

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

4.3 What’s Inside a Router? 320
4.3.1 Input Processing 322
4.3.2 Switching 324
4.3.3 Output Processing 326
4.3.4 Where Does Queuing Occur? 327
4.3.5 The Routing Control Plane 331

4.4 The Internet Protocol (IP): Forwarding and Addressing in the Internet 331
4.4.1 Datagram Format 332
4.4.2 IPv4 Addressing 338
4.4.3 Internet Control Message Protocol (ICMP) 353
4.4.4 IPv6 356
4.4.5 A Brief Foray into IP Security 362

4.5 Routing Algorithms 363
4.5.1 The Link-State (LS) Routing Algorithm 366
4.5.2 The Distance-Vector (DV) Routing Algorithm 371
4.5.3 Hierarchical Routing 379

4.6 Routing in the Internet 383
4.6.1 Intra-AS Routing in the Internet: RIP 384
4.6.2 Intra-AS Routing in the Internet: OSPF 388
4.6.3 Inter-AS Routing: BGP 390

4.7 Broadcast and Multicast Routing 399
4.7.1 Broadcast Routing Algorithms 400
4.7.2 Multicast 405

4.8 Summary 412
Homework Problems and Questions 413
Programming Assignments 429
Wireshark Labs: IP, ICMP 430
Interview: Vinton G. Cerf 431

Chapter 5 The Link Layer: Links, Access Networks, and LANs 433
5.1 Introduction to the Link Layer 434

5.1.1 The Services Provided by the Link Layer 436
5.1.2 Where Is the Link Layer Implemented? 437

5.2 Error-Detection and -Correction Techniques 438
5.2.1 Parity Checks 440
5.2.2 Checksumming Methods 442
5.2.3 Cyclic Redundancy Check (CRC) 443

5.3 Multiple Access Links and Protocols 445
5.3.1 Channel Partitioning Protocols 448
5.3.2 Random Access Protocols 449
5.3.3 Taking-Turns Protocols 459
5.3.4 DOCSIS: The Link-Layer Protocol for Cable Internet Access 460

xx Table of Contents

https://hemanthrajhemu.github.io

Table of Contents xxi

5.4 Switched Local Area Networks 461
5.4.1 Link-Layer Addressing and ARP 462
5.4.2 Ethernet 469
5.4.3 Link-Layer Switches 476
5.4.4 Virtual Local Area Networks (VLANs) 482

5.5 Link Virtualization: A Network as a Link Layer 486
5.5.1 Multiprotocol Label Switching (MPLS) 487

5.6 Data Center Networking 490
5.7 Retrospective: A Day in the Life of a Web Page Request 495

5.7.1 Getting Started: DHCP, UDP, IP, and Ethernet 495
5.7.2 Still Getting Started: DNS and ARP 497
5.7.3 Still Getting Started: Intra-Domain Routing to the DNS Server 498
5.7.4 Web Client-Server Interaction: TCP and HTTP 499

5.8 Summary 500
Homework Problems and Questions 502
Wireshark Labs: Ethernet and ARP, DHCP 510
Interview: Simon S. Lam 511

Chapter 6 Wireless and Mobile Networks 513
6.1 Introduction 514
6.2 Wireless Links and Network Characteristics 519

6.2.1 CDMA 522
6.3 WiFi: 802.11 Wireless LANs 526

6.3.1 The 802.11 Architecture 527
6.3.2 The 802.11 MAC Protocol 531
6.3.3 The IEEE 802.11 Frame 537
6.3.4 Mobility in the Same IP Subnet 541
6.3.5 Advanced Features in 802.11 542
6.3.6 Personal Area Networks: Bluetooth and Zigbee 544

6.4 Cellular Internet Access 546
6.4.1 An Overview of Cellular Network Architecture 547
6.4.2 3G Cellular Data Networks: Extending the Internet to Cellular

Subscribers 550
6.4.3 On to 4G: LTE 553

6.5 Mobility Management: Principles 555
6.5.1 Addressing 557
6.5.2 Routing to a Mobile Node 559

6.6 Mobile IP 564
6.7 Managing Mobility in Cellular Networks 570

6.7.1 Routing Calls to a Mobile User 571
6.7.2 Handoffs in GSM 572

https://hemanthrajhemu.github.io

CHAPTER 4
The Network
Layer

305

We learned in the previous chapter that the transport layer provides various forms of
process-to-process communication by relying on the network layer’s host-to-host
communication service. We also learned that the transport layer does so without any
knowledge about how the network layer actually implements this service. So per-
haps you’re now wondering, what’s under the hood of the host-to-host communica-
tion service, what makes it tick?

In this chapter, we’ll learn exactly how the network layer implements the host-
to-host communication service. We’ll see that unlike the transport and application
layers, there is a piece of the network layer in each and every host and router in the
network. Because of this, network-layer protocols are among the most challenging
(and therefore among the most interesting!) in the protocol stack.

The network layer is also one of the most complex layers in the protocol stack,
and so we’ll have a lot of ground to cover here. We’ll begin our study with an
overview of the network layer and the services it can provide. We’ll then examine
two broad approaches towards structuring network-layer packet delivery—the data-
gram and the virtual-circuit model—and see the fundamental role that addressing
plays in delivering a packet to its destination host.

In this chapter, we’ll make an important distinction between the forwarding
and routing functions of the network layer. Forwarding involves the transfer of a
packet from an incoming link to an outgoing link within a single router. Routing

https://hemanthrajhemu.github.io

involves all of a network’s routers, whose collective interactions via routing proto-
cols determine the paths that packets take on their trips from source to destination
node. This will be an important distinction to keep in mind as you progress through
this chapter.

In order to deepen our understanding of packet forwarding, we’ll look “inside”
a router—at its hardware architecture and organization. We’ll then look at packet
forwarding in the Internet, along with the celebrated Internet Protocol (IP). We’ll
investigate network-layer addressing and the IPv4 datagram format. We’ll then
explore network address translation (NAT), datagram fragmentation, the Internet
Control Message Protocol (ICMP), and IPv6.

We’ll then turn our attention to the network layer’s routing function. We’ll see
that the job of a routing algorithm is to determine good paths (equivalently, routes)
from senders to receivers. We’ll first study the theory of routing algorithms, concen-
trating on the two most prevalent classes of algorithms: link-state and distance-
vector algorithms. Since the complexity of routing algorithms grows considerably
as the number of network routers increases, hierarchical routing approaches will
also be of interest. We’ll then see how theory is put into practice when we cover the
Internet’s intra-autonomous system routing protocols (RIP, OSPF, and IS-IS) and its
inter-autonomous system routing protocol, BGP. We’ll close this chapter with a dis-
cussion of broadcast and multicast routing.

In summary, this chapter has three major parts. The first part, Sections 4.1 and
4.2, covers network-layer functions and services. The second part, Sections 4.3 and
4.4, covers forwarding. Finally, the third part, Sections 4.5 through 4.7, covers
routing.

4.1 Introduction

Figure 4.1 shows a simple network with two hosts, H1 and H2, and several routers
on the path between H1 and H2. Suppose that H1 is sending information to H2, and
consider the role of the network layer in these hosts and in the intervening routers.
The network layer in H1 takes segments from the transport layer in H1, encapsu-
lates each segment into a datagram (that is, a network-layer packet), and then sends
the datagrams to its nearby router, R1. At the receiving host, H2, the network layer
receives the datagrams from its nearby router R2, extracts the transport-layer seg-
ments, and delivers the segments up to the transport layer at H2. The primary role of
the routers is to forward datagrams from input links to output links. Note that the
routers in Figure 4.1 are shown with a truncated protocol stack, that is, with no
upper layers above the network layer, because (except for control purposes) routers
do not run application- and transport-layer protocols such as those we examined in
Chapters 2 and 3.

306 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

4.1 • INTRODUCTION 307

Mobile Network

Router R1

Router R2

National or
Global ISP

Local or
Regional ISP

Enterprise Network

Home Network

End system H1

Data link

Physical

Application

Transport

Network

End system H2

Data link

Physical

Application

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

Network

Figure 4.1 � The network layer

https://hemanthrajhemu.github.io

4.1.1 Forwarding and Routing

The role of the network layer is thus deceptively simple—to move packets from a
sending host to a receiving host. To do so, two important network-layer functions
can be identified:

• Forwarding. When a packet arrives at a router’s input link, the router must move
the packet to the appropriate output link. For example, a packet arriving from
Host H1 to Router R1 must be forwarded to the next router on a path to H2. In
Section 4.3, we’ll look inside a router and examine how a packet is actually for-
warded from an input link to an output link within a router.

• Routing. The network layer must determine the route or path taken by packets as
they flow from a sender to a receiver. The algorithms that calculate these paths
are referred to as routing algorithms. A routing algorithm would determine, for
example, the path along which packets flow from H1 to H2.

The terms forwarding and routing are often used interchangeably by authors dis-
cussing the network layer. We’ll use these terms much more precisely in this book.
Forwarding refers to the router-local action of transferring a packet from an input link
interface to the appropriate output link interface. Routing refers to the network-wide
process that determines the end-to-end paths that packets take from source to destina-
tion. Using a driving analogy, consider the trip from Pennsylvania to Florida under-
taken by our traveler back in Section 1.3.1. During this trip, our driver passes through
many interchanges en route to Florida. We can think of forwarding as the process of
getting through a single interchange: A car enters the interchange from one road and
determines which road it should take to leave the interchange. We can think of routing
as the process of planning the trip from Pennsylvania to Florida: Before embarking on
the trip, the driver has consulted a map and chosen one of many paths possible, with
each path consisting of a series of road segments connected at interchanges.

Every router has a forwarding table. A router forwards a packet by examin-
ing the value of a field in the arriving packet’s header, and then using this header
value to index into the router’s forwarding table. The value stored in the forward-
ing table entry for that header indicates the router’s outgoing link interface to
which that packet is to be forwarded. Depending on the network-layer protocol,
the header value could be the destination address of the packet or an indication of
the connection to which the packet belongs. Figure 4.2 provides an example. In
Figure 4.2, a packet with a header field value of 0111 arrives to a router. The
router indexes into its forwarding table and determines that the output link
interface for this packet is interface 2. The router then internally forwards the
packet to interface 2. In Section 4.3, we’ll look inside a router and examine the
forwarding function in much greater detail.

You might now be wondering how the forwarding tables in the routers are con-
figured. This is a crucial issue, one that exposes the important interplay between

308 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

routing and forwarding. As shown in Figure 4.2, the routing algorithm determines
the values that are inserted into the routers’ forwarding tables. The routing algorithm
may be centralized (e.g., with an algorithm executing on a central site and down-
loading routing information to each of the routers) or decentralized (i.e., with a
piece of the distributed routing algorithm running in each router). In either case, a
router receives routing protocol messages, which are used to configure its forward-
ing table. The distinct and different purposes of the forwarding and routing func-
tions can be further illustrated by considering the hypothetical (and unrealistic, but
technically feasible) case of a network in which all forwarding tables are configured
directly by human network operators physically present at the routers. In this case,
no routing protocols would be required! Of course, the human operators would need
to interact with each other to ensure that the forwarding tables were configured in
such a way that packets reached their intended destinations. It’s also likely that
human configuration would be more error-prone and much slower to respond to
changes in the network topology than a routing protocol. We’re thus fortunate that
all networks have both a forwarding and a routing function!

4.1 • INTRODUCTION 309

Value in arriving
packet’s header

1

2
3

Routing algorithm

Local forwarding table

header value

0100
0101
0111
1001

0111

3
2
2
1

output link

Figure 4.2 � Routing algorithms determine values in forwarding tables

https://hemanthrajhemu.github.io

While we’re on the topic of terminology, it’s worth mentioning two other terms
that are often used interchangeably, but that we will use more carefully. We’ll reserve
the term packet switch to mean a general packet-switching device that transfers a
packet from input link interface to output link interface, according to the value in a field
in the header of the packet. Some packet switches, called link-layer switches (exam-
ined in Chapter 5), base their forwarding decision on values in the fields of the link-
layer frame; switches are thus referred to as link-layer (layer 2) devices. Other packet
switches, called routers, base their forwarding decision on the value in the network-
layer field. Routers are thus network-layer (layer 3) devices, but must also implement
layer 2 protocols as well, since layer 3 devices require the services of layer 2 to imple-
ment their (layer 3) functionality. (To fully appreciate this important distinction, you
might want to review Section 1.5.2, where we discuss network-layer datagrams and
link-layer frames and their relationship.) To confuse matters, marketing literature often
refers to “layer 3 switches” for routers with Ethernet interfaces, but these are really
layer 3 devices. Since our focus in this chapter is on the network layer, we use the term
router in place of packet switch. We’ll even use the term router when talking about
packet switches in virtual-circuit networks (soon to be discussed).

Connection Setup

We just said that the network layer has two important functions, forwarding and rout-
ing. But we’ll soon see that in some computer networks there is actually a third impor-
tant network-layer function, namely, connection setup. Recall from our study of TCP
that a three-way handshake is required before data can flow from sender to receiver.
This allows the sender and receiver to set up the needed state information (for example,
sequence number and initial flow-control window size). In an analogous manner, some
network-layer architectures—for example, ATM, frame relay, and MPLS (which we
will study in Section 5.8)––require the routers along the chosen path from source to
destination to handshake with each other in order to set up state before network-layer
data packets within a given source-to-destination connection can begin to flow. In the
network layer, this process is referred to as connection setup. We’ll examine connec-
tion setup in Section 4.2.

4.1.2 Network Service Models

Before delving into the network layer, let’s take the broader view and consider the dif-
ferent types of service that might be offered by the network layer. When the transport
layer at a sending host transmits a packet into the network (that is, passes it down to
the network layer at the sending host), can the transport layer rely on the network layer
to deliver the packet to the destination? When multiple packets are sent, will they be
delivered to the transport layer in the receiving host in the order in which they were
sent? Will the amount of time between the sending of two sequential packet transmis-
sions be the same as the amount of time between their reception? Will the network

310 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

provide any feedback about congestion in the network? What is the abstract view
(properties) of the channel connecting the transport layer in the sending and receiving
hosts? The answers to these questions and others are determined by the service model
provided by the network layer. The network service model defines the characteristics
of end-to-end transport of packets between sending and receiving end systems.

Let’s now consider some possible services that the network layer could provide.
In the sending host, when the transport layer passes a packet to the network layer,
specific services that could be provided by the network layer include:

• Guaranteed delivery. This service guarantees that the packet will eventually
arrive at its destination.

• Guaranteed delivery with bounded delay. This service not only guarantees deliv-
ery of the packet, but delivery within a specified host-to-host delay bound (for
example, within 100 msec).

Furthermore, the following services could be provided to a flow of packets between
a given source and destination:

• In-order packet delivery. This service guarantees that packets arrive at the desti-
nation in the order that they were sent.

• Guaranteed minimal bandwidth. This network-layer service emulates the behavior
of a transmission link of a specified bit rate (for example, 1 Mbps) between send-
ing and receiving hosts. As long as the sending host transmits bits (as part of pack-
ets) at a rate below the specified bit rate, then no packet is lost and each packet
arrives within a prespecified host-to-host delay (for example, within 40 msec).

• Guaranteed maximum jitter. This service guarantees that the amount of time
between the transmission of two successive packets at the sender is equal to the
amount of time between their receipt at the destination (or that this spacing
changes by no more than some specified value).

• Security services. Using a secret session key known only by a source and desti-
nation host, the network layer in the source host could encrypt the payloads of
all datagrams being sent to the destination host. The network layer in the
destination host would then be responsible for decrypting the payloads. With
such a service, confidentiality would be provided to all transport-layer segments
(TCP and UDP) between the source and destination hosts. In addition to confi-
dentiality, the network layer could provide data integrity and source authentica-
tion services.

This is only a partial list of services that a network layer could provide—there are
countless variations possible.

The Internet’s network layer provides a single service, known as best-effort
service. From Table 4.1, it might appear that best-effort service is a euphemism for

4.1 • INTRODUCTION 311

https://hemanthrajhemu.github.io

no service at all. With best-effort service, timing between packets is not guaranteed
to be preserved, packets are not guaranteed to be received in the order in which they
were sent, nor is the eventual delivery of transmitted packets guaranteed. Given this
definition, a network that delivered no packets to the destination would satisfy the
definition of best-effort delivery service. As we’ll discuss shortly, however, there
are sound reasons for such a minimalist network-layer service model.

Other network architectures have defined and implemented service models that
go beyond the Internet’s best-effort service. For example, the ATM network archi-
tecture [MFA Forum 2012, Black 1995] provides for multiple service models, mean-
ing that different connections can be provided with different classes of service
within the same network. A discussion of how an ATM network provides such serv-
ices is well beyond the scope of this book; our aim here is only to note that alterna-
tives do exist to the Internet’s best-effort model. Two of the more important ATM
service models are constant bit rate and available bit rate service:

• Constant bit rate (CBR) ATM network service. This was the first ATM service
model to be standardized, reflecting early interest by the telephone companies in
ATM and the suitability of CBR service for carrying real-time, constant bit rate
audio and video traffic. The goal of CBR service is conceptually simple—to pro-
vide a flow of packets (known as cells in ATM terminology) with a virtual pipe
whose properties are the same as if a dedicated fixed-bandwidth transmission
link existed between sending and receiving hosts. With CBR service, a flow of
ATM cells is carried across the network in such a way that a cell’s end-to-end
delay, the variability in a cell’s end-to-end delay (that is, the jitter), and the fraction
of cells that are lost or delivered late are all guaranteed to be less than specified
values. These values are agreed upon by the sending host and the ATM network
when the CBR connection is first established.

312 CHAPTER 4 • THE NETWORK LAYER

Table 4.1 � Internet, ATM CBR, and ATM ABR service models

Network
Architecture

Service
Model

Bandwidth
Guarantee

No-Loss
Guarantee Ordering Timing

Internet Best Effort None None Any order
possible

Not
maintained

ATM CBR Guaranteed
constant rate

Yes In order Maintained

ATM ABR Guaranteed
minimum

None In order Not
maintained

Congestion
Indication

None

Congestion
will not occur
Congestion
indication
provided

https://hemanthrajhemu.github.io

• Available bit rate (ABR) ATM network service. With the Internet offering so-
called best-effort service, ATM’s ABR might best be characterized as being a
slightly-better-than-best-effort service. As with the Internet service model,
cells may be lost under ABR service. Unlike in the Internet, however, cells
cannot be reordered (although they may be lost), and a minimum cell transmis-
sion rate (MCR) is guaranteed to a connection using ABR service. If the net-
work has enough free resources at a given time, a sender may also be able to
send cells successfully at a higher rate than the MCR. Additionally, as we saw
in Section 3.6, ATM ABR service can provide feedback to the sender (in terms
of a congestion notification bit, or an explicit rate at which to send) that con-
trols how the sender adjusts its rate between the MCR and an allowable peak
cell rate.

4.2 Virtual Circuit and Datagram Networks

Recall from Chapter 3 that a transport layer can offer applications connectionless
service or connection-oriented service between two processes. For example, the Inter-
net’s transport layer provides each application a choice between two services: UDP, a
connectionless service; or TCP, a connection-oriented service. In a similar manner, a
network layer can provide connectionless service or connection service between two
hosts. Network-layer connection and connectionless services in many ways parallel
transport-layer connection-oriented and connectionless services. For example, a net-
work-layer connection service begins with handshaking between the source and desti-
nation hosts; and a network-layer connectionless service does not have any
handshaking preliminaries.

Although the network-layer connection and connectionless services have some
parallels with transport-layer connection-oriented and connectionless services, there
are crucial differences:

• In the network layer, these services are host-to-host services provided by the net-
work layer for the transport layer. In the transport layer these services are process-
to-process services provided by the transport layer for the application layer.

• In all major computer network architectures to date (Internet, ATM, frame relay,
and so on), the network layer provides either a host-to-host connectionless serv-
ice or a host-to-host connection service, but not both. Computer networks that
provide only a connection service at the network layer are called virtual-circuit
(VC) networks; computer networks that provide only a connectionless service
at the network layer are called datagram networks.

• The implementations of connection-oriented service in the transport layer and
the connection service in the network layer are fundamentally different. We saw
in the previous chapter that the transport-layer connection-oriented service is

4.2 • VIRTUAL CIRCUIT AND DATAGRAM NETWORKS 313

https://hemanthrajhemu.github.io

implemented at the edge of the network in the end systems; we’ll see shortly that
the network-layer connection service is implemented in the routers in the net-
work core as well as in the end systems.

Virtual-circuit and datagram networks are two fundamental classes of computer net-
works. They use very different information in making their forwarding decisions.
Let’s now take a closer look at their implementations.

4.2.1 Virtual-Circuit Networks

While the Internet is a datagram network, many alternative network architectures—
including those of ATM and frame relay—are virtual-circuit networks and, there-
fore, use connections at the network layer. These network-layer connections are
called virtual circuits (VCs). Let’s now consider how a VC service can be imple-
mented in a computer network.

A VC consists of (1) a path (that is, a series of links and routers) between the
source and destination hosts, (2) VC numbers, one number for each link along the
path, and (3) entries in the forwarding table in each router along the path. A packet
belonging to a virtual circuit will carry a VC number in its header. Because a virtual
circuit may have a different VC number on each link, each intervening router must
replace the VC number of each traversing packet with a new VC number. The new
VC number is obtained from the forwarding table.

To illustrate the concept, consider the network shown in Figure 4.3. The numbers
next to the links of R1 in Figure 4.3 are the link interface numbers. Suppose now that
Host A requests that the network establish a VC between itself and Host B. Suppose
also that the network chooses the path A-R1-R2-B and assigns VC numbers 12, 22,
and 32 to the three links in this path for this virtual circuit. In this case, when a packet
in this VC leaves Host A, the value in the VC number field in the packet header is 12;
when it leaves R1, the value is 22; and when it leaves R2, the value is 32.

How does the router determine the replacement VC number for a packet tra-
versing the router? For a VC network, each router’s forwarding table includes VC

314 CHAPTER 4 • THE NETWORK LAYER

R1 R2A B

1 2

3

1 2

3

R3 R4

Figure 4.3 � A simple virtual circuit network

https://hemanthrajhemu.github.io

4.2 • VIRTUAL CIRCUIT AND DATAGRAM NETWORKS 315

number translation; for example, the forwarding table in R1 might look something
like this:

Whenever a new VC is established across a router, an entry is added to the forward-
ing table. Similarly, whenever a VC terminates, the appropriate entries in each table
along its path are removed.

You might be wondering why a packet doesn’t just keep the same VC number
on each of the links along its route. The answer is twofold. First, replacing the num-
ber from link to link reduces the length of the VC field in the packet header. Second,
and more importantly, VC setup is considerably simplified by permitting a different
VC number at each link along the path of the VC. Specifically, with multiple VC
numbers, each link in the path can choose a VC number independently of the VC
numbers chosen at other links along the path. If a common VC number were required
for all links along the path, the routers would have to exchange and process a sub-
stantial number of messages to agree on a common VC number (e.g., one that is not
being used by any other existing VC at these routers) to be used for a connection.

In a VC network, the network’s routers must maintain connection state infor-
mation for the ongoing connections. Specifically, each time a new connection is
established across a router, a new connection entry must be added to the router’s for-
warding table; and each time a connection is released, an entry must be removed
from the table. Note that even if there is no VC-number translation, it is still neces-
sary to maintain connection state information that associates VC numbers with out-
put interface numbers. The issue of whether or not a router maintains connection
state information for each ongoing connection is a crucial one—one that we’ll return
to repeatedly in this book.

There are three identifiable phases in a virtual circuit:

• VC setup. During the setup phase, the sending transport layer contacts the net-
work layer, specifies the receiver’s address, and waits for the network to set up
the VC. The network layer determines the path between sender and receiver, that
is, the series of links and routers through which all packets of the VC will travel.
The network layer also determines the VC number for each link along the path.
Finally, the network layer adds an entry in the forwarding table in each router

Incoming Interface Incoming VC # Outgoing Interface Outgoing VC #

1 12 2 22

2 63 1 18

3 7 2 17

1 97 3 87

...

https://hemanthrajhemu.github.io

along the path. During VC setup, the network layer may also reserve resources
(for example, bandwidth) along the path of the VC.

• Data transfer. As shown in Figure 4.4, once the VC has been established, pack-
ets can begin to flow along the VC.

• VC teardown. This is initiated when the sender (or receiver) informs the network
layer of its desire to terminate the VC. The network layer will then typically
inform the end system on the other side of the network of the call termination
and update the forwarding tables in each of the packet routers on the path to indi-
cate that the VC no longer exists.

There is a subtle but important distinction between VC setup at the network
layer and connection setup at the transport layer (for example, the TCP three-way
handshake we studied in Chapter 3). Connection setup at the transport layer
involves only the two end systems. During transport-layer connection setup, the
two end systems alone determine the parameters (for example, initial sequence
number and flow-control window size) of their transport-layer connection.
Although the two end systems are aware of the transport-layer connection, the
routers within the network are completely oblivious to it. On the other hand, with
a VC network layer, routers along the path between the two end systems are
involved in VC setup, and each router is fully aware of all the VCs passing
through it.

The messages that the end systems send into the network to initiate or terminate a
VC, and the messages passed between the routers to set up the VC (that is, to modify
connection state in router tables) are known as signaling messages, and the protocols

316 CHAPTER 4 • THE NETWORK LAYER

Transport

Data link

Physical

Application

Network

Transport

Data link

Physical

Application

Network

1. Initiate call 2. Incoming call

5. Data flow
 begins

6. Receive
 data

4. Call connected 3. Accept call

Figure 4.4 � Virtual-circuit setup

https://hemanthrajhemu.github.io

used to exchange these messages are often referred to as signaling protocols. VC setup
is shown pictorially in Figure 4.4. We’ll not cover VC signaling protocols in this book;
see [Black 1997] for a general discussion of signaling in connection-oriented networks
and [ITU-T Q.2931 1995] for the specification of ATM’s Q.2931 signaling protocol.

4.2.2 Datagram Networks

In a datagram network, each time an end system wants to send a packet, it stamps
the packet with the address of the destination end system and then pops the packet
into the network. As shown in Figure 4.5, there is no VC setup and routers do not
maintain any VC state information (because there are no VCs!).

As a packet is transmitted from source to destination, it passes through a series
of routers. Each of these routers uses the packet’s destination address to forward the
packet. Specifically, each router has a forwarding table that maps destination
addresses to link interfaces; when a packet arrives at the router, the router uses the
packet’s destination address to look up the appropriate output link interface in the
forwarding table. The router then intentionally forwards the packet to that output
link interface.

To get some further insight into the lookup operation, let’s look at a specific
example. Suppose that all destination addresses are 32 bits (which just happens to
be the length of the destination address in an IP datagram). A brute-force implemen-
tation of the forwarding table would have one entry for every possible destination
address. Since there are more than 4 billion possible addresses, this option is totally
out of the question.

4.2 • VIRTUAL CIRCUIT AND DATAGRAM NETWORKS 317

Transport

1. Send
 data

2. Receive
 dataData link

Physical

Application

Network

Transport

Data link

Physical

Application

Network

Figure 4.5 � Datagram network

https://hemanthrajhemu.github.io

Now let’s further suppose that our router has four links, numbered 0 through 3,
and that packets are to be forwarded to the link interfaces as follows:

Destination Address Range Link Interface

11001000 00010111 00010000 00000000
through 0

11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through 1

11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through 2

11001000 00010111 00011111 11111111

otherwise 3

Clearly, for this example, it is not necessary to have 4 billion entries in the router’s
forwarding table. We could, for example, have the following forwarding table with
just four entries:

Prefix Match Link Interface

11001000 00010111 00010 0
11001000 00010111 00011000 1
11001000 00010111 00011 2

otherwise 3

With this style of forwarding table, the router matches a prefix of the packet’s desti-
nation address with the entries in the table; if there’s a match, the router forwards
the packet to a link associated with the match. For example, suppose the packet’s
destination address is 11001000 00010111 00010110 10100001; because the 21-bit
prefix of this address matches the first entry in the table, the router forwards the
packet to link interface 0. If a prefix doesn’t match any of the first three entries, then
the router forwards the packet to interface 3. Although this sounds simple enough,
there’s an important subtlety here. You may have noticed that it is possible for a des-
tination address to match more than one entry. For example, the first 24 bits of the
address 11001000 00010111 00011000 10101010 match the second entry in the
table, and the first 21 bits of the address match the third entry in the table. When
there are multiple matches, the router uses the longest prefix matching rule; that
is, it finds the longest matching entry in the table and forwards the packet to the link

318 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

interface associated with the longest prefix match. We’ll see exactly why this
longest prefix-matching rule is used when we study Internet addressing in more
detail in Section 4.4.

Although routers in datagram networks maintain no connection state informa-
tion, they nevertheless maintain forwarding state information in their forwarding
tables. However, the time scale at which this forwarding state information changes
is relatively slow. Indeed, in a datagram network the forwarding tables are modified
by the routing algorithms, which typically update a forwarding table every one-to-
five minutes or so. In a VC network, a forwarding table in a router is modified
whenever a new connection is set up through the router or whenever an existing
connection through the router is torn down. This could easily happen at a microsec-
ond timescale in a backbone, tier-1 router.

Because forwarding tables in datagram networks can be modified at any time, a
series of packets sent from one end system to another may follow different paths
through the network and may arrive out of order. [Paxson 1997] and [Jaiswal 2003]
present interesting measurement studies of packet reordering and other phenomena
in the public Internet.

4.2.3 Origins of VC and Datagram Networks

The evolution of datagram and VC networks reflects their origins. The notion of a
virtual circuit as a central organizing principle has its roots in the telephony world,
which uses real circuits. With call setup and per-call state being maintained at the
routers within the network, a VC network is arguably more complex than a data-
gram network (although see [Molinero-Fernandez 2002] for an interesting compari-
son of the complexity of circuit- versus packet-switched networks). This, too, is in
keeping with its telephony heritage. Telephone networks, by necessity, had their
complexity within the network, since they were connecting dumb end-system
devices such as rotary telephones. (For those too young to know, a rotary phone is
an analog telephone with no buttons—only a dial.)

The Internet as a datagram network, on the other hand, grew out of the need to
connect computers together. Given more sophisticated end-system devices, the
Internet architects chose to make the network-layer service model as simple as pos-
sible. As we have already seen in Chapters 2 and 3, additional functionality (for
example, in-order delivery, reliable data transfer, congestion control, and DNS name
resolution) is then implemented at a higher layer, in the end systems. This inverts
the model of the telephone network, with some interesting consequences:

• Since the resulting Internet network-layer service model makes minimal (no!)
service guarantees, it imposes minimal requirements on the network layer. This
makes it easier to interconnect networks that use very different link-layer tech-
nologies (for example, satellite, Ethernet, fiber, or radio) that have very different
transmission rates and loss characteristics. We will address the interconnection
of IP networks in detail in Section 4.4.

4.2 • VIRTUAL CIRCUIT AND DATAGRAM NETWORKS 319

https://hemanthrajhemu.github.io

• As we saw in Chapter 2, applications such as e-mail, the Web, and even some
network infrastructure services such as the DNS are implemented in hosts
(servers) at the network edge. The ability to add a new service simply by attach-
ing a host to the network and defining a new application-layer protocol (such as
HTTP) has allowed new Internet applications such as the Web to be deployed in
a remarkably short period of time.

4.3 What’s Inside a Router?

Now that we’ve overviewed the network layer’s services and functions, let’s turn
our attention to its forwarding function—the actual transfer of packets from a
router’s incoming links to the appropriate outgoing links at that router. We
already took a brief look at a few aspects of forwarding in Section 4.2, namely,
addressing and longest prefix matching. We mention here in passing that the terms
forwarding and switching are often used interchangeably by computer-networking
researchers and practitioners; we’ll use both terms interchangeably in this
textbook as well.

A high-level view of a generic router architecture is shown in Figure 4.6. Four
router components can be identified:

• Input ports. An input port performs several key functions. It performs the
physical layer function of terminating an incoming physical link at a router;
this is shown in the leftmost box of the input port and the rightmost box of the
output port in Figure 4.6. An input port also performs link-layer functions
needed to interoperate with the link layer at the other side of the incoming
link; this is represented by the middle boxes in the input and output ports. Per-
haps most crucially, the lookup function is also performed at the input port;
this will occur in the rightmost box of the input port. It is here that the for-
warding table is consulted to determine the router output port to which an
arriving packet will be forwarded via the switching fabric. Control packets
(for example, packets carrying routing protocol information) are forwarded
from an input port to the routing processor. Note that the term port here—
referring to the physical input and output router interfaces—is distinctly
different from the software ports associated with network applications and
sockets discussed in Chapters 2 and 3.

• Switching fabric. The switching fabric connects the router’s input ports to its
output ports. This switching fabric is completely contained within the router—
a network inside of a network router!

• Output ports. An output port stores packets received from the switching fabric
and transmits these packets on the outgoing link by performing the necessary
link-layer and physical-layer functions. When a link is bidirectional (that is,

320 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

carries traffic in both directions), an output port will typically be paired with the
input port for that link on the same line card (a printed circuit board containing
one or more input ports, which is connected to the switching fabric).

• Routing processor. The routing processor executes the routing protocols (which
we’ll study in Section 4.6), maintains routing tables and attached link state infor-
mation, and computes the forwarding table for the router. It also performs the
network management functions that we’ll study in Chapter 9.

Recall that in Section 4.1.1 we distinguished between a router’s forwarding and
routing functions. A router’s input ports, output ports, and switching fabric
together implement the forwarding function and are almost always implemented
in hardware, as shown in Figure 4.6. These forwarding functions are sometimes
collectively referred to as the router forwarding plane. To appreciate why a
hardware implementation is needed, consider that with a 10 Gbps input link and a
64-byte IP datagram, the input port has only 51.2 ns to process the datagram
before another datagram may arrive. If N ports are combined on a line card (as is
often done in practice), the datagram-processing pipeline must operate N times
faster—far too fast for software implementation. Forwarding plane hardware can
be implemented either using a router vendor’s own hardware designs, or con-
structed using purchased merchant-silicon chips (e.g., as sold by companies such
as Intel and Broadcom).

While the forwarding plane operates at the nanosecond time scale, a router’s
control functions—executing the routing protocols, responding to attached links that

4.3 • WHAT’S INSIDE A ROUTER? 321

Input port Output port

Input port Output port

Routing
processor

Routing, management
control plane (software)

Forwarding
data plane (hardware)

Switch
fabric

Figure 4.6 � Router architecture

https://hemanthrajhemu.github.io

go up or down, and performing management functions such as those we’ll study in
Chapter 9—operate at the millisecond or second timescale. These router control
plane functions are usually implemented in software and execute on the routing
processor (typically a traditional CPU).

Before delving into the details of a router’s control and data plane, let’s return to
our analogy of Section 4.1.1, where packet forwarding was compared to cars entering
and leaving an interchange. Let’s suppose that the interchange is a roundabout, and that
before a car enters the roundabout, a bit of processing is required—the car stops at an
entry station and indicates its final destination (not at the local roundabout, but the ulti-
mate destination of its journey). An attendant at the entry station looks up the final des-
tination, determines the roundabout exit that leads to that final destination, and tells the
driver which roundabout exit to take. The car enters the roundabout (which may be
filled with other cars entering from other input roads and heading to other roundabout
exits) and eventually leaves at the prescribed roundabout exit ramp, where it may
encounter other cars leaving the roundabout at that exit.

We can recognize the principal router components in Figure 4.6 in this anal-
ogy—the entry road and entry station correspond to the input port (with a lookup
function to determine to local outgoing port); the roundabout corresponds to the
switch fabric; and the roundabout exit road corresponds to the output port. With
this analogy, it’s instructive to consider where bottlenecks might occur. What hap-
pens if cars arrive blazingly fast (for example, the roundabout is in Germany or
Italy!) but the station attendant is slow? How fast must the attendant work to ensure
there’s no backup on an entry road? Even with a blazingly fast attendant, what hap-
pens if cars traverse the roundabout slowly—can backups still occur? And what
happens if most of the entering cars all want to leave the roundabout at the same
exit ramp—can backups occur at the exit ramp or elsewhere? How should the
roundabout operate if we want to assign priorities to different cars, or block certain
cars from entering the roundabout in the first place? These are all analogous to crit-
ical questions faced by router and switch designers.

In the following subsections, we’ll look at router functions in more detail. [Iyer
2008, Chao 2001; Chuang 2005; Turner 1988; McKeown 1997a; Partridge 1998]
provide a discussion of specific router architectures. For concreteness, the ensuing
discussion assumes a datagram network in which forwarding decisions are based
on the packet’s destination address (rather than a VC number in a virtual-circuit
network). However, the concepts and techniques are quite similar for a virtual-
circuit network.

4.3.1 Input Processing

A more detailed view of input processing is given in Figure 4.7. As discussed above,
the input port’s line termination function and link-layer processing implement the
physical and link layers for that individual input link. The lookup performed in the
input port is central to the router’s operation—it is here that the router uses the for-
warding table to look up the output port to which an arriving packet will be

322 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

forwarded via the switching fabric. The forwarding table is computed and updated
by the routing processor, with a shadow copy typically stored at each input port. The
forwarding table is copied from the routing processor to the line cards over a sepa-
rate bus (e.g., a PCI bus) indicated by the dashed line from the routing processor to
the input line cards in Figure 4.6. With a shadow copy, forwarding decisions can be
made locally, at each input port, without invoking the centralized routing processor
on a per-packet basis and thus avoiding a centralized processing bottleneck.

Given the existence of a forwarding table, lookup is conceptually simple—we just
search through the forwarding table looking for the longest prefix match, as described

4.3 • WHAT’S INSIDE A ROUTER? 323

Line
termination

Data link
processing
(protocol,

decapsulation)

Lookup, fowarding,
queuing Switch

fabric

Figure 4.7 � Input port processing

CISCO SYSTEMS: DOMINATING THE NETWORK CORE

As of this writing 2012, Cisco employs more than 65,000 people. How did this
gorilla of a networking company come to be? It all started in 1984 in the living room
of a Silicon Valley apartment.

Len Bosak and his wife Sandy Lerner were working at Stanford University when they
had the idea to build and sell Internet routers to research and academic institutions, the
primary adopters of the Internet at that time. Sandy Lerner came up with the name Cisco
(an abbreviation for San Francisco), and she also designed the company’s bridge logo.
Corporate headquarters was their living room, and they financed the project with credit
cards and moonlighting consulting jobs. At the end of 1986, Cisco’s revenues reached
$250,000 a month. At the end of 1987, Cisco succeeded in attracting venture capital—
$2 million from Sequoia Capital in exchange for one-third of the company. Over the next
few years, Cisco continued to grow and grab more and more market share. At the same
time, relations between Bosak/Lerner and Cisco management became strained. Cisco
went public in 1990; in the same year Lerner and Bosak left the company.

Over the years, Cisco has expanded well beyond the router market, selling security,
wireless caching, Ethernet switch, datacenter infrastructure, video conferencing, and
voice-over IP products and services. However, Cisco is facing increased international
competition, including from Huawei, a rapidly growing Chinese network-gear compa-
ny. Other sources of competition for Cisco in the router and switched Ethernet space
include Alcatel-Lucent and Juniper.

CASE HISTORY

https://hemanthrajhemu.github.io

in Section 4.2.2. But at Gigabit transmission rates, this lookup must be performed in
nanoseconds (recall our earlier example of a 10 Gbps link and a 64-byte IP datagram).
Thus, not only must lookup be performed in hardware, but techniques beyond a simple
linear search through a large table are needed; surveys of fast lookup algorithms can be
found in [Gupta 2001, Ruiz-Sanchez 2001]. Special attention must also be paid to mem-
ory access times, resulting in designs with embedded on-chip DRAM and faster SRAM
(used as a DRAM cache) memories. Ternary Content Address Memories (TCAMs) are
also often used for lookup. With a TCAM, a 32-bit IP address is presented to the mem-
ory, which returns the content of the forwarding table entry for that address in essen-
tially constant time. The Cisco 8500 has a 64K CAM for each input port.

Once a packet’s output port has been determined via the lookup, the packet can
be sent into the switching fabric. In some designs, a packet may be temporarily
blocked from entering the switching fabric if packets from other input ports are cur-
rently using the fabric. A blocked packet will be queued at the input port and then
scheduled to cross the fabric at a later point in time. We’ll take a closer look at the
blocking, queuing, and scheduling of packets (at both input ports and output ports)
in Section 4.3.4. Although “lookup” is arguably the most important action in input
port processing, many other actions must be taken: (1) physical- and link-layer pro-
cessing must occur, as discussed above; (2) the packet’s version number, checksum
and time-to-live field—all of which we’ll study in Section 4.4.1—must be checked
and the latter two fields rewritten; and (3) counters used for network management
(such as the number of IP datagrams received) must be updated.

Let’s close our discussion of input port processing by noting that the input port
steps of looking up an IP address (“match”) then sending the packet into the switching
fabric (“action”) is a specific case of a more general “match plus action” abstraction
that is performed in many networked devices, not just routers. In link-layer switches
(covered in Chapter 5), link-layer destination addresses are looked up and several
actions may be taken in addition to sending the frame into the switching fabric towards
the output port. In firewalls (covered in Chapter 8)—devices that filter out selected
incoming packets—an incoming packet whose header matches a given criteria (e.g., a
combination of source/destination IP addresses and transport-layer port numbers) may
be prevented from being forwarded (action). In a network address translator (NAT, cov-
ered in Section 4.4), an incoming packet whose transport-layer port number matches a
given value will have its port number rewritten before forwarding (action). Thus, the
“match plus action” abstraction is both powerful and prevalent in network devices.

4.3.2 Switching

The switching fabric is at the very heart of a router, as it is through this fabric that
the packets are actually switched (that is, forwarded) from an input port to an output
port. Switching can be accomplished in a number of ways, as shown in Figure 4.8:

• Switching via memory. The simplest, earliest routers were traditional computers,
with switching between input and output ports being done under direct control of

324 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

the CPU (routing processor). Input and output ports functioned as traditional I/O
devices in a traditional operating system. An input port with an arriving packet
first signaled the routing processor via an interrupt. The packet was then copied
from the input port into processor memory. The routing processor then extracted
the destination address from the header, looked up the appropriate output port in
the forwarding table, and copied the packet to the output port’s buffers. In this
scenario, if the memory bandwidth is such that B packets per second can be writ-
ten into, or read from, memory, then the overall forwarding throughput (the total
rate at which packets are transferred from input ports to output ports) must be
less than B/2. Note also that two packets cannot be forwarded at the same time,
even if they have different destination ports, since only one memory read/write
over the shared system bus can be done at a time.

Many modern routers switch via memory. A major difference from early routers,
however, is that the lookup of the destination address and the storing of the packet
into the appropriate memory location are performed by processing on the input
line cards. In some ways, routers that switch via memory look very much like
shared-memory multiprocessors, with the processing on a line card switching
(writing) packets into the memory of the appropriate output port. Cisco’s Catalyst
8500 series switches [Cisco 8500 2012] forward packets via a shared memory.

4.3 • WHAT’S INSIDE A ROUTER? 325

Memory
A

B

C

X

Y

Z

Memory

Key:

Input port Output port

A

X Y Z

B

C

Crossbar

A

B

C

X

Y

Z

Bus

Figure 4.8 � Three switching techniques

https://hemanthrajhemu.github.io

• Switching via a bus. In this approach, an input port transfers a packet directly to the
output port over a shared bus, without intervention by the routing processor. This is
typically done by having the input port pre-pend a switch-internal label (header) to
the packet indicating the local output port to which this packet is being transferred
and transmitting the packet onto the bus. The packet is received by all output ports,
but only the port that matches the label will keep the packet. The label is then
removed at the output port, as this label is only used within the switch to cross the
bus. If multiple packets arrive to the router at the same time, each at a different input
port, all but one must wait since only one packet can cross the bus at a time. Because
every packet must cross the single bus, the switching speed of the router is limited
to the bus speed; in our roundabout analogy, this is as if the roundabout could only
contain one car at a time. Nonetheless, switching via a bus is often sufficient for
routers that operate in small local area and enterprise networks. The Cisco 5600
[Cisco Switches 2012] switches packets over a 32 Gbps backplane bus.

• Switching via an interconnection network. One way to overcome the bandwidth
limitation of a single, shared bus is to use a more sophisticated interconnection net-
work, such as those that have been used in the past to interconnect processors in a
multiprocessor computer architecture. A crossbar switch is an interconnection net-
work consisting of 2N buses that connect N input ports to N output ports, as shown
in Figure 4.8. Each vertical bus intersects each horizontal bus at a crosspoint, which
can be opened or closed at any time by the switch fabric controller (whose logic is
part of the switching fabric itself). When a packet arrives from port A and needs to
be forwarded to port Y, the switch controller closes the crosspoint at the intersection
of busses A and Y, and port A then sends the packet onto its bus, which is picked up
(only) by bus Y. Note that a packet from port B can be forwarded to port X at the
same time, since the A-to-Y and B-to-X packets use different input and output
busses. Thus, unlike the previous two switching approaches, crossbar networks are
capable of forwarding multiple packets in parallel. However, if two packets from
two different input ports are destined to the same output port, then one will have to
wait at the input, since only one packet can be sent over any given bus at a time.

More sophisticated interconnection networks use multiple stages of switching
elements to allow packets from different input ports to proceed towards the same
output port at the same time through the switching fabric. See [Tobagi 1990] for
a survey of switch architectures. Cisco 12000 family switches [Cisco 12000
2012] use an interconnection network.

4.3.3 Output Processing

Output port processing, shown in Figure 4.9, takes packets that have been stored in
the output port’s memory and transmits them over the output link. This includes
selecting and de-queueing packets for transmission, and performing the needed link-
layer and physical-layer transmission functions.

326 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

4.3.4 Where Does Queueing Occur?

If we consider input and output port functionality and the configurations shown in
Figure 4.8, it’s clear that packet queues may form at both the input ports and the out-
put ports, just as we identified cases where cars may wait at the inputs and outputs of
the traffic intersection in our roundabout analogy. The location and extent of queueing
(either at the input port queues or the output port queues) will depend on the traffic
load, the relative speed of the switching fabric, and the line speed. Let’s now consider
these queues in a bit more detail, since as these queues grow large, the router’s mem-
ory can eventually be exhausted and packet loss will occur when no memory is avail-
able to store arriving packets. Recall that in our earlier discussions, we said that
packets were “lost within the network” or “dropped at a router.” It is here, at these
queues within a router, where such packets are actually dropped and lost.

Suppose that the input and output line speeds (transmission rates) all have an
identical transmission rate of Rline packets per second, and that there are N input
ports and N output ports. To further simplify the discussion, let’s assume that all
packets have the same fixed length, and the packets arrive to input ports in a syn-
chronous manner. That is, the time to send a packet on any link is equal to the time
to receive a packet on any link, and during such an interval of time, either zero or
one packet can arrive on an input link. Define the switching fabric transfer rate
Rswitch as the rate at which packets can be moved from input port to output port. If
Rswitch is N times faster than Rline, then only negligible queuing will occur at the
input ports. This is because even in the worst case, where all N input lines are
receiving packets, and all packets are to be forwarded to the same output port, each
batch of N packets (one packet per input port) can be cleared through the switch fab-
ric before the next batch arrives.

But what can happen at the output ports? Let’s suppose that Rswitch is still N
times faster than Rline. Once again, packets arriving at each of the N input ports
are destined to the same output port. In this case, in the time it takes to send a single
packet onto the outgoing link, N new packets will arrive at this output port. Since
the output port can transmit only a single packet in a unit of time (the packet trans-
mission time), the N arriving packets will have to queue (wait) for transmission over
the outgoing link. Then N more packets can possibly arrive in the time it takes to

4.3 • WHAT’S INSIDE A ROUTER? 327

Line
termination

Data link
processing
(protocol,

encapsulation)

Queuing (buffer
management)Switch

fabric

Figure 4.9 � Output port processing

https://hemanthrajhemu.github.io

transmit just one of the N packets that had just previously been queued. And so on.
Eventually, the number of queued packets can grow large enough to exhaust avail-
able memory at the output port, in which case packets are dropped.

Output port queuing is illustrated in Figure 4.10. At time t, a packet has arrived at
each of the incoming input ports, each destined for the uppermost outgoing port.
Assuming identical line speeds and a switch operating at three times the line speed,
one time unit later (that is, in the time needed to receive or send a packet), all three
original packets have been transferred to the outgoing port and are queued awaiting
transmission. In the next time unit, one of these three packets will have been transmit-
ted over the outgoing link. In our example, two new packets have arrived at the incom-
ing side of the switch; one of these packets is destined for this uppermost output port.

Given that router buffers are needed to absorb the fluctuations in traffic load, the
natural question to ask is how much buffering is required. For many years, the rule of
thumb [RFC 3439] for buffer sizing was that the amount of buffering (B) should be
equal to an average round-trip time (RTT, say 250 msec) times the link capacity (C).
This result is based on an analysis of the queueing dynamics of a relatively small num-
ber of TCP flows [Villamizar 1994]. Thus, a 10 Gbps link with an RTT of 250 msec
would need an amount of buffering equal to B = RTT · C = 2.5 Gbits of buffers. Recent

328 CHAPTER 4 • THE NETWORK LAYER

Switch
fabric

Output port contention at time t

One packet time later

Switch
fabric

Figure 4.10 � Output port queuing

https://hemanthrajhemu.github.io

theoretical and experimental efforts [Appenzeller 2004], however, suggest that when
there are a large number of TCP flows (N) passing through a link, the amount of buffer-
ing needed is B = RTT � C/√N

—
. With a large number of flows typically passing through

large backbone router links (see, e.g., [Fraleigh 2003]), the value of N can be large, with
the decrease in needed buffer size becoming quite significant. [Appenzellar 2004; Wis-
chik 2005; Beheshti 2008] provide very readable discussions of the buffer sizing prob-
lem from a theoretical, implementation, and operational standpoint.

A consequence of output port queuing is that a packet scheduler at the output
port must choose one packet among those queued for transmission. This selection
might be done on a simple basis, such as first-come-first-served (FCFS) scheduling,
or a more sophisticated scheduling discipline such as weighted fair queuing (WFQ),
which shares the outgoing link fairly among the different end-to-end connections
that have packets queued for transmission. Packet scheduling plays a crucial role in
providing quality-of-service guarantees. We’ll thus cover packet scheduling exten-
sively in Chapter 7. A discussion of output port packet scheduling disciplines is
[Cisco Queue 2012].

Similarly, if there is not enough memory to buffer an incoming packet, a decision
must be made to either drop the arriving packet (a policy known as drop-tail) or
remove one or more already-queued packets to make room for the newly arrived
packet. In some cases, it may be advantageous to drop (or mark the header of) a packet
before the buffer is full in order to provide a congestion signal to the sender. A number
of packet-dropping and -marking policies (which collectively have become known as
active queue management (AQM) algorithms) have been proposed and analyzed
[Labrador 1999, Hollot 2002]. One of the most widely studied and implemented AQM
algorithms is the Random Early Detection (RED) algorithm. Under RED, a
weighted average is maintained for the length of the output queue. If the average
queue length is less than a minimum threshold, minth, when a packet arrives, the
packet is admitted to the queue. Conversely, if the queue is full or the average queue
length is greater than a maximum threshold, maxth, when a packet arrives, the packet
is marked or dropped. Finally, if the packet arrives to find an average queue length in
the interval [minth, maxth], the packet is marked or dropped with a probability that is
typically some function of the average queue length, minth, and maxth. A number of
probabilistic marking/dropping functions have been proposed, and various versions of
RED have been analytically modeled, simulated, and/or implemented. [Christiansen
2001] and [Floyd 2012] provide overviews and pointers to additional reading.

4.3 • WHAT’S INSIDE A ROUTER? 329

If the switch fabric is not fast enough (relative to the input line speeds) to transfer
all arriving packets through the fabric without delay, then packet queuing can also
occur at the input ports, as packets must join input port queues to wait their turn to be
transferred through the switching fabric to the output port. To illustrate an important
consequence of this queuing, consider a crossbar switching fabric and suppose that
(1) all link speeds are identical, (2) that one packet can be transferred from any one
input port to a given output port in the same amount of time it takes for a packet to be
received on an input link, and (3) packets are moved from a given input queue to their

https://hemanthrajhemu.github.io

desired output queue in an FCFS manner. Multiple packets can be transferred in paral-
lel, as long as their output ports are different. However, if two packets at the front of
two input queues are destined for the same output queue, then one of the packets will
be blocked and must wait at the input queue—the switching fabric can transfer only
one packet to a given output port at a time.

Figure 4.11 shows an example in which two packets (darkly shaded) at the front
of their input queues are destined for the same upper-right output port. Suppose that
the switch fabric chooses to transfer the packet from the front of the upper-left
queue. In this case, the darkly shaded packet in the lower-left queue must wait. But
not only must this darkly shaded packet wait, so too must the lightly shaded packet
that is queued behind that packet in the lower-left queue, even though there is no
contention for the middle-right output port (the destination for the lightly shaded
packet). This phenomenon is known as head-of-the-line (HOL) blocking in an

330 CHAPTER 4 • THE NETWORK LAYER

Switch
fabric

Output port contention at time t —
one dark packet can be transferred

Light blue packet experiences HOL blocking

Switch
fabric

Key:

destined for upper output
port

destined for middle output
port

destined for lower output
port

Figure 4.11 � HOL blocking at an input queued switch

https://hemanthrajhemu.github.io

input-queued switch—a queued packet in an input queue must wait for transfer
through the fabric (even though its output port is free) because it is blocked by
another packet at the head of the line. [Karol 1987] shows that due to HOL block-
ing, the input queue will grow to unbounded length (informally, this is equivalent to
saying that significant packet loss will occur) under certain assumptions as soon as
the packet arrival rate on the input links reaches only 58 percent of their capacity. A
number of solutions to HOL blocking are discussed in [McKeown 1997b].

4.3.5 The Routing Control Plane

In our discussion thus far and in Figure 4.6, we’ve implicitly assumed that the rout-
ing control plane fully resides and executes in a routing processor within the router.
The network-wide routing control plane is thus decentralized—with different pieces
(e.g., of a routing algorithm) executing at different routers and interacting by send-
ing control messages to each other. Indeed, today’s Internet routers and the routing
algorithms we’ll study in Section 4.6 operate in exactly this manner. Additionally,
router and switch vendors bundle their hardware data plane and software control
plane together into closed (but inter-operable) platforms in a vertically integrated
product.

Recently, a number of researchers [Caesar 2005a, Casado 2009, McKeown
2008] have begun exploring new router control plane architectures in which part of
the control plane is implemented in the routers (e.g., local measurement/reporting of
link state, forwarding table installation and maintenance) along with the data plane,
and part of the control plane can be implemented externally to the router (e.g., in a
centralized server, which could perform route calculation). A well-defined API dic-
tates how these two parts interact and communicate with each other. These
researchers argue that separating the software control plane from the hardware data
plane (with a minimal router-resident control plane) can simplify routing by replac-
ing distributed routing calculation with centralized routing calculation, and enable
network innovation by allowing different customized control planes to operate over
fast hardware data planes.

4.4 The Internet Protocol (IP): Forwarding and
Addressing in the Internet

Our discussion of network-layer addressing and forwarding thus far has been
without reference to any specific computer network. In this section, we’ll turn our
attention to how addressing and forwarding are done in the Internet. We’ll see that
Internet addressing and forwarding are important components of the Internet
Protocol (IP). There are two versions of IP in use today. We’ll first examine the
widely deployed IP protocol version 4, which is usually referred to simply as IPv4

4.4 • THE INTERNET PROTOCOL (IP) 331

https://hemanthrajhemu.github.io

[RFC 791]. We’ll examine IP version 6 [RFC 2460; RFC 4291], which has been
proposed to replace IPv4, at the end of this section.

But before beginning our foray into IP, let’s take a step back and consider the
components that make up the Internet’s network layer. As shown in Figure 4.12,
the Internet’s network layer has three major components. The first component is
the IP protocol, the topic of this section. The second major component is the rout-
ing component, which determines the path a datagram follows from source to des-
tination. We mentioned earlier that routing protocols compute the forwarding
tables that are used to forward packets through the network. We’ll study the
Internet’s routing protocols in Section 4.6. The final component of the network
layer is a facility to report errors in datagrams and respond to requests for certain
network-layer information. We’ll cover the Internet’s network-layer error- and
information-reporting protocol, the Internet Control Message Protocol (ICMP), in
Section 4.4.3.

4.4.1 Datagram Format

Recall that a network-layer packet is referred to as a datagram. We begin our study
of IP with an overview of the syntax and semantics of the IPv4 datagram. You
might be thinking that nothing could be drier than the syntax and semantics of a
packet’s bits. Nevertheless, the datagram plays a central role in the Internet—every
networking student and professional needs to see it, absorb it, and master it. The

332 CHAPTER 4 • THE NETWORK LAYER

Routing protocols
• path selection
• RIP, OSPF, BGP

IP protocol
• addressing conventions
• datagram format
• packet handling
 conventions

ICMP protocol
• error reporting
• router “signaling”

Forwarding
table

Transport layer: TCP, UDP

Link layer

Physical layer

Network layer

Figure 4.12 � A look inside the Internet’s network layer

https://hemanthrajhemu.github.io

IPv4 datagram format is shown in Figure 4.13. The key fields in the IPv4 datagram
are the following:

• Version number. These 4 bits specify the IP protocol version of the datagram.
By looking at the version number, the router can determine how to interpret
the remainder of the IP datagram. Different versions of IP use different data-
gram formats. The datagram format for the current version of IP, IPv4, is
shown in Figure 4.13. The datagram format for the new version of IP (IPv6) is
discussed at the end of this section.

• Header length. Because an IPv4 datagram can contain a variable number of
options (which are included in the IPv4 datagram header), these 4 bits are needed
to determine where in the IP datagram the data actually begins. Most IP data-
grams do not contain options, so the typical IP datagram has a 20-byte header.

• Type of service. The type of service (TOS) bits were included in the IPv4 header
to allow different types of IP datagrams (for example, datagrams particularly
requiring low delay, high throughput, or reliability) to be distinguished from each
other. For example, it might be useful to distinguish real-time datagrams (such as
those used by an IP telephony application) from non-real-time traffic (for exam-
ple, FTP). The specific level of service to be provided is a policy issue deter-
mined by the router’s administrator. We’ll explore the topic of differentiated
service in Chapter 7.

4.4 • THE INTERNET PROTOCOL (IP) 333

Version Type of serviceHeader
length

Upper-layer
protocol

16-bit Identifier

Time-to-live

13-bit Fragmentation offsetFlags

Datagram length (bytes)

Header checksum

32 bits

32-bit Source IP address

32-bit Destination IP address

Options (if any)

Data

Figure 4.13 � IPv4 datagram format

https://hemanthrajhemu.github.io

• Datagram length. This is the total length of the IP datagram (header plus data),
measured in bytes. Since this field is 16 bits long, the theoretical maximum size
of the IP datagram is 65,535 bytes. However, datagrams are rarely larger than
1,500 bytes.

• Identifier, flags, fragmentation offset. These three fields have to do with so-called
IP fragmentation, a topic we will consider in depth shortly. Interestingly, the new
version of IP, IPv6, does not allow for fragmentation at routers.

• Time-to-live. The time-to-live (TTL) field is included to ensure that datagrams
do not circulate forever (due to, for example, a long-lived routing loop) in the
network. This field is decremented by one each time the datagram is processed
by a router. If the TTL field reaches 0, the datagram must be dropped.

• Protocol. This field is used only when an IP datagram reaches its final destina-
tion. The value of this field indicates the specific transport-layer protocol to
which the data portion of this IP datagram should be passed. For example, a
value of 6 indicates that the data portion is passed to TCP, while a value of 17
indicates that the data is passed to UDP. For a list of all possible values, see
[IANA Protocol Numbers 2012]. Note that the protocol number in the IP data-
gram has a role that is analogous to the role of the port number field in the transport-
layer segment. The protocol number is the glue that binds the network and transport
layers together, whereas the port number is the glue that binds the transport and
application layers together. We’ll see in Chapter 5 that the link-layer frame also
has a special field that binds the link layer to the network layer.

• Header checksum. The header checksum aids a router in detecting bit errors in a
received IP datagram. The header checksum is computed by treating each 2 bytes
in the header as a number and summing these numbers using 1s complement
arithmetic. As discussed in Section 3.3, the 1s complement of this sum, known
as the Internet checksum, is stored in the checksum field. A router computes the
header checksum for each received IP datagram and detects an error condition if
the checksum carried in the datagram header does not equal the computed check-
sum. Routers typically discard datagrams for which an error has been detected.
Note that the checksum must be recomputed and stored again at each router, as
the TTL field, and possibly the options field as well, may change. An interesting
discussion of fast algorithms for computing the Internet checksum is [RFC
1071]. A question often asked at this point is, why does TCP/IP perform error
checking at both the transport and network layers? There are several reasons for
this repetition. First, note that only the IP header is checksummed at the IP layer,
while the TCP/UDP checksum is computed over the entire TCP/UDP segment.
Second, TCP/UDP and IP do not necessarily both have to belong to the same pro-
tocol stack. TCP can, in principle, run over a different protocol (for example,
ATM) and IP can carry data that will not be passed to TCP/UDP.

• Source and destination IP addresses. When a source creates a datagram, it inserts
its IP address into the source IP address field and inserts the address of the

334 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

ultimate destination into the destination IP address field. Often the source host
determines the destination address via a DNS lookup, as discussed in Chapter 2.
We’ll discuss IP addressing in detail in Section 4.4.2.

• Options. The options fields allow an IP header to be extended. Header options
were meant to be used rarely—hence the decision to save overhead by not
including the information in options fields in every datagram header. However,
the mere existence of options does complicate matters—since datagram headers
can be of variable length, one cannot determine a priori where the data field will
start. Also, since some datagrams may require options processing and others may
not, the amount of time needed to process an IP datagram at a router can vary
greatly. These considerations become particularly important for IP processing in
high-performance routers and hosts. For these reasons and others, IP options
were dropped in the IPv6 header, as discussed in Section 4.4.4.

• Data (payload). Finally, we come to the last and most important field—the rai-
son d’être for the datagram in the first place! In most circumstances, the data
field of the IP datagram contains the transport-layer segment (TCP or UDP) to
be delivered to the destination. However, the data field can carry other types of
data, such as ICMP messages (discussed in Section 4.4.3).

Note that an IP datagram has a total of 20 bytes of header (assuming no options). If
the datagram carries a TCP segment, then each (nonfragmented) datagram carries a
total of 40 bytes of header (20 bytes of IP header plus 20 bytes of TCP header) along
with the application-layer message.

IP Datagram Fragmentation

We’ll see in Chapter 5 that not all link-layer protocols can carry network-layer pack-
ets of the same size. Some protocols can carry big datagrams, whereas other proto-
cols can carry only little packets. For example, Ethernet frames can carry up to 1,500
bytes of data, whereas frames for some wide-area links can carry no more than 576
bytes. The maximum amount of data that a link-layer frame can carry is called the
maximum transmission unit (MTU). Because each IP datagram is encapsulated
within the link-layer frame for transport from one router to the next router, the MTU
of the link-layer protocol places a hard limit on the length of an IP datagram. Having
a hard limit on the size of an IP datagram is not much of a problem. What is a prob-
lem is that each of the links along the route between sender and destination can use
different link-layer protocols, and each of these protocols can have different MTUs.

To understand the forwarding issue better, imagine that you are a router that
interconnects several links, each running different link-layer protocols with differ-
ent MTUs. Suppose you receive an IP datagram from one link. You check your for-
warding table to determine the outgoing link, and this outgoing link has an MTU
that is smaller than the length of the IP datagram. Time to panic—how are you going
to squeeze this oversized IP datagram into the payload field of the link-layer frame?

4.4 • THE INTERNET PROTOCOL (IP) 335

https://hemanthrajhemu.github.io

The solution is to fragment the data in the IP datagram into two or more smaller IP
datagrams, encapsulate each of these smaller IP datagrams in a separate link-layer
frame; and send these frames over the outgoing link. Each of these smaller data-
grams is referred to as a fragment.

Fragments need to be reassembled before they reach the transport layer at the des-
tination. Indeed, both TCP and UDP are expecting to receive complete, unfragmented
segments from the network layer. The designers of IPv4 felt that reassembling data-
grams in the routers would introduce significant complication into the protocol and
put a damper on router performance. (If you were a router, would you want to be
reassembling fragments on top of everything else you had to do?) Sticking to the prin-
ciple of keeping the network core simple, the designers of IPv4 decided to put the job
of datagram reassembly in the end systems rather than in network routers.

When a destination host receives a series of datagrams from the same source, it
needs to determine whether any of these datagrams are fragments of some original,
larger datagram. If some datagrams are fragments, it must further determine when it
has received the last fragment and how the fragments it has received should be
pieced back together to form the original datagram. To allow the destination host to
perform these reassembly tasks, the designers of IP (version 4) put identification,
flag, and fragmentation offset fields in the IP datagram header. When a datagram is
created, the sending host stamps the datagram with an identification number as well
as source and destination addresses. Typically, the sending host increments the iden-
tification number for each datagram it sends. When a router needs to fragment a
datagram, each resulting datagram (that is, fragment) is stamped with the source
address, destination address, and identification number of the original datagram.
When the destination receives a series of datagrams from the same sending host, it
can examine the identification numbers of the datagrams to determine which of the
datagrams are actually fragments of the same larger datagram. Because IP is an
unreliable service, one or more of the fragments may never arrive at the destination.
For this reason, in order for the destination host to be absolutely sure it has received
the last fragment of the original datagram, the last fragment has a flag bit set to 0,
whereas all the other fragments have this flag bit set to 1. Also, in order for the des-
tination host to determine whether a fragment is missing (and also to be able to
reassemble the fragments in their proper order), the offset field is used to specify
where the fragment fits within the original IP datagram.

Figure 4.14 illustrates an example. A datagram of 4,000 bytes (20 bytes of IP
header plus 3,980 bytes of IP payload) arrives at a router and must be forwarded to
a link with an MTU of 1,500 bytes. This implies that the 3,980 data bytes in the
original datagram must be allocated to three separate fragments (each of which is
also an IP datagram). Suppose that the original datagram is stamped with an identi-
fication number of 777. The characteristics of the three fragments are shown in
Table 4.2. The values in Table 4.2 reflect the requirement that the amount of origi-
nal payload data in all but the last fragment be a multiple of 8 bytes, and that the off-
set value be specified in units of 8-byte chunks.

336 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

4.4 • THE INTERNET PROTOCOL (IP) 337

Fragmentation:
In: one large datagram (4,000 bytes)
Out: 3 smaller datagrams

Reassembly:
In: 3 smaller datagrams
Out: one large datagram (4,000 bytes)

Link MTU: 1,500 bytes

Figure 4.14 � IP fragmentation and reassembly

Table 4.2 � IP fragments

Fragment Bytes ID Offset Flag

1st fragment 1,480 bytes in
the data field of
the IP datagram

identification � 777 offset � 0 (meaning the data
should be inserted beginning
at byte 0)

2nd fragment 1,480 bytes
of data

identification � 777 offset � 185 (meaning the data
should be inserted beginning at byte
1,480. Note that 185 · 8 � 1,480)

3rd fragment 1,020 bytes
(� 3,980–1,480–1,480)
of data

identification � 777 offset � 370 (meaning the data
should be inserted beginning at byte
2,960. Note that 370 · 8 � 2,960)

flag � 1 (meaning
there is more)

flag � 1 (meaning
there is more)

flag � 0 (meaning this
is the last fragment)

At the destination, the payload of the datagram is passed to the transport layer
only after the IP layer has fully reconstructed the original IP datagram. If one or
more of the fragments does not arrive at the destination, the incomplete datagram is
discarded and not passed to the transport layer. But, as we learned in the previous

https://hemanthrajhemu.github.io

chapter, if TCP is being used at the transport layer, then TCP will recover from this
loss by having the source retransmit the data in the original datagram.

We have just learned that IP fragmentation plays an important role in gluing
together the many disparate link-layer technologies. But fragmentation also has its
costs. First, it complicates routers and end systems, which need to be designed to
accommodate datagram fragmentation and reassembly. Second, fragmentation can
be used to create lethal DoS attacks, whereby the attacker sends a series of bizarre
and unexpected fragments. A classic example is the Jolt2 attack, where the attacker
sends a stream of small fragments to the target host, none of which has an offset of
zero. The target can collapse as it attempts to rebuild datagrams out of the degener-
ate packets. Another class of exploits sends overlapping IP fragments, that is, frag-
ments whose offset values are set so that the fragments do not align properly.
Vulnerable operating systems, not knowing what to do with overlapping fragments,
can crash [Skoudis 2006]. As we’ll see at the end of this section, a new version of
the IP protocol, IPv6, does away with fragmentation altogether, thereby streamlin-
ing IP packet processing and making IP less vulnerable to attack.

At this book’s Web site, we provide a Java applet that generates fragments. You
provide the incoming datagram size, the MTU, and the incoming datagram identifi-
cation. The applet automatically generates the fragments for you. See http://
www.awl.com/kurose-ross.

4.4.2 IPv4 Addressing

We now turn our attention to IPv4 addressing. Although you may be thinking that
addressing must be a straightforward topic, hopefully by the end of this chapter
you’ll be convinced that Internet addressing is not only a juicy, subtle, and interest-
ing topic but also one that is of central importance to the Internet. Excellent treat-
ments of IPv4 addressing are [3Com Addressing 2012] and the first chapter in
[Stewart 1999].

Before discussing IP addressing, however, we’ll need to say a few words about
how hosts and routers are connected into the network. A host typically has only a
single link into the network; when IP in the host wants to send a datagram, it does
so over this link. The boundary between the host and the physical link is called an
interface. Now consider a router and its interfaces. Because a router’s job is to
receive a datagram on one link and forward the datagram on some other link, a
router necessarily has two or more links to which it is connected. The boundary
between the router and any one of its links is also called an interface. A router thus
has multiple interfaces, one for each of its links. Because every host and router is
capable of sending and receiving IP datagrams, IP requires each host and router
interface to have its own IP address. Thus, an IP address is technically associated
with an interface, rather than with the host or router containing that interface.

Each IP address is 32 bits long (equivalently, 4 bytes), and there are thus a total
of 232 possible IP addresses. By approximating 210 by 103, it is easy to see that there

338 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

are about 4 billion possible IP addresses. These addresses are typically written in
so-called dotted-decimal notation, in which each byte of the address is written in
its decimal form and is separated by a period (dot) from other bytes in the address.
For example, consider the IP address 193.32.216.9. The 193 is the decimal equiv-
alent of the first 8 bits of the address; the 32 is the decimal equivalent of the second
8 bits of the address, and so on. Thus, the address 193.32.216.9 in binary notation is

11000001 00100000 11011000 00001001

Each interface on every host and router in the global Internet must have an IP
address that is globally unique (except for interfaces behind NATs, as discussed at
the end of this section). These addresses cannot be chosen in a willy-nilly manner,
however. A portion of an interface’s IP address will be determined by the subnet to
which it is connected.

Figure 4.15 provides an example of IP addressing and interfaces. In this figure,
one router (with three interfaces) is used to interconnect seven hosts. Take a close look
at the IP addresses assigned to the host and router interfaces, as there are several things
to notice. The three hosts in the upper-left portion of Figure 4.15, and the router inter-
face to which they are connected, all have an IP address of the form 223.1.1.xxx. That
is, they all have the same leftmost 24 bits in their IP address. The four interfaces are
also interconnected to each other by a network that contains no routers. This network

4.4 • THE INTERNET PROTOCOL (IP) 339

223.1.1.1

223.1.2.1

223.1.2.2

223.1.1.2

223.1.1.4 223.1.2.9

223.1.3.27

223.1.1.3

223.1.3.1 223.1.3.2

Figure 4.15 � Interface addresses and subnets

https://hemanthrajhemu.github.io

could be interconnected by an Ethernet LAN, in which case the interfaces would be
interconnected by an Ethernet switch (as we’ll discuss in Chapter 5), or by a wireless
access point (as we’ll discuss in Chapter 6). We’ll represent this routerless network
connecting these hosts as a cloud for now, and dive into the internals of such networks
in Chapters 5 and 6.

In IP terms, this network interconnecting three host interfaces and one router
interface forms a subnet [RFC 950]. (A subnet is also called an IP network or
simply a network in the Internet literature.) IP addressing assigns an address to this
subnet: 223.1.1.0/24, where the /24 notation, sometimes known as a subnet mask,
indicates that the leftmost 24 bits of the 32-bit quantity define the subnet
address. The subnet 223.1.1.0/24 thus consists of the three host interfaces
(223.1.1.1, 223.1.1.2, and 223.1.1.3) and one router interface (223.1.1.4). Any addi-
tional hosts attached to the 223.1.1.0/24 subnet would be required to have an
address of the form 223.1.1.xxx. There are two additional subnets shown in Figure
4.15: the 223.1.2.0/24 network and the 223.1.3.0/24 subnet. Figure 4.16 illustrates
the three IP subnets present in Figure 4.15.

The IP definition of a subnet is not restricted to Ethernet segments that connect
multiple hosts to a router interface. To get some insight here, consider Figure 4.17,
which shows three routers that are interconnected with each other by point-to-point
links. Each router has three interfaces, one for each point-to-point link and one for
the broadcast link that directly connects the router to a pair of hosts. What subnets
are present here? Three subnets, 223.1.1.0/24, 223.1.2.0/24, and 223.1.3.0/24, are
similar to the subnets we encountered in Figure 4.15. But note that there are three

340 CHAPTER 4 • THE NETWORK LAYER

223.1.1.0/23

223.1.2.0/23

223.1.3.0/23

Figure 4.16 � Subnet addresses

https://hemanthrajhemu.github.io

additional subnets in this example as well: one subnet, 223.1.9.0/24, for the interfaces
that connect routers R1 and R2; another subnet, 223.1.8.0/24, for the interfaces that
connect routers R2 and R3; and a third subnet, 223.1.7.0/24, for the interfaces that
connect routers R3 and R1. For a general interconnected system of routers and hosts,
we can use the following recipe to define the subnets in the system:

To determine the subnets, detach each interface from its host or router, creating
islands of isolated networks, with interfaces terminating the end points of the
isolated networks. Each of these isolated networks is called a subnet.

If we apply this procedure to the interconnected system in Figure 4.17, we get six
islands or subnets.

From the discussion above, it’s clear that an organization (such as a company
or academic institution) with multiple Ethernet segments and point-to-point links
will have multiple subnets, with all of the devices on a given subnet having the same
subnet address. In principle, the different subnets could have quite different subnet
addresses. In practice, however, their subnet addresses often have much in common.
To understand why, let’s next turn our attention to how addressing is handled in the
global Internet.

4.4 • THE INTERNET PROTOCOL (IP) 341

223.1.8.1 223.1.8.0

223.1.9.1 223.1.7.1

223.1.2.6

223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2

223.1.1.3

223.1.7.0223.1.9.2

223.1.3.27

223.1.1.1 223.1.1.4

R1

R2 R3

Figure 4.17 � Three routers interconnecting six subnets

https://hemanthrajhemu.github.io

The Internet’s address assignment strategy is known as Classless Interdomain
Routing (CIDR—pronounced cider) [RFC 4632]. CIDR generalizes the notion of
subnet addressing. As with subnet addressing, the 32-bit IP address is divided into
two parts and again has the dotted-decimal form a.b.c.d/x, where x indicates the
number of bits in the first part of the address.

The x most significant bits of an address of the form a.b.c.d/x constitute the
network portion of the IP address, and are often referred to as the prefix (or net-
work prefix) of the address. An organization is typically assigned a block of con-
tiguous addresses, that is, a range of addresses with a common prefix (see the
Principles in Practice sidebar). In this case, the IP addresses of devices within the
organization will share the common prefix. When we cover the Internet’s BGP

342 CHAPTER 4 • THE NETWORK LAYER

This example of an ISP that connects eight organizations to the Internet nicely illustrates
how carefully allocated CIDRized addresses facilitate routing. Suppose, as shown in Figure
4.18, that the ISP (which we’ll call Fly-By-Night-ISP) advertises to the outside world that it
should be sent any datagrams whose first 20 address bits match 200.23.16.0/20. The
rest of the world need not know that within the address block 200.23.16.0/20 there are
in fact eight other organizations, each with its own subnets. This ability to use a single pre-
fix to advertise multiple networks is often referred to as address aggregation (also
route aggregation or route summarization).

Address aggregation works extremely well when addresses are allocated in blocks to
ISPs and then from ISPs to client organizations. But what happens when addresses are
not allocated in such a hierarchical manner? What would happen, for example, if Fly-By-
Night-ISP acquires ISPs-R-Us and then has Organization 1 connect to the Internet through
its subsidiary ISPs-R-Us? As shown in Figure 4.18, the subsidiary ISPs-R-Us owns the
address block 199.31.0.0/16, but Organization 1’s IP addresses are unfortunately out-
side of this address block. What should be done here? Certainly, Organization 1 could
renumber all of its routers and hosts to have addresses within the ISPs-R-Us address
block. But this is a costly solution, and Organization 1 might well be reassigned to
another subsidiary in the future. The solution typically adopted is for Organization 1
to keep its IP addresses in 200.23.18.0/23. In this case, as shown in Figure 4.19,
Fly-By-Night-ISP continues to advertise the address block 200.23.16.0/20 and ISPs-R-Us
continues to advertise 199.31.0.0/16. However, ISPs-R-Us now also advertises the block
of addresses for Organization 1, 200.23.18.0/23. When other routers in the larger
Internet see the address blocks 200.23.16.0/20 (from Fly-By-Night-ISP) and
200.23.18.0/23 (from ISPs-R-Us) and want to route to an address in the block
200.23.18.0/23, they will use longest prefix matching (see Section 4.2.2), and route
toward ISPs-R-Us, as it advertises the longest (most specific) address prefix that matches
the destination address.

PRINCIPLES IN PRACTICE

https://hemanthrajhemu.github.io

4.4 • THE INTERNET PROTOCOL (IP) 343

Organization 0

200.23.16.0/23

Organization 1

Fly-By-Night-ISP

“Send me anything
 with addresses
 beginning
 200.23.16.0/20”

ISPs-R-Us

200.23.18.0/23

Organization 2

200.23.20.0/23

Organization 7

200.23.30.0/23

Internet

“Send me anything
 with addresses
 beginning
 199.31.0.0/16”

Figure 4.18 � Hierarchical addressing and route aggregation

Organization 0

200.23.16.0/23

Organization 2

Fly-By-Night-ISP

“Send me anything
 with addresses
 beginning
 200.23.16.0/20”

ISPs-R-Us

200.23.20.0/23

Organization 7

200.23.30.0/23

Organization 1

200.23.18.0/23

Internet
“Send me anything
 with addresses
 beginning
 199.31.0.0/16 or
 200.23.18.0/23”

Figure 4.19 � ISPs-R-Us has a more specific route to Organization 1

https://hemanthrajhemu.github.io

routing protocol in Section 4.6, we’ll see that only these x leading prefix bits are
considered by routers outside the organization’s network. That is, when a router
outside the organization forwards a datagram whose destination address is inside
the organization, only the leading x bits of the address need be considered. This
considerably reduces the size of the forwarding table in these routers, since a sin-
gle entry of the form a.b.c.d/x will be sufficient to forward packets to any destina-
tion within the organization.

The remaining 32-x bits of an address can be thought of as distinguishing
among the devices within the organization, all of which have the same network pre-
fix. These are the bits that will be considered when forwarding packets at routers
within the organization. These lower-order bits may (or may not) have an additional
subnetting structure, such as that discussed above. For example, suppose the first 21
bits of the CIDRized address a.b.c.d/21 specify the organization’s network prefix
and are common to the IP addresses of all devices in that organization. The remain-
ing 11 bits then identify the specific hosts in the organization. The organization’s
internal structure might be such that these 11 rightmost bits are used for subnetting
within the organization, as discussed above. For example, a.b.c.d/24 might refer to a
specific subnet within the organization.

Before CIDR was adopted, the network portions of an IP address were con-
strained to be 8, 16, or 24 bits in length, an addressing scheme known as classful
addressing, since subnets with 8-, 16-, and 24-bit subnet addresses were known as
class A, B, and C networks, respectively. The requirement that the subnet portion of
an IP address be exactly 1, 2, or 3 bytes long turned out to be problematic for sup-
porting the rapidly growing number of organizations with small and medium-sized
subnets. A class C (/24) subnet could accommodate only up to 28 – 2 = 254 hosts
(two of the 28 = 256 addresses are reserved for special use)—too small for many
organizations. However, a class B (/16) subnet, which supports up to 65,634 hosts,
was too large. Under classful addressing, an organization with, say, 2,000 hosts was
typically allocated a class B (/16) subnet address. This led to a rapid depletion of the
class B address space and poor utilization of the assigned address space. For exam-
ple, the organization that used a class B address for its 2,000 hosts was allocated
enough of the address space for up to 65,534 interfaces—leaving more than 63,000
addresses that could not be used by other organizations.

We would be remiss if we did not mention yet another type of IP address, the IP
broadcast address 255.255.255.255. When a host sends a datagram with destination
address 255.255.255.255, the message is delivered to all hosts on the same subnet.
Routers optionally forward the message into neighboring subnets as well (although
they usually don’t).

Having now studied IP addressing in detail, we need to know how hosts and
subnets get their addresses in the first place. Let’s begin by looking at how an
organization gets a block of addresses for its devices, and then look at how a device
(such as a host) is assigned an address from within the organization’s block of
addresses.

344 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

Obtaining a Block of Addresses

In order to obtain a block of IP addresses for use within an organization’s subnet, a
network administrator might first contact its ISP, which would provide addresses
from a larger block of addresses that had already been allocated to the ISP. For
example, the ISP may itself have been allocated the address block 200.23.16.0/20.
The ISP, in turn, could divide its address block into eight equal-sized contiguous
address blocks and give one of these address blocks out to each of up to eight organ-
izations that are supported by this ISP, as shown below. (We have underlined the
subnet part of these addresses for your convenience.)

ISP’s block 200.23.16.0/20 11001000 00010111 00010000 00000000

Organization 0 200.23.16.0/23 11001000 00010111 00010000 00000000

Organization 1 200.23.18.0/23 11001000 00010111 00010010 00000000

Organization 2 200.23.20.0/23 11001000 00010111 00010100 00000000

.

Organization 7 200.23.30.0/23 11001000 00010111 00011110 00000000

While obtaining a set of addresses from an ISP is one way to get a block of
addresses, it is not the only way. Clearly, there must also be a way for the ISP itself
to get a block of addresses. Is there a global authority that has ultimate responsibility
for managing the IP address space and allocating address blocks to ISPs and other
organizations? Indeed there is! IP addresses are managed under the authority of the
Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN 2012],
based on guidelines set forth in [RFC 2050]. The role of the nonprofit ICANN organ-
ization [NTIA 1998] is not only to allocate IP addresses, but also to manage the DNS
root servers. It also has the very contentious job of assigning domain names and
resolving domain name disputes. The ICANN allocates addresses to regional Inter-
net registries (for example, ARIN, RIPE, APNIC, and LACNIC, which together
form the Address Supporting Organization of ICANN [ASO-ICANN 2012]), and
handle the allocation/management of addresses within their regions.

Obtaining a Host Address: the Dynamic Host Configuration Protocol

Once an organization has obtained a block of addresses, it can assign individual IP
addresses to the host and router interfaces in its organization. A system administra-
tor will typically manually configure the IP addresses into the router (often
remotely, with a network management tool). Host addresses can also be configured
manually, but more often this task is now done using the Dynamic Host Configu-
ration Protocol (DHCP) [RFC 2131]. DHCP allows a host to obtain (be allocated)
an IP address automatically. A network administrator can configure DHCP so that a

4.4 • THE INTERNET PROTOCOL (IP) 345

https://hemanthrajhemu.github.io

given host receives the same IP address each time it connects to the network, or a
host may be assigned a temporary IP address that will be different each time the
host connects to the network. In addition to host IP address assignment, DHCP also
allows a host to learn additional information, such as its subnet mask, the address of
its first-hop router (often called the default gateway), and the address of its local
DNS server.

Because of DHCP’s ability to automate the network-related aspects of connect-
ing a host into a network, it is often referred to as a plug-and-play protocol. This
capability makes it very attractive to the network administrator who would other-
wise have to perform these tasks manually! DHCP is also enjoying widespread use
in residential Internet access networks and in wireless LANs, where hosts join and
leave the network frequently. Consider, for example, the student who carries a lap-
top from a dormitory room to a library to a classroom. It is likely that in each loca-
tion, the student will be connecting into a new subnet and hence will need a new IP
address at each location. DHCP is ideally suited to this situation, as there are many
users coming and going, and addresses are needed for only a limited amount of time.
DHCP is similarly useful in residential ISP access networks. Consider, for example,
a residential ISP that has 2,000 customers, but no more than 400 customers are ever
online at the same time. In this case, rather than needing a block of 2,048 addresses,
a DHCP server that assigns addresses dynamically needs only a block of 512
addresses (for example, a block of the form a.b.c.d/23). As the hosts join and leave,
the DHCP server needs to update its list of available IP addresses. Each time a host
joins, the DHCP server allocates an arbitrary address from its current pool of avail-
able addresses; each time a host leaves, its address is returned to the pool.

DHCP is a client-server protocol. A client is typically a newly arriving host
wanting to obtain network configuration information, including an IP address for
itself. In the simplest case, each subnet (in the addressing sense of Figure 4.17) will
have a DHCP server. If no server is present on the subnet, a DHCP relay agent (typ-
ically a router) that knows the address of a DHCP server for that network is needed.
Figure 4.20 shows a DHCP server attached to subnet 223.1.2/24, with the router
serving as the relay agent for arriving clients attached to subnets 223.1.1/24 and
223.1.3/24. In our discussion below, we’ll assume that a DHCP server is available
on the subnet.

For a newly arriving host, the DHCP protocol is a four-step process, as shown
in Figure 4.21 for the network setting shown in Figure 4.20. In this figure, yiaddr
(as in “your Internet address”) indicates the address being allocated to the newly
arriving client. The four steps are:

• DHCP server discovery. The first task of a newly arriving host is to find a DHCP
server with which to interact. This is done using a DHCP discover message,
which a client sends within a UDP packet to port 67. The UDP packet is encap-
sulated in an IP datagram. But to whom should this datagram be sent? The host
doesn’t even know the IP address of the network to which it is attaching, much

346 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

less the address of a DHCP server for this network. Given this, the DHCP client
creates an IP datagram containing its DHCP discover message along with the
broadcast destination IP address of 255.255.255.255 and a “this host” source IP
address of 0.0.0.0. The DHCP client passes the IP datagram to the link layer,
which then broadcasts this frame to all nodes attached to the subnet (we will
cover the details of link-layer broadcasting in Section 5.4).

• DHCP server offer(s). A DHCP server receiving a DHCP discover message
responds to the client with a DHCP offer message that is broadcast to all nodes
on the subnet, again using the IP broadcast address of 255.255.255.255. (You
might want to think about why this server reply must also be broadcast). Since
several DHCP servers can be present on the subnet, the client may find itself in
the enviable position of being able to choose from among several offers. Each
server offer message contains the transaction ID of the received discover mes-
sage, the proposed IP address for the client, the network mask, and an IP address
lease time—the amount of time for which the IP address will be valid. It is com-
mon for the server to set the lease time to several hours or days [Droms 2002].

4.4 • THE INTERNET PROTOCOL (IP) 347

223.1.1.1

223.1.1.2

223.1.1.4 223.1.2.9

223.1.3.27

223.1.1.3

223.1.3.1 223.1.3.2

223.1.2.1

223.1.2.5

223.1.2.2

Arriving
DHCP
client

DHCP
server

Figure 4.20 � DHCP client-server scenario

https://hemanthrajhemu.github.io

• DHCP request. The newly arriving client will choose from among one or more
server offers and respond to its selected offer with a DHCP request message,
echoing back the configuration parameters.

• DHCP ACK. The server responds to the DHCP request message with a DHCP
ACK message, confirming the requested parameters.

Once the client receives the DHCP ACK, the interaction is complete and the
client can use the DHCP-allocated IP address for the lease duration. Since a client

348 CHAPTER 4 • THE NETWORK LAYER

DHCP server:
223.1.2.5

Arriving client

DHCP discover

Time Time

src: 0.0.0.0, 68
dest: 255.255.255.255,67
DHCPDISCOVER
yiaddr: 0.0.0.0
transaction ID: 654

src: 223.1.2.5, 67
dest: 255.255.255.255,68
DHCPOFFER
yiaddrr: 223.1.2.4
transaction ID: 654
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP offer

src: 223.1.2.5, 67
dest: 255.255.255.255,68
DHCPACK
yiaddrr: 223.1.2.4
transaction ID: 655
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP ACK

src: 0.0.0.0, 68
dest: 255.255.255.255, 67
DHCPREQUEST
yiaddrr: 223.1.2.4
transaction ID: 655
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP request

Figure 4.21 � DHCP client-server interaction

https://hemanthrajhemu.github.io

may want to use its address beyond the lease’s expiration, DHCP also provides a
mechanism that allows a client to renew its lease on an IP address.

The value of DHCP’s plug-and-play capability is clear, considering the fact that
the alternative is to manually configure a host’s IP address. Consider the student
who moves from classroom to library to dorm room with a laptop, joins a new sub-
net, and thus obtains a new IP address at each location. It is unimaginable that a sys-
tem administrator would have to reconfigure laptops at each location, and few
students (except those taking a computer networking class!) would have the expert-
ise to configure their laptops manually. From a mobility aspect, however, DHCP
does have shortcomings. Since a new IP address is obtained from DHCP each time
a node connects to a new subnet, a TCP connection to a remote application cannot
be maintained as a mobile node moves between subnets. In Chapter 6, we will
examine mobile IP—a recent extension to the IP infrastructure that allows a mobile
node to use a single permanent address as it moves between subnets. Additional
details about DHCP can be found in [Droms 2002] and [dhc 2012]. An open source
reference implementation of DHCP is available from the Internet Systems Consor-
tium [ISC 2012].

Network Address Translation (NAT)

Given our discussion about Internet addresses and the IPv4 datagram format, we’re
now well aware that every IP-capable device needs an IP address. With the prolifer-
ation of small office, home office (SOHO) subnets, this would seem to imply that
whenever a SOHO wants to install a LAN to connect multiple machines, a range of
addresses would need to be allocated by the ISP to cover all of the SOHO’s
machines. If the subnet grew bigger (for example, the kids at home have not only
their own computers, but have smartphones and networked Game Boys as well), a
larger block of addresses would have to be allocated. But what if the ISP had already
allocated the contiguous portions of the SOHO network’s current address range?
And what typical homeowner wants (or should need) to know how to manage IP
addresses in the first place? Fortunately, there is a simpler approach to address allo-
cation that has found increasingly widespread use in such scenarios: network
address translation (NAT) [RFC 2663; RFC 3022; Zhang 2007].

Figure 4.22 shows the operation of a NAT-enabled router. The NAT-enabled
router, residing in the home, has an interface that is part of the home network on the
right of Figure 4.22. Addressing within the home network is exactly as we have seen
above—all four interfaces in the home network have the same subnet address of
10.0.0/24. The address space 10.0.0.0/8 is one of three portions of the IP address
space that is reserved in [RFC 1918] for a private network or a realm with private
addresses, such as the home network in Figure 4.22. A realm with private addresses
refers to a network whose addresses only have meaning to devices within that
network. To see why this is important, consider the fact that there are hundreds of

4.4 • THE INTERNET PROTOCOL (IP) 349

https://hemanthrajhemu.github.io

thousands of home networks, many using the same address space, 10.0.0.0/24.
Devices within a given home network can send packets to each other using
10.0.0.0/24 addressing. However, packets forwarded beyond the home network into
the larger global Internet clearly cannot use these addresses (as either a source or a
destination address) because there are hundreds of thousands of networks using this
block of addresses. That is, the 10.0.0.0/24 addresses can only have meaning within
the given home network. But if private addresses only have meaning within a given
network, how is addressing handled when packets are sent to or received from the
global Internet, where addresses are necessarily unique? The answer lies in under-
standing NAT.

The NAT-enabled router does not look like a router to the outside world. Instead
the NAT router behaves to the outside world as a single device with a single IP
address. In Figure 4.22, all traffic leaving the home router for the larger Internet has
a source IP address of 138.76.29.7, and all traffic entering the home router must
have a destination address of 138.76.29.7. In essence, the NAT-enabled router is hid-
ing the details of the home network from the outside world. (As an aside, you might
wonder where the home network computers get their addresses and where the router
gets its single IP address. Often, the answer is the same—DHCP! The router gets its
address from the ISP’s DHCP server, and the router runs a DHCP server to provide
addresses to computers within the NAT-DHCP-router-controlled home network’s
address space.)

350 CHAPTER 4 • THE NETWORK LAYER

3

2

10.0.0.1

138.76.29.7

10.0.0.4 10.0.0.2

10.0.0.3

NAT translation table

WAN side

138.76.29.7, 5001

LAN side

10.0.0.1, 3345

.

S = 138.76.29.7, 5001
D = 128.119.40.186, 80

1

4
S = 128.119.40.186, 80
D = 138.76.29.7, 5001

S = 128.119.40.186, 80
D = 10.0.0.1, 3345

S = 10.0.0.1, 3345
D = 128.119.40.186, 80

Figure 4.22 � Network address translation

https://hemanthrajhemu.github.io

If all datagrams arriving at the NAT router from the WAN have the same desti-
nation IP address (specifically, that of the WAN-side interface of the NAT router),
then how does the router know the internal host to which it should forward a given
datagram? The trick is to use a NAT translation table at the NAT router, and to
include port numbers as well as IP addresses in the table entries.

Consider the example in Figure 4.22. Suppose a user sitting in a home network
behind host 10.0.0.1 requests a Web page on some Web server (port 80) with IP
address 128.119.40.186. The host 10.0.0.1 assigns the (arbitrary) source port num-
ber 3345 and sends the datagram into the LAN. The NAT router receives the data-
gram, generates a new source port number 5001 for the datagram, replaces the
source IP address with its WAN-side IP address 138.76.29.7, and replaces the origi-
nal source port number 3345 with the new source port number 5001. When generat-
ing a new source port number, the NAT router can select any source port number
that is not currently in the NAT translation table. (Note that because a port number
field is 16 bits long, the NAT protocol can support over 60,000 simultaneous con-
nections with a single WAN-side IP address for the router!) NAT in the router also
adds an entry to its NAT translation table. The Web server, blissfully unaware that
the arriving datagram containing the HTTP request has been manipulated by the
NAT router, responds with a datagram whose destination address is the IP address
of the NAT router, and whose destination port number is 5001. When this datagram
arrives at the NAT router, the router indexes the NAT translation table using the des-
tination IP address and destination port number to obtain the appropriate IP address
(10.0.0.1) and destination port number (3345) for the browser in the home network.
The router then rewrites the datagram’s destination address and destination port
number, and forwards the datagram into the home network.

NAT has enjoyed widespread deployment in recent years. But we should
mention that many purists in the IETF community loudly object to NAT. First,
they argue, port numbers are meant to be used for addressing processes, not for
addressing hosts. (This violation can indeed cause problems for servers running
on the home network, since, as we have seen in Chapter 2, server processes wait
for incoming requests at well-known port numbers.) Second, they argue, routers
are supposed to process packets only up to layer 3. Third, they argue, the NAT
protocol violates the so-called end-to-end argument; that is, hosts should be talk-
ing directly with each other, without interfering nodes modifying IP addresses and
port numbers. And fourth, they argue, we should use IPv6 (see Section 4.4.4) to
solve the shortage of IP addresses, rather than recklessly patching up the problem
with a stopgap solution like NAT. But like it or not, NAT has become an important
component of the Internet.

Yet another major problem with NAT is that it interferes with P2P applications,
including P2P file-sharing applications and P2P Voice-over-IP applications. Recall
from Chapter 2 that in a P2P application, any participating Peer A should be able to
initiate a TCP connection to any other participating Peer B. The essence of the
problem is that if Peer B is behind a NAT, it cannot act as a server and accept TCP

4.4 • THE INTERNET PROTOCOL (IP) 351

https://hemanthrajhemu.github.io

connections. As we’ll see in the homework problems, this NAT problem can be cir-
cumvented if Peer A is not behind a NAT. In this case, Peer A can first contact Peer
B through an intermediate Peer C, which is not behind a NAT and to which B has
established an ongoing TCP connection. Peer A can then ask Peer B, via Peer C, to
initiate a TCP connection directly back to Peer A. Once the direct P2P TCP connec-
tion is established between Peers A and B, the two peers can exchange messages or
files. This hack, called connection reversal, is actually used by many P2P applica-
tions for NAT traversal. If both Peer A and Peer B are behind their own NATs, the
situation is a bit trickier but can be handled using application relays, as we saw with
Skype relays in Chapter 2.

UPnP

NAT traversal is increasingly provided by Universal Plug and Play (UPnP), which is
a protocol that allows a host to discover and configure a nearby NAT [UPnP Forum
2012]. UPnP requires that both the host and the NAT be UPnP compatible. With
UPnP, an application running in a host can request a NAT mapping between its
(private IP address, private port number) and the (public IP address, public port
number) for some requested public port number. If the NAT accepts the request and
creates the mapping, then nodes from the outside can initiate TCP connections to
(public IP address, public port number). Furthermore, UPnP lets the application
know the value of (public IP address, public port number), so that the application
can advertise it to the outside world.

As an example, suppose your host, behind a UPnP-enabled NAT, has private
address 10.0.0.1 and is running BitTorrent on port 3345. Also suppose that the
public IP address of the NAT is 138.76.29.7. Your BitTorrent application naturally
wants to be able to accept connections from other hosts, so that it can trade chunks
with them. To this end, the BitTorrent application in your host asks the NAT to cre-
ate a “hole” that maps (10.0.0.1, 3345) to (138.76.29.7, 5001). (The public port
number 5001 is chosen by the application.) The BitTorrent application in your host
could also advertise to its tracker that it is available at (138.76.29.7, 5001). In this
manner, an external host running BitTorrent can contact the tracker and learn that
your BitTorrent application is running at (138.76.29.7, 5001). The external host
can send a TCP SYN packet to (138.76.29.7, 5001). When the NAT receives the
SYN packet, it will change the destination IP address and port number in the
packet to (10.0.0.1, 3345) and forward the packet through the NAT.

In summary, UPnP allows external hosts to initiate communication sessions
to NATed hosts, using either TCP or UDP. NATs have long been a nemesis
for P2P applications; UPnP, providing an effective and robust NAT traversal
solution, may be their savior. Our discussion of NAT and UPnP here has been
necessarily brief. For more detailed discussions of NAT see [Huston 2004, Cisco
NAT 2012].

352 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

4.4.3 Internet Control Message Protocol (ICMP)

Recall that the network layer of the Internet has three main components: the IP pro-
tocol, discussed in the previous section; the Internet routing protocols (including
RIP, OSPF, and BGP), which are covered in Section 4.6; and ICMP, which is the
subject of this section.

ICMP, specified in [RFC 792], is used by hosts and routers to communicate net-
work-layer information to each other. The most typical use of ICMP is for error
reporting. For example, when running a Telnet, FTP, or HTTP session, you may
have encountered an error message such as “Destination network unreachable.” This
message had its origins in ICMP. At some point, an IP router was unable to find a
path to the host specified in your Telnet, FTP, or HTTP application. That router cre-
ated and sent a type-3 ICMP message to your host indicating the error.

ICMP is often considered part of IP but architecturally it lies just above IP, as
ICMP messages are carried inside IP datagrams. That is, ICMP messages are carried
as IP payload, just as TCP or UDP segments are carried as IP payload. Similarly,
when a host receives an IP datagram with ICMP specified as the upper-layer proto-
col, it demultiplexes the datagram’s contents to ICMP, just as it would demultiplex a
datagram’s content to TCP or UDP.

ICMP messages have a type and a code field, and contain the header and the
first 8 bytes of the IP datagram that caused the ICMP message to be generated in the
first place (so that the sender can determine the datagram that caused the error).
Selected ICMP message types are shown in Figure 4.23. Note that ICMP messages
are used not only for signaling error conditions.

The well-known ping program sends an ICMP type 8 code 0 message to the
specified host. The destination host, seeing the echo request, sends back a type 0
code 0 ICMP echo reply. Most TCP/IP implementations support the ping server
directly in the operating system; that is, the server is not a process. Chapter 11 of
[Stevens 1990] provides the source code for the ping client program. Note that the
client program needs to be able to instruct the operating system to generate an ICMP
message of type 8 code 0.

Another interesting ICMP message is the source quench message. This message
is seldom used in practice. Its original purpose was to perform congestion control—
to allow a congested router to send an ICMP source quench message to a host to
force that host to reduce its transmission rate. We have seen in Chapter 3 that TCP
has its own congestion-control mechanism that operates at the transport layer, with-
out the use of network-layer feedback such as the ICMP source quench message.

In Chapter 1 we introduced the Traceroute program, which allows us to trace a
route from a host to any other host in the world. Interestingly, Traceroute is imple-
mented with ICMP messages. To determine the names and addresses of the routers
between source and destination, Traceroute in the source sends a series of ordinary
IP datagrams to the destination. Each of these datagrams carries a UDP segment
with an unlikely UDP port number. The first of these datagrams has a TTL of 1, the

4.4 • THE INTERNET PROTOCOL (IP) 353

https://hemanthrajhemu.github.io

second of 2, the third of 3, and so on. The source also starts timers for each of the
datagrams. When the nth datagram arrives at the nth router, the nth router observes
that the TTL of the datagram has just expired. According to the rules of the IP proto-
col, the router discards the datagram and sends an ICMP warning message to the
source (type 11 code 0). This warning message includes the name of the router and
its IP address. When this ICMP message arrives back at the source, the source
obtains the round-trip time from the timer and the name and IP address of the nth
router from the ICMP message.

How does a Traceroute source know when to stop sending UDP segments?
Recall that the source increments the TTL field for each datagram it sends. Thus,
one of the datagrams will eventually make it all the way to the destination host.
Because this datagram contains a UDP segment with an unlikely port number, the
destination host sends a port unreachable ICMP message (type 3 code 3) back to the
source. When the source host receives this particular ICMP message, it knows it
does not need to send additional probe packets. (The standard Traceroute program
actually sends sets of three packets with the same TTL; thus the Traceroute output
provides three results for each TTL.)

354 CHAPTER 4 • THE NETWORK LAYER

ICMP Type Code Description

0 0 echo reply (to ping)

3 0 destination network unreachable

3 1 destination host unreachable

3 2 destination protocol unreachable

3 3 destination port unreachable

3 6 destination network unknown

3 7 destination host unknown

4 0 source quench (congestion control)

8 0 echo request

9 0 router advertisement

10 0 router discovery

11 0 TTL expired

12 0 IP header bad

Figure 4.23 � ICMP message types

https://hemanthrajhemu.github.io

In this manner, the source host learns the number and the identities of routers
that lie between it and the destination host and the round-trip time between the two
hosts. Note that the Traceroute client program must be able to instruct the operating
system to generate UDP datagrams with specific TTL values and must also be able to
be notified by its operating system when ICMP messages arrive. Now that you under-
stand how Traceroute works, you may want to go back and play with it some more.

4.4 • THE INTERNET PROTOCOL (IP) 355

INSPECTING DATAGRAMS: FIREWALLS AND INTRUSION DETECTION
SYSTEMS

Suppose you are assigned the task of administering a home, departmental, university, or
corporate network. Attackers, knowing the IP address range of your network, can easily
send IP datagrams to addresses in your range. These datagrams can do all kinds of
devious things, including mapping your network with ping sweeps and port scans,
crashing vulnerable hosts with malformed packets, flooding servers with a deluge of
ICMP packets, and infecting hosts by including malware in the packets. As the network
administrator, what are you going to do about all those bad guys out there, each capa-
ble of sending malicious packets into your network? Two popular defense mechanisms
to malicious packet attacks are firewalls and intrusion detection systems (IDSs).

As a network administrator, you may first try installing a firewall between your
network and the Internet. (Most access routers today have firewall capability.)
Firewalls inspect the datagram and segment header fields, denying suspicious data-
grams entry into the internal network. For example, a firewall may be configured to
block all ICMP echo request packets, thereby preventing an attacker from doing a
traditional ping sweep across your IP address range. Firewalls can also block pack-
ets based on source and destination IP addresses and port numbers. Additionally,
firewalls can be configured to track TCP connections, granting entry only to data-
grams that belong to approved connections.

Additional protection can be provided with an IDS. An IDS, typically situated at the
network boundary, performs “deep packet inspection,” examining not only header
fields but also the payloads in the datagram (including application-layer data). An IDS
has a database of packet signatures that are known to be part of attacks. This data-
base is automatically updated as new attacks are discovered. As packets pass through
the IDS, the IDS attempts to match header fields and payloads to the signatures in its
signature database. If such a match is found, an alert is created. An intrusion preven-
tion system (IPS) is similar to an IDS, except that it actually blocks packets in addition to
creating alerts. In Chapter 8, we’ll explore firewalls and IDSs in more detail.

Can firewalls and IDSs fully shield your network from all attacks? The answer is
clearly no, as attackers continually find new attacks for which signatures are not yet
available. But firewalls and traditional signature-based IDSs are useful in protecting
your network from known attacks.

FOCUS ON SECURITY

https://hemanthrajhemu.github.io

4.4.4 IPv6

In the early 1990s, the Internet Engineering Task Force began an effort to develop a
successor to the IPv4 protocol. A prime motivation for this effort was the realization
that the 32-bit IP address space was beginning to be used up, with new subnets and
IP nodes being attached to the Internet (and being allocated unique IP addresses) at
a breathtaking rate. To respond to this need for a large IP address space, a new IP
protocol, IPv6, was developed. The designers of IPv6 also took this opportunity to
tweak and augment other aspects of IPv4, based on the accumulated operational
experience with IPv4.

The point in time when IPv4 addresses would be completely allocated (and
hence no new networks could attach to the Internet) was the subject of considerable
debate. The estimates of the two leaders of the IETF’s Address Lifetime Expecta-
tions working group were that addresses would become exhausted in 2008 and 2018,
respectively [Solensky 1996]. In February 2011, IANA allocated out the last remain-
ing pool of unassigned IPv4 addresses to a regional registry. While these registries
still have available IPv4 addresses within their pool, once these addresses are
exhausted, there are no more available address blocks that can be allocated from a
central pool [Huston 2011a]. Although the mid-1990s estimates of IPv4 address
depletion suggested that a considerable amount of time might be left until the IPv4
address space was exhausted, it was realized that considerable time would be needed
to deploy a new technology on such an extensive scale, and so the Next Generation
IP (IPng) effort [Bradner 1996; RFC 1752] was begun. The result of this effort was
the specification of IP version 6 (IPv6) [RFC 2460] which we’ll discuss below. (An
often-asked question is what happened to IPv5? It was initially envisioned that the
ST-2 protocol would become IPv5, but ST-2 was later dropped.) Excellent sources of
information about IPv6 are [Huitema 1998, IPv6 2012].

IPv6 Datagram Format

The format of the IPv6 datagram is shown in Figure 4.24. The most important
changes introduced in IPv6 are evident in the datagram format:

• Expanded addressing capabilities. IPv6 increases the size of the IP address
from 32 to 128 bits. This ensures that the world won’t run out of IP addresses.
Now, every grain of sand on the planet can be IP-addressable. In addition to
unicast and multicast addresses, IPv6 has introduced a new type of address,
called an anycast address, which allows a datagram to be delivered to any
one of a group of hosts. (This feature could be used, for example, to send an
HTTP GET to the nearest of a number of mirror sites that contain a given
document.)

• A streamlined 40-byte header. As discussed below, a number of IPv4 fields have
been dropped or made optional. The resulting 40-byte fixed-length header allows

356 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

for faster processing of the IP datagram. A new encoding of options allows for
more flexible options processing.

• Flow labeling and priority. IPv6 has an elusive definition of a flow. RFC 1752
and RFC 2460 state that this allows “labeling of packets belonging to particular
flows for which the sender requests special handling, such as a nondefault quality
of service or real-time service.” For example, audio and video transmission might
likely be treated as a flow. On the other hand, the more traditional applications,
such as file transfer and e-mail, might not be treated as flows. It is possible that the
traffic carried by a high-priority user (for example, someone paying for better serv-
ice for their traffic) might also be treated as a flow. What is clear, however, is that
the designers of IPv6 foresee the eventual need to be able to differentiate among
the flows, even if the exact meaning of a flow has not yet been determined. The
IPv6 header also has an 8-bit traffic class field. This field, like the TOS field in
IPv4, can be used to give priority to certain datagrams within a flow, or it can be
used to give priority to datagrams from certain applications (for example, ICMP)
over datagrams from other applications (for example, network news).

As noted above, a comparison of Figure 4.24 with Figure 4.13 reveals the sim-
pler, more streamlined structure of the IPv6 datagram. The following fields are
defined in IPv6:

• Version. This 4-bit field identifies the IP version number. Not surprisingly, IPv6
carries a value of 6 in this field. Note that putting a 4 in this field does not create
a valid IPv4 datagram. (If it did, life would be a lot simpler—see the discussion
below regarding the transition from IPv4 to IPv6.)

4.4 • THE INTERNET PROTOCOL (IP) 357

Version Traffic class

Payload length Next hdr Hop limit

Flow label

32 bits

Source address
(128 bits)

Destination address
(128 bits)

Data

Figure 4.24 � IPv6 datagram format

https://hemanthrajhemu.github.io

• Traffic class. This 8-bit field is similar in spirit to the TOS field we saw in IPv4.

• Flow label. As discussed above, this 20-bit field is used to identify a flow of
datagrams.

• Payload length. This 16-bit value is treated as an unsigned integer giving the
number of bytes in the IPv6 datagram following the fixed-length, 40-byte data-
gram header.

• Next header. This field identifies the protocol to which the contents (data field)
of this datagram will be delivered (for example, to TCP or UDP). The field uses
the same values as the protocol field in the IPv4 header.

• Hop limit. The contents of this field are decremented by one by each router that
forwards the datagram. If the hop limit count reaches zero, the datagram is
discarded.

• Source and destination addresses. The various formats of the IPv6 128-bit
address are described in RFC 4291.

• Data. This is the payload portion of the IPv6 datagram. When the datagram
reaches its destination, the payload will be removed from the IP datagram and
passed on to the protocol specified in the next header field.

The discussion above identified the purpose of the fields that are included in the
IPv6 datagram. Comparing the IPv6 datagram format in Figure 4.24 with the IPv4
datagram format that we saw in Figure 4.13, we notice that several fields appearing
in the IPv4 datagram are no longer present in the IPv6 datagram:

• Fragmentation/Reassembly. IPv6 does not allow for fragmentation and reassem-
bly at intermediate routers; these operations can be performed only by the source
and destination. If an IPv6 datagram received by a router is too large to be for-
warded over the outgoing link, the router simply drops the datagram and sends a
“Packet Too Big” ICMP error message (see below) back to the sender. The
sender can then resend the data, using a smaller IP datagram size. Fragmentation
and reassembly is a time-consuming operation; removing this functionality from
the routers and placing it squarely in the end systems considerably speeds up IP
forwarding within the network.

• Header checksum. Because the transport-layer (for example, TCP and UDP) and
link-layer (for example, Ethernet) protocols in the Internet layers perform check-
summing, the designers of IP probably felt that this functionality was sufficiently
redundant in the network layer that it could be removed. Once again, fast pro-
cessing of IP packets was a central concern. Recall from our discussion of IPv4
in Section 4.4.1 that since the IPv4 header contains a TTL field (similar to the
hop limit field in IPv6), the IPv4 header checksum needed to be recomputed at
every router. As with fragmentation and reassembly, this too was a costly opera-
tion in IPv4.

358 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

• Options. An options field is no longer a part of the standard IP header. How-
ever, it has not gone away. Instead, the options field is one of the possible next
headers pointed to from within the IPv6 header. That is, just as TCP or UDP
protocol headers can be the next header within an IP packet, so too can an
options field. The removal of the options field results in a fixed-length, 40-
byte IP header.

Recall from our discussion in Section 4.4.3 that the ICMP protocol is used by IP
nodes to report error conditions and provide limited information (for example, the
echo reply to a ping message) to an end system. A new version of ICMP has been
defined for IPv6 in RFC 4443. In addition to reorganizing the existing ICMP type
and code definitions, ICMPv6 also added new types and codes required by the new
IPv6 functionality. These include the “Packet Too Big” type, and an “unrecognized
IPv6 options” error code. In addition, ICMPv6 subsumes the functionality of the
Internet Group Management Protocol (IGMP) that we’ll study in Section 4.7. IGMP,
which is used to manage a host’s joining and leaving of multicast groups, was previ-
ously a separate protocol from ICMP in IPv4.

Transitioning from IPv4 to IPv6

Now that we have seen the technical details of IPv6, let us consider a very practical
matter: How will the public Internet, which is based on IPv4, be transitioned to
IPv6? The problem is that while new IPv6-capable systems can be made backward-
compatible, that is, can send, route, and receive IPv4 datagrams, already deployed
IPv4-capable systems are not capable of handling IPv6 datagrams. Several options
are possible [Huston 2011b].

One option would be to declare a flag day—a given time and date when all
Internet machines would be turned off and upgraded from IPv4 to IPv6. The last
major technology transition (from using NCP to using TCP for reliable transport
service) occurred almost 25 years ago. Even back then [RFC 801], when the Inter-
net was tiny and still being administered by a small number of “wizards,” it was
realized that such a flag day was not possible. A flag day involving hundreds of mil-
lions of machines and millions of network administrators and users is even more
unthinkable today. RFC 4213 describes two approaches (which can be used either
alone or together) for gradually integrating IPv6 hosts and routers into an IPv4
world (with the long-term goal, of course, of having all IPv4 nodes eventually tran-
sition to IPv6).

Probably the most straightforward way to introduce IPv6-capable nodes is a
dual-stack approach, where IPv6 nodes also have a complete IPv4 implementation.
Such a node, referred to as an IPv6/IPv4 node in RFC 4213, has the ability to send
and receive both IPv4 and IPv6 datagrams. When interoperating with an IPv4 node,
an IPv6/IPv4 node can use IPv4 datagrams; when interoperating with an IPv6 node,
it can speak IPv6. IPv6/IPv4 nodes must have both IPv6 and IPv4 addresses. They

4.4 • THE INTERNET PROTOCOL (IP) 359

https://hemanthrajhemu.github.io

must furthermore be able to determine whether another node is IPv6-capable or
IPv4-only. This problem can be solved using the DNS (see Chapter 2), which can
return an IPv6 address if the node name being resolved is IPv6-capable, or other-
wise return an IPv4 address. Of course, if the node issuing the DNS request is only
IPv4-capable, the DNS returns only an IPv4 address.

In the dual-stack approach, if either the sender or the receiver is only IPv4-
capable, an IPv4 datagram must be used. As a result, it is possible that two IPv6-
capable nodes can end up, in essence, sending IPv4 datagrams to each other. This is
illustrated in Figure 4.25. Suppose Node A is IPv6-capable and wants to send an IP
datagram to Node F, which is also IPv6-capable. Nodes A and B can exchange an
IPv6 datagram. However, Node B must create an IPv4 datagram to send to C. Cer-
tainly, the data field of the IPv6 datagram can be copied into the data field of the
IPv4 datagram and appropriate address mapping can be done. However, in perform-
ing the conversion from IPv6 to IPv4, there will be IPv6-specific fields in the IPv6
datagram (for example, the flow identifier field) that have no counterpart in IPv4.
The information in these fields will be lost. Thus, even though E and F can exchange
IPv6 datagrams, the arriving IPv4 datagrams at E from D do not contain all of the
fields that were in the original IPv6 datagram sent from A.

An alternative to the dual-stack approach, also discussed in RFC 4213, is
known as tunneling. Tunneling can solve the problem noted above, allowing, for
example, E to receive the IPv6 datagram originated by A. The basic idea behind
tunneling is the following. Suppose two IPv6 nodes (for example, B and E in Fig-
ure 4.25) want to interoperate using IPv6 datagrams but are connected to each
other by intervening IPv4 routers. We refer to the intervening set of IPv4 routers
between two IPv6 routers as a tunnel, as illustrated in Figure 4.26. With tunnel-
ing, the IPv6 node on the sending side of the tunnel (for example, B) takes the
entire IPv6 datagram and puts it in the data (payload) field of an IPv4 datagram.

360 CHAPTER 4 • THE NETWORK LAYER

A B C D E F

IPv6

A to B: IPv6 B to C: IPv4 D to E: IPv4 E to F: IPv6

IPv6 IPv4 IPv4 IPv6 IPv6

Flow: X
Source: A
Dest: F

data

Source: A
Dest: F

data

Source: A
Dest: F

data

Flow: ??
Source: A
Dest: F

data

Figure 4.25 � A dual-stack approach

https://hemanthrajhemu.github.io

This IPv4 datagram is then addressed to the IPv6 node on the receiving side of
the tunnel (for example, E) and sent to the first node in the tunnel (for example,
C). The intervening IPv4 routers in the tunnel route this IPv4 datagram among
themselves, just as they would any other datagram, blissfully unaware that the
IPv4 datagram itself contains a complete IPv6 datagram. The IPv6 node on the
receiving side of the tunnel eventually receives the IPv4 datagram (it is the desti-
nation of the IPv4 datagram!), determines that the IPv4 datagram contains an
IPv6 datagram, extracts the IPv6 datagram, and then routes the IPv6 datagram
exactly as it would if it had received the IPv6 datagram from a directly connected
IPv6 neighbor.

We end this section by noting that while the adoption of IPv6 was initially
slow to take off [Lawton 2001], momentum has been building recently. See [Hus-
ton 2008b] for discussion of IPv6 deployment as of 2008; see [NIST IPv6 2012]
for a snapshort of US IPv6 deployment. The proliferation of devices such as IP-
enabled phones and other portable devices provides an additional push for more

4.4 • THE INTERNET PROTOCOL (IP) 361

A B C D E F

IPv6

A to B: IPv6

Physical view

B to C: IPv4
(encapsulating IPv6)

D to E: IPv4
(encapsulating IPv6)

E to F: IPv6

IPv6 IPv4 IPv4 IPv6 IPv6

Flow: X
Source: A
Dest: F

data

Source: B
Dest: E

Source: B
Dest: E

A B E F

IPv6

Logical view

IPv6

Tunnel

IPv6 IPv6

Flow: X
Source: A
Dest: F

data

Flow: X
Source: A
Dest: F

data

Flow: X
Source: A
Dest: F

data

Figure 4.26 � Tunneling

https://hemanthrajhemu.github.io

widespread deployment of IPv6. Europe’s Third Generation Partnership Program
[3GPP 2012] has specified IPv6 as the standard addressing scheme for mobile
multimedia.

One important lesson that we can learn from the IPv6 experience is that it is enor-
mously difficult to change network-layer protocols. Since the early 1990s, numerous
new network-layer protocols have been trumpeted as the next major revolution for the
Internet, but most of these protocols have had limited penetration to date. These proto-
cols include IPv6, multicast protocols (Section 4.7), and resource reservation proto-
cols (Chapter 7). Indeed, introducing new protocols into the network layer is like
replacing the foundation of a house—it is difficult to do without tearing the whole
house down or at least temporarily relocating the house’s residents. On the other hand,
the Internet has witnessed rapid deployment of new protocols at the application layer.
The classic examples, of course, are the Web, instant messaging, and P2P file sharing.
Other examples include audio and video streaming and distributed games. Introducing
new application-layer protocols is like adding a new layer of paint to a house—it is
relatively easy to do, and if you choose an attractive color, others in the neighborhood
will copy you. In summary, in the future we can expect to see changes in the Internet’s
network layer, but these changes will likely occur on a time scale that is much slower
than the changes that will occur at the application layer.

4.4.5 A Brief Foray into IP Security

Section 4.4.3 covered IPv4 in some detail, including the services it provides and
how those services are implemented. While reading through that section, you may
have noticed that there was no mention of any security services. Indeed, IPv4 was
designed in an era (the 1970s) when the Internet was primarily used among mutu-
ally-trusted networking researchers. Creating a computer network that integrated a
multitude of link-layer technologies was already challenging enough, without hav-
ing to worry about security.

But with security being a major concern today, Internet researchers have moved
on to design new network-layer protocols that provide a variety of security services.
One of these protocols is IPsec, one of the more popular secure network-layer proto-
cols and also widely deployed in Virtual Private Networks (VPNs). Although IPsec and
its cryptographic underpinnings are covered in some detail in Chapter 8, we provide a
brief, high-level introduction into IPsec services in this section.

IPsec has been designed to be backward compatible with IPv4 and IPv6. In par-
ticular, in order to reap the benefits of IPsec, we don’t need to replace the protocol
stacks in all the routers and hosts in the Internet. For example, using the transport
mode (one of two IPsec “modes”), if two hosts want to securely communicate, IPsec
needs to be available only in those two hosts. All other routers and hosts can con-
tinue to run vanilla IPv4.

For concreteness, we’ll focus on IPsec’s transport mode here. In this mode, two
hosts first establish an IPsec session between themselves. (Thus IPsec is connection-
oriented!) With the session in place, all TCP and UDP segments sent between the

362 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

two hosts enjoy the security services provided by IPsec. On the sending side, the
transport layer passes a segment to IPsec. IPsec then encrypts the segment, appends
additional security fields to the segment, and encapsulates the resulting payload in
an ordinary IP datagram. (It’s actually a little more complicated than this, as we’ll
see in Chapter 8.) The sending host then sends the datagram into the Internet, which
transports it to the destination host. There, IPsec decrypts the segment and passes
the unencrypted segment to the transport layer.

The services provided by an IPsec session include:

• Cryptographic agreement. Mechanisms that allow the two communicating hosts
to agree on cryptographic algorithms and keys.

• Encryption of IP datagram payloads. When the sending host receives a segment
from the transport layer, IPsec encrypts the payload. The payload can only be
decrypted by IPsec in the receiving host.

• Data integrity. IPsec allows the receiving host to verify that the datagram’s
header fields and encrypted payload were not modified while the datagram was
en route from source to destination.

• Origin authentication. When a host receives an IPsec datagram from a trusted
source (with a trusted key—see Chapter 8), the host is assured that the source IP
address in the datagram is the actual source of the datagram.

When two hosts have an IPsec session established between them, all TCP and
UDP segments sent between them will be encrypted and authenticated. IPsec there-
fore provides blanket coverage, securing all communication between the two hosts
for all network applications.

A company can use IPsec to communicate securely in the nonsecure public Inter-
net. For illustrative purposes, we’ll just look at a simple example here. Consider a
company that has a large number of traveling salespeople, each possessing a company
laptop computer. Suppose the salespeople need to frequently consult sensitive com-
pany information (for example, pricing and product information) that is stored on a
server in the company’s headquarters. Further suppose that the salespeople also need
to send sensitive documents to each other. How can this be done with IPsec? As you
might guess, we install IPsec in the server and in all of the salespeople’s laptops. With
IPsec installed in these hosts, whenever a salesperson needs to communicate with the
server or with another salesperson, the communication session will be secure.

4.5 Routing Algorithms

So far in this chapter, we’ve mostly explored the network layer’s forwarding func-
tion. We learned that when a packet arrives to a router, the router indexes a forward-
ing table and determines the link interface to which the packet is to be directed. We
also learned that routing algorithms, operating in network routers, exchange and

4.5 • ROUTING ALGORITHMS 363

https://hemanthrajhemu.github.io

compute the information that is used to configure these forwarding tables. The inter-
play between routing algorithms and forwarding tables was shown in Figure 4.2.
Having explored forwarding in some depth we now turn our attention to the other
major topic of this chapter, namely, the network layer’s critical routing function.
Whether the network layer provides a datagram service (in which case different pack-
ets between a given source-destination pair may take different routes) or a VC serv-
ice (in which case all packets between a given source and destination will take the
same path), the network layer must nonetheless determine the path that packets take
from senders to receivers. We’ll see that the job of routing is to determine good paths
(equivalently, routes), from senders to receivers, through the network of routers.

Typically a host is attached directly to one router, the default router for the
host (also called the first-hop router for the host). Whenever a host sends a packet,
the packet is transferred to its default router. We refer to the default router of the
source host as the source router and the default router of the destination host as the
destination router. The problem of routing a packet from source host to destination
host clearly boils down to the problem of routing the packet from source router to
destination router, which is the focus of this section.

The purpose of a routing algorithm is then simple: given a set of routers, with
links connecting the routers, a routing algorithm finds a “good” path from source
router to destination router. Typically, a good path is one that has the least cost.
We’ll see, however, that in practice, real-world concerns such as policy issues (for
example, a rule such as “router x, belonging to organization Y, should not forward
any packets originating from the network owned by organization Z”) also come into
play to complicate the conceptually simple and elegant algorithms whose theory
underlies the practice of routing in today’s networks.

A graph is used to formulate routing problems. Recall that a graph G = (N,E)
is a set N of nodes and a collection E of edges, where each edge is a pair of nodes
from N. In the context of network-layer routing, the nodes in the graph represent
routers—the points at which packet-forwarding decisions are made—and the edges
connecting these nodes represent the physical links between these routers. Such a
graph abstraction of a computer network is shown in Figure 4.27. To view some
graphs representing real network maps, see [Dodge 2012, Cheswick 2000]; for a
discussion of how well different graph-based models model the Internet, see
[Zegura 1997, Faloutsos 1999, Li 2004].

As shown in Figure 4.27, an edge also has a value representing its cost. Typi-
cally, an edge’s cost may reflect the physical length of the corresponding link (for
example, a transoceanic link might have a higher cost than a short-haul terrestrial
link), the link speed, or the monetary cost associated with a link. For our purposes,
we’ll simply take the edge costs as a given and won’t worry about how they are
determined. For any edge (x,y) in E, we denote c(x,y) as the cost of the edge between
nodes x and y. If the pair (x,y) does not belong to E, we set c(x,y) = ∞. Also, through-
out we consider only undirected graphs (i.e., graphs whose edges do not have a
direction), so that edge (x,y) is the same as edge (y,x) and that c(x,y) = c(y,x). Also, a
node y is said to be a neighbor of node x if (x,y) belongs to E.

364 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

Given that costs are assigned to the various edges in the graph abstraction, a natu-
ral goal of a routing algorithm is to identify the least costly paths between sources and
destinations. To make this problem more precise, recall that a path in a graph G =
(N,E) is a sequence of nodes (x1, x2,..., xp) such that each of the pairs (x1,x2),
(x2,x3),...,(xp-1,xp) are edges in E. The cost of a path (x1,x2,..., xp) is simply the sum of
all the edge costs along the path, that is, c(x1,x2) + c(x2,x3) + ...+ c(xp-1,xp). Given any
two nodes x and y, there are typically many paths between the two nodes, with each
path having a cost. One or more of these paths is a least-cost path. The least-cost
problem is therefore clear: Find a path between the source and destination that has
least cost. In Figure 4.27, for example, the least-cost path between source node u and
destination node w is (u, x, y, w) with a path cost of 3. Note that if all edges in the
graph have the same cost, the least-cost path is also the shortest path (that is, the
path with the smallest number of links between the source and the destination).

As a simple exercise, try finding the least-cost path from node u to z in Figure
4.27 and reflect for a moment on how you calculated that path. If you are like most
people, you found the path from u to z by examining Figure 4.27, tracing a few routes
from u to z, and somehow convincing yourself that the path you had chosen had the
least cost among all possible paths. (Did you check all of the 17 possible paths
between u and z? Probably not!) Such a calculation is an example of a centralized
routing algorithm—the routing algorithm was run in one location, your brain, with
complete information about the network. Broadly, one way in which we can classify
routing algorithms is according to whether they are global or decentralized.

• A global routing algorithm computes the least-cost path between a source and
destination using complete, global knowledge about the network. That is, the
algorithm takes the connectivity between all nodes and all link costs as inputs.
This then requires that the algorithm somehow obtain this information before
actually performing the calculation. The calculation itself can be run at one site

4.5 • ROUTING ALGORITHMS 365

x y

v
3

5

2 5

2
3

1

1 2

1

u z

w

Figure 4.27 � Abstract graph model of a computer network

https://hemanthrajhemu.github.io

(a centralized global routing algorithm) or replicated at multiple sites. The key
distinguishing feature here, however, is that a global algorithm has complete
information about connectivity and link costs. In practice, algorithms with global
state information are often referred to as link-state (LS) algorithms, since the
algorithm must be aware of the cost of each link in the network. We’ll study LS
algorithms in Section 4.5.1.

• In a decentralized routing algorithm, the calculation of the least-cost path is
carried out in an iterative, distributed manner. No node has complete information
about the costs of all network links. Instead, each node begins with only the
knowledge of the costs of its own directly attached links. Then, through an itera-
tive process of calculation and exchange of information with its neighboring
nodes (that is, nodes that are at the other end of links to which it itself is
attached), a node gradually calculates the least-cost path to a destination or set of
destinations. The decentralized routing algorithm we’ll study below in Section
4.5.2 is called a distance-vector (DV) algorithm, because each node maintains a
vector of estimates of the costs (distances) to all other nodes in the network.

A second broad way to classify routing algorithms is according to whether they
are static or dynamic. In static routing algorithms, routes change very slowly over
time, often as a result of human intervention (for example, a human manually edit-
ing a router’s forwarding table). Dynamic routing algorithms change the routing
paths as the network traffic loads or topology change. A dynamic algorithm can be
run either periodically or in direct response to topology or link cost changes. While
dynamic algorithms are more responsive to network changes, they are also more
susceptible to problems such as routing loops and oscillation in routes.

A third way to classify routing algorithms is according to whether they are load-
sensitive or load-insensitive. In a load-sensitive algorithm, link costs vary dynami-
cally to reflect the current level of congestion in the underlying link. If a high cost is
associated with a link that is currently congested, a routing algorithm will tend to
choose routes around such a congested link. While early ARPAnet routing algo-
rithms were load-sensitive [McQuillan 1980], a number of difficulties were encoun-
tered [Huitema 1998]. Today’s Internet routing algorithms (such as RIP, OSPF, and
BGP) are load-insensitive, as a link’s cost does not explicitly reflect its current (or
recent past) level of congestion.

4.5.1 The Link-State (LS) Routing Algorithm

Recall that in a link-state algorithm, the network topology and all link costs are
known, that is, available as input to the LS algorithm. In practice this is accom-
plished by having each node broadcast link-state packets to all other nodes in the
network, with each link-state packet containing the identities and costs of its
attached links. In practice (for example, with the Internet’s OSPF routing protocol,
discussed in Section 4.6.1) this is often accomplished by a link-state broadcast

366 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

algorithm [Perlman 1999]. We’ll cover broadcast algorithms in Section 4.7. The
result of the nodes’ broadcast is that all nodes have an identical and complete view
of the network. Each node can then run the LS algorithm and compute the same set
of least-cost paths as every other node.

The link-state routing algorithm we present below is known as Dijkstra’s algo-
rithm, named after its inventor. A closely related algorithm is Prim’s algorithm; see
[Cormen 2001] for a general discussion of graph algorithms. Dijkstra’s algorithm
computes the least-cost path from one node (the source, which we will refer to as u)
to all other nodes in the network. Dijkstra’s algorithm is iterative and has the prop-
erty that after the kth iteration of the algorithm, the least-cost paths are known to k
destination nodes, and among the least-cost paths to all destination nodes, these k
paths will have the k smallest costs. Let us define the following notation:

• D(v): cost of the least-cost path from the source node to destination v as of this
iteration of the algorithm.

• p(v): previous node (neighbor of v) along the current least-cost path from the
source to v.

• N� : subset of nodes; v is in N� if the least-cost path from the source to v is defin-
itively known.

The global routing algorithm consists of an initialization step followed by a
loop. The number of times the loop is executed is equal to the number of nodes in
the network. Upon termination, the algorithm will have calculated the shortest paths
from the source node u to every other node in the network.

Link-State (LS) Algorithm for Source Node u

1 Initialization:
2 N’ = {u}
3 for all nodes v
4 if v is a neighbor of u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N’ such that D(w) is a minimum
10 add w to N’
11 update D(v) for each neighbor v of w and not in N’:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 least path cost to w plus cost from w to v */
15 until N’= N

4.5 • ROUTING ALGORITHMS 367

https://hemanthrajhemu.github.io

As an example, let’s consider the network in Figure 4.27 and compute the
least-cost paths from u to all possible destinations. A tabular summary of the
algorithm’s computation is shown in Table 4.3, where each line in the table gives
the values of the algorithm’s variables at the end of the iteration. Let’s consider
the few first steps in detail.

• In the initialization step, the currently known least-cost paths from u to its
directly attached neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively.
Note in particular that the cost to w is set to 5 (even though we will soon see that
a lesser-cost path does indeed exist) since this is the cost of the direct (one hop)
link from u to w. The costs to y and z are set to infinity because they are not
directly connected to u.

• In the first iteration, we look among those nodes not yet added to the set N� and
find that node with the least cost as of the end of the previous iteration. That node
is x, with a cost of 1, and thus x is added to the set N�. Line 12 of the LS algo-
rithm is then performed to update D(v) for all nodes v, yielding the results shown
in the second line (Step 1) in Table 4.3. The cost of the path to v is unchanged.
The cost of the path to w (which was 5 at the end of the initialization) through
node x is found to have a cost of 4. Hence this lower-cost path is selected and w’s
predecessor along the shortest path from u is set to x. Similarly, the cost to y
(through x) is computed to be 2, and the table is updated accordingly.

• In the second iteration, nodes v and y are found to have the least-cost paths (2),
and we break the tie arbitrarily and add y to the set N� so that N� now contains u,
x, and y. The cost to the remaining nodes not yet in N�, that is, nodes v, w, and z,
are updated via line 12 of the LS algorithm, yielding the results shown in the
third row in the Table 4.3.

• And so on. . . .

When the LS algorithm terminates, we have, for each node, its predecessor
along the least-cost path from the source node. For each predecessor, we also

368 CHAPTER 4 • THE NETWORK LAYER

step N’ D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)

0 u 2,u 5,u 1,u ∞ ∞
1 ux 2,u 4,x 2,x ∞
2 uxy 2,u 3,y 4,y
3 uxyv 3,y 4,y
4 uxyvw 4,y
5 uxyvwz

Table 4.3 � Running the link-state algorithm on the network in Figure 4.27

VideoNote
Dijkstra’s algorithm:
discussion and example

https://hemanthrajhemu.github.io

have its predecessor, and so in this manner we can construct the entire path from
the source to all destinations. The forwarding table in a node, say node u, can
then be constructed from this information by storing, for each destination, the
next-hop node on the least-cost path from u to the destination. Figure 4.28
shows the resulting least-cost paths and forwarding table in u for the network in
Figure 4.27.

What is the computational complexity of this algorithm? That is, given n
nodes (not counting the source), how much computation must be done in the
worst case to find the least-cost paths from the source to all destinations? In the
first iteration, we need to search through all n nodes to determine the node, w, not
in N� that has the minimum cost. In the second iteration, we need to check n – 1
nodes to determine the minimum cost; in the third iteration n – 2 nodes, and so
on. Overall, the total number of nodes we need to search through over all the iter-
ations is n(n + 1)/2, and thus we say that the preceding implementation of the LS
algorithm has worst-case complexity of order n squared: O(n2). (A more sophisti-
cated implementation of this algorithm, using a data structure known as a heap,
can find the minimum in line 9 in logarithmic rather than linear time, thus reduc-
ing the complexity.)

Before completing our discussion of the LS algorithm, let us consider a pathol-
ogy that can arise. Figure 4.29 shows a simple network topology where link costs
are equal to the load carried on the link, for example, reflecting the delay that would
be experienced. In this example, link costs are not symmetric; that is, c(u,v) equals
c(v,u) only if the load carried on both directions on the link (u,v) is the same. In this
example, node z originates a unit of traffic destined for w, node x also originates a
unit of traffic destined for w, and node y injects an amount of traffic equal to e, also
destined for w. The initial routing is shown in Figure 4.29(a) with the link costs cor-
responding to the amount of traffic carried.

When the LS algorithm is next run, node y determines (based on the link costs
shown in Figure 4.29(a)) that the clockwise path to w has a cost of 1, while the
counterclockwise path to w (which it had been using) has a cost of 1 + e. Hence y’s

4.5 • ROUTING ALGORITHMS 369

Destination Link

v
w
x
y
z

(u, v)
(u, x)
(u, x)
(u, x)
(u, x)X Y

V

U Z

W

Figure 4.28 � Least cost path and forwarding table for nodule u

https://hemanthrajhemu.github.io

least-cost path to w is now clockwise. Similarly, x determines that its new least-cost
path to w is also clockwise, resulting in costs shown in Figure 4.29(b). When the
LS algorithm is run next, nodes x, y, and z all detect a zero-cost path to w in the
counterclockwise direction, and all route their traffic to the counterclockwise
routes. The next time the LS algorithm is run, x, y, and z all then route their traffic
to the clockwise routes.

What can be done to prevent such oscillations (which can occur in any algo-
rithm, not just an LS algorithm, that uses a congestion or delay-based link met-
ric)? One solution would be to mandate that link costs not depend on the amount
of traffic carried—an unacceptable solution since one goal of routing is to avoid

370 CHAPTER 4 • THE NETWORK LAYER

w

y

z x

1

0 0

0 e

1 + e

1

a. Initial routing

1

e

w

y

z x

2 + e

1 + e 1

0 0

0

b. x, y detect better path
 to w, clockwise

w

y

z x

0

0 0

1 1 + e

2+ e

c. x, y, z detect better path
 to w, counterclockwise

w

y

z x

2 + e

1 + e 1

0 0

0

d. x, y, z, detect better path
 to w, clockwise

1 1

e

1 1

e

1 1

e

Figure 4.29 � Oscillations with congestion-sensitive routing

https://hemanthrajhemu.github.io

highly congested (for example, high-delay) links. Another solution is to ensure
that not all routers run the LS algorithm at the same time. This seems a more
reasonable solution, since we would hope that even if routers ran the LS algorithm
with the same periodicity, the execution instance of the algorithm would not be
the same at each node. Interestingly, researchers have found that routers in the
Internet can self-synchronize among themselves [Floyd Synchronization 1994].
That is, even though they initially execute the algorithm with the same period
but at different instants of time, the algorithm execution instance can eventually
become, and remain, synchronized at the routers. One way to avoid such self-
synchronization is for each router to randomize the time it sends out a link
advertisement.

Having studied the LS algorithm, let’s consider the other major routing algo-
rithm that is used in practice today—the distance-vector routing algorithm.

4.5.2 The Distance-Vector (DV) Routing Algorithm

Whereas the LS algorithm is an algorithm using global information, the distance-
vector (DV) algorithm is iterative, asynchronous, and distributed. It is distributed
in that each node receives some information from one or more of its directly
attached neighbors, performs a calculation, and then distributes the results of its
calculation back to its neighbors. It is iterative in that this process continues
on until no more information is exchanged between neighbors. (Interestingly, the
algorithm is also self-terminating—there is no signal that the computation should
stop; it just stops.) The algorithm is asynchronous in that it does not require all of
the nodes to operate in lockstep with each other. We’ll see that an asynchronous,
iterative, self-terminating, distributed algorithm is much more interesting and fun
than a centralized algorithm!

Before we present the DV algorithm, it will prove beneficial to discuss an
important relationship that exists among the costs of the least-cost paths. Let dx(y)
be the cost of the least-cost path from node x to node y. Then the least costs are
related by the celebrated Bellman-Ford equation, namely,

dx(y) = minv{c(x,v) + dv(y)}, (4.1)

where the minv in the equation is taken over all of x’s neighbors. The Bellman-Ford
equation is rather intuitive. Indeed, after traveling from x to v, if we then take the
least-cost path from v to y, the path cost will be c(x,v) + dv(y). Since we must begin
by traveling to some neighbor v, the least cost from x to y is the minimum of c(x,v)
+ dv(y) taken over all neighbors v.

But for those who might be skeptical about the validity of the equation, let’s
check it for source node u and destination node z in Figure 4.27. The source node u

4.5 • ROUTING ALGORITHMS 371

https://hemanthrajhemu.github.io

has three neighbors: nodes v, x, and w. By walking along various paths in the graph,
it is easy to see that dv(z) = 5, dx(z) = 3, and dw(z) = 3. Plugging these values into
Equation 4.1, along with the costs c(u,v) = 2, c(u,x) = 1, and c(u,w) = 5, gives du(z) =
min{2 + 5, 5 + 3, 1 + 3} = 4, which is obviously true and which is exactly what the
Dijskstra algorithm gave us for the same network. This quick verification should
help relieve any skepticism you may have.

The Bellman-Ford equation is not just an intellectual curiosity. It actually has
significant practical importance. In particular, the solution to the Bellman-Ford
equation provides the entries in node x’s forwarding table. To see this, let v* be any
neighboring node that achieves the minimum in Equation 4.1. Then, if node x wants
to send a packet to node y along a least-cost path, it should first forward the packet
to node v*. Thus, node x’s forwarding table would specify node v* as the next-hop
router for the ultimate destination y. Another important practical contribution of the
Bellman-Ford equation is that it suggests the form of the neighbor-to-neighbor com-
munication that will take place in the DV algorithm.

The basic idea is as follows. Each node x begins with Dx(y), an estimate of the
cost of the least-cost path from itself to node y, for all nodes in N. Let Dx = [Dx(y): y
in N] be node x’s distance vector, which is the vector of cost estimates from x to all
other nodes, y, in N. With the DV algorithm, each node x maintains the following
routing information:

• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

• Node x’s distance vector, that is, Dx = [Dx(y): y in N], containing x’s estimate of
its cost to all destinations, y, in N

• The distance vectors of each of its neighbors, that is, Dv = [Dv(y): y in N] for each
neighbor v of x

In the distributed, asynchronous algorithm, from time to time, each node sends
a copy of its distance vector to each of its neighbors. When a node x receives a
new distance vector from any of its neighbors v, it saves v’s distance vector, and
then uses the Bellman-Ford equation to update its own distance vector as fol-
lows:

Dx(y) � minv{c(x,v) + Dv(y)} for each node y in N

If node x’s distance vector has changed as a result of this update step, node x will
then send its updated distance vector to each of its neighbors, which can in turn
update their own distance vectors. Miraculously enough, as long as all the nodes
continue to exchange their distance vectors in an asynchronous fashion, each cost
estimate Dx(y) converges to dx(y), the actual cost of the least-cost path from node x
to node y [Bertsekas 1991]!

372 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

Distance-Vector (DV) Algorithm

At each node, x:

4.5 • ROUTING ALGORITHMS 373

1 Initialization:
2 for all destinations y in N:
3 Dx(y) = c(x,y) /* if y is not a neighbor then c(x,y) = ∞ */
4 for each neighbor w
5 Dw(y) = ? for all destinations y in N
6 for each neighbor w
7 send distance vector Dx = [Dx(y): y in N] to w
8
9 loop
10 wait (until I see a link cost change to some neighbor w or
11 until I receive a distance vector from some neighbor w)
12
13 for each y in N:
14 Dx(y) = minv{c(x,v) + Dv(y)}
15
16 if Dx(y) changed for any destination y
17 send distance vector Dx = [Dx(y): y in N] to all neighbors
18
19 forever

In the DV algorithm, a node x updates its distance-vector estimate when it
either sees a cost change in one of its directly attached links or receives a distance-
vector update from some neighbor. But to update its own forwarding table for a
given destination y, what node x really needs to know is not the shortest-path
distance to y but instead the neighboring node v*(y) that is the next-hop router along
the shortest path to y. As you might expect, the next-hop router v*(y) is the neighbor
v that achieves the minimum in Line 14 of the DV algorithm. (If there are multiple
neighbors v that achieve the minimum, then v*(y) can be any of the minimizing
neighbors.) Thus, in Lines 13–14, for each destination y, node x also determines
v*(y) and updates its forwarding table for destination y.

Recall that the LS algorithm is a global algorithm in the sense that it requires
each node to first obtain a complete map of the network before running the Dijkstra
algorithm. The DV algorithm is decentralized and does not use such global infor-
mation. Indeed, the only information a node will have is the costs of the links to its
directly attached neighbors and information it receives from these neighbors. Each
node waits for an update from any neighbor (Lines 10–11), calculates its new dis-
tance vector when receiving an update (Line 14), and distributes its new distance

https://hemanthrajhemu.github.io

vector to its neighbors (Lines 16–17). DV-like algorithms are used in many routing
protocols in practice, including the Internet’s RIP and BGP, ISO IDRP, Novell IPX,
and the original ARPAnet.

Figure 4.30 illustrates the operation of the DV algorithm for the simple three-
node network shown at the top of the figure. The operation of the algorithm is illus-
trated in a synchronous manner, where all nodes simultaneously receive distance
vectors from their neighbors, compute their new distance vectors, and inform their
neighbors if their distance vectors have changed. After studying this example, you

374 CHAPTER 4 • THE NETWORK LAYER

Node y table

Node x table

0 2 7

x y z

∞ ∞ ∞
∞ ∞ ∞

Time

7

2 1
y

x z

Node z table

fr
o

m

cost to

x

y

z

0 2 3

x y z

2 0 1

7 1 0fr
o

m

cost to

x

y

z

0 2 3

x y z

2 0 1

3 1 0fr
o

m

cost to

x

y

z

2 0 1

x y z

∞ ∞ ∞

∞ ∞ ∞fr
o

m

cost to

x

y

z

0 2 7

x y z

2 0 1

7 1 0fr
o

m

cost to

x

y

z

0 2 3

x y z

2 0 1

3 1 0fr
o

m

cost to

x

y

z

7 1 0

x y z

∞ ∞ ∞
∞ ∞ ∞

fr
o

m

cost to

x

y

z

0 2 7

x y z

2 0 1

3 1 0fr
o

m

cost to

x

y

z

0 2 3

x y z

2 0 1

3 1 0fr
o

m

cost to

x

y

z

Figure 4.30 � Distance-vector (DV) algorithm

https://hemanthrajhemu.github.io

should convince yourself that the algorithm operates correctly in an asynchronous
manner as well, with node computations and update generation/reception occurring
at any time.

The leftmost column of the figure displays three initial routing tables for each
of the three nodes. For example, the table in the upper-left corner is node x’s initial
routing table. Within a specific routing table, each row is a distance vector—specifi-
cally, each node’s routing table includes its own distance vector and that of each of
its neighbors. Thus, the first row in node x’s initial routing table is Dx = [Dx(x),
Dx(y), Dx(z)] = [0, 2, 7]. The second and third rows in this table are the most recently
received distance vectors from nodes y and z, respectively. Because at initialization
node x has not received anything from node y or z, the entries in the second and third
rows are initialized to infinity.

After initialization, each node sends its distance vector to each of its two neigh-
bors. This is illustrated in Figure 4.30 by the arrows from the first column of tables
to the second column of tables. For example, node x sends its distance vector Dx =
[0, 2, 7] to both nodes y and z. After receiving the updates, each node recomputes its
own distance vector. For example, node x computes

Dx(x) = 0

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)} = min{2 + 0, 7 + 1} = 2

Dx(z) = min{c(x,y) + Dy(z), c(x,z) + Dz(z)} = min{2 + 1, 7 + 0} = 3

The second column therefore displays, for each node, the node’s new distance vec-
tor along with distance vectors just received from its neighbors. Note, for example,
that node x’s estimate for the least cost to node z, Dx(z), has changed from 7 to 3.
Also note that for node x, neighboring node y achieves the minimum in line 14 of
the DV algorithm; thus at this stage of the algorithm, we have at node x that v*(y) =
y and v*(z) = y.

After the nodes recompute their distance vectors, they again send their updated
distance vectors to their neighbors (if there has been a change). This is illustrated in
Figure 4.30 by the arrows from the second column of tables to the third column of
tables. Note that only nodes x and z send updates: node y’s distance vector didn’t
change so node y doesn’t send an update. After receiving the updates, the nodes then
recompute their distance vectors and update their routing tables, which are shown in
the third column.

The process of receiving updated distance vectors from neighbors, recomputing
routing table entries, and informing neighbors of changed costs of the least-cost path
to a destination continues until no update messages are sent. At this point, since no
update messages are sent, no further routing table calculations will occur and the
algorithm will enter a quiescent state; that is, all nodes will be performing the wait
in Lines 10–11 of the DV algorithm. The algorithm remains in the quiescent state
until a link cost changes, as discussed next.

4.5 • ROUTING ALGORITHMS 375

https://hemanthrajhemu.github.io

Distance-Vector Algorithm: Link-Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from itself to
a neighbor (Lines 10–11), it updates its distance vector (Lines 13–14) and, if there’s a
change in the cost of the least-cost path, informs its neighbors (Lines 16–17) of its new
distance vector. Figure 4.31(a) illustrates a scenario where the link cost from y to x
changes from 4 to 1. We focus here only on y’ and z’s distance table entries to destina-
tion x. The DV algorithm causes the following sequence of events to occur:

• At time t0, y detects the link-cost change (the cost has changed from 4 to 1),
updates its distance vector, and informs its neighbors of this change since its dis-
tance vector has changed.

• At time t1, z receives the update from y and updates its table. It computes a new
least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new
distance vector to its neighbors.

• At time t2, y receives z’s update and updates its distance table. y’s least costs do
not change and hence y does not send any message to z. The algorithm comes to
a quiescent state.

Thus, only two iterations are required for the DV algorithm to reach a quiescent
state. The good news about the decreased cost between x and y has propagated
quickly through the network.

Let’s now consider what can happen when a link cost increases. Suppose that
the link cost between x and y increases from 4 to 60, as shown in Figure 4.31(b).

1. Before the link cost changes, Dy(x) = 4, Dy(z) = 1, Dz(y) = 1, and Dz(x) = 5. At
time t0, y detects the link-cost change (the cost has changed from 4 to 60). y
computes its new minimum-cost path to x to have a cost of

Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)} = min{60 + 0, 1 + 5} = 6

376 CHAPTER 4 • THE NETWORK LAYER

50

4

1 60

1

y

x

a. b.

z 50

4 1

y

x z

Figure 4.31 � Changes in link cost

https://hemanthrajhemu.github.io

Of course, with our global view of the network, we can see that this new cost
via z is wrong. But the only information node y has is that its direct cost to x is
60 and that z has last told y that z could get to x with a cost of 5. So in order to
get to x, y would now route through z, fully expecting that z will be able to get
to x with a cost of 5. As of t1 we have a routing loop—in order to get to x, y
routes through z, and z routes through y. A routing loop is like a black hole—a
packet destined for x arriving at y or z as of t1 will bounce back and forth
between these two nodes forever (or until the forwarding tables are changed).

2. Since node y has computed a new minimum cost to x, it informs z of its new
distance vector at time t1.

3. Sometime after t1, z receives y’s new distance vector, which indicates that y’s
minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence
computes a new least cost to x of Dz(x) = min{50 + 0,1 + 6} = 7. Since z’s
least cost to x has increased, it then informs y of its new distance vector at t2.

4. In a similar manner, after receiving z’s new distance vector, y determines
Dy(x) = 8 and sends z its distance vector. z then determines Dz(x) = 9 and
sends y its distance vector, and so on.

How long will the process continue? You should convince yourself that the loop
will persist for 44 iterations (message exchanges between y and z)—until z even-
tually computes the cost of its path via y to be greater than 50. At this point, z will
(finally!) determine that its least-cost path to x is via its direct connection to x. y
will then route to x via z. The result of the bad news about the increase in link
cost has indeed traveled slowly! What would have happened if the link cost c(y,
x) had changed from 4 to 10,000 and the cost c(z, x) had been 9,999? Because of
such scenarios, the problem we have seen is sometimes referred to as the count-
to-infinity problem.

Distance-Vector Algorithm: Adding Poisoned Reverse

The specific looping scenario just described can be avoided using a technique
known as poisoned reverse. The idea is simple—if z routes through y to get to
destination x, then z will advertise to y that its distance to x is infinity, that is, z will
advertise to y that Dz(x) = ∞ (even though z knows Dz(x) = 5 in truth). z will con-
tinue telling this little white lie to y as long as it routes to x via y. Since y believes
that z has no path to x, y will never attempt to route to x via z, as long as z continues
to route to x via y (and lies about doing so).

Let’s now see how poisoned reverse solves the particular looping problem we
encountered before in Figure 4.31(b). As a result of the poisoned reverse, y’s dis-
tance table indicates Dz(x) = ∞. When the cost of the (x, y) link changes from 4 to 60
at time t0, y updates its table and continues to route directly to x, albeit at a higher
cost of 60, and informs z of its new cost to x, that is, Dy(x) = 60. After receiving the

4.5 • ROUTING ALGORITHMS 377

https://hemanthrajhemu.github.io

update at t1, z immediately shifts its route to x to be via the direct (z, x) link at a cost
of 50. Since this is a new least-cost path to x, and since the path no longer passes
through y, z now informs y that Dz(x) = 50 at t2. After receiving the update from z, y
updates its distance table with Dy(x) = 51. Also, since z is now on y’s least-cost path
to x, y poisons the reverse path from z to x by informing z at time t3 that Dy(x) = ∞
(even though y knows that Dy(x) = 51 in truth).

Does poisoned reverse solve the general count-to-infinity problem? It does not.
You should convince yourself that loops involving three or more nodes (rather than
simply two immediately neighboring nodes) will not be detected by the poisoned
reverse technique.

A Comparison of LS and DV Routing Algorithms

The DV and LS algorithms take complementary approaches towards computing
routing. In the DV algorithm, each node talks to only its directly connected neigh-
bors, but it provides its neighbors with least-cost estimates from itself to all the
nodes (that it knows about) in the network. In the LS algorithm, each node talks with
all other nodes (via broadcast), but it tells them only the costs of its directly con-
nected links. Let’s conclude our study of LS and DV algorithms with a quick com-
parison of some of their attributes. Recall that N is the set of nodes (routers) and E
is the set of edges (links).

• Message complexity. We have seen that LS requires each node to know the
cost of each link in the network. This requires O(|N| |E|) messages to be sent.
Also, whenever a link cost changes, the new link cost must be sent to all
nodes. The DV algorithm requires message exchanges between directly con-
nected neighbors at each iteration. We have seen that the time needed for the
algorithm to converge can depend on many factors. When link costs change,
the DV algorithm will propagate the results of the changed link cost only if
the new link cost results in a changed least-cost path for one of the nodes
attached to that link.

• Speed of convergence. We have seen that our implementation of LS is an O(|N|2)
algorithm requiring O(|N| |E|)) messages. The DV algorithm can converge slowly
and can have routing loops while the algorithm is converging. DV also suffers
from the count-to-infinity problem.

• Robustness. What can happen if a router fails, misbehaves, or is sabotaged?
Under LS, a router could broadcast an incorrect cost for one of its attached
links (but no others). A node could also corrupt or drop any packets it received
as part of an LS broadcast. But an LS node is computing only its own forward-
ing tables; other nodes are performing similar calculations for themselves. This
means route calculations are somewhat separated under LS, providing a degree
of robustness. Under DV, a node can advertise incorrect least-cost paths to any
or all destinations. (Indeed, in 1997, a malfunctioning router in a small ISP

378 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

provided national backbone routers with erroneous routing information. This
caused other routers to flood the malfunctioning router with traffic and caused
large portions of the Internet to become disconnected for up to several hours
[Neumann 1997].) More generally, we note that, at each iteration, a node’s cal-
culation in DV is passed on to its neighbor and then indirectly to its neighbor’s
neighbor on the next iteration. In this sense, an incorrect node calculation can
be diffused through the entire network under DV.

In the end, neither algorithm is an obvious winner over the other; indeed, both algo-
rithms are used in the Internet.

Other Routing Algorithms

The LS and DV algorithms we have studied are not only widely used in practice,
they are essentially the only routing algorithms used in practice today in the Inter-
net. Nonetheless, many routing algorithms have been proposed by researchers
over the past 30 years, ranging from the extremely simple to the very sophisticated
and complex. A broad class of routing algorithms is based on viewing packet traf-
fic as flows between sources and destinations in a network. In this approach, the
routing problem can be formulated mathematically as a constrained optimization
problem known as a network flow problem [Bertsekas 1991]. Yet another set of
routing algorithms we mention here are those derived from the telephony world.
These circuit-switched routing algorithms are of interest to packet-switched
data networking in cases where per-link resources (for example, buffers, or a frac-
tion of the link bandwidth) are to be reserved for each connection that is routed
over the link. While the formulation of the routing problem might appear quite
different from the least-cost routing formulation we have seen in this chapter,
there are a number of similarities, at least as far as the path-finding algorithm
(routing algorithm) is concerned. See [Ash 1998; Ross 1995; Girard 1990] for a
detailed discussion of this research area.

4.5.3 Hierarchical Routing

In our study of LS and DV algorithms, we’ve viewed the network simply as a col-
lection of interconnected routers. One router was indistinguishable from another in
the sense that all routers executed the same routing algorithm to compute routing
paths through the entire network. In practice, this model and its view of a homoge-
nous set of routers all executing the same routing algorithm is a bit simplistic for at
least two important reasons:

• Scale. As the number of routers becomes large, the overhead involved in
computing, storing, and communicating routing information (for example,

4.5 • ROUTING ALGORITHMS 379

https://hemanthrajhemu.github.io

LS updates or least-cost path changes) becomes prohibitive. Today’s public
Internet consists of hundreds of millions of hosts. Storing routing information at
each of these hosts would clearly require enormous amounts of memory. The
overhead required to broadcast LS updates among all of the routers in the public
Internet would leave no bandwidth left for sending data packets! A distance-vec-
tor algorithm that iterated among such a large number of routers would surely
never converge. Clearly, something must be done to reduce the complexity of
route computation in networks as large as the public Internet.

• Administrative autonomy. Although researchers tend to ignore issues such as a
company’s desire to run its routers as it pleases (for example, to run whatever
routing algorithm it chooses) or to hide aspects of its network’s internal organi-
zation from the outside, these are important considerations. Ideally, an organiza-
tion should be able to run and administer its network as it wishes, while still
being able to connect its network to other outside networks.

Both of these problems can be solved by organizing routers into autonomous sys-
tems (ASs), with each AS consisting of a group of routers that are typically under
the same administrative control (e.g., operated by the same ISP or belonging to the
same company network). Routers within the same AS all run the same routing algo-
rithm (for example, an LS or DV algorithm) and have information about each
other—exactly as was the case in our idealized model in the preceding section. The
routing algorithm running within an autonomous system is called an intra-
autonomous system routing protocol. It will be necessary, of course, to connect
ASs to each other, and thus one or more of the routers in an AS will have the added
task of being responsible for forwarding packets to destinations outside the AS;
these routers are called gateway routers.

Figure 4.32 provides a simple example with three ASs: AS1, AS2, and AS3.
In this figure, the heavy lines represent direct link connections between pairs of
routers. The thinner lines hanging from the routers represent subnets that are
directly connected to the routers. AS1 has four routers—1a, 1b, 1c, and 1d—
which run the intra-AS routing protocol used within AS1. Thus, each of these
four routers knows how to forward packets along the optimal path to any destina-
tion within AS1. Similarly, autonomous systems AS2 and AS3 each have three
routers. Note that the intra-AS routing protocols running in AS1, AS2, and AS3
need not be the same. Also note that the routers 1b, 1c, 2a, and 3a are all gateway
routers.

It should now be clear how the routers in an AS determine routing paths for
source-destination pairs that are internal to the AS. But there is still a big missing
piece to the end-to-end routing puzzle. How does a router, within some AS, know
how to route a packet to a destination that is outside the AS? It’s easy to answer
this question if the AS has only one gateway router that connects to only one
other AS. In this case, because the AS’s intra-AS routing algorithm has deter-
mined the least-cost path from each internal router to the gateway router, each

380 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

internal router knows how it should forward the packet. The gateway router, upon
receiving the packet, forwards the packet on the one link that leads outside the
AS. The AS on the other side of the link then takes over the responsibility
of routing the packet to its ultimate destination. As an example, suppose router
2b in Figure 4.32 receives a packet whose destination is outside of AS2. Router
2b will then forward the packet to either router 2a or 2c, as specified by router
2b’s forwarding table, which was configured by AS2’s intra-AS routing protocol.
The packet will eventually arrive to the gateway router 2a, which will forward
the packet to 1b. Once the packet has left 2a, AS2’s job is done with this one
packet.

So the problem is easy when the source AS has only one link that leads outside
the AS. But what if the source AS has two or more links (through two or more gate-
way routers) that lead outside the AS? Then the problem of knowing where to for-
ward the packet becomes significantly more challenging. For example, consider a
router in AS1 and suppose it receives a packet whose destination is outside the AS.
The router should clearly forward the packet to one of its two gateway routers, 1b or
1c, but which one? To solve this problem, AS1 needs (1) to learn which destinations
are reachable via AS2 and which destinations are reachable via AS3, and (2) to
propagate this reachability information to all the routers within AS1, so that each
router can configure its forwarding table to handle external-AS destinations. These

4.5 • ROUTING ALGORITHMS 381

AS1

AS3
3b

3c
3a

1a

1c

1b

1d

AS2

2a

2c

2b

Intra-AS routing
algorithm

Forwarding
table

Inter-AS routing
algorithm

Figure 4.32 � An example of interconnected autonomous systems

https://hemanthrajhemu.github.io

two tasks—obtaining reachability information from neighboring ASs and propagat-
ing the reachability information to all routers internal to the AS—are handled by the
inter-AS routing protocol. Since the inter-AS routing protocol involves communi-
cation between two ASs, the two communicating ASs must run the same inter-AS
routing protocol. In fact, in the Internet all ASs run the same inter-AS routing proto-
col, called BGP4, which is discussed in the next section. As shown in Figure 4.32,
each router receives information from an intra-AS routing protocol and an inter-AS
routing protocol, and uses the information from both protocols to configure its for-
warding table.

As an example, consider a subnet x (identified by its CIDRized address), and
suppose that AS1 learns from the inter-AS routing protocol that subnet x is reach-
able from AS3 but is not reachable from AS2. AS1 then propagates this information
to all of its routers. When router 1d learns that subnet x is reachable from AS3, and
hence from gateway 1c, it then determines, from the information provided by the
intra-AS routing protocol, the router interface that is on the least-cost path from
router 1d to gateway router 1c. Say this is interface I. The router 1d can then put the
entry (x, I) into its forwarding table. (This example, and others presented in this sec-
tion, gets the general ideas across but is a simplification of what really happens in
the Internet. In the next section we’ll provide a more detailed description, albeit
more complicated, when we discuss BGP.)

Following up on the previous example, now suppose that AS2 and AS3 con-
nect to other ASs, which are not shown in the diagram. Also suppose that AS1
learns from the inter-AS routing protocol that subnet x is reachable both from AS2,
via gateway 1b, and from AS3, via gateway 1c. AS1 would then propagate this
information to all its routers, including router 1d. In order to configure its forward-
ing table, router 1d would have to determine to which gateway router, 1b or 1c, it
should direct packets that are destined for subnet x. One approach, which is often
employed in practice, is to use hot-potato routing. In hot-potato routing, the AS
gets rid of the packet (the hot potato) as quickly as possible (more precisely, as
inexpensively as possible). This is done by having a router send the packet to the
gateway router that has the smallest router-to-gateway cost among all gateways
with a path to the destination. In the context of the current example, hot-potato
routing, running in 1d, would use information from the intra-AS routing protocol
to determine the path costs to 1b and 1c, and then choose the path with the least
cost. Once this path is chosen, router 1d adds an entry for subnet x in its forward-
ing table. Figure 4.33 summarizes the actions taken at router 1d for adding the new
entry for x to the forwarding table.

When an AS learns about a destination from a neighboring AS, the AS can
advertise this routing information to some of its other neighboring ASs. For example,
suppose AS1 learns from AS2 that subnet x is reachable via AS2. AS1 could then tell
AS3 that x is reachable via AS1. In this manner, if AS3 needs to route a packet
destined to x, AS3 would forward the packet to AS1, which would in turn forward the
packet to AS2. As we’ll see in our discussion of BGP, an AS has quite a bit of

382 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

flexibility in deciding which destinations it advertises to its neighboring ASs. This
is a policy decision, typically depending more on economic issues than on technical
issues.

Recall from Section 1.5 that the Internet consists of a hierarchy of intercon-
nected ISPs. So what is the relationship between ISPs and ASs? You might think that
the routers in an ISP, and the links that interconnect them, constitute a single AS.
Although this is often the case, many ISPs partition their network into multiple ASs.
For example, some tier-1 ISPs use one AS for their entire network; others break up
their ISP into tens of interconnected ASs.

In summary, the problems of scale and administrative authority are solved by
defining autonomous systems. Within an AS, all routers run the same intra-AS rout-
ing protocol. Among themselves, the ASs run the same inter-AS routing protocol.
The problem of scale is solved because an intra-AS router need only know about
routers within its AS. The problem of administrative authority is solved since an
organization can run whatever intra-AS routing protocol it chooses; however, each
pair of connected ASs needs to run the same inter-AS routing protocol to exchange
reachability information.

In the following section, we’ll examine two intra-AS routing protocols (RIP and
OSPF) and the inter-AS routing protocol (BGP) that are used in today’s Internet.
These case studies will nicely round out our study of hierarchical routing.

4.6 Routing in the Internet

Having studied Internet addressing and the IP protocol, we now turn our attention to
the Internet’s routing protocols; their job is to determine the path taken by a data-
gram between source and destination. We’ll see that the Internet’s routing protocols
embody many of the principles we learned earlier in this chapter. The link-state and
distance-vector approaches studied in Sections 4.5.1 and 4.5.2 and the notion of an
autonomous system considered in Section 4.5.3 are all central to how routing is
done in today’s Internet.

4.6 • ROUTING IN THE INTERNET 383

Learn from inter-AS
protocol that subnet

x is reachable via
multiple gateways.

Use routing info from
intra-AS protocol to
determine costs of
least-cost paths to

each of the gateways.

Hot potato routing:
Choose the gateway

that has the
smallest least cost.

Determine from
forwarding table the
interface I that leads
to least-cost gateway.

Enter (x,I) in
forwarding table.

Figure 4.33 � Steps in adding an outside-AS destination in a router’s for-
warding table

https://hemanthrajhemu.github.io

Recall from Section 4.5.3 that an autonomous system (AS) is a collection of
routers under the same administrative and technical control, and that all run the
same routing protocol among themselves. Each AS, in turn, typically contains mul-
tiple subnets (where we use the term subnet in the precise, addressing sense in Sec-
tion 4.4.2).

4.6.1 Intra-AS Routing in the Internet: RIP

An intra-AS routing protocol is used to determine how routing is performed within
an autonomous system (AS). Intra-AS routing protocols are also known as interior
gateway protocols. Historically, two routing protocols have been used extensively
for routing within an autonomous system in the Internet: the Routing Information
Protocol (RIP) and Open Shortest Path First (OSPF). A routing protocol closely
related to OSPF is the IS-IS protocol [RFC 1142, Perlman 1999]. We first discuss
RIP and then consider OSPF.

RIP was one of the earliest intra-AS Internet routing protocols and is still in
widespread use today. It traces its origins and its name to the Xerox Network Sys-
tems (XNS) architecture. The widespread deployment of RIP was due in great part
to its inclusion in 1982 in the Berkeley Software Distribution (BSD) version of
UNIX supporting TCP/IP. RIP version 1 is defined in [RFC 1058], with a backward-
compatible version 2 defined in [RFC 2453].

RIP is a distance-vector protocol that operates in a manner very close to the
idealized DV protocol we examined in Section 4.5.2. The version of RIP specified
in RFC 1058 uses hop count as a cost metric; that is, each link has a cost of 1. In
the DV algorithm in Section 4.5.2, for simplicity, costs were defined between pairs
of routers. In RIP (and also in OSPF), costs are actually from source router to a des-
tination subnet. RIP uses the term hop, which is the number of subnets traversed
along the shortest path from source router to destination subnet, including the des-
tination subnet. Figure 4.34 illustrates an AS with six leaf subnets. The table in the
figure indicates the number of hops from the source A to each of the leaf subnets.

The maximum cost of a path is limited to 15, thus limiting the use of RIP to
autonomous systems that are fewer than 15 hops in diameter. Recall that in DV
protocols, neighboring routers exchange distance vectors with each other. The
distance vector for any one router is the current estimate of the shortest path
distances from that router to the subnets in the AS. In RIP, routing updates
are exchanged between neighbors approximately every 30 seconds using a
RIP response message. The response message sent by a router or host contains
a list of up to 25 destination subnets within the AS, as well as the sender’s
distance to each of those subnets. Response messages are also known as RIP
advertisements.

Let’s take a look at a simple example of how RIP advertisements work. Con-
sider the portion of an AS shown in Figure 4.35. In this figure, lines connecting the
routers denote subnets. Only selected routers (A, B, C, and D) and subnets (w, x, y,

384 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

and z) are labeled. Dotted lines indicate that the AS continues on; thus this
autonomous system has many more routers and links than are shown.

Each router maintains a RIP table known as a routing table. A router’s routing
table includes both the router’s distance vector and the router’s forwarding table.
Figure 4.36 shows the routing table for router D. Note that the routing table has
three columns. The first column is for the destination subnet, the second column
indicates the identity of the next router along the shortest path to the destination sub-
net, and the third column indicates the number of hops (that is, the number of sub-
nets that have to be traversed, including the destination subnet) to get to the
destination subnet along the shortest path. For this example, the table indicates that
to send a datagram from router D to destination subnet w, the datagram should first
be forwarded to neighboring router A; the table also indicates that destination sub-
net w is two hops away along the shortest path. Similarly, the table indicates that
subnet z is seven hops away via router B. In principle, a routing table will have one
row for each subnet in the AS, although RIP version 2 allows subnet entries to be
aggregated using route aggregation techniques similar to those we examined in

4.6 • ROUTING IN THE INTERNET 385

C D

A

u Destination Hops

u
v
w
x
y
z

1
2
2
3
3
2

 v

 w

 x

 y z

B

Figure 4.34 � Number of hops from source router A to various subnets

A

C

D B

z
w x y

Figure 4.35 � A portion of an autonomous system

https://hemanthrajhemu.github.io

Section 4.4. The table in Figure 4.36, and the subsequent tables to come, are only
partially complete.

Now suppose that 30 seconds later, router D receives from router A the adver-
tisement shown in Figure 4.37. Note that this advertisement is nothing other than
the routing table information from router A! This information indicates, in particu-
lar, that subnet z is only four hops away from router A. Router D, upon receiving this
advertisement, merges the advertisement (Figure 4.37) with the old routing table
(Figure 4.36). In particular, router D learns that there is now a path through router A
to subnet z that is shorter than the path through router B. Thus, router D updates its
routing table to account for the shorter shortest path, as shown in Figure 4.38. How
is it, you might ask, that the shortest path to subnet z has become shorter? Possibly,
the decentralized distance-vector algorithm is still in the process of converging (see
Section 4.5.2), or perhaps new links and/or routers were added to the AS, thus
changing the shortest paths in the AS.

Let’s next consider a few of the implementation aspects of RIP. Recall that
RIP routers exchange advertisements approximately every 30 seconds. If a router
does not hear from its neighbor at least once every 180 seconds, that neighbor is
considered to be no longer reachable; that is, either the neighbor has died or the

386 CHAPTER 4 • THE NETWORK LAYER

Destination Subnet Next Router Number of Hops to Destination

w A 2

y B 2

z B 7

x — 1

.

Figure 4.36 � Routing table in router D before receiving advertisement
from router A

Destination Subnet Next Router Number of Hops to Destination

z C 4

w — 1

x — 1

.

Figure 4.37 � Advertisement from router A

https://hemanthrajhemu.github.io

connecting link has gone down. When this happens, RIP modifies the local routing
table and then propagates this information by sending advertisements to its neigh-
boring routers (the ones that are still reachable). A router can also request informa-
tion about its neighbor’s cost to a given destination using RIP’s request message.
Routers send RIP request and response messages to each other over UDP using port
number 520. The UDP segment is carried between routers in a standard IP data-
gram. The fact that RIP uses a transport-layer protocol (UDP) on top of a network-
layer protocol (IP) to implement network-layer functionality (a routing algorithm)
may seem rather convoluted (it is!). Looking a little deeper at how RIP is imple-
mented will clear this up.

Figure 4.39 sketches how RIP is typically implemented in a UNIX system, for
example, a UNIX workstation serving as a router. A process called routed (pronounced
“route dee”) executes RIP, that is, maintains routing information and exchanges
messages with routed processes running in neighboring routers. Because RIP is
implemented as an application-layer process (albeit a very special one that is able to

4.6 • ROUTING IN THE INTERNET 387

Destination Subnet Next Router Number of Hops to Destination

w A 2

y B 2

z A 5

.

Figure 4.38 � Routing table in router D after receiving advertisement from
router A

Network
(IP)

Transport
(UDP)

Data link

Physical

Forwarding
tables

Routed

Forwarding
tables

Routed

Network
(IP)

Transport
(UDP)

Data link

Physical

Figure 4.39 � Implementation of RIP as the routed daemon

https://hemanthrajhemu.github.io

manipulate the routing tables within the UNIX kernel), it can send and receive mes-
sages over a standard socket and use a standard transport protocol. As shown, RIP is
implemented as an application-layer protocol (see Chapter 2) running over UDP. If
you’re interested in looking at an implementation of RIP (or the OSPF and BGP pro-
tocols that we will study shortly), see [Quagga 2012].

4.6.2 Intra-AS Routing in the Internet: OSPF

Like RIP, OSPF routing is widely used for intra-AS routing in the Internet. OSPF
and its closely related cousin, IS-IS, are typically deployed in upper-tier ISPs
whereas RIP is deployed in lower-tier ISPs and enterprise networks. The Open in
OSPF indicates that the routing protocol specification is publicly available (for
example, as opposed to Cisco’s EIGRP protocol). The most recent version of OSPF,
version 2, is defined in RFC 2328, a public document.

OSPF was conceived as the successor to RIP and as such has a number of
advanced features. At its heart, however, OSPF is a link-state protocol that uses
flooding of link-state information and a Dijkstra least-cost path algorithm. With
OSPF, a router constructs a complete topological map (that is, a graph) of the entire
autonomous system. The router then locally runs Dijkstra’s shortest-path algorithm
to determine a shortest-path tree to all subnets, with itself as the root node. Individ-
ual link costs are configured by the network administrator (see Principles and Prac-
tice: Setting OSPF Weights). The administrator might choose to set all link costs to
1, thus achieving minimum-hop routing, or might choose to set the link weights to
be inversely proportional to link capacity in order to discourage traffic from using
low-bandwidth links. OSPF does not mandate a policy for how link weights are set
(that is the job of the network administrator), but instead provides the mechanisms
(protocol) for determining least-cost path routing for the given set of link weights.

With OSPF, a router broadcasts routing information to all other routers in the
autonomous system, not just to its neighboring routers. A router broadcasts link-
state information whenever there is a change in a link’s state (for example, a change
in cost or a change in up/down status). It also broadcasts a link’s state periodically
(at least once every 30 minutes), even if the link’s state has not changed. RFC 2328
notes that “this periodic updating of link state advertisements adds robustness to the
link state algorithm.” OSPF advertisements are contained in OSPF messages that
are carried directly by IP, with an upper-layer protocol of 89 for OSPF. Thus, the
OSPF protocol must itself implement functionality such as reliable message transfer
and link-state broadcast. The OSPF protocol also checks that links are operational
(via a HELLO message that is sent to an attached neighbor) and allows an OSPF
router to obtain a neighboring router’s database of network-wide link state.

Some of the advances embodied in OSPF include the following:

• Security. Exchanges between OSPF routers (for example, link-state updates)
can be authenticated. With authentication, only trusted routers can participate

388 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

in the OSPF protocol within an AS, thus preventing malicious intruders (or net-
working students taking their newfound knowledge out for a joyride) from
injecting incorrect information into router tables. By default, OSPF packets
between routers are not authenticated and could be forged. Two types of
authentication can be configured—simple and MD5 (see Chapter 8 for a dis-
cussion on MD5 and authentication in general). With simple authentication, the
same password is configured on each router. When a router sends an OSPF
packet, it includes the password in plaintext. Clearly, simple authentication is
not very secure. MD5 authentication is based on shared secret keys that are
configured in all the routers. For each OSPF packet that it sends, the router
computes the MD5 hash of the content of the OSPF packet appended with the
secret key. (See the discussion of message authentication codes in Chapter 7.)
Then the router includes the resulting hash value in the OSPF packet. The
receiving router, using the preconfigured secret key, will compute an MD5
hash of the packet and compare it with the hash value that the packet carries,
thus verifying the packet’s authenticity. Sequence numbers are also used with
MD5 authentication to protect against replay attacks.

• Multiple same-cost paths. When multiple paths to a destination have the same
cost, OSPF allows multiple paths to be used (that is, a single path need not be
chosen for carrying all traffic when multiple equal-cost paths exist).

• Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF)
[RFC 1584] provides simple extensions to OSPF to provide for multicast routing
(a topic we cover in more depth in Section 4.7.2). MOSPF uses the existing
OSPF link database and adds a new type of link-state advertisement to the exist-
ing OSPF link-state broadcast mechanism.

• Support for hierarchy within a single routing domain. Perhaps the most signifi-
cant advance in OSPF is the ability to structure an autonomous system hierarchi-
cally. Section 4.5.3 has already looked at the many advantages of hierarchical
routing structures. We cover the implementation of OSPF hierarchical routing in
the remainder of this section.

An OSPF autonomous system can be configured hierarchically into areas. Each
area runs its own OSPF link-state routing algorithm, with each router in an area
broadcasting its link state to all other routers in that area. Within each area, one or
more area border routers are responsible for routing packets outside the area. Lastly,
exactly one OSPF area in the AS is configured to be the backbone area. The primary
role of the backbone area is to route traffic between the other areas in the AS. The
backbone always contains all area border routers in the AS and may contain nonbor-
der routers as well. Inter-area routing within the AS requires that the packet be first
routed to an area border router (intra-area routing), then routed through the back-
bone to the area border router that is in the destination area, and then routed to the
final destination.

4.6 • ROUTING IN THE INTERNET 389

https://hemanthrajhemu.github.io

OSPF is a relatively complex protocol, and our coverage here has been neces-
sarily brief; [Huitema 1998; Moy 1998; RFC 2328] provide additional details.

4.6.3 Inter-AS Routing: BGP

We just learned how ISPs use RIP and OSPF to determine optimal paths for source-
destination pairs that are internal to the same AS. Let’s now examine how paths are
determined for source-destination pairs that span multiple ASs. The Border Gate-
way Protocol version 4, specified in RFC 4271 (see also [RFC 4274), is the de facto
standard inter-AS routing protocol in today’s Internet. It is commonly referred to as
BGP4 or simply as BGP. As an inter-AS routing protocol (see Section 4.5.3), BGP
provides each AS a means to

1. Obtain subnet reachability information from neighboring ASs.
2. Propagate the reachability information to all routers internal to the AS.
3. Determine “good” routes to subnets based on the reachability information and

on AS policy.

390 CHAPTER 4 • THE NETWORK LAYER

SETTING OSPF L INK WEIGHTS

Our discussion of link-state routing has implicitly assumed that link weights are set, a rout-
ing algorithm such as OSPF is run, and traffic flows according to the routing tables comput-
ed by the LS algorithm. In terms of cause and effect, the link weights are given (i.e., they
come first) and result (via Dijkstra’s algorithm) in routing paths that minimize overall cost. In
this viewpoint, link weights reflect the cost of using a link (e.g., if link weights are inversely
proportional to capacity, then the use of high-capacity links would have smaller weights
and thus be more attractive from a routing standpoint) and Disjkstra’s algorithm serves to
minimize overall cost.

In practice, the cause and effect relationship between link weights and routing paths
may be reversed, with network operators configuring link weights in order to obtain routing
paths that achieve certain traffic engineering goals [Fortz 2000, Fortz 2002]. For example,
suppose a network operator has an estimate of traffic flow entering the network at each
ingress point and destined for each egress point. The operator may then want to put in
place a specific routing of ingress-to-egress flows that minimizes the maximum utilization
over all of the network’s links. But with a routing algorithm such as OSPF, the operator’s
main “knobs” for tuning the routing of flows through the network are the link weights. Thus,
in order to achieve the goal of minimizing the maximum link utilization, the operator must
find the set of link weights that achieves this goal. This is a reversal of the cause and effect
relationship—the desired routing of flows is known, and the OSPF link weights must be
found such that the OSPF routing algorithm results in this desired routing of flows.

PRINCIPLES IN PRACTICE

https://hemanthrajhemu.github.io

Most importantly, BGP allows each subnet to advertise its existence to the rest of
the Internet. A subnet screams “I exist and I am here,” and BGP makes sure that all
the ASs in the Internet know about the subnet and how to get there. If it weren’t for
BGP, each subnet would be isolated—alone and unknown by the rest of the Internet.

BGP Basics

BGP is extremely complex; entire books have been devoted to the subject and many
issues are still not well understood [Yannuzzi 2005]. Furthermore, even after having
read the books and RFCs, you may find it difficult to fully master BGP without hav-
ing practiced BGP for many months (if not years) as a designer or administrator of
an upper-tier ISP. Nevertheless, because BGP is an absolutely critical protocol for
the Internet—in essence, it is the protocol that glues the whole thing together—we
need to acquire at least a rudimentary understanding of how it works. We begin by
describing how BGP might work in the context of the simple example network we
studied earlier in Figure 4.32. In this description, we build on our discussion of hier-
archical routing in Section 4.5.3; we encourage you to review that material.

In BGP, pairs of routers exchange routing information over semipermanent
TCP connections using port 179. The semi-permanent TCP connections for the net-
work in Figure 4.32 are shown in Figure 4.40. There is typically one such BGP TCP
connection for each link that directly connects two routers in two different ASs;
thus, in Figure 4.40, there is a TCP connection between gateway routers 3a and 1c
and another TCP connection between gateway routers 1b and 2a. There are also
semipermanent BGP TCP connections between routers within an AS. In particular,
Figure 4.40 displays a common configuration of one TCP connection for each pair
of routers internal to an AS, creating a mesh of TCP connections within each AS.
For each TCP connection, the two routers at the end of the connection are called
BGP peers, and the TCP connection along with all the BGP messages sent over the

4.6 • ROUTING IN THE INTERNET 391

AS1

AS3
3b

eBGP session

Key:

iBGP session

3c
3a

1a

1c

1b

1d

AS2

2a

2c

2b

Figure 4.40 � eBGP and iBGP sessions

VideoNote
Gluing the Internet
together

https://hemanthrajhemu.github.io

392 CHAPTER 4 • THE NETWORK LAYER

OBTAINING INTERNET PRESENCE: PUTTING THE PUZZLE TOGETHER

Suppose you have just created a small that has a number of servers, including a public
Web server that describes your company’s products and services, a mail server from which
your employees obtain their email messages, and a DNS server. Naturally, you would like
the entire world to be able to surf your Web site in order to learn about your exciting prod-
ucts and services. Moreover, you would like your employees to be able to send and
receive email to potential customers throughout the world.

To meet these goals, you first need to obtain Internet connectivity, which is done by
contracting with, and connecting to, a local ISP. Your company will have a gateway
router, which will be connected to a router in your local ISP. This connection might be
a DSL connection through the existing telephone infrastructure, a leased line to the ISP’s
router, or one of the many other access solutions described in Chapter 1. Your local
ISP will also provide you with an IP address range, e.g., a /24 address range consist-
ing of 256 addresses. Once you have your physical connectivity and your IP address
range, you will assign one of the IP addresses (in your address range) to your Web
server, one to your mail server, one to your DNS server, one to your gateway router,
and other IP addresses to other servers and networking devices in your company’s
network.

In addition to contracting with an ISP, you will also need to contract with an Internet regis-
trar to obtain a domain name for your company, as described in Chapter 2. For example, if
your company’s name is, say, Xanadu Inc., you will naturally try to obtain the domain name
xanadu.com. Your company must also obtain presence in the DNS system. Specifically,
because outsiders will want to contact your DNS server to obtain the IP addresses of your
servers, you will also need to provide your registrar with the IP address of your DNS server.
Your registrar will then put an entry for your DNS server (domain name and corresponding IP
address) in the .com top-level-domain servers, as described in Chapter 2. After this step is
completed, any user who knows your domain name (e.g., xanadu.com) will be able to
obtain the IP address of your DNS server via the DNS system.

So that people can discover the IP addresses of your Web server, in your DNS server
you will need to include entries that map the host name of your Web server (e.g.,
www.xanadu.com) to its IP address. You will want to have similar entries for other publicly
available servers in your company, including your mail server. In this manner, if Alice
wants to browse your Web server, the DNS system will contact your DNS server, find the
IP address of your Web server, and give it to Alice. Alice can then establish a TCP
connection directly with your Web server.

However, there still remains one other necessary and crucial step to allow outsiders
from around the world access your Web server. Consider what happens when Alice,
who knows the IP address of your Web server, sends an IP datagram (e.g., a TCP SYN
segment) to that IP address. This datagram will be routed through the Internet, visiting a
series of routers in many different ASes, and eventually reach your Web server. When

PRINCIPLES IN PRACTICE

https://hemanthrajhemu.github.io

connection is called a BGP session. Furthermore, a BGP session that spans two ASs
is called an external BGP (eBGP) session, and a BGP session between routers in
the same AS is called an internal BGP (iBGP) session. In Figure 4.40, the eBGP
sessions are shown with the long dashes; the iBGP sessions are shown with the short
dashes. Note that BGP session lines in Figure 4.40 do not always correspond to the
physical links in Figure 4.32.

BGP allows each AS to learn which destinations are reachable via its neighbor-
ing ASs. In BGP, destinations are not hosts but instead are CIDRized prefixes, with
each prefix representing a subnet or a collection of subnets. Thus, for example, sup-
pose there are four subnets attached to AS2: 138.16.64/24, 138.16.65/24,
138.16.66/24, and 138.16.67/24. Then AS2 could aggregate the prefixes for these four
subnets and use BGP to advertise the single prefix to 138.16.64/22 to AS1. As another
example, suppose that only the first three of those four subnets are in AS2 and the
fourth subnet, 138.16.67/24, is in AS3. Then, as described in the Principles and Prac-
tice in Section 4.4.2, because routers use longest-prefix matching for forwarding data-
grams, AS3 could advertise to AS1 the more specific prefix 138.16.67/24 and AS2
could still advertise to AS1 the aggregated prefix 138.16.64/22.

Let’s now examine how BGP would distribute prefix reachability information
over the BGP sessions shown in Figure 4.40. As you might expect, using the eBGP
session between the gateway routers 3a and 1c, AS3 sends AS1 the list of prefixes
that are reachable from AS3; and AS1 sends AS3 the list of prefixes that are reach-
able from AS1. Similarly, AS1 and AS2 exchange prefix reachability information
through their gateway routers 1b and 2a. Also as you may expect, when a gateway
router (in any AS) receives eBGP-learned prefixes, the gateway router uses its iBGP
sessions to distribute the prefixes to the other routers in the AS. Thus, all the routers
in AS1 learn about AS3 prefixes, including the gateway router 1b. The gateway
router 1b (in AS1) can therefore re-advertise AS3’s prefixes to AS2. When a router
(gateway or not) learns about a new prefix, it creates an entry for the prefix in its
forwarding table, as described in Section 4.5.3.

4.6 • ROUTING IN THE INTERNET 393

any one of the routers receives the datagram, it is going to look for an entry in its
forwarding table to determine on which outgoing port it should forward the datagram.
Therefore, each of the routers needs to know about the existence of your company’s
/24 prefix (or some aggregate entry). How does a router become aware of your
company’s prefix? As we have just seen, it becomes aware of it from BGP! Specifically,
when your company contracts with a local ISP and gets assigned a prefix (i.e., an
address range), your local ISP will use BGP to advertise this prefix to the ISPs to which
it connects. Those ISPs will then, in turn, use BGP to propagate the advertisement.
Eventually, all Internet routers will know about your prefix (or about some aggregate that
includes your prefix) and thus be able to appropriately forward datagrams destined to
your Web and mail servers.

https://hemanthrajhemu.github.io

Path Attributes and BGP Routes

Having now a preliminary understanding of BGP, let’s get a little deeper into it
(while still brushing some of the less important details under the rug!). In BGP, an
autonomous system is identified by its globally unique autonomous system num-
ber (ASN) [RFC 1930]. (Technically, not every AS has an ASN. In particular, a so-
called stub AS that carries only traffic for which it is a source or destination will not
typically have an ASN; we ignore this technicality in our discussion in order to bet-
ter see the forest for the trees.) AS numbers, like IP addresses, are assigned by
ICANN regional registries [ICANN 2012].

When a router advertises a prefix across a BGP session, it includes with the pre-
fix a number of BGP attributes. In BGP jargon, a prefix along with its attributes is
called a route. Thus, BGP peers advertise routes to each other. Two of the more
important attributes are AS-PATH and NEXT-HOP:

• AS-PATH. This attribute contains the ASs through which the advertisement for the
prefix has passed. When a prefix is passed into an AS, the AS adds its ASN to the AS-
PATH attribute. For example, consider Figure 4.40 and suppose that prefix
138.16.64/24 is first advertised from AS2 to AS1; if AS1 then advertises the prefix to
AS3, AS-PATH would be AS2 AS1. Routers use the AS-PATH attribute to detect and
prevent looping advertisements; specifically, if a router sees that its AS is contained
in the path list, it will reject the advertisement. As we’ll soon discuss, routers also use
the AS-PATH attribute in choosing among multiple paths to the same prefix.

• Providing the critical link between the inter-AS and intra-AS routing protocols, the
NEXT-HOP attribute has a subtle but important use. The NEXT-HOP is the router
interface that begins the AS-PATH. To gain insight into this attribute, let’s again refer
to Figure 4.40. Consider what happens when the gateway router 3a in AS3 advertises
a route to gateway router 1c in AS1 using eBGP. The route includes the advertised
prefix, which we’ll call x, and an AS-PATH to the prefix. This advertisement also
includes the NEXT-HOP, which is the IP address of the router 3a interface that leads
to 1c. (Recall that a router has multiple IP addresses, one for each of its interfaces.)
Now consider what happens when router 1d learns about this route from iBGP. After
learning about this route to x, router 1d may want to forward packets to x along the
route, that is, router 1d may want to include the entry (x, l) in its forwarding table,
where l is its interface that begins the least-cost path from 1d towards the gateway
router 1c. To determine l, 1d provides the IP address in the NEXT-HOP attribute to
its intra-AS routing module. Note that the intra-AS routing algorithm has determined
the least-cost path to all subnets attached to the routers in AS1, including to the sub-
net for the link between 1c and 3a. From this least-cost path from 1d to the 1c-3a sub-
net, 1d determines its router interface l that begins this path and then adds the entry
(x, l) to its forwarding table. Whew! In summary, the NEXT-HOP attribute is used by
routers to properly configure their forwarding tables.

• Figure 4.41 illustrates another situation where the NEXT-HOP is needed. In this fig-
ure, AS1 and AS2 are connected by two peering links. A router in AS1 could learn

394 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

about two different routes to the same prefix x. These two routes could have the same
AS-PATH to x, but could have different NEXT-HOP values corresponding to the dif-
ferent peering links. Using the NEXT-HOP values and the intra-AS routing algo-
rithm, the router can determine the cost of the path to each peering link, and then
apply hot-potato routing (see Section 4.5.3) to determine the appropriate interface.

BGP also includes attributes that allow routers to assign preference metrics to
the routes, and an attribute that indicates how the prefix was inserted into BGP at
the origin AS. For a full discussion of route attributes, see [Griffin 2012; Stewart
1999; Halabi 2000; Feamster 2004; RFC 4271].

When a gateway router receives a route advertisement, it uses its import policy
to decide whether to accept or filter the route and whether to set certain attributes
such as the router preference metrics. The import policy may filter a route because
the AS may not want to send traffic over one of the ASs in the route’s AS-PATH.
The gateway router may also filter a route because it already knows of a preferable
route to the same prefix.

BGP Route Selection

As described earlier in this section, BGP uses eBGP and iBGP to distribute routes
to all the routers within ASs. From this distribution, a router may learn about more
than one route to any one prefix, in which case the router must select one of the

4.6 • ROUTING IN THE INTERNET 395

Two peering
links between
AS2 and AS1

Router learns
about a
route to x

Router learns about
another route to x

AS2

AS1

Key:
Route advertisements
message for destination x

Figure 4.41 � NEXT-HOP attributes in advertisements are used to deter-
mine which peering link to use

https://hemanthrajhemu.github.io

possible routes. The input into this route selection process is the set of all routes that
have been learned and accepted by the router. If there are two or more routes to the
same prefix, then BGP sequentially invokes the following elimination rules until one
route remains:

• Routes are assigned a local preference value as one of their attributes. The local
preference of a route could have been set by the router or could have been
learned by another router in the same AS. This is a policy decision that is left up
to the AS’s network administrator. (We will shortly discuss BGP policy issues in
some detail.) The routes with the highest local preference values are selected.

• From the remaining routes (all with the same local preference value), the route with
the shortest AS-PATH is selected. If this rule were the only rule for route selection,
then BGP would be using a DV algorithm for path determination, where the dis-
tance metric uses the number of AS hops rather than the number of router hops.

• From the remaining routes (all with the same local preference value and the same
AS-PATH length), the route with the closest NEXT-HOP router is selected. Here,
closest means the router for which the cost of the least-cost path, determined by
the intra-AS algorithm, is the smallest. As discussed in Section 4.5.3, this process
is called hot-potato routing.

• If more than one route still remains, the router uses BGP identifiers to select the
route; see [Stewart 1999].

The elimination rules are even more complicated than described above. To avoid
nightmares about BGP, it’s best to learn about BGP selection rules in small doses!

396 CHAPTER 4 • THE NETWORK LAYER

PUTTING IT ALL TOGETHER: HOW DOES AN ENTRY GET INTO A ROUTER’S
FORWARDING TABLE?

Recall that an entry in a router’s forwarding table consists of a prefix (e.g., 138.16.64/22)
and a corresponding router output port (e.g., port 7). When a packet arrives to the router,
the packet’s destination IP address is compared with the prefixes in the forwarding table to
find the one with the longest prefix match. The packet is then forwarded (within the router)
to the router port associated with that prefix. Let’s now summarize how a routing entry
(prefix and associated port) gets entered into a forwarding table. This simple exercise will
tie together a lot of what we just learned about routing and forwarding. To make things
interesting, let’s assume that the prefix is a “foreign prefix,” that is, it does not belong to
the router’s AS but to some other AS.

In order for a prefix to get entered into the router’s forwarding table, the router has to
first become aware of the prefix (corresponding to a subnet or an aggregation of sub-
nets). As we have just learned, the router becomes aware of the prefix via a BGP route

PRINCIPLES IN PRACTICE

https://hemanthrajhemu.github.io

Routing Policy

Let’s illustrate some of the basic concepts of BGP routing policy with a simple exam-
ple. Figure 4.42 shows six interconnected autonomous systems: A, B, C, W, X, and Y.
It is important to note that A, B, C, W, X, and Y are ASs, not routers. Let’s assume that
autonomous systems W, X, and Y are stub networks and that A, B, and C are backbone
provider networks. We’ll also assume that A, B, and C, all peer with each other, and
provide full BGP information to their customer networks. All traffic entering a stub
network must be destined for that network, and all traffic leaving a stub network must
have originated in that network. W and Y are clearly stub networks. X is a multi-
homed stub network, since it is connected to the rest of the network via two different
providers (a scenario that is becoming increasingly common in practice). However,
like W and Y, X itself must be the source/destination of all traffic leaving/entering X.
But how will this stub network behavior be implemented and enforced? How will X
be prevented from forwarding traffic between B and C? This can easily be

advertisement. Such an advertisement may be sent to it over an eBGP session (from a
router in another AS) or over an iBGP session (from a router in the same AS).

After the router becomes aware of the prefix, it needs to determine the appropriate output
port to which datagrams destined to that prefix will be forwarded, before it can enter that
prefix in its forwarding table. If the router receives more than one route advertisement for this
prefix, the router uses the BGP route selection process, as described earlier in this subsection,
to find the “best” route for the prefix. Suppose such a best route has been selected. As
described earlier, the selected route includes a NEXT-HOP attribute, which is the IP address of
the first router outside the router’s AS along this best route. As described above, the router
then uses its intra-AS routing protocol (typically OSPF) to determine the shortest path to the
NEXT-HOP router. The router finally determines the port number to associate with the prefix
by identifying the first link along that shortest path. The router can then (finally!) enter the
prefix-port pair into its forwarding table! The forwarding table computed by the routing
processor (see Figure 4.6) is then pushed to the router’s input port line cards.

AW
X

Y

B

Key:

Provider
network

Customer
networkC

Figure 4.42 � A simple BGP scenario

4.6 • ROUTING IN THE INTERNET 397

https://hemanthrajhemu.github.io

398 CHAPTER 4 • THE NETWORK LAYER

WHY ARE THERE DIFFERENT INTER-AS AND INTRA-AS
ROUTING PROTOCOLS?

Having now studied the details of specific inter-AS and intra-AS routing protocols deployed
in today’s Internet, let’s conclude by considering perhaps the most fundamental question we
could ask about these protocols in the first place (hopefully, you have been wondering this
all along, and have not lost the forest for the trees!): Why are different inter-AS and intra-
AS routing protocols used?

The answer to this question gets at the heart of the differences between the goals of
routing within an AS and among ASs:

• Policy. Among ASs, policy issues dominate. It may well be important that traffic origi-
nating in a given AS not be able to pass through another specific AS. Similarly, a
given AS may well want to control what transit traffic it carries between other ASs. We
have seen that BGP carries path attributes and provides for controlled distribution of
routing information so that such policy-based routing decisions can be made. Within an
AS, everything is nominally under the same administrative control, and thus policy
issues play a much less important role in choosing routes within the AS.

• Scale. The ability of a routing algorithm and its data structures to scale to handle rout-
ing to/among large numbers of networks is a critical issue in inter-AS routing. Within
an AS, scalability is less of a concern. For one thing, if a single administrative domain
becomes too large, it is always possible to divide it into two ASs and perform inter-AS
routing between the two new ASs. (Recall that OSPF allows such a hierarchy to be
built by splitting an AS into areas.)

• Performance. Because inter-AS routing is so policy oriented, the quality (for example,
performance) of the routes used is often of secondary concern (that is, a longer or more
costly route that satisfies certain policy criteria may well be taken over a route that is
shorter but does not meet that criteria). Indeed, we saw that among ASs, there is not
even the notion of cost (other than AS hop count) associated with routes. Within a sin-
gle AS, however, such policy concerns are of less importance, allowing routing to focus
more on the level of performance realized on a route.

PRINCIPLES IN PRACTICE

accomplished by controlling the manner in which BGP routes are advertised. In par-
ticular, X will function as a stub network if it advertises (to its neighbors B and C) that
it has no paths to any other destinations except itself. That is, even though X may
know of a path, say XCY, that reaches network Y, it will not advertise this path to B.
Since B is unaware that X has a path to Y, B would never forward traffic destined to Y
(or C) via X. This simple example illustrates how a selective route advertisement pol-
icy can be used to implement customer/provider routing relationships.

https://hemanthrajhemu.github.io

Let’s next focus on a provider network, say AS B. Suppose that B has learned
(from A) that A has a path AW to W. B can thus install the route BAW into its rout-
ing information base. Clearly, B also wants to advertise the path BAW to its cus-
tomer, X, so that X knows that it can route to W via B. But should B advertise the
path BAW to C? If it does so, then C could route traffic to W via CBAW. If A, B,
and C are all backbone providers, than B might rightly feel that it should not have
to shoulder the burden (and cost!) of carrying transit traffic between A and C. B
might rightly feel that it is A’s and C’s job (and cost!) to make sure that C can route
to/from A’s customers via a direct connection between A and C. There are currently
no official standards that govern how backbone ISPs route among themselves. How-
ever, a rule of thumb followed by commercial ISPs is that any traffic flowing across
an ISP’s backbone network must have either a source or a destination (or both) in a
network that is a customer of that ISP; otherwise the traffic would be getting a free
ride on the ISP’s network. Individual peering agreements (that would govern ques-
tions such as those raised above) are typically negotiated between pairs of ISPs and
are often confidential; [Huston 1999a] provides an interesting discussion of peering
agreements. For a detailed description of how routing policy reflects commercial
relationships among ISPs, see [Gao 2001; Dmitiropoulos 2007]. For a discussion of
BGP routing polices from an ISP standpoint, see [Caesar 2005b].

As noted above, BGP is the de facto standard for inter-AS routing for the pub-
lic Internet. To see the contents of various BGP routing tables (large!) extracted
from routers in tier-1 ISPs, see http://www.routeviews.org. BGP routing tables
often contain tens of thousands of prefixes and corresponding attributes. Statistics
about the size and characteristics of BGP routing tables are presented in [Potaroo
2012].

This completes our brief introduction to BGP. Understanding BGP is important
because it plays a central role in the Internet. We encourage you to see the references
[Griffin 2012; Stewart 1999; Labovitz 1997; Halabi 2000; Huitema 1998; Gao
2001; Feamster 2004; Caesar 2005b; Li 2007] to learn more about BGP.

4.7 Broadcast and Multicast Routing

Thus far in this chapter, our focus has been on routing protocols that support unicast
(i.e., point-to-point) communication, in which a single source node sends a packet
to a single destination node. In this section, we turn our attention to broadcast and
multicast routing protocols. In broadcast routing, the network layer provides a
service of delivering a packet sent from a source node to all other nodes in the
network; multicast routing enables a single source node to send a copy of a packet
to a subset of the other network nodes. In Section 4.7.1 we’ll consider broadcast
routing algorithms and their embodiment in routing protocols. We’ll examine multi-
cast routing in Section 4.7.2.

4.7 • BROADCAST AND MULTICAST ROUTING 399

https://hemanthrajhemu.github.io

4.7.1 Broadcast Routing Algorithms

Perhaps the most straightforward way to accomplish broadcast communication is
for the sending node to send a separate copy of the packet to each destination, as
shown in Figure 4.43(a). Given N destination nodes, the source node simply makes
N copies of the packet, addresses each copy to a different destination, and then
transmits the N copies to the N destinations using unicast routing. This N-way-
unicast approach to broadcasting is simple—no new network-layer routing proto-
col, packet-duplication, or forwarding functionality is needed. There are, however,
several drawbacks to this approach. The first drawback is its inefficiency. If the
source node is connected to the rest of the network via a single link, then N separate
copies of the (same) packet will traverse this single link. It would clearly be more
efficient to send only a single copy of a packet over this first hop and then have the
node at the other end of the first hop make and forward any additional needed
copies. That is, it would be more efficient for the network nodes themselves (rather
than just the source node) to create duplicate copies of a packet. For example, in
Figure 4.43(b), only a single copy of a packet traverses the R1-R2 link. That packet
is then duplicated at R2, with a single copy being sent over links R2-R3 and R2-R4.

The additional drawbacks of N-way-unicast are perhaps more subtle, but no less
important. An implicit assumption of N-way-unicast is that broadcast recipients, and
their addresses, are known to the sender. But how is this information obtained? Most
likely, additional protocol mechanisms (such as a broadcast membership or
destination-registration protocol) would be required. This would add more overhead
and, importantly, additional complexity to a protocol that had initially seemed quite
simple. A final drawback of N-way-unicast relates to the purposes for which broad-
cast is to be used. In Section 4.5, we learned that link-state routing protocols use
broadcast to disseminate the link-state information that is used to compute unicast
routes. Clearly, in situations where broadcast is used to create and update unicast
routes, it would be unwise (at best!) to rely on the unicast routing infrastructure to
achieve broadcast.

400 CHAPTER 4 • THE NETWORK LAYER

R2

R4R3
a. b.

Duplicate

Duplicate creation/transmission

R1

R4R3

Duplicate

R1

R2

Figure 4.43 � Source-duplication versus in-network duplication

https://hemanthrajhemu.github.io

Given the several drawbacks of N-way-unicast broadcast, approaches in which
the network nodes themselves play an active role in packet duplication, packet for-
warding, and computation of the broadcast routes are clearly of interest. We’ll
examine several such approaches below and again adopt the graph notation intro-
duced in Section 4.5. We again model the network as a graph, G = (N,E), where N
is a set of nodes and a collection E of edges, where each edge is a pair of nodes from
N. We’ll be a bit sloppy with our notation and use N to refer to both the set of nodes,
as well as the cardinality (|N|) or size of that set when there is no confusion.

Uncontrolled Flooding

The most obvious technique for achieving broadcast is a flooding approach in
which the source node sends a copy of the packet to all of its neighbors. When a
node receives a broadcast packet, it duplicates the packet and forwards it to all of its
neighbors (except the neighbor from which it received the packet). Clearly, if the
graph is connected, this scheme will eventually deliver a copy of the broadcast
packet to all nodes in the graph. Although this scheme is simple and elegant, it has a
fatal flaw (before you read on, see if you can figure out this fatal flaw): If the graph
has cycles, then one or more copies of each broadcast packet will cycle indefinitely.
For example, in Figure 4.43, R2 will flood to R3, R3 will flood to R4, R4 will flood
to R2, and R2 will flood (again!) to R3, and so on. This simple scenario results in
the endless cycling of two broadcast packets, one clockwise, and one counterclock-
wise. But there can be an even more calamitous fatal flaw: When a node is con-
nected to more than two other nodes, it will create and forward multiple copies of
the broadcast packet, each of which will create multiple copies of itself (at other
nodes with more than two neighbors), and so on. This broadcast storm, resulting
from the endless multiplication of broadcast packets, would eventually result in so
many broadcast packets being created that the network would be rendered useless.
(See the homework questions at the end of the chapter for a problem analyzing the
rate at which such a broadcast storm grows.)

Controlled Flooding

The key to avoiding a broadcast storm is for a node to judiciously choose when
to flood a packet and (e.g., if it has already received and flooded an earlier copy of
a packet) when not to flood a packet. In practice, this can be done in one of several
ways.

In sequence-number-controlled flooding, a source node puts its address (or
other unique identifier) as well as a broadcast sequence number into a broadcast
packet, then sends the packet to all of its neighbors. Each node maintains a list of
the source address and sequence number of each broadcast packet it has already
received, duplicated, and forwarded. When a node receives a broadcast packet, it
first checks whether the packet is in this list. If so, the packet is dropped; if not, the

4.7 • BROADCAST AND MULTICAST ROUTING 401

https://hemanthrajhemu.github.io

packet is duplicated and forwarded to all the node’s neighbors (except the node from
which the packet has just been received). The Gnutella protocol, discussed in Chap-
ter 2, uses sequence-number-controlled flooding to broadcast queries in its overlay
network. (In Gnutella, message duplication and forwarding is performed at the
application layer rather than at the network layer.)

A second approach to controlled flooding is known as reverse path forwarding
(RPF) [Dalal 1978], also sometimes referred to as reverse path broadcast (RPB). The
idea behind RPF is simple, yet elegant. When a router receives a broadcast packet
with a given source address, it transmits the packet on all of its outgoing links (except
the one on which it was received) only if the packet arrived on the link that is on its
own shortest unicast path back to the source. Otherwise, the router simply discards
the incoming packet without forwarding it on any of its outgoing links. Such a packet
can be dropped because the router knows it either will receive or has already received
a copy of this packet on the link that is on its own shortest path back to the sender.
(You might want to convince yourself that this will, in fact, happen and that looping
and broadcast storms will not occur.) Note that RPF does not use unicast routing to
actually deliver a packet to a destination, nor does it require that a router know the
complete shortest path from itself to the source. RPF need only know the next neigh-
bor on its unicast shortest path to the sender; it uses this neighbor’s identity only to
determine whether or not to flood a received broadcast packet.

Figure 4.44 illustrates RPF. Suppose that the links drawn with thick lines repre-
sent the least-cost paths from the receivers to the source (A). Node A initially broad-
casts a source-A packet to nodes C and B. Node B will forward the source-A packet
it has received from A (since A is on its least-cost path to A) to both C and D. B will
ignore (drop, without forwarding) any source-A packets it receives from any other

402 CHAPTER 4 • THE NETWORK LAYER

A

B

D

G

C

F E

Key:

pkt will be forwarded

pkt not forwarded beyond receiving router

Figure 4.44 � Reverse path forwarding

https://hemanthrajhemu.github.io

4.7 • BROADCAST AND MULTICAST ROUTING 403

a. Broadcast initiated at A b. Broadcast initiated at D

A

B

C

D

G
EF

A

B

C

D

G
EF

Figure 4.45 � Broadcast along a spanning tree

nodes (for example, from routers C or D). Let us now consider node C, which will
receive a source-A packet directly from A as well as from B. Since B is not on C’s
own shortest path back to A, C will ignore any source-A packets it receives from B.
On the other hand, when C receives a source-A packet directly from A, it will for-
ward the packet to nodes B, E, and F.

Spanning-Tree Broadcast

While sequence-number-controlled flooding and RPF avoid broadcast storms, they
do not completely avoid the transmission of redundant broadcast packets. For exam-
ple, in Figure 4.44, nodes B, C, D, E, and F receive either one or two redundant
packets. Ideally, every node should receive only one copy of the broadcast packet.
Examining the tree consisting of the nodes connected by thick lines in Figure
4.45(a), you can see that if broadcast packets were forwarded only along links
within this tree, each and every network node would receive exactly one copy of the
broadcast packet—exactly the solution we were looking for! This tree is an example
of a spanning tree—a tree that contains each and every node in a graph. More for-
mally, a spanning tree of a graph G = (N,E) is a graph G� = (N,E�) such that E� is a
subset of E, G� is connected, G� contains no cycles, and G� contains all the original
nodes in G. If each link has an associated cost and the cost of a tree is the sum of the
link costs, then a spanning tree whose cost is the minimum of all of the graph’s
spanning trees is called (not surprisingly) a minimum spanning tree.

Thus, another approach to providing broadcast is for the network nodes to first
construct a spanning tree. When a source node wants to send a broadcast packet, it
sends the packet out on all of the incident links that belong to the spanning tree. A
node receiving a broadcast packet then forwards the packet to all its neighbors in the

https://hemanthrajhemu.github.io

spanning tree (except the neighbor from which it received the packet). Not only
does spanning tree eliminate redundant broadcast packets, but once in place, the
spanning tree can be used by any node to begin a broadcast, as shown in Figures
4.45(a) and 4.45(b). Note that a node need not be aware of the entire tree; it simply
needs to know which of its neighbors in G are spanning-tree neighbors.

The main complexity associated with the spanning-tree approach is the creation
and maintenance of the spanning tree. Numerous distributed spanning-tree algo-
rithms have been developed [Gallager 1983, Gartner 2003]. We consider only one
simple algorithm here. In the center-based approach to building a spanning tree, a
center node (also known as a rendezvous point or a core) is defined. Nodes then
unicast tree-join messages addressed to the center node. A tree-join message is for-
warded using unicast routing toward the center until it either arrives at a node that
already belongs to the spanning tree or arrives at the center. In either case, the path
that the tree-join message has followed defines the branch of the spanning tree
between the edge node that initiated the tree-join message and the center. One can
think of this new path as being grafted onto the existing spanning tree.

Figure 4.46 illustrates the construction of a center-based spanning tree. Suppose
that node E is selected as the center of the tree. Suppose that node F first joins the tree
and forwards a tree-join message to E. The single link EF becomes the initial span-
ning tree. Node B then joins the spanning tree by sending its tree-join message to E.
Suppose that the unicast path route to E from B is via D. In this case, the tree-join
message results in the path BDE being grafted onto the spanning tree. Node A next
joins the spanning group by forwarding its tree-join message towards E. If A’s uni-
cast path to E is through B, then since B has already joined the spanning tree, the
arrival of A’s tree-join message at B will result in the AB link being immediately
grafted onto the spanning tree. Node C joins the spanning tree next by forwarding
its tree-join message directly to E. Finally, because the unicast routing from G to E

404 CHAPTER 4 • THE NETWORK LAYER

3

2
4

1
5

a. Stepwise construction of spanning tree b. Constructed spanning tree

A

B

C

D

G
EF

A

B

C

D

G
EF

Figure 4.46 � Center-based construction of a spanning tree

https://hemanthrajhemu.github.io

must be via node D, when G sends its tree-join message to E, the GD link is grafted
onto the spanning tree at node D.

Broadcast Algorithms in Practice

Broadcast protocols are used in practice at both the application and network layers.
Gnutella [Gnutella 2009] uses application-level broadcast in order to broadcast
queries for content among Gnutella peers. Here, a link between two distributed
application-level peer processes in the Gnutella network is actually a TCP connec-
tion. Gnutella uses a form of sequence-number-controlled flooding in which a 16-
bit identifier and a 16-bit payload descriptor (which identifies the Gnutella message
type) are used to detect whether a received broadcast query has been previously
received, duplicated, and forwarded. Gnutella also uses a time-to-live (TTL) field to
limit the number of hops over which a flooded query will be forwarded. When a
Gnutella process receives and duplicates a query, it decrements the TTL field before
forwarding the query. Thus, a flooded Gnutella query will only reach peers that are
within a given number (the initial value of TTL) of application-level hops from the
query initiator. Gnutella’s flooding mechanism is thus sometimes referred to as
limited-scope flooding.

A form of sequence-number-controlled flooding is also used to broadcast link-state
advertisements (LSAs) in the OSPF [RFC 2328, Perlman 1999] routing algorithm, and in
the Intermediate-System-to-Intermediate-System (IS-IS) routing algorithm [RFC
1142, Perlman 1999]. OSPF uses a 32-bit sequence number, as well as a 16-bit age field
to identify LSAs. Recall that an OSPF node broadcasts LSAs for its attached links peri-
odically, when a link cost to a neighbor changes, or when a link goes up/down. LSA
sequence numbers are used to detect duplicate LSAs, but also serve a second important
function in OSPF. With flooding, it is possible for an LSA generated by the source at
time t to arrive after a newer LSA that was generated by the same source at time t + d.
The sequence numbers used by the source node allow an older LSA to be distinguished
from a newer LSA. The age field serves a purpose similar to that of a TTL value. The ini-
tial age field value is set to zero and is incremented at each hop as it is flooded, and is also
incremented as it sits in a router’s memory waiting to be flooded. Although we have only
briefly described the LSA flooding algorithm here, we note that designing LSA broadcast
protocols can be very tricky business indeed. [RFC 789; Perlman 1999] describe an inci-
dent in which incorrectly transmitted LSAs by two malfunctioning routers caused an
early version of an LSA flooding algorithm to take down the entire ARPAnet!

4.7.2 Multicast

We’ve seen in the previous section that with broadcast service, packets are delivered
to each and every node in the network. In this section we turn our attention to
multicast service, in which a multicast packet is delivered to only a subset of
network nodes. A number of emerging network applications require the delivery of
packets from one or more senders to a group of receivers. These applications include

4.7 • BROADCAST AND MULTICAST ROUTING 405

https://hemanthrajhemu.github.io

bulk data transfer (for example, the transfer of a software upgrade from the software
developer to users needing the upgrade), streaming continuous media (for example,
the transfer of the audio, video, and text of a live lecture to a set of distributed lec-
ture participants), shared data applications (for example, a whiteboard or teleconfer-
encing application that is shared among many distributed participants), data feeds
(for example, stock quotes), Web cache updating, and interactive gaming (for exam-
ple, distributed interactive virtual environments or multiplayer games).

In multicast communication, we are immediately faced with two problems—
how to identify the receivers of a multicast packet and how to address a packet sent
to these receivers. In the case of unicast communication, the IP address of the
receiver (destination) is carried in each IP unicast datagram and identifies the single
recipient; in the case of broadcast, all nodes need to receive the broadcast packet, so
no destination addresses are needed. But in the case of multicast, we now have mul-
tiple receivers. Does it make sense for each multicast packet to carry the IP
addresses of all of the multiple recipients? While this approach might be workable
with a small number of recipients, it would not scale well to the case of hundreds or
thousands of receivers; the amount of addressing information in the datagram would
swamp the amount of data actually carried in the packet’s payload field. Explicit
identification of the receivers by the sender also requires that the sender know the
identities and addresses of all of the receivers. We will see shortly that there are
cases where this requirement might be undesirable.

For these reasons, in the Internet architecture (and other network architectures
such as ATM [Black 1995]), a multicast packet is addressed using address indirec-
tion. That is, a single identifier is used for the group of receivers, and a copy of the
packet that is addressed to the group using this single identifier is delivered to all of
the multicast receivers associated with that group. In the Internet, the single identifier
that represents a group of receivers is a class D multicast IP address. The group of
receivers associated with a class D address is referred to as a multicast group. The
multicast group abstraction is illustrated in Figure 4.47. Here, four hosts (shown in
shaded color) are associated with the multicast group address of 226.17.30.197 and
will receive all datagrams addressed to that multicast address. The difficulty that we
must still address is the fact that each host has a unique IP unicast address that is com-
pletely independent of the address of the multicast group in which it is participating.

While the multicast group abstraction is simple, it raises a host (pun intended)
of questions. How does a group get started and how does it terminate? How is the
group address chosen? How are new hosts added to the group (either as senders or
receivers)? Can anyone join a group (and send to, or receive from, that group) or is
group membership restricted and, if so, by whom? Do group members know the
identities of the other group members as part of the network-layer protocol? How
do the network nodes interoperate with each other to deliver a multicast datagram to
all group members? For the Internet, the answers to all of these questions involve
the Internet Group Management Protocol [RFC 3376]. So, let us next briefly con-
sider IGMP and then return to these broader questions.

406 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

Internet Group Management Protocol

The IGMP protocol version 3 [RFC 3376] operates between a host and its directly
attached router (informally, we can think of the directly attached router as the first-
hop router that a host would see on a path to any other host outside its own local
network, or the last-hop router on any path to that host), as shown in Figure 4.48.
Figure 4.48 shows three first-hop multicast routers, each connected to its attached
hosts via one outgoing local interface. This local interface is attached to a LAN in
this example, and while each LAN has multiple attached hosts, at most a few of
these hosts will typically belong to a given multicast group at any given time.

IGMP provides the means for a host to inform its attached router that an application
running on the host wants to join a specific multicast group. Given that the scope of
IGMP interaction is limited to a host and its attached router, another protocol is clearly
required to coordinate the multicast routers (including the attached routers) throughout

4.7 • BROADCAST AND MULTICAST ROUTING 407

128.119.40.186

Key:

Router with attached
group member

Router with no attached
group member

128.34.108.63

128.34.108.60

128.59.16.20

mcast group
226.17.30.197

Figure 4.47 � The multicast group: A datagram addressed to the group is
delivered to all members of the multicast group

https://hemanthrajhemu.github.io

the Internet, so that multicast datagrams are routed to their final destinations. This latter
functionality is accomplished by network-layer multicast routing algorithms, such as
those we will consider shortly. Network-layer multicast in the Internet thus consists of
two complementary components: IGMP and multicast routing protocols.

IGMP has only three message types. Like ICMP, IGMP messages are carried
(encapsulated) within an IP datagram, with an IP protocol number of 2. The mem-
bership_query message is sent by a router to all hosts on an attached interface
(for example, to all hosts on a local area network) to determine the set of all multicast
groups that have been joined by the hosts on that interface. Hosts respond to a mem-
bership_query message with an IGMP membership_report message.
membership_report messages can also be generated by a host when an
application first joins a multicast group without waiting for a membership_query
message from the router. The final type of IGMP message is the leave_group
message. Interestingly, this message is optional. But if it is optional, how does a
router detect when a host leaves the multicast group? The answer to this question is
that the router infers that a host is no longer in the multicast group if it no longer
responds to a membership_query message with the given group address. This is
an example of what is sometimes called soft state in an Internet protocol. In a soft-
state protocol, the state (in this case of IGMP, the fact that there are hosts joined to a
given multicast group) is removed via a timeout event (in this case, via a periodic
membership_query message from the router) if it is not explicitly refreshed (in
this case, by a membership_report message from an attached host).

The term soft state was coined by Clark [Clark 1988], who described the notion
of periodic state refresh messages being sent by an end system, and suggested that

408 CHAPTER 4 • THE NETWORK LAYER

Wide-area
multicast
routing

IGMP

IGMP

IGMP

IGMP

Figure 4.48 � The two components of network-layer multicast in the
Internet: IGMP and multicast routing protocols

https://hemanthrajhemu.github.io

with such refresh messages, state could be lost in a crash and then automatically
restored by subsequent refresh messages—all transparently to the end system and
without invoking any explicit crash-recovery procedures:

“. . . the state information would not be critical in maintaining the desired
type of service associated with the flow. Instead, that type of service would
be enforced by the end points, which would periodically send messages to
ensure that the proper type of service was being associated with the flow. In
this way, the state information associated with the flow could be lost in a
crash without permanent disruption of the service features being used. I call
this concept “soft state,” and it may very well permit us to achieve our pri-
mary goals of survivability and flexibility. . .”

It has been argued that soft-state protocols result in simpler control than hard-
state protocols, which not only require state to be explicitly added and removed, but
also require mechanisms to recover from the situation where the entity responsible
for removing state has terminated prematurely or failed. Interesting discussions of
soft state can be found in [Raman 1999; Ji 2003; Lui 2004].

Multicast Routing Algorithms

The multicast routing problem is illustrated in Figure 4.49. Hosts joined to the mul-
ticast group are shaded in color; their immediately attached router is also shaded in
color. As shown in Figure 4.49, only a subset of routers (those with attached hosts that
are joined to the multicast group) actually needs to receive the multicast traffic. In Fig-
ure 4.49, only routers A, B, E, and F need to receive the multicast traffic. Since none
of the hosts attached to router D are joined to the multicast group and since router C
has no attached hosts, neither C nor D needs to receive the multicast group traffic. The
goal of multicast routing, then, is to find a tree of links that connects all of the routers
that have attached hosts belonging to the multicast group. Multicast packets will then
be routed along this tree from the sender to all of the hosts belonging to the multicast
tree. Of course, the tree may contain routers that do not have attached hosts belonging
to the multicast group (for example, in Figure 4.49, it is impossible to connect routers
A, B, E, and F in a tree without involving either router C or D).

In practice, two approaches have been adopted for determining the multicast
routing tree, both of which we have already studied in the context of broadcast
routing, and so we will only mention them in passing here. The two approaches dif-
fer according to whether a single group-shared tree is used to distribute the traffic
for all senders in the group, or whether a source-specific routing tree is constructed
for each individual sender.

• Multicast routing using a group-shared tree. As in the case of spanning-tree broad-
cast, multicast routing over a group-shared tree is based on building a tree that
includes all edge routers with attached hosts belonging to the multicast group.
In practice, a center-based approach is used to construct the multicast routing tree,
with edge routers with attached hosts belonging to the multicast group sending

4.7 • BROADCAST AND MULTICAST ROUTING 409

https://hemanthrajhemu.github.io

(via unicast) join messages addressed to the center node. As in the broadcast case, a
join message is forwarded using unicast routing toward the center until it either
arrives at a router that already belongs to the multicast tree or arrives at the center.
All routers along the path that the join message follows will then forward received
multicast packets to the edge router that initiated the multicast join. A critical ques-
tion for center-based tree multicast routing is the process used to select the center.
Center-selection algorithms are discussed in [Wall 1980; Thaler 1997; Estrin 1997].

• Multicast routing using a source-based tree. While group-shared tree multicast
routing constructs a single, shared routing tree to route packets from all senders,
the second approach constructs a multicast routing tree for each source in the
multicast group. In practice, an RPF algorithm (with source node x) is used to
construct a multicast forwarding tree for multicast datagrams originating at
source x. The RPF broadcast algorithm we studied earlier requires a bit of tweak-
ing for use in multicast. To see why, consider router D in Figure 4.50. Under
broadcast RPF, it would forward packets to router G, even though router G has
no attached hosts that are joined to the multicast group. While this is not so bad
for this case where D has only a single downstream router, G, imagine what
would happen if there were thousands of routers downstream from D! Each
of these thousands of routers would receive unwanted multicast packets.

410 CHAPTER 4 • THE NETWORK LAYER

A

C

F

B

D

E

Figure 4.49 � Multicast hosts, their attached routers, and other routers

https://hemanthrajhemu.github.io

(This scenario is not as far-fetched as it might seem. The initial MBone [Casner
1992; Macedonia 1994], the first global multicast network, suffered from pre-
cisely this problem at first.). The solution to the problem of receiving unwanted
multicast packets under RPF is known as pruning. A multicast router that
receives multicast packets and has no attached hosts joined to that group will send
a prune message to its upstream router. If a router receives prune messages from
each of its downstream routers, then it can forward a prune message upstream.

Multicast Routing in the Internet

The first multicast routing protocol used in the Internet was the Distance-Vector Mul-
ticast Routing Protocol (DVMRP) [RFC 1075]. DVMRP implements source-based
trees with reverse path forwarding and pruning. DVMRP uses an RPF algorithm with
pruning, as discussed above. Perhaps the most widely used Internet multicast routing
protocol is the Protocol-Independent Multicast (PIM) routing protocol, which
explicitly recognizes two multicast distribution scenarios. In dense mode [RFC 3973],
multicast group members are densely located; that is, many or most of the routers in
the area need to be involved in routing multicast datagrams. PIM dense mode is a
flood-and-prune reverse path forwarding technique similar in spirit to DVMRP.

4.7 • BROADCAST AND MULTICAST ROUTING 411

A

C

F

Key:

pkt will be forwarded

E G

B

S: source

D

pkt not forwarded beyond receiving router

Figure 4.50 � Reverse path forwarding, the multicast case

https://hemanthrajhemu.github.io

In sparse mode [RFC 4601], the number of routers with attached group mem-
bers is small with respect to the total number of routers; group members are widely
dispersed. PIM sparse mode uses rendezvous points to set up the multicast distri-
bution tree. In source-specific multicast (SSM) [RFC 3569, RFC 4607], only a
single sender is allowed to send traffic into the multicast tree, considerably simpli-
fying tree construction and maintenance.

When PIM and DVMP are used within a domain, the network operator can con-
figure IP multicast routers within the domain, in much the same way that intra-
domain unicast routing protocols such as RIP, IS-IS, and OSPF can be configured.
But what happens when multicast routes are needed between different domains? Is
there a multicast equivalent of the inter-domain BGP protocol? The answer is (liter-
ally) yes. [RFC 4271] defines multiprotocol extensions to BGP to allow it to carry
routing information for other protocols, including multicast information. The Multi-
cast Source Discovery Protocol (MSDP) [RFC 3618, RFC 4611] can be used to con-
nect together rendezvous points in different PIM sparse mode domains. An excellent
overview of the current state of multicast routing in the Internet is [RFC 5110].

Let us close our discussion of IP multicast by noting that IP multicast has yet to
take off in a big way. For interesting discussions of the Internet multicast service
model and deployment issues, see [Diot 2000, Sharma 2003]. Nonetheless, in spite
of the lack of widespread deployment, network-level multicast is far from “dead.”
Multicast traffic has been carried for many years on Internet 2, and the networks
with which it peers [Internet2 Multicast 2012]. In the United Kingdom, the BBC is
engaged in trials of content distribution via IP multicast [BBC Multicast 2012]. At
the same time, application-level multicast, as we saw with PPLive in Chapter 2 and
in other peer-to-peer systems such as End System Multicast [Chu 2002], provides
multicast distribution of content among peers using application-layer (rather than
network-layer) multicast protocols. Will future multicast services be primarily
implemented in the network layer (in the network core) or in the application layer (at
the network’s edge)? While the current craze for content distribution via peer-to-peer
approaches tips the balance in favor of application-layer multicast at least in the near-
term future, progress continues to be made in IP multicast, and sometimes the race
ultimately goes to the slow and steady.

4.8 Summary

In this chapter, we began our journey into the network core. We learned that the
network layer involves each and every host and router in the network. Because of
this, network-layer protocols are among the most challenging in the protocol stack.

We learned that a router may need to process millions of flows of packets
between different source-destination pairs at the same time. To permit a router to
process such a large number of flows, network designers have learned over the years
that the router’s tasks should be as simple as possible. Many measures can be taken

412 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

to make the router’s job easier, including using a datagram network layer rather than
a virtual-circuit network layer, using a streamlined and fixed-sized header (as in
IPv6), eliminating fragmentation (also done in IPv6), and providing the one and
only best-effort service. Perhaps the most important trick here is not to keep track of
individual flows, but instead base routing decisions solely on hierarchically struc-
tured destination addresses in the datagrams. It is interesting to note that the postal
service has been using this approach for many years.

In this chapter, we also looked at the underlying principles of routing algorithms.
We learned how routing algorithms abstract the computer network to a graph with
nodes and links. With this abstraction, we can exploit the rich theory of shortest-path
routing in graphs, which has been developed over the past 40 years in the operations
research and algorithms communities. We saw that there are two broad approaches: a
centralized (global) approach, in which each node obtains a complete map of the net-
work and independently applies a shortest-path routing algorithm; and a decentral-
ized approach, in which individual nodes have only a partial picture of the entire
network, yet the nodes work together to deliver packets along the shortest routes. We
also studied how hierarchy is used to deal with the problem of scale by partitioning
large networks into independent administrative domains called autonomous systems
(ASs). Each AS independently routes its datagrams through the AS, just as each
country independently routes its postal mail through the country. We learned how
centralized, decentralized, and hierarchical approaches are embodied in the principal
routing protocols in the Internet: RIP, OSPF, and BGP. We concluded our study of
routing algorithms by considering broadcast and multicast routing.

Having completed our study of the network layer, our journey now takes us one
step further down the protocol stack, namely, to the link layer. Like the network layer,
the link layer is also part of the network core. But we will see in the next chapter that
the link layer has the much more localized task of moving packets between nodes on
the same link or LAN. Although this task may appear on the surface to be trivial com-
pared with that of the network layer’s tasks, we will see that the link layer involves a
number of important and fascinating issues that can keep us busy for a long time.

Homework Problems and Questions

Chapter 4 Review Questions

SECTIONS 4.1–4.2

R1. Let’s review some of the terminology used in this textbook. Recall that the
name of a transport-layer packet is segment and that the name of a link-layer
packet is frame. What is the name of a network-layer packet? Recall that both
routers and link-layer switches are called packet switches. What is the
fundamental difference between a router and link-layer switch? Recall that
we use the term routers for both datagram networks and VC networks.

HOMEWORK PROBLEMS AND QUESTIONS 413

https://hemanthrajhemu.github.io

R2. What are the two most important network-layer functions in a datagram net-
work? What are the three most important network-layer functions in a virtual-
circuit network?

R3. What is the difference between routing and forwarding?

R4. Do the routers in both datagram networks and virtual-circuit networks use for-
warding tables? If so, describe the forwarding tables for both classes of networks.

R5. Describe some hypothetical services that the network layer can provide to a
single packet. Do the same for a flow of packets. Are any of your hypotheti-
cal services provided by the Internet’s network layer? Are any provided by
ATM’s CBR service model? Are any provided by ATM’s ABR service
model?

R6. List some applications that would benefit from ATM’s CBR service model.

SECTION 4.3

R7. Discuss why each input port in a high-speed router stores a shadow copy of
the forwarding table.

R8. Three types of switching fabrics are discussed in Section 4.3. List and briefly
describe each type. Which, if any, can send multiple packets across the fabric
in parallel?

R9. Describe how packet loss can occur at input ports. Describe how packet loss
at input ports can be eliminated (without using infinite buffers).

R10. Describe how packet loss can occur at output ports. Can this loss be
prevented by increasing the switch fabric speed?

R11. What is HOL blocking? Does it occur in input ports or output ports?

SECTION 4.4

R12. Do routers have IP addresses? If so, how many?

R13. What is the 32-bit binary equivalent of the IP address 223.1.3.27?

R14. Visit a host that uses DHCP to obtain its IP address, network mask, default
router, and IP address of its local DNS server. List these values.

R15. Suppose there are three routers between a source host and a destination host.
Ignoring fragmentation, an IP datagram sent from the source host to the desti-
nation host will travel over how many interfaces? How many forwarding tables
will be indexed to move the datagram from the source to the destination?

R16. Suppose an application generates chunks of 40 bytes of data every 20 msec,
and each chunk gets encapsulated in a TCP segment and then an IP datagram.
What percentage of each datagram will be overhead, and what percentage
will be application data?

R17. Suppose Host A sends Host B a TCP segment encapsulated in an IP datagram.
When Host B receives the datagram, how does the network layer in Host B

414 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

know it should pass the segment (that is, the payload of the datagram) to TCP
rather than to UDP or to something else?

R18. Suppose you purchase a wireless router and connect it to your cable modem.
Also suppose that your ISP dynamically assigns your connected device (that
is, your wireless router) one IP address. Also suppose that you have five PCs
at home that use 802.11 to wirelessly connect to your wireless router. How
are IP addresses assigned to the five PCs? Does the wireless router use NAT?
Why or why not?

R19. Compare and contrast the IPv4 and the IPv6 header fields. Do they have any
fields in common?

R20. It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the
IPv4 tunnels as link-layer protocols. Do you agree with this statement? Why
or why not?

SECTION 4.5

R21. Compare and contrast link-state and distance-vector routing algorithms.

R22. Discuss how a hierarchical organization of the Internet has made it possible
to scale to millions of users.

R23. Is it necessary that every autonomous system use the same intra-AS routing
algorithm? Why or why not?

SECTION 4.6

R24. Consider Figure 4.37. Starting with the original table in D, suppose that D
receives from A the following advertisement:

HOMEWORK PROBLEMS AND QUESTIONS 415

Will the table in D change? If so how?

R25. Compare and contrast the advertisements used by RIP and OSPF.

R26. Fill in the blank: RIP advertisements typically announce the number of hops
to various destinations. BGP updates, on the other hand, announce the
__________ to the various destinations.

R27. Why are different inter-AS and intra-AS protocols used in the Internet?

R28. Why are policy considerations as important for intra-AS protocols, such as
OSPF and RIP, as they are for an inter-AS routing protocol like BGP?

Destination Subnet Next Router Number of Hops to Destination

z C 10
w — 1
x — 1

.

https://hemanthrajhemu.github.io

R29. Define and contrast the following terms: subnet, prefix, and BGP route.

R30. How does BGP use the NEXT-HOP attribute? How does it use the AS-PATH
attribute?

R31. Describe how a network administrator of an upper-tier ISP can implement
policy when configuring BGP.

SECTION 4.7

R32. What is an important difference between implementing the broadcast abstrac-
tion via multiple unicasts, and a single network- (router-) supported broad-
cast?

R33. For each of the three general approaches we studied for broadcast communi-
cation (uncontrolled flooding, controlled flooding, and spanning-tree broad-
cast), are the following statements true or false? You may assume that no
packets are lost due to buffer overflow and all packets are delivered on a link
in the order in which they were sent.

a. A node may receive multiple copies of the same packet.

b. A node may forward multiple copies of a packet over the same
outgoing link.

R34. When a host joins a multicast group, must it change its IP address to that of
the multicast group it is joining?

R35. What are the roles played by the IGMP protocol and a wide-area multicast
routing protocol?

R36. What is the difference between a group-shared tree and a source-based tree in
the context of multicast routing?

Problems

P1. In this question, we consider some of the pros and cons of virtual-circuit and
datagram networks.

a. Suppose that routers were subjected to conditions that might cause them
to fail fairly often. Would this argue in favor of a VC or datagram archi-
tecture? Why?

b. Suppose that a source node and a destination require that a fixed amount
of capacity always be available at all routers on the path between the
source and destination node, for the exclusive use of traffic flowing
between this source and destination node. Would this argue in favor of a
VC or datagram architecture? Why?

c. Suppose that the links and routers in the network never fail and that rout-
ing paths used between all source/destination pairs remains constant. In
this scenario, does a VC or datagram architecture have more control traf-
fic overhead? Why?

416 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

P2. Consider a virtual-circuit network. Suppose the VC number is an 8-bit field.

a. What is the maximum number of virtual circuits that can be carried over a
link?

b. Suppose a central node determines paths and VC numbers at connection
setup. Suppose the same VC number is used on each link along the VC’s
path. Describe how the central node might determine the VC number at con-
nection setup. Is it possible that there are fewer VCs in progress than the
maximum as determined in part (a) yet there is no common free VC number?

c. Suppose that different VC numbers are permitted in each link along a
VC’s path. During connection setup, after an end-to-end path is determined,
describe how the links can choose their VC numbers and configure their for-
warding tables in a decentralized manner, without reliance on a central node.

P3. A bare-bones forwarding table in a VC network has four columns. What is
the meaning of the values in each of these columns? A bare-bones forwarding
table in a datagram network has two columns. What is the meaning of the
values in each of these columns?

P4. Consider the network below.

a. Suppose that this network is a datagram network. Show the forwarding
table in router A, such that all traffic destined to host H3 is forwarded
through interface 3.

b. Suppose that this network is a datagram network. Can you write down a
forwarding table in router A, such that all traffic from H1 destined to host
H3 is forwarded through interface 3, while all traffic from H2 destined to
host H3 is forwarded through interface 4? (Hint: this is a trick question.)

c. Now suppose that this network is a virtual circuit network and that there is
one ongoing call between H1 and H3, and another ongoing call between
H2 and H3. Write down a forwarding table in router A, such that all traffic
from H1 destined to host H3 is forwarded through interface 3, while all
traffic from H2 destined to host H3 is forwarded through interface 4.

d. Assuming the same scenario as (c), write down the forwarding tables in
nodes B, C, and D.

PROBLEMS 417

B

A

1 3

2 4

2

D

1

2

3

H3

H1

H2

1

1 2

C

P5. Consider a VC network with a 2-bit field for the VC number. Suppose that
the network wants to set up a virtual circuit over four links: link A, link B,

https://hemanthrajhemu.github.io

link C, and link D. Suppose that each of these links is currently carrying two
other virtual circuits, and the VC numbers of these other VCs are as follows:

418 CHAPTER 4 • THE NETWORK LAYER

Link A Link B Link C Link D

00 01 10 11
01 10 11 00

In answering the following questions, keep in mind that each of the existing
VCs may only be traversing one of the four links.

a. If each VC is required to use the same VC number on all links along its
path, what VC number could be assigned to the new VC?

b. If each VC is permitted to have different VC numbers in the different links
along its path (so that forwarding tables must perform VC number transla-
tion), how many different combinations of four VC numbers (one for each
of the four links) could be used?

P6. In the text we have used the term connection-oriented service to describe a
transport-layer service and connection service for a network-layer service.
Why the subtle shades in terminology?

P7. Suppose two packets arrive to two different input ports of a router at exactly
the same time. Also suppose there are no other packets anywhere in the
router.

a. Suppose the two packets are to be forwarded to two different output ports.
Is it possible to forward the two packets through the switch fabric at the
same time when the fabric uses a shared bus?

b. Suppose the two packets are to be forwarded to two different output ports.
Is it possible to forward the two packets through the switch fabric at the
same time when the fabric uses a crossbar?

c. Suppose the two packets are to be forwarded to the same output port. Is it
possible to forward the two packets through the switch fabric at the same
time when the fabric uses a crossbar?

P8. In Section 4.3, we noted that the maximum queuing delay is (n–1)D if the
switching fabric is n times faster than the input line rates. Suppose that all
packets are of the same length, n packets arrive at the same time to the n
input ports, and all n packets want to be forwarded to different output ports.
What is the maximum delay for a packet for the (a) memory, (b) bus, and (c)
crossbar switching fabrics?

P9. Consider the switch shown below. Suppose that all datagrams have the same
fixed length, that the switch operates in a slotted, synchronous manner, and
that in one time slot a datagram can be transferred from an input port to an
output port. The switch fabric is a crossbar so that at most one datagram can

https://hemanthrajhemu.github.io

PROBLEMS 419

be transferred to a given output port in a time slot, but different output ports
can receive datagrams from different input ports in a single time slot. What is
the minimal number of time slots needed to transfer the packets shown from
input ports to their output ports, assuming any input queue scheduling order
you want (i.e., it need not have HOL blocking)? What is the largest number
of slots needed, assuming the worst-case scheduling order you can devise,
assuming that a non-empty input queue is never idle?

X Y Switch
fabric

Output port X

Output port Y

Output port Z

X

YZ

P10. Consider a datagram network using 32-bit host addresses. Suppose a router
has four links, numbered 0 through 3, and packets are to be forwarded to the
link interfaces as follows:

Destination Address Range Link Interface

11100000 00000000 00000000 00000000
through 0

11100000 00111111 11111111 11111111

11100000 01000000 00000000 00000000
through 1

11100000 01000000 11111111 11111111

11100000 01000001 00000000 00000000
through 2

11100001 01111111 11111111 11111111

otherwise 3

a. Provide a forwarding table that has five entries, uses longest prefix match-
ing, and forwards packets to the correct link interfaces.

b. Describe how your forwarding table determines the appropriate link inter-
face for datagrams with destination addresses:

11001000 10010001 01010001 01010101
11100001 01000000 11000011 00111100
11100001 10000000 00010001 01110111

https://hemanthrajhemu.github.io

420 CHAPTER 4 • THE NETWORK LAYER

Prefix Match Interface

1 0
10 1
111 2

otherwise 3

For each of the four interfaces, give the associated range of destination host
addresses and the number of addresses in the range.

P13. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and
Subnet 3. Suppose all of the interfaces in each of these three subnets are
required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is
required to support at least 60 interfaces, Subnet 2 is to support at least 90
interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three net-
work addresses (of the form a.b.c.d/x) that satisfy these constraints.

P14. In Section 4.2.2 an example forwarding table (using longest prefix matching)
is given. Rewrite this forwarding table using the a.b.c.d/x notation instead of
the binary string notation.

P15. In Problem P10 you are asked to provide a forwarding table (using longest
prefix matching). Rewrite this forwarding table using the a.b.c.d/x notation
instead of the binary string notation.

P11. Consider a datagram network using 8-bit host addresses. Suppose a router
uses longest prefix matching and has the following forwarding table:

Prefix Match Interface

00 0
010 1
011 2
10 2
11 3

For each of the four interfaces, give the associated range of destination host
addresses and the number of addresses in the range.

P12. Consider a datagram network using 8-bit host addresses. Suppose a
router uses longest prefix matching and has the following forwarding
table:

https://hemanthrajhemu.github.io

P16. Consider a subnet with prefix 128.119.40.128/26. Give an example of one
IP address (of form xxx.xxx.xxx.xxx) that can be assigned to this network.
Suppose an ISP owns the block of addresses of the form 128.119.40.64/26.
Suppose it wants to create four subnets from this block, with each block
having the same number of IP addresses. What are the prefixes (of form
a.b.c.d/x) for the four subnets?

P17. Consider the topology shown in Figure 4.17. Denote the three subnets with
hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the sub-
nets without hosts as Networks D, E, and F.

a. Assign network addresses to each of these six subnets, with the follow-
ing constraints: All addresses must be allocated from 214.97.254/23;
Subnet A should have enough addresses to support 250 interfaces; Sub-
net B should have enough addresses to support 120 interfaces; and
Subnet C should have enough addresses to support 120 interfaces. Of
course, subnets D, E and F should each be able to support two interfaces.
For each subnet, the assignment should take the form a.b.c.d/x or
a.b.c.d/x – e.f.g.h/y.

b. Using your answer to part (a), provide the forwarding tables (using longest
prefix matching) for each of the three routers.

P18. Use the whois service at the American Registry for Internet Numbers
(http://www.arin.net/whois) to determine the IP address blocks for three
universities. Can the whois services be used to determine with certainty the
geographical location of a specific IP address? Use www.maxmind.com to
determine the locations of the Web servers at each of these universities.

P19. Consider sending a 2400-byte datagram into a link that has an MTU of
700 bytes. Suppose the original datagram is stamped with the identifica-
tion number 422. How many fragments are generated? What are the
values in the various fields in the IP datagram(s) generated related to
fragmentation?

P20. Suppose datagrams are limited to 1,500 bytes (including header) between
source Host A and destination Host B. Assuming a 20-byte IP header, how
many datagrams would be required to send an MP3 consisting of 5 million
bytes? Explain how you computed your answer.

P21. Consider the network setup in Figure 4.22. Suppose that the ISP instead
assigns the router the address 24.34.112.235 and that the network address of
the home network is 192.168.1/24.

a. Assign addresses to all interfaces in the home network.

b. Suppose each host has two ongoing TCP connections, all to port 80 at
host 128.119.40.86. Provide the six corresponding entries in the NAT
translation table.

PROBLEMS 421

https://hemanthrajhemu.github.io

P22. Suppose you are interested in detecting the number of hosts behind a NAT.
You observe that the IP layer stamps an identification number sequentially on
each IP packet. The identification number of the first IP packet generated by
a host is a random number, and the identification numbers of the subsequent
IP packets are sequentially assigned. Assume all IP packets generated by
hosts behind the NAT are sent to the outside world.

a. Based on this observation, and assuming you can sniff all packets sent by
the NAT to the outside, can you outline a simple technique that detects the
number of unique hosts behind a NAT? Justify your answer.

b. If the identification numbers are not sequentially assigned but randomly
assigned, would your technique work? Justify your answer.

P23. In this problem we’ll explore the impact of NATs on P2P applications.
Suppose a peer with username Arnold discovers through querying that a peer
with username Bernard has a file it wants to download. Also suppose that
Bernard and Arnold are both behind a NAT. Try to devise a technique that
will allow Arnold to establish a TCP connection with Bernard without
application-specific NAT configuration. If you have difficulty devising such
a technique, discuss why.

P24. Looking at Figure 4.27, enumerate the paths from y to u that do not contain
any loops.

P25. Repeat Problem P24 for paths from x to z, z to u, and z to w.

P26. Consider the following network. With the indicated link costs, use Dijkstra’s
shortest-path algorithm to compute the shortest path from x to all network
nodes. Show how the algorithm works by computing a table similar to
Table 4.3.

x

v

ty

z

u

w

6

12

8
7

8

3

6
4

3

2

4

3

422 CHAPTER 4 • THE NETWORK LAYER

VideoNote
Dijkstra’s algorithm:
discussion and example

https://hemanthrajhemu.github.io

P27. Consider the network shown in Problem P26. Using Dijkstra’s algorithm, and
showing your work using a table similar to Table 4.3, do the following:

a. Compute the shortest path from t to all network nodes.

b. Compute the shortest path from u to all network nodes.

c. Compute the shortest path from v to all network nodes.

d. Compute the shortest path from w to all network nodes.

e. Compute the shortest path from y to all network nodes.

f. Compute the shortest path from z to all network nodes.

P28. Consider the network shown below, and assume that each node initially
knows the costs to each of its neighbors. Consider the distance-vector
algorithm and show the distance table entries at node z.

P29. Consider a general topology (that is, not the specific network shown above) and a
synchronous version of the distance-vector algorithm. Suppose that at each itera-
tion, a node exchanges its distance vectors with its neighbors and receives their
distance vectors. Assuming that the algorithm begins with each node knowing
only the costs to its immediate neighbors, what is the maximum number of itera-
tions required before the distributed algorithm converges? Justify your answer.

P30. Consider the network fragment shown below. x has only two attached neigh-
bors, w and y. w has a minimum-cost path to destination u (not shown) of 5,
and y has a minimum-cost path to u of 6. The complete paths from w and y to
u (and between w and y) are not shown. All link costs in the network have
strictly positive integer values.

x y

w
2 2

5

u

z

v

y

2 3

6

2

3

1

x

PROBLEMS 423

https://hemanthrajhemu.github.io

a. Give x’s distance vector for destinations w, y, and u.

b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform
its neighbors of a new minimum-cost path to u as a result of executing the
distance-vector algorithm.

c. Give a link-cost change for either c(x,w) or c(x,y) such that x will not
inform its neighbors of a new minimum-cost path to u as a result of exe-
cuting the distance-vector algorithm.

P31. Consider the three-node topology shown in Figure 4.30. Rather than having
the link costs shown in Figure 4.30, the link costs are c(x,y) = 3, c(y,z) = 6,
c(z,x) = 4. Compute the distance tables after the initialization step and after
each iteration of a synchronous version of the distance-vector algorithm (as
we did in our earlier discussion of Figure 4.30).

P32. Consider the count-to-infinity problem in the distance vector routing. Will the
count-to-infinity problem occur if we decrease the cost of a link? Why? How
about if we connect two nodes which do not have a link?

P33. Argue that for the distance-vector algorithm in Figure 4.30, each value in the
distance vector D(x) is non-increasing and will eventually stabilize in a finite
number of steps.

P34. Consider Figure 4.31. Suppose there is another router w, connected to router
y and z. The costs of all links are given as follows: c(x,y) = 4, c(x,z) = 50,
c(y,w) = 1, c(z,w) = 1, c(y,z) = 3. Suppose that poisoned reverse is used in the
distance-vector routing algorithm.

a. When the distance vector routing is stabilized, router w, y, and z inform their
distances to x to each other. What distance values do they tell each other?

b. Now suppose that the link cost between x and y increases to 60. Will there
be a count-to-infinity problem even if poisoned reverse is used? Why or
why not? If there is a count-to-infinity problem, then how many iterations
are needed for the distance-vector routing to reach a stable state again?
Justify your answer.

c. How do you modify c(y,z) such that there is no count-to-infinity problem
at all if c(y,x) changes from 4 to 60?

P35. Describe how loops in paths can be detected in BGP.

P36. Will a BGP router always choose the loop-free route with the shortest AS-
path length? Justify your answer.

P37. Consider the network shown below. Suppose AS3 and AS2 are running OSPF
for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP
for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the
inter-AS routing protocol. Initially suppose there is no physical link between
AS2 and AS4.

424 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP,
eBGP, or iBGP?

b. Router 3a learns about x from which routing protocol?

c. Router 1c learns about x from which routing protocol?

d. Router 1d learns about x from which routing protocol?

P38. Referring to the previous problem, once router 1d learns about x it will put an
entry (x, I) in its forwarding table.

a. Will I be equal to I1 or I2 for this entry? Explain why in one sentence.

b. Now suppose that there is a physical link between AS2 and AS4, shown by
the dotted line. Suppose router 1d learns that x is accessible via AS2 as
well as via AS3. Will I be set to I1 or I2? Explain why in one sentence.

c. Now suppose there is another AS, called AS5, which lies on the path
between AS2 and AS4 (not shown in diagram). Suppose router 1d learns
that x is accessible via AS2 AS5 AS4 as well as via AS3 AS4. Will I be set
to I1 or I2? Explain why in one sentence.

P39. Consider the following network. ISP B provides national backbone service
to regional ISP A. ISP C provides national backbone service to regional
ISP D. Each ISP consists of one AS. B and C peer with each other in two
places using BGP. Consider traffic going from A to D. B would prefer to
hand that traffic over to C on the West Coast (so that C would have to
absorb the cost of carrying the traffic cross-country), while C would
prefer to get the traffic via its East Coast peering point with B (so that B
would have carried the traffic across the country). What BGP mechanism
might C use, so that B would hand over A-to-D traffic at its East Coast

AS4

AS3

AS1

AS2

x

4b

4c 4a

3c

3b
3a

1c

1b

1d

1a

I1 I2

2c

2a
2b

PROBLEMS 425

https://hemanthrajhemu.github.io

peering point? To answer this question, you will need to dig into the BGP
specification.

P40. In Figure 4.42, consider the path information that reaches stub networks W,
X, and Y. Based on the information available at W and X, what are their
respective views of the network topology? Justify your answer. The topology
view at Y is shown below.

P41. Consider Figure 4.42. B would never forward traffic destined to Y via X
based on BGP routing. But there are some very popular applications for
which data packets go to X first and then flow to Y. Identify one such
application, and describe how data packets follow a path not given by
BGP routing.

P42. In Figure 4.42, suppose that there is another stub network V that is a customer of
ISP A. Suppose that B and C have a peering relationship, and A is a customer of
both B and C. Suppose that A would like to have the traffic destined to W to
come from B only, and the traffic destined to V from either B or C. How should
A advertise its routes to B and C? What AS routes does C receive?

P43. Suppose ASs X and Z are not directly connected but instead are connected by
AS Y. Further suppose that X has a peering agreement with Y, and that Y has

W

Y

X
A

C
Stub network
Y’s view of
the topology

ISP B

ISP C

ISP D

ISP A

426 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

a peering agreement with Z. Finally, suppose that Z wants to transit all of Y’s
traffic but does not want to transit X’s traffic. Does BGP allow Z to imple-
ment this policy?

P44. Consider the seven-node network (with nodes labeled t to z) in Problem P26.
Show the minimal-cost tree rooted at z that includes (as end hosts) nodes u, v,
w, and y. Informally argue why your tree is a minimal-cost tree.

P45. Consider the two basic approaches identified for achieving broadcast, unicast
emulation and network-layer (i.e., router-assisted) broadcast, and suppose
spanning-tree broadcast is used to achive network-layer broadcast. Consider
a single sender and 32 receivers. Suppose the sender is connected to the
receivers by a binary tree of routers. What is the cost of sending a broadcast
packet, in the cases of unicast emulation and network-layer broadcast, for this
topology? Here, each time a packet (or copy of a packet) is sent over a single
link, it incurs a unit of cost. What topology for interconnecting the sender,
receivers, and routers will bring the cost of unicast emulation and true net-
work-layer broadcast as far apart as possible? You can choose as many
routers as you’d like.

P46. Consider the operation of the reverse path forwarding (RPF) algorithm in Figure
4.44. Using the same topology, find a set of paths from all nodes to the source
node A (and indicate these paths in a graph using thicker-shaded lines as in Fig-
ure 4.44) such that if these paths were the least-cost paths, then node B would
receive a copy of A’s broadcast message from nodes A, C, and D under RPF.

P47. Consider the topology shown in Figure 4.44. Suppose that all links have unit
cost and that node E is the broadcast source. Using arrows like those shown
in Figure 4.44 indicate links over which packets will be forwarded using
RPF, and links over which packets will not be forwarded, given that node E is
the source.

P48. Repeat Problem P47 using the graph from Problem P26. Assume that z is the
broadcast source, and that the link costs are as shown in Problem P26.

P49. Consider the topology shown in Figure 4.46, and suppose that each link has
unit cost. Suppose node C is chosen as the center in a center-based multicast
routing algorithm. Assuming that each attached router uses its least-cost path
to node C to send join messages to C, draw the resulting center-based routing
tree. Is the resulting tree a minimum-cost tree? Justify your answer.

P50. Repeat Problem P49, using the graph from Problem P26. Assume that the
center node is v.

P51. In Section 4.5.1 we studied Dijkstra’s link-state routing algorithm for com-
puting the unicast paths that are individually the least-cost paths from the
source to all destinations. The union of these paths might be thought of as
forming a least-unicast-cost path tree (or a shortest unicast path tree, if
all link costs are identical). By constructing a counterexample, show that
the least-cost path tree is not always the same as a minimum spanning tree.

PROBLEMS 427

https://hemanthrajhemu.github.io

P52. Consider a network in which all nodes are connected to three other nodes. In
a single time step, a node can receive all transmitted broadcast packets from
its neighbors, duplicate the packets, and send them to all of its neighbors
(except to the node that sent a given packet). At the next time step, neighboring
nodes can receive, duplicate, and forward these packets, and so on. Sup-
pose that uncontrolled flooding is used to provide broadcast in such a
network. At time step t, how many copies of the broadcast packet will be
transmitted, assuming that during time step 1, a single broadcast packet is
transmitted by the source node to its three neighbors.

P53. We saw in Section 4.7 that there is no network-layer protocol that can be used
to identify the hosts participating in a multicast group. Given this, how can
multicast applications learn the identities of the hosts that are participating in
a multicast group?

P54. Design (give a pseudocode description of) an application-level protocol that
maintains the host addresses of all hosts participating in a multicast group.
Specifically identify the network service (unicast or multicast) that is used by
your protocol, and indicate whether your protocol is sending messages in-
band or out-of-band (with respect to the application data flow among the
multicast group participants) and why.

P55. What is the size of the multicast address space? Suppose now that two multi-
cast groups randomly choose a multicast address. What is the probability that
they choose the same address? Suppose now that 1,000 multicast groups are
ongoing at the same time and choose their multicast group addresses at ran-
dom. What is the probability that they interfere with each other?

Socket Programming Assignment

At the end of Chapter 2, there are four socket programming assignments. Below,
you will find a fifth assignment which employs ICMP, a protocol discussed in this
chapter.

Assignment 5: ICMP Ping

Ping is a popular networking application used to test from a remote location whether
a particular host is up and reachable. It is also often used to measure latency
between the client host and the target host. It works by sending ICMP “echo
request” packets (i.e., ping packets) to the target host and listening for ICMP “echo
response” replies (i.e., pong packets). Ping measures the RRT, records packet loss,
and calculates a statistical summary of multiple ping-pong exchanges (the mini-
mum, mean, max, and standard deviation of the round-trip times).

428 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

In this lab, you will write your own Ping application in Python. Your application
will use ICMP. But in order to keep your program simple, you will not exactly follow
the official specification in RFC 1739. Note that you will only need to write the client
side of the program, as the functionality needed on the server side is built into almost
all operating systems. You can find full details of this assignment, as well as impor-
tant snippets of the Python code, at the Web site http://www.awl.com/kurose-ross.

Programming Assignment

In this programming assignment, you will be writing a “distributed” set of proce-
dures that implements a distributed asynchronous distance-vector routing for the
network shown below.

You are to write the following routines that will “execute” asynchronously
within the emulated environment provided for this assignment. For node 0, you will
write the routines:

• rtinit0(). This routine will be called once at the beginning of the emulation.
rtinit0() has no arguments. It should initialize your distance table in node 0 to
reflect the direct costs of 1, 3, and 7 to nodes 1, 2, and 3, respectively. In the fig-
ure above, all links are bidirectional and the costs in both directions are identi-
cal. After initializing the distance table and any other data structures needed by
your node 0 routines, it should then send its directly connected neighbors (in
this case, 1, 2, and 3) the cost of its minimum-cost paths to all other network
nodes. This minimum-cost information is sent to neighboring nodes in a routing
update packet by calling the routine tolayer2(), as described in the full assign-
ment. The format of the routing update packet is also described in the full
assignment.

• rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0
receives a routing packet that was sent to it by one of its directly connected
neighbors. The parameter *rcvdpkt is a pointer to the packet that was received.
rtupdate0() is the “heart” of the distance-vector algorithm. The values it
receives in a routing update packet from some other node i contain i’s current
shortest-path costs to all other network nodes. rtupdate0() uses these received

3 2

0
1

7
3

1

2

1

PROGRAMMING ASSIGNMENT 429

https://hemanthrajhemu.github.io

values to update its own distance table (as specified by the distance-vector algo-
rithm). If its own minimum cost to another node changes as a result of the
update, node 0 informs its directly connected neighbors of this change in mini-
mum cost by sending them a routing packet. Recall that in the distance-vector
algorithm, only directly connected nodes will exchange routing packets. Thus,
nodes 1 and 2 will communicate with each other, but nodes 1 and 3 will not
communicate with each other.

Similar routines are defined for nodes 1, 2, and 3. Thus, you will write eight proce-
dures in all: rtinit0(), rtinit1(), rtinit2(), rtinit3(), rtupdate0(), rtupdate1(), rtup-
date2(), and rtupdate3(). These routines will together implement a distributed,
asynchronous computation of the distance tables for the topology and costs shown
in the figure on the preceding page.

You can find the full details of the programming assignment, as well as C code
that you will need to create the simulated hardware/software environment, at
http://www.awl.com/kurose-ross. A Java version of the assignment is also available.

Wireshark Labs

In the companion Web site for this textbook, http://www.awl.com/kurose-ross,
you’ll find two Wireshark lab assignments. The first lab examines the operation of
the IP protocol, and the IP datagram format in particular. The second lab explores
the use of the ICMP protocol in the ping and traceroute commands.

430 CHAPTER 4 • THE NETWORK LAYER

https://hemanthrajhemu.github.io

What brought you to specialize in networking?

I was working as a programmer at UCLA in the late 1960s. My job was supported by the
US Defense Advanced Research Projects Agency (called ARPA then, called DARPA now). I
was working in the laboratory of Professor Leonard Kleinrock on the Network
Measurement Center of the newly created ARPAnet. The first node of the ARPAnet was
installed at UCLA on September 1, 1969. I was responsible for programming a computer
that was used to capture performance information about the ARPAnet and to report this
information back for comparison with mathematical models and predictions of the perform-
ance of the network.

Several of the other graduate students and I were made responsible for working on
the so-called host-level protocols of the ARPAnet—the procedures and formats that would
allow many different kinds of computers on the network to interact with each other. It was a
fascinating exploration into a new world (for me) of distributed computing and communication.

Did you imagine that IP would become as pervasive as it is today when you first designed
the protocol?

When Bob Kahn and I first worked on this in 1973, I think we were mostly very focused on
the central question: How can we make heterogeneous packet networks interoperate with
one another, assuming we cannot actually change the networks themselves? We hoped that
we could find a way to permit an arbitrary collection of packet-switched networks to be
interconnected in a transparent fashion, so that host computers could communicate end-to-
end without having to do any translations in between. I think we knew that we were dealing
with powerful and expandable technology but I doubt we had a clear image of what the
world would be like with hundreds of millions of computers all interlinked on the Internet.

431

Vinton G. Cerf
Vinton G. Cerf is Vice President and Chief Internet Evangelist for
Google. He served for over 16 years at MCI in various positions,
ending up his tenure there as Senior Vice President for Technology
Strategy. He is widely known as the co-designer of the TCP/IP
protocols and the architecture of the Internet. During his time from
1976 to 1982 at the US Department of Defense Advanced
Research Projects Agency (DARPA), he played a key role leading the
development of Internet and Internet-related data packet and security
techniques. He received the US Presidential Medal of Freedom in
2005 and the US National Medal of Technology in 1997. He
holds a BS in Mathematics from Stanford University and an MS and
PhD in computer science from UCLA.

AN INTERVIEW WITH...

https://hemanthrajhemu.github.io

What do you now envision for the future of networking and the Internet? What major
challenges/obstacles do you think lie ahead in their development?

I believe the Internet itself and networks in general will continue to proliferate. Already
there is convincing evidence that there will be billions of Internet-enabled devices on the
Internet, including appliances like cell phones, refrigerators, personal digital assistants,
home servers, televisions, as well as the usual array of laptops, servers, and so on. Big chal-
lenges include support for mobility, battery life, capacity of the access links to the network,
and ability to scale the optical core of the network up in an unlimited fashion. Designing an
interplanetary extension of the Internet is a project in which I am deeply engaged at the Jet
Propulsion Laboratory. We will need to cut over from IPv4 [32-bit addresses] to IPv6 [128
bits]. The list is long!

Who has inspired you professionally?

My colleague Bob Kahn; my thesis advisor, Gerald Estrin; my best friend, Steve Crocker
(we met in high school and he introduced me to computers in 1960!); and the thousands of
engineers who continue to evolve the Internet today.

Do you have any advice for students entering the networking/Internet field?

Think outside the limitations of existing systems—imagine what might be possible; but then
do the hard work of figuring out how to get there from the current state of affairs. Dare to
dream: A half dozen colleagues and I at the Jet Propulsion Laboratory have been working
on the design of an interplanetary extension of the terrestrial Internet. It may take decades to
implement this, mission by mission, but to paraphrase: “A man’s reach should exceed his
grasp, or what are the heavens for?”

432

https://hemanthrajhemu.github.io

