

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

Contents

Preface vii
About the Authors xxx

■ part 1
Introduction to Databases ■

chapter 1 Databases and Database Users 3
1.1 Introduction 4
1.2 An Example 6
1.3 Characteristics of the Database Approach 10
1.4 Actors on the Scene 15
1.5 Workers behind the Scene 17
1.6 Advantages of Using the DBMS Approach 17
1.7 A Brief History of Database Applications 23
1.8 When Not to Use a DBMS 27
1.9 Summary 27
Review Questions 28
Exercises 28
Selected Bibliography 29

chapter 2 Database System Concepts
and Architecture 31

2.1 Data Models, Schemas, and Instances 32
2.2 Three-Schema Architecture and Data Independence 36
2.3 Database Languages and Interfaces 38
2.4 The Database System Environment 42
2.5 Centralized and Client/Server Architectures for DBMSs 46
2.6 Classification of Database Management Systems 51
2.7 Summary 54
Review Questions 55
Exercises 55
Selected Bibliography 56

xvii

https://hemanthrajhemu.github.io

xviii Contents

■ part 2
Conceptual Data Modeling and Database Design ■

chapter 3 Data Modeling Using the Entity–Relationship (ER)
Model 59

3.1 Using High-Level Conceptual Data Models
for Database Design 60

3.2 A Sample Database Application 62
3.3 Entity Types, Entity Sets, Attributes, and Keys 63
3.4 Relationship Types, Relationship Sets, Roles, and Structural

Constraints 72
3.5 Weak Entity Types 79
3.6 Refining the ER Design for the COMPANY Database 80
3.7 ER Diagrams, Naming Conventions, and Design Issues 81
3.8 Example of Other Notation: UML Class Diagrams 85
3.9 Relationship Types of Degree Higher than Two 88
3.10 Another Example: A UNIVERSITY Database 92
3.11 Summary 94
Review Questions 96
Exercises 96
Laboratory Exercises 103
Selected Bibliography 104

chapter 4 The Enhanced Entity–Relationship (EER)
Model 107

4.1 Subclasses, Superclasses, and Inheritance 108
4.2 Specialization and Generalization 110
4.3 Constraints and Characteristics of Specialization and Generalization

Hierarchies 113
4.4 Modeling of UNION Types Using Categories 120
4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal

Definitions 122
4.6 Example of Other Notation: Representing Specialization and

Generalization in UML Class Diagrams 127
4.7 Data Abstraction, Knowledge Representation, and Ontology

Concepts 128
4.8 Summary 135
Review Questions 135
Exercises 136
Laboratory Exercises 143
Selected Bibliography 146

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

3

1chapter 1
Databases and

Database Users

Databases and database systems are an essential
component of life in modern society: most of us

encounter several activities every day that involve some interaction with a database.
For example, if we go to the bank to deposit or withdraw funds, if we make a hotel
or airline reservation, if we access a computerized library catalog to search for a
bibliographic item, or if we purchase something online—such as a book, toy, or
computer—chances are that our activities will involve someone or some computer
program accessing a database. Even purchasing items at a supermarket often auto-
matically updates the database that holds the inventory of grocery items.

These interactions are examples of what we may call traditional database
 applications, in which most of the information that is stored and accessed is either
textual or numeric. In the past few years, advances in technology have led to exciting
new applications of database systems. The proliferation of social media Web sites,
such as Facebook, Twitter, and Flickr, among many others, has required the cre-
ation of huge databases that store nontraditional data, such as posts, tweets,
images, and video clips. New types of database systems, often referred to as big data
storage systems, or NOSQL systems, have been created to manage data for social
media applications. These types of systems are also used by companies such as
Google, Amazon, and Yahoo, to manage the data required in their Web search
engines, as well as to provide cloud storage, whereby users are provided with stor-
age capabilities on the Web for managing all types of data including documents,
programs, images, videos and emails. We will give an overview of these new types
of database systems in Chapter 24.

We now mention some other applications of databases. The wide availability of
photo and video technology on cellphones and other devices has made it possible to

https://hemanthrajhemu.github.io

4 Chapter 1 Databases and Database Users

store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information
systems (GISs) can store and analyze maps, weather data, and satellite images.
Data warehouses and online analytical processing (OLAP) systems are used in
many companies to extract and analyze useful business information from very large
databases to support decision making. Real-time and active database technology
is used to control industrial and manufacturing processes. And database search
techniques are being applied to the World Wide Web to improve the search for
information that is needed by users browsing the Internet.

To understand the fundamentals of database technology, however, we must start
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a
simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4
and 1.5 categorize the types of personnel whose jobs involve using and interacting
with database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion
of the various capabilities provided by database systems and discuss some typical
database applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems can study
 Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and
go on to Chapter 2.

1.1 Introduction
Databases and database technology have had a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, social media, engi-
neering, medicine, genetics, law, education, and library science. The word database
is so commonly used that we must begin by defining what a database is. Our initial
definition is quite general.

A database is a collection of related data.1 By data, we mean known facts that can
be recorded and that have implicit meaning. For example, consider the names,
telephone numbers, and addresses of the people you know. Nowadays, this data is
typically stored in mobile phones, which have their own simple database software.
This data can also be recorded in an indexed address book or stored on a hard
drive, using a personal computer and software such as Microsoft Access or Excel.
This collection of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to

1We will use the word data as both singular and plural, as is common in database literature; the context
will determine whether it is singular or plural. In standard English, data is used for plural and datum for
singular.

https://hemanthrajhemu.github.io

 1.1 Introduction 5

constitute a database. However, the common use of the term database is usually
more restricted. A database has the following implicit properties:

■ A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld
are reflected in the database.

■ A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

■ A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in
which these users are interested.

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively inter-
ested in its contents. The end users of a database may perform business transactions
(for example, a customer buys a camera) or events may happen (for example, an
employee has a baby) that cause the information in the database to change. In order
for a database to be accurate and reliable at all times, it must be a true reflection of
the miniworld that it represents; therefore, changes must be reflected in the data-
base as soon as possible.

A database can be of any size and complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a
simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized
alphabetically. A database of even greater size and complexity would be maintained
by a social media company such as Facebook, which has more than a billion users.
The database has to maintain information on which users are related to one another
as friends, the postings of each user, which users are allowed to see each posting,
and a vast amount of other types of information needed for the correct operation of
their Web site. For such Web sites, a large number of databases are needed to keep
track of the constantly changing information required by the social media Web site.

An example of a large commercial database is Amazon.com. It contains data for
over 60 million active users, and millions of books, CDs, videos, DVDs, games,
electronics, apparel, and other items. The database occupies over 42 terabytes
(a terabyte is 1012 bytes worth of storage) and is stored on hundreds of computers
(called servers). Millions of visitors access Amazon.com each day and use the
database to make purchases. The database is continually updated as new books
and other items are added to the inventory, and stock quantities are updated as
purchases are transacted.

A database may be generated and maintained manually or it may be computer-
ized. For example, a library card catalog is a database that may be created and
maintained manually. A computerized database may be created and maintained
either by a group of application programs written specifically for that task or by a

https://hemanthrajhemu.github.io

6 Chapter 1 Databases and Database Users

database management system. Of course, we are only concerned with computer-
ized databases in this text.

A database management system (DBMS) is a computerized system that enables
users to create and maintain a database. The DBMS is a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications. Defining a database
involves specifying the data types, structures, and constraints of the data to be
stored in the database. The database definition or descriptive information is also
stored by the DBMS in the form of a database catalog or dictionary; it is called
meta-data. Constructing the database is the process of storing the data on some
storage medium that is controlled by the DBMS. Manipulating a database includes
functions such as querying the database to retrieve specific data, updating the data-
base to reflect changes in the miniworld, and generating reports from the data.
Sharing a database allows multiple users and programs to access the database
simultaneously.

An application program accesses the database by sending queries or requests for
data to the DBMS. A query2 typically causes some data to be retrieved; a transaction
may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes system protec-
tion against hardware or software malfunction (or crashes) and security protection
against unauthorized or malicious access. A typical large database may have a life
cycle of many years, so the DBMS must be able to maintain the database system by
allowing the system to evolve as requirements change over time.

It is not absolutely necessary to use general-purpose DBMS software to implement
a computerized database. It is possible to write a customized set of programs to cre-
ate and maintain the database, in effect creating a special-purpose DBMS software
for a specific application, such as airlines reservations. In either case—whether we
use a general-purpose DBMS or not—a considerable amount of complex software
is deployed. In fact, most DBMSs are very complex software systems.

To complete our initial definitions, we will call the database and DBMS software
together a database system. Figure 1.1 illustrates some of the concepts we have
discussed so far.

1.2 An Example
Let us consider a simple example that most readers may be familiar with: a
 UNIVERSITY database for maintaining information concerning students, courses,
and grades in a university environment. Figure 1.2 shows the database structure
and a few sample data records. The database is organized as five files, each of which

2The term query, originally meaning a question or an inquiry, is sometimes loosely used for all types of
interactions with databases, including modifying the data.

https://hemanthrajhemu.github.io

 1.2 An Example 7

stores data records of the same type.3 The STUDENT file stores data on each stu-
dent, the COURSE file stores data on each course, the SECTION file stores data on
each section of a course, the GRADE_REPORT file stores the grades that students
receive in the various sections they have completed, and the PREREQUISITE file
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by
specifying the different types of data elements to be stored in each record. In
Figure 1.2, each STUDENT record includes data to represent the student’s Name,
Student_number, Class (such as freshman or ‘1’, sophomore or ‘2’, and so forth),
and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each
COURSE record includes data to represent the Course_name, Course_number,
Credit_hours, and Department (the department that offers the course), and so
on. We must also specify a data type for each data element within a record. For
example, we can specify that Name of STUDENT is a string of alphabetic characters,
Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a

3We use the term file informally here. At a conceptual level, a file is a collection of records that may or
may not be ordered.

Database
System

Users/Programmers

Application Programs/Queries

Software to Process
Queries/Programs

Software to Access
Stored Data

Stored Database
Stored Database

Definition
(Meta-Data)

DBMS
Software

Figure 1.1
A simplified database
system environment.

https://hemanthrajhemu.github.io

8 Chapter 1 Databases and Database Users

Name Student_number Class Major

Smith 17 1 CS

Brown 8 2 CS

STUDENT

Course_name Course_number Credit_hours Department

Intro to Computer Science CS1310 4 CS

Data Structures CS3320 4 CS

Discrete Mathematics MATH2410 3 MATH

Database CS3380 3 CS

COURSE

Section_identifier Course_number Semester Year Instructor

85 MATH2410 Fall 07 King

92 CS1310 Fall 07 Anderson

102 CS3320 Spring 08 Knuth

112 MATH2410 Fall 08 Chang

119 CS1310 Fall 08 Anderson

135 CS3380 Fall 08 Stone

SECTION

Student_number Section_identifier Grade

17 112 B

17 119 C

8 85 A

8 92 A

8 102 B

8 135 A

GRADE_REPORT

Course_number Prerequisite_number

CS3380 CS3320

CS3380 MATH2410

CS3320 CS1310

PREREQUISITE

Figure 1.2
A database that stores
student and course
information.

https://hemanthrajhemu.github.io

 1.2 An Example 9

single character from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’}. We may also use a coding
scheme to represent the values of a data item. For example, in Figure 1.2 we rep-
resent the Class of a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior,
4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student,
course, section, grade report, and prerequisite as a record in the appropriate file.
Notice that records in the various files may be related. For example, the record for
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of
records and have many relationships among the records.

Database manipulation involves querying and updating. Examples of queries are as
follows:

■ Retrieve the transcript—a list of all courses and grades—of ‘Smith’

■ List the names of students who took the section of the ‘Database’ course
offered in fall 2008 and their grades in that section

■ List the prerequisites of the ‘Database’ course

Examples of updates include the following:

■ Change the class of ‘Smith’ to sophomore

■ Create a new section for the ‘Database’ course for this semester

■ Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as part of a larger undertaking
known as an information system within an organization. The Information Tech-
nology (IT) department within an organization designs and maintains an informa-
tion system consisting of various computers, storage systems, application software,
and databases. Design of a new application for an existing database or design of a
brand new database starts off with a phase called requirements specification and
analysis. These requirements are documented in detail and transformed into a
 conceptual design that can be represented and manipulated using some comput-
erized tools so that it can be easily maintained, modified, and transformed into a
database implementation. (We will introduce a model called the Entity-Relation-
ship model in Chapter 3 that is used for this purpose.) The design is then translated
to a logical design that can be expressed in a data model implemented in a com-
mercial DBMS. (Various types of DBMSs are discussed throughout the text, with an
emphasis on relational DBMSs in Chapters 5 through 9.)

The final stage is physical design, during which further specifications are provided for
storing and accessing the database. The database design is implemented, populated
with actual data, and continuously maintained to reflect the state of the miniworld.

https://hemanthrajhemu.github.io

10 Chapter 1 Databases and Database Users

1.3 Characteristics of the Database Approach
A number of characteristics distinguish the database approach from the much
older approach of writing customized programs to access data stored in files. In
traditional file processing, each user defines and implements the files needed for a
specific software application as part of programming the application. For example,
one user, the grade reporting office, may keep files on students and their grades.
Programs to print a student’s transcript and to enter new grades are implemented
as part of the application. A second user, the accounting office, may keep track of
students’ fees and their payments. Although both users are interested in data about
students, each user maintains separate files—and programs to manipulate these
files—because each requires some data not available from the other user’s files.
This redundancy in defining and storing data results in wasted storage space and
in redundant efforts to maintain common up-to-date data.

In the database approach, a single repository maintains data that is defined once
and then accessed by various users repeatedly through queries, transactions, and
application programs. The main characteristics of the database approach versus the
file-processing approach are the following:

■ Self-describing nature of a database system

■ Insulation between programs and data, and data abstraction

■ Support of multiple views of the data

■ Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System
A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1). It is important to note that some newer types of data-
base systems, known as NOSQL systems, do not require meta-data. Rather the data
is stored as self-describing data that includes the data item names and data values
together in one structure (see Chapter 24).

The catalog is used by the DBMS software and also by database users who need
information about the database structure. A general-purpose DBMS software
package is not written for a specific database application. Therefore, it must refer
to the catalog to know the structure of the files in a specific database, such as the
type and format of data it will access. The DBMS software must work equally well
with any number of database applications—for example, a university database, a

https://hemanthrajhemu.github.io

 1.3 Characteristics of the Database Approach 11

banking database, or a company database—as long as the database definition is
stored in the catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For
example, an application program written in C++ may have struct or class declara-
tions. Whereas file-processing software can access only specific databases, DBMS
software can access diverse databases by extracting the database definitions from
the catalog and using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of
all the files shown. Figure 1.3 shows some entries in a database catalog. Whenever a
request is made to access, say, the Name of a STUDENT record, the DBMS software
refers to the catalog to determine the structure of the STUDENT file and the position
and size of the Name data item within a STUDENT record. By contrast, in a typical
file-processing application, the file structure and, in the extreme case, the exact
location of Name within a STUDENT record are already coded within each program
that accesses this data item.

Figure 1.3
An example of a
 database catalog for
the database in
 Figure 1.2.

Relation_name No_of_columns

STUDENT 4

COURSE 4

SECTION 5

GRADE_REPORT 3

PREREQUISITE 2

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT

Student_number Character (4) STUDENT

Class Integer (1) STUDENT

Major Major_type STUDENT

Course_name Character (10) COURSE

Course_number XXXXNNNN COURSE

…. …. …..

…. …. …..

…. …. …..

Prerequisite_number XXXXNNNN PREREQUISITE

RELATIONS

COLUMNS

Note: Major_type is defined as an enumerated type with all known majors.
XXXXNNNN is used to define a type with four alphabetic characters followed by four numeric digits.

https://hemanthrajhemu.github.io

12 Chapter 1 Databases and Database Users

1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all
programs that access that file. By contrast, DBMS access programs do not require
such changes in most cases. The structure of data files is stored in the DBMS cata-
log separately from the access programs. We call this property program-data
independence.

For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure shown in Figure 1.4. If we want to add
another piece of data to each STUDENT record, say the Birth_date, such a program
will no longer work and must be changed. By contrast, in a DBMS environment, we
only need to change the description of STUDENT records in the catalog (Figure 1.3)
to reflect the inclusion of the new data item Birth_date; no programs are changed.
The next time a DBMS program refers to the catalog, the new structure of
STUDENT records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapter 12), users can define operations on data as part of the database
definitions. An operation (also called a function or method) is specified in two
parts. The interface (or signature) of an operation includes the operation name and
the data types of its arguments (or parameters). The implementation (or method) of
the operation is specified separately and can be changed without affecting the inter-
face. User application programs can operate on the data by invoking these opera-
tions through their names and arguments, regardless of how the operations are
implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation. The data
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage
concepts. Hence, the data model hides storage and implementation details that are
not of interest to most database users.

Looking at the example in Figures 1.2 and 1.3, the internal implementation of the
STUDENT file may be defined by its record length—the number of characters
(bytes) in each record—and each data item may be specified by its starting byte
within a record and its length in bytes. The STUDENT record would thus be repre-
sented as shown in Figure 1.4. But a typical database user is not concerned with the
location of each data item within a record or its length; rather, the user is concerned
that when a reference is made to Name of STUDENT, the correct value is returned.
A conceptual representation of the STUDENT records is shown in Figure 1.2. Many
other details of file storage organization—such as the access paths specified on a

https://hemanthrajhemu.github.io

 1.3 Characteristics of the Database Approach 13

file—can be hidden from database users by the DBMS; we discuss storage details in
Chapters 16 and 17.

In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage
from the catalog when these are needed by the DBMS file access modules. Many
data models can be used to provide this data abstraction to database users. A major
part of this text is devoted to presenting various data models and the concepts they
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users.
For example, an operation CALCULATE_GPA can be applied to a STUDENT object
to calculate the grade point average. Such operations can be invoked by the user
queries or application programs without having to know the details of how the
operations are implemented.

1.3.3 Support of Multiple Views of the Data
A database typically has many types of users, each of whom may require a different
perspective or view of the database. A view may be a subset of the database or it may
contain virtual data that is derived from the database files but is not explicitly stored.
Some users may not need to be aware of whether the data they refer to is stored or
derived. A multiuser DBMS whose users have a variety of distinct applications must
provide facilities for defining multiple views. For example, one user of the database
of Figure 1.2 may be interested only in accessing and printing the transcript of each
student; the view for this user is shown in Figure 1.5(a). A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course
for which the student registers, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing
A multiuser DBMS, as its name implies, must allow multiple users to access the
database at the same time. This is essential if data for multiple applications is to be
integrated and maintained in a single database. The DBMS must include concurrency
control software to ensure that several users trying to update the same data

Data Item Name Starting Position in Record Length in Characters (bytes)

Name 1 30

Student_number 31 4

Class 35 1

Major 36 4

Figure 1.4
Internal storage format
for a STUDENT record,
based on the database
catalog in Figure 1.3.

https://hemanthrajhemu.github.io

14 Chapter 1 Databases and Database Users

do so in a controlled manner so that the result of the updates is correct. For exam-
ple, when several reservation agents try to assign a seat on an airline flight, the
DBMS should ensure that each seat can be accessed by only one agent at a time for
assignment to a passenger. These types of applications are generally called online
transaction processing (OLTP) applications. A fundamental role of multiuser
DBMS software is to ensure that concurrent transactions operate correctly and
efficiently.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety with-
out interference from other transactions. The DBMS must enforce several
transaction properties. The isolation property ensures that each transaction
appears to execute in isolation from other transactions, even though hundreds of
transactions may be executing concurrently. The atomicity property ensures that
either all the database operations in a transaction are executed or none are. We dis-
cuss transactions in detail in Part 9.

The preceding characteristics are important in distinguishing a DBMS from tradi-
tional file-processing software. In Section 1.6 we discuss additional features that
characterize a DBMS. First, however, we categorize the different types of people
who work in a database system environment.

Student_name
Student_transcript

Course_number Grade Semester Year Section_id

Smith
CS1310 C Fall 08 119

MATH2410 B Fall 08 112

Brown

MATH2410 A Fall 07 85

CS1310 A Fall 07 92

CS3320 B Spring 08 102

CS3380 A Fall 08 135

TRANSCRIPT

Course_name Course_number Prerequisites

Database CS3380
CS3320

MATH2410

Data Structures CS3320 CS1310

COURSE_PREREQUISITES

(a)

(b)

Figure 1.5
Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.
(b) The COURSE_PREREQUISITES view.

https://hemanthrajhemu.github.io

 1.4 Actors on the Scene 15

1.4 Actors on the Scene
For a small personal database, such as the list of addresses discussed in Section 1.1,
one person typically defines, constructs, and manipulates the database, and there is
no sharing. However, in large organizations, many people are involved in the
design, use, and maintenance of a large database with hundreds or thousands of
users. In this section we identify the people whose jobs involve the day-to-day use
of a large database; we call them the actors on the scene. In Section 1.5 we consider
people who may be called workers behind the scene—those who work to maintain
the database system environment but who are not actively interested in the data-
base contents as part of their daily job.

1.4.1 Database Administrators
In any organization where many people use the same resources, there is a need for
a chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the
DBMS and related software. Administering these resources is the responsibility of
the database administrator (DBA). The DBA is responsible for authorizing access
to the database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed. The DBA is accountable for problems such as secu-
rity breaches and poor system response time. In large organizations, the DBA is
assisted by a staff that carries out these functions.

1.4.2 Database Designers
Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database
design is completed. Database designers typically interact with each potential group
of users and develop views of the database that meet the data and processing
requirements of these groups. Each view is then analyzed and integrated with the
views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

1.4.3 End Users
End users are the people whose jobs require access to the database for querying,
updating, and generating reports; the database primarily exists for their use. There
are several categories of end users:

■ Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query interface

https://hemanthrajhemu.github.io

16 Chapter 1 Databases and Database Users

to specify their requests and are typically middle- or high-level managers or
other occasional browsers.

■ Naive or parametric end users make up a sizable portion of database
end users. Their main job function revolves around constantly querying
and updating the database, using standard types of queries and updates—
called canned transactions—that have been carefully programmed and
tested. Many of these tasks are now available as mobile apps for use with
mobile devices. The tasks that such users perform are varied. A few
examples are:

� Bank customers and tellers check account balances and post withdrawals
and deposits.

� Reservation agents or customers for airlines, hotels, and car rental com-
panies check availability for a given request and make reservations.

� Employees at receiving stations for shipping companies enter package
identifications via bar codes and descriptive information through buttons
to update a central database of received and in-transit packages.

� Social media users post and read items on social media Web sites.

■ Sophisticated end users include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the DBMS
in order to implement their own applications to meet their complex require-
ments.

■ Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based
interfaces. An example is the user of a financial software package that stores
a variety of personal financial data.

A typical DBMS provides multiple facilities to access a database. Naive end users
need to learn very little about the facilities provided by the DBMS; they simply have
to understand the user interfaces of the mobile apps or standard transactions
designed and implemented for their use. Casual users learn only a few facilities that
they may use repeatedly. Sophisticated users try to learn most of the DBMS facilities
in order to achieve their complex requirements. Standalone users typically become
very proficient in using a specific software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for standard canned transactions
that meet these requirements. Application programmers implement these specifi-
cations as programs; then they test, debug, document, and maintain these canned
transactions. Such analysts and programmers—commonly referred to as software
developers or software engineers—should be familiar with the full range of capa-
bilities provided by the DBMS to accomplish their tasks.

https://hemanthrajhemu.github.io

 1.6 Advantages of Using the DBMS Approach 17

1.5 Workers behind the Scene
In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system
environment. These persons are typically not interested in the database content
itself. We call them the workers behind the scene, and they include the following
categories:

■ DBMS system designers and implementers design and implement the
DBMS modules and interfaces as a software package. A DBMS is a very
complex software system that consists of many components, or modules,
including modules for implementing the catalog, query language process-
ing, interface processing, accessing and buffering data, controlling concur-
rency, and handling data recovery and security. The DBMS must interface
with other system software, such as the operating system and compilers for
various programming languages.

■ Tool developers design and implement tools—the software packages that
facilitate database modeling and design, database system design, and
improved performance. Tools are optional packages that are often pur-
chased separately. They include packages for database design, performance
monitoring, natural language or graphical interfaces, prototyping, simula-
tion, and test data generation. In many cases, independent software vendors
develop and market these tools.

■ Operators and maintenance personnel (system administration personnel)
are responsible for the actual running and maintenance of the hardware and
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database
contents for their own purposes.

1.6 Advantages of Using the DBMS Approach
In this section we discuss some additional advantages of using a DBMS and the
capabilities that a good DBMS should possess. These capabilities are in addition to
the four main characteristics discussed in Section 1.3. The DBA must utilize these
capabilities to accomplish a variety of objectives related to the design, administra-
tion, and use of a large multiuser database.

1.6.1 Controlling Redundancy
In traditional software development utilizing file processing, every user group
maintains its own files for handling its data-processing applications. For example,
consider the UNIVERSITY database example of Section 1.2; here, two groups of
users might be the course registration personnel and the accounting office. In the
traditional approach, each group independently keeps files on students. The

https://hemanthrajhemu.github.io

18 Chapter 1 Databases and Database Users

accounting office keeps data on registration and related billing information,
whereas the registration office keeps track of student courses and grades. Other
groups may further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update—such as entering data on
a new student—multiple times: once for each file where student data is recorded.
This leads to duplication of effort. Second, storage space is wasted when the same
data is stored repeatedly, and this problem may be serious for large databases.
Third, files that represent the same data may become inconsistent. This may happen
because an update is applied to some of the files but not to others. Even if an
update—such as adding a new student—is applied to all the appropriate files, the
data concerning the student may still be inconsistent because the updates are applied
independently by each user group. For example, one user group may enter a stu-
dent’s birth date erroneously as ‘JAN-19-1988’, whereas the other user groups may
enter the correct value of ‘JAN-29-1988’.

In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical
data item—such as a student’s name or birth date—in only one place in the data-
base. This is known as data normalization, and it ensures consistency and saves
storage space (data normalization is described in Part 6 of the text).

However, in practice, it is sometimes necessary to use controlled redundancy to
improve the performance of queries. For example, we may store Student_name and
Course_number redundantly in a GRADE_REPORT file (Figure 1.6(a)) because
whenever we retrieve a GRADE_REPORT record, we want to retrieve the student
name and course number along with the grade, student number, and section identi-
fier. By placing all the data together, we do not have to search multiple files to col-
lect this data. This is known as denormalization. In such cases, the DBMS should

Student_number Student_name Section_identifier Course_number Grade

17 Smith 112 MATH2410 B

17 Smith 119 CS1310 C

8 Brown 85 MATH2410 A

8 Brown 92 CS1310 A

8 Brown 102 CS3320 B

8 Brown 135 CS3380 A

GRADE_REPORT

Student_number Student_name Section_identifier Course_number Grade

17 Brown 112 MATH2410 B

GRADE_REPORT

(a)

(b)

Figure 1.6
Redundant storage
of Student_name
and Course_name in
GRADE_REPORT.
(a) Consistent data.
(b) Inconsistent
record.

https://hemanthrajhemu.github.io

 1.6 Advantages of Using the DBMS Approach 19

have the capability to control this redundancy in order to prohibit inconsisten-
cies among the files. This may be done by automatically checking that the
 Student_name–Student_number values in any GRADE_REPORT record in Fig-
ure 1.6(a) match one of the Name–Student_number values of a STUDENT record (Fig-
ure 1.2). Similarly, the Section_identifier–Course_number values in GRADE_REPORT
can be checked against SECTION records. Such checks can be specified to the DBMS
during database design and automatically enforced by the DBMS whenever the
GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that
is inconsistent with the STUDENT file in Figure 1.2; this kind of error may be entered
if the redundancy is not controlled. Can you tell which part is inconsistent?

1.6.2 Restricting Unauthorized Access
When multiple users share a large database, it is likely that most users will not be
authorized to access all information in the database. For example, financial data
such as salaries and bonuses is often considered confidential, and only autho-
rized persons are allowed to access such data. In addition, some users may only
be permitted to retrieve data, whereas others are allowed to retrieve and update.
Hence, the type of access operation—retrieval or update—must also be con-
trolled. Typically, users or user groups are given account numbers protected by
passwords, which they can use to gain access to the database. A DBMS should
provide a security and authorization subsystem, which the DBA uses to create
accounts and to specify account restrictions. Then, the DBMS should enforce
these restrictions automatically. Notice that we can apply similar controls to the
DBMS software. For example, only the DBA’s staff may be allowed to use certain
privileged software, such as the software for creating new accounts. Similarly,
parametric users may be allowed to access the database only through the pre-
defined apps or canned transactions developed for their use. We discuss data-
base security and authorization in Chapter 30.

1.6.3 Providing Persistent Storage for Program Objects
Databases can be used to provide persistent storage for program objects and data
structures. This is one of the main reasons for object-oriented database systems
(see Chapter 12). Programming languages typically have complex data structures,
such as structs or class definitions in C++ or Java. The values of program variables
or objects are discarded once a program terminates, unless the programmer explic-
itly stores them in permanent files, which often involves converting these complex
structures into a format suitable for file storage. When the need arises to read this
data once more, the programmer must convert from the file format to the program
variable or object structure. Object-oriented database systems are compatible with
programming languages such as C++ and Java, and the DBMS software auto-
matically performs any necessary conversions. Hence, a complex object in C++
can be stored permanently in an object-oriented DBMS. Such an object is said to
be persistent, since it survives the termination of program execution and can
later be directly retrieved by another program.

https://hemanthrajhemu.github.io

20 Chapter 1 Databases and Database Users

The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the
DBMS were incompatible with the programming language’s data structures.
Object-oriented database systems typically offer data structure compatibility with
one or more object-oriented programming languages.

1.6.4 Providing Storage Structures and Search
Techniques for Efficient Query Processing

Database systems must provide capabilities for efficiently executing queries and
updates. Because the database is typically stored on disk, the DBMS must provide
specialized data structures and search techniques to speed up disk search for the
desired records. Auxiliary files called indexes are often used for this purpose.
Indexes are typically based on tree data structures or hash data structures that are
suitably modified for disk search. In order to process the database records needed
by a particular query, those records must be copied from disk to main memory.
Therefore, the DBMS often has a buffering or caching module that maintains parts
of the database in main memory buffers. In general, the operating system is respon-
sible for disk-to-memory buffering. However, because data buffering is crucial to
the DBMS performance, most DBMSs do their own data buffering.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing
storage structures. The choice of which indexes to create and maintain is part of
physical database design and tuning, which is one of the responsibilities of the DBA
staff. We discuss query processing and optimization in Part 8 of the text.

1.6.5 Providing Backup and Recovery
A DBMS must provide facilities for recovering from hardware or software failures.
The backup and recovery subsystem of the DBMS is responsible for recovery. For
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is
restored to the state it was in before the transaction started executing. Disk backup
is also necessary in case of a catastrophic disk failure. We discuss recovery and
backup in Chapter 22.

1.6.6 Providing Multiple User Interfaces
Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include apps for
mobile users, query languages for casual users, programming language interfaces
for application programmers, forms and command codes for parametric users,
and menu-driven interfaces and natural language interfaces for standalone users.
Both forms-style interfaces and menu-driven interfaces are commonly known as

https://hemanthrajhemu.github.io

 1.6 Advantages of Using the DBMS Approach 21

graphical user interfaces (GUIs). Many specialized languages and environments
exist for specifying GUIs. Capabilities for providing Web GUI interfaces to a
database—or Web-enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data
A database may include numerous varieties of data that are interrelated in many
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the
STUDENT file is related to four records in the GRADE_REPORT file. Similarly,
each section record is related to one course record and to a number of
GRADE_REPORT records—one for each student who completed that section. A
DBMS must have the capability to represent a variety of complex relationships
among the data, to define new relationships as they arise, and to retrieve and
update related data easily and efficiently.

1.6.8 Enforcing Integrity Constraints
Most database applications have certain integrity constraints that must hold for
the data. A DBMS should provide capabilities for defining and enforcing these
constraints. The simplest type of integrity constraint involves specifying a data
type for each data item. For example, in Figure 1.3, we specified that the value of
the Class data item within each STUDENT record must be a one-digit integer and
that the value of Name must be a string of no more than 30 alphabetic characters.
To restrict the value of Class between 1 and 5 would be an additional constraint
that is not shown in the current catalog. A more complex type of constraint that
frequently occurs involves specifying that a record in one file must be related to
records in other files. For example, in Figure 1.2, we can specify that every section
record must be related to a course record. This is known as a referential integrity
constraint. Another type of constraint specifies uniqueness on data item values,
such as every course record must have a unique value for Course_number. This is
known as a key or uniqueness constraint. These constraints are derived from the
meaning or semantics of the data and of the miniworld it represents. It is the
responsibility of the database designers to identify integrity constraints during
database design. Some constraints can be specified to the DBMS and automatically
enforced. Other constraints may have to be checked by update programs or at the
time of data entry. For typical large applications, it is customary to call such con-
straints business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered
in the database, the DBMS cannot discover this error automatically because ‘C’ is a
valid value for the Grade data type. Such data entry errors can only be discovered
manually (when the student receives the grade and complains) and corrected later
by updating the database. However, a grade of ‘Z’ would be rejected automatically
by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to

https://hemanthrajhemu.github.io

22 Chapter 1 Databases and Database Users

that model implicitly. For example, in the Entity-Relationship model in Chapter 3,
a relationship must involve at least two entities. Rules that pertain to a specific data
model are called inherent rules of the data model.

1.6.9 Permitting Inferencing and Actions
Using Rules and Triggers

Some database systems provide capabilities for defining deduction rules for infer-
encing new information from the stored database facts. Such systems are called
deductive database systems. For example, there may be complex rules in the mini-
world application for determining when a student is on probation. These can be
specified declaratively as rules, which when compiled and maintained by the DBMS
can determine all students on probation. In a traditional DBMS, an explicit proce-
dural program code would have to be written to support such applications. But if
the miniworld rules change, it is generally more convenient to change the declared
deduction rules than to recode procedural programs. In today’s relational database
systems, it is possible to associate triggers with tables. A trigger is a form of a rule
activated by updates to the table, which results in performing some additional oper-
ations to some other tables, sending messages, and so on. More involved proce-
dures to enforce rules are popularly called stored procedures; they become a part of
the overall database definition and are invoked appropriately when certain condi-
tions are met. More powerful functionality is provided by active database systems,
which provide active rules that can automatically initiate actions when certain
events and conditions occur (see Chapter 26 for introductions to active databases in
Section 26.1 and deductive databases in Section 26.5).

1.6.10 Additional Implications of Using
the Database Approach

This section discusses a few additional implications of using the database approach
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This facil-
itates communication and cooperation among various departments, projects, and
users within the organization. Standards can be defined for names and formats of
data elements, display formats, report structures, terminology, and so on. The DBA
can enforce standards in a centralized database environment more easily than in an
environment where each user group has control of its own data files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain
data from the database for printing a new report—takes very little time. Designing
and implementing a large multiuser database from scratch may take more time
than writing a single specialized file application. However, once a database is up
and running, substantially less time is generally required to create new applications

https://hemanthrajhemu.github.io

 1.7 A Brief History of Database Applications 23

using DBMS facilities. Development time using a DBMS is estimated to be one-
sixth to one-fourth of that for a file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information
not currently in the database. In response, it may be necessary to add a file to the
database or to extend the data elements in an existing file. Modern DBMSs allow
certain types of evolutionary changes to the structure of the database without affect-
ing the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available
to all users. As soon as one user’s update is applied to the database, all other users
can immediately see this update. This availability of up-to-date information is
essential for many transaction-processing applications, such as reservation systems
or banking databases, and it is made possible by the concurrency control and recov-
ery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of
data-processing personnel in different projects or departments as well as redundan-
cies among applications. This enables the whole organization to invest in more
powerful processors, storage devices, or networking gear, rather than having each
department purchase its own (lower performance) equipment. This reduces overall
costs of operation and management.

1.7 A Brief History of Database Applications
We now give a brief historical overview of the applications that use DBMSs and
how these applications provided the impetus for new types of database systems.

1.7.1 Early Database Applications Using Hierarchical
and Network Systems

Many early database applications maintained records in large organizations such as
corporations, universities, hospitals, and banks. In many of these applications,
there were large numbers of records of similar structure. For example, in a univer-
sity application, similar information would be kept for each student, each course,
each grade record, and so on. There were also many types of records and many
interrelationships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk.
Hence, these systems did not provide sufficient data abstraction and program-data
independence capabilities. For example, the grade records of a particular student
could be physically stored next to the student record. Although this provided very

https://hemanthrajhemu.github.io

24 Chapter 1 Databases and Database Users

efficient access for the original queries and transactions that the database was
designed to handle, it did not provide enough flexibility to access records efficiently
when new queries and transactions were identified. In particular, new queries that
required a different storage organization for efficient processing were quite difficult
to implement efficiently. It was also laborious to reorganize the database when
changes were made to the application’s requirements.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement
new queries and transactions, since new programs had to be written, tested, and
debugged. Most of these database systems were implemented on large and
expensive mainframe computers starting in the mid-1960s and continuing
through the 1970s and 1980s. The main types of early systems were based on
three main paradigms: hierarchical systems, network model–based systems, and
inverted file systems.

1.7.2 Providing Data Abstraction and Application Flexibility
with Relational Databases

Relational databases were originally proposed to separate the physical storage of
data from its conceptual representation and to provide a mathematical foundation
for data representation and querying. The relational data model also introduced
high-level query languages that provided an alternative to programming language
interfaces, making it much faster to write new queries. Relational representation of
data somewhat resembles the example we presented in Figure 1.2. Relational sys-
tems were initially targeted to the same applications as earlier systems, and pro-
vided flexibility to develop new queries quickly and to reorganize the database as
requirements changed. Hence, data abstraction and program-data independence
were much improved when compared to earlier systems.

Early experimental relational systems developed in the late 1970s and the com-
mercial relational database management systems (RDBMS) introduced in the
early 1980s were quite slow, since they did not use physical storage pointers or
record placement to access related data records. With the development of new
storage and indexing techniques and better query processing and optimization,
their performance improved. Eventually, relational databases became the domi-
nant type of database system for traditional database applications. Relational data-
bases now exist on almost all types of computers, from small personal computers
to large servers.

1.7.3 Object-Oriented Applications and the Need
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the
need to store and share complex, structured objects led to the development of
object-oriented databases (OODBs). Initially, OODBs were considered a competitor

https://hemanthrajhemu.github.io

 1.7 A Brief History of Database Applications 25

to relational databases, since they provided more general data structures. They also
incorporated many of the useful object-oriented paradigms, such as abstract data
types, encapsulation of operations, inheritance, and object identity. However, the
complexity of the model and the lack of an early standard contributed to their lim-
ited use. They are now mainly used in specialized applications, such as engineering
design, multimedia publishing, and manufacturing systems. Despite expectations
that they will make a big impact, their overall penetration into the database prod-
ucts market remains low. In addition, many object-oriented concepts were incor-
porated into the newer versions of relational DBMSs, leading to object-relational
database management systems, known as ORDBMSs.

1.7.4 Interchanging Data on the Web
for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers.
Users can create static Web pages using a Web publishing language, such as Hyper-
Text Markup Language (HTML), and store these documents on Web servers where
other users (clients) can access them and view them through Web browsers. Docu-
ments can be linked through hyperlinks, which are pointers to other documents.
Starting in the 1990s, electronic commerce (e-commerce) emerged as a major
application on the Web. Much of the critical information on e-commerce Web
pages is dynamically extracted data from DBMSs, such as flight information, prod-
uct prices, and product availability. A variety of techniques were developed to allow
the interchange of dynamically extracted data on the Web for display on Web
pages. The eXtended Markup Language (XML) is one standard for interchanging
data among various types of databases and Web pages. XML combines concepts
from the models used in document systems with database modeling concepts.
Chapter 13 is devoted to an overview of XML.

1.7.5 Extending Database Capabilities
for New Applications

The success of database systems in traditional applications encouraged devel-
opers of other types of applications to attempt to use them. Such applications
traditionally used their own specialized software and file and data structures.
Database systems now offer extensions to better support the specialized require-
ments for some of these applications. The following are some examples of these
applications:

■ Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics, the mapping of the
human genome, and the discovery of protein structures

■ Storage and retrieval of images, including scanned news or personal photo-
graphs, satellite photographic images, and images from medical procedures
such as x-rays and MRI (magnetic resonance imaging) tests

https://hemanthrajhemu.github.io

26 Chapter 1 Databases and Database Users

■ Storage and retrieval of videos, such as movies, and video clips from news
or personal digital cameras

■ Data mining applications that analyze large amounts of data to search for
the occurrences of specific patterns or relationships, and for identifying
unusual patterns in areas such as credit card fraud detection

■ Spatial applications that store and analyze spatial locations of data, such as
weather information, maps used in geographical information systems, and
automobile navigational systems

■ Time series applications that store information such as economic data at
regular points in time, such as daily sales and monthly gross national
product figures

It was quickly apparent that basic relational systems were not very suitable for many
of these applications, usually for one or more of the following reasons:

■ More complex data structures were needed for modeling the application
than the simple relational representation.

■ New data types were needed in addition to the basic numeric and character
string types.

■ New operations and query language constructs were necessary to manipu-
late the new data types.

■ New storage and indexing structures were needed for efficient searching on
the new data types.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form
of optional modules that could be used for specific applications. For example, users
could buy a time series module to use with their relational DBMS for their time
series application.

1.7.6 Emergence of Big Data Storage Systems
and NOSQL Databases

In the first decade of the twenty-first century, the proliferation of applications and
platforms such as social media Web sites, large e-commerce companies, Web search
indexes, and cloud storage/backup led to a surge in the amount of data stored on
large databases and massive servers. New types of database systems were necessary
to manage these huge databases—systems that would provide fast search and
retrieval as well as reliable and safe storage of nontraditional types of data, such as
social media posts and tweets. Some of the requirements of these new systems were
not compatible with SQL relational DBMSs (SQL is the standard data model and
language for relational databases). The term NOSQL is generally interpreted as Not
Only SQL, meaning that in systems than manage large amounts of data, some of the
data is stored using SQL systems, whereas other data would be stored using NOSQL,
depending on the application requirements.

https://hemanthrajhemu.github.io

 1.9 Summary 27

1.8 When Not to Use a DBMS
In spite of the advantages of using a DBMS, there are a few situations in which a
DBMS may involve unnecessary overhead costs that would not be incurred in
traditional file processing. The overhead costs of using a DBMS are due to the
following:

■ High initial investment in hardware, software, and training

■ The generality that a DBMS provides for defining and processing data

■ Overhead for providing security, concurrency control, recovery, and integ-
rity functions

Therefore, it may be more desirable to develop customized database applications
under the following circumstances:

■ Simple, well-defined database applications that are not expected to change
at all

■ Stringent, real-time requirements for some application programs that may
not be met because of DBMS overhead

■ Embedded systems with limited storage capacity, where a general-purpose
DBMS would not fit

■ No multiple-user access to data

Certain industries and applications have elected not to use general-purpose
DBMSs. For example, many computer-aided design (CAD) tools used by mechan-
ical and civil engineers have proprietary file and data management software that
is geared for the internal manipulations of drawings and 3D objects. Similarly,
communication and switching systems designed by companies like AT&T were
early manifestations of database software that was made to run very fast with
hierarchically organized data for quick access and routing of calls. GIS imple-
mentations often implement their own data organization schemes for efficiently
implementing functions related to processing maps, physical contours, lines,
polygons, and so on.

1.9 Summary
In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or more groups of users. A DBMS is a
generalized software package for implementing and maintaining a computerized
database. The database and software together form a database system. We identi-
fied several characteristics that distinguish the database approach from traditional
file-processing applications, and we discussed the main categories of database
users, or the actors on the scene. We noted that in addition to database users, there
are several categories of support personnel, or workers behind the scene, in a data-
base environment.

https://hemanthrajhemu.github.io

28 Chapter 1 Databases and Database Users

We presented a list of capabilities that should be provided by the DBMS software to
the DBA, database designers, and end users to help them design, administer, and
use a database. Then we gave a brief historical perspective on the evolution of data-
base applications. We pointed out the recent rapid growth of the amounts and types
of data that must be stored in databases, and we discussed the emergence of new
systems for handling “big data” applications. Finally, we discussed the overhead
costs of using a DBMS and discussed some situations in which it may not be advan-
tageous to use one.

Review Questions
 1.1. Define the following terms: data, database, DBMS, database system, data-

base catalog, program-data independence, user view, DBA, end user, canned
transaction, deductive database system, persistent object, meta-data, and
transaction-processing application.

 1.2. What four main types of actions involve databases? Briefly discuss each.

 1.3. Discuss the main characteristics of the database approach and how it differs
from traditional file systems.

 1.4. What are the responsibilities of the DBA and the database designers?

 1.5. What are the different types of database end users? Discuss the main activi-
ties of each.

 1.6. Discuss the capabilities that should be provided by a DBMS.

 1.7. Discuss the differences between database systems and information retrieval
systems.

Exercises
 1.8. Identify some informal queries and update operations that you would expect

to apply to the database shown in Figure 1.2.

 1.9. What is the difference between controlled and uncontrolled redundancy?
Illustrate with examples.

 1.10. Specify all the relationships among the records of the database shown in
Figure 1.2.

 1.11. Give some additional views that may be needed by other user groups for the
database shown in Figure 1.2.

 1.12. Cite some examples of integrity constraints that you think can apply to the
database shown in Figure 1.2.

 1.13. Give examples of systems in which it may make sense to use traditional file
processing instead of a database approach.

https://hemanthrajhemu.github.io

 Selected Bibliography 29

 1.14. Consider Figure 1.2.

 a. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’
(Computer Science and Software Engineering) Department and the cor-
responding prefix for the course number also changes, identify the col-
umns in the database that would need to be updated.

 b. Can you restructure the columns in the COURSE, SECTION, and
PREREQUISITE tables so that only one column will need to be updated?

Selected Bibliography
The October 1991 issue of Communications of the ACM and Kim (1995) include
several articles describing next-generation DBMSs; many of the database features
discussed in the former are now commercially available. The March 1976 issue of
ACM Computing Surveys offers an early introduction to database systems and may
provide a historical perspective for the interested reader. We will include references
to other concepts, systems, and applications introduced in this chapter in the later
text chapters that discuss each topic in more detail.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

31

2chapter 2
Database System Concepts

and Architecture

The architecture of DBMS packages has evolved
from the early monolithic systems, where the whole

DBMS software package was one tightly integrated system, to the modern DBMS
packages that are modular in design, with a client/server system architecture. The
recent growth in the amount of data requiring storage has led to database systems
with distributed architectures comprised of thousands of computers that manage
the data stores. This evolution mirrors the trends in computing, where large cen-
tralized mainframe computers are replaced by hundreds of distributed worksta-
tions and personal computers connected via communications networks to various
types of server machines—Web servers, database servers, file servers, application
servers, and so on. The current cloud computing environments consist of thou-
sands of large servers managing so-called big data for users on the Web.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules.1 A client module is typically designed so that it
will run on a mobile device, user workstation, or personal computer (PC). Typi-
cally, application programs and user interfaces that access the database run in the
client module. Hence, the client module handles user interaction and provides
the user-friendly interfaces such as apps for mobile devices, or forms- or menu-
based GUIs (graphical user interfaces) for PCs. The other kind of module, called
a server module, typically handles data storage, access, search, and other func-
tions. We discuss client/server architectures in more detail in Section 2.5. First,
we must study more basic concepts that will give us a better understanding of
modern database architectures.

1As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.

https://hemanthrajhemu.github.io

32 Chapter 2 Database System Concepts and Architecture

In this chapter we present the terminology and basic concepts that will be used
throughout the text. Section 2.1 discusses data models and defines the concepts
of schemas and instances, which are fundamental to the study of database sys-
tems. We discuss the three-schema DBMS architecture and data independence
in Section 2.2; this provides a user’s perspective on what a DBMS is supposed to
do. In Section 2.3 we describe the types of interfaces and languages that are typi-
cally provided by a DBMS. Section 2.4 discusses the database system software
environment. Section 2.5 gives an overview of various types of client/server
architectures. Finally, Section 2.6 presents a classification of the types of DBMS
packages. Section 2.7 summarizes the chapter.

The material in Sections 2.4 through 2.6 provides detailed concepts that may be
considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances
One fundamental characteristic of the database approach is that it provides some
level of data abstraction. Data abstraction generally refers to the suppression of
details of data organization and storage, and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the
database approach is to support data abstraction so that different users can perceive
data at their preferred level of detail. A data model—a collection of concepts that
can be used to describe the structure of a database—provides the necessary means
to achieve this abstraction.2 By structure of a database we mean the data types, rela-
tionships, and constraints that apply to the data. Most data models also include a
set of basic operations for specifying retrievals and updates on the database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specify the dynamic aspect or
behavior of a database application. This allows the database designer to specify a set
of valid user-defined operations that are allowed on the database objects.3 An
example of a user-defined operation could be COMPUTE_GPA, which can be
applied to a STUDENT object. On the other hand, generic operations to insert,
delete, modify, or retrieve any kind of object are often included in the basic data
model operations. Concepts to specify behavior are fundamental to object-oriented
data models (see Chapter 12) but are also being incorporated in more traditional
data models. For example, object-relational models (see Chapter 12) extend the basic
relational model to include such concepts, among others. In the basic relational data
model, there is a provision to attach behavior to the relations in the form of persis-
tent stored modules, popularly known as stored procedures (see Chapter 10).

2Sometimes the word model is used to denote a specific database description, or schema—for example,
the marketing data model. We will not use this interpretation.
3The inclusion of concepts to describe behavior reflects a trend whereby database design and software
design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is
associated with software design.

https://hemanthrajhemu.github.io

 2.1 Data Models, Schemas, and Instances 33

2.1.1 Categories of Data Models
Many data models have been proposed, which we can categorize according to
the types of concepts they use to describe the database structure. High-level or
 conceptual data models provide concepts that are close to the way many users per-
ceive data, whereas low-level or physical data models provide concepts that describe
the details of how data is stored on the computer storage media, typically magnetic
disks. Concepts provided by physical data models are generally meant for computer
specialists, not for end users. Between these two extremes is a class of representational
(or implementation) data models,4 which provide concepts that may be easily
understood by end users but that are not too far removed from the way data is orga-
nized in computer storage. Representational data models hide many details of data
storage on disk but can be implemented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a project
from the miniworld that is described in the database. An attribute represents some
property of interest that further describes an entity, such as the employee’s name or
salary. A relationship among two or more entities represents an association among
the entities, for example, a works-on relationship between an employee and a
project. Chapter 3 presents the entity–relationship model—a popular high-level
conceptual data model. Chapter 4 describes additional abstractions used for advanced
modeling, such as generalization, specialization, and categories (union types).

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational
data model, as well as the so-called legacy data models—the network and
 hierarchical models—that have been widely used in the past. Part 3 of the text is
devoted to the relational data model, and its constraints, operations, and languages.5
The SQL standard for relational databases is described in Chapters 6 and 7. Repre-
sentational data models represent data by using record structures and hence are
sometimes called record-based data models.

We can regard the object data model as an example of a new family of higher-level
implementation data models that are closer to conceptual data models. A standard
for object databases called the ODMG object model has been proposed by the
Object Data Management Group (ODMG). We describe the general characteristics
of object databases and the object model proposed standard in Chapter 12. Object
data models are also frequently utilized as high-level conceptual models, particu-
larly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An

4The term implementation data model is not a standard term; we have introduced it to refer to the avail-
able data models in commercial database systems.

5A summary of the hierarchical and network data models is included in Appendices D and E. They are
accessible from the book’s Web site.

https://hemanthrajhemu.github.io

34 Chapter 2 Database System Concepts and Architecture

access path is a search structure that makes the search for particular database
records efficient, such as indexing or hashing. We discuss physical storage tech-
niques and access structures in Chapters 16 and 17. An index is an example of an
access path that allows direct access to data using an index term or a keyword. It is
similar to the index at the end of this text, except that it may be organized in a lin-
ear, hierarchical (tree-structured), or some other fashion.

Another class of data models is known as self-describing data models. The data
storage in systems based on these models combines the description of the data with
the data values themselves. In traditional DBMSs, the description (schema) is sepa-
rated from the data. These models include XML (see Chapter 12) as well as many of
the key-value stores and NOSQL systems (see Chapter 24) that were recently cre-
ated for managing big data.

2.1.2 Schemas, Instances, and Database State
In a data model, it is important to distinguish between the description of the
database and the database itself. The description of a database is called the
 database schema, which is specified during database design and is not expected
to change frequently.6 Most data models have certain conventions for displaying
schemas as diagrams.7 A displayed schema is called a schema diagram. Figure 2.1
shows a schema diagram for the database shown in Figure 1.2; the diagram dis-
plays the structure of each record type but not the actual instances of records.

6Schema changes are usually needed as the requirements of the database applications change. Most
database systems include operations for allowing schema changes.

7It is customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is also sometimes used to refer to a schema.

Section_identifier SemesterCourse_number InstructorYear

SECTION

Course_name Course_number Credit_hours Department

COURSE

Name Student_number Class Major

STUDENT

Course_number Prerequisite_number
PREREQUISITE

Student_number GradeSection_identifier

GRADE_REPORT

Figure 2.1
Schema diagram for
the database in
Figure 1.2.

https://hemanthrajhemu.github.io

 2.1 Data Models, Schemas, and Instances 35

We call each object in the schema—such as STUDENT or COURSE—a schema
construct.

A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; for example, Figure 2.1 shows neither the data
type of each data item nor the relationships among the various files. Many types of
constraints are not represented in schema diagrams. A constraint such as students
majoring in computer science must take CS1310 before the end of their sophomore
year is quite difficult to represent diagrammatically.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a new student or enter a new
grade. The data in the database at a particular moment in time is called a database
state or snapshot. It is also called the current set of occurrences or instances in
the database. In a given database state, each schema construct has its own current
set of instances; for example, the STUDENT construct will contain the set of indi-
vidual student entities (records) as its instances. Many database states can be con-
structed to correspond to a particular database schema. Every time we insert or
delete a record or change the value of a data item in a record, we change one state
of the database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the
DBMS. At this point, the corresponding database state is the empty state with
no data. We get the initial state of the database when the database is first
 populated or loaded with the initial data. From then on, every time an update
operation is applied to the database, we get another database state. At any point
in time, the database has a current state.8 The DBMS is partly responsible for
ensuring that every state of the database is a valid state—that is, a state that
satisfies the structure and constraints specified in the schema. Hence, specify-
ing a correct schema to the DBMS is extremely important and the schema must
be designed with utmost care. The DBMS stores the descriptions of the schema
constructs and constraints—also called the meta-data—in the DBMS catalog so
that DBMS software can refer to the schema whenever it needs to. The schema
is sometimes called the intension, and a database state is called an extension of
the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently,
it is not uncommon that changes occasionally need to be applied to the schema as
the application requirements change. For example, we may decide that another
data item needs to be stored for each record in a file, such as adding the Date_of_birth
to the STUDENT schema in Figure 2.1. This is known as schema evolution. Most
modern DBMSs include some operations for schema evolution that can be applied
while the database is operational.

8The current state is also called the current snapshot of the database. It has also been called a database

instance, but we prefer to use the term instance to refer to individual records.

https://hemanthrajhemu.github.io

36 Chapter 2 Database System Concepts and Architecture

2.2 Three-Schema Architecture
and Data Independence

Three of the four important characteristics of the database approach, listed in
Section 1.3, are (1) use of a catalog to store the database description (schema) so
as to make it self-describing, (2) insulation of programs and data (program-data
and program-operation independence), and (3) support of multiple user views.
In this section we specify an architecture for database systems, called the
 three-schema architecture,9 that was proposed to help achieve and visualize
these characteristics. Then we discuss further the concept of data independence.

2.2.1 The Three-Schema Architecture
The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate
the user applications from the physical database. In this architecture, schemas can
be defined at the following three levels:

 1. The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data
model and describes the complete details of data storage and access paths for
the database.

9This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning
And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).

External
View

Conceptual Schema

Internal Schema

Stored Database

External
View

Internal Level

Conceptual/Internal
Mapping

Conceptual Level

External/Conceptual
Mapping

External Level

End Users

. . .

Figure 2.2
The three-schema
architecture.

https://hemanthrajhemu.github.io

 2.2 Three-Schema Architecture and Data Independence 37

 2. The conceptual level has a conceptual schema, which describes the structure
of the whole database for a community of users. The conceptual schema hides
the details of physical storage structures and concentrates on describing enti-
ties, data types, relationships, user operations, and constraints. Usually, a rep-
resentational data model is used to describe the conceptual schema when a
database system is implemented. This implementation conceptual schema is
often based on a conceptual schema design in a high-level data model.

 3. The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that
user group. As in the previous level, each external schema is typically imple-
mented using a representational data model, possibly based on an external
schema design in a high-level conceptual data model.

The three-schema architecture is a convenient tool with which the user can visual-
ize the schema levels in a database system. Most DBMSs do not separate the three
levels completely and explicitly, but they support the three-schema architecture to
some extent. Some older DBMSs may include physical-level details in the concep-
tual schema. The three-level ANSI architecture has an important place in database
technology development because it clearly separates the users’ external level, the
database’s conceptual level, and the internal storage level for designing a database.
It is very much applicable in the design of DBMSs, even today. In most DBMSs that
support user views, external schemas are specified in the same data model that
describes the conceptual-level information (for example, a relational DBMS like
Oracle or SQLServer uses SQL for this).

Notice that the three schemas are only descriptions of data; the actual data is stored
at the physical level only. In the three-schema architecture, each user group refers
to its own external schema. Hence, the DBMS must transform a request specified
on an external schema into a request against the conceptual schema, and then into
a request on the internal schema for processing over the stored database. If the
request is a database retrieval, the data extracted from the stored database must be
reformatted to match the user’s external view. The processes of transforming
requests and results between levels are called mappings. These mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, it is nec-
essary to transform requests between the conceptual and internal levels.

2.2.2 Data Independence
The three-schema architecture can be used to further explain the concept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

 1. Logical data independence is the capacity to change the conceptual schema
without having to change external schemas or application programs. We

https://hemanthrajhemu.github.io

38 Chapter 2 Database System Concepts and Architecture

may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example,
the external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one
shown in Figure 1.6(a). Only the view definition and the mappings need to
be changed in a DBMS that supports logical data independence. After the
conceptual schema undergoes a logical reorganization, application pro-
grams that reference the external schema constructs must work as before.
Changes to constraints can be applied to the conceptual schema without
affecting the external schemas or application programs.

 2. Physical data independence is the capacity to change the internal schema
without having to change the conceptual schema. Hence, the external sche-
mas need not be changed as well. Changes to the internal schema may be
needed because some physical files were reorganized—for example, by cre-
ating additional access structures—to improve the performance of retrieval
or update. If the same data as before remains in the database, we should not
have to change the conceptual schema. For example, providing an access
path to improve retrieval speed of SECTION records (Figure 1.2) by semes-
ter and year should not require a query such as list all sections offered in fall
2008 to be changed, although the query would be executed more efficiently
by the DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments where physical details, such as the exact location of data on disk, and hard-
ware details of storage encoding, placement, compression, splitting, merging of
records, and so on are hidden from the user. Applications remain unaware of these
details. On the other hand, logical data independence is harder to achieve because it
allows structural and constraint changes without affecting application programs—a
much stricter requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS
uses additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

2.3 Database Languages and Interfaces
In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS
must provide appropriate languages and interfaces for each category of users. In
this section we discuss the types of languages and interfaces provided by a DBMS
and the user categories targeted by each interface.

https://hemanthrajhemu.github.io

 2.3 Database Languages and Interfaces 39

2.3.1 DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implement the
database, the first step is to specify conceptual and internal schemas for the data-
base and any mappings between the two. In many DBMSs where no strict separa-
tion of levels is maintained, one language, called the data definition language
(DDL), is used by the DBA and by database designers to define both schemas. The
DBMS will have a DDL compiler whose function is to process DDL statements in
order to identify descriptions of the schema constructs and to store the schema
description in the DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and
internal levels, the DDL is used to specify the conceptual schema only. Another
language, the storage definition language (SDL), is used to specify the internal
schema. The mappings between the two schemas may be specified in either one of
these languages. In most relational DBMSs today, there is no specific language that
performs the role of SDL. Instead, the internal schema is specified by a combination
of functions, parameters, and specifications related to storage of files. These permit
the DBA staff to control indexing choices and mapping of data to storage. For a true
three-schema architecture, we would need a third language, the view definition
language (VDL), to specify user views and their mappings to the conceptual
schema, but in most DBMSs the DDL is used to define both conceptual and external
schemas. In relational DBMSs, SQL is used in the role of VDL to define user or
application views as results of predefined queries (see Chapters 6 and 7).

Once the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language
(DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 6 and 7), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evolution, and many other features. The SDL was a compo-
nent in early versions of SQL but has been removed from the language to keep it at
the conceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specify complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so

https://hemanthrajhemu.github.io

40 Chapter 2 Database System Concepts and Architecture

that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each separately. Therefore, it needs to use programming
language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are also called record-at-a-time DMLs because of this
property. High-level DMLs, such as SQL, can specify and retrieve many records in
a single DML statement; therefore, they are called set-at-a-time or set-oriented
DMLs. A query in a high-level DML often specifies which data to retrieve rather
than how to retrieve it; therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language
and the DML is called the data sublanguage.10 On the other hand, a high-level
DML used in a standalone interactive manner is called a query language. In gen-
eral, both retrieval and update commands of a high-level DML may be used inter-
actively and are hence considered part of the query language.11

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing. These interfaces pres-
ent the user with lists of options (called menus) that lead the user through the for-
mulation of a request. Menus do away with the need to memorize the specific
commands and syntax of a query language; rather, the query is composed step-by-
step by picking options from a menu that is displayed by the system. Pull-down
menus are a very popular technique in Web-based user interfaces. They are also
often used in browsing interfaces, which allow a user to look through the contents
of a database in an exploratory and unstructured manner.

Apps for Mobile Devices. These interfaces present mobile users with access to
their data. For example, banking, reservations, and insurance companies, among
many others, provide apps that allow users to access their data through a mobile
phone or mobile device. The apps have built-in programmed interfaces that typically

10In object databases, the host and data sublanguages typically form one integrated language—for
example, C++ with some extensions to support database functionality. Some relational systems also
provide integrated languages—for example, Oracle’s PL/SQL.

11According to the English meaning of the word query, it should really be used to describe retrievals
only, not updates.

https://hemanthrajhemu.github.io

 2.3 Database Languages and Interfaces 41

allow users to login using their account name and password; the apps then provide
a limited menu of options for mobile access to the user data, as well as options such
as paying bills (for banks) or making reservations (for reservation Web sites).

Forms-based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they can fill out only
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages,
which are special languages that help programmers specify such forms. SQL*Forms
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the Ora-
cle product suite that provides an extensive set of features to design and build
applications using forms. Some systems have utilities that define a form by letting
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram.
In many cases, GUIs utilize both menus and forms.

Natural Language Interfaces. These interfaces accept requests written in Eng-
lish or some other language and attempt to understand them. A natural language
interface usually has its own schema, which is similar to the database conceptual
schema, as well as a dictionary of important words. The natural language interface
refers to the words in its schema, as well as to the set of standard words in its dic-
tionary, that are used to interpret the request. If the interpretation is successful, the
interface generates a high-level query corresponding to the natural language request
and submits it to the DBMS for processing; otherwise, a dialogue is started with the
user to clarify the request.

Keyword-based Database Search. These are somewhat similar to Web search
engines, which accept strings of natural language (like English or Spanish) words
and match them with documents at specific sites (for local search engines) or Web
pages on the Web at large (for engines like Google or Ask). They use predefined
indexes on words and use ranking functions to retrieve and present resulting docu-
ments in a decreasing degree of match. Such “free form” textual query interfaces are
not yet common in structured relational databases, although a research area called
keyword-based querying has emerged recently for relational databases.

Speech Input and Output. Limited use of speech as an input query and speech
as an answer to a question or result of a request is becoming commonplace. Appli-
cations with limited vocabularies, such as inquiries for telephone directory, flight
arrival/departure, and credit card account information, are allowing speech for
input and output to enable customers to access this information. The speech input
is detected using a library of predefined words and used to set up the parameters
that are supplied to the queries. For output, a similar conversion from text or num-
bers into speech takes place.

https://hemanthrajhemu.github.io

42 Chapter 2 Database System Concepts and Architecture

Interfaces for Parametric Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. For example, a
teller is able to use single function keys to invoke routine and repetitive transactions
such as account deposits or withdrawals, or balance inquiries. Systems analysts and
programmers design and implement a special interface for each known class of
naive users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request.

Interfaces for the DBA. Most database systems contain privileged commands
that can be used only by the DBA staff. These include commands for creating
accounts, setting system parameters, granting account authorization, changing a
schema, and reorganizing the storage structures of a database.

2.4 The Database System Environment
A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules
Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The
figure is divided into two parts. The top part of the figure refers to the various
users of the database environment and their interfaces. The lower part shows the
internal modules of the DBMS responsible for storage of data and processing of
transactions.

The database and the DBMS catalog are usually stored on disk. Access to the
disk is controlled primarily by the operating system (OS), which schedules disk
read/write. Many DBMSs have their own buffer management module to sched-
ule disk read/write, because management of buffer storage has a considerable
effect on performance. Reducing disk read/write improves performance consid-
erably. A higher-level stored data manager module of the DBMS controls access
to DBMS information that is stored on disk, whether it is part of the database or
the catalog.

Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, application
programmers who create programs using some host programming languages, and
parametric users who do data entry work by supplying parameters to predefined
transactions. The DBA staff works on defining the database and tuning it by mak-
ing changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints.

https://hemanthrajhemu.github.io

 2.4 The Database System Environment 43

In addition, the catalog stores many other types of information that are needed by
the DBMS modules, which can then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database
interact using the interactive query interface in Figure 2.3. We have not explicitly
shown any menu-based or form-based or mobile interactions that are typically used
to generate the interactive query automatically or to access canned transactions.
These queries are parsed and validated for correctness of the query syntax, the
names of files and data elements, and so on by a query compiler that compiles

Query
Compiler

Runtime
Database
Processor

Precompiler

System
Catalog/

Data
Dictionary

Query
Optimizer

DML
Compiler

Host
Language
Compiler

Concurrency Control/
Backup/Recovery

Subsystems

Stored
Data

Manager

Compiled
Transactions

Stored Database

DBA Commands,
Queries, and Transactions

Input/Output
from DatabaseQuery and Transaction

Execution:

DDL
Compiler

DDL
Statements

Privileged
Commands

Interactive
Query

Application
Programs

DBA Staff Casual Users Application
Programmers

Parametric UsersUsers:

Figure 2.3
Component modules of a DBMS and their interactions.

https://hemanthrajhemu.github.io

44 Chapter 2 Database System Concepts and Architecture

them into an internal form. This internal query is subjected to query optimization
(discussed in Chapters 18 and 19). Among other things, the query optimizer is
concerned with the rearrangement and possible reordering of operations, elimina-
tion of redundancies, and use of efficient search algorithms during execution. It
consults the system catalog for statistical and other physical information about the
stored data and generates executable code that performs the necessary operations
for the query and makes calls on the runtime processor.

Application programmers write programs in host languages such as Java, C, or C++
that are submitted to a precompiler. The precompiler extracts DML commands
from an application program written in a host programming language. These com-
mands are sent to the DML compiler for compilation into object code for database
access. The rest of the program is sent to the host language compiler. The object
codes for the DML commands and the rest of the program are linked, forming a
canned transaction whose executable code includes calls to the runtime database
processor. It is also becoming increasingly common to use scripting languages such
as PHP and Python to write database programs. Canned transactions are executed
repeatedly by parametric users via PCs or mobile apps; these users simply supply
the parameters to the transactions. Each execution is considered to be a separate
transaction. An example is a bank payment transaction where the account number,
payee, and amount may be supplied as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the
privileged commands, (2) the executable query plans, and (3) the canned transac-
tions with runtime parameters. It works with the system catalog and may update it
with statistics. It also works with the stored data manager, which in turn uses basic
operating system services for carrying out low-level input/output (read/write)
operations between the disk and main memory. The runtime database processor
handles other aspects of data transfer, such as management of buffers in the main
memory. Some DBMSs have their own buffer management module whereas others
depend on the OS for buffer management. We have shown concurrency control
and backup and recovery systems separately as a module in this figure. They are
integrated into the working of the runtime database processor for purposes of
transaction management.

It is common to have the client program that accesses the DBMS running on a
separate computer or device from the computer on which the database resides. The
former is called the client computer running DBMS client software and the latter is
called the database server. In many cases, the client accesses a middle computer,
called the application server, which in turn accesses the database server. We elabo-
rate on this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical
DBMS modules. The DBMS interacts with the operating system when disk accesses—
to the database or to the catalog—are needed. If the computer system is shared by
many users, the OS will schedule DBMS disk access requests and DBMS processing
along with other processes. On the other hand, if the computer system is mainly
dedicated to running the database server, the DBMS will control main memory

https://hemanthrajhemu.github.io

 2.4 The Database System Environment 45

 buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and with application servers and client pro-
grams running on separate machines through the system network interface.

2.4.2 Database System Utilities
In addition to possessing the software modules just described, most DBMSs have
database utilities that help the DBA manage the database system. Common utili-
ties have the following types of functions:

■ Loading. A loading utility is used to load existing data files—such as text
files or sequential files—into the database. Usually, the current (source) for-
mat of the data file and the desired (target) database file structure are speci-
fied to the utility, which then automatically reformats the data and stores it
in the database. With the proliferation of DBMSs, transferring data from
one DBMS to another is becoming common in many organizations. Some
vendors offer conversion tools that generate the appropriate loading pro-
grams, given the existing source and target database storage descriptions
(internal schemas).

■ Backup. A backup utility creates a backup copy of the database, usually by
dumping the entire database onto tape or other mass storage medium. The
backup copy can be used to restore the database in case of catastrophic disk
failure. Incremental backups are also often used, where only changes since
the previous backup are recorded. Incremental backup is more complex, but
saves storage space.

■ Database storage reorganization. This utility can be used to reorganize a
set of database files into different file organizations and create new access
paths to improve performance.

■ Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions
such as whether or not to reorganize files or whether to add or drop indexes
to improve performance.

Other utilities may be available for sorting files, handling data compression,
monitoring access by users, interfacing with the network, and performing other
functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and the DBMS. CASE
tools12 are used in the design phase of database systems. Another tool that can be
quite useful in large organizations is an expanded data dictionary (or data repository)

12Although CASE stands for computer-aided software engineering, many CASE tools are used primarily
for database design.

https://hemanthrajhemu.github.io

46 Chapter 2 Database System Concepts and Architecture

system. In addition to storing catalog information about schemas and constraints,
the data dictionary stores other information, such as design decisions, usage stan-
dards, application program descriptions, and user information. Such a system is
also called an information repository. This information can be accessed directly by
users or the DBA when needed. A data dictionary utility is similar to the DBMS
catalog, but it includes a wider variety of information and is accessed mainly by
users rather than by the DBMS software.

Application development environments, such as PowerBuilder (Sybase)
or JBuilder (Borland), have been quite popular. These systems provide an environ-
ment for developing database applications and include facilities that help in many
facets of database systems, including database design, GUI development, querying
and updating, and application program development.

The DBMS also needs to interface with communications software, whose function
is to allow users at locations remote from the database system site to access the
database through computer terminals, workstations, or personal computers. These
are connected to the database site through data communications hardware such as
Internet routers, phone lines, long-haul networks, local networks, or satellite com-
munication devices. Many commercial database systems have communication
packages that work with the DBMS. The integrated DBMS and data communica-
tions system is called a DB/DC system. In addition, some distributed DBMSs are
physically distributed over multiple machines. In this case, communications net-
works are needed to connect the machines. These are often local area networks
(LANs), but they can also be other types of networks.

2.5 Centralized and Client/Server
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture
Architectures for DBMSs have followed trends similar to those for general com-
puter system architectures. Older architectures used mainframe computers to pro-
vide the main processing for all system functions, including user application
programs and user interface programs, as well as all the DBMS functionality. The
reason was that in older systems, most users accessed the DBMS via computer ter-
minals that did not have processing power and only provided display capabilities.
Therefore, all processing was performed remotely on the computer system housing
the DBMS, and only display information and controls were sent from the computer
to the display terminals, which were connected to the central computer via various
types of communications networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations, and more recently with mobile devices. At first, database systems
used these computers similarly to how they had used display terminals, so that the
DBMS itself was still a centralized DBMS in which all the DBMS functionality,

https://hemanthrajhemu.github.io

 2.5 Centralized and Client/Server Architectures for DBMSs 47

application program execution, and user interface processing were carried out on
one machine. Figure 2.4 illustrates the physical components in a centralized archi-
tecture. Gradually, DBMS systems started to exploit the available processing power
at the user side, which led to client/server DBMS architectures.

2.5.2 Basic Client/Server Architectures
First, we discuss client/server architecture in general; then we discuss how it is
applied to DBMSs. The client/server architecture was developed to deal with com-
puting environments in which a large number of PCs, workstations, file servers,
printers, database servers, Web servers, e-mail servers, and other software and
equipment are connected via a network. The idea is to define specialized servers
with specific functionalities. For example, it is possible to connect a number of PCs
or small workstations as clients to a file server that maintains the files of the client
machines. Another machine can be designated as a printer server by being con-
nected to various printers; all print requests by the clients are forwarded to this
machine. Web servers or e-mail servers also fall into the specialized server cate-
gory. The resources provided by specialized servers can be accessed by many client
machines. The client machines provide the user with the appropriate interfaces to
utilize these servers, as well as with local processing power to run local applications.
This concept can be carried over to other software packages, with specialized pro-
grams—such as a CAD (computer-aided design) package—being stored on specific
server machines and being made accessible to multiple clients. Figure 2.5 illustrates

Display
Monitor

Display
Monitor

Network

Software

Hardware/Firmware

Operating System

Display
Monitor

Application
Programs

DBMS

Controller

CPU

Controller

. . .

. . .

. . .

Controller

Memory Disk
I/O Devices

(Printers,
Tape Drives, . . .)

Compilers

Text
Editors

Terminal
Display Control

System Bus

Terminals . . .

. . .

Figure 2.4
A physical centralized
architecture.

https://hemanthrajhemu.github.io

48 Chapter 2 Database System Concepts and Architecture

client/server architecture at the logical level; Figure 2.6 is a simplified diagram that
shows the physical architecture. Some machines would be client sites only (for
example, mobile devices or workstations/PCs that have only client software
installed). Other machines would be dedicated servers, and others would have both
client and server functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs/workstations and mobile devices as well as a smaller number
of server machines, connected via wireless networks or LANs and other types of
computer networks. A client in this framework is typically a user machine that pro-
vides user interface capabilities and local processing. When a client requires access
to additional functionality—such as database access—that does not exist at the cli-
ent, it connects to a server that provides the needed functionality. A server is a sys-
tem containing both hardware and software that can provide services to the client
machines, such as file access, printing, archiving, or database access. In general,
some machines install only client software, others only server software, and still
others may include both client and server software, as illustrated in Figure 2.6.
However, it is more common that client and server software usually run on separate

Client Client Client

Print
Server

DBMS
Server

File
Server

. . .

. . .

Network
Figure 2.5
Logical two-tier
client/server
architecture.

Client CLIENT

Site 2

Client
with Disk

Client

Site 1

Diskless
Client

Server

Site 3

Server

Communication
Network

Site n

Server
and Client

. . .

Client

Server

Figure 2.6
Physical two-tier
 client/server
 architecture.

https://hemanthrajhemu.github.io

 2.5 Centralized and Client/Server Architectures for DBMSs 49

machines. Two main types of basic DBMS architectures were created on this under-
lying client/server framework: two-tier and three-tier.13 We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs
In relational database management systems (RDBMSs), many of which started
as centralized systems, the system components that were first moved to the
 client side were the user interface and application programs. Because SQL (see
Chapters 6 and 7) provided a standard language for RDBMSs, this created a
logical dividing point between client and server. Hence, the query and transac-
tion functionality related to SQL processing remained on the server side. In
such an architecture, the server is often called a query server or transaction
server because it provides these two functionalities. In an RDBMS, the server is
also often called an SQL server.

The user interface programs and application programs can run on the client side.
When DBMS access is required, the program establishes a connection to the
DBMS (which is on the server side); once the connection is created, the client
program can communicate with the DBMS. A standard called Open Database
Connectivity (ODBC) provides an application programming interface (API),
which allows client-side programs to call the DBMS, as long as both client and
server machines have the necessary software installed. Most DBMS vendors pro-
vide ODBC drivers for their systems. A client program can actually connect to
several RDBMSs and send query and transaction requests using the ODBC API,
which are then processed at the server sites. Any query results are sent back to the
client program, which can process and display the results as needed. A related
standard for the Java programming language, called JDBC, has also been defined.
This allows Java client programs to access one or more DBMSs through a stan-
dard interface.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and servers, leading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures
for Web Applications

Many Web applications use an architecture called the three-tier architecture,
which adds an intermediate layer between the client and the database server, as
illustrated in Figure 2.7(a).

13There are many other variations of client/server architectures. We discuss the two most basic ones
here.

https://hemanthrajhemu.github.io

50 Chapter 2 Database System Concepts and Architecture

This intermediate layer or middle tier is called the application server or the Web
server, depending on the application. This server plays an intermediary role by
running application programs and storing business rules (procedures or con-
straints) that are used to access data from the database server. It can also improve
database security by checking a client’s credentials before forwarding a request to
the database server. Clients contain user interfaces and Web browsers. The inter-
mediate server accepts requests from the client, processes the request and sends
database queries and commands to the database server, and then acts as a conduit
for passing (partially) processed data from the database server to the clients, where
it may be processed further and filtered to be presented to the users. Thus, the user
interface, application rules, and data access act as the three tiers. Figure 2.7(b) shows
another view of the three-tier architecture used by database and other application
package vendors. The presentation layer displays information to the user and allows
data entry. The business logic layer handles intermediate rules and constraints before
data is passed up to the user or down to the DBMS. The bottom layer includes all
data management services. The middle layer can also act as a Web server, which
retrieves query results from the database server and formats them into dynamic
Web pages that are viewed by the Web browser at the client side. The client machine
is typically a PC or mobile device connected to the Web.

Other architectures have also been proposed. It is possible to divide the layers
between the user and the stored data further into finer components, thereby giving
rise to n-tier architectures, where n may be four or five tiers. Typically, the business
logic layer is divided into multiple layers. Besides distributing programming and
data throughout a network, n-tier applications afford the advantage that any one
tier can run on an appropriate processor or operating system platform and can be
handled independently. Vendors of ERP (enterprise resource planning) and CRM
(customer relationship management) packages often use a middleware layer, which

GUI,
Web Interface

Client

Application Server
or

Web Server

Database
Server

Application
Programs,

Web Pages

Database
Management

System

Presentation
Layer

Business
Logic Layer

Database
Services

Layer

(a) (b)

Figure 2.7
Logical three-tier
 client/server
 architecture, with a
couple of commonly
used nomenclatures.

https://hemanthrajhemu.github.io

 2.6 Classification of Database Management Systems 51

accounts for the front-end modules (clients) communicating with a number of
back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The
latter can be done by the hardware or by advanced software. This technology gives
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts
of data from servers to clients over wired and wireless networks.

2.6 Classification of Database
Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on
which the DBMS is based. The main data model used in many current commercial
DBMSs is the relational data model, and the systems based on this model are
known as SQL systems. The object data model has been implemented in some
commercial systems but has not had widespread use. Recently, so-called big data
systems, also known as key-value storage systems and NOSQL systems, use vari-
ous data models: document-based, graph-based, column-based, and key-value
data models. Many legacy applications still run on database systems based on the
hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been
incorporating many of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can catego-
rize DBMSs based on the data model: relational, object, object-relational, NOSQL,
key-value, hierarchical, network, and other.

Some experimental DBMSs are based on the XML (eXtended Markup Language)
model, which is a tree-structured data model. These have been called native XML
DBMSs. Several commercial relational DBMSs have added XML interfaces and
storage to their products.

The second criterion used to classify DBMSs is the number of users supported by
the system. Single-user systems support only one user at a time and are mostly
used with PCs. Multiuser systems, which include the majority of DBMSs, support
concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support multiple users, but the DBMS and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS software distributed over many sites connected by a computer network.
Big data systems are often massively distributed, with hundreds of sites. The data is
often replicated on multiple sites so that failure of a site will not make some data
unavailable.

https://hemanthrajhemu.github.io

52 Chapter 2 Database System Concepts and Architecture

Homogeneous DDBMSs use the same DBMS software at all the sites, whereas
heterogeneous DDBMSs can use different DBMS software at each site. It is also
possible to develop middleware software to access several autonomous preexisting
databases stored under heterogeneous DBMSs. This leads to a federated DBMS (or
multidatabase system), in which the participating DBMSs are loosely coupled and
have a degree of local autonomy. Many DDBMSs use client-server architecture, as
we described in Section 2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs
based on cost. Today we have open source (free) DBMS products like MySQL and
PostgreSQL that are supported by third-party vendors with additional services.
The main RDBMS products are available as free examination 30-day copy versions
as well as personal versions, which may cost under $100 and allow a fair amount of
functionality. The giant systems are being sold in modular form with components
to handle distribution, replication, parallel processing, mobile capability, and so
on, and with a large number of parameters that must be defined for the configura-
tion. Furthermore, they are sold in the form of licenses—site licenses allow unlim-
ited use of the database system with any number of copies running at the customer
site. Another type of license limits the number of concurrent users or the number
of user seats at a location. Standalone single-user versions of some systems like
Microsoft Access are sold per copy or included in the overall configuration of a
desktop or laptop. In addition, data warehousing and mining features, as well as
support for additional data types, are made available at extra cost. It is possible to
pay millions of dollars for the installation and maintenance of large database sys-
tems annually.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures.
Finally, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-purpose DBMS can be designed and built for a
specific application; such a system cannot be used for other applications without
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special-purpose DBMSs. These fall into the category of online
transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data
model. The relational data model represents a database as a collection of tables,
where each table can be stored as a separate file. The database in Figure 1.2 resem-
bles a basic relational representation. Most relational databases use the high-level
query language called SQL and support a limited form of user views. We discuss
the relational model and its languages and operations in Chapters 5 through 8, and
techniques for programming relational applications in Chapters 10 and 11.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class,
and classes are organized into hierarchies (or acyclic graphs). The operations of

https://hemanthrajhemu.github.io

 2.6 Classification of Database Management Systems 53

each class are specified in terms of predefined procedures called methods. Rela-
tional DBMSs have been extending their models to incorporate object database
concepts and other capabilities; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and object-relational
systems in Chapter 12.

Big data systems are based on various data models, with the following four data
models most common. The key-value data model associates a unique key with
each value (which can be a record or object) and provides very fast access to a
value given its key. The document data model is based on JSON (Java Script
Object Notation) and stores the data as documents, which somewhat resemble
complex objects. The graph data model stores objects as graph nodes and rela-
tionships among objects as directed graph edges. Finally, the column-based data
models store the columns of rows clustered on disk pages for fast access and
allow multiple versions of the data. We will discuss some of these in more detail
in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and
has been used as a basis for implementing several prototype native XML systems.
XML uses hierarchical tree structures. It combines database concepts with concepts
from document representation models. Data is represented as elements; with the
use of tags, data can be nested to create complex tree structures. This model con-
ceptually resembles the object model but uses different terminology. XML capabili-
ties have been added to many commercial DBMS products. We present an overview
of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models,
are the network and hierarchical models. The network model represents data as
record types and also represents a limited type of 1:N relationship, called a set type.
A 1:N, or one-to-many, relationship relates one instance of a record to many record
instances using some pointer linking mechanism in these models. The network
model, also known as the CODASYL DBTG model,14 has an associated record-at-
a-time language that must be embedded in a host programming language. The net-
work DML was proposed in the 1971 Database Task Group (DBTG) Report as an
extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierar-
chy represents a number of related records. There is no standard language for the
hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dom-
inated the DBMS market for over 20 years between 1965 and 1985. Its DML, called
DL/1, was a de facto industry standard for a long time.15

14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is
the committee that specified the network model and its language.

15The full chapters on the network and hierarchical models from the second edition of this book are
available from this book’s Companion Web site at http://www.aw.com/elmasri.

https://hemanthrajhemu.github.io

54 Chapter 2 Database System Concepts and Architecture

2.7 Summary
In this chapter we introduced the main concepts used in database systems. We
defined a data model and we distinguished three main categories:

■ High-level or conceptual data models (based on entities and relationships)

■ Low-level or physical data models

■ Representational or implementation data models (record-based, object-
oriented)

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
DBMS architecture, which allows three schema levels:

■ An internal schema describes the physical storage structure of the database.

■ A conceptual schema is a high-level description of the whole database.

■ External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings among
the schemas to transform requests and query results from one level to the
next. Most DBMSs do not separate the three levels completely. We used the
three-schema architecture to define the concepts of logical and physical data
independence.

Then we discussed the main types of languages and interfaces that DBMSs support.
A data definition language (DDL) is used to define the database conceptual schema.
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages or functions exist for specifying storage
structures. This distinction is fading away in today’s relational implementations,
with SQL serving as a catchall language to perform multiple roles, including view
definition. The storage definition part (SDL) was included in SQL’s early versions,
but is now typically implemented as special commands for the DBA in relational
DBMSs. The DBMS compiles all schema definitions and stores their descriptions in
the DBMS catalog.

A data manipulation language (DML) is used for specifying database retrievals and
updates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-
oriented, procedural). A high-level DML can be embedded in a host programming
language, or it can be used as a standalone language; in the latter case it is often
called a query language.

We discussed different types of interfaces provided by DBMSs and the types of
DBMS users with which each interface is associated. Then we discussed the
database system environment, typical DBMS software modules, and DBMS
utilities for helping users and the DBA staff perform their tasks. We continued
with an overview of the two-tier and three-tier architectures for database
 applications.

https://hemanthrajhemu.github.io

 Exercises 55

Finally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and cost. We discussed the availabil-
ity of DBMSs and additional modules—from no cost in the form of open source
software to configurations that annually cost millions to maintain. We also
pointed out the variety of licensing arrangements for DBMS and related prod-
ucts. The main classification of DBMSs is based on the data model. We briefly
discussed the main data models used in current commercial DBMSs.

Review Questions
 2.1. Define the following terms: data model, database schema, database state,

internal schema, conceptual schema, external schema, data independence,
DDL, DML, SDL, VDL, query language, host language, data sublanguage,
database utility, catalog, client/server architecture, three-tier architecture,
and n-tier architecture.

 2.2. Discuss the main categories of data models. What are the basic differences
among the relational model, the object model, and the XML model?

 2.3. What is the difference between a database schema and a database state?

 2.4. Describe the three-schema architecture. Why do we need mappings among
schema levels? How do different schema definition languages support this
architecture?

 2.5. What is the difference between logical data independence and physical data
independence? Which one is harder to achieve? Why?

 2.6. What is the difference between procedural and nonprocedural DMLs?

 2.7. Discuss the different types of user-friendly interfaces and the types of users
who typically use each.

 2.8. With what other computer system software does a DBMS interact?

 2.9. What is the difference between the two-tier and three-tier client/server
architectures?

 2.10. Discuss some types of database utilities and tools and their functions.

 2.11. What is the additional functionality incorporated in n-tier architecture
(n . 3)?

Exercises
 2.12. Think of different users for the database shown in Figure 1.2. What types of

applications would each user need? To which user category would each
belong, and what type of interface would each need?

https://hemanthrajhemu.github.io

56 Chapter 2 Database System Concepts and Architecture

 2.13. Choose a database application with which you are familiar. Design a schema
and show a sample database for that application, using the notation of Fig-
ures 1.2 and 2.1. What types of additional information and constraints
would you like to represent in the schema? Think of several users of your
database, and design a view for each.

 2.14. If you were designing a Web-based system to make airline reservations and sell
airline tickets, which DBMS architecture would you choose from Section 2.5?
Why? Why would the other architectures not be a good choice?

 2.15. Consider Figure 2.1. In addition to constraints relating the values of col-
umns in one table to columns in another table, there are also constraints that
impose restrictions on values in a column or a combination of columns
within a table. One such constraint dictates that a column or a group of col-
umns must be unique across all rows in the table. For example, in the
 STUDENT table, the Student_number column must be unique (to prevent two
different students from having the same Student_number). Identify the col-
umn or the group of columns in the other tables that must be unique across
all rows in the table.

Selected Bibliography
Many database textbooks, including Date (2004), Silberschatz et al. (2011), Ramak-
rishnan and Gehrke (2003), Garcia-Molina et al. (2002, 2009), and Abiteboul et al.
(1995), provide a discussion of the various database concepts presented here.
 Tsichritzis and Lochovsky (1982) is an early textbook on data models. Tsichritzis
and Klug (1978) and Jardine (1977) present the three-schema architecture, which
was first suggested in the DBTG CODASYL report (1971) and later in an American
National Standards Institute (ANSI) report (1975). An in-depth analysis of the rela-
tional data model and some of its possible extensions is given in Codd (1990). The
proposed standard for object-oriented databases is described in Cattell et al. (2000).
Many documents describing XML are available on the Web, such as XML (2005).

Examples of database utilities are the ETI Connect, Analyze and Transform tools
(http://www.eti.com) and the database administration tool, DBArtisan, from
Embarcadero Technologies (http://www.embarcadero.com).

https://hemanthrajhemu.github.io

part 2
Conceptual Data Modeling and

Database Design

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

59

 Data Modeling Using the Entity–
Relationship (ER) Model

Conceptual modeling is a very important phase in
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the
bank customers or bank tellers in this example. In addition, it is now common to
provide interfaces to these programs to BANK customers via mobile devices using
mobile apps. Hence, a major part of the database application will require the
design, implementation, and testing of these application programs. Traditionally,
the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present
the modeling concepts of the entity–relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

3chapter 3

https://hemanthrajhemu.github.io

60 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams1—is similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 3.1.
We present some of the UML notation and concepts for class diagrams that are
particularly relevant to database design in Section 3.8, and we briefly compare these
to ER notation and concepts. Additional UML notation and concepts are presented
in Section 4.6.

This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER
model. This sample database is used throughout the text. In Section 3.3 we present
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5
introduces weak entity types. Section 3.6 shows how a schema design is refined to
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses
how to choose the names for database schema constructs such as entity types and
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec -
tion 3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 4, where we describe extensions to
the ER model that lead to the enhanced–ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories).

3.1 Using High-Level Conceptual Data Models
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

1A class is similar to an entity type in many ways.

https://hemanthrajhemu.github.io

 3.1 Using High-Level Conceptual Data Models for Database Design 61

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.

Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This

Functional Requirements

REQUIREMENTS
COLLECTION AND

ANALYSIS

Miniworld

Data Requirements

CONCEPTUAL DESIGN

Conceptual Schema
(In a high-level data model)

LOGICAL DESIGN
(DATA MODEL MAPPING)

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

PHYSICAL DESIGN

Internal Schema

Application Programs

TRANSACTION
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

DBMS-specific

DBMS-independent

High-Level Transaction
Specification

FUNCTIONAL ANALYSIS

Figure 3.1
A simplified diagram to illustrate the main phases of database design.

https://hemanthrajhemu.github.io

62 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during
functional analysis. This also serves to confirm that the conceptual schema meets
all the identified functional requirements. Modifications to the conceptual schema
can be introduced if some functional requirements cannot be specified using the
initial schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational (SQL) model—so the conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called logical design or data model mapping; its result is a database
schema in the implementation data model of the DBMS. Data model mapping is
often automated or semiautomated within the database design tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the
high-level transaction specifications.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application
In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and
projects. Suppose that after the requirements collection and analysis phase, the
database designers provide the following description of the miniworld—the part of
the company that will be represented in the database.

https://hemanthrajhemu.github.io

 3.3 Entity Types, Entity Sets, Attributes, and Keys 63

■ The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing
the department. A department may have several locations.

■ A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

■ The database will store each employee’s name, Social Security number,2
address, salary, sex (gender), and birth date. An employee is assigned to one
department, but may work on several projects, which are not necessarily
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as
well as the direct supervisor of each employee (who is another employee).

■ The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic concept that the ER model represents is
an entity, which is a thing or object in the real world with an independent existence.
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for
instance, a company, a job, or a university course). Each entity has attributes—the
particular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity

2The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.

https://hemanthrajhemu.github.io

64 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e1 has four attributes: Name, Address, Age, and Home_phone; their values
are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’,
respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION1 N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.

https://hemanthrajhemu.github.io

 3.3 Entity Types, Entity Sets, Attributes, and Keys 65

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the
values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its

Name = John Smith Name = Sunco Oil

Headquarters = Houston

President = John Smith

Address = 2311 Kirby
Houston, Texas 77001

Age = 55

e1 c1

Home_phone = 713-749-2630

Figure 3.3
Two entities,
EMPLOYEE e1, and
COMPANY c1, and
their attributes.

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Address

CityStreet_address

Number Street Apartment_number

State Zip

Figure 3.4
A hierarchy of
composite attributes.

https://hemanthrajhemu.github.io

66 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have any
college degrees, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for the
College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values allowed
for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from related
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity
can be derived by counting the number of employees related to (working for) that
department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have
NULL for College_degrees. NULL can also be used if we do not know the value of an
attribute for a particular entity—for example, if we do not know the home phone
number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is
not applicable, whereas the meaning of the latter is unknown. The unknown category
of NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping

https://hemanthrajhemu.github.io

 3.3 Entity Types, Entity Sets, Attributes, and Keys 67

components of a composite attribute between parentheses () and separating
the components with commas, and by displaying multivalued attributes between
braces { }. Such attributes are called complex attributes. For example, if a person
can have more than one residence and each residence can have a single address and
multiple phones, an attribute Address_phone for a person can be specified as shown
in Figure 3.5.4 Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 3.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the
values of their attributes. The collection of all entities of a particular entity type in the

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 13).

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

Figure 3.5
A complex attribute:
Address_phone.

Entity Type Name:

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary

(John Smith, 55, 80k)

(Fred Brown, 40, 30K)

(Judy Clark, 25, 20K)

e1 c1

c2e2

e3

(Sunco Oil, Houston, John Smith)

(Fast Computer, Dallas, Bob King)

Figure 3.6
Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.

https://hemanthrajhemu.github.io

68 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

database at any point in time is called an entity set or entity collection; the entity set
is usually referred to using the same name as the entity type, even though they are
two separate concepts. For example, EMPLOYEE refers to both a type of entity as
well as the current collection of all employee entities in the database. It is now more
common to give separate names to the entity type and entity collection; for example
in object and object-relational data models (see Chapter 12).

An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually
has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 3.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute
of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in

5We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams, and some additional diagrammatic notations are given in Appendix A.

https://hemanthrajhemu.github.io

 3.3 Entity Types, Entity Sets, Attributes, and Keys 69

its own right. The Registration attribute is an example of a composite key formed
from two simple component attributes, State and Number, neither of which is a key
on its own. An entity type may also have no key, in which case it is called a weak
entity type (see Section 3.5).

In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not typically displayed in basic ER diagrams and are similar to the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. However, data types of attributes can

Model

Make

Vehicle_id

Year

Color

Registration

State(a)

(b)

Number

CAR

CAR1
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

Figure 3.7
The CAR entity type
with two key attributes,
Registration and
Vehicle_id. (a) ER
diagram notation.
(b) Entity set with
three entities.

https://hemanthrajhemu.github.io

70 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

be specified in UML class diagrams (see Section 3.8) and in other diagrammatic
notations used in database design tools. Additional data types to represent common
database types, such as date, time, and other concepts, are also employed.

Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set6 P(V) of V:

A : E → P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value
is represented by the empty set. For single-valued attributes, A(e) is restricted to
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.7 For a composite attribute A, the value set V is the power set of
the Cartesian product of P(V1), P(V2), . . . , P(Vn), where V1, V2, . . . , Vn are the
value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld and correspond to the data as it actually exists in
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and
 Controlling_department. Both Name and Number are (separate) key attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

6The power set P(V) of a set V is the set of all subsets of V.
7A singleton set is a set with only one element (value).

https://hemanthrajhemu.github.io

 3.3 Entity Types, Entity Sets, Attributes, and Keys 71

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the
database has to store the number of hours per week an employee works on each
project. This requirement is listed as part of the third requirement in Section 3.2,
and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it
can be represented as a multivalued composite attribute of PROJECT called
Workers with the simple components (Employee, Hours). We choose the first

Address

Sex

Birth_date

Project Hours

Works_on

Fname Minit Lname

Department

Salary

Supervisor

Name

EMPLOYEE

Ssn

Sex

Relationship

Employee

Dependent_name
DEPENDENT

Birth_date

Location

Number

Controlling_department

Name

PROJECT

Manager_start_date

Number

ManagerDEPARTMENT

Name

Locations

Figure 3.8
Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.

https://hemanthrajhemu.github.io

72 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 alternative in Figure 3.8; we shall see in the next section that this will be refined into
a many-to-many relationship, once we introduce the concepts of relationships.

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to
an employee who manages the department; the attribute Controlling_department
of PROJECT refers to the department that controls the project; the attribute
Supervisor of EMPLOYEE refers to another employee (the one who supervises this
employee); the attribute Department of EMPLOYEE refers to the department for
which the employee works; and so on. In the ER model, these references should not
be represented as attributes but as relationships. The initial COMPANY database
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances ri, where each ri associates n
individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej,
1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . , En;
 alternatively, it can be defined as a subset of the Cartesian product of the entity sets
E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the
relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to
participate in the relationship instance ri = (e1, e2, . . . , en).

Informally, each relationship instance ri in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance ri represents the fact that the entities participating in ri
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types

https://hemanthrajhemu.github.io

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 73

EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT
entity. Figure 3.9 illustrates this example, where each relationship instance ri is
shown connected to the EMPLOYEE and DEPARTMENT entities that participate
in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work
for department d1; the employees e2 and e4 work for department d2; and the employ-
ees e5 and e7 work for department d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box
(see Figure 3.2).

3.4.2 Relationship Degree, Role Names, and Recursive
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree
two. A relationship type of degree two is called binary, and one of degree three is
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance ri associates three entities—a supplier s, a
part p, and a project j—whenever s supplies part p to project j. Relationships can

EMPLOYEE WORKS_FOR DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

Figure 3.9
Some instances in
the WORKS_FOR
relationship set,
which represents a
relationship type
WORKS_FOR
between EMPLOYEE
and DEPARTMENT.

https://hemanthrajhemu.github.io

74 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships;
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type, where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attribute,
we always have two options or two points of view. In this example, the alternative point
of view is to think of a multivalued attribute Employees of the entity type
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power
set of the EMPLOYEE entity set. Either of these two attributes—Department of
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.8

SUPPLIER

PART

SUPPLY PROJECT

p1

p2

p3

r1

r2

r3

r4

r5

r6

r7

j1

j2

j3

s1

s2

Figure 3.10
Some relationship
instances in the
 SUPPLY ternary
 relationship set.

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 12), relationships can be represented by
 reference attributes, either in one direction or in both directions as inverses. In relational databases
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

https://hemanthrajhemu.github.io

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 75

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker
and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used
as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes
essential for distinguishing the meaning of the role that each participating entity
plays. Such relationship types are called recursive relationships or self-referencing
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type
participates twice in SUPERVISION: once in the role of supervisor (or boss), and
once in the role of supervisee (or subordinate). Each relationship instance ri in
SUPERVISION associates two different employee entities ej and ek, one of which
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the
lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the
supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 super-
vises e1 and e4. In this example, each relationship instance must be connected with
two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

EMPLOYEE

2

2

2

SUPERVISION

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

2

2

2

1

1

1

1

1

1

Figure 3.11
A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (2).

https://hemanthrajhemu.github.io

76 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.4.3 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees (N),9 but an employee
can be related to (work for) at most one department (1). This means that for
this particular relationship type WORKS_FOR, a particular department entity can
be related to any number of employees (N indicates there is no maximum number).
On the other hand, an employee can be related to a maximum of one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,
and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage at

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is
used instead of N.

EMPLOYEE MANAGES DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

d1

d2

d3

r1

r2

r3

Figure 3.12
A 1:1 relationship,
MANAGES.

https://hemanthrajhemu.github.io

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 77

most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the
miniworld rule is that an employee can work on several projects and a project can
have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every
employee to manage a department, so the participation of EMPLOYEE in the

EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

p4

Figure 3.13
An M:N relationship,
WORKS_ON.

https://hemanthrajhemu.github.io

78 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

MANAGES relationship type is partial, meaning that some or part of the set of
employee entities are related to some department entity via MANAGES, but not
 necessarily all. We will refer to the cardinality ratio and participation constraints,
taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,
we can either specify no minimum (partial participation) or a minimum of one (total
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that a particular employee works
on a particular project, we can include an attribute Hours for the WORKS_ON
relationship type in Figure 3.13. Another example is to include the date on which
a manager started managing a department via an attribute Start_date for the
MANAGES relationship type in Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT,
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1
relationship, so every department or employee entity participates in at most one
relationship instance. Hence, the value of the Start_date attribute can be determined
separately, either by the participating department entity or by the participating
employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for at most one
department, and hence participates in at most one relationship instance in
WORKS_FOR, but a department can have many employees, each with a different start date.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.

For M:N (many-to-many) relationship types, some attributes may be determined
by the combination of participating entities in a relationship instance, not by any
single entity. Such attributes must be specified as relationship attributes. An example
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number
of hours per week an employee currently works on a project is determined by an
employee-project combination and not separately by either entity.

https://hemanthrajhemu.github.io

 3.5 Weak Entity Types 79

3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying
or owner entity type,10 and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type.11 A weak entity type
always has a total participation constraint (existence dependency) with respect to its
identifying relationship because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,
even though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.12 In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a multivalued composite attribute with the
component attributes Name, Birth_date, Sex, and Relationship. The choice of which
representation to use is made by the database designer. One criterion that may be
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

10The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11The weak entity type is also sometimes called the child entity type or the subordinate entity type.
12The partial key is sometimes called the discriminator.

https://hemanthrajhemu.github.io

80 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.6 Refining the ER Design for
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.

In our example, we specify the following relationship types:

■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.13 The attribute Start_date is assigned to this relationship type.

■ WORKS_FOR, a 1:N (one-to-many) relationship type between
DEPARTMENT and EMPLOYEE. Both participations are total.

■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some
departments may control no projects.

■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

■ WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
employees working on it. Both participations are determined to be total.

■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from
DEPENDENT. It is important to have the least possible redundancy when we design the
conceptual schema of a database. If some redundancy is desired at the storage level or at
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.

https://hemanthrajhemu.github.io

 3.7 ER Diagrams, Naming Conventions, and Design Issues 81

3.7 ER Diagrams, Naming Conventions,
and Design Issues

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in
relationship types by displaying their entity sets and relationship sets (or
 extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity
sets may change frequently. In addition, the schema is obviously easier to display,
because it is much smaller.

Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Regular (strong) entity types such as
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are
shown in diamond-shaped boxes attached to the participating entity types with
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.
The partial key of the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified
by attaching a 1, M, or N on each participating edge. The cardinality ratio
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double
lines for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because
each employee in the role of supervisee has at most one direct supervisor, whereas
an employee in the role of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 3.7.4 and
Appendix A).

https://hemanthrajhemu.github.io

82 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to
the different constructs in the schema. We choose to use singular names for entity
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters,
attribute names have their initial letter capitalized, and role names are in lowercase
letters. We have used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements,
the nouns appearing in the narrative tend to give rise to entity type names, and the
verbs tend to indicate names of relationship types. Attribute names generally arise
from additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To
change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
 section, we give some brief guidelines as to which construct should be chosen in
particular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

■ A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses of
one another are refined into a binary relationship. We discussed this type of
refinement in detail in Section 3.6. It is important to note that in our notation,

https://hemanthrajhemu.github.io

 3.7 ER Diagrams, Naming Conventions, and Design Issues 83

MeaningSymbol

Entity

Weak Entity

Indentifying Relationship

Relationship

Composite Attribute

. . .

Key Attribute

Attribute

Derived Attribute

Multivalued Attribute

Total Participation of E2 in RRE1 E2

Cardinality Ratio 1: N for E1 : E2 in RRE1 E2
N1

Structural Constraint (min, max)
on Participation of E in RR E

(min, max)

Figure 3.14
Summary of the
notation for ER
diagrams.

https://hemanthrajhemu.github.io

84 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

once an attribute is replaced by a relationship, the attribute itself should be
removed from the entity type to avoid duplication and redundancy.

■ Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that each
of several entity types in a UNIVERSITY database, such as STUDENT,
INSTRUCTOR, and COURSE, has an attribute Department in the
initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute Dept_name and relate it to the three
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

■ An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In
this case, DEPARTMENT may be reduced or demoted to an attribute of
STUDENT.

■ Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams
There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double-line notation for participation constraints. This notation
involves associating a pair of integer numbers (min, max) with each participation
of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1. The
numbers mean that for each entity e in E, e must participate in at least min and at
most max relationship instances in R at any point in time. In this method,
min = 0 implies partial participation, whereas min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.14 Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we
can use it to specify some structural constraints for relationship types of higher
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.

Figure 3.15 also displays all the role names for the COMPANY database schema.

14In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

https://hemanthrajhemu.github.io

 3.8 Example of Other Notation: UML Class Diagrams 85

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here and compare them with ER diagrams. In some

EMPLOYEE

Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor
(0,N) (0,1)

(1,1)
Employee

(1,1)

(1,N)

(1,1)

(0,N)Department
Managed

(4,N)

Department

(0,1)
Manager

Supervisee

SUPERVISION

Hours

WORKS_ON

CONTROLS

DEPENDENTS_OF

Name
Location

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR

DEPENDENT

Sex Birth_date RelationshipName

Controlling
Department

Controlled
Project

Project

(1,N)
Worker

(0,N)
Employee

(1,1) Dependent

Fname

Figure 3.15
ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

https://hemanthrajhemu.github.io

86 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16
shows how the COMPANY ER database schema in Figure 3.15 can be displayed
using UML class diagram notation. The entity types in Figure 3.15 are modeled as
classes in Figure 3.16. An entity in ER corresponds to an object in UML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or
data type) of an attribute if desired, by placing a colon (:) followed by the domain
name or description, as illustrated by the Name, Sex, and Bdate attributes
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the
LOCATION class in Figure 3.16.

supervisee

Name: Name_dom
Fname
Minit
Lname

Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

4..*

1..*

1..* *

*

1..1

1..1

1..1

1..1

1..*

0..1

0..*

0..*

age
change_department
change_projects
. . .

Sex: {M,F}
Birth_date: Date
Relationship

DEPENDENT

. . .

0..1
supervisor

Dependent_name

EMPLOYEE

Name
Number

add_employee
number_of_employees
change_manager
. . .

DEPARTMENT

Name
Number

add_employee
add_project
change_manager
. . .

PROJECT

Start_date

MANAGES

CONTROLS

Hours

WORKS_ON Name

LOCATION

1..1
0..*
0..1

Multiplicity
Notation in OMT:

Aggregation
Notation in UML:

Whole Part

WORKS_FOR

Figure 3.16
The COMPANY conceptual schema in UML class diagram notation.

https://hemanthrajhemu.github.io

 3.8 Example of Other Notation: UML Class Diagrams 87

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig -
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)
is called a reflexive association in UML, and the role names—like the multiplicities—
are placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation.
 Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled
the locations of a department and the single location of a project as aggregations.
However, aggregation and association do not have different structural properties, and
the choice as to which type of relationship to use—aggregation or association—is
somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to
EMPLOYEE. In addition, relationship instances may be specified to be ordered.
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by
their Start_date attribute value. Association (relationship) names are optional in
UML, and relationship attributes are displayed in a box attached with a dashed
line to the line representing the association/aggregation (see Start_date and Hours
in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion.

https://hemanthrajhemu.github.io

88 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Weak entities can be modeled using the UML construct called qualified association
(or qualified aggregation); this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called
the discriminator, because its value distinguishes the objects associated with
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to
modeling weak entities, and they can be used to model other situations in UML.

This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

3.9 Relationship Types of Degree
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree
relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at the
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently
supplying a PART p to a PROJECT j. In general, a relationship type R of degree n will
have n edges in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY,
USES, and SUPPLIES. In general, a ternary relationship type represents different
information than do three binary relationship types. Consider the three binary
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p),
(j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY,
because the meaning is different. It is often tricky to decide whether a particular
relationship should be represented as a relationship type of degree n or should be

https://hemanthrajhemu.github.io

 3.9 Relationship Types of Degree Higher than Two 89

broken down into several relationship types of smaller degrees. The designer must
base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are
needed by the application.

(a) SUPPLY

Sname

Part_no

SUPPLIER

Quantity

PROJECT

PART

Proj_name

(b)

(c)

Part_no

PART

N

Sname

SUPPLIER

Proj_name

PROJECT

N

Quantity

SUPPLY
N1

Part_no

M N

CAN_SUPPLY

N

M

Sname

SUPPLIER

Proj_name

PROJECT

USES

PART

M

N

SUPPLIES

SP

SPJSS
1

1

Figure 3.17
Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

https://hemanthrajhemu.github.io

90 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its
three owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to each of the three participating
entity types.

Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers
COURSE c during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors
who taught some course during that semester, and OFFERED_DURING relates a
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance
(i, c) exists in CAN_TEACH. However, the reverse is not always true;
we may have instances (i, s), (s, c), and (i, c) in the three binary relationship types
with no corresponding instance (i, s, c) in OFFERS. Note that in this example,
based on the meanings of the relationships, we can infer the instances of
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but

Cnumber
CAN_TEACH

Lname

INSTRUCTOR

Sem_year

YearSemester

SEMESTER

OFFERED_DURING

COURSE

OFFERS

TAUGHT_DURING

Figure 3.18
Another example of
ternary versus binary
relationship types.

https://hemanthrajhemu.github.io

 3.9 Relationship Types of Degree Higher than Two 91

we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and
OFFERED_DURING are redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a
course can be taught by only one instructor), then the ternary relationship OFFERS
can be left out because it can be inferred from the three binary relationships
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer
must analyze the meaning of each specific situation to decide which of the binary
and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19. This example shows part of a
database that keeps track of candidates interviewing for jobs at various companies,
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on
one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

Dept_date

DateDepartment

RESULTS_IN

Name

CANDIDATE

Cname

COMPANY

INTERVIEW JOB_OFFER

CCI

Figure 3.19
A weak entity type
INTERVIEW with a
 ternary identifying
 relationship type.

https://hemanthrajhemu.github.io

92 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 participation arc (both M and N symbols stand for many or any number).15 Let us
 illustrate this constraint using the SUPPLY relationship in Figure 3.17.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.16 If all three cardinalities are M or N, then the key will
be the combination of all three participants.

The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,17 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database
We now present another example, a UNIVERSITY database, to illustrate the ER
modeling concepts. Suppose that a database is needed to keep track of student
enrollments in classes and students’ final grades. After analyzing the miniworld
rules and the users’ needs, the requirements for this database were determined to be
as follows (for brevity, we show the chosen entity type names and attribute names
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

■ The university is organized into colleges (COLLEGE), and each college has a
unique name (CName), a main office (COffice) and phone (CPhone), and a
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a
unique name (DName), a unique code number (DCode), a main office
(DOffice) and phone (DPhone), and a particular faculty member who chairs
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.
17The (min, max) constraints can determine the keys for binary relationships.

https://hemanthrajhemu.github.io

 3.10 Another Example: A UNIVERSITY Database 93

■ A department offers a number of courses (COURSE), each of which has a
unique course name (CoName), a unique code number (CCode), a course
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit
hours (Credits), and a course description (CDesc). The database also keeps
track of instructors (INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank);
in addition, each instructor works for one primary academic department.

■ The database will keep student data (STUDENT) and stores each student’s
name (SName, composed of first name (FName), middle name (MName),
last name (LName)), student id (Sid, unique for every student), address
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep
track of the student’s grades in each section the student has completed.

■ Courses are offered as sections (SECTION). Each section is related to a single
course and a single instructor and has a unique section identifier (SecId). A
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year
(Year), classroom (CRoom: this is coded as a combination of building code
(Bldg) and room number (RoomNo) within the building), and days/times
(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep
track of all the sections offered for the past several years, in addition to the
current offerings. The SecId is unique for all sections, not just the sections for
a particular semester.) The database keeps track of the students in each section,
and the grade is recorded when available (this is a many-to-many relationship
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER
diagrammatic notation. Notice that for the SECTION entity type, we only showed
SecID as an underlined key, but because of the miniworld constraints, several other
combinations of values have to be unique for each section entity. For example, each of
the following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This
specifies that the section numbers of a particular course must be different
during each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester
and year, a classroom cannot be used by two different sections at the same
days/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):
This specifies that in a particular semester and year, an instructor cannot
teach two sections at the same days/time. Note that this rule will not apply if
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?

https://hemanthrajhemu.github.io

94 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

COLLEGE

DEPT

COURSE SECTION SecNoSECS

Grade

TAKES

Sem
Year

INSTRUCTOR

COffice

TEACHES

ADMINS

DEAN

MName

SName
Addr

Phone

Major

DOB

FName

STUDENT

LName

CHAIR

CStartDate

EMPLOYS

HAS

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,1)

(0,1)

(0,1)

(5,N)

CName

DName

CCode SecId

IOffice

IName

Rank

CPhone

DCode

DOffice

CoName

Credits

CDesc

Level

DPhone

IPhoneId

SId

OFFERS

CRoom

Bldg RoomNo

DaysTime

Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary
In this chapter we presented the modeling concepts of a high-level conceptual data
model, the entity–relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the

https://hemanthrajhemu.github.io

 3.11 Summary 95

examples that is used throughout this text. We defined the basic ER model concepts
of entities and their attributes. Then we discussed NULL values and presented the
various types of attributes, which can be nested arbitrarily to produce complex
attributes:

■ Simple or atomic

■ Composite

■ Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the
ER model concepts at the schema or “intension” level:

■ Entity types and their corresponding entity sets

■ Key attributes of entity types

■ Value sets (domains) of attributes

■ Relationship types and their corresponding relationship sets

■ Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

■ Cardinality ratios (1:1, 1:N, M:N for binary relationships)

■ Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types and partial key
attributes.

Entity–relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they
relate to ER modeling concepts. We also described ternary and higher-degree
relationship types in more detail, and we discussed the circumstances under which
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the
ER schema design.

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.

https://hemanthrajhemu.github.io

96 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Review Questions
 3.1. Discuss the role of a high-level data model in the database design process.

 3.2. List the various cases where use of a NULL value would be appropriate.

 3.3. Define the following terms: entity, attribute, attribute value, relationship
instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.

 3.6. What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

 3.7. What is a participation role? When is it necessary to use role names in the
description of relationship types?

 3.8. Describe the two alternatives for specifying structural constraints on rela-
tionship types. What are the advantages and disadvantages of each?

 3.9. Under what conditions can an attribute of a binary relationship type be
migrated to become an attribute of one of the participating entity types?

 3.10. When we think of relationships as attributes, what are the value sets of these
attributes? What class of data models is based on this concept?

 3.11. What is meant by a recursive relationship type? Give some examples of
recursive relationship types.

 3.12. When is the concept of a weak entity used in data modeling? Define the
terms owner entity type, weak entity type, identifying relationship type, and
partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.

 3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
 3.16. Which combinations of attributes have to be unique for each individual

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce
each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.

https://hemanthrajhemu.github.io

 Exercises 97

 b. During a particular semester and year, an instructor can teach only one
section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sections
offered for the same course must all be different.

 Can you think of any other similar constraints?

 3.17. Composite and multivalued attributes can be nested to any number of lev-
els. Suppose we want to design an attribute for a STUDENT entity type to
keep track of previous college education. Such an attribute will have one
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and
year the degree was awarded, and each transcript entry contains a course
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that
uses only entity types (including weak entity types, if needed) and relation-
ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as
possible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE’s Name
(e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state
(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}).
Each CONGRESS_PERSON in the House of Representatives is described by
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,
‘Other’}). The database keeps track of each BILL (i.e., proposed law),
including the Bill_name, the Date_of_vote on the bill, whether the bill
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain

https://hemanthrajhemu.github.io

98 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Restrictions

M

N

N

1

N

N

1

1N

AIRPORT

City State

AIRPLANE_
TYPE

Dep_time

Arr_time

Name

Scheduled_dep_time

INSTANCE_OF

Weekdays

Airline

Instances

N

1

1 N

Airport_code

Number

Scheduled_arr_time

CAN_
LAND

TYPE

N

1

DEPARTS

N

1

ARRIVES

N1
ASSIGNED

ARRIVAL_
AIRPORT

DEPARTURE_
AIRPORT N1

SEAT

Max_seatsType_name

Code

AIRPLANE

Airplane_id Total_no_of_seats

LEGS

FLIGHT

FLIGHT_LEG

Leg_no

FARES

FARE

Amount

CphoneCustomer_name

Date

No_of_avail_seats

RESERVATION
Seat_no

Company

LEG_INSTANCE

Notes:
A LEG (segment) is a nonstop portion of a flight.
A LEG_INSTANCE is a particular occurrence
 of a LEG on a particular date.

1

Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema
diagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of

https://hemanthrajhemu.github.io

 Exercises 99

the game. Design an ER schema diagram for this application, stating any
assumptions you make. Choose your favorite sport (e.g., soccer, baseball,
football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.
Each bank can have multiple branches, and each branch can have multiple
accounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.

 b. Is there a weak entity type? If so, give its name, partial key, and identify-
ing relationship.

 c. What constraints do the partial key and the identifying relationship of the
weak entity type specify in this diagram?

 d. List the names of all relationship types, and specify the (min, max)
 constraint on each participation of an entity type in a relationship type.
Justify your choices.

BANK

LOAN

Balance

Type

AmountLoan_no

1

N

1

N

N
N

M M

NameCode

1 N BANK_BRANCH

L_CA_C

ACCTS LOANS

BRANCHES

ACCOUNT

CUSTOMER

Acct_no

Name

AddrPhone

Type

Addr Branch_noAddr

Ssn

Figure 3.22
An ER diagram for a BANK database schema.

https://hemanthrajhemu.github.io

100 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. List concisely the user requirements that led to this ER schema design.

 f. Suppose that every customer must have at least one account but is
restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may
work in up to two departments or may not be assigned to any department.
Assume that each department must have one and may have up to three
phone numbers. Supply (min, max) constraints on this diagram. State clearly
any additional assumptions you make. Under what conditions would the
relationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from
two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

EMPLOYEE DEPARTMENT

CONTAINSHAS_PHONE

WORKS_IN

PHONE

Figure 3.23
Part of an ER diagram
for a COMPANY
 database.

INSTRUCTOR COURSE

USES

TEACHES

TEXT

Figure 3.24
Part of an ER diagram
for a COURSES
 database.

https://hemanthrajhemu.github.io

 Exercises 101

 3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes
the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible
time periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50
a.m.’, . . . , ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during
a particular semester, its section offerings are numbered 1, 2, 3, and so
on). There are several composite keys for section, and some attributes
are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2

1. STUDENT ______________ SOCIAL_SECURITY_CARD

2. STUDENT ______________ TEACHER

3. CLASSROOM ______________ WALL

4. COUNTRY ______________ CURRENT_PRESIDENT

5. COURSE ______________ TEXTBOOK

6. ITEM (that can be found
in an order)

______________ ORDER

7. STUDENT ______________ CLASS

8. CLASS ______________ INSTRUCTOR

9. INSTRUCTOR ______________ OFFICE

10. EBAY_AUCTION_ITEM ______________ EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.

 Assume that MOVIES is a populated database. ACTOR is used as a generic term
and includes actresses. Given the constraints shown in the ER schema, respond
to the following statements with True, False, or Maybe. Assign a response of
Maybe to statements that, although not explicitly shown to be True, cannot be
proven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.

 b. There are some actors who have acted in more than ten movies.

 c. Some actors have done a lead role in multiple movies.

 d. A movie can have only a maximum of two lead actors.

https://hemanthrajhemu.github.io

102 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. Every director has been an actor in some movie.

 f. No producer has ever been an actor.

 g. A producer cannot be an actor in some other movie.

 h. There are movies with more than a dozen actors.

 i. Some producers have been a director as well.

 j. Most movies have one director and one producer.

 k. Some movies have one director but several producers.

 l. There are some actors who have done a lead role, directed a movie, and
produced a movie.

 m. No movie has a director who also acted in that movie.

 3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an
instance diagram using three movies that have been released recently.
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,
DIRECTORS involved; make up instances of the relationships as they exist in
reality for those movies.

ACTOR
MOVIE

LEAD_ROLE

PERFORMS_IN

DIRECTSDIRECTOR

ALSO_A_
DIRECTOR

PRODUCESPRODUCER

ACTOR_
PRODUCER

1

1

1

1
1

M

M

2 N

N

N

N

Figure 3.25
An ER diagram for a MOVIES database schema.

https://hemanthrajhemu.github.io

 Laboratory Exercises 103

 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should
observe the following requirements:

 a. A student should have the ability to compute his/her GPA and add or
drop majors and minors.

 b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

 c. Each instructor should be able to assign or change a student’s grade for a
course.

 Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises
 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER

schema for this database using a data modeling tool such as ERwin or
Rational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:

■ The mail order company has employees, each identified by a unique em-
ployee number, first and last name, and Zip Code.

■ Each customer of the company is identified by a unique customer number,
first and last name, and Zip Code.

■ Each part sold by the company is identified by a unique part number, a
part name, price, and quantity in stock.

■ Each order placed by a customer is taken by an employee and is given a
unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

 Design an entity–relationship diagram for the mail order database and build
the design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie
industry. The data requirements are summarized as follows:

■ Each movie is identified by title and year of release. Each movie has a
length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in it.
Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

■ Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.

https://hemanthrajhemu.github.io

104 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

■ Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

■ Production companies are identified by name and each has an address. A
production company produces one or more movies.

 Design an entity–relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject
the paper. The data requirements are summarized as follows:

■ Authors of papers are uniquely identified by e-mail id. First and last names
are also recorded.

■ Each paper is assigned a unique identifier by the system and is described
by a title, abstract, and the name of the electronic file containing the paper.

■ A paper may have multiple authors, but one of the authors is designated as
the contact author.

■ Reviewers of papers are uniquely identified by e-mail address. Each re-
viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

■ Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

■ Each review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

 Design an entity–relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21.
Build this design using a data modeling tool such as ERwin or Rational Rose.

Selected Bibliography
The entity–relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and
Senko (1975). Since then, numerous modifications to the ER model have been
 suggested. We have incorporated some of these in our presentation. Structural

https://hemanthrajhemu.github.io

 Selected Bibliography 105

 constraints on relationships are discussed in Abrial (1974), Elmasri and Wieder-
hold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attri-
butes are incorporated in the ER model in Elmasri et al. (1985). Although we did
not discuss languages for the ER model and its extensions, there have been several
proposals for such languages. Elmasri and Wiederhold (1981) proposed the
GORDAS query language for the ER model. Another ER query language was pro-
posed by Markowitz and Raz (1983). Senko (1980) presented a query language for
Senko’s DIAM model. A formal set of operations called the ER algebra was
 presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-
sented another formal language for the ER model. Campbell et al. (1985) presented
a set of ER operations and showed that they are relationally complete. A conference
for the dissemination of research results related to the ER model has been held reg-
ularly since 1979. The conference, now known as the International Conference on
Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997),
Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New
York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland
(ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992),
Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia
(ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER
1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Fin-
land (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagen-
furt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER
2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009).
The 2010 conference was held in Vancouver, British Columbia, Canada (ER2010),
2011 in Brussels, Belgium (ER2011), 2012 in Florence, Italy (ER2012) , 2013 in
Hong Kong, China (ER2013), and the 2014 conference was held in Atlanta, Georgia
(ER 2014). The 2015 conference is to be held in Stockholm, Sweden.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

