Furure Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Pa

Or
Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

€

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

*. J2EE: The Complete Reference

RmdingDamfmmaCIile]nt 1,-q Ii;
ne . .'t‘(,‘ﬂll.‘. """""") 2 . o I3
Reading HTTP Reques t and Writing the HTTP Response Header 150

Sending Datato a Client and Writing T 25570 28
: . o MER .. .o penissayssy s sp¥Enae cTsasigtagy, 1(‘4
Working with Cookies

Tracking Sessions """ 67
Quick Reference GUIdeoocooreemrrrrrsmrmsmsseee, %9
T11 11 JavaServerPageseeeneerrenerrir e, 379
JSP ... 35\0
INStALIAHOM o vvcveenoersnrmesnsasessocstosssnnen,, 380
JSBTRRE ..oioiis wvaws sammmon mnanbet s oo bta panessvaing 38]
Variables and Objectscooevvveneennnnn 38)
MethOdS «vvviveerrvnennrresansnosonnsnneiaenn,,,, 384
Control Statements ...ooeuvvemeenereenereiii i, 385

LOOPS +vocvvernennennnnosunsnsneseassseneiiannii,, 387

TOMCAt .\ vvveeevnoasnnsasassoasassnssesssssossostionna,,, 389
RequestStringocovveveieanancinneeiciiiinanaa,,, 390
Parsing Other Informationooooiiiil), 391
ESErSERIONS: o5+ 59 i e s WHred 58 675 SRR A5 5 SR T4 50 & 4o 392
(@070 < 13- 392
SeSSIOMODIBEIS 55 55 565+ 55 - 5w i 310 = 50 womi o 68 SRR 0 « Wiiis ss i 394
Quick Reference Guide .. .ocwuie swmomas s s mpaae i@ @i s s 39
“lll 12 EnterpriseJavaBeans o 405
EnterpriseJavaBeans i, 406
The EJB Container” e mwm wammmis i o osssise s ¥ s o i 407
EJBClassescceiviiiiiiiinnniniiniiiinnnnnn., 407
EJBInterfacescoviuuiiiiiiiiiiiinnnnann., 407
Deployment Descriptorscooiiiiiiiiiinnnn.... 409
The Anatomy of a Deployment Descriptor 411
EnvironmentElements 417
Referencing EJB ... 418
Reference Other Resources 420

Sharing Resourcescovuiuvinennennnnnn.. 420
Security Elementsiciiiiiiiiiinian, 421

Query Element, 421
Relationship Elements 423
Assembly Elements 424

Exclude List Element 431
SessionJavaBean 431
Stateless vs. Stateful 432
Creating a Session JavaBean 432

Entity JavaBean 434

L hteps:/hemanthrajhemu.github.io

The
Complete

Reference

Java ServerPages

379

|

i" hé¢eps:/hemanthrajhemu.github.io

380 J2EE: The Complete Reference

Java ServerPage (JSP) 152 u»n-l.r\f.ido{ pmgm.m lhtu is similar in desig,
functionality to a Java «rvlet, which is .dvscnbvd in the pPrevious chapy :1n‘|
-alled by a client to provide a web service, th.' nﬂll.ll'l.‘. of which dep, N
application. A [SP processes the request by using logic built Into the JSp
web components bunlt using Java serviet lL‘Chl’lO'(?g-y or Elﬂt‘rpl’lbc Jav
created using other technologies. Once the request is processed, the
sending the results to the client. . '
However, a ISP differs trom a Java serviet in ll}c way in which the ISP ;
As vou'll recall from Chapter 9, a Java servlet is written using the Java Prog
language and responses are encoded as an output Strmg object that is
printin() method. The output String object is formatted in HTML, XML
formats are required by the client. . .
In contrast, JSP is written in HTML, XML, or in the client’s format that is iny,
with scripting elements, directives, and actions comprised of Java Programmin trs erserd
language and JSP syntax. In this chapter you'll learn how to create a JSp that
be used as a middle-level program between clients and web services, :

or hv' . 3 JF
Y Cajl

"Bcﬂn bk In

]

Jst feSpong

.] l’) !',

, Or \\.hn I‘f\;i.r

o 3 - -

__lisp —

A]SP is simpler to create than a Java servlet because a JSP is written in HTML rather
than with the Java programming language. This means that the JSP isn’t cluttered wig,
many println() methods as found in a Java servlet. However, a JSP offers basically the
same features found in a Java servlet because a JSP is converted to a Java servlet the
first time that a client requests the JSP.

There are three methods that are automatically called when a JSP is requested and
when the JSP terminates normally. These are the jspInt() method, the jspDestroy/()
method, and the service() method. These methods can be overridden, although the
jspInt() method and jspDestroy() methods are commonly overridden in a JSP to
provide customized functionality when the JSP is called and terminates.

The jspInt() method is identical the init() method in a Java servlet and in an applet
The jspInt() method is called first when the JSP is requested and is used to initialize
objects and variables that are used throughout the life of the JSP.

The jspDestroy() method is identical to the destroy() method in a Java ser\"lt’l‘ﬂ“f
destroy() method is automatically called when the JSP terminates normally. It isn'
called if the JSP abruptly terminates such as when the server crashes. The destroy()
method is used for cleanup where resources used during the execution of the JSP are
released, such as disconnecting from a database.

The service() method is automatically called and retrieves a co

nnection to HTTD

Installation

Once a JSP is created, you place the JSP in the same directory as HTML pa5®
from - Java servlet, which must be placed in a particular directory that is inc
CLASSPATH You don’t need to set the CLASSPATH to reference a JSP.

hub.io g

. This difi®

i) "o
: ludcd n U

Chapter 11: Jaya SenerPagu r;&{ 2

L=

three factors that you must :

ever, there are you mus n installi

?;Zb services called by a JSP must be installed Properly. For exa;;;?eg :]J;?\I:a
ﬁrstl.et called by a JSP must be placed in the designated dire .
v

ct f
5 d referenced on the CLASSPATH. The developmen ory for Java servlets

; A tenvironment used to cre
an »EE app]ication determines the designated directory, create
c -

The second factor to be addressed is to avoid Placing the JSP in the WEB-INF or
ETA'INF directories. The development environment Prohibits this. The Jast factor
M hat the directory name used to store a JSP mustn’t haye

the sa : .
isf h‘:URL of tie veeh application, same name as the prefix
oft

address whe

“JlsP Tags

AJSP program consists of a combination of HTML tags and JSP t

Java code that is to be executed before the output of the JSP pro
Ser.

hm\; JSP tag begins with a <%, which is followed by Java code, and ends with %>.

There is also an Extendable Markup Language (XML) version of JSP tags, which are

formatted as <jsp:TagID> </JSP:TagID>.

JSP tags are embedded into the HTML component of a JSP program and are
processed by a JSP virtual engine such as Tomcat, which is discussed later in this
chapter. Tomcat reads the JSP program whenever the program is called by a browser
and resolves JSP tags, then sends the HTML tags and related information to the browser.

Java code associated with JSP tags in the JSP program is executed when encountered
by Tomcat, and the result of that process is sent to the browser. The browser knows how
to display the result because the JSP tag is enclosed within an open and closed HTML tag.
You'll see how this works in the next section.

There are five types of JSP tags that you'll use in a JSP program. These are as
follows:

ags. JSP tags define
gram is sent to the

B Comment tag A comment tag opens with <%-- and closes with --%>, and is

followed by a comment that usually describes the functionality of statements
that follow the comment ta g

B Declaration statement tags A declaration statement tag opens with <%! and is
followed by a Java declaration statement(s) that define variables, objects, and
methods that are available to other components of the JSP program.

Directive tags A directive tag opens with <%@ and commands the JSP virtual
engine to perform a specific task, such as importing a Java package required by
objects and methods used in a declaration statement. The directive tag closes
With %>. There are three commonly used directives. These are import, include,
and taglib, The import tag is used to import Java packages into the JSP program.

€include tag inserts a specified file into the JSP program replacing the include
tag. The taglib tag specifies a file that contains a tag library. Here are examples of
€ach tag, The first tag imports the java.sql package. The next tag includes

ttps:/hemanthrajhemu.github.io

» £ 0N

<

—

382

J2EE: The Complete Reference

the books.html file located in the keogh directory And the last ¢

myTags.tld library. g 1o i
he
<%0 page import=" import java.sql,*"; %>
<%0 include file="keogh\books.html" %>
<%0 taglib uri="myTaga.tld" %>
B Expression tags An expression tag opens with <% and jg g
expression statement whose result replaces the eXpression t, Oran

e ") - 5 Xpression t; g ent
virtual engine resolves JSP tags. An expression tags closes with % he JSp

B Scriptlet tags A scriptlet tag opens with <% and contains ¢q

control statements and loops. A scriptlet tag closes with %>, mo"l)’ Usay h
Y

Variables and Objects

Listing 111
Declaring
and using a
variable.

You can declare Java variables and objects that are used in a JSP progra
the same coding technique as used to declare them in Java,
statement must appear as a JSP tag within the JSP program
is used in the program,

Listing 11-1 shows a simple JSP program that declares and useg 5 Variab]e
example, the program declares an int called age and initializes the variabje W In
number 29. The declaration statement is placed within JSP tag. 1th the

You'll notice that this JSP tag begins with <%!. This tells the JSP virtua] By
make statements contained in the tag available to other JSP tags in the prograﬁni to
need to do this nearly every time you declare variables or objects in your Progr; ouT)
unless they are only to be used within the JSP tag where they are declareg ©°

The variable age is used in an expression tag that is embedded within the
paragraph tag <P>. A JSP expression tag begins with <%=, which is followed by the
expression.

The JSP virtual engine resolves the JSP expression before sendin
the JSP program to the browser. That is, the JSP tag <%=age

number 29; afterwards, the HTML paragraph tag and relate
the browser.

However, the zcl,'::"s
before the Variab|q oart::i\
ot

1ding the outpuyt of
%> is replaced with the
d information is sen to

<HTML>
<HEAD>
<TITLE> JSP Programming </TITLE>
</HEAD>
<BODY>
<%! int age=29; %>
<P> Your age is: <%=age%> </P>
</BODY>
</HTML>

hettps:/hemanthrajhemu.github.io —

Chapter 11: Java ServerPages 383 |

i '

Any Java declaration statement can be used in a JSP tag similar to how those

5‘“‘;""“3"“1;‘ ‘"}' “‘SL‘;! ina Java program. You are able to place multiple statements within
aJSP tag by extending the close JSP tag to another line in the JSP program, This is :
illustrated in Listing 11-2 where three variables are declared ' :

&

o

Jlﬂ“‘ 112 <HTML> i

Declaring <HEAD>)
ultiple '
vl:names <TITLE> JSP Programming </TITLE>
JSP tag. <BODY>

<%! int age=29; i
float salary; ‘
int empnumber; '
3>
</BODY>
</HTML>

Besides variables, you are also able to declare objects, arrays, and Java collections
within a JSP tag using techniques similar to those used in a Java program. Listing 11-3
shows how to declare an object and an array.

In Listing 11-3, the JSP program creates three String objects, the first two declarations
implicitly allocate memory, and the third declaration explicitly allocates memory. In
addition, this JSP program creates arrays and a Vector.

Listing 11-3 <HTML>

i-n-m-‘.!""*“-"ﬂ :

Declaring <HEAD>
objects and <TITLE> JSP Programming </TITLE>
ol o
single <BODY>
JSP tag. <%! String Name;

String [] Telephone = {"201-555-1212", "201-555-4433"};

String Company = new String(); |

Vector Assignments = new Vector();

int[] Grade = {100,82,93}; l!
%>

</BODY>
</HTML>

heeps:/hemanthrajhemu.github.io |

384

Methods

Listing 114
Defining
and calling
a method.

J2EE: The Complete Reference

h as definin
s ith Java programs, suc g
JSP offers the same versatility that you have ‘:q](t:l}god ispdefined similar to how a

methods that are local to the JSP program. A inition is placed withij
method is defined in a Java program except the method definition i p hin
’ 15{'(:31;““ call the method from within the J5P tag ox;cet?:r;“ect:‘: : ilss; aesfs:le‘s(i.
Listing 11-4 illustrates how this is done. In this example, 2 cuméd grade:
student’s grade and then applies a curve before returnmgh in this program
The method is called from within an HTML paragl'aI; fjagT:zchnic zﬁly the r;letho q
although any appropriate tag can be used to call the r'netho ﬁTML o ' hia
is called from within the JSP tag that is enclosed within t e t fvhic%\ bI; 'nsgt.v'
The JSP tag that calls the method must be a JSP expression 1ag, thod i %; d l'th'
<%=. You'll notice that the method call is identical to the way a m‘lgl Oh 18 Ce:hed Within
a Java program. The JSP virtual engine resolves the JSP tag that c;\' ; t-si;:ﬁ (a) b()j(
replacing the JSP tag with the results returned by the method, which 1 passe

along to the browser that called the JSP program.

<HTML>
<HEAD>
<TITLE> JSP Programming </TITLE>
< /HEAD>
<BODY>
<%! boolean curve (int grade)
{
return 10 + grade;
}
>
<P> Your curved grade is: <%=curve(80)%> </P>
</BODY>
</HTML>

A JSP program is capable of handling practically any kind of method that you
normally use in a Java program. For example, Listing 11-5 shows how to define and
use an overloaded method.

Both methods are defined in the same JSP tag, although each follows Java syntax
structure for defining a method. One method uses a default value for the curve, while
the overload method enables the statement that calls the method to provide the value
of the curve.

Once again, these methods are called from an embedded JSP tag placed inside two
HTML paragraph tags.

hettps:/hemanthrajhemu.github.io

o ———

Chapter 11: Java ServerPages |

e

TML>
115 <H
gting kot <HEAD>
De :
mcﬂmg <TITLE> JSP Programmlng </TITLE>
’ method </HEAD>
and 8" BODY>
erloaded) %! boolean ¢ i
e ethod: <%! (urve (int grade)
return 10 + grade;
}
boolean curve (int grade, int curveValue)
(
return curveValue + grade;
}
$>

<P> Your curved grade is: <%=curve (80, 10)%> </P>
<P> Your curved grade is: <%=curve(70)%> </P>
< /BODY>

</HTML>

Control Statements

One of the most powerful features available in JSP is the ability to change the flow
of the program to truly create dynamic content for a web page based on conditions
received from the browser.

There are two control statements used to change the flow of a JSP program. These
are the if statement and the switch statement, both of which are also used to direct the
flow of a Java program.

The if statement evaluates a condition statement to determine if one or more lines
of code are to be executed or skipped (as you probably remember from when you
learned Java). Similarly, a switch statement compares a value with one or more other
values associated with a case statement. The code segment that is associated with the
matching case statement is executed. Code segments associated with other case
statements are ignored.

The power of these controls comes from the fact that the code segment that is
executed or skipped can consist of HTML tags or a combination of HTML tags and JSP
tags. That is, these code segments don’t need to be only Java statements or Java tags.

Listing 11-6 shows how to intertwine HTML tags and JSP tags to alter the flow of
the JSP program. You'll notice that this program is confusing to read because the if

| statement and the switch statement are broken into several JSP tags. This is necessary
because HTML tags are interspersed within these statements. o _

The if statement requires three JSP tags. The first contains the beginning of the if
statement, including the conditional expression. The second contains the else statement,
and the third has the closed French brace used to terminate the else block.

b
N
m-
s
c
z
>
=
=)
=z

—https:/hemanthrajhemu.github.io 4

Usting 116
Using an if
statement

and a switch

| statement to
determine

i which HTML

i tags and

i information

i are to be

i sent to

{ the browser.

J2EE: The Complote Reference

o browser displays, depeng
Two HTML paragraph tags contain information "l‘}“ :I““.,,wm, Only (lmv of Ilule I I'I'N'j‘lg
unlhvvvuhnﬂhn\nlHuwwnuﬂunnnlv\pnvmhn\hl"“\lH;)nnvqur ‘
- RO " ner,
paragraph tags and related information are s nt to th GI? tags because each case
‘Thveﬂvﬂchshﬂvuuwn.ﬂnnlnlhvhhullnh)N“V"rdani.?:nnnlhu\ And nq‘vhh
statement \\‘\]"h‘l‘.‘i an HITML l\."'.\}’,l'dl‘h g and I‘('llll.('(l ': ; ln[()f“\ﬂiiun ,1:;_l;(.)c]n“. |
the if statement, only one HTTML paragraph tag and re «111;: ~ail 5 thie l)r;)‘h,q(jr ¢
with a case statement that matches the switeh value are returie i
\ . f.|_|p“ﬂhqnuntnndenvﬂthﬂhnvnunu.Ybu
Listing 11-6 contains simple examples of the 11 R T
= . _ o such as Lesting if statements, by using techniqueg
can create more complex statements, suchyas d , use in Java can al
iHusuuhnlh\Hﬂsvwnnqﬂuz\nyfknvcnnlnﬂshncnunﬂslrnlyyturu)rL;q;“éJS;S”
y - ») rcare 5€Pi
boukvquwnwdhuunjﬂ‘mngmnhIhnwycnym'mum nf hen the Jovhnfqﬂ
" O) v 4 £
tags from HTML tags and information that will be executed whe progri ow
changes.

<HTML>
<HEAD>
<TITLE> JSP Programming </TITLE>
</HEAD>
<BODY>
<%! int grade=70;%>
<% if (grade > 69) (%>
<P> You pasaed! </P>
<%) else (%>
<P> Better luck next time.
<% } %>
<% switch (grade) {
case 90 : %>
<P> Your final grade is a A </P>
<% break; %>
case 80 : %>
<P> Your final grade is a B </P>
<% break;
case 70 : %>
<P> Your final grade is a C </P>
<% break;
case 60 : %>
<P> Your final grade is an F </P>
<% break;

</P>

%>
</BODY>
</HTML>

e

—

Chaplor 11: Java ServerPages 367 :'

LoopS
JSP loops ar® '.w'"ly Identical to loops that youuse in your fava program except you il
can repeat HTML tags and related nformation multiple times wilhl’ft our J"l?):» ram il
without havmlg to (.-‘ah-rl llu‘- ;ultlltlnn.\l HTMI tagy, your JSI" progri il

sre are three kinds of loop:
Im;:l:'i‘r:wh"c Joap, and the :(l)ll))“;::ll:l‘ll:-‘(]:',:l,:; u‘u}c‘:‘l fl‘l)lrﬂ' (])Sl) program. These are the for 'l
qumber of times, although you can create an endlegy ﬁ): 'll"nl’t h(“.jll‘y;,c ;:ou:.:ll!li/‘ (.: -;,rw:'rbitﬂvd 1
jearned when you were introduced to Java, P y ot

The while loop executes continually as long ag a specified condition remaing true
However, the while loop may not execute because the condition may never |‘,(. true ' |
In contrast, the do...while loop executes at least once; afterwards, the conditional d i
expression in the do...while loop s evaluated to determine if thu’l(miv should be
executed another time. |

Loops play an important role in JSP database programs because loops are used |
to populate HTML tables with data in the result set. However, Listing 11-7 shows a |
similar routine used to populate three HTML tables with values assigned to an array. |

All the tables appear the same, although a different loop is used to create each table.
The JSP program initially declares and initializes an array and an integer, and then
begins to create the first table,

There are two rows in each table. The first row contains three column headings that
are hard coded into the program. The second row also contains three columns each of
which is a value of an element of the array.

The first table is created using the for loop. The opening table row tag <TR> is
entered into the program before the for loop begins. This is because the for loop is only
populating columns and not rows,

A pair of HTML table data cell tags <TD> are placed inside the for loop along with
a JSP tag that contains an element of the array. The JSP tag resolves to the value of the
array element by the JSP virtual program.

The close table row </TR> tag and the close </TABLE> tag are inserted into the
program following the French brace that closes the for loop block. These tags terminate
the construction of the table,

A similar process is used to create the other two tables, except the while loop and
the do...while loop are used in place of the for loop.

Wy

4 [il
- pi f e ' Sl -
e W i PIRETS =a

g

.y
R

isting 117 | <HTML>

Using the <HEAD>
m'jz mp. <TITLE> JSP Programming </TITLE>
and tr?e </HEAD>
do...while <BODY>
loop to load
HTML
tables,

ht¢eps:/hemanthrajhemu.github.io

av e hSLTT

N
388 }IZEE: The Complete Reference

<! int() Grade = (100,82,93);
int x=0;
>
<TABLE>
<TR>
<TD>First</TD>
<TD>Second</TD>
<TD>Third</TD>
</TR>
<TR>
<% for (int 1; i<3; i++) { %>
<TD><%=Grade[1]%> </TD>
<% } %>
</TR>
</TABLE>
<TABLE>
<TR>
<TD>First</TD>
<TD>Second</TD>
<TD>Third</TD>
</TR>
<TR>
<% while (x<3){ %>
<TD><%=Grade([x] %> </TD>
<% X++;
} %
</TR>
</TABLE>
<TABLE>
<TR>
<TD>First</TD>
<TD>Second</TD>
<TD>Third</TD>
</TR>
<TR>
<% x=0;
do{ %>
<TD><%=Grade [x] $></TD>
<HX++;
} while (x<3) %>

ht¢eps:/hemanthrajhemu.github.io

- o
Chapter 11: Jaya ServerPages 389 |
e
</TR>
</TABLE> o
</BODY> \',j
</HTML> d

G Tomcat

JSP programs are exccuted by a JSP Virtual Machine that runs on a web server.
Therefore, you'll need to have access to 5 JSP Virtual

Alternatively, you can use an integrated development en

that has a built-in JSP Virtual Machine or you can download and install a JSP Virtual ()
Machine. |

One of the most popular JSP Virtual Machines is Tomcat, and it is downloadable at

ache is also a popular web server that you can

also download at no cost.

You'll also need to have the Java Development Kit (JDK) installed on your computer,

which you probably installed when you learned Java programming, You can download
the JDK at no charge from the www.sun.com web site.

Here’s what you need to do to download and install Tomcat:

1. Connect to jakarta.apache.org.
2. Select Download.

3. Select Binaries to display the Binary Download page.
4. Create a folder from the root directory called tomcat.

bl
N
m
m
3
=
Z
»
=
=]
z

B e e S

5. Download the latest release of jakarta-tomcat.zip to the tomcat folder.

6. Unzip jakarta-tomcat.zip. You can download a demo copy of WinZip from

www.winzip.com if you don’t have a zip/unzip program installed on your
computer.

7. The extraction process should create the following folders in the tomcat
directory: bin, conf, doc, lib src, and webapps.

8. Use a text editor such as Notepad and_edit the JAVA_ HOME variable in the
tomcat.bat file, which is located in the \tomcat\bin folder. Make sure the x
JAVA_HOME variable is assigned the path where the JDK is installed on
your computer.

9. Open a DOS window and type \tomeat\bin\tomcat to start Tomcat.

10. Open your browser. Enter http://localhost:8080. The Tomcat home page is
displayed on the screen verifying that Tomcat is running,

L
;!‘!
i
g

hteps:/hemanthrajhemu.github.io i
¥_—~—J

5

390)2EE: The Complete Reference

[Request String

—

ever the Submit button is selecteq

The browser generates a user request string when :
generates a ue q b tring, as you learned at the

The user request string consists of the URL and the q.UCl"Y 5
beginning of this chapter. Here's a typical request string;

I http://www.jimkcogh.com/jSp/mYDrogram'jSp?fnamer_”BOb klname="Smiths

Your program needs to parse the query string to extract_values of fields that are tq
be processed by your program. You can parse the query string by using methods of the
JSP request object. s o

The getParameter(Name) is the method used to parse a value of a Sp(?lelC field. The
getParameter() method requires an argument, which is the name of the field whose
value you want to retrieve. .

Let’s say that you want to retrieve the value of the fname field and the \llalue of the
Iname field in the previous request string. Here are the statements that you'll need in
your JSP program:

<%! String Firstname = request.getParameter (fname);
String Lastname = request.getParameter (lname) ;
>

In the previous example, the first statement used the getParameter() method to copy
the value of the fname from the request string and assign that value to the Firstname
object. Likewise, the second statement performs a similar function, but using the value
of the Iname from the request string. You can use request string values throughout your
program once the values are assigned to variables in your JSP program.

There are four predefined implicit objects that are in every JSP program. These are
request, response, session, and out. The previous example used the request object’s
getParameter() method to retrieve elements of the request string. The request object is
an instance of the HttpServletRequest (see Chapter 9). The response object is an instance
of HttpServletResponse, and the session object is an instance of HttpSession. Both of
these are described in detail in Chapter 9. The out object is an instance of the JspWriter
that is used to send a response to the client.

Copying a value from a multivalued field such as a selection list field can be tricky
since there are multiple instances of the field name, each with a different value. However,
you can easily handle multivalued fields by using the getParameterValues() method.

The getParameterValues() method is designed to return multiple values from
the field specified as the argument to the getParameterValues(). Here is how the
getParameterValues() is implemented in a JSP program,

heteps:/hemanthrajhemu.github.io

i

tng 138
gelecting
o listing

In this example, we're retrieving the selection list fj in Listi
O A § st field shown in Listing 11-8. The
pame of the selection list field is EMAILADDRESS, the values of which arg copied into

an array of String objects called EMALL, Elements of the array are then displayed in JSP
expression tags. play

<¥! String [] EMAIL = request.getParan
<p> <%= EMAIL [0)%> </p>
<pP> <%= EMAIL [1)%> </p>

eterValues ("EMAILADDRESS ") ; %>

ou can parse field names by using the getParameterNames() method. This method
returns an enumeration of String objects that contains the field names in the request
string. You can use the enumeration extracting methods that you learned in Javato
copy field names to variables within your program.
The Quick Reference Guide in Chapter 9 contains a list of other commonly used
HttpServletRequest class methods that you'll find useful when working with parameters.

Parsing Other Information

The request string sent to the JSP by the browser is divided into two general components
that are separated by the question mark. The URL component appears to the left of the
question mark and the query string is to the right of the question mark.

In the previous section you learned how to parse components of the query string,
which are field names and values using request object methods. These are similar to
the method used to parse URL information,

The URL is divided into four parts, beginning with the protocol. The protocol defines
the rules that are used to transfer the request string from the browser to the JSP program.
Three of the more commonly used protocols are HTTP, HTTPS (the secured version of
HTTP), and FTP, which is a file transfer protocol.

Next is the host and port combination. The host is the Internet Protocol (IP) address
or name of the server that contains the JSP program. The port number is the port that
the host monitors. Usually the port is excluded from the request string whenever HTTP
is used because the assumption is the host is monitoring port 80. Following the host
anc port is the virtual path of the JSP program. The server maps the virtual path to the
physical path.

Here’s a typical URL. The http is the protocol. The host is www.jimkeogh.com.
There isn’t a port because the browser assumes that the server is monitoring port 80.
The virtual path is /jsp/myprogram jsp.

I http://www.jimkeogh.com/jsp/myprogram.jsp

301

Chapter 11: Jaya ServerPages ,

R
L
3
=
z-
5
o
=

hteps:/hemanthrajhemu.github.io

T

« 4

"
392 J'lm: The Complete

Reference
|| User Sessions s bfﬁf:f;nugerM;efﬁfi
2 com
AJSP program must b'f) -11’]‘L . Chapter 9, There ' e ookie, or by using A
?n? JSE szg;::‘l::%q‘;lsil;:s; :;ing aphidden field, by using
o track a session. These:

L i t chapter: ..t displayed on the
-aBean, which is discussed in the nex alue isn’t dispiay :
o 1:3;1:3;1\0\1?}?011(; is a field in an HTML form whose ¢ 4 value to a hidden field

ssi
HTML page, as you learned in Chapter 8. You csn aamiganTML O tadbrovie
ina JSP proéram before the program sends the ayn

: ¢ login screen. The
Let's say that your JSP database system displays @ dynamic 08

when the Submit button
browser sends the user ID and password to the JSP progT i‘l::o o memory variables
is selected where these parameters are pars

ed and stored
" s " ﬁon) . t}] d .
(See'l%l: IST’eq;eStasmmtl}:gn f:iidatf)es the login information and genel;? a::z anc;nszali;\zl:;]i
HTML pagf onire the user ID and password are appr'ovgd-:;i n otheZ?ields. b
HTML page contains a form that contains a hj?idle; field, among
ID is assigned as the value to the hidden field.
usel\'theln the gzrson selects the Submit button on the new H;M}a f;gae; ;};E I‘:ltssr I;Ee
stored in the hidden field and information in other fields on the I0 y

browser to another JSP program for processing. . .)
This cycle continues where the JSP program processing the request string receives

the user ID as a parameter and then passes the user ID to the next dynamlcallgll)m]t
HTML page as a hidden field. In this way, each HTML page and subsequent]
program has access to the user ID and therefore can trac!< the session.

The Quick Reference Guide in Chapter 9 contains a list of-other.common.ly used
HitpSession class methods that you'll find useful when working with a session.

I__| Cookies

As you learned in Chapter 9, a cookie is a small piece of information created by a JSP
program that is stored on the client’s hard disk by the browser. Cookies are used to
store various kinds of information, such as user preferences and an ID that tracks a
session with a JSP database system.

You can create and read a cookie by using methods of the Cookie class and the
response object as illustrated in Listing 11-9 and in Listing 11-10. Listing 11-9 creates
and writes a cookie called userID that has a value of JK1234.

The program begins by initializing the cookie name and cookie value and then
passes these String objects as arguments to the constructor of a new cookie. This cookie
is then passed to the addCookie() method, which causes the cookie to be written to the
client’s hard disk.

Listing 11-10 retrieves a cookie and sends the cookie name and cookie value to the
browser, which displays these on the screen. This program begins by initializing the

i jent m
to track a gession

Chapter 11: Java ServerPages

the chent’s hard disk. [call the me;’é‘he cookie that needs to be retrieved from

Two other String objects are
from the dient. Alsg | *:e.lh \‘;’:nm‘.:ted to hold the name and value of the cookie read
Csdine s Fop Wiindic int called found and initialized ; "
IS usad a8 2 fiag o indicate whether or not the userID cookje ; e T wariable
.\z:t ..v..:a e...i) 0‘:.mee objects cal] ed cookies i Git'?eﬂe is read:
s “\"“-“*m\\"-\zﬁﬂ me‘-.:";[\i‘ \\'hich mads Al the a ” and asmgned the results of
: : coo

and assigns them to the amay of Cookie objects ® from the client’s hard disk

The program proceads to use i \
nzme 2nd value from each h&*ﬁi lﬂfé) and D oope methods to retreve the
1ot of the ammay of Cookje objects. Each time a Cookie

object is read, the program compares #
’ o o o Pares the name of :
MyCookieName String object, which is — the cookie to the value of the

When a match is found, th)

ey ound, the program assigns the v

a3 e\l . e, 1S the value of the :)
0 t:te MyCooldeValue String object and chanwe the value of current Ccrok]e object
001 ges ue of the found variable from

After the program reads a &"’COO :
prog aas all the hE‘Obiects th
y 2 = 1 e 2 =
the found varizble If Tueic] 8 » U1 Program evaluates the value
‘;’ - \';a\“e.I;tne‘va‘...:eb 1, the program sends the value of the MyCookieN. .
and MyCookaeValus to the browser, which displays these values on fho e 200
The Quick Reference Guide ; £oe values on the screen.
Cookie diass methed - ut’mC'naptechont'ainsalistofoti-tercommonl'used
folae Cass methods that vou'll find useful when working with cookies ’
S -

<= >

—
--

<TITI=> JS57 frograsming </TITI=>

</EEa>
<3B00T>
<! String M CockieNa—s = *mea
: FlocieNaze = “userIDe;
string MyCockieValue = *Jx1234°-
1234~
response.addCockie (mew Cooks X3
> - ..k ne e My <1 eNa—
- (MyCookieNare, MyCookieValue));
<[E00T>
</EN>
<giw >
<E=ErT>
<TITLE> JSP Pr gramming </TITLE>
</E=E2D>
<30DY>
<%! String MyCookieName = *userID®:

=1
tring MyCookieValue;
String a=e, CValue;

S
N
m
m
n
(=)
c
=
o
>
=
=]
Z

ht¢eps:/hemanthrajhemu.github.io

v =< dL LT

———

394 jJZEE: The Complete Reference

int found=0; ST
Cookie[) cookies = rcquent.getCookie

for(int i=0; i<cookies.length; ¥ 1
CName = cookies[i].getName();
Cvalue = cookies[i].qetValu?();
i[(MyCookioNnmc.equals(cookleﬂames

found = 1;
MyCookieValue = cookieValue;
)

tin)

}
if (found ==1) { %>
<P> Cookie name =
<P> Cookie value =
<%}%>
</BODY>
</HTML>

<%= MyCookieName %> </P>
<%= MyCookieValue %> </P>

___| Session Objects

AJSP database system is able to share information among JSP programs Wit'hm a session
by using a session object. Each time a session is created, a unique ID is assigned to the
session and stored as a cookie.

The unique ID enables JSP programs to track multiple sessions simultaneously
while maintaining data integrity of each session. The session ID is used to prevent
the intermingling of information from clients.

In addition to the session ID, a session object is also used to store other types of
information, called attributes. An attribute can be login information, preferences, or
even purchases placed in an electronic shopping cart.

Let’s say that you built a Java database system that enables customers to purchase
goods online. A JSP program dynamically generates catalogue pages of available
merchandise. A new catalogue page is generated each time the JSP program executes.

The customer selects merchandise from a catalogue page, then jumps to another
catalogue page where additional merchandise is available for purchase. Your JSP
database system must be able to temporarily store purchases made from each catalogue
page; otherwise, the system is unable to execute the checkout process. This means that
purchases must be accessible each time the JSP program executes.

There are several ways in which you can share purchases. You might store
merchandise temporally in a table, but then you'll need to access the DBMS several
times during the session, which might cause performance degradation.

A better approach is to use a session object and store information about purchases
as session attributes. Session attributes can be retrieved and modified each time the JSP
program runs.

hettps:/hemanthrajhemu.github.io

How to
cregte @
session

attribute.

Usting 11-12
How to

read session
attributes.

~_¥

Chapter 11: Jaya ServerPages = 395 ~:.

Listing 11-11 illustrates how 1o assig !q
assi_}‘,m‘d the name of the attribute and the other Strin g(:)b.)‘cctl?. Onc ouring object s
attribute. Next, the program calls the setAttribute(othod and - gned r O
name and value of the attribute,) method and passes this method the

Listing 11-12 reads attributes, The

rogre i 1 :]
method that returns names of all the a?ttriil;br e caling the getAttributeNames() 1

e utes as an Enumeration f
Next, the ‘p;?z,mm tests whctl_\er or not the getAttributeNames:() method returned f
any attributes. If so, statements within the while loop execute, which assigns th: atE:TeJute |
|
|
I

name of the current element to the AtName Stri i |
; i , s
{eripassed nsin il cetAtirbas g object. The AtName String object is ,

: : X () method, which returns th iR
attribute. The value is assigned to the Aty : ' returns the value of the L |
the attribute name and value to the browse:le >Aring object. The program then sends !l

The Quick Reference Guide in Cha

HttpSession class methods that you'll

pter 9 contains a list of other commonly used 1
find useful when working with a session. l |

<HTML>
<HEAD>
<TITLE> JSP Programming </TITLE>
</HEAD>
<BODY>
<%! String AtName = "Product";
String AtValue = "1234";
session.setAttribute(AtName, AtValue) ;
%>
</BODY>
</HTML>

NOILYANNO4 332r

<HTML>
<HEAD>
<TITLE> JSP Programming </TITLE>
</HEAD>
<BODY>
<%! Enumeration purchases = session.getAttributeNames();
while (purchases.hasMoreElements()) {
String AtName = (String)attributeNames.nextElement();
String AtValue = (String)session.getAttribute(AtName); %>
<P> Attribute Name <%= AtName %> </P>
<P> Attribute Value <%= AtValue %> </P>
<% } %>
</BODY>
</HTML>

ht¢eps:/hemanthrajhemu.github.io

e e s

l 1 J2EE: The Complete Reforence

s - e ——————————— T —
] Quick Reference Guide

—

Doscriptions

Syntax
Corresponds to the lmdy of

void _jspService(HitpServletRequest request, the JSI” page
HttpServletResponse response) '

vy

—

Tablo 111, public interface HitpJspPage extends JspPage

Sytax Descriptlons

void jspDestroy() Automatically invoked when a J5P page is to be destroyed,

void jsplnit() Automatically invoked when the JSP page is initialized,
Table 11-2, public interface JspPage extends Serviet 4

Syntax Descriptions

abstract Object findAttribute(String name) Returns the value of an attribute.

abstract Object getAttribute(String name) Returns an object associated with
the name.

abstract Object getAttribute(String name, int ~ Returns an object associated with
scope) the name.

abstract Enumeration Returns all attributes of a scope.
getAttributeNamesInScope(int scope)

abstract int getAttributesScope(String name) ~ Returns the scope based on name.

abstract ExpressionEvaluator Provides programmatic access to
getExpressionEvaluator() the ExpressionEvaluator.
abstract JspWriter getOut() Determines if out object value of
a JspWriter.
Table 11:3. public abstract class JspContext extends java,lang.Object #

heteps:/hemanthrajhemu.github.io F

Syntax
abstract Map pcekl’.\chcopo()

abstract Map popI’achcope()
scopeState)
abstract void removeAttribute(

abstract void removeAttribute(
int scope)

Object attribute)

Object o, int scope)

el \

abstract void pushPa geScope(Map

String name)

String name,

abstract void setAttribute(String Name,

abstract void setAttribute(String name,

-

Chapter 112

Java ServerPages

Descriptions

Pecks at the

top of the page
scope stack.

Removes 5 Page scope from
the stack,

Places a page scope onthe stack.

Uses all Scopes to delete an object
reference associated with a name.

Delete an object by name.

Registers a name associated with
an object that has page scope
semantics.

Registers a name associated with
an object and scope.

Table 11-3. public abstract class JspContext extends Java.lang.Object (continued)

Syntax

abstract String getSpecificationVersion(

Descriptions

) Returns the version number of JSP

Table 11-4. public abstract class JspEnginelnfo extends Object

Syntax
static JspFactory getDefaultFac

abstract JspEnginelnfo getEnginelnfo()

Descriptions

tory()

Returns the default JSP factory.

Returns information about the JSP
engine.

Table 11-5. public abstract class JspFactory extends Object

1 3321

-

'NOLLYGNAC

hettps:/hemanthrajhemu.github.io

vs Sk TETETT

b

398 J2EE: The Complete Reference

/—

Syntax

abstract PageContext
getPageContext(Servlet serviet,
ServletRequest request,
ServletResponse response,
String errorPageURL, boolean
needsSession, int buffer, boolean
autoflush)

(PageContext pe)

static void setDefaultFactory
(JspFactory deflt)

abstract void releasePageContext

Descriptions

Returns an instance of a PageContext.

Releases an allocated PageContext
object.

Sets the default factory.

Table 11-5. public abstract class

JspFactory extends Object (continued)

Syntax

abstract void clear()
abstract void clearBuffer()
abstract void close()
abstract void flush()

int getBufferSize()

abstract int getRemaining|()

boolean isAutoFlush()

abstract void newLine()

Descriptions

Resets a buffer.

Resets a buffer.

Closes and flushes a stream.

Flushes a stream.

Returns the size of the buffer used by the
JspWriter.

Returns the number of unused bytes in the
buffer.

Determines if a JspWriter is autoFlushing.
Writes a line separator,

Table 11-6. public abstract class JspWriter extends Writer

hettps:/hemanthrajhemu.github.io

—

Chapter 11:

Java ServerPages

Syntax

abstract void print(boolean b)
abstract void print(char ¢)
abstract void print(char[] s)

abstract void print(double d)

abstract void print(float f)
abstract void print(int i)
abstract void print(long 1)
abstract void print(Object obj)
abstract void print(String s)
abstract void printin()

abstract void println(boolean x)
abstract void println(char x)

abstract void println(char[] x)
abstract void printIn(double x)
abstract void println(float x)

abstract void println(int x)
abstract void printIn(long x)
abstract void printIn(Object x)
abstract void println(String x)

Descriptions

Janl .

Prints o boolean value,
Prints a character,

p 1] 3

Prints an array of chnmclurs.

P ol
Prints a dOlIbIL‘-PrL‘ClSl(m flo

ating-point
number,

Prints a floating-point number,
Prints an integer.

Prints a long integer.
Prints an object,

Prints a string,

Writes a line separator string to terminate a line.
Prints a boolean value with a terminated line
Prints a character with a terminated line.

Prints an array of characters with a
terminated line

Prints a double-precision floating-point
number with a terminated line.

Prints a floating-point number with a
terminated line.

Prints an integer with a terminated line.
Prints a long integer with a terminated line.
Prints an Object with a terminated line.

Prints a String with a terminated line.

Table 11-6. public abstract class JspWriter extends Writer (continued)

399

https:/hemanthrajhemu.github.io 4

SRR e e I o

406] J2EE: The Complele Reference

Syntax
abstract void forward(String
relativeUrlPath)

abstract Exception gctlixccpti(m()
abstract Object gcll’ngc()

abstract ServletRequest getRequest()
abstract ServletResponse getResponse()
abstract ServletConfig
getServletConfig()

abstract ServletContext
getServletContext()

abstract HttpSession getSession()
abstract void handlePageException
(Exception e)

abstract void handlePageException
(Throwable t)

abstract void include(String
relativeUrlPath)

abstract void initialize(Servlet
servlet, ServletRequest request,
ServletResponse response, String
errorPageURL, boolean
needsSession, int bufferSize,
boolean autoFlush)

JspWriter popBody()

BodyContent pushBody()

abstract void release()

pescriptions

10 SchlL’l RC
to ano
,1pplr'cation.

exception object.

uest and
Redirects t ?}wr doissl
GervletResponse
1 3
componentin the

Returns the value of the

of the page object.

lue
eturns the va .
| response object.

s the value of the
alue of the response object.

ServletConfig.

Retu
Returns the v
Returns the instance of the

Returns the instance of the ServletContext.

Returns the value of the session object.

Redirects an unhandled page level
exception to an error page.

Makes an unhandled page level exception
Throwable.

Processes the resource as part of the
current ServletRequest.

Initializes an uninitialized PageContext.

Updates the page scope “out” attribute of
the PageContext; and returns the previous
JspWriter “out” saved by the matching
pushBody().

Saves the current “out” JspWriter;
updates the page scope “out” attribute of
the PageContext; and returns a new
BodyContent object.

Resets the internal state of 3 PageContext
for potential reuse. ’

Table 11-7. public abstract class PageContext extends Js PR

hettps:/hemanthrajhemu.github.io

Chapter 11: Jaya ServerPages

—

X

ntax
Sy Descriptions
Object evaluate(String attributeName :
: « N [; dluateg Vo 1 1 i
Ciring SkrirEssin, Clais expectedType, | :811:11&;, the expression contained in
Tag tag, PageContext pageContext) i

String validate(String attributeN

. an]el Valid’]t el
String expression) ales an expression

5 at translation
time.

Table 11-8. public interface ExpresslonEvaluator

Syntax Descriptions
Object resolveVariable(String pName, Resolves a variable within the given
Object pContext) context.

Table 11-9. public interface VariableResolver

401

R

Syntax Descriptions

void doInitBody() Prepares to evaluate the body.

void setBodyContent(BodyContentb) Sets the bodyContent property.

Table 11-10. public interface BodyTag extends IterationTag

Syntax Descriptions

void setDynamicAttribute(String uri, ~ Sets a dynamic attrib}xte that is not
String localName, Object value) declared in the Tag Library Descriptor.

Table 11-11. public interface DynamicAttributes

402)200: The Complote Referenct

Synt posoriptions
yntax y
' \ " I () "“""“0"'" ”H'l”"'yl”““ “'
"“ gy lh\' (N ‘I
Tl
] o leration Tl oxtonds
Tablo 11:42, public inter face I N o
Syntax Doscriptions

fixecutes the fragment and directs all

vold invoke(Writer out, Map parani) outputtoa Wirlter,

Table 1113, public interfaco JspFragment

Syntax Descriptions

int doTag() Processes a tag,

Object getParent() Returns the parent of u tag,
void set]spBody(JspFragment jspBody) Sets the body of a tag as a

JspEragment object.

void set]spContext(JspContext pc) Seta page context in the protected
jspContext field,

void setParent(Object parent) Sets a parent of a tag,

Table 11-14. public interface SimpleTag

ht¢eps:/hemanthrajhemu.github.io

=

Chapter 11:

Java ServerPages

—
Syntax

int doEndTeg()
int doStartTag()
Tag getParent()

void release()

void setPageContext(PageContext po)

void setParent(Tag t)

Descriptions

Processes an end tag,

Processes a start tag.

Returns the parent for a tag,

Instructs a Tag handler to release state.

Sets a page context.

Sets the parent of a tag handler.

Table 11-15. public interface Tag

|

—

Syntax

void doFinally()

void doCatch(Throwable t)

Descriptions

Executes after doEndTag)).

Executes when a Throwable exception happens
while the body is being evaluated.

Table 11-16. public interface TryCatchFinally

403

hettps:/hemanthrajhemu.github.io

