

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Synchronization . 238
Using Synchronized Methods . 239
The synchronized Statement . 241

Interthread Communication . 242
Deadlock . 247

Suspending, Resuming, and Stopping Threads 249
Suspending, Resuming, and Stopping Threads

Using Java 1.1 and Earlier . 249
The Modern Way of Suspending, Resuming,

and Stopping Threads . 251
Using Multithreading . 254

12 Enumerations, Autoboxing, and Annotations (Metadata) 255
Enumerations . 255

Enumeration Fundamentals . 255
The values() and valueOf() Methods . 258
Java Enumerations Are Class Types . 259
Enumerations Inherit Enum . 261
Another Enumeration Example . 263

Type Wrappers . 264
Autoboxing . 266

Autoboxing and Methods . 267
Autoboxing/Unboxing Occurs in Expressions 268
Autoboxing/Unboxing Boolean and Character Values 270
Autoboxing/Unboxing Helps Prevent Errors 271
A Word of Warning . 271

Annotations (Metadata) . 272
Annotation Basics . 272
Specifying a Retention Policy . 273
Obtaining Annotations at Run Time by Use of Reflection . . . 273
The AnnotatedElement Interface . 278
Using Default Values . 279
Marker Annotations . 280
Single-Member Annotations . 281
The Built-In Annotations . 282
Some Restrictions . 284

13 I/O, Applets, and Other Topics . 285
I/O Basics . 285

Streams . 286
Byte Streams and Character Streams . 286
The Predefined Streams . 288

Reading Console Input . 288
Reading Characters . 289
Reading Strings . 290

xi i J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

12
Enumerations, Autoboxing,

and Annotations (Metadata)

This chapter examines three recent additions to the Java language: enumerations,
autoboxing, and annotations (also referred to as metadata). Each expands the power
of the language by offering a streamlined approach to handling common programming

tasks. This chapter also discusses Java’s type wrappers and introduces reflection.

Enumerations
Versions prior to JDK 5 lacked one feature that many programmers felt was needed:
enumerations. In its simplest form, an enumeration is a list of named constants. Although
Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—especially
because enumerations are supported by most other commonly used languages. Beginning
with JDK 5, enumerations were added to the Java language, and they are now available to
the Java programmer.

In their simplest form, Java enumerations appear similar to enumerations in other
languages. However, this similarity is only skin deep. In languages such as C++, enumerations
are simply lists of named integer constants. In Java, an enumeration defines a class type. By
making enumerations into classes, the concept of the enumeration is greatly expanded. For
example, in Java, an enumeration can have constructors, methods, and instance variables.
Therefore, although enumerations were several years in the making, Java’s rich
implementation made them well worth the wait.

Enumeration Fundamentals
An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

2 5 5

https://hemanthrajhemu.github.io

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is
implicitly declared as a public, static final member of Apple. Furthermore, their type is the
type of the enumeration in which they are declared, which is Apple in this case. Thus,
in the language of Java, these constants are called self-typed, in which “self” refers to the
enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,
even though enumerations define a class type, you do not instantiate an enum using new.
Instead, you declare and use an enumeration variable in much the same way as you do one
of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are those
defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.
Two enumeration constants can be compared for equality by using the = = relational

operator. For example, this statement compares the value in ap with the GoldenDel constant:

if(ap == Apple.GoldenDel) // ...

An enumeration value can also be used to control a switch statement. Of course, all
of the case statements must use constants from the same enum as that used by the switch
expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
// ...

case Winesap:
// ...

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is used.
This is because the type of the enumeration in the switch expression has already implicitly
specified the enum type of the case constants. There is no need to qualify the constants in
the case statements with their enum type name. In fact, attempting to do so will cause a
compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name
is output. For example, given this statement:

System.out.println(Apple.Winesap);

the name Winesap is displayed.
The following program puts together all of the pieces and demonstrates the Apple

enumeration:

256 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo {
public static void main(String args[])
{
Apple ap;

ap = Apple.RedDel;

// Output an enum value.
System.out.println("Value of ap: " + ap);
System.out.println();

ap = Apple.GoldenDel;

// Compare two enum values.
if(ap == Apple.GoldenDel)
System.out.println("ap contains GoldenDel.\n");

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
System.out.println("Jonathan is red.");
break;

case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;

case RedDel:
System.out.println("Red Delicious is red.");
break;

case Winesap:
System.out.println("Winesap is red.");
break;

case Cortland:
System.out.println("Cortland is red.");
break;

}
}

}

The output from the program is shown here:

Value of ap: RedDel

ap contains GoldenDel.

Golden Delicious is yellow.

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 257

https://hemanthrajhemu.github.io

258 P a r t I : T h e J a v a L a n g u a g e

The values() and valueOf() Methods
All enumerations automatically contain two predefined methods: values() and valueOf().
Their general forms are shown here:

public static enum-type[] values()
public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration constants. The
valueOf() method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-type is the type of the enumeration. For example, in the case
of the Apple enumeration shown earlier, the return type of Apple.valueOf(“Winesap”) is
Winesap.

The following program demonstrates the values() and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo2 {
public static void main(String args[])
{
Apple ap;

System.out.println("Here are all Apple constants:");

// use values()
Apple allapples[] = Apple.values();
for(Apple a : allapples)

System.out.println(a);

System.out.println();

// use valueOf()
ap = Apple.valueOf("Winesap");
System.out.println("ap contains " + ap);

}
}

The output from the program is shown here:

Here are all Apple constants:
Jonathan
GoldenDel
RedDel
Winesap
Cortland

ap contains Winesap

https://hemanthrajhemu.github.io

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 259

Notice that this program uses a for-each style for loop to cycle through the array of
constants obtained by calling values(). For the sake of illustration, the variable allapples
was created and assigned a reference to the enumeration array. However, this step is not
necessary because the for could have been written as shown here, eliminating the need for
the allapples variable:

for(Apple a : Apple.values())
System.out.println(a);

Now, notice how the value corresponding to the name Winesap was obtained by calling
valueOf().

ap = Apple.valueOf("Winesap");

As explained, valueOf() returns the enumeration value associated with the name of the
constant represented as a string.

NOTEOTE C/C++ programmers will notice that Java makes it much easier to translate between the
human-readable form of an enumeration constant and its binary value than do these other
languages. This is a significant advantage to Java’s approach to enumerations.

Java Enumerations Are Class Types
As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives powers to the Java enumeration that enumerations in other
languages simply do not have. For example, you can give them constructors, add instance
variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its enumeration
type. Thus, when you define a constructor for an enum, the constructor is called when each
enumeration constant is created. Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration. For example, consider the following version
of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple(int p) { price = p; }

int getPrice() { return price; }
}

class EnumDemo3 {
public static void main(String args[])
{
Apple ap;

https://hemanthrajhemu.github.io

260 P a r t I : T h e J a v a L a n g u a g e

// Display price of Winesap.
System.out.println("Winesap costs " +

Apple.Winesap.getPrice() +
" cents.\n");

// Display all apples and prices.
System.out.println("All apple prices:");
for(Apple a : Apple.values())
System.out.println(a + " costs " + a.getPrice() +

" cents.");
}

}

The output is shown here:

Winesap costs 15 cents.

All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is
used to hold the price of each variety of apple. The second is the Apple constructor, which
is passed the price of an apple. The third is the method getPrice(), which returns the value
of price.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

These values are passed to the p parameter of Apple(), which then assigns this value to price.
Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price of
a specified type of apple by calling getPrice(). For example, in main() the price of a Winesap
is obtained by the following call:

Apple.Winesap.getPrice()

The prices of all varieties are obtained by cycling through the enumeration using a for loop.
Because there is a copy of price for each enumeration constant, the value associated with
one constant is separate and distinct from the value associated with another constant. This
is a powerful concept, which is only available when enumerations are implemented as classes,
as Java does.

Although the preceding example contains only one constructor, an enum can offer two
or more overloaded forms, just as can any other class. For example, this version of Apple
provides a default constructor that initializes the price to –1, to indicate that no price data
is available:

https://hemanthrajhemu.github.io

// Use an enum constructor.
enum Apple {
Jonathan(10), GoldenDel(9), RedDel, Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple(int p) { price = p; }

// Overloaded constructor
Apple() { price = -1; }

int getPrice() { return price; }
}

Notice that in this version, RedDel is not given an argument. This means that the default
constructor is called, and RedDel’s price variable is given the value –1.

Here are two restrictions that apply to enumerations. First, an enumeration can’t inherit
another class. Second, an enum cannot be a superclass. This means that an enum can’t be
extended. Otherwise, enum acts much like any other class type. The key is to remember that
each of the enumeration constants is an object of the class in which it is defined.

Enumerations Inherit Enum
Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that are
available for use by all enumerations. The Enum class is described in detail in Part II,
but three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal() method,
shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in
the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration, and e is the constant being compared to
the invoking constant. Remember, both the invoking constant and e must be of the same
enumeration. If the invoking constant has an ordinal value less than e’s, then compareTo()
returns a negative value. If the two ordinal values are the same, then zero is returned. If the
invoking constant has an ordinal value greater than e’s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals(), which overrides the equals() method defined by Object. Although equals() can
compare an enumeration constant to any other object, those two objects will only be equal if

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 261

https://hemanthrajhemu.github.io

262 P a r t I : T h e J a v a L a n g u a g e

they both refer to the same constant, within the same enumeration. Simply having ordinal
values in common will not cause equals() to return true if the two constants are from
different enumerations.

Remember, you can compare two enumeration references for equality by using = =.
The following program demonstrates the ordinal(), compareTo(), and equals() methods:

// Demonstrate ordinal(), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo4 {
public static void main(String args[])
{
Apple ap, ap2, ap3;

// Obtain all ordinal values using ordinal().
System.out.println("Here are all apple constants" +

" and their ordinal values: ");
for(Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());

ap = Apple.RedDel;
ap2 = Apple.GoldenDel;
ap3 = Apple.RedDel;

System.out.println();

// Demonstrate compareTo() and equals()
if(ap.compareTo(ap2) < 0)
System.out.println(ap + " comes before " + ap2);

if(ap.compareTo(ap2) > 0)
System.out.println(ap2 + " comes before " + ap);

if(ap.compareTo(ap3) == 0)
System.out.println(ap + " equals " + ap3);

System.out.println();

if(ap.equals(ap2))
System.out.println("Error!");

if(ap.equals(ap3))
System.out.println(ap + " equals " + ap3);

if(ap == ap3)
System.out.println(ap + " == " + ap3);

}
}

https://hemanthrajhemu.github.io

The output from the program is shown here:

Here are all apple constants and their ordinal values:
Jonathan 0
GoldenDel 1
RedDel 2
Winesap 3
Cortland 4

GoldenDel comes before RedDel
RedDel equals RedDel

RedDel equals RedDel
RedDel == RedDel

Another Enumeration Example
Before moving on, we will look at a different example that uses an enum. In Chapter 9, an
automated “decision maker” program was created. In that version, variables called NO,
YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to
represent the possible answers. While there is nothing technically wrong with that approach,
the enumeration is a better choice. Here is an improved version of that program that uses an
enum called Answers to define the answers. You should compare this version to the original
in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to
// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
NO, YES, MAYBE, LATER, SOON, NEVER

}

class Question {
Random rand = new Random();
Answers ask() {
int prob = (int) (100 * rand.nextDouble());

if (prob < 15)
return Answers.MAYBE; // 15%

else if (prob < 30)
return Answers.NO; // 15%

else if (prob < 60)
return Answers.YES; // 30%

else if (prob < 75)
return Answers.LATER; // 15%

else if (prob < 98)
return Answers.SOON; // 13%

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 263

https://hemanthrajhemu.github.io

else
return Answers.NEVER; // 2%

}
}

class AskMe {
static void answer(Answers result) {
switch(result) {
case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

}
}

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

Type Wrappers
As you know, Java uses primitive types (also called simple types), such as int or double, to
hold the basic data types supported by the language. Primitive types, rather than objects,
are used for these quantities for the sake of performance. Using objects for these values would
add an unacceptable overhead to even the simplest of calculations. Thus, the primitive types
are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation. For example, you can’t pass a primitive type by
reference to a method. Also, many of the standard data structures implemented by Java
operate on objects, which means that you can’t use these data structures to store primitive
types. To handle these (and other) situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object. The type wrapper classes are described

264 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

in detail in Part II, but they are introduced here because they relate directly to Java’s
autoboxing feature.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean.
These classes offer a wide array of methods that allow you to fully integrate the primitive
types into Java’s object hierarchy. Each is briefly examined next.

Character
Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string “true” (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers
By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue()
returns the value as a float, and so on. These methods are implemented by each of the
numeric type wrappers.

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 265

https://hemanthrajhemu.github.io

266 P a r t I : T h e J a v a L a n g u a g e

All of the numeric type wrappers define constructors that allow an object to be constructed
from a given value, or a string representation of that value. For example, here are the
constructors defined for Integer:

Integer(int num)
Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.
All of the type wrappers override toString(). It returns the human-readable form of the

value contained within the wrapper. This allows you to output the value by passing a type
wrapper object to println(), for example, without having to convert it into its primitive type.

The following program demonstrates how to use a numeric type wrapper to
encapsulate a value and then extract that value.

// Demonstrate a type wrapper.
class Wrap {
public static void main(String args[]) {

Integer iOb = new Integer(100);

int i = iOb.intValue();

System.out.println(i + " " + iOb); // displays 100 100
}

}

This program wraps the integer value 100 inside an Integer object called iOb. The program
then obtains this value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the program,
this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the
program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has
been employed since the original version of Java. However, with the release of JDK 5, Java
fundamentally improved on this through the addition of autoboxing, described next.

Autoboxing
Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed
object is automatically extracted (unboxed) from a type wrapper when its value is needed.
There is no need to call a method such as intValue() or doubleValue().

https://hemanthrajhemu.github.io

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 267

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several
algorithms, removing the tedium of manually boxing and unboxing values. It also helps
prevent errors. Moreover, it is very important to generics, which operates only on objects.
Finally, autoboxing makes working with the Collections Framework (described in Part II)
much easier.

With autoboxing it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to construct
an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of new. Java handles this for you,
automatically.

To unbox an object, simply assign that object reference to a primitive-type variable.
For example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String args[]) {

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100
}

}

Autoboxing and Methods
In addition to the simple case of assignments, autoboxing automatically occurs whenever
a primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when
an argument is passed to a method, or when a value is returned by a method. For example,
consider this example:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
// Take an Integer parameter and return
// an int value;
static int m(Integer v) {
return v ; // auto-unbox to int

}

https://hemanthrajhemu.github.io

public static void main(String args[]) {
// Pass an int to m() and assign the return value
// to an Integer. Here, the argument 100 is autoboxed
// into an Integer. The return value is also autoboxed
// into an Integer.
Integer iOb = m(100);

System.out.println(iOb);
}

}

This program displays the following result:

100

In the program, notice that m() specifies an Integer parameter and returns an int result.
Inside main(), m() is passed the value 100. Because m() is expecting an Integer, this value
is automatically boxed. Then, m() returns the int equivalent of its argument. This causes v
to be auto-unboxed. Next, this int value is assigned to iOb in main(), which causes the int
return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions
In general, autoboxing and unboxing take place whenever a conversion into an object or from
an object is required. This applies to expressions. Within an expression, a numeric object is
automatically unboxed. The outcome of the expression is reboxed, if necessary. For example,
consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
public static void main(String args[]) {

Integer iOb, iOb2;
int i;

iOb = 100;
System.out.println("Original value of iOb: " + iOb);

// The following automatically unboxes iOb,
// performs the increment, and then reboxes
// the result back into iOb.
++iOb;
System.out.println("After ++iOb: " + iOb);

// Here, iOb is unboxed, the expression is
// evaluated, and the result is reboxed and
// assigned to iOb2.
iOb2 = iOb + (iOb / 3);
System.out.println("iOb2 after expression: " + iOb2);

// The same expression is evaluated, but the

268 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

// result is not reboxed.
i = iOb + (iOb / 3);
System.out.println("i after expression: " + i);

}
}

The output is shown here:

Original value of iOb: 100
After ++iOb: 101
iOb2 after expression: 134
i after expression: 134

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the
value is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an expression.
Once the values are unboxed, the standard type promotions and conversions are applied. For
example, the following program is perfectly valid:

class AutoBox4 {
public static void main(String args[]) {

Integer iOb = 100;
Double dOb = 98.6;

dOb = dOb + iOb;
System.out.println("dOb after expression: " + dOb);

}
}

The output is shown here:

dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated
in the addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use integer numeric objects to control a switch
statement. For example, consider this fragment:

Integer iOb = 2;

switch(iOb) {
case 1: System.out.println("one");
break;

case 2: System.out.println("two");
break;

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 269

https://hemanthrajhemu.github.io

270 P a r t I : T h e J a v a L a n g u a g e

default: System.out.println("error");
}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.
As the examples in the program show, because of autoboxing/unboxing, using numeric

objects in an expression is both intuitive and easy. In the past, such code would have involved
casts and calls to methods such as intValue().

Autoboxing/Unboxing Boolean and Character Values
As described earlier, Java also supplies wrappers for boolean and char. These are Boolean
and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider
the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
public static void main(String args[]) {

// Autobox/unbox a boolean.
Boolean b = true;

// Below, b is auto-unboxed when used in
// a conditional expression, such as an if.
if(b) System.out.println("b is true");

// Autobox/unbox a char.
Character ch = 'x'; // box a char
char ch2 = ch; // unbox a char

System.out.println("ch2 is " + ch2);
}

}

The output is shown here:

b is true
ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside
the if conditional expression. As you should recall, the conditional expression that controls
an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained
within b is automatically unboxed when the conditional expression is evaluated. Thus, with
the advent of autoboxing/unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of Java’s
loop statements. When a Boolean is used as the conditional expression of a while, for, or
do/while, it is automatically unboxed into its boolean equivalent. For example, this is now
perfectly valid code:

Boolean b;
// ...
while(b) { // ...

https://hemanthrajhemu.github.io

Autoboxing/Unboxing Helps Prevent Errors
In addition to the convenience that it offers, autoboxing/unboxing can also help prevent
errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
public static void main(String args[]) {

Integer iOb = 1000; // autobox the value 1000

int i = iOb.byteValue(); // manually unbox as byte !!!

System.out.println(i); // does not display 1000 !
}

}

This program displays not the expected value of 1000, but –24! The reason is that the value
inside iOb is manually unboxed by calling byteValue(), which causes the truncation of the
value stored in iOb, which is 1,000. This results in the garbage value of –24 being assigned
to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-
unbox into a value compatible with int.

In general, because autoboxing always creates the proper object, and auto-unboxing
always produces the proper value, there is no way for the process to produce the wrong
type of object or value. In the rare instances where you want a type different than that
produced by the automated process, you can still manually box and unbox values. Of
course, the benefits of autoboxing/unboxing are lost. In general, new code should employ
autoboxing/unboxing. It is the way that modern Java code will be written.

A Word of Warning
Now that Java includes autoboxing and auto-unboxing, some might be tempted to use objects
such as Integer or Double exclusively, abandoning primitives altogether. For example, with
autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.0;
b = 4.0;

c = Math.sqrt(a*a + b*b);

System.out.println("Hypotenuse is " + c);

In this example, objects of type Double hold values that are used to calculate the hypotenuse
of a right triangle. Although this code is technically correct and does, in fact, work properly,
it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code
written using the primitive type double. The reason is that each autobox and auto-unbox
adds overhead that is not present if the primitive type is used.

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 271

https://hemanthrajhemu.github.io

In general, you should restrict your use of the type wrappers to only those cases in which
an object representation of a primitive type is required. Autoboxing/unboxing was not added
to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)
Beginning with JDK 5, a new facility was added to Java that enables you to embed
supplemental information into a source file. This information, called an annotation, does not
change the actions of a program. Thus, an annotation leaves the semantics of a program
unchanged. However, this information can be used by various tools during both development
and deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

Annotation Basics
An annotation is created through a mechanism based on the interface. Let’s begin with an
example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {
String str();
int val();

}

First, notice the @ that precedes the keyword interface. This tells the compiler that
an annotation type is being declared. Next, notice the two members str() and val(). All
annotations consist solely of method declarations. However, you don’t provide bodies for
these methods. Instead, Java implements these methods. Moreover, the methods act much
like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types
automatically extend the Annotation interface. Thus, Annotation is a super-interface of all
annotations. It is declared within the java.lang.annotation package. It overrides hashCode(),
equals(), and toString(), which are defined by Object. It also specifies annotationType(),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate a declaration. Any
type of declaration can have an annotation associated with it. For example, classes, methods,
fields, parameters, and enum constants can be annotated. Even an annotation can be annotated.
In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method:

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...

This annotation is linked with the method myMeth(). Look closely at the annotation syntax.
The name of the annotation, preceded by an @, is followed by a parenthesized list of member
initializations. To give a member a value, that member’s name is assigned a value. Therefore,
in the example, the string “Annotation Example” is assigned to the str member of MyAnno.

272 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 273

Notice that no parentheses follow str in this assignment. When an annotation member is
given a value, only its name is used. Thus, annotation members look like fields in this context.

Specifying a Retention Policy
Before exploring annotations further, it is necessary to discuss annotation retention policies.
A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

A retention policy is specified for an annotation by using one of Java’s built-in annotations:
@Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

Obtaining Annotations at Run Time by Use of Reflection
Although annotations are designed mostly for use by other development or deployment tools,
if they specify a retention policy of RUNTIME, then they can be queried at run time by any
Java program through the use of reflection. Reflection is the feature that enables information
about a class to be obtained at run time. The reflection API is contained in the java.lang.reflect
package. There are a number of ways to use reflection, and we won’t examine them all here.
We will, however, walk through a few examples that apply to annotations.

The first step to using reflection is to obtain a Class object that represents the class
whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined
in java.lang. It is described in detail in Part II. There are various ways to obtain a Class
object. One of the easiest is to call getClass(), which is a method defined by Object. Its
general form is shown here:

final Class getClass()

It returns the Class object that represents the invoking object. (getClass() and several other
reflection-related methods make use of the generics feature. However, because generics are not
discussed until Chapter 14, these methods are shown and used here in their raw form. As a result,
you will see a warning message when you compile the following programs. In Chapter 14, you
will learn about generics in detail.)

https://hemanthrajhemu.github.io

274 P a r t I : T h e J a v a L a n g u a g e

After you have obtained a Class object, you can use its methods to obtain information
about the various items declared by the class, including its annotations. If you want to obtain
the annotations associated with a specific item declared within a class, you must first obtain an
object that represents that item. For example, Class supplies (among others) the getMethod(),
getField(), and getConstructor() methods, which obtain information about a method, field,
and constructor, respectively. These methods return objects of type Method, Field, and
Constructor.

To understand the process, let’s work through an example that obtains the annotations
associated with a method. To do this, you first obtain a Class object that represents the class, and
then call getMethod() on that Class object, specifying the name of the method. getMethod()
has this general form:

Method getMethod(String methName, Class ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class
objects representing those types must also be specified by paramTypes. Notice that paramTypes
is a varargs parameter. This means that you can specify as many parameter types as needed,
including zero. getMethod() returns a Method object that represents the method. If the method
can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation
associated with that object by calling getAnnotation(). Its general form is shown here:

Annotation getAnnotation(Class annoType)

Here, annoType is a Class object that represents the annotation in which you are interested.
The method returns a reference to the annotation. Using this reference, you can obtain the
values associated with the annotation’s members. The method returns null if the annotation
is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

class Meta {

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() {
Meta ob = new Meta();

// Obtain the annotation for this method
// and display the values of the members.
try {

https://hemanthrajhemu.github.io

// First, get a Class object that represents
// this class.
Class c = ob.getClass();

// Now, get a Method object that represents
// this method.
Method m = c.getMethod("myMeth");

// Next, get the annotation for this class.
MyAnno anno = m.getAnnotation(MyAnno.class);

// Finally, display the values.
System.out.println(anno.str() + " " + anno.val());

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

public static void main(String args[]) {
myMeth();

}
}

The output from the program is shown here:

Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class c = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,
which might not always be the case. In general, you can obtain a class literal for classes,
interfaces, primitive types, and arrays.

The second point of interest is the way the values associated with str and val are obtained
when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used
whenever the value of an annotation member is required.

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 275

https://hemanthrajhemu.github.io

A Second Reflection Example
In the preceding example, myMeth() has no parameters. Thus, when getMethod() was
called, only the name myMeth was passed. However, to obtain a method that has parameters,
you must specify class objects representing the types of those parameters as arguments to
getMethod(). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

class Meta {

// myMeth now has two arguments.
@MyAnno(str = "Two Parameters", val = 19)
public static void myMeth(String str, int i)
{
Meta ob = new Meta();

try {
Class c = ob.getClass();

// Here, the parameter types are specified.
Method m = c.getMethod("myMeth", String.class, int.class);

MyAnno anno = m.getAnnotation(MyAnno.class);

System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {

System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth("test", 10);

}
}

The output from this version is shown here:

Two Parameters 19

In this version, myMeth() takes a String and an int parameter. To obtain information
about this method, getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

276 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item. It has this general form:

Annotation[] getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type
Class, Method, Constructor, and Field.

Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method. It declares two annotations. It then uses those annotations
to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

@Retention(RetentionPolicy.RUNTIME)
@interface What {
String description();

}

@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)
class Meta2 {

@What(description = "An annotation test method")
@MyAnno(str = "Testing", val = 100)
public static void myMeth() {
Meta2 ob = new Meta2();

try {
Annotation annos[] = ob.getClass().getAnnotations();

// Display all annotations for Meta2.
System.out.println("All annotations for Meta2:");
for(Annotation a : annos)
System.out.println(a);

System.out.println();

// Display all annotations for myMeth.
Method m = ob.getClass().getMethod("myMeth");
annos = m.getAnnotations();

System.out.println("All annotations for myMeth:");
for(Annotation a : annos)

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 277

https://hemanthrajhemu.github.io

278 P a r t I : T h e J a v a L a n g u a g e

System.out.println(a);

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

public static void main(String args[]) {
myMeth();

}
}

The output is shown here:

All annotations for Meta2:
@What(description=An annotation test class)
@MyAnno(str=Meta2, val=99)

All annotations for myMeth:
@What(description=An annotation test method)
@MyAnno(str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated
with the Meta2 class and with the myMeth() method. As explained, getAnnotations()
returns an array of Annotation objects. Recall that Annotation is a super-interface of all
annotation interfaces and that it overrides toString() in Object. Thus, when a reference to
an Annotation is output, its toString() method is called to generate a string that describes
the annotation, as the preceding output shows.

The AnnotatedElement Interface
The methods getAnnotation() and getAnnotations() used by the preceding examples are
defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This
interface supports reflection for annotations and is implemented by the classes Method, Field,
Constructor, Class, and Package.

In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines two
other methods. The first is getDeclaredAnnotations(), which has this general form:

Annotation[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class annoType)

It returns true if the annotation specified by annoType is associated with the invoking
object. It returns false otherwise.

NOTEOTE The methods getAnnotation() and isAnnotationPresent() make use of the generics
feature to ensure type safety. Because generics are not discussed until Chapter 14, their
signatures are shown in this chapter in their raw forms.

https://hemanthrajhemu.github.io

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 279

Using Default Values
You can give annotation members default values that will be used if no value is specified
when the annotation is applied. A default value is specified by adding a default clause to
a member’s declaration. It has this general form:

type member() default value;

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str() default "Testing";
int val() default 9000;

}

This declaration gives a default value of “Testing” to str and 9000 to val. This means that
neither value needs to be specified when @MyAnno is used. However, either or both can be
given values if desired. Therefore, following are the four ways that @MyAnno can be used:

@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str() default "Testing";
int val() default 9000;

}

class Meta3 {

// Annotate a method using the default values.
@MyAnno()
public static void myMeth() {
Meta3 ob = new Meta3();

// Obtain the annotation for this method
// and display the values of the members.
try {
Class c = ob.getClass();

Method m = c.getMethod("myMeth");

https://hemanthrajhemu.github.io

280 P a r t I : T h e J a v a L a n g u a g e

MyAnno anno = m.getAnnotation(MyAnno.class);

System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {

System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth();

}
}

The output is shown here:

Testing 9000

Marker Annotations
A marker annotation is a special kind of annotation that contains no members. Its sole purpose
is to mark a declaration. Thus, its presence as an annotation is sufficient. The best way to
determine if a marker annotation is present is to use the method isAnnotationPresent(),
which is a defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation. Because a marker interface contains
no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker {

// Annotate a method using a marker.
// Notice that no () is needed.
@MyMarker
public static void myMeth() {
Marker ob = new Marker();

try {
Method m = ob.getClass().getMethod("myMeth");

// Determine if the annotation is present.
if(m.isAnnotationPresent(MyMarker.class))
System.out.println("MyMarker is present.");

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

https://hemanthrajhemu.github.io

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 281

public static void main(String args[]) {
myMeth();

}
}

The output, shown here, confirms that @MyMarker is present:

MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses
when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations
A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only one
member is present, you can simply specify the value for that member when the annotation
is applied—you don’t need to specify the name of the member. However, in order to use
this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MySingle {
int value(); // this variable name must be value

}

class Single {

// Annotate a method using a single-member annotation.
@MySingle(100)
public static void myMeth() {
Single ob = new Single();

try {
Method m = ob.getClass().getMethod("myMeth");

MySingle anno = m.getAnnotation(MySingle.class);

System.out.println(anno.value()); // displays 100

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

https://hemanthrajhemu.github.io

public static void main(String args[]) {
myMeth();

}
}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth(), as shown here:

@MySingle(100)

Notice that value = need not be specified.
You can use the single-value syntax when applying an annotation that has other members,

but those other members must all have default values. For example, here the value xyz is added,
with a default value of zero:

@interface SomeAnno {
int value();
int xyz() default 0;

}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as
shown next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno(88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a different
value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno(value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that member
must be value.

The Built-In Annotations
Java defines many built-in annotations. Most are specialized, but seven are general purpose.
Of these, four are imported from java.lang.annotation: @Retention, @Documented, @Target,
and @Inherited. Three—@Override, @Deprecated, and @SuppressWarnings—are included
in java.lang. Each is described here.

@Retention
@Retention is designed to be used only as an annotation to another annotation. It specifies
the retention policy as described earlier in this chapter.

@Documented
The @Documented annotation is a marker interface that tells a tool that an annotation is to
be documented. It is designed to be used only as an annotation to an annotation declaration.

@Target
The @Target annotation specifies the types of declarations to which an annotation can be
applied. It is designed to be used only as an annotation to another annotation. @Target takes

282 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

one argument, which must be a constant from the ElementType enumeration. This argument
specifies the types of declarations to which the annotation can be applied. The constants are
shown here along with the type of declaration to which they correspond.

Target Constant Annotation Can Be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

You can specify one or more of these values in a @Target annotation. To specify multiple
values, you must specify them within a braces-delimited list. For example, to specify that an
annotation applies only to fields and local variables, you can use this @Target annotation:

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

@Inherited
@Inherited is a marker annotation that can be used only on another annotation declaration.
Furthermore, it affects only annotations that will be used on class declarations. @Inherited
causes the annotation for a superclass to be inherited by a subclass. Therefore, when a request
for a specific annotation is made to the subclass, if that annotation is not present in the subclass,
then its superclass is checked. If that annotation is present in the superclass, and if it is annotated
with @Inherited, then that annotation will be returned.

@Override
@Override is a marker annotation that can be used only on methods. A method annotated
with @Override must override a method from a superclass. If it doesn’t, a compile-time
error will result. It is used to ensure that a superclass method is actually overridden, and
not simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has been
replaced by a newer form.

@SuppressWarnings
@SuppressWarnings specifies that one or more warnings that might be issued by the compiler
are to be suppressed. The warnings to suppress are specified by name, in string form. This
annotation can be applied to any type of declaration.

C h a p t e r 1 2 : E n u m e r a t i o n s , A u t o b o x i n g , a n d A n n o t a t i o n s (M e t a d a t a) 283

https://hemanthrajhemu.github.io

Some Restrictions
There are a number of restrictions that apply to annotation declarations. First, no annotation
can inherit another. Second, all methods declared by an annotation must be without parameters.
Furthermore, they must return one of the following:

• A primitive type, such as int or double

• An object of type String or Class

• An enum type

• Another annotation type

• An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters. (Generics
are described in Chapter 14.) Finally, annotation methods cannot specify a throws clause.

284 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

