMSq = aimsAt(p, q, pclass, crossType);

bool qAIMSp = aimsAt(q, p, qclass, crossType);

if (pAIMSq && qAIMSp) {

if ((inflag==QZIS-INSIDE) ||

((inflag==UNKNOWN) && (pclass==LEFT)))

advance(P, *R, FALSE);

else

advance(Q, *R, FALSE);

) else if (pAINSq) {

advance(P, *R, inflag==PISINSIDE);

} else if (qAIMSp) {

advance(Q, *R, inflag==Q_1S_INSIDE);

} else (
if ((inflag==Q-ISINSIDE) ||

((inflag==ONKNOWN) && (pclass==LEFT)))

advance(P, *R, FALSE);

else

advance(Q, *R, FALSE);

I II for

if (pointInConvexPolygon(P.point(), Q))

return new Polygon(P);

else if (pointInConvexPolygon(Q.pointo, P))

return new Polygon(Q);

return new Polygon;

}

If 2(1 PI + I QI) iterations are performed without some intersection point being found,
the main loop is exited since the polygon boundaries are then known not to cross. The
subsequent calls to pointInConvexPolygon are used to determine whether P C Q,
Q C P, or P n Q = 0. Alternatively, if some intersection point iPnt is found, then
the algorithm proceeds to grow the intersection polygon R, stopping only when iPnt is

reached for the second time.
Variable inflag indicates which of the two input polygons is currently inside

the other-that is, the polygon whose current edge lies in the inner chain of the current
sickle. Moreover, inf lag is set to UNKNOWN during phase 1, and whenever the two cur-
rent edges are collinear and overlap. It is updated whenever a new intersection point is
discovered.

Procedure advance advances the current edge of polygon A, representing either P
or Q. The procedure also inserts the edge's destination endpoint x into intersection poly-
gon R, if A is inside the other polygon and x was not the last point inserted into R:

void advance(Polygon2 &A, Polygon2 &R, int inside)

{
A.advance(CLOCKWISE);

if (inside && (R.point() != A.pointo))

R.insert(A.point());

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

6.5.1 Analysis and Correctness

The correctness proof bears out what is most remarkable about this algorithm: that the same
set of advance rules works for both phases. The advance rules get p and q into the same
sickle, and then they advance p and q in unison from sickle to sickle.

Correctness of the algorithm follows from two assertions:

1. If current edges p and q belong to the same sickle, then the next intersection point-at
which the sickle terminates-will be found, and it will be found next.

2. If the boundaries of P and Q intersect, current edges p and q will cross at some
intersection point after no more than 2(1 PI + I QI) iterations.

Assertion 2 ensures that the algorithm will find some intersection point, if one exists. Since
edges p and q belong to the same sickle if they cross, assertion I then ensures that the
remaining intersection points will be found in order.

Let us show assertion I first. Suppose that p and q belong to the same sickle and
that q reaches the next intersection point first, before p. We will show that q then remains
stationary while p catches up to the intersection point via a sequence of advances. Two cases
can occur. First, assume that p is outside q (Figure 6.16a). In this case, q remains fixed
while p is advanced by zero or more applications of rule 4, then by zero or more applications
of rule 1, and then by zero or more applications of rule 2. In the second case, assume that p
is not outside q (Figure 6.1 6b). In this case, q remains fixed while p is advanced by zero or
more applications of rule 2. In the symmetric situation, where p reaches the next intersection
point before q, edge q remains stationary while p catches up. This is shown as before, where
the roles of p and q are swapped, and rule 3 replaces rule 2. Assertion I follows.

To show assertion 2, let us assume that the boundaries of P and Q intersect. After
I PI + I QI iterations, either p or q must have traversed full circle around its polygon. Let
us assume that p has. At some time, p must have been positioned such that it contains an
intersection point at which polygon Q passes from the outside of P to its inside. This is
the case because there are at least two intersection points and they alternate in direction of
crossing. Let q be the edge in Q's window when p was so positioned.

In Figure 6.17, the boundary of Q is partitioned into two chains C, and C,. The first
chain, C,, terminates in edge qr, the edge of Q that enters P through edge p. The other
chain, Cs, terminates in edge q,, whose destination vertex both lies to the right of, and

(a) (b)

Figure 6.16: Advancing to the next intersection point.

160

https://hemanthrajhemu.github.io

Sec. 6.5 Intersection of Convex Polygons

Figure 6.17: Illustrations for the proof that an in-
tersection point is found if the boundaries of P and Q
intPrsect

is farthest from, the infinite line determined by edge p. There are two cases to consider,
depending on which of the two chains edge q belongs to:

Case 1 [q E Cr] In this case, p remains fixed while q advances by zero or more applications
of rule 3, then rule 4, then rule 1, and finally rule 3, at which time the intersection point is
found.
case 2 [qj E C,] In this case, q remains fixed while p advances by zero or more applications
of rule 2, then rule 4, then rule 1, and finally rule 2, at which time p will be inside q. At
this point, p and q may both be advanced a number of times-however, q cannot advance
beyond its next intersection point until p first reaches q's previous intersection point (if
p has not done so already). Since p and q end up in the same sickle, assertion I guarantees
that after some number of additional advances, they will cross at the intersection point at
which this sickle terminates.

To see why 2(I PI + I Qi) iterations are enough to find some intersection point, observe
that the initial positions of p and q used to show assertion 2-the boundary of Q entering P
through p, and q situated anywhere-were arrived at after no more than I P I + I QI iterations.
(Actually, either this situation or the symmetric situation, in which the roles of p and q are
swapped, is achieved after this many iterations.) Since neither p nor q then advances full
circle around its polygon before reaching the first intersection point, no more than I PI + I QI
additional iterations are needed.

6.5.2 Robustness

Our algorithm for finding the intersection of two convex polygons is most susceptible to
round-off error when the two polygons intersect at a point that is a vertex of one or both
polygons. One problem is that intersection points may be missed. In Figure 6.13, edges p
and q intersect at point x, the destination endpoint of p. Using exact arithmetic, the
parametric value of x along edge p equals one. However, using floating-point arithmetic,
the parametric value actually calculated might exceed one by a slight amount, locating x
beyond edge p. The intersection point would go undetected.

Function crossingPoint, used by program convexPolygonIntersect to
compute the intersection point of two edges, attempts to resolve these sort of difficulties.
Given two edges e and f, the function first computes the point at which infinite lines e and f
intersect. If this point lies in the vicinity of one of the edges' four endpoints, the endpoint is

161

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

taken to be the point of intersection. As implemented, the function works with parametric
values rather than points. By extending the range of parametric values along edge f, the
edge is lengthened by distance EPSILON2 in both directions. If the intersection point
which would be computed lies within EPSILON2 of one of f's endpoints, the intersection
point is "snapped back" to the endpoint. Otherwise the same is done for edge e.

Function crossingPoint returns one of the values COLLINEAR, PARALLEL,
SKEWNOCROSS, or SKEW-CROSS to indicate the relationship between edges e and f.
If SKEW-CROSS is returned, indicating that the edges intersect at a point, their point of
intersection is passed back through reference paramter p:

#define EPSILON2 lE-10

int crossingPoint(Edge &e, Edge &f, Point &p)

double s,t;

int classe= e.intersect(f, S);

if ((classe==COLLINEAR) || (classe==PARALLEL))

return classes;

double lene - (e.dest-e.org).lengtho;

if ((s < -EPSILON2*lene) || (s > 1.0+EPSILON2*lene))

return SKEWNOCROSS;

f.intersect(e, t);

double lenf = (fiorg-f.dest).length();

if ((-EPSILON2*lenf <= t) && (t <= 1.0+EPSILON2*lenf)) {

if (t <= EPSILON2*lenf) p = f.org;

else if (t >= 1.0-EPSILON2*lenf) p = f.dest;

else if (a <= EPSILON2*lene) p = e.org;

else if (a >= 1.0-PSILON2*lene) p = e.dest;

else p = f.point(t);

return SKEWCROSS;

} else

return SKEW-NO-CROSS;

If it relies on function crossingPoint to calculate points of intersection, our
program for finding the intersection of convex polygons works even when the polygons
intersect at vertices. This is important to us, for in Chapter 8 we will use the program
in applications which unavoidably give rise to this special case. However, note that our
program can fail if a vertex of one polygon lies very close-within EPSILON2-to the
boundary of the other polygon, without actually touching the boundary.

6.6 Finding Delaunay Triangulations

A triangulation of a finite point set S is a triangulation of the convex hull C'H(S) that uses
all the points of S. The line segments of the triangulation may not cross-they may meet
only at shared endpoints, points of S. Since the line segments enclose triangles, we usually

162

https://hemanthrajhemu.github.io

Sec. 6.6 Finding Delaunay Triangulations

refer to them as edges. Figure 6.18 depicts two triangulations of the same set of points
(ignore the circles in the figure for the moment).

Given a point set S, we have seen that the points of S can be partitioned into boundary
points-those points of S which lie on the boundary of the convex hull CI -(S)-and interior
points-those points which lie in the interior of C-(S). The edges of a triangulation of S
can be classified similarly, as hull edges and interior edges. The hull edges are those
edges that lie along the boundary of the convex hull CH-(S), and the interior edges are
the remaining edges, those that pierce the convex hull interior. Note that every hull edge
connects two boundary points, whereas an interior edge can connect two points of either
type; in particular, if an interior edge connects two boundary points, it is a chord of CH(S).
Observe also that every edge of the triangulation is met by two faces: each interior edge by
two triangles, and each hull edge by one triangle and the unbounded plane.

All point sets except the most trivial ones admit more than one triangulation. Re-
markably, every triangulation of a given point set contains the same number of triangles, as
the following theorem indicates:

Theorem 3 (Point-Set Triangulation Theorem) Suppose point set S contains n > 3
points, not all collinear. Suppose further that i of the points are interior [lying in the
interior of Cl-(S)]. Then every triangulation of S contains exactly n + i - 2 triangles.

To see why this theorem is true, first consider triangulating the n - i boundary points.
Since they are the vertices of a convex polygon, any such triangulation contains (n - i) - 2
triangles. (This is not hard to see; in Chapter 8 we will show that every triangulation of
any mr-sided polygon-convex or nonconvex-consists of m -2 triangles.) Now consider
incorporating the remaining i interior points into the triangulation, one at a time. We
claim that adding each such point increases the number of triangles by two. The two cases
illustrated in Figure 6.19 can occur. First, if the point falls in the interior of some triangle,
the triangle is replaced by three new triangles. Second, if the point falls on some edge of the
triangulation, each of the two triangles that meet the edge is replaced by two new triangles.
It follows that after all i points are inserted, the total number of triangles is (n-i -2) + (2i),
or simply n + i - 2.

In this section we present an algorithm to construct a special kind of triangulation
known as a Delaunay triangulation. Such triangulations are well balanced in the sense that
the triangles tend toward equiangularity. In Figure 6.18, for example, triangulation (a) is

(a) (b)

Figure 6.18: Two triangulations of the same set of points.

163

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

Figure 6.19: The two ways in which an interior site can be incorporated into a triangulation.

Delaunay whereas triangulation (b), which contains some long "slivers," is not Delaunay.
Figure 6.20 shows the Delaunay triangulation of a large point set.

To define Delaunay triangulation, we need some new definitions. A set of points is
cocircular if there exists some circle on whose boundary all the points lie. If the circle is
unique, it is called the circumcircle of the points. The circumcircle of a triangle is simply
the circumcircle of its three (non-collinear) vertices. A circle is said to be point free with
respect to a given point set S if none of the points of S lies in the circle's interior. Points
of S may, however, lie along the boundary of a point-free circle.

A triangulation of point set S is a Delaunay triangulation if the circumcircle of every
triangle is point free. In triangulation (a) of Figure 6.18, the two circumcircles which have
been drawn are clearly point free (you might want to draw the remaining circumcircles to
verify that they are also point free). Since the circumcircle shown in triangulation (b) is not
point free, the triangulation is not Delaunay.

We will make two assumptions about point set S to simplify the triangulation algo-
rithm. First, to ensure that some triangulation exists, we will assume that S contains at least
three points, not all collinear. Second, to ensure that the Delaunay triangulation is unique,
we will assume that no four points of S are cocircular. It is easy to see that without this
latter assumption, the Delaunay triangulation need not be unique: Four cocircular points
admit two different Delaunay triangulations.

Our algorithm works by growing a current triangulation, triangle by triangle. Initially
the current triangulation consists of a single hull edge, and at completion the current tri-
angulation equals the Delaunay triangulation. In each iteration, the algorithm seeks a new
triangle which attaches to the frontier of the current triangulation.

The definition of frontier depends on the following scheme, which classifies the
edges of the Delaunay triangulation relative to the current triangulation. Every edge is
either dormant, live, or dead:

* Dormant edges: An edge of the Delaunay triangulation is dormant if it has not yet been
discovered by the algorithm.

* Live edges: An edge is live if it has been discovered but only one of its faces is known.

* Dead edges: An edge is dead if it has been discovered and both of its faces are known.

Initially only a single hull edge is live-the unbounded plane is known to meet it-and
all the remaining edges are dormant. As the algorithm proceeds, edges transition from dor-
mant to live, then from live to dead. The frontier at each stage consists of the set of live edges.

In each iteration, we select any edge e of the frontier and process it, which consists
of seeking edge e's unknown face. If this face turns out to be some triangle t determined

164

https://hemanthrajhemu.github.io

Sec. 6.6 Finding Delaunay Triangulations

Figure 6.20: A Delaunay triangulation of 250 points chosen at random within a rectangle. The
triangulation contains 484 triangles.

by the endpoints of e and some third vertex v, edge e dies since both of its faces are now
known. Moreover, each of the other two edges of triangle t transition to the next state:
from dormant to live, or from live to dead. Here vertex v is called the mate of edge e.
Alternatively, if the unknown face turns out to be the unbounded plane, edge e simply dies.
In this case e has no mate.

Figure 6.21 illustrates the algorithm. In the figure, the action proceeds top to bottom,
then left to right. The frontier in each stage is darkened.

The following program, delaunayTriangulate, implements the algorithm. The
program is handed an array s of n points and returns a list of triangles representing its
Delaunay triangulation:

List<Polygon*> *delaunayTriangulate(Point s[], int n)

Point p;
List<Polygon*> *triangles = new List<Polygon*>;
Dictionary<Edge*> frontier(edgeCmp);

Edge *e = hullzdge(s, n);
frontier.insert(e);

while (!frontier.isEmptym) {
e = frontier.removexin();
if (mate(*e, s, n, p)) {

updateFrontier(frontier, p, e->org);

updaterrontier(frontier, e->dest, p);

triangles->insert(triangle(e->org, e->dest, p));

delete e;

return triangles;

The triangles which make up the triangulation are maintained in the list triangles.
The frontier is represented by the dictionary frontier of live edges. Each edge is directed
such that its unknown face (yet to be sought) lies to the right of the edge. The comparison

165

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

\ ' 0
0

0

0

0

I

Figure 6.21: Growing a Delaunay triangulation. The edges of the frontier are highlighted.

function edgeCmp is used to perform look-up in the dictionary. It compares two edges'
origins and, if these are the same, then compares their destinations:

int edgeCmp(Edge *a, Edge *b)

{

if (a->org < b->org) return -1;

if (a->org > b->org) return 1;

if (a->dest < b->dest) return -1;

166

.4

-4�`

https://hemanthrajhemu.github.io

Sec. 6.6 Finding Delaunay Triangulations

if (a->dest > b->dest) return 1;

return 0;

}

How does the frontier change from one iteration to the next, and how does function
updateFrontier update the dictionary to reflect these changes? When a new triangle t
attaches to the frontier, the state of the triangle's three edges changes. The edge of t
which attaches to the frontier changes from live to dead. Function updateFrontier
can ignore this edge since it will already have been removed from the dictionary by the
call to removeMin. Each of the two remaining edges of t changes state from dormant to
live if the edge is not already in the dictionary, or from live to dead if the edge is already
in the dictionary. Figure 6.22 illustrates both cases. In the figure, we process the live

edge af and, upon discovering that point b is its mate, add triangle Aafb to the current

triangulation. Then we look up edge fb in the dictionary-since it is not present, it has
just been discovered for the first time, so its state changes from dormant to live. To update

the dictionary, we flip fb so its unknown face lies to its right and then insert the edge into

the dictionary. Next we look up edge Z in the dictionary-since it is present, it is already
live (its known face is triangle Labc). Since its unknown face, triangle hafb, has just been
discovered, we then remove the edge from the dictionary.

Function updateFrontier updates dictionary f rontier, where the edge from
point a to point b changes state:

void updateFrontier(Dictionary<Zdge*> &frontier,
Point &a, Point &b)

Edge *e = new Edge(a, b);

if (frontier.find(e))

frontier.remove(e);

else (

e->flip();
frontier.insert(e);

}

Figure 6.22: Attaching triangle Aafb to live edge af.

167

l

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

Function hullEdge returns a hull edge from among the n points of array s. The
function essentially implements the initialization and first iteration of the gift-wrapping
method:

Edge *hullEdge(Point s[], int n)

(
int m = 0;
for (int i = 1; i < n; i++)

if (Oti] < scm])
m = i;

swap(sCO], swm]);

for (m = 1, i = 2; i < n; i++) {

int c = scil.classify(slO], sWm]);
if ((c == LEFT) || (c == BETWEEN))

mD = i;

return new Edge(s[O], s[m]);

Function triangle simply constructs and returns a polygon over the three points
it is passed:

Polygon *triangle(Point &a, Point &b, Point &c)

(
Polygon *t = new Polygon;
t->insert(a);

t->insert(b);

t->insert(c);

return t;

6.6.1 Finding the Mate of an Edge

Let us turn our attention to the problem solved by function mate, that of determining

whether a given live edge has a mate and, if so, finding it. Consider this: Any edge ab
determines the infinite family of circles whose boundaries contain both endpoints a and b.
Let C(a,b) denote this family of circles (Figure 6.23).

The centers of the circles in C(a,b) lie along edge ab's perpendicular bisector and
can be put into one-to-one correspondence with the points of this bisector. To specify
circles of the family, we parameterize the perpendicular bisector and identify each circle
by the parametric value of the circle's center. The machinery of Chapter 4 provides a

natural parameterization: Rotate edge ab 90 degrees into its perpendicular bisector and
then use the parameterization along this edge. In Figure 6.23, we use Cr to denote the circle
corresponding to parametric value r.

How do we find the mate of some live edge ab from among the points of S? Suppose

that Cr is the circumcircle of ab's known face (in Figure 6.24, triangle Aabc is the known

168

https://hemanthrajhemu.github.io

Sec. 6.6 Finding Delaunay Triangulations

a

Figure 6.23: Four circles of the family C(a,b) determined by edge ab, and their parametric values.

C

Figure 6.24: Finding the mate (d) of edge ab.

face). If ab's known face is unbounded, then r = -co and Cr is the half-plane to the

left of ab. We seek the smallest value t > r such that some point of S (other than a

or b) lies in the boundary of C,. If no such value t exists, then edge ab has no mate.

More picturesquely, this is like blowing a two-dimensional bubble through edge ab. If the
bubble eventually reaches some point of S, this point is the mate of edge ab (point d of
Figure 6.24). Alternatively, if no point of S is reached and the bubble expands to fill the

half-plane to the right of edge ab, then ab has no mate.
Why does this work? Let C, denote the circumcircle of edge ab's known face, and

C, the circumcircle of edge ab's unknown face. Here t > r, and t = co if ab has no mate.

Is circle C, point free, as desired? To the left of ab, C, must be point free since Cr is point

free and the portion of C, which lies to the left of ab is contained in Cr. To the right of

edge ab, C, must also be point free because, were some point q to lie in its interior, q would
lie in the boundary of some circle C, E C(a,b), where r < s < t, contradicting our choice
of t. In our bubble analogy, the expanding bubble would reach point q before reaching the

mate of edge ab.

To find the mate of edge ab, we consider only those points p E S that lie to the
right of ab. The center of the circle circumscribing any three points a, b, and p lies

at the intersection of the perpendicular bisectors of ab and bp. (Here we use the fact
that the perpendicular bisectors of a triangle's edges intersect at the center of the triangle's
circumcircle.) Rather than compute the center point of the circle, we compute its parametric

169

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

value along the perpendicular bisector of edge ab. This way we can keep track of the
smallest parametric value found so far.

This method is implemented by function mate, which returns TRUE if edge e has
a mate and FALSE if it does not. If the mate exists, it is passed back through reference
parameter p:

bool mate(Edge &e, Point sJ, int n, Point &p)

{
Point *bestp = NULL;
double t, bestt = FLTMAX;
Edge f = e;

f.roto); // f is the perpendicular bisector of e

for (int i = 0; i < n; i++)

if (sli].classify(e) == RIGHT) {

Edge g(e.dest, sli]);

g.roto;
f.intersect(g, t);

if (t < bestt) (

bestp = &s[i];

bestt = t;

}

}
if (bestp) {

p = *bestp;

return TRUE;

}
return FALSE;

In function mate, variable bestp points to the best point examined so far, and bestt
holds the parametric value of the circle whose boundary contains the point. Note that only
those points to the right of edge e are considered.

This algorithm for computing the Delaunay triangulation of a set of n points runs in
O(n2) time because one edge leaves the frontier in each iteration. Since every edge leaves
the frontier exactly once-every edge enters the frontier once and later leaves it, never to
return-the number of iterations equals the number of edges in the Delaunay triangulation.
Now the point-set triangulation theorem implies that any triangulation contains no more
than O(n) edges, so the algorithm performs O(n) iterations. Because it spends O(n) time
per iteration, the algorithm runs in O(n2) time.

6.7 Chapter Notes

The gift-wrapping method, also known as Jarvis's march after the manner in which it
marches around the convex hull boundary, is presented in [43]. The same basic idea can be

170

https://hemanthrajhemu.github.io

Sec. 6.7 Chapter Notes

used to find the convex hull of points in higher dimensions [17]; in three dimensions, the
method reminds us of how we would go about wrapping a gift. Graham scan is presented
in [33].

There are numerous algorithms for finding convex hulls, and this book covers several:
insertion hull, which runs in 0(n 2) time, where n is the number of points; plane sweep in
O(n logn) time; Graham scan in 0(n logn) time; gift wrapping in 0(nh) time, where the
convex hull contains h < n vertices; and merge hull in 0(n logn) time. One interesting
algorithm we will not cover is called quick hull. Like the quicksort algorithm after which
it is modeled, quick hull takes 0(n 2) time in the worst case but 0(n log n) time in the
expected case [14, 25, 34]. An optimal convex hull finding algorithm was developed by
Kirkpatrick and Seidel [461. Where the convex hull it produces contains h vertices, the
algorithm runs in 0(n log h) time in the worst case.

Because hidden surface removal is usually indispensable for realistic three-dimen-
sional graphics, the problem has been the focus of much research, leading to numerous
solutions. Solutions vary with regard to the types of scene models they accommodate,
efficiency, degree of realism, and other factors. The depth-sorting method presented in
this chapter is from [591. Other well-known methods include z-buffering [16], Warnock's
area subdivision method [86], the Weiler-Atherton "cookie-cutter" method [88], scanline
methods [50, 87], and ray tracing. (The computer graphics texts [28, 39, 68] also provide
accounts of these algorithms.) In z-buffering, the depth of the object displayed by each
pixel is maintained in a buffer of depth values (the z-buffer). When a new object is to be
painted, pixels are selectively updated-only those pixels displaying a more distant object
are overwritten by the new object. The z-buffer is also updated with the new (closer) depth
values. Because it is both simple and general (in the sense of accommodating a wide range
of scene models), z-buffering has been implemented in hardware in several recent graphics
systems. In ray tracing, another hidden surface removal method, simulated rays of light are
cast into the scene. Ray tracing can be used to create images which include such features
as transparency, reflection, specular highlights, and shadows.

The algorithm for finding the intersection of two convex polygons P and Q is pre-
sented in [62,61], although our presentation more closely follows [66]. An earlier algorithm
for the same problem is given in [75]. In this method, a vertical line is drawn through every
vertex, thereby partitioning the plane into vertical slabs and each polygon into triangles
and trapezoids. The intersection problem is then solved within each slab in turn, and the
resulting polygonal pieces assembled. Since the intersection of two polygons of bounded
size can be computed in constant time and there are no more than JP1 + IQI slabs, this
algorithm, like the one we have presented, runs in 0(1 Pl + l QI) time.

The Delaunay triangulation is dual to the Voronoi diagram, a polygonal decomposition
of the plane which assumes a central role in computational geometry. The connection
will be explored in Chapter 8, where an algorithm for constructing Voronoi diagrams will
be presented. The Delaunay triangulation algorithm presented in this chapter is based
on [5, 55]. The algorithm is lifted to three-dimensional space in [24], and a data structure
appropriate for lifting it to d-dimensional space is given in [12]. An 0(n logn)-time
algorithm for constructing Delaunay triangulations in the plane using divide and conquer is
presented in [36]. A survey of Voronoi diagrams and Delaunay triangulations is provided
by [4].

171

https://hemanthrajhemu.github.io

Chap. 6: Incremental Selection

6.8 Exercises

1. Modify program giftwrapHull so the vertices of the convex hull C7-L(S) it pro-
duces consist of all boundary points of set S. not just the extreme points.

2. Modify grahamScan to do as described in the previous question.

3. The depth of a point p in finite point set S is the number of convex hulls that must be
removed until p becomes a boundary point. For instance, the boundary points of S
are at depth zero, and those points that become boundary points when the boundary
points of S are removed are at depth one. The brute-force approach to determine the
depth of all points repeatedly finds the convex hull of the point set and removes the
boundary points from the set, until the set is empty. Modify giftwrapHull so it
computes the depth of every point in 0(n 2) time.

4. The diameter of a point set is the maximum distance between any pair of points.

(a) Show that the diameter is realized by a pair of extreme points.

(b) Give an O(n log n)-time algorithm forcomputing the diameterofa set of n points
in the plane.

5. Describe a configuration of n triangles in space which depthSort splits into n (n2)
pieces.

6. In the program depthSort, the function call mayObscure (p, q) returns TRUE if
it is possible for triangle p to obscure triangle q. What is the effect on depthSort of
making mayObscure stronger, such that it returns TRUE if and only if p obscures q?
What are the advantages and disadvantages of making mayObscure stronger?

7. In the program depthSort, note that the second call to function mayObscure is
inefficient, since tests 1, 2, and 5 are repeated unnecessarily. Rewrite the program to
remove this inefficiency.

8. Consider this claim concerning the algorithm for finding the intersection polygon of
two convex polygons P and Q: If the boundaries of P and Q intersect, then the algo-
rithm finds all their intersection points in no more than 2(1 PI + I QI) iterations. Either
prove this claim and modify program convexPolygonIntersect accordingly,
or disprove the claim by giving a counterexample.

9. Characterize the inputs for which program convexPolygonIntersect fails, in
terms of EPSILON2.

10. Show how the correctness proof for convexPolygonIntersect uses the assump-
tion that input polygons P and Q are convex.

11. Show that if no four points of point set S are cocircular (I SI > 3), then the Delaunay
triangulation of S is unique.

12. Show that any triangulation of a finite point set S contains 3151-3-h edges, where the
boundary of CN(S) contains h edges. [From this it follows that a triangulation contains
O(ISI) edges, a fact used in our proof that the Delaunay triangulation algorithm runs
in O(n2) time.]

13. Show that, over all triangulations of finite point set S, the Delaunay triangulation
maximizes the minimum measure of the internal angles.

172

https://hemanthrajhemu.github.io

