

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

The Iterable Interface . 434
The Readable Interface . 434
The java.lang Subpackages . 435

java.lang.annotation . 435
java.lang.instrument . 435
java.lang.management . 435
java.lang.ref . 435
java.lang.reflect . 436

17 java.util Part 1: The Collections Framework 437
Collections Overview . 438
Recent Changes to Collections . 439

Generics Fundamentally Change the Collections
Framework . 439

Autoboxing Facilitates the Use of Primitive Types 439
The For-Each Style for Loop . 440

The Collection Interfaces . 440
The Collection Interface . 441
The List Interface . 441
The Set Interface . 443
The SortedSet Interface . 444
The NavigableSet Interface . 444
The Queue Interface . 445
The Deque Interface . 446

The Collection Classes . 448
The ArrayList Class . 448
The LinkedList Class . 451
The HashSet Class . 453
The LinkedHashSet Class . 454
The TreeSet Class . 455
The PriorityQueue Class . 456
The ArrayDeque Class . 457
The EnumSet Class . 458

Accessing a Collection via an Iterator . 458
Using an Iterator . 459
The For-Each Alternative to Iterators . 461

Storing User-Defined Classes in Collections . 462
The RandomAccess Interface . 463
Working with Maps . 464

The Map Interfaces . 464
The NavigableMap Interface . 466
The Map Classes . 468

Comparators . 472
Using a Comparator . 473

The Collection Algorithms . 475

xvi J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

Arrays . 480
Why Generic Collections? . 484
The Legacy Classes and Interfaces . 487

The Enumeration Interface . 487
Vector . 487
Stack . 491
Dictionary . 493
Hashtable . 494
Properties . 497
Using store() and load() . 500

Parting Thoughts on Collections . 501

18 java.util Part 2: More Utility Classes . 503
StringTokenizer . 503
BitSet . 505
Date . 507
Calendar . 509
GregorianCalendar . 512
TimeZone . 513
SimpleTimeZone . 514
Locale . 515
Random . 516
Observable . 518

The Observer Interface . 519
An Observer Example . 519

Timer and TimerTask . 522
Currency . 524
Formatter . 525

The Formatter Constructors . 526
The Formatter Methods . 526
Formatting Basics . 526
Formatting Strings and Characters . 529
Formatting Numbers . 529
Formatting Time and Date . 530
The %n and %% Specifiers . 532
Specifying a Minimum Field Width . 533
Specifying Precision . 534
Using the Format Flags . 535
Justifying Output . 535
The Space, +, 0, and (Flags . 536
The Comma Flag . 537
The # Flag . 537
The Uppercase Option . 537
Using an Argument Index . 538
The Java printf() Connection . 539

C o n t e n t s xv i i

https://hemanthrajhemu.github.io

17
java.util Part 1:

The Collections Framework

This chapter begins our examination of java.util. This important package contains a large
assortment of classes and interfaces that support a broad range of functionality. For
example, java.util has classes that generate pseudorandom numbers, manage date and

time, observe events, manipulate sets of bits, tokenize strings, and handle formatted data.
The java.util package also contains one of Java’s most powerful subsystems: The Collections
Framework. The Collections Framework is a sophisticated hierarchy of interfaces and classes
that provide state-of-the-art technology for managing groups of objects. It merits close attention
by all programmers.

Because java.util contains a wide array of functionality, it is quite large. Here is a list of
its classes:

AbstractCollection EventObject Random

AbstractList FormattableFlags ResourceBundle

AbstractMap Formatter Scanner

AbstractQueue GregorianCalendar ServiceLoader (Added by Java SE 6.)

AbstractSequentialList HashMap SimpleTimeZone

AbstractSet HashSet Stack

ArrayDeque (Added by Java SE 6.) Hashtable StringTokenizer

ArrayList IdentityHashMap Timer

Arrays LinkedHashMap TimerTask

BitSet LinkedHashSet TimeZone

Calendar LinkedList TreeMap

Collections ListResourceBundle TreeSet

Currency Locale UUID

Date Observable Vector

Dictionary PriorityQueue WeakHashMap

EnumMap Properties

EnumSet PropertyPermission

EventListenerProxy PropertyResourceBundle

4 3 7

https://hemanthrajhemu.github.io

438 P a r t I I : T h e J a v a L i b r a r y

The interfaces defined by java.util are shown next:

Collection List Queue

Comparator ListIterator RandomAccess

Deque (Added by Java SE 6.) Map Set

Enumeration Map.Entry SortedMap

EventListener NavigableMap (Added by Java SE 6.) SortedSet

Formattable NavigableSet (Added by Java SE 6.)

Iterator Observer

Because of its size, the description of java.util is broken into two chapters. This chapter
examines those members of java.util that are part of the Collections Framework. Chapter 18
discusses its other classes and interfaces.

Collections Overview
The Java Collections Framework standardizes the way in which groups of objects are handled
by your programs. Collections were not part of the original Java release, but were added by
J2SE 1.2. Prior to the Collections Framework, Java provided ad hoc classes such as Dictionary,
Vector, Stack, and Properties to store and manipulate groups of objects. Although these classes
were quite useful, they lacked a central, unifying theme. The way that you used Vector was
different from the way that you used Properties, for example. Also, this early, ad hoc approach
was not designed to be easily extended or adapted. Collections are an answer to these (and
other) problems.

The Collections Framework was designed to meet several goals. First, the framework had
to be high-performance. The implementations for the fundamental collections (dynamic arrays,
linked lists, trees, and hash tables) are highly efficient. You seldom, if ever, need to code one
of these “data engines” manually. Second, the framework had to allow different types of
collections to work in a similar manner and with a high degree of interoperability. Third,
extending and/or adapting a collection had to be easy. Toward this end, the entire Collections
Framework is built upon a set of standard interfaces. Several standard implementations
(such as LinkedList, HashSet, and TreeSet) of these interfaces are provided that you may
use as-is. You may also implement your own collection, if you choose. Various special-purpose
implementations are created for your convenience, and some partial implementations are
provided that make creating your own collection class easier. Finally, mechanisms were added
that allow the integration of standard arrays into the Collections Framework.

Algorithms are another important part of the collection mechanism. Algorithms operate
on collections and are defined as static methods within the Collections class. Thus, they are
available for all collections. Each collection class need not implement its own versions. The
algorithms provide a standard means of manipulating collections.

Another item closely associated with the Collections Framework is the Iterator interface.
An iterator offers a general-purpose, standardized way of accessing the elements within a
collection, one at a time. Thus, an iterator provides a means of enumerating the contents of
a collection. Because each collection implements Iterator, the elements of any collection class
can be accessed through the methods defined by Iterator. Thus, with only small changes,
the code that cycles through a set can also be used to cycle through a list, for example.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 439

In addition to collections, the framework defines several map interfaces and classes. Maps
store key/value pairs. Although maps are part of the Collections Framework, they are not
“collections” in the strict use of the term. You can, however, obtain a collection-view of a map.
Such a view contains the elements from the map stored in a collection. Thus, you can process
the contents of a map as a collection, if you choose.

The collection mechanism was retrofitted to some of the original classes defined by java.util
so that they too could be integrated into the new system. It is important to understand that
although the addition of collections altered the architecture of many of the original utility
classes, it did not cause the deprecation of any. Collections simply provide a better way of
doing several things.

NOTEOTE If you are familiar with C++, then you will find it helpful to know that the Java collections
technology is similar in spirit to the Standard Template Library (STL) defined by C++. What
C++ calls a container, Java calls a collection. However, there are significant differences between
the Collections Framework and the STL. It is important to not jump to conclusions.

Recent Changes to Collections
Recently, the Collections Framework underwent a fundamental change that significantly
increased its power and streamlined its use. The changes were caused by the addition of
generics, autoboxing/unboxing, and the for-each style for loop, by JDK 5. Although we will be
revisiting these topics throughout the course of this chapter, a brief overview is warranted now.

Generics Fundamentally Change the Collections Framework
The addition of generics caused a significant change to the Collections Framework because the
entire Collections Framework has been reengineered for it. All collections are now generic,
and many of the methods that operate on collections take generic type parameters. Simply
put, the addition of generics has affected every part of the Collections Framework.

Generics add the one feature that collections had been missing: type safety. Prior to generics,
all collections stored Object references, which meant that any collection could store any type
of object. Thus, it was possible to accidentally store incompatible types in a collection. Doing
so could result in run-time type mismatch errors. With generics, it is possible to explicitly
state the type of data being stored, and run-time type mismatch errors can be avoided.

Although the addition of generics changed the declarations of most of its classes and
interfaces, and several of their methods, overall, the Collections Framework still works the
same as it did prior to generics. However, if you are familiar with the pre-generics version
of the Collections Framework, you might find the new syntax a bit intimidating. Don’t worry;
over time, the generic syntax will become second nature.

One other point: to gain the advantages that generics bring collections, older code will
need to be rewritten. This is also important because pre-generics code will generate warning
messages when compiled by a modern Java compiler. To eliminate these warnings, you will
need to add type information to all your collections code.

Autoboxing Facilitates the Use of Primitive Types
Autoboxing/unboxing facilitates the storing of primitive types in collections. As you will see,
a collection can store only references, not primitive values. In the past, if you wanted to store
a primitive value, such as an int, in a collection, you had to manually box it into its type

https://hemanthrajhemu.github.io

440 P a r t I I : T h e J a v a L i b r a r y

wrapper. When the value was retrieved, it needed to be manually unboxed (by using an
explicit cast) into its proper primitive type. Because of autoboxing/unboxing, Java can
automatically perform the proper boxing and unboxing needed when storing or retrieving
primitive types. There is no need to manually perform these operations.

The For-Each Style for Loop
All collection classes in the Collections Framework have been retrofitted to implement the
Iterable interface, which means that a collection can be cycled through by use of the for-each
style for loop. In the past, cycling through a collection required the use of an iterator (described
later in this chapter), with the programmer manually constructing the loop. Although iterators
are still needed for some uses, in many cases, iterator-based loops can be replaced by for loops.

The Collection Interfaces
The Collections Framework defines several interfaces. This section provides an overview of
each interface. Beginning with the collection interfaces is necessary because they determine
the fundamental nature of the collection classes. Put differently, the concrete classes simply
provide different implementations of the standard interfaces. The interfaces that underpin
collections are summarized in the following table:

Interface Description

Collection Enables you to work with groups of objects; it is at the top of the collections
hierarchy.

Deque Extends Queue to handle a double-ended queue. (Added by Java SE 6.)

List Extends Collection to handle sequences (lists of objects).

NavigableSet Extends SortedSet to handle retrieval of elements based on closest-match
searches. (Added by Java SE 6.)

Queue Extends Collection to handle special types of lists in which elements are
removed only from the head.

Set Extends Collection to handle sets, which must contain unique elements.

SortedSet Extends Set to handle sorted sets.

In addition to the collection interfaces, collections also use the Comparator, RandomAccess,
Iterator, and ListIterator interfaces, which are described in depth later in this chapter. Briefly,
Comparator defines how two objects are compared; Iterator and ListIterator enumerate the
objects within a collection. By implementing RandomAccess, a list indicates that it supports
efficient, random access to its elements.

To provide the greatest flexibility in their use, the collection interfaces allow some methods
to be optional. The optional methods enable you to modify the contents of a collection.
Collections that support these methods are called modifiable. Collections that do not allow
their contents to be changed are called unmodifiable. If an attempt is made to use one of these
methods on an unmodifiable collection, an UnsupportedOperationException is thrown. All
the built-in collections are modifiable.

The following sections examine the collection interfaces.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 441

The Collection Interface
The Collection interface is the foundation upon which the Collections Framework is built
because it must be implemented by any class that defines a collection. Collection is a generic
interface that has this declaration:

interface Collection<E>

Here, E specifies the type of objects that the collection will hold. Collection extends the
Iterable interface. This means that all collections can be cycled through by use of the for-each
style for loop. (Recall that only classes that implement Iterable can be cycled through by the for.)

Collection declares the core methods that all collections will have. These methods are
summarized in Table 17-1. Because all collections implement Collection, familiarity with its
methods is necessary for a clear understanding of the framework. Several of these methods
can throw an UnsupportedOperationException. As explained, this occurs if a collection
cannot be modified. A ClassCastException is generated when one object is incompatible with
another, such as when an attempt is made to add an incompatible object to a collection. A
NullPointerException is thrown if an attempt is made to store a null object and null elements
are not allowed in the collection. An IllegalArgumentException is thrown if an invalid
argument is used. An IllegalStateException is thrown if an attempt is made to add an
element to a fixed-length collection that is full.

Objects are added to a collection by calling add(). Notice that add() takes an argument
of type E, which means that objects added to a collection must be compatible with the type of
data expected by the collection. You can add the entire contents of one collection to another
by calling addAll().

You can remove an object by using remove(). To remove a group of objects, call
removeAll(). You can remove all elements except those of a specified group by calling
retainAll(). To empty a collection, call clear().

You can determine whether a collection contains a specific object by calling contains().
To determine whether one collection contains all the members of another, call containsAll().
You can determine when a collection is empty by calling isEmpty(). The number of elements
currently held in a collection can be determined by calling size().

The toArray() methods return an array that contains the elements stored in the invoking
collection. The first returns an array of Object. The second returns an array of elements that
have the same type as the array specified as a parameter. Normally, the second form is more
convenient because it returns the desired array type. These methods are more important than
it might at first seem. Often, processing the contents of a collection by using array-like syntax
is advantageous. By providing a pathway between collections and arrays, you can have the
best of both worlds.

Two collections can be compared for equality by calling equals(). The precise meaning of
“equality” may differ from collection to collection. For example, you can implement equals()
so that it compares the values of elements stored in the collection. Alternatively, equals() can
compare references to those elements.

One more very important method is iterator(), which returns an iterator to a collection.
Iterators are frequently used when working with collections.

The List Interface
The List interface extends Collection and declares the behavior of a collection that stores a
sequence of elements. Elements can be inserted or accessed by their position in the list, using

https://hemanthrajhemu.github.io

442 P a r t I I : T h e J a v a L i b r a r y

a zero-based index. A list may contain duplicate elements. List is a generic interface that has
this declaration:

interface List<E>

Here, E specifies the type of objects that the list will hold.
In addition to the methods defined by Collection, List defines some of its own, which

are summarized in Table 17-2. Note again that several of these methods will throw an
UnsupportedOperationException if the list cannot be modified, and a ClassCastException is

Method Description

boolean add(E obj) Adds obj to the invoking collection. Returns true if obj was added
to the collection. Returns false if obj is already a member of the
collection and the collection does not allow duplicates.

boolean addAll(Collection<? extends E> c) Adds all the elements of c to the invoking collection. Returns true
if the operation succeeded (i.e., the elements were added).
Otherwise, returns false.

void clear() Removes all elements from the invoking collection.

boolean contains(Object obj) Returns true if obj is an element of the invoking collection.
Otherwise, returns false.

boolean containsAll(Collection<?> c) Returns true if the invoking collection contains all elements
of c. Otherwise, returns false.

boolean equals(Object obj) Returns true if the invoking collection and obj are equal.
Otherwise, returns false.

int hashCode() Returns the hash code for the invoking collection.

boolean isEmpty() Returns true if the invoking collection is empty. Otherwise,
returns false.

Iterator<E> iterator() Returns an iterator for the invoking collection.

boolean remove(Object obj) Removes one instance of obj from the invoking collection. Returns
true if the element was removed. Otherwise, returns false.

boolean removeAll(Collection<?> c) Removes all elements of c from the invoking collection. Returns
true if the collection changed (i.e., elements were removed).
Otherwise, returns false.

boolean retainAll(Collection<?> c) Removes all elements from the invoking collection except those
in c. Returns true if the collection changed (i.e., elements were
removed). Otherwise, returns false.

int size() Returns the number of elements held in the invoking collection.

Object[] toArray() Returns an array that contains all the elements stored in the
invoking collection. The array elements are copies of the
collection elements.

<T> T[] toArray(T array[]) Returns an array that contains the elements of the invoking
collection. The array elements are copies of the collection
elements. If the size of array equals the number of elements,
these are returned in array. If the size of array is less than the
number of elements, a new array of the necessary size is allocated
and returned. If the size of array is greater than the number of
elements, the array element following the last collection element
is set to null. An ArrayStoreException is thrown if any collection
element has a type that is not a subtype of array.

TABLE 17-1 The Methods Defined by Collection

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 443

generated when one object is incompatible with another, such as when an attempt is made to add
an incompatible object to a list. Also, several methods will throw an IndexOutOfBoundsException
if an invalid index is used. A NullPointerException is thrown if an attempt is made to store
a null object and null elements are not allowed in the list. An IllegalArgumentException is
thrown if an invalid argument is used.

To the versions of add() and addAll() defined by Collection, List adds the methods
add(int, E) and addAll(int, Collection). These methods insert elements at the specified index.
Also, the semantics of add(E) and addAll(Collection) defined by Collection are changed by
List so that they add elements to the end of the list.

To obtain the object stored at a specific location, call get() with the index of the object.
To assign a value to an element in the list, call set(), specifying the index of the object to be
changed. To find the index of an object, use indexOf() or lastIndexOf().

You can obtain a sublist of a list by calling subList(), specifying the beginning and ending
indexes of the sublist. As you can imagine, subList() makes list processing quite convenient.

The Set Interface
The Set interface defines a set. It extends Collection and declares the behavior of a collection
that does not allow duplicate elements. Therefore, the add() method returns false if an attempt

Method Description

void add(int index, E obj) Inserts obj into the invoking list at the index passed in index.
Any preexisting elements at or beyond the point of insertion
are shifted up. Thus, no elements are overwritten.

boolean addAll(int index,
Collection<? extends E> c)

Inserts all elements of c into the invoking list at the index
passed in index. Any preexisting elements at or beyond the
point of insertion are shifted up. Thus, no elements are
overwritten. Returns true if the invoking list changes and
returns false otherwise.

E get(int index) Returns the object stored at the specified index within the
invoking collection.

int indexOf(Object obj) Returns the index of the first instance of obj in the invoking
list. If obj is not an element of the list, –1 is returned.

int lastIndexOf(Object obj) Returns the index of the last instance of obj in the invoking
list. If obj is not an element of the list, –1 is returned.

ListIterator<E> listIterator() Returns an iterator to the start of the invoking list.

ListIterator<E> listIterator(int index) Returns an iterator to the invoking list that begins at the
specified index.

E remove(int index) Removes the element at position index from the invoking list
and returns the deleted element. The resulting list is compacted.
That is, the indexes of subsequent elements are decremented
by one.

E set(int index, E obj) Assigns obj to the location specified by index within the
invoking list.

List<E> subList(int start, int end) Returns a list that includes elements from start to end–1 in the
invoking list. Elements in the returned list are also referenced
by the invoking object.

TABLE 17-2 The Methods Defined by List

https://hemanthrajhemu.github.io

is made to add duplicate elements to a set. It does not define any additional methods of its
own. Set is a generic interface that has this declaration:

interface Set<E>

Here, E specifies the type of objects that the set will hold.

The SortedSet Interface
The SortedSet interface extends Set and declares the behavior of a set sorted in ascending
order. SortedSet is a generic interface that has this declaration:

interface SortedSet<E>

Here, E specifies the type of objects that the set will hold.
In addition to those methods defined by Set, the SortedSet interface declares the methods

summarized in Table 17-3. Several methods throw a NoSuchElementException when no
items are contained in the invoking set. A ClassCastException is thrown when an object
is incompatible with the elements in a set. A NullPointerException is thrown if an attempt is
made to use a null object and null is not allowed in the set. An IllegalArgumentException
is thrown if an invalid argument is used.

SortedSet defines several methods that make set processing more convenient. To obtain
the first object in the set, call first(). To get the last element, use last(). You can obtain a subset
of a sorted set by calling subSet(), specifying the first and last object in the set. If you need
the subset that starts with the first element in the set, use headSet(). If you want the subset
that ends the set, use tailSet().

The NavigableSet Interface
The NavigableSet interface was added by Java SE 6. It extends SortedSet and declares the
behavior of a collection that supports the retrieval of elements based on the closest match to
a given value or values. NavigableSet is a generic interface that has this declaration:

interface NavigableSet<E>

Here, E specifies the type of objects that the set will hold. In addition to the methods
that it inherits from SortedSet, NavigableSet adds those summarized in Table 17-4. A

444 P a r t I I : T h e J a v a L i b r a r y

Method Description

Comparator<? super E> comparator() Returns the invoking sorted set’s comparator. If the natural ordering
is used for this set, null is returned.

E first() Returns the first element in the invoking sorted set.

SortedSet<E> headSet(E end) Returns a SortedSet containing those elements less than end that
are contained in the invoking sorted set. Elements in the returned
sorted set are also referenced by the invoking sorted set.

E last() Returns the last element in the invoking sorted set.

SortedSet<E> subSet(E start, E end) Returns a SortedSet that includes those elements between start
and end–1. Elements in the returned collection are also referenced
by the invoking object.

SortedSet<E> tailSet(E start) Returns a SortedSet that contains those elements greater than or
equal to start that are contained in the sorted set. Elements in the
returned set are also referenced by the invoking object.

TABLE 17-3 The Methods Defined by SortedSet

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 445

ClassCastException is thrown when an object is incompatible with the elements in the set.
A NullPointerException is thrown if an attempt is made to use a null object and null is not
allowed in the set. An IllegalArgumentException is thrown if an invalid argument is used.

The Queue Interface
The Queue interface extends Collection and declares the behavior of a queue, which is often a
first-in, first-out list. However, there are types of queues in which the ordering is based upon
other criteria. Queue is a generic interface that has this declaration:

interface Queue<E>

Method Description

E ceiling(E obj) Searches the set for the smallest element e such that e >= obj. If
such an element is found, it is returned. Otherwise, null is returned.

Iterator<E> descendingIterator() Returns an iterator that moves from the greatest to least. In
other words, it returns a reverse iterator.

NavigableSet<E> descendingSet() Returns a NavigableSet that is the reverse of the invoking set.
The resulting set is backed by the invoking set.

E floor(E obj) Searches the set for the largest element e such that e <= obj. If
such an element is found, it is returned. Otherwise, null is
returned.

NavigableSet<E>
headSet(E upperBound, boolean incl)

Returns a NavigableSet that includes all elements from the
invoking set that are less than upperBound. If incl is true, then
an element equal to upperBound is included. The resulting set is
backed by the invoking set.

E higher(E obj) Searches the set for the largest element e such that e > obj. If such
an element is found, it is returned. Otherwise, null is returned.

E lower(E obj) Searches the set for the largest element e such that e < obj. If
such an element is found, it is returned. Otherwise, null is
returned.

E pollFirst() Returns the first element, removing the element in the process.
Because the set is sorted, this is the element with the least
value. null is returned if the set is empty.

E pollLast() Returns the last element, removing the element in the process.
Because the set is sorted, this is the element with the greatest
value. null is returned if the set is empty.

NavigableSet<E>
subSet(E lowerBound,

boolean lowIncl,
E upperBound,
boolean highIncl)

Returns a NavigableSet that includes all elements from the
invoking set that are greater than lowerBound and less than
upperBound. If lowIncl is true, then an element equal to
lowerBound is included. If highIncl is true, then an element
equal to upperBound is included. The resulting set is backed
by the invoking set.

NavigableSet<E>
tailSet(E lowerBound, boolean incl)

Returns a NavigableSet that includes all elements from the
invoking set that are greater than lowerBound. If incl is true, then
an element equal to lowerBound is included. The resulting set is
backed by the invoking set.

TABLE 17-4 The Methods Defined by NavigableSet

https://hemanthrajhemu.github.io

Here, E specifies the type of objects that the queue will hold. The methods defined by Queue
are shown in Table 17-5.

Several methods throw a ClassCastException when an object is incompatible with the
elements in the queue. A NullPointerException is thrown if an attempt is made to store a
null object and null elements are not allowed in the queue. An IllegalArgumentException
is thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is
made to add an element to a fixed-length queue that is full. A NoSuchElementException
is thrown if an attempt is made to remove an element from an empty queue.

Despite its simplicity, Queue offers several points of interest. First, elements can only be
removed from the head of the queue. Second, there are two methods that obtain and remove
elements: poll() and remove(). The difference between them is that poll() returns null if the
queue is empty, but remove() throws an exception. Third, there are two methods, element()
and peek(), that obtain but don’t remove the element at the head of the queue. They differ
only in that element() throws an exception if the queue is empty, but peek() returns null.
Finally, notice that offer() only attempts to add an element to a queue. Because some queues
have a fixed length and might be full, offer() can fail.

The Deque Interface
The Deque interface was added by Java SE 6. It extends Queue and declares the behavior of
a double-ended queue. Double-ended queues can function as standard, first-in, first-out
queues or as last-in, first-out stacks. Deque is a generic interface that has this declaration:

interface Deque<E>

Here, E specifies the type of objects that the deque will hold. In addition to the methods that
it inherits from Queue, Deque adds those methods summarized in Table 17-6. Several
methods throw a ClassCastException when an object is incompatible with the elements in
the deque. A NullPointerException is thrown if an attempt is made to store a null object
and null elements are not allowed in the deque. An IllegalArgumentException is thrown if
an invalid argument is used. An IllegalStateException is thrown if an attempt is made to
add an element to a fixed-length deque that is full. A NoSuchElementException is thrown
if an attempt is made to remove an element from an empty deque.

Notice that Deque includes the methods push() and pop(). These methods enable a Deque
to function as a stack. Also, notice the descendingIterator() method. It returns an iterator that
returns elements in reverse order. In other words, it returns an iterator that moves from the end
of the collection to the start. A Deque implementation can be capacity-restricted, which means

446 P a r t I I : T h e J a v a L i b r a r y

Method Description

E element() Returns the element at the head of the queue. The element is not removed. It throws
NoSuchElementException if the queue is empty.

boolean offer(E obj) Attempts to add obj to the queue. Returns true if obj was added and false otherwise.

E peek() Returns the element at the head of the queue. It returns null if the queue is empty.
The element is not removed.

E poll() Returns the element at the head of the queue, removing the element in the process. It
returns null if the queue is empty.

E remove() Removes the element at the head of the queue, returning the element in the process.
It throws NoSuchElementException if the queue is empty.

TABLE 17-5 The Methods Defined by Queue

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 447

that only a limited number of elements can be added to the deque. When this is the case, an
attempt to add an element to the deque can fail. Deque allows you to handle such a failure in
two ways. First, methods such as addFirst() and addLast() throw an IllegalStateException if a

Method Description

void addFirst(E obj) Adds obj to the head of the deque. Throws an IllegalStateException
if a capacity-restricted deque is out of space.

void addLast(E obj) Adds obj to the tail of the deque. Throws an IllegalStateException
if a capacity-restricted deque is out of space.

Iterator<E> descendingIterator() Returns an iterator that moves from the tail to the head of the
deque. In other words, it returns a reverse iterator.

E getFirst() Returns the first element in the deque. The object is not removed
from the deque. It throws NoSuchElementException if the deque
is empty.

E getLast() Returns the last element in the deque. The object is not removed
from the deque. It throws NoSuchElementException if the deque is
empty.

boolean offerFirst(E obj) Attempts to add obj to the head of the deque. Returns true if
obj was added and false otherwise. Therefore, this method
returns false when an attempt is made to add obj to a full,
capacity-restricted deque.

boolean offerLast(E obj) Attempts to add obj to the tail of the deque. Returns true if obj
was added and false otherwise.

E peekFirst() Returns the element at the head of the deque. It returns null if
the deque is empty. The object is not removed.

E peekLast() Returns the element at the tail of the deque. It returns null if the
deque is empty. The object is not removed.

E pollFirst() Returns the element at the head of the deque, removing the
element in the process. It returns null if the deque is empty.

E pollLast() Returns the element at the tail of the deque, removing the
element in the process. It returns null if the deque is empty.

E pop() Returns the element at the head of the deque, removing it in the
process. It throws NoSuchElementException if the deque is empty.

void push(E obj) Adds obj to the head of the deque. Throws an IllegalStateException
if a capacity-restricted deque is out of space.

E removeFirst() Returns the element at the head of the deque, removing the
element in the process. It throws NoSuchElementException if
the deque is empty.

boolean
removeFirstOccurrence(Object obj)

Removes the first occurrence of obj from the deque. Returns true
if successful and false if the deque did not contain obj.

E removeLast() Returns the element at the tail of the deque, removing the element
in the process. It throws NoSuchElementException if the deque
is empty.

boolean
removeLastOccurrence(Object obj)

Removes the last occurrence of obj from the deque. Returns true
if successful and false if the deque did not contain obj.

TABLE 17-6 The Methods Defined by Deque

https://hemanthrajhemu.github.io

448 P a r t I I : T h e J a v a L i b r a r y

capacity-restricted deque is full. Second, methods such as offerFirst() and offerLast() return
false if the element can not be added.

The Collection Classes
Now that you are familiar with the collection interfaces, you are ready to examine the standard
classes that implement them. Some of the classes provide full implementations that can be
used as-is. Others are abstract, providing skeletal implementations that are used as starting
points for creating concrete collections. None of the collection classes are synchronized, but
as you will see later in this chapter, it is possible to obtain synchronized versions.

The standard collection classes are summarized in the following table:

Class Description

AbstractCollection Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List interface.

AbstractQueue Extends AbstractCollection and implements parts of the Queue interface.

AbstractSequentialList Extends AbstractList for use by a collection that uses sequential rather than random
access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

ArrayDeque Implements a dynamic double-ended queue by extending AbstractCollection and
implementing the Deque interface. (Added by Java SE 6.)

AbstractSet Extends AbstractCollection and implements most of the Set interface.

EnumSet Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

The following sections examine the concrete collection classes and illustrate their use.

NOTEOTE In addition to the collection classes, several legacy classes, such as Vector, Stack, and
Hashtable, have been reengineered to support collections. These are examined later in this chapter.

The ArrayList Class
The ArrayList class extends AbstractList and implements the List interface. ArrayList is a
generic class that has this declaration:

class ArrayList<E>

Here, E specifies the type of objects that the list will hold.
ArrayList supports dynamic arrays that can grow as needed. In Java, standard arrays are

of a fixed length. After arrays are created, they cannot grow or shrink, which means that you
must know in advance how many elements an array will hold. But, sometimes, you may not
know until run time precisely how large an array you need. To handle this situation, the
Collections Framework defines ArrayList. In essence, an ArrayList is a variable-length array
of object references. That is, an ArrayList can dynamically increase or decrease in size. Array

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 449

lists are created with an initial size. When this size is exceeded, the collection is automatically
enlarged. When objects are removed, the array can be shrunk.

NOTEOTE Dynamic arrays are also supported by the legacy class Vector, which is described later
in this chapter.

ArrayList has the constructors shown here:

ArrayList()
ArrayList(Collection<? extends E> c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array list
that is initialized with the elements of the collection c. The third constructor builds an array
list that has the specified initial capacity. The capacity is the size of the underlying array that
is used to store the elements. The capacity grows automatically as elements are added to an
array list.

The following program shows a simple use of ArrayList. An array list is created for objects
of type String, and then several strings are added to it. (Recall that a quoted string is translated
into a String object.) The list is then displayed. Some of the elements are removed and the
list is displayed again.

// Demonstrate ArrayList.
import java.util.*;

class ArrayListDemo {
public static void main(String args[]) {
// Create an array list.
ArrayList<String> al = new ArrayList<String>();

System.out.println("Initial size of al: " +
al.size());

// Add elements to the array list.
al.add("C");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F");
al.add(1, "A2");

System.out.println("Size of al after additions: " +
al.size());

// Display the array list.
System.out.println("Contents of al: " + al);

// Remove elements from the array list.
al.remove("F");
al.remove(2);

System.out.println("Size of al after deletions: " +
al.size());

https://hemanthrajhemu.github.io

450 P a r t I I : T h e J a v a L i b r a r y

System.out.println("Contents of al: " + al);
}

}

The output from this program is shown here:

Initial size of al: 0
Size of al after additions: 7
Contents of al: [C, A2, A, E, B, D, F]
Size of al after deletions: 5
Contents of al: [C, A2, E, B, D]

Notice that a1 starts out empty and grows as elements are added to it. When elements are
removed, its size is reduced.

In the preceding example, the contents of a collection are displayed using the default
conversion provided by toString(), which was inherited from AbstractCollection. Although
it is sufficient for short, sample programs, you seldom use this method to display the contents
of a real-world collection. Usually, you provide your own output routines. But, for the next
few examples, the default output created by toString() is sufficient.

Although the capacity of an ArrayList object increases automatically as objects are stored
in it, you can increase the capacity of an ArrayList object manually by calling ensureCapacity().
You might want to do this if you know in advance that you will be storing many more items
in the collection than it can currently hold. By increasing its capacity once, at the start, you can
prevent several reallocations later. Because reallocations are costly in terms of time, preventing
unnecessary ones improves performance. The signature for ensureCapacity() is shown here:

void ensureCapacity(int cap)

Here, cap is the new capacity.
Conversely, if you want to reduce the size of the array that underlies an ArrayList object so

that it is precisely as large as the number of items that it is currently holding, call trimToSize(),
shown here:

void trimToSize()

Obtaining an Array from an ArrayList
When working with ArrayList, you will sometimes want to obtain an actual array that contains
the contents of the list. You can do this by calling toArray(), which is defined by Collection.
Several reasons exist why you might want to convert a collection into an array, such as:

• To obtain faster processing times for certain operations

• To pass an array to a method that is not overloaded to accept a collection

• To integrate collection-based code with legacy code that does not understand collections

Whatever the reason, converting an ArrayList to an array is a trivial matter.
As explained earlier, there are two versions of toArray(), which are shown again here

for your convenience:

Object[] toArray()
<T> T[] toArray(T array[])

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 451

The first returns an array of Object. The second returns an array of elements that have the
same type as T. Normally, the second form is more convenient because it returns the proper
type of array. The following program demonstrates its use:

// Convert an ArrayList into an array.
import java.util.*;

class ArrayListToArray {
public static void main(String args[]) {
// Create an array list.
ArrayList<Integer> al = new ArrayList<Integer>();

// Add elements to the array list.
al.add(1);
al.add(2);
al.add(3);
al.add(4);

System.out.println("Contents of al: " + al);

// Get the array.
Integer ia[] = new Integer[al.size()];
ia = al.toArray(ia);

int sum = 0;

// Sum the array.
for(int i : ia) sum += i;

System.out.println("Sum is: " + sum);
}

}

The output from the program is shown here:

Contents of al: [1, 2, 3, 4]
Sum is: 10

The program begins by creating a collection of integers. Next, toArray() is called and it
obtains an array of Integers. Then, the contents of that array are summed by use of a for-each
style for loop.

There is something else of interest in this program. As you know, collections can store only
references to, not values of, primitive types. However, autoboxing makes it possible to pass
values of type int to add() without having to manually wrap them within an Integer, as the
program shows. Autoboxing causes them to be automatically wrapped. In this way, autoboxing
significantly improves the ease with which collections can be used to store primitive values.

The LinkedList Class
The LinkedList class extends AbstractSequentialList and implements the List, Deque, and
Queue interfaces. It provides a linked-list data structure. LinkedList is a generic class that
has this declaration:

class LinkedList<E>

https://hemanthrajhemu.github.io

Here, E specifies the type of objects that the list will hold. LinkedList has the two constructors
shown here:

LinkedList()
LinkedList(Collection<? extends E> c)

The first constructor builds an empty linked list. The second constructor builds a linked list
that is initialized with the elements of the collection c.

Because LinkedList implements the Deque interface, you have access to the methods
defined by Deque. For example, to add elements to the start of a list you can use addFirst()
or offerFirst(). To add elements to the end of the list, use addLast() or offerLast(). To
obtain the first element, you can use getFirst() or peekFirst(). To obtain the last element,
use getLast() or peekLast(). To remove the first element, use removeFirst() or pollFirst().
To remove the last element, use removeLast() or pollLast().

The following program illustrates LinkedList:

// Demonstrate LinkedList.
import java.util.*;

class LinkedListDemo {
public static void main(String args[]) {
// Create a linked list.
LinkedList<String> ll = new LinkedList<String>();

// Add elements to the linked list.
ll.add("F");
ll.add("B");
ll.add("D");
ll.add("E");
ll.add("C");
ll.addLast("Z");
ll.addFirst("A");

ll.add(1, "A2");

System.out.println("Original contents of ll: " + ll);

// Remove elements from the linked list.
ll.remove("F");
ll.remove(2);

System.out.println("Contents of ll after deletion: "
+ ll);

// Remove first and last elements.
ll.removeFirst();
ll.removeLast();

System.out.println("ll after deleting first and last: "
+ ll);

// Get and set a value.

452 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 453

String val = ll.get(2);
ll.set(2, val + " Changed");

System.out.println("ll after change: " + ll);
}

}

The output from this program is shown here:

Original contents of ll: [A, A2, F, B, D, E, C, Z]
Contents of ll after deletion: [A, A2, D, E, C, Z]
ll after deleting first and last: [A2, D, E, C]
ll after change: [A2, D, E Changed, C]

Because LinkedList implements the List interface, calls to add(E) append items to the end
of the list, as do calls to addLast(). To insert items at a specific location, use the add(int, E)
form of add(), as illustrated by the call to add(1, “A2”) in the example.

Notice how the third element in ll is changed by employing calls to get() and set(). To
obtain the current value of an element, pass get() the index at which the element is stored.
To assign a new value to that index, pass set() the index and its new value.

The HashSet Class
HashSet extends AbstractSet and implements the Set interface. It creates a collection that
uses a hash table for storage. HashSet is a generic class that has this declaration:

class HashSet<E>

Here, E specifies the type of objects that the set will hold.
As most readers likely know, a hash table stores information by using a mechanism called

hashing. In hashing, the informational content of a key is used to determine a unique value,
called its hash code. The hash code is then used as the index at which the data associated with
the key is stored. The transformation of the key into its hash code is performed automatically—
you never see the hash code itself. Also, your code can’t directly index the hash table. The
advantage of hashing is that it allows the execution time of add(), contains(), remove(), and
size() to remain constant even for large sets.

The following constructors are defined:

HashSet()
HashSet(Collection<? extends E> c)
HashSet(int capacity)
HashSet(int capacity, float fillRatio)

The first form constructs a default hash set. The second form initializes the hash set by using
the elements of c. The third form initializes the capacity of the hash set to capacity. (The default
capacity is 16.) The fourth form initializes both the capacity and the fill ratio (also called load
capacity) of the hash set from its arguments. The fill ratio must be between 0.0 and 1.0, and it
determines how full the hash set can be before it is resized upward. Specifically, when the
number of elements is greater than the capacity of the hash set multiplied by its fill ratio,
the hash set is expanded. For constructors that do not take a fill ratio, 0.75 is used.

HashSet does not define any additional methods beyond those provided by its superclasses
and interfaces.

https://hemanthrajhemu.github.io

It is important to note that HashSet does not guarantee the order of its elements, because
the process of hashing doesn’t usually lend itself to the creation of sorted sets. If you need
sorted storage, then another collection, such as TreeSet, is a better choice.

Here is an example that demonstrates HashSet:

// Demonstrate HashSet.
import java.util.*;

class HashSetDemo {
public static void main(String args[]) {
// Create a hash set.
HashSet<String> hs = new HashSet<String>();

// Add elements to the hash set.
hs.add("B");
hs.add("A");
hs.add("D");
hs.add("E");
hs.add("C");
hs.add("F");

System.out.println(hs);
}

}

The following is the output from this program:

[D, A, F, C, B, E]

As explained, the elements are not stored in sorted order, and the precise output may vary.

The LinkedHashSet Class
The LinkedHashSet class extends HashSet and adds no members of its own. It is a generic
class that has this declaration:

class LinkedHashSet<E>

Here, E specifies the type of objects that the set will hold. Its constructors parallel those in
HashSet.

LinkedHashSet maintains a linked list of the entries in the set, in the order in which they
were inserted. This allows insertion-order iteration over the set. That is, when cycling through
a LinkedHashSet using an iterator, the elements will be returned in the order in which they
were inserted. This is also the order in which they are contained in the string returned by
toString() when called on a LinkedHashSet object. To see the effect of LinkedHashSet, try
substituting LinkedHashSet for HashSet in the preceding program. The output will be

[B, A, D, E, C, F]

which is the order in which the elements were inserted.

454 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 455

The TreeSet Class
TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a
collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access
and retrieval times are quite fast, which makes TreeSet an excellent choice when storing large
amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Here, E specifies the type of objects that the set will hold.
TreeSet has the following constructors:

TreeSet()
TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comp)
TreeSet(SortedSet<E> ss)

The first form constructs an empty tree set that will be sorted in ascending order according
to the natural order of its elements. The second form builds a tree set that contains the elements
of c. The third form constructs an empty tree set that will be sorted according to the comparator
specified by comp. (Comparators are described later in this chapter.) The fourth form builds
a tree set that contains the elements of ss.

Here is an example that demonstrates a TreeSet:

// Demonstrate TreeSet.
import java.util.*;

class TreeSetDemo {
public static void main(String args[]) {
// Create a tree set.
TreeSet<String> ts = new TreeSet<String>();

// Add elements to the tree set.
ts.add("C");
ts.add("A");
ts.add("B");
ts.add("E");
ts.add("F");
ts.add("D");

System.out.println(ts);
}

}

The output from this program is shown here:

[A, B, C, D, E, F]

As explained, because TreeSet stores its elements in a tree, they are automatically arranged
in sorted order, as the output confirms.

https://hemanthrajhemu.github.io

456 P a r t I I : T h e J a v a L i b r a r y

Because TreeSet implements the NavigableSet interface (which was added by Java SE 6),
you can use the methods defined by NavigableSet to retrieve elements of a TreeSet. For
example, assuming the preceding program, the following statement uses subSet() to obtain a
subset of ts that contains the elements between C (inclusive) and F (exclusive). It then displays
the resulting set.

System.out.println(ts.subSet()("C", "F"));

The output from this statement is shown here:

[C, D, E]

You might want to experiment with the other methods defined by NavigableSet.

The PriorityQueue Class
PriorityQueue extends AbstractQueue and implements the Queue interface. It creates a queue
that is prioritized based on the queue’s comparator. PriorityQueue is a generic class that has
this declaration:

class PriorityQueue<E>

Here, E specifies the type of objects stored in the queue. PriorityQueues are dynamic, growing
as necessary.

PriorityQueue defines the six constructors shown here:

PriorityQueue()
PriorityQueue(int capacity)
PriorityQueue(int capacity, Comparator<? super E> comp)
PriorityQueue(Collection<? extends E> c)
PriorityQueue(PriorityQueue<? extends E> c)
PriorityQueue(SortedSet<? extends E> c)

The first constructor builds an empty queue. Its starting capacity is 11. The second constructor
builds a queue that has the specified initial capacity. The third constructor builds a queue
with the specified capacity and comparator. The last three constructors create queues that
are initialized with the elements of the collection passed in c. In all cases, the capacity grows
automatically as elements are added.

If no comparator is specified when a PriorityQueue is constructed, then the default
comparator for the type of data stored in the queue is used. The default comparator will order
the queue in ascending order. Thus, the head of the queue will be the smallest value. However,
by providing a custom comparator, you can specify a different ordering scheme. For example,
when storing items that include a time stamp, you could prioritize the queue such that the
oldest items are first in the queue.

You can obtain a reference to the comparator used by a PriorityQueue by calling its
comparator() method, shown here:

Comparator<? super E> comparator()

It returns the comparator. If natural ordering is used for the invoking queue, null is returned.
One word of caution: although you can iterate through a PriorityQueue using an iterator,

the order of that iteration is undefined. To properly use a PriorityQueue, you must call methods
such as offer() and poll(), which are defined by the Queue interface.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 457

The ArrayDeque Class
Java SE 6 added the ArrayDeque class, which extends AbstractCollection and implements
the Deque interface. It adds no methods of its own. ArrayDeque creates a dynamic array
and has no capacity restrictions. (The Deque interface supports implementations that
restrict capacity, but does not require such restrictions.) ArrayDeque is a generic class that
has this declaration:

class ArrayDeque<E>

Here, E specifies the type of objects stored in the collection.
ArrayDeque defines the following constructors:

ArrayDeque()

ArrayDeque(int size)

ArrayDeque(Collection<? extends E> c)

The first constructor builds an empty deque. Its starting capacity is 16. The second
constructor builds a deque that has the specified initial capacity. The third constructor
creates a deque that is initialized with the elements of the collection passed in c. In all cases,
the capacity grows as needed to handle the elements added to the deque.

The following program demonstrates ArrayDeque by using it to create a stack:

// Demonstrate ArrayDeque.
import java.util.*;

class ArrayDequeDemo {
public static void main(String args[]) {
// Create a tree set.
ArrayDeque<String> adq = new ArrayDeque<String>();

// Use an ArrayDeque like a stack.
adq.push("A");
adq.push("B");
adq.push("D");
adq.push("E");
adq.push("F");

System.out.print("Popping the stack: ");

while(adq.peek() != null)
System.out.print(adq.pop() + " ");

System.out.println();
}

}

The output is shown here:

Popping the stack: F E D B A

https://hemanthrajhemu.github.io

458 P a r t I I : T h e J a v a L i b r a r y

The EnumSet Class
EnumSet extends AbstractSet and implements Set. It is specifically for use with keys of an
enum type. It is a generic class that has this declaration:

class EnumSet<E extends Enum<E>>

Here, E specifies the elements. Notice that E must extend Enum<E>, which enforces the
requirement that the elements must be of the specified enum type.

EnumSet defines no constructors. Instead, it uses the factory methods shown in Table 17-7
to create objects. All methods can throw NullPointerException. The copyOf() and range()
methods can also throw IllegalArgumentException. Notice that the of() method is overloaded
a number of times. This is in the interest of efficiency. Passing a known number of arguments
can be faster than using a vararg parameter when the number of arguments is small.

Accessing a Collection via an Iterator
Often, you will want to cycle through the elements in a collection. For example, you might
want to display each element. One way to do this is to employ an iterator, which is an object
that implements either the Iterator or the ListIterator interface. Iterator enables you to cycle
through a collection, obtaining or removing elements. ListIterator extends Iterator to allow

Method Description

static <E extends Enum<E>>
EnumSet<E> allOf(Class<E> t)

Creates an EnumSet that contains the elements in the
enumeration specified by t.

static <E extends Enum<E>> EnumSet<E>
complementOf(EnumSet<E> e)

Creates an EnumSet that is comprised of those elements not
stored in e.

static <E extends Enum<E>>
EnumSet<E> copyOf(EnumSet<E> c)

Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>
EnumSet<E> copyOf(Collection<E> c)

Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>
EnumSet<E> noneOf(Class<E> t)

Creates an EnumSet that contains the elements that are not in
the enumeration specified by t, which is an empty set by definition.

static <E extends Enum<E>>
EnumSet<E> of(E v, E ... varargs)

Creates an EnumSet that contains v and zero or more
additional enumeration values.

static <E extends Enum<E>>
EnumSet<E> of(E v)

Creates an EnumSet that contains v.

static <E extends Enum<E>>
EnumSet<E> of(E v1, E v2)

Creates an EnumSet that contains v1 and v2.

static <E extends Enum<E>>
EnumSet<E> of(E v1, E v2, E v3)

Creates an EnumSet that contains v1 through v3.

static <E extends Enum<E>>
EnumSet<E> of(E v1, E v2, E v3, E v4)

Creates an EnumSet that contains v1 through v4.

static <E extends Enum<E>>
EnumSet<E> of(E v1, E v2, E v3, E v4,

E v5)

Creates an EnumSet that contains v1 through v5.

static <E extends Enum<E>>
EnumSet<E> range(E start, E end)

Creates an EnumSet that contains the elements in the range
specified by start and end.

TABLE 17-7 The Methods Defined by EnumSet

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 459

bidirectional traversal of a list, and the modification of elements. Iterator and ListIterator
are generic interfaces which are declared as shown here:

interface Iterator<E>
interface ListIterator<E>

Here, E specifies the type of objects being iterated. The Iterator interface declares the methods
shown in Table 17-8. The methods declared by ListIterator are shown in Table 17-9. In both
cases, operations that modify the underlying collection are optional. For example, remove()
will throw UnsupportedOperationException when used with a read-only collection. Various
other exceptions are possible.

Using an Iterator
Before you can access a collection through an iterator, you must obtain one. Each of the
collection classes provides an iterator() method that returns an iterator to the start of
the collection. By using this iterator object, you can access each element in the collection, one

Method Description

boolean hasNext() Returns true if there are more elements. Otherwise, returns false.

E next() Returns the next element. Throws NoSuchElementException if there is not
a next element.

void remove() Removes the current element. Throws IllegalStateException if an attempt
is made to call remove() that is not preceded by a call to next().

TABLE 17-8 The Methods Defined by Iterator

Method Description

void add(E obj) Inserts obj into the list in front of the element that will be returned
by the next call to next().

boolean hasNext() Returns true if there is a next element. Otherwise, returns false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise, returns false.

E next() Returns the next element. A NoSuchElementException is thrown
if there is not a next element.

int nextIndex() Returns the index of the next element. If there is not a next element,
returns the size of the list.

E previous() Returns the previous element. A NoSuchElementException is thrown
if there is not a previous element.

int previousIndex() Returns the index of the previous element. If there is not a previous
element, returns −1.

void remove() Removes the current element from the list. An IllegalStateException
is thrown if remove() is called before next() or previous() is invoked.

void set(E obj) Assigns obj to the current element. This is the element last returned
by a call to either next() or previous().

TABLE 17-9 The Methods Defined by ListIterator

https://hemanthrajhemu.github.io

460 P a r t I I : T h e J a v a L i b r a r y

element at a time. In general, to use an iterator to cycle through the contents of a collection,
follow these steps:

1. Obtain an iterator to the start of the collection by calling the collection’s iterator()
method.

2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext()
returns true.

3. Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling listIterator().
As explained, a list iterator gives you the ability to access the collection in either the forward
or backward direction and lets you modify an element. Otherwise, ListIterator is used just
like Iterator.

The following example implements these steps, demonstrating both the Iterator and
ListIterator interfaces. It uses an ArrayList object, but the general principles apply to any
type of collection. Of course, ListIterator is available only to those collections that implement
the List interface.

// Demonstrate iterators.
import java.util.*;

class IteratorDemo {
public static void main(String args[]) {
// Create an array list.
ArrayList<String> al = new ArrayList<String>();

// Add elements to the array list.
al.add("C");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F");

// Use iterator to display contents of al.
System.out.print("Original contents of al: ");
Iterator<String> itr = al.iterator();
while(itr.hasNext()) {
String element = itr.next();
System.out.print(element + " ");

}
System.out.println();

// Modify objects being iterated.
ListIterator<String> litr = al.listIterator();
while(litr.hasNext()) {
String element = litr.next();
litr.set(element + "+");

}

System.out.print("Modified contents of al: ");
itr = al.iterator();
while(itr.hasNext()) {

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 461

String element = itr.next();
System.out.print(element + " ");

}
System.out.println();

// Now, display the list backwards.
System.out.print("Modified list backwards: ");
while(litr.hasPrevious()) {
String element = litr.previous();
System.out.print(element + " ");

}
System.out.println();

}
}

The output is shown here:

Original contents of al: C A E B D F
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+

Pay special attention to how the list is displayed in reverse. After the list is modified, litr
points to the end of the list. (Remember, litr.hasNext() returns false when the end of the list
has been reached.) To traverse the list in reverse, the program continues to use litr, but this
time it checks to see whether it has a previous element. As long as it does, that element is
obtained and displayed.

The For-Each Alternative to Iterators
If you won’t be modifying the contents of a collection or obtaining elements in reverse order,
then the for-each version of the for loop is often a more convenient alternative to cycling
through a collection than is using an iterator. Recall that the for can cycle through any collection
of objects that implement the Iterable interface. Because all of the collection classes implement
this interface, they can all be operated upon by the for.

The following example uses a for loop to sum the contents of a collection:

// Use the for-each for loop to cycle through a collection.
import java.util.*;

class ForEachDemo {
public static void main(String args[]) {
// Create an array list for integers.
ArrayList<Integer> vals = new ArrayList<Integer>();

// Add values to the array list.
vals.add(1);
vals.add(2);
vals.add(3);
vals.add(4);
vals.add(5);

// Use for loop to display the values.
System.out.print("Original contents of vals: ");
for(int v : vals)
System.out.print(v + " ");

https://hemanthrajhemu.github.io

462 P a r t I I : T h e J a v a L i b r a r y

System.out.println();

// Now, sum the values by using a for loop.
int sum = 0;
for(int v : vals)
sum += v;

System.out.println("Sum of values: " + sum);
}

}

The output from the program is shown here:

Original contents of vals: 1 2 3 4 5
Sum of values: 15

As you can see, the for loop is substantially shorter and simpler to use than the iterator-
based approach. However, it can only be used to cycle through a collection in the forward
direction, and you can’t modify the contents of the collection.

Storing User-Defined Classes in Collections
For the sake of simplicity, the foregoing examples have stored built-in objects, such as String
or Integer, in a collection. Of course, collections are not limited to the storage of built-in
objects. Quite the contrary. The power of collections is that they can store any type of object,
including objects of classes that you create. For example, consider the following example that
uses a LinkedList to store mailing addresses:

// A simple mailing list example.
import java.util.*;

class Address {
private String name;
private String street;
private String city;
private String state;
private String code;

Address(String n, String s, String c,
String st, String cd) {

name = n;
street = s;
city = c;
state = st;
code = cd;

}

public String toString() {
return name + "\n" + street + "\n" +

city + " " + state + " " + code;
}

}

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 463

class MailList {
public static void main(String args[]) {
LinkedList<Address> ml = new LinkedList<Address>();

// Add elements to the linked list.
ml.add(new Address("J.W. West", "11 Oak Ave",

"Urbana", "IL", "61801"));
ml.add(new Address("Ralph Baker", "1142 Maple Lane",

"Mahomet", "IL", "61853"));
ml.add(new Address("Tom Carlton", "867 Elm St",

"Champaign", "IL", "61820"));

// Display the mailing list.
for(Address element : ml)
System.out.println(element + "\n");

System.out.println();
}

}

The output from the program is shown here:

J.W. West
11 Oak Ave
Urbana IL 61801

Ralph Baker
1142 Maple Lane
Mahomet IL 61853

Tom Carlton
867 Elm St
Champaign IL 61820

Aside from storing a user-defined class in a collection, another important thing to notice
about the preceding program is that it is quite short. When you consider that it sets up a linked
list that can store, retrieve, and process mailing addresses in about 50 lines of code, the power
of the Collections Framework begins to become apparent. As most readers know, if all of this
functionality had to be coded manually, the program would be several times longer. Collections
offer off-the-shelf solutions to a wide variety of programming problems. You should use them
whenever the situation presents itself.

The RandomAccess Interface
The RandomAccess interface contains no members. However, by implementing this interface,
a collection signals that it supports efficient random access to its elements. Although a collection
might support random access, it might not do so efficiently. By checking for the RandomAccess
interface, client code can determine at run time whether a collection is suitable for certain
types of random access operations—especially as they apply to large collections. (You can use
instanceof to determine if a class implements an interface.) RandomAccess is implemented
by ArrayList and by the legacy Vector class, among others.

https://hemanthrajhemu.github.io

464 P a r t I I : T h e J a v a L i b r a r y

Working with Maps
A map is an object that stores associations between keys and values, or key/value pairs. Given
a key, you can find its value. Both keys and values are objects. The keys must be unique, but
the values may be duplicated. Some maps can accept a null key and null values, others cannot.

There is one key point about maps that is important to mention at the outset: they don’t
implement the Iterable interface. This means that you cannot cycle through a map using a
for-each style for loop. Furthermore, you can’t obtain an iterator to a map. However, as you
will soon see, you can obtain a collection-view of a map, which does allow the use of either
the for loop or an iterator.

The Map Interfaces
Because the map interfaces define the character and nature of maps, this discussion of maps
begins with them. The following interfaces support maps:

Interface Description

Map Maps unique keys to values.

Map.Entry Describes an element (a key/value pair) in a map. This is an inner class of Map.

NavigableMap Extends SortedMap to handle the retrieval of entries based on closest-match
searches. (Added by Java SE 6.)

SortedMap Extends Map so that the keys are maintained in ascending order.

Each interface is examined next, in turn.

The Map Interface
The Map interface maps unique keys to values. A key is an object that you use to retrieve a
value at a later date. Given a key and a value, you can store the value in a Map object. After
the value is stored, you can retrieve it by using its key. Map is generic and is declared as
shown here:

interface Map<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by Map are summarized in Table 17-10. Several methods

throw a ClassCastException when an object is incompatible with the elements in a map. A
NullPointerException is thrown if an attempt is made to use a null object and null is not
allowed in the map. An UnsupportedOperationException is thrown when an attempt is
made to change an unmodifiable map. An IllegalArgumentException is thrown if an
invalid argument is used.

Maps revolve around two basic operations: get() and put(). To put a value into a map,
use put(), specifying the key and the value. To obtain a value, call get(), passing the key as
an argument. The value is returned.

As mentioned earlier, although part of the Collections Framework, maps are not,
themselves, collections because they do not implement the Collection interface. However,
you can obtain a collection-view of a map. To do this, you can use the entrySet() method. It
returns a Set that contains the elements in the map. To obtain a collection-view of the keys,

https://hemanthrajhemu.github.io

use keySet(). To get a collection-view of the values, use values(). Collection-views are the
means by which maps are integrated into the larger Collections Framework.

The SortedMap Interface
The SortedMap interface extends Map. It ensures that the entries are maintained in ascending
order based on the keys. SortedMap is generic and is declared as shown here:

interface SortedMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by SortedMap are summarized in Table 17-11. Several methods throw

a NoSuchElementException when no items are in the invoking map. A ClassCastException
is thrown when an object is incompatible with the elements in a map. A NullPointerException
is thrown if an attempt is made to use a null object when null is not allowed in the map. An
IllegalArgumentException is thrown if an invalid argument is used.

Sorted maps allow very efficient manipulations of submaps (in other words, subsets of a
map). To obtain a submap, use headMap(), tailMap(), or subMap(). To get the first key in
the set, call firstKey(). To get the last key, use lastKey().

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 465

Method Description

void clear() Removes all key/value pairs from the invoking map.

boolean containsKey(Object k) Returns true if the invoking map contains k as a key. Otherwise,
returns false.

boolean containsValue(Object v) Returns true if the map contains v as a value. Otherwise, returns false.

Set<Map.Entry<K, V>> entrySet() Returns a Set that contains the entries in the map. The set contains
objects of type Map.Entry. Thus, this method provides a set-view of the
invoking map.

boolean equals(Object obj) Returns true if obj is a Map and contains the same entries. Otherwise,
returns false.

V get(Object k) Returns the value associated with the key k. Returns null if the key is
not found.

int hashCode() Returns the hash code for the invoking map.

boolean isEmpty() Returns true if the invoking map is empty. Otherwise, returns false.

Set<K> keySet() Returns a Set that contains the keys in the invoking map. This method
provides a set-view of the keys in the invoking map.

V put(K k, V v) Puts an entry in the invoking map, overwriting any previous value
associated with the key. The key and value are k and v, respectively.
Returns null if the key did not already exist. Otherwise, the previous
value linked to the key is returned.

void putAll(Map<? extends K,
void putAll(Map<? extends V> m)

Puts all the entries from m into this map.

V remove(Object k) Removes the entry whose key equals k.

int size() Returns the number of key/value pairs in the map.

Collection<V> values() Returns a collection containing the values in the map. This method
provides a collection-view of the values in the map.

TABLE 17-10 The Methods Defined by Map

https://hemanthrajhemu.github.io

466 P a r t I I : T h e J a v a L i b r a r y

The NavigableMap Interface
The NavigableMap interface was added by Java SE 6. It extends SortedMap and declares
the behavior of a map that supports the retrieval of entries based on the closest match to a
given key or keys. NavigableMap is a generic interface that has this declaration:

interface NavigableMap<K,V>

Here, K specifies the type of the keys, and V specifies the type of the values associated with
the keys. In addition to the methods that it inherits from SortedMap, NavigableMap adds
those summarized in Table 17-12. Several methods throw a ClassCastException when
an object is incompatible with the keys in the map. A NullPointerException is thrown
if an attempt is made to use a null object and null keys are not allowed in the set. An
IllegalArgumentException is thrown if an invalid argument is used.

Method Description

Comparator<? super K> comparator() Returns the invoking sorted map’s comparator. If natural
ordering is used for the invoking map, null is returned.

K firstKey() Returns the first key in the invoking map.

SortedMap<K, V> headMap(K end) Returns a sorted map for those map entries with keys that are
less than end.

K lastKey() Returns the last key in the invoking map.

SortedMap<K, V> subMap(K start, K end) Returns a map containing those entries with keys that are
greater than or equal to start and less than end.

SortedMap<K, V> tailMap(K start) Returns a map containing those entries with keys that are
greater than or equal to start.

TABLE 17-11 The Methods Defined by SortedMap

Method Description

Map.Entry<K,V> ceilingEntry(K obj) Searches the map for the smallest key k such that k >= obj. If such a key
is found, its entry is returned. Otherwise, null is returned.

K ceilingKey(K obj) Searches the map for the smallest key k such that k >= obj. If such a key
is found, it is returned. Otherwise, null is returned.

NavigableSet<K> descendingKeySet() Returns a NavigableSet that contains the keys in the invoking map in
reverse order. Thus, it returns a reverse set-view of the keys. The
resulting set is backed by the map.

NavigableMap<K,V> descendingMap() Returns a NavigableMap that is the reverse of the invoking map. The
resulting map is backed by the invoking map.

Map.Entry<K,V> firstEntry() Returns the first entry in the map. This is the entry with the least key.

Map.Entry<K,V> floorEntry(K obj) Searches the map for the largest key k such that k <= obj. If such a key
is found, its entry is returned. Otherwise, null is returned.

K floorKey(K obj) Searches the map for the largest key k such that k <= obj. If such a key
is found, it is returned. Otherwise, null is returned.

NavigableMap<K,V>
headMap(K upperBound, boolean incl)

Returns a NavigableMap that includes all entries from the invoking map
that have keys that are less than upperBound. If incl is true, then an
element equal to upperBound is included. The resulting map is backed by
the invoking map.

Map.Entry<K,V> higherEntry(K obj) Searches the set for the largest key k such that k > obj. If such a key is
found, its entry is returned. Otherwise, null is returned.

TABLE 17-12 The Methods defined by NavigableMap

https://hemanthrajhemu.github.io

The Map.Entry Interface
The Map.Entry interface enables you to work with a map entry. Recall that the entrySet()
method declared by the Map interface returns a Set containing the map entries. Each of these
set elements is a Map.Entry object. Map.Entry is generic and is declared like this:

interface Map.Entry<K, V>

Here, K specifies the type of keys, and V specifies the type of values. Table 17-13 summarizes
the methods declared by Map.Entry. Various exceptions are possible.

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 467

Method Description

boolean equals(Object obj) Returns true if obj is a Map.Entry whose key and value are equal to that of the
invoking object.

K getKey() Returns the key for this map entry.

V getValue() Returns the value for this map entry.

int hashCode() Returns the hash code for this map entry.

V setValue(V v) Sets the value for this map entry to v. A ClassCastException is thrown if v is not
the correct type for the map. An IllegalArgumentException is thrown if there is
a problem with v. A NullPointerException is thrown if v is null and the map does
not permit null keys. An UnsupportedOperationException is thrown if the map
cannot be changed.

TABLE 17-13 The Methods Defined by Map.Entry

Method Description

K higherKey(K obj) Searches the set for the largest key k such that k > obj. If such a key is
found, it is returned. Otherwise, null is returned.

Map.Entry<K,V> lastEntry() Returns the last entry in the map. This is the entry with the largest key.

Map.Entry<K,V> lowerEntry(K obj) Searches the set for the largest key k such that k < obj. If such a key is
found, its entry is returned. Otherwise, null is returned.

K lowerKey(K obj) Searches the set for the largest key k such that k < obj. If such a key is
found, it is returned. Otherwise, null is returned.

NavigableSet<K> navigableKeySet() Returns a NavigableSet that contains the keys in the invoking map. The
resulting set is backed by the invoking map.

Map.Entry<K,V> pollFirstEntry() Returns the first entry, removing the entry in the process. Because the
map is sorted, this is the entry with the least key value. null is returned if
the map is empty.

Map.Entry<K,V> pollLastEntry() Returns the last entry, removing the entry in the process. Because the
map is sorted, this is the entry with the greatest key value. null is
returned if the map is empty.

NavigableMap<K,V>
subMap(K lowerBound,

boolean lowIncl,
K upperBound
boolean highIncl)

Returns a NavigableMap that includes all entries from the invoking map
that have keys that are greater than lowerBound and less than
upperBound. If lowIncl is true, then an element equal to lowerBound is
included. If highIncl is true, then an element equal to highIncl is included.
The resulting map is backed by the invoking map.

NavigableMap<K,V>
tailMap(K lowerBound, boolean incl)

Returns a NavigableMap that includes all entries from the invoking map
that have keys that are greater than lowerBound. If incl is true, then an
element equal to lowerBound is included. The resulting map is backed by
the invoking map.

TABLE 17-12 The Methods defined by NavigableMap (continued)

https://hemanthrajhemu.github.io

468 P a r t I I : T h e J a v a L i b r a r y

The Map Classes
Several classes provide implementations of the map interfaces. The classes that can be used
for maps are summarized here:

Class Description

AbstractMap Implements most of the Map interface.

EnumMap Extends AbstractMap for use with enum keys.

HashMap Extends AbstractMap to use a hash table.

TreeMap Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap Extends HashMap to allow insertion-order iterations.

IdentityHashMap Extends AbstractMap and uses reference equality when comparing documents.

Notice that AbstractMap is a superclass for all concrete map implementations.
WeakHashMap implements a map that uses “weak keys,” which allows an element in

a map to be garbage-collected when its key is otherwise unused. This class is not discussed
further here. The other map classes are described next.

The HashMap Class
The HashMap class extends AbstractMap and implements the Map interface. It uses a hash
table to store the map. This allows the execution time of get() and put() to remain constant
even for large sets. HashMap is a generic class that has this declaration:

class HashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The following constructors are defined:

HashMap()
HashMap(Map<? extends K, ? extends V> m)
HashMap(int capacity)
HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by
using the elements of m. The third form initializes the capacity of the hash map to capacity. The
fourth form initializes both the capacity and fill ratio of the hash map by using its arguments.
The meaning of capacity and fill ratio is the same as for HashSet, described earlier. The
default capacity is 16. The default fill ratio is 0.75.

HashMap implements Map and extends AbstractMap. It does not add any methods of
its own.

You should note that a hash map does not guarantee the order of its elements. Therefore,
the order in which elements are added to a hash map is not necessarily the order in which
they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances. Notice
how a set-view is obtained and used.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 469

import java.util.*;

class HashMapDemo {
public static void main(String args[]) {

// Create a hash map.
HashMap<String, Double> hm = new HashMap<String, Double>();

// Put elements to the map
hm.put("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Tod Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries.
Set<Map.Entry<String, Double>> set = hm.entrySet();

// Display the set.
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}

System.out.println();

// Deposit 1000 into John Doe's account.
double balance = hm.get("John Doe");
hm.put("John Doe", balance + 1000);

System.out.println("John Doe's new balance: " +
hm.get("John Doe"));

}
}

Output from this program is shown here (the precise order may vary):

Ralph Smith: -19.08
Tom Smith: 123.22
John Doe: 3434.34
Tod Hall: 99.22
Jane Baker: 1378.0

John Doe’s new balance: 4434.34

The program begins by creating a hash map and then adds the mapping of names to
balances. Next, the contents of the map are displayed by using a set-view, obtained by calling
entrySet(). The keys and values are displayed by calling the getKey() and getValue() methods
that are defined by Map.Entry. Pay close attention to how the deposit is made into John Doe’s
account. The put() method automatically replaces any preexisting value that is associated
with the specified key with the new value. Thus, after John Doe’s account is updated, the
hash map will still contain just one “John Doe” account.

https://hemanthrajhemu.github.io

470 P a r t I I : T h e J a v a L i b r a r y

The TreeMap Class
The TreeMap class extends AbstractMap and implements the NavigableMap interface.
It creates maps stored in a tree structure. A TreeMap provides an efficient means of storing
key/value pairs in sorted order and allows rapid retrieval. You should note that, unlike a
hash map, a tree map guarantees that its elements will be sorted in ascending key order.
TreeMap is a generic class that has this declaration:

class TreeMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The following TreeMap constructors are defined:

TreeMap()
TreeMap(Comparator<? super K> comp)
TreeMap(Map<? extends K, ? extends V> m)
TreeMap(SortedMap<K, ? extends V> sm)

The first form constructs an empty tree map that will be sorted by using the natural order of
its keys. The second form constructs an empty tree-based map that will be sorted by using the
Comparator comp. (Comparators are discussed later in this chapter.) The third form initializes
a tree map with the entries from m, which will be sorted by using the natural order of the
keys. The fourth form initializes a tree map with the entries from sm, which will be sorted in
the same order as sm.

TreeMap has no methods beyond those specified by the NavigableMap interface and
the AbstractMap class.

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {
public static void main(String args[]) {

// Create a tree map.
TreeMap<String, Double> tm = new TreeMap<String, Double>();

// Put elements to the map.
tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Tod Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries.
Set<Map.Entry<String, Double>> set = tm.entrySet();

// Display the elements.
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 471

// Deposit 1000 into John Doe's account.
double balance = tm.get("John Doe");
tm.put("John Doe", balance + 1000);

System.out.println("John Doe's new balance: " +
tm.get("John Doe"));

}
}

The following is the output from this program:

Jane Baker: 1378.0
John Doe: 3434.34
Ralph Smith: -19.08
Todd Hall: 99.22
Tom Smith: 123.22

John Doe’s current balance: 4434.34

Notice that TreeMap sorts the keys. However, in this case, they are sorted by first name
instead of last name. You can alter this behavior by specifying a comparator when the map
is created, as described shortly.

The LinkedHashMap Class
LinkedHashMap extends HashMap. It maintains a linked list of the entries in the map, in the
order in which they were inserted. This allows insertion-order iteration over the map. That is,
when iterating through a collection-view of a LinkedHashMap, the elements will be returned
in the order in which they were inserted. You can also create a LinkedHashMap that returns
its elements in the order in which they were last accessed. LinkedHashMap is a generic class
that has this declaration:

class LinkedHashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
LinkedHashMap defines the following constructors:

LinkedHashMap()
LinkedHashMap(Map<? extends K, ? extends V> m)
LinkedHashMap(int capacity)
LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(int capacity, float fillRatio, boolean Order)

The first form constructs a default LinkedHashMap. The second form initializes the
LinkedHashMap with the elements from m. The third form initializes the capacity. The fourth
form initializes both capacity and fill ratio. The meaning of capacity and fill ratio are the same
as for HashMap. The default capactiy is 16. The default ratio is 0.75. The last form allows
you to specify whether the elements will be stored in the linked list by insertion order, or by
order of last access. If Order is true, then access order is used. If Order is false, then insertion
order is used.

https://hemanthrajhemu.github.io

472 P a r t I I : T h e J a v a L i b r a r y

LinkedHashMap adds only one method to those defined by HashMap. This method is
removeEldestEntry() and it is shown here:

protected boolean removeEldestEntry(Map.Entry<K, V> e)

This method is called by put() and putAll(). The oldest entry is passed in e. By default, this
method returns false and does nothing. However, if you override this method, then you can
have the LinkedHashMap remove the oldest entry in the map. To do this, have your override
return true. To keep the oldest entry, return false.

The IdentityHashMap Class
IdentityHashMap extends AbstractMap and implements the Map interface. It is similar to
HashMap except that it uses reference equality when comparing elements. IdentityHashMap
is a generic class that has this declaration:

class IdentityHashMap<K, V>

Here, K specifies the type of key, and V specifies the type of value. The API documentation
explicitly states that IdentityHashMap is not for general use.

The EnumMap Class
EnumMap extends AbstractMap and implements Map. It is specifically for use with keys of
an enum type. It is a generic class that has this declaration:

class EnumMap<K extends Enum<K>, V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must extend
Enum<K>, which enforces the requirement that the keys must be of an enum type.

EnumMap defines the following constructors:

EnumMap(Class<K> kType)
EnumMap(Map<K, ? extends V> m)
EnumMap(EnumMap<K, ? extends V> em)

The first constructor creates an empty EnumMap of type kType. The second creates an
EnumMap map that contains the same entries as m. The third creates an EnumMap initialized
with the values in em.

EnumMap defines no methods of its own.

Comparators
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator that
defines precisely what “sorted order” means. By default, these classes store their elements
by using what Java refers to as “natural ordering,” which is usually the ordering that you
would expect (A before B, 1 before 2, and so forth). If you want to order elements a different
way, then specify a Comparator when you construct the set or map. Doing so gives you the
ability to govern precisely how elements are stored within sorted collections and maps.

Comparator is a generic interface that has this declaration:

interface Comparator<T>

Here, T specifies the type of objects being compared.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 473

The Comparator interface defines two methods: compare() and equals(). The compare()
method, shown here, compares two elements for order:

int compare(T obj1, T obj2)

obj1 and obj2 are the objects to be compared. This method returns zero if the objects are equal.
It returns a positive value if obj1 is greater than obj2. Otherwise, a negative value is returned.
The method can throw a ClassCastException if the types of the objects are not compatible
for comparison. By overriding compare(), you can alter the way that objects are ordered. For
example, to sort in reverse order, you can create a comparator that reverses the outcome of
a comparison.

The equals() method, shown here, tests whether an object equals the invoking comparator:

boolean equals(Object obj)

Here, obj is the object to be tested for equality. The method returns true if obj and the invoking
object are both Comparator objects and use the same ordering. Otherwise, it returns false.
Overriding equals() is unnecessary, and most simple comparators will not do so.

Using a Comparator
The following is an example that demonstrates the power of a custom comparator. It
implements the compare() method for strings that operates in reverse of normal. Thus,
it causes a tree set to be stored in reverse order.

// Use a custom comparator.
import java.util.*;

// A reverse comparator for strings.
class MyComp implements Comparator<String> {
public int compare(String a, String b) {
String aStr, bStr;

aStr = a;
bStr = b;

// Reverse the comparison.
return bStr.compareTo(aStr);

}

// No need to override equals.
}

class CompDemo {
public static void main(String args[]) {
// Create a tree set.
TreeSet<String> ts = new TreeSet<String>(new MyComp());

// Add elements to the tree set.
ts.add("C");
ts.add("A");
ts.add("B");
ts.add("E");
ts.add("F");
ts.add("D");

https://hemanthrajhemu.github.io

474 P a r t I I : T h e J a v a L i b r a r y

// Display the elements.
for(String element : ts)
System.out.print(element + " ");

System.out.println();
}

}

As the following output shows, the tree is now stored in reverse order:

F E D C B A

Look closely at the MyComp class, which implements Comparator and overrides
compare(). (As explained earlier, overriding equals() is neither necessary nor common.)
Inside compare(), the String method compareTo() compares the two strings. However, bStr—
not aStr—invokes compareTo(). This causes the outcome of the comparison to be reversed.

For a more practical example, the following program is an updated version of the TreeMap
program shown earlier that stores account balances. In the previous version, the accounts
were sorted by name, but the sorting began with the first name. The following program sorts
the accounts by last name. To do so, it uses a comparator that compares the last name of each
account. This results in the map being sorted by last name.

// Use a comparator to sort accounts by last name.
import java.util.*;

// Compare last whole words in two strings.
class TComp implements Comparator<String> {
public int compare(String a, String b) {
int i, j, k;
String aStr, bStr;

aStr = a;
bStr = b;

// Find index of beginning of last name.
i = aStr.lastIndexOf(' ');
j = bStr.lastIndexOf(' ');

k = aStr.substring(i).compareTo(bStr.substring(j));
if(k==0) // last names match, check entire name
return aStr.compareTo(bStr);

else
return k;

}

// No need to override equals.
}

class TreeMapDemo2 {
public static void main(String args[]) {
// Create a tree map.
TreeMap<String, Double> tm = new TreeMap<String, Double>(new TComp());

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 475

// Put elements to the map.
tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Tod Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries.
Set<Map.Entry<String, Double>> set = tm.entrySet();

// Display the elements.
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();

// Deposit 1000 into John Doe's account.
double balance = tm.get("John Doe");
tm.put("John Doe", balance + 1000);

System.out.println("John Doe's new balance: " +
tm.get("John Doe"));

}
}

Here is the output; notice that the accounts are now sorted by last name:

Jane Baker: 1378.0
John Doe: 3434.34
Todd Hall: 99.22
Ralph Smith: -19.08
Tom Smith: 123.22

John Doe’s new balance: 4434.34

The comparator class TComp compares two strings that hold first and last names. It does
so by first comparing last names. To do this, it finds the index of the last space in each string
and then compares the substrings of each element that begin at that point. In cases where last
names are equivalent, the first names are then compared. This yields a tree map that is sorted
by last name, and within last name by first name. You can see this because Ralph Smith comes
before Tom Smith in the output.

The Collection Algorithms
The Collections Framework defines several algorithms that can be applied to collections and
maps. These algorithms are defined as static methods within the Collections class. They are
summarized in Table 17-14. As explained earlier, beginning with JDK 5 all of the algorithms
have been retrofitted for generics. Although the generic syntax might seem a bit intimidating
at first, the algorithms are as simple to use as they were before generics. It’s just that now,
they are type safe.

https://hemanthrajhemu.github.io

476 P a r t I I : T h e J a v a L i b r a r y

Method Description

static <T> boolean
addAll(Collection <? super T> c,

T ... elements)

Inserts the elements specified by elements into the
collection specified by c. Returns true if the
elements were added and false otherwise.

static <T> Queue<T> asLifoQueue(Deque<T> c) Returns a last-in, first-out view of c. (Added by Java
SE 6.)

static <T>
int binarySearch(List<? extends T> list,

T value,
Comparator<? super T> c)

Searches for value in list ordered according to c.
Returns the position of value in list, or a negative
value if value is not found.

static <T>
int binarySearch(List<? extends

Comparable<? super T>> list,
T value)

Searches for value in list. The list must be sorted.
Returns the position of value in list, or a negative
value if value is not found.

static <E> Collection<E>
checkedCollection(Collection<E> c,

Class<E> t)

Returns a run-time type-safe view of a collection.
An attempt to insert an incompatible element will
cause a ClassCastException.

static <E> List<E>
checkedList(List<E> c, Class<E> t)

Returns a run-time type-safe view of a List. An
attempt to insert an incompatible element will
cause a ClassCastException.

static <K, V> Map<K, V>
checkedMap(Map<K, V> c,

Class<K> keyT,
Class<V> valueT)

Returns a run-time type-safe view of a Map. An
attempt to insert an incompatible element will
cause a ClassCastException.

static <E> List<E>
checkedSet(Set<E> c, Class<E> t)

Returns a run-time type-safe view of a Set. An
attempt to insert an incompatible element will
cause a ClassCastException.

static <K, V> SortedMap<K, V>
checkedSortedMap(SortedMap<K, V> c,

Class<K> keyT,
Class<V> valueT)

Returns a run-time type-safe view of a SortedMap.
An attempt to insert an incompatible element will
cause a ClassCastException.

static <E> SortedSet<E>
checkedSortedSet(SortedSet<E> c, Class<E> t)

Returns a run-time type-safe view of a SortedSet.
An attempt to insert an incompatible element will
cause a ClassCastException.

static <T> void copy(List<? super T> list1,
List<? extends T> list2)

Copies the elements of list2 to list1.

static boolean disjoint(Collection<?> a,
Collection<?> b)

Compares the elements in a to elements in b.
Returns true if the two collections contain no
common elements (i.e., the collections contain
disjoint sets of elements). Otherwise, returns true.

static <T> List<T> emptyList() Returns an immutable, empty List object of the
inferred type.

static <K, V> Map<K, V> emptyMap() Returns an immutable, empty Map object of the
inferred type.

static <T> Set<T> emptySet() Returns an immutable, empty Set object of the
inferred type.

static <T> Enumeration<T>
enumeration(Collection<T> c)

Returns an enumeration over c. (See “The
Enumeration Interface,” later in this chapter.)

static <T> void fill(List<? super T> list, T obj) Assigns obj to each element of list.

TABLE 17-14 The Algorithms Defined by Collections

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 477

Method Description

static int frequency(Collection<?> c, Object obj) Counts the number of occurrences of obj in c and
returns the result.

static int indexOfSubList(List<?> list,
List<?> subList)

Searches list for the first occurrence of subList.
Returns the index of the first match, or –1 if no
match is found.

static int lastIndexOfSubList(List<?> list,
List<?> subList)

Searches list for the last occurrence of subList.
Returns the index of the last match, or –1 if no
match is found.

static <T>
ArrayList<T> list(Enumeration<T> enum)

Returns an ArrayList that contains the elements
of enum.

static <T> T max(Collection<? extends T> c,
Comparator<? super T> comp)

Returns the maximum element in c as determined
by comp.

static <T extends Object &
Comparable<? super T>>

T max(Collection<? extends T> c)

Returns the maximum element in c as determined
by natural ordering. The collection need not be
sorted.

static <T> T min(Collection<? extends T> c,
Comparator<? super T> comp)

Returns the minimum element in c as determined
by comp. The collection need not be sorted.

static <T extends Object &
Comparable<? superT>>

T min(Collection<? extends T> c)

Returns the minimum element in c as determined
by natural ordering.

static <T> List<T> nCopies(int num, T obj) Returns num copies of obj contained in an immutable
list. num must be greater than or equal to zero.

static <E> Set<E> newSetFromMap(Map<E, Boolean> m) Creates and returns a set backed by the map
specified by m, which must be empty at the time
this method is called. (Added by Java SE 6.)

static <T> boolean replaceAll(List<T> list,
T old, T new)

Replaces all occurrences of old with new in list.
Returns true if at least one replacement occurred.
Returns false, otherwise.

static void reverse(List<T> list) Reverses the sequence in list.

static <T> Comparator<T>
reverseOrder(Comparator<T> comp)

Returns a reverse comparator based on the one
passed in comp. That is, the returned comparator
reverses the outcome of a comparison that uses
comp.

static <T> Comparator<T> reverseOrder() Returns a reverse comparator, which is a
comparator that reverses the outcome of a
comparison between two elements.

static void rotate(List<T> list, int n) Rotates list by n places to the right. To rotate left,
use a negative value for n.

static void shuffle(List<T> list, Random r) Shuffles (i.e., randomizes) the elements in list by
using r as a source of random numbers.

static void shuffle(List<T> list) Shuffles (i.e., randomizes) the elements in list.

static <T> Set<T> singleton(T obj) Returns obj as an immutable set. This is an easy
way to convert a single object into a set.

static <T> List<T> singletonList(T obj) Returns obj as an immutable list. This is an easy
way to convert a single object into a list.

static <K, V> Map<K, V>
singletonMap(K k, V v)

Returns the key/value pair k/v as an immutable
map. This is an easy way to convert a single key/
value pair into a map.

TABLE 17-14 The Algorithms Defined by Collections (continued)

https://hemanthrajhemu.github.io

478 P a r t I I : T h e J a v a L i b r a r y

Several of the methods can throw a ClassCastException, which occurs when an attempt
is made to compare incompatible types, or an UnsupportedOperationException, which occurs
when an attempt is made to modify an unmodifiable collection. Other exceptions are
possible, depending on the method.

One thing to pay special attention to is the set of checked methods, such as
checkedCollection(), which returns what the API documentation refers to as a “dynamically
typesafe view” of a collection. This view is a reference to the collection that monitors insertions
into the collection for type compatibility at run time. An attempt to insert an incompatible
element will cause a ClassCastException. Using such a view is especially helpful during
debugging because it ensures that the collection always contains valid elements. Related
methods include checkedSet(), checkedList(), checkedMap(), and so on. They obtain a
type-safe view for the indicated collection.

Method Description

static <T>
void sort(List<T> list,

Comparator<? super T> comp)

Sorts the elements of list as determined by comp.

static <T extends Comparable<? super T>>
void sort(List<T> list)

Sorts the elements of list as determined by their
natural ordering.

static void swap(List<?> list,
int idx1, int idx2)

Exchanges the elements in list at the indices
specified by idx1 and idx2.

static <T> Collection<T>
synchronizedCollection(Collection<T> c)

Returns a thread-safe collection backed by c.

static <T> List<T> synchronizedList(List<T> list) Returns a thread-safe list backed by list.

static <K, V> Map<K, V>
synchronizedMap(Map<K, V> m)

Returns a thread-safe map backed by m.

static <T> Set<T> synchronizedSet(Set<T> s) Returns a thread-safe set backed by s.

static <K, V> SortedMap<K, V>
synchronizedSortedMap(SortedMap<K, V> sm)

Returns a thread-safe sorted map backed by sm.

static <T> SortedSet<T>
synchronizedSortedSet(SortedSet<T> ss)

Returns a thread-safe set backed by ss.

static <T> Collection<T>
unmodifiableCollection(

Collection<? extends T> c)

Returns an unmodifiable collection backed by c.

static <T> List<T>
unmodifiableList(List<? extends T> list)

Returns an unmodifiable list backed by list.

static <K, V> Map<K, V>
unmodifiableMap(Map<? extends K,

? extends V> m)

Returns an unmodifiable map backed by m.

static <T> Set<T>
unmodifiableSet(Set<? extends T> s)

Returns an unmodifiable set backed by s.

static <K, V> SortedMap<K, V>
unmodifiableSortedMap(SortedMap<K,

? extends V> sm)

Returns an unmodifiable sorted map backed
by sm.

static <T> SortedSet<T>
unmodifiableSortedSet(SortedSet<T> ss)

Returns an unmodifiable sorted set backed by ss.

TABLE 17-14 The Algorithms Defined by Collections (continued)

https://hemanthrajhemu.github.io

Notice that several methods, such as synchronizedList() and synchronizedSet(), are used
to obtain synchronized (thread-safe) copies of the various collections. As explained, none of
the standard collections implementations are synchronized. You must use the synchronization
algorithms to provide synchronization. One other point: iterators to synchronized collections
must be used within synchronized blocks.

The set of methods that begins with unmodifiable returns views of the various collections
that cannot be modified. These will be useful when you want to grant some process read—
but not write—capabilities on a collection.

Collections defines three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP.
All are immutable.

The following program demonstrates some of the algorithms. It creates and initializes a
linked list. The reverseOrder() method returns a Comparator that reverses the comparison of
Integer objects. The list elements are sorted according to this comparator and then are displayed.
Next, the list is randomized by calling shuffle(), and then its minimum and maximum values
are displayed.

// Demonstrate various algorithms.
import java.util.*;

class AlgorithmsDemo {
public static void main(String args[]) {

// Create and initialize linked list.
LinkedList<Integer> ll = new LinkedList<Integer>();
ll.add(-8);
ll.add(20);
ll.add(-20);
ll.add(8);

// Create a reverse order comparator.
Comparator<Integer> r = Collections.reverseOrder();

// Sort list by using the comparator.
Collections.sort(ll, r);

System.out.print("List sorted in reverse: ");
for(int i : ll)
System.out.print(i+ " ");

System.out.println();

// Shuffle list.
Collections.shuffle(ll);

// Display randomized list.
System.out.print("List shuffled: ");
for(int i : ll)
System.out.print(i + " ");

System.out.println();

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 479

https://hemanthrajhemu.github.io

480 P a r t I I : T h e J a v a L i b r a r y

System.out.println("Minimum: " + Collections.min(ll));
System.out.println("Maximum: " + Collections.max(ll));

}
}

Output from this program is shown here:

List sorted in reverse: 20 8 -8 -20
List shuffled: 20 -20 8 -8
Minimum: -20
Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither requires
a sorted list for its operation.

Arrays
The Arrays class provides various methods that are useful when working with arrays. These
methods help bridge the gap between collections and arrays. Each method defined by
Arrays is examined in this section.

The asList() method returns a List that is backed by a specified array. In other words,
both the list and the array refer to the same location. It has the following signature:

static <T> List asList(T ... array)

Here, array is the array that contains the data.
The binarySearch() method uses a binary search to find a specified value. This method

must be applied to sorted arrays. Here are some of its forms. (Java SE 6 adds several others.)

static int binarySearch(byte array[], byte value)
static int binarySearch(char array[], char value)
static int binarySearch(double array[], double value)
static int binarySearch(float array[], float value)
static int binarySearch(int array[], int value)
static int binarySearch(long array[], long value)
static int binarySearch(short array[], short value)
static int binarySearch(Object array[], Object value)
static <T> int binarySearch(T[] array, T value, Comparator<? super T> c)

Here, array is the array to be searched, and value is the value to be located. The last two forms
throw a ClassCastException if array contains elements that cannot be compared (for example,
Double and StringBuffer) or if value is not compatible with the types in array. In the last form,
the Comparator c is used to determine the order of the elements in array. In all cases, if value
exists in array, the index of the element is returned. Otherwise, a negative value is returned.

The copyOf() method was added by Java SE 6. It returns a copy of an array and has the
following forms:

static boolean[] copyOf(boolean[] source, int len)
static byte[] copyOf(byte[] source, int len)
static char[] copyOf(char[] source, int len)
static double[] copyOf(double[] source, int len)
static float[] copyOf(float[] source, int len)

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 481

static int[] copyOf(int[] source, int len)
static long[] copyOf(long[] source, int len)
static short[] copyOf(short[] source, int len)
static <T> T[] copyOf(T[] source, int len)
static <T,U> T[] copyOf(U[] source, int len, Class<? extends T[]> resultT)

The original array is specified by source, and the length of the copy is specified by len. If the
copy is longer than source, then the copy is padded with zeros (for numeric arrays), nulls
(for object arrays), or false (for boolean arrays). If the copy is shorter than source, then the
copy is truncated. In the last form, the type of resultT becomes the type of the array
returned. If len is negative, a NegativeArraySizeException is thrown. If source is null,
a NullPointerException is thrown. If resultT is incompatible with the type of source, an
ArrayStoreException is thrown.

The copyOfRange() method was also added by Java SE 6. It returns a copy of a range
within an array and has the following forms:

static boolean[] copyOfRange(boolean[] source, int start, int end)
static byte[] copyOfRange(byte[] source, int start, int end)
static char[] copyOfRange(char[] source, int start, int end)
static double[] copyOfRange(double[] source, int start, int end)
static float[] copyOfRange(float[] source, int start, int end)
static int[] copyOfRange(int[] source, int start, int end)
static long[] copyOfRange(long[] source, int start, int end)
static short[] copyOfRange(short[] source, int start, int end)
static <T> T[] copyOfRange(T[] source, int start, int end)
static <T,U> T[] copyOfRange(U[] source, int start, int end,

Class<? extends T[]> resultT)

The original array is specified by source. The range to copy is specified by the indices
passed via start and end. The range runs from start to end –1. If the range is longer than source,
then the copy is padded with zeros (for numeric arrays), nulls (for object arrays), or false (for
boolean arrays). In the last form, the type of resultT becomes the type of the array returned. If
start is negative or greater than the length of source, an ArrayIndexOutOfBoundsException is
thrown. If start is greater than end, an IllegalArgumentException is thrown. If source is null, a
NullPointerException is thrown. If resultT is incompatible with the type of source, an
ArrayStoreException is thrown.

The equals() method returns true if two arrays are equivalent. Otherwise, it returns false.
The equals() method has the following forms:

static boolean equals(boolean array1[], boolean array2[])
static boolean equals(byte array1[], byte array2[])
static boolean equals(char array1[], char array2[])
static boolean equals(double array1[], double array2[])
static boolean equals(float array1[], float array2[])
static boolean equals(int array1[], int array2[])
static boolean equals(long array1[], long array2[])
static boolean equals(short array1[], short array2[])
static boolean equals(Object array1[], Object array2[])

Here, array1 and array2 are the two arrays that are compared for equality.

https://hemanthrajhemu.github.io

482 P a r t I I : T h e J a v a L i b r a r y

The deepEquals() method can be used to determine if two arrays, which might contain
nested arrays, are equal. It has this declaration:

static boolean deepEquals(Object[] a, Object[] b)

It returns true if the arrays passed in a and b contain the same elements. If a and b contain
nested arrays, then the contents of those nested arrays are also checked. It returns false if
the arrays, or any nested arrays, differ.

The fill() method assigns a value to all elements in an array. In other words, it fills an
array with a specified value. The fill() method has two versions. The first version, which
has the following forms, fills an entire array:

static void fill(boolean array[], boolean value)
static void fill(byte array[], byte value)
static void fill(char array[], char value)
static void fill(double array[], double value)
static void fill(float array[], float value)
static void fill(int array[], int value)
static void fill(long array[], long value)
static void fill(short array[], short value)
static void fill(Object array[], Object value)

Here, value is assigned to all elements in array.
The second version of the fill() method assigns a value to a subset of an array. Its forms

are shown here:

static void fill(boolean array[], int start, int end, boolean value)
static void fill(byte array[], int start, int end, byte value)
static void fill(char array[], int start, int end, char value)
static void fill(double array[], int start, int end, double value)
static void fill(float array[], int start, int end, float value)
static void fill(int array[], int start, int end, int value)
static void fill(long array[], int start, int end, long value)
static void fill(short array[], int start, int end, short value)
static void fill(Object array[], int start, int end, Object value)

Here, value is assigned to the elements in array from position start to position end–1. These
methods may all throw an IllegalArgumentException if start is greater than end, or an
ArrayIndexOutOfBoundsException if start or end is out of bounds.

The sort() method sorts an array so that it is arranged in ascending order. The sort()
method has two versions. The first version, shown here, sorts the entire array:

static void sort(byte array[])
static void sort(char array[])
static void sort(double array[])
static void sort(float array[])
static void sort(int array[])
static void sort(long array[])
static void sort(short array[])
static void sort(Object array[])
static <T> void sort(T array[], Comparator<? super T> c)

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 483

Here, array is the array to be sorted. In the last form, c is a Comparator that is used to order
the elements of array. The last two forms can throw a ClassCastException if elements of the
array being sorted are not comparable.

The second version of sort() enables you to specify a range within an array that you want
to sort. Its forms are shown here:

static void sort(byte array[], int start, int end)
static void sort(char array[], int start, int end)
static void sort(double array[], int start, int end)
static void sort(float array[], int start, int end)
static void sort(int array[], int start, int end)
static void sort(long array[], int start, int end)
static void sort(short array[], int start, int end)
static void sort(Object array[], int start, int end)
static <T> void sort(T array[], int start, int end, Comparator<? super T> c)

Here, the range beginning at start and running through end–1 within array will be sorted.
In the last form, c is a Comparator that is used to order the elements of array. All of these
methods can throw an IllegalArgumentException if start is greater than end, or an
ArrayIndexOutOfBoundsException if start or end is out of bounds. The last two forms can
also throw a ClassCastException if elements of the array being sorted are not comparable.

Arrays also overrides toString() and hashCode() for the various types of arrays. In
addition, deepToString() and deepHashCode() are provided, which operate effectively on
arrays that contain nested arrays.

The following program illustrates how to use some of the methods of the Arrays class:

// Demonstrate Arrays
import java.util.*;

class ArraysDemo {
public static void main(String args[]) {

// Allocate and initialize array.
int array[] = new int[10];
for(int i = 0; i < 10; i++)
array[i] = -3 * i;

// Display, sort, and display the array.
System.out.print("Original contents: ");
display(array);
Arrays.sort(array);
System.out.print("Sorted: ");
display(array);

// Fill and display the array.
Arrays.fill(array, 2, 6, -1);
System.out.print("After fill(): ");
display(array);

// Sort and display the array.
Arrays.sort(array);
System.out.print("After sorting again: ");
display(array);

https://hemanthrajhemu.github.io

484 P a r t I I : T h e J a v a L i b r a r y

// Binary search for -9.
System.out.print("The value -9 is at location ");
int index =
Arrays.binarySearch(array, -9);

System.out.println(index);
}

static void display(int array[]) {
for(int i: array)
System.out.print(i + " ");

System.out.println();
}

}

The following is the output from this program:

Original contents: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27
Sorted: -27 -24 -21 -18 -15 -12 -9 -6 -3 0
After fill(): -27 -24 -1 -1 -1 -1 -9 -6 -3 0
After sorting again: -27 -24 -9 -6 -3 -1 -1 -1 -1 0
The value -9 is at location 2

Why Generic Collections?
As mentioned at the start of this chapter, the entire Collections Framework was refitted for
generics when JDK 5 was released. Furthermore, the Collections Framework is arguably
the single most important use of generics in the Java API. The reason for this is that generics
add type safety to the Collections Framework. Before moving on, it is worth taking some
time to examine in detail the significance of this improvement.

Let’s begin with an example that uses pre-generics code. The following program stores
a list of strings in an ArrayList and then displays the contents of the list:

// Pre-generics example that uses a collection.
import java.util.*;

class OldStyle {
public static void main(String args[]) {
ArrayList list = new ArrayList();

// These lines store strings, but any type of object
// can be stored. In old-style code, there is no
// convenient way to restrict the type of objects stored
// in a collection
list.add("one");
list.add("two");
list.add("three");
list.add("four");

Iterator itr = list.iterator();
while(itr.hasNext()) {

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 485

// To retrieve an element, an explicit type cast is needed
// because the collection stores only Object.
String str = (String) itr.next(); // explicit cast needed here.

System.out.println(str + " is " + str.length() + " chars long.");
}

}
}

Prior to generics, all collections stored references of type Object. This allowed any type
of reference to be stored in the collection. The preceding program uses this feature to store
references to objects of type String in list, but any type of reference could have been stored.

Unfortunately, the fact that a pre-generics collection stored Object references could easily
lead to errors. First, it required that you, rather than the compiler, ensure that only objects of
the proper type be stored in a specific collection. For example, in the preceding example, list
is clearly intended to store Strings, but there is nothing that actually prevents another type
of reference from being added to the collection. For example, the compiler will find nothing
wrong with this line of code:

list.add(new Integer(100));

Because list stores Object references, it can store a reference to Integer as well as it can
store a reference to String. However, if you intended list to hold only strings, then the preceding
statement would corrupt the collection. Again, the compiler had no way to know that the
preceding statement is invalid.

The second problem with pre-generics collections is that when you retrieve a reference
from the collection, you must manually cast that reference into the proper type. This is why
the preceding program casts the reference returned by next() into String. Prior to generics,
collections simply stored Object references. Thus, the cast was necessary when retrieving
objects from a collection.

Aside from the inconvenience of always having to cast a retrieved reference into
its proper type, this lack of type safety often led to a rather serious, but surprisingly
easy-to-create, error. Because Object can be cast into any type of object, it was possible to
cast a reference obtained from a collection into the wrong type. For example, if the following
statement were added to the preceding example, it would still compile without error, but
generate a run-time exception when executed:

Integer i = (Integer) itr.next();

Recall that the preceding example stored only references to instances of type String in list.
Thus, when this statement attempts to cast a String into an Integer, an invalid cast exception
results! Because this happens at run time, this is a very serious error.

The addition of generics fundamentally improves the usability and safety of collections
because it

• Ensures that only references to objects of the proper type can actually be stored in
a collection. Thus, a collection will always contain references of a known type.

• Eliminates the need to cast a reference retrieved from a collection. Instead, a reference
retrieved from a collection is automatically cast into the proper type. This prevents
run-time errors due to invalid casts and avoids an entire category of errors.

https://hemanthrajhemu.github.io

486 P a r t I I : T h e J a v a L i b r a r y

These two improvements are made possible because each collection class has been given
a type parameter that specifies the type of the collection. For example, ArrayList is now
declared like this:

class ArrayList<E>

Here, E is the type of element stored in the collection. Therefore, the following declares an
ArrayList for objects of type String:

ArrayList<String> list = new ArrayList<String>();

Now, only references of type String can be added to list.
The Iterator and ListIterator interfaces are now also generic. This means that the type

parameter must agree with the type of the collection for which the iterator is obtained.
Furthermore, this type compatibility is enforced at compile time.

The following program shows the modern, generic form of the preceding program:

// Modern, generics version.
import java.util.*;

class NewStyle {
public static void main(String args[]) {

// Now, list holds references of type String.
ArrayList<String> list = new ArrayList<String>();

list.add("one");
list.add("two");
list.add("three");
list.add("four");

// Notice that Iterator is also generic.
Iterator<String> itr = list.iterator();

// The following statement will now cause a compile-time error.
// Iterator<Integer> itr = list.iterator(); // Error!

while(itr.hasNext()) {
String str = itr.next(); // no cast needed

// Now, the following line is a compile-time,
// rather than run-time, error.

// Integer i = itr.next(); // this won't compile

System.out.println(str + " is " + str.length() + " chars long.");
}

}
}

Now, list can hold only references to objects of type String. Furthermore, as the following
line shows, there is no need to cast the return value of next() into String:

String str = itr.next(); // no cast needed

The cast is performed automatically.

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 487

Because of support for raw types, it is not necessary to immediately update older
collection code. However, all new code should use generics, and you should update older
code as soon as time permits. The addition of generics to the Collections Framework is a
fundamental improvement that should be utilized wherever possible.

The Legacy Classes and Interfaces
As explained at the start of this chapter, early versions of java.util did not include the
Collections Framework. Instead, it defined several classes and an interface that provided an
ad hoc method of storing objects. When collections were added (by J2SE 1.2), several of the
original classes were reengineered to support the collection interfaces. Thus, they are fully
compatible with the framework. While no classes have actually been deprecated, one has been
rendered obsolete. Of course, where a collection duplicates the functionality of a legacy class,
you will usually want to use the collection for new code. In general, the legacy classes are
supported because there is still code that uses them.

One other point: none of the collection classes are synchronized, but all the legacy classes
are synchronized. This distinction may be important in some situations. Of course, you can
easily synchronize collections, too, by using one of the algorithms provided by Collections.

The legacy classes defined by java.util are shown here:

Dictionary Hashtable Properties Stack Vector

There is one legacy interface called Enumeration. The following sections examine Enumeration
and each of the legacy classes, in turn.

The Enumeration Interface
The Enumeration interface defines the methods by which you can enumerate (obtain one at
a time) the elements in a collection of objects. This legacy interface has been superseded by
Iterator. Although not deprecated, Enumeration is considered obsolete for new code. However,
it is used by several methods defined by the legacy classes (such as Vector and Properties),
is used by several other API classes, and is currently in widespread use in application code.
Because it is still in use, it was retrofitted for generics by JDK 5. It has this declaration:

interface Enumeration<E>

where E specifies the type of element being enumerated.
Enumeration specifies the following two methods:

boolean hasMoreElements()
E nextElement()

When implemented, hasMoreElements() must return true while there are still more elements
to extract, and false when all the elements have been enumerated. nextElement() returns the
next object in the enumeration. That is, each call to nextElement() obtains the next object in
the enumeration. It throws NoSuchElementException when the enumeration is complete.

Vector
Vector implements a dynamic array. It is similar to ArrayList, but with two differences: Vector
is synchronized, and it contains many legacy methods that are not part of the Collections

https://hemanthrajhemu.github.io

488 P a r t I I : T h e J a v a L i b r a r y

Framework. With the advent of collections, Vector was reengineered to extend AbstractList and
to implement the List interface. With the release of JDK 5, it was retrofitted for generics and
reengineered to implement Iterable. This means that Vector is fully compatible with collections,
and a Vector can have its contents iterated by the enhanced for loop.

Vector is declared like this:

class Vector<E>

Here, E specifies the type of element that will be stored.
Here are the Vector constructors:

Vector()
Vector(int size)
Vector(int size, int incr)
Vector(Collection<? extends E> c)

The first form creates a default vector, which has an initial size of 10. The second form creates
a vector whose initial capacity is specified by size. The third form creates a vector whose
initial capacity is specified by size and whose increment is specified by incr. The increment
specifies the number of elements to allocate each time that a vector is resized upward. The
fourth form creates a vector that contains the elements of collection c.

All vectors start with an initial capacity. After this initial capacity is reached, the next
time that you attempt to store an object in the vector, the vector automatically allocates
space for that object plus extra room for additional objects. By allocating more than just the
required memory, the vector reduces the number of allocations that must take place. This
reduction is important, because allocations are costly in terms of time. The amount of extra
space allocated during each reallocation is determined by the increment that you specify
when you create the vector. If you don’t specify an increment, the vector’s size is doubled
by each allocation cycle.

Vector defines these protected data members:

int capacityIncrement;
int elementCount;
Object[] elementData;

The increment value is stored in capacityIncrement. The number of elements currently in the
vector is stored in elementCount. The array that holds the vector is stored in elementData.

In addition to the collections methods defined by List, Vector defines several legacy
methods, which are summarized in Table 17-15.

Because Vector implements List, you can use a vector just like you use an ArrayList
instance. You can also manipulate one using its legacy methods. For example, after you
instantiate a Vector, you can add an element to it by calling addElement(). To obtain the
element at a specific location, call elementAt(). To obtain the first element in the vector, call
firstElement(). To retrieve the last element, call lastElement(). You can obtain the index of an
element by using indexOf() and lastIndexOf(). To remove an element, call removeElement()
or removeElementAt().

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 489

The following program uses a vector to store various types of numeric objects. It
demonstrates several of the legacy methods defined by Vector. It also demonstrates the
Enumeration interface.

// Demonstrate various Vector operations.
import java.util.*;

class VectorDemo {
public static void main(String args[]) {

// initial size is 3, increment is 2

Method Description

void addElement(E element) The object specified by element is added to the vector.

int capacity() Returns the capacity of the vector.

Object clone() Returns a duplicate of the invoking vector.

boolean contains(Object element) Returns true if element is contained by the vector, and returns false if it is not.

void copyInto(Object array[]) The elements contained in the invoking vector are copied into the array
specified by array.

E elementAt(int index) Returns the element at the location specified by index.

Enumeration<E> elements() Returns an enumeration of the elements in the vector.

void ensureCapacity(int size) Sets the minimum capacity of the vector to size.

E firstElement() Returns the first element in the vector.

int indexOf(Object element) Returns the index of the first occurrence of element. If the object is not in the
vector, –1 is returned.

int indexOf(Object element, int start) Returns the index of the first occurrence of element at or after start. If the object
is not in that portion of the vector, –1 is returned.

void insertElementAt(E element,
int index)

Adds element to the vector at the location specified by index.

boolean isEmpty() Returns true if the vector is empty, and returns false if it contains one or more
elements.

E lastElement() Returns the last element in the vector.

int lastIndexOf(Object element) Returns the index of the last occurrence of element. If the object is not in the
vector, –1 is returned.

int lastIndexOf(Object element,
int start)

Returns the index of the last occurrence of element before start. If the object
is not in that portion of the vector, –1 is returned.

void removeAllElements() Empties the vector. After this method executes, the size of the vector is zero.

boolean removeElement(Object element) Removes element from the vector. If more than one instance of the specified
object exists in the vector, then it is the first one that is removed. Returns
true if successful and false if the object is not found.

void removeElementAt(int index) Removes the element at the location specified by index.

void setElementAt(E element,
int index)

The location specified by index is assigned element.

void setSize(int size) Sets the number of elements in the vector to size. If the new size is less than
the old size, elements are lost. If the new size is larger than the old size, null
elements are added.

int size() Returns the number of elements currently in the vector.

String toString() Returns the string equivalent of the vector.

void trimToSize() Sets the vector’s capacity equal to the number of elements that
it currently holds.

TABLE 17-15 The Legacy Methods Defined by Vector

https://hemanthrajhemu.github.io

490 P a r t I I : T h e J a v a L i b r a r y

Vector<Integer> v = new Vector<Integer>(3, 2);

System.out.println("Initial size: " + v.size());
System.out.println("Initial capacity: " +

v.capacity());

v.addElement(1);
v.addElement(2);
v.addElement(3);
v.addElement(4);

System.out.println("Capacity after four additions: " +
v.capacity());

v.addElement(5);
System.out.println("Current capacity: " +

v.capacity());
v.addElement(6);
v.addElement(7);

System.out.println("Current capacity: " +
v.capacity());

v.addElement(9);
v.addElement(10);

System.out.println("Current capacity: " +
v.capacity());

v.addElement(11);
v.addElement(12);

System.out.println("First element: " + v.firstElement());
System.out.println("Last element: " + v.lastElement());

if(v.contains(3))
System.out.println("Vector contains 3.");

// Enumerate the elements in the vector.
Enumeration vEnum = v.elements();

System.out.println("\nElements in vector:");
while(vEnum.hasMoreElements())
System.out.print(vEnum.nextElement() + " ");

System.out.println();
}

}

The output from this program is shown here:

Initial size: 0
Initial capacity: 3
Capacity after four additions: 5
Current capacity: 5
Current capacity: 7
Current capacity: 9

https://hemanthrajhemu.github.io

First element: 1
Last element: 12
Vector contains 3.

Elements in vector:
1 2 3 4 5 6 7 9 10 11 12

Instead of relying on an enumeration to cycle through the objects (as the preceding
program does), you can use an iterator. For example, the following iterator-based code can
be substituted into the program:

// Use an iterator to display contents.
Iterator<Integer> vItr = v.iterator();

System.out.println("\nElements in vector:");
while(vItr.hasNext())
System.out.print(vItr.next() + " ");

System.out.println();

You can also use a for-each for loop to cycle through a Vector, as the following version
of the preceding code shows:

// Use an enhanced for loop to display contents.
System.out.println("\nElements in vector:");
for(int i : v)
System.out.print(i + " ");

System.out.println();

Because the Enumeration interface is not recommended for new code, you will usually use
an iterator or a for-each for loop to enumerate the contents of a vector. Of course, much
legacy code exists that employs Enumeration. Fortunately, enumerations and iterators
work in nearly the same manner.

Stack
Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack only
defines the default constructor, which creates an empty stack. With the release of JDK 5, Stack
was retrofitted for generics and is declared as shown here:

class Stack<E>

Here, E specifies the type of element stored in the stack.
Stack includes all the methods defined by Vector and adds several of its own, shown in

Table 17-16.
To put an object on the top of the stack, call push(). To remove and return the top element,

call pop(). An EmptyStackException is thrown if you call pop() when the invoking stack is
empty. You can use peek() to return, but not remove, the top object. The empty() method
returns true if nothing is on the stack. The search() method determines whether an object
exists on the stack and returns the number of pops that are required to bring it to the top of

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 491

https://hemanthrajhemu.github.io

492 P a r t I I : T h e J a v a L i b r a r y

the stack. Here is an example that creates a stack, pushes several Integer objects onto it, and
then pops them off again:

// Demonstrate the Stack class.
import java.util.*;

class StackDemo {
static void showpush(Stack<Integer> st, int a) {
st.push(a);
System.out.println("push(" + a + ")");
System.out.println("stack: " + st);

}

static void showpop(Stack<Integer> st) {
System.out.print("pop -> ");
Integer a = st.pop();
System.out.println(a);
System.out.println("stack: " + st);

}

public static void main(String args[]) {
Stack<Integer> st = new Stack<Integer>();

System.out.println("stack: " + st);
showpush(st, 42);
showpush(st, 66);
showpush(st, 99);
showpop(st);
showpop(st);
showpop(st);

try {
showpop(st);

} catch (EmptyStackException e) {
System.out.println("empty stack");

}
}

}

Method Description

boolean empty() Returns true if the stack is empty, and returns false if the stack
contains elements.

E peek() Returns the element on the top of the stack, but does not remove it.

E pop() Returns the element on the top of the stack, removing it in the
process.

E push(E element) Pushes element onto the stack. element is also returned.

int search(Object element) Searches for element in the stack. If found, its offset from the top
of the stack is returned. Otherwise, –1 is returned.

TABLE 17-16 The Methods Defined by Stack

https://hemanthrajhemu.github.io

The following is the output produced by the program; notice how the exception handler for
EmptyStackException is caught so that you can gracefully handle a stack underflow:

stack: []
push(42)
stack: [42]
push(66)
stack: [42, 66]
push(99)
stack: [42, 66, 99]
pop -> 99
stack: [42, 66]
pop -> 66
stack: [42]
pop -> 42
stack: []
pop -> empty stack

One other point: Although Stack is not deprecated, with the release of Java SE 6,
ArrayDeque is a better choice.

Dictionary
Dictionary is an abstract class that represents a key/value storage repository and operates
much like Map. Given a key and value, you can store the value in a Dictionary object. Once
the value is stored, you can retrieve it by using its key. Thus, like a map, a dictionary can be
thought of as a list of key/value pairs. Although not currently deprecated, Dictionary is
classified as obsolete, because it is fully superseded by Map. However, Dictionary is still in
use and thus is fully discussed here.

With the advent of JDK 5, Dictionary was made generic. It is declared as shown here:

class Dictionary<K, V>

Here, K specifies the type of keys, and V specifies the type of values. The abstract methods
defined by Dictionary are listed in Table 17-17.

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 493

Method Purpose

Enumeration<V> elements() Returns an enumeration of the values contained in the dictionary.

V get(Object key) Returns the object that contains the value associated with key. If
key is not in the dictionary, a null object is returned.

boolean isEmpty() Returns true if the dictionary is empty, and returns false if it
contains at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the dictionary.

V put(K key, V value) Inserts a key and its value into the dictionary. Returns null if key
is not already in the dictionary; returns the previous value
associated with key if key is already in the dictionary.

V remove(Object key) Removes key and its value. Returns the value associated with
key. If key is not in the dictionary, a null is returned.

int size() Returns the number of entries in the dictionary.

TABLE 17-17 The Abstract Methods Defined by Dictionary

https://hemanthrajhemu.github.io

To add a key and a value, use the put() method. Use get() to retrieve the value of a given
key. The keys and values can each be returned as an Enumeration by the keys() and elements()
methods, respectively. The size() method returns the number of key/value pairs stored in a
dictionary, and isEmpty() returns true when the dictionary is empty. You can use the remove()
method to delete a key/value pair.

REMEMBEREMEMBER The Dictionary class is obsolete. You should implement the Map interface to obtain
key/value storage functionality.

Hashtable
Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.
However, with the advent of collections, Hashtable was reengineered to also implement the
Map interface. Thus, Hashtable is now integrated into the Collections Framework. It is similar
to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. However, neither keys
nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting
hash code is used as the index at which the value is stored within the table.

Hashtable was made generic by JDK 5. It is declared like this:

class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
A hash table can only store objects that override the hashCode() and equals() methods

that are defined by Object. The hashCode() method must compute and return the hash code
for the object. Of course, equals() compares two objects. Fortunately, many of Java’s built-in
classes already implement the hashCode() method. For example, the most common type of
Hashtable uses a String object as the key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:

Hashtable()
Hashtable(int size)
Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

The first version is the default constructor. The second version creates a hash table that has
an initial size specified by size. (The default size is 11.) The third version creates a hash table that
has an initial size specified by size and a fill ratio specified by fillRatio. This ratio must be
between 0.0 and 1.0, and it determines how full the hash table can be before it is resized
upward. Specifically, when the number of elements is greater than the capacity of the hash
table multiplied by its fill ratio, the hash table is expanded. If you do not specify a fill ratio,
then 0.75 is used. Finally, the fourth version creates a hash table that is initialized with the
elements in m. The capacity of the hash table is set to twice the number of elements in m.
The default load factor of 0.75 is used.

In addition to the methods defined by the Map interface, which Hashtable now
implements, Hashtable defines the legacy methods listed in Table 17-18. Several methods
throw NullPointerException if an attempt is made to use a null key or value.

494 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 495

The following example reworks the bank account program, shown earlier, so that it uses
a Hashtable to store the names of bank depositors and their current balances:

// Demonstrate a Hashtable.
import java.util.*;

class HTDemo {
public static void main(String args[]) {
Hashtable<String, Double> balance =
new Hashtable<String, Double>();

Enumeration<String> names;
String str;
double bal;

balance.put("John Doe", 3434.34);
balance.put("Tom Smith", 123.22);
balance.put("Jane Baker", 1378.00);
balance.put("Tod Hall", 99.22);
balance.put("Ralph Smith", -19.08);

// Show all balances in hashtable.
names = balance.keys();

Method Description

void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking object.

boolean contains(Object value) Returns true if some value equal to value exists within the hash table.
Returns false if the value isn’t found.

boolean containsKey(Object key) Returns true if some key equal to key exists within the hash table.
Returns false if the key isn’t found.

boolean containsValue(Object value) Returns true if some value equal to value exists within the hash table.
Returns false if the value isn’t found.

Enumeration<V> elements() Returns an enumeration of the values contained in the hash table.

V get(Object key) Returns the object that contains the value associated with key.
If key is not in the hash table, a null object is returned.

boolean isEmpty() Returns true if the hash table is empty; returns false if it contains
at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the hash table.

V put(K key, V value) Inserts a key and a value into the hash table. Returns null if key isn’t
already in the hash table; returns the previous value associated with
key if key is already in the hash table.

void rehash() Increases the size of the hash table and rehashes all of its keys.

V remove(Object key) Removes key and its value. Returns the value associated with key.
If key is not in the hash table, a null object is returned.

int size() Returns the number of entries in the hash table.

String toString() Returns the string equivalent of a hash table.

TABLE 17-18 The Legacy Methods Defined by Hashtable

https://hemanthrajhemu.github.io

496 P a r t I I : T h e J a v a L i b r a r y

while(names.hasMoreElements()) {
str = names.nextElement();
System.out.println(str + ": " +

balance.get(str));
}

System.out.println();

// Deposit 1,000 into John Doe's account.
bal = balance.get("John Doe");
balance.put("John Doe", bal+1000);
System.out.println("John Doe's new balance: " +

balance.get("John Doe"));
}

}

The output from this program is shown here:

Todd Hall: 99.22
Ralph Smith: -19.08
John Doe: 3434.34
Jane Baker: 1378.0
Tom Smith: 123.22

John Doe’s new balance: 4434.34

One important point: like the map classes, Hashtable does not directly support iterators.
Thus, the preceding program uses an enumeration to display the contents of balance. However,
you can obtain set-views of the hash table, which permits the use of iterators. To do so, you
simply use one of the collection-view methods defined by Map, such as entrySet() or keySet().
For example, you can obtain a set-view of the keys and cycle through them using either an
iterator or an enhanced for loop. Here is a reworked version of the program that shows this
technique:

// Use iterators with a Hashtable.
import java.util.*;

class HTDemo2 {
public static void main(String args[]) {
Hashtable<String, Double> balance =
new Hashtable<String, Double>();

String str;
double bal;

balance.put("John Doe", 3434.34);
balance.put("Tom Smith", 123.22);
balance.put("Jane Baker", 1378.00);
balance.put("Tod Hall", 99.22);
balance.put("Ralph Smith", -19.08);

// Show all balances in hashtable.
// First, get a set view of the keys.

https://hemanthrajhemu.github.io

Set<String> set = balance.keySet();

// Get an iterator.
Iterator<String> itr = set.iterator();
while(itr.hasNext()) {
str = itr.next();
System.out.println(str + ": " +

balance.get(str));
}

System.out.println();

// Deposit 1,000 into John Doe's account.
bal = balance.get("John Doe");
balance.put("John Doe", bal+1000);
System.out.println("John Doe's new balance: " +

balance.get("John Doe"));
}

}

Properties
Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key
is a String and the value is also a String. The Properties class is used by many other Java
classes. For example, it is the type of object returned by System.getProperties() when
obtaining environmental values. Although the Properties class, itself, is not generic, several
of its methods are.

Properties defines the following instance variable:

Properties defaults;

This variable holds a default property list associated with a Properties object. Properties
defines these constructors:

Properties()
Properties(Properties propDefault)

The first version creates a Properties object that has no default values. The second creates an
object that uses propDefault for its default values. In both cases, the property list is empty.

In addition to the methods that Properties inherits from Hashtable, Properties defines
the methods listed in Table 17-19. Properties also contains one deprecated method: save().
This was replaced by store() because save() did not handle errors correctly.

One useful capability of the Properties class is that you can specify a default property
that will be returned if no value is associated with a certain key. For example, a default value
can be specified along with the key in the getProperty() method—such as getProperty(“name”,
“default value”). If the “name” value is not found, then “default value” is returned. When
you construct a Properties object, you can pass another instance of Properties to be used as
the default properties for the new instance. In this case, if you call getProperty(“foo”) on a
given Properties object, and “foo” does not exist, Java looks for “foo” in the default Properties
object. This allows for arbitrary nesting of levels of default properties.

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 497

https://hemanthrajhemu.github.io

498 P a r t I I : T h e J a v a L i b r a r y

The following example demonstrates Properties. It creates a property list in which the keys
are the names of states and the values are the names of their capitals. Notice that the attempt
to find the capital for Florida includes a default value.

// Demonstrate a Property list.
import java.util.*;

class PropDemo {
public static void main(String args[]) {
Properties capitals = new Properties();

capitals.put("Illinois", "Springfield");
capitals.put("Missouri", "Jefferson City");
capitals.put("Washington", "Olympia");
capitals.put("California", "Sacramento");
capitals.put("Indiana", "Indianapolis");

// Get a set-view of the keys.
Set states = capitals.keySet();

Method Description

String getProperty(String key) Returns the value associated with key. A null object is returned if key is
neither in the list nor in the default property list.

String getProperty(String key,
String defaultProperty)

Returns the value associated with key. defaultProperty is returned if key is
neither in the list nor in the default property list.

void list(PrintStream streamOut) Sends the property list to the output stream linked to streamOut.

void list(PrintWriter streamOut) Sends the property list to the output stream linked to streamOut.

void load(InputStream streamIn)
throws IOException

Inputs a property list from the input stream linked to streamIn.

void load(Reader streamIn)
throws IOException

Inputs a property list from the input stream linked to streamIn. (Added by
Java SE 6.)

void loadFromXML(InputStream streamIn)
throws IOException,

InvalidPropertiesFormatException

Inputs a property list from an XML document linked to streamIn.

Enumeration<?> propertyNames() Returns an enumeration of the keys. This includes those keys found in
the default property list, too.

Object setProperty(String key, String value) Associates value with key. Returns the previous value associated with key,
or returns null if no such association exists.

void store(OutputStream streamOut,
String description)

throws IOException

After writing the string specified by description, the property list is written
to the output stream linked to streamOut.

void store(Writer streamOut,
String description)

throws IOException

After writing the string specified by description, the property list is written
to the output stream linked to streamOut. (Added by Java SE 6.)

void storeToXML(OutputStream streamOut,
String description)

throws IOException

After writing the string specified by description, the property list is written
to the XML document linked to streamOut.

void storeToXML(OutputStream streamOut,
String description,
String enc)

The property list and the string specified by description is written to the
XML document linked to streamOut using the specified character
encoding.

Set<String> stringPropertyNames() Returns a set of keys. (Added by Java SE 6.)

TABLE 17-19 The Methods Defined by Properties

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 499

// Show all of the states and capitals.
for(Object name : states)
System.out.println("The capital of " +

name + " is " +
capitals.getProperty((String)name)
+ ".");

System.out.println();

// Look for state not in list -- specify default.
String str = capitals.getProperty("Florida", "Not Found");
System.out.println("The capital of Florida is "

+ str + ".");
}

}

The output from this program is shown here:

The capital of Missouri is Jefferson City.
The capital of Illinois is Springfield.
The capital of Indiana is Indianapolis.
The capital of California is Sacramento.
The capital of Washington is Olympia.

The capital of Florida is Not Found.

Since Florida is not in the list, the default value is used.
Although it is perfectly valid to use a default value when you call getProperty(), as the

preceding example shows, there is a better way of handling default values for most applications
of property lists. For greater flexibility, specify a default property list when constructing
a Properties object. The default list will be searched if the desired key is not found in the
main list. For example, the following is a slightly reworked version of the preceding program,
with a default list of states specified. Now, when Florida is sought, it will be found in the
default list:

// Use a default property list.
import java.util.*;

class PropDemoDef {
public static void main(String args[]) {
Properties defList = new Properties();
defList.put("Florida", "Tallahassee");
defList.put("Wisconsin", "Madison");

Properties capitals = new Properties(defList);

capitals.put("Illinois", "Springfield");
capitals.put("Missouri", "Jefferson City");
capitals.put("Washington", "Olympia");
capitals.put("California", "Sacramento");
capitals.put("Indiana", "Indianapolis");

https://hemanthrajhemu.github.io

500 P a r t I I : T h e J a v a L i b r a r y

// Get a set-view of the keys.
Set states = capitals.keySet();

// Show all of the states and capitals.
for(Object name : states)
System.out.println("The capital of " +

name + " is " +
capitals.getProperty((String)name)
+ ".");

System.out.println();

// Florida will now be found in the default list.
String str = capitals.getProperty("Florida");
System.out.println("The capital of Florida is "

+ str + ".");
}

}

Using store() and load()
One of the most useful aspects of Properties is that the information contained in a Properties
object can be easily stored to or loaded from disk with the store() and load() methods. At
any time, you can write a Properties object to a stream or read it back. This makes property
lists especially convenient for implementing simple databases. For example, the following
program uses a property list to create a simple computerized telephone book that stores names
and phone numbers. To find a person’s number, you enter his or her name. The program uses
the store() and load() methods to store and retrieve the list. When the program executes, it
first tries to load the list from a file called phonebook.dat. If this file exists, the list is loaded.
You can then add to the list. If you do, the new list is saved when you terminate the
program. Notice how little code is required to implement a small, but functional, computerized
phone book.

/* A simple telephone number database that uses
a property list. */

import java.io.*;
import java.util.*;

class Phonebook {
public static void main(String args[])
throws IOException

{
Properties ht = new Properties();
BufferedReader br =
new BufferedReader(new InputStreamReader(System.in));

String name, number;
FileInputStream fin = null;
boolean changed = false;

// Try to open phonebook.dat file.
try {
fin = new FileInputStream("phonebook.dat");

} catch(FileNotFoundException e) {

https://hemanthrajhemu.github.io

C h a p t e r 1 7 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 501

// ignore missing file
}

/* If phonebook file already exists,
load existing telephone numbers. */

try {
if(fin != null) {
ht.load(fin);
fin.close();

}
} catch(IOException e) {
System.out.println("Error reading file.");

}

// Let user enter new names and numbers.
do {
System.out.println("Enter new name" +

" ('quit' to stop): ");
name = br.readLine();
if(name.equals("quit")) continue;

System.out.println("Enter number: ");
number = br.readLine();

ht.put(name, number);
changed = true;

} while(!name.equals("quit"));

// If phone book data has changed, save it.
if(changed) {
FileOutputStream fout = new FileOutputStream("phonebook.dat");

ht.store(fout, "Telephone Book");
fout.close();

}

// Look up numbers given a name.
do {
System.out.println("Enter name to find" +

" ('quit' to quit): ");
name = br.readLine();
if(name.equals("quit")) continue;

number = (String) ht.get(name);
System.out.println(number);

} while(!name.equals("quit"));
}

}

Parting Thoughts on Collections
The Collections Framework gives you, the programmer, a powerful set of well-engineered
solutions to some of programming’s most common tasks. Now that the Collections Framework
is generic, it can be used with complete type safety, which further contributes to its value.

https://hemanthrajhemu.github.io

Consider using a collection the next time that you need to store and retrieve information.
Remember, collections need not be reserved for only the “large jobs,” such as corporate
databases, mailing lists, or inventory systems. They are also effective when applied to smaller
jobs. For example, a TreeMap would make an excellent collection to hold the directory
structure of a set of files. A TreeSet could be quite useful for storing project-management
information. Frankly, the types of problems that will benefit from a collections-based solution
are limited only by your imagination.

502 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

