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CHAPTER 2
Application
Layer

83

Network applications are the raisons d’être of a computer network—if we couldn’t
conceive of any useful applications, there wouldn’t be any need for networking proto-
cols that support these applications. Since the Internet’s inception, numerous useful and
entertaining applications have indeed been created. These applications have been the
driving force behind the Internet’s success, motivating people in homes, schools, gov-
ernments, and businesses to make the Internet an integral part of their daily activities.

Internet applications include the classic text-based applications that became
popular in the 1970s and 1980s: text email, remote access to computers, file trans-
fers, and newsgroups. They include the killer application of the mid-1990s, the
World Wide Web, encompassing Web surfing, search, and electronic commerce.
They include instant messaging and P2P file sharing, the two killer applications
introduced at the end of the millennium. Since 2000, we have seen an explosion of
popular voice and video applications, including: voice-over-IP (VoIP) and video
conferencing over IP such as Skype; user-generated video distribution such as
YouTube; and movies on demand such as Netflix. During this same period we have
also seen the immergence of highly engaging multi-player online games, including
Second Life and World of Warcraft. And most recently, we have seen the emergence
of a new generation of social networking applications, such as Facebook and Twitter,
which have created engaging human networks on top of the Internet’s network of
routers and communication links. Clearly, there has been no slowing down of new
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and exciting Internet applications. Perhaps some of the readers of this text will cre-
ate the next generation of killer Internet applications!

In this chapter we study the conceptual and implementation aspects of network
applications. We begin by defining key application-layer concepts, including network
services required by applications, clients and servers, processes, and transport-layer
interfaces. We examine several network applications in detail, including the Web,
e-mail, DNS, and peer-to-peer (P2P) file distribution (Chapter 8 focuses on multime-
dia applications, including streaming video and VoIP). We then cover network applica-
tion development, over both TCP and UDP. In particular, we study the socket API
and walk through some simple client-server applications in Python. We also provide
several fun and interesting socket programming assignments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols.
It’s familiar ground. We’re acquainted with many of the applications that rely on the
protocols we’ll study. It will give us a good feel for what protocols are all about and
will introduce us to many of the same issues that we’ll see again when we study trans-
port, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application
will be a great service to humanity, or will please your professor, or will bring you
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on
different end systems and communicate with each other over the network. For
example, in the Web application there are two distinct programs that communicate
with each other: the browser program running in the user’s host (desktop, laptop,
tablet, smartphone, and so on); and the Web server program running in the Web
server host. As another example, in a P2P file-sharing system there is a program in
each host that participates in the file-sharing community. In this case, the programs
in the various hosts may be similar or identical.

Thus, when developing your new application, you need to write software that
will run on multiple end systems. This software could be written, for example, in C,
Java, or Python. Importantly, you do not need to write software that runs on network-
core devices, such as routers or link-layer switches. Even if you wanted to write
application software for these network-core devices, you wouldn’t be able to do so.
As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining
application software to the end systems—as shown in Figure 2.1, has facilitated the
rapid development and deployment of a vast array of network applications.
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2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application
architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing the
application architecture, an application developer will likely draw on one of the two
predominant architectural paradigms used in modern network applications: the
client-server architecture or the peer-to-peer (P2P) architecture

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. A classic example is the
Web application for which an always-on Web server services requests from browsers
running on client hosts. When a Web server receives a request for an object from a
client host, it responds by sending the requested object to the client host. Note that
with the client-server architecture, clients do not directly communicate with each
other; for example, in the Web application, two browsers do not directly communi-
cate. Another characteristic of the client-server architecture is that the server has a
fixed, well-known address, called an IP address (which we’ll discuss soon). Because
the server has a fixed, well-known address, and because the server is always on, a
client can always contact the server by sending a packet to the server’s IP address.
Some of the better-known applications with a client-server architecture include the
Web, FTP, Telnet, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keeping up
with all the requests from clients. For example, a popular social-networking site can
quickly become overwhelmed if it has only one server handling all of its requests. For
this reason, a data center, housing a large number of hosts, is often used to create a
powerful virtual server. The most popular Internet services—such as search engines
(e.g., Google and Bing), Internet commerce (e.g., Amazon and e-Bay), Web-based
email (e.g., Gmail and Yahoo Mail), social networking (e.g., Facebook and Twitter)—
employ one or more data centers. As discussed in Section 1.3.3, Google has 30 to 50
data centers distributed around the world, which collectively handle search, YouTube,
Gmail, and other services. A data center can have hundreds of thousands of servers,
which must be powered and maintained. Additionally, the service providers must pay
recurring interconnection and bandwidth costs for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in
data centers. Instead the application exploits direct communication between pairs of
intermittently connected hosts, called peers. The peers are not owned by the service
provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate
without passing through a dedicated server, the architecture is called peer-to-peer.
Many of today’s most popular and traffic-intensive applications are based on P2P
architectures. These applications include file sharing (e.g., BitTorrent), peer-assisted
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download acceleration (e.g., Xunlei), Internet Telephony (e.g., Skype), and IPTV (e.g.,
Kankan and PPstream). The P2P architecture is illustrated in Figure 2.2(b). We men-
tion that some applications have hybrid architectures, combining both client-server
and P2P elements. For example, for many instant messaging applications, servers are
used to track the IP addresses of users, but user-to-user messages are sent directly
between user hosts (without passing through intermediate servers).

One of the most compelling features of P2P architectures is their self-scalability.
For example, in a P2P file-sharing application, although each peer generates
workload by requesting files, each peer also adds service capacity to the system
by distributing files to other peers. P2P architectures are also cost effective, since
they normally don’t require significant server infrastructure and server bandwidth
(in contrast with clients-server designs with datacenters). However, future P2P
applications face three major challenges:

1. ISP Friendly. Most residential ISPs (including DSL and cable ISPs) have been
dimensioned for “asymmetrical” bandwidth usage, that is, for much more
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downstream than upstream traffic. But P2P video streaming and file distribu-
tion applications shift upstream traffic from servers to residential ISPs, thereby
putting significant stress on the ISPs. Future P2P applications need to be
designed so that they are friendly to ISPs [Xie 2008].

2. Security. Because of their highly distributed and open nature, P2P applications
can be a challenge to secure [Doucer 2002; Yu 2006; Liang 2006; Naoumov
2006; Dhungel 2008; LeBlond 2011].

3. Incentives. The success of future P2P applications also depends on convincing
users to volunteer bandwidth, storage, and computation resources to the appli-
cations, which is the challenge of incentive design [Feldman 2005; Piatek
2008; Aperjis 2008; Liu 2010].

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of
how the programs, running in multiple end systems, communicate with each other.
In the jargon of operating systems, it is not actually programs but processes that
communicate. A process can be thought of as a program that is running within an
end system. When processes are running on the same end system, they can com-
municate with each other with interprocess communication, using rules that are
governed by the end system’s operating system. But in this book we are not par-
ticularly interested in how processes in the same host communicate, but instead in
how processes running on different hosts (with potentially different operating sys-
tems) communicate.

Processes on two different end systems communicate with each other by exchang-
ing messages across the computer network. A sending process creates and sends mes-
sages into the network; a receiving process receives these messages and possibly
responds by sending messages back. Figure 2.1 illustrates that processes communicat-
ing with each other reside in the application layer of the five-layer protocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each
other over a network. For example, in the Web application a client browser
process exchanges messages with a Web server process. In a P2P file-sharing sys-
tem, a file is transferred from a process in one peer to a process in another peer.
For each pair of communicating processes, we typically label one of the two
processes as the client and the other process as the server. With the Web, a
browser is a client process and a Web server is a server process. With P2P file
sharing, the peer that is downloading the file is labeled as the client, and the peer
that is uploading the file is labeled as the server.

You may have observed that in some applications, such as in P2P file sharing, a
process can be both a client and a server. Indeed, a process in a P2P file-sharing sys-
tem can both upload and download files. Nevertheless, in the context of any given
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communication session between a pair of processes, we can still label one process
as the client and the other process as the server. We define the client and server
processes as follows:

In the context of a communication session between a pair of processes, the
process that initiates the communication (that is, initially contacts the other
process at the beginning of the session) is labeled as the client. The process
that waits to be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process;
hence the browser process is the client and the Web server process is the server. In
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the client
and Peer B is the server in the context of this specific communication session. When
there’s no confusion, we’ll sometimes also use the terminology “client side and
server side of an application.” At the end of this chapter, we’ll step through simple
code for both the client and server sides of network applications.

The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes,
with the two processes in each pair sending messages to each other. Any message
sent from one process to another must go through the underlying network. A process
sends messages into, and receives messages from, the network through a software
interface called a socket. Let’s consider an analogy to help us understand processes
and sockets. A process is analogous to a house and its socket is analogous to its door.
When a process wants to send a message to another process on another host, it
shoves the message out its door (socket). This sending process assumes that there is
a transportation infrastructure on the other side of its door that will transport the
message to the door of the destination process. Once the message arrives at the des-
tination host, the message passes through the receiving process’s door (socket), and
the receiving process then acts on the message

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport pro-
tocol used by the processes is the Internet’s TCP protocol.) As shown in this
figure, a socket is the interface between the application layer and the transport
layer within a host. It is also referred to as the Application Programming Inter-
face (API) between the application and the network, since the socket is the pro-
gramming interface with which network applications are built. The application
developer has control of everything on the application-layer side of the socket but
has little control of the transport-layer side of the socket. The only control that the
application developer has on the transport-layer side is (1) the choice of transport
protocol and (2) perhaps the ability to fix a few transport-layer parameters such as
maximum buffer and maximum segment sizes (to be covered in Chapter 3). Once
the application developer chooses a transport protocol (if a choice is available),
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the application is built using the transport-layer services provided by that proto-
col. We’ll explore sockets in some detail in Section 2.7.

Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have
an address. Similarly, in order for a process running on one host to send packets to a
process running on another host, the receiving process needs to have an address. 
To identify the receiving process, two pieces of information need to be specified:
(1) the address of the host and (2) an identifier that specifies the receiving process
in the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP
addresses in great detail in Chapter 4. For now, all we need to know is that an IP
address is a 32-bit quantity that we can think of as uniquely identifying the host.
In addition to knowing the address of the host to which a message is destined, the
sending process must also identify the receiving process (more specifically, the
receiving socket) running in the host. This information is needed because in gen-
eral a host could be running many network applications. A destination port num-
ber serves this purpose. Popular applications have been assigned specific port
numbers. For example, a Web server is identified by port number 80. A mail
server process (using the SMTP protocol) is identified by port number 25. A list
of well-known port numbers for all Internet standard protocols can be found at
http://www.iana.org. We’ll examine port numbers in detail in Chapter 3.
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2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the 
transport-layer protocol. The application at the sending side pushes messages
through the socket. At the other side of the socket, the transport-layer protocol
has the responsibility of getting the messages to the socket of the receiving
process.

Many networks, including the Internet, provide more than one transport-layer
protocol. When you develop an application, you must choose one of the available
transport-layer protocols. How do you make this choice? Most likely, you would
study the services provided by the available transport-layer protocols, and then pick
the protocol with the services that best match your application’s needs. The situa-
tion is similar to choosing either train or airplane transport for travel between two
cities. You have to choose one or the other, and each transportation mode offers dif-
ferent services. (For example, the train offers downtown pickup and drop-off,
whereas the plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications
invoking it? We can broadly classify the possible services along four dimensions:
reliable data transfer, throughput, timing, and security.

Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For
example, a packet can overflow a buffer in a router, or can be discarded by a host
or router after having some of its bits corrupted. For many applications—such as
electronic mail, file transfer, remote host access, Web document transfers, and
financial applications—data loss can have devastating consequences (in the latter
case, for either the bank or the customer!). Thus, to support these applications,
something has to be done to guarantee that the data sent by one end of the appli-
cation is delivered correctly and completely to the other end of the application. If
a protocol provides such a guaranteed data delivery service, it is said to provide
reliable data transfer. One important service that a transport-layer protocol can
potentially provide to an application is process-to-process reliable data transfer.
When a transport protocol provides this service, the sending process can just pass
its data into the socket and know with complete confidence that the data will
arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of
the data sent by the sending process may never arrive at the receiving process. This
may be acceptable for loss-tolerant applications, most notably multimedia applica-
tions such as conversational audio/video that can tolerate some amount of data loss.
In these multimedia applications, lost data might result in a small glitch in the
audio/video—not a crucial impairment.
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Throughput

In Chapter 1 we introduced the concept of available throughput, which, in the con-
text of a communication session between two processes along a network path, is
the rate at which the sending process can deliver bits to the receiving process.
Because other sessions will be sharing the bandwidth along the network path, and
because these other sessions will be coming and going, the available throughput
can fluctuate with time. These observations lead to another natural service that a
transport-layer protocol could provide, namely, guaranteed available throughput
at some specified rate. With such a service, the application could request a guar-
anteed throughput of r bits/sec, and the transport protocol would then ensure that
the available throughput is always at least r bits/sec. Such a guaranteed through-
put service would appeal to many applications. For example, if an Internet teleph-
ony application encodes voice at 32 kbps, it needs to send data into the network
and have data delivered to the receiving application at this rate. If the transport
protocol cannot provide this throughput, the application would need to encode at
a lower rate (and receive enough throughput to sustain this lower coding rate) or
may have to give up, since receiving, say, half of the needed throughput is of little
or no use to this Internet telephony application. Applications that have throughput
requirements are said to be bandwidth-sensitive applications. Many current
multimedia applications are bandwidth sensitive, although some multimedia
applications may use adaptive coding techniques to encode digitized voice or
video at a rate that matches the currently available throughput.

While bandwidth-sensitive applications have specific throughput require-
ments, elastic applications can make use of as much, or as little, throughput 
as happens to be available. Electronic mail, file transfer, and Web transfers are
all elastic applications. Of course, the more throughput, the better. There’s
an adage that says that one cannot be too rich, too thin, or have too much
throughput!

Timing

A transport-layer protocol can also provide timing guarantees. As with throughput
guarantees, timing guarantees can come in many shapes and forms. An example
guarantee might be that every bit that the sender pumps into the socket arrives at the
receiver’s socket no more than 100 msec later. Such a service would be appealing to
interactive real-time applications, such as Internet telephony, virtual environments,
teleconferencing, and multiplayer games, all of which require tight timing con-
straints on data delivery in order to be effective. (See Chapter 7, [Gauthier 1999;
Ramjee 1994].) Long delays in Internet telephony, for example, tend to result in
unnatural pauses in the conversation; in a multiplayer game or virtual interactive
environment, a long delay between taking an action and seeing the response from
the environment (for example, from another player at the end of an end-to-end con-
nection) makes the application feel less realistic. For non-real-time applications,
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lower delay is always preferable to higher delay, but no tight constraint is placed on
the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security
services. For example, in the sending host, a transport protocol can encrypt all data
transmitted by the sending process, and in the receiving host, the transport-layer
protocol can decrypt the data before delivering the data to the receiving process.
Such a service would provide confidentiality between the two processes, even if the
data is somehow observed between sending and receiving processes. A transport
protocol can also provide other security services in addition to confidentiality,
including data integrity and end-point authentication, topics that we’ll cover in
detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet

Up until this point, we have been considering transport services that a computer
network could provide in general. Let’s now get more specific and examine the
type of transport services provided by the Internet. The Internet (and, more gen-
erally, TCP/IP networks) makes two transport protocols available to applications,
UDP and TCP. When you (as an application developer) create a new network
application for the Internet, one of the first decisions you have to make is
whether to use UDP or TCP. Each of these protocols offers a different set of serv-
ices to the invoking applications. Figure 2.4 shows the service requirements for
some selected applications.
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Application Data Loss Throughput Time-Sensitive

File transfer/download No loss Elastic No

E-mail No loss Elastic No

Web documents No loss Elastic (few kbps) No

Figure 2.4 � Requirements of selected network applications

Internet telephony/
Video conferencing

Loss-tolerant Audio: few kbps–1Mbps
Video: 10 kbps–5 Mbps

Yes: 100s of msec

Streaming stored Loss-tolerant Same as above Yes: few seconds
audio/video

Interactive games Loss-tolerant Few kbps–10 kbps Yes: 100s of msec

Instant messaging No loss Elastic Yes and no
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TCP Services

The TCP service model includes a connection-oriented service and a reliable data
transfer service. When an application invokes TCP as its transport protocol, the
application receives both of these services from TCP.

• Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level messages
begin to flow. This so-called handshaking procedure alerts the client and server,
allowing them to prepare for an onslaught of packets. After the handshaking phase,
a TCP connection is said to exist between the sockets of the two processes. The
connection is a full-duplex connection in that the two processes can send messages
to each other over the connection at the same time. When the application finishes
sending messages, it must tear down the connection. In Chapter 3 we’ll discuss
connection-oriented service in detail and examine how it is implemented.
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SECURING TCP

Neither TCP nor UDP provide any encryption—the data that the sending process pass-
es into its socket is the same data that travels over the network to the destination
process. So, for example, if the sending process sends a password in cleartext (i.e.,
unencrypted) into its socket, the cleartext password will travel over all the links between
sender and receiver, potentially getting sniffed and discovered at any of the intervening
links. Because privacy and other security issues have become critical for many applica-
tions, the Internet community has developed an enhancement for TCP, called Secure
Sockets Layer (SSL). TCP-enhanced-with-SSL not only does everything that traditional
TCP does but also provides critical process-to-process security services, including
encryption, data integrity, and end-point authentication. We emphasize that SSL is not
a third Internet transport protocol, on the same level as TCP and UDP, but instead is an
enhancement of TCP, with the enhancements being implemented in the application
layer. In particular, if an application wants to use the services of SSL, it needs to
include SSL code (existing, highly optimized libraries and classes) in both the client and
server sides of the application. SSL has its own socket API that is similar to the tradition-
al TCP socket API. When an application uses SSL, the sending process passes cleartext
data to the SSL socket; SSL in the sending host then encrypts the data and passes the
encrypted data to the TCP socket. The encrypted data travels over the Internet to the
TCP socket in the receiving process. The receiving socket passes the encrypted data to
SSL, which decrypts the data. Finally, SSL passes the cleartext data through its SSL
socket to the receiving process. We’ll cover SSL in some detail in Chapter 8.

FOCUS ON SECURITY
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• Reliable data transfer service. The communicating processes can rely on TCP
to deliver all data sent without error and in the proper order. When one side of
the application passes a stream of bytes into a socket, it can count on TCP to
deliver the same stream of bytes to the receiving socket, with no missing or
duplicate bytes.

TCP also includes a congestion-control mechanism, a service for the general
welfare of the Internet rather than for the direct benefit of the communicating
processes. The TCP congestion-control mechanism throttles a sending process (client
or server) when the network is congested between sender and receiver. As we will
see in Chapter 3, TCP congestion control also attempts to limit each TCP connection
to its fair share of network bandwidth.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP
is connectionless, so there is no handshaking before the two processes start to
communicate. UDP provides an unreliable data transfer service—that is, when a process
sends a message into a UDP socket, UDP provides no guarantee that the message
will ever reach the receiving process. Furthermore, messages that do arrive at the
receiving process may arrive out of order.

UDP does not include a congestion-control mechanism, so the sending side of
UDP can pump data into the layer below (the network layer) at any rate it pleases.
(Note, however, that the actual end-to-end throughput may be less than this rate due
to the limited transmission capacity of intervening links or due to congestion). 

Services Not Provided by Internet Transport Protocols

We have organized transport protocol services along four dimensions: reliable data
transfer, throughput, timing, and security. Which of these services are provided by
TCP and UDP? We have already noted that TCP provides reliable end-to-end data
transfer. And we also know that TCP can be easily enhanced at the application layer
with SSL to provide security services. But in our brief description of TCP and UDP,
conspicuously missing was any mention of throughput or timing guarantees—serv-
ices not provided by today’s Internet transport protocols. Does this mean that time-
sensitive applications such as Internet telephony cannot run in today’s Internet? The
answer is clearly no—the Internet has been hosting time-sensitive applications for
many years. These applications often work fairly well because they have been
designed to cope, to the greatest extent possible, with this lack of guarantee. We’ll
investigate several of these design tricks in Chapter 7. Nevertheless, clever design
has its limitations when delay is excessive, or the end-to-end throughput is limited.
In summary, today’s Internet can often provide satisfactory service to time-sensitive
applications, but it cannot provide any timing or throughput guarantees.

2.1 • PRINCIPLES OF NETWORK APPLICATIONS 95

https://hemanthrajhemu.github.io



Figure 2.5 indicates the transport protocols used by some popular Internet
applications. We see that e-mail, remote terminal access, the Web, and file trans-
fer all use TCP. These applications have chosen TCP primarily because TCP pro-
vides  reliable data transfer, guaranteeing that all data will eventually get to its
destination. Because Internet telephony applications (such as Skype) can often
tolerate some loss but require a minimal rate to be effective, developers of Inter-
net telephony applications usually prefer to run their applications over UDP,
thereby circumventing TCP’s congestion control mechanism and packet over-
heads. But because many firewalls are configured to block (most types of) UDP
traffic, Internet telephony applications often are designed to use TCP as a backup
if UDP communication fails.

2.1.5 Application-Layer Protocols

We have just learned that network processes communicate with each other by send-
ing messages into sockets. But how are these messages structured? What are the
meanings of the various fields in the messages? When do the processes send the mes-
sages? These questions bring us into the realm of application-layer protocols. An
application-layer protocol defines how an application’s processes, running on dif-
ferent end systems, pass messages to each other. In particular, an application-layer
protocol defines:

• The types of messages exchanged, for example, request messages and response
messages

• The syntax of the various message types, such as the fields in the message and
how the fields are delineated
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Application Application-Layer Protocol Underlying Transport Protocol

Electronic mail SMTP [RFC 5321] TCP

Remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP

File transfer FTP [RFC 959] TCP

Streaming multimedia HTTP (e.g., YouTube) TCP

Internet telephony SIP [RFC 3261], RTP [RFC 3550], or proprietary UDP or TCP
(e.g., Skype)

Figure 2.5 � Popular Internet applications, their application-layer 
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https://hemanthrajhemu.github.io



• The semantics of the fields, that is, the meaning of the information in the fields

• Rules for determining when and how a process sends messages and responds to
messages

Some application-layer protocols are specified in RFCs and are therefore in the public
domain. For example, the Web’s application-layer protocol, HTTP (the HyperText
Transfer Protocol [RFC 2616]), is available as an RFC. If a browser developer follows
the rules of the HTTP RFC, the browser will be able to retrieve Web pages from 
any Web server that has also followed the rules of the HTTP RFC. Many other
application-layer protocols are proprietary and intentionally not available in the public
domain. For example, Skype uses proprietary application-layer protocols.

It is important to distinguish between network applications and application-layer
protocols. An application-layer protocol is only one piece of a network application
(albeit, a very important piece of the application from our point of view!). Let’s look at
a couple of examples. The Web is a client-server application that allows users to
obtain documents from Web servers on demand. The Web application consists of
many components, including a standard for document formats (that is, HTML), Web
browsers (for example, Firefox and Microsoft Internet Explorer), Web servers (for
example, Apache and Microsoft servers), and an application-layer protocol. The
Web’s application-layer protocol, HTTP, defines the format and sequence of messages
exchanged between browser and Web server. Thus, HTTP is only one piece (albeit, an
important piece) of the Web application. As another example, an Internet e-mail appli-
cation also has many components, including mail servers that house user mailboxes;
mail clients (such as Microsoft Outlook) that allow users to read and create messages; a
standard for defining the structure of an e-mail message; and application-layer proto-
cols that define how messages are passed between servers, how messages are passed
between servers and mail clients, and how the contents of message headers are to be
interpreted. The principal application-layer protocol for electronic mail is SMTP
(Simple Mail Transfer Protocol) [RFC 5321]. Thus, e-mail’s principal application-layer
protocol, SMTP, is only one piece (albeit, an important piece) of the e-mail application.

2.1.6 Network Applications Covered in This Book

New public domain and proprietary Internet applications are being developed every
day. Rather than covering a large number of Internet applications in an encyclope-
dic manner, we have chosen to focus on a small number of applications that are both
pervasive and important. In this chapter we discuss five important applications: the
Web, file transfer, electronic mail, directory service, and P2P applications. We first
discuss the Web, not only because it is an enormously popular application, but also
because its application-layer protocol, HTTP, is straightforward and easy to under-
stand. After covering the Web, we briefly examine FTP, because it provides a nice
contrast to HTTP. We then discuss electronic mail, the Internet’s first killer applica-
tion. E-mail is more complex than the Web in the sense that it makes use of not one
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but several application-layer protocols. After e-mail, we cover DNS, which provides
a directory service for the Internet. Most users do not interact with DNS directly;
instead, users invoke DNS indirectly through other applications (including the Web,
file transfer, and electronic mail). DNS illustrates nicely how a piece of core net-
work functionality (network-name to network-address translation) can be imple-
mented at the application layer in the Internet. Finally, we discuss in this chapter
several P2P applications, focusing on file sharing applications, and distributed
lookup services. In Chapter 7, we’ll cover multimedia applications, including
streaming video and voice-over-IP.

2.2 The Web and HTTP

Until the early 1990s the Internet was used primarily by researchers, academics, and
university students to log in to remote hosts, to transfer files from local hosts to remote
hosts and vice versa, to receive and send news, and to receive and send electronic
mail. Although these applications were (and continue to be) extremely useful, the
Internet was essentially unknown outside of the academic and research communities.
Then, in the early 1990s, a major new application arrived on the scene—the World
Wide Web [Berners-Lee 1994]. The Web was the first Internet application that caught
the general public’s eye. It dramatically changed, and continues to change, how peo-
ple interact inside and outside their work environments. It elevated the Internet from
just one of many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broad-
cast radio and television, which force users to tune in when the content provider
makes the content available. In addition to being available on demand, the Web has
many other wonderful features that people love and cherish. It is enormously easy
for any individual to make information available over the Web—everyone can
become a publisher at extremely low cost. Hyperlinks and search engines help us
navigate through an ocean of Web sites. Graphics stimulate our senses. Forms,
JavaScript, Java applets, and many other devices enable us to interact with pages
and sites. And the Web serves as a platform for many killer applications emerging
after 2003, including YouTube, Gmail, and Facebook.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is
implemented in two programs: a client program and a server program. The client
program and server program, executing on different end systems, talk to each other
by exchanging HTTP messages. HTTP defines the structure of these messages and
how the client and server exchange the messages. Before explaining HTTP in detail,
we should review some Web terminology.
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A Web page (also called a document) consists of objects. An object is simply a
file—such as an HTML file, a JPEG image, a Java applet, or a video clip—that is
addressable by a single URL. Most Web pages consist of a base HTML file and
several referenced objects. For example, if a Web page contains HTML text and five
JPEG images, then the Web page has six objects: the base HTML file plus the five
images. The base HTML file references the other objects in the page with the
objects’ URLs. Each URL has two components: the hostname of the server that
houses the object and the object’s path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/
picture.gif for a path name. Because Web browsers (such as Internet Explorer
and Firefox) implement the client side of HTTP, in the context of the Web, we will use
the words browser and client interchangeably. Web servers, which implement the
server side of HTTP, house Web objects, each addressable by a URL. Popular Web
servers include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client and
server in detail later, but the general idea is illustrated in Figure 2.6. When a user
requests a Web page (for example, clicks on a hyperlink), the browser sends HTTP
request messages for the objects in the page to the server. The server receives the
requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top of
UDP). The HTTP client first initiates a TCP connection with the server. Once the con-
nection is established, the browser and the server processes access TCP through their
socket interfaces. As described in Section 2.1, on the client side the socket interface is
the door between the client process and the TCP connection; on the server side it is the
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door between the server process and the TCP connection. The client sends HTTP
request messages into its socket interface and receives HTTP response messages from
its socket interface. Similarly, the HTTP server receives request messages from its
socket interface and sends response messages into its socket interface. Once the client
sends a message into its socket interface, the message is out of the client’s hands and is
“in the hands” of TCP. Recall from Section 2.1 that TCP provides a reliable data trans-
fer service to HTTP. This implies that each HTTP request message sent by a client
process eventually arrives intact at the server; similarly, each HTTP response message
sent by the server process eventually arrives intact at the client. Here we see one of the
great advantages of a layered architecture—HTTP need not worry about lost data or the
details of how TCP recovers from loss or reordering of data within the network. That is
the job of TCP and the protocols in the lower layers of the protocol stack.

It is important to note that the server sends requested files to clients without stor-
ing any state information about the client. If a particular client asks for the same object
twice in a period of a few seconds, the server does not respond by saying that it just
served the object to the client; instead, the server resends the object, as it has com-
pletely forgotten what it did earlier. Because an HTTP server maintains no informa-
tion about the clients, HTTP is said to be a stateless protocol. We also remark that the
Web uses the client-server application architecture, as described in Section 2.1. A Web
server is always on, with a fixed IP address, and it services requests from potentially
millions of different browsers.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server responding to
each of the requests. Depending on the application and on how the application is being
used, the series of requests may be made back-to-back, periodically at regular intervals,
or intermittently. When this client-server interaction is taking place over TCP, the appli-
cation developer needs to make an important decision––should each request/response
pair be sent over a separate TCP connection, or should all of the requests and their cor-
responding responses be sent over the same TCP connection? In the former approach,
the application is said to use non-persistent connections; and in the latter approach,
persistent connections. To gain a deep understanding of this design issue, let’s exam-
ine the advantages and disadvantages of persistent connections in the context of a spe-
cific application, namely, HTTP, which can use both non-persistent connections and
persistent connections. Although HTTP uses persistent connections in its default mode,
HTTP clients and servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML
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file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

1. The HTTP client process initiates a TCP connection to the server
www.someSchool.edu on port number 80, which is the default port num-
ber for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.

2. The HTTP client sends an HTTP request message to the server via its socket. The
request message includes the path name /someDepartment/home.index.
(We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file,
and finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two differ-
ent browsers may interpret (that is, display to the user) a Web page in somewhat differ-
ent ways. HTTP has nothing to do with how a Web page is interpreted by a client. The
HTTP specifications ([RFC 1945] and [RFC 2616]) define only the communication
protocol between the client HTTP program and the server HTTP program.

The steps above illustrate the use of non-persistent connections, where each TCP
connection is closed after the server sends the object—the connection does not persist
for other objects. Note that each TCP connection transports exactly one request mes-
sage and one response message. Thus, in this example, when a user requests the Web
page, 11 TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure
modern browsers to control the degree of parallelism. In their default modes, most
browsers open 5 to 10 parallel TCP connections, and each of these connections han-
dles one request-response transaction. If the user prefers, the maximum number of
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parallel connections can be set to one, in which case the 10 connections are estab-
lished serially. As we’ll see in the next chapter, the use of parallel connections short-
ens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing
delays. (These delays were discussed in Section 1.4.) Now consider what happens
when a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser
to initiate a TCP connection between the browser and the Web server; this
involves a “three-way handshake”—the client sends a small TCP segment to the
server, the server acknowledges and responds with a small TCP segment, and,
finally, the client acknowledges back to the server. The first two parts of the three-
way handshake take one RTT. After completing the first two parts of the hand-
shake, the client sends the HTTP request message combined with the third part of
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the three-way handshake (the acknowledgment) into the TCP connection. Once
the request message arrives at the server, the server sends the HTML file into the
TCP connection. This HTTP request/response eats up another RTT. Thus, roughly,
the total response time is two RTTs plus the transmission time at the server of the
HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connec-
tion must be established and maintained for each requested object. For each of
these connections, TCP buffers must be allocated and TCP variables must be kept
in both the client and server. This can place a significant burden on the Web server,
which may be serving requests from hundreds of different clients simultaneously.
Second, as we just described, each object suffers a delivery delay of two RTTs—
one RTT to establish the TCP connection and one RTT to request and receive an
object.

With persistent connections, the server leaves the TCP connection open after
sending a response. Subsequent requests and responses between the same client and
server can be sent over the same connection. In particular, an entire Web page (in
the example above, the base HTML file and the 10 images) can be sent over a single
persistent TCP connection. Moreover, multiple Web pages residing on the same
server can be sent from the server to the same client over a single persistent TCP
connection. These requests for objects can be made back-to-back, without waiting
for replies to pending requests (pipelining). Typically, the HTTP server closes a con-
nection when it isn’t used for a certain time (a configurable timeout interval). When
the server receives the back-to-back requests, it sends the objects back-to-back. The
default mode of HTTP uses persistent connections with pipelining. We’ll quantita-
tively compare the performance of non-persistent and persistent connections in the
homework problems of Chapters 2 and 3. You are also encouraged to see [Heide-
mann 1997; Nielsen 1997].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 1945; RFC 2616] include the definitions of the
HTTP message formats. There are two types of HTTP messages, request messages
and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
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Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
The great majority of HTTP request messages use the GET method. The GET
method is used when the browser requests an object, with the requested object iden-
tified in the URL field. In this example, the browser is requesting the object
/somedir/page.html. The version is self-explanatory; in this example, the
browser implements version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:
www.someschool.edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can
actually send different versions of the same object to different types of user agents.
(Each of the versions is addressed by the same URL.) Finally, the Accept-
language: header indicates that the user prefers to receive a French version of
the object, if such an object exists on the server; otherwise, the server should send
its default version. The Accept-language: header is just one of many content
negotiation headers available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body is
empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page
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depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily use the POST method. Instead, HTML forms often use the GET
method and include the inputted data (in the form fields) in the requested URL. For
example, if a form uses the GET method, has two fields, and the inputs to the two
fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeys&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLs of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects to
Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK
Connection: close
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Date: Tue, 09 Aug 2011 15:44:04 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an ini-
tial status line, six header lines, and then the entity body. The entity body is the
meat of the message—it contains the requested object itself (represented by data
data data data data ...). The status line has three fields: the protocol ver-
sion field, a status code, and a corresponding status message. In this example, the
status line indicates that the server is using HTTP/1.1 and that everything is OK
(that is, the server has found, and is sending, the requested object).

Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when the
object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends
the response message. The Server: header line indicates that the message was gen-
erated by an Apache Web server; it is analogous to the User-agent: header line
in the HTTP request message. The Last-Modified: header line indicates the
time and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both in
the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body is
HTML text. (The object type is officially indicated by the Content-Type: header
and not by the file extension.)

Having looked at an example, let’s now examine the general format of a
response message, which is shown in Figure 2.9. This general format of the response
message matches the previous example of a response message. Let’s say a few addi-
tional words about status codes and their phrases. The status code and associated
phrase indicate the result of the request. Some common status codes and associated
phrases include:

• 200 OK: Request succeeded and the information is returned in the response.

• 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.
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• 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

• 404 Not Found: The requested document does not exist on this server.

• 505 HTTP Version Not Supported: The requested HTTP protocol
version is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet cis.poly.edu 80

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

(Press the carriage return twice after typing the last line.) This opens a TCP connec-
tion to port 80 of the host cis.poly.edu and then sends the HTTP request mes-
sage. You should see a response message that includes the base HTML file of
Professor Ross’s homepage. If you’d rather just see the HTTP message lines and not
receive the object itself, replace GET with HEAD. Finally, replace /~ross/ with
/~banana/ and see what kind of response message you get.

In this section we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many, many
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more header lines that can be inserted by browsers, Web servers, and network cache
servers. We have covered only a small number of the totality of header lines. We’ll
cover a few more below and another small number when we discuss network Web
caching in Section 2.2.5. A highly readable and comprehensive discussion of the HTTP
protocol, including its headers and status codes, is given in [Krishnamurthy 2001].

How does a browser decide which header lines to include in a request mes-
sage? How does a Web server decide which header lines to include in a response
message? A browser will generate header lines as a function of the browser type
and version (for example, an HTTP/1.0 browser will not generate any 1.1 header
lines), the user configuration of the browser (for example, preferred language), and
whether the browser currently has a cached, but possibly out-of-date, version of the
object. Web servers behave similarly: There are different products, versions, and
configurations, all of which influence which header lines are included in response
messages.

2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for a
Web site to identify users, either because the server wishes to restrict user access or
because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep
track of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by the
user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10, let’s
walk through an example of how cookies work. Suppose Susan, who always
accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the Set-
cookie: header. The browser then appends a line to the special cookie file that it
manages. This line includes the hostname of the server and the identification num-
ber in the Set-cookie: header. Note that the cookie file already has an entry for
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eBay, since Susan has visited that site in the past. As Susan continues to browse the
Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line
that includes the identification number in the HTTP request. Specifically, each of
her HTTP requests to the Amazon server includes the header line:

Cookie: 1678
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In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will continue
to put the header line Cookie: 1678 in the request messages. Amazon also rec-
ommends products to Susan based on Web pages she has visited at Amazon in the
past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identification
number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to a
Web-based e-mail application (such as Hotmail), the browser sends cookie informa-
tion to the server, permitting the server to identify the user throughout the user’s ses-
sion with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party. Cookie Central [Cookie Central 2012] includes extensive information
on the cookie controversy.

2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk storage
and keeps copies of recently requested objects in this storage. As shown in Figure 2.11, a
user’s browser can be configured so that all of the user’s HTTP requests are first directed
to the Web cache. Once a browser is configured, each browser request for an object is
first directed to the Web cache. As an example, suppose a browser is requesting the
object http://www.someschool.edu/campus.gif. Here is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an
HTTP request for the object to the Web cache.
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2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to
the client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www.someschool.edu. The Web cache
then sends an HTTP request for the object into the cache-to-server TCP con-
nection. After receiving this request, the origin server sends the object within
an HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as AOL) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if the
bottleneck bandwidth between the client and the origin server is much less than the bot-
tleneck bandwidth between the client and the cache. If there is a high-speed connection
between the client and the cache, as there often is, and if the cache has the requested
object, then the cache will be able to deliver the object rapidly to the client. Second, as
we will soon illustrate with an example, Web caches can substantially reduce traffic on
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an institution’s access link to the Internet. By reducing traffic, the institution (for exam-
ple, a company or a university) does not have to upgrade bandwidth as quickly, thereby
reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the
Internet as a whole, thereby improving performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Inter-
net router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”
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The total response time—that is, the time from the browser’s request of an object
until its receipt of the object—is the sum of the LAN delay, the access delay (that is,
the delay between the two routers), and the Internet delay. Let’s now do a very crude
calculation to estimate this delay. The traffic intensity on the LAN (see Section 1.4.2) is

(15 requests/sec) � (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) � (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly some-
thing must be done.

One possible solution is to increase the access rate from 15 Mbps to, say, 100
Mbps. This will lower the traffic intensity on the access link to 0.15, which trans-
lates to negligible delays between the two routers. In this case, the total response
time will roughly be two seconds, that is, the Internet delay. But this solution also
means that the institution must upgrade its access link from 15 Mbps to 100 Mbps, a
costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illus-
trated in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a
cache—typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s
suppose that the cache provides a hit rate of 0.4 for this institution. Because the
clients and the cache are connected to the same high-speed LAN, 40 percent of
the requests will be satisfied almost immediately, say, within 10 milliseconds, by the
cache. Nevertheless, the remaining 60 percent of the requests still need to be satis-
fied by the origin servers. But with only 60 percent of the requested objects passing
through the access link, the traffic intensity on the access link is reduced from 1.0 to
0.6. Typically, a traffic intensity less than 0.8 corresponds to a small delay, say, tens
of milliseconds, on a 15 Mbps link. This delay is negligible compared with the two-
second Internet delay. Given these considerations, average delay therefore is

0.4 � (0.01 seconds) + 0.6 � (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
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and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Microsoft). We will discuss CDNs in more detail in Chapter 7.

2.2.6 The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new prob-
lem—the copy of an object residing in the cache may be stale. In other words, the
object housed in the Web server may have been modified since the copy was cached
at the client. Fortunately, HTTP has a mechanism that allows a cache to verify that its
objects are up to date. This mechanism is called the conditional GET. An HTTP
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request message is a so-called conditional GET message if (1) the request message
uses the GET method and (2) the request message includes an If-Modified-
Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK
Date: Sat, 8 Oct 2011 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 7 Sep 2011 09:23:24
Content-Type: image/gif

(data data data data data ...)

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the
cache, and the object is still in the cache. Since this object may have been modified
at the Web server in the past week, the cache performs an up-to-date check by issu-
ing a conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 7 Sep 2011 09:23:24

Note that the value of the If-modified-since: header line is exactly equal to
the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 7 Sep 2011 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 15 Oct 2011 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)
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We see that in response to the conditional GET, the Web server still sends a response
message but does not include the requested object in the response message. Including
the requested object would only waste bandwidth and increase user-perceived response
time, particularly if the object is large. Note that this last response message has 304
Not Modified in the status line, which tells the cache that it can go ahead and for-
ward its (the proxy cache’s) cached copy of the object to the requesting browser.

This ends our discussion of HTTP, the first Internet protocol (an application-layer
protocol) that we’ve studied in detail. We’ve seen the format of HTTP messages and
the actions taken by the Web client and server as these messages are sent and received.
We’ve also studied a bit of the Web’s application infrastructure, including caches, cook-
ies, and back-end databases, all of which are tied in some way to the HTTP protocol.

2.3 File Transfer: FTP

In a typical FTP session, the user is sitting in front of one host (the local host)
and wants to transfer files to or from a remote host. In order for the user to 
access the remote account, the user must provide a user identification and a pass-
word. After providing this authorization information, the user can transfer files
from the local file system to the remote file system and vice versa. As shown in
Figure 2.14, the user interacts with FTP through an FTP user agent. The user first
provides the hostname of the remote host, causing the FTP client process in the
local host to establish a TCP connection with the FTP server process in the
remote host. The user then provides the user identification and password, which
are sent over the TCP connection as part of FTP commands. Once the server has
authorized the user, the user copies one or more files stored in the local file sys-
tem into the remote file system (or vice versa).
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HTTP and FTP are both file transfer protocols and have many common charac-
teristics; for example, they both run on top of TCP. However, the two application-layer
protocols have some important differences. The most striking difference is that FTP
uses two parallel TCP connections to transfer a file, a control connection and a data
connection. The control connection is used for sending control information between
the two hosts—information such as user identification, password, commands to
change remote directory, and commands to “put” and “get” files. The data connection
is used to actually send a file. Because FTP uses a separate control connection, FTP is
said to send its control information out-of-band. HTTP, as you recall, sends request
and response header lines into the same TCP connection that carries the transferred
file itself. For this reason, HTTP is said to send its control information in-band. In the
next section, we’ll see that SMTP, the main protocol for electronic mail, also sends
control information in-band. The FTP control and data connections are illustrated in
Figure 2.15.

When a user starts an FTP session with a remote host, the client side of FTP
(user) first initiates a control TCP connection with the server side (remote host) on
server port number 21. The client side of FTP sends the user identification and
password over this control connection. The client side of FTP also sends, over the
control connection, commands to change the remote directory. When the server
side receives a command for a file transfer over the control connection (either to,
or from, the remote host), the server side initiates a TCP data connection to the
client side. FTP sends exactly one file over the data connection and then closes the
data connection. If, during the same session, the user wants to transfer another file,
FTP opens another data connection. Thus, with FTP, the control connection
remains open throughout the duration of the user session, but a new data connec-
tion is created for each file transferred within a session (that is, the data connec-
tions are non-persistent).

Throughout a session, the FTP server must maintain state about the user. In par-
ticular, the server must associate the control connection with a specific user account,
and the server must keep track of the user’s current directory as the user wanders
about the remote directory tree. Keeping track of this state information for each
ongoing user session significantly constrains the total number of sessions that FTP
can maintain simultaneously. Recall that HTTP, on the other hand, is stateless—it
does not have to keep track of any user state.
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2.3.1 FTP Commands and Replies

We end this section with a brief discussion of some of the more common FTP com-
mands and replies. The commands, from client to server, and replies, from server to
client, are sent across the control connection in 7-bit ASCII format. Thus, like HTTP
commands, FTP commands are readable by people. In order to delineate successive
commands, a carriage return and line feed end each command. Each command con-
sists of four uppercase ASCII characters, some with optional arguments. Some of
the more common commands are given below:

• USER username: Used to send the user identification to the server.

• PASS password: Used to send the user password to the server.

• LIST: Used to ask the server to send back a list of all the files in the current
remote directory. The list of files is sent over a (new and non-persistent) data
connection rather than the control TCP connection.

• RETR filename: Used to retrieve (that is, get) a file from the current direc-
tory of the remote host. This command causes the remote host to initiate a data
connection and to send the requested file over the data connection.

• STOR filename: Used to store (that is, put) a file into the current directory
of the remote host.

There is typically a one-to-one correspondence between the command that the
user issues and the FTP command sent across the control connection. Each com-
mand is followed by a reply, sent from server to client. The replies are three-digit
numbers, with an optional message following the number. This is similar in struc-
ture to the status code and phrase in the status line of the HTTP response message.
Some typical replies, along with their possible messages, are as follows:

• 331 Username OK, password required

• 125 Data connection already open; transfer starting

• 425 Can’t open data connection

• 452 Error writing file

Readers who are interested in learning about the other FTP commands and replies
are encouraged to read RFC 959.

2.4 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
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become more and more elaborate and powerful over the years. It remains one of the
Internet’s most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail, elec-
tronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has many pow-
erful features, including messages with attachments, hyperlinks, HTML-formatted
text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these proto-
cols, let’s take a high-level view of the Internet mail system and its key components.

Figure 2.16 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
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Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose mes-
sages. Microsoft Outlook and Apple Mail are examples of user agents for e-mail.
When Alice is finished composing her message, her user agent sends the message to
her mail server, where the message is placed in the mail server’s outgoing message
queue. When Bob wants to read a message, his user agent retrieves the message
from his mailbox in his mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such as
Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages and
maintains the messages that have been sent to him. A typical message starts its jour-
ney in the sender’s user agent, travels to the sender’s mail server, and 
travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.
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In December 1995, just a few years after the Web was “invented,” Sabeer Bhatia
and Jack Smith visited the Internet venture capitalist Draper Fisher Jurvetson and
proposed developing a free Web-based e-mail system. The idea was to give a free
e-mail account to anyone who wanted one, and to make the accounts accessible
from the Web. In exchange for 15 percent of the company, Draper Fisher
Jurvetson financed Bhatia and Smith, who formed a company called Hotmail.
With three full-time people and 14 part-time people who worked for stock options,
they were able to develop and launch the service in July 1996. Within a month
after launch, they had 100,000 subscribers. In December 1997, less than 18
months after launching the service, Hotmail had over 12 million subscribers and
was acquired by Microsoft, reportedly for $400 million. The success of Hotmail is
often attributed to its “first-mover advantage” and to the intrinsic “viral marketing”
of e-mail. (Perhaps some of the students reading this book will be among the new
entrepreneurs who conceive and develop first-mover Internet services with inherent
viral marketing.)

Web e-mail continues to thrive, becoming more sophisticated and powerful every
year. One of the most popular services today is Google’s gmail, which offers giga-
bytes of free storage, advanced spam filtering and virus detection, e-mail encryption
(using SSL), mail fetching from third-party e-mail services, and a search-oriented inter-
face. Asynchronous messaging within social networks, such as Facebook, has also
become popular in recent years.
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When Bob wants to access the messages in his mailbox, the mail server 
containing his mailbox authenticates Bob (with usernames and passwords). Alice’s
mail server must also deal with failures in Bob’s mail server. If Alice’s server can-
not deliver mail to Bob’s server, Alice’s server holds the message in a message
queue and attempts to transfer the message later. Reattempts are often done every
30 minutes or so; if there is no success after several days, the server removes the
message and notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols,
SMTP has two sides: a client side, which executes on the sender’s mail server, and a
server side, which executes on the recipient’s mail server. Both the client and server
sides of SMTP run on every mail server. When a mail server sends mail to other
mail servers, it acts as an SMTP client. When a mail server receives mail from other
mail servers, it acts as an SMTP server.

2.4.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipi-
ents’ mail servers. SMTP is much older than HTTP. (The original SMTP RFC
dates back to 1982, and SMTP was around long before that.) Although SMTP has
numerous wonderful qualities, as evidenced by its ubiquity in the Internet, it is
nevertheless a legacy technology that possesses certain archaic characteristics.
For example, it restricts the body (not just the headers) of all mail messages to
simple 7-bit ASCII. This restriction made sense in the early 1980s when trans-
mission capacity was scarce and no one was e-mailing large attachments or large
image, audio, or video files. But today, in the multimedia era, the 7-bit ASCII
restriction is a bit of a pain—it requires binary multimedia data to be encoded to
ASCII before being sent over SMTP; and it requires the corresponding ASCII
message to be decoded back to binary after SMTP transport. Recall from Section
2.2 that HTTP does not require multimedia data to be ASCII encoded before
transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.
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3. The client side of SMTP, running on Alice’s mail server, sees the message in
the message queue. It opens a TCP connection to an SMTP server, running on
Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s
mail server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.17.
It is important to observe that SMTP does not normally use intermediate mail

servers for sending mail, even when the two mail servers are located at opposite
ends of the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis,
the TCP connection is a direct connection between the Hong Kong and St. Louis
servers. In particular, if Bob’s mail server is down, the message remains in Alice’s
mail server and waits for a new attempt—the message does not get placed in some
intermediate mail server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP protocol has
many similarities with protocols that are used for face-to-face human interaction.
First, the client SMTP (running on the sending mail server host) has TCP estab-
lish a connection to port 25 at the server SMTP (running on the receiving mail
server host). If the server is down, the client tries again later. Once this connec-
tion is established, the server and client perform some application-layer
handshaking—just as humans often introduce themselves before transferring
information from one to another, SMTP clients and servers introduce themselves
before transferring information. During this SMTP handshaking phase, the
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SMTP client indicates the e-mail address of the sender (the person who generated
the message) and the e-mail address of the recipient. Once the SMTP client and
server have introduced themselves to each other, the client sends the message.
SMTP can count on the reliable data transfer service of TCP to get the message
to the server without errors. The client then repeats this process over the same
TCP connection if it has other messages to send to the server; otherwise, it
instructs TCP to close the connection.

Let’s next take a look at an example transcript of messages exchanged
between an SMTP client (C) and an SMTP server (S). The hostname of the client
is crepes.fr and the hostname of the server is hamburger.edu. The
ASCII text lines prefaced with C: are exactly the lines the client sends into its
TCP socket, and the ASCII text lines prefaced with S: are exactly the lines the
server sends into its TCP socket. The following transcript begins as soon as the
TCP connection is established.

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr ... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with “.” on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes.fr to mail server ham-
burger.edu. As part of the dialogue, the client issued five commands: HELO (an
abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT. These com-
mands are self-explanatory. The client also sends a line consisting of a single period,
which indicates the end of the message to the server. (In ASCII jargon, each mes-
sage ends with CRLF.CRLF, where CR and LF stand for carriage return and line
feed, respectively.) The server issues replies to each command, with each reply hav-
ing a reply code and some (optional) English-language explanation. We mention
here that SMTP uses persistent connections: If the sending mail server has several
messages to send to the same receiving mail server, it can send all of the messages
over the same TCP connection. For each message, the client begins the process with
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a new MAIL FROM: crepes.fr, designates the end of message with an isolated
period, and issues QUIT only after all messages have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP.
It will allow you to send an e-mail message to an arbitrary recipient via a local
mail server.

2.4.2 Comparison with HTTP

Let’s now briefly compare SMTP with HTTP. Both protocols are used to transfer
files from one host to another: HTTP transfers files (also called objects) from a Web
server to a Web client (typically a browser); SMTP transfers files (that is, e-mail
messages) from one mail server to another mail server. When transferring the files,
both persistent HTTP and SMTP use persistent connections. Thus, the two protocols
have common characteristics. However, there are important differences. First,
HTTP is mainly a pull protocol—someone loads information on a Web server and
users use HTTP to pull the information from the server at their convenience. In par-
ticular, the TCP connection is initiated by the machine that wants to receive the file.
On the other hand, SMTP is primarily a push protocol—the sending mail server
pushes the file to the receiving mail server. In particular, the TCP connection is ini-
tiated by the machine that wants to send the file.

A second difference, which we alluded to earlier, is that SMTP requires
each message, including the body of each message, to be in 7-bit ASCII format.
If the message contains characters that are not 7-bit ASCII (for example, French
characters with accents) or contains binary data (such as an image file), then the
message has to be encoded into 7-bit ASCII. HTTP data does not impose this
restriction.

A third important difference concerns how a document consisting of text and
images (along with possibly other media types) is handled. As we learned in Section
2.2, HTTP encapsulates each object in its own HTTP response message. Internet
mail places all of the message’s objects into one message.
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2.4.3 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds of
peripheral header information at the top of the letter, such as Bob’s address, her own
return address, and the date. Similarly, when an e-mail message is sent from one per-
son to another, a header containing peripheral information precedes the body of the
message itself. This peripheral information is contained in a series of header lines,
which are defined in RFC 5322. The header lines and the body of the message are
separated by a blank line (that is, by CRLF). RFC 5322 specifies the exact format for
mail header lines as well as their semantic interpretations. As with HTTP, each header
line contains readable text, consisting of a keyword followed by a colon followed by
a value. Some of the keywords are required and others are optional. Every header
must have a From: header line and a To: header line; a header may include a Sub-
ject: header line as well as other optional header lines. It is important to note that
these header lines are different from the SMTP commands we studied in Section 2.4.1
(even though they contain some common words such as “from” and “to”). The com-
mands in that section were part of the SMTP handshaking protocol; the header lines
examined in this section are part of the mail message itself.

A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains some
header lines, including the Subject: header line. To do this, issue telnet
serverName 25, as discussed in Section 2.4.1.

2.4.4 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Throughout this discussion we have tacitly
assumed that Bob reads his mail by logging onto the server host and then executing
a mail reader that runs on that host. Up until the early 1990s this was the standard
way of doing things. But today, mail access uses a client-server architecture—the
typical user reads e-mail with a client that executes on the user’s end system, for
example, on an office PC, a laptop, or a smartphone. By executing a mail client on a
local PC, users enjoy a rich set of features, including the ability to view multimedia
messages and attachments.

Given that Bob (the recipient) executes his user agent on his local PC, it is nat-
ural to consider placing a mail server on his local PC as well. With this approach,
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Alice’s mail server would dialogue directly with Bob’s PC. There is a problem with
this approach, however. Recall that a mail server manages mailboxes and runs the
client and server sides of SMTP. If Bob’s mail server were to reside on his local PC,
then Bob’s PC would have to remain always on, and connected to the Internet, in
order to receive new mail, which can arrive at any time. This is impractical for many
Internet users. Instead, a typical user runs a user agent on the local PC but accesses
its mailbox stored on an always-on shared mail server. This mail server is shared
with other users and is typically maintained by the user’s ISP (for example, univer-
sity or company).

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs
to be deposited in Bob’s mail server. This could be done simply by having Alice’s
user agent send the message directly to Bob’s mail server. And this could be done
with SMTP—indeed, SMTP has been designed for pushing e-mail from one host to
another. However, typically the sender’s user agent does not dialogue directly with
the recipient’s mail server. Instead, as shown in Figure 2.18, Alice’s user agent uses
SMTP to push the e-mail message into her mail server, then Alice’s mail server uses
SMTP (as an SMTP client) to relay the e-mail message to Bob’s mail server. Why
the two-step procedure? Primarily because without relaying through Alice’s mail
server, Alice’s user agent doesn’t have any recourse to an unreachable destination
mail server. By having Alice first deposit the e-mail in her own mail server, Alice’s
mail server can repeatedly try to send the message to Bob’s mail server, say every
30 minutes, until Bob’s mail server becomes operational. (And if Alice’s mail server
is down, then she has the recourse of complaining to her system administrator!) The
SMTP RFC defines how the SMTP commands can be used to relay a message
across multiple SMTP servers.

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local PC, obtain his messages, which are sitting in a mail
server within Bob’s ISP? Note that Bob’s user agent can’t use SMTP to obtain the
messages because obtaining the messages is a pull operation, whereas SMTP is a
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push protocol. The puzzle is completed by introducing a special mail access proto-
col that transfers messages from Bob’s mail server to his local PC. There are cur-
rently a number of popular mail access protocols, including Post Office
Protocol—Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.

Figure 2.18 provides a summary of the protocols that are used for Internet mail:
SMTP is used to transfer mail from the sender’s mail server to the recipient’s mail
server; SMTP is also used to transfer mail from the sender’s user agent to the
sender’s mail server. A mail access protocol, such as POP3, is used to transfer mail
from the recipient’s mail server to the recipient’s user agent.

POP3

POP3 is an extremely simple mail access protocol. It is defined in [RFC 1939], which
is short and quite readable. Because the protocol is so simple, its functionality is
rather limited. POP3 begins when the user agent (the client) opens a TCP connec-
tion to the mail server (the server) on port 110. With the TCP connection estab-
lished, POP3 progresses through three phases: authorization, transaction, and update.
During the first phase, authorization, the user agent sends a username and a password
(in the clear) to authenticate the user. During the second phase, transaction, the user
agent retrieves messages; also during this phase, the user agent can mark messages
for deletion, remove deletion marks, and obtain mail statistics. The third phase,
update, occurs after the client has issued the quit command, ending the POP3
session; at this time, the mail server deletes the messages that were marked for
deletion.

In a POP3 transaction, the user agent issues commands, and the server responds
to each command with a reply. There are two possible responses: +OK (sometimes
followed by server-to-client data), used by the server to indicate that the previous
command was fine; and -ERR, used by the server to indicate that something was
wrong with the previous command.

The authorization phase has two principal commands: user <username> and
pass <password>. To illustrate these two commands, we suggest that you Telnet
directly into a POP3 server, using port 110, and issue these commands. Suppose that
mailServer is the name of your mail server. You will see something like:

telnet mailServer 110
+OK POP3 server ready
user bob
+OK
pass hungry
+OK user successfully logged on

If you misspell a command, the POP3 server will reply with an -ERR message.
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Now let’s take a look at the transaction phase. A user agent using POP3 can
often be configured (by the user) to “download and delete” or to “download and
keep.” The sequence of commands issued by a POP3 user agent depends on which
of these two modes the user agent is operating in. In the download-and-delete mode,
the user agent will issue the list, retr, and dele commands. As an example,
suppose the user has two messages in his or her mailbox. In the dialogue below, C:
(standing for client) is the user agent and S: (standing for server) is the mail server.
The transaction will look something like:

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: (blah blah ...
S: .................
S: ..........blah)
S: .
C: dele 1
C: retr 2
S: (blah blah ...
S: .................
S: ..........blah)
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored mes-
sages. The user agent then retrieves and deletes each message from the server. Note
that after the authorization phase, the user agent employed only four commands:
list, retr, dele, and quit. The syntax for these commands is defined in RFC
1939. After processing the quit command, the POP3 server enters the update
phase and removes messages 1 and 2 from the mailbox.

A problem with this download-and-delete mode is that the recipient, Bob, may
be nomadic and may want to access his mail messages from multiple machines, for
example, his office PC, his home PC, and his portable computer. The download-
and-delete mode partitions Bob’s mail messages over these three machines; in par-
ticular, if Bob first reads a message on his office PC, he will not be able to reread
the message from his portable at home later in the evening. In the download-and-
keep mode, the user agent leaves the messages on the mail server after downloading
them. In this case, Bob can reread messages from different machines; he can access
a message from work and access it again later in the week from home.
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During a POP3 session between a user agent and the mail server, the POP3
server maintains some state information; in particular, it keeps track of which user
messages have been marked deleted. However, the POP3 server does not carry state
information across POP3 sessions. This lack of state information across sessions
greatly simplifies the implementation of a POP3 server.

IMAP

With POP3 access, once Bob has downloaded his messages to the local machine,
he can create mail folders and move the downloaded messages into the folders.
Bob can then delete messages, move messages across folders, and search for
messages (by sender name or subject). But this paradigm—namely, folders and
messages in the local machine—poses a problem for the nomadic user, who
would prefer to maintain a folder hierarchy on a remote server that can be
accessed from any computer. This is not possible with POP3—the POP3 protocol
does not provide any means for a user to create remote folders and assign mes-
sages to folders.

To solve this and other problems, the IMAP protocol, defined in [RFC 3501],
was invented. Like POP3, IMAP is a mail access protocol. It has many more fea-
tures than POP3, but it is also significantly more complex. (And thus the client and
server side implementations are significantly more complex.)

An IMAP server will associate each message with a folder; when a message first
arrives at the server, it is associated with the recipient’s INBOX folder. The recipient
can then move the message into a new, user-created folder, read the message, delete
the message, and so on. The IMAP protocol provides commands to allow users to
create folders and move messages from one folder to another. IMAP also provides
commands that allow users to search remote folders for messages matching specific
criteria. Note that, unlike POP3, an IMAP server maintains user state information
across IMAP sessions—for example, the names of the folders and which messages
are associated with which folders.

Another important feature of IMAP is that it has commands that permit a user
agent to obtain components of messages. For example, a user agent can obtain just
the message header of a message or just one part of a multipart MIME message.
This feature is useful when there is a low-bandwidth connection (for example, a
slow-speed modem link) between the user agent and its mail server. With a low-
bandwidth connection, the user may not want to download all of the messages in
its mailbox, particularly avoiding long messages that might contain, for example,
an audio or video clip.

Web-Based E-Mail

More and more users today are sending and accessing their e-mail through their Web
browsers. Hotmail introduced Web-based access in the mid 1990s. Now Web-based
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e-mail is also provided by Google, Yahoo!, as well as just about every major univer-
sity and corporation. With this service, the user agent is an ordinary Web browser,
and the user communicates with its remote mailbox via HTTP. When a recipient,
such as Bob, wants to access a message in his mailbox, the e-mail message is sent
from Bob’s mail server to Bob’s browser using the HTTP protocol rather than the
POP3 or IMAP protocol. When a sender, such as Alice, wants to send an e-mail
message, the e-mail message is sent from her browser to her mail server over HTTP
rather than over SMTP. Alice’s mail server, however, still sends messages to, and
receives messages from, other mail servers using SMTP.

2.5 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be identi-
fied by the names that appear on our birth certificates. We can be identified by our
social security numbers. We can be identified by our driver’s license numbers.
Although each of these identifiers can be used to identify people, within a given
context one identifier may be more appropriate than another. For example, the com-
puters at the IRS (the infamous tax-collecting agency in the United States) prefer to
use fixed-length social security numbers rather than birth certificate names. On the
other hand, ordinary people prefer the more mnemonic birth certificate names rather
than social security numbers. (Indeed, can you imagine saying, “Hi. My name is
132-67-9875. Please meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One identi-
fier for a host is its hostname. Hostnames—such as cnn.com, www.yahoo.
com, gaia.cs.umass.edu, and cis.poly.edu—are mnemonic and are there-
fore appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom.fr,
which ends with the country code .fr, tells us that the host is probably in France, but
doesn’t say much more.) Furthermore, because hostnames can consist of variable-
length alphanumeric characters, they would be difficult to process by routers. For these
reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a few
brief words about them now. An IP address consists of four bytes and has a rigid
hierarchical structure. An IP address looks like 121.7.106.83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.
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2.5.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and by
an IP address. People prefer the more mnemonic hostname identifier, while routers
prefer fixed-length, hierarchically structured IP addresses. In order to reconcile
these preferences, we need a directory service that translates hostnames to IP
addresses. This is the main task of the Internet’s domain name system (DNS). The
DNS is (1) a distributed database implemented in a hierarchy of DNS servers, and
(2) an application-layer protocol that allows hosts to query the distributed database.
The DNS servers are often UNIX machines running the Berkeley Internet Name
Domain (BIND) software [BIND 2012]. The DNS protocol runs over UDP and uses
port 53.

DNS is commonly employed by other application-layer protocols—including
HTTP, SMTP, and FTP—to translate user-supplied hostnames to IP addresses. As
an example, consider what happens when a browser (that is, an HTTP client),
running on some user’s host, requests the URL www.someschool.edu/
index.html. In order for the user’s host to be able to send an HTTP request mes-
sage to the Web server www.someschool.edu, the user’s host must first obtain
the IP address of www.someschool.edu. This is done as follows.

1. The same user machine runs the client side of the DNS application.
2. The browser extracts the hostname, www.someschool.edu, from the URL

and passes the hostname to the client side of the DNS application.
3. The DNS client sends a query containing the hostname to a DNS server.
4. The DNS client eventually receives a reply, which includes the IP address for

the hostname.
5. Once the browser receives the IP address from DNS, it can initiate a TCP con-

nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes substan-
tial—to the Internet applications that use it. Fortunately, as we discuss below, the
desired IP address is often cached in a “nearby” DNS server, which helps to reduce
DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-
names to IP addresses:

• Host aliasing. A host with a complicated hostname can have one or more alias
names. For example, a hostname such as relay1.west-coast.enter-
prise.com could have, say, two aliases such as enterprise.com and
www.enterprise.com. In this case, the hostname relay1.west-
coast.enterprise.com is said to be a canonical hostname. Alias host-
names, when present, are typically more mnemonic than canonical hostnames.
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DNS can be invoked by an application to obtain the canonical hostname for a
supplied alias hostname as well as the IP address of the host.

• Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Hotmail, Bob’s
e-mail address might be as simple as bob@hotmail.com. However, the host-
name of the Hotmail mail server is more complicated and much less mnemonic
than simply hotmail.com (for example, the canonical hostname might be
something like relay1.west-coast.hotmail.com). DNS can be
invoked by a mail application to obtain the canonical hostname for a supplied
alias hostname as well as the IP address of the host. In fact, the MX record (see
below) permits a company’s mail server and Web server to have identical
(aliased) hostnames; for example, a company’s Web server and mail server can
both be called enterprise.com.

• Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn.com, are
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of
IP addresses is thus associated with one canonical hostname. The DNS database
contains this set of IP addresses. When clients make a DNS query for a name
mapped to a set of addresses, the server responds with the entire set of IP
addresses, but rotates the ordering of the addresses within each reply. Because a
client typically sends its HTTP request message to the IP address that is listed
first in the set, DNS rotation distributes the traffic among the replicated servers.
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DNS rotation is also used for e-mail so that multiple mail servers can have the
same alias name. Also, content distribution companies such as Akamai have used
DNS in more sophisticated ways [Dilley 2002] to provide Web content distribu-
tion (see Chapter 7).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several
additional RFCs. It is a complex system, and we only touch upon key aspects of
its operation here. The interested reader is referred to these RFCs and the book
by Albitz and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris
1988], which provides a nice description of the what and why of DNS, and
[Mockapetris 2005].

2.5.2 Overview of How DNS Works

We now present a high-level overview of how DNS works. Our discussion will
focus on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail reader) run-
ning in a user’s host needs to translate a hostname to an IP address. The applica-
tion will invoke the client side of DNS, specifying the hostname that needs to be
translated. (On many UNIX-based machines, gethostbyname() is the func-
tion call that an application calls in order to perform the translation.) DNS in the
user’s host then takes over, sending a query message into the network. All DNS
query and reply messages are sent within UDP datagrams to port 53. After a delay,
ranging from milliseconds to seconds, DNS in the user’s host receives a DNS
reply message that provides the desired mapping. This mapping is then passed to
the invoking application. Thus, from the perspective of the invoking application
in the user’s host, DNS is a black box providing a simple, straightforward transla-
tion service. But in fact, the black box that implements the service is complex,
consisting of a large number of DNS servers distributed around the globe, as well
as an application-layer protocol that specifies how the DNS servers and querying
hosts communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS
server, and the DNS server responds directly to the querying clients. Although the
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its
vast (and growing) number of hosts. The problems with a centralized design
include:

• A single point of failure. If the DNS server crashes, so does the entire Internet!

• Traffic volume. A single DNS server would have to handle all DNS queries (for
all the HTTP requests and e-mail messages generated from hundreds of millions
of hosts).
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• Distant centralized database. A single DNS server cannot be “close to” all the
querying clients. If we put the single DNS server in New York City, then all
queries from Australia must travel to the other side of the globe, perhaps over
slow and congested links. This can lead to significant delays.

• Maintenance. The single DNS server would have to keep records for all Internet
hosts. Not only would this centralized database be huge, but it would have to be
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn’t scale.
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers,
organized in a hierarchical fashion and distributed around the world. No single DNS
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are
three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS
servers, and authoritative DNS servers—organized in a hierarchy as shown in Fig-
ure 2.19. To understand how these three classes of servers interact, suppose a DNS
client wants to determine the IP address for the hostname www.amazon.com. To
a first approximation, the following events will take place. The client first contacts
one of the root servers, which returns IP addresses for TLD servers for the top-level
domain com. The client then contacts one of these TLD servers, which returns the
IP address of an authoritative server for amazon.com. Finally, the client contacts
one of the authoritative servers for amazon.com, which returns the IP address
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for the hostname www.amazon.com. We’ll soon examine this DNS lookup
process in more detail. But let’s first take a closer look at these three classes of
DNS servers:

• Root DNS servers. In the Internet there are 13 root DNS servers (labeled A
through M), most of which are located in North America. An October 2006 map
of the root DNS servers is shown in Figure 2.20; a list of the current root DNS
servers is available via [Root-servers 2012]. Although we have referred to each
of the 13 root DNS servers as if it were a single server, each “server” is actually
a network of replicated servers, for both security and reliability purposes. All
together, there are 247 root servers as of fall 2011.

• Top-level domain (TLD) servers. These servers are responsible for top-level
domains such as com, org, net, edu, and gov, and all of the country top-level domains
such as uk, fr, ca, and jp. The company Verisign Global Registry Services
maintains the TLD servers for the com top-level domain, and the company
Educause maintains the TLD servers for the edu top-level domain. See [IANA
TLD 2012] for a list of all top-level domains.

• Authoritative DNS servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly acces-
sible DNS records that map the names of those hosts to IP addresses. An organiza-
tion’s authoritative DNS server houses these DNS records. An organization can
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choose to implement its own authoritative DNS server to hold these records; alter-
natively, the organization can pay to have these records stored in an authoritative
DNS server of some service provider. Most universities and large companies
implement and maintain their own primary and secondary (backup) authoritative
DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of
DNS servers, as shown in Figure 2.19. There is another important type of DNS
server called the local DNS server. A local DNS server does not strictly belong to
the hierarchy of servers but is nevertheless central to the DNS architecture. Each
ISP—such as a university, an academic department, an employee’s company, or a
residential ISP—has a local DNS server (also called a default name server). When a
host connects to an ISP, the ISP provides the host with the IP addresses of one or
more of its local DNS servers (typically through DHCP, which is discussed in Chap-
ter 4). You can easily determine the IP address of your local DNS server by access-
ing network status windows in Windows or UNIX. A host’s local DNS server is
typically “close to” the host. For an institutional ISP, the local DNS server may be
on the same LAN as the host; for a residential ISP, it is typically separated from the
host by no more than a few routers. When a host makes a DNS query, the query is
sent to the local DNS server, which acts a proxy, forwarding the query into the DNS
server hierarchy, as we’ll discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cis.poly.edu
desires the IP address of gaia.cs.umass.edu. Also suppose that Polytechnic’s
local DNS server is called dns.poly.edu and that an authoritative DNS server
for gaia.cs.umass.edu is called dns.umass.edu. As shown in Figure
2.21, the host cis.poly.edu first sends a DNS query message to its local DNS
server, dns.poly.edu. The query message contains the hostname to be trans-
lated, namely, gaia.cs.umass.edu. The local DNS server forwards the query
message to a root DNS server. The root DNS server takes note of the edu suffix and
returns to the local DNS server a list of IP addresses for TLD servers responsible for
edu. The local DNS server then resends the query message to one of these TLD
servers. The TLD server takes note of the umass.edu suffix and responds with the
IP address of the authoritative DNS server for the University of Massachusetts,
namely, dns.umass.edu. Finally, the local DNS server resends the query
message directly to dns.umass.edu, which responds with the IP address of
gaia.cs.umass.edu. Note that in this example, in order to obtain the mapping
for one hostname, eight DNS messages were sent: four query messages and four
reply messages! We’ll soon see how DNS caching reduces this query traffic.

Our previous example assumed that the TLD server knows the authoritative
DNS server for the hostname. In general this not always true. Instead, the TLD server
may know only of an intermediate DNS server, which in turn knows the authoritative
DNS server for the hostname. For example, suppose again that the University of
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Massachusetts has a DNS server for the university, called dns.umass.edu. Also
suppose that each of the departments at the University of Massachusetts has its own
DNS server, and that each departmental DNS server is authoritative for all hosts in
the department. In this case, when the intermediate DNS server, dns.umass.edu,
receives a query for a host with a hostname ending with cs.umass.edu, it returns
to dns.poly.edu the IP address of dns.cs.umass.edu, which is authorita-
tive for all hostnames ending with cs.umass.edu. The local DNS server
dns.poly.edu then sends the query to the authoritative DNS server, which
returns the desired mapping to the local DNS server, which in turn returns the map-
ping to the requesting host. In this case, a total of 10 DNS messages are sent!

The example shown in Figure 2.21 makes use of both recursive queries and
iterative queries. The query sent from cis.poly.edu to dns.poly.edu is a
recursive query, since the query asks dns.poly.edu to obtain the mapping on its
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behalf. But the subsequent three queries are iterative since all of the replies are
directly returned to dns.poly.edu. In theory, any DNS query can be iterative or
recursive. For example, Figure 2.22 shows a DNS query chain for which all of 
the queries are recursive. In practice, the queries typically follow the pattern in 
Figure 2.21: The query from the requesting host to the local DNS server is recur-
sive, and the remaining queries are iterative.

DNS Caching

Our discussion thus far has ignored DNS caching, a critically important feature of the
DNS system. In truth, DNS extensively exploits DNS caching in order to improve 
the delay performance and to reduce the number of DNS messages ricocheting around
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the Internet. The idea behind DNS caching is very simple. In a query chain, when a
DNS server receives a DNS reply (containing, for example, a mapping from a host-
name to an IP address), it can cache the mapping in its local memory. For example,
in Figure 2.21, each time the local DNS server dns.poly.edu receives a reply
from some DNS server, it can cache any of the information contained in the reply. If a
hostname/IP address pair is cached in a DNS server and another query arrives to the
DNS server for the same hostname, the DNS server can provide the desired IP address,
even if it is not authoritative for the hostname. Because hosts and mappings between
hostnames and IP addresses are by no means permanent, DNS servers discard cached
information after a period of time (often set to two days).

As an example, suppose that a host apricot.poly.edu queries
dns.poly.edu for the IP address for the hostname cnn.com. Furthermore, sup-
pose that a few hours later, another Polytechnic University host, say, kiwi.poly.fr,
also queries dns.poly.edu with the same hostname. Because of caching, the local
DNS server will be able to immediately return the IP address of cnn.com to this sec-
ond requesting host without having to query any other DNS servers. A local DNS
server can also cache the IP addresses of TLD servers, thereby allowing the local DNS
server to bypass the root DNS servers in a query chain (this often happens).

2.5.3 DNS Records and Messages

The DNS servers that together implement the DNS distributed database store
resource records (RRs), including RRs that provide hostname-to-IP address map-
pings. Each DNS reply message carries one or more resource records. In this and
the following subsection, we provide a brief overview of DNS resource records and
messages; more details can be found in [Abitz 1993] or in the DNS RFCs [RFC
1034; RFC 1035].

A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should
be removed from a cache. In the example records given below, we ignore the TTL
field. The meaning of Name and Value depend on Type:

• If Type=A, then Name is a hostname and Value is the IP address for the host-
name. Thus, a Type A record provides the standard hostname-to-IP address map-
ping. As an example, (relay1.bar.foo.com, 145.37.93.126, A)
is a Type A record.

• If Type=NS, then Name is a domain (such as foo.com) and Value is the host-
name of an authoritative DNS server that knows how to obtain the IP addresses
for hosts in the domain. This record is used to route DNS queries further along in
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the query chain. As an example, (foo.com, dns.foo.com, NS) is a Type
NS record.

• If Type=CNAME, then Value is a canonical hostname for the alias hostname
Name. This record can provide querying hosts the canonical name for a host-
name. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a
CNAME record.

• If Type=MX, then Value is the canonical name of a mail server that has an alias
hostname Name. As an example, (foo.com, mail.bar.foo.com, MX)
is an MX record. MX records allow the hostnames of mail servers to have sim-
ple aliases. Note that by using the MX record, a company can have the same
aliased name for its mail server and for one of its other servers (such as its Web
server). To obtain the canonical name for the mail server, a DNS client would
query for an MX record; to obtain the canonical name for the other server, the
DNS client would query for the CNAME record.

If a DNS server is authoritative for a particular hostname, then the DNS server will
contain a Type A record for the hostname. (Even if the DNS server is not authoritative,
it may contain a Type A record in its cache.) If a server is not authoritative for a host-
name, then the server will contain a Type NS record for the domain that includes the
hostname; it will also contain a Type A record that provides the IP address of the DNS
server in the Value field of the NS record. As an example, suppose an edu TLD server
is not authoritative for the host gaia.cs.umass.edu. Then this server will contain
a record for a domain that includes the host gaia.cs.umass.edu, for example,
(umass.edu, dns.umass.edu, NS). The edu TLD server would also contain
a Type A record, which maps the DNS server dns.umass.edu to an IP address, for
example, (dns.umass.edu, 128.119.40.111, A).

DNS Messages

Earlier in this section, we referred to DNS query and reply messages. These are the
only two kinds of DNS messages. Furthermore, both query and reply messages have
the same format, as shown in Figure 2.23.The semantics of the various fields in a
DNS message are as follows:

• The first 12 bytes is the header section, which has a number of fields. The first field
is a 16-bit number that identifies the query. This identifier is copied into the reply
message to a query, allowing the client to match received replies with sent queries.
There are a number of flags in the flag field. A 1-bit query/reply flag indicates
whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is set in a
reply message when a DNS server is an authoritative server for a queried name. A
1-bit recursion-desired flag is set when a client (host or DNS server) desires that the
DNS server perform recursion when it doesn’t have the record. A 1-bit recursion-
available field is set in a reply if the DNS server supports recursion. In the header,
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there are also four number-of fields. These fields indicate the number of occurrences
of the four types of data sections that follow the header.

• The question section contains information about the query that is being made.
This section includes (1) a name field that contains the name that is being
queried, and (2) a type field that indicates the type of question being asked about
the name—for example, a host address associated with a name (Type A) or the
mail server for a name (Type MX).

• In a reply from a DNS server, the answer section contains the resource records
for the name that was originally queried. Recall that in each resource record there
is the Type (for example, A, NS, CNAME, and MX), the Value, and the TTL.
A reply can return multiple RRs in the answer, since a hostname can have multi-
ple IP addresses (for example, for replicated Web servers, as discussed earlier in
this section).

• The authority section contains records of other authoritative servers.

• The additional section contains other helpful records. For example, the answer
field in a reply to an MX query contains a resource record providing the canoni-
cal hostname of a mail server. The additional section contains a Type A record
providing the IP address for the canonical hostname of the mail server.

How would you like to send a DNS query message directly from the host
you’re working on to some DNS server? This can easily be done with the nslookup
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program, which is available from most Windows and UNIX platforms. For exam-
ple, from a Windows host, open the Command Prompt and invoke the nslookup pro-
gram by simply typing “nslookup.” After invoking nslookup, you can send a DNS
query to any DNS server (root, TLD, or authoritative). After receiving the reply
message from the DNS server, nslookup will display the records included in the
reply (in a human-readable format). As an alternative to running nslookup from your
own host, you can visit one of many Web sites that allow you to remotely employ
nslookup. (Just type “nslookup” into a search engine and you’ll be brought to one of
these sites.) The DNS Wireshark lab at the end of this chapter will allow you to
explore the DNS in much more detail.

Inserting Records into the DNS Database

The discussion above focused on how records are retrieved from the DNS database.
You might be wondering how records get into the database in the first place. Let’s look
at how this is done in the context of a specific example. Suppose you have just created
an exciting new startup company called Network Utopia. The first thing you’ll surely
want to do is register the domain name networkutopia.com at a registrar. A
registrar is a commercial entity that verifies the uniqueness of the domain name,
enters the domain name into the DNS database (as discussed below), and collects a
small fee from you for its services. Prior to 1999, a single registrar, Network Solutions,
had a monopoly on domain name registration for com, net, and org domains. But
now there are many registrars competing for customers, and the Internet Corporation
for Assigned Names and Numbers (ICANN) accredits the various registrars. A com-
plete list of accredited registrars is available at http://www.internic.net.

When you register the domain name networkutopia.com with some reg-
istrar, you also need to provide the registrar with the names and IP addresses of your
primary and secondary authoritative DNS servers. Suppose the names and IP
addresses are dns1.networkutopia.com, dns2.networkutopia.com,
212.212.212.1, and 212.212.212.2. For each of these two authoritative
DNS servers, the registrar would then make sure that a Type NS and a Type A record
are entered into the TLD com servers. Specifically, for the primary authoritative
server for networkutopia.com, the registrar would insert the following two
resource records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server
www.networkutopia.com and the Type MX resource record for your mail
server mail.networkutopia.com are entered into your authoritative DNS
servers. (Until recently, the contents of each DNS server were configured statically,
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DNS VULNERABIL IT IES

We have seen that DNS is a critical component of the Internet infrastructure, with
many important services - including the Web and e-mail - simply incapable of func-
tioning without it. We therefore naturally ask, how can DNS be attacked? Is DNS a
sitting duck, waiting to be knocked out of service, while taking most Internet applica-
tions down with it?

The first type of attack that comes to mind is a DDoS bandwidth-flooding attack (see
Section 1.6) against DNS servers. For example, an attacker could attempt to send to
each DNS root server a deluge of packets, so many that the majority of legitimate DNS
queries never get answered. Such a large-scale DDoS attack against DNS root servers
actually took place on October 21, 2002. In this attack, the attackers leveraged a bot-
net to send truck loads of ICMP ping messages to each of the 13 DNS root servers.
(ICMP messages are discussed in Chapter 4. For now, it suffices to know that ICMP pack-
ets are special types of IP datagrams.) Fortunately, this large-scale attack caused minimal
damage, having little or no impact on users’ Internet experience. The attackers did
succeed at directing a deluge of packets at the root servers. But many of the DNS root
servers were protected by packet filters, configured to always block all ICMP ping
messages directed at the root servers. These protected servers were thus spared and
functioned as normal. Furthermore, most local DNS servers cache the IP addresses of top-
level-domain servers, allowing the query process to often bypass the DNS root servers.

A potentially more effective DDoS attack against DNS would be send a deluge of
DNS queries to top-level-domain servers, for example, to all the top-level-domain
servers that handle the .com domain. It would be harder to filter DNS queries direct-
ed to DNS servers; and top-level-domain servers are not as easily bypassed as are
root servers. But the severity of such an attack would be partially mitigated by
caching in local DNS servers.

DNS could potentially be attacked in other ways. In a man-in-the-middle attack,
the attacker intercepts queries from hosts and returns bogus replies. In the DNS poi-
soning attack, the attacker sends bogus replies to a DNS server, tricking the server
into accepting bogus records into its cache. Either of these attacks could be used, for
example, to redirect an unsuspecting Web user to the attacker’s Web site. These
attacks, however, are difficult to implement, as they require intercepting packets or
throttling servers [Skoudis 2006].

Another important DNS attack is not an attack on the DNS service per se, but
instead exploits the DNS infrastructure to launch a DDoS attack against a targeted host
(for example, your university’s mail server). In this attack, the attacker sends DNS
queries to many authoritative DNS servers, with each query having the spoofed source
address of the targeted host. The DNS servers then send their replies directly to the tar-
geted host. If the queries can be crafted in such a way that a response is much larger
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for example, from a configuration file created by a system manager. More recently,
an UPDATE option has been added to the DNS protocol to allow data to be dynam-
ically added or deleted from the database via DNS messages. [RFC 2136] and [RFC
3007] specify DNS dynamic updates.)

Once all of these steps are completed, people will be able to visit your Web site
and send e-mail to the employees at your company. Let’s conclude our discussion of
DNS by verifying that this statement is true. This verification also helps to solidify
what we have learned about DNS. Suppose Alice in Australia wants to view the Web
page www.networkutopia.com. As discussed earlier, her host will first send a
DNS query to her local DNS server. The local DNS server will then contact a TLD
com server. (The local DNS server will also have to contact a root DNS server if the
address of a TLD com server is not cached.) This TLD server contains the Type NS
and Type A resource records listed above, because the registrar had these resource
records inserted into all of the TLD com servers. The TLD com server sends a reply
to Alice’s local DNS server, with the reply containing the two resource records. The
local DNS server then sends a DNS query to 212.212.212.1, asking for the
Type A record corresponding to www.networkutopia.com. This record pro-
vides the IP address of the desired Web server, say, 212.212.71.4, which the
local DNS server passes back to Alice’s host. Alice’s browser can now initiate a TCP
connection to the host 212.212.71.4 and send an HTTP request over the con-
nection. Whew! There’s a lot more going on than what meets the eye when one surfs
the Web!

2.6 Peer-to-Peer Applications

The applications described in this chapter thus far—including the Web, e-mail, and
DNS—all employ client-server architectures with significant reliance on always-on
infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there
is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of
intermittently connected hosts, called peers, communicate directly with each other.
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(in bytes) than a query (so-called amplification), then the attacker can potentially over-
whelm the target without having to generate much of its own traffic. Such reflection
attacks exploiting DNS have had limited success to date [Mirkovic 2005].

In summary, DNS has demonstrated itself to be surprisingly robust against attacks.
To date, there hasn’t been an attack that has successfully impeded the DNS service.
There have been successful reflector attacks; however, these attacks can be (and are
being) addressed by appropriate configuration of DNS servers.
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The peers are not owned by a service provider, but are instead desktops and laptops
controlled by users.

In this section we’ll examine two different applications that are particularly
well-suited for P2P designs. The first is file distribution, where the application dis-
tributes a file from a single source to a large number of peers. File distribution is a
nice place to start our investigation of P2P, as it clearly exposes the self-scalability
of P2P architectures. As a specific example for file distribution, we’ll describe
the popular BitTorrent system. The second P2P application we’ll examine is a
database distributed over a large community of peers. For this application, we’ll
explore the concept of a Distributed Hash Table (DHT).

2.6.1 P2P File Distribution

We begin our foray into P2P by considering a very natural application, namely,
distributing a large file from a single server to a large number of hosts (called
peers). The file might be a new version of the Linux operating system, a software
patch for an existing operating system or application, an MP3 music file, or an
MPEG video file. In client-server file distribution, the server must send a copy of
the file to each of the peers—placing an enormous burden on the server and con-
suming a large amount of server bandwidth. In P2P file distribution, each peer can
redistribute any portion of the file it has received to any other peers, thereby
assisting the server in the distribution process. As of 2012, the most popular P2P
file distribution protocol is BitTorrent. Originally developed by Bram Cohen,
there are now many different independent BitTorrent clients conforming to the
BitTorrent protocol, just as there are a number of Web browser clients that 
conform to the HTTP protocol. In this subsection, we first examine the self-
scalability of P2P architectures in the context of file distribution. We then describe
BitTorrent in some detail, highlighting its most important characteristics and
features.

Scalability of P2P Architectures

To compare client-server architectures with peer-to-peer architectures, and illustrate
the inherent self-scalability of P2P, we now consider a simple quantitative model for
distributing a file to a fixed set of peers for both architecture types. As shown in Fig-
ure 2.24, the server and the peers are connected to the Internet with access links.
Denote the upload rate of the server’s access link by us, the upload rate of the ith
peer’s access link by ui, and the download rate of the ith peer’s access link by di.
Also denote the size of the file to be distributed (in bits) by F and the number of
peers that want to obtain a copy of the file by N. The distribution time is the time it
takes to get a copy of the file to all N peers. In our analysis of the distribution time
below, for both client-server and P2P architectures, we make the simplifying (and
generally accurate [Akella 2003]) assumption that the Internet core has abundant
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bandwidth, implying that all of the bottlenecks are in access networks. We also sup-
pose that the server and clients are not participating in any other network applica-
tions, so that all of their upload and download access bandwidth can be fully
devoted to distributing this file.

Let’s first determine the distribution time for the client-server architecture,
which we denote by Dcs. In the client-server architecture, none of the peers aids in
distributing the file. We make the following observations:

• The server must transmit one copy of the file to each of the N peers. Thus the
server must transmit NF bits. Since the server’s upload rate is us, the time to dis-
tribute the file must be at least NF/us.

• Let dmin denote the download rate of the peer with the lowest download rate, that
is, dmin = min{d1,dp,...,dN}. The peer with the lowest download rate cannot
obtain all F bits of the file in less than F/dmin seconds. Thus the minimum distri-
bution time is at least F/dmin.

Putting these two observations together, we obtain

.Dcs Ú maxbNF

us
,

F

dmin
r
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This provides a lower bound on the minimum distribution time for the client-server
architecture. In the homework problems you will be asked to show that the server
can schedule its transmissions so that the lower bound is actually achieved. So let’s
take this lower bound provided above as the actual distribution time, that is,

(2.1)

We see from Equation 2.1 that for N large enough, the client-server distribution time
is given by NF/us. Thus, the distribution time increases linearly with the number of
peers N. So, for example, if the number of peers from one week to the next increases
a thousand-fold from a thousand to a million, the time required to distribute the file
to all peers increases by 1,000.

Let’s now go through a similar analysis for the P2P architecture, where each
peer can assist the server in distributing the file. In particular, when a peer receives
some file data, it can use its own upload capacity to redistribute the data to other
peers. Calculating the distribution time for the P2P architecture is somewhat more
complicated than for the client-server architecture, since the distribution time
depends on how each peer distributes portions of the file to the other peers. Never-
theless, a simple expression for the minimal distribution time can be obtained
[Kumar 2006]. To this end, we first make the following observations:

• At the beginning of the distribution, only the server has the file. To get this file
into the community of peers, the server must send each bit of the file at least once
into its access link. Thus, the minimum distribution time is at least F/us. (Unlike
the client-server scheme, a bit sent once by the server may not have to be sent by
the server again, as the peers may redistribute the bit among themselves.)

• As with the client-server architecture, the peer with the lowest download rate
cannot obtain all F bits of the file in less than F/dmin seconds. Thus the minimum
distribution time is at least F/dmin.

• Finally, observe that the total upload capacity of the system as a whole is equal
to the upload rate of the server plus the upload rates of each of the individual
peers, that is, utotal = us + u1 + … + uN. The system must deliver (upload) F bits
to each of the N peers, thus delivering a total of NF bits. This cannot be done at a
rate faster than utotal. Thus, the minimum distribution time is also at least
NF/(us + u1 + … + uN).

Putting these three observations together, we obtain the minimum distribution time
for P2P, denoted by DP2P.

(2.2)DP2P Ú max c F

us
,

F

dmin
,

NF

us + a
N

i=1
ui
s

Dcs = maxbNF

us
,

F

dmin
r
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Equation 2.2 provides a lower bound for the minimum distribution time for the P2P
architecture. It turns out that if we imagine that each peer can redistribute a bit as
soon as it receives the bit, then there is a redistribution scheme that actually achieves
this lower bound [Kumar 2006]. (We will prove a special case of this result in the
homework.) In reality, where chunks of the file are redistributed rather than individ-
ual bits, Equation 2.2 serves as a good approximation of the actual minimum distri-
bution time. Thus, let’s take the lower bound provided by Equation 2.2 as the actual
minimum distribution time, that is,

(2.3)

Figure 2.25 compares the minimum distribution time for the client-server and
P2P architectures assuming that all peers have the same upload rate u. In Figure
2.25, we have set F/u = 1 hour, us = 10u, and dmin ≥ us. Thus, a peer can transmit the
entire file in one hour, the server transmission rate is 10 times the peer upload rate,
and (for simplicity) the peer download rates are set large enough so as not to have
an effect. We see from Figure 2.25 that for the client-server architecture, the dis-
tribution time increases linearly and without bound as the number of peers
increases. However, for the P2P architecture, the minimal distribution time is not
only always less than the distribution time of the client-server architecture; it is also
less than one hour for any number of peers N. Thus, applications with the P2P
architecture can be self-scaling. This scalability is a direct consequence of peers
being redistributors as well as consumers of bits.

DP2P = max c F

us
,

F

dmin
,

NF

us + a
N

i=1
ui
s
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BitTorrent

BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTor-
rent lingo, the collection of all peers participating in the distribution of a particular
file is called a torrent. Peers in a torrent download equal-size chunks of the file
from one another, with a typical chunk size of 256 KBytes. When a peer first joins
a torrent, it has no chunks. Over time it accumulates more and more chunks. While
it downloads chunks it also uploads chunks to other peers. Once a peer has
acquired the entire file, it may (selfishly) leave the torrent, or (altruistically) remain
in the torrent and continue to upload chunks to other peers. Also, any peer may leave
the torrent at any time with only a subset of chunks, and later rejoin the torrent.

Let’s now take a closer look at how BitTorrent operates. Since BitTorrent is a
rather complicated protocol and system, we’ll only describe its most important
mechanisms, sweeping some of the details under the rug; this will allow us to see
the forest through the trees. Each torrent has an infrastructure node called a tracker.
When a peer joins a torrent, it registers itself with the tracker and periodically
informs the tracker that it is still in the torrent. In this manner, the tracker keeps
track of the peers that are participating in the torrent. A given torrent may have
fewer than ten or more than a thousand peers participating at any instant of time.

As shown in Figure 2.26, when a new peer, Alice, joins the torrent, the tracker
randomly selects a subset of peers (for concreteness, say 50) from the set of participat-
ing peers, and sends the IP addresses of these 50 peers to Alice. Possessing this list of
peers, Alice attempts to establish concurrent TCP connections with all the peers on this
list. Let’s call all the peers with which Alice succeeds in establishing a TCP connec-
tion “neighboring peers.” (In Figure 2.26, Alice is shown to have only three neighbor-
ing peers. Normally, she would have many more.) As time evolves, some of these
peers may leave and other peers (outside the initial 50) may attempt to establish TCP
connections with Alice. So a peer’s neighboring peers will fluctuate over time.

At any given time, each peer will have a subset of chunks from the file, with dif-
ferent peers having different subsets. Periodically, Alice will ask each of her neighbor-
ing peers (over the TCP connections) for the list of the chunks they have. If Alice has L
different neighbors, she will obtain L lists of chunks. With this knowledge, Alice will
issue requests (again over the TCP connections) for chunks she currently does not have.

So at any given instant of time, Alice will have a subset of chunks and will
know which chunks her neighbors have. With this information, Alice will have two
important decisions to make. First, which chunks should she request first from her
neighbors? And second, to which of her neighbors should she send requested
chunks? In deciding which chunks to request, Alice uses a technique called rarest
first. The idea is to determine, from among the chunks she does not have, the
chunks that are the rarest among her neighbors (that is, the chunks that have the
fewest repeated copies among her neighbors) and then request those rarest chunks
first. In this manner, the rarest chunks get more quickly redistributed, aiming to
(roughly) equalize the numbers of copies of each chunk in the torrent.
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To determine which requests she responds to, BitTorrent uses a clever trading
algorithm. The basic idea is that Alice gives priority to the neighbors that are cur-
rently supplying her data at the highest rate. Specifically, for each of her neighbors,
Alice continually measures the rate at which she receives bits and determines the four
peers that are feeding her bits at the highest rate. She then reciprocates by sending
chunks to these same four peers. Every 10 seconds, she recalculates the rates and pos-
sibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to
be unchoked. Importantly, every 30 seconds, she also picks one additional neighbor
at random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTor-
rent lingo, Bob is said to be optimistically unchoked. Because Alice is sending data
to Bob, she may become one of Bob’s top four uploaders, in which case Bob would
start to send data to Alice. If the rate at which Bob sends data to Alice is high enough,
Bob could then, in turn, become one of Alice’s top four uploaders. In other words,
every 30 seconds, Alice will randomly choose a new trading partner and initiate trad-
ing with that partner. If the two peers are satisfied with the trading, they will put each
other in their top four lists and continue trading with each other until one of the peers
finds a better partner. The effect is that peers capable of uploading at compatible rates
tend to find each other. The random neighbor selection also allows new peers to get
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chunks, so that they can have something to trade. All other neighboring peers besides
these five peers (four “top” peers and one probing peer) are “choked,” that is, they do
not receive any chunks from Alice. BitTorrent has a number of interesting mecha-
nisms that are not discussed here, including pieces (mini-chunks), pipelining, random
first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-tat
[Cohen 2003]. It has been shown that this incentive scheme can be circumvented
[Liogkas 2006; Locher 2006; Piatek 2007]. Nevertheless, the BitTorrent ecosystem is
wildly successful, with millions of simultaneous peers actively sharing files in hun-
dreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat (or a
variant), but otherwise exactly the same, BitTorrent would likely not even exist now, as
the majority of the users would have been freeriders [Saroiu 2002].

Interesting variants of the BitTorrent protocol are proposed [Guo 2005; Piatek
2007]. Also, many of the P2P live streaming applications, such as PPLive and
ppstream, have been inspired by BitTorrent [Hei 2007].

2.6.2 Distributed Hash Tables (DHTs)

In this section, we will consider how to implement a simple database in a P2P net-
work. Let’s begin by describing a centralized version of this simple database, which
will simply contain (key, value) pairs. For example, the keys could be social secu-
rity numbers and the values could be the corresponding human names; in this case,
an example key-value pair is (156-45-7081, Johnny Wu). Or the keys could be con-
tent names (e.g., names of movies, albums, and software), and the value could be
the IP address at which the content is stored; in this case, an example key-value pair
is (Led Zeppelin IV, 128.17.123.38). We query the database with a key. If there are
one or more key-value pairs in the database that match the query key, the database
returns the corresponding values. So, for example, if the database stores social secu-
rity numbers and their corresponding human names, we can query with a specific
social security number, and the database returns the name of the human who has that
social security number. Or, if the database stores content names and their correspon-
ding IP addresses, we can query with a specific content name, and the database
returns the IP addresses that store the specific content.

Building such a database is straightforward with a client-server architecture that
stores all the (key, value) pairs in one central server. So in this section, we’ll instead
consider how to build a distributed, P2P version of this database that will store the
(key, value) pairs over millions of peers. In the P2P system, each peer will only hold a
small subset of the totality of the (key, value) pairs. We’ll allow any peer to query the
distributed database with a particular key. The distributed database will then locate the
peers that have the corresponding (key, value) pairs and return the key-value pairs to
the querying peer. Any peer will also be allowed to insert new key-value pairs into the
database. Such a distributed database is referred to as a distributed hash table
(DHT).
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Before describing how we can create a DHT, let’s first describe a specific
example DHT service in the context of P2P file sharing. In this case, a key is the
content name and the value is the IP address of a peer that has a copy of the content.
So, if Bob and Charlie each have a copy of the latest Linux distribution, then the
DHT database will include the following two key-value pairs: (Linux, IPBob) and
(Linux, IPCharlie). More specifically, since the DHT database is distributed over the
peers, some peer, say Dave, will be responsible for the key “Linux” and will have
the corresponding key-value pairs. Now suppose Alice wants to obtain a copy of
Linux. Clearly, she first needs to know which peers have a copy of Linux before she
can begin to download it. To this end, she queries the DHT with “Linux” as the key.
The DHT then determines that the peer Dave is responsible for the key “Linux.” The
DHT then contacts peer Dave, obtains from Dave the key-value pairs (Linux, IPBob)
and (Linux, IPCharlie), and passes them on to Alice. Alice can then download the lat-
est Linux distribution from either IPBob or IPCharlie.

Now let’s return to the general problem of designing a DHT for general key-
value pairs. One naïve approach to building a DHT is to randomly scatter the (key,
value) pairs across all the peers and have each peer maintain a list of the IP
addresses of all participating peers. In this design, the querying peer sends its query
to all other peers, and the peers containing the (key, value) pairs that match the key
can respond with their matching pairs. Such an approach is completely unscalable,
of course, as it would require each peer to not only know about all other peers (pos-
sibly millions of such peers!) but even worse, have each query sent to all peers.

We now describe an elegant approach to designing a DHT. To this end, let’s first
assign an identifier to each peer, where each identifier is an integer in the range [0, 
2n � 1] for some fixed n. Note that each such identifier can be expressed by an n-bit
representation. Let’s also require each key to be an integer in the same range. The
astute reader may have observed that the example keys described a little earlier (social
security numbers and content names) are not integers. To create integers out of such
keys, we will use a hash function that maps each key (e.g., social security number) to
an integer in the range [0, 2n� 1]. A hash function is a many-to-one function for which
two different inputs can have the same output (same integer), but the likelihood of the
having the same output is extremely small. (Readers who are unfamiliar with hash
functions may want to visit Chapter 7, in which hash functions are discussed in some
detail.) The hash function is assumed to be available to all peers in the system. Hence-
forth, when we refer to the “key,” we are referring to the hash of the original key. So,
for example, if the original key is “Led Zeppelin IV,” the key used in the DHT will be
the integer that equals the hash of “Led Zeppelin IV.” As you may have guessed, this
is why “Hash” is used in the term “Distributed Hash Function.”

Let’s now consider the problem of storing the (key, value) pairs in the DHT. The
central issue here is defining a rule for assigning keys to peers. Given that each peer
has an integer identifier and that each key is also an integer in the same range, a natu-
ral approach is to assign each (key, value) pair to the peer whose identifier is the
closest to the key. To implement such a scheme, we’ll need to define what is meant by
“closest,” for which many conventions are possible. For convenience, let’s define the
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closest peer as the closest successor of the key. To gain some insight here, let’s take a
look at a specific example. Suppose n � 4 so that all the peer and key identifiers are in
the range [0, 15]. Further suppose that there are eight peers in the system with identi-
fiers 1, 3, 4, 5, 8, 10, 12, and 15. Finally, suppose we want to store the (key, value) pair
(11, Johnny Wu) in one of the eight peers. But in which peer? Using our closest con-
vention, since peer 12 is the closest successor for key 11, we therefore store the pair
(11, Johnny Wu) in the peer 12. [To complete our definition of closest, if the key is
exactly equal to one of the peer identifiers, we store the (key, value) pair in that match-
ing peer; and if the key is larger than all the peer identifiers, we use a modulo-2n con-
vention, storing the (key, value) pair in the peer with the smallest identifier.]

Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT.
Conceptually, this is straightforward: She first determines the peer whose identifier
is closest to the key; she then sends a message to that peer, instructing it to store the
(key, value) pair. But how does Alice determine the peer that is closest to the key? If
Alice were to keep track of all the peers in the system (peer IDs and corresponding
IP addresses), she could locally determine the closest peer. But such an approach
requires each peer to keep track of all other peers in the DHT—which is completely
impractical for a large-scale system with millions of peers.

Circular DHT

To address this problem of scale, let’s now consider organizing the peers into a
circle. In this circular arrangement, each peer only keeps track of its immediate suc-
cessor and immediate predecessor (modulo 2n). An example of such a circle is
shown in Figure 2.27(a). In this example, n is again 4 and there are the same eight
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peers from the previous example. Each peer is only aware of its immediate succes-
sor and predecessor; for example, peer 5 knows the IP address and identifier for
peers 8 and 4 but does not necessarily know anything about any other peers that may
be in the DHT. This circular arrangement of the peers is a special case of an overlay
network. In an overlay network, the peers form an abstract logical network which
resides above the “underlay” computer network consisting of physical links, routers,
and hosts. The links in an overlay network are not physical links, but are simply vir-
tual liaisons between pairs of peers. In the overlay in Figure 2.27(a), there are eight
peers and eight overlay links; in the overlay in Figure 2.27(b) there are eight peers
and 16 overlay links. A single overlay link typically uses many physical links and
physical routers in the underlay network.

Using the circular overlay in Figure 2.27(a), now suppose that peer 3 wants to
determine which peer in the DHT is responsible for key 11. Using the circular overlay,
the origin peer (peer 3) creates a message saying “Who is responsible for key 11?” and
sends this message clockwise around the circle. Whenever a peer receives such a mes-
sage, because it knows the identifier of its successor and predecessor, it can determine
whether it is responsible for (that is, closest to) the key in question. If a peer is not
responsible for the key, it simply sends the message to its successor. So, for example,
when peer 4 receives the message asking about key 11, it determines that it is not
responsible for the key (because its successor is closer to the key), so it just passes the
message along to peer 5. This process continues until the message arrives at peer 12,
who determines that it is the closest peer to key 11. At this point, peer 12 can send a
message back to the querying peer, peer 3, indicating that it is responsible for key 11.

The circular DHT provides a very elegant solution for reducing the amount of
overlay information each peer must manage. In particular, each peer needs only to
be aware of two peers, its immediate successor and its immediate predecessor. But
this solution introduces yet a new problem. Although each peer is only aware of two
neighboring peers, to find the node responsible for a key (in the worst case), all N
nodes in the DHT will have to forward a message around the circle; N/2 messages
are sent on average.

Thus, in designing a DHT, there is tradeoff between the number of neighbors each
peer has to track and the number of messages that the DHT needs to send to resolve a
single query. On one hand, if each peer tracks all other peers (mesh overlay), then only
one message is sent per query, but each peer has to keep track of N peers. On the other
hand, with a circular DHT, each peer is only aware of two peers, but N/2 messages are
sent on average for each query. Fortunately, we can refine our designs of DHTs so that
the number of neighbors per peer as well as the number of messages per query is kept
to an acceptable size. One such refinement is to use the circular overlay as a founda-
tion, but add “shortcuts” so that each peer not only keeps track of its immediate suc-
cessor and predecessor, but also of a relatively small number of shortcut peers
scattered about the circle. An example of such a circular DHT with some shortcuts is
shown in Figure 2.27(b). Shortcuts are used to expedite the routing of query messages.
Specifically, when a peer receives a message that is querying for a key, it forwards the
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message to the neighbor (successor neighbor or one of the shortcut neighbors) which
is the closet to the key. Thus, in Figure 2.27(b), when peer 4 receives the message ask-
ing about key 11, it determines that the closet peer to the key (among its neighbors) is
its shortcut neighbor 10 and then forwards the message directly to peer 10. Clearly,
shortcuts can significantly reduce the number of messages used to process a query.

The next natural question is “How many shortcut neighbors should a peer have,
and which peers should be these shortcut neighbors? This question has received sig-
nificant attention in the research community [Balakrishnan 2003; Androutsellis-
Theotokis  2004]. Importantly, it has been shown that the DHT can be designed so that
both the number of neighbors per peer as well as the number of messages per query is
O(log N), where N is the number of peers. Such designs strike a satisfactory compro-
mise between the extreme solutions of using mesh and circular overlay topologies.

Peer Churn

In P2P systems, a peer can come or go without warning. Thus, when designing a
DHT, we also must be concerned about maintaining the DHT overlay in the pres-
ence of such peer churn. To get a big-picture understanding of how this could be
accomplished, let’s once again consider the circular DHT in Figure 2.27(a). To han-
dle peer churn, we will now require each peer to track (that is, know the IP address
of) its first and second successors; for example, peer 4 now tracks both peer 5 and
peer 8. We also require each peer to periodically verify that its two successors are
alive (for example, by periodically sending ping messages to them and asking for
responses). Let’s now consider how the DHT is maintained when a peer abruptly
leaves. For example, suppose peer 5 in Figure 2.27(a) abruptly leaves. In this case,
the two peers preceding the departed peer (4 and 3) learn that 5 has departed, since
it no longer responds to ping messages. Peers 4 and 3 thus need to update their suc-
cessor state information. Let’s consider how peer 4 updates its state:

1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).
2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address of

its immediate successor (peer 10). Peer 4 then makes peer 10 its second successor.

In the homework problems, you will be asked to determine how peer 3 updates its
overlay routing information.

Having briefly addressed what has to be done when a peer leaves, let’s now
consider what happens when a peer wants to join the DHT. Let’s say a peer with
identifier 13 wants to join the DHT, and at the time of joining, it only knows about
peer 1’s existence in the DHT. Peer 13 would first send peer 1 a message, saying
“what will be 13’s predecessor and successor?” This message gets forwarded
through the DHT until it reaches peer 12, who realizes that it will be 13’s predeces-
sor and that its current successor, peer 15, will become 13’s successor. Next, peer 12
sends this predecessor and successor information to peer 13. Peer 13 can now join
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the DHT by making peer 15 its successor and by notifying peer 12 that it should
change its immediate successor to 13.

DHTs have been finding widespread use in practice. For example, BitTorrent
uses the Kademlia DHT to create a distributed tracker. In the BitTorrent, the key is
the torrent identifier and the value is the IP addresses of all the peers currently par-
ticipating in the torrent [Falkner 2007, Neglia 2007]. In this manner, by querying
the DHT with a torrent identifier, a newly arriving BitTorrent peer can determine the
peer that is responsible for the identifier (that is, for tracking the peers in the tor-
rent). After having found that peer, the arriving peer can query it for a list of other
peers in the torrent.

2.7 Socket Programming: Creating Network
Applications

Now that we’ve looked at a number of important network applications, let’s explore
how network application programs are actually created. Recall from Section 2.1 that
a typical network application consists of a pair of programs—a client program and a
server program—residing in two different end systems. When these two programs
are executed, a client process and a server process are created, and these processes
communicate with each other by reading from, and writing to, sockets. When creat-
ing a network application, the developer’s main task is therefore to write the code
for both the client and server programs.

There are two types of network applications. One type is an implementation
whose operation is specified in a protocol standard, such as an RFC or some
other standards document; such an application is sometimes referred to as
“open,” since the rules specifying its operation are known to all. For such an
implementation, the client and server programs must conform to the rules dic-
tated by the RFC. For example, the client program could be an implementation
of the client side of the FTP protocol, described in Section 2.3 and explicitly
defined in RFC 959; similarly, the server program could be an implementation of
the FTP server protocol, also explicitly defined in RFC 959. If one developer
writes code for the client program and another developer writes code for the
server program, and both developers carefully follow the rules of the RFC, then
the two programs will be able to interoperate. Indeed, many of today’s network
applications involve communication between client and server programs that
have been created by independent developers—for example, a Firefox browser
communicating with an Apache Web server, or a BitTorrent client communicat-
ing with BitTorrent tracker.

The other type of network application is a proprietary network application. 
In this case the client and server programs employ an application-layer protocol that
has not been openly published in an RFC or elsewhere. A single developer (or
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development team) creates both the client and server programs, and the developer
has complete control over what goes in the code. But because the code does not
implement an open protocol, other independent developers will not be able to
develop code that interoperates with the application.

In this section, we’ll examine the key issues in developing a client-server appli-
cation, and we’ll “get our hands dirty” by looking at code that implements a very
simple client-server application. During the development phase, one of the first
decisions the developer must make is whether the application is to run over TCP
or over UDP. Recall that TCP is connection oriented and provides a reliable byte-
stream channel through which data flows between two end systems. UDP is
connectionless and sends independent packets of data from one end system to the
other, without any guarantees about delivery. Recall also that when a client or server
program implements a protocol defined by an RFC, it should use the well-known
port number associated with the protocol; conversely, when developing a propri-
etary application, the developer must be careful to avoid using such well-known
port numbers. (Port numbers were briefly discussed in Section 2.1. They are cov-
ered in more detail in Chapter 3.)

We introduce UDP and TCP socket programming by way of a simple UDP appli-
cation and a simple TCP application. We present the simple UDP and TCP applica-
tions in Python. We could have written the code in Java, C, or C++, but we chose
Python mostly because Python clearly exposes the key socket concepts. With Python
there are fewer lines of code, and each line can be explained to the novice program-
mer without difficulty. But there’s no need to be frightened if you are not familiar with
Python. You should be able to easily follow the code if you have experience program-
ming in Java, C, or C++.

If you are interested in client-server programming with Java, you are encour-
aged to see the companion Web site for this textbook; in fact, you can find there all
the examples in this section (and associated labs) in Java. For readers who are inter-
ested in client-server programming in C, there are several good references available
[Donahoo 2001; Stevens 1997; Frost 1994; Kurose 1996]; our Python examples
below have a similar look and feel to C.

2.7.1 Socket Programming with UDP

In this subsection, we’ll write simple client-server programs that use UDP; in the
following section, we’ll write similar programs that use TCP.

Recall from Section 2.1 that processes running on different machines communi-
cate with each other by sending messages into sockets. We said that each process is
analogous to a house and the process’s socket is analogous to a door. The application
resides on one side of the door in the house; the transport-layer protocol resides on
the other side of the door in the outside world. The application developer has control
of everything on the application-layer side of the socket; however, it has little control
of the transport-layer side.
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Now let’s take a closer look at the interaction between two communicating
processes that use UDP sockets. Before the sending process can push a packet of
data out the socket door, when using UDP, it must first attach a destination address
to the packet. After the packet passes through the sender’s socket, the Internet will
use this destination address to route the packet through the Internet to the socket in
the receiving process. When the packet arrives at the receiving socket, the receiving
process will retrieve the packet through the socket, and then inspect the packet’s
contents and take appropriate action.

So you may be now wondering, what goes into the destination address that is
attached to the packet? As you might expect, the destination host’s IP address is part of
the destination address. By including the destination IP address in the packet, the
routers in the Internet will be able to route the packet through the Internet to the desti-
nation host. But because a host may be running many network application processes,
each with one or more sockets, it is also necessary to identify the particular socket in
the destination host. When a socket is created, an identifier, called a port number, is
assigned to it. So, as you might expect, the packet’s destination address also includes
the socket’s port number. In summary, the sending process attaches to the packet a des-
tination address which consists of the destination host’s IP address and the destination
socket’s port number. Moreover, as we shall soon see, the sender’s source address—
consisting of the IP address of the source host and the port number of the source
socket—are also attached to the packet. However, attaching the source address to the
packet is typically not done by the UDP application code; instead it is automatically
done by the underlying operating system.

We’ll use the following simple client-server application to demonstrate socket
programming for both UDP and TCP:

1. The client reads a line of characters (data) from its keyboard and sends the data
to the server.

2. The server receives the data and converts the characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its screen.

Figure 2.28 highlights the main socket-related activity of the client and server that
communicate over the UDP transport service.

Now let’s get our hands dirty and take a look at the client-server program pair
for a UDP implementation of this simple application. We also provide a detailed,
line-by-line analysis after each program. We’ll begin with the UDP client, which
will send a simple application-level message to the server. In order for the server to
be able to receive and reply to the client’s message, it must be ready and running—
that is, it must be running as a process before the client sends its message.

The client program is called UDPClient.py, and the server program is called
UDPServer.py. In order to emphasize the key issues, we intentionally provide code
that is minimal. “Good code” would certainly have a few more auxiliary lines, in
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particular for handling error cases. For this application, we have arbitrarily chosen
12000 for the server port number.
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UDPClient.py

Here is the code for the client side of the application:

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()
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Now let’s take a look at the various lines of code in UDPClient.py.

from socket import *

The socket module forms the basis of all network communications in Python. By
including this line, we will be able to create sockets within our program.

serverName = ‘hostname’
serverPort = 12000

The first line sets the string serverName to hostname. Here, we provide a string
containing either the IP address of the server (e.g., “128.138.32.126”) or the host-
name of the server (e.g., “cis.poly.edu”). If we use the hostname, then a DNS lookup
will automatically be performed to get the IP address.) The second line sets the inte-
ger variable serverPort to 12000.

clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)

This line creates the client’s socket, called clientSocket. The first parameter
indicates the address family; in particular, AF_INET indicates that the underlying
network is using IPv4. (Do not worry about this now—we will discuss IPv4 in
Chapter 4.) The second parameter indicates that the socket is of type SOCK_DGRAM,
which means it is a UDP socket (rather than a TCP socket). Note that we are not
specifying the port number of the client socket when we create it; we are instead let-
ting the operating system do this for us. Now that the client process’s door has been
created, we will want to create a message to send through the door.
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message = raw_input(’Input lowercase sentence:’)

raw_input() is a built-in function in Python. When this command is executed,
the user at the client is prompted with the words “Input data:” The user then uses her
keyboard to input a line, which is put into the variable message. Now that we have
a socket and a message, we will want to send the message through the socket to the
destination host.

clientSocket.sendto(message,(serverName, serverPort))

In the above line, the method sendto() attaches the destination address
(serverName, serverPort) to the message and sends the resulting packet into
the process’s socket, clientSocket. (As mentioned earlier, the source address is
also attached to the packet, although this is done automatically rather than explicitly
by the code.) Sending a client-to-server message via a UDP socket is that simple!
After sending the packet, the client waits to receive data from the server.
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modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
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With the above line, when a packet arrives from the Internet at the client’s socket,
the packet’s data is put into the variable modifiedMessage and the packet’s
source address is put into the variable serverAddress. The variable
serverAddress contains both the server’s IP address and the server’s port
number. The program UDPClient doesn’t actually need this server address infor-
mation, since it already knows the server address from the outset; but this line of
Python provides the server address nevertheless. The method recvfrom also
takes the buffer size 2048 as input. (This buffer size works for most purposes.)

print modifiedMessage

This line prints out modifiedMessage on the user’s display. It should be the original
line that the user typed, but now capitalized.

clientSocket.close()

This line closes the socket. The process then terminates.

UDPServer.py

Let’s now take a look at the server side of the application:

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind((’’, serverPort))
print ”The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Note that the beginning of UDPServer is similar to UDPClient. It also imports the
socket module, also sets the integer variable serverPort to 12000, and also cre-
ates a socket of type SOCK_DGRAM (a UDP socket). The first line of code that is
significantly different from UDPClient is:

serverSocket.bind((’’, serverPort))

The above line binds (that is, assigns) the port number 12000 to the server’s socket.
Thus in UDPServer, the code (written by the application developer) is explicitly
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assigning a port number to the socket. In this manner, when anyone sends a packet
to port 12000 at the IP address of the server, that packet will be directed to this
socket. UDPServer then enters a while loop; the while loop will allow UDPServer
to receive and process packets from clients indefinitely. In the while loop,
UDPServer waits for a packet to arrive.

message, clientAddress = serverSocket.recvfrom(2048)

This line of code is similar to what we saw in UDPClient. When a packet arrives at
the server’s socket, the packet’s data is put into the variable message and the
packet’s source address is put into the variable clientAddress. The variable
clientAddress contains both the client’s IP address and the client’s port number.
Here, UDPServer will make use of this address information, as it provides a return
address, similar to the return address with ordinary postal mail. With this source
address information, the server now knows to where it should direct its reply.

modifiedMessage = message.upper()

This line is the heart of our simple application. It takes the line sent by the client and
uses the method upper() to capitalize it.

serverSocket.sendto(modifiedMessage, clientAddress)

This last line attaches the client’s address (IP address and port number) to the capi-
talized message, and sends the resulting packet into the server’s socket. (As men-
tioned earlier, the server address is also attached to the packet, although this is done
automatically rather than explicitly by the code.) The Internet will then deliver the
packet to this client address. After the server sends the packet, it remains in the
while loop, waiting for another UDP packet to arrive (from any client running on
any host).

To test the pair of programs, you install and compile UDPClient.py in one host
and UDPServer.py in another host. Be sure to include the proper hostname or IP
address of the server in UDPClient.py. Next, you execute UDPServer.py, the com-
piled server program, in the server host. This creates a process in the server that
idles until it is contacted by some client. Then you execute UDPClient.py, the com-
piled client program, in the client. This creates a process in the client. Finally, to use
the application at the client, you type a sentence followed by a carriage return.

To develop your own UDP client-server application, you can begin by
slightly modifying the client or server programs. For example, instead of con-
verting all the letters to uppercase, the server could count the number of times the
letter s appears and return this number. Or you can modify the client so that after
receiving a capitalized sentence, the user can continue to send more sentences to
the server.
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2.7.2 Socket Programming with TCP

Unlike UDP, TCP is a connection-oriented protocol. This means that before the client
and server can start to send data to each other, they first need to handshake and estab-
lish a TCP connection. One end of the TCP connection is attached to the client socket
and the other end is attached to a server socket. When creating the TCP connection,
we associate with it the client socket address (IP address and port number) and the
server socket address (IP address and port number). With the TCP connection estab-
lished, when one side wants to send data to the other side, it just drops the data into
the TCP connection via its socket. This is different from UDP, for which the server
must attach a destination address to the packet before dropping it into the socket.

Now let’s take a closer look at the interaction of client and server programs in
TCP. The client has the job of initiating contact with the server. In order for the
server to be able to react to the client’s initial contact, the server has to be ready.
This implies two things. First, as in the case of UDP, the TCP server must be run-
ning as a process before the client attempts to initiate contact. Second, the server
program must have a special door—more precisely, a special socket—that wel-
comes some initial contact from a client process running on an arbitrary host. Using
our house/door analogy for a process/socket, we will sometimes refer to the client’s
initial contact as “knocking on the welcoming door.”

With the server process running, the client process can initiate a TCP connec-
tion to the server. This is done in the client program by creating a TCP socket. When
the client creates its TCP socket, it specifies the address of the welcoming socket in
the server, namely, the IP address of the server host and the port number of the
socket. After creating its socket, the client initiates a three-way handshake and
establishes a TCP connection with the server. The three-way handshake, which takes
place within the transport layer, is completely invisible to the client and server pro-
grams.

During the three-way handshake, the client process knocks on the welcoming door
of the server process. When the server “hears” the knocking, it creates a new door—
more precisely, a new socket that is dedicated to that particular client. In our example
below, the welcoming door is a TCP socket object that we call serverSocket; the
newly created socket dedicated to the client making the connection is called connec-
tionSocket. Students who are encountering TCP sockets for the first time some-
times confuse the welcoming socket (which is the initial point of contact for all clients
wanting to communicate with the server), and each newly created server-side connec-
tion socket that is subsequently created for communicating with each client.

From the application’s perspective, the client’s socket and the server’s connec-
tion socket are directly connected by a pipe. As shown in Figure 2.29, the client
process can send arbitrary bytes into its socket, and TCP guarantees that the server
process will receive (through the connection socket) each byte in the order sent. TCP
thus provides a reliable service between the client and server processes. Furthermore,
just as people can go in and out the same door, the client process not only sends bytes
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into but also receives bytes from its socket; similarly, the server process not only
receives bytes from but also sends bytes into its connection socket.

We use the same simple client-server application to demonstrate socket program-
ming with TCP: The client sends one line of data to the server, the server capitalizes
the line and sends it back to the client. Figure 2.30 highlights the main socket-related
activity of the client and server that communicate over the TCP transport service.

TCPClient.py

Here is the code for the client side of the application:
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Client process Server process

Client
socket

Welcoming
socket

Three-w
ay handshake

Connection
socket

bytes
bytes

Figure 2.29 � The TCPServer process has two sockets

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()
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Let’s now take a look at the various lines in the code that differ significantly
from the UDP implementation. The first such line is the creation of the client
socket.

clientSocket = socket(AF_INET, SOCK_STREAM)

This line creates the client’s socket, called clientSocket. The first parameter
again indicates that the underlying network is using IPv4. The second parameter
indicates that the socket is of type SOCK_STREAM, which means it is a TCP socket
(rather than a UDP socket). Note that we are again not specifying the port number
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clientSocket =
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Read reply from
clientSocket

Send request using
clientSocket

Close
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Figure 2.30 � The client-server application using TCP
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of the client socket when we create it; we are instead letting the operating system
do this for us. Now the next line of code is very different from what we saw in
UDPClient:

clientSocket.connect((serverName,serverPort))

Recall that before the client can send data to the server (or vice versa) using a TCP
socket, a TCP connection must first be established between the client and server.
The above line initiates the TCP connection between the client and server. The
parameter of the connect() method is the address of the server side of the con-
nection. After this line of code is executed, the three-way handshake is performed
and a TCP connection is established between the client and server.
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sentence = raw_input(‘Input lowercase sentence:’)

As with UDPClient, the above obtains a sentence from the user. The string sentence
continues to gather characters until the user ends the line by typing a carriage return.
The next line of code is also very different from UDPClient:

clientSocket.send(sentence)

The above line sends the string sentence through the client’s socket and into the
TCP connection. Note that the program does not explicitly create a packet and attach
the destination address to the packet, as was the case with UDP sockets. Instead the
client program simply drops the bytes in the string sentence into the TCP con-
nection. The client then waits to receive bytes from the server.

modifiedSentence = clientSocket.recv(2048)

When characters arrive from the server, they get placed into the string modified-
Sentence. Characters continue to accumulate in modifiedSentence until the
line ends with a carriage return character. After printing the capitalized sentence, we
close the client’s socket:

clientSocket.close()

This last line closes the socket and, hence, closes the TCP connection between the
client and the server. It causes TCP in the client to send a TCP message to TCP in
the server (see Section 3.5).

TCPServer.py

Now let’s take a look at the server program.
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from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()
sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Let’s now take a look at the lines that differ significantly from UDPServer and TCP-
Client. As with TCPClient, the server creates a TCP socket with:

serverSocket=socket(AF_INET,SOCK_STREAM)

Similar to UDPServer, we associate the server port number, serverPort, with
this socket:

serverSocket.bind((‘’,serverPort))

But with TCP, serverSocket will be our welcoming socket. After establish-
ing this welcoming door, we will wait and listen for some client to knock on the
door:

serverSocket.listen(1)

This line has the server listen for TCP connection requests from the client. The
parameter specifies the maximum number of queued connections (at least 1).

connectionSocket, addr = serverSocket.accept()

When a client knocks on this door, the program invokes the accept() method for
serverSocket, which creates a new socket in the server, called connec-
tionSocket, dedicated to this particular client. The client and server then complete
the handshaking, creating a TCP connection between the client’s clientSocket
and the server’s connectionSocket. With the TCP connection established, the
client and server can now send bytes to each other over the connection. With TCP, all
bytes sent from one side not are not only guaranteed to arrive at the other side but also
guaranteed arrive in order.

connectionSocket.close()
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In this program, after sending the modified sentence to the client, we close the con-
nection socket. But since serverSocket remains open, another client can now
knock on the door and send the server a sentence to modify.

This completes our discussion of socket programming in TCP. You are encour-
aged to run the two programs in two separate hosts, and also to modify them to
achieve slightly different goals. You should compare the UDP program pair with the
TCP program pair and see how they differ. You should also do many of the socket
programming assignments described at the ends of Chapters 2, 4, and 7. Finally, we
hope someday, after mastering these and more advanced socket programs, you will
write your own popular network application, become very rich and famous, and
remember the authors of this textbook!

2.8 Summary

In this chapter, we’ve studied the conceptual and the implementation aspects of net-
work applications. We’ve learned about the ubiquitous client-server architecture
adopted by many Internet applications and seen its use in the HTTP, FTP, SMTP,
POP3, and DNS protocols. We’ve studied these important application-level proto-
cols, and their corresponding associated applications (the Web, file transfer, e-mail,
and DNS) in some detail. We’ve also learned about the increasingly prevalent P2P
architecture and how it is used in many applications. We’ve examined how the
socket API can be used to build network applications. We’ve walked through the use
of sockets for connection-oriented (TCP) and connectionless (UDP) end-to-end
transport services. The first step in our journey down the layered network architec-
ture is now complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague, bare-
bones definition of a protocol: “the format and the order of messages exchanged
between two or more communicating entities, as well as the actions taken on the trans-
mission and/or receipt of a message or other event.” The material in this chapter, and
in particular our detailed study of the HTTP, FTP, SMTP, POP3, and DNS protocols,
has now added considerable substance to this definition. Protocols are a key concept
in networking; our study of application protocols has now given us the opportunity to
develop a more intuitive feel for what protocols are all about.

In Section 2.1, we described the service models that TCP and UDP offer to
applications that invoke them. We took an even closer look at these service models
when we developed simple applications that run over TCP and UDP in Section 2.7.
However, we have said little about how TCP and UDP provide these service mod-
els. For example, we know that TCP provides a reliable data service, but we haven’t
said yet how it does so. In the next chapter we’ll take a careful look at not only the
what, but also the how and why of transport protocols.
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Equipped with knowledge about Internet application structure and application-
level protocols, we’re now ready to head further down the protocol stack and exam-
ine the transport layer in Chapter 3.

Homework Problems and Questions

Chapter 2 Review Questions

SECTION 2.1

R1. List five nonproprietary Internet applications and the application-layer 
protocols that they use.

R2. What is the difference between network architecture and application 
architecture?

R3. For a communication session between a pair of processes, which process is
the client and which is the server?

R4. For a P2P file-sharing application, do you agree with the statement, “There is
no notion of client and server sides of a communication session”? Why or
why not?

R5. What information is used by a process running on one host to identify a
process running on another host?

R6. Suppose you wanted to do a transaction from a remote client to a server as
fast as possible. Would you use UDP or TCP? Why?

R7. Referring to Figure 2.4, we see that none of the applications listed in Figure
2.4 requires both no data loss and timing. Can you conceive of an application
that requires no data loss and that is also highly time-sensitive?

R8. List the four broad classes of services that a transport protocol can provide.
For each of the service classes, indicate if either UDP or TCP (or both) pro-
vides such a service.

R9. Recall that TCP can be enhanced with SSL to provide process-to-process
security services, including encryption. Does SSL operate at the transport
layer or the application layer? If the application developer wants TCP to be
enhanced with SSL, what does the developer have to do?

SECTIONS 2.2–2.5

R10. What is meant by a handshaking protocol?

R11. Why do HTTP, FTP, SMTP, and POP3 run on top of TCP rather than on UDP?

R12. Consider an e-commerce site that wants to keep a purchase record for each of
its customers. Describe how this can be done with cookies.
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R13. Describe how Web caching can reduce the delay in receiving a requested
object. Will Web caching reduce the delay for all objects requested by a user
or for only some of the objects? Why?

R14. Telnet into a Web server and send a multiline request message. Include in the
request message the If-modified-since: header line to force a
response message with the 304 Not Modified status code.

R15. Why is it said that FTP sends control information “out-of-band”?

R16. Suppose Alice, with a Web-based e-mail account (such as Hotmail or gmail),
sends a message to Bob, who accesses his mail from his mail server using
POP3. Discuss how the message gets from Alice’s host to Bob’s host. Be sure
to list the series of application-layer protocols that are used to move the mes-
sage between the two hosts.

R17. Print out the header of an e-mail message you have recently received. How
many Received: header lines are there? Analyze each of the header lines
in the message.

R18. From a user’s perspective, what is the difference between the download-and-
delete mode and the download-and-keep mode in POP3?

R19. Is it possible for an organization’s Web server and mail server to have exactly
the same alias for a hostname (for example, foo.com)? What would be the
type for the RR that contains the hostname of the mail server?

R20. Look over your received emails, and examine the header of a message sent
from a user with an .edu email address. Is it possible to determine from the
header the IP address of the host from which the message was sent? Do the
same for a message sent from a gmail account. 

SECTION 2.6

R21. In BitTorrent, suppose Alice provides chunks to Bob throughout a 30-second
interval. Will Bob necessarily return the favor and provide chunks to Alice in
this same interval? Why or why not?

R22. Consider a new peer Alice that joins BitTorrent without possessing any
chunks. Without any chunks, she cannot become a top-four uploader for any
of the other peers, since she has nothing to upload. How then will Alice get
her first chunk?

R23. What is an overlay network? Does it include routers? What are the edges in
the overlay network?

R24. Consider a DHT with a mesh overlay topology (that is, every peer tracks all
peers in the system). What are the advantages and disadvantages of such a
design? What are the advantages and disadvantages of a circular DHT (with
no shortcuts)?
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R25. List at least four different applications that are naturally suitable for P2P
architectures. (Hint: File distribution and instant messaging are two.)

SECTION 2.7

R26. In Section 2.7, the UDP server described needed only one socket, whereas the
TCP server needed two sockets. Why? If the TCP server were to support n
simultaneous connections, each from a different client host, how many sockets
would the TCP server need?

R27. For the client-server application over TCP described in Section 2.7, why must
the server program be executed before the client program? For the client-
server application over UDP, why may the client program be executed before
the server program?

Problems

P1. True or false?

a. A user requests a Web page that consists of some text and three images.
For this page, the client will send one request message and receive four
response messages.

b. Two distinct Web pages (for example, www.mit.edu/research.html
and www.mit.edu/students.html) can be sent over the same per-
sistent connection.

c. With nonpersistent connections between browser and origin server, it is pos-
sible for a single TCP segment to carry two distinct HTTP request messages.

d. The Date: header in the HTTP response message indicates when the
object in the response was last modified.

e. HTTP response messages never have an empty message body.

P2. Read RFC 959 for FTP. List all of the client commands that are supported by
the RFC.

P3. Consider an HTTP client that wants to retrieve a Web document at a given
URL. The IP address of the HTTP server is initially unknown. What transport
and application-layer protocols besides HTTP are needed in this scenario?

P4. Consider the following string of ASCII characters that were captured by
Wireshark when the browser sent an HTTP GET message (i.e., this is the actual
content of an HTTP GET message). The characters <cr><lf> are carriage
return and line-feed characters (that is, the italized character string <cr> in
the text below represents the single carriage-return character that was con-
tained at that point in the HTTP header). Answer the following questions,
indicating where in the HTTP GET message below you find the answer.
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GET /cs453/index.html HTTP/1.1<cr><lf>Host: gai
a.cs.umass.edu<cr><lf>User-Agent: Mozilla/5.0 (
Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gec
ko/20040804 Netscape/7.2 (ax) <cr><lf>Accept:ex
t/xml, application/xml, application/xhtml+xml, text
/html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5
<cr><lf>Accept-Language: en-us,en;q=0.5<cr><lf>Accept-
Encoding: zip,deflate<cr><lf>Accept-Charset: ISO
-8859-1,utf-8;q=0.7,*;q=0.7<cr><lf>Keep-Alive: 300<cr>
<lf>Connection:keep-alive<cr><lf><cr><lf>

a. What is the URL of the document requested by the browser?

b. What version of HTTP is the browser running?

c. Does the browser request a non-persistent or a persistent connection?

d. What is the IP address of the host on which the browser is running?

e. What type of browser initiates this message? Why is the browser type
needed in an HTTP request message?

P5. The text below shows the reply sent from the server in response to the HTTP
GET message in the question above. Answer the following questions, indicat-
ing where in the message below you find the answer.

172 CHAPTER 2 • APPLICATION LAYER

HTTP/1.1 200 OK<cr><lf>Date: Tue, 07 Mar 2008
12:39:45GMT<cr><lf>Server: Apache/2.0.52 (Fedora)
<cr><lf>Last-Modified: Sat, 10 Dec2005 18:27:46
GMT<cr><lf>ETag: “526c3-f22-a88a4c80”<cr><lf>Accept-
Ranges: bytes<cr><lf>Content-Length: 3874<cr><lf>
Keep-Alive: timeout=max=100<cr><lf>Connection:
Keep-Alive<cr><lf>Content-Type: text/html; charset=
ISO-8859-1<cr><lf><cr><lf><!doctype html public “-
//w3c//dtd html 4.0 transitional//en”><lf><html><lf>
<head><lf> <meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1”><lf> <meta
name=”GENERATOR” content=”Mozilla/4.79 [en] (Windows NT
5.0; U) Netscape]”><lf> <title>CMPSCI 453 / 591 / 
NTU-ST550A Spring 2005 homepage</title><lf></head><lf>
<much more document text following here (not shown)>

a. Was the server able to successfully find the document or not? What time
was the document reply provided?

b. When was the document last modified?

c. How many bytes are there in the document being returned?

d. What are the first 5 bytes of the document being returned? Did the server
agree to a persistent connection?

https://hemanthrajhemu.github.io



P6. Obtain the HTTP/1.1 specification (RFC 2616). Answer the following questions:

a. Explain the mechanism used for signaling between the client and server
to indicate that a persistent connection is being closed. Can the client, the
server, or both signal the close of a connection?

b. What encryption services are provided by HTTP?

c. Can a client open three or more simultaneous connections with a given
server?

d. Either a server or a client may close a transport connection between them
if either one detects the connection has been idle for some time. Is it pos-
sible that one side starts closing a connection while the other side is trans-
mitting data via this connection? Explain. 

P7. Suppose within your Web browser you click on a link to obtain a Web page.
The IP address for the associated URL is not cached in your local host, so a
DNS lookup is necessary to obtain the IP address. Suppose that n DNS
servers are visited before your host receives the IP address from DNS; the
successive visits incur an RTT of RTT1, . . ., RTTn. Further suppose that the
Web page associated with the link contains exactly one object, consisting of a
small amount of HTML text. Let RTT0 denote the RTT between the local host
and the server containing the object. Assuming zero transmission time of the
object, how much time elapses from when the client clicks on the link until
the client receives the object?

P8. Referring to Problem P7, suppose the HTML file references eight very small
objects on the same server. Neglecting transmission times, how much time
elapses with

a. Non-persistent HTTP with no parallel TCP connections?

b. Non-persistent HTTP with the browser configured for 5 parallel connections?

c. Persistent HTTP?

P9. Consider Figure 2.12, for which there is an institutional network connected to
the Internet. Suppose that the average object size is 850,000 bits and that the
average request rate from the institution’s browsers to the origin servers is 16
requests per second. Also suppose that the amount of time it takes from when
the router on the Internet side of the access link forwards an HTTP request
until it receives the response is three seconds on average (see Section 2.2.5).
Model the total average response time as the sum of the average access delay
(that is, the delay from Internet router to institution router) and the average
Internet delay. For the average access delay, use Δ/(1 – Δ�), where Δ is the
average time required to send an object over the access link and � is the
arrival rate of objects to the access link.

a. Find the total average response time.

b. Now suppose a cache is installed in the institutional LAN. Suppose the
miss rate is 0.4. Find the total response time.
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P10. Consider a short, 10-meter link, over which a sender can transmit at a rate of
150 bits/sec in both directions. Suppose that packets containing data are
100,000 bits long, and packets containing only control (e.g., ACK or hand-
shaking) are 200 bits long. Assume that N parallel connections each get 1/N
of the link bandwidth. Now consider the HTTP protocol, and suppose that
each downloaded object is 100 Kbits long, and that the initial downloaded
object contains 10 referenced objects from the same sender. Would parallel
downloads via parallel instances of non-persistent HTTP make sense in this
case? Now consider persistent HTTP. Do you expect significant gains over
the non-persistent case? Justify and explain your answer.

P11. Consider the scenario introduced in the previous problem. Now suppose that
the link is shared by Bob with four other users. Bob uses parallel instances of
non-persistent HTTP, and the other four users use non-persistent HTTP with-
out parallel downloads. 

a. Do Bob’s parallel connections help him get Web pages more quickly?
Why or why not? 

b. If all five users open five parallel instances of non-persistent HTTP, then
would Bob’s parallel connections still be beneficial? Why or why not?

P12. Write a simple TCP program for a server that accepts lines of input from a
client and prints the lines onto the server’s standard output. (You can do this by
modifying the TCPServer.py program in the text.) Compile and execute your
program. On any other machine that contains a Web browser, set the proxy
server in the browser to the host that is running your server program; also con-
figure the port number appropriately. Your browser should now send its GET
request messages to your server, and your server should display the messages
on its standard output. Use this platform to determine whether your browser
generates conditional GET messages for objects that are locally cached.

P13. What is the difference between MAIL FROM: in SMTP and From: in the
mail message itself?

P14. How does SMTP mark the end of a message body? How about HTTP? Can
HTTP use the same method as SMTP to mark the end of a message body?
Explain.

P15. Read RFC 5321 for SMTP. What does MTA stand for? Consider the follow-
ing received spam email (modified from a real spam email). Assuming only
the originator of this spam email is malacious and all other hosts are honest,
identify the malacious host that has generated this spam email.

From - Fri Nov 07 13:41:30 2008
Return-Path: <tennis5@pp33head.com>
Received: from barmail.cs.umass.edu
(barmail.cs.umass.edu [128.119.240.3]) by cs.umass.edu
(8.13.1/8.12.6) for <hg@cs.umass.edu>; Fri, 7 Nov 2008
13:27:10 -0500
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Received: from asusus-4b96 (localhost [127.0.0.1]) by
barmail.cs.umass.edu (Spam Firewall) for
<hg@cs.umass.edu>; Fri,  7 Nov 2008 13:27:07 -0500
(EST)
Received: from asusus-4b96 ([58.88.21.177]) by 
barmail.cs.umass.edu for <hg@cs.umass.edu>; Fri, 
07 Nov 2008 13:27:07 -0500 (EST)
Received: from [58.88.21.177] by
inbnd55.exchangeddd.com; Sat, 8 Nov 2008 01:27:07 +0700
From: "Jonny" <tennis5@pp33head.com>
To: <hg@cs.umass.edu>
Subject: How to secure your savings

P16. Read the POP3 RFC, RFC 1939. What is the purpose of the UIDL POP3
command?

P17. Consider accessing your e-mail with POP3.

a. Suppose you have configured your POP mail client to operate in the
download-and-delete mode. Complete the following transaction:

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: blah blah ...
S: ..........blah
S: .
?
?

b. Suppose you have configured your POP mail client to operate in the
download-and-keep mode. Complete the following transaction:

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: blah blah ...
S: ..........blah
S: .
?
?
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c. Suppose you have configured your POP mail client to operate in the
download-and-keep mode. Using your transcript in part (b), suppose you
retrieve messages 1 and 2, exit POP, and then five minutes later you again
access POP to retrieve new e-mail. Suppose that in the five-minute inter-
val no new messages have been sent to you. Provide a transcript of this
second POP session.

P18. a. What is a whois database?

b. Use various whois databases on the Internet to obtain the names of two
DNS servers. Indicate which whois databases you used.

c. Use nslookup on your local host to send DNS queries to three DNS servers:
your local DNS server and the two DNS servers you found in part (b). Try
querying for Type A, NS, and MX reports. Summarize your findings.

d. Use nslookup to find a Web server that has multiple IP addresses. Does
the Web server of your institution (school or company) have multiple IP
addresses?

e. Use the ARIN whois database to determine the IP address range used by
your university.

f. Describe how an attacker can use whois databases and the nslookup tool
to perform reconnaissance on an institution before launching an attack.

g. Discuss why whois databases should be publicly available.

P19. In this problem, we use the useful dig tool available on Unix and Linux hosts
to explore the hierarchy of DNS servers. Recall that in Figure 2.21, a DNS
server higher in the DNS hierarchy delegates a DNS query to a DNS server
lower in the hierarchy, by sending back to the DNS client the name of that
lower-level DNS server. First read the man page for dig, and then answer the
following questions. 

a. Starting with a root DNS server (from one of  the root servers [a-m].root-
servers.net), initiate a sequence of queries for the IP address for your
department’s Web server by using dig. Show the list of the names of DNS
servers in the delegation chain in answering your query.

b. Repeat part a) for several popular Web sites, such as google.com,
yahoo.com, or amazon.com. 

P20. Suppose you can access the caches in the local DNS servers of your department.
Can you propose a way to roughly determine the Web servers (outside your
department) that are most popular among the users in your department? Explain. 

P21. Suppose that your department has a local DNS server for all computers in the
department. You are an ordinary user (i.e., not a network/system administra-
tor). Can you determine if an external Web site was likely accessed from a
computer in your department a couple of seconds ago? Explain. 
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P22. Consider distributing a file of F = 15 Gbits to N peers. The server has an upload
rate of us = 30 Mbps, and each peer has a download rate of di = 2 Mbps and an
upload rate of u. For N = 10, 100, and 1,000 and u = 300 Kbps, 700 Kbps, and
2 Mbps, prepare a chart giving the minimum distribution time for each of 
the combinations of N and u for both client-server distribution and P2P
distribution.

P23. Consider distributing a file of F bits to N peers using a client-server architec-
ture. Assume a fluid model where the server can simultaneously transmit to
multiple peers, transmitting to each peer at different rates, as long as the com-
bined rate does not exceed us.

a. Suppose that us/N ≤ dmin. Specify a distribution scheme that has a distri-
bution time of NF/us.

b. Suppose that us/N ≥ dmin. Specify a distribution scheme that has a distri-
bution time of F/ dmin.

c. Conclude that the minimum distribution time is in general given by
max{NF/us, F/ dmin}.

P24. Consider distributing a file of F bits to N peers using a P2P architecture.
Assume a fluid model. For simplicity assume that dmin is very large, so that
peer download bandwidth is never a bottleneck.

a. Suppose that us ≤ (us + u1 + ... + uN)/N. Specify a distribution scheme
that has a distribution time of F/us.

b. Suppose that us ≥ (us + u1 + ... + uN)/N. Specify a distribution scheme
that has a distribution time of NF/(us + u1 + ... + uN).

c. Conclude that the minimum distribution time is in general given by
max{F/us, NF/(us + u1 + ... + uN)}.

P25. Consider an overlay network with N active peers, with each pair of peers hav-
ing an active TCP connection. Additionally, suppose that the TCP connections
pass through a total of M routers. How many nodes and edges are there in the
corresponding overlay network?

P26. Suppose Bob joins a BitTorrent torrent, but he does not want to upload any
data to any other peers (so called free-riding). 

a. Bob claims that he can receive a complete copy of the file that is shared
by the swarm. Is Bob’s claim possible? Why or why not? 

b. Bob further claims that he can further make his “free-riding” more effi-
cient by using a collection of multiple computers (with distinct IP
addresses) in the computer lab in his department. How can he do that?

P27. In the circular DHT example in Section 2.6.2, suppose that peer 3 learns that
peer 5 has left. How does peer 3 update its successor state information?
Which peer is now its first successor? Its second successor?

VideoNote
Walking through 
distributed hash tables
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P28. In the circular DHT example in Section 2.6.2, suppose that a new peer 6
wants to join the DHT and peer 6 initially only knows peer 15’s IP address.
What steps are taken?

P29. Because an integer in [0, 2n� 1] can be expressed as an n-bit binary number in
a DHT, each key can be expressed as k = (k0, k1, . . . , kn–1), and each peer iden-
tifier can be expressed p = (p0, p1, . . . , pn–1). Let’s now define the XOR dis-
tance between a key k and peer p as

Describe how this metric can be used to assign (key, value) pairs to peers. 
(To learn about how to build an efficient DHT using this natural metric, see
[Maymounkov 2002] in which the Kademlia DHT is described.)

P30. As DHTs are overlay networks, they may not necessarily match the under-
lay physical network well in the sense that two neighboring peers might be
physically very far away; for example, one peer could be in Asia and its
neighbor could be in North America. If we randomly and uniformly assign
identifiers to newly joined peers, would this assignment scheme cause such
a mismatch? Explain. And how would such a mismatch affect the DHT’s
performance?

P31. Install and compile the Python programs TCPClient and UDPClient on one
host and TCPServer and UDPServer on another host.

a. Suppose you run TCPClient before you run TCPServer. What happens?
Why?

b. Suppose you run UDPClient before you run UDPServer. What happens?
Why?

c. What happens if you use different port numbers for the client and server
sides?

P32. Suppose that in UDPClient.py, after we create the socket, we add the line: 

clientSocket.bind(('', 5432))

Will it become necessary to change UDPServer.py? What are the port num-
bers for the sockets in UDPClient and UDPServer? What were they before
making this change?

P33. Can you configure your browser to open multiple simultaneous connections
to a Web site? What are the advantages and disadvantages of having a large
number of simultaneous TCP connections?

P34 We have seen that Internet TCP sockets treat the data being sent as a byte
stream but UDP sockets recognize message boundaries. What are one

d1k, p2 = a
n-1

j=0
� k j - pj �2j
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advantage and one disadvantage of byte-oriented API versus having the API
explicitly recognize and preserve application-defined message boundaries?

P35. What is the Apache Web server? How much does it cost? What functionality
does it currently have? You may want to look at Wikipedia to answer this
question.

P36. Many BitTorrent clients use DHTs to create a distributed tracker. For these
DHTs, what is the “key” and what is the “value”?

Socket Programming Assignments

The companion Web site includes six socket programming assignments. The first
four assignments are summarized below. The fifth assignment makes use of the
ICMP protocol and is summarized at the end of Chapter 4. The sixth assignment
employs multimedia protocols and is summarized at the end of Chapter 7. It is
highly recommended that students complete several, if not all, of these assignments.
Students can find full details of these assignments, as well as important snippets of
the Python code, at the Web site http://www.awl.com/kurose-ross.

Assignment 1: Web Server

In this assignment, you will develop a simple Web server in Python that is capable
of processing only one request. Specifically, your Web server will (i) create a con-
nection socket when contacted by a client (browser); (ii) receive the HTTP request
from this connection; (iii) parse the request to determine the specific file being
requested; (iv) get the requested file from the server’s file system; (v) create an
HTTP response message consisting of the requested file preceded by header lines;
and (vi) send the response over the TCP connection to the requesting browser. If a
browser requests a file that is not present in your server, your server should return a
“404 Not Found” error message.

In the companion Web site, we provide the skeleton code for your server. Your
job is to complete the code, run your server, and then test your server by sending
requests from browsers running on different hosts. If you run your server on a host
that already has a Web server running on it, then you should use a different port than
port 80 for your Web server.

Assignment 2: UDP Pinger

In this programming assignment, you will write a client ping program in Python.
Your client will send a simple ping message to a server, receive a corresponding
pong message back from the server, and determine the delay between when the
client sent the ping message and received the pong message. This delay is called the
Round Trip Time (RTT). The functionality provided by the client and server is
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similar to the functionality provided by standard ping program available in modern
operating systems. However, standard ping programs use the Internet Control Mes-
sage Protocol (ICMP) (which we will study in Chapter 4). Here we will create a
nonstandard (but simple!) UDP-based ping program.

Your ping program is to send 10 ping messages to the target server over UDP.
For each message, your client is to determine and print the RTT when the correspon-
ding pong message is returned. Because UDP is an unreliable protocol, a packet sent
by the client or server may be lost. For this reason, the client cannot wait indefinitely
for a reply to a ping message. You should have the client wait up to one second for a
reply from the server; if no reply is received, the client should assume that the
packet was lost and print a message accordingly.

In this assignment, you will be given the complete code for the server (avail-
able in the companion Web site). Your job is to write the client code, which will be
very similar to the server code. It is recommended that you first study carefully the
server code. You can then write your client code, liberally cutting and pasting lines
from the server code.

Assignment 3: Mail Client

The goal of this programming assignment is to create a simple mail client that sends
email to any recipient. Your client will need to establish a TCP connection with a
mail server (e.g., a Google mail server), dialogue with the mail server using the
SMTP protocol, send an email message to a recipient (e.g., your friend) via the mail
server, and finally close the TCP connection with the mail server.

For this assignment, the companion Web site provides the skeleton code for
your client. Your job is to complete the code and test your client by sending
email to different user accounts. You may also try sending through different
servers (for example, through a Google mail server and through your university
mail server).

Assignment 4: Multi-Threaded Web Proxy

In this assignment, you will develop a Web proxy. When your proxy receives an
HTTP request for an object from a browser, it generates a new HTTP request for
the same object and sends it to the origin server. When the proxy receives the
corresponding HTTP response with the object from the origin server, it creates a
new HTTP response, including the object, and sends it to the client. This proxy
will be multi-threaded, so that it will be able to handle multiple requests at the
same time.

For this assignment, the companion Web site provides the skeleton code for the
proxy server. Your job is to complete the code, and then test it by having different
browsers request Web objects via your proxy.
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Wireshark Lab: HTTP

Having gotten our feet wet with the Wireshark packet sniffer in Lab 1, we’re now
ready to use Wireshark to investigate protocols in operation. In this lab, we’ll explore
several aspects of the HTTP protocol: the basic GET/reply interaction, HTTP message
formats, retrieving large HTML files, retrieving HTML files with embedded URLs,
persistent and non-persistent connections, and HTTP authentication and security.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, http://www.awl.com/kurose-ross.

Wireshark Lab: DNS

In this lab, we take a closer look at the client side of the DNS, the protocol that trans-
lates Internet hostnames to IP addresses. Recall from Section 2.5 that the client’s role in
the DNS is relatively simple—a client sends a query to its local DNS server and
receives a response back. Much can go on under the covers, invisible to the DNS
clients, as the hierarchical DNS servers communicate with each other to either recur-
sively or iteratively resolve the client’s DNS query. From the DNS client’s standpoint,
however, the protocol is quite simple—a query is formulated to the local DNS server
and a response is received from that server. We observe DNS in action in this lab.

As is the case with all Wireshark labs, the full description of this lab is available at
this book’s Web site, http://www.awl.com/kurose-ross.
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How did you become interested in computing? Did you always know that you wanted to
work in information technology?

The video game and personal computing revolutions hit right when I was growing up—
personal computing was the new technology frontier in the late 70’s and early 80’s. And it
wasn’t just Apple and the IBM PC, but hundreds of new companies like Commodore and
Atari as well. I taught myself to program out of a book called “Instant Freeze-Dried BASIC”
at age 10, and got my first computer (a TRS-80 Color Computer—look it up!) at age 12.

Please describe one or two of the most exciting projects you have worked on during your
career. What were the biggest challenges?

Undoubtedly the most exciting project was the original Mosaic web browser in ’92–’93—
and the biggest challenge was getting anyone to take it seriously back then. At the time,
everyone thought the interactive future would be delivered as “interactive television” by
huge companies, not as the Internet by startups.

What excites you about the future of networking and the Internet? What are your biggest
concerns?

The most exciting thing is the huge unexplored frontier of applications and services that
programmers and entrepreneurs are able to explore—the Internet has unleashed creativity at

Marc Andreessen
Marc Andreessen is the co-creator of Mosaic, the Web browser that
popularized the World Wide Web in 1993. Mosaic had a clean,
easily understood interface and was the first browser to display
images in-line with text. In 1994, Marc Andreessen and Jim Clark
founded Netscape, whose browser was by far the most popular
browser through the mid-1990s. Netscape also developed the Secure
Sockets Layer (SSL) protocol and many Internet server products, includ-
ing mail servers and SSL-based Web servers. He is now a co-founder
and general partner of venture capital firm Andreessen Horowitz, over-
seeing portfolio development with holdings that include Facebook,
Foursquare, Groupon, Jawbone, Twitter, and Zynga. He serves on
numerous boards, including Bump, eBay, Glam Media, Facebook,
and Hewlett-Packard. He holds a BS in Computer Science from the
University of Illinois at Urbana-Champaign.
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a level that I don’t think we’ve ever seen before. My biggest concern is the principle of
unintended consequences—we don’t always know the implications of what we do, such as
the Internet being used by governments to run a new level of surveillance on citizens.

Is there anything in particular students should be aware of as Web technology advances?

The rate of change—the most important thing to learn is how to learn—how to flexibly
adapt to changes in the specific technologies, and how to keep an open mind on the new
opportunities and possibilities as you move through your career.

What people inspired you professionally?

Vannevar Bush, Ted Nelson, Doug Engelbart, Nolan Bushnell, Bill Hewlett and Dave
Packard, Ken Olsen, Steve Jobs, Steve Wozniak, Andy Grove, Grace Hopper, Hedy Lamarr,
Alan Turing, Richard Stallman.

What are your recommendations for students who want to pursue careers in computing
and information technology?

Go as deep as you possibly can on understanding how technology is created, and then com-
plement with learning how business works.

Can technology solve the world’s problems?

No, but we advance the standard of living of people through economic growth, and most
economic growth throughout history has come from technology—so that’s as good as it gets.
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