

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Painting Fundamentals . 874
Compute the Paintable Area . 875
A Paint Example . 875

30 Exploring Swing . 879
JLabel and ImageIcon . 879
JTextField . 881
The Swing Buttons . 883

JButton . 883
JToggleButton . 885
Check Boxes . 887
Radio Buttons . 889

JTabbedPane . 891
JScrollPane . 893
JList . 895
JComboBox . 898
Trees . 900
JTable . 904
Continuing Your Exploration of Swing . 906

31 Servlets . 907
Background . 907
The Life Cycle of a Servlet . 908
Using Tomcat for Servlet Development . 908
A Simple Servlet . 910

Create and Compile the Servlet Source Code 910
Start Tomcat . 911
Start a Web Browser and Request the Servlet 911

The Servlet API . 911
The javax.servlet Package . 911

The Servlet Interface . 912
The ServletConfig Interface . 912
The ServletContext Interface . 912
The ServletRequest Interface . 913
The ServletResponse Interface . 913
The GenericServlet Class . 914
The ServletInputStream Class . 915
The ServletOutputStream Class . 915
The Servlet Exception Classes . 915

Reading Servlet Parameters . 915
The javax.servlet.http Package . 917

The HttpServletRequest Interface . 917
The HttpServletResponse Interface . 917
The HttpSession Interface . 917
The HttpSessionBindingListener Interface 919
The Cookie Class . 919

C o n t e n t s xxv

https://hemanthrajhemu.github.io

The HttpServlet Class . 921
The HttpSessionEvent Class . 921
The HttpSessionBindingEvent Class . 922

Handling HTTP Requests and Responses . 922
Handling HTTP GET Requests . 922
Handling HTTP POST Requests . 924

Using Cookies . 925
Session Tracking . 927

Part IV Applying Java

32 Financial Applets and Servlets . 931
Finding the Payments for a Loan . 932

The RegPay Fields . 935
The init() Method . 936
The makeGUI() Method . 936
The actionPerformed() Method . 938
The compute() Method . 939

Finding the Future Value of an Investment . 940
Finding the Initial Investment Required to Achieve a Future Value . . . 943
Finding the Initial Investment Needed for a Desired Annuity 947
Finding the Maximum Annuity for a Given Investment 951
Finding the Remaining Balance on a Loan . 955
Creating Financial Servlets . 959

Converting the RegPay Applet into a Servlet 960
The RegPayS Servlet . 960

Some Things to Try . 963

33 Creating a Download Manager in Java . 965
Understanding Internet Downloads . 966
An Overview of the Download Manager . 966
The Download Class . 967

The Download Variables . 971
The Download Constructor . 971
The download() Method . 971
The run() Method . 971
The stateChanged() Method . 975
Action and Accessor Methods . 975

The ProgressRenderer Class . 975
The DownloadsTableModel Class . 976

The addDownload() Method . 978
The clearDownload() Method . 979
The getColumnClass() Method . 979
The getValueAt() Method . 979
The update() Method . 980

xxvi J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

31
Servlets

This chapter presents an overview of servlets. Servlets are small programs that execute on
the server side of a web connection. Just as applets dynamically extend the functionality
of a web browser, servlets dynamically extend the functionality of a web server. The

topic of servlets is quite large, and it is beyond the scope of this chapter to cover it all. Instead,
we will focus on the core concepts, interfaces, and classes, and develop several examples.

Background
In order to understand the advantages of servlets, you must have a basic understanding of
how web browsers and servers cooperate to provide content to a user. Consider a request
for a static web page. A user enters a Uniform Resource Locator (URL) into a browser. The
browser generates an HTTP request to the appropriate web server. The web server maps
this request to a specific file. That file is returned in an HTTP response to the browser. The
HTTP header in the response indicates the type of the content. The Multipurpose Internet
Mail Extensions (MIME) are used for this purpose. For example, ordinary ASCII text has a
MIME type of text/plain. The Hypertext Markup Language (HTML) source code of a web
page has a MIME type of text/html.

Now consider dynamic content. Assume that an online store uses a database to store
information about its business. This would include items for sale, prices, availability, orders,
and so forth. It wishes to make this information accessible to customers via web pages. The
contents of those web pages must be dynamically generated to reflect the latest information
in the database.

In the early days of the Web, a server could dynamically construct a page by creating a
separate process to handle each client request. The process would open connections to one
or more databases in order to obtain the necessary information. It communicated with the
web server via an interface known as the Common Gateway Interface (CGI). CGI allowed
the separate process to read data from the HTTP request and write data to the HTTP response.
A variety of different languages were used to build CGI programs. These included C, C++,
and Perl.

However, CGI suffered serious performance problems. It was expensive in terms of
processor and memory resources to create a separate process for each client request. It was
also expensive to open and close database connections for each client request. In addition,

9 0 7

https://hemanthrajhemu.github.io

the CGI programs were not platform-independent. Therefore, other techniques were
introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First, performance is significantly
better. Servlets execute within the address space of a web server. It is not necessary to create
a separate process to handle each client request. Second, servlets are platform-independent
because they are written in Java. Third, the Java security manager on the server enforces a
set of restrictions to protect the resources on a server machine. Finally, the full functionality
of the Java class libraries is available to a servlet. It can communicate with applets, databases,
or other software via the sockets and RMI mechanisms that you have seen already.

The Life Cycle of a Servlet
Three methods are central to the life cycle of a servlet. These are init(), service(), and destroy().
They are implemented by every servlet and are invoked at specific times by the server. Let
us consider a typical user scenario to understand when these methods are called.

First, assume that a user enters a Uniform Resource Locator (URL) to a web browser.
The browser then generates an HTTP request for this URL. This request is then sent to the
appropriate server.

Second, this HTTP request is received by the web server. The server maps this request to
a particular servlet. The servlet is dynamically retrieved and loaded into the address space
of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only
when the servlet is first loaded into memory. It is possible to pass initialization parameters
to the servlet so it may configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to
process the HTTP request. You will see that it is possible for the servlet to read data that has
been provided in the HTTP request. It may also formulate an HTTP response for the client.

The servlet remains in the server’s address space and is available to process any other
HTTP requests received from clients. The service() method is called for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The algorithms by
which this determination is made are specific to each server. The server calls the destroy()
method to relinquish any resources such as file handles that are allocated for the servlet.
Important data may be saved to a persistent store. The memory allocated for the servlet and
its objects can then be garbage collected.

Using Tomcat for Servlet Development
To create servlets, you will need access to a servlet development environment. The one used
by this chapter is Tomcat. Tomcat is an open-source product maintained by the Jakarta Project
of the Apache Software Foundation. It contains the class libraries, documentation, and run-
time support that you will need to create and test servlets. At the time of this writing, the
current version is 5.5.17, which supports servlet specification 2.4. You can download Tomcat
from jakarta.apache.org.

The examples in this chapter assume a Windows environment. The default location for
Tomcat 5.5.17 is

C:\Program Files\Apache Software Foundation\Tomcat 5.5\

908 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 909

This is the location assumed by the examples in this book. If you load Tomcat in a different
location, you will need to make appropriate changes to the examples. You may need to set
the environmental variable JAVA_HOME to the top-level directory in which the Java
Development Kit is installed.

To start Tomcat, select Configure Tomcat in the Start | Programs menu, and then press
Start in the Tomcat Properties dialog.

When you are done testing servlets, you can stop Tomcat by pressing Stop in the Tomcat
Properties dialog.

The directory

C:\Program Files\Apache Software Foundation\Tomcat 5.5\common\lib\

contains servlet-api.jar. This JAR file contains the classes and interfaces that are needed to
build servlets. To make this file accessible, update your CLASSPATH environment
variable so that it includes

C:\Program Files\Apache Software Foundation\Tomcat 5.5\common\lib\servlet-api.jar

Alternatively, you can specify this file when you compile the servlets. For example, the
following command compiles the first servlet example:

javac HelloServlet.java -classpath "C:\Program Files\Apache Software Foundation\
Tomcat 5.5\common\lib\servlet-api.jar"

Once you have compiled a servlet, you must enable Tomcat to find it. This means putting
it into a directory under Tomcat’s webapps directory and entering its name into a web.xml
file. To keep things simple, the examples in this chapter use the directory and web.xml file
that Tomcat supplies for its own example servlets. Here is the procedure that you will follow.

First, copy the servlet’s class file into the following directory:

C:\Program Files\Apache Software Foundation\Tomcat 5.5\webapps\servlets-examples\WEB-INF\classes

Next, add the servlet’s name and mapping to the web.xml file in the following directory:

C:\Program Files\Apache Software Foundation\Tomcat 5.5\webapps\servlets-examples\WEB-INF

For instance, assuming the first example, called HelloServlet, you will add the following
lines in the section that defines the servlets:

<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>HelloServlet</servlet-class>

</servlet>

Next, you will add the following lines to the section that defines the servlet mappings.

<servlet-mapping>
<servlet-name>HelloServlet</servlet-name>
<url-pattern>/servlet/HelloServlet</url-pattern>

</servlet-mapping>

Follow this same general procedure for all of the examples.

https://hemanthrajhemu.github.io

910 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

A Simple Servlet
To become familiar with the key servlet concepts, we will begin by building and testing
a simple servlet. The basic steps are the following:

1. Create and compile the servlet source code. Then, copy the servlet’s class file to the
proper directory, and add the servlet’s name and mappings to the proper web.xml file.

2. Start Tomcat.

3. Start a web browser and request the servlet.

Let us examine each of these steps in detail.

Create and Compile the Servlet Source Code
To begin, create a file named HelloServlet.java that contains the following program:

import java.io.*;
import javax.servlet.*;

public class HelloServlet extends GenericServlet {

public void service(ServletRequest request,
ServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.println("Hello!");
pw.close();

}
}

Let’s look closely at this program. First, note that it imports the javax.servlet package.
This package contains the classes and interfaces required to build servlets. You will learn
more about these later in this chapter. Next, the program defines HelloServlet as a subclass of
GenericServlet. The GenericServlet class provides functionality that simplifies the creation
of a servlet. For example, it provides versions of init() and destroy(), which may be used
as is. You need supply only the service() method.

Inside HelloServlet, the service() method (which is inherited from GenericServlet) is
overridden. This method handles requests from a client. Notice that the first argument is a
ServletRequest object. This enables the servlet to read data that is provided via the client
request. The second argument is a ServletResponse object. This enables the servlet to formulate
a response for the client.

The call to setContentType() establishes the MIME type of the HTTP response. In this
program, the MIME type is text/html. This indicates that the browser should interpret the
content as HTML source code.

Next, the getWriter() method obtains a PrintWriter. Anything written to this stream is
sent to the client as part of the HTTP response. Then println() is used to write some simple
HTML source code as the HTTP response.

Compile this source code and place the HelloServlet.class file in the proper Tomcat
directory as described in the previous section. Also, add HelloServlet to the web.xml file,
as described earlier.

https://hemanthrajhemu.github.io

Start Tomcat
Start Tomcat as explained earlier. Tomcat must be running before you try to execute a servlet.

Start a Web Browser and Request the Servlet
Start a web browser and enter the URL shown here:

http://localhost:8080/servlets-examples/servlet/HelloServlet

Alternatively, you may enter the URL shown here:

http://127.0.0.1:8080/servlets-examples/servlet/HelloServlet

This can be done because 127.0.0.1 is defined as the IP address of the local machine.
You will observe the output of the servlet in the browser display area. It will contain the

string Hello! in bold type.

The Servlet API
Two packages contain the classes and interfaces that are required to build servlets. These are
javax.servlet and javax.servlet.http. They constitute the Servlet API. Keep in mind that these
packages are not part of the Java core packages. Instead, they are standard extensions provided
by Tomcat. Therefore, they are not included with Java SE 6.

The Servlet API has been in a process of ongoing development and enhancement. The
current servlet specification is version 2.4, and that is the one used in this book. However,
because changes happen fast in the world of Java, you will want to check for any additions
or alterations. This chapter discusses the core of the Servlet API, which will be available to
most readers.

The javax.servlet Package
The javax.servlet package contains a number of interfaces and classes that establish the
framework in which servlets operate. The following table summarizes the core interfaces
that are provided in this package. The most significant of these is Servlet. All servlets must
implement this interface or extend a class that implements the interface. The ServletRequest
and ServletResponse interfaces are also very important.

Interface Description

Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information about their
environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

C h a p t e r 3 1 : S e r v l e t s 911

https://hemanthrajhemu.github.io

912 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

The following table summarizes the core classes that are provided in the javax.servlet
package:

Class Description

GenericServlet Implements the Servlet and ServletConfig interfaces.

ServletInputStream Provides an input stream for reading requests from a client.

ServletOutputStream Provides an output stream for writing responses to a client.

ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

Let us examine these interfaces and classes in more detail.

The Servlet Interface
All servlets must implement the Servlet interface. It declares the init(), service(), and destroy()
methods that are called by the server during the life cycle of a servlet. A method is also provided
that allows a servlet to obtain any initialization parameters. The methods defined by Servlet
are shown in Table 31-1.

The init(), service(), and destroy() methods are the life cycle methods of the servlet.
These are invoked by the server. The getServletConfig() method is called by the servlet to
obtain initialization parameters. A servlet developer overrides the getServletInfo() method
to provide a string with useful information (for example, author, version, date, copyright).
This method is also invoked by the server.

The ServletConfig Interface
The ServletConfig interface allows a servlet to obtain configuration data when it is loaded.
The methods declared by this interface are summarized here:

Method Description

ServletContext getServletContext() Returns the context for this servlet.

String getInitParameter(String param) Returns the value of the initialization parameter
named param.

Enumeration getInitParameterNames() Returns an enumeration of all initialization parameter
names.

String getServletName() Returns the name of the invoking servlet.

The ServletContext Interface
The ServletContext interface enables servlets to obtain information about their environment.
Several of its methods are summarized in Table 31-2.

https://hemanthrajhemu.github.io

The ServletRequest Interface
The ServletRequest interface enables a servlet to obtain information about a client request.
Several of its methods are summarized in Table 31-3.

The ServletResponse Interface
The ServletResponse interface enables a servlet to formulate a response for a client. Several
of its methods are summarized in Table 31-4.

C h a p t e r 3 1 : S e r v l e t s 913

Method Description

Object getAttribute(String attr) Returns the value of the server attribute named attr.

String getMimeType(String file) Returns the MIME type of file.

String getRealPath(String vpath) Returns the real path that corresponds to the virtual
path vpath.

String getServerInfo() Returns information about the server.

void log(String s) Writes s to the servlet log.

void log(String s, Throwable e) Writes s and the stack trace for e to the servlet log.

void setAttribute(String attr, Object val) Sets the attribute specified by attr to the value
passed in val.

TABLE 31-2 Various Methods Defined by ServletContext

Method Description

void destroy() Called when the servlet is unloaded.

ServletConfig getServletConfig() Returns a ServletConfig object that contains any initialization
parameters.

String getServletInfo() Returns a string describing the servlet.

void init(ServletConfig sc)
throws ServletException

Called when the servlet is initialized. Initialization
parameters for the servlet can be obtained from sc.
An UnavailableException should be thrown if the
servlet cannot be initialized.

void service(ServletRequest req,
ServletResponse res)

throws ServletException,
IOException

Called to process a request from a client. The request from
the client can be read from req. The response to the client
can be written to res. An exception is generated if a servlet
or IO problem occurs.

TABLE 31-1 The Methods Defined by Servlet

https://hemanthrajhemu.github.io

The GenericServlet Class
The GenericServlet class provides implementations of the basic life cycle methods for a servlet.
GenericServlet implements the Servlet and ServletConfig interfaces. In addition, a method to
append a string to the server log file is available. The signatures of this method are shown here:

void log(String s)
void log(String s, Throwable e)

Here, s is the string to be appended to the log, and e is an exception that occurred.

914 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Method Description

Object getAttribute(String attr) Returns the value of the attribute named attr.

String getCharacterEncoding() Returns the character encoding of the request.

int getContentLength() Returns the size of the request. The value –1 is returned if the
size is unavailable.

String getContentType() Returns the type of the request. A null value is returned if the
type cannot be determined.

ServletInputStream getInputStream()
throws IOException

Returns a ServletInputStream that can be used to read binary
data from the request. An IllegalStateException is thrown if
getReader() has already been invoked for this request.

String getParameter(String pname) Returns the value of the parameter named pname.

Enumeration getParameterNames() Returns an enumeration of the parameter names for this request.

String[] getParameterValues(String name) Returns an array containing values associated with the parameter
specified by name.

String getProtocol() Returns a description of the protocol.

BufferedReader getReader()
throws IOException

Returns a buffered reader that can be used to read text from the
request. An IllegalStateException is thrown if getInputStream()
has already been invoked for this request.

String getRemoteAddr() Returns the string equivalent of the client IP address.

String getRemoteHost() Returns the string equivalent of the client host name.

String getScheme() Returns the transmission scheme of the URL used for the request
(for example, “http”, “ftp”).

String getServerName() Returns the name of the server.

int getServerPort() Returns the port number.

TABLE 31-3 Various Methods Defined by ServletRequest

Method Description

String getCharacterEncoding() Returns the character encoding for the response.

ServletOutputStream
getOutputStream()

throws IOException

Returns a ServletOutputStream that can be used to write binary data to the
response. An IllegalStateException is thrown if getWriter() has already
been invoked for this request.

PrintWriter getWriter()
throws IOException

Returns a PrintWriter that can be used to write character data to the
response. An IllegalStateException is thrown if getOutputStream()
has already been invoked for this request.

void setContentLength(int size) Sets the content length for the response to size.

void setContentType(String type) Sets the content type for the response to type.

TABLE 31-4 Various Methods Defined by ServletResponse

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 915

The ServletInputStream Class
The ServletInputStream class extends InputStream. It is implemented by the servlet container
and provides an input stream that a servlet developer can use to read the data from a client
request. It defines the default constructor. In addition, a method is provided to read bytes
from the stream. It is shown here:

int readLine(byte[] buffer, int offset, int size) throws IOException

Here, buffer is the array into which size bytes are placed starting at offset. The method returns
the actual number of bytes read or –1 if an end-of-stream condition is encountered.

The ServletOutputStream Class
The ServletOutputStream class extends OutputStream. It is implemented by the servlet
container and provides an output stream that a servlet developer can use to write data to a
client response. A default constructor is defined. It also defines the print() and println()
methods, which output data to the stream.

The Servlet Exception Classes
javax.servlet defines two exceptions. The first is ServletException, which indicates that a servlet
problem has occurred. The second is UnavailableException, which extends ServletException.
It indicates that a servlet is unavailable.

Reading Servlet Parameters
The ServletRequest interface includes methods that allow you to read the names and values
of parameters that are included in a client request. We will develop a servlet that illustrates
their use. The example contains two files. A web page is defined in PostParameters.htm, and
a servlet is defined in PostParametersServlet.java.

The HTML source code for PostParameters.htm is shown in the following listing. It defines
a table that contains two labels and two text fields. One of the labels is Employee and the
other is Phone. There is also a submit button. Notice that the action parameter of the form
tag specifies a URL. The URL identifies the servlet to process the HTTP POST request.

<html>
<body>
<center>
<form name="Form1"
method="post"
action="http://localhost:8080/servlets-examples/

servlet/PostParametersServlet">
<table>
<tr>
<td>Employee</td>
<td><input type=textbox name="e" size="25" value=""></td>

</tr>
<tr>
<td>Phone</td>
<td><input type=textbox name="p" size="25" value=""></td>

</tr>
</table>

https://hemanthrajhemu.github.io

<input type=submit value="Submit">
</body>
</html>

The source code for PostParametersServlet.java is shown in the following listing. The
service() method is overridden to process client requests. The getParameterNames() method
returns an enumeration of the parameter names. These are processed in a loop. You can see
that the parameter name and value are output to the client. The parameter value is obtained
via the getParameter() method.

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class PostParametersServlet
extends GenericServlet {

public void service(ServletRequest request,
ServletResponse response)

throws ServletException, IOException {

// Get print writer.
PrintWriter pw = response.getWriter();

// Get enumeration of parameter names.
Enumeration e = request.getParameterNames();

// Display parameter names and values.
while(e.hasMoreElements()) {
String pname = (String)e.nextElement();
pw.print(pname + " = ");
String pvalue = request.getParameter(pname);
pw.println(pvalue);

}
pw.close();

}
}

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

1. Start Tomcat (if it is not already running).

2. Display the web page in a browser.

3. Enter an employee name and phone number in the text fields.

4. Submit the web page.

After following these steps, the browser will display a response that is dynamically generated
by the servlet.

916 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 917

The javax.servlet.http Package
The javax.servlet.http package contains a number of interfaces and classes that are commonly
used by servlet developers. You will see that its functionality makes it easy to build servlets
that work with HTTP requests and responses.

The following table summarizes the core interfaces that are provided in this package:

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

HttpSessionBindingListener Informs an object that it is bound to or unbound from a session.

The following table summarizes the core classes that are provided in this package. The
most important of these is HttpServlet. Servlet developers typically extend this class in
order to process HTTP requests.

Class Description

Cookie Allows state information to be stored on a client machine.

HttpServlet Provides methods to handle HTTP requests and responses.

HttpSessionEvent Encapsulates a session-changed event.

HttpSessionBindingEvent Indicates when a listener is bound to or unbound from a session
value, or that a session attribute changed.

The HttpServletRequest Interface
The HttpServletRequest interface enables a servlet to obtain information about a client
request. Several of its methods are shown in Table 31-5.

The HttpServletResponse Interface
The HttpServletResponse interface enables a servlet to formulate an HTTP response to a
client. Several constants are defined. These correspond to the different status codes that can
be assigned to an HTTP response. For example, SC_OK indicates that the HTTP request
succeeded, and SC_NOT_FOUND indicates that the requested resource is not available.
Several methods of this interface are summarized in Table 31-6.

The HttpSession Interface
The HttpSession interface enables a servlet to read and write the state information that is
associated with an HTTP session. Several of its methods are summarized in Table 31-7. All of
these methods throw an IllegalStateException if the session has already been invalidated.

https://hemanthrajhemu.github.io

918 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Method Description

String getAuthType() Returns authentication scheme.

Cookie[] getCookies() Returns an array of the cookies in this request.

long getDateHeader(String field) Returns the value of the date header field named field.

String getHeader(String field) Returns the value of the header field named field.

Enumeration getHeaderNames() Returns an enumeration of the header names.

int getIntHeader(String field) Returns the int equivalent of the header field named field.

String getMethod() Returns the HTTP method for this request.

String getPathInfo() Returns any path information that is located after the servlet path
and before a query string of the URL.

String getPathTranslated() Returns any path information that is located after the servlet path
and before a query string of the URL after translating it to a real
path.

String getQueryString() Returns any query string in the URL.

String getRemoteUser() Returns the name of the user who issued this request.

String getRequestedSessionId() Returns the ID of the session.

String getRequestURI() Returns the URI.

StringBuffer getRequestURL() Returns the URL.

String getServletPath() Returns that part of the URL that identifies the servlet.

HttpSession getSession() Returns the session for this request. If a session does not exist,
one is created and then returned.

HttpSession getSession(boolean new) If new is true and no session exists, creates and returns a session
for this request. Otherwise, returns the existing session for this
request.

boolean
isRequestedSessionIdFromCookie()

Returns true if a cookie contains the session ID. Otherwise, returns
false.

boolean
isRequestedSessionIdFromURL()

Returns true if the URL contains the session ID. Otherwise, returns
false.

boolean isRequestedSessionIdValid() Returns true if the requested session ID is valid in the current
session context.

TABLE 31-5 Various Methods Defined by HttpServletRequest

Method Description

void addCookie(Cookie cookie) Adds cookie to the HTTP response.

boolean containsHeader(String field) Returns true if the HTTP response header contains a field
named field.

String encodeURL(String url) Determines if the session ID must be encoded in the URL
identified as url. If so, returns the modified version of url.
Otherwise, returns url. All URLs generated by a servlet should
be processed by this method.

String encodeRedirectURL(String url) Determines if the session ID must be encoded in the URL
identified as url. If so, returns the modified version of url.
Otherwise, returns url. All URLs passed to sendRedirect()
should be processed by this method.

TABLE 31-6 Various Methods Defined by HttpServletResponse

https://hemanthrajhemu.github.io

The HttpSessionBindingListener Interface
The HttpSessionBindingListener interface is implemented by objects that need to be
notified when they are bound to or unbound from an HTTP session. The methods that are
invoked when an object is bound or unbound are

void valueBound(HttpSessionBindingEvent e)
void valueUnbound(HttpSessionBindingEvent e)

Here, e is the event object that describes the binding.

The Cookie Class
The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state
information. Cookies are valuable for tracking user activities. For example, assume that a

C h a p t e r 3 1 : S e r v l e t s 919

Method Description

Object getAttribute(String attr) Returns the value associated with the name passed in attr. Returns
null if attr is not found.

Enumeration getAttributeNames() Returns an enumeration of the attribute names associated with the
session.

long getCreationTime() Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when this session was created.

String getId() Returns the session ID.

long getLastAccessedTime() Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when the client last made a request for this session.

void invalidate() Invalidates this session and removes it from the context.

boolean isNew() Returns true if the server created the session and it has not yet
been accessed by the client.

void removeAttribute(String attr) Removes the attribute specified by attr from the session.

void setAttribute(String attr, Object val) Associates the value passed in val with the attribute name passed
in attr.

TABLE 31-7 The Methods Defined by HttpSession

Method Description

void sendError(int c)
throws IOException

Sends the error code c to the client.

void sendError(int c, String s)
throws IOException

Sends the error code c and message s to the client.

void sendRedirect(String url)
throws IOException

Redirects the client to url.

void setDateHeader(String field, long msec) Adds field to the header with date value equal to msec
(milliseconds since midnight, January 1, 1970, GMT).

void setHeader(String field, String value) Adds field to the header with value equal to value.

void setIntHeader(String field, int value) Adds field to the header with value equal to value.

void setStatus(int code) Sets the status code for this response to code.

TABLE 31-6 Various Methods Defined by HttpServletResponse (continued)

https://hemanthrajhemu.github.io

user visits an online store. A cookie can save the user’s name, address, and other information.
The user does not need to enter this data each time he or she visits the store.

A servlet can write a cookie to a user’s machine via the addCookie() method of the
HttpServletResponse interface. The data for that cookie is then included in the header of
the HTTP response that is sent to the browser.

The names and values of cookies are stored on the user’s machine. Some of the information
that is saved for each cookie includes the following:

• The name of the cookie
• The value of the cookie
• The expiration date of the cookie
• The domain and path of the cookie

The expiration date determines when this cookie is deleted from the user’s machine. If
an expiration date is not explicitly assigned to a cookie, it is deleted when the current browser
session ends. Otherwise, the cookie is saved in a file on the user’s machine.

The domain and path of the cookie determine when it is included in the header of an
HTTP request. If the user enters a URL whose domain and path match these values, the cookie
is then supplied to the Web server. Otherwise, it is not.

There is one constructor for Cookie. It has the signature shown here:

Cookie(String name, String value)

Here, the name and value of the cookie are supplied as arguments to the constructor. The
methods of the Cookie class are summarized in Table 31-8.

920 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Method Description

Object clone() Returns a copy of this object.

String getComment() Returns the comment.

String getDomain() Returns the domain.

int getMaxAge() Returns the maximum age (in seconds).

String getName() Returns the name.

String getPath() Returns the path.

boolean getSecure() Returns true if the cookie is secure. Otherwise, returns false.

String getValue() Returns the value.

int getVersion() Returns the version.

void setComment(String c) Sets the comment to c.

void setDomain(String d) Sets the domain to d.

void setMaxAge(int secs) Sets the maximum age of the cookie to secs. This is the
number of seconds after which the cookie is deleted.

void setPath(String p) Sets the path to p.

void setSecure(boolean secure) Sets the security flag to secure.

void setValue(String v) Sets the value to v.

void setVersion(int v) Sets the version to v.

TABLE 31-8 The Methods Defined by Cookie

https://hemanthrajhemu.github.io

The HttpServlet Class
The HttpServlet class extends GenericServlet. It is commonly used when developing servlets
that receive and process HTTP requests. The methods of the HttpServlet class are summarized
in Table 31-9.

The HttpSessionEvent Class
HttpSessionEvent encapsulates session events. It extends EventObject and is generated when
a change occurs to the session. It defines this constructor:

HttpSessionEvent(HttpSession session)

Here, session is the source of the event.
HttpSessionEvent defines one method, getSession(), which is shown here:

HttpSession getSession()

It returns the session in which the event occurred.

C h a p t e r 3 1 : S e r v l e t s 921

Method Description

void doDelete(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP DELETE request.

void doGet(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP GET request.

void doHead(HttpServletRequest req,
HttpServletResponse res)

throws IOException,
ServletException

Handles an HTTP HEAD request.

void doOptions(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP OPTIONS request.

void doPost(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP POST request.

void doPut(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP PUT request.

void doTrace(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Handles an HTTP TRACE request.

long
getLastModified(HttpServletRequest req)

Returns the time (in milliseconds since midnight, January 1,
1970, GMT) when the requested resource was last modified.

void service(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Called by the server when an HTTP request arrives for this
servlet. The arguments provide access to the HTTP request and
response, respectively.

TABLE 31-9 The Methods Defined by HttpServlet

https://hemanthrajhemu.github.io

922 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

The HttpSessionBindingEvent Class
The HttpSessionBindingEvent class extends HttpSessionEvent. It is generated when a listener
is bound to or unbound from a value in an HttpSession object. It is also generated when an
attribute is bound or unbound. Here are its constructors:

HttpSessionBindingEvent(HttpSession session, String name)
HttpSessionBindingEvent(HttpSession session, String name, Object val)

Here, session is the source of the event, and name is the name associated with the object that is
being bound or unbound. If an attribute is being bound or unbound, its value is passed in val.

The getName() method obtains the name that is being bound or unbound. It is shown
here:

String getName()

The getSession() method, shown next, obtains the session to which the listener is being
bound or unbound:

HttpSession getSession()

The getValue() method obtains the value of the attribute that is being bound or unbound.
It is shown here:

Object getValue()

Handling HTTP Requests and Responses
The HttpServlet class provides specialized methods that handle the various types of HTTP
requests. A servlet developer typically overrides one of these methods. These methods are
doDelete(), doGet(), doHead(), doOptions(), doPost(), doPut(), and doTrace(). A complete
description of the different types of HTTP requests is beyond the scope of this book. However,
the GET and POST requests are commonly used when handling form input. Therefore, this
section presents examples of these cases.

Handling HTTP GET Requests
Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked when
a form on a web page is submitted. The example contains two files. A web page is defined
in ColorGet.htm, and a servlet is defined in ColorGetServlet.java. The HTML source code
for ColorGet.htm is shown in the following listing. It defines a form that contains a select
element and a submit button. Notice that the action parameter of the form tag specifies a URL.
The URL identifies a servlet to process the HTTP GET request.

<html>
<body>
<center>
<form name="Form1"
action="http://localhost:8080/servlets-examples/servlet/ColorGetServlet">

Color:
<select name="color" size="1">

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 923

<option value="Red">Red</option>
<option value="Green">Green</option>
<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorGetServlet.java is shown in the following listing. The doGet()
method is overridden to process any HTTP GET requests that are sent to this servlet. It uses
the getParameter() method of HttpServletRequest to obtain the selection that was made
by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorGetServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String color = request.getParameter("color");
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.println("The selected color is: ");
pw.println(color);
pw.close();

}
}

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

1. Start Tomcat, if it is not already running.

2. Display the web page in a browser.

3. Select a color.

4. Submit the web page.

After completing these steps, the browser will display the response that is dynamically
generated by the servlet.

One other point: Parameters for an HTTP GET request are included as part of the URL that
is sent to the web server. Assume that the user selects the red option and submits the form.
The URL sent from the browser to the server is

http://localhost:8080/servlets-examples/servlet/ColorGetServlet?color=Red

The characters to the right of the question mark are known as the query string.

https://hemanthrajhemu.github.io

924 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Handling HTTP POST Requests
Here we will develop a servlet that handles an HTTP POST request. The servlet is invoked
when a form on a web page is submitted. The example contains two files. A web page is
defined in ColorPost.htm, and a servlet is defined in ColorPostServlet.java.

The HTML source code for ColorPost.htm is shown in the following listing. It is identical
to ColorGet.htm except that the method parameter for the form tag explicitly specifies that
the POST method should be used, and the action parameter for the form tag specifies a
different servlet.

<html>
<body>
<center>
<form name="Form1"
method="post"
action="http://localhost:8080/servlets-examples/servlet/ColorPostServlet">

Color:
<select name="color" size="1">
<option value="Red">Red</option>
<option value="Green">Green</option>
<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorPostServlet.java is shown in the following listing. The doPost()
method is overridden to process any HTTP POST requests that are sent to this servlet. It uses
the getParameter() method of HttpServletRequest to obtain the selection that was made
by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorPostServlet extends HttpServlet {

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String color = request.getParameter("color");
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.println("The selected color is: ");
pw.println(color);
pw.close();

}
}

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 925

Compile the servlet and perform the same steps as described in the previous section
to test it.

NOTEOTE Parameters for an HTTP POST request are not included as part of the URL that
is sent to the web server. In this example, the URL sent from the browser to the server is
http://localhost:8080/servlets-examples/servlet/ColorPostServlet.
The parameter names and values are sent in the body of the HTTP request.

Using Cookies
Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked when
a form on a web page is submitted. The example contains three files as summarized here:

File Description

AddCookie.htm Allows a user to specify a value for the cookie named MyCookie.

AddCookieServlet.java Processes the submission of AddCookie.htm.

GetCookiesServlet.java Displays cookie values.

The HTML source code for AddCookie.htm is shown in the following listing. This page
contains a text field in which a value can be entered. There is also a submit button on the
page. When this button is pressed, the value in the text field is sent to AddCookieServlet
via an HTTP POST request.

<html>
<body>
<center>
<form name="Form1"
method="post"
action="http://localhost:8080/servlets-examples/servlet/AddCookieServlet">

Enter a value for MyCookie:
<input type=textbox name="data" size=25 value="">
<input type=submit value="Submit">
</form>
</body>
</html>

The source code for AddCookieServlet.java is shown in the following listing. It gets the
value of the parameter named “data”. It then creates a Cookie object that has the name
“MyCookie” and contains the value of the “data” parameter. The cookie is then added to
the header of the HTTP response via the addCookie() method. A feedback message is then
written to the browser.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookieServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

https://hemanthrajhemu.github.io

926 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

HttpServletResponse response)
throws ServletException, IOException {

// Get parameter from HTTP request.
String data = request.getParameter("data");

// Create cookie.
Cookie cookie = new Cookie("MyCookie", data);

// Add cookie to HTTP response.
response.addCookie(cookie);

// Write output to browser.
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.println("MyCookie has been set to");
pw.println(data);
pw.close();

}
}

The source code for GetCookiesServlet.java is shown in the following listing. It invokes
the getCookies() method to read any cookies that are included in the HTTP GET request. The
names and values of these cookies are then written to the HTTP response. Observe that the
getName() and getValue() methods are called to obtain this information.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookiesServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// Get cookies from header of HTTP request.
Cookie[] cookies = request.getCookies();

// Display these cookies.
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.println("");
for(int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName();
String value = cookies[i].getValue();
pw.println("name = " + name +
"; value = " + value);

}
pw.close();

}
}

https://hemanthrajhemu.github.io

C h a p t e r 3 1 : S e r v l e t s 927

Compile the servlets. Next, copy them to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

1. Start Tomcat, if it is not already running.

2. Display AddCookie.htm in a browser.

3. Enter a value for MyCookie.

4. Submit the web page.

After completing these steps, you will observe that a feedback message is displayed by the
browser.

Next, request the following URL via the browser:

http://localhost:8080/servlets-examples/servlet/GetCookiesServlet

Observe that the name and value of the cookie are displayed in the browser.
In this example, an expiration date is not explicitly assigned to the cookie via the setMaxAge()

method of Cookie. Therefore, the cookie expires when the browser session ends. You can
experiment by using setMaxAge() and observe that the cookie is then saved to the disk on
the client machine.

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However, in
some applications, it is necessary to save state information so that information can be collected
from several interactions between a browser and a server. Sessions provide such a mechanism.

A session can be created via the getSession() method of HttpServletRequest. An
HttpSession object is returned. This object can store a set of bindings that associate names with
objects. The setAttribute(), getAttribute(), getAttributeNames(), and removeAttribute()
methods of HttpSession manage these bindings. It is important to note that session state is
shared among all the servlets that are associated with a particular client.

The following servlet illustrates how to use session state. The getSession() method gets the
current session. A new session is created if one does not already exist. The getAttribute()
method is called to obtain the object that is bound to the name “date”. That object is a Date
object that encapsulates the date and time when this page was last accessed. (Of course, there
is no such binding when the page is first accessed.) A Date object encapsulating the current
date and time is then created. The setAttribute() method is called to bind the name “date”
to this object.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DateServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

https://hemanthrajhemu.github.io

// Get the HttpSession object.
HttpSession hs = request.getSession(true);

// Get writer.
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
pw.print("");

// Display date/time of last access.
Date date = (Date)hs.getAttribute("date");
if(date != null) {
pw.print("Last access: " + date + "
");

}

// Display current date/time.
date = new Date();
hs.setAttribute("date", date);
pw.println("Current date: " + date);

}
}

When you first request this servlet, the browser displays one line with the current date
and time information. On subsequent invocations, two lines are displayed. The first line shows
the date and time when the servlet was last accessed. The second line shows the current date
and time.

928 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

