

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Table of Contents xix

Chapter 3 Transport Layer 185
3.1 Introduction and Transport-Layer Services 186

3.1.1 Relationship Between Transport and Network Layers 186
3.1.2 Overview of the Transport Layer in the Internet 189

3.2 Multiplexing and Demultiplexing 191
3.3 Connectionless Transport: UDP 198

3.3.1 UDP Segment Structure 202
3.3.2 UDP Checksum 202

3.4 Principles of Reliable Data Transfer 204
3.4.1 Building a Reliable Data Transfer Protocol 206
3.4.2 Pipelined Reliable Data Transfer Protocols 215
3.4.3 Go-Back-N (GBN) 218
3.4.4 Selective Repeat (SR) 223

3.5 Connection-Oriented Transport: TCP 230
3.5.1 The TCP Connection 231
3.5.2 TCP Segment Structure 233
3.5.3 Round-Trip Time Estimation and Timeout 238
3.5.4 Reliable Data Transfer 242
3.5.5 Flow Control 250
3.5.6 TCP Connection Management 252

3.6 Principles of Congestion Control 259
3.6.1 The Causes and the Costs of Congestion 259
3.6.2 Approaches to Congestion Control 265
3.6.3 Network-Assisted Congestion-Control Example:

ATM ABR Congestion Control 266
3.7 TCP Congestion Control 269

3.7.1 Fairness 279
3.8 Summary 283
Homework Problems and Questions 285
Programming Assignments 300
Wireshark Labs: TCP, UDP 301
Interview: Van Jacobson 302

Chapter 4 The Network Layer 305
4.1 Introduction 306

4.1.1 Forwarding and Routing 308
4.1.2 Network Service Models 310

4.2 Virtual Circuit and Datagram Networks 313
4.2.1 Virtual-Circuit Networks 314
4.2.2 Datagram Networks 317
4.2.3 Origins of VC and Datagram Networks 319

https://hemanthrajhemu.github.io

CHAPTER 3
Transport
Layer

Residing between the application and network layers, the transport layer is a central
piece of the layered network architecture. It has the critical role of providing com-
munication services directly to the application processes running on different hosts.
The pedagogic approach we take in this chapter is to alternate between discussions
of transport-layer principles and discussions of how these principles are imple-
mented in existing protocols; as usual, particular emphasis will be given to Internet
protocols, in particular the TCP and UDP transport-layer protocols.

We’ll begin by discussing the relationship between the transport and network
layers. This sets the stage for examining the first critical function of the transport
layer—extending the network layer’s delivery service between two end systems to a
delivery service between two application-layer processes running on the end sys-
tems. We’ll illustrate this function in our coverage of the Internet’s connectionless
transport protocol, UDP.

We’ll then return to principles and confront one of the most fundamental prob-
lems in computer networking—how two entities can communicate reliably over a
medium that may lose and corrupt data. Through a series of increasingly compli-
cated (and realistic!) scenarios, we’ll build up an array of techniques that transport
protocols use to solve this problem. We’ll then show how these principles are
embodied in TCP, the Internet’s connection-oriented transport protocol.

We’ll next move on to a second fundamentally important problem in networking—
controlling the transmission rate of transport-layer entities in order to avoid, or 185

https://hemanthrajhemu.github.io

recover from, congestion within the network. We’ll consider the causes and conse-
quences of congestion, as well as commonly used congestion-control techniques.
After obtaining a solid understanding of the issues behind congestion control, we’ll
study TCP’s approach to congestion control.

3.1 Introduction and Transport-Layer Services

In the previous two chapters we touched on the role of the transport layer and the
services that it provides. Let’s quickly review what we have already learned about
the transport layer.

A transport-layer protocol provides for logical communication between appli-
cation processes running on different hosts. By logical communication, we mean
that from an application’s perspective, it is as if the hosts running the processes were
directly connected; in reality, the hosts may be on opposite sides of the planet, con-
nected via numerous routers and a wide range of link types. Application processes
use the logical communication provided by the transport layer to send messages to
each other, free from the worry of the details of the physical infrastructure used to
carry these messages. Figure 3.1 illustrates the notion of logical communication.

As shown in Figure 3.1, transport-layer protocols are implemented in the end
systems but not in network routers. On the sending side, the transport layer converts
the application-layer messages it receives from a sending application process into
transport-layer packets, known as transport-layer segments in Internet terminology.
This is done by (possibly) breaking the application messages into smaller chunks and
adding a transport-layer header to each chunk to create the transport-layer segment.
The transport layer then passes the segment to the network layer at the sending end
system, where the segment is encapsulated within a network-layer packet (a data-
gram) and sent to the destination. It’s important to note that network routers act only
on the network-layer fields of the datagram; that is, they do not examine the fields of
the transport-layer segment encapsulated with the datagram. On the receiving side,
the network layer extracts the transport-layer segment from the datagram and passes
the segment up to the transport layer. The transport layer then processes the received
segment, making the data in the segment available to the receiving application.

More than one transport-layer protocol may be available to network applications.
For example, the Internet has two protocols—TCP and UDP. Each of these protocols
provides a different set of transport-layer services to the invoking application.

3.1.1 Relationship Between Transport and Network Layers

Recall that the transport layer lies just above the network layer in the protocol stack.
Whereas a transport-layer protocol provides logical communication between
processes running on different hosts, a network-layer protocol provides logical

186 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

3.1 • INTRODUCTION AND TRANSPORT-LAYER SERVICES 187

Mobile Network

National or
Global ISP

Local or
Regional ISP

Enterprise Network

Home NetworkNetwork

Data link

Physical

Application

Transport

Network

Data link

Physical

Application

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical
Network

Data link

Physical

Logical end-to-end transport

Figure 3.1 � The transport layer provides logical rather than physical
communication between application processes

https://hemanthrajhemu.github.io

communication between hosts. This distinction is subtle but important. Let’s exam-
ine this distinction with the aid of a household analogy.

Consider two houses, one on the East Coast and the other on the West Coast, with
each house being home to a dozen kids. The kids in the East Coast household are
cousins of the kids in the West Coast household. The kids in the two households love
to write to each other—each kid writes each cousin every week, with each letter deliv-
ered by the traditional postal service in a separate envelope. Thus, each household
sends 144 letters to the other household every week. (These kids would save a lot of
money if they had e-mail!) In each of the households there is one kid—Ann in the
West Coast house and Bill in the East Coast house—responsible for mail collection
and mail distribution. Each week Ann visits all her brothers and sisters, collects the
mail, and gives the mail to a postal-service mail carrier, who makes daily visits to the
house. When letters arrive at the West Coast house, Ann also has the job of distribut-
ing the mail to her brothers and sisters. Bill has a similar job on the East Coast.

In this example, the postal service provides logical communication between the
two houses—the postal service moves mail from house to house, not from person to
person. On the other hand, Ann and Bill provide logical communication among the
cousins—Ann and Bill pick up mail from, and deliver mail to, their brothers and sis-
ters. Note that from the cousins’ perspective, Ann and Bill are the mail service, even
though Ann and Bill are only a part (the end-system part) of the end-to-end delivery
process. This household example serves as a nice analogy for explaining how the
transport layer relates to the network layer:

application messages = letters in envelopes
processes = cousins
hosts (also called end systems) = houses
transport-layer protocol = Ann and Bill
network-layer protocol = postal service (including mail carriers)

Continuing with this analogy, note that Ann and Bill do all their work within
their respective homes; they are not involved, for example, in sorting mail in any
intermediate mail center or in moving mail from one mail center to another. Simi-
larly, transport-layer protocols live in the end systems. Within an end system, a
transport protocol moves messages from application processes to the network edge
(that is, the network layer) and vice versa, but it doesn’t have any say about how the
messages are moved within the network core. In fact, as illustrated in Figure 3.1,
intermediate routers neither act on, nor recognize, any information that the transport
layer may have added to the application messages.

Continuing with our family saga, suppose now that when Ann and Bill go on
vacation, another cousin pair—say, Susan and Harvey—substitute for them and pro-
vide the household-internal collection and delivery of mail. Unfortunately for the
two families, Susan and Harvey do not do the collection and delivery in exactly the
same way as Ann and Bill. Being younger kids, Susan and Harvey pick up and drop
off the mail less frequently and occasionally lose letters (which are sometimes

188 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

chewed up by the family dog). Thus, the cousin-pair Susan and Harvey do not pro-
vide the same set of services (that is, the same service model) as Ann and Bill. In an
analogous manner, a computer network may make available multiple transport pro-
tocols, with each protocol offering a different service model to applications.

The possible services that Ann and Bill can provide are clearly constrained by
the possible services that the postal service provides. For example, if the postal serv-
ice doesn’t provide a maximum bound on how long it can take to deliver mail
between the two houses (for example, three days), then there is no way that Ann and
Bill can guarantee a maximum delay for mail delivery between any of the cousin
pairs. In a similar manner, the services that a transport protocol can provide are often
constrained by the service model of the underlying network-layer protocol. If the
network-layer protocol cannot provide delay or bandwidth guarantees for transport-
layer segments sent between hosts, then the transport-layer protocol cannot provide
delay or bandwidth guarantees for application messages sent between processes.

Nevertheless, certain services can be offered by a transport protocol even when
the underlying network protocol doesn’t offer the corresponding service at the net-
work layer. For example, as we’ll see in this chapter, a transport protocol can offer
reliable data transfer service to an application even when the underlying network
protocol is unreliable, that is, even when the network protocol loses, garbles, or
duplicates packets. As another example (which we’ll explore in Chapter 8 when we
discuss network security), a transport protocol can use encryption to guarantee that
application messages are not read by intruders, even when the network layer cannot
guarantee the confidentiality of transport-layer segments.

3.1.2 Overview of the Transport Layer in the Internet

Recall that the Internet, and more generally a TCP/IP network, makes two distinct
transport-layer protocols available to the application layer. One of these protocols is
UDP (User Datagram Protocol), which provides an unreliable, connectionless service
to the invoking application. The second of these protocols is TCP (Transmission Con-
trol Protocol), which provides a reliable, connection-oriented service to the invoking
application. When designing a network application, the application developer must
specify one of these two transport protocols. As we saw in Section 2.7, the application
developer selects between UDP and TCP when creating sockets.

To simplify terminology, when in an Internet context, we refer to the transport-
layer packet as a segment. We mention, however, that the Internet literature (for exam-
ple, the RFCs) also refers to the transport-layer packet for TCP as a segment but often
refers to the packet for UDP as a datagram. But this same Internet literature also uses
the term datagram for the network-layer packet! For an introductory book on computer
networking such as this, we believe that it is less confusing to refer to both TCP and
UDP packets as segments, and reserve the term datagram for the network-layer packet.

Before proceeding with our brief introduction of UDP and TCP, it will be use-
ful to say a few words about the Internet’s network layer. (We’ll learn about the net-
work layer in detail in Chapter 4.) The Internet’s network-layer protocol has a

3.1 • INTRODUCTION AND TRANSPORT-LAYER SERVICES 189

https://hemanthrajhemu.github.io

name—IP, for Internet Protocol. IP provides logical communication between hosts.
The IP service model is a best-effort delivery service. This means that IP makes its
“best effort” to deliver segments between communicating hosts, but it makes no
guarantees. In particular, it does not guarantee segment delivery, it does not guaran-
tee orderly delivery of segments, and it does not guarantee the integrity of the data
in the segments. For these reasons, IP is said to be an unreliable service. We also
mention here that every host has at least one network-layer address, a so-called IP
address. We’ll examine IP addressing in detail in Chapter 4; for this chapter we need
only keep in mind that each host has an IP address.

Having taken a glimpse at the IP service model, let’s now summarize the serv-
ice models provided by UDP and TCP. The most fundamental responsibility of UDP
and TCP is to extend IP’s delivery service between two end systems to a delivery
service between two processes running on the end systems. Extending host-to-host
delivery to process-to-process delivery is called transport-layer multiplexing and
demultiplexing. We’ll discuss transport-layer multiplexing and demultiplexing in
the next section. UDP and TCP also provide integrity checking by including error-
detection fields in their segments’ headers. These two minimal transport-layer serv-
ices—process-to-process data delivery and error checking—are the only two
services that UDP provides! In particular, like IP, UDP is an unreliable service—it
does not guarantee that data sent by one process will arrive intact (or at all!) to the
destination process. UDP is discussed in detail in Section 3.3.

TCP, on the other hand, offers several additional services to applications. First
and foremost, it provides reliable data transfer. Using flow control, sequence num-
bers, acknowledgments, and timers (techniques we’ll explore in detail in this chap-
ter), TCP ensures that data is delivered from sending process to receiving process,
correctly and in order. TCP thus converts IP’s unreliable service between end sys-
tems into a reliable data transport service between processes. TCP also provides
congestion control. Congestion control is not so much a service provided to the
invoking application as it is a service for the Internet as a whole, a service for the
general good. Loosely speaking, TCP congestion control prevents any one TCP con-
nection from swamping the links and routers between communicating hosts with an
excessive amount of traffic. TCP strives to give each connection traversing a con-
gested link an equal share of the link bandwidth. This is done by regulating the rate
at which the sending sides of TCP connections can send traffic into the network.
UDP traffic, on the other hand, is unregulated. An application using UDP transport
can send at any rate it pleases, for as long as it pleases.

A protocol that provides reliable data transfer and congestion control is neces-
sarily complex. We’ll need several sections to cover the principles of reliable data
transfer and congestion control, and additional sections to cover the TCP protocol
itself. These topics are investigated in Sections 3.4 through 3.8. The approach taken
in this chapter is to alternate between basic principles and the TCP protocol. For
example, we’ll first discuss reliable data transfer in a general setting and then dis-
cuss how TCP specifically provides reliable data transfer. Similarly, we’ll first

190 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

discuss congestion control in a general setting and then discuss how TCP performs
congestion control. But before getting into all this good stuff, let’s first look at
transport-layer multiplexing and demultiplexing.

3.2 Multiplexing and Demultiplexing

In this section, we discuss transport-layer multiplexing and demultiplexing, that is,
extending the host-to-host delivery service provided by the network layer to a
process-to-process delivery service for applications running on the hosts. In order to
keep the discussion concrete, we’ll discuss this basic transport-layer service in the
context of the Internet. We emphasize, however, that a multiplexing/demultiplexing
service is needed for all computer networks.

At the destination host, the transport layer receives segments from the network
layer just below. The transport layer has the responsibility of delivering the data in
these segments to the appropriate application process running in the host. Let’s take
a look at an example. Suppose you are sitting in front of your computer, and you are
downloading Web pages while running one FTP session and two Telnet sessions.
You therefore have four network application processes running—two Telnet
processes, one FTP process, and one HTTP process. When the transport layer in
your computer receives data from the network layer below, it needs to direct the
received data to one of these four processes. Let’s now examine how this is done.

First recall from Section 2.7 that a process (as part of a network application) can
have one or more sockets, doors through which data passes from the network to the
process and through which data passes from the process to the network. Thus, as
shown in Figure 3.2, the transport layer in the receiving host does not actually
deliver data directly to a process, but instead to an intermediary socket. Because at
any given time there can be more than one socket in the receiving host, each socket
has a unique identifier. The format of the identifier depends on whether the socket is
a UDP or a TCP socket, as we’ll discuss shortly.

Now let’s consider how a receiving host directs an incoming transport-layer seg-
ment to the appropriate socket. Each transport-layer segment has a set of fields in the
segment for this purpose. At the receiving end, the transport layer examines these
fields to identify the receiving socket and then directs the segment to that socket. This
job of delivering the data in a transport-layer segment to the correct socket is called
demultiplexing. The job of gathering data chunks at the source host from different
sockets, encapsulating each data chunk with header information (that will later be
used in demultiplexing) to create segments, and passing the segments to the network
layer is called multiplexing. Note that the transport layer in the middle host in Fig-
ure 3.2 must demultiplex segments arriving from the network layer below to either
process P1 or P2 above; this is done by directing the arriving segment’s data to the
corresponding process’s socket. The transport layer in the middle host must also

3.2 • MULTIPLEXING AND DEMULTIPLEXING 191

https://hemanthrajhemu.github.io

gather outgoing data from these sockets, form transport-layer segments, and pass
these segments down to the network layer. Although we have introduced multiplex-
ing and demultiplexing in the context of the Internet transport protocols, it’s impor-
tant to realize that they are concerns whenever a single protocol at one layer (at the
transport layer or elsewhere) is used by multiple protocols at the next higher layer.

To illustrate the demultiplexing job, recall the household analogy in the previ-
ous section. Each of the kids is identified by his or her name. When Bill receives a
batch of mail from the mail carrier, he performs a demultiplexing operation by
observing to whom the letters are addressed and then hand delivering the mail to his
brothers and sisters. Ann performs a multiplexing operation when she collects let-
ters from her brothers and sisters and gives the collected mail to the mail person.

Now that we understand the roles of transport-layer multiplexing and demulti-
plexing, let us examine how it is actually done in a host. From the discussion above,
we know that transport-layer multiplexing requires (1) that sockets have unique
identifiers, and (2) that each segment have special fields that indicate the socket to
which the segment is to be delivered. These special fields, illustrated in Figure 3.3,
are the source port number field and the destination port number field. (The
UDP and TCP segments have other fields as well, as discussed in the subsequent
sections of this chapter.) Each port number is a 16-bit number, ranging from 0 to
65535. The port numbers ranging from 0 to 1023 are called well-known port num-
bers and are restricted, which means that they are reserved for use by well-known
application protocols such as HTTP (which uses port number 80) and FTP (which
uses port number 21). The list of well-known port numbers is given in RFC 1700
and is updated at http://www.iana.org [RFC 3232]. When we develop a new

192 CHAPTER 3 • TRANSPORT LAYER

Network

Key:

Process Socket

Data link

Physical

Transport

Application

Network

Application

Data link

Physical

Transport

Network

Data link

Physical

Transport

P3 P2P1 P4 Application

Figure 3.2 � Transport-layer multiplexing and demultiplexing

https://hemanthrajhemu.github.io

application (such as the simple application developed in Section 2.7), we must
assign the application a port number.

It should now be clear how the transport layer could implement the demultiplex-
ing service: Each socket in the host could be assigned a port number, and when a seg-
ment arrives at the host, the transport layer examines the destination port number in
the segment and directs the segment to the corresponding socket. The segment’s data
then passes through the socket into the attached process. As we’ll see, this is basi-
cally how UDP does it. However, we’ll also see that multiplexing/demultiplexing in
TCP is yet more subtle.

Connectionless Multiplexing and Demultiplexing

Recall from Section 2.7.1 that the Python program running in a host can create a
UDP socket with the line

clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)

When a UDP socket is created in this manner, the transport layer automatically
assigns a port number to the socket. In particular, the transport layer assigns a port
number in the range 1024 to 65535 that is currently not being used by any other UDP
port in the host. Alternatively, we can add a line into our Python program after we
create the socket to associate a specific port number (say, 19157) to this UDP socket
via the socket bind() method:

clientSocket.bind((‘’, 19157))

If the application developer writing the code were implementing the server side of a
“well-known protocol,” then the developer would have to assign the corresponding

3.2 • MULTIPLEXING AND DEMULTIPLEXING 193

Source port #

32 bits

Dest. port #

Other header fields

Application
data

(message)

Figure 3.3 � Source and destination port-number fields in a transport-layer
segment

https://hemanthrajhemu.github.io

well-known port number. Typically, the client side of the application lets the trans-
port layer automatically (and transparently) assign the port number, whereas the
server side of the application assigns a specific port number.

With port numbers assigned to UDP sockets, we can now precisely describe
UDP multiplexing/demultiplexing. Suppose a process in Host A, with UDP port
19157, wants to send a chunk of application data to a process with UDP port 46428
in Host B. The transport layer in Host A creates a transport-layer segment that
includes the application data, the source port number (19157), the destination port
number (46428), and two other values (which will be discussed later, but are unim-
portant for the current discussion). The transport layer then passes the resulting seg-
ment to the network layer. The network layer encapsulates the segment in an IP
datagram and makes a best-effort attempt to deliver the segment to the receiving host.
If the segment arrives at the receiving Host B, the transport layer at the receiving
host examines the destination port number in the segment (46428) and delivers the
segment to its socket identified by port 46428. Note that Host B could be running
multiple processes, each with its own UDP socket and associated port number. As
UDP segments arrive from the network, Host B directs (demultiplexes) each segment
to the appropriate socket by examining the segment’s destination port number.

It is important to note that a UDP socket is fully identified by a two-tuple consist-
ing of a destination IP address and a destination port number. As a consequence, if two
UDP segments have different source IP addresses and/or source port numbers, but have
the same destination IP address and destination port number, then the two segments
will be directed to the same destination process via the same destination socket.

You may be wondering now, what is the purpose of the source port number? As
shown in Figure 3.4, in the A-to-B segment the source port number serves as part of
a “return address”—when B wants to send a segment back to A, the destination port
in the B-to-A segment will take its value from the source port value of the A-to-B
segment. (The complete return address is A’s IP address and the source port num-
ber.) As an example, recall the UDP server program studied in Section 2.7. In
UDPServer.py, the server uses the recvfrom() method to extract the client-
side (source) port number from the segment it receives from the client; it then sends
a new segment to the client, with the extracted source port number serving as the
destination port number in this new segment.

Connection-Oriented Multiplexing and Demultiplexing

In order to understand TCP demultiplexing, we have to take a close look at TCP
sockets and TCP connection establishment. One subtle difference between a TCP
socket and a UDP socket is that a TCP socket is identified by a four-tuple: (source
IP address, source port number, destination IP address, destination port number).
Thus, when a TCP segment arrives from the network to a host, the host uses all four
values to direct (demultiplex) the segment to the appropriate socket. In particular,
and in contrast with UDP, two arriving TCP segments with different source IP

194 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

addresses or source port numbers will (with the exception of a TCP segment carry-
ing the original connection-establishment request) be directed to two different sock-
ets. To gain further insight, let’s reconsider the TCP client-server programming
example in Section 2.7.2:

• The TCP server application has a “welcoming socket,” that waits for connection-
establishment requests from TCP clients (see Figure 2.29) on port number 12000.

• The TCP client creates a socket and sends a connection establishment request
segment with the lines:

clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,12000))

• A connection-establishment request is nothing more than a TCP segment with desti-
nation port number 12000 and a special connection-establishment bit set in the TCP
header (discussed in Section 3.5). The segment also includes a source port number
that was chosen by the client.

• When the host operating system of the computer running the server process
receives the incoming connection-request segment with destination port 12000,
it locates the server process that is waiting to accept a connection on port num-
ber 12000. The server process then creates a new socket:

connectionSocket, addr = serverSocket.accept()

3.2 • MULTIPLEXING AND DEMULTIPLEXING 195

Host A

Client process

Socket
Server B

source port:
19157

dest. port:
46428

source port:
46428

dest. port:
19157

Figure 3.4 � The inversion of source and destination port numbers

https://hemanthrajhemu.github.io

• Also, the transport layer at the server notes the following four values in the con-
nection-request segment: (1) the source port number in the segment, (2) the IP
address of the source host, (3) the destination port number in the segment, and
(4) its own IP address. The newly created connection socket is identified by these
four values; all subsequently arriving segments whose source port, source IP
address, destination port, and destination IP address match these four values will
be demultiplexed to this socket. With the TCP connection now in place, the client
and server can now send data to each other.

The server host may support many simultaneous TCP connection sockets, with
each socket attached to a process, and with each socket identified by its own four-
tuple. When a TCP segment arrives at the host, all four fields (source IP address,
source port, destination IP address, destination port) are used to direct (demultiplex)
the segment to the appropriate socket.

196 CHAPTER 3 • TRANSPORT LAYER

PORT SCANNING

We’ve seen that a server process waits patiently on an open port for contact by a
remote client. Some ports are reserved for well-known applications (e.g., Web, FTP,
DNS, and SMTP servers); other ports are used by convention by popular applications
(e.g., the Microsoft 2000 SQL server listens for requests on UDP port 1434). Thus, if
we determine that a port is open on a host, we may be able to map that port to a
specific application running on the host. This is very useful for system administrators,
who are often interested in knowing which network applications are running on the
hosts in their networks. But attackers, in order to “case the joint,” also want to know
which ports are open on target hosts. If a host is found to be running an application
with a known security flaw (e.g., a SQL server listening on port 1434 was subject to
a buffer overflow, allowing a remote user to execute arbitrary code on the vulnerable
host, a flaw exploited by the Slammer worm [CERT 2003–04]), then that host is ripe
for attack.

Determining which applications are listening on which ports is a relatively easy
task. Indeed there are a number of public domain programs, called port scanners,
that do just that. Perhaps the most widely used of these is nmap, freely available at
http://nmap.org and included in most Linux distributions. For TCP, nmap sequentially
scans ports, looking for ports that are accepting TCP connections. For UDP, nmap
again sequentially scans ports, looking for UDP ports that respond to transmitted
UDP segments. In both cases, nmap returns a list of open, closed, or unreachable
ports. A host running nmap can attempt to scan any target host anywhere in the
Internet. We’ll revisit nmap in Section 3.5.6, when we discuss TCP connection
management.

FOCUS ON SECURITY

https://hemanthrajhemu.github.io

The situation is illustrated in Figure 3.5, in which Host C initiates two HTTP ses-
sions to server B, and Host A initiates one HTTP session to B. Hosts A and C and server
B each have their own unique IP address—A, C, and B, respectively. Host C assigns
two different source port numbers (26145 and 7532) to its two HTTP connections.
Because Host A is choosing source port numbers independently of C, it might also
assign a source port of 26145 to its HTTP connection. But this is not a problem—server
B will still be able to correctly demultiplex the two connections having the same source
port number, since the two connections have different source IP addresses.

Web Servers and TCP

Before closing this discussion, it’s instructive to say a few additional words about
Web servers and how they use port numbers. Consider a host running a Web server,
such as an Apache Web server, on port 80. When clients (for example, browsers)
send segments to the server, all segments will have destination port 80. In particu-
lar, both the initial connection-establishment segments and the segments carrying
HTTP request messages will have destination port 80. As we have just described,

3.2 • MULTIPLEXING AND DEMULTIPLEXING 197

source port:
7532

dest. port:
80

source IP:
C

dest. IP:
B

source port:
26145

dest. port:
80

source IP:
C

dest. IP:
B

source port:
26145

dest. port:
80

source IP:
A

dest. IP:
B

Per-connection
HTTP
processes

Transport-
layer
demultiplexing

Web
server B

Web client
host C

Web client
host A

Figure 3.5 � Two clients, using the same destination port number (80) to
communicate with the same Web server application

https://hemanthrajhemu.github.io

the server distinguishes the segments from the different clients using source IP
addresses and source port numbers.

Figure 3.5 shows a Web server that spawns a new process for each connection.
As shown in Figure 3.5, each of these processes has its own connection socket
through which HTTP requests arrive and HTTP responses are sent. We mention,
however, that there is not always a one-to-one correspondence between connection
sockets and processes. In fact, today’s high-performing Web servers often use only
one process, and create a new thread with a new connection socket for each new
client connection. (A thread can be viewed as a lightweight subprocess.) If you did
the first programming assignment in Chapter 2, you built a Web server that does just
this. For such a server, at any given time there may be many connection sockets
(with different identifiers) attached to the same process.

If the client and server are using persistent HTTP, then throughout the duration
of the persistent connection the client and server exchange HTTP messages via the
same server socket. However, if the client and server use non-persistent HTTP, then
a new TCP connection is created and closed for every request/response, and hence
a new socket is created and later closed for every request/response. This frequent
creating and closing of sockets can severely impact the performance of a busy Web
server (although a number of operating system tricks can be used to mitigate
the problem). Readers interested in the operating system issues surrounding per-
sistent and non-persistent HTTP are encouraged to see [Nielsen 1997; Nahum
2002].

Now that we’ve discussed transport-layer multiplexing and demultiplexing,
let’s move on and discuss one of the Internet’s transport protocols, UDP. In the next
section we’ll see that UDP adds little more to the network-layer protocol than a mul-
tiplexing/demultiplexing service.

3.3 Connectionless Transport: UDP

In this section, we’ll take a close look at UDP, how it works, and what it does.
We encourage you to refer back to Section 2.1, which includes an overview of
the UDP service model, and to Section 2.7.1, which discusses socket program-
ming using UDP.

To motivate our discussion about UDP, suppose you were interested in design-
ing a no-frills, bare-bones transport protocol. How might you go about doing this?
You might first consider using a vacuous transport protocol. In particular, on the
sending side, you might consider taking the messages from the application process
and passing them directly to the network layer; and on the receiving side, you might
consider taking the messages arriving from the network layer and passing them
directly to the application process. But as we learned in the previous section, we
have to do a little more than nothing! At the very least, the transport layer has to

198 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

provide a multiplexing/demultiplexing service in order to pass data between the
network layer and the correct application-level process.

UDP, defined in [RFC 768], does just about as little as a transport protocol can
do. Aside from the multiplexing/demultiplexing function and some light error
checking, it adds nothing to IP. In fact, if the application developer chooses UDP
instead of TCP, then the application is almost directly talking with IP. UDP takes
messages from the application process, attaches source and destination port number
fields for the multiplexing/demultiplexing service, adds two other small fields, and
passes the resulting segment to the network layer. The network layer encapsulates
the transport-layer segment into an IP datagram and then makes a best-effort attempt
to deliver the segment to the receiving host. If the segment arrives at the receiving
host, UDP uses the destination port number to deliver the segment’s data to the cor-
rect application process. Note that with UDP there is no handshaking between send-
ing and receiving transport-layer entities before sending a segment. For this reason,
UDP is said to be connectionless.

DNS is an example of an application-layer protocol that typically uses UDP.
When the DNS application in a host wants to make a query, it constructs a DNS
query message and passes the message to UDP. Without performing any handshak-
ing with the UDP entity running on the destination end system, the host-side UDP
adds header fields to the message and passes the resulting segment to the network
layer. The network layer encapsulates the UDP segment into a datagram and sends
the datagram to a name server. The DNS application at the querying host then waits
for a reply to its query. If it doesn’t receive a reply (possibly because the underlying
network lost the query or the reply), either it tries sending the query to another name
server, or it informs the invoking application that it can’t get a reply.

Now you might be wondering why an application developer would ever choose
to build an application over UDP rather than over TCP. Isn’t TCP always preferable,
since TCP provides a reliable data transfer service, while UDP does not? The answer
is no, as many applications are better suited for UDP for the following reasons:

• Finer application-level control over what data is sent, and when. Under UDP, as
soon as an application process passes data to UDP, UDP will package the data
inside a UDP segment and immediately pass the segment to the network layer.
TCP, on the other hand, has a congestion-control mechanism that throttles the
transport-layer TCP sender when one or more links between the source and des-
tination hosts become excessively congested. TCP will also continue to resend a
segment until the receipt of the segment has been acknowledged by the destina-
tion, regardless of how long reliable delivery takes. Since real-time applications
often require a minimum sending rate, do not want to overly delay segment
transmission, and can tolerate some data loss, TCP’s service model is not partic-
ularly well matched to these applications’ needs. As discussed below, these appli-
cations can use UDP and implement, as part of the application, any additional
functionality that is needed beyond UDP’s no-frills segment-delivery service.

3.3 • CONNECTIONLESS TRANSPORT: UDP 199

https://hemanthrajhemu.github.io

• No connection establishment. As we’ll discuss later, TCP uses a three-way hand-
shake before it starts to transfer data. UDP just blasts away without any formal pre-
liminaries. Thus UDP does not introduce any delay to establish a connection. This
is probably the principal reason why DNS runs over UDP rather than TCP—DNS
would be much slower if it ran over TCP. HTTP uses TCP rather than UDP, since
reliability is critical for Web pages with text. But, as we briefly discussed in Sec-
tion 2.2, the TCP connection-establishment delay in HTTP is an important contrib-
utor to the delays associated with downloading Web documents.

• No connection state. TCP maintains connection state in the end systems. This
connection state includes receive and send buffers, congestion-control parame-
ters, and sequence and acknowledgment number parameters. We will see in Sec-
tion 3.5 that this state information is needed to implement TCP’s reliable data
transfer service and to provide congestion control. UDP, on the other hand, does
not maintain connection state and does not track any of these parameters. For this
reason, a server devoted to a particular application can typically support many
more active clients when the application runs over UDP rather than TCP.

• Small packet header overhead. The TCP segment has 20 bytes of header over-
head in every segment, whereas UDP has only 8 bytes of overhead.

Figure 3.6 lists popular Internet applications and the transport protocols that they
use. As we expect, e-mail, remote terminal access, the Web, and file transfer run over
TCP—all these applications need the reliable data transfer service of TCP. Neverthe-
less, many important applications run over UDP rather than TCP. UDP is used for RIP
routing table updates (see Section 4.6.1). Since RIP updates are sent periodically (typi-
cally every five minutes), lost updates will be replaced by more recent updates, thus
making the lost, out-of-date update useless. UDP is also used to carry network manage-
ment (SNMP; see Chapter 9) data. UDP is preferred to TCP in this case, since network
management applications must often run when the network is in a stressed state—pre-
cisely when reliable, congestion-controlled data transfer is difficult to achieve. Also,
as we mentioned earlier, DNS runs over UDP, thereby avoiding TCP’s connection-
establishment delays.

As shown in Figure 3.6, both UDP and TCP are used today with multimedia
applications, such as Internet phone, real-time video conferencing, and streaming of
stored audio and video. We’ll take a close look at these applications in Chapter 7. We
just mention now that all of these applications can tolerate a small amount of packet
loss, so that reliable data transfer is not absolutely critical for the application’s suc-
cess. Furthermore, real-time applications, like Internet phone and video conferenc-
ing, react very poorly to TCP’s congestion control. For these reasons, developers of
multimedia applications may choose to run their applications over UDP instead of
TCP. However, TCP is increasingly being used for streaming media transport. For
example, [Sripanidkulchai 2004] found that nearly 75% of on-demand and live
streaming used TCP. When packet loss rates are low, and with some organizations

200 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

blocking UDP traffic for security reasons (see Chapter 8), TCP becomes an increas-
ingly attractive protocol for streaming media transport.

Although commonly done today, running multimedia applications over UDP is
controversial. As we mentioned above, UDP has no congestion control. But conges-
tion control is needed to prevent the network from entering a congested state in
which very little useful work is done. If everyone were to start streaming high-bit-
rate video without using any congestion control, there would be so much packet
overflow at routers that very few UDP packets would successfully traverse the
source-to-destination path. Moreover, the high loss rates induced by the uncon-
trolled UDP senders would cause the TCP senders (which, as we’ll see, do decrease
their sending rates in the face of congestion) to dramatically decrease their rates.
Thus, the lack of congestion control in UDP can result in high loss rates between a
UDP sender and receiver, and the crowding out of TCP sessions—a potentially seri-
ous problem [Floyd 1999]. Many researchers have proposed new mechanisms to
force all sources, including UDP sources, to perform adaptive congestion control
[Mahdavi 1997; Floyd 2000; Kohler 2006: RFC 4340].

Before discussing the UDP segment structure, we mention that it is possible for
an application to have reliable data transfer when using UDP. This can be done if reli-
ability is built into the application itself (for example, by adding acknowledgment
and retransmission mechanisms, such as those we’ll study in the next section). But
this is a nontrivial task that would keep an application developer busy debugging for

3.3 • CONNECTIONLESS TRANSPORT: UDP 201

Application-Layer Underlying Transport
Application Protocol Protocol

Electronic mail SMTP TCP

Remote terminal access Telnet TCP

Web HTTP TCP

File transfer FTP TCP

Remote file server NFS Typically UDP

Streaming multimedia typically proprietary UDP or TCP

Internet telephony typically proprietary UDP or TCP

Network management SNMP Typically UDP

Routing protocol RIP Typically UDP

Name translation DNS Typically UDP

Figure 3.6 � Popular Internet applications and their underlying transport
protocols

https://hemanthrajhemu.github.io

a long time. Nevertheless, building reliability directly into the application allows the
application to “have its cake and eat it too.” That is, application processes can com-
municate reliably without being subjected to the transmission-rate constraints
imposed by TCP’s congestion-control mechanism.

3.3.1 UDP Segment Structure

The UDP segment structure, shown in Figure 3.7, is defined in RFC 768. The applica-
tion data occupies the data field of the UDP segment. For example, for DNS, the data
field contains either a query message or a response message. For a streaming audio
application, audio samples fill the data field. The UDP header has only four fields,
each consisting of two bytes. As discussed in the previous section, the port numbers
allow the destination host to pass the application data to the correct process running
on the destination end system (that is, to perform the demultiplexing function). The
length field specifies the number of bytes in the UDP segment (header plus data). An
explicit length value is needed since the size of the data field may differ from one UDP
segment to the next. The checksum is used by the receiving host to check whether
errors have been introduced into the segment. In truth, the checksum is also calculated
over a few of the fields in the IP header in addition to the UDP segment. But we ignore
this detail in order to see the forest through the trees. We’ll discuss the checksum cal-
culation below. Basic principles of error detection are described in Section 5.2. The
length field specifies the length of the UDP segment, including the header, in bytes.

3.3.2 UDP Checksum

The UDP checksum provides for error detection. That is, the checksum is used to
determine whether bits within the UDP segment have been altered (for example, by
noise in the links or while stored in a router) as it moved from source to destination.
UDP at the sender side performs the 1s complement of the sum of all the 16-bit
words in the segment, with any overflow encountered during the sum being

202 CHAPTER 3 • TRANSPORT LAYER

Source port #

32 bits

Dest. port #

Length Checksum

Application
data

(message)

Figure 3.7 � UDP segment structure

https://hemanthrajhemu.github.io

wrapped around. This result is put in the checksum field of the UDP segment. Here
we give a simple example of the checksum calculation. You can find details about
efficient implementation of the calculation in RFC 1071 and performance over real
data in [Stone 1998; Stone 2000]. As an example, suppose that we have the follow-
ing three 16-bit words:

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is

0110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

Note that this last addition had overflow, which was wrapped around. The 1s com-
plement is obtained by converting all the 0s to 1s and converting all the 1s to 0s.
Thus the 1s complement of the sum 0100101011000010 is 1011010100111101,
which becomes the checksum. At the receiver, all four 16-bit words are added,
including the checksum. If no errors are introduced into the packet, then clearly the
sum at the receiver will be 1111111111111111. If one of the bits is a 0, then we know
that errors have been introduced into the packet.

You may wonder why UDP provides a checksum in the first place, as many link-
layer protocols (including the popular Ethernet protocol) also provide error checking.
The reason is that there is no guarantee that all the links between source and destination
provide error checking; that is, one of the links may use a link-layer protocol that does
not provide error checking. Furthermore, even if segments are correctly transferred
across a link, it’s possible that bit errors could be introduced when a segment is stored
in a router’s memory. Given that neither link-by-link reliability nor in-memory error
detection is guaranteed, UDP must provide error detection at the transport layer, on an
end-end basis, if the end-end data transfer service is to provide error detection. This is
an example of the celebrated end-end principle in system design [Saltzer 1984], which
states that since certain functionality (error detection, in this case) must be implemented
on an end-end basis: “functions placed at the lower levels may be redundant or of little
value when compared to the cost of providing them at the higher level.”

Because IP is supposed to run over just about any layer-2 protocol, it is useful
for the transport layer to provide error checking as a safety measure. Although UDP

3.3 • CONNECTIONLESS TRANSPORT: UDP 203

https://hemanthrajhemu.github.io

provides error checking, it does not do anything to recover from an error. Some
implementations of UDP simply discard the damaged segment; others pass the dam-
aged segment to the application with a warning.

That wraps up our discussion of UDP. We will soon see that TCP offers reliable
data transfer to its applications as well as other services that UDP doesn’t offer. Natu-
rally, TCP is also more complex than UDP. Before discussing TCP, however, it will be
useful to step back and first discuss the underlying principles of reliable data transfer.

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general con-
text. This is appropriate since the problem of implementing reliable data transfer
occurs not only at the transport layer, but also at the link layer and the application
layer as well. The general problem is thus of central importance to networking.
Indeed, if one had to identify a “top-ten” list of fundamentally important problems
in all of networking, this would be a candidate to lead the list. In the next section
we’ll examine TCP and show, in particular, that TCP exploits many of the principles
that we are about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer. The
service abstraction provided to the upper-layer entities is that of a reliable channel
through which data can be transferred. With a reliable channel, no transferred data
bits are corrupted (flipped from 0 to 1, or vice versa) or lost, and all are delivered in
the order in which they were sent. This is precisely the service model offered by
TCP to the Internet applications that invoke it.

It is the responsibility of a reliable data transfer protocol to implement this
service abstraction. This task is made difficult by the fact that the layer below the
reliable data transfer protocol may be unreliable. For example, TCP is a reliable data
transfer protocol that is implemented on top of an unreliable (IP) end-to-end net-
work layer. More generally, the layer beneath the two reliably communicating end
points might consist of a single physical link (as in the case of a link-level data
transfer protocol) or a global internetwork (as in the case of a transport-level proto-
col). For our purposes, however, we can view this lower layer simply as an unreli-
able point-to-point channel.

In this section, we will incrementally develop the sender and receiver sides of a
reliable data transfer protocol, considering increasingly complex models of the under-
lying channel. For example, we’ll consider what protocol mechanisms are needed when
the underlying channel can corrupt bits or lose entire packets. One assumption we’ll
adopt throughout our discussion here is that packets will be delivered in the order in
which they were sent, with some packets possibly being lost; that is, the underlying
channel will not reorder packets. Figure 3.8(b) illustrates the interfaces for our data
transfer protocol. The sending side of the data transfer protocol will be invoked from
above by a call to rdt_send(). It will pass the data to be delivered to the upper layer
at the receiving side. (Here rdt stands for reliable data transfer protocol and _send

204 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

indicates that the sending side of rdt is being called. The first step in developing any
protocol is to choose a good name!) On the receiving side, rdt_rcv() will be called
when a packet arrives from the receiving side of the channel. When the rdt protocol
wants to deliver data to the upper layer, it will do so by calling deliver_data(). In
the following we use the terminology “packet” rather than transport-layer “segment.”
Because the theory developed in this section applies to computer networks in general
and not just to the Internet transport layer, the generic term “packet” is perhaps more
appropriate here.

In this section we consider only the case of unidirectional data transfer, that is,
data transfer from the sending to the receiving side. The case of reliable bidirectional
(that is, full-duplex) data transfer is conceptually no more difficult but considerably
more tedious to explain. Although we consider only unidirectional data transfer, it is
important to note that the sending and receiving sides of our protocol will nonetheless
need to transmit packets in both directions, as indicated in Figure 3.8. We will see
shortly that, in addition to exchanging packets containing the data to be transferred, the

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 205

Reliable channel

Unreliable channel

rdt_send()

udt_send()

Sending
process

Receiver
process

deliver_data

Application
layer

Transport
layer

a. Provided service

Network
layer

Key:

Data Packet

b. Service implementation

Reliable data
transfer protocol

(sending side)

Reliable data
transfer protocol
(receiving side)

rdt_rcv()

Figure 3.8 � Reliable data transfer: Service model and service
implementation

https://hemanthrajhemu.github.io

sending and receiving sides of rdtwill also need to exchange control packets back and
forth. Both the send and receive sides of rdt send packets to the other side by a call to
udt_send() (where udt stands for unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol

We now step through a series of protocols, each one becoming more complex, arriv-
ing at a flawless, reliable data transfer protocol.

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case, in which the underlying channel is completely
reliable. The protocol itself, which we’ll call rdt1.0, is trivial. The finite-state
machine (FSM) definitions for the rdt1.0 sender and receiver are shown in
Figure 3.9. The FSM in Figure 3.9(a) defines the operation of the sender, while the
FSM in Figure 3.9(b) defines the operation of the receiver. It is important to note
that there are separate FSMs for the sender and for the receiver. The sender and
receiver FSMs in Figure 3.9 each have just one state. The arrows in the FSM
description indicate the transition of the protocol from one state to another. (Since
each FSM in Figure 3.9 has just one state, a transition is necessarily from the one
state back to itself; we’ll see more complicated state diagrams shortly.) The event
causing the transition is shown above the horizontal line labeling the transition, and

206 CHAPTER 3 • TRANSPORT LAYER

Wait for
call from

above

a. rdt1.0: sending side

rdt_send(data)

packet=make_pkt(data)
udt_send(packet)

Wait for
call from

below

b. rdt1.0: receiving side

rdt_rcv(packet)

extract(packet,data)
deliver_data(data)

Figure 3.9 � rdt1.0 – A protocol for a completely reliable channel

https://hemanthrajhemu.github.io

the actions taken when the event occurs are shown below the horizontal line. When
no action is taken on an event, or no event occurs and an action is taken, we’ll use
the symbol � below or above the horizontal, respectively, to explicitly denote the
lack of an action or event. The initial state of the FSM is indicated by the dashed
arrow. Although the FSMs in Figure 3.9 have but one state, the FSMs we will see
shortly have multiple states, so it will be important to identify the initial state of
each FSM.

The sending side of rdt simply accepts data from the upper layer via the
rdt_send(data) event, creates a packet containing the data (via the action
make_pkt(data)) and sends the packet into the channel. In practice, the
rdt_send(data) event would result from a procedure call (for example, to
rdt_send()) by the upper-layer application.

On the receiving side, rdt receives a packet from the underlying channel via
the rdt_rcv(packet) event, removes the data from the packet (via the action
extract (packet, data)) and passes the data up to the upper layer (via the
action deliver_data(data)). In practice, the rdt_rcv(packet) event
would result from a procedure call (for example, to rdt_rcv()) from the lower-
layer protocol.

In this simple protocol, there is no difference between a unit of data and a
packet. Also, all packet flow is from the sender to receiver; with a perfectly reliable
channel there is no need for the receiver side to provide any feedback to the sender
since nothing can go wrong! Note that we have also assumed that the receiver is able
to receive data as fast as the sender happens to send data. Thus, there is no need for
the receiver to ask the sender to slow down!

Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a packet
may be corrupted. Such bit errors typically occur in the physical components of a
network as a packet is transmitted, propagates, or is buffered. We’ll continue to
assume for the moment that all transmitted packets are received (although their bits
may be corrupted) in the order in which they were sent.

Before developing a protocol for reliably communicating over such a channel,
first consider how people might deal with such a situation. Consider how you your-
self might dictate a long message over the phone. In a typical scenario, the message
taker might say “OK” after each sentence has been heard, understood, and recorded.
If the message taker hears a garbled sentence, you’re asked to repeat the garbled
sentence. This message-dictation protocol uses both positive acknowledgments
(“OK”) and negative acknowledgments (“Please repeat that.”). These control mes-
sages allow the receiver to let the sender know what has been received correctly, and
what has been received in error and thus requires repeating. In a computer network
setting, reliable data transfer protocols based on such retransmission are known as
ARQ (Automatic Repeat reQuest) protocols.

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 207

https://hemanthrajhemu.github.io

Fundamentally, three additional protocol capabilities are required in ARQ
protocols to handle the presence of bit errors:

• Error detection. First, a mechanism is needed to allow the receiver to detect
when bit errors have occurred. Recall from the previous section that UDP uses
the Internet checksum field for exactly this purpose. In Chapter 5 we’ll exam-
ine error-detection and -correction techniques in greater detail; these tech-
niques allow the receiver to detect and possibly correct packet bit errors. For
now, we need only know that these techniques require that extra bits (beyond
the bits of original data to be transferred) be sent from the sender to the
receiver; these bits will be gathered into the packet checksum field of the
rdt2.0 data packet.

• Receiver feedback. Since the sender and receiver are typically executing on differ-
ent end systems, possibly separated by thousands of miles, the only way for the
sender to learn of the receiver’s view of the world (in this case, whether or not a
packet was received correctly) is for the receiver to provide explicit feedback to the
sender. The positive (ACK) and negative (NAK) acknowledgment replies in the
message-dictation scenario are examples of such feedback. Our rdt2.0 protocol
will similarly send ACK and NAK packets back from the receiver to the sender. In
principle, these packets need only be one bit long; for example, a 0 value could indi-
cate a NAK and a value of 1 could indicate an ACK.

• Retransmission. A packet that is received in error at the receiver will be retrans-
mitted by the sender.

Figure 3.10 shows the FSM representation of rdt2.0, a data transfer protocol
employing error detection, positive acknowledgments, and negative acknowledgments.

The send side of rdt2.0 has two states. In the leftmost state, the send-side proto-
col is waiting for data to be passed down from the upper layer. When the
rdt_send(data) event occurs, the sender will create a packet (sndpkt)
containing the data to be sent, along with a packet checksum (for example, as discussed
in Section 3.3.2 for the case of a UDP segment), and then send the packet via the
udt_send(sndpkt) operation. In the rightmost state, the sender protocol is wait-
ing for an ACK or a NAK packet from the receiver. If an ACK packet is received (the
notation rdt_rcv(rcvpkt) && isACK (rcvpkt) in Figure 3.10 corresponds
to this event), the sender knows that the most recently transmitted packet has been
received correctly and thus the protocol returns to the state of waiting for data from the
upper layer. If a NAK is received, the protocol retransmits the last packet and waits for
an ACK or NAK to be returned by the receiver in response to the retransmitted data
packet. It is important to note that when the sender is in the wait-for-ACK-or-NAK
state, it cannot get more data from the upper layer; that is, the rdt_send() event can
not occur; that will happen only after the sender receives an ACK and leaves this state.
Thus, the sender will not send a new piece of data until it is sure that the receiver has

208 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

correctly received the current packet. Because of this behavior, protocols such as
rdt2.0 are known as stop-and-wait protocols.

The receiver-side FSM for rdt2.0 still has a single state. On packet arrival,
the receiver replies with either an ACK or a NAK, depending on whether or not the
received packet is corrupted. In Figure 3.10, the notation rdt_rcv(rcvpkt) &&
corrupt(rcvpkt) corresponds to the event in which a packet is received and is
found to be in error.

Protocol rdt2.0 may look as if it works but, unfortunately, it has a fatal
flaw. In particular, we haven’t accounted for the possibility that the ACK or NAK
packet could be corrupted! (Before proceeding on, you should think about how this

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 209

Wait for
call from

above

a. rdt2.0: sending side

b. rdt2.0: receiving side

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt=make_pkt(NAK)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

Λ

rdt_send(data)

sndpkt=make_pkt(data,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK)
udt_send(sndpkt)

Wait for
call from

below

Wait for
ACK or

NAK

Figure 3.10 � rdt2.0–A protocol for a channel with bit errors

https://hemanthrajhemu.github.io

problem may be fixed.) Unfortunately, our slight oversight is not as innocuous as it
may seem. Minimally, we will need to add checksum bits to ACK/NAK packets in
order to detect such errors. The more difficult question is how the protocol should
recover from errors in ACK or NAK packets. The difficulty here is that if an ACK
or NAK is corrupted, the sender has no way of knowing whether or not the receiver
has correctly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKs:

• For the first possibility, consider what a human might do in the message-
dictation scenario. If the speaker didn’t understand the “OK” or “Please repeat
that” reply from the receiver, the speaker would probably ask, “What did you
say?” (thus introducing a new type of sender-to-receiver packet to our protocol).
The receiver would then repeat the reply. But what if the speaker’s “What did
you say?” is corrupted? The receiver, having no idea whether the garbled sen-
tence was part of the dictation or a request to repeat the last reply, would proba-
bly then respond with “What did you say?” And then, of course, that response
might be garbled. Clearly, we’re heading down a difficult path.

• A second alternative is to add enough checksum bits to allow the sender not only
to detect, but also to recover from, bit errors. This solves the immediate problem
for a channel that can corrupt packets but not lose them.

• A third approach is for the sender simply to resend the current data packet when
it receives a garbled ACK or NAK packet. This approach, however, introduces
duplicate packets into the sender-to-receiver channel. The fundamental diffi-
culty with duplicate packets is that the receiver doesn’t know whether the ACK
or NAK it last sent was received correctly at the sender. Thus, it cannot know a
priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all existing
data transfer protocols, including TCP) is to add a new field to the data packet and
have the sender number its data packets by putting a sequence number into this
field. The receiver then need only check this sequence number to determine whether
or not the received packet is a retransmission. For this simple case of a stop-and-
wait protocol, a 1-bit sequence number will suffice, since it will allow the receiver
to know whether the sender is resending the previously transmitted packet (the
sequence number of the received packet has the same sequence number as the most
recently received packet) or a new packet (the sequence number changes, moving
“forward” in modulo-2 arithmetic). Since we are currently assuming a channel that
does not lose packets, ACK and NAK packets do not themselves need to indicate
the sequence number of the packet they are acknowledging. The sender knows that
a received ACK or NAK packet (whether garbled or not) was generated in response
to its most recently transmitted data packet.

210 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

Figures 3.11 and 3.12 show the FSM description for rdt2.1, our fixed version
of rdt2.0. The rdt2.1 sender and receiver FSMs each now have twice as many
states as before. This is because the protocol state must now reflect whether the packet
currently being sent (by the sender) or expected (at the receiver) should have a
sequence number of 0 or 1. Note that the actions in those states where a 0-numbered
packet is being sent or expected are mirror images of those where a 1-numbered
packet is being sent or expected; the only differences have to do with the handling of
the sequence number.

Protocol rdt2.1 uses both positive and negative acknowledgments from the
receiver to the sender. When an out-of-order packet is received, the receiver sends a
positive acknowledgment for the packet it has received. When a corrupted packet is
received, the receiver sends a negative acknowledgment. We can accomplish the
same effect as a NAK if, instead of sending a NAK, we send an ACK for the last
correctly received packet. A sender that receives two ACKs for the same packet (that
is, receives duplicate ACKs) knows that the receiver did not correctly receive the
packet following the packet that is being ACKed twice. Our NAK-free reliable data

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 211

Wait for
call 0 from

above

rdt_rcv(rcvpkt)&&
(corrupt(rcvpkt)||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)&&
(corrupt(rcvpkt)||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Λ Λ

rdt_send(data)

sndpkt=make_pkt(0,data,checksum)
udt_send(sndpkt)

rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send(sndpkt)

Wait for
ACK or
NAK 0

Wait for
ACK or
NAK 1

Wait for
call 1 from

above

Figure 3.11 � rdt2.1 sender

https://hemanthrajhemu.github.io

transfer protocol for a channel with bit errors is rdt2.2, shown in Figures 3.13 and
3.14. One subtle change between rtdt2.1 and rdt2.2 is that the receiver must
now include the sequence number of the packet being acknowledged by an ACK
message (this is done by including the ACK,0 or ACK,1 argument in make_pkt()
in the receiver FSM), and the sender must now check the sequence number of the
packet being acknowledged by a received ACK message (this is done by including
the 0 or 1 argument in isACK()in the sender FSM).

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose
packets as well, a not-uncommon event in today’s computer networks (including the
Internet). Two additional concerns must now be addressed by the protocol: how to
detect packet loss and what to do when packet loss occurs. The use of checksum-
ming, sequence numbers, ACK packets, and retransmissions—the techniques
already developed in rdt2.2—will allow us to answer the latter concern. Han-
dling the first concern will require adding a new protocol mechanism.

There are many possible approaches toward dealing with packet loss (several
more of which are explored in the exercises at the end of the chapter). Here, we’ll
put the burden of detecting and recovering from lost packets on the sender. Suppose

212 CHAPTER 3 • TRANSPORT LAYER

rdt_rcv(rcvpkt)&& notcorrupt
(rcvpkt)&&has_seq0(rcvpkt)

sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt=make_pkt(NAK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

sndpkt=make_pkt(NAK,checksum)
udt_send(sndpkt)

sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt)&& notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

Wait for
0 from
below

Wait for
1 from
belowrdt_rcv(rcvpkt)&& notcorrupt

(rcvpkt)&&has_seq1(rcvpkt)

Figure 3.12 � rdt2.1 receiver

https://hemanthrajhemu.github.io

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 213

that the sender transmits a data packet and either that packet, or the receiver’s ACK
of that packet, gets lost. In either case, no reply is forthcoming at the sender from
the receiver. If the sender is willing to wait long enough so that it is certain that a
packet has been lost, it can simply retransmit the data packet. You should convince
yourself that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost?
The sender must clearly wait at least as long as a round-trip delay between the
sender and receiver (which may include buffering at intermediate routers) plus
whatever amount of time is needed to process a packet at the receiver. In many net-
works, this worst-case maximum delay is very difficult even to estimate, much less
know with certainty. Moreover, the protocol should ideally recover from packet
loss as soon as possible; waiting for a worst-case delay could mean a long wait
until error recovery is initiated. The approach thus adopted in practice is for the
sender to judiciously choose a time value such that packet loss is likely, although
not guaranteed, to have happened. If an ACK is not received within this time, the
packet is retransmitted. Note that if a packet experiences a particularly large delay,
the sender may retransmit the packet even though neither the data packet nor its
ACK have been lost. This introduces the possibility of duplicate data packets in

Wait for
call 0 from

above

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,1))

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,0))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

rdt_send(data)

sndpkt=make_pkt(0,data,checksum)
udt_send(sndpkt)

rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send(sndpkt)

Wait for
ACK 0

Wait for
ACK 1

Λ Λ

Wait for
call 1 from

above

Figure 3.13 � rdt2.2 sender

https://hemanthrajhemu.github.io

the sender-to-receiver channel. Happily, protocol rdt2.2 already has enough
functionality (that is, sequence numbers) to handle the case of duplicate packets.

From the sender’s viewpoint, retransmission is a panacea. The sender does not
know whether a data packet was lost, an ACK was lost, or if the packet or ACK was
simply overly delayed. In all cases, the action is the same: retransmit. Implementing
a time-based retransmission mechanism requires a countdown timer that can
interrupt the sender after a given amount of time has expired. The sender will thus
need to be able to (1) start the timer each time a packet (either a first-time packet or
a retransmission) is sent, (2) respond to a timer interrupt (taking appropriate
actions), and (3) stop the timer.

Figure 3.15 shows the sender FSM for rdt3.0, a protocol that reliably transfers
data over a channel that can corrupt or lose packets; in the homework problems, you’ll
be asked to provide the receiver FSM for rdt3.0. Figure 3.16 shows how the proto-
col operates with no lost or delayed packets and how it handles lost data packets. In
Figure 3.16, time moves forward from the top of the diagram toward the bottom of the
diagram; note that a receive time for a packet is necessarily later than the send time
for a packet as a result of transmission and propagation delays. In Figures 3.16(b)–(d),
the send-side brackets indicate the times at which a timer is set and later times out.
Several of the more subtle aspects of this protocol are explored in the exercises at the
end of this chapter. Because packet sequence numbers alternate between 0 and 1, pro-
tocol rdt3.0 is sometimes known as the alternating-bit protocol.

214 CHAPTER 3 • TRANSPORT LAYER

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq0(rcvpkt))

sndpkt=make_pkt(ACK,0,che
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq1(rcvpkt))

sndpkt=make_pkt(ACK,1,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,1,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,0,checksum)
udt_send(sndpkt)

Wait for
1 from
below

Figure 3.14 � rdt2.2 receiver

https://hemanthrajhemu.github.io

We have now assembled the key elements of a data transfer protocol. Check-
sums, sequence numbers, timers, and positive and negative acknowledgment pack-
ets each play a crucial and necessary role in the operation of the protocol. We now
have a working reliable data transfer protocol!

3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt3.0 is a functionally correct protocol, but it is unlikely that anyone would
be happy with its performance, particularly in today’s high-speed networks. At the heart
of rdt3.0’s performance problem is the fact that it is a stop-and-wait protocol.

To appreciate the performance impact of this stop-and-wait behavior, consider
an idealized case of two hosts, one located on the West Coast of the United States
and the other located on the East Coast, as shown in Figure 3.17. The speed-of-light
round-trip propagation delay between these two end systems, RTT, is approxi-
mately 30 milliseconds. Suppose that they are connected by a channel with a trans-
mission rate, R, of 1 Gbps (109 bits per second). With a packet size, L, of 1,000 bytes

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 215

Wait for
call 0 from

above

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,1))

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)

Λrdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

rdt_send(data)

sndpkt=make_pkt(0,data,checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send(sndpkt)
start_timer

Wait for
ACK 0

Wait for
ACK 1

Λ

Λ

Wait for
call 1 from

above

rdt_rcv(rcvpkt)

Λ

Figure 3.15 � rdt3.0 sender

VideoNote
Developing a protocol
and FSM representation
for a simple application-
layer protocol

https://hemanthrajhemu.github.io

216 CHAPTER 3 • TRANSPORT LAYER

rcv pkt0
send ACK0

rcv pkt1
send ACK1

rcv pkt0
send ACK0

Sender Receiver

a. Operation with no loss

pkt0

ACK0

pkt1

pkt0

ACK1

ACK0

(loss) X

b. Lost packet

rcv pkt0
send ACK0

rcv pkt1
send ACK1

c. Lost ACK

send pkt0

rcv ACK0
send pkt1

rcv ACK1
send pkt0

send pkt0

rcv ACK0
send pkt1

timeout
resend pkt1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

rcv pkt1
(detect
duplicate)
send ACK1

send pkt0

rcv ACK0
send pkt1

rcv pkt0
send ACK0

timeout
resend pkt1

rcv pkt1
send ACK1

d. Premature timeout

rcv ACK1
send pkt0

rcv ACK1
do nothing

rcv pkt0
send ACK0

rcv pkt 1
(detect duplicate)
send ACK1

Sender Receiver ReceiverSender

pkt0

ACK0

pkt1

ACK1

ACK1

ACK0

ACK1

ACK0

pkt1

pkt0

pkt0

pkt1

pkt1

pkt0
ACK1

ACK0

X (loss)

pkt1

rcv pkt0
send ACK0

send pkt0

rcv ACK0
send pkt1

timeout
resend pkt1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

rcv pkt1
send ACK1

Sender Receiver

pkt0

ACK0

pkt1

pkt0

ACK1

ACK0

Figure 3.16 � Operation of rdt3.0, the alternating-bit protocol

https://hemanthrajhemu.github.io

(8,000 bits) per packet, including both header fields and data, the time needed to
actually transmit the packet into the 1 Gbps link is

dtrans

Figure 3.18(a) shows that with our stop-and-wait protocol, if the sender begins
sending the packet at t = 0, then at t = L/R = 8 microseconds, the last bit enters the
channel at the sender side. The packet then makes its 15-msec cross-country jour-
ney, with the last bit of the packet emerging at the receiver at t = RTT/2 + L/R =
15.008 msec. Assuming for simplicity that ACK packets are extremely small (so that
we can ignore their transmission time) and that the receiver can send an ACK as
soon as the last bit of a data packet is received, the ACK emerges back at the sender
at t = RTT + L/R = 30.008 msec. At this point, the sender can now transmit the next
message. Thus, in 30.008 msec, the sender was sending for only 0.008 msec. If we
define the utilization of the sender (or the channel) as the fraction of time the sender
is actually busy sending bits into the channel, the analysis in Figure 3.18(a) shows
that the stop-and-wait protocol has a rather dismal sender utilization, Usender, of

That is, the sender was busy only 2.7 hundredths of one percent of the time!
Viewed another way, the sender was able to send only 1,000 bytes in 30.008 mil-
liseconds, an effective throughput of only 267 kbps—even though a 1 Gbps link was
available! Imagine the unhappy network manager who just paid a fortune for a giga-
bit capacity link but manages to get a throughput of only 267 kilobits per second!
This is a graphic example of how network protocols can limit the capabilities

Usender =
L>R

RTT + L>R
=

.008

30.008
= 0.00027

=
L

R
=

8000 bits>packet

109 bits/sec
= 8 microseconds

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 217

Data packetsData packet

ACK packets

a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

Figure 3.17 � Stop-and-wait versus pipelined protocol

https://hemanthrajhemu.github.io

provided by the underlying network hardware. Also, we have neglected lower-layer
protocol-processing times at the sender and receiver, as well as the processing and
queuing delays that would occur at any intermediate routers between the sender
and receiver. Including these effects would serve only to further increase the delay
and further accentuate the poor performance.

The solution to this particular performance problem is simple: Rather than oper-
ate in a stop-and-wait manner, the sender is allowed to send multiple packets with-
out waiting for acknowledgments, as illustrated in Figure 3.17(b). Figure 3.18(b)
shows that if the sender is allowed to transmit three packets before having to wait
for acknowledgments, the utilization of the sender is essentially tripled. Since the
many in-transit sender-to-receiver packets can be visualized as filling a pipeline, this
technique is known as pipelining. Pipelining has the following consequences for
reliable data transfer protocols:

• The range of sequence numbers must be increased, since each in-transit packet
(not counting retransmissions) must have a unique sequence number and there
may be multiple, in-transit, unacknowledged packets.

• The sender and receiver sides of the protocols may have to buffer more than one
packet. Minimally, the sender will have to buffer packets that have been trans-
mitted but not yet acknowledged. Buffering of correctly received packets may
also be needed at the receiver, as discussed below.

• The range of sequence numbers needed and the buffering requirements will
depend on the manner in which a data transfer protocol responds to lost, cor-
rupted, and overly delayed packets. Two basic approaches toward pipelined error
recovery can be identified: Go-Back-N and selective repeat.

3.4.3 Go-Back-N (GBN)

In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets
(when available) without waiting for an acknowledgment, but is constrained to have no
more than some maximum allowable number, N, of unacknowledged packets in the
pipeline. We describe the GBN protocol in some detail in this section. But before read-
ing on, you are encouraged to play with the GBN applet (an awesome applet!) at the
companion Web site.

Figure 3.19 shows the sender’s view of the range of sequence numbers in a GBN
protocol. If we define base to be the sequence number of the oldest unacknowledged
packet and nextseqnum to be the smallest unused sequence number (that is, the
sequence number of the next packet to be sent), then four intervals in the range of
sequence numbers can be identified. Sequence numbers in the interval [0,base-1]
correspond to packets that have already been transmitted and acknowledged. The inter-
val [base,nextseqnum-1] corresponds to packets that have been sent but not yet
acknowledged. Sequence numbers in the interval [nextseqnum,base+N-1] can

218 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 219

First bit of first packet
transmitted, t = 0
Last bit of first packet
transmitted, t = L/R

First bit of first packet
transmitted, t = 0
Last bit of first packet
transmitted, t = L/R

ACK arrives, send next packet,
t = RTT + L/R

a. Stop-and-wait operation

Sender Receiver

RTT
First bit of first packet arrives

Last bit of first packet arrives, send ACK

First bit of first packet arrives

Last bit of first packet arrives, send ACK

ACK arrives, send next packet,
t = RTT + L/R

b. Pipelined operation

Sender Receiver

RTT

Last bit of 2nd packet arrives, send ACK

Last bit of 3rd packet arrives, send ACK

Figure 3.18 � Stop-and-wait and pipelined sending

https://hemanthrajhemu.github.io

be used for packets that can be sent immediately, should data arrive from the upper
layer. Finally, sequence numbers greater than or equal to base+N cannot be used until
an unacknowledged packet currently in the pipeline (specifically, the packet with
sequence number base) has been acknowledged.

As suggested by Figure 3.19, the range of permissible sequence numbers for
transmitted but not yet acknowledged packets can be viewed as a window of size N
over the range of sequence numbers. As the protocol operates, this window slides
forward over the sequence number space. For this reason, N is often referred to as
the window size and the GBN protocol itself as a sliding-window protocol. You
might be wondering why we would even limit the number of outstanding, unac-
knowledged packets to a value of N in the first place. Why not allow an unlimited
number of such packets? We’ll see in Section 3.5 that flow control is one reason to
impose a limit on the sender. We’ll examine another reason to do so in Section 3.7,
when we study TCP congestion control.

In practice, a packet’s sequence number is carried in a fixed-length field in the
packet header. If k is the number of bits in the packet sequence number field, the range
of sequence numbers is thus [0,2k – 1]. With a finite range of sequence numbers, all
arithmetic involving sequence numbers must then be done using modulo 2k arithmetic.
(That is, the sequence number space can be thought of as a ring of size 2k, where
sequence number 2k– 1 is immediately followed by sequence number 0.) Recall that
rdt3.0 had a 1-bit sequence number and a range of sequence numbers of [0,1]. Sev-
eral of the problems at the end of this chapter explore the consequences of a finite range
of sequence numbers. We will see in Section 3.5 that TCP has a 32-bit sequence number
field, where TCP sequence numbers count bytes in the byte stream rather than packets.

Figures 3.20 and 3.21 give an extended FSM description of the sender and
receiver sides of an ACK-based, NAK-free, GBN protocol. We refer to this FSM
description as an extended FSM because we have added variables (similar to pro-
gramming-language variables) for base and nextseqnum, and added operations
on these variables and conditional actions involving these variables. Note that the
extended FSM specification is now beginning to look somewhat like a programming-
language specification. [Bochman 1984] provides an excellent survey of additional
extensions to FSM techniques as well as other programming-language-based tech-
niques for specifying protocols.

220 CHAPTER 3 • TRANSPORT LAYER

base nextseqnum

Window size
N

Key:

Already
ACK’d

Sent, not
yet ACK’d

Usable,
not yet sent

Not usable

Figure 3.19 � Sender’s view of sequence numbers in Go-Back-N

https://hemanthrajhemu.github.io

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 221

rdt_send(data)

if(nextseqnum<base+N){
 sndpkt[nextseqnum]=make_pkt(nextseqnum,data,checksum)
 udt_send(sndpkt[nextseqnum])
 if(base==nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

Λ

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

base=getacknum(rcvpkt)+1
If(base==nextseqnum)
 stop_timer
else
 start_timer

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Λ

base=1
nextseqnum=1

timeout

start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
...
udt_send(sndpkt[nextseqnum-1])

Wait

Figure 3.20 � Extended FSM description of GBN sender

rdt_rcv(rcvpkt)
 && notcorrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(expectedseqnum,ACK,checksum)
udt_send(sndpkt)
expectedseqnum++

Λ

expectedseqnum=1
sndpkt=make_pkt(0,ACK,checksum)

default

udt_send(sndpkt)
Wait

Figure 3.21 � Extended FSM description of GBN receiver

https://hemanthrajhemu.github.io

The GBN sender must respond to three types of events:

• Invocation from above. When rdt_send() is called from above, the sender
first checks to see if the window is full, that is, whether there are N outstanding,
unacknowledged packets. If the window is not full, a packet is created and sent,
and variables are appropriately updated. If the window is full, the sender simply
returns the data back to the upper layer, an implicit indication that the window is
full. The upper layer would presumably then have to try again later. In a real
implementation, the sender would more likely have either buffered (but not
immediately sent) this data, or would have a synchronization mechanism (for
example, a semaphore or a flag) that would allow the upper layer to call
rdt_send() only when the window is not full.

• Receipt of an ACK. In our GBN protocol, an acknowledgment for a packet with
sequence number n will be taken to be a cumulative acknowledgment, indicat-
ing that all packets with a sequence number up to and including n have been cor-
rectly received at the receiver. We’ll come back to this issue shortly when we
examine the receiver side of GBN.

• A timeout event. The protocol’s name, “Go-Back-N,” is derived from the sender’s
behavior in the presence of lost or overly delayed packets. As in the stop-and-wait
protocol, a timer will again be used to recover from lost data or acknowledgment
packets. If a timeout occurs, the sender resends all packets that have been previ-
ously sent but that have not yet been acknowledged. Our sender in Figure 3.20 uses
only a single timer, which can be thought of as a timer for the oldest transmitted but
not yet acknowledged packet. If an ACK is received but there are still additional
transmitted but not yet acknowledged packets, the timer is restarted. If there are no
outstanding, unacknowledged packets, the timer is stopped.

The receiver’s actions in GBN are also simple. If a packet with sequence num-
ber n is received correctly and is in order (that is, the data last delivered to the upper
layer came from a packet with sequence number n – 1), the receiver sends an ACK
for packet n and delivers the data portion of the packet to the upper layer. In all other
cases, the receiver discards the packet and resends an ACK for the most recently
received in-order packet. Note that since packets are delivered one at a time to the
upper layer, if packet k has been received and delivered, then all packets with a
sequence number lower than k have also been delivered. Thus, the use of cumula-
tive acknowledgments is a natural choice for GBN.

In our GBN protocol, the receiver discards out-of-order packets. Although it
may seem silly and wasteful to discard a correctly received (but out-of-order)
packet, there is some justification for doing so. Recall that the receiver must deliver
data in order to the upper layer. Suppose now that packet n is expected, but packet
n + 1 arrives. Because data must be delivered in order, the receiver could buffer
(save) packet n + 1 and then deliver this packet to the upper layer after it had later

222 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

received and delivered packet n. However, if packet n is lost, both it and packet
n + 1 will eventually be retransmitted as a result of the GBN retransmission rule at
the sender. Thus, the receiver can simply discard packet n + 1. The advantage of this
approach is the simplicity of receiver buffering—the receiver need not buffer any
out-of-order packets. Thus, while the sender must maintain the upper and lower
bounds of its window and the position of nextseqnum within this window, the
only piece of information the receiver need maintain is the sequence number of the
next in-order packet. This value is held in the variable expectedseqnum, shown
in the receiver FSM in Figure 3.21. Of course, the disadvantage of throwing away a
correctly received packet is that the subsequent retransmission of that packet might
be lost or garbled and thus even more retransmissions would be required.

Figure 3.22 shows the operation of the GBN protocol for the case of a window
size of four packets. Because of this window size limitation, the sender sends pack-
ets 0 through 3 but then must wait for one or more of these packets to be acknowl-
edged before proceeding. As each successive ACK (for example, ACK0 and ACK1)
is received, the window slides forward and the sender can transmit one new packet
(pkt4 and pkt5, respectively). On the receiver side, packet 2 is lost and thus packets
3, 4, and 5 are found to be out of order and are discarded.

Before closing our discussion of GBN, it is worth noting that an implementa-
tion of this protocol in a protocol stack would likely have a structure similar to that
of the extended FSM in Figure 3.20. The implementation would also likely be in the
form of various procedures that implement the actions to be taken in response to the
various events that can occur. In such event-based programming, the various pro-
cedures are called (invoked) either by other procedures in the protocol stack, or as
the result of an interrupt. In the sender, these events would be (1) a call from the
upper-layer entity to invoke rdt_send(), (2) a timer interrupt, and (3) a call from
the lower layer to invoke rdt_rcv() when a packet arrives. The programming
exercises at the end of this chapter will give you a chance to actually implement
these routines in a simulated, but realistic, network setting.

We note here that the GBN protocol incorporates almost all of the techniques
that we will encounter when we study the reliable data transfer components of TCP
in Section 3.5. These techniques include the use of sequence numbers, cumulative
acknowledgments, checksums, and a timeout/retransmit operation.

3.4.4 Selective Repeat (SR)

The GBN protocol allows the sender to potentially “fill the pipeline” in Figure 3.17
with packets, thus avoiding the channel utilization problems we noted with stop-
and-wait protocols. There are, however, scenarios in which GBN itself suffers from
performance problems. In particular, when the window size and bandwidth-delay
product are both large, many packets can be in the pipeline. A single packet error
can thus cause GBN to retransmit a large number of packets, many unnecessarily.
As the probability of channel errors increases, the pipeline can become filled with

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 223

https://hemanthrajhemu.github.io

these unnecessary retransmissions. Imagine, in our message-dictation scenario, that
if every time a word was garbled, the surrounding 1,000 words (for example, a win-
dow size of 1,000 words) had to be repeated. The dictation would be slowed by all
of the reiterated words.

As the name suggests, selective-repeat protocols avoid unnecessary retransmis-
sions by having the sender retransmit only those packets that it suspects were
received in error (that is, were lost or corrupted) at the receiver. This individual, as-
needed, retransmission will require that the receiver individually acknowledge cor-
rectly received packets. A window size of N will again be used to limit the number

224 CHAPTER 3 • TRANSPORT LAYER

Sender Receiver

 send pkt0

 send pkt1

 send pkt2

send pkt3

 (wait)

 rcv ACK0

send pkt4

 rcv ACK1

send pkt5

send pkt2

send pkt3

send pkt4

send pkt5

pkt2 timeout

rcv pkt0

send ACK0

rcv pkt1

send ACK1

rcv pkt3, discard

send ACK1

rcv pkt4, discard

send ACK1

rcv pkt5, discard

send ACK1

rcv pkt2, deliver

send ACK2

rcv pkt3, deliver

send ACK3

X
(loss)

Figure 3.22 � Go-Back-N in operation

https://hemanthrajhemu.github.io

of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, the
sender will have already received ACKs for some of the packets in the window.
Figure 3.23 shows the SR sender’s view of the sequence number space. Figure 3.24
details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it
is in order. Out-of-order packets are buffered until any missing packets (that is,
packets with lower sequence numbers) are received, at which point a batch of pack-
ets can be delivered in order to the upper layer. Figure 3.25 itemizes the various
actions taken by the SR receiver. Figure 3.26 shows an example of SR operation in
the presence of lost packets. Note that in Figure 3.26, the receiver initially buffers
packets 3, 4, and 5, and delivers them together with packet 2 to the upper layer when
packet 2 is finally received.

It is important to note that in Step 2 in Figure 3.25, the receiver reacknowledges
(rather than ignores) already received packets with certain sequence numbers below
the current window base. You should convince yourself that this reacknowledgment
is indeed needed. Given the sender and receiver sequence number spaces in Figure
3.23, for example, if there is no ACK for packet send_base propagating from the
receiver to the sender, the sender will eventually retransmit packet send_base,
even though it is clear (to us, not the sender!) that the receiver has already received

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 225

send_base nextseqnum

Window size
N

Key:

Key:

Already
ACK’d

Sent, not
yet ACK’d

Usable,
not yet sent

Not usable

Out of order
(buffered) but
already ACK’d

Expected, not
yet received

Acceptable
(within
window)

Not usable

a. Sender view of sequence numbers

b. Receiver view of sequence numbers

rcv_base

Window size
N

Figure 3.23 � Selective-repeat (SR) sender and receiver views of
sequence-number space

https://hemanthrajhemu.github.io

that packet. If the receiver were not to acknowledge this packet, the sender’s win-
dow would never move forward! This example illustrates an important aspect of SR
protocols (and many other protocols as well). The sender and receiver will not
always have an identical view of what has been received correctly and what has not.
For SR protocols, this means that the sender and receiver windows will not always
coincide.

226 CHAPTER 3 • TRANSPORT LAYER

1. Packet with sequence number in [rcv_base, rcv_base+N-1] is cor-
rectly received. In this case, the received packet falls within the receiver’s win-
dow and a selective ACK packet is returned to the sender. If the packet was not
previously received, it is buffered. If this packet has a sequence number equal to
the base of the receive window (rcv_base in Figure 3.22), then this packet,
and any previously buffered and consecutively numbered (beginning with
rcv_base) packets are delivered to the upper layer. The receive window is
then moved forward by the number of packets delivered to the upper layer. As
an example, consider Figure 3.26. When a packet with a sequence number of
rcv_base=2 is received, it and packets 3, 4, and 5 can be delivered to the
upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1] is cor-
rectly received. In this case, an ACK must be generated, even though this is a
packet that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 3.25 � SR receiver events and actions

1. Data received from above. When data is received from above, the SR sender
checks the next available sequence number for the packet. If the sequence
number is within the sender’s window, the data is packetized and sent; other-
wise it is either buffered or returned to the upper layer for later transmission,
as in GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each
packet must now have its own logical timer, since only a single packet will
be transmitted on timeout. A single hardware timer can be used to mimic the
operation of multiple logical timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that packet as
having been received, provided it is in the window. If the packet’s sequence
number is equal to send_base, the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.

Figure 3.24 � SR sender events and actions

https://hemanthrajhemu.github.io

The lack of synchronization between sender and receiver windows has impor-
tant consequences when we are faced with the reality of a finite range of sequence
numbers. Consider what could happen, for example, with a finite range of four packet
sequence numbers, 0, 1, 2, 3, and a window size of three. Suppose packets 0 through
2 are transmitted and correctly received and acknowledged at the receiver. At this
point, the receiver’s window is over the fourth, fifth, and sixth packets, which have
sequence numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first
scenario, shown in Figure 3.27(a), the ACKs for the first three packets are lost and

pkt0 rcvd, delivered, ACK0 sent

0 1 2 3 4 5 6 7 8 9

pkt1 rcvd, delivered, ACK1 sent

0 1 2 3 4 5 6 7 8 9

pkt3 rcvd, buffered, ACK3 sent

0 1 2 3 4 5 6 7 8 9

pkt4 rcvd, buffered, ACK4 sent

0 1 2 3 4 5 6 7 8 9

pkt5 rcvd; buffered, ACK5 sent

0 1 2 3 4 5 6 7 8 9

pkt2 rcvd, pkt2,pkt3,pkt4,pkt5
delivered, ACK2 sent

0 1 2 3 4 5 6 7 8 9

pkt0 sent

0 1 2 3 4 5 6 7 8 9

pkt1 sent

0 1 2 3 4 5 6 7 8 9

pkt2 sent

0 1 2 3 4 5 6 7 8 9

pkt3 sent, window full

0 1 2 3 4 5 6 7 8 9

ACK0 rcvd, pkt4 sent

0 1 2 3 4 5 6 7 8 9

ACK1 rcvd, pkt5 sent

0 1 2 3 4 5 6 7 8 9

pkt2 TIMEOUT, pkt2
resent

0 1 2 3 4 5 6 7 8 9

ACK3 rcvd, nothing sent

0 1 2 3 4 5 6 7 8 9

X
(loss)

Sender Receiver

Figure 3.26 � SR operation

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 227

https://hemanthrajhemu.github.io

228 CHAPTER 3 • TRANSPORT LAYER

pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2ACK0

ACK1

ACK2x

0 1 2 3 0 1 2

0 1 2 3 0 1 2

Sender window
(after receipt)

a.

b.

Receiver window
(after receipt)

receive packet
with seq number 0

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

pkt3

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2ACK0

ACK1

ACK2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

Sender window
(after receipt)

Receiver window
(after receipt)

receive packet
with seq number 0

0 1 2 3 0 1 2

x

x

x

Figure 3.27 � SR receiver dilemma with too-large windows: A new packet
or a retransmission?

https://hemanthrajhemu.github.io

the sender retransmits these packets. The receiver thus next receives a packet with
sequence number 0—a copy of the first packet sent.

In the second scenario, shown in Figure 3.27(b), the ACKs for the first three
packets are all delivered correctly. The sender thus moves its window forward and
sends the fourth, fifth, and sixth packets, with sequence numbers 3, 0, and 1, respec-
tively. The packet with sequence number 3 is lost, but the packet with sequence
number 0 arrives—a packet containing new data.

Now consider the receiver’s viewpoint in Figure 3.27, which has a figurative
curtain between the sender and the receiver, since the receiver cannot “see” the
actions taken by the sender. All the receiver observes is the sequence of messages it
receives from the channel and sends into the channel. As far as it is concerned, the
two scenarios in Figure 3.27 are identical. There is no way of distinguishing the
retransmission of the first packet from an original transmission of the fifth packet.
Clearly, a window size that is 1 less than the size of the sequence number space
won’t work. But how small must the window size be? A problem at the end of the
chapter asks you to show that the window size must be less than or equal to half the
size of the sequence number space for SR protocols.

At the companion Web site, you will find an applet that animates the operation
of the SR protocol. Try performing the same experiments that you did with the GBN
applet. Do the results agree with what you expect?

This completes our discussion of reliable data transfer protocols. We’ve covered
a lot of ground and introduced numerous mechanisms that together provide for reli-
able data transfer. Table 3.1 summarizes these mechanisms. Now that we have seen all
of these mechanisms in operation and can see the “big picture,” we encourage you to
review this section again to see how these mechanisms were incrementally added to
cover increasingly complex (and realistic) models of the channel connecting the
sender and receiver, or to improve the performance of the protocols.

Let’s conclude our discussion of reliable data transfer protocols by considering
one remaining assumption in our underlying channel model. Recall that we have
assumed that packets cannot be reordered within the channel between the sender and
receiver. This is generally a reasonable assumption when the sender and receiver are
connected by a single physical wire. However, when the “channel” connecting the two
is a network, packet reordering can occur. One manifestation of packet reordering is
that old copies of a packet with a sequence or acknowledgment number of x can
appear, even though neither the sender’s nor the receiver’s window contains x. With
packet reordering, the channel can be thought of as essentially buffering packets and
spontaneously emitting these packets at any point in the future. Because sequence
numbers may be reused, some care must be taken to guard against such duplicate
packets. The approach taken in practice is to ensure that a sequence number is not
reused until the sender is “sure” that any previously sent packets with sequence num-
ber x are no longer in the network. This is done by assuming that a packet cannot
“live” in the network for longer than some fixed maximum amount of time. A maxi-
mum packet lifetime of approximately three minutes is assumed in the TCP extensions

3.4 • PRINCIPLES OF RELIABLE DATA TRANSFER 229

https://hemanthrajhemu.github.io

230 CHAPTER 3 • TRANSPORT LAYER

Table 3.1 � Summary of reliable data transfer mechanisms and their use

Mechanism Use, Comments

Checksum Used to detect bit errors in a transmitted packet.

Timer Used to timeout/retransmit a packet, possibly because the packet (or its ACK) was
lost within the channel. Because timeouts can occur when a packet is delayed but
not lost (premature timeout), or when a packet has been received by the receiver
but the receiver-to-sender ACK has been lost, duplicate copies of a packet may be
received by a receiver.

Sequence number Used for sequential numbering of packets of data flowing from sender to receiver.
Gaps in the sequence numbers of received packets allow the receiver to detect a
lost packet. Packets with duplicate sequence numbers allow the receiver to detect
duplicate copies of a packet.

Acknowledgment Used by the receiver to tell the sender that a packet or set of packets has been
received correctly. Acknowledgments will typically carry the sequence number of the
packet or packets being acknowledged. Acknowledgments may be individual or
cumulative, depending on the protocol.

Negative acknowledgment Used by the receiver to tell the sender that a packet has not been received correct-
ly. Negative acknowledgments will typically carry the sequence number of the pack-
et that was not received correctly.

Window, pipelining The sender may be restricted to sending only packets with sequence numbers that
fall within a given range. By allowing multiple packets to be transmitted but not yet
acknowledged, sender utilization can be increased over a stop-and-wait mode of
operation. We’ll see shortly that the window size may be set on the basis of the
receiver’s ability to receive and buffer messages, or the level of congestion in the
network, or both.

for high-speed networks [RFC 1323]. [Sunshine 1978] describes a method for using
sequence numbers such that reordering problems can be completely avoided.

3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer, let’s
turn to TCP—the Internet’s transport-layer, connection-oriented, reliable transport
protocol. In this section, we’ll see that in order to provide reliable data transfer, TCP
relies on many of the underlying principles discussed in the previous section,
including error detection, retransmissions, cumulative acknowledgments, timers,

https://hemanthrajhemu.github.io

and header fields for sequence and acknowledgment numbers. TCP is defined in
RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581.

3.5.1 The TCP Connection

TCP is said to be connection-oriented because before one application process can
begin to send data to another, the two processes must first “handshake” with each
other—that is, they must send some preliminary segments to each other to establish the
parameters of the ensuing data transfer. As part of TCP connection establishment, both
sides of the connection will initialize many TCP state variables (many of which will be
discussed in this section and in Section 3.7) associated with the TCP connection.

The TCP “connection” is not an end-to-end TDM or FDM circuit as in a circuit-
switched network. Nor is it a virtual circuit (see Chapter 1), as the connection state
resides entirely in the two end systems. Because the TCP protocol runs only in the
end systems and not in the intermediate network elements (routers and link-layer
switches), the intermediate network elements do not maintain TCP connection state.

VINTON CERF, ROBERT KAHN, AND TCP/IP

In the early 1970s, packet-switched networks began to proliferate, with the
ARPAnet—the precursor of the Internet—being just one of many networks. Each of
these networks had its own protocol. Two researchers, Vinton Cerf and Robert Kahn,
recognized the importance of interconnecting these networks and invented a cross-
network protocol called TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol. Although Cerf and Kahn began by seeing the protocol as
a single entity, it was later split into its two parts, TCP and IP, which operated sepa-
rately. Cerf and Kahn published a paper on TCP/IP in May 1974 in IEEE
Transactions on Communications Technology [Cerf 1974].

The TCP/IP protocol, which is the bread and butter of today’s Internet, was devised
before PCs, workstations, smartphones, and tablets, before the proliferation of Ethernet,
cable, and DSL, WiFi, and other access network technologies, and before the Web,
social media, and streaming video. Cerf and Kahn saw the need for a networking pro-
tocol that, on the one hand, provides broad support for yet-to-be-defined applications
and, on the other hand, allows arbitrary hosts and link-layer protocols to interoperate.

In 2004, Cerf and Kahn received the ACM’s Turing Award, considered the
“Nobel Prize of Computing” for “pioneering work on internetworking, including the
design and implementation of the Internet’s basic communications protocols, TCP/IP,
and for inspired leadership in networking.”

CASE HISTORY

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 231

https://hemanthrajhemu.github.io

232 CHAPTER 3 • TRANSPORT LAYER

In fact, the intermediate routers are completely oblivious to TCP connections; they
see datagrams, not connections.

A TCP connection provides a full-duplex service: If there is a TCP connection
between Process A on one host and Process B on another host, then application-
layer data can flow from Process A to Process B at the same time as application-
layer data flows from Process B to Process A. A TCP connection is also always
point-to-point, that is, between a single sender and a single receiver. So-called
“multicasting” (see Section 4.7)—the transfer of data from one sender to many
receivers in a single send operation—is not possible with TCP. With TCP, two hosts
are company and three are a crowd!

Let’s now take a look at how a TCP connection is established. Suppose a
process running in one host wants to initiate a connection with another process in
another host. Recall that the process that is initiating the connection is called the
client process, while the other process is called the server process. The client appli-
cation process first informs the client transport layer that it wants to establish a
connection to a process in the server. Recall from Section 2.7.2, a Python client pro-
gram does this by issuing the command

clientSocket.connect((serverName,serverPort))

where serverName is the name of the server and serverPort identifies the
process on the server. TCP in the client then proceeds to establish a TCP connection
with TCP in the server. At the end of this section we discuss in some detail the con-
nection-establishment procedure. For now it suffices to know that the client first sends
a special TCP segment; the server responds with a second special TCP segment; and
finally the client responds again with a third special segment. The first two segments
carry no payload, that is, no application-layer data; the third of these segments may
carry a payload. Because three segments are sent between the two hosts, this connec-
tion-establishment procedure is often referred to as a three-way handshake.

Once a TCP connection is established, the two application processes can send
data to each other. Let’s consider the sending of data from the client process to the
server process. The client process passes a stream of data through the socket (the
door of the process), as described in Section 2.7. Once the data passes through
the door, the data is in the hands of TCP running in the client. As shown in Figure
3.28, TCP directs this data to the connection’s send buffer, which is one of the
buffers that is set aside during the initial three-way handshake. From time to time,
TCP will grab chunks of data from the send buffer and pass the data to the network
layer. Interestingly, the TCP specification [RFC 793] is very laid back about speci-
fying when TCP should actually send buffered data, stating that TCP should “send
that data in segments at its own convenience.” The maximum amount of data that
can be grabbed and placed in a segment is limited by the maximum segment size
(MSS). The MSS is typically set by first determining the length of the largest
link-layer frame that can be sent by the local sending host (the so-called maximum

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 233

transmission unit, MTU), and then setting the MSS to ensure that a TCP segment
(when encapsulated in an IP datagram) plus the TCP/IP header length (typically 40
bytes) will fit into a single link-layer frame. Both Ethernet and PPP link-layer proto-
cols have an MSS of 1,500 bytes. Approaches have also been proposed for discov-
ering the path MTU—the largest link-layer frame that can be sent on all links from
source to destination [RFC 1191]—and setting the MSS based on the path MTU
value. Note that the MSS is the maximum amount of application-layer data in the
segment, not the maximum size of the TCP segment including headers. (This termi-
nology is confusing, but we have to live with it, as it is well entrenched.)

TCP pairs each chunk of client data with a TCP header, thereby forming TCP
segments. The segments are passed down to the network layer, where they are sepa-
rately encapsulated within network-layer IP datagrams. The IP datagrams are then
sent into the network. When TCP receives a segment at the other end, the segment’s
data is placed in the TCP connection’s receive buffer, as shown in Figure 3.28. The
application reads the stream of data from this buffer. Each side of the connection has
its own send buffer and its own receive buffer. (You can see the online flow-control
applet at http://www.awl.com/kurose-ross, which provides an animation of the send
and receive buffers.)

We see from this discussion that a TCP connection consists of buffers, vari-
ables, and a socket connection to a process in one host, and another set of buffers,
variables, and a socket connection to a process in another host. As mentioned ear-
lier, no buffers or variables are allocated to the connection in the network elements
(routers, switches, and repeaters) between the hosts.

3.5.2 TCP Segment Structure

Having taken a brief look at the TCP connection, let’s examine the TCP segment
structure. The TCP segment consists of header fields and a data field. The data
field contains a chunk of application data. As mentioned above, the MSS limits the

Process
writes data

Process
reads data

TCP
send

buffer

Socket

TCP
receive
buffer

Socket

Segment Segment

Figure 3.28 � TCP send and receive buffers

https://hemanthrajhemu.github.io

234 CHAPTER 3 • TRANSPORT LAYER

maximum size of a segment’s data field. When TCP sends a large file, such as an
image as part of a Web page, it typically breaks the file into chunks of size MSS
(except for the last chunk, which will often be less than the MSS). Interactive appli-
cations, however, often transmit data chunks that are smaller than the MSS; for
example, with remote login applications like Telnet, the data field in the TCP seg-
ment is often only one byte. Because the TCP header is typically 20 bytes (12 bytes
more than the UDP header), segments sent by Telnet may be only 21 bytes in length.

Figure 3.29 shows the structure of the TCP segment. As with UDP, the header
includes source and destination port numbers, which are used for
multiplexing/demultiplexing data from/to upper-layer applications. Also, as with
UDP, the header includes a checksum field. A TCP segment header also contains
the following fields:

• The 32-bit sequence number field and the 32-bit acknowledgment number
field are used by the TCP sender and receiver in implementing a reliable data
transfer service, as discussed below.

• The 16-bit receive window field is used for flow control. We will see shortly that
it is used to indicate the number of bytes that a receiver is willing to accept.

• The 4-bit header length field specifies the length of the TCP header in 32-bit
words. The TCP header can be of variable length due to the TCP options field.

Source port #

Internet checksum

Header
length Unused

U
R

G
A

C
K

PS
H

R
ST

SY
N

FI
N

32 bits

Dest port #

Receive window

Urgent data pointer

Sequence number

Acknowledgment number

Options

Data

Figure 3.29 � TCP segment structure

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 235

(Typically, the options field is empty, so that the length of the typical TCP header
is 20 bytes.)

• The optional and variable-length options field is used when a sender and
receiver negotiate the maximum segment size (MSS) or as a window scaling fac-
tor for use in high-speed networks. A time-stamping option is also defined. See
RFC 854 and RFC 1323 for additional details.

• The flag field contains 6 bits. The ACK bit is used to indicate that the value car-
ried in the acknowledgment field is valid; that is, the segment contains an
acknowledgment for a segment that has been successfully received. The RST,
SYN, and FIN bits are used for connection setup and teardown, as we will dis-
cuss at the end of this section. Setting the PSH bit indicates that the receiver
should pass the data to the upper layer immediately. Finally, the URG bit is used
to indicate that there is data in this segment that the sending-side upper-layer
entity has marked as “urgent.” The location of the last byte of this urgent data is
indicated by the 16-bit urgent data pointer field. TCP must inform the receiv-
ing-side upper-layer entity when urgent data exists and pass it a pointer to the
end of the urgent data. (In practice, the PSH, URG, and the urgent data pointer
are not used. However, we mention these fields for completeness.)

Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number
field and the acknowledgment number field. These fields are a critical part of TCP’s
reliable data transfer service. But before discussing how these fields are used to provide
reliable data transfer, let us first explain what exactly TCP puts in these fields.

TCP views data as an unstructured, but ordered, stream of bytes. TCP’s use of
sequence numbers reflects this view in that sequence numbers are over the stream of
transmitted bytes and not over the series of transmitted segments. The sequence
number for a segment is therefore the byte-stream number of the first byte in the
segment. Let’s look at an example. Suppose that a process in Host A wants to send a
stream of data to a process in Host B over a TCP connection. The TCP in Host A will
implicitly number each byte in the data stream. Suppose that the data stream consists
of a file consisting of 500,000 bytes, that the MSS is 1,000 bytes, and that the first
byte of the data stream is numbered 0. As shown in Figure 3.30, TCP constructs 500
segments out of the data stream. The first segment gets assigned sequence number 0,
the second segment gets assigned sequence number 1,000, the third segment gets
assigned sequence number 2,000, and so on. Each sequence number is inserted in the
sequence number field in the header of the appropriate TCP segment.

Now let’s consider acknowledgment numbers. These are a little trickier than
sequence numbers. Recall that TCP is full-duplex, so that Host A may be receiving
data from Host B while it sends data to Host B (as part of the same TCP connection).
Each of the segments that arrive from Host B has a sequence number for the data

https://hemanthrajhemu.github.io

236 CHAPTER 3 • TRANSPORT LAYER

flowing from B to A. The acknowledgment number that Host A puts in its segment
is the sequence number of the next byte Host A is expecting from Host B. It is good
to look at a few examples to understand what is going on here. Suppose that Host A
has received all bytes numbered 0 through 535 from B and suppose that it is about
to send a segment to Host B. Host A is waiting for byte 536 and all the subsequent
bytes in Host B’s data stream. So Host A puts 536 in the acknowledgment number
field of the segment it sends to B.

As another example, suppose that Host A has received one segment from Host
B containing bytes 0 through 535 and another segment containing bytes 900 through
1,000. For some reason Host A has not yet received bytes 536 through 899. In this
example, Host A is still waiting for byte 536 (and beyond) in order to re-create B’s
data stream. Thus, A’s next segment to B will contain 536 in the acknowledgment
number field. Because TCP only acknowledges bytes up to the first missing byte in
the stream, TCP is said to provide cumulative acknowledgments.

This last example also brings up an important but subtle issue. Host A received
the third segment (bytes 900 through 1,000) before receiving the second segment
(bytes 536 through 899). Thus, the third segment arrived out of order. The subtle
issue is: What does a host do when it receives out-of-order segments in a TCP con-
nection? Interestingly, the TCP RFCs do not impose any rules here and leave the
decision up to the people programming a TCP implementation. There are basically
two choices: either (1) the receiver immediately discards out-of-order segments
(which, as we discussed earlier, can simplify receiver design), or (2) the receiver
keeps the out-of-order bytes and waits for the missing bytes to fill in the gaps.
Clearly, the latter choice is more efficient in terms of network bandwidth, and is the
approach taken in practice.

In Figure 3.30, we assumed that the initial sequence number was zero. In truth,
both sides of a TCP connection randomly choose an initial sequence number. This is
done to minimize the possibility that a segment that is still present in the network
from an earlier, already-terminated connection between two hosts is mistaken for a
valid segment in a later connection between these same two hosts (which also hap-
pen to be using the same port numbers as the old connection) [Sunshine 1978].

0 1 1,000 1,999 499,999

File

Data for 1st segment Data for 2nd segment

Figure 3.30 � Dividing file data into TCP segments

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 237

Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in RFC 854, is a popular application-layer protocol used for
remote login. It runs over TCP and is designed to work between any pair of hosts.
Unlike the bulk data transfer applications discussed in Chapter 2, Telnet is an
interactive application. We discuss a Telnet example here, as it nicely illustrates
TCP sequence and acknowledgment numbers. We note that many users now
prefer to use the SSH protocol rather than Telnet, since data sent in a Telnet con-
nection (including passwords!) is not encrypted, making Telnet vulnerable to
eavesdropping attacks (as discussed in Section 8.7).

Suppose Host A initiates a Telnet session with Host B. Because Host A initiates
the session, it is labeled the client, and Host B is labeled the server. Each character
typed by the user (at the client) will be sent to the remote host; the remote host will
send back a copy of each character, which will be displayed on the Telnet user’s
screen. This “echo back” is used to ensure that characters seen by the Telnet user
have already been received and processed at the remote site. Each character thus
traverses the network twice between the time the user hits the key and the time the
character is displayed on the user’s monitor.

Now suppose the user types a single letter, ‘C,’ and then grabs a coffee. Let’s exam-
ine the TCP segments that are sent between the client and server. As shown in Figure
3.31, we suppose the starting sequence numbers are 42 and 79 for the client and server,
respectively. Recall that the sequence number of a segment is the sequence number of
the first byte in the data field. Thus, the first segment sent from the client will have
sequence number 42; the first segment sent from the server will have sequence number
79. Recall that the acknowledgment number is the sequence number of the next byte of
data that the host is waiting for. After the TCP connection is established but before any
data is sent, the client is waiting for byte 79 and the server is waiting for byte 42.

As shown in Figure 3.31, three segments are sent. The first segment is sent from
the client to the server, containing the 1-byte ASCII representation of the letter ‘C’
in its data field. This first segment also has 42 in its sequence number field, as we
just described. Also, because the client has not yet received any data from the server,
this first segment will have 79 in its acknowledgment number field.

The second segment is sent from the server to the client. It serves a dual pur-
pose. First it provides an acknowledgment of the data the server has received. By
putting 43 in the acknowledgment field, the server is telling the client that it has suc-
cessfully received everything up through byte 42 and is now waiting for bytes 43
onward. The second purpose of this segment is to echo back the letter ‘C.’ Thus, the
second segment has the ASCII representation of ‘C’ in its data field. This second
segment has the sequence number 79, the initial sequence number of the server-to-
client data flow of this TCP connection, as this is the very first byte of data that the
server is sending. Note that the acknowledgment for client-to-server data is carried
in a segment carrying server-to-client data; this acknowledgment is said to be
piggybacked on the server-to-client data segment.

https://hemanthrajhemu.github.io

238 CHAPTER 3 • TRANSPORT LAYER

The third segment is sent from the client to the server. Its sole purpose is to
acknowledge the data it has received from the server. (Recall that the second seg-
ment contained data—the letter ‘C’—from the server to the client.) This segment
has an empty data field (that is, the acknowledgment is not being piggybacked with
any client-to-server data). The segment has 80 in the acknowledgment number field
because the client has received the stream of bytes up through byte sequence num-
ber 79 and it is now waiting for bytes 80 onward. You might think it odd that this
segment also has a sequence number since the segment contains no data. But
because TCP has a sequence number field, the segment needs to have some
sequence number.

3.5.3 Round-Trip Time Estimation and Timeout

TCP, like our rdt protocol in Section 3.4, uses a timeout/retransmit mechanism to
recover from lost segments. Although this is conceptually simple, many subtle
issues arise when we implement a timeout/retransmit mechanism in an actual proto-
col such as TCP. Perhaps the most obvious question is the length of the timeout

Time Time

Host A Host B

User types
'C'

Seq=42, ACK=79, data='C'

Seq=
79,

ACK=
43,

data
='C'

Seq=43, ACK=80

Host ACKs
receipt of 'C',
echoes back 'C'

Host ACKs
receipt of
echoed 'C'

Figure 3.31 � Sequence and acknowledgment numbers for a simple
Telnet application over TCP

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 239

intervals. Clearly, the timeout should be larger than the connection’s round-trip time
(RTT), that is, the time from when a segment is sent until it is acknowledged. Other-
wise, unnecessary retransmissions would be sent. But how much larger? How
should the RTT be estimated in the first place? Should a timer be associated with
each and every unacknowledged segment? So many questions! Our discussion in
this section is based on the TCP work in [Jacobson 1988] and the current IETF rec-
ommendations for managing TCP timers [RFC 6298].

Estimating the Round-Trip Time

Let’s begin our study of TCP timer management by considering how TCP estimates
the round-trip time between sender and receiver. This is accomplished as follows.
The sample RTT, denoted SampleRTT, for a segment is the amount of time
between when the segment is sent (that is, passed to IP) and when an acknowledg-
ment for the segment is received. Instead of measuring a SampleRTT for every
transmitted segment, most TCP implementations take only one SampleRTT meas-
urement at a time. That is, at any point in time, the SampleRTT is being estimated
for only one of the transmitted but currently unacknowledged segments, leading to a
new value of SampleRTT approximately once every RTT. Also, TCP never com-
putes a SampleRTT for a segment that has been retransmitted; it only measures
SampleRTT for segments that have been transmitted once [Karn 1987]. (A prob-
lem at the end of the chapter asks you to consider why.)

Obviously, the SampleRTT values will fluctuate from segment to segment due
to congestion in the routers and to the varying load on the end systems. Because of
this fluctuation, any given SampleRTT value may be atypical. In order to estimate
a typical RTT, it is therefore natural to take some sort of average of the Sam-
pleRTT values. TCP maintains an average, called EstimatedRTT, of the Sam-
pleRTT values. Upon obtaining a new SampleRTT, TCP updates
EstimatedRTT according to the following formula:

EstimatedRTT = (1 – �) • EstimatedRTT + � • SampleRTT

The formula above is written in the form of a programming-language statement—
the new value of EstimatedRTT is a weighted combination of the previous value
of EstimatedRTT and the new value for SampleRTT. The recommended value
of � is � = 0.125 (that is, 1/8) [RFC 6298], in which case the formula above
becomes:

EstimatedRTT = 0.875 • EstimatedRTT + 0.125 • SampleRTT

Note that EstimatedRTT is a weighted average of the SampleRTT values.
As discussed in a homework problem at the end of this chapter, this weighted aver-
age puts more weight on recent samples than on old samples. This is natural, as the

https://hemanthrajhemu.github.io

240 CHAPTER 3 • TRANSPORT LAYER

more recent samples better reflect the current congestion in the network. In statis-
tics, such an average is called an exponential weighted moving average (EWMA).
The word “exponential” appears in EWMA because the weight of a given Sam-
pleRTT decays exponentially fast as the updates proceed. In the homework prob-
lems you will be asked to derive the exponential term in EstimatedRTT.

Figure 3.32 shows the SampleRTT values and EstimatedRTT for a value of �
= 1/8 for a TCP connection between gaia.cs.umass.edu (in Amherst, Massachu-
setts) to fantasia.eurecom.fr (in the south of France). Clearly, the variations in
the SampleRTT are smoothed out in the computation of the EstimatedRTT.

In addition to having an estimate of the RTT, it is also valuable to have a
measure of the variability of the RTT. [RFC 6298] defines the RTT variation,
DevRTT, as an estimate of how much SampleRTT typically deviates from
EstimatedRTT:

DevRTT = (1 – �) • DevRTT + �•| SampleRTT – EstimatedRTT |

Note that DevRTT is an EWMA of the difference between SampleRTT and
EstimatedRTT. If the SampleRTT values have little fluctuation, then DevRTT
will be small; on the other hand, if there is a lot of fluctuation, DevRTT will be
large. The recommended value of β is 0.25.

TCP provides reliable data transfer by using positive acknowledgments and timers in much
the same way that we studied in Section 3.4. TCP acknowledges data that has been
received correctly, and it then retransmits segments when segments or their corresponding
acknowledgments are thought to be lost or corrupted. Certain versions of TCP also have an
implicit NAK mechanism—with TCP’s fast retransmit mechanism, the receipt of three dupli-
cate ACKs for a given segment serves as an implicit NAK for the following segment, trig-
gering retransmission of that segment before timeout. TCP uses sequences of numbers to
allow the receiver to identify lost or duplicate segments. Just as in the case of our reliable
data transfer protocol, rdt3.0, TCP cannot itself tell for certain if a segment, or its
ACK, is lost, corrupted, or overly delayed. At the sender, TCP’s response will be the same:
retransmit the segment in question.

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-be-
acknowledged segments outstanding at any given time. We saw earlier that pipelining
can greatly improve a session’s throughput when the ratio of the segment size to round-
trip delay is small. The specific number of outstanding, unacknowledged segments that a
sender can have is determined by TCP’s flow-control and congestion-control mechanisms.
TCP flow control is discussed at the end of this section; TCP congestion control is dis-
cussed in Section 3.7. For the time being, we must simply be aware that the TCP sender
uses pipelining.

PRINCIPLES IN PRACTICE

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 241

Setting and Managing the Retransmission Timeout Interval

Given values of EstimatedRTT and DevRTT, what value should be used for
TCP’s timeout interval? Clearly, the interval should be greater than or equal to
EstimatedRTT, or unnecessary retransmissions would be sent. But the timeout
interval should not be too much larger than EstimatedRTT; otherwise, when a seg-
ment is lost, TCP would not quickly retransmit the segment, leading to large data trans-
fer delays. It is therefore desirable to set the timeout equal to the EstimatedRTT plus
some margin. The margin should be large when there is a lot of fluctuation in the
SampleRTT values; it should be small when there is little fluctuation. The value of
DevRTT should thus come into play here. All of these considerations are taken into
account in TCP’s method for determining the retransmission timeout interval:

TimeoutInterval = EstimatedRTT + 4 • DevRTT

An initial TimeoutInterval value of 1 second is recommended [RFC 6298].
Also, when a timeout occurs, the value of TimeoutInterval is doubled to avoid
a premature timeout occurring for a subsequent segment that will soon be acknowl-
edged. However, as soon as a segment is received and EstimatedRTT is updated,
the TimeoutInterval is again computed using the formula above.

R
TT

 (
m

ill
is

ec
o

n
d

s)

150

200

250

300

350

100
1 8 15 22 29 36 43 50

Time (seconds)

Sample RTT

57 64 71 78 85 92 99 106

Estimated RTT

Figure 3.32 � RTT samples and RTT estimates

https://hemanthrajhemu.github.io

242 CHAPTER 3 • TRANSPORT LAYER

3.5.4 Reliable Data Transfer

Recall that the Internet’s network-layer service (IP service) is unreliable. IP does
not guarantee datagram delivery, does not guarantee in-order delivery of data-
grams, and does not guarantee the integrity of the data in the datagrams. With IP
service, datagrams can overflow router buffers and never reach their destination,
datagrams can arrive out of order, and bits in the datagram can get corrupted
(flipped from 0 to 1 and vice versa). Because transport-layer segments are carried
across the network by IP datagrams, transport-layer segments can suffer from these
problems as well.

TCP creates a reliable data transfer service on top of IP’s unreliable best-
effort service. TCP’s reliable data transfer service ensures that the data stream that a
process reads out of its TCP receive buffer is uncorrupted, without gaps, without
duplication, and in sequence; that is, the byte stream is exactly the same byte stream
that was sent by the end system on the other side of the connection. How TCP pro-
vides a reliable data transfer involves many of the principles that we studied in
Section 3.4.

In our earlier development of reliable data transfer techniques, it was conceptu-
ally easiest to assume that an individual timer is associated with each transmitted
but not yet acknowledged segment. While this is great in theory, timer management
can require considerable overhead. Thus, the recommended TCP timer management
procedures [RFC 6298] use only a single retransmission timer, even if there are mul-
tiple transmitted but not yet acknowledged segments. The TCP protocol described
in this section follows this single-timer recommendation.

We will discuss how TCP provides reliable data transfer in two incremental
steps. We first present a highly simplified description of a TCP sender that uses only
timeouts to recover from lost segments; we then present a more complete descrip-
tion that uses duplicate acknowledgments in addition to timeouts. In the ensuing dis-
cussion, we suppose that data is being sent in only one direction, from Host A to
Host B, and that Host A is sending a large file.

Figure 3.33 presents a highly simplified description of a TCP sender. We see
that there are three major events related to data transmission and retransmission in
the TCP sender: data received from application above; timer timeout; and ACK
receipt. Upon the occurrence of the first major event, TCP receives data from the
application, encapsulates the data in a segment, and passes the segment to IP. Note
that each segment includes a sequence number that is the byte-stream number of
the first data byte in the segment, as described in Section 3.5.2. Also note that if the
timer is already not running for some other segment, TCP starts the timer when the
segment is passed to IP. (It is helpful to think of the timer as being associated with
the oldest unacknowledged segment.) The expiration interval for this timer is the
TimeoutInterval, which is calculated from EstimatedRTT and DevRTT,
as described in Section 3.5.3.

https://hemanthrajhemu.github.io

Figure 3.33 � Simplified TCP sender

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 243

The second major event is the timeout. TCP responds to the timeout event by
retransmitting the segment that caused the timeout. TCP then restarts the timer.

The third major event that must be handled by the TCP sender is the arrival of an
acknowledgment segment (ACK) from the receiver (more specifically, a segment con-
taining a valid ACK field value). On the occurrence of this event, TCP compares the
ACK value y with its variable SendBase. The TCP state variable SendBase is the
sequence number of the oldest unacknowledged byte. (Thus SendBase–1 is the
sequence number of the last byte that is known to have been received correctly and in
order at the receiver.) As indicated earlier, TCP uses cumulative acknowledgments, so
that y acknowledges the receipt of all bytes before byte number y. If y > SendBase,

/* Assume sender is not constrained by TCP flow or congestion control, that data from above is less
than MSS in size, and that data transfer is in one direction only. */

NextSeqNum=InitialSeqNumber
SendBase=InitialSeqNumber

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum=NextSeqNum+length(data)
break;

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer
break;

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase=y
if (there are currently any not-yet-acknowledged segments)

start timer
}

break;

} /* end of loop forever */

https://hemanthrajhemu.github.io

244 CHAPTER 3 • TRANSPORT LAYER

then the ACK is acknowledging one or more previously unacknowledged segments.
Thus the sender updates its SendBase variable; it also restarts the timer if there cur-
rently are any not-yet-acknowledged segments.

A Few Interesting Scenarios

We have just described a highly simplified version of how TCP provides reliable
data transfer. But even this highly simplified version has many subtleties. To get a
good feeling for how this protocol works, let’s now walk through a few simple
scenarios. Figure 3.34 depicts the first scenario, in which Host A sends one seg-
ment to Host B. Suppose that this segment has sequence number 92 and contains 8
bytes of data. After sending this segment, Host A waits for a segment from B with
acknowledgment number 100. Although the segment from A is received at B, the
acknowledgment from B to A gets lost. In this case, the timeout event occurs, and
Host A retransmits the same segment. Of course, when Host B receives the
retransmission, it observes from the sequence number that the segment contains
data that has already been received. Thus, TCP in Host B will discard the bytes in
the retransmitted segment.

Time Time

Host A Host B

Timeout

Seq=92, 8 bytes data

Seq=92, 8 bytes data

ACK=1
00

ACK=1
00

X
(loss)

Figure 3.34 � Retransmission due to a lost acknowledgment

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 245

In a second scenario, shown in Figure 3.35, Host A sends two segments back to
back. The first segment has sequence number 92 and 8 bytes of data, and the second
segment has sequence number 100 and 20 bytes of data. Suppose that both segments
arrive intact at B, and B sends two separate acknowledgments for each of these seg-
ments. The first of these acknowledgments has acknowledgment number 100; the
second has acknowledgment number 120. Suppose now that neither of the acknowl-
edgments arrives at Host A before the timeout. When the timeout event occurs, Host
A resends the first segment with sequence number 92 and restarts the timer. As long
as the ACK for the second segment arrives before the new timeout, the second seg-
ment will not be retransmitted.

In a third and final scenario, suppose Host A sends the two segments, exactly as
in the second example. The acknowledgment of the first segment is lost in the
network, but just before the timeout event, Host A receives an acknowledgment with
acknowledgment number 120. Host A therefore knows that Host B has received
everything up through byte 119; so Host A does not resend either of the two
segments. This scenario is illustrated in Figure 3.36.

Time Time

Host A Host B

seq=92 timeout interval

Seq=92, 8 bytes dataSeq=100, 20 bytes data

AC
K=
10
0

ACK=
120

AC
K=
12
0

seq=92 timeout interval

Seq=92, 8 bytes data

Figure 3.35 � Segment 100 not retransmitted

https://hemanthrajhemu.github.io

246 CHAPTER 3 • TRANSPORT LAYER

Doubling the Timeout Interval

We now discuss a few modifications that most TCP implementations employ. The
first concerns the length of the timeout interval after a timer expiration. In this mod-
ification, whenever the timeout event occurs, TCP retransmits the not-yet-
acknowledged segment with the smallest sequence number, as described above. But
each time TCP retransmits, it sets the next timeout interval to twice the previous
value, rather than deriving it from the last EstimatedRTT and DevRTT (as
described in Section 3.5.3). For example, suppose TimeoutInterval associated
with the oldest not yet acknowledged segment is .75 sec when the timer first expires.
TCP will then retransmit this segment and set the new expiration time to 1.5 sec. If
the timer expires again 1.5 sec later, TCP will again retransmit this segment, now
setting the expiration time to 3.0 sec. Thus the intervals grow exponentially after
each retransmission. However, whenever the timer is started after either of the two
other events (that is, data received from application above, and ACK received), the

Time Time

Host A Host B

Seq=92 timeout interval

Seq=92, 8 bytes data

Seq=100, 20 bytes data

ACK=1
00

ACK=1
20

X
(loss)

Figure 3.36 � A cumulative acknowledgment avoids retransmission of the
first segment

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 247

TimeoutInterval is derived from the most recent values of EstimatedRTT
and DevRTT.

This modification provides a limited form of congestion control. (More com-
prehensive forms of TCP congestion control will be studied in Section 3.7.) The
timer expiration is most likely caused by congestion in the network, that is, too
many packets arriving at one (or more) router queues in the path between the source
and destination, causing packets to be dropped and/or long queuing delays. In times
of congestion, if the sources continue to retransmit packets persistently, the conges-
tion may get worse. Instead, TCP acts more politely, with each sender retransmitting
after longer and longer intervals. We will see that a similar idea is used by Ethernet
when we study CSMA/CD in Chapter 5.

Fast Retransmit

One of the problems with timeout-triggered retransmissions is that the timeout
period can be relatively long. When a segment is lost, this long timeout period
forces the sender to delay resending the lost packet, thereby increasing the end-to-
end delay. Fortunately, the sender can often detect packet loss well before the time-
out event occurs by noting so-called duplicate ACKs. A duplicate ACK is an ACK
that reacknowledges a segment for which the sender has already received an earlier
acknowledgment. To understand the sender’s response to a duplicate ACK, we must
look at why the receiver sends a duplicate ACK in the first place. Table 3.2 summa-
rizes the TCP receiver’s ACK generation policy [RFC 5681]. When a TCP receiver
receives a segment with a sequence number that is larger than the next, expected,
in-order sequence number, it detects a gap in the data stream—that is, a missing seg-
ment. This gap could be the result of lost or reordered segments within the network.

Event TCP Receiver Action

Arrival of in-order segment with expected sequence number. All Delayed ACK. Wait up to 500 msec for arrival of another in-order seg-
data up to expected sequence number already acknowledged. ment. If next in-order segment does not arrive in this interval, send an ACK.

Arrival of in-order segment with expected sequence number. One Immediately send single cumulative ACK, ACKing both in-order segments.
other in-order segment waiting for ACK transmission.

Arrival of out-of-order segment with higher-than-expected sequence Immediately send duplicate ACK, indicating sequence number of next
number. Gap detected. expected byte (which is the lower end of the gap).

Arrival of segment that partially or completely fills in gap in Immediately send ACK, provided that segment starts at the lower end
received data. of gap.

Table 3.2 � TCP ACK Generation Recommendation [RFC 5681]

https://hemanthrajhemu.github.io

248 CHAPTER 3 • TRANSPORT LAYER

Since TCP does not use negative acknowledgments, the receiver cannot send an
explicit negative acknowledgment back to the sender. Instead, it simply reacknowl-
edges (that is, generates a duplicate ACK for) the last in-order byte of data it has
received. (Note that Table 3.2 allows for the case that the receiver does not discard
out-of-order segments.)

Because a sender often sends a large number of segments back to back, if one seg-
ment is lost, there will likely be many back-to-back duplicate ACKs. If the TCP sender
receives three duplicate ACKs for the same data, it takes this as an indication that the
segment following the segment that has been ACKed three times has been lost. (In the
homework problems, we consider the question of why the sender waits for three dupli-
cate ACKs, rather than just a single duplicate ACK.) In the case that three duplicate
ACKs are received, the TCP sender performs a fast retransmit [RFC 5681], retrans-
mitting the missing segment before that segment’s timer expires. This is shown in
Figure 3.37, where the second segment is lost, then retransmitted before its timer
expires. For TCP with fast retransmit, the following code snippet replaces the ACK
received event in Figure 3.33:

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase=y
if (there are currently any not yet

acknowledged segments)
start timer

}
else { /* a duplicate ACK for already ACKed

segment */
increment number of duplicate ACKs

received for y
if (number of duplicate ACKS received

for y==3)
/* TCP fast retransmit */
resend segment with sequence number y

}
break;

We noted earlier that many subtle issues arise when a timeout/retransmit mech-
anism is implemented in an actual protocol such as TCP. The procedures above,
which have evolved as a result of more than 20 years of experience with TCP timers,
should convince you that this is indeed the case!

Go-Back-N or Selective Repeat?

Let us close our study of TCP’s error-recovery mechanism by considering the follow-
ing question: Is TCP a GBN or an SR protocol? Recall that TCP acknowledgments are
cumulative and correctly received but out-of-order segments are not individually

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 249

ACKed by the receiver. Consequently, as shown in Figure 3.33 (see also Figure 3.19),
the TCP sender need only maintain the smallest sequence number of a transmitted but
unacknowledged byte (SendBase) and the sequence number of the next byte to be
sent (NextSeqNum). In this sense, TCP looks a lot like a GBN-style protocol. But
there are some striking differences between TCP and Go-Back-N. Many TCP imple-
mentations will buffer correctly received but out-of-order segments [Stevens 1994].
Consider also what happens when the sender sends a sequence of segments 1, 2, . . . ,
N, and all of the segments arrive in order without error at the receiver. Further suppose
that the acknowledgment for packet n < N gets lost, but the remaining N – 1 acknowl-
edgments arrive at the sender before their respective timeouts. In this example, GBN
would retransmit not only packet n, but also all of the subsequent packets n + 1, n + 2,
. . . , N. TCP, on the other hand, would retransmit at most one segment, namely, seg-
ment n. Moreover, TCP would not even retransmit segment n if the acknowledgment
for segment n + 1 arrived before the timeout for segment n.

Host A Host B

seq=100, 20 bytes of data

Timeout

Time Time

X

seq=100, 20 bytes of data

seq=92, 8 bytes of dataseq=120, 15 bytes of data

seq=135, 6 bytes of data
seq=141, 16 bytes of data

ack=100

ack=100

ack=100

ack=100

Figure 3.37 � Fast retransmit: retransmitting the missing segment before
the segment’s timer expires

https://hemanthrajhemu.github.io

A proposed modification to TCP, the so-called selective acknowledgment
[RFC 2018], allows a TCP receiver to acknowledge out-of-order segments selec-
tively rather than just cumulatively acknowledging the last correctly received, in-
order segment. When combined with selective retransmission—skipping the
retransmission of segments that have already been selectively acknowledged by the
receiver—TCP looks a lot like our generic SR protocol. Thus, TCP’s error-recovery
mechanism is probably best categorized as a hybrid of GBN and SR protocols.

3.5.5 Flow Control

Recall that the hosts on each side of a TCP connection set aside a receive buffer for
the connection. When the TCP connection receives bytes that are correct and in
sequence, it places the data in the receive buffer. The associated application process
will read data from this buffer, but not necessarily at the instant the data arrives.
Indeed, the receiving application may be busy with some other task and may not
even attempt to read the data until long after it has arrived. If the application is rela-
tively slow at reading the data, the sender can very easily overflow the connection’s
receive buffer by sending too much data too quickly.

TCP provides a flow-control service to its applications to eliminate the possibility
of the sender overflowing the receiver’s buffer. Flow control is thus a speed-matching
service—matching the rate at which the sender is sending against the rate at which the
receiving application is reading. As noted earlier, a TCP sender can also be throttled
due to congestion within the IP network; this form of sender control is referred to as
congestion control, a topic we will explore in detail in Sections 3.6 and 3.7. Even
though the actions taken by flow and congestion control are similar (the throttling of
the sender), they are obviously taken for very different reasons. Unfortunately, many
authors use the terms interchangeably, and the savvy reader would be wise to distin-
guish between them. Let’s now discuss how TCP provides its flow-control service. In
order to see the forest for the trees, we suppose throughout this section that the TCP
implementation is such that the TCP receiver discards out-of-order segments.

TCP provides flow control by having the sender maintain a variable called the
receive window. Informally, the receive window is used to give the sender an idea of
how much free buffer space is available at the receiver. Because TCP is full-duplex, the
sender at each side of the connection maintains a distinct receive window. Let’s investi-
gate the receive window in the context of a file transfer. Suppose that Host A is sending
a large file to Host B over a TCP connection. Host B allocates a receive buffer to this
connection; denote its size by RcvBuffer. From time to time, the application process
in Host B reads from the buffer. Define the following variables:

• LastByteRead: the number of the last byte in the data stream read from the
buffer by the application process in B

• LastByteRcvd: the number of the last byte in the data stream that has arrived
from the network and has been placed in the receive buffer at B

250 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 251

Because TCP is not permitted to overflow the allocated buffer, we must have

LastByteRcvd – LastByteRead � RcvBuffer

The receive window, denoted rwnd is set to the amount of spare room in the buffer:

rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]

Because the spare room changes with time, rwnd is dynamic. The variable rwnd is
illustrated in Figure 3.38.

How does the connection use the variable rwnd to provide the flow-control
service? Host B tells Host A how much spare room it has in the connection buffer
by placing its current value of rwnd in the receive window field of every segment it
sends to A. Initially, Host B sets rwnd = RcvBuffer. Note that to pull this off,
Host B must keep track of several connection-specific variables.

Host A in turn keeps track of two variables, LastByteSent and Last-
ByteAcked, which have obvious meanings. Note that the difference between these
two variables, LastByteSent – LastByteAcked, is the amount of unac-
knowledged data that A has sent into the connection. By keeping the amount of
unacknowledged data less than the value of rwnd, Host A is assured that it is not
overflowing the receive buffer at Host B. Thus, Host A makes sure throughout the
connection’s life that

LastByteSent – LastByteAcked � rwnd

Application
process

Data
from IP TCP data

in buffer

rwnd

RcvBuffer

Spare room

Figure 3.38 � The receive window (rwnd) and the receive buffer
(RcvBuffer)

https://hemanthrajhemu.github.io

There is one minor technical problem with this scheme. To see this, suppose
Host B’s receive buffer becomes full so that rwnd = 0. After advertising rwnd = 0
to Host A, also suppose that B has nothing to send to A. Now consider what hap-
pens. As the application process at B empties the buffer, TCP does not send new seg-
ments with new rwnd values to Host A; indeed, TCP sends a segment to Host A
only if it has data to send or if it has an acknowledgment to send. Therefore, Host A
is never informed that some space has opened up in Host B’s receive buffer—Host
A is blocked and can transmit no more data! To solve this problem, the TCP specifi-
cation requires Host A to continue to send segments with one data byte when B’s
receive window is zero. These segments will be acknowledged by the receiver.
Eventually the buffer will begin to empty and the acknowledgments will contain a
nonzero rwnd value.

The online site at http://www.awl.com/kurose-ross for this book provides an
interactive Java applet that illustrates the operation of the TCP receive window.

Having described TCP’s flow-control service, we briefly mention here that UDP
does not provide flow control. To understand the issue, consider sending a series of
UDP segments from a process on Host A to a process on Host B. For a typical UDP
implementation, UDP will append the segments in a finite-sized buffer that “precedes”
the corresponding socket (that is, the door to the process). The process reads one entire
segment at a time from the buffer. If the process does not read the segments fast
enough from the buffer, the buffer will overflow and segments will get dropped.

3.5.6 TCP Connection Management

In this subsection we take a closer look at how a TCP connection is established and
torn down. Although this topic may not seem particularly thrilling, it is important
because TCP connection establishment can significantly add to perceived delays
(for example, when surfing the Web). Furthermore, many of the most common net-
work attacks—including the incredibly popular SYN flood attack—exploit vulnera-
bilities in TCP connection management. Let’s first take a look at how a TCP
connection is established. Suppose a process running in one host (client) wants to
initiate a connection with another process in another host (server). The client appli-
cation process first informs the client TCP that it wants to establish a connection to
a process in the server. The TCP in the client then proceeds to establish a TCP con-
nection with the TCP in the server in the following manner:

• Step 1. The client-side TCP first sends a special TCP segment to the server-side
TCP. This special segment contains no application-layer data. But one of the flag
bits in the segment’s header (see Figure 3.29), the SYN bit, is set to 1. For this
reason, this special segment is referred to as a SYN segment. In addition, the
client randomly chooses an initial sequence number (client_isn) and puts
this number in the sequence number field of the initial TCP SYN segment. This
segment is encapsulated within an IP datagram and sent to the server. There has

252 CHAPTER 3 • TRANSPORT LAYER

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 253

been considerable interest in properly randomizing the choice of the
client_isn in order to avoid certain security attacks [CERT 2001–09].

• Step 2. Once the IP datagram containing the TCP SYN segment arrives at the
server host (assuming it does arrive!), the server extracts the TCP SYN segment
from the datagram, allocates the TCP buffers and variables to the connection, and
sends a connection-granted segment to the client TCP. (We’ll see in Chapter 8 that
the allocation of these buffers and variables before completing the third step of the
three-way handshake makes TCP vulnerable to a denial-of-service attack known
as SYN flooding.) This connection-granted segment also contains no application-
layer data. However, it does contain three important pieces of information in the
segment header. First, the SYN bit is set to 1. Second, the acknowledgment field
of the TCP segment header is set to client_isn+1. Finally, the server
chooses its own initial sequence number (server_isn) and puts this value in
the sequence number field of the TCP segment header. This connection-granted
segment is saying, in effect, “I received your SYN packet to start a connection
with your initial sequence number, client_isn. I agree to establish this con-
nection. My own initial sequence number is server_isn.” The connection-
granted segment is referred to as a SYNACK segment.

• Step 3. Upon receiving the SYNACK segment, the client also allocates buffers
and variables to the connection. The client host then sends the server yet another
segment; this last segment acknowledges the server’s connection-granted seg-
ment (the client does so by putting the value server_isn+1 in the acknowl-
edgment field of the TCP segment header). The SYN bit is set to zero, since the
connection is established. This third stage of the three-way handshake may carry
client-to-server data in the segment payload.

Once these three steps have been completed, the client and server hosts can send
segments containing data to each other. In each of these future segments, the SYN bit
will be set to zero. Note that in order to establish the connection, three packets are sent
between the two hosts, as illustrated in Figure 3.39. For this reason, this connection-
establishment procedure is often referred to as a three-way handshake. Several
aspects of the TCP three-way handshake are explored in the homework problems
(Why are initial sequence numbers needed? Why is a three-way handshake, as
opposed to a two-way handshake, needed?). It’s interesting to note that a rock climber
and a belayer (who is stationed below the rock climber and whose job it is to handle
the climber’s safety rope) use a three-way-handshake communication protocol that is
identical to TCP’s to ensure that both sides are ready before the climber begins ascent.

All good things must come to an end, and the same is true with a TCP connec-
tion. Either of the two processes participating in a TCP connection can end the con-
nection. When a connection ends, the “resources” (that is, the buffers and variables)
in the hosts are deallocated. As an example, suppose the client decides to close the
connection, as shown in Figure 3.40. The client application process issues a close

https://hemanthrajhemu.github.io

254 CHAPTER 3 • TRANSPORT LAYER

command. This causes the client TCP to send a special TCP segment to the server
process. This special segment has a flag bit in the segment’s header, the FIN bit
(see Figure 3.29), set to 1. When the server receives this segment, it sends the client
an acknowledgment segment in return. The server then sends its own shutdown
segment, which has the FIN bit set to 1. Finally, the client acknowledges the
server’s shutdown segment. At this point, all the resources in the two hosts are now
deallocated.

During the life of a TCP connection, the TCP protocol running in each host
makes transitions through various TCP states. Figure 3.41 illustrates a typical
sequence of TCP states that are visited by the client TCP. The client TCP begins in
the CLOSED state. The application on the client side initiates a new TCP connec-
tion (by creating a Socket object in our Java examples as in the Python examples
from Chapter 2). This causes TCP in the client to send a SYN segment to TCP in the
server. After having sent the SYN segment, the client TCP enters the SYN_SENT
state. While in the SYN_SENT state, the client TCP waits for a segment from the
server TCP that includes an acknowledgment for the client’s previous segment and
has the SYN bit set to 1. Having received such a segment, the client TCP enters the
ESTABLISHED state. While in the ESTABLISHED state, the TCP client can send
and receive TCP segments containing payload (that is, application-generated) data.

Time Time

Client host

Connection
request

Connection
granted

Server host

SYN=1, seq=client_isn

SYN
=1,

 se
q=s

erv
er_

isn
,

ack
=cl

ien
t_i

sn+
1

SYN=0, seq=client_isn+1,

ack=server_isn+1

ACK

Figure 3.39 � TCP three-way handshake: segment exchange

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 255

Suppose that the client application decides it wants to close the connection.
(Note that the server could also choose to close the connection.) This causes the
client TCP to send a TCP segment with the FIN bit set to 1 and to enter the
FIN_WAIT_1 state. While in the FIN_WAIT_1 state, the client TCP waits for a TCP
segment from the server with an acknowledgment. When it receives this segment,
the client TCP enters the FIN_WAIT_2 state. While in the FIN_WAIT_2 state, the
client waits for another segment from the server with the FIN bit set to 1; after
receiving this segment, the client TCP acknowledges the server’s segment and
enters the TIME_WAIT state. The TIME_WAIT state lets the TCP client resend the
final acknowledgment in case the ACK is lost. The time spent in the TIME_WAIT
state is implementation-dependent, but typical values are 30 seconds, 1 minute, and
2 minutes. After the wait, the connection formally closes and all resources on the
client side (including port numbers) are released.

Figure 3.42 illustrates the series of states typically visited by the server-side
TCP, assuming the client begins connection teardown. The transitions are self-
explanatory. In these two state-transition diagrams, we have only shown how a TCP
connection is normally established and shut down. We have not described what

Time Time

Client

Close

Close

Server

FIN

ACK

ACK

FIN

Closed

Timed wait

Figure 3.40 � Closing a TCP connection

https://hemanthrajhemu.github.io

256 CHAPTER 3 • TRANSPORT LAYER

CLOSED

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

Send SYN

Send FIN

Receive ACK,
send nothing

Wait 30 seconds

Receive FIN,
send ACK

Receive SYN & ACK,
send ACK

Client application
initiates a TCP connection

Client application
initiates close connection

Figure 3.41 � A typical sequence of TCP states visited by a client TCP

CLOSED

LISTEN

SYN_RCVD

ESTABLISHED

CLOSE_WAIT

LAST_ACK

Receive FIN,
send ACK

Receive ACK,
send nothing

Send FIN
Receive SYN
send SYN & ACK

Server application
creates a listen socket

Receive ACK,
send nothing

Figure 3.42 � A typical sequence of TCP states visited by a server-side TCP

https://hemanthrajhemu.github.io

3.5 • CONNECTION-ORIENTED TRANSPORT: TCP 257

THE SYN FLOOD ATTACK

We’ve seen in our discussion of TCP’s three-way handshake that a server allocates
and initializes connection variables and buffers in response to a received SYN. The
server then sends a SYNACK in response, and awaits an ACK segment from the
client. If the client does not send an ACK to complete the third step of this 3-way
handshake, eventually (often after a minute or more) the server will terminate the half-
open connection and reclaim the allocated resources.

This TCP connection management protocol sets the stage for a classic Denial of
Service (DoS) attack known as the SYN flood attack. In this attack, the attacker(s)
send a large number of TCP SYN segments, without completing the third handshake
step. With this deluge of SYN segments, the server’s connection resources become
exhausted as they are allocated (but never used!) for half-open connections; legiti-
mate clients are then denied service. Such SYN flooding attacks were among the first
documented DoS attacks [CERT SYN 1996]. Fortunately, an effective defense known
as SYN cookies [RFC 4987] are now deployed in most major operating systems.
SYN cookies work as follows:

o When the server receives a SYN segment, it does not know if the segment is com-
ing from a legitimate user or is part of a SYN flood attack. So, instead of creating
a half-open TCP connection for this SYN, the server creates an initial TCP
sequence number that is a complicated function (hash function) of source and des-
tination IP addresses and port numbers of the SYN segment, as well as a secret
number only known to the server. This carefully crafted initial sequence number is
the so-called “cookie.” The server then sends the client a SYNACK packet with this
special initial sequence number. Importantly, the server does not remember the
cookie or any other state information corresponding to the SYN.

o A legitimate client will return an ACK segment. When the server receives this
ACK, it must verify that the ACK corresponds to some SYN sent earlier. But how is
this done if the server maintains no memory about SYN segments? As you may
have guessed, it is done with the cookie. Recall that for a legitimate ACK, the
value in the acknowledgment field is equal to the initial sequence number in the
SYNACK (the cookie value in this case) plus one (see Figure 3.39). The server can
then run the same hash function using the source and destination IP address and
port numbers in the SYNACK (which are the same as in the original SYN) and the
secret number. If the result of the function plus one is the same as the acknowledg-
ment (cookie) value in the client’s SYNACK, the server concludes that the ACK cor-
responds to an earlier SYN segment and is hence valid. The server then creates a
fully open connection along with a socket.

o On the other hand, if the client does not return an ACK segment, then the original
SYN has done no harm at the server, since the server hasn’t yet allocated any
resources in response to the original bogus SYN.

FOCUS ON SECURITY

https://hemanthrajhemu.github.io

258 CHAPTER 3 • TRANSPORT LAYER

happens in certain pathological scenarios, for example, when both sides of a con-
nection want to initiate or shut down at the same time. If you are interested in learn-
ing about this and other advanced issues concerning TCP, you are encouraged to see
Stevens’ comprehensive book [Stevens 1994].

Our discussion above has assumed that both the client and server are prepared
to communicate, i.e., that the server is listening on the port to which the client sends
its SYN segment. Let’s consider what happens when a host receives a TCP segment
whose port numbers or source IP address do not match with any of the ongoing
sockets in the host. For example, suppose a host receives a TCP SYN packet with
destination port 80, but the host is not accepting connections on port 80 (that is, it is
not running a Web server on port 80). Then the host will send a special reset seg-
ment to the source. This TCP segment has the RST flag bit (see Section 3.5.2) set to
1. Thus, when a host sends a reset segment, it is telling the source “I don’t have a
socket for that segment. Please do not resend the segment.” When a host receives a
UDP packet whose destination port number doesn’t match with an ongoing UDP
socket, the host sends a special ICMP datagram, as discussed in Chapter 4.

Now that we have a good understanding of TCP connection management, let’s
revisit the nmap port-scanning tool and examine more closely how it works. To explore
a specific TCP port, say port 6789, on a target host, nmap will send a TCP SYN seg-
ment with destination port 6789 to that host. There are three possible outcomes:

• The source host receives a TCP SYNACK segment from the target host. Since this
means that an application is running with TCP port 6789 on the target post, nmap
returns “open.”

• The source host receives a TCP RST segment from the target host. This means that
the SYN segment reached the target host, but the target host is not running an appli-
cation with TCP port 6789. But the attacker at least knows that the segments des-
tined to the host at port 6789 are not blocked by any firewall on the path between
source and target hosts. (Firewalls are discussed in Chapter 8.)

• The source receives nothing. This likely means that the SYN segment was blocked
by an intervening firewall and never reached the target host.

Nmap is a powerful tool, which can “case the joint” not only for open TCP ports,
but also for open UDP ports, for firewalls and their configurations, and even for the ver-
sions of applications and operating systems. Most of this is done by manipulating TCP
connection-management segments [Skoudis 2006]. You can download nmap from
www.nmap.org.

This completes our introduction to error control and flow control in TCP. In
Section 3.7 we’ll return to TCP and look at TCP congestion control in some depth.
Before doing so, however, we first step back and examine congestion-control issues
in a broader context.

https://hemanthrajhemu.github.io

3.6 • PRINCIPLES OF CONGESTION CONTROL 259

3.6 Principles of Congestion Control

In the previous sections, we examined both the general principles and specific
TCP mechanisms used to provide for a reliable data transfer service in the face of
packet loss. We mentioned earlier that, in practice, such loss typically results from
the overflowing of router buffers as the network becomes congested. Packet
retransmission thus treats a symptom of network congestion (the loss of a specific
transport-layer segment) but does not treat the cause of network congestion—too
many sources attempting to send data at too high a rate. To treat the cause of net-
work congestion, mechanisms are needed to throttle senders in the face of network
congestion.

In this section, we consider the problem of congestion control in a general con-
text, seeking to understand why congestion is a bad thing, how network congestion
is manifested in the performance received by upper-layer applications, and various
approaches that can be taken to avoid, or react to, network congestion. This more
general study of congestion control is appropriate since, as with reliable data trans-
fer, it is high on our “top-ten” list of fundamentally important problems in network-
ing. We conclude this section with a discussion of congestion control in the
available bit-rate (ABR) service in asynchronous transfer mode (ATM)
networks. The following section contains a detailed study of TCP’s congestion-
control algorithm.

3.6.1 The Causes and the Costs of Congestion

Let’s begin our general study of congestion control by examining three increasingly
complex scenarios in which congestion occurs. In each case, we’ll look at why con-
gestion occurs in the first place and at the cost of congestion (in terms of resources
not fully utilized and poor performance received by the end systems). We’ll not (yet)
focus on how to react to, or avoid, congestion but rather focus on the simpler issue
of understanding what happens as hosts increase their transmission rate and the net-
work becomes congested.

Scenario 1: Two Senders, a Router with Infinite Buffers

We begin by considering perhaps the simplest congestion scenario possible: Two
hosts (A and B) each have a connection that shares a single hop between source and
destination, as shown in Figure 3.43.

Let’s assume that the application in Host A is sending data into the connection
(for example, passing data to the transport-level protocol via a socket) at an aver-
age rate of �in bytes/sec. These data are original in the sense that each unit of data
is sent into the socket only once. The underlying transport-level protocol is a

https://hemanthrajhemu.github.io

260 CHAPTER 3 • TRANSPORT LAYER

simple one. Data is encapsulated and sent; no error recovery (for example, retrans-
mission), flow control, or congestion control is performed. Ignoring the additional
overhead due to adding transport- and lower-layer header information, the rate at
which Host A offers traffic to the router in this first scenario is thus �in bytes/sec.
Host B operates in a similar manner, and we assume for simplicity that it too is
sending at a rate of �in bytes/sec. Packets from Hosts A and B pass through a
router and over a shared outgoing link of capacity R. The router has buffers that
allow it to store incoming packets when the packet-arrival rate exceeds the outgo-
ing link’s capacity. In this first scenario, we assume that the router has an infinite
amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first
scenario. The left graph plots the per-connection throughput (number of bytes per
second at the receiver) as a function of the connection-sending rate. For a sending
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending
rate—everything sent by the sender is received at the receiver with a finite delay.
When the sending rate is above R/2, however, the throughput is only R/2. This upper
limit on throughput is a consequence of the sharing of link capacity between two
connections. The link simply cannot deliver packets to a receiver at a steady-state
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates,
they will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a
good thing, because the link is fully utilized in delivering packets to their destina-
tions. The right-hand graph in Figure 3.44, however, shows the consequence of
operating near link capacity. As the sending rate approaches R/2 (from the left), the
average delay becomes larger and larger. When the sending rate exceeds R/2, the

Host B

Unlimited shared
output link buffers

λin: original data

Host A Host DHost C

λout

Figure 3.43 � Congestion scenario 1: Two connections sharing a single
hop with infinite buffers

https://hemanthrajhemu.github.io

3.6 • PRINCIPLES OF CONGESTION CONTROL 261

average number of queued packets in the router is unbounded, and the average delay
between source and destination becomes infinite (assuming that the connections
operate at these sending rates for an infinite period of time and there is an infinite
amount of buffering available). Thus, while operating at an aggregate throughput of
near R may be ideal from a throughput standpoint, it is far from ideal from a delay
standpoint. Even in this (extremely) idealized scenario, we’ve already found one
cost of a congested network—large queuing delays are experienced as the packet-
arrival rate nears the link capacity.

Scenario 2: Two Senders and a Router with Finite Buffers

Let us now slightly modify scenario 1 in the following two ways (see Figure 3.45).
First, the amount of router buffering is assumed to be finite. A consequence of this
real-world assumption is that packets will be dropped when arriving to an already-
full buffer. Second, we assume that each connection is reliable. If a packet contain-
ing a transport-level segment is dropped at the router, the sender will eventually
retransmit it. Because packets can be retransmitted, we must now be more careful
with our use of the term sending rate. Specifically, let us again denote the rate at
which the application sends original data into the socket by �in bytes/sec. The rate at
which the transport layer sends segments (containing original data and retransmit-
ted data) into the network will be denoted ��in bytes/sec. ��in is sometimes referred to
as the offered load to the network.

The performance realized under scenario 2 will now depend strongly on
how retransmission is performed. First, consider the unrealistic case that Host A is
able to somehow (magically!) determine whether or not a buffer is free in the router
and thus sends a packet only when a buffer is free. In this case, no loss would occur,

R/2

R/2

D
el

ay

R/2
λin λin

λ o
u

t

a. b.

Figure 3.44 � Congestion scenario 1: Throughput and delay as a function
of host sending rate

https://hemanthrajhemu.github.io

262 CHAPTER 3 • TRANSPORT LAYER

�in would be equal to ��in, and the throughput of the connection would be equal to
�in. This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, ��in (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of

Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data

Figure 3.45 � Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

https://hemanthrajhemu.github.io

3.6 • PRINCIPLES OF CONGESTION CONTROL 263

course, the receiver needs but one copy of this packet and will discard the retrans-
mission. In this case, the work done by the router in forwarding the retransmitted
copy of the original packet was wasted, as the receiver will have already received
the original copy of this packet. The router would have better used the link trans-
mission capacity to send a different packet instead. Here then is yet another cost of
a congested network—unneeded retransmissions by the sender in the face of large
delays may cause a router to use its link bandwidth to forward unneeded copies of a
packet. Figure 3.46 (c) shows the throughput versus offered load when each packet
is assumed to be forwarded (on average) twice by the router. Since each packet is
forwarded twice, the throughput will have an asymptotic value of R/4 as the offered
load approaches R/2.

Scenario 3: Four Senders, Routers with Finite Buffers, and
Multihop Paths

In our final congestion scenario, four hosts transmit packets, each over overlap-
ping two-hop paths, as shown in Figure 3.47. We again assume that each host
uses a timeout/retransmission mechanism to implement a reliable data transfer
service, that all hosts have the same value of �in, and that all router links have
capacity R bytes/sec.

Let’s consider the connection from Host A to Host C, passing through routers
R1 and R2. The A–C connection shares router R1 with the D–B connection and
shares router R2 with the B–D connection. For extremely small values of �in, buffer
overflows are rare (as in congestion scenarios 1 and 2), and the throughput approxi-
mately equals the offered load. For slightly larger values of �in, the corresponding
throughput is also larger, since more original data is being transmitted into the

R/2

R/2 R/2

λ o
u

t

a. b.

R/2

λ o
u

t

R/3

R/2

R/2

λ o
u

t

R/4

c.

λ’in λ’in λ’in

Figure 3.46 � Scenario 2 performance with finite buffers

https://hemanthrajhemu.github.io

264 CHAPTER 3 • TRANSPORT LAYER

network and delivered to the destination, and overflows are still rare. Thus, for small
values of �in, an increase in �in results in an increase in �out.

Having considered the case of extremely low traffic, let’s next examine the
case that �in (and hence ��in) is extremely large. Consider router R2. The A–C
traffic arriving to router R2 (which arrives at R2 after being forwarded from R1)
can have an arrival rate at R2 that is at most R, the capacity of the link from R1
to R2, regardless of the value of �in. If ��in is extremely large for all connections
(including the B–D connection), then the arrival rate of B–D traffic at R2 can be
much larger than that of the A–C traffic. Because the A–C and B–D traffic must
compete at router R2 for the limited amount of buffer space, the amount of A–C
traffic that successfully gets through R2 (that is, is not lost due to buffer over-
flow) becomes smaller and smaller as the offered load from B–D gets larger and
larger. In the limit, as the offered load approaches infinity, an empty buffer at R2

Host BHost A

R1

R4 R2

R3

Host CHost D
Finite shared output

link buffers

λin: original data

λ’in : original
data, plus
retransmitted
data

λout

Figure 3.47 � Four senders, routers with finite buffers, and multihop paths

https://hemanthrajhemu.github.io

3.6 • PRINCIPLES OF CONGESTION CONTROL 265

is immediately filled by a B–D packet, and the throughput of the A–C connection
at R2 goes to zero. This, in turn, implies that the A–C end-to-end throughput goes
to zero in the limit of heavy traffic. These considerations give rise to the offered
load versus throughput tradeoff shown in Figure 3.48.

The reason for the eventual decrease in throughput with increasing offered
load is evident when one considers the amount of wasted work done by the net-
work. In the high-traffic scenario outlined above, whenever a packet is dropped
at a second-hop router, the work done by the first-hop router in forwarding a
packet to the second-hop router ends up being “wasted.” The network would
have been equally well off (more accurately, equally bad off) if the first router
had simply discarded that packet and remained idle. More to the point, the trans-
mission capacity used at the first router to forward the packet to the second router
could have been much more profitably used to transmit a different packet. (For
example, when selecting a packet for transmission, it might be better for a router
to give priority to packets that have already traversed some number of upstream
routers.) So here we see yet another cost of dropping a packet due to conges-
tion—when a packet is dropped along a path, the transmission capacity that was
used at each of the upstream links to forward that packet to the point at which it
is dropped ends up having been wasted.

3.6.2 Approaches to Congestion Control

In Section 3.7, we’ll examine TCP’s specific approach to congestion control in great
detail. Here, we identify the two broad approaches to congestion control that are
taken in practice and discuss specific network architectures and congestion-control
protocols embodying these approaches.

R/2

λ o
u

t

λ’
in

Figure 3.48 � Scenario 3 performance with finite buffers and multihop
paths

https://hemanthrajhemu.github.io

266 CHAPTER 3 • TRANSPORT LAYER

At the broadest level, we can distinguish among congestion-control approaches
by whether the network layer provides any explicit assistance to the transport layer
for congestion-control purposes:

• End-to-end congestion control. In an end-to-end approach to congestion control,
the network layer provides no explicit support to the transport layer for congestion-
control purposes. Even the presence of congestion in the network must be inferred
by the end systems based only on observed network behavior (for example, packet
loss and delay). We will see in Section 3.7 that TCP must necessarily take this end-
to-end approach toward congestion control, since the IP layer provides no feedback
to the end systems regarding network congestion. TCP segment loss (as indicated
by a timeout or a triple duplicate acknowledgment) is taken as an indication of net-
work congestion and TCP decreases its window size accordingly. We will also see
a more recent proposal for TCP congestion control that uses increasing round-trip
delay values as indicators of increased network congestion.

• Network-assisted congestion control. With network-assisted congestion control,
network-layer components (that is, routers) provide explicit feedback to the
sender regarding the congestion state in the network. This feedback may be as
simple as a single bit indicating congestion at a link. This approach was taken in
the early IBM SNA [Schwartz 1982] and DEC DECnet [Jain 1989; Ramakrish-
nan 1990] architectures, was recently proposed for TCP/IP networks [Floyd TCP
1994; RFC 3168], and is used in ATM available bit-rate (ABR) congestion con-
trol as well, as discussed below. More sophisticated network feedback is also pos-
sible. For example, one form of ATM ABR congestion control that we will study
shortly allows a router to inform the sender explicitly of the transmission rate it
(the router) can support on an outgoing link. The XCP protocol [Katabi 2002] pro-
vides router-computed feedback to each source, carried in the packet header,
regarding how that source should increase or decrease its transmission rate.

For network-assisted congestion control, congestion information is typically fed
back from the network to the sender in one of two ways, as shown in Figure 3.49.
Direct feedback may be sent from a network router to the sender. This form of notifi-
cation typically takes the form of a choke packet (essentially saying, “I’m con-
gested!”). The second form of notification occurs when a router marks/updates a field
in a packet flowing from sender to receiver to indicate congestion. Upon receipt of a
marked packet, the receiver then notifies the sender of the congestion indication.
Note that this latter form of notification takes at least a full round-trip time.

3.6.3 Network-Assisted Congestion-Control Example:
ATM ABR Congestion Control

We conclude this section with a brief case study of the congestion-control algorithm
in ATM ABR—a protocol that takes a network-assisted approach toward congestion
control. We stress that our goal here is not to describe aspects of the ATM architecture

https://hemanthrajhemu.github.io

in great detail, but rather to illustrate a protocol that takes a markedly different
approach toward congestion control from that of the Internet’s TCP protocol. Indeed,
we only present below those few aspects of the ATM architecture that are needed to
understand ABR congestion control.

Fundamentally ATM takes a virtual-circuit (VC) oriented approach toward
packet switching. Recall from our discussion in Chapter 1, this means that each
switch on the source-to-destination path will maintain state about the source-to-
destination VC. This per-VC state allows a switch to track the behavior of indi-
vidual senders (e.g., tracking their average transmission rate) and to take
source-specific congestion-control actions (such as explicitly signaling to the
sender to reduce its rate when the switch becomes congested). This per-VC state
at network switches makes ATM ideally suited to perform network-assisted con-
gestion control.

ABR has been designed as an elastic data transfer service in a manner reminis-
cent of TCP. When the network is underloaded, ABR service should be able to take
advantage of the spare available bandwidth; when the network is congested, ABR
service should throttle its transmission rate to some predetermined minimum trans-
mission rate. A detailed tutorial on ATM ABR congestion control and traffic man-
agement is provided in [Jain 1996].

Figure 3.50 shows the framework for ATM ABR congestion control. In our
discussion we adopt ATM terminology (for example, using the term switch rather
than router, and the term cell rather than packet). With ATM ABR service, data
cells are transmitted from a source to a destination through a series of intermedi-
ate switches. Interspersed with the data cells are resource-management cells

3.6 • PRINCIPLES OF CONGESTION CONTROL 267

Host A

Network feedback via receiver

Direct network
feedback

Host B

Figure 3.49 � Two feedback pathways for network-indicated congestion
information

https://hemanthrajhemu.github.io

268 CHAPTER 3 • TRANSPORT LAYER

(RM cells); these RM cells can be used to convey congestion-related information
among the hosts and switches. When an RM cell arrives at a destination, it will
be turned around and sent back to the sender (possibly after the destination has
modified the contents of the RM cell). It is also possible for a switch to generate
an RM cell itself and send this RM cell directly to a source. RM cells can thus be
used to provide both direct network feedback and network feedback via the
receiver, as shown in Figure 3.50.

ATM ABR congestion control is a rate-based approach. That is, the sender
explicitly computes a maximum rate at which it can send and regulates itself accord-
ingly. ABR provides three mechanisms for signaling congestion-related information
from the switches to the receiver:

• EFCI bit. Each data cell contains an explicit forward congestion indication
(EFCI) bit. A congested network switch can set the EFCI bit in a data cell to
1 to signal congestion to the destination host. The destination must check the
EFCI bit in all received data cells. When an RM cell arrives at the destination,
if the most recently received data cell had the EFCI bit set to 1, then the desti-
nation sets the congestion indication bit (the CI bit) of the RM cell to 1 and
sends the RM cell back to the sender. Using the EFCI in data cells and the CI
bit in RM cells, a sender can thus be notified about congestion at a network
switch.

• CI and NI bits. As noted above, sender-to-receiver RM cells are interspersed
with data cells. The rate of RM cell interspersion is a tunable parameter, with
the default value being one RM cell every 32 data cells. These RM cells have a
congestion indication (CI) bit and a no increase (NI) bit that can be set by a

Source Destination

Switch Switch

Key:

RM cells Data cells

Figure 3.50 � Congestion-control framework for ATM ABR service

https://hemanthrajhemu.github.io

congested network switch. Specifically, a switch can set the NI bit in a passing
RM cell to 1 under mild congestion and can set the CI bit to 1 under severe
congestion conditions. When a destination host receives an RM cell, it will
send the RM cell back to the sender with its CI and NI bits intact (except that
CI may be set to 1 by the destination as a result of the EFCI mechanism
described above).

• ER setting. Each RM cell also contains a 2-byte explicit rate (ER) field. A con-
gested switch may lower the value contained in the ER field in a passing RM
cell. In this manner, the ER field will be set to the minimum supportable rate of
all switches on the source-to-destination path.

An ATM ABR source adjusts the rate at which it can send cells as a function of
the CI, NI, and ER values in a returned RM cell. The rules for making this rate
adjustment are rather complicated and a bit tedious. The interested reader is referred
to [Jain 1996] for details.

3.7 TCP Congestion Control

In this section we return to our study of TCP. As we learned in Section 3.5, TCP pro-
vides a reliable transport service between two processes running on different hosts.
Another key component of TCP is its congestion-control mechanism. As indicated
in the previous section, TCP must use end-to-end congestion control rather than net-
work-assisted congestion control, since the IP layer provides no explicit feedback to
the end systems regarding network congestion.

The approach taken by TCP is to have each sender limit the rate at which it
sends traffic into its connection as a function of perceived network congestion. If a
TCP sender perceives that there is little congestion on the path between itself and
the destination, then the TCP sender increases its send rate; if the sender perceives
that there is congestion along the path, then the sender reduces its send rate. But this
approach raises three questions. First, how does a TCP sender limit the rate at which
it sends traffic into its connection? Second, how does a TCP sender perceive that
there is congestion on the path between itself and the destination? And third, what
algorithm should the sender use to change its send rate as a function of perceived
end-to-end congestion?

Let’s first examine how a TCP sender limits the rate at which it sends traffic
into its connection. In Section 3.5 we saw that each side of a TCP connection consists
of a receive buffer, a send buffer, and several variables (LastByteRead, rwnd,
and so on). The TCP congestion-control mechanism operating at the sender keeps
track of an additional variable, the congestion window. The congestion window,
denoted cwnd, imposes a constraint on the rate at which a TCP sender can send traffic

3.7 • TCP CONGESTION CONTROL 269

https://hemanthrajhemu.github.io

270 CHAPTER 3 • TRANSPORT LAYER

into the network. Specifically, the amount of unacknowledged data at a sender may
not exceed the minimum of cwnd and rwnd, that is:

LastByteSent – LastByteAcked � min{cwnd, rwnd}

In order to focus on congestion control (as opposed to flow control), let us hence-
forth assume that the TCP receive buffer is so large that the receive-window con-
straint can be ignored; thus, the amount of unacknowledged data at the sender is
solely limited by cwnd. We will also assume that the sender always has data to
send, i.e., that all segments in the congestion window are sent.

The constraint above limits the amount of unacknowledged data at the sender
and therefore indirectly limits the sender’s send rate. To see this, consider a connec-
tion for which loss and packet transmission delays are negligible. Then, roughly, at
the beginning of every RTT, the constraint permits the sender to send cwnd bytes of
data into the connection; at the end of the RTT the sender receives acknowledg-
ments for the data. Thus the sender’s send rate is roughly cwnd/RTT bytes/sec. By
adjusting the value of cwnd, the sender can therefore adjust the rate at which it
sends data into its connection.

Let’s next consider how a TCP sender perceives that there is congestion on
the path between itself and the destination. Let us define a “loss event” at a TCP
sender as the occurrence of either a timeout or the receipt of three duplicate
ACKs from the receiver. (Recall our discussion in Section 3.5.4 of the timeout
event in Figure 3.33 and the subsequent modification to include fast retransmit
on receipt of three duplicate ACKs.) When there is excessive congestion, then
one (or more) router buffers along the path overflows, causing a datagram (con-
taining a TCP segment) to be dropped. The dropped datagram, in turn, results in
a loss event at the sender—either a timeout or the receipt of three duplicate
ACKs—which is taken by the sender to be an indication of congestion on the
sender-to-receiver path.

Having considered how congestion is detected, let’s next consider the more
optimistic case when the network is congestion-free, that is, when a loss event
doesn’t occur. In this case, acknowledgments for previously unacknowledged
segments will be received at the TCP sender. As we’ll see, TCP will take the
arrival of these acknowledgments as an indication that all is well—that segments
being transmitted into the network are being successfully delivered to the
destination—and will use acknowledgments to increase its congestion window
size (and hence its transmission rate). Note that if acknowledgments arrive at a
relatively slow rate (e.g., if the end-end path has high delay or contains a
low-bandwidth link), then the congestion window will be increased at a relatively
slow rate. On the other hand, if acknowledgments arrive at a high rate, then the
congestion window will be increased more quickly. Because TCP uses

https://hemanthrajhemu.github.io

acknowledgments to trigger (or clock) its increase in congestion window size,
TCP is said to be self-clocking.

Given the mechanism of adjusting the value of cwnd to control the sending rate,
the critical question remains: How should a TCP sender determine the rate at which
it should send? If TCP senders collectively send too fast, they can congest the net-
work, leading to the type of congestion collapse that we saw in Figure 3.48. Indeed,
the version of TCP that we’ll study shortly was developed in response to observed
Internet congestion collapse [Jacobson 1988] under earlier versions of TCP. How-
ever, if TCP senders are too cautious and send too slowly, they could under utilize
the bandwidth in the network; that is, the TCP senders could send at a higher rate
without congesting the network. How then do the TCP senders determine their send-
ing rates such that they don’t congest the network but at the same time make use of
all the available bandwidth? Are TCP senders explicitly coordinated, or is there a
distributed approach in which the TCP senders can set their sending rates based only
on local information? TCP answers these questions using the following guiding
principles:

• A lost segment implies congestion, and hence, the TCP sender’s rate should be
decreased when a segment is lost. Recall from our discussion in Section 3.5.4,
that a timeout event or the receipt of four acknowledgments for a given seg-
ment (one original ACK and then three duplicate ACKs) is interpreted as an
implicit “loss event” indication of the segment following the quadruply ACKed
segment, triggering a retransmission of the lost segment. From a congestion-
control standpoint, the question is how the TCP sender should decrease its con-
gestion window size, and hence its sending rate, in response to this inferred
loss event.

• An acknowledged segment indicates that the network is delivering the sender’s
segments to the receiver, and hence, the sender’s rate can be increased when an
ACK arrives for a previously unacknowledged segment. The arrival of acknowl-
edgments is taken as an implicit indication that all is well—segments are being
successfully delivered from sender to receiver, and the network is thus not con-
gested. The congestion window size can thus be increased.

• Bandwidth probing. Given ACKs indicating a congestion-free source-to-destination
path and loss events indicating a congested path, TCP’s strategy for adjusting its
transmission rate is to increase its rate in response to arriving ACKs until a loss
event occurs, at which point, the transmission rate is decreased. The TCP sender
thus increases its transmission rate to probe for the rate that at which congestion
onset begins, backs off from that rate, and then to begins probing again to see if
the congestion onset rate has changed. The TCP sender’s behavior is perhaps anal-
ogous to the child who requests (and gets) more and more goodies until finally
he/she is finally told “No!”, backs off a bit, but then begins making requests

3.7 • TCP CONGESTION CONTROL 271

https://hemanthrajhemu.github.io

272 CHAPTER 3 • TRANSPORT LAYER

again shortly afterwards. Note that there is no explicit signaling of congestion
state by the network—ACKs and loss events serve as implicit signals—and that
each TCP sender acts on local information asynchronously from other TCP
senders.

Given this overview of TCP congestion control, we’re now in a position to consider
the details of the celebrated TCP congestion-control algorithm, which was first
described in [Jacobson 1988] and is standardized in [RFC 5681]. The algorithm has
three major components: (1) slow start, (2) congestion avoidance, and (3) fast recov-
ery. Slow start and congestion avoidance are mandatory components of TCP, differ-
ing in how they increase the size of cwnd in response to received ACKs. We’ll see
shortly that slow start increases the size of cwnd more rapidly (despite its name!)
than congestion avoidance. Fast recovery is recommended, but not required, for
TCP senders.

Slow Start

When a TCP connection begins, the value of cwnd is typically initialized to a
small value of 1 MSS [RFC 3390], resulting in an initial sending rate of roughly
MSS/RTT. For example, if MSS = 500 bytes and RTT = 200 msec, the resulting
initial sending rate is only about 20 kbps. Since the available bandwidth to the
TCP sender may be much larger than MSS/RTT, the TCP sender would like to
find the amount of available bandwidth quickly. Thus, in the slow-start state, the
value of cwnd begins at 1 MSS and increases by 1 MSS every time a transmitted
segment is first acknowledged. In the example of Figure 3.51, TCP sends the first
segment into the network and waits for an acknowledgment. When this acknowl-
edgment arrives, the TCP sender increases the congestion window by one MSS
and sends out two maximum-sized segments. These segments are then acknowl-
edged, with the sender increasing the congestion window by 1 MSS for each of
the acknowledged segments, giving a congestion window of 4 MSS, and so on.
This process results in a doubling of the sending rate every RTT. Thus, the TCP
send rate starts slow but grows exponentially during the slow start phase.

But when should this exponential growth end? Slow start provides several
answers to this question. First, if there is a loss event (i.e., congestion) indicated
by a timeout, the TCP sender sets the value of cwnd to 1 and begins the slow
start process anew. It also sets the value of a second state variable, ssthresh
(shorthand for “slow start threshold”) to cwnd/2—half of the value of the con-
gestion window value when congestion was detected. The second way in which
slow start may end is directly tied to the value of ssthresh. Since ssthresh
is half the value of cwnd when congestion was last detected, it might be a bit
reckless to keep doubling cwnd when it reaches or surpasses the value of
ssthresh. Thus, when the value of cwnd equals ssthresh, slow start ends
and TCP transitions into congestion avoidance mode. As we’ll see, TCP increases

https://hemanthrajhemu.github.io

3.7 • TCP CONGESTION CONTROL 273

TCP SPLITTING: OPTIMIZING THE PERFORMANCE OF CLOUD SERVICES

For cloud services such as search, e-mail, and social networks, it is desirable to provide a
high-level of responsiveness, ideally giving users the illusion that the services are running
within their own end systems (including their smartphones). This can be a major challenge,
as users are often located far away from the data centers that are responsible for serving
the dynamic content associated with the cloud services. Indeed, if the end system is far
from a data center, then the RTT will be large, potentially leading to poor response time
performance due to TCP slow start.

As a case study, consider the delay in receiving a response for a search query.
Typically, the server requires three TCP windows during slow start to deliver the
response [Pathak 2010]. Thus the time from when an end system initiates a TCP con-
nection until the time when it receives the last packet of the response is roughly 4 RTT
(one RTT to set up the TCP connection plus three RTTs for the three windows of data)
plus the processing time in the data center. These RTT delays can lead to a noticeable
delay in returning search results for a significant fraction of queries. Moreover, there
can be significant packet loss in access networks, leading to TCP retransmissions and
even larger delays.

One way to mitigate this problem and improve user-perceived performance is to (1)
deploy front-end servers closer to the users, and (2) utilize TCP splitting by breaking the
TCP connection at the front-end server. With TCP splitting, the client establishes a TCP con-
nection to the nearby front-end, and the front-end maintains a persistent TCP connection to
the data center with a very large TCP congestion window [Tariq 2008, Pathak 2010,
Chen 2011]. With this approach, the response time roughly becomes 4 RTTFE RTTBE
processing time, where RTTFE is the round-trip time between client and front-end server, and
RTTBE is the round-trip time between the front-end server and the data center (back-end server).
If the front-end server is close to client, then this response time approximately becomes
RTT plus processing time, since RTTFE is negligibly small and RTTBE is approximately RTT. In
summary, TCP splitting can reduce the networking delay roughly from 4 RTT to RTT, signifi-
cantly improving user-perceived performance, particularly for users who are far from the
nearest data center. TCP splitting also helps reduce TCP retransmission delays caused by
losses in access networks. Today, Google and Akamai make extensive use of their CDN
servers in access networks (see Section 7.2) to perform TCP splitting for the cloud services
they support [Chen 2011].

�

++�

�

PRINCIPLES IN PRACTICE

cwnd more cautiously when in congestion-avoidance mode. The final way in
which slow start can end is if three duplicate ACKs are detected, in which case
TCP performs a fast retransmit (see Section 3.5.4) and enters the fast recovery
state, as discussed below. TCP’s behavior in slow start is summarized in the FSM

https://hemanthrajhemu.github.io

274 CHAPTER 3 • TRANSPORT LAYER

description of TCP congestion control in Figure 3.52. The slow-start algorithm
traces it roots to [Jacobson 1988]; an approach similar to slow start was also pro-
posed independently in [Jain 1986].

Congestion Avoidance

On entry to the congestion-avoidance state, the value of cwnd is approximately half
its value when congestion was last encountered—congestion could be just around
the corner! Thus, rather than doubling the value of cwnd every RTT, TCP adopts a
more conservative approach and increases the value of cwnd by just a single MSS
every RTT [RFC 5681]. This can be accomplished in several ways. A common
approach is for the TCP sender to increase cwnd by MSS bytes (MSS/cwnd) when-
ever a new acknowledgment arrives. For example, if MSS is 1,460 bytes and cwnd
is 14,600 bytes, then 10 segments are being sent within an RTT. Each arriving ACK
(assuming one ACK per segment) increases the congestion window size by 1/10

Host A Host B

one segment

two segments

four segments

RTT

Time Time

Figure 3.51 � TCP slow start

https://hemanthrajhemu.github.io

3.7 • TCP CONGESTION CONTROL 275

MSS, and thus, the value of the congestion window will have increased by one MSS
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT)
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout
occurs. As in the case of slow start: The value of cwnd is set to 1 MSS, and the
value of ssthresh is updated to half the value of cwnd when the loss event
occurred. Recall, however, that a loss event also can be triggered by a triple dupli-
cate ACK event. In this case, the network is continuing to deliver segments from
sender to receiver (as indicated by the receipt of duplicate ACKs). So TCP’s behav-
ior to this type of loss event should be less drastic than with a timeout-indicated loss:
TCP halves the value of cwnd (adding in 3 MSS for good measure to account for

Slow
start

duplicate ACK

dupACKcount++

duplicate ACK

dupACKcount++

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0

cwnd=1 MSS
ssthresh=64 KB
dupACKcount=0

timeout

ssthresh=cwnd/2
cwnd=1
dupACKcount=0

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0

cwnd ≥ ssthresh

Congestion
avoidance

Fast
recovery

new ACK

cwnd=cwnd+MSS •(MSS/cwnd)
dupACKcount=0

transmit new segment(s), as allowed

new ACK

cwnd=cwnd+MSS
dupACKcount=0

transmit new segment(s), as allowed

retransmit missing segment

retransmit missing segment dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3•MSS

retransmit missing segment

duplicate ACK

cwnd=cwnd+MSS

transmit new segment(s), as allowed

dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3•MSS

retransmit missing segment

retransmit missing segment

new ACK

cwnd=ssthresh
dupACKcount=0

Λ

Λ

Figure 3.52 � FSM description of TCP congestion control

https://hemanthrajhemu.github.io

276 CHAPTER 3 • TRANSPORT LAYER

the triple duplicate ACKs received) and records the value of ssthresh to be half
the value of cwnd when the triple duplicate ACKs were received. The fast-recovery
state is then entered.

Fast Recovery

In fast recovery, the value of cwnd is increased by 1 MSS for every duplicate ACK
received for the missing segment that caused TCP to enter the fast-recovery state.
Eventually, when an ACK arrives for the missing segment, TCP enters the
congestion-avoidance state after deflating cwnd. If a timeout event occurs, fast
recovery transitions to the slow-start state after performing the same actions as in
slow start and congestion avoidance: The value of cwnd is set to 1 MSS, and the
value of ssthresh is set to half the value of cwnd when the loss event occurred.

Fast recovery is a recommended, but not required, component of TCP [RFC
5681]. It is interesting that an early version of TCP, known as TCP Tahoe, uncondi-
tionally cut its congestion window to 1 MSS and entered the slow-start phase after
either a timeout-indicated or triple-duplicate-ACK-indicated loss event. The newer
version of TCP, TCP Reno, incorporated fast recovery.

Figure 3.53 illustrates the evolution of TCP’s congestion window for both Reno
and Tahoe. In this figure, the threshold is initially equal to 8 MSS. For the first eight
transmission rounds, Tahoe and Reno take identical actions. The congestion window
climbs exponentially fast during slow start and hits the threshold at the fourth round
of transmission. The congestion window then climbs linearly until a triple duplicate-
ACK event occurs, just after transmission round 8. Note that the congestion window
is 12 • MSS when this loss event occurs. The value of ssthresh is then set to

0
10 2 3 4 5 6 7 8

Transmission round

TCP Tahoe

ssthresh

ssthresh

C
o

n
g

es
ti

o
n

 w
in

d
o

w
(i

n
 s

eg
m

en
ts

)

9 10 11 12 13 14 15

2

4

6

8

10

12

14

16

TCP Reno

Figure 3.53 � Evolution of TCP’s congestion window (Tahoe and Reno)

VideoNote
Examining the
behavior of TCP

https://hemanthrajhemu.github.io

3.7 • TCP CONGESTION CONTROL 277

0.5 • cwnd = 6 • MSS. Under TCP Reno, the congestion window is set to cwnd =
6 • MSS and then grows linearly. Under TCP Tahoe, the congestion window is set to
1 MSS and grows exponentially until it reaches the value of ssthresh, at which
point it grows linearly.

Figure 3.52 presents the complete FSM description of TCP’s congestion-
control algorithms—slow start, congestion avoidance, and fast recovery. The figure
also indicates where transmission of new segments or retransmitted segments can
occur. Although it is important to distinguish between TCP error control/retransmis-
sion and TCP congestion control, it’s also important to appreciate how these two
aspects of TCP are inextricably linked.

TCP Congestion Control: Retrospective

Having delved into the details of slow start, congestion avoidance, and fast recov-
ery, it’s worthwhile to now step back and view the forest from the trees. Ignoring the
initial slow-start period when a connection begins and assuming that losses are indi-
cated by triple duplicate ACKs rather than timeouts, TCP’s congestion control con-
sists of linear (additive) increase in cwnd of 1 MSS per RTT and then a halving
(multiplicative decrease) of cwnd on a triple duplicate-ACK event. For this reason,
TCP congestion control is often referred to as an additive-increase, multiplicative-
decrease (AIMD) form of congestion control. AIMD congestion control gives rise
to the “saw tooth” behavior shown in Figure 3.54, which also nicely illustrates our
earlier intuition of TCP “probing” for bandwidth—TCP linearly increases its con-
gestion window size (and hence its transmission rate) until a triple duplicate-ACK
event occurs. It then decreases its congestion window size by a factor of two but
then again begins increasing it linearly, probing to see if there is additional available
bandwidth.

24 K

16 K

8 K

Time

C
o

n
g

es
ti

o
n

 w
in

d
o

w

Figure 3.54 � Additive-increase, multiplicative-decrease congestion control

https://hemanthrajhemu.github.io

278 CHAPTER 3 • TRANSPORT LAYER

As noted previously, many TCP implementations use the Reno algorithm [Padhye
2001]. Many variations of the Reno algorithm have been proposed [RFC 3782; RFC
2018]. The TCP Vegas algorithm [Brakmo 1995; Ahn 1995] attempts to avoid conges-
tion while maintaining good throughput. The basic idea of Vegas is to (1) detect con-
gestion in the routers between source and destination before packet loss occurs, and (2)
lower the rate linearly when this imminent packet loss is detected. Imminent packet loss
is predicted by observing the RTT. The longer the RTT of the packets, the greater the
congestion in the routers. Linux supports a number of congestion-control algorithms
(including TCP Reno and TCP Vegas) and allows a system administrator to configure
which version of TCP will be used. The default version of TCP in Linux version 2.6.18
was set to CUBIC [Ha 2008], a version of TCP developed for high-bandwidth applica-
tions. For a recent survey of the many flavors of TCP, see [Afanasyev 2010].

TCP’s AIMD algorithm was developed based on a tremendous amount of engi-
neering insight and experimentation with congestion control in operational net-
works. Ten years after TCP’s development, theoretical analyses showed that TCP’s
congestion-control algorithm serves as a distributed asynchronous-optimization
algorithm that results in several important aspects of user and network performance
being simultaneously optimized [Kelly 1998]. A rich theory of congestion control
has since been developed [Srikant 2004].

Macroscopic Description of TCP Throughput

Given the saw-toothed behavior of TCP, it’s natural to consider what the average
throughput (that is, the average rate) of a long-lived TCP connection might be. In this
analysis we’ll ignore the slow-start phases that occur after timeout events. (These
phases are typically very short, since the sender grows out of the phase exponentially
fast.) During a particular round-trip interval, the rate at which TCP sends data is a
function of the congestion window and the current RTT. When the window size is w
bytes and the current round-trip time is RTT seconds, then TCP’s transmission rate is
roughly w/RTT. TCP then probes for additional bandwidth by increasing w by 1 MSS
each RTT until a loss event occurs. Denote by W the value of w when a loss event
occurs. Assuming that RTT and W are approximately constant over the duration of
the connection, the TCP transmission rate ranges from W/(2 · RTT) to W/RTT.

These assumptions lead to a highly simplified macroscopic model for the
steady-state behavior of TCP. The network drops a packet from the connection when
the rate increases to W/RTT; the rate is then cut in half and then increases by
MSS/RTT every RTT until it again reaches W/RTT. This process repeats itself over
and over again. Because TCP’s throughput (that is, rate) increases linearly between
the two extreme values, we have

average throughput of a connection =
0.75 � W

RTT

https://hemanthrajhemu.github.io

3.7 • TCP CONGESTION CONTROL 279

Using this highly idealized model for the steady-state dynamics of TCP, we can
also derive an interesting expression that relates a connection’s loss rate to its avail-
able bandwidth [Mahdavi 1997]. This derivation is outlined in the homework prob-
lems. A more sophisticated model that has been found empirically to agree with
measured data is [Padhye 2000].

TCP Over High-Bandwidth Paths

It is important to realize that TCP congestion control has evolved over the years and
indeed continues to evolve. For a summary of current TCP variants and discussion
of TCP evolution, see [Floyd 2001, RFC 5681, Afanasyev 2010]. What was good
for the Internet when the bulk of the TCP connections carried SMTP, FTP, and Tel-
net traffic is not necessarily good for today’s HTTP-dominated Internet or for a
future Internet with services that are still undreamed of.

The need for continued evolution of TCP can be illustrated by considering the
high-speed TCP connections that are needed for grid- and cloud-computing applica-
tions. For example, consider a TCP connection with 1,500-byte segments and a 100
ms RTT, and suppose we want to send data through this connection at 10 Gbps.
Following [RFC 3649], we note that using the TCP throughput formula above, in
order to achieve a 10 Gbps throughput, the average congestion window size would
need to be 83,333 segments. That’s a lot of segments, leading us to be rather con-
cerned that one of these 83,333 in-flight segments might be lost. What would happen
in the case of a loss? Or, put another way, what fraction of the transmitted segments
could be lost that would allow the TCP congestion-control algorithm specified in Fig-
ure 3.52 still to achieve the desired 10 Gbps rate? In the homework questions for this
chapter, you are led through the derivation of a formula relating the throughput of a
TCP connection as a function of the loss rate (L), the round-trip time (RTT), and the
maximum segment size (MSS):

Using this formula, we can see that in order to achieve a throughput of 10 Gbps,
today’s TCP congestion-control algorithm can only tolerate a segment loss probabil-
ity of 2 · 10–10 (or equivalently, one loss event for every 5,000,000,000 segments)—
a very low rate. This observation has led a number of researchers to investigate new
versions of TCP that are specifically designed for such high-speed environments;
see [Jin 2004; RFC 3649; Kelly 2003; Ha 2008] for discussions of these efforts.

3.7.1 Fairness

Consider K TCP connections, each with a different end-to-end path, but all passing
through a bottleneck link with transmission rate R bps. (By bottleneck link, we mean

average throughput of a connection =
1.22 � MSS

RTT 2L

https://hemanthrajhemu.github.io

280 CHAPTER 3 • TRANSPORT LAYER

that for each connection, all the other links along the connection’s path are not con-
gested and have abundant transmission capacity as compared with the transmission
capacity of the bottleneck link.) Suppose each connection is transferring a large file
and there is no UDP traffic passing through the bottleneck link. A congestion-con-
trol mechanism is said to be fair if the average transmission rate of each connection
is approximately R/K; that is, each connection gets an equal share of the link band-
width.

Is TCP’s AIMD algorithm fair, particularly given that different TCP connec-
tions may start at different times and thus may have different window sizes at a
given point in time? [Chiu 1989] provides an elegant and intuitive explanation of
why TCP congestion control converges to provide an equal share of a bottleneck
link’s bandwidth among competing TCP connections.

Let’s consider the simple case of two TCP connections sharing a single link
with transmission rate R, as shown in Figure 3.55. Assume that the two connections
have the same MSS and RTT (so that if they have the same congestion window size,
then they have the same throughput), that they have a large amount of data to send,
and that no other TCP connections or UDP datagrams traverse this shared link. Also,
ignore the slow-start phase of TCP and assume the TCP connections are operating
in CA mode (AIMD) at all times.

Figure 3.56 plots the throughput realized by the two TCP connections. If TCP is
to share the link bandwidth equally between the two connections, then the realized
throughput should fall along the 45-degree arrow (equal bandwidth share) emanat-
ing from the origin. Ideally, the sum of the two throughputs should equal R. (Cer-
tainly, each connection receiving an equal, but zero, share of the link capacity is not
a desirable situation!) So the goal should be to have the achieved throughputs fall
somewhere near the intersection of the equal bandwidth share line and the full band-
width utilization line in Figure 3.56.

Suppose that the TCP window sizes are such that at a given point in time, con-
nections 1 and 2 realize throughputs indicated by point A in Figure 3.56. Because
the amount of link bandwidth jointly consumed by the two connections is less than

TCP connection 2

TCP connection 1

Bottleneck
router capacity R

Figure 3.55 � Two TCP connections sharing a single bottleneck link

https://hemanthrajhemu.github.io

3.7 • TCP CONGESTION CONTROL 281

R, no loss will occur, and both connections will increase their window by 1 MSS
per RTT as a result of TCP’s congestion-avoidance algorithm. Thus, the joint
throughput of the two connections proceeds along a 45-degree line (equal increase
for both connections) starting from point A. Eventually, the link bandwidth jointly
consumed by the two connections will be greater than R, and eventually packet loss
will occur. Suppose that connections 1 and 2 experience packet loss when they
realize throughputs indicated by point B. Connections 1 and 2 then decrease their
windows by a factor of two. The resulting throughputs realized are thus at point C,
halfway along a vector starting at B and ending at the origin. Because the joint
bandwidth use is less than R at point C, the two connections again increase their
throughputs along a 45-degree line starting from C. Eventually, loss will again
occur, for example, at point D, and the two connections again decrease their win-
dow sizes by a factor of two, and so on. You should convince yourself that the
bandwidth realized by the two connections eventually fluctuates along the equal
bandwidth share line. You should also convince yourself that the two connections
will converge to this behavior regardless of where they are in the two-dimensional
space! Although a number of idealized assumptions lie behind this scenario, it still
provides an intuitive feel for why TCP results in an equal sharing of bandwidth
among connections.

In our idealized scenario, we assumed that only TCP connections traverse
the bottleneck link, that the connections have the same RTT value, and that only a

R

R

Equal
bandwidth
share

Connection 1 throughput

C
o

n
n

ec
ti

o
n

 2
 t

h
ro

u
g

h
p

u
t

D

B

C
A

Full bandwidth
utilization line

Figure 3.56 � Throughput realized by TCP connections 1 and 2

https://hemanthrajhemu.github.io

282 CHAPTER 3 • TRANSPORT LAYER

single TCP connection is associated with a host-destination pair. In practice, these
conditions are typically not met, and client-server applications can thus obtain very
unequal portions of link bandwidth. In particular, it has been shown that when mul-
tiple connections share a common bottleneck, those sessions with a smaller RTT are
able to grab the available bandwidth at that link more quickly as it becomes free
(that is, open their congestion windows faster) and thus will enjoy higher through-
put than those connections with larger RTTs [Lakshman 1997].

Fairness and UDP

We have just seen how TCP congestion control regulates an application’s transmis-
sion rate via the congestion window mechanism. Many multimedia applications,
such as Internet phone and video conferencing, often do not run over TCP for this
very reason—they do not want their transmission rate throttled, even if the network
is very congested. Instead, these applications prefer to run over UDP, which does
not have built-in congestion control. When running over UDP, applications can
pump their audio and video into the network at a constant rate and occasionally lose
packets, rather than reduce their rates to “fair” levels at times of congestion and not
lose any packets. From the perspective of TCP, the multimedia applications running
over UDP are not being fair—they do not cooperate with the other connections nor
adjust their transmission rates appropriately. Because TCP congestion control will
decrease its transmission rate in the face of increasing congestion (loss), while UDP
sources need not, it is possible for UDP sources to crowd out TCP traffic. An area of
research today is thus the development of congestion-control mechanisms for the
Internet that prevent UDP traffic from bringing the Internet’s throughput to a grind-
ing halt [Floyd 1999; Floyd 2000; Kohler 2006].

Fairness and Parallel TCP Connections

But even if we could force UDP traffic to behave fairly, the fairness problem would
still not be completely solved. This is because there is nothing to stop a TCP-based
application from using multiple parallel connections. For example, Web browsers
often use multiple parallel TCP connections to transfer the multiple objects within
a Web page. (The exact number of multiple connections is configurable in most
browsers.) When an application uses multiple parallel connections, it gets a larger
fraction of the bandwidth in a congested link. As an example, consider a link of rate
R supporting nine ongoing client-server applications, with each of the applications
using one TCP connection. If a new application comes along and also uses one
TCP connection, then each application gets approximately the same transmission
rate of R/10. But if this new application instead uses 11 parallel TCP connections,
then the new application gets an unfair allocation of more than R/2. Because
Web traffic is so pervasive in the Internet, multiple parallel connections are not
uncommon.

https://hemanthrajhemu.github.io

3.8 • SUMMARY 283

3.8 Summary

We began this chapter by studying the services that a transport-layer protocol can
provide to network applications. At one extreme, the transport-layer protocol can be
very simple and offer a no-frills service to applications, providing only a multiplex-
ing/demultiplexing function for communicating processes. The Internet’s UDP pro-
tocol is an example of such a no-frills transport-layer protocol. At the other extreme,
a transport-layer protocol can provide a variety of guarantees to applications, such
as reliable delivery of data, delay guarantees, and bandwidth guarantees. Neverthe-
less, the services that a transport protocol can provide are often constrained by the
service model of the underlying network-layer protocol. If the network-layer proto-
col cannot provide delay or bandwidth guarantees to transport-layer segments, then
the transport-layer protocol cannot provide delay or bandwidth guarantees for the
messages sent between processes.

We learned in Section 3.4 that a transport-layer protocol can provide reliable
data transfer even if the underlying network layer is unreliable. We saw that provid-
ing reliable data transfer has many subtle points, but that the task can be accom-
plished by carefully combining acknowledgments, timers, retransmissions, and
sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep in
mind that reliable data transfer can be provided by link-, network-, transport-, or
application-layer protocols. Any of the upper four layers of the protocol stack can
implement acknowledgments, timers, retransmissions, and sequence numbers and
provide reliable data transfer to the layer above. In fact, over the years, engineers
and computer scientists have independently designed and implemented link-, net-
work-, transport-, and application-layer protocols that provide reliable data transfer
(although many of these protocols have quietly disappeared).

In Section 3.5, we took a close look at TCP, the Internet’s connection-oriented
and reliable transport-layer protocol. We learned that TCP is complex, involving
connection management, flow control, and round-trip time estimation, as well as
reliable data transfer. In fact, TCP is actually more complex than our description—
we intentionally did not discuss a variety of TCP patches, fixes, and improvements
that are widely implemented in various versions of TCP. All of this complexity,
however, is hidden from the network application. If a client on one host wants to
send data reliably to a server on another host, it simply opens a TCP socket to the
server and pumps data into that socket. The client-server application is blissfully
unaware of TCP’s complexity.

In Section 3.6, we examined congestion control from a broad perspective, and in
Section 3.7, we showed how TCP implements congestion control. We learned that
congestion control is imperative for the well-being of the network. Without conges-
tion control, a network can easily become gridlocked, with little or no data being trans-
ported end-to-end. In Section 3.7 we learned that TCP implements an end-to-end

https://hemanthrajhemu.github.io

284 CHAPTER 3 • TRANSPORT LAYER

congestion-control mechanism that additively increases its transmission rate when the
TCP connection’s path is judged to be congestion-free, and multiplicatively decreases
its transmission rate when loss occurs. This mechanism also strives to give each TCP
connection passing through a congested link an equal share of the link bandwidth. We
also examined in some depth the impact of TCP connection establishment and slow
start on latency. We observed that in many important scenarios, connection establish-
ment and slow start significantly contribute to end-to-end delay. We emphasize once
more that while TCP congestion control has evolved over the years, it remains an area
of intensive research and will likely continue to evolve in the upcoming years.

Our discussion of specific Internet transport protocols in this chapter has
focused on UDP and TCP—the two “work horses” of the Internet transport layer.
However, two decades of experience with these two protocols has identified
circumstances in which neither is ideally suited. Researchers have thus been
busy developing additional transport-layer protocols, several of which are now
IETF proposed standards.

The Datagram Congestion Control Protocol (DCCP) [RFC 4340] provides a low-
overhead, message-oriented, UDP-like unreliable service, but with an application-
selected form of congestion control that is compatible with TCP. If reliable or
semi-reliable data transfer is needed by an application, then this would be performed
within the application itself, perhaps using the mechanisms we have studied in Section
3.4. DCCP is envisioned for use in applications such as streaming media (see Chapter 7)
that can exploit the tradeoff between timeliness and reliability of data delivery, but that
want to be responsive to network congestion.

The Stream Control Transmission Protocol (SCTP) [RFC 4960, RFC 3286] is a
reliable, message-oriented protocol that allows several different application-level
“streams” to be multiplexed through a single SCTP connection (an approach known as
“multi-streaming”). From a reliability standpoint, the different streams within the con-
nection are handled separately, so that packet loss in one stream does not affect the
delivery of data in other streams. SCTP also allows data to be transferred over two out-
going paths when a host is connected to two or more networks, optional delivery of out-
of-order data, and a number of other features. SCTP’s flow- and congestion-control
algorithms are essentially the same as in TCP.

The TCP-Friendly Rate Control (TFRC) protocol [RFC 5348] is a congestion-
control protocol rather than a full-fledged transport-layer protocol. It specifies a
congestion-control mechanism that could be used in anther transport protocol such as
DCCP (indeed one of the two application-selectable protocols available in DCCP is
TFRC). The goal of TFRC is to smooth out the “saw tooth” behavior (see Figure 3.54)
in TCP congestion control, while maintaining a long-term sending rate that is “reason-
ably” close to that of TCP. With a smoother sending rate than TCP, TFRC is well-suited
for multimedia applications such as IP telephony or streaming media where such a
smooth rate is important. TFRC is an “equation-based” protocol that uses the measured
packet loss rate as input to an equation [Padhye 2000] that estimates what TCP’s
throughput would be if a TCP session experiences that loss rate. This rate is then taken
as TFRC’s target sending rate.

https://hemanthrajhemu.github.io

HOMEWORK PROBLEMS AND QUESTIONS 285

Only the future will tell whether DCCP, SCTP, or TFRC will see widespread
deployment. While these protocols clearly provide enhanced capabilities over TCP and
UDP, TCP and UDP have proven themselves “good enough” over the years. Whether
“better” wins out over “good enough” will depend on a complex mix of technical,
social, and business considerations.

In Chapter 1, we said that a computer network can be partitioned into the
“network edge” and the “network core.” The network edge covers everything that
happens in the end systems. Having now covered the application layer and the
transport layer, our discussion of the network edge is complete. It is time to
explore the network core! This journey begins in the next chapter, where we’ll
study the network layer, and continues into Chapter 5, where we’ll study the
link layer.

Homework Problems and Questions

Chapter 3 Review Questions

SECTIONS 3.1–3.3

R1. Suppose the network layer provides the following service. The network layer
in the source host accepts a segment of maximum size 1,200 bytes and a des-
tination host address from the transport layer. The network layer then guaran-
tees to deliver the segment to the transport layer at the destination host.
Suppose many network application processes can be running at the
destination host.

a. Design the simplest possible transport-layer protocol that will get applica-
tion data to the desired process at the destination host. Assume the operat-
ing system in the destination host has assigned a 4-byte port number to
each running application process.

b. Modify this protocol so that it provides a “return address” to the destina-
tion process.

c. In your protocols, does the transport layer “have to do anything” in the
core of the computer network?

R2. Consider a planet where everyone belongs to a family of six, every family
lives in its own house, each house has a unique address, and each person in a
given house has a unique name. Suppose this planet has a mail service that
delivers letters from source house to destination house. The mail service
requires that (1) the letter be in an envelope, and that (2) the address of the
destination house (and nothing more) be clearly written on the envelope. Sup-
pose each family has a delegate family member who collects and distributes
letters for the other family members. The letters do not necessarily provide
any indication of the recipients of the letters.

https://hemanthrajhemu.github.io

286 CHAPTER 3 • TRANSPORT LAYER

a. Using the solution to Problem R1 above as inspiration, describe a protocol
that the delegates can use to deliver letters from a sending family member
to a receiving family member.

b. In your protocol, does the mail service ever have to open the envelope and
examine the letter in order to provide its service?

R3. Consider a TCP connection between Host A and Host B. Suppose that the
TCP segments traveling from Host A to Host B have source port number x
and destination port number y. What are the source and destination port num-
bers for the segments traveling from Host B to Host A?

R4. Describe why an application developer might choose to run an application
over UDP rather than TCP.

R5. Why is it that voice and video traffic is often sent over TCP rather than UDP
in today’s Internet? (Hint: The answer we are looking for has nothing to do
with TCP’s congestion-control mechanism.)

R6. Is it possible for an application to enjoy reliable data transfer even when the
application runs over UDP? If so, how?

R7. Suppose a process in Host C has a UDP socket with port number 6789. Sup-
pose both Host A and Host B each send a UDP segment to Host C with desti-
nation port number 6789. Will both of these segments be directed to the same
socket at Host C? If so, how will the process at Host C know that these two
segments originated from two different hosts?

R8. Suppose that a Web server runs in Host C on port 80. Suppose this Web
server uses persistent connections, and is currently receiving requests from
two different Hosts, A and B. Are all of the requests being sent through the
same socket at Host C? If they are being passed through different sockets, do
both of the sockets have port 80? Discuss and explain.

SECTION 3.4

R9. In our rdt protocols, why did we need to introduce sequence numbers?

R10. In our rdt protocols, why did we need to introduce timers?

R11. Suppose that the roundtrip delay between sender and receiver is constant and
known to the sender. Would a timer still be necessary in protocol rdt 3.0,
assuming that packets can be lost? Explain.

R12. Visit the Go-Back-N Java applet at the companion Web site.

a. Have the source send five packets, and then pause the animation before
any of the five packets reach the destination. Then kill the first packet and
resume the animation. Describe what happens.

b. Repeat the experiment, but now let the first packet reach the destination
and kill the first acknowledgment. Describe again what happens.

c. Finally, try sending six packets. What happens?

https://hemanthrajhemu.github.io

HOMEWORK PROBLEMS AND QUESTIONS 287

R13. Repeat R12, but now with the Selective Repeat Java applet. How are Selec-
tive Repeat and Go-Back-N different?

SECTION 3.5

R14. True or false?

a. Host A is sending Host B a large file over a TCP connection. Assume
Host B has no data to send Host A. Host B will not send acknowledg-
ments to Host A because Host B cannot piggyback the acknowledgments
on data.

b. The size of the TCP rwnd never changes throughout the duration of the
connection.

c. Suppose Host A is sending Host B a large file over a TCP connection. The
number of unacknowledged bytes that A sends cannot exceed the size of
the receive buffer.

d. Suppose Host A is sending a large file to Host B over a TCP connection. If
the sequence number for a segment of this connection is m, then the
sequence number for the subsequent segment will necessarily be m + 1.

e. The TCP segment has a field in its header for rwnd.

f. Suppose that the last SampleRTT in a TCP connection is equal to 1 sec.
The current value of TimeoutInterval for the connection will neces-
sarily be ≥ 1 sec.

g. Suppose Host A sends one segment with sequence number 38 and 4 bytes
of data over a TCP connection to Host B. In this same segment the
acknowledgment number is necessarily 42.

R15. Suppose Host A sends two TCP segments back to back to Host B over a TCP
connection. The first segment has sequence number 90; the second has
sequence number 110.

a. How much data is in the first segment?

b. Suppose that the first segment is lost but the second segment arrives at B.
In the acknowledgment that Host B sends to Host A, what will be the
acknowledgment number?

R16. Consider the Telnet example discussed in Section 3.5. A few seconds after the
user types the letter ‘C,’ the user types the letter ‘R.’After typing the letter
‘R,’ how many segments are sent, and what is put in the sequence number
and acknowledgment fields of the segments?

SECTION 3.7

R17. Suppose two TCP connections are present over some bottleneck link of rate R
bps. Both connections have a huge file to send (in the same direction over the

https://hemanthrajhemu.github.io

288 CHAPTER 3 • TRANSPORT LAYER

bottleneck link). The transmissions of the files start at the same time. What
transmission rate would TCP like to give to each of the connections?

R18. True or false? Consider congestion control in TCP. When the timer expires at
the sender, the value of ssthresh is set to one half of its previous value.

R19. In the discussion of TCP splitting in the sidebar in Section 7.2, it was
claimed that the response time with TCP splitting is approximately

Justify this claim.

Problems

P1. Suppose Client A initiates a Telnet session with Server S. At about the same
time, Client B also initiates a Telnet session with Server S. Provide possible
source and destination port numbers for

a. The segments sent from A to S.

b. The segments sent from B to S.

c. The segments sent from S to A.

d. The segments sent from S to B.

e. If A and B are different hosts, is it possible that the source port number in
the segments from A to S is the same as that from B to S?

f. How about if they are the same host?

P2. Consider Figure 3.5. What are the source and destination port values in the seg-
ments flowing from the server back to the clients’ processes? What are the IP
addresses in the network-layer datagrams carrying the transport-layer segments?

P3. UDP and TCP use 1s complement for their checksums. Suppose you have the
following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s
complement of the sum of these 8-bit bytes? (Note that although UDP and
TCP use 16-bit words in computing the checksum, for this problem you are
being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes
the 1s complement of the sum; that is, why not just use the sum? With the 1s
complement scheme, how does the receiver detect errors? Is it possible that a
1-bit error will go undetected? How about a 2-bit error?

P4. a. Suppose you have the following 2 bytes: 01011100 and 01100101. What is
the 1s complement of the sum of these 2 bytes?

b. Suppose you have the following 2 bytes: 11011010 and 01100101. What is
the 1s complement of the sum of these 2 bytes?

c. For the bytes in part (a), give an example where one bit is flipped in each
of the 2 bytes and yet the 1s complement doesn’t change.

4 � RTTFE + RTTBE + processing time.

https://hemanthrajhemu.github.io

PROBLEMS 289

P5. Suppose that the UDP receiver computes the Internet checksum for the received
UDP segment and finds that it matches the value carried in the checksum field.
Can the receiver be absolutely certain that no bit errors have occurred? Explain.

P6. Consider our motivation for correcting protocol rdt2.1. Show that the
receiver, shown in Figure 3.57, when operating with the sender shown in Fig-
ure 3.11, can lead the sender and receiver to enter into a deadlock state, where
each is waiting for an event that will never occur.

P7. In protocol rdt3.0, the ACK packets flowing from the receiver to the
sender do not have sequence numbers (although they do have an ACK field
that contains the sequence number of the packet they are acknowledging).
Why is it that our ACK packets do not require sequence numbers?

P8. Draw the FSM for the receiver side of protocol rdt3.0.

P9. Give a trace of the operation of protocol rdt3.0 when data packets and
acknowledgment packets are garbled. Your trace should be similar to that
used in Figure 3.16.

P10. Consider a channel that can lose packets but has a maximum delay that is
known. Modify protocol rdt2.1 to include sender timeout and retransmit.
Informally argue why your protocol can communicate correctly over this
channel.

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq0(rcvpkt)))

compute chksum
make_pkt(sndpkt,NAK,chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq1(rcvpkt)))

compute chksum
make_pkt(sndpkt,NAK,chksum)
udt_send(sndpkt) rdt_rvc(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
compute chksum
make_pkt(sendpkt,ACK,chksum)
udt_send(sndpkt)

rdt_rvc(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
compute chksum
make_pkt(sendpkt,ACK,chksum)
udt_send(sndpkt)

Wait for
1 from
below

Figure 3.57 � An incorrect receiver for protocol rdt 2.1

https://hemanthrajhemu.github.io

290 CHAPTER 3 • TRANSPORT LAYER

P11. Consider the rdt2.2 receiver in Figure 3.14, and the creation of a new packet
in the self-transition (i.e., the transition from the state back to itself) in the Wait-
for-0-from-below and the Wait-for-1-from-below states: sndpkt=make_
pkt(ACK,0,checksum) and sndpkt=make_pkt(ACK,0,
checksum). Would the protocol work correctly if this action were removed
from the self-transition in the Wait-for-1-from-below state? Justify your
answer. What if this event were removed from the self-transition in the Wait-
for-0-from-below state? [Hint: In this latter case, consider what would hap-
pen if the first sender-to-receiver packet were corrupted.]

P12. The sender side of rdt3.0 simply ignores (that is, takes no action on)
all received packets that are either in error or have the wrong value in the
acknum field of an acknowledgment packet. Suppose that in such circum-
stances, rdt3.0 were simply to retransmit the current data packet. Would
the protocol still work? (Hint: Consider what would happen if there were
only bit errors; there are no packet losses but premature timeouts can occur.
Consider how many times the nth packet is sent, in the limit as n
approaches infinity.)

P13. Consider the rdt 3.0 protocol. Draw a diagram showing that if the net-
work connection between the sender and receiver can reorder messages
(that is, that two messages propagating in the medium between the sender
and receiver can be reordered), then the alternating-bit protocol will not
work correctly (make sure you clearly identify the sense in which it will
not work correctly). Your diagram should have the sender on the left and
the receiver on the right, with the time axis running down the page, show-
ing data (D) and acknowledgment (A) message exchange. Make sure you
indicate the sequence number associated with any data or acknowledgment
segment.

P14. Consider a reliable data transfer protocol that uses only negative acknowledg-
ments. Suppose the sender sends data only infrequently. Would a NAK-only
protocol be preferable to a protocol that uses ACKs? Why? Now suppose the
sender has a lot of data to send and the end-to-end connection experiences
few losses. In this second case, would a NAK-only protocol be preferable to a
protocol that uses ACKs? Why?

P15. Consider the cross-country example shown in Figure 3.17. How big would
the window size have to be for the channel utilization to be greater than 98
percent? Suppose that the size of a packet is 1,500 bytes, including both
header fields and data.

P16. Suppose an application uses rdt 3.0 as its transport layer protocol. As the
stop-and-wait protocol has very low channel utilization (shown in the cross-
country example), the designers of this application let the receiver keep send-
ing back a number (more than two) of alternating ACK 0 and ACK 1 even if

https://hemanthrajhemu.github.io

PROBLEMS 291

the corresponding data have not arrived at the receiver. Would this applica-
tion design increase the channel utilization? Why? Are there any potential
problems with this approach? Explain.

P17. Consider two network entities, A and B, which are connected by a perfect bi-
directional channel (i.e., any message sent will be received correctly; the
channel will not corrupt, lose, or re-order packets). A and B are to deliver
data messages to each other in an alternating manner: First, A must deliver a
message to B, then B must deliver a message to A, then A must deliver a mes-
sage to B and so on. If an entity is in a state where it should not attempt to
deliver a message to the other side, and there is an event like
rdt_send(data) call from above that attempts to pass data down for
transmission to the other side, this call from above can simply be ignored
with a call to rdt_unable_to_send(data), which informs the higher
layer that it is currently not able to send data. [Note: This simplifying
assumption is made so you don’t have to worry about buffering data.]

Draw a FSM specification for this protocol (one FSM for A, and one FSM for
B!). Note that you do not have to worry about a reliability mechanism here;
the main point of this question is to create a FSM specification that reflects
the synchronized behavior of the two entities. You should use the following
events and actions that have the same meaning as protocol rdt1.0 in
Figure 3.9: rdt_send(data), packet = make_pkt(data),
udt_send(packet), rdt_rcv(packet), extract
(packet,data), deliver_data(data). Make sure your protocol
reflects the strict alternation of sending between A and B. Also, make sure to
indicate the initial states for A and B in your FSM descriptions.

P18. In the generic SR protocol that we studied in Section 3.4.4, the sender trans-
mits a message as soon as it is available (if it is in the window) without wait-
ing for an acknowledgment. Suppose now that we want an SR protocol that
sends messages two at a time. That is, the sender will send a pair of messages
and will send the next pair of messages only when it knows that both mes-
sages in the first pair have been received correctly.

Suppose that the channel may lose messages but will not corrupt or reorder
messages. Design an error-control protocol for the unidirectional reliable
transfer of messages. Give an FSM description of the sender and receiver.
Describe the format of the packets sent between sender and receiver, and vice
versa. If you use any procedure calls other than those in Section 3.4 (for
example, udt_send(), start_timer(), rdt_rcv(), and so on),
clearly state their actions. Give an example (a timeline trace of sender and
receiver) showing how your protocol recovers from a lost packet.

P19. Consider a scenario in which Host A wants to simultaneously send packets to
Hosts B and C. A is connected to B and C via a broadcast channel—a packet

https://hemanthrajhemu.github.io

292 CHAPTER 3 • TRANSPORT LAYER

sent by A is carried by the channel to both B and C. Suppose that the broad-
cast channel connecting A, B, and C can independently lose and corrupt
packets (and so, for example, a packet sent from A might be correctly
received by B, but not by C). Design a stop-and-wait-like error-control proto-
col for reliably transferring packets from A to B and C, such that A will not
get new data from the upper layer until it knows that both B and C have cor-
rectly received the current packet. Give FSM descriptions of A and C. (Hint:
The FSM for B should be essentially the same as for C.) Also, give a descrip-
tion of the packet format(s) used.

P20. Consider a scenario in which Host A and Host B want to send messages to
Host C. Hosts A and C are connected by a channel that can lose and corrupt
(but not reorder) messages. Hosts B and C are connected by another chan-
nel (independent of the channel connecting A and C) with the same proper-
ties. The transport layer at Host C should alternate in delivering messages
from A and B to the layer above (that is, it should first deliver the data from
a packet from A, then the data from a packet from B, and so on). Design a
stop-and-wait-like error-control protocol for reliably transferring packets
from A and B to C, with alternating delivery at C as described above. Give
FSM descriptions of A and C. (Hint: The FSM for B should be essentially
the same as for A.) Also, give a description of the packet format(s) used.

P21. Suppose we have two network entities, A and B. B has a supply of data mes-
sages that will be sent to A according to the following conventions. When A
gets a request from the layer above to get the next data (D) message from B,
A must send a request (R) message to B on the A-to-B channel. Only when B
receives an R message can it send a data (D) message back to A on the B-to-
A channel. A should deliver exactly one copy of each D message to the layer
above. R messages can be lost (but not corrupted) in the A-to-B channel; D
messages, once sent, are always delivered correctly. The delay along both
channels is unknown and variable.

Design (give an FSM description of) a protocol that incorporates the appro-
priate mechanisms to compensate for the loss-prone A-to-B channel and
implements message passing to the layer above at entity A, as discussed
above. Use only those mechanisms that are absolutely necessary.

P22. Consider the GBN protocol with a sender window size of 4 and a sequence
number range of 1,024. Suppose that at time t, the next in-order packet that the
receiver is expecting has a sequence number of k. Assume that the medium
does not reorder messages. Answer the following questions:

a. What are the possible sets of sequence numbers inside the sender’s win-
dow at time t? Justify your answer.

b. What are all possible values of the ACK field in all possible messages cur-
rently propagating back to the sender at time t? Justify your answer.

https://hemanthrajhemu.github.io

PROBLEMS 293

P23. Consider the GBN and SR protocols. Suppose the sequence number space is
of size k. What is the largest allowable sender window that will avoid the
occurrence of problems such as that in Figure 3.27 for each of these protocols?

P24. Answer true or false to the following questions and briefly justify your
answer:

a. With the SR protocol, it is possible for the sender to receive an ACK for a
packet that falls outside of its current window.

b. With GBN, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

c. The alternating-bit protocol is the same as the SR protocol with a sender
and receiver window size of 1.

d. The alternating-bit protocol is the same as the GBN protocol with a sender
and receiver window size of 1.

P25. We have said that an application may choose UDP for a transport protocol
because UDP offers finer application control (than TCP) of what data is sent
in a segment and when.

a. Why does an application have more control of what data is sent in a segment?

b. Why does an application have more control on when the segment is sent?

P26. Consider transferring an enormous file of L bytes from Host A to Host B.
Assume an MSS of 536 bytes.

a. What is the maximum value of L such that TCP sequence numbers are not
exhausted? Recall that the TCP sequence number field has 4 bytes.

b. For the L you obtain in (a), find how long it takes to transmit the file.
Assume that a total of 66 bytes of transport, network, and data-link header
are added to each segment before the resulting packet is sent out over a
155 Mbps link. Ignore flow control and congestion control so A can pump
out the segments back to back and continuously.

P27. Host A and B are communicating over a TCP connection, and Host B has
already received from A all bytes up through byte 126. Suppose Host A then
sends two segments to Host B back-to-back. The first and second segments
contain 80 and 40 bytes of data, respectively. In the first segment, the
sequence number is 127, the source port number is 302, and the destination
port number is 80. Host B sends an acknowledgment whenever it receives a
segment from Host A.

a. In the second segment sent from Host A to B, what are the sequence num-
ber, source port number, and destination port number?

b. If the first segment arrives before the second segment, in the acknowledg-
ment of the first arriving segment, what is the acknowledgment number,
the source port number, and the destination port number?

https://hemanthrajhemu.github.io

294 CHAPTER 3 • TRANSPORT LAYER

c. If the second segment arrives before the first segment, in the acknowl-
edgment of the first arriving segment, what is the acknowledgment
number?

d. Suppose the two segments sent by A arrive in order at B. The first acknowl-
edgment is lost and the second acknowledgment arrives after the first time-
out interval. Draw a timing diagram, showing these segments and all other
segments and acknowledgments sent. (Assume there is no additional packet
loss.) For each segment in your figure, provide the sequence number and
the number of bytes of data; for each acknowledgment that you add, pro-
vide the acknowledgment number.

P28. Host A and B are directly connected with a 100 Mbps link. There is one TCP
connection between the two hosts, and Host A is sending to Host B an enor-
mous file over this connection. Host A can send its application data into its TCP
socket at a rate as high as 120 Mbps but Host B can read out of its TCP receive
buffer at a maximum rate of 50 Mbps. Describe the effect of TCP flow control.

P29. SYN cookies were discussed in Section 3.5.6.

a. Why is it necessary for the server to use a special initial sequence number
in the SYNACK?

b. Suppose an attacker knows that a target host uses SYN cookies. Can the
attacker create half-open or fully open connections by simply sending an
ACK packet to the target? Why or why not?

c. Suppose an attacker collects a large amount of initial sequence numbers sent
by the server. Can the attacker cause the server to create many fully open
connections by sending ACKs with those initial sequence numbers? Why?

P30. Consider the network shown in Scenario 2 in Section 3.6.1. Suppose both
sending hosts A and B have some fixed timeout values.

a. Argue that increasing the size of the finite buffer of the router might possi-
bly decrease the throughput (�out).

b. Now suppose both hosts dynamically adjust their timeout values (like
what TCP does) based on the buffering delay at the router. Would increas-
ing the buffer size help to increase the throughput? Why?

P31. Suppose that the five measured SampleRTT values (see Section 3.5.3) are
106 ms, 120 ms, 140 ms, 90 ms, and 115 ms. Compute the EstimatedRTT
after each of these SampleRTT values is obtained, using a value of α = 0.125
and assuming that the value of EstimatedRTT was 100 ms just before the
first of these five samples were obtained. Compute also the DevRTT after
each sample is obtained, assuming a value of β = 0.25 and assuming the
value of DevRTT was 5 ms just before the first of these five samples was
obtained. Last, compute the TCP TimeoutInterval after each of these
samples is obtained.

https://hemanthrajhemu.github.io

PROBLEMS 295

P32. Consider the TCP procedure for estimating RTT. Suppose that � = 0.1. Let
SampleRTT1 be the most recent sample RTT, let SampleRTT2 be the next
most recent sample RTT, and so on.

a. For a given TCP connection, suppose four acknowledgments have been
returned with corresponding sample RTTs: SampleRTT4, SampleRTT3,
SampleRTT2, and SampleRTT1. Express EstimatedRTT in terms of
the four sample RTTs.

b. Generalize your formula for n sample RTTs.

c. For the formula in part (b) let n approach infinity. Comment on why this
averaging procedure is called an exponential moving average.

P33. In Section 3.5.3, we discussed TCP’s estimation of RTT. Why do you think
TCP avoids measuring the SampleRTT for retransmitted segments?

P34. What is the relationship between the variable SendBase in Section 3.5.4
and the variable LastByteRcvd in Section 3.5.5?

P35. What is the relationship between the variable LastByteRcvd in Section
3.5.5 and the variable y in Section 3.5.4?

P36. In Section 3.5.4, we saw that TCP waits until it has received three
duplicate ACKs before performing a fast retransmit. Why do you think the
TCP designers chose not to perform a fast retransmit after the first duplicate
ACK for a segment is received?

P37. Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout
values for all three protocols are sufficiently long such that 5 consecutive data
segments and their corresponding ACKs can be received (if not lost in the
channel) by the receiving host (Host B) and the sending host (Host A) respec-
tively. Suppose Host A sends 5 data segments to Host B, and the 2nd segment
(sent from A) is lost. In the end, all 5 data segments have been correctly
received by Host B.

a. How many segments has Host A sent in total and how many ACKs has
Host B sent in total? What are their sequence numbers? Answer this ques-
tion for all three protocols.

b. If the timeout values for all three protocol are much longer than 5 RTT,
then which protocol successfully delivers all five data segments in shortest
time interval?

P38. In our description of TCP in Figure 3.53, the value of the threshold,
ssthresh, is set as ssthresh=cwnd/2 in several places and
ssthresh value is referred to as being set to half the window size when a
loss event occurred. Must the rate at which the sender is sending when the
loss event occurred be approximately equal to cwnd segments per RTT?
Explain your answer. If your answer is no, can you suggest a different
manner in which ssthresh should be set?

https://hemanthrajhemu.github.io

296 CHAPTER 3 • TRANSPORT LAYER

P39. Consider Figure 3.46(b). If ��in increases beyond R/2, can �out increase
beyond R/3? Explain. Now consider Figure 3.46(c). If ��in increases
beyond R/2, can �out increase beyond R/4 under the assumption that a
packet will be forwarded twice on average from the router to the receiver?
Explain.

P40. Consider Figure 3.58. Assuming TCP Reno is the protocol experiencing the
behavior shown above, answer the following questions. In all cases, you
should provide a short discussion justifying your answer.

a. Identify the intervals of time when TCP slow start is operating.

b. Identify the intervals of time when TCP congestion avoidance is
operating.

c. After the 16th transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

d. After the 22nd transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

e. What is the initial value of ssthresh at the first transmission round?

f. What is the value of ssthresh at the 18th transmission round?

g. What is the value of ssthresh at the 24th transmission round?

h. During what transmission round is the 70th segment sent?

i. Assuming a packet loss is detected after the 26th round by the receipt of a
triple duplicate ACK, what will be the values of the congestion window
size and of ssthresh?

0
0 2 4 6 8 10 12

Transmission round

14 16 18 20 22 24 26

5

10

15

20

25

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

30

35

40

45

Figure 3.58 � TCP window size as a function of time

VideoNote
Examining the
behavior of TCP

https://hemanthrajhemu.github.io

PROBLEMS 297

j. Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple
duplicate ACKs are received at the 16th round. What are the ssthresh
and the congestion window size at the 19th round?

k. Again suppose TCP Tahoe is used, and there is a timeout event at 22nd
round. How many packets have been sent out from 17th round till 22nd
round, inclusive?

P41. Refer to Figure 3.56, which illustrates the convergence of TCP’s AIMD
algorithm. Suppose that instead of a multiplicative decrease, TCP decreased
the window size by a constant amount. Would the resulting AIAD algorithm
converge to an equal share algorithm? Justify your answer using a diagram
similar to Figure 3.56.

P42. In Section 3.5.4, we discussed the doubling of the timeout interval after a
timeout event. This mechanism is a form of congestion control. Why does
TCP need a window-based congestion-control mechanism (as studied in
Section 3.7) in addition to this doubling-timeout-interval mechanism?

P43. Host A is sending an enormous file to Host B over a TCP connection.
Over this connection there is never any packet loss and the timers never
expire. Denote the transmission rate of the link connecting Host A to the
Internet by R bps. Suppose that the process in Host A is capable of sending
data into its TCP socket at a rate S bps, where S = 10 · R. Further suppose
that the TCP receive buffer is large enough to hold the entire file, and the
send buffer can hold only one percent of the file. What would prevent the
process in Host A from continuously passing data to its TCP socket at rate S
bps? TCP flow control? TCP congestion control? Or something else?
Elaborate.

P44. Consider sending a large file from a host to another over a TCP connection
that has no loss.

a. Suppose TCP uses AIMD for its congestion control without slow start.
Assuming cwnd increases by 1 MSS every time a batch of ACKs is received
and assuming approximately constant round-trip times, how long does it take
for cwnd increase from 6 MSS to 12 MSS (assuming no loss events)?

b. What is the average throughout (in terms of MSS and RTT) for this con-
nection up through time = 6 RTT?

P45. Recall the macroscopic description of TCP throughput. In the period of time
from when the connection’s rate varies from W/(2 · RTT) to W/RTT, only one
packet is lost (at the very end of the period).

a. Show that the loss rate (fraction of packets lost) is equal to

L = loss rate =
1

3

8
W2 +

3

4
W

https://hemanthrajhemu.github.io

298 CHAPTER 3 • TRANSPORT LAYER

b. Use the result above to show that if a connection has loss rate L, then its
average rate is approximately given by

P46. Consider that only a single TCP (Reno) connection uses one 10Mbps link
which does not buffer any data. Suppose that this link is the only congested
link between the sending and receiving hosts. Assume that the TCP sender
has a huge file to send to the receiver, and the receiver’s receive buffer is
much larger than the congestion window. We also make the following
assumptions: each TCP segment size is 1,500 bytes; the two-way propagation
delay of this connection is 150 msec; and this TCP connection is always in
congestion avoidance phase, that is, ignore slow start.

a. What is the maximum window size (in segments) that this TCP connection
can achieve?

b. What is the average window size (in segments) and average throughput (in
bps) of this TCP connection?

c. How long would it take for this TCP connection to reach its maximum
window again after recovering from a packet loss?

P47. Consider the scenario described in the previous problem. Suppose that the
10Mbps link can buffer a finite number of segments. Argue that in order for
the link to always be busy sending data, we would like to choose a buffer size
that is at least the product of the link speed C and the two-way propagation
delay between the sender and the receiver.

P48. Repeat Problem 43, but replacing the 10 Mbps link with a 10 Gbps link. Note
that in your answer to part c, you will realize that it takes a very long time for
the congestion window size to reach its maximum window size after recover-
ing from a packet loss. Sketch a solution to solve this problem.

P49. Let T (measured by RTT) denote the time interval that a TCP connection
takes to increase its congestion window size from W/2 to W, where W is the
maximum congestion window size. Argue that T is a function of TCP’s aver-
age throughput.

P50. Consider a simplified TCP’s AIMD algorithm where the congestion window
size is measured in number of segments, not in bytes. In additive increase, the
congestion window size increases by one segment in each RTT. In multiplica-
tive decrease, the congestion window size decreases by half (if the result is
not an integer, round down to the nearest integer). Suppose that two TCP
connections, C1 and C2, share a single congested link of speed 30 segments
per second. Assume that both C1 and C2 are in the congestion avoidance

�
1.22 � MSS

RTT 2L

https://hemanthrajhemu.github.io

PROBLEMS 299

phase. Connection C1’s RTT is 50 msec and connection C2’s RTT is
100 msec. Assume that when the data rate in the link exceeds the link’s
speed, all TCP connections experience data segment loss.

a. If both C1 and C2 at time t0 have a congestion window of 10 segments,
what are their congestion window sizes after 1000 msec?

b. In the long run, will these two connections get the same share of the band-
width of the congested link? Explain.

P51. Consider the network described in the previous problem. Now suppose that
the two TCP connections, C1 and C2, have the same RTT of 100 msec. Sup-
pose that at time t0, C1’s congestion window size is 15 segments but C2’s
congestion window size is 10 segments.

a. What are their congestion window sizes after 2200msec?

b. In the long run, will these two connections get about the same share of the
bandwidth of the congested link?

c. We say that two connections are synchronized, if both connections reach
their maximum window sizes at the same time and reach their minimum
window sizes at the same time. In the long run, will these two connections
get synchronized eventually? If so, what are their maximum window sizes?

d. Will this synchronization help to improve the utilization of the shared
link? Why? Sketch some idea to break this synchronization.

P52. Consider a modification to TCP’s congestion control algorithm. Instead of
additive increase, we can use multiplicative increase. A TCP sender increases
its window size by a small positive constant a (0 < a < 1) whenever it
receives a valid ACK. Find the functional relationship between loss rate L
and maximum congestion window W. Argue that for this modified TCP,
regardless of TCP’s average throughput, a TCP connection always spends the
same amount of time to increase its congestion window size from W/2 to W.

P53. In our discussion of TCP futures in Section 3.7, we noted that to achieve a
throughput of 10 Gbps, TCP could only tolerate a segment loss probability of
2 · 10-10 (or equivalently, one loss event for every 5,000,000,000 segments).
Show the derivation for the values of 2 · 10-10 (1 out of 5,000,000) for the
RTT and MSS values given in Section 3.7. If TCP needed to support a 100
Gbps connection, what would the tolerable loss be?

P54. In our discussion of TCP congestion control in Section 3.7, we implicitly
assumed that the TCP sender always had data to send. Consider now the case
that the TCP sender sends a large amount of data and then goes idle (since it
has no more data to send) at t1. TCP remains idle for a relatively long period of
time and then wants to send more data at t2. What are the advantages and dis-
advantages of having TCP use the cwnd and ssthresh values from t1 when
starting to send data at t2? What alternative would you recommend? Why?

https://hemanthrajhemu.github.io

300 CHAPTER 3 • TRANSPORT LAYER

P55. In this problem we investigate whether either UDP or TCP provides a degree
of end-point authentication.

a. Consider a server that receives a request within a UDP packet and
responds to that request within a UDP packet (for example, as done by a
DNS server). If a client with IP address X spoofs its address with address
Y, where will the server send its response?

b. Suppose a server receives a SYN with IP source address Y, and after
responding with a SYNACK, receives an ACK with IP source address Y
with the correct acknowledgment number. Assuming the server chooses a
random initial sequence number and there is no “man-in-the-middle,” can
the server be certain that the client is indeed at Y (and not at some other
address X that is spoofing Y)?

P56. In this problem, we consider the delay introduced by the TCP slow-start
phase. Consider a client and a Web server directly connected by one link of
rate R. Suppose the client wants to retrieve an object whose size is exactly
equal to 15 S, where S is the maximum segment size (MSS). Denote the
round-trip time between client and server as RTT (assumed to be constant).
Ignoring protocol headers, determine the time to retrieve the object (including
TCP connection establishment) when

a. 4 S/R > S/R + RTT > 2S/R

b. S/R + RTT > 4 S/R

c. S/R > RTT.

Programming Assignments

Implementing a Reliable Transport Protocol

In this laboratory programming assignment, you will be writing the sending and
receiving transport-level code for implementing a simple reliable data transfer pro-
tocol. There are two versions of this lab, the alternating-bit-protocol version and the
GBN version. This lab should be fun—your implementation will differ very little
from what would be required in a real-world situation.

Since you probably don’t have standalone machines (with an OS that you can
modify), your code will have to execute in a simulated hardware/software envi-
ronment. However, the programming interface provided to your routines—the
code that would call your entities from above and from below—is very close to
what is done in an actual UNIX environment. (Indeed, the software interfaces
described in this programming assignment are much more realistic than the infi-
nite loop senders and receivers that many texts describe.) Stopping and starting

https://hemanthrajhemu.github.io

timers are also simulated, and timer interrupts will cause your timer handling rou-
tine to be activated.

The full lab assignment, as well as code you will need to compile with your
own code, are available at this book’s Web site: http://www.awl.com/kurose-ross.

Wireshark Lab: Exploring TCP

In this lab, you’ll use your Web browser to access a file from a Web server. As in
earlier Wireshark labs, you’ll use Wireshark to capture the packets arriving at your
computer. Unlike earlier labs, you’ll also be able to download a Wireshark-readable
packet trace from the Web server from which you downloaded the file. In this server
trace, you’ll find the packets that were generated by your own access of the Web
server. You’ll analyze the client- and server-side traces to explore aspects of TCP. In
particular, you’ll evaluate the performance of the TCP connection between your
computer and the Web server. You’ll trace TCP’s window behavior, and infer packet
loss, retransmission, flow control and congestion control behavior, and estimated
roundtrip time.

As is the case with all Wireshark labs, the full description of this lab is avail-
able at this book’s Web site, http://www.awl.com/kurose-ross.

Wireshark Lab: Exploring UDP

In this short lab, you’ll do a packet capture and analysis of your favorite application
that uses UDP (for example, DNS or a multimedia application such as Skype). As we
learned in Section 3.3, UDP is a simple, no-frills transport protocol. In this lab, you’ll
investigate the header fields in the UDP segment as well as the checksum calculation.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, http://www.awl.com/kurose-ross.

WIRESHARK LAB: EXPLORING UDP 301

https://hemanthrajhemu.github.io

302

Please describe one or two of the most exciting projects you have worked on during your
career. What were the biggest challenges?

School teaches us lots of ways to find answers. In every interesting problem I’ve worked
on, the challenge has been finding the right question. When Mike Karels and I started look-
ing at TCP congestion, we spent months staring at protocol and packet traces asking “Why
is it failing?”. One day in Mike’s office, one of us said “The reason I can’t figure out why it
fails is because I don’t understand how it ever worked to begin with.” That turned out to be
the right question and it forced us to figure out the “ack clocking” that makes TCP work.
After that, the rest was easy.

More generally, where do you see the future of networking and the Internet?

For most people, the Web is the Internet. Networking geeks smile politely since we know
the Web is an application running over the Internet but what if they’re right? The Internet is
about enabling conversations between pairs of hosts. The Web is about distributed informa-
tion production and consumption. “Information propagation” is a very general view of com-
munication of which “pairwise conversation” is a tiny subset. We need to move into the
larger tent. Networking today deals with broadcast media (radios, PONs, etc.) by pretending
it’s a point-to-point wire. That’s massively inefficient. Terabits-per-second of data are being
exchanged all over the World via thumb drives or smart phones but we don’t know how to
treat that as “networking”. ISPs are busily setting up caches and CDNs to scalably distribute
video and audio. Caching is a necessary part of the solution but there's no part of today's
networking—from Information, Queuing or Traffic Theory down to the Internet protocol
specs—that tells us how to engineer and deploy it. I think and hope that over the next few
years, networking will evolve to embrace the much larger vision of communication that
underlies the Web.

Van Jacobson
Van Jacobson is a Research Fellow at PARC. Prior to that, he was
co-founder and Chief Scientist of Packet Design. Before that, he was
Chief Scientist at Cisco. Before joining Cisco, he was head of the
Network Research Group at Lawrence Berkeley National Laboratory
and taught at UC Berkeley and Stanford. Van received the ACM
SIGCOMM Award in 2001 for outstanding lifetime contribution to
the field of communication networks and the IEEE Kobayashi Award
in 2002 for “contributing to the understanding of network congestion
and developing congestion control mechanisms that enabled the suc-
cessful scaling of the Internet”. He was elected to the U.S. National
Academy of Engineering in 2004.

AN INTERVIEW WITH...

https://hemanthrajhemu.github.io

303

What people inspired you professionally?

When I was in grad school, Richard Feynman visited and gave a colloquium. He talked
about a piece of Quantum theory that I’d been struggling with all semester and his explana-
tion was so simple and lucid that what had been incomprehensible gibberish to me became
obvious and inevitable. That ability to see and convey the simplicity that underlies our com-
plex world seems to me a rare and wonderful gift.

What are your recommendations for students who want careers in computer science and
networking?

It’s a wonderful field—computers and networking have probably had more impact on socie-
ty than any invention since the book. Networking is fundamentally about connecting stuff,
and studying it helps you make intellectual connections: Ant foraging & Bee dances demon-
strate protocol design better than RFCs, traffic jams or people leaving a packed stadium are
the essence of congestion, and students finding flights back to school in a post-Thanksgiving
blizzard are the core of dynamic routing. If you’re interested in lots of stuff and want to
have an impact, it’s hard to imagine a better field.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

