

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Part II The Java Library

15 String Handling . 359
The String Constructors . 359
String Length . 362
Special String Operations . 362

String Literals . 362
String Concatenation . 362
String Concatenation with Other Data Types 363
String Conversion and toString() . 364

Character Extraction . 365
charAt() . 365
getChars() . 365
getBytes() . 366
toCharArray() . 366

String Comparison . 366
equals() and equalsIgnoreCase() . 366
regionMatches() . 367
startsWith() and endsWith() . 368
equals() Versus == . 368
compareTo() . 369

Searching Strings . 370
Modifying a String . 372

substring() . 372
concat() . 373
replace() . 373
trim() . 373

Data Conversion Using valueOf() . 374
Changing the Case of Characters Within a String 375
Additional String Methods . 376
StringBuffer . 377

StringBuffer Constructors . 377
length() and capacity() . 378
ensureCapacity() . 378
setLength() . 378
charAt() and setCharAt() . 379
getChars() . 379
append() . 380
insert() . 381
reverse() . 381
delete() and deleteCharAt() . 382
replace() . 382
substring() . 383
Additional StringBuffer Methods . 383

StringBuilder . 384

xiv J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

II
The Java Library CHAPTER 15

String Handling

CHAPTER 16
Exploring java.lang

CHAPTER 17
java.util Part 1: The
Collections Framework

CHAPTER 18
java.util Part 2: More
Utility Classes

CHAPTER 19
Input/Output: Exploring
java.io

CHAPTER 20
Networking

CHAPTER 21
The Applet Class

CHAPTER 22
Event Handling

CHAPTER 23
Introducing the AWT:
Working with Windows,
Graphics, and Text

CHAPTER 24
Using AWT Controls, Layout
Managers, and Menus

CHAPTER 25
Images

CHAPTER 26
The Concurrency Utilities

CHAPTER 27
NIO, Regular Expressions,
and Other Packages

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

15
String Handling

Abrief overview of Java’s string handling was presented in Chapter 7. In this chapter,
it is described in detail. As is the case in most other programming languages, in Java
a string is a sequence of characters. But, unlike many other languages that implement

strings as character arrays, Java implements strings as objects of type String.
Implementing strings as built-in objects allows Java to provide a full complement of

features that make string handling convenient. For example, Java has methods to compare
two strings, search for a substring, concatenate two strings, and change the case of letters
within a string. Also, String objects can be constructed a number of ways, making it easy to
obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string that
cannot be changed. That is, once a String object has been created, you cannot change the
characters that comprise that string. At first, this may seem to be a serious restriction. However,
such is not the case. You can still perform all types of string operations. The difference is that
each time you need an altered version of an existing string, a new String object is created
that contains the modifications. The original string is left unchanged. This approach is used
because fixed, immutable strings can be implemented more efficiently than changeable ones.
For those cases in which a modifiable string is desired, Java provides two options: StringBuffer
and StringBuilder. Both hold strings that can be modified after they are created.

The String, StringBuffer, and StringBuilder classes are defined in java.lang. Thus, they
are available to all programs automatically. All are declared final, which means that none of
these classes may be subclassed. This allows certain optimizations that increase performance
to take place on common string operations. All three implement the CharSequence interface.

One last point: To say that the strings within objects of type String are unchangeable means
that the contents of the String instance cannot be changed after it has been created. However,
a variable declared as a String reference can be changed to point at some other String object
at any time.

The String Constructors
The String class supports several constructors. To create an empty String, you call the default
constructor. For example,

String s = new String();

will create an instance of String with no characters in it.

3 5 7

https://hemanthrajhemu.github.io

Frequently, you will want to create strings that have initial values. The String class
provides a variety of constructors to handle this. To create a String initialized by an array
of characters, use the constructor shown here:

String(char chars[])

Here is an example:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

This constructor initializes s with the string “abc”.
You can specify a subrange of a character array as an initializer using the following

constructor:

String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars specifies
the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.
You can construct a String object that contains the same character sequence as another

String object using this constructor:

String(String strObj)

Here, strObj is a String object. Consider this example:

// Construct one String from another.
class MakeString {
public static void main(String args[]) {
char c[] = {'J', 'a', 'v', 'a'};
String s1 = new String(c);
String s2 = new String(s1);

System.out.println(s1);
System.out.println(s2);

}
}

The output from this program is as follows:

Java
Java

As you can see, s1 and s2 contain the same string.
Even though Java’s char type uses 16 bits to represent the basic Unicode character set,

the typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the

358 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 359

ASCII character set. Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array. Their forms are shown here:

String(byte asciiChars[])
String(byte asciiChars[], int startIndex, int numChars)

Here, asciiChars specifies the array of bytes. The second form allows you to specify a
subrange. In each of these constructors, the byte-to-character conversion is done by using
the default character encoding of the platform. The following program illustrates these
constructors:

// Construct string from subset of char array.
class SubStringCons {
public static void main(String args[]) {
byte ascii[] = {65, 66, 67, 68, 69, 70 };

String s1 = new String(ascii);
System.out.println(s1);

String s2 = new String(ascii, 2, 3);
System.out.println(s2);

}
}

This program generates the following output:

ABCDEF
CDE

Extended versions of the byte-to-string constructors are also defined in which you can
specify the character encoding that determines how bytes are converted to characters. However,
most of the time, you will want to use the default encoding provided by the platform.

NOTEOTE The contents of the array are copied whenever you create a String object from an array. If you
modify the contents of the array after you have created the string, the String will be unchanged.

You can construct a String from a StringBuffer by using the constructor shown here:

String(StringBuffer strBufObj)

String Constructors Added by J2SE 5
J2SE 5 added two constructors to String. The first supports the extended Unicode character
set and is shown here:

String(int codePoints[], int startIndex, int numChars)

Here, codePoints is an array that contains Unicode code points. The resulting string is
constructed from the range that begins at startIndex and runs for numChars.

NOTEOTE A discussion of Unicode code points and how they are handled by Java is found in Chapter 16.

https://hemanthrajhemu.github.io

360 P a r t I I : T h e J a v a L i b r a r y

The second new constructor supports the new StringBuilder class. It is shown here:

String(StringBuilder strBuildObj)

This constructs a String from the StringBuilder passed in strBuildObj.

String Length
The length of a string is the number of characters that it contains. To obtain this value, call the
length() method, shown here:

int length()

The following fragment prints “3”, since there are three characters in the string s:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);
System.out.println(s.length());

Special String Operations
Because strings are a common and important part of programming, Java has added special
support for several string operations within the syntax of the language. These operations
include the automatic creation of new String instances from string literals, concatenation of
multiple String objects by use of the + operator, and the conversion of other data types to a
string representation. There are explicit methods available to perform all of these functions,
but Java does them automatically as a convenience for the programmer and to add clarity.

String Literals
The earlier examples showed how to explicitly create a String instance from an array of
characters by using the new operator. However, there is an easier way to do this using a
string literal. For each string literal in your program, Java automatically constructs a String
object. Thus, you can use a string literal to initialize a String object. For example, the following
code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' };
String s1 = new String(chars);

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal any
place you can use a String object. For example, you can call methods directly on a quoted
string as if it were an object reference, as the following statement shows. It calls the length()
method on the string “abc”. As expected, it prints “3”.

System.out.println("abc".length());

String Concatenation
In general, Java does not allow operators to be applied to String objects. The one exception
to this rule is the + operator, which concatenates two strings, producing a String object as the

https://hemanthrajhemu.github.io

result. This allows you to chain together a series of + operations. For example, the following
fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years old.";
System.out.println(s);

This displays the string “He is 9 years old.”
One practical use of string concatenation is found when you are creating very long strings.

Instead of letting long strings wrap around within your source code, you can break them into
smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
public static void main(String args[]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out.println(longStr);
}

}

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this slightly
different version of the earlier example:

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s);

In this case, age is an int rather than another String, but the output produced is the same
as before. This is because the int value in age is automatically converted into its string
representation within a String object. This string is then concatenated as before. The compiler
will convert an operand to its string equivalent whenever the other operand of the + is an
instance of String.

Be careful when you mix other types of operations with string concatenation expressions,
however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;
System.out.println(s);

This fragment displays

four: 22

rather than the

four: 4

C h a p t e r 1 5 : S t r i n g H a n d l i n g 361

https://hemanthrajhemu.github.io

362 P a r t I I : T h e J a v a L i b r a r y

that you probably expected. Here’s why. Operator precedence causes the concatenation of
“four” with the string equivalent of 2 to take place first. This result is then concatenated with
the string equivalent of 2 a second time. To complete the integer addition first, you must use
parentheses, like this:

String s = "four: " + (2 + 2);

Now s contains the string “four: 4”.

String Conversion and toString()
When Java converts data into its string representation during concatenation, it does so by
calling one of the overloaded versions of the string conversion method valueOf() defined
by String. valueOf() is overloaded for all the simple types and for type Object. For the simple
types, valueOf() returns a string that contains the human-readable equivalent of the value
with which it is called. For objects, valueOf() calls the toString() method on the object. We
will look more closely at valueOf() later in this chapter. Here, let’s examine the toString()
method, because it is the means by which you can determine the string representation for
objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the default
implementation of toString() is seldom sufficient. For most important classes that you create,
you will want to override toString() and provide your own string representations. Fortunately,
this is easy to do. The toString() method has this general form:

String toString()

To implement toString(), simply return a String object that contains the human-readable
string that appropriately describes an object of your class.

By overriding toString() for classes that you create, you allow them to be fully integrated
into Java’s programming environment. For example, they can be used in print() and println()
statements and in concatenation expressions. The following program demonstrates this by
overriding toString() for the Box class:

// Override toString() for Box class.
class Box {
double width;
double height;
double depth;

Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

public String toString() {
return "Dimensions are " + width + " by " +

depth + " by " + height + ".";
}

}

https://hemanthrajhemu.github.io

class toStringDemo {
public static void main(String args[]) {
Box b = new Box(10, 12, 14);
String s = "Box b: " + b; // concatenate Box object

System.out.println(b); // convert Box to string
System.out.println(s);

}
}

The output of this program is shown here:

Dimensions are 10.0 by 14.0 by 12.0
Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box’s toString() method is automatically invoked when a Box object
is used in a concatenation expression or in a call to println().

Character Extraction
The String class provides a number of ways in which characters can be extracted from a
String object. Each is examined here. Although the characters that comprise a string within
a String object cannot be indexed as if they were a character array, many of the String methods
employ an index (or offset) into the string for their operation. Like arrays, the string indexes
begin at zero.

charAt()
To extract a single character from a String, you can refer directly to an individual character
via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where must be
nonnegative and specify a location within the string. charAt() returns the character at the
specified location. For example,

char ch;
ch = "abc".charAt(1);

assigns the value “b” to ch.

getChars()
If you need to extract more than one character at a time, you can use the getChars() method.
It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring contains

C h a p t e r 1 5 : S t r i n g H a n d l i n g 363

https://hemanthrajhemu.github.io

the characters from sourceStart through sourceEnd–1. The array that will receive the characters
is specified by target. The index within target at which the substring will be copied is passed
in targetStart. Care must be taken to assure that the target array is large enough to hold the
number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {
public static void main(String args[]) {
String s = "This is a demo of the getChars method.";
int start = 10;
int end = 14;
char buf[] = new char[end - start];

s.getChars(start, end, buf, 0);
System.out.println(buf);

}
}

Here is the output of this program:

demo

getBytes()
There is an alternative to getChars() that stores the characters in an array of bytes. This method
is called getBytes(), and it uses the default character-to-byte conversions provided by the
platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you
are exporting a String value into an environment that does not support 16-bit Unicode
characters. For example, most Internet protocols and text file formats use 8-bit ASCII for
all text interchange.

toCharArray()
If you want to convert all the characters in a String object into a character array, the easiest
way is to call toCharArray(). It returns an array of characters for the entire string. It has this
general form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to achieve
the same result.

String Comparison
The String class includes several methods that compare strings or substrings within strings.
Each is examined here.

364 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns
true if the strings contain the same characters in the same order, and false otherwise. The
comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase(). When
it compares two strings, it considers A-Z to be the same as a-z. It has this general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns
true if the strings contain the same characters in the same order, and false otherwise.

Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase().
class equalsDemo {
public static void main(String args[]) {
String s1 = "Hello";
String s2 = "Hello";
String s3 = "Good-bye";
String s4 = "HELLO";
System.out.println(s1 + " equals " + s2 + " -> " +

s1.equals(s2));
System.out.println(s1 + " equals " + s3 + " -> " +

s1.equals(s3));
System.out.println(s1 + " equals " + s4 + " -> " +

s1.equals(s4));
System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +

s1.equalsIgnoreCase(s4));
}

}

The output from the program is shown here:

Hello equals Hello -> true
Hello equals Good-bye -> false
Hello equals HELLO -> false
Hello equalsIgnoreCase HELLO -> true

regionMatches()
The regionMatches() method compares a specific region inside a string with another specific
region in another string. There is an overloaded form that allows you to ignore case in such
comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,
int str2StartIndex, int numChars)

C h a p t e r 1 5 : S t r i n g H a n d l i n g 365

https://hemanthrajhemu.github.io

boolean regionMatches(boolean ignoreCase,
int startIndex, String str2,
int str2StartIndex, int numChars)

For both versions, startIndex specifies the index at which the region begins within the
invoking String object. The String being compared is specified by str2. The index at which
the comparison will start within str2 is specified by str2StartIndex. The length of the substring
being compared is passed in numChars. In the second version, if ignoreCase is true, the case
of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()
String defines two routines that are, more or less, specialized forms of regionMatches().
The startsWith() method determines whether a given String begins with a specified string.
Conversely, endsWith() determines whether the String in question ends with a specified
string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise, false
is returned. For example,

"Foobar".endsWith("bar")

and

"Foobar".startsWith("Foo")

are both true.
A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

Here, startIndex specifies the index into the invoking string at which point the search will
begin. For example,

"Foobar".startsWith("bar", 3)

returns true.

equals() Versus ==
It is important to understand that the equals() method and the == operator perform two
different operations. As just explained, the equals() method compares the characters inside
a String object. The == operator compares two object references to see whether they refer
to the same instance. The following program shows how two different String objects can
contain the same characters, but references to these objects will not compare as equal:

// equals() vs ==
class EqualsNotEqualTo {

366 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 367

public static void main(String args[]) {
String s1 = "Hello";
String s2 = new String(s1);

System.out.println(s1 + " equals " + s2 + " -> " +
s1.equals(s2));

System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));
}

}

The variable s1 refers to the String instance created by “Hello”. The object referred to by
s2 is created with s1 as an initializer. Thus, the contents of the two String objects are identical,
but they are distinct objects. This means that s1 and s2 do not refer to the same objects and
are, therefore, not ==, as is shown here by the output of the preceding example:

Hello equals Hello -> true
Hello == Hello -> false

compareTo()
Often, it is not enough to simply know whether two strings are identical. For sorting
applications, you need to know which is less than, equal to, or greater than the next. A string
is less than another if it comes before the other in dictionary order. A string is greater than
another if it comes after the other in dictionary order. The String method compareTo() serves
this purpose. It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the comparison
is returned and is interpreted, as shown here:

Value Meaning

Less than zero The invoking string is less than str.

Greater than zero The invoking string is greater than str.

Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses compareTo()
to determine sort ordering for a bubble sort:

// A bubble sort for Strings.
class SortString {
static String arr[] = {
"Now", "is", "the", "time", "for", "all", "good", "men",
"to", "come", "to", "the", "aid", "of", "their", "country"

};
public static void main(String args[]) {
for(int j = 0; j < arr.length; j++) {
for(int i = j + 1; i < arr.length; i++) {
if(arr[i].compareTo(arr[j]) < 0) {
String t = arr[j];

https://hemanthrajhemu.github.io

368 P a r t I I : T h e J a v a L i b r a r y

arr[j] = arr[i];
arr[i] = t;

}
}
System.out.println(arr[j]);

}
}

}

The output of this program is the list of words:

Now
aid
all
come
country
for
good
is
men
of
the
the
their
time
to
to

As you can see from the output of this example, compareTo() takes into account uppercase
and lowercase letters. The word “Now” came out before all the others because it begins with
an uppercase letter, which means it has a lower value in the ASCII character set.

If you want to ignore case differences when comparing two strings, use
compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

This method returns the same results as compareTo(), except that case differences are ignored.
You might want to try substituting it into the previous program. After doing so, “Now”
will no longer be first.

Searching Strings
The String class provides two methods that allow you to search a string for a specified
character or substring:

• indexOf() Searches for the first occurrence of a character or substring.

• lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods
return the index at which the character or substring was found, or –1 on failure.

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 369

To search for the first occurrence of a character, use

int indexOf(int ch)

To search for the last occurrence of a character, use

int lastIndexOf(int ch)

Here, ch is the character being sought.
To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

Here, str specifies the substring.
You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)
int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(), the
search runs from startIndex to the end of the string. For lastIndexOf(), the search runs from
startIndex to zero.

The following example shows how to use the various index methods to search inside
of Strings:

// Demonstrate indexOf() and lastIndexOf().
class indexOfDemo {
public static void main(String args[]) {
String s = "Now is the time for all good men " +

"to come to the aid of their country.";

System.out.println(s);
System.out.println("indexOf(t) = " +

s.indexOf('t'));
System.out.println("lastIndexOf(t) = " +

s.lastIndexOf('t'));
System.out.println("indexOf(the) = " +

s.indexOf("the"));
System.out.println("lastIndexOf(the) = " +

s.lastIndexOf("the"));
System.out.println("indexOf(t, 10) = " +

s.indexOf('t', 10));
System.out.println("lastIndexOf(t, 60) = " +

s.lastIndexOf('t', 60));
System.out.println("indexOf(the, 10) = " +

s.indexOf("the", 10));
System.out.println("lastIndexOf(the, 60) = " +

s.lastIndexOf("the", 60));
}

}

https://hemanthrajhemu.github.io

370 P a r t I I : T h e J a v a L i b r a r y

Here is the output of this program:

Now is the time for all good men to come to the aid of their country.
indexOf(t) = 7
lastIndexOf(t) = 65
indexOf(the) = 7
lastIndexOf(the) = 55
indexOf(t, 10) = 11
lastIndexOf(t, 60) = 55
indexOf(the, 10) = 44
lastIndexOf(the, 60) = 55

Modifying a String
Because String objects are immutable, whenever you want to modify a String, you must
either copy it into a StringBuffer or StringBuilder, or use one of the following String methods,
which will construct a new copy of the string with your modifications complete.

substring()
You can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy
of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending
index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.
The string returned contains all the characters from the beginning index, up to, but not
including, the ending index.

The following program uses substring() to replace all instances of one substring with
another within a string:

// Substring replacement.
class StringReplace {
public static void main(String args[]) {
String org = "This is a test. This is, too.";
String search = "is";
String sub = "was";
String result = "";
int i;

do { // replace all matching substrings
System.out.println(org);
i = org.indexOf(search);
if(i != -1) {
result = org.substring(0, i);

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 371

result = result + sub;
result = result + org.substring(i + search.length());
org = result;

}
} while(i != -1);

}
}

The output from this program is shown here:

This is a test. This is, too.
Thwas is a test. This is, too.
Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was, too.

concat()
You can concatenate two strings using concat(), shown here:

String concat(String str)

This method creates a new object that contains the invoking string with the contents
of str appended to the end. concat() performs the same function as +. For example,

String s1 = "one";
String s2 = s1.concat("two");

puts the string “onetwo” into s2. It generates the same result as the following sequence:

String s1 = "one";
String s2 = s1 + "two";

replace()
The replace() method has two forms. The first replaces all occurrences of one character in
the invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement.
The resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

puts the string “Hewwo” into s.
The second form of replace() replaces one character sequence with another. It has this

general form:

String replace(CharSequence original, CharSequence replacement)

This form was added by J2SE 5.

https://hemanthrajhemu.github.io

trim()
The trim() method returns a copy of the invoking string from which any leading and trailing
whitespace has been removed. It has this general form:

String trim()

Here is an example:

String s = " Hello World ".trim();

This puts the string “Hello World” into s.
The trim() method is quite useful when you process user commands. For example, the

following program prompts the user for the name of a state and then displays that state’s
capital. It uses trim() to remove any leading or trailing whitespace that may have inadvertently
been entered by the user.

// Using trim() to process commands.
import java.io.*;

class UseTrim {
public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new
BufferedReader(new InputStreamReader(System.in));

String str;

System.out.println("Enter 'stop' to quit.");
System.out.println("Enter State: ");
do {
str = br.readLine();
str = str.trim(); // remove whitespace

if(str.equals("Illinois"))
System.out.println("Capital is Springfield.");

else if(str.equals("Missouri"))
System.out.println("Capital is Jefferson City.");

else if(str.equals("California"))
System.out.println("Capital is Sacramento.");

else if(str.equals("Washington"))
System.out.println("Capital is Olympia.");

// ...
} while(!str.equals("stop"));

}
}

Data Conversion Using valueOf()
The valueOf() method converts data from its internal format into a human-readable form.
It is a static method that is overloaded within String for all of Java’s built-in types so that each

372 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

type can be converted properly into a string. valueOf() is also overloaded for type Object,
so an object of any class type you create can also be used as an argument. (Recall that Object
is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars[])

As we discussed earlier, valueOf() is called when a string representation of some other
type of data is needed—for example, during concatenation operations. You can call this method
directly with any data type and get a reasonable String representation. All of the simple types
are converted to their common String representation. Any object that you pass to valueOf()
will return the result of a call to the object’s toString() method. In fact, you could just call
toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it is an
array of some type. For arrays of char, however, a String object is created that contains the
characters in the char array. There is a special version of valueOf() that allows you to specify
a subset of a char array. It has this general form:

static String valueOf(char chars[], int startIndex, int numChars)

Here, chars is the array that holds the characters, startIndex is the index into the array of
characters at which the desired substring begins, and numChars specifies the length of the
substring.

Changing the Case of Characters Within a String
The method toLowerCase() converts all the characters in a string from uppercase to
lowercase. The toUpperCase() method converts all the characters in a string from lowercase
to uppercase. Nonalphabetical characters, such as digits, are unaffected. Here are the general
forms of these methods:

String toLowerCase()
String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase equivalent
of the invoking String.

Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {
public static void main(String args[])
{
String s = "This is a test.";

System.out.println("Original: " + s);

C h a p t e r 1 5 : S t r i n g H a n d l i n g 373

https://hemanthrajhemu.github.io

374 P a r t I I : T h e J a v a L i b r a r y

String upper = s.toUpperCase();
String lower = s.toLowerCase();

System.out.println("Uppercase: " + upper);
System.out.println("Lowercase: " + lower);

}
}

The output produced by the program is shown here:

Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

Additional String Methods
In addition to those methods discussed earlier, String includes several other methods. These
are summarized in the following table. Notice that many were added by J2SE 5.

Method Description

int codePointAt(int i) Returns the Unicode code point at the location specified by i.
Added by J2SE 5.

int codePointBefore(int i) Returns the Unicode code point at the location that precedes
that specified by i. Added by J2SE 5.

int codePointCount(int start, int end) Returns the number of code points in the portion of the invoking
String that are between start and end–1. Added by J2SE 5.

boolean contains(CharSequence str) Returns true if the invoking object contains the string specified
by str. Returns false, otherwise. Added by J2SE 5.

boolean contentEquals(CharSequence str) Returns true if the invoking string contains the same string as
str. Otherwise, returns false. Added by J2SE 5.

boolean contentEquals(StringBuffer str) Returns true if the invoking string contains the same string as
str. Otherwise, returns false.

static String format(String fmtstr,
Object ... args)

Returns a string formatted as specified by fmtstr. (See Chapter 18
for details on formatting.) Added by J2SE 5.

static String format(Locale loc,
String fmtstr,
Object ... args)

Returns a string formatted as specified by fmtstr. Formatting
is governed by the locale specified by loc. (See Chapter 18 for
details on formatting.) Added by J2SE 5.

boolean matches(string regExp) Returns true if the invoking string matches the regular expression
passed in regExp. Otherwise, returns false.

int offsetByCodePoints(int start, int num) Returns the index with the invoking string that is num code points
beyond the starting index specified by start. Added by J2SE 5.

String
replaceFirst(String regExp,

String newStr)

Returns a string in which the first substring that matches the
regular expression specified by regExp is replaced by newStr.

String
replaceAll(String regExp,

String newStr)

Returns a string in which all substrings that match the regular
expression specified by regExp are replaced by newStr.

https://hemanthrajhemu.github.io

Method Description

String[] split(String regExp) Decomposes the invoking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp.

String[] split(String regExp, int max) Decomposes the invoking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp. The number of pieces is specified
by max. If max is negative, then the invoking string is fully
decomposed. Otherwise, if max contains a nonzero value,
the last entry in the returned array contains the remainder
of the invoking string. If max is zero, the invoking string is
fully decomposed.

CharSequence
subSequence(int startIndex,

int stopIndex)

Returns a substring of the invoking string, beginning at startIndex
and stopping at stopIndex. This method is required by the
CharSequence interface, which is now implemented by String.

Notice that several of these methods work with regular expressions. Regular expressions
are described in Chapter 27.

StringBuffer
StringBuffer is a peer class of String that provides much of the functionality of strings.
As you know, String represents fixed-length, immutable character sequences. In contrast,
StringBuffer represents growable and writeable character sequences. StringBuffer may have
characters and substrings inserted in the middle or appended to the end. StringBuffer will
automatically grow to make room for such additions and often has more characters preallocated
than are actually needed, to allow room for growth. Java uses both classes heavily, but many
programmers deal only with String and let Java manipulate StringBuffers behind the scenes
by using the overloaded + operator.

StringBuffer Constructors
StringBuffer defines these four constructors:

StringBuffer()
StringBuffer(int size)
StringBuffer(String str)
StringBuffer(CharSequence chars)

The default constructor (the one with no parameters) reserves room for 16 characters
without reallocation. The second version accepts an integer argument that explicitly sets the
size of the buffer. The third version accepts a String argument that sets the initial contents
of the StringBuffer object and reserves room for 16 more characters without reallocation.
StringBuffer allocates room for 16 additional characters when no specific buffer length is
requested, because reallocation is a costly process in terms of time. Also, frequent reallocations
can fragment memory. By allocating room for a few extra characters, StringBuffer reduces the
number of reallocations that take place. The fourth constructor creates an object that contains
the character sequence contained in chars.

C h a p t e r 1 5 : S t r i n g H a n d l i n g 375

https://hemanthrajhemu.github.io

length() and capacity()
The current length of a StringBuffer can be found via the length() method, while the total
allocated capacity can be found through the capacity() method. They have the following
general forms:

int length()
int capacity()

Here is an example:

// StringBuffer length vs. capacity.
class StringBufferDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer = " + sb);
System.out.println("length = " + sb.length());
System.out.println("capacity = " + sb.capacity());

}
}

Here is the output of this program, which shows how StringBuffer reserves extra space
for additional manipulations:

buffer = Hello
length = 5
capacity = 21

Since sb is initialized with the string “Hello” when it is created, its length is 5. Its capacity is 21
because room for 16 additional characters is automatically added.

ensureCapacity()
If you want to preallocate room for a certain number of characters after a StringBuffer has
been constructed, you can use ensureCapacity() to set the size of the buffer. This is useful
if you know in advance that you will be appending a large number of small strings to a
StringBuffer. ensureCapacity() has this general form:

void ensureCapacity(int capacity)

Here, capacity specifies the size of the buffer.

setLength()
To set the length of the buffer within a StringBuffer object, use setLength(). Its general form
is shown here:

void setLength(int len)

Here, len specifies the length of the buffer. This value must be nonnegative.

376 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 377

When you increase the size of the buffer, null characters are added to the end of the
existing buffer. If you call setLength() with a value less than the current value returned by
length(), then the characters stored beyond the new length will be lost. The setCharAtDemo
sample program in the following section uses setLength() to shorten a StringBuffer.

charAt() and setCharAt()
The value of a single character can be obtained from a StringBuffer via the charAt() method.
You can set the value of a character within a StringBuffer using setCharAt(). Their general
forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

For charAt(), where specifies the index of the character being obtained. For setCharAt(),
where specifies the index of the character being set, and ch specifies the new value of that
character. For both methods, where must be nonnegative and must not specify a location
beyond the end of the buffer.

The following example demonstrates charAt() and setCharAt():

// Demonstrate charAt() and setCharAt().
class setCharAtDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");
System.out.println("buffer before = " + sb);
System.out.println("charAt(1) before = " + sb.charAt(1));
sb.setCharAt(1, 'i');
sb.setLength(2);
System.out.println("buffer after = " + sb);
System.out.println("charAt(1) after = " + sb.charAt(1));

}
}

Here is the output generated by this program:

buffer before = Hello
charAt(1) before = e
buffer after = Hi
charAt(1) after = i

getChars()
To copy a substring of a StringBuffer into an array, use the getChars() method. It has this
general form:

void getChars(int sourceStart, int sourceEnd, char target[],
int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd specifies
an index that is one past the end of the desired substring. This means that the substring

https://hemanthrajhemu.github.io

contains the characters from sourceStart through sourceEnd–1. The array that will receive the
characters is specified by target. The index within target at which the substring will be copied
is passed in targetStart. Care must be taken to assure that the target array is large enough to
hold the number of characters in the specified substring.

append()
The append() method concatenates the string representation of any other type of data to the
end of the invoking StringBuffer object. It has several overloaded versions. Here are a few
of its forms:

StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation. The
result is appended to the current StringBuffer object. The buffer itself is returned by each
version of append(). This allows subsequent calls to be chained together, as shown in the
following example:

// Demonstrate append().
class appendDemo {
public static void main(String args[]) {
String s;
int a = 42;
StringBuffer sb = new StringBuffer(40);

s = sb.append("a = ").append(a).append("!").toString();
System.out.println(s);

}
}

The output of this example is shown here:

a = 42!

The append() method is most often called when the + operator is used on String objects.
Java automatically changes modifications to a String instance into similar operations on a
StringBuffer instance. Thus, a concatenation invokes append() on a StringBuffer object.
After the concatenation has been performed, the compiler inserts a call to toString() to turn
the modifiable StringBuffer back into a constant String. All of this may seem unreasonably
complicated. Why not just have one string class and have it behave more or less like
StringBuffer? The answer is performance. There are many optimizations that the Java run
time can make knowing that String objects are immutable. Thankfully, Java hides most of the
complexity of conversion between Strings and StringBuffers. Actually, many programmers
will never feel the need to use StringBuffer directly and will be able to express most operations
in terms of the + operator on String variables.

378 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 1 5 : S t r i n g H a n d l i n g 379

insert()
The insert() method inserts one string into another. It is overloaded to accept values of all the
simple types, plus Strings, Objects, and CharSequences. Like append(), it calls String.valueOf()
to obtain the string representation of the value it is called with. This string is then inserted
into the invoking StringBuffer object. These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking
StringBuffer object.

The following sample program inserts “like” between “I” and “Java”:

// Demonstrate insert().
class insertDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");
System.out.println(sb);

}
}

The output of this example is shown here:

I like Java!

reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reversed object on which it was called. The following program
demonstrates reverse():

// Using reverse() to reverse a StringBuffer.
class ReverseDemo {
public static void main(String args[]) {
StringBuffer s = new StringBuffer("abcdef");

System.out.println(s);
s.reverse();
System.out.println(s);

}
}

Here is the output produced by the program:

abcdef
fedcba

https://hemanthrajhemu.github.io

380 P a r t I I : T h e J a v a L i b r a r y

delete() and deleteCharAt()
You can delete characters within a StringBuffer by using the methods delete() and
deleteCharAt(). These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)
StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object. Here,
startIndex specifies the index of the first character to remove, and endIndex specifies an index
one past the last character to remove. Thus, the substring deleted runs from startIndex to
endIndex–1. The resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc. It returns
the resulting StringBuffer object.

Here is a program that demonstrates the delete() and deleteCharAt() methods:

// Demonstrate delete() and deleteCharAt()
class deleteDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");

sb.delete(4, 7);
System.out.println("After delete: " + sb);

sb.deleteCharAt(0);
System.out.println("After deleteCharAt: " + sb);

}
}

The following output is produced:

After delete: This a test.
After deleteCharAt: his a test.

replace()
You can replace one set of characters with another set inside a StringBuffer object by calling
replace(). Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus, the
substring at startIndex through endIndex–1 is replaced. The replacement string is passed in str.
The resulting StringBuffer object is returned.

The following program demonstrates replace():

// Demonstrate replace()
class replaceDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");

https://hemanthrajhemu.github.io

sb.replace(5, 7, "was");
System.out.println("After replace: " + sb);

}
}

Here is the output:

After replace: This was a test.

substring()
You can obtain a portion of a StringBuffer by calling substring(). It has the following two
forms:

String substring(int startIndex)
String substring(int startIndex, int endIndex)

The first form returns the substring that starts at startIndex and runs to the end of the
invoking StringBuffer object. The second form returns the substring that starts at startIndex
and runs through endIndex–1. These methods work just like those defined for String that
were described earlier.

Additional StringBuffer Methods
In addition to those methods just described, StringBuffer includes several others. They are
summarized in the following table. Notice that several were added by J2SE 5.

Method Description

StringBuffer appendCodePoint(int ch) Appends a Unicode code point to the end of the invoking object.
A reference to the object is returned. Added by J2SE 5.

int codePointAt(int i) Returns the Unicode code point at the location specified by i.
Added by J2SE 5.

int codePointBefore(int i) Returns the Unicode code point at the location that precedes
that specified by i. Added by J2SE 5.

int codePointCount(int start, int end) Returns the number of code points in the portion of the invoking
String that are between start and end–1. Added by J2SE 5.

int indexOf(String str) Searches the invoking StringBuffer for the first occurrence of str.
Returns the index of the match, or –1 if no match is found.

int indexOf(String str, int startIndex) Searches the invoking StringBuffer for the first occurrence of str,
beginning at startIndex. Returns the index of the match, or –1
if no match is found.

int lastIndexOf(String str) Searches the invoking StringBuffer for the last occurrence of str.
Returns the index of the match, or –1 if no match is found.

int lastIndexOf(String str, int startIndex) Searches the invoking StringBuffer for the last occurrence of str,
beginning at startIndex. Returns the index of the match, or –1
if no match is found.

C h a p t e r 1 5 : S t r i n g H a n d l i n g 381

https://hemanthrajhemu.github.io

Method Description

int offsetByCodePoints(int start, int num) Returns the index with the invoking string that is num code
points beyond the starting index specified by start. Added by
J2SE 5.

CharSequence
subSequence(int startIndex,

int stopIndex)

Returns a substring of the invoking string, beginning at
startIndex and stopping at stopIndex. This method is required
by the CharSequence interface, which is now implemented by
StringBuffer.

void trimToSize() Reduces the size of the character buffer for the invoking object
to exactly fit the current contents. Added by J2SE 5.

Aside from subSequence(), which implements a method required by the CharSequence
interface, the other methods allow a StringBuffer to be searched for an occurrence of a String.
The following program demonstrates indexOf() and lastIndexOf():

class IndexOfDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("one two one");
int i;

i = sb.indexOf("one");
System.out.println("First index: " + i);

i = sb.lastIndexOf("one");
System.out.println("Last index: " + i);

}
}

The output is shown here:

First index: 0
Last index: 8

StringBuilder
J2SE 5 adds a new string class to Java’s already powerful string handling capabilities. This
new class is called StringBuilder. It is identical to StringBuffer except for one important
difference: it is not synchronized, which means that it is not thread-safe. The advantage of
StringBuilder is faster performance. However, in cases in which you are using multithreading,
you must use StringBuffer rather than StringBuilder.

382 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

