

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

xviii Contents

■ part 2
Conceptual Data Modeling and Database Design ■

chapter 3 Data Modeling Using the Entity–Relationship (ER)
Model 59

3.1 Using High-Level Conceptual Data Models
for Database Design 60

3.2 A Sample Database Application 62
3.3 Entity Types, Entity Sets, Attributes, and Keys 63
3.4 Relationship Types, Relationship Sets, Roles, and Structural

Constraints 72
3.5 Weak Entity Types 79
3.6 Refining the ER Design for the COMPANY Database 80
3.7 ER Diagrams, Naming Conventions, and Design Issues 81
3.8 Example of Other Notation: UML Class Diagrams 85
3.9 Relationship Types of Degree Higher than Two 88
3.10 Another Example: A UNIVERSITY Database 92
3.11 Summary 94
Review Questions 96
Exercises 96
Laboratory Exercises 103
Selected Bibliography 104

chapter 4 The Enhanced Entity–Relationship (EER)
Model 107

4.1 Subclasses, Superclasses, and Inheritance 108
4.2 Specialization and Generalization 110
4.3 Constraints and Characteristics of Specialization and Generalization

Hierarchies 113
4.4 Modeling of UNION Types Using Categories 120
4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal

Definitions 122
4.6 Example of Other Notation: Representing Specialization and

Generalization in UML Class Diagrams 127
4.7 Data Abstraction, Knowledge Representation, and Ontology

Concepts 128
4.8 Summary 135
Review Questions 135
Exercises 136
Laboratory Exercises 143
Selected Bibliography 146

https://hemanthrajhemu.github.io

 Contents xix

■ part 3
The Relational Data Model and SQL ■

chapter 5 The Relational Data Model and Relational
Database Constraints 149

5.1 Relational Model Concepts 150
5.2 Relational Model Constraints and Relational Database Schemas 157
5.3 Update Operations, Transactions, and Dealing with Constraint

Violations 165
5.4 Summary 169
Review Questions 170
Exercises 170
Selected Bibliography 175

chapter 6 Basic SQL 177

6.1 SQL Data Definition and Data Types 179
6.2 Specifying Constraints in SQL 184
6.3 Basic Retrieval Queries in SQL 187
6.4 INSERT, DELETE, and UPDATE Statements in SQL 198
6.5 Additional Features of SQL 201
6.6 Summary 202
Review Questions 203
Exercises 203
Selected Bibliography 205

chapter 7 More SQL: Complex Queries, Triggers, Views,
and Schema Modification 207

7.1 More Complex SQL Retrieval Queries 207
7.2 Specifying Constraints as Assertions and Actions as Triggers 225
7.3 Views (Virtual Tables) in SQL 228
7.4 Schema Change Statements in SQL 232
7.5 Summary 234
Review Questions 236
Exercises 236
Selected Bibliography 238

chapter 8 The Relational Algebra and Relational Calculus 239

8.1 Unary Relational Operations: SELECT and PROJECT 241
8.2 Relational Algebra Operations from Set Theory 246

https://hemanthrajhemu.github.io

107

4

The Enhanced Entity–Relationship

(EER) Model

The ER modeling concepts discussed in Chapter 3
are sufficient for representing many database sche-

mas for traditional database applications, which include many data-processing
applications in business and industry. Since the late 1970s, however, designers of
database applications have tried to design more accurate database schemas that
reflect the data properties and constraints more precisely. This was particularly
important for newer applications of database technology, such as databases for
engineering design and manufacturing (CAD/CAM),1 telecommunications, com-
plex software systems, and geographic information systems (GISs), among many
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently
in related areas of computer science, such as the knowledge representation area of
artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data
models and show how the ER model can be enhanced to include these concepts,
which leads to the enhanced ER (EER) model.2 We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER
model. Then, in Section 4.2, we add the concepts of specialization and generalization.
Section 4.3 discusses the various types of constraints on specialization/generalization,
and Section 4.4 shows how the UNION construct can be modeled by including the

chapter 4

1CAD/CAM stands for computer-aided design/computer-aided manufacturing.

2EER has also been used to stand for extended ER model.

https://hemanthrajhemu.github.io

108 Chapter 4 The Enhanced Entity–Relationship (EER) Model

concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY
database schema in the EER model and summarizes the EER model concepts by
giving formal definitions. We will use the terms object and entity interchangeably
in this chapter, because many of these concepts are commonly used in object-
oriented models.

We present the UML class diagram notation for representing specialization and
generalization in Section 4.6, and we briefly compare these with EER notation and
concepts. This serves as an example of alternative notation, and is a continuation
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance

The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass
and the related concepts of specialization and generalization (see Sections 4.2
and 4.3). Another concept included in the EER model is that of a category or union
type (see Section 4.4), which is used to represent a collection of objects (entities)
that is the union of objects of different entity types. Associated with these concepts
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a
diagrammatic technique for displaying these concepts when they arise in an EER
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.

The first enhanced ER (EER) model concept we take up is that of a subtype or
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is
used to represent both a type of entity and the entity set or collection of entities of that
type that exist in the database. For example, the entity type EMPLOYEE describes the
type (that is, the attributes and relationships) of each employee entity, and also refers
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an
entity type has numerous subgroupings or subtypes of its entities that are meaningful
and need to be represented explicitly because of their significance to the database
application. For example, the entities that are members of the EMPLOYEE entity
type may be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or
collection of entities in each of the latter groupings is a subset of the entities that
belong to the EMPLOYEE entity set, meaning that every entity that is a member of
one of these subgroupings is also an employee. We call each of these subgroupings a

https://hemanthrajhemu.github.io

 4.1 Subclasses, Superclasses, and Inheritance 109

subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how
to represent these concepts diagramatically in EER diagrams. (The circle notation in
Figure 4.1 will be explained in Section 4.2.)

We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or supertype/subtype or simply class/subclass relationship.3

In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN
are two class/subclass relationships. Notice that a member entity of the subclass
represents the same real-world entity as some member of the superclass; for
example, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’
Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in
the database system, however, we may represent a member of the subclass as a
distinct database object—say, a distinct record that is related via the key attribute
to its superclass entity. In Section 9.2, we discuss various options for representing
superclass/subclass relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally

3A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and
so on.

MANAGES

d

Minit Lname

Name Birth_date AddressSsn

Fname

Eng_typeTgradeTyping_speed Pay_scale

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

Salary

PROJECT

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

TRADE_UNION

BELONGS_TO

d

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1

EER diagram
notation to represent
subclasses and
specialization.

https://hemanthrajhemu.github.io

110 Chapter 4 The Enhanced Entity–Relationship (EER) Model

as a member of any number of subclasses. For example, a salaried employee who is
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE
of the EMPLOYEE entity type. However, it is not necessary that every entity in a
superclass is a member of some subclass.

An important concept associated with subclasses (subtypes) is that of type
inheritance. Recall that the type of an entity is defined by the attributes it possesses
and the relationship types in which it participates. Because an entity in the subclass
represents the same real-world entity from the superclass, it should possess values
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of
the entity as a member of the superclass. The entity also inherits all the relationships
in which the superclass participates. Notice that a subclass, with its own specific (or
local) attributes and relationships together with all the attributes and relationships it
inherits from the superclass, can be considered an entity type in its own right.4

4.2 Specialization and Generalization

4.2.1 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,

ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.
We may have several specializations of the same entity type based on different
distinguishing characteristics. For example, another specialization of the
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,

HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on
the method of pay.

Figure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle
that represents the specialization, which is connected in turn to the superclass. The
subset symbol on each line connecting a subclass to the circle indicates the direction
of the superclass/subclass relationship.5 Attributes that apply only to entities of a
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of
the subclass. Similarly, a subclass can participate in specific relationship types,
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

4In some object-oriented programming languages, a common restriction is that an entity (or object) has
only one type. This is generally too restrictive for conceptual database modeling.

5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and
other proposed notations in Appendix A.

https://hemanthrajhemu.github.io

 4.2 Specialization and Generalization 111

relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1
and additional EER diagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY,

ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to
a subclass represents the same real-world entity as the entity connected to it in the
EMPLOYEE superclass, even though the same entity is shown twice; for example, e1
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as
the entity in the superclass but is playing a specialized role—for example, an
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in
the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of

EMPLOYEE

SECRETARY

ENGINEER

TECHNICIAN

e1

e2

e3

e4

e5

e6

e7

e8

e1

e2

e3

e4

e5

e7

e8

Figure 4.2

Instances of a specialization.

https://hemanthrajhemu.github.io

112 Chapter 4 The Enhanced Entity–Relationship (EER) Model

the superclass entity type. A subclass is defined in order to group the entities to
which these attributes apply. The members of the subclass may still share the
majority of their attributes with the other members of the superclass. For example,
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed,
whereas the ENGINEER subclass has the specific attribute Eng_type, but
SECRETARY and ENGINEER share their other inherited attributes from the
EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization

We can think of a reverse process of abstraction in which we suppress the differences
among several entity types, identify their common features, and generalize them
into a single superclass of which the original entity types are special subclasses. For
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because
they have several common attributes, they can be generalized into the entity type
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the

(a)

(b)

Max_speed

Vehicle_id

No_of_passengers

License_plate_no

CAR Price Price

License_plate_no

No_of_axles

Vehicle_id

Tonnage

TRUCK

Vehicle_id Price License_plate_no

VEHICLE

No_of_passengers

Max_speed

CAR TRUCK

No_of_axles

Tonnage

d

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

https://hemanthrajhemu.github.io

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 113

generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A
diagrammatic notation to distinguish between generalization and specialization is
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation
because the decision as to which process was followed in a particular situation is
often subjective.

So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a
superclass or subclass represents a collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are all shown in
rectangles in EER diagrams, like entity types.

4.3 Constraints and Characteristics
of Specialization and Generalization
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it
applies to both specialization and generalization. Then, we discuss differences
between specialization/generalization lattices (multiple inheritance) and hierarchies
(single inheritance), and we elaborate on the differences between the specialization
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization

In general, we may have several specializations defined on the same entity type (or
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses
in each of the specializations. A specialization may also consist of a single subclass
only, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do not
use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of
the superclass. Such subclasses are called predicate-defined (or condition-defined)
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 4.4, we can specify the condition of membership in the
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the
defining predicate of the subclass. This condition is a constraint specifying that
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type

https://hemanthrajhemu.github.io

114 Chapter 4 The Enhanced Entity–Relationship (EER) Model

is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by
writing the predicate condition next to the line that connects the subclass to the
specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the special-
ization.6 In this case, all the entities with the same value for the attribute belong to
the same subclass. We display an attribute-defined specialization by placing the
defining attribute name next to the arc from the circle to the superclass, as shown
in Figure 4.4.

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint
sets. This means that an entity can be a member of at most one of the subclasses of
the specialization. A specialization that is attribute-defined implies the disjointness
constraint (if the attribute used to define the membership predicate is single-
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The
d notation also applies to user-defined subclasses of a specialization that must be
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.

d

Minit Lname

Name Birth_date Address Job_typeSsn

Fname

Eng_typeTgrade
‘Technician’

Job_type

‘Secretary’ ‘Engineer’

Typing_speed

SECRETARY TECHNICIAN ENGINEER

EMPLOYEE

Figure 4.4

EER diagram notation
for an attribute-defined
specialization on
Job_type.

https://hemanthrajhemu.github.io

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 115

may be overlapping; that is, the same (real-world) entity may be a member of more
than one subclass of the specialization. This case, which is the default, is displayed
by placing an o in the circle, as shown in Figure 4.5.

The second constraint on specialization is called the completeness (or totalness)
constraint, which may be total or partial. A total specialization constraint specifies
that every entity in the superclass must be a member of at least one subclass
in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect
the superclass to the circle. A single line is used to display a partial specialization,
which allows an entity not to belong to any of the subclasses. For example, if some
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER,

TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.7

Notice that the disjointness and completeness constraints are independent. Hence,
we have the following four possible constraints on a specialization:

 ■ Disjoint, total

 ■ Disjoint, partial

 ■ Overlapping, total

 ■ Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that
applies to each specialization. In general, a superclass that was identified through
the generalization process usually is total, because the superclass is derived from the
subclasses and hence contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

 ■ Deleting an entity from a superclass implies that it is automatically deleted
from all the subclasses to which it belongs.

7The notation of using single or double lines is similar to that for partial or total participation of an entity
type in a relationship type, as described in Chapter 3.

Part_no Description

PARTManufacture_date

Drawing_no

PURCHASED_PART

Supplier_name
Batch_no

List_price

o

MANUFACTURED_PART

Figure 4.5

EER diagram notation
for an overlapping
(nondisjoint)
specialization.

https://hemanthrajhemu.github.io

116 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ Inserting an entity in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclasses for which
the entity satisfies the defining predicate.

 ■ Inserting an entity in a superclass of a total specialization implies that
the entity is mandatorily inserted in at least one of the subclasses of the
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2 Specialization and Generalization Hierarchies
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the
real-world constraint that every engineering manager is required to be an engineer.
A specialization hierarchy has the constraint that every subclass participates as a
subclass in only one class/subclass relationship; that is, each subclass has only one
parent, which results in a tree structure or strict hierarchy. In contrast, for a
specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may
be part of a conceptual schema for a UNIVERSITY database. Notice that this
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT
subclass, which is a subclass in two distinct class/subclass relationships.

d

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

ENGINEERING_MANAGER

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

d

Figure 4.6

A specialization lattice with shared subclass
ENGINEERING_MANAGER.

https://hemanthrajhemu.github.io

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 117

The requirements for the part of the UNIVERSITY database shown in Figure 4.7
are the following:

 1. The database keeps track of three types of persons: employees, alumni, and
students. A person can belong to one, two, or all three of these types. Each
person has a name, SSN, sex, address, and birth date.

 2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one
of these types. For each alumnus, a record of the degree or degrees that
he or she earned at the university is kept, including the name of the
degree, the year granted, and the major department. Each student has a
major department.

 3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching
assistants, and the percent of time that they work is recorded in the database.
Research assistants have their research project stored, whereas teaching
assistants have the current course they work on.

STAFF

Percent_time

FACULTY

Name Sex Address

PERSON

Salary

EMPLOYEE

Major_dept

Birth_date

ALUMNUS

d

o

STUDENT_
ASSISTANT

STUDENT

Degrees

DegreeYear Major

GRADUATE_
STUDENT

d

UNDERGRADUATE_
STUDENT

RESEARCH_ASSISTANT

d

TEACHING_ASSISTANT

Position Rank Degree_program Class

CourseProject

Ssn

Figure 4.7

A specialization lattice
with multiple inheritance
for a UNIVERSITY
database.

https://hemanthrajhemu.github.io

118 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4. Students are further classified as either graduate or undergraduate, with
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on)
for graduate students and class (freshman, sophomore, and so on) for
undergraduates.

In Figure 4.7, all person entities represented in the database are members of
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE,

ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT,

UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the
specialization {STUDENT_ASSISTANT, FACULTY, STAFF} . Notice that
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT
is the superclass for the specialization into {RESEARCH_ASSISTANT,

TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not
only of its direct superclass, but also of all its predecessor superclasses all the way to
the root of the hierarchy or lattice if necessary. For example, an entity in
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy,
where a leaf node is a class that has no subclasses of its own. For example, a member
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as
multiple inheritance, where the shared subclass ENGINEERING_MANAGER
directly inherits attributes and relationships from multiple superclasses. Notice
that the existence of at least one shared subclass leads to a lattice (and hence to
multiple inheritance); if no shared subclasses existed, we would have a hierarchy
rather than a lattice and only single inheritance would exist. An important rule
related to multiple inheritance can be illustrated by the example of the shared
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.

It is important to note here that some models and languages are limited to single
inheritance and do not allow multiple inheritance (shared subclasses). It is also
important to note that some models do not allow an entity to have multiple
types, and hence an entity can be a member of only one leaf class.8 In such a
model, it is necessary to create additional subclasses as leaf nodes to cover all

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.

https://hemanthrajhemu.github.io

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 119

possible combinations of classes that may have some entity that belongs to all
these classes simultaneously. For example, in the overlapping specialization of
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would
be necessary to create seven subclasses of PERSON in order to cover all possible
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to
extra complexity.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section.
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization in
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization
processes and how they are used to refine conceptual schemas during conceptual
database design. In the specialization process, the database designers typically start
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity
type. For example, when designing the specialization lattice in Figure 4.7, we may
first specify an entity type PERSON for a university database. Then we discover
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS,

STUDENT}. The overlapping constraint is chosen because a person may belong
to more than one of the subclasses. We specialize EMPLOYEE further into
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is
also a subclass of STUDENT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS,
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT,

UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT,

TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,

STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT}
into PERSON.

The final design of hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were created during the design process. In practice, it
is likely that a combination of the two processes is employed. Notice that the

https://hemanthrajhemu.github.io

120 Chapter 4 The Enhanced Entity–Relationship (EER) Model

notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques.
For example, frame-based knowledge representation schemes closely resemble
class hierarchies. Specialization is also common in software engineering design
methodologies that are based on the object-oriented paradigm.

4.4 Modeling of UNION Types
Using Categories

It is sometimes necessary to represent a collection of entities from different entity
types. In this case, a subclass will represent a collection of entities that is a subset of
the UNION of entities from distinct entity types; we call such a subclass a union type
or a category.9

For example, suppose that we have three entity types: PERSON, BANK, and
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can
be a person, a bank (holding a lien on a vehicle), or a company. We need to create
a class (collection of entities) that includes entities of all three types to play the
role of vehicle owner. A category (union type) OWNER that is a subclass of the
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created
for this purpose. We display categories in an EER diagram as shown in Figure 4.8.
The superclasses COMPANY, BANK, and PERSON are connected to the circle with
the ∪ symbol, which stands for the set union operation. An arc with the subset
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we
have two categories: OWNER, which is a subclass (subset) of the union of PERSON,
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of
the union of CAR and TRUCK.

A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships
always have a single superclass. To better understand the difference,
we can compare a category, such as OWNER in Figure 4.8, with the
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE,
so an entity that is a member of ENGINEERING_MANAGER must exist in all
three collections. This represents the constraint that an engineering manager must
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the
ENGINEERING_MANAGER entity set is a subset of the intersection of the three
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the
superclasses. This represents the constraint that an OWNER may be a COMPANY,
a BANK, or a PERSON in Figure 4.8.

9Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al.,
1985).

https://hemanthrajhemu.github.io

 4.4 Modeling of UNION Types Using Categories 121

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a
PERSON, or a BANK, depending on the superclass to which the entity belongs. On
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6)
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER,
and MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig-
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily

Name Address

Driver_license_no

Ssn

License_plate_no

Lien_or_regular

Purchase_date

Bname Baddress

Cname Caddress

BANK

PERSON

OWNER

OWNS

M

N

U

REGISTERED_VEHICLE

COMPANY

U

Cstyle

Cyear

Vehicle_id

Cmake

Cmodel

CAR

Tonnage

Tyear

Vehicle_id

Tmake

Tmodel

TRUCK

Figure 4.8

Two categories (union
types): OWNER and
REGISTERED_VEHICLE.

https://hemanthrajhemu.github.io

122 Chapter 4 The Enhanced Entity–Relationship (EER) Model

all of them (for example, some cars or trucks may not be registered). In general,
a specialization or generalization such as that in Figure 4.3(b), if it were partial,
would not preclude VEHICLE from containing other types of entities, such as
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8
implies that only cars and trucks, but not other types of entities, can be members
of REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total
category is represented diagrammatically by a double line connecting the category
and the circle, whereas a partial category is indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated
by the OWNER category in Figure 4.8, or they may have the same key attribute, as
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is
total (not partial), it may be represented alternatively as a total specialization (or a
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.

It is important to note that some modeling methodologies do not have union
types. In these models, a union type must be represented in a roundabout way
(see Section 9.2).

4.5 A Sample UNIVERSITY EER Schema,
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we
discuss design choices for conceptual schemas, and finally we summarize the EER
model concepts and define them formally in the same manner in which we formally
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example

Consider a UNIVERSITY database that has different requirements from the UNIVERSITY
database presented in Section 3.10. This database keeps track of students and their
majors, transcripts, and registration as well as of the university’s course offerings.
The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.

For each person, the database maintains information on the person’s Name [Name],
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate].
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT.
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research,

https://hemanthrajhemu.github.io

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 123

Foffice

Salary

Rank

Fphone

FACULTY

d

College Degree Year
1 N

M N

M

Degrees

Class

1

M

1

N

N

M

1

N

N

Qtr = Current_qtr and
Year = Current_year

N

N

1

M

N

N

1

Cname

CdescC#

1 N

1

Office

Dphone

Dname

N

1

1

N

Class=5

Fname LnameMinit

Name

BdateSsn Sex No Street Apt_no City State Zip

Address

U

ADVISOR

COMMITTEE

CHAIRS

BELONGS

MINOR

MAJOR

DCCD

Agency

St_date

NoTitle

Start

Time

End

CURRENT_SECTION

Grade

Sec# Year

Qtr

CofficeCname

Dean

PERSON

GRAD_STUDENT

STUDENT

GRANT

SUPPORT

REGISTERED

TRANSCRIPT

SECTION

TEACH

DEPARTMENT

COURSECOLLEGE

CS

INSTRUCTOR_RESEARCHER

PI

Figure 4.9

An EER conceptual schema
for a different UNIVERSITY
database.

https://hemanthrajhemu.github.io

124 Chapter 4 The Enhanced Entity–Relationship (EER) Model

visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated
[BELONGS] (a faculty member can be associated with several departments, so the
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to his
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course
sections he or she is currently attending [REGISTERED], and to the courses completed
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received
[Grade] in a section of a course.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.

An academic department has the attributes name [Dname], telephone [Dphone], and
office number [Office] and is related to the faculty member who is its chairperson
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cname], office number [Coffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course
description [Cdesc]. Several sections of each course are offered, with each section
having the attributes section number [Sec#] and the year and quarter in which the
section was offered ([Year] and [Qtr]).10 Section numbers uniquely identify each
section. The sections being offered during the current quarter are in a subclass
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_qtr and
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research
grants and contracts awarded to the university. Each grant has attributes grant title
[Title], grant number [No], the awarding agency [Agency], and the starting date
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it
supports [SUPPORT]. Each instance of support has as attributes the starting date of
support [Start], the ending date of the support (if known) [End], and the percentage of
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization

It is not always easy to choose the most appropriate conceptual design for a
database application. In Section 3.7.3, we presented some of the typical issues
that confront a database designer when choosing among the concepts of entity

10We assume that the quarter system rather than the semester system is used in this university.

https://hemanthrajhemu.github.io

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 125

types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and
choices for the EER concepts of specialization/generalization and categories
(union types).

As we mentioned in Section 3.7.3, conceptual database design should be considered
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

 ■ In general, many specializations and subclasses can be defined to make
the conceptual model accurate. However, the drawback is that the
design becomes quite cluttered. It is important to represent only those
subclasses that are deemed necessary to avoid extreme cluttering of the
conceptual schema.

 ■ If a subclass has few specific (local) attributes and no specific relationships,
it can be merged into the superclass. The specific attributes would hold NULL
values for entities that are not members of the subclass. A type attribute
could specify whether an entity is a member of the subclass.

 ■ Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the
superclass and replaced with one or more type attributes that specify the
subclass or subclasses that each entity belongs to (see Section 9.2 for how
this criterion applies to relational databases).

 ■ Union types and categories should generally be avoided unless the situation
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

 ■ The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE
entity type and add the following attributes to EMPLOYEE:

 ■ An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’}
would indicate which subclass in the first specialization each employee
belongs to.

 ■ An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would
indicate which subclass in the second specialization each employee
belongs to.

https://hemanthrajhemu.github.io

126 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts

We now summarize the EER model concepts and give formal definitions. A class11

defines a type of entity and represents a set or collection of entities of that type; this
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a
class whose entities must always be a subset of the entities in another class, called
the superclass C of the superclass/subclass (or IS-A) relationship. We denote
such a relationship by C/S. For such a superclass/subclass relationship, we must
always have

S ⊆ C

A specialization Z = {S1, S2, … , Sn} is a set of subclasses that have the same super-
class G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, … , n. G is called
a generalized entity type (or the superclass of the specialization, or a generalization
of the subclasses {S1, S2, … , Sn}). Z is said to be total if we always (at any point in
time) have

∪
n

i=1
 Si = G

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have

Si ∩ Sj = ∅ (empty set) for i ≠ j

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of
C is used to specify which entities in C are members of S; that is, S = C[p], where
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a
predicate is called user-defined.

A specialization Z (or generalization G) is said to be attribute-defined if a
predicate (A = ci), where A is an attribute of G and ci is a constant value from
the domain of A, is used to specify membership in each subclass Si in Z. Notice
that if ci ≠ cj for i ≠ j, and A is a single-valued attribute, then the specialization
will be disjoint.

A category T is a class that is a subset of the union of n defining superclasses D1, D2,
… , Dn, n > 1 and is formally specified as follows:

T ⊆ (D1 ∪ D2 ... ∪ Dn)

11The use of the word class here refers to a collection (set) of entities, which differs from its more
common use in object-oriented programming languages such as C++. In C++, a class is a structured
type definition along with its applicable functions (operations).

https://hemanthrajhemu.github.io

 4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams 127

A predicate pi on the attributes of Di can be used to specify the members of each Di
that are members of T. If a predicate is specified on every Di, we get

T = (D1[p1] ∪ D2[p2] ... ∪ Dn[pn])

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class—not only any entity type—to participate in a relationship.
Hence, we should replace the words entity type with class in that definition. The
graphical notation of EER is consistent with ER because all classes are represented
by rectangles.

4.6 Example of Other Notation: Representing
Specialization and Generalization in UML
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal
line, which has a triangle connecting the horizontal line through another vertical
line to the superclass. A blank triangle indicates a specialization/generalization
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes)
are called leaf classes.

The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology.
We focused on the concepts that are relevant to ER and EER database modeling
rather than on those concepts that are more relevant to software engineering. In
UML, there are many details that we have not discussed because they are outside
the scope of this text and are mainly relevant to software engineering. For example,
classes can be of various types:

 ■ Abstract classes define attributes and operations but do not have objects
corresponding to those classes. These are mainly used to specify a set of
attributes and operations that can be inherited.

 ■ Concrete classes can have objects (entities) instantiated to belong to the
class.

 ■ Template classes specify a template that can be further used to define
other classes.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that
describe complete details of UML.

https://hemanthrajhemu.github.io

128 Chapter 4 The Enhanced Entity–Relationship (EER) Model

Project

change_project
. . .

RESEARCH_
ASSISTANT

Course

assign_to_course
. . .

TEACHING_
ASSISTANT

Degree_program

change_degree_program
. . .

GRADUATE_
STUDENT

Class

change_classification
. . .

UNDERGRADUATE_
STUDENT

Position

hire_staff
. . .

STAFF

Rank

promote
. . .

FACULTY

Percent_time

hire_student
. . .

STUDENT_ASSISTANT

Year
Degree
Major

DEGREE

. . .

Salary

hire_emp
. . .

EMPLOYEE

new_alumnus
1 *

. . .

ALUMNUS

Major_dept

change_major
. . .

STUDENT

Name
Ssn
Birth_date
Sex
Address

age
. . .

PERSON

Figure 4.10

A UML class diagram corresponding to the EER diagram in Figure 4.7,
illustrating UML notation for specialization/generalization.

4.7 Data Abstraction, Knowledge
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual

https://hemanthrajhemu.github.io

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 129

data modeling but also in artificial intelligence literature when discussing
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces
some of the alternative terminology and a few additional concepts.

The goal of KR techniques is to develop concepts for accurately modeling some domain
of knowledge by creating an ontology12 that describes the concepts of the domain
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions.
The goals of KR are similar to those of semantic data models, but there are some
important similarities and differences between the two disciplines:

 ■ Both disciplines use an abstraction process to identify common properties and
important aspects of objects in the miniworld (also known as domain of discourse
in KR) while suppressing insignificant differences and unimportant details.

 ■ Both disciplines provide concepts, relationships, constraints, operations,
and languages for defining data and representing knowledge.

 ■ KR is generally broader in scope than semantic data models. Different forms
of knowledge, such as rules (used in inference, deduction, and search),
incomplete and default knowledge, and temporal and spatial knowledge, are
represented in KR schemes. Database models are being expanded to include
some of these concepts (see Chapter 26).

 ■ KR schemes include reasoning mechanisms that deduce additional facts
from the facts stored in a database. Hence, whereas most current database
systems are limited to answering direct queries, knowledge-based systems
using KR schemes can answer queries that involve inferences over the
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

 ■ Whereas most data models concentrate on the representation of database
schemas, or meta-knowledge, KR schemes often mix up the schemas with
the instances themselves in order to provide flexibility in representing
exceptions. This often results in inefficiencies when these KR schemes are
implemented, especially when compared with databases and when a large
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models,
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation
and association. The paired concepts of classification and instantiation are inverses
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their
relation to the concrete representations used in the EER model to clarify the data
abstraction process and to improve our understanding of the related process of
conceptual schema design. We close the section with a brief discussion of ontology,
which is being used widely in recent knowledge representation research.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.

https://hemanthrajhemu.github.io

130 Chapter 4 The Enhanced Entity–Relationship (EER) Model

4.7.1 Classification and Instantiation

The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in
KR) the classes rather than the individual objects. Collections of objects that share
the same types of attributes, relationships, and constraints are classified into classes
in order to simplify the process of discovering their properties. Instantiation is the
inverse of classification and refers to the generation and specific examination of
distinct objects of a class. An object instance is related to its object class by the
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by
permitting the display of individual objects. We did not describe this feature in our
introduction to UML class diagrams.

In general, the objects of a class should have a similar type structure. However,
some objects may display properties that differ in some respects from the other
objects of the class; these exception objects also need to be modeled, and KR
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR
schemes allow such class properties. UML diagrams also allow specification of
class properties.

In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them.
Relationship instances are classified into relationship types. Hence, entity types,
subclasses, categories, and relationship types are the different concepts that are
used for classification in the EER model. The EER model does not provide
explicitly for class properties, but it may be extended to do so. In UML, objects
are classified into classes, and it is possible to display both class properties and
individual objects.

Knowledge representation models allow multiple classification schemes in
which one class is an instance of another class (called a meta-class). Notice that
this cannot be represented directly in the EER model, because we have only two
levels—classes and instances. The only relationship among classes in the EER
model is a superclass/subclass relationship, whereas in some KR schemes an
additional class/instance relationship can be represented directly in a class
hierarchy. An instance may itself be another class, allowing multiple-level
classification schemes.

4.7.2 Identification

Identification is the abstraction process whereby classes and objects are made
uniquely identifiable by means of some identifier. For example, a class name uniquely
identifies a whole class within a schema. An additional mechanism is necessary for
telling distinct object instances apart by means of object identifiers. Moreover, it is
necessary to identify multiple manifestations in the database of the same real-world

https://hemanthrajhemu.github.io

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 131

object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> in
a PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify
the fact that these two database objects (tuples) represent the same real-world
entity unless we make a provision at design time for appropriate cross-referencing to
supply this identification. Hence, identification is needed at two levels:

 ■ To distinguish among database objects and classes

 ■ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of
unique names for the constructs in a schema. For example, every class in an EER
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a
combination of their own partial key values and the entities they are related to in
the owner entity type(s). Relationship instances are identified by some combination
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization

Specialization is the process of classifying a class of objects into more specialized
subclasses. Generalization is the inverse process of generalizing several classes into
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization.
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association

Aggregation is an abstraction concept for building composite objects from their
component objects. There are three cases where this concept can be related to the
EER model. The first case is the situation in which we aggregate attribute values of
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER
model does not provide for explicitly, involves the possibility of combining objects
that are related by a particular relationship instance into a higher-level aggregate
object. This is sometimes useful when the higher-level aggregate object is itself to be
related to another object. We call the relationship between the primitive objects and
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF.
UML provides for all three types of aggregation.

https://hemanthrajhemu.github.io

132 Chapter 4 The Enhanced Entity–Relationship (EER) Model

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This
abstract relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 4.11(a), which stores information about interviews by
job applicants to various companies. The class COMPANY is an aggregation of
the attributes (or component objects) Cname (company name) and Caddress
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name,
Address, and Phone. The relationship attributes Contact_name and Contact_phone
represent the name and phone number of the person in the company who is
responsible for the interview. Suppose that some interviews result in job offers,
whereas others do not. We would like to treat INTERVIEW as a class to associate it
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it
requires each interview relationship instance to have a job offer. The schema
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.

One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in
this book does not have this facility, some semantic data models do allow it and call
the resulting object a composite or molecular object. Other models treat entity
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to
JOB_OFFER. Hence, we can always represent these situations correctly in the ER
model by creating additional entity types, although it may be conceptually more
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to
allow relationships among relationships, as in Figure 4.11(c).

The main structural distinction between aggregation and association is that when
an association instance is deleted, the participating objects may continue to exist.
However, if we support the notion of an aggregate object—for example, a CAR that
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web

In recent years, the amount of computerized data and information available on
the Web has spiraled out of control. Many different models and formats are used.
In addition to the database models that we present in this text, much information
is stored in the form of documents, which have considerably less structure than

https://hemanthrajhemu.github.io

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 133

(a)

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phoneContact_name

Date

INTERVIEW

(c)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(b)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

(d)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(e)

JOB_OFFER

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phone

Contact_name

RESULTS_IN

CJI

INTERVIEWDate

Figure 4.11

Aggregation. (a) The
relationship type INTERVIEW.
(b) Including JOB_OFFER in a
ternary relationship type
(incorrect). (c) Having the
RESULTS_IN relationship
participate in other relationships
(not allowed in ER). (d) Using
aggregation and a composite
(molecular) object (generally
not allowed in ER but allowed
by some modeling tools).
(e) Correct representation
in ER.

https://hemanthrajhemu.github.io

134 Chapter 4 The Enhanced Entity–Relationship (EER) Model

database information does. One ongoing project that is attempting to allow
information exchange among computers on the Web is called the Semantic
Web, which attempts to create knowledge representation models that are quite
general in order to allow meaningful information exchange and search among
machines. The concept of ontology is considered to be the most promising basis
for achieving the goals of the Semantic Web and is closely related to knowledge
representation. In this section, we give a brief introduction to what ontology is
and how it can be used as a basis to automate information understanding, search,
and exchange.

The study of ontologies attempts to describe the concepts and relationships that are
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality.
Ontology originated in the fields of philosophy and metaphysics. One commonly
used definition of ontology is a specification of a conceptualization.13

In this definition, a conceptualization is the set of concepts and relationships that
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are
used to specify the conceptualization. The ontology includes both specification and
conceptualization. For example, the same conceptualization may be specified in two
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to
describe ontologies are as follows:

 ■ A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

 ■ A taxonomy describes how concepts of a particular area of knowledge
are related using structures similar to those used in a specialization or
generalization.

 ■ A detailed database schema is considered by some to be an ontology that
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

 ■ A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a
domain of interest (for example, medical terms, electronic-commerce applications,
sports, and so on) as completely as possible.

13This definition is given in Gruber (1995).

https://hemanthrajhemu.github.io

 Review Questions 135

4.8 Summary

In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER
model. We presented the concept of a subclass and its superclass and the related
mechanism of attribute/relationship inheritance. We saw how it is sometimes
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main
processes for defining superclass/subclass hierarchies and lattices: specialization
and generalization.

Next, we showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We
discussed the concept of a category or union type, which is a subset of the union of
two or more classes, and we gave formal definitions of all the concepts presented.

We introduced some of the notation and terminology of UML for representing
specialization and generalization. In Section 4.7, we briefly discussed the discipline
of knowledge representation and how it is related to semantic data modeling. We
also gave an overview and summary of the types of abstract data representation
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts
are related to each of these.

Review Questions
 4.1. What is a subclass? When is a subclass needed in data modeling?

 4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-
tionship, IS-A relationship, specialization, generalization, category, specific
(local) attributes, and specific relationships.

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the
differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.

 4.7. What is the difference between a specialization hierarchy and a specializa-
tion lattice?

 4.8. What is the difference between specialization and generalization? Why do
we not display this difference in schema diagrams?

https://hemanthrajhemu.github.io

136 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4.9. How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

 4.11. Discuss the main differences between the notation for EER schema dia-
grams and UML class diagrams by comparing how common concepts are
represented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling
concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER
model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database
modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database
schema.

Exercises
 4.16. Design an EER schema for a database application that you are interested in.

Specify all constraints that should hold on the database. Make sure that the
schema has at least five entity types, four relationship types, a weak entity
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that it
is necessary to keep track of different types of ACCOUNTS
(SAVINGS_ACCTS, CHECKING_ACCTS, …) and LOANS (CAR_LOANS,
HOME_LOANS, …). Suppose that it is also desirable to keep track of
each ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, …)
and each LOAN’s PAYMENTS; both of these include the amount, date,
and time. Modify the BANK schema, using ER and EER concepts of
specialization and generalization. State any assumptions you make
about the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram
that shows the entity types, attributes, relationships, and specializations for
this application. State any assumptions you make. The Olympic facilities are
divided into sports complexes. Sports complexes are divided into one-sport
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so

https://hemanthrajhemu.github.io

 Exercises 137

on). A complex has a location, chief organizing individual, total occupied
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date,
duration, number of participants, number of officials, and so on. A roster of
all officials will be maintained together with the list of events each official
will be involved in. Different equipment is needed for the events (e.g., goal
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

 4.19. Identify all the important concepts represented in the library database case
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and
specialization/generalization. Specify (min, max) cardinality constraints
whenever possible. List details that will affect the eventual design but that
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how
many copies of each book are in the library or out on loan at any given time.
A catalog of books is available online that lists books by author, title, and
subject area. For each title in the library, a book description is kept in the
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members
request information about a book. Library staff includes chief librarian,
departmental associate librarians, reference librarians, check-out staff, and
library assistants.

Books can be checked out for 21 days. Members are allowed to have only
five books out at a time. Members usually return books within three to four
weeks. Most members know that they have one week of grace before a
notice is sent to them, so they try to return books before the grace period
ends. About 5% of the members have to be sent reminders to return books.
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most
active members of the library are defined as those who borrow books at
least ten times during the year. The top 1% of membership does 15% of the
borrowing, and the top 10% of the membership does 40% of the borrowing.
About 20% of the members are totally inactive in that they are members
who never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librari-

https://hemanthrajhemu.github.io

138 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ans issue a numbered, machine-readable card with the member’s photo on it.
This card is good for four years. A month before a card expires, a notice is
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her
information is pulled from the employee records and a library card is mailed
to his or her campus address. Professors are allowed to check out books for
three-month intervals and have a two-week grace period. Renewal notices to
professors are sent to their campus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent
and those that cannot be lent. In addition, the librarians have a list of some
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been
replaced. The librarians must have a system that keeps track of books that
cannot be lent as well as books that they are interested in acquiring. Some
books may have the same title; therefore, the title cannot be used as a means
of identification. Every book is identified by its International Standard Book
Number (ISBN), a unique international code assigned to all books. Two
books with the same title can have different ISBNs if they are in different
languages or have different bindings (hardcover or softcover). Editions of
the same book have different ISBNs.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

 4.20. Design a database to keep track of information for an art museum. Assume
that the following requirements were collected:

 ■ The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a
unique Id_no, an Artist (if known), a Year (when it was created, if known),
a Title, and a Description. The art objects are categorized in several ways, as
discussed below.

 ■ ART_OBJECTS are categorized based on their type. There are three main
types—PAINTING, SCULPTURE, and STATUE—plus another type called
OTHER to accommodate objects that do not fall into one of the three main
types.

 ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on which
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern,
abstract, etc.).

 ■ A SCULPTURE or a statue has a Material from which it was created (wood,
stone, etc.), Height, Weight, and Style.

 ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style.

 ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION
(objects that are owned by the museum) and BORROWED. Information
captured about objects in the PERMANENT_COLLECTION includes
Date_acquired, Status (on display, on loan, or stored), and Cost. Information

https://hemanthrajhemu.github.io

 Exercises 139

captured about BORROWED objects includes the Collection from which it
was borrowed, Date_borrowed, and Date_returned.

 ■ Information describing the country or culture of Origin (Italian, Egyptian,
American, Indian, and so forth) and Epoch (Renaissance, Modern,
Ancient, and so forth) is captured for each ART_OBJECT.

 ■ The museum keeps track of ARTIST information, if known: Name,

DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch,
Main_style, and Description. The Name is assumed to be unique.

 ■ Different EXHIBITIONS occur, each having a Name, Start_date, and End_date.
EXHIBITIONS are related to all the art objects that were on display during
the exhibition.

 ■ Information is kept on other COLLECTIONS with which the museum
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions
you make, and then justify your EER design choices.

 4.21. Figure 4.12 shows an example of an EER diagram for a small-private-airport
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number
[Number], a capacity [Capacity], and a location [Location]. The database also
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate].
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service
record [SERVICE]. Each plane undergoes service many times; hence, it is
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE
record includes as attributes the date of maintenance [Date], the number of
hours spent on the work [Hours], and the type of work done [Work_code]. We
use a weak entity type [SERVICE] to represent airplane service, because the
airplane registration number is used to identify a service record. An OWNER
is either a person or a corporation. Hence, we use a union type (category)
[OWNER] that is a subset of the union of corporation [CORPORATION] and
person [PERSON] entity types. Both pilots [PILOT] and employees
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in
the database have data kept on their Social Security number [Ssn], name
[Name], address [Address], and telephone number [Phone]. For CORPORATION
entities, the data kept includes name [Name], address [Address], and
telephone number [Phone]. The database also keeps track of the types of

https://hemanthrajhemu.github.io

140 Chapter 4 The Enhanced Entity–Relationship (EER) Model

planes each pilot is authorized to fly [FLIES] and the types of planes each
employee can do maintenance work on [WORKS_ON]. Show how the
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML
notation. (Note: We have not discussed how to represent categories (union
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

 4.22. Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in
UML notation.

Number Location

Capacity

Name Phone

Address

Name

Ssn

Phone

Address

Lic_numRestr

Date/workcode

1

N

N

1

N

1

PLANE_TYPE

Model Capacity

Pdate

Weight

MAINTAIN

M

M

N

OF_TYPE

STORED_IN
NM

OWNS

FLIES

WORKS_ON
N

N

M

Reg#

Date

Hours

HANGAR

PILOT

EMPLOYEE

Salary

PLANE_SERVICE

SERVICE

Workcode

AIRPLANE

Shift

U

CORPORATION PERSON

OWNER

Figure 4.12

EER schema for a SMALL_AIRPORT database.

https://hemanthrajhemu.github.io

 Exercises 141

 4.23. Consider the entity sets and attributes shown in the following table. Place a
checkmark in one column in each row to indicate the relationship between
the far left and far right columns.

a. The left side has a relationship with the right side.

b. The right side is an attribute of the left side.

c. The left side is a specialization of the right side.

d. The left side is a generalization of the right side.

Entity Set

(a) Has a

Relationship

with

(b) Has an

Attribute

that is

(c) Is a

Specialization

of

(d) Is a

Generalization

of

Entity Set

or Attribute

1. MOTHER PERSON

2. DAUGHTER MOTHER

3. STUDENT PERSON

4. STUDENT Student_id

5. SCHOOL STUDENT

6. SCHOOL CLASS_ROOM

7. ANIMAL HORSE

8. HORSE Breed

9. HORSE Age

10. EMPLOYEE SSN

11. FURNITURE CHAIR

12. CHAIR Weight

13. HUMAN WOMAN

14. SOLDIER PERSON

15. ENEMY_COMBATANT PERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database.
You may look at http://www.chessgames.com for an application similar to
what you are designing. State clearly any assumptions you make in your
UML diagram. A sample of assumptions you can make about the scope is
as follows:

1. The game of chess is played between two players.

2. The game is played on an 8 × 8 board like the one shown below:

https://hemanthrajhemu.github.io

142 Chapter 4 The Enhanced Entity–Relationship (EER) Model

3. The players are assigned a color of black or white at the start of the game.

4. Each player starts with the following pieces (traditionally called
chessmen):

a. king
b. queen
c. 2 rooks
d. 2 bishops
e. 2 knights
f. 8 pawns

5. Every piece has its own initial position.

6. Every piece has its own set of legal moves based on the state of the game.
You do not need to worry about which moves are or are not legal except
for the following issues:

a. A piece may move to an empty square or capture an opposing piece.
b. If a piece is captured, it is removed from the board.
c. If a pawn moves to the last row, it is “promoted” by converting it to

another piece (queen, rook, bishop, or knight).

Note: Some of these functions may be spread over multiple classes.

 4.25. Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus
on persistent storage aspects of the system. For example, the system would
need to retrieve all the moves of every game played in sequential order.

 4.26. Which of the following EER diagrams is/are incorrect and why? State clearly
any assumptions you make.

a.

b.

E d

E1

E2

R

1

1

E

E1

E2

R

1

E3
N

o

https://hemanthrajhemu.github.io

 Laboratory Exercises 143

 4.27. Consider the following EER diagram that describes the computer systems at
a company. Provide your own attributes and key for each entity type. Supply
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

c.

E1

R

E3

N

o

M

MEMORY VIDEO_CARD

d

LAPTOP DESKTOP

INSTALLED

d

COMPUTER

SOFTWARE

OPERATING_
SYSTEM

INSTALLED_OS

SUPPORTS

COMPONENT
OPTIONS

SOUND_CARD

MEM_OPTIONS

KEYBOARD MOUSE

d

ACCESSORY

MONITOR

SOLD_WITH

Laboratory Exercises
 4.28. Consider a GRADE_BOOK database in which instructors within an academic

department record points earned by individual students in their classes. The
data requirements are summarized as follows:

 ■ Each student is identified by a unique identifier, first and last name, and
an e-mail address.

 ■ Each instructor teaches certain courses each term. Each course is identified
by a course number, a section number, and the term in which it is taught. For

https://hemanthrajhemu.github.io

144 Chapter 4 The Enhanced Entity–Relationship (EER) Model

each course he or she teaches, the instructor specifies the minimum number
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

 ■ Students are enrolled in each course taught by the instructor.

 ■ Each course has a number of grading components (such as midterm
exam, final exam, project, and so forth). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

 ■ Finally, the instructor records the points earned by each student in each of
the grading components in each of the courses. For example, student 1234
earns 84 points for the midterm exam grading component of the section 2
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a
weight of 20% of the course grade.

 Design an enhanced entity–relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.29. Consider an ONLINE_AUCTION database system in which members (buyers
and sellers) participate in the sale of items. The data requirements for this
system are summarized as follows:

 ■ The online site has members, each of whom is identified by a unique
member number and is described by an e-mail address, name, password,
home address, and phone number.

 ■ A member may be a buyer or a seller. A buyer has a shipping address
recorded in the database. A seller has a bank account number and routing
number recorded in the database.

 ■ Items are placed by a seller for sale and are identified by a unique item
number assigned by the system. Items are also described by an item title,
a description, starting bid price, bidding increment, the start date of the
auction, and the end date of the auction.

 ■ Items are also categorized based on a fixed classification hierarchy (for
example, a modem may be classified as COMPUTER → HARDWARE →
MODEM).

 ■ Buyers make bids for items they are interested in. Bid price and time of
bid are recorded. The bidder at the end of the auction with the highest bid
price is declared the winner, and a transaction between buyer and seller
may then proceed.

 ■ The buyer and seller may record feedback regarding their completed
transactions. Feedback contains a rating of the other party participating
in the transaction (1–10) and a comment.

https://hemanthrajhemu.github.io

 Laboratory Exercises 145

 Design an enhanced entity–relationship diagram for the ONLINE_AUCTION
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.30. Consider a database system for a baseball organization such as the major
leagues. The data requirements are summarized as follows:

 ■ The personnel involved in the league include players, coaches, managers,
and umpires. Each is identified by a unique personnel id. They are also
described by their first and last names along with the date and place of
birth.

 ■ Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

 ■ Within the players group is a subset of players called pitchers. Pitchers
have a lifetime ERA (earned run average) associated with them.

 ■ Teams are uniquely identified by their names. Teams are also described by
the city in which they are located and the division and league in which
they play (such as Central division of the American League).

 ■ Teams have one manager, a number of coaches, and a number of players.

 ■ Games are played between two teams, with one designated as the home
team and the other the visiting team on a particular date. The score (runs,
hits, and errors) is recorded for each team. The team with the most runs is
declared the winner of the game.

 ■ With each finished game, a winning pitcher and a losing pitcher are
recorded. In case there is a save awarded, the save pitcher is also recorded.

 ■ With each finished game, the number of hits (singles, doubles, triples, and
home runs) obtained by each player is also recorded.

 Design an enhanced entity–relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or
Rational Rose.

 4.31. Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9.
Enter this design using a data modeling tool such as ERwin or Rational Rose.
Make a list of the differences in notation between the diagram in the text
and the corresponding equivalent diagrammatic notation you end up using
with the tool.

 4.32. Consider the EER diagram for the small AIRPORT database shown in Fig-
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational
Rose. Be careful how you model the category OWNER in this diagram. (Hint:
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as
two distinct relationship types.)

 4.33. Consider the UNIVERSITY database described in Exercise 3.16. You already
developed an ER schema for this database using a data modeling tool such as

https://hemanthrajhemu.github.io

146 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS.
Include appropriate attributes for these new entity types. Then establish
relationships indicating that junior instructors teach undergraduate courses
whereas senior instructors teach graduate courses.

Selected Bibliography
Many papers have proposed conceptual or semantic data models. We give a repre-
sentative list here. One group of papers, including Abrial (1974), Senko’s DIAM
model (1975), the NIAM method (Verheijen and VanBekkum 1982), and Bracchi
et al. (1976), presents semantic models that are based on the concept of binary rela-
tionships. Another group of early papers discusses methods for extending the rela-
tional model to enhance its modeling capabilities. This includes the papers by
Schmid and Swenson (1975), Navathe and Schkolnick (1978), Codd’s RM/T model
(1979), Furtado (1978), and the structural model of Wiederhold and Elmasri (1979).

The ER model was proposed originally by Chen (1976) and is formalized in Ng
(1981). Since then, numerous extensions of its modeling capabilities have been pro-
posed, as in Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986),
Gogolla and Hohenstein (1991), and the entity–category–relationship (ECR) model
of Elmasri et al. (1985). Smith and Smith (1977) present the concepts of generaliza-
tion and aggregation. The semantic data model of Hammer and McLeod (1981)
introduces the concepts of class/subclass lattices, as well as other advanced model-
ing concepts.

A survey of semantic data modeling appears in Hull and King (1987). Eick (1991)
discusses design and transformations of conceptual schemas. Analysis of con-
straints for n-ary relationships is given in Soutou (1998). UML is described in detail
in Booch, Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevens
and Pooley (2000) give concise introductions to UML concepts.

Fensel (2000, 2003) discusses the Semantic Web and application of ontologies.
Uschold and Gruninger (1996) and Gruber (1995) discuss ontologies. The June
2002 issue of Communications of the ACM is devoted to ontology concepts and
applications. Fensel (2003) discusses ontologies and e-commerce.

https://hemanthrajhemu.github.io

The Relational Data

Model and SQL

part 3

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

149

5

The Relational Data Model and

Relational Database Constraints

This chapter opens Part 3 of the book, which covers
relational databases. The relational data model was

first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd,
1970), and it attracted immediate attention due to its simplicity and mathematical
foundation. The model uses the concept of a mathematical relation—which looks
somewhat like a table of values—as its basic building block, and has its theoretical
basis in set theory and first-order predicate logic. In this chapter we discuss the
basic characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems, as well as a number of open source systems. Current
popular commercial relational DBMSs (RDBMSs) include DB2 (from IBM), Oracle
(from Oracle), Sybase DBMS (now from SAP), and SQLServer and Microsoft
Access (from Microsoft). In addition, several open source systems, such as MySQL
and PostgreSQL, are available.

Because of the importance of the relational model, all of Part 2 is devoted to this
model and some of the languages associated with it. In Chapters 6 and 7, we describe
some aspects of SQL, which is a comprehensive model and language that is the
standard for commercial relational DBMSs. (Additional aspects of SQL will be cov-
ered in other chapters.) Chapter 8 covers the operations of the relational algebra and
introduces the relational calculus—these are two formal languages associated with
the relational model. The relational calculus is considered to be the basis for the
SQL language, and the relational algebra is used in the internals of many database
implementations for query processing and optimization (see Part 8 of the book).

chapter 5

https://hemanthrajhemu.github.io

150 Chapter 5 The Relational Data Model and Relational Database Constraints

Other features of the relational model are presented in subsequent parts of the
book. Chapter 9 relates the relational model data structures to the constructs of the
ER and EER models (presented in Chapters 3 and 4), and presents algorithms for
designing a relational database schema by mapping a conceptual schema in the ER
or EER model into a relational representation. These mappings are incorporated
into many database design and CASE1 tools. Chapters 10 and 11 in Part 4 discuss
the programming techniques used to access database systems and the notion of
connecting to relational databases via ODBC and JDBC standard protocols. We
also introduce the topic of Web database programming in Chapter 11. Chapters 14
and 15 in Part 6 present another aspect of the relational model, namely the formal
constraints of functional and multivalued dependencies; these dependencies are
used to develop a relational database design theory based on the concept known as
normalization.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are considered an important part of the relational model and are
automatically enforced in most relational DBMSs. Section 5.3 defines the update
operations of the relational model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction. Section 5.4 summarizes
the chapter.

This chapter and Chapter 8 focus on the formal foundations of the relational model,
whereas Chapters 6 and 7 focus on the SQL practical relational model, which is the
basis of most commercial and open source relational DBMSs. Many concepts are
common between the formal and practical models, but a few differences exist that
we shall point out.

5.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent, a flat file of records. It is
called a flat file because each record has a simple linear or flat structure. For exam-
ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-
tional model representation. However, there are important differences between
relations and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. A row represents a fact that typically corresponds
to a real-world entity or relationship. The table name and column names are used
to help to interpret the meaning of the values in each row. For example, the
first table of Figure 1.2 is called STUDENT because each row represents facts
about a particular student entity. The column names—Name, Student_number,

1CASE stands for computer-aided software engineering.

https://hemanthrajhemu.github.io

 5.1 Relational Model Concepts 151

Class, and Major—specify how to interpret the data values in each row, based on the
column each value is in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column
header is called an attribute, and the table is called a relation. The data type
describing the types of values that can appear in each column is represented by a
domain of possible values. We now define these terms—domain, tuple, attribute,
and relation—formally.

5.1.1 Domains, Attributes, Tuples, and Relations

A domain D is a set of atomic values. By atomic we mean that each value in the
domain is indivisible as far as the formal relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data values
forming the domain are drawn. It is also useful to specify a name for the domain, to
help in interpreting its values. Some examples of domains follow:

 ■ Usa_phone_numbers. The set of ten-digit phone numbers valid in the United
States.

 ■ Local_phone_numbers. The set of seven-digit phone numbers valid within a
particular area code in the United States. The use of local phone numbers is
quickly becoming obsolete, being replaced by standard ten-digit numbers.

 ■ Social_security_numbers. The set of valid nine-digit Social Security numbers.
(This is a unique identifier assigned to each person in the United States for
employment, tax, and benefits purposes.)

 ■ Names: The set of character strings that represent names of persons.

 ■ Grade_point_averages. Possible values of computed grade point averages;
each must be a real (floating-point) number between 0 and 4.

 ■ Employee_ages. Possible ages of employees in a company; each must be an
integer value between 15 and 80.

 ■ Academic_department_names. The set of academic department names in a
university, such as Computer Science, Economics, and Physics.

 ■ Academic_department_codes. The set of academic department codes, such as
‘CS’, ‘ECON’, and ‘PHYS’.

The preceding are called logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-dddd,
where each d is a numeric (decimal) digit and the first three digits form a valid
telephone area code. The data type for Employee_ages is an integer number between
15 and 80. For Academic_department_names, the data type is the set of all character
strings that represent valid department names. A domain is thus given a name, data
type, and format. Additional information for interpreting the values of a domain
can also be given; for example, a numeric domain such as Person_weights should
have the units of measurement, such as pounds or kilograms.

https://hemanthrajhemu.github.io

152 Chapter 5 The Relational Data Model and Relational Database Constraints

A relation schema2 R, denoted by R(A1, A2, … , An), is made up of a relation name
R and a list of attributes, A1, A2, … , An. Each attribute Ai is the name of a role
played by some domain D in the relation schema R. D is called the domain of Ai
and is denoted by dom(Ai). A relation schema is used to describe a relation; R is
called the name of this relation. The degree (or arity) of a relation is the number of
attributes n of its relation schema.

A relation of degree seven, which stores information about university students,
would contain seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,

Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the preceding definition, we showed assignment of generic types such
as string or integer to the attributes. More precisely, we can specify the following
previously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) =
USA_phone_numbers3, dom(Office_phone) = USA_phone_numbers, and dom(Gpa) =
Grade_point_averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)4 r of the relation schema R(A1, A2, … , An), also denoted
by r(R), is a set of n-tuples r = {t1, t2, … , tm}. Each n-tuple t is an ordered list of n
values t =<v1, v2, … , vn>, where each value vi, 1 ≤ i ≤ n, is an element of dom (Ai) or is
a special NULL value. (NULL values are discussed further below and in Section 5.1.2.)
The ith value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or
t.Ai (or t[i] if we use the positional notation). The terms relation intension for the
schema R and relation extension for a relation state r(R) are also commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity (or object). We display the relation as a table, where each tuple is
shown as a row and each attribute corresponds to a column header indicating a role
or interpretation of the values in that column. NULL values represent attributes
whose values are unknown or do not exist for some individual STUDENT tuple.

2A relation schema is sometimes called a relation scheme.
3With the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-
itan areas in the United States now have multiple area codes, so seven-digit local dialing has been
 discontinued in most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_
numbers, which would be a more general choice. This illustrates how database requirements can change
over time.
4This has also been called a relation instance. We will not use this term because instance is also used
to refer to a single tuple or row.

https://hemanthrajhemu.github.io

 5.1 Relational Model Concepts 153

The earlier definition of a relation can be restated more formally using set theory
concepts as follows. A relation (or relation state) r(R) is a mathematical relation of
degree n on the domains dom(A1), dom(A2), … , dom(An), which is a subset of the
Cartesian product (denoted by ×) of the domains that define R:

r(R) ⊆ (dom(A1) × dom(A2) × . . . × (dom(An))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a
domain D by |D| (assuming that all domains are finite), the total number of tuples
in the Cartesian product is

|dom(A1)| × |dom(A2)| × . . . × |dom(An)|

This product of cardinalities of all domains represents the total number of possible
instances or tuples that can ever exist in any relation state r(R). Of all these possible
combinations, a relation state at a given time—the current relation state—reflects
only the valid tuples that represent a particular state of the real world. In general, as
the state of the real world changes, so does the relation state, by being transformed
into another relation state. However, the schema R is relatively static and changes
very infrequently—for example, as a result of adding an attribute to represent new
information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attribute names indi-
cate different roles, or interpretations, for the domain. For example, in the STUDENT
relation, the same domain USA_phone_numbers plays the role of Home_phone, referring
to the home phone of a student, and the role of Office_phone, referring to the office
phone of the student. A third possible attribute (not shown) with the same domain
could be Mobile_phone.

5.1.2 Characteristics of Relations

The earlier definition of relations implies certain characteristics that make a rela-
tion different from a file or a table. We now discuss some of these characteristics.

Relation Name

Tuples

STUDENT

Name

Benjamin Bayer

Chung-cha Kim

Dick Davidson

Rohan Panchal

Barbara Benson

Ssn

305-61-2435

381-62-1245

422-11-2320

489-22-1100

533-69-1238

Home_phone

(817)373-1616

(817)375-4409

NULL

(817)376-9821

(817)839-8461

Address

2918 Bluebonnet Lane

125 Kirby Road

3452 Elgin Road

265 Lark Lane

7384 Fontana Lane

Office_phone

NULL

NULL

(817)749-1253

(817)749-6492

NULL

Age

19

18

25

28

19

3.21

2.89

3.53

3.93

3.25

Gpa

Attributes

Figure 5.1

The attributes and tuples of a relation STUDENT.

https://hemanthrajhemu.github.io

154 Chapter 5 The Relational Data Model and Relational Database Constraints

Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Math-
ematically, elements of a set have no order among them; hence, tuples in a relation
do not have any particular order. In other words, a relation is not sensitive to the
ordering of tuples. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates
first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many tuple orders can be specified on the
same relation. For example, tuples in the STUDENT relation in Figure 5.1 could be
ordered by values of Name, Ssn, Age, or some other attribute. The definition of a rela-
tion does not specify any order: There is no preference for one ordering over another.
Hence, the relation displayed in Figure 5.2 is considered identical to the one shown in
Figure 5.1. When a relation is implemented as a file or displayed as a table, a particular
ordering may be specified on the records of the file or the rows of the table.

Ordering of Values within a Tuple and an Alternative Definition of a Relation.
According to the preceding definition of a relation, an n-tuple is an ordered list of n
values, so the ordering of values in a tuple—and hence of attributes in a relation
schema—is important. However, at a more abstract level, the order of attributes
and their values is not that important as long as the correspondence between attri-
butes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values
in a tuple unnecessary. In this definition, a relation schema R = {A1, A2, … , An} is a
set of attributes (instead of an ordered list of attributes), and a relation state r(R) is
a finite set of mappings r = {t1, t2, … , tm}, where each tuple ti is a mapping from R
to D, and D is the union (denoted by ∪) of the attribute domains; that is, D =
dom(A1) ∪ dom(A2) ∪ … ∪ dom(An). In this definition, t[Ai] must be in dom(Ai)
for 1 ≤ i ≤ n for each mapping t in r. Each mapping ti is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a
set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping
from an attribute Ai to a value vi from dom(Ai). The ordering of attributes is not
important, because the attribute name appears with its value. By this definition, the

Dick Davidson

Barbara Benson

Rohan Panchal

Chung-cha Kim

422-11-2320

533-69-1238

489-22-1100

381-62-1245

NULL

(817)839-8461

(817)376-9821

(817)375-4409

3452 Elgin Road

7384 Fontana Lane

265 Lark Lane

125 Kirby Road

(817)749-1253

NULL

(817)749-6492

NULL

25

19

28

18

3.53

3.25

3.93

2.89

Benjamin Bayer 305-61-2435 (817)373-1616 2918 Bluebonnet Lane NULL 19 3.21

STUDENT

Name Ssn Home_phone Address Office_phone Age Gpa

Figure 5.2

The relation STUDENT from Figure 5.1 with a different order of tuples.

https://hemanthrajhemu.github.io

 5.1 Relational Model Concepts 155

two tuples shown in Figure 5.3 are identical. This makes sense at an abstract level,
since there really is no reason to prefer having one attribute value appear before
another in a tuple. When the attribute name and value are included together in a
tuple, it is known as self-describing data, because the description of each value
(attribute name) is included in the tuple.

We will mostly use the first definition of relation, where the attributes are ordered
in the relation schema and the values within tuples are similarly ordered, because it
simplifies much of the notation. However, the alternative definition given here is
more general.5

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that
is, it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes (see Chapter 3) are not
allowed. This model is sometimes called the flat relational model. Much of the
theory behind the relational model was developed with this assumption in mind,
which is called the first normal form assumption.6 Hence, multivalued attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.7

An important concept is that of NULL values, which are used to represent the values of
attributes that may be unknown or may not apply to a tuple. A special value, called
NULL, is used in these cases. For example, in Figure 5.1, some STUDENT tuples have
NULL for their office phones because they do not have an office (that is, office phone
does not apply to these students). Another student has a NULL for home phone, presum-
ably because either he does not have a home phone or he has one but we do not know it
(value is unknown). In general, we can have several meanings for NULL values, such as
value unknown, value exists but is not available, or attribute does not apply to this tuple
(also known as value undefined). An example of the last type of NULL will occur if we
add an attribute Visa_status to the STUDENT relation that applies only to tuples repre-
senting foreign students. It is possible to devise different codes for different meanings of

5We will use the alternative definition of relation when we discuss query processing and optimization in
Chapter 18.

6We discuss this assumption in more detail in Chapter 14.

7Extensions of the relational model remove these restrictions. For example, object-relational systems
(Chapter 12) allow complex-structured attributes, as do the non-first normal form or nested relational
models.

t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),
 (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
 (Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>

Figure 5.3

Two identical tuples when the order of attributes and values is not part of relation definition.

https://hemanthrajhemu.github.io

156 Chapter 5 The Relational Data Model and Relational Database Constraints

NULL values. Incorporating different types of NULL values into relational model opera-
tions has proven difficult and is outside the scope of our presentation.

The exact meaning of a NULL value governs how it fares during arithmetic aggrega-
tions or comparisons with other values. For example, a comparison of two NULL
values leads to ambiguities—if both Customer A and B have NULL addresses, it does
not mean they have the same address. During database design, it is best to avoid
NULL values as much as possible. We will discuss this further in Chapters 7 and 8 in
the context of operations and queries, and in Chapter 14 in the context of database
design and normalization.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT
relation of Figure 5.1 asserts that, in general, a student entity has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema
MAJORS (Student_ssn, Department_code) asserts that students major in academic
disciplines. A tuple in this relation relates a student to his or her major discipline.
Hence, the relational model represents facts about both entities and relationships
uniformly as relations. This sometimes compromises understandability because
one has to guess whether a relation represents an entity type or a relationship type.
We introduced the entity–relationship (ER) model in detail in Chapter 3, where the
entity and relationship concepts were described in detail. The mapping procedures
in Chapter 9 show how different constructs of the ER/EER conceptual data models
(see Part 2) get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn, …) is true for the five tuples in relation STUDENT
of Figure 5.1. These tuples represent five different propositions or facts in the
real world. This interpretation is quite useful in the context of logical programming
languages, such as Prolog, because it allows the relational model to be used within
these languages (see Section 26.5). An assumption called the closed world assumption
states that the only true facts in the universe are those present within the extension
(state) of the relation(s). Any other combination of values makes the predicate false.
This interpretation is useful when we consider queries on relations based on
 relational calculus in Section 8.6.

5.1.3 Relational Model Notation

We will use the following notation in our presentation:

 ■ A relation schema R of degree n is denoted by R(A1, A2, … , An).

https://hemanthrajhemu.github.io

 5.2 Relational Model Constraints and Relational Database Schemas 157

 ■ The uppercase letters Q, R, S denote relation names.

 ■ The lowercase letters q, r, s denote relation states.

 ■ The letters t, u, v denote tuples.

 ■ In general, the name of a relation schema such as STUDENT also indicates
the current set of tuples in that relation—the current relation state—whereas
STUDENT(Name, Ssn, …) refers only to the relation schema.

 ■ An attribute A can be qualified with the relation name R to which it belongs
by using the dot notation R.A—for example, STUDENT.Name or
STUDENT.Age. This is because the same name may be used for two attri-
butes in different relations. However, all attribute names in a particular
relation must be distinct.

 ■ An n-tuple t in a relation r(R) is denoted by t = <v1, v2, … , vn>, where vi is
the value corresponding to attribute Ai. The following notation refers to
component values of tuples:

 � Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t for attri-
bute Ai.

 � Both t[Au, Aw, … , Az] and t.(Au, Aw, … , Az), where Au, Aw, … , Az is a list
of attributes from R, refer to the subtuple of values <vu, vw, … , vz> from t
corresponding to the attributes specified in the list.

As an example, consider the tuple t = <’Barbara Benson’, ‘533-69-1238’,
‘(817)839-8461’, ‘7384 Fontana Lane’, NULL, 19, 3.25> from the STUDENT relation in Fig-
ure 5.1; we have t[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <‘533-69-1238’,
3.25, 19>.

5.2 Relational Model Constraints
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are
usually related in various ways. The state of the whole database will correspond to
the states of all its relations at a particular point in time. There are generally many
restrictions or constraints on the actual values in a database state. These constraints
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can gener-
ally be divided into three main categories:

 1. Constraints that are inherent in the data model. We call these inherent
model-based constraints or implicit constraints.

 2. Constraints that can be directly expressed in the schemas of the data model, typi-
cally by specifying them in the DDL (data definition language, see Section 2.3.1).
We call these schema-based constraints or explicit constraints.

https://hemanthrajhemu.github.io

158 Chapter 5 The Relational Data Model and Relational Database Constraints

 3. Constraints that cannot be directly expressed in the schemas of the data
model, and hence must be expressed and enforced by the application pro-
grams or in some other way. We call these application-based or semantic
constraints or business rules.

The characteristics of relations that we discussed in Section 5.1.2 are the inherent
constraints of the relational model and belong to the first category. For example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints
that can be expressed in the schema of the relational model via the DDL. Constraints
in the third category are more general, relate to the meaning as well as behavior of
attributes, and are difficult to express and enforce within the data model, so they are
usually checked within the application programs that perform database updates. In
some cases, these constraints can be specified as assertions in SQL (see Chapter 7).

Another important category of constraints is data dependencies, which include
functional dependencies and multivalued dependencies. They are used mainly for
testing the “goodness” of the design of a relational database and are utilized in a
process called normalization, which is discussed in Chapters 14 and 15.

The schema-based constraints include domain constraints, key constraints, con-
straints on NULLs, entity integrity constraints, and referential integrity constraints.

5.2.1 Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A must
be an atomic value from the domain dom(A). We have already discussed the ways in
which domains can be specified in Section 5.1.1. The data types associated with
domains typically include standard numeric data types for integers (such as short
integer, integer, and long integer) and real numbers (float and double-precision float).
Characters, Booleans, fixed-length strings, and variable-length strings are also avail-
able, as are date, time, timestamp, and other special data types. Domains can also be
described by a subrange of values from a data type or as an enumerated data type in
which all possible values are explicitly listed. Rather than describe these in detail here,
we discuss the data types offered by the SQL relational standard in Section 6.1.

5.2.2 Key Constraints and Constraints on NULL Values

In the formal relational model, a relation is defined as a set of tuples. By definition,
all elements of a set are distinct; hence, all tuples in a relation must also be distinct.
This means that no two tuples can have the same combination of values for all their
attributes. Usually, there are other subsets of attributes of a relation schema R with
the property that no two tuples in any relation state r of R should have the same
combination of values for these attributes. Suppose that we denote one such subset
of attributes by SK; then for any two distinct tuples t1 and t2 in a relation state r of R,
we have the constraint that:

t1[SK] ≠ t2[SK]

https://hemanthrajhemu.github.io

 5.2 Relational Model Constraints and Relational Database Schemas 159

Any such set of attributes SK is called a superkey of the relation schema R. A super-
key SK specifies a uniqueness constraint that no two distinct tuples in any state r of
R can have the same value for SK. Every relation has at least one default superkey—
the set of all its attributes. A superkey can have redundant attributes, however, so a
more useful concept is that of a key, which has no redundancy. A key k of a relation
schema R is a superkey of R with the additional property that removing any attri-
bute A from K leaves a set of attributes K′ that is not a superkey of R any more.
Hence, a key satisfies two properties:

 1. Two distinct tuples in any state of the relation cannot have identical values
for (all) the attributes in the key. This uniqueness property also applies to a
superkey.

 2. It is a minimal superkey—that is, a superkey from which we cannot remove
any attributes and still have the uniqueness constraint hold. This minimality
property is required for a key but is optional for a superkey.

Hence, a key is a superkey but not vice versa. A superkey may be a key (if it is mini-
mal) or may not be a key (if it is not minimal). Consider the STUDENT relation of
Figure 5.1. The attribute set {Ssn} is a key of STUDENT because no two student
tuples can have the same value for Ssn.8 Any set of attributes that includes Ssn—for
example, {Ssn, Name, Age}—is a superkey. However, the superkey {Ssn, Name, Age}
is not a key of STUDENT because removing Name or Age or both from the set still
leaves us with a superkey. In general, any superkey formed from a single attribute is
also a key. A key with multiple attributes must require all its attributes together to
have the uniqueness property.

The value of a key attribute can be used to identify uniquely each tuple in the rela-
tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-
sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes
constituting a key is a property of the relation schema; it is a constraint that should
hold on every valid relation state of the schema. A key is determined from the mean-
ing of the attributes, and the property is time-invariant: It must continue to hold
when we insert new tuples in the relation. For example, we cannot and should not
designate the Name attribute of the STUDENT relation in Figure 5.1 as a key because
it is possible that two students with identical names will exist at some point in a
valid state.9

In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two
candidate keys: License_number and Engine_serial_number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the convention
that the attributes that form the primary key of a relation schema are underlined, as
shown in Figure 5.4. Notice that when a relation schema has several candidate keys,

8Note that Ssn is also a superkey.

9Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—must
be used to distinguish between persons with identical names.

https://hemanthrajhemu.github.io

160 Chapter 5 The Relational Data Model and Relational Database Constraints

the choice of one to become the primary key is somewhat arbitrary; however, it is
usually better to choose a primary key with a single attribute or a small number
of attributes. The other candidate keys are designated as unique keys and are
not underlined.

Another constraint on attributes specifies whether NULL values are or are not per-
mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

5.2.3 Relational Databases and Relational
Database Schemas

The definitions and constraints we have discussed so far apply to single relations
and their attributes. A relational database usually contains many relations, with
tuples in relations that are related in various ways. In this section, we define a rela-
tional database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R1, R2, … , Rm} and
a set of integrity constraints IC. A relational database state10 DB of S is a set of
relation states DB = {r1, r2, … , rm} such that each ri is a state of Ri and such that the
ri relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. In each relation schema,
the underlined attribute represents the primary key. Figure 5.6 shows a relational
database state corresponding to the COMPANY schema. We will use this schema
and database state in this chapter and in Chapters 4 through 6 for developing
sample queries in different relational languages. (The data shown here is
expanded and available for loading as a populated database from the Compan-
ion Website for the text, and can be used for the hands-on project exercises at
the end of the chapters.)

When we refer to a relational database, we implicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is

CAR

License_number Engine_serial_number Make Model Year

Texas ABC-739

Florida TVP-347

New York MPO-22

California 432-TFY

California RSK-629

Texas RSK-629

A69352

B43696

X83554

C43742

Y82935

U028365

Ford

Oldsmobile

Oldsmobile

Mercedes

Toyota

Jaguar

Mustang

Cutlass

Delta

190-D

Camry

XJS

02

05

01

99

04

04

Figure 5.4

The CAR relation, with
two candidate keys:
License_number and
Engine_serial_number.

10A relational database state is sometimes called a relational database snapshot or instance. However,
as we mentioned earlier, we will not use the term instance since it also applies to single tuples.

https://hemanthrajhemu.github.io

 5.2 Relational Model Constraints and Relational Database Schemas 161

called not valid, and a state that satisfies all the constraints in the defined set of
integrity constraints IC is called a valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS
stands for the same real-world concept—the number given to a department. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have
the same name in different relations. For example, we could have used the attribute
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case, we
would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems when the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security number appears twice in the EMPLOYEE relation of
Figure 5.5: once in the role of the employee’s SSN, and once in the role of the
supervisor’s SSN. We are required to give them distinct attribute names—Ssn and
Super_ssn, respectively—because they appear in the same relation and in order to
distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for
this purpose. We present the SQL DDL in Sections 6.1 and 6.2.

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.5

Schema diagram for the
COMPANY relational
database schema.

https://hemanthrajhemu.github.io

162 Chapter 5 The Relational Data Model and Relational Database Constraints

DEPT_LOCATIONS

Dnumber

Houston

Stafford

Bellaire

Sugarland

Dlocation

DEPARTMENT

Dname

Research

Administration

Headquarters 1

5

4

888665555

333445555

987654321

1981-06-19

1988-05-22

1995-01-01

Dnumber Mgr_ssn Mgr_start_date

WORKS_ON

Essn

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

Pno Hours

PROJECT

Pname

ProductX

ProductY

ProductZ

Computerization

Reorganization

Newbenefits

3

1

2

30

10

20

5

5

5

4

4

1

Houston

Bellaire

Sugarland

Stafford

Stafford

Houston

Pnumber Plocation Dnum

DEPENDENT

333445555

333445555

333445555

987654321

123456789

123456789

123456789

Joy

Alice F

M

F

M

M

F

F

1986-04-05

1983-10-25

1958-05-03

1942-02-28

1988-01-04

1988-12-30

1967-05-05

Theodore

Alice

Elizabeth

Abner

Michael

Spouse

Daughter

Son

Daughter

Spouse

Spouse

Son

Dependent_name Sex Bdate Relationship

EMPLOYEE

Fname

John

Franklin

Jennifer

Alicia

Ramesh

Joyce

James

Ahmad

Narayan

English

Borg

Jabbar

666884444

453453453

888665555

987987987

F

F

M

M

M

M

M

F

4

4

5

5

4

1

5

5

25000

43000

30000

40000

25000

55000

38000

25000

987654321

888665555

333445555

888665555

987654321

NULL

333445555

333445555

Zelaya

Wallace

Smith

Wong

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1968-01-19

1941-06-20

1965-01-09

1955-12-08

1969-03-29

1937-11-10

1962-09-15

1972-07-31

980 Dallas, Houston, TX

450 Stone, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

999887777

987654321

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

B

T

J

S

K

A

V

E

Houston

1

4

5

5

Essn

5

Figure 5.6

One possible database state for the COMPANY relational database schema.

https://hemanthrajhemu.github.io

 5.2 Relational Model Constraints and Relational Database Schemas 163

Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the relational
model: entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This is
because the primary key value is used to identify individual tuples in a relation. Hav-
ing NULL values for the primary key implies that we cannot identify some tuples. For
example, if two or more tuples had NULL for their primary keys, we may not be able
to distinguish them if we try to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations.
The referential integrity constraint is specified between two relations and is used to
maintain the consistency among tuples in the two relations. Informally, the referen-
tial integrity constraint states that a tuple in one relation that refers to another rela-
tion must refer to an existing tuple in that relation. For example, in Figure 5.6, the
attribute Dno of EMPLOYEE gives the department number for which each employee
works; hence, its value in every EMPLOYEE tuple must match the Dnumber value of
some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity
constraint between the two relation schemas R1 and R2. A set of attributes FK in
relation schema R1 is a foreign key of R1 that references relation R2 if it satisfies the
following rules:

 1. The attributes in FK have the same domain(s) as the primary key attributes
PK of R2; the attributes FK are said to reference or refer to the relation R2.

 2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value
of PK for some tuple t2 in the current state r2(R2) or is NULL. In the former
case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or
refers to the tuple t2.

In this definition, R1 is called the referencing relation and R2 is the referenced
relation. If these two conditions hold, a referential integrity constraint from R1 to
R2 is said to hold. In a database of many relations, there are usually many referential
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each attribute or set of attributes plays in the various relation sche-
mas of the database. Referential integrity constraints typically arise from the
relationships among the entities represented by the relation schemas. For example,
consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute
Dno refers to the department for which an employee works; hence, we designate Dno
to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This means
that a value of Dno in any tuple t1 of the EMPLOYEE relation must match a value of

https://hemanthrajhemu.github.io

164 Chapter 5 The Relational Data Model and Relational Database Constraints

the primary key of DEPARTMENT—the Dnumber attribute—in some tuple t2 of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or will be assigned to a department later. For example, in
Figure 5.6 the tuple for employee ‘John Smith’ references the tuple for the ‘Research’
department, indicating that ‘John Smith’ works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a
foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for
employee ‘John Smith’ references the tuple for employee ‘Franklin Wong,’ indicat-
ing that ‘Franklin Wong’ is the supervisor of ‘John Smith’.

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (that is,
specified as part of its definition) if we want the DBMS to enforce these constraints on

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

https://hemanthrajhemu.github.io

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations 165

the database states. Hence, the DDL includes provisions for specifying the various
types of constraints so that the DBMS can automatically enforce them. In SQL, the
CREATE TABLE statement of the SQL DDL allows the definition of primary key,
unique key, NOT NULL, entity integrity, and referential integrity constraints, among
other constraints (see Sections 6.1 and 6.2) .

5.2.5 Other Types of Constraints

The preceding integrity constraints are included in the data definition language
because they occur in most database applications. Another class of general con-
straints, sometimes called semantic integrity constraints, are not part of the DDL
and have to be specified and enforced in a different way. Examples of such con-
straints are the salary of an employee should not exceed the salary of the employee’s
supervisor and the maximum number of hours an employee can work on all projects
per week is 56. Such constraints can be specified and enforced within the applica-
tion programs that update the database, or by using a general-purpose constraint
specification language. Mechanisms called triggers and assertions can be used in
SQL, through the CREATE ASSERTION and CREATE TRIGGER statements, to specify
some of these constraints (see Chapter 7). It is more common to check for these
types of constraints within the application programs than to use constraint specifi-
cation languages because the latter are sometimes difficult and complex to use, as
we discuss in Section 26.1.

The types of constraints we discussed so far may be called state constraints
because they define the constraints that a valid state of the database must satisfy.
Another type of constraint, called transition constraints, can be defined to deal
with state changes in the database.11 An example of a transition constraint is: “the
salary of an employee can only increase.” Such constraints are typically enforced
by the application programs or specified using active rules and triggers, as we dis-
cuss in Section 26.1.

5.3 Update Operations, Transactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 8. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database to retrieve information. The user for-
mulates a query that specifies the data of interest, and a new relation is formed by
applying relational operators to retrieve this data. The result relation becomes the
answer to (or result of) the user’s query. Chapter 8 also introduces the language

11State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.

https://hemanthrajhemu.github.io

166 Chapter 5 The Relational Data Model and Relational Database Constraints

called relational calculus, which is used to define a query declaratively without giv-
ing a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic operations that can change the states of relations in the data-
base: Insert, Delete, and Update (or Modify). They insert new data, delete old data,
or modify existing data records, respectively. Insert is used to insert one or more
new tuples in a relation, Delete is used to delete tuples, and Update (or Modify) is
used to change the values of some attributes in existing tuples. Whenever these
operations are applied, the integrity constraints specified on the relational database
schema should not be violated. In this section we discuss the types of constraints
that may be violated by each of these operations and the types of actions that may
be taken if an operation causes a violation. We use the database shown in Figure 5.6
for examples and discuss only domain constraints, key constraints, entity integrity
constraints, and the referential integrity constraints shown in Figure 5.7. For each
type of operation, we give some examples and discuss any constraints that each
operation may violate.

5.3.1 The Insert Operation

The Insert operation provides a list of attribute values for a new tuple t that is to be
inserted into a relation R. Insert can violate any of the four types of constraints.
Domain constraints can be violated if an attribute value is given that does not
appear in the corresponding domain or is not of the appropriate data type. Key
constraints can be violated if a key value in the new tuple t already exists in another
tuple in the relation r(R). Entity integrity can be violated if any part of the primary
key of the new tuple t is NULL. Referential integrity can be violated if the value of
any foreign key in t refers to a tuple that does not exist in the referenced relation.
Here are some examples to illustrate this discussion.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion violates the entity integrity constraint (NULL for the
primary key Ssn), so it is rejected.

 ■ Operation:
Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.
Result: This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relation, and so it is
rejected.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windswept,
Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.
Result: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding referenced tuple exists in
DEPARTMENT with Dnumber = 7.

https://hemanthrajhemu.github.io

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations 167

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy Lane,
Katy, TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be useful if the DBMS could provide a reason to the
user as to why the insertion was rejected. Another option is to attempt to correct the
reason for rejecting the insertion, but this is typically not used for violations caused by
Insert; rather, it is used more often in correcting violations for Delete and Update.
In the first operation, the DBMS could ask the user to provide a value for Ssn, and
could then accept the insertion if a valid Ssn value is provided. In operation 3, the
DBMS could either ask the user to change the value of Dno to some valid value
(or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with
Dnumber = 7 and could accept the original insertion only after such an operation
was accepted. Notice that in the latter case the insertion violation can cascade back
to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with
a value for Mgr_ssn that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation

The Delete operation can violate only referential integrity. This occurs if the tuple
being deleted is referenced by foreign keys from other tuples in the database. To
specify deletion, a condition on the attributes of the relation selects the tuple (or
tuples) to be deleted. Here are some examples.

 ■ Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777’ and Pno = 10.
Result: This deletion is acceptable and deletes exactly one tuple.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘999887777’.
Result: This deletion is not acceptable, because there are tuples in
WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is
deleted, referential integrity violations will result.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘333445555’.
Result: This deletion will result in even worse referential integrity violations,
because the tuple involved is referenced by tuples from the EMPLOYEE,
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first
option, called restrict, is to reject the deletion. The second option, called cascade, is
to attempt to cascade (or propagate) the deletion by deleting tuples that reference the
tuple that is being deleted. For example, in operation 2, the DBMS could automati-
cally delete the offending tuples from WORKS_ON with Essn = ‘999887777’. A
third option, called set null or set default, is to modify the referencing attribute
values that cause the violation; each such value is either set to NULL or changed to

https://hemanthrajhemu.github.io

168 Chapter 5 The Relational Data Model and Relational Database Constraints

reference another default valid tuple. Notice that if a referencing attribute that
causes a violation is part of the primary key, it cannot be set to NULL; otherwise, it
would violate entity integrity.

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn = ‘333445555’. Tuples in EMPLOYEE with
Super_ssn = ‘333445555’ and the tuple in DEPARTMENT with Mgr_ssn = ‘333445555’
can have their Super_ssn and Mgr_ssn values changed to other valid values or to
NULL. Although it may make sense to delete automatically the WORKS_ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to delete
other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the database designer to specify which of the options applies in case of a
violation of the constraint. We discuss how to specify these options in the SQL DDL
in Chapter 6.

5.3.3 The Update Operation

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified.
Here are some examples.

 ■ Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 1.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 7.
Result: Unacceptable, because it violates referential integrity.

 ■ Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to ‘987654321’.
Result: Unacceptable, because it violates primary key constraint by repeating
a value that already exists as a primary key in another tuple; it violates refer-
ential integrity constraints because there are other relations that refer to the
existing value of Ssn.

Updating an attribute that is neither part of a primary key nor part of a foreign key
usually causes no problems; the DBMS need only check to confirm that the new
value is of the correct data type and domain. Modifying a primary key value is simi-
lar to deleting one tuple and inserting another in its place because we use the pri-
mary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1
(Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the

https://hemanthrajhemu.github.io

 5.4 Summary 169

DBMS must make sure that the new value refers to an existing tuple in the refer-
enced relation (or is set to NULL). Similar options exist to deal with referential integ-
rity violations caused by Update as those options discussed for the Delete operation.
In fact, when a referential integrity constraint is specified in the DDL, the DBMS will
allow the user to choose separate options to deal with a violation caused by Delete
and a violation caused by Update (see Section 6.2).

5.3.4 The Transaction Concept

A database application program running against a relational database typically exe-
cutes one or more transactions. A transaction is an executing program that includes
some database operations, such as reading from the database, or applying inser-
tions, deletions, or updates to the database. At the end of the transaction, it must
leave the database in a valid or consistent state that satisfies all the constraints spec-
ified on the database schema. A single transaction may involve any number of
retrieval operations (to be discussed as part of relational algebra and calculus in
Chapter 8, and as a part of the language SQL in Chapters 6 and 7) and any number
of update operations. These retrievals and updates will together form an atomic
unit of work against the database. For example, a transaction to apply a bank with-
drawal will typically read the user account record, check if there is a sufficient bal-
ance, and then update the record by the withdrawal amount.

A large number of commercial applications running against relational databases in
online transaction processing (OLTP) systems are executing transactions at rates
that reach several hundred per second. Transaction processing concepts, concur-
rent execution of transactions, and recovery from failures will be discussed in
Chapters 20 to 22.

5.4 Summary

In this chapter we presented the modeling concepts, data structures, and constraints
provided by the relational model of data. We started by introducing the concepts of
domains, attributes, and tuples. Then, we defined a relation schema as a list of attri-
butes that describe the structure of a relation. A relation, or relation state, is a set of
tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first
is that a relation is not sensitive to the ordering of tuples. The second involves the
ordering of attributes in a relation schema and the corresponding ordering of val-
ues within a tuple. We gave an alternative definition of relation that does not require
ordering of attributes, but we continued to use the first definition, which requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL values should be avoided as much as possible.

We classified database constraints into inherent model-based constraints, explicit
schema-based constraints, and semantic constraints or business rules. Then, we

https://hemanthrajhemu.github.io

170 Chapter 5 The Relational Data Model and Relational Database Constraints

discussed the schema constraints pertaining to the relational model, starting with
domain constraints, then key constraints (including the concepts of superkey,
key, and primary key), and the NOT NULL constraint on attributes. We defined
relational databases and relational database schemas. Additional relational con-
straints include the entity integrity constraint, which prohibits primary key attri-
butes from being NULL. We described the interrelation referential integrity
constraint, which is used to maintain consistency of references among tuples
from various relations.

The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints (refer to Section 5.3). When-
ever an operation is applied, the resulting database state must be a valid state.
Finally, we introduced the concept of a transaction, which is important in relational
DBMSs because it allows the grouping of several database operations into a single
atomic action on the database.

Review Questions
 5.1. Define the following terms as they apply to the relational model of data:

domain, attribute, n-tuple, relation schema, relation state, degree of a rela-
tion, relational database schema, and relational database state.

 5.2. Why are tuples in a relation not ordered?

 5.3. Why are duplicate tuples not allowed in a relation?

 5.4. What is the difference between a key and a superkey?

 5.5. Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

 5.6. Discuss the characteristics of relations that make them different from ordi-
nary tables and files.

 5.7. Discuss the various reasons that lead to the occurrence of NULL values in
relations.

 5.8. Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

 5.9. Define foreign key. What is this concept used for?

 5.10. What is a transaction? How does it differ from an Update operation?

Exercises
 5.11. Suppose that each of the following Update operations is applied directly to

the database state shown in Figure 5.6. Discuss all integrity constraints

https://hemanthrajhemu.github.io

 Exercises 171

violated by each operation, if any, and the different ways of enforcing
these constraints.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1972-06-21’, ‘2365 Newcastle
Rd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.

b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.

c. Insert <‘Production’, 4, ‘943775543’, ‘2007-10-01’> into DEPARTMENT.

d. Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

e. Insert <‘453453453’, ‘John’, ‘M’, ‘1990-12-12’, ‘spouse’> into DEPENDENT.

f. Delete the WORKS_ON tuples with Essn = ‘333445555’.

g. Delete the EMPLOYEE tuple with Ssn = ‘987654321’.

h. Delete the PROJECT tuple with Pname = ‘ProductX’.

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with
Dnumber = 5 to ‘123456789’ and ‘2007-10-01’, respectively.

j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn =
‘999887777’ to ‘943775543’.

k. Modify the Hours attribute of the WORKS_ON tuple with Essn =
‘999887777’ and Pno = 10 to ‘5.0’.

 5.12. Consider the AIRLINE relational database schema shown in Figure 5.8,
which describes a database for airline flight information. Each FLIGHT is
identified by a Flight_number, and consists of one or more FLIGHT_LEGs
with Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduled
arrival and departure times, airports, and one or more LEG_INSTANCEs—
one for each Date on which the flight travels. FAREs are kept for each
FLIGHT. For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, as
are the AIRPLANE used on the leg and the actual arrival and departure times
and airports. An AIRPLANE is identified by an Airplane_id and is of a particu-
lar AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs
at which they can land. An AIRPORT is identified by an Airport_code. Con-
sider an update for the AIRLINE database to enter a reservation on a particu-
lar flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integ-
rity constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema
shown in Figure 5.8.

 5.13. Consider the relation CLASS(Course#, Univ_Section#, Instructor_name,
Semester, Building_code, Room#, Time_period, Weekdays, Credit_hours). This rep-
resents classes taught in a university, with unique Univ_section#s. Identify what
you think should be various candidate keys, and write in your own words the
conditions or assumptions under which each candidate key would be valid.

https://hemanthrajhemu.github.io

172 Chapter 5 The Relational Data Model and Relational Database Constraints

AIRPORT

Airport_code Name City State

Flight_number Airline Weekdays

FLIGHT

FLIGHT_LEG

Flight_number Leg_number Departure_airport_code Scheduled_departure_time

Scheduled_arrival_timeArrival_airport_code

LEG_INSTANCE

Flight_number Leg_number Date Number_of_available_seats Airplane_id

FARE

Flight_number Fare_code Amount Restrictions

AIRPLANE_TYPE

Airplane_type_name Max_seats Company

CAN_LAND

Airplane_type_name Airport_code

AIRPLANE

Airplane_id Total_number_of_seats Airplane_type

SEAT_RESERVATION

Leg_number Date Seat_number Customer_name Customer_phoneFlight_number

Arrival_timeArrival_airport_codeDeparture_timeDeparture_airport_code

Figure 5.8

The AIRLINE relational database schema.

 5.14. Consider the following six relations for an order-processing database appli-
cation in a company:

CUSTOMER(Cust#, Cname, City)

ORDER(Order#, Odate, Cust#, Ord_amt)

ORDER_ITEM(Order#, Item#, Qty)

https://hemanthrajhemu.github.io

 Exercises 173

ITEM(Item#, Unit_price)

SHIPMENT(Order#, Warehouse#, Ship_date)

WAREHOUSE(Warehouse#, City)

 Here, Ord_amt refers to total dollar amount of an order; Odate is the date the
order was placed; and Ship_date is the date an order (or part of an order) is
shipped from the warehouse. Assume that an order can be shipped from several
warehouses. Specify the foreign keys for this schema, stating any assumptions
you make. What other constraints can you think of for this database?

 5.15. Consider the following relations for a database that keeps track of business
trips of salespersons in a sales office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)

TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

EXPENSE(Trip_id, Account#, Amount)

 A trip can be charged to one or more accounts. Specify the foreign keys for
this schema, stating any assumptions you make.

 5.16. Consider the following relations for a database that keeps track of student
enrollment in courses and the books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_isbn)

TEXT(Book_isbn, Book_title, Publisher, Author)

 Specify the foreign keys for this schema, stating any assumptions you make.

 5.17. Consider the following relations for a database that keeps track of automo-
bile sales in a car dealership (OPTION refers to some optional equipment
installed on an automobile):

CAR(Serial_no, Model, Manufacturer, Price)

OPTION(Serial_no, Option_name, Price)

SALE(Salesperson_id, Serial_no, Date, Sale_price)

SALESPERSON(Salesperson_id, Name, Phone)

 First, specify the foreign keys for this schema, stating any assumptions you
make. Next, populate the relations with a few sample tuples, and then give
an example of an insertion in the SALE and SALESPERSON relations that
violates the referential integrity constraints and of another insertion that
does not.

 5.18. Database design often involves decisions about the storage of attributes. For
example, a Social Security number can be stored as one attribute or split into
three attributes (one for each of the three hyphen-delineated groups of

https://hemanthrajhemu.github.io

174 Chapter 5 The Relational Data Model and Relational Database Constraints

numbers in a Social Security number—XXX-XX-XXXX). However, Social
Security numbers are usually represented as just one attribute. The decision
is based on how the database will be used. This exercise asks you to think
about specific situations where dividing the SSN is useful.

 5.19. Consider a STUDENT relation in a UNIVERSITY database with the following
attributes (Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that
the cell phone may be from a different city and state (or province) from the
local phone. A possible tuple of the relation is shown below:

Name Ssn Local_phone Address Cell_phone Age Gpa
George Shaw 123-45-6789 555-1234 123 Main St., 555-4321 19 3.75
William Edwards Anytown, CA 94539

a. Identify the critical missing information from the Local_phone and
Cell_phone attributes. (Hint: How do you call someone who lives in a dif-
ferent state or province?)

b. Would you store this additional information in the Local_phone and
Cell_phone attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute. What are the advantages and disadvantages
of splitting this field from one attribute into three attributes (first name,
middle name, and last name)?

d. What general guideline would you recommend for deciding when to
store information in a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two dif-
ferent designs that allow this type of information.

 5.20. Recent changes in privacy laws have disallowed organizations from using
Social Security numbers to identify individuals unless certain restrictions
are satisfied. As a result, most U.S. universities cannot use SSNs as primary
keys (except for financial data). In practice, Student_id, a unique identifier
assigned to every student, is likely to be used as the primary key rather than
SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known
as surrogate keys) for primary keys (such as Student_id) because they are
artificial. Can you propose any natural choices of keys that can be used to
identify the student record in a UNIVERSITY database?

b. Suppose that you are able to guarantee uniqueness of a natural key that
includes last name. Are you guaranteed that the last name will not change
during the lifetime of the database? If last name can change, what solu-
tions can you propose for creating a primary key that still includes last
name but remains unique?

c. What are the advantages and disadvantages of using generated (surro-
gate) keys?

https://hemanthrajhemu.github.io

 Selected Bibliography 175

Selected Bibliography
The relational model was introduced by Codd (1970) in a classic paper. Codd also
introduced relational algebra and laid the theoretical foundations for the relational
model in a series of papers (Codd, 1971, 1972, 1972a, 1974); he was later given the
Turing Award, the highest honor of the ACM (Association for Computing Machin-
ery) for his work on the relational model. In a later paper, Codd (1979) discussed
extending the relational model to incorporate more meta-data and semantics about
the relations; he also proposed a three-valued logic to deal with uncertainty in rela-
tions and incorporating NULLs in the relational algebra. The resulting model is
known as RM/T. Childs (1968) had earlier used set theory to model databases.
Later, Codd (1990) published a book examining over 300 features of the relational
data model and database systems. Date (2001) provides a retrospective review and
analysis of the relational data model.

Since Codd’s pioneering work, much research has been conducted on various
aspects of the relational model. Todd (1976) describes an experimental DBMS
called PRTV that directly implements the relational algebra operations. Schmidt
and Swenson (1975) introduce additional semantics into the relational model by
classifying different types of relations. Chen’s (1976) entity–relationship model,
which is discussed in Chapter 3, is a means to communicate the real-world seman-
tics of a relational database at the conceptual level. Wiederhold and Elmasri (1979)
introduce various types of connections between relations to enhance its constraints.
Extensions of the relational model are discussed in Chapters 11 and 26. Additional
bibliographic notes for other aspects of the relational model and its languages, sys-
tems, extensions, and theory are given in Chapters 6 to 9, 14, 15, 23, and 30. Maier
(1983) and Atzeni and De Antonellis (1993) provide an extensive theoretical treat-
ment of the relational data model.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

177

6

Basic SQL

The SQL language may be considered one of the
major reasons for the commercial success of rela-

tional databases. Because it became a standard for relational databases, users were
less concerned about migrating their database applications from other types of
database systems—for example, older network or hierarchical systems—to rela-
tional systems. This is because even if the users became dissatisfied with the partic-
ular relational DBMS product they were using, converting to another relational
DBMS product was not expected to be too expensive and time-consuming because
both systems followed the same language standards. In practice, of course, there
are differences among various commercial relational DBMS packages. However,
if the user is diligent in using only those features that are part of the standard,
and if two relational DBMSs faithfully support the standard, then conversion
between two systems should be simplified. Another advantage of having such a
standard is that users may write statements in a database application program
that can access data stored in two or more relational DBMSs without having to
change the database sublanguage (SQL), as long as both/all of the relational
DBMSs support standard SQL.

This chapter presents the practical relational model, which is based on the SQL
standard for commercial relational DBMSs, whereas Chapter 5 presented the most
important concepts underlying the formal relational data model. In Chapter 8 (Sec-
tions 8.1 through 8.5), we shall discuss the relational algebra operations, which are
very important for understanding the types of requests that may be specified on a
relational database. They are also important for query processing and optimization
in a relational DBMS, as we shall see in Chapters 18 and 19. However, the relational
algebra operations are too low-level for most commercial DBMS users because a
query in relational algebra is written as a sequence of operations that, when exe-
cuted, produces the required result. Hence, the user must specify how—that is, in
what order—to execute the query operations. On the other hand, the SQL language

chapter 6

https://hemanthrajhemu.github.io

178 Chapter 6 Basic SQL

provides a higher-level declarative language interface, so the user only specifies
what the result is to be, leaving the actual optimization and decisions on how to
execute the query to the DBMS. Although SQL includes some features from rela-
tional algebra, it is based to a greater extent on the tuple relational calculus, which
we describe in Section 8.6. However, the SQL syntax is more user-friendly than
either of the two formal languages.

The name SQL is presently expanded as Structured Query Language. Originally,
SQL was called SEQUEL (Structured English QUEry Language) and was designed
and implemented at IBM Research as the interface for an experimental relational
database system called SYSTEM R. SQL is now the standard language for com-
mercial relational DBMSs. The standardization of SQL is a joint effort by the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO), and the first SQL standard is called SQL-86 or SQL1. A
revised and much expanded standard called SQL-92 (also referred to as SQL2)
was subsequently developed. The next standard that is well-recognized is
SQL:1999, which started out as SQL3. Additional updates to the standard are
SQL:2003 and SQL:2006, which added XML features (see Chapter 13) among
other updates to the language. Another update in 2008 incorporated more object
database features into SQL (see Chapter 12), and a further update is SQL:2011.
We will try to cover the latest version of SQL as much as possible, but some of the
newer features are discussed in later chapters. It is also not possible to cover the
language in its entirety in this text. It is important to note that when new features
are added to SQL, it usually takes a few years for some of these features to make it
into the commercial SQL DBMSs.

SQL is a comprehensive database language: It has statements for data definitions,
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization,
for defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming lan-
guage such as Java or C/C++.1

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all
RDBMS vendors that are SQL compliant. The extensions can be implemented as
optional modules to be purchased independently for specific database applications
such as data mining, spatial data, temporal data, data warehousing, online analyti-
cal processing (OLAP), multimedia data, and so on.

Because the subject of SQL is both important and extensive, we devote two chap-
ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-
mands for creating schemas and tables, and gives an overview of the basic data
types in SQL. Section 6.2 presents how basic constraints such as key and referen-
tial integrity are specified. Section 6.3 describes the basic SQL constructs for

1Originally, SQL had statements for creating and dropping indexes on the files that represent relations,
but these have been dropped from the SQL standard for some time.

https://hemanthrajhemu.github.io

 6.1 SQL Data Definition and Data Types 179

specifying retrieval queries, and Section 6.4 describes the SQL commands for
insertion, deletion, and update.

In Chapter 7, we will describe more complex SQL retrieval queries, as well as the
ALTER commands for changing the schema. We will also describe the CREATE

ASSERTION statement, which allows the specification of more general constraints
on the database, and the concept of triggers, which is presented in more detail in
Chapter 26. We discuss the SQL facility for defining views on the database in Chap-
ter 7. Views are also called virtual or derived tables because they present the user
with what appear to be tables; however, the information in those tables is derived
from previously defined tables.

Section 6.5 lists some SQL features that are presented in other chapters of the book;
these include object-oriented features in Chapter 12, XML in Chapter 13, transac-
tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-
cal processing (OLAP) features in Chapter 29, and security/authorization in
Chapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss the
various database programming techniques for programming with SQL.

6.1 SQL Data Definition and Data Types

SQL uses the terms table, row, and column for the formal relational model terms
relation, tuple, and attribute, respectively. We will use the corresponding terms
interchangeably. The main SQL command for data definition is the CREATE state-
ment, which can be used to create schemas, tables (relations), types, and domains,
as well as other constructs such as views, assertions, and triggers. Before we describe
the relevant CREATE statements, we discuss schema and catalog concepts in Sec-
tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tables
are created, and Section 6.1.3 describes the most important data types available for
attribute specification. Because the SQL specification is very large, we give a descrip-
tion of the most important features. Further details can be found in the various SQL
standards documents (see end-of-chapter bibliographic notes).

6.1.1 Schema and Catalog Concepts in SQL

Early versions of SQL did not include the concept of a relational database schema;
all tables (relations) were considered part of the same schema. The concept of an
SQL schema was incorporated starting with SQL2 in order to group together tables
and other constructs that belong to the same database application (in some systems,
a schema is called a database). An SQL schema is identified by a schema name and
includes an authorization identifier to indicate the user or account who owns the
schema, as well as descriptors for each element in the schema. Schema elements
include tables, types, constraints, views, domains, and other constructs (such as
authorization grants) that describe the schema. A schema is created via the CREATE

SCHEMA statement, which can include all the schema elements’ definitions. Alter-
natively, the schema can be assigned a name and authorization identifier, and the

https://hemanthrajhemu.github.io

180 Chapter 6 Basic SQL

elements can be defined later. For example, the following statement creates a
schema called COMPANY owned by the user with authorization identifier ‘Jsmith’.
Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted
to the relevant user accounts by the system administrator or DBA.

In addition to the concept of a schema, SQL uses the concept of a catalog—a named
collection of schemas.2 Database installations typically have a default environment
and schema, so when a user connects and logs in to that database installation, the
user can refer directly to tables and other constructs within that schema without
having to specify a particular schema name. A catalog always contains a special
schema called INFORMATION_SCHEMA, which provides information on all the
schemas in the catalog and all the element descriptors in these schemas. Integrity
constraints such as referential integrity can be defined between relations only if
they exist in schemas within the same catalog. Schemas within the same catalog can
also share certain elements, such as type and domain definitions.

6.1.2 The CREATE TABLE Command in SQL

The CREATE TABLE command is used to specify a new relation by giving it a name
and specifying its attributes and initial constraints. The attributes are specified first,
and each attribute is given a name, a data type to specify its domain of values, and
possibly attribute constraints, such as NOT NULL. The key, entity integrity, and ref-
erential integrity constraints can be specified within the CREATE TABLE statement
after the attributes are declared, or they can be added later using the ALTER TABLE
command (see Chapter 7). Figure 6.1 shows sample data definition statements in
SQL for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified
in the environment in which the CREATE TABLE statements are executed. Alterna-
tively, we can explicitly attach the schema name to the relation name, separated by
a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE table
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables
(or base relations); this means that the table and its rows are actually created

2SQL also includes the concept of a cluster of catalogs.

https://hemanthrajhemu.github.io

 6.1 SQL Data Definition and Data Types 181

CREATE TABLE EMPLOYEE
(Fname
 Minit
 Lname
 Ssn
 Bdate
 Address
 Sex
 Salary
 Super_ssn
 Dno

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)
DATE,
VARCHAR(30),
CHAR,
DECIMAL(10,2),
CHAR(9),
INT

NOT NULL,

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Ssn),

CREATE TABLE DEPARTMENT
(Dname
 Dnumber
 Mgr_ssn
 Mgr_start_date

VARCHAR(15)
INT
CHAR(9)
DATE,

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

CREATE TABLE DEPT_LOCATIONS
(Dnumber
 Dlocation

INT
VARCHAR(15)

NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE PROJECT
(Pname
 Pnumber
 Plocation
 Dnum

VARCHAR(15)
INT
VARCHAR(15),
INT

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON
(Essn
 Pno
 Hours

CHAR(9)
INT
DECIMAL(3,1)

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
(Essn
 Dependent_name
 Sex
 Bdate
 Relationship

CHAR(9)
VARCHAR(15)
CHAR,
DATE,
VARCHAR(8),

NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));

Figure 6.1

SQL CREATE
TABLE data
definition statements
for defining the
COMPANY schema
from Figure 5.7.

https://hemanthrajhemu.github.io

182 Chapter 6 Basic SQL

and stored as a file by the DBMS. Base relations are distinguished from virtual
relations, created through the CREATE VIEW statement (see Chapter 7), which
may or may not correspond to an actual physical file. In SQL, the attributes in a
base table are considered to be ordered in the sequence in which they are speci-
fied in the CREATE TABLE statement. However, rows (tuples) are not considered
to be ordered within a table (relation).

It is important to note that in Figure 6.1, there are some foreign keys that may cause
errors because they are specified either via circular references or because they refer
to a table that has not yet been created. For example, the foreign key Super_ssn in
the EMPLOYEE table is a circular reference because it refers to the EMPLOYEE table
itself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table,
which has not been created yet. To deal with this type of problem, these constraints
can be left out of the initial CREATE TABLE statement, and then added later using
the ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys in
Figure 6.1 to show the complete COMPANY schema in one place.

6.1.3 Attribute Data Types and Domains in SQL

The basic data types available for attributes include numeric, character string, bit
string, Boolean, date, and time.

 ■ Numeric data types include integer numbers of various sizes (INTEGER or
INT, and SMALLINT) and floating-point (real) numbers of various precision
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be
declared by using DECIMAL(i, j)—or DEC(i, j) or NUMERIC(i, j)—where i, the
precision, is the total number of decimal digits and j, the scale, is the number
of digits after the decimal point. The default for scale is zero, and the default
for precision is implementation-defined.

 ■ Character-string data types are either fixed length—CHAR(n) or
CHARACTER(n), where n is the number of characters—or varying length—
VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), where n is
the maximum number of characters. When specifying a literal string value,
it is placed between single quotation marks (apostrophes), and it is case sen-
sitive (a distinction is made between uppercase and lowercase).3 For fixed-
length strings, a shorter string is padded with blank characters to the right.
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is
padded with five blank characters to become ‘Smith’ if needed. Padded
blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str1 appears before another string str2 in alphabetic order,
then str1 is considered to be less than str2.4 There is also a concatenation
operator denoted by || (double vertical bar) that can concatenate two strings

3This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-

sitive, meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.

4For nonalphabetic characters, there is a defined order.

https://hemanthrajhemu.github.io

 6.1 SQL Data Definition and Data Types 183

in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ’.
Another variable-length string data type called CHARACTER LARGE OBJECT
or CLOB is also available to specify columns that have large text values, such
as documents. The CLOB maximum length can be specified in kilobytes
(K), megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a
maximum length of 20 megabytes.

 ■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—
BIT VARYING(n), where n is the maximum number of bits. The default for n,
the length of a character string or bit string, is 1. Literal bit strings are placed
between single quotes but preceded by a B to distinguish them from character
strings; for example, B‘10101’.5 Another variable-length bitstring data type
called BINARY LARGE OBJECT or BLOB is also available to specify columns
that have large binary values, such as images. As for CLOB, the maximum
length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).
For example, BLOB(30G) specifies a maximum length of 30 gigabits.

 ■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL,
because of the presence of NULL values, a three-valued logic is used, so a
third possible value for a Boolean data type is UNKNOWN. We discuss the
need for UNKNOWN and the three-valued logic in Chapter 7.

 ■ The DATE data type has ten positions, and its components are YEAR, MONTH,
and DAY in the form YYYY-MM-DD. The TIME data type has at least eight
positions, with the components HOUR, MINUTE, and SECOND in the form
HH:MM:SS. Only valid dates and times should be allowed by the SQL imple-
mentation. This implies that months should be between 1 and 12 and days
must be between 01 and 31; furthermore, a day should be a valid day for the
corresponding month. The < (less than) comparison can be used with dates
or times—an earlier date is considered to be smaller than a later date, and
similarly with time. Literal values are represented by single-quoted strings
preceded by the keyword DATE or TIME; for example, DATE ‘2014-09-27’ or
TIME ‘09:12:47’. In addition, a data type TIME(i), where i is called time frac-
tional seconds precision, specifies i + 1 additional positions for TIME—one
position for an additional period (.) separator character, and i positions for
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the
standard universal time zone, which is in the range +13:00 to –12:59 in units
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is
not exhaustive; different implementations have added more data types to SQL.

 ■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus
a minimum of six positions for decimal fractions of seconds and an optional
WITH TIME ZONE qualifier. Literal values are represented by single-quoted

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal
string is preceded by X and each hexadecimal character represents 4 bits.

https://hemanthrajhemu.github.io

184 Chapter 6 Basic SQL

strings preceded by the keyword TIMESTAMP, with a blank space between
data and time; for example, TIMESTAMP ‘2014-09-27 09:12:47.648302’.

 ■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data
type. This specifies an interval—a relative value that can be used to increment
or decrement an absolute value of a date, time, or timestamp. Intervals are
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-
natively, a domain can be declared, and the domain name can be used with the
attribute specification. This makes it easier to change the data type for a domain
that is used by numerous attributes in a schema, and improves schema readability.
For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 6.1 for the attributes Ssn and
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn
of DEPENDENT. A domain can also have an optional default specification via a
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be
available in some implementations of SQL.

In SQL, there is also a CREATE TYPE command, which can be used to create user
defined types or UDTs. These can then be used either as data types for attributes, or
as the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-
ter 12, because it is often used in conjunction with specifying object database features
that have been incorporated into more recent versions of SQL.

6.2 Specifying Constraints in SQL

This section describes the basic constraints that can be specified in SQL as part of
table creation. These include key and referential integrity constraints, restrictions
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion using the CHECK clause. We discuss the specification of more general con-
straints, called assertions, in Chapter 7.

6.2.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified
if NULL is not permitted for a particular attribute. This is always implicitly specified for
the attributes that are part of the primary key of each relation, but it can be specified for
any other attributes whose values are required not to be NULL, as shown in Figure 6.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any

https://hemanthrajhemu.github.io

 6.2 Specifying Constraints in SQL 185

new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustrates
an example of specifying a default manager for a new department and a default
department for a new employee. If no default clause is specified, the default default
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK
clause following an attribute or domain definition.6 For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we
can change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-
ure 6.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER

CHECK (D_NUM > 0 AND D_NUM < 21);

6The CHECK clause can also be used for other purposes, as we shall see.

CREATE TABLE EMPLOYEE
 (… ,
 Dno INT NOT NULL DEFAULT 1,
 CONSTRAINT EMPPK
 PRIMARY KEY (Ssn),
 CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET NULL ON UPDATE CASCADE,
 CONSTRAINT EMPDEPTFK
 FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
 (… ,
 Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’,
 … ,
 CONSTRAINT DEPTPK
 PRIMARY KEY(Dnumber),
 CONSTRAINT DEPTSK
 UNIQUE (Dname),
 CONSTRAINT DEPTMGRFK
 FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
 (… ,
 PRIMARY KEY (Dnumber, Dlocation),
 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE CASCADE ON UPDATE CASCADE);

Figure 6.2

Example illustrating
how default attribute
values and referential
integrity triggered
actions are specified
in SQL.

https://hemanthrajhemu.github.io

186 Chapter 6 Basic SQL

We can then use the created domain D_NUM as the attribute type for all attributes
that refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT,
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

6.2.2 Specifying Key and Referential Integrity Constraints

Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to
illustrate the specification of keys and referential integrity are shown in Figure 6.1.7
The PRIMARY KEY clause specifies one or more attributes that make up the primary
key of a relation. If a primary key has a single attribute, the clause can follow the
attribute directly. For example, the primary key of DEPARTMENT can be specified as
follows (instead of the way it is specified in Figure 6.1):

Dnumber INT PRIMARY KEY,

The UNIQUE clause specifies alternate (unique) keys, also known as candidate keys
as illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1.
The UNIQUE clause can also be specified directly for a unique key if it is a single
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig-
ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can be
violated when tuples are inserted or deleted, or when a foreign key or primary key
attribute value is updated. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as
the RESTRICT option. However, the schema designer can specify an alternative
action to be taken by attaching a referential triggered action clause to any foreign
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this
with the examples shown in Figure 6.2. Here, the database designer chooses ON

DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the
value of Super_ssn is automatically set to NULL for all employee tuples that were
referencing the deleted employee tuple. On the other hand, if the Ssn value for a
supervising employee is updated (say, because it was entered incorrectly), the new
value is cascaded to Super_ssn for all employee tuples referencing the updated
employee tuple.8

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the
same for both ON DELETE and ON UPDATE: The value of the affected referencing
attributes is changed to NULL for SET NULL and to the specified default value of the

7Key and referential integrity constraints were not included in early versions of SQL.

8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at
the end of Section 6.1.2.

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 187

referencing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to
delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to
change the value of the referencing foreign key attribute(s) to the updated (new)
primary key value for all the referencing tuples. It is the responsibility of the data-
base designer to choose the appropriate action and to specify it in the database
schema. As a general rule, the CASCADE option is suitable for “relationship” rela-
tions (see Section 9.1) , such as WORKS_ON; for relations that represent multival-
ued attributes, such as DEPT_LOCATIONS; and for relations that represent weak
entity types, such as DEPENDENT.

6.2.3 Giving Names to Constraints

Figure 6.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular
schema must be unique. A constraint name is used to identify a particular con-
straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is also
possible to temporarily defer a constraint until the end of a transaction, as we shall
discuss in Chapter 20 when we present transaction concepts.

6.2.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK

clauses at the end of a CREATE TABLE statement. These can be called row-based
constraints because they apply to each row individually and are checked whenever
a row is inserted or modified. For example, suppose that the DEPARTMENT table in
Figure 6.1 had an additional attribute Dept_create_date, which stores the date when
the department was created. Then we could add the following CHECK clause at the
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using
the CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 because
it requires the full power of queries, which are discussed in Sections 6.3
and 7.1.

6.3 Basic Retrieval Queries in SQL

SQL has one basic statement for retrieving information from a database: the
SELECT statement. The SELECT statement is not the same as the SELECT operation
of relational algebra, which we shall discuss in Chapter 8. There are many options
and flavors to the SELECT statement in SQL, so we will introduce its features grad-
ually. We will use example queries specified on the schema of Figure 5.5 and will

https://hemanthrajhemu.github.io

188 Chapter 6 Basic SQL

refer to the sample database state shown in Figure 5.6 to show the results of some
of these queries. In this section, we present the features of SQL for simple retrieval
queries. Features of SQL for specifying more complex retrieval queries are pre-
sented in Section 7.1.

Before proceeding, we must point out an important distinction between the practical
SQL model and the formal relational model discussed in Chapter 5: SQL allows a
table (relation) to have two or more tuples that are identical in all their attribute
values. Hence, in general, an SQL table is not a set of tuples, because a set does not
allow two identical members; rather, it is a multiset (sometimes called a bag) of
tuples. Some SQL relations are constrained to be sets because a key constraint has
been declared or because the DISTINCT option has been used with the SELECT state-
ment (described later in this section). We should be aware of this distinction as we
discuss the examples.

6.3.1 The SELECT-FROM-WHERE Structure
of Basic SQL Queries

Queries in SQL can be very complex. We will start with simple queries, and then
progress to more complex ones in a step-by-step manner. The basic form of the
SELECT statement, sometimes called a mapping or a select-from-where block, is
formed of the three clauses SELECT, FROM, and WHERE and has the following form:9

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

 ■ <attribute list> is a list of attribute names whose values are to be retrieved by
the query.

 ■ <table list> is a list of the relation names required to process the query.

 ■ <condition> is a conditional (Boolean) expression that identifies the tuples
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond
to the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively, and to the
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntactic
difference is the not equal operator. SQL has additional comparison operators that
we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The
queries are labeled here with the same query numbers used in Chapter 8 for easy
cross-reference.

9The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec-
tion 6.3.3).

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 189

Query 0. Retrieve the birth date and address of the employee(s) whose name is
‘John B. Smith’.

Q0: SELECT Bdate, Address

 FROM EMPLOYEE

 WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The
query selects the individual EMPLOYEE tuples that satisfy the condition of the
WHERE clause, then projects the result on the Bdate and Address attributes listed in
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes in relational algebra (see Chapter 8) and
the WHERE clause specifies the Boolean condition that must be true for any
retrieved tuple, which is known as the selection condition in relational algebra.
Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is,
those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: SELECT Fname, Lname, Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condition
that chooses the particular tuple of interest in the DEPARTMENT table, because Dname
is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,
whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in
EMPLOYEE. The result of query Q1 is shown in Figure 6.3(b). In general, any number
of selection and join conditions may be specified in a single SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND

Plocation = ‘Stafford’

https://hemanthrajhemu.github.io

190 Chapter 6 Basic SQL

(a) Bdate

1965-01-09 731Fondren, Houston, TX

Address (b) Fname

John

Franklin

Ramesh

Joyce

Smith

Wong

Narayan

English

731 Fondren, Houston, TX

638 Voss, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Lname Address

(d) E.Fname

John

Franklin

Alicia Zelaya

Joyce

Ramesh

Jennifer Wallace

Ahmad Jabbar

Smith

Wong

Narayan

English

Jennifer

James

Jennifer

Franklin

James

Franklin

Franklin

Wallace

Borg

Wallace

Wong

Borg

Wong

Wong

E.Lname S.Fname S.Lname

Fname

John

Franklin

K

Joyce

Ramesh

A

B

T

M

F

M

M

5

5

5

5

38000

25000

30000

40000

333445555

333445555

333445555

888665555

Narayan

English

Smith

Wong

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1962-09-15

1972-07-31

1965-09-01

1955-12-08

666884444

453453453

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

(g)

(e) E.Fname

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

(c) Pnumber

10

30

1941-06-20

1941-06-20

4

4

Wallace 291Berry, Bellaire, TX

291Berry, Bellaire, TXWallace

Dnum Lname BdateAddress (f) Ssn

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

Research

Research

Research

Research

Research

Research

Research

Research

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Dname

Figure 6.3

Results of SQL queries when applied to the COMPANY database state shown
in Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 191

The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department (that controls the proj-
ect), and one employee (that manages the department). The projection attributes
are used to choose the attributes to be displayed from each combined tuple. The
result of query Q2 is shown in Figure 6.3(c).

6.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the
attributes are in different tables. If this is the case, and a multitable query refers to
two or more attributes with the same name, we must qualify the attribute name
with the relation name to prevent ambiguity. This is done by prefixing the rela-
tion name to the attribute name and separating the two by a period. To illustrate
this, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the
EMPLOYEE relation were called Dnumber and Name, and the Dname attribute of
DEPARTMENT was also called Name; then, to prevent ambiguity, query Q1 would
be rephrased as shown in Q1A. We must prefix the attributes Name and Dnumber
in Q1A to specify which ones we are referring to, because the same attribute
names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE DEPARTMENT.Name = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambi-
guity in attribute names. Q1 can be rewritten as Q1′ below with fully qualified
attribute names. We can also rename the table names to shorter names by creat-
ing an alias for each table name to avoid repeated typing of long table names
(see Q8 below).

Q1′: SELECT EMPLOYEE.Fname, EMPLOYEE.LName,

EMPLOYEE.Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE DEPARTMENT.DName = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname

 FROM EMPLOYEE AS E, EMPLOYEE AS S

 WHERE E.Super_ssn = S.Ssn;

https://hemanthrajhemu.github.io

192 Chapter 6 Basic SQL

In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and
so on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join
condition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recur-
sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was not
possible to specify a general recursive query, with an unknown number of levels, in
a single SQL statement. A construct for specifying recursive queries has been incor-
porated into SQL:1999 (see Chapter 7).

The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliases
are given to a relation, we can use these names to represent different references
to that same relation. This permits multiple references to the same relation
within a query.

We can use this alias-naming or renaming mechanism in any SQL query to specify
tuple variables for every table in the WHERE clause, whether or not the same rela-
tion needs to be referenced more than once. In fact, this practice is recommended
since it results in queries that are easier to comprehend. For example, we could
specify query Q1 as in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address

 FROM EMPLOYEE AS E, DEPARTMENT AS D

 WHERE D.DName = ‘Research’ AND D.Dnumber = E.Dno;

6.3.3 Unspecified WHERE Clause and Use of the Asterisk

We discuss two more features of SQL here. A missing WHERE clause indicates
no condition on tuple selection; hence, all tuples of the relation specified in the
FROM clause qualify and are selected for the query result. If more than one rela-
tion is specified in the FROM clause and there is no WHERE clause, then the
CROSS PRODUCT—all possible tuple combinations—of these relations is
selected. For example, Query 9 selects all EMPLOYEE Ssns (Figure 6.3(e)), and
Query 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT
Dname, regardless of whether the employee works for the department or not
(Figure 6.3(f)).

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 193

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn

 FROM EMPLOYEE;

Q10: SELECT Ssn, Dname

 FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the WHERE
clause; if any such condition is overlooked, incorrect and very large relations may
result. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a
PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-
butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT
(except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all
the attributes. The * can also be prefixed by the relation name or alias; for example,
EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

Query Q1C retrieves all the attribute values of any EMPLOYEE who works in
DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for
every employee of the ‘Research’ department, and Q10A specifies the CROSS

PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C: SELECT *

 FROM EMPLOYEE

 WHERE Dno = 5;

Q1D: SELECT *

 FROM EMPLOYEE, DEPARTMENT

 WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q10A: SELECT *

 FROM EMPLOYEE, DEPARTMENT;

6.3.4 Tables as Sets in SQL

As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset;
duplicate tuples can appear more than once in a table, and in the result of a query.
SQL does not automatically eliminate duplicate tuples in the results of queries, for
the following reasons:

 ■ Duplicate elimination is an expensive operation. One way to implement it is
to sort the tuples first and then eliminate duplicates.

 ■ The user may want to see duplicate tuples in the result of a query.

 ■ When an aggregate function (see Section 7.1.7) is applied to tuples, in most
cases we do not want to eliminate duplicates.

https://hemanthrajhemu.github.io

194 Chapter 6 Basic SQL

An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.10 If we do want to eliminate duplicate tuples from the result of
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that
only distinct tuples should remain in the result. In general, a query with SELECT

DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-
fying SELECT with neither ALL nor DISTINCT—as in our previous examples—is
equivalent to SELECT ALL. For example, Q11 retrieves the salary of every employee;
if several employees have the same salary, that salary value will appear as many
times in the result of the query, as shown in Figure 6.4(a). If we are interested only
in distinct salary values, we want each value to appear only once, regardless of how
many employees earn that salary. By using the keyword DISTINCT as in Q11A, we
accomplish this, as shown in Figure 6.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

Q11: SELECT ALL Salary

 FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary

 FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set
theory, which are also part of relational algebra (see Chapter 8). There are set union
(UNION), set difference (EXCEPT),11 and set intersection (INTERSECT) operations.
The relations resulting from these set operations are sets of tuples; that is, duplicate
tuples are eliminated from the result. These set operations apply only to type-
compatible relations, so we must make sure that the two relations on which we apply
the operation have the same attributes and that the attributes appear in the same
order in both relations. The next example illustrates the use of UNION.

(b)Salary

30000

40000

25000

43000

38000

25000

25000

55000

(c)(a) Salary

30000

40000

25000

43000

38000

55000

Fname Lname

(d) Fname Lname

James Borg

Figure 6.4

Results of additional
SQL queries when
applied to the
COMPANY database
state shown in
Figure 5.6. (a) Q11.
(b) Q11A. (c) Q16.
(d) Q18.

10In general, an SQL table is not required to have a key, although in most cases there will be one.

11In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 195

Query 4. Make a list of all project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.

Q4A: (SELECT DISTINCT Pnumber

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn

 AND Lname = ‘Smith’)
 UNION

 (SELECT DISTINCT Pnumber

 FROM PROJECT, WORKS_ON, EMPLOYEE

 WHERE Pnumber = Pno AND Essn = Ssn

 AND Lname = ‘Smith’);

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of
the department that controls the project, and the second retrieves the projects that
involve a ‘Smith’ as a worker on the project. Notice that if several employees have
the last name ‘Smith’, the project names involving any of them will be retrieved.
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the key-
word ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets
(duplicates are not eliminated). The behavior of these operations is illustrated by
the examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—
is considered as a different tuple when applying these operations.

6.3.5 Substring Pattern Matching and Arithmetic Operators

In this section we discuss several more features of SQL. The first feature allows
comparison conditions on only parts of a character string, using the LIKE compari-
son operator. This can be used for string pattern matching. Partial strings are spec-
ified using two reserved characters: % replaces an arbitrary number of zero or more
characters, and the underscore (_) replaces a single character. For example, con-
sider the following query.

T(b)

A

a1

a1

a2

a2

a2

a3

a4

a5

T(c)

A

a2

a3

T(d)

A

a1

a2

R(a)

A

a1

a2

a2

a3

S

A

a1

a2

a4

a5

Figure 6.5

The results of SQL multiset
operations. (a) Two tables,
R(A) and S(A).
(b) R(A)UNION ALL S(A).
(c) R(A) EXCEPT ALL S(A).
(d) R(A) INTERSECT ALL
S(A).

https://hemanthrajhemu.github.io

196 Chapter 6 Basic SQL

Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE Address LIKE ‘%Houston,TX%’;

To retrieve all employees who were born during the 1970s, we can use Query Q12A.
Here, ‘7’ must be the third character of the string (according to our format for date),
so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore serving as a place-
holder for an arbitrary character.

Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE Bdate LIKE ‘_ _ 7 _ _ _ _ _ _ _’;

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using
the keyword ESCAPE. For example, ‘AB_CD\%EF’ ESCAPE ‘\’ represents the lit-
eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-
ter not used in the string can be chosen as the escape character. Also, we need a rule
to specify apostrophes or single quotation marks (‘ ’) if they are to be included in a
string because they are used to begin and end strings. If an apostrophe (’) is needed,
it is represented as two consecutive apostrophes (”) so that it will not be interpreted
as ending the string. Notice that substring comparison implies that attribute values
are not atomic (indivisible) values, as we had assumed in the formal relational
model (see Section 5.1) .

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (−), multiplication (*), and division (/) can
be applied to numeric values or attributes with numeric domains. For example,
suppose that we want to see the effect of giving all employees who work on the
‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salaries
would become. This example also shows how we can rename an attribute in the
query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the
‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal

 FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

 WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND

P.Pname = ‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators
include incrementing (+) or decrementing (−) a date, time, or timestamp by an
interval. In addition, an interval value is the result of the difference between two
date, time, or timestamp values. Another comparison operator, which can be used
for convenience, is BETWEEN, which is illustrated in Query 14.

https://hemanthrajhemu.github.io

 6.3 Basic Retrieval Queries in SQL 197

Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Q14: SELECT *

 FROM EMPLOYEE

 WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

6.3.6 Ordering of Query Results

SQL allows the user to order the tuples in the result of a query by the values of one
or more of the attributes that appear in the query result, by using the ORDER BY
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on,
ordered by department and, within each department, ordered alphabetically by
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname

 FROM DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W,

PROJECT AS P

 WHERE D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =

P.Pnumber

 ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values. We can specify the keyword DESC
if we want to see the result in a descending order of values. The keyword ASC can be
used to specify ascending order explicitly. For example, if we want descending
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

6.3.7 Discussion and Summary of
Basic SQL Retrieval Queries

A simple retrieval query in SQL can consist of up to four clauses, but only the first
two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets […] being optional:

SELECT <attribute list>

FROM <table list>

[WHERE <condition>]

[ORDER BY <attribute list>];

The SELECT clause lists the attributes to be retrieved, and the FROM clause
specifies all relations (tables) needed in the simple query. The WHERE clause
identifies the conditions for selecting the tuples from these relations, including

https://hemanthrajhemu.github.io

198 Chapter 6 Basic SQL

join conditions if needed. ORDER BY specifies an order for displaying the results
of a query. Two additional clauses GROUP BY and HAVING will be described in
Section 7.1.8.

In Chapter 7, we will present more complex features of SQL retrieval queries. These
include the following: nested queries that allow one query to be included as part of
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be
used to provide additional power to aggregate functions; and various types of joins
that can combine records from various tables in different ways.

6.4 INSERT, DELETE, and UPDATE
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

6.4.1 The INSERT Command

In its simplest form, INSERT is used to add a single tuple (row) to a relation (table).
We must specify the relation name and a list of values for the tuple. The values
should be listed in the same order in which the corresponding attributes were speci-
fied in the CREATE TABLE command. For example, to add a new tuple to the
EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLE

EMPLOYEE … command in Figure 6.1, we can use U1:

U1: INSERT INTO EMPLOYEE

 VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98
Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned
values in the new tuple. However, the values must include all attributes with NOT

NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out. For example, to enter a tuple for a new
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we
can use U1A:

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

 VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself.
It is also possible to insert into a relation multiple tuples separated by commas in a
single INSERT command. The attribute values forming each tuple are enclosed in
parentheses.

https://hemanthrajhemu.github.io

 6.4 INSERT, DELETE, and UPDATE Statements in SQL 199

A DBMS that fully implements SQL should support and enforce all the integrity
constraints that can be specified in the DDL. For example, if we issue the command
in U2 on the database shown in Figure 5.6, the DBMS should reject the operation
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly,
U2A would be rejected because no Ssn value is provided and it is the primary key,
which cannot be NULL.

U2: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)

 VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);
 (U2 is rejected if referential integrity checking is provided by DBMS.)

U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)

 VALUES (‘Robert’, ‘Hatcher’, 5);
 (U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the employee last name, project name,
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO

 (Emp_name VARCHAR(15),
 Proj_name VARCHAR(15),
 Hours_per_week DECIMAL(3,1));

U3B: INSERT INTO WORKS_ON_INFO (Emp_name, Proj_name,

Hours_per_week)

 SELECT E.Lname, P.Pname, W.Hours

 FROM PROJECT P, WORKS_ON W, EMPLOYEE E

 WHERE P.Pnumber = W.Pno AND W.Essn = E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query
WORKS_ON_INFO as we would any other relation; when we do not need it anymore,
we can remove it by using the DROP TABLE command (see Chapter 7). Notice that
the WORKS_ON_INFO table may not be up to date; that is, if we update any of the
PROJECT,WORKS_ON, or EMPLOYEE relations after issuing U3B, the information
in WORKS_ON_INFO may become outdated. We have to create a view (see Chap-
ter 7) to keep such a table up to date.

Most DBMSs have bulk loading tools that allow a user to load formatted data from
a file into a table without having to write a large number of INSERT commands.
The user can also write a program to read each record in the file, format it as a row
in the table, and insert it using the looping constructs of a programming language
(see Chapters 10 and 11, where we discuss database programming techniques).

Another variation for loading data is to create a new table TNEW that has the
same attributes as an existing table T, and load some of the data currently in T
into TNEW. The syntax for doing this uses the LIKE clause. For example, if we

https://hemanthrajhemu.github.io

200 Chapter 6 Basic SQL

want to create a table D5EMPS with a similar structure to the EMPLOYEE table
and load it with the rows of employees who work in department 5, we can write
the following SQL:

CREATE TABLE D5EMPS LIKE EMPLOYEE

(SELECT E.*

FROM EMPLOYEE AS E

WHERE E.Dno = 5) WITH DATA;

The clause WITH DATA specifies that the table will be created and loaded with
the data specified in the query, although in some implementations it may be
left out.

6.4.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE
clause, similar to that used in an SQL query, to select the tuples to be deleted.
Tuples are explicitly deleted from only one table at a time. However, the deletion
may propagate to tuples in other relations if referential triggered actions are spec-
ified in the referential integrity constraints of the DDL (see Section 6.2.2).12
Depending on the number of tuples selected by the condition in the WHERE
clause, zero, one, or several tuples can be deleted by a single DELETE command. A
missing WHERE clause specifies that all tuples in the relation are to be deleted;
however, the table remains in the database as an empty table. We must use the
DROP TABLE command to remove the table definition (see Chapter 7). The
DELETE commands in U4A to U4D, if applied independently to the database state
shown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, from
the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE

 WHERE Lname = ‘Brown’;
U4B: DELETE FROM EMPLOYEE

 WHERE Ssn = ‘123456789’;
U4C: DELETE FROM EMPLOYEE

 WHERE Dno = 5;
U4D: DELETE FROM EMPLOYEE;

6.4.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected
tuples. As in the DELETE command, a WHERE clause in the UPDATE command
selects the tuples to be modified from a single relation. However, updating a pri-
mary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity

12Other actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.

https://hemanthrajhemu.github.io

 6.5 Additional Features of SQL 201

constraints of the DDL (see Section 6.2.2). An additional SET clause in the
UPDATE command specifies the attributes to be modified and their new values.
For example, to change the location and controlling department number of proj-
ect number 10 to ‘Bellaire’ and 5, respectively, we use U5:

U5: UPDATE PROJECT

 SET Plocation = ‘Bellaire’, Dnum = 5

 WHERE Pnumber = 10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the ‘Research’ department a 10% raise in salary, as shown in
U6. In this request, the modified Salary value depends on the original Salary value
in each tuple, so two references to the Salary attribute are needed. In the SET
clause, the reference to the Salary attribute on the right refers to the old Salary
value before modification, and the one on the left refers to the new Salary value
after modification:

U6: UPDATE EMPLOYEE

 SET Salary = Salary * 1.1
 WHERE Dno = 5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multi-
ple relations, we must issue several UPDATE commands.

6.5 Additional Features of SQL

SQL has a number of additional features that we have not described in this chapter
but that we discuss elsewhere in the book. These are as follows:

 ■ In Chapter 7, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval
queries, including nested queries, aggregate functions, grouping, joined
tables, outer joins, case statements, and recursive queries; SQL views, trig-
gers, and assertions; and commands for schema modification.

 ■ SQL has various techniques for writing programs in various programming
languages that include SQL statements to access one or more databases.
These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface)
and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM
(Persistent Stored Modules). We discuss these techniques in Chapter 10. We
also describe how to access SQL databases through the Java programming
language using JDBC and SQLJ.

 ■ Each commercial RDBMS will have, in addition to the SQL commands, a set
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of
SQL had commands for creating indexes, but these were removed from the

https://hemanthrajhemu.github.io

202 Chapter 6 Basic SQL

language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands; but they require a special
privilege. We describe this in Chapter 17.

 ■ SQL has transaction control commands. These are used to specify units of
database processing for concurrency control and recovery purposes. We
discuss these commands in Chapter 20 after we discuss the concept of trans-
actions in more detail.

 ■ SQL has language constructs for specifying the granting and revoking of
privileges to users. Privileges typically correspond to the right to use certain
SQL commands to access certain relations. Each relation is assigned an
owner, and either the owner or the DBA staff can grant to selected users the
privilege to use an SQL statement—such as SELECT, INSERT, DELETE, or
UPDATE—to access the relation. In addition, the DBA staff can grant the
privileges to create schemas, tables, or views to certain users. These SQL
commands—called GRANT and REVOKE—are discussed in Chapter 20,
where we discuss database security and authorization.

 ■ SQL has language constructs for creating triggers. These are generally
referred to as active database techniques, since they specify actions that are
automatically triggered by events such as database updates. We discuss these
features in Section 26.1, where we discuss active database concepts.

 ■ SQL has incorporated many features from object-oriented models to have
more powerful capabilities, leading to enhanced relational systems known
as object-relational. Capabilities such as creating complex-structured attri-
butes, specifying abstract data types (called UDTs or user-defined types) for
attributes and tables, creating object identifiers for referencing tuples, and
specifying operations on types are discussed in Chapter 12.

 ■ SQL and relational databases can interact with new technologies such as
XML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

6.6 Summary

In this chapter, we introduced the SQL database language. This language and its
variations have been implemented as interfaces to many commercial relational
DBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and many
other systems including Sybase and INGRES. Some open source systems also provide
SQL, such as MySQL and PostgreSQL. The original version of SQL was imple-
mented in the experimental DBMS called SYSTEM R, which was developed at IBM
Research. SQL is designed to be a comprehensive language that includes statements
for data definition, queries, updates, constraint specification, and view definition.
We discussed the following features of SQL in this chapter: the data definition com-
mands for creating tables, SQL basic data types, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter,
we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.

https://hemanthrajhemu.github.io

 Exercises 203

Review Questions
 6.1. How do the relations (tables) in SQL differ from the relations defined for-

mally in Chapter 3? Discuss the other differences in terminology. Why does
SQL allow duplicate tuples in a table or in a query result?

 6.2. List the data types that are allowed for SQL attributes.

 6.3. How does SQL allow implementation of the entity integrity and referential
integrity constraints described in Chapter 3? What about referential trig-
gered actions?

 6.4. Describe the four clauses in the syntax of a simple SQL retrieval query. Show
what type of constructs can be specified in each of the clauses. Which are
required and which are optional?

Exercises
 6.5. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. What are the referential integrity constraints that should hold on the
schema? Write appropriate SQL DDL statements to define the database.

 6.6. Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

 6.7. Consider the LIBRARY relational database schema shown in Figure 6.6.
Choose the appropriate action (reject, cascade, set to NULL, set to default) for
each referential integrity constraint, both for the deletion of a referenced
tuple and for the update of a primary key attribute value in a referenced
tuple. Justify your choices.

 6.8. Write appropriate SQL DDL statements for declaring the LIBRARY relational
database schema of Figure 6.6. Specify the keys and referential triggered
actions.

 6.9. How can the key and foreign key constraints be enforced by the DBMS? Is
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

 6.10. Specify the following queries in SQL on the COMPANY relational database
schema shown in Figure 5.5. Show the result of each query if it is applied to
the COMPANY database in Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong’.

https://hemanthrajhemu.github.io

204 Chapter 6 Basic SQL

 6.11. Specify the updates of Exercise 3.11 using the SQL update commands.

 6.12. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘cs’ (computer
science).

b. Retrieve the names of all courses taught by Professor King in 2007 and
2008.

c. For each section taught by Professor King, retrieve the course number,
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4)
majoring in CS. A transcript includes course name, course number,
credit hours, semester, year, and grade for each course completed by
the student.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES

Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH

Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER

Card_no Name Address Phone

Figure 6.6

A relational database
schema for a
LIBRARY database.

https://hemanthrajhemu.github.io

 Selected Bibliography 205

 6.13. Write SQL update statements to do the following on the database schema
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>.

d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.

 6.14. Design a relational database schema for a database application of your
choice.

a. Declare your relations using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database
application.

c. Based on your expected use of the database, choose some attributes that
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

 6.15. Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in
Figure 6.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK

 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)

 ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:

a. What happens when the following command is run on the database state
shown in Figure 5.6?

DELETE EMPLOYEE WHERE Lname = ‘Borg’

b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint
ON DELETE?

 6.16. Write SQL statements to create a table EMPLOYEE_BACKUP to back up the
EMPLOYEE table shown in Figure 5.6.

Selected Bibliography
The SQL language, originally named SEQUEL, was based on the language SQUARE
(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). The
syntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) and
then into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The original
implementation of SEQUEL was done at IBM Research, San Jose, California. We
will give additional references to various aspects of SQL at the end of Chapter 7.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

207

7

More SQL: Complex Queries,

Triggers, Views, and

Schema Modification

This chapter describes more advanced features of
the SQL language for relational databases. We start

in Section 7.1 by presenting more complex features of SQL retrieval queries, such as
nested queries, joined tables, outer joins, aggregate functions, and grouping, and
case statements. In Section 7.2, we describe the CREATE ASSERTION statement,
which allows the specification of more general constraints on the database. We also
introduce the concept of triggers and the CREATE TRIGGER statement, which will
be presented in more detail in Section 26.1 when we present the principles of active
databases. Then, in Section 7.3, we describe the SQL facility for defining views on
the database. Views are also called virtual or derived tables because they present the
user with what appear to be tables; however, the information in those tables is
derived from previously defined tables. Section 7.4 introduces the SQL ALTER

TABLE statement, which is used for modifying the database tables and constraints.
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries

In Section 6.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We
discuss several of these features in this section.

chapter 7

https://hemanthrajhemu.github.io

208 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that
NULL is used to represent a missing value, but that it usually has one of three differ-
ent interpretations—value unknown (value exists but is not known, or it is not
known whether or not the value exists), value not available (value exists but is pur-
posely withheld), or value not applicable (the attribute does not apply to this tuple
or is undefined for this tuple). Consider the following examples to illustrate each of
the meanings of NULL.

 1. Unknown value. A person’s date of birth is not known, so it is represented
by NULL in the database. An example of the other case of unknown would be
NULL for a person’s home phone because it is not known whether or not the
person has a home phone.

 2. Unavailable or withheld value. A person has a home phone but does not
want it to be listed, so it is withheld and represented as NULL in the database.

 3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a
person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for exam-
ple, a NULL for the home phone of a person can have any of the three meanings.
Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other
NULL value in the various database records. When a record with NULL in one of its
attributes is involved in a comparison operation, the result is considered to be
UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued
logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued
(Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the
results (or truth values) of three-valued logical expressions when the logical con-
nectives AND, OR, and NOT are used. Table 7.1 shows the resulting values.

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

(b) OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

(c) NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 209

In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the results
of comparison conditions, which would typically appear in the WHERE clause of an
SQL query. Each expression result would have a value of TRUE, FALSE, or
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of using
the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is
FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 7.1(c)
shows the result of the NOT logical operation. Notice that in standard Boolean logic,
only TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression in the WHERE clause of the query to TRUE
are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not
selected. However, there are exceptions to that rule for certain operations, such as
outer joins, as we shall see in Section 7.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or <> to compare an attribute value to NULL, SQL uses the comparison operators IS or
IS NOT. This is because SQL considers each NULL value as being distinct from every
other NULL value, so equality comparison is not appropriate. It follows that when a join
condition is specified, tuples with NULL values for the join attributes are not included in
the result (unless it is an OUTER JOIN; see Section 7.1.6). Query 18 illustrates NULL com-
parison by retrieving any employees who do not have a supervisor.

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE Super_ssn IS NULL;

7.1.2 Nested Queries, Tuples,
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used
in a comparison condition. Such queries can be conveniently formulated by using
nested queries, which are complete select-from-where blocks within another SQL
query. That other query is called the outer query. These nested queries can also
appear in the WHERE clause or the FROM clause or the SELECT clause or other
SQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but it
can be rephrased to use nested queries as shown in Q4A. Q4A introduces the com-
parison operator IN, which compares a value v with a set (or multiset) of values V
and evaluates to TRUE if v is one of the elements in V.

In Q4A, the first nested query selects the project numbers of projects that have an
employee with last name ‘Smith’ involved as manager, whereas the second nested query
selects the project numbers of projects that have an employee with last name ‘Smith’
involved as worker. In the outer query, we use the OR logical connective to retrieve a
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.

https://hemanthrajhemu.github.io

210 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q4A: SELECT DISTINCT Pnumber

 FROM PROJECT

 WHERE Pnumber IN

 (SELECT Pnumber

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum = Dnumber AND

 Mgr_ssn = Ssn AND Lname = ‘Smith’)
 OR

 Pnumber IN
 (SELECT Pno

 FROM WORKS_ON, EMPLOYEE

 WHERE Essn = Ssn AND Lname = ‘Smith’);

If a nested query returns a single attribute and a single tuple, the query result will be
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation),
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE (Pno, Hours) IN (SELECT Pno, Hours

 FROM WORKS_ON

 WHERE Essn = ‘123456789’);

This query will select the Essns of all employees who work the same (project, hours)
combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’)
works on. In this example, the IN operator compares the subtuple of values in paren-
theses (Pno, Hours) within each tuple in WORKS_ON with the set of type-compatible
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used
to compare a single value v (typically an attribute name) to a set or multiset v (typi-
cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v
is equal to some value in the set V and is hence equivalent to IN. The two keywords
ANY and SOME have the same effect. Other operators that can be combined with
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL V)
returns TRUE if the value v is greater than all the values in the set (or multiset) V.
An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

 FROM EMPLOYEE

 WHERE Dno = 5);

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 211

Notice that this query can also be specified using the MAX aggregate function (see
Section 7.1.7).

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an
unqualified attribute refers to the relation declared in the innermost nested query.
For example, in the SELECT clause and WHERE clause of the first nested query of
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the
PROJECT relation specified in the FROM clause of the nested query. To refer to an
attribute of the PROJECT relation specified in the outer query, we specify and refer
to an alias (tuple variable) for that relation. These rules are similar to scope rules for
program variables in most programming languages that allow nested procedures
and functions. To illustrate the potential ambiguity of attribute names in nested
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E
 WHERE E.Ssn IN (SELECT D.Essn

 FROM DEPENDENT AS D
 WHERE E.Fname = D.Dependent_name

 AND E.Sex = D.Sex);

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attri-
bute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute
called Sex. If there were any unqualified references to Sex in the nested query, they
would refer to the Sex attribute of DEPENDENT. However, we would not have to
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested
query because the DEPENDENT relation does not have attributes called Fname and
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q16.

7.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attri-
bute of a relation declared in the outer query, the two queries are said to be correlated.
We can understand a correlated query better by considering that the nested query is
evaluated once for each tuple (or combination of tuples) in the outer query. For
example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the
nested query, which retrieves the Essn values for all DEPENDENT tuples with the
same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple
is in the result of the nested query, then select that EMPLOYEE tuple.

https://hemanthrajhemu.github.io

212 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E, DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

 AND E.Fname = D.Dependent_name;

7.1.4 The EXISTS and UNIQUE Functions in SQL

EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence,
they can be used in a WHERE clause condition. The EXISTS function in SQL is used
to check whether the result of a nested query is empty (contains no tuples) or not.
The result of EXISTS is a Boolean value TRUE if the nested query result contains at
least one tuple, or FALSE if the nested query result contains no tuples. We illustrate
the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate
Query 16 in an alternative form that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E
 WHERE EXISTS (SELECT *
 FROM DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

 AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of
the EMPLOYEE relation from the outer query. We can think of Q16B as follows: For
each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT
tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at
least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE
tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested
query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS(Q) returns
TRUE if there are no tuples in the result of nested query Q, and returns FALSE other-
wise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Q6: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT *

 FROM DEPENDENT

 WHERE Ssn = Essn);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a
particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because
the WHERE-clause condition will evaluate to TRUE in this case. We can explain
Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 213

DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is
empty, no dependents are related to the employee, so we select that EMPLOYEE
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE EXISTS (SELECT *

 FROM DEPENDENT

 WHERE Ssn = Essn)
 AND

 EXISTS (SELECT *

 FROM DEPARTMENT

 WHERE Ssn = Mgr_ssn);

One way to write this query is shown in Q7, where we specify two nested cor-
related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE,
and the second selects all DEPARTMENT tuples managed by the EMPLOYEE. If at
least one of the first and at least one of the second exists, we select the EMPLOYEE
tuple. Can you rewrite this query using only a single nested query or no nested
queries?

The query Q3: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in
SQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and
Q3B. This is an example of certain types of queries that require universal quantifica-
tion, as we will discuss in Section 8.6.7. One way to write this query is to use the
construct (S2 EXCEPT S1) as explained next, and checking whether the result is
empty.1 This option is shown as Q3A.

Q3A: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE NOT EXISTS ((SELECT Pnumber

 FROM PROJECT

 WHERE Dnum = 5)
 EXCEPT (SELECT Pno

 FROM WORKS_ON

 WHERE Ssn = Essn));

In Q3A, the first subquery (which is not correlated with the outer query) selects all
projects controlled by department 5, and the second subquery (which is corre-
lated) selects all projects that the particular employee being considered works on.
If the set difference of the first subquery result MINUS (EXCEPT) the second sub-
query result is empty, it means that the employee works on all the projects and is
therefore selected.

1Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for
example, in Oracle.

https://hemanthrajhemu.github.io

214 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3A.

Q3B: SELECT Lname, Fname

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT *
 FROM WORKS_ON B

 WHERE (B.Pno IN (SELECT Pnumber

 FROM PROJECT

 WHERE Dnum = 5)
 AND

 NOT EXISTS (SELECT *

 FROM WORKS_ON C

 WHERE C.Essn = Ssn

 AND C.Pno = B.Pno)));

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of
Q3B matches the following rephrasing of Query 3: Select each employee such that
there does not exist a project controlled by department 5 that the employee does
not work on. It corresponds to the way we will write this query in tuple relation
calculus (see Section 8.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be
used to test whether the result of a nested query is a set (no duplicates) or a multiset
(duplicates exist).

7.1.5 Explicit Sets and Renaming in SQL

We have seen several queries with a nested query in the WHERE clause. It is also
possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on
project numbers 1, 2, or 3.

Q17: SELECT DISTINCT Essn

 FROM WORKS_ON

 WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query
by adding the qualifier AS followed by the desired new name. Hence, the AS con-
struct can be used to alias both attribute and relation names in general, and it can
be used in appropriate parts of a query. For example, Q8A shows how query Q8
from Section 4.3.2 can be slightly changed to retrieve the last name of each
employee and his or her supervisor while renaming the resulting attribute names

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 215

as Employee_name and Supervisor_name. The new names will appear as column
headers for the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name

 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

7.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to
permit users to specify a table resulting from a join operation in the FROM clause of
a query. This construct may be easier to comprehend than mixing together all the
select and join conditions in the WHERE clause. For example, consider query Q1,
which retrieves the name and address of every employee who works for the
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and
DEPARTMENT relations in the WHERE clause, and then to select the desired tuples
and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address

 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)

 WHERE Dname = ‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of
the second table, DEPARTMENT. The concept of a joined table also allows the user to
specify different types of join, such as NATURAL JOIN and various types of OUTER

JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an
implicit EQUIJOIN condition for each pair of attributes with the same name from R
and S is created. Each such pair of attributes is included only once in the resulting
relation (see Sections 8.3.2 and 8.4.4 for more details on the various types of join
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possible
to rename the attributes so that they match, and then to apply NATURAL JOIN. In
this case, the AS construct can be used to rename a relation and all its attributes in
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno,
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address

 FROM (EMPLOYEE NATURAL JOIN

 (DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))

 WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result;

https://hemanthrajhemu.github.io

216 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user
requires that all employees be included, a different type of join called OUTER JOIN
must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-

tional algebra). There are several variations of OUTER JOIN, as we shall see. In the
SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a
joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,

 S.Lname AS Supervisor_name

 FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
 ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN (only
pairs of tuples that match the join condition are retrieved, same as JOIN), LEFT

OUTER JOIN (every tuple in the left table must appear in the result; if it does not have
a matching tuple, it is padded with NULL values for the attributes of the right table),
RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it does
not have a matching tuple, it is padded with NULL values for the attributes of the left
table), and FULL OUTER JOIN. In the latter three options, the keyword OUTER may be
omitted. If the join attributes have the same name, one can also specify the natural
join variation of outer joins by using the keyword NATURAL before the operation (for
example, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specify
the CARTESIAN PRODUCT operation (see Section 8.2.2), although this should be
used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This allows the specification of the join of three or more tables
as a single joined table, which is called a multiway join. For example, Q2A is a differ-
ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)

 JOIN EMPLOYEE ON Mgr_ssn = Ssn)

 WHERE Plocation = ‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In
some systems, a different syntax was used to specify outer joins by using the compari-
son operators + =, = +, and + = + for left, right, and full outer join, respectively, when
specifying the join condition. For example, this syntax is available in Oracle. To specify
the left outer join in Q8B using this syntax, we could write the query Q8C as follows:

Q8C: SELECT E.Lname, S.Lname

 FROM EMPLOYEE E, EMPLOYEE S

 WHERE E.Super_ssn + = S.Ssn;

7.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples
into a single-tuple summary. Grouping is used to create subgroups of tuples
before summarization. Grouping and aggregation are required in many database

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 217

applications, and we will introduce their use in SQL through examples. A number
of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.2 The
COUNT function returns the number of tuples or values as specified in a query.
The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of
numeric values and return, respectively, the sum, maximum value, minimum
value, and average (mean) of those values. These functions can be used in the
SELECT clause or in a HAVING clause (which we introduce later). The functions
MAX and MIN can also be used with attributes that have nonnumeric domains if
the domain values have a total ordering among one another.3 We illustrate the use
of these functions with several queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

 FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table.
We could use AS to rename the column names in the resulting single-row table; for
example, as in Q19A.

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,

 MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal

 FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specific
department—say, the ‘Research’ department—we can write Query 20, where the
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-
ment, as well as the maximum salary, the minimum salary, and the average
salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)

 WHERE Dname = ‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (*)
 FROM EMPLOYEE;

Q22: SELECT COUNT (*)
 FROM EMPLOYEE, DEPARTMENT

 WHERE DNO = DNUMBER AND DNAME = ‘Research’;

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.

3Total order means that for any two values in the domain, it can be determined that one appears before
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings
on their values, as do alphabetic strings.

https://hemanthrajhemu.github.io

218 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of
rows in the result of the query. We may also use the COUNT function to count val-
ues in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)

 FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY
will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute); the only exception is for
COUNT(*) because tuples instead of values are counted. In the previous examples,
any Salary values that are NULL are not included in the aggregate function calcula-
tion. The general rule is as follows: when an aggregate function is applied to a col-
lection of values, NULLs are removed from the collection before the calculation; if
the collection becomes empty because all values are NULL, the aggregate function
will return NULL (except in the case of COUNT, where it will return 0 for an empty
collection of values).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce a table with a single row or a
single value. They illustrate how functions are applied to retrieve a summary value
or summary tuple from a table. These functions can also be used in selection condi-
tions involving nested queries. We can specify a correlated nested query with an
aggregate function, and then use the nested query in the WHERE clause of an outer
query. For example, to retrieve the names of all employees who have two or more
dependents (Query 5), we can write the following:

Q5: SELECT Lname, Fname
 FROM EMPLOYEE

 WHERE (SELECT COUNT (*)
 FROM DEPENDENT

 WHERE Ssn = Essn) > = 2;

The correlated nested query counts the number of dependents that each employee
has; if this is greater than or equal to two, the employee tuple is selected.

SQL also has aggregate functions SOME and ALL that can be applied to a col-
lection of Boolean values; SOME returns TRUE if at least one element in the
collection is TRUE, whereas ALL returns TRUE if all elements in the collection
are TRUE.

7.1.8 Grouping: The GROUP BY and HAVING Clauses

In many cases we want to apply the aggregate functions to subgroups of tuples in a
relation, where the subgroups are based on some attribute values. For example, we
may want to find the average salary of employees in each department or the number

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 219

of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will
consist of the tuples that have the same value of some attribute(s), called the
grouping attribute(s). We can then apply the function to each such group indepen-
dently to produce summary information about each group. SQL has a GROUP BY
clause for this purpose. The GROUP BY clause specifies the grouping attributes,
which should also appear in the SELECT clause, so that the value resulting from
applying each aggregate function to a group of tuples appears along with the value
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)

 FROM EMPLOYEE

 GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having
the same value for the GROUP BY attribute Dno. Hence, each group contains the
employees who work in the same department. The COUNT and AVG functions
are applied to each such group of tuples. Notice that the SELECT clause includes
only the grouping attribute and the aggregate functions to be applied on each
group of tuples. Figure 7.1(a) illustrates how grouping works and shows the
result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had some tuples that had NULL for the grouping attribute Dno, there would be
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON

 WHERE Pnumber = Pno

 GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations in
the WHERE clause.

Sometimes we want to retrieve the values of these functions only for groups that
satisfy certain conditions. For example, suppose that we want to modify Query 25 so
that only projects with more than two employees appear in the result. SQL provides
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this
purpose. HAVING provides a condition on the summary information regarding the
group of tuples associated with each value of the grouping attributes. Only the
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.

https://hemanthrajhemu.github.io

220 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Dno

5

4

1

4

3

1

33250

31000

55000

Count (*) Avg (Salary)

Result of Q24

Pname

ProductY

Computerization

Reorganization

Newbenefits

3

3

3

3

Count (*)

Result of Q26

These groups are not selected by

the HAVING condition of Q26.

Grouping EMPLOYEE tuples by the value of Dno

After applying the WHERE clause but before applying HAVING

After applying the HAVING clause condition

Fname

John

Franklin

Ramesh K

Jennifer

Alicia

Joyce A

Ahmad

James

V

E

T

B

J

S

Narayan

English

Jabbar

Bong

Smith

Wong

Zelaya

Wallace

666884444

453453453

987987987

888665555

123456789

333445555

999887777

987654321

Minit Lname

5

5

4

1

5

5

4

4

Dno

333445555

333445555

987654321

NULL

333445555

888665555

987654321

888665555

Super_ssn

38000

25000

25000

55000

30000

40000

25000

43000

Salary

. . .

Pname

ProductX

ProductX

ProductY

ProductZ

ProductY

ProductY

ProductZ

Computerization

Computerization

Computerization

Reorganization

Newbenefits

Reorganization

Reorganization

Newbenefits

Newbenefits

123456789

453453453

123456789

666884444

333445555

453453453

333445555

333445555

999887777

987987987

333445555

987987987

888665555

987654321

987654321

999887777

1

1

2

2

2

3

3

10

10

10

20

20

20

30

30

30

1

1

2

2

2

3

3

10

10

10

20

20

20

30

30

30

32.5

20.0

 7.5

20.0

10.0

40.0

10.0

10.0

10.0

35.0

10.0

15.0

NULL

5.0

20.0

30.0

Pnumber Hours

. . .

Pname

ProductY

ProductY

ProductY

Computerization

Computerization

Computerization

Reorganization

Reorganization

Reorganization

Newbenefits

Newbenefits

Newbenefits

123456789

453453453

333445555

987987987

999887777

333445555

333445555

987654321

888665555

987987987

987654321

999887777

2

2

2

10

10

10

20

20

20

30

30

30

2

2

2

10

10

10

20

20

20

30

30

30

7.5

20.0

 10.0

10.0

10.0

35.0

10.0

15.0

NULL

5.0

20.0

30.0

Pnumber Essn Pno Hours

. . .
(Pnumber not shown)

Ssn . . .(a)

(b) PnoEssn. . .

. . .

Figure 7.1

Results of GROUP BY and HAVING. (a) Q24. (b) Q26.

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 221

Query 26. For each project on which more than two employees work, retrieve the
project number, the project name, and the number of employees who work on
the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON

 WHERE Pnumber = Pno

 GROUP BY Pnumber, Pname

 HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to
which functions are applied, the HAVING clause serves to choose whole groups. Fig-
ure 7.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and
the number of employees from department 5 who work on the project.

Q27: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON, EMPLOYEE

 WHERE Pnumber = Pno AND Ssn = Essn AND Dno = 5

 GROUP BY Pnumber, Pname;

In Q27, we restrict the tuples in the relation (and hence the tuples in each group)
to those that satisfy the condition specified in the WHERE clause—namely, that
they work in department number 5. Notice that we must be extra careful when
two different conditions apply (one to the aggregate function in the SELECT
clause and another to the function in the HAVING clause). For example, suppose
that we want to count the total number of employees whose salaries exceed
$40,000 in each department, but only for departments where more than five
employees work. Here, the condition (SALARY > 40000) applies only to the
COUNT function in the SELECT clause. Suppose that we write the following
incorrect query:

SELECT Dno, COUNT (*)
FROM EMPLOYEE

WHERE Salary>40000

GROUP BY Dno

HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees who each earn more than $40,000. The rule is that the WHERE clause is
executed first, to select individual tuples or joined tuples; the HAVING clause is
applied later, to select individual groups of tuples. In the incorrect query, the tuples
are already restricted to employees who earn more than $40,000 before the function
in the HAVING clause is applied. One way to write this query correctly is to use a
nested query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve the
department number and the number of its employees who are making more
than $40,000.

https://hemanthrajhemu.github.io

222 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q28: SELECT Dno, COUNT (*)
 FROM EMPLOYEE

 WHERE Salary>40000 AND Dno IN
 (SELECT Dno

 FROM EMPLOYEE

 GROUP BY Dno

 HAVING COUNT (*) > 5)

 GROUP BY Dno;

7.1.9 Other SQL Constructs: WITH and CASE

In this section, we illustrate two additional SQL constructs. The WITH clause
allows a user to define a table that will only be used in a particular query; it is some-
what similar to creating a view (see Section 7.3) that will be used only in one query
and then dropped. This construct was introduced as a convenience in SQL:99 and
may not be available in all SQL based DBMSs. Queries using WITH can generally
be written using other SQL constructs. For example, we can rewrite Q28 as Q28′:

Q28′: WITH BIGDEPTS (Dno) AS

 (SELECT Dno

 FROM EMPLOYEE

 GROUP BY Dno

 HAVING COUNT (*) > 5)

 SELECT Dno, COUNT (*)
 FROM EMPLOYEE

 WHERE Salary>40000 AND Dno IN BIGDEPTS

 GROUP BY Dno;

In Q28′, we defined in the WITH clause a temporary table BIG_DEPTS whose
result holds the Dno’s of departments with more than five employees, then used
this table in the subsequent query. Once this query is executed, the temporary table
BIGDEPTS is discarded.

SQL also has a CASE construct, which can be used when a value can be different
based on certain conditions. This can be used in any part of an SQL query where a
value is expected, including when querying, inserting or updating tuples. We illus-
trate this with an example. Suppose we want to give employees different raise
amounts depending on which department they work for; for example, employees in
department 5 get a $2,000 raise, those in department 4 get $1,500 and those in
department 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we could
re-write the update operation U6 from Section 6.4.3 as U6′:

U6′: UPDATE EMPLOYEE

 SET Salary =

 CASE WHEN Dno = 5 THEN Salary + 2000
 WHEN Dno = 4 THEN Salary + 1500
 WHEN Dno = 1 THEN Salary + 3000
 ELSE Salary + 0 ;

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 223

In U6′, the salary raise value is determined through the CASE construct based on
the department number for which each employee works. The CASE construct can
also be used when inserting tuples that can have different attributes being NULL
depending on the type of record being inserted into a table, as when a specialization
(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union type
is mapped into relations.

7.1.10 Recursive Queries in SQL

In this section, we illustrate how to write a recursive query in SQL. This syntax was
added in SQL:99 to allow users the capability to specify a recursive query in a
declarative manner. An example of a recursive relationship between tuples of the
same type is the relationship between an employee and a supervisor. This relation-
ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig-
ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) to
another employee tuple (in the role of supervisor). An example of a recursive oper-
ation is to retrieve all supervisees of a supervisory employee e at all levels—that is,
all employees e′ directly supervised by e, all employees e′ directly supervised by each
employee e′, all employees e″′ directly supervised by each employee e″, and so on.
In SQL:99, this query can be written as follows:

Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS

 (SELECT SupervisorSsn, Ssn

 FROM EMPLOYEE

 UNION

 SELECT E.Ssn, S.SupSsn

 FROM EMPLOYEE AS E, SUP_EMP AS S
 WHERE E.SupervisorSsn = S.EmpSsn)

 SELECT*

 FROM SUP_EMP;

In Q29, we are defining a view SUP_EMP that will hold the result of the recursive
query. The view is initially empty. It is first loaded with the first level (supervisor,
supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM
EMPLOYEE), which is called the base query. This will be combined via UNION
with each successive level of supervisees through the second part, where the view
contents are joined again with the base values to get the second level combinations,
which are UNIONed with the first level. This is repeated with successive levels until
a fixed point is reached, where no more tuples are added to the view. At this point,
the result of the recursive query is in the view SUP_EMP.

7.1.11 Discussion and Summary of SQL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is
ended by a semicolon. Query terms are separated by spaces, and parentheses can
be used to group relevant parts of a query in the standard way. The clauses are

https://hemanthrajhemu.github.io

224 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

specified in the following order, with the clauses between square brackets […]
being optional:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but
not those in nested queries. The WHERE clause specifies the conditions for selecting
the tuples from these relations, including join conditions if needed. GROUP BY
specifies grouping attributes, whereas HAVING specifies a condition on the groups
being selected rather than on the individual tuples. The built-in aggregate functions
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they
can also be applied to all the selected tuples in a query without a GROUP BY clause.
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define
the meaning or semantics of each query. A query is evaluated conceptually4 by first
applying the FROM clause (to identify all tables involved in the query or to materialize
any joined tables), followed by the WHERE clause to select and join tuples, and then by
GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query
result. If none of the last three clauses (GROUP BY, HAVING, and ORDER BY) are speci-
fied, we can think conceptually of a query as being executed as follows: For each combi-
nation of tuples—one from each of the relations specified in the FROM clause—evaluate
the WHERE clause; if it evaluates to TRUE, place the values of the attributes specified in
the SELECT clause from this tuple combination in the result of the query. Of course, this
is not an efficient way to implement the query in a real system, and each DBMS has
special query optimization routines to decide on an execution plan that is efficient to
execute. We discuss query processing and optimization in Chapters 18 and 19.

In general, there are numerous ways to specify the same query in SQL. This flexibility
in specifying queries has advantages and disadvantages. The main advantage is that
users can choose the technique with which they are most comfortable when specifying
a query. For example, many queries may be specified with join conditions in the
WHERE clause, or by using joined relations in the FROM clause, or with some form of
nested queries and the IN comparison operator. Some users may be more comfortable
with one approach, whereas others may be more comfortable with another. From the
programmer’s and the system’s point of view regarding query optimization, it is gener-
ally preferable to write a query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that
this may confuse the user, who may not know which technique to use to specify

4The actual order of query evaluation is implementation dependent; this is just a way to conceptually
view a query in order to correctly formulate it.

https://hemanthrajhemu.github.io

 7.2 Specifying Constraints as Assertions and Actions as Triggers 225

particular types of queries. Another problem is that it may be more efficient to
execute a query specified in one way than the same query specified in an alterna-
tive way. Ideally, this should not be the case: The DBMS should process the same
query in the same way regardless of how the query is specified. But this is quite
difficult in practice, since each DBMS has different methods for processing queries
specified in different ways. Thus, an additional burden on the user is to determine
which of the alternative specifications is the most efficient to execute. Ideally, the
user should worry only about specifying the query correctly, whereas the DBMS
would determine how to execute the query efficiently. In practice, however, it
helps if the user is aware of which types of constructs in a query are more expen-
sive to process than others.

7.2 Specifying Constraints as Assertions
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSERTION
statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATE

ASSERTION, which can be used to specify additional types of constraints that are
outside the scope of the built-in relational model constraints (primary and unique
keys, entity integrity, and referential integrity) that we presented in Section 5.2.
These built-in constraints can be specified within the CREATE TABLE statement of
SQL (see Sections 6.1 and 6.2).

In Section 7.2.2 we introduce CREATE TRIGGER, which can be used to specify auto-
matic actions that the database system will perform when certain events and condi-
tions occur. This type of functionality is generally referred to as active databases.
We only introduce the basics of triggers in this chapter, and present a more com-
plete discussion of active databases in Section 26.1.

7.2.1 Specifying General Constraints as Assertions in SQL

In SQL, users can specify general constraints—those that do not fall into any of the
categories described in Sections 6.1 and 6.2— via declarative assertions, using the
CREATE ASSERTION statement. Each assertion is given a constraint name and is
specified via a condition similar to the WHERE clause of an SQL query. For exam-
ple, to specify the constraint that the salary of an employee must not be greater than
the salary of the manager of the department that the employee works for in SQL, we
can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

 FROM EMPLOYEE E, EMPLOYEE M,

 DEPARTMENT D

 WHERE E.Salary>M.Salary

 AND E.Dno = D.Dnumber

 AND D.Mgr_ssn = M.Ssn));

https://hemanthrajhemu.github.io

226 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to
disable the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used,
but many constraints can be specified using the EXISTS and NOT EXISTS style of
SQL conditions. Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS
clause, the assertion will specify that the result of this query must be empty so that
the condition will always be TRUE. Thus, the assertion is violated if the result of the
query is not empty. In the preceding example, the query selects all employees whose
salaries are greater than the salary of the manager of their department. If the result
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on individual attributes and domains (see Section 6.2.1) and on indi-
vidual tuples (see Section 6.2.4). A major difference between CREATE

ASSERTION and the individual domain constraints and tuple constraints is that
the CHECK clauses on individual attributes, domains, and tuples are checked in
SQL only when tuples are inserted or updated in a specific table. Hence, con-
straint checking can be implemented more efficiently by the DBMS in these
cases. The schema designer should use CHECK on attributes, domains, and tuples
only when he or she is sure that the constraint can only be violated by insertion or
updating of tuples. On the other hand, the schema designer should use CREATE

ASSERTION only in cases where it is not possible to use CHECK on attributes,
domains, or tuples, so that simple checks are implemented more efficiently by
the DBMS.

7.2.2 Introduction to Triggers in SQL

Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and
when certain conditions are satisfied. For example, it may be useful to specify a
condition that, if violated, causes some user to be informed of the violation. A man-
ager may want to be informed if an employee’s travel expenses exceed a certain
limit by receiving a message whenever this occurs. The action that the DBMS must
take in this case is to send an appropriate message to that user. The condition is
thus used to monitor the database. Other actions may be specified, such as execut-
ing a specific stored procedure or triggering other updates. The CREATE TRIGGER
statement is used to implement such actions in SQL. We discuss triggers in detail in
Section 26.1 when we describe active databases. Here we just give a simple example
of how triggers may be used.

https://hemanthrajhemu.github.io

 7.2 Specifying Constraints as Assertions and Actions as Triggers 227

Suppose we want to check whenever an employee’s salary is greater than the salary
of his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6).
Several events can trigger this rule: inserting a new employee record, changing an
employee’s salary, or changing an employee’s supervisor. Suppose that the action to
take would be to call an external stored procedure SALARY_VIOLATION,5 which will
notify the supervisor. The trigger could then be written as in R5 below. Here we are
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION

 BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN

 ON EMPLOYEE

 FOR EACH ROW

 WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE

 WHERE SSN = NEW.SUPERVISOR_SSN))

 INFORM_SUPERVISOR(NEW.Supervisor_ssn,
 NEW.Ssn);

The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later. A typical trigger which is regarded as an ECA (Event,
Condition, Action) rule has three components:

 1. The event(s): These are usually database update operations that are explic-
itly applied to the database. In this example the events are: inserting a new
employee record, changing an employee’s salary, or changing an employee’s
supervisor. The person who writes the trigger must make sure that all pos-
sible events are accounted for. In some cases, it may be necessary to write
more than one trigger to cover all possible cases. These events are specified
after the keyword BEFORE in our example, which means that the trigger
should be executed before the triggering operation is executed. An alterna-
tive is to use the keyword AFTER, which specifies that the trigger should be
executed after the operation specified in the event is completed.

 2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed. The condition is specified in the
WHEN clause of the trigger.

 3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed. In this example, the action is to execute the stored
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A
complete discussion is given in Section 26.1.

5Assuming that an appropriate external procedure has been declared. We discuss stored procedures in
Chapter 10.

https://hemanthrajhemu.github.io

228 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.3 Views (Virtual Tables) in SQL

In this section we introduce the concept of a view in SQL. We show how views are
specified, and then we discuss the problem of updating views and how views can be
implemented by the DBMS.

7.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables.6 These
other tables can be base tables or previously defined views. A view does not neces-
sarily exist in physical form; it is considered to be a virtual table, in contrast to base
tables, whose tuples are always physically stored in the database. This limits the
possible update operations that can be applied to views, but it does not provide any
limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference
frequently, even though it may not exist physically. For example, referring to the
COMPANY database in Figure 5.5, we may frequently issue queries that retrieve the
employee name and the project names that the employee works on. Rather than
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT
every time we issue this query, we can define a view that is specified as the result of
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

7.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the
contents of the view. If none of the view attributes results from applying functions
or arithmetic operations, we do not have to specify new attribute names for the
view, since they would be the same as the names of the attributes of the defining
tables in the default case. The views in V1 and V2 create virtual tables whose sche-
mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

V1: CREATE VIEW WORKS_ON1

 AS SELECT Fname, Lname, Pname, Hours

 FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE Ssn = Essn AND Pno = Pnumber;

V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)

 AS SELECT Dname, COUNT (*), SUM (Salary)

 FROM DEPARTMENT, EMPLOYEE

 WHERE Dnumber = Dno

 GROUP BY Dname;

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,
since a user view would possibly include many relations.

https://hemanthrajhemu.github.io

 7.3 Views (Virtual Tables) in SQL 229

In V1, we did not specify any new attribute names for the view WORKS_ON1
(although we could have); in this case, WORKS_ON1 inherits the names of the
view attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON.
View V2 explicitly specifies new attribute names for the view DEPT_INFO, using
a one-to-one correspondence between the attributes specified in the CREATE

VIEW clause and those specified in the SELECT clause of the query that defines
the view.

We can now specify SQL queries on a view—or virtual table—in the same way we
specify queries involving base tables. For example, to retrieve the last name and first
name of all employees who work on the ‘ProductX’ project, we can utilize the
WORKS_ON1 view and specify the query as in QV1:

QV1: SELECT Fname, Lname

 FROM WORKS_ON1

 WHERE Pname = ‘ProductX’;

The same query would require the specification of two joins if specified on the base
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Section 7.3.4 and Chapter 30).

A view is supposed to be always up-to-date; if we modify the tuples in the base
tables on which the view is defined, the view must automatically reflect these
changes. Hence, the view does not have to be realized or materialized at the time of
view definition but rather at the time when we specify a query on the view. It is the
responsibility of the DBMS and not the user to make sure that the view is kept up-
to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-
date in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ON1;

7.3.3 View Implementation, View Update, and Inline Views

The problem of how a DBMS can efficiently implement a view for efficient querying
is complex. Two main approaches have been suggested. One strategy, called query
modification, involves modifying or transforming the view query (submitted by the

DEPT_INFO

Dept_name No_of_emps Total_sal

WORKS_ON1

Fname Lname Pname Hours

Figure 7.2

Two views specified on
the database schema of
Figure 5.5.

https://hemanthrajhemu.github.io

230 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

user) into a query on the underlying base tables. For example, the query QV1 would
be automatically modified to the following query by the DBMS:

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn = Essn AND Pno = Pnumber

 AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple view queries
are going to be applied to the same view within a short period of time. The second
strategy, called view materialization, involves physically creating a temporary or
permanent view table when the view is first queried or created and keeping that
table on the assumption that other queries on the view will follow. In this case, an
efficient strategy for automatically updating the view table when the base tables are
updated must be developed in order to keep the view up-to-date. Techniques using
the concept of incremental update have been developed for this purpose, where
the DBMS can determine what new tuples must be inserted, deleted, or modified in
a materialized view table when a database update is applied to one of the defining
base tables. The view is generally kept as a materialized (physically stored) table as
long as it is being queried. If the view is not queried for a certain period of time, the
system may then automatically remove the physical table and recompute it from
scratch when future queries reference the view.

Different strategies as to when a materialized view is updated are possible. The
immediate update strategy updates a view as soon as the base tables are changed;
the lazy update strategy updates the view when needed by a view query; and the
periodic update strategy updates the view periodically (in the latter strategy, a view
query may get a result that is not up-to-date).

A user can always issue a retrieval query against any view. However, issuing an
INSERT, DELETE, or UPDATE command on a view table is in many cases not pos-
sible. In general, an update on a view defined on a single table without any aggregate
functions can be mapped to an update on the underlying base table under certain
conditions. For a view involving joins, an update operation may be mapped to
update operations on the underlying base relations in multiple ways. Hence, it is
often not possible for the DBMS to determine which of the updates is intended. To
illustrate potential problems with updating a view defined on multiple tables, con-
sider the WORKS_ON1 view, and suppose that we issue the command to update the
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is
shown in UV1:

UV1: UPDATE WORKS_ON1

 SET Pname = ‘ProductY’
 WHERE Lname = ‘Smith’ AND Fname = ‘John’
 AND Pname = ‘ProductX’;

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. In addition, some of these updates will create

https://hemanthrajhemu.github.io

 7.3 Views (Virtual Tables) in SQL 231

additional side effects that affect the result of other queries. For example, here are
two possible updates, (a) and (b), on the base relations corresponding to the view
update operation in UV1:

(a): UPDATE WORKS_ON

 SET Pno = (SELECT Pnumber

 FROM PROJECT

 WHERE Pname = ‘ProductY’)
 WHERE Essn IN (SELECT Ssn

 FROM EMPLOYEE

 WHERE Lname = ‘Smith’ AND Fname = ‘John’)
 AND

 Pno = (SELECT Pnumber

 FROM PROJECT

 WHERE Pname = ‘ProductX’);

(b): UPDATE PROJECT SET Pname = ‘ProductY’
 WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) would
also give the desired update effect on the view, but it accomplishes this by changing
the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quite
unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples
with Pname = ‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to be
the sum of the individual employee salaries. This incorrect request is shown as UV2:

UV2: UPDATE DEPT_INFO

 SET Total_sal = 100000

 WHERE Dname = ‘Research’;

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update operation on the view. Whenever an
update on the view can be mapped to more than one update on the underlying base
relations, it is usually not permitted. Some researchers have suggested that the
DBMS have a certain procedure for choosing one of the possible updates as the
most likely one. Some researchers have developed methods for choosing the most
likely update, whereas other researchers prefer to have the user choose the desired
update mapping during view definition. But these options are generally not avail-
able in most commercial DBMSs.

In summary, we can make the following observations:

 ■ A view with a single defining table is updatable if the view attributes contain
the primary key of the base relation, as well as all attributes with the NOT

NULL constraint that do not have default values specified.

https://hemanthrajhemu.github.io

232 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 ■ Views defined on multiple tables using joins are generally not updatable.

 ■ Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION should be added at the end of the view
definition if a view is to be updated by INSERT, DELETE, or UPDATE statements.
This allows the system to reject operations that violate the SQL rules for view
updates. The full set of SQL rules for when a view may be modified by the user are
more complex than the rules stated earlier.

It is also possible to define a view table in the FROM clause of an SQL query. This is
known as an in-line view. In this case, the view is defined within the query itself.

7.3.4 Views as Authorization Mechanisms

We describe SQL query authorization statements (GRANT and REVOKE) in detail
in Chapter 30, when we present database security and authorization mechanisms.
Here, we will just give a couple of simple examples to illustrate how views can be
used to hide certain attributes or tuples from unauthorized users. Suppose a certain
user is only allowed to see employee information for employees who work for
department 5; then we can create the following view DEPT5EMP and grant the user
the privilege to query the view but not the base table EMPLOYEE itself. This user
will only be able to retrieve employee information for employee tuples whose
Dno = 5, and will not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

In a similar manner, a view can restrict a user to only see certain columns; for
example, only the first name, last name, and address of an employee may be visible
as follows:

CREATE VIEW BASIC_EMP_DATA AS

SELECT Fname, Lname, Address

FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view
and not the base tables, they would be restricted to retrieving only the data specified
in the view. Chapter 30 discusses security and authorization in detail, including the
GRANT and REVOKE statements of SQL.

7.4 Schema Change Statements in SQL

In this section, we give an overview of the schema evolution commands available
in SQL, which can be used to alter a schema by adding or dropping tables, attri-
butes, constraints, and other schema elements. This can be done while the database
is operational and does not require recompilation of the database schema. Certain

https://hemanthrajhemu.github.io

 7.4 Schema Change Statements in SQL 233

checks must be done by the DBMS to ensure that the changes do not affect the rest
of the database and make it inconsistent.

7.4.1 The DROP Command

The DROP command can be used to drop named schema elements, such as tables,
domains, types, or constraints. One can also drop a whole schema if it is no longer
needed by using the DROP SCHEMA command. There are two drop behavior
options: CASCADE and RESTRICT. For example, to remove the COMPANY database
schema and all its tables, domains, and other elements, the CASCADE option is used
as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only
if it has no elements in it; otherwise, the DROP command will not be executed. To
use the RESTRICT option, the user must first individually drop each element in the
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition
can be deleted by using the DROP TABLE command. For example, if we no longer
wish to keep track of dependents of employees in the COMPANY database of Fig-
ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is
not referenced in any constraints (for example, by foreign key definitions in another
relation) or views (see Section 7.3) or by any other elements. With the CASCADE
option, all such constraints, views, and other elements that reference the table being
dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table
if successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command (see Section 6.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

7.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed
by using the ALTER command. For base tables, the possible alter table actions
include adding or dropping a column (attribute), changing a column definition,
and adding or dropping table constraints. For example, to add an attribute for
keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY
schema (see Figure 6.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

https://hemanthrajhemu.github.io

234 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

We must still enter a value for the new attribute Job for each individual EMPLOYEE
tuple. This can be done either by specifying a default clause or by using the UPDATE
command individually on each tuple (see Section 6.4.3). If no default clause is speci-
fied, the new attribute will have NULLs in all the tuples of the relation immediately after
the command is executed; hence, the NOT NULL constraint is not allowed in this case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are
dropped automatically from the schema, along with the column. If RESTRICT is
chosen, the command is successful only if no views or constraints (or other schema
elements) reference the column. For example, the following command removes the
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

 DROP DEFAULT;
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

 SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a
named constraint. To be dropped, a constraint must have been given a name when
it was specified. For example, to drop the constraint named EMPSUPERFK in Fig-
ure 6.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE

DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD CONSTRAINT
keyword in the ALTER TABLE statement followed by the new constraint, which can
be named or unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. It is also possible to create new tables and views within a database schema
using the appropriate commands. There are many other details and options; we
refer the interested reader to the SQL documents listed in the Selected Bibliography
at the end of this chapter.

7.5 Summary

In this chapter we presented additional features of the SQL database language. We
started in Section 7.1 by presenting more complex features of SQL retrieval queries,
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 7.2, we described the CREATE ASSERTION statement, which allows
the specification of more general constraints on the database, and introduced the

https://hemanthrajhemu.github.io

 7.5 Summary 235

Table 7.2 Summary of SQL Syntax

CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]

{ , <column name> <column type> [<attribute constraint>] }

[<table constraint> { , <table constraint> }])

DROP TABLE <table name>

ALTER TABLE <table name> ADD <column name> <column type>

SELECT [DISTINCT] <attribute list>

FROM (<table name> { <alias> } | <joined table>) { , (<table name> { <alias> } | <joined table>) }

[WHERE <condition>]

[GROUP BY <grouping attributes> [HAVING <group selection condition>]]

[ORDER BY <column name> [<order>] { , <column name> [<order>] }]

<attribute list> ::= (* | (<column name> | <function> (([DISTINCT] <column name> | *)))

{ , (<column name> | <function> (([DISTINCT] <column name> | *)) }))

<grouping attributes> ::= <column name> { , <column name> }

<order> ::= (ASC | DESC)

INSERT INTO <table name> [(<column name> { , <column name> })]

(VALUES (<constant value> , { <constant value> }) { , (<constant value> { , <constant value> }) }

| <select statement>)

DELETE FROM <table name>

[WHERE <selection condition>]

UPDATE <table name>

SET <column name> = <value expression> { , <column name> = <value expression> }

[WHERE <selection condition>]

CREATE [UNIQUE] INDEX <index name>

ON <table name> (<column name> [<order>] { , <column name> [<order>] })

[CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [(<column name> { , <column name> })]

AS <select statement>

DROP VIEW <view name>

NOTE: The commands for creating and dropping indexes are not part of standard SQL.

concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, we
described the SQL facility for defining views on the database. Views are also called
virtual or derived tables because they present the user with what appear to be tables;
however, the information in those tables is derived from previously defined tables.
Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 7.2 summarizes the syntax (or structure) of various SQL statements. This
summary is not meant to be comprehensive or to describe every possible SQL
construct; rather, it is meant to serve as a quick reference to the major types of
constructs available in SQL. We use BNF notation, where nonterminal symbols

https://hemanthrajhemu.github.io

236 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

are shown in angled brackets < … >, optional parts are shown in square brac-
kets […], repetitions are shown in braces { … }, and alternatives are shown in
parentheses (… | … | …).7

Review Questions
 7.1. Describe the six clauses in the syntax of an SQL retrieval query. Show what

type of constructs can be specified in each of the six clauses. Which of the six
clauses are required and which are optional?

 7.2. Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

 7.3. Discuss how NULLs are treated in comparison operators in SQL. How are
NULLs treated when aggregate functions are applied in an SQL query? How
are NULLs treated if they exist in grouping attributes?

 7.4. Discuss how each of the following constructs is used in SQL, and discuss
the various options for each construct. Specify what each construct is
useful for.

a. Nested queries

b. Joined tables and outer joins

c. Aggregate functions and grouping

d. Triggers

e. Assertions and how they differ from triggers

f. The SQL WITH clause

g. SQL CASE construct

h. Views and their updatability

i. Schema change commands

Exercises
 7.5. Specify the following queries on the database in Figure 5.5 in SQL. Show the

query results if each query is applied to the database state in Figure 5.6.

a. For each department whose average employee salary is more than
$30,000, retrieve the department name and the number of employees
working for that department.

b. Suppose that we want the number of male employees in each department
making more than $30,000, rather than all employees (as in Exer-
cise 7.5a). Can we specify this query in SQL? Why or why not?

7The full syntax of SQL is described in many voluminous documents of hundreds of pages.

https://hemanthrajhemu.github.io

 Exercises 237

 7.6. Specify the following queries in SQL on the database schema in Figure 1.2.

a. Retrieve the names and major departments of all straight-A students
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not
have a grade of A in any of their courses.

 7.7. In SQL, specify the following queries on the database in Figure 5.5 using the
concept of nested queries and other concepts described in this chapter.

a. Retrieve the names of all employees who work in the department that has
the employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has
‘888665555’ for Ssn.

c. Retrieve the names of employees who make at least $10,000 more than
the employee who is paid the least in the company.

 7.8. Specify the following views in SQL on the COMPANY database schema
shown in Figure 5.5.

a. A view that has the department name, manager name, and manager sal-
ary for every department

b. A view that has the employee name, supervisor name, and employee sal-
ary for each employee who works in the ‘Research’ department

c. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project

d. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project with more than one employee working on it

 7.9. Consider the following view, DEPT_SUMMARY, defined on the COMPANY
database in Figure 5.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)

AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

State which of the following queries and updates would be allowed on the
view. If a query or update would be allowed, show what the correspond-
ing query or update on the base relations would look like, and give its
result when applied to the database in Figure 5.6.

a. SELECT *

FROM DEPT_SUMMARY;

b. SELECT D, C

FROM DEPT_SUMMARY

WHERE TOTAL_S > 100000;

https://hemanthrajhemu.github.io

238 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

c. SELECT D, AVERAGE_S

FROM DEPT_SUMMARY

WHERE C > (SELECT C FROM DEPT_SUMMARY WHERE D = 4);

d. UPDATE DEPT_SUMMARY

SET D = 3
WHERE D = 4;

e. DELETE FROM DEPT_SUMMARY

WHERE C > 4;

Selected Bibliography
Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor of
SQL, in which she found that users have some difficulty with specifying join condi-
tions and grouping correctly. Date (1984) contains a critique of the SQL language
that points out its strengths and shortcomings. Date and Darwen (1993) describes
SQL2. ANSI (1986) outlines the original SQL standard. Various vendor manuals
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle,
INGRES, Informix, and other commercial DBMS products. Melton and Simon
(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2.
Horowitz (1992) discusses some of the problems related to referential integrity and
propagation of updates in SQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller
(1982), and Langerak (1990), among others. View implementation is discussed in
Blakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

There are many books that describe various aspects of SQL. For example, two refer-
ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-
ther SQL standards—SQL 2006 and SQL 2008—are described in a variety of
technical reports; but no standard references exist.

https://hemanthrajhemu.github.io

239

8

The Relational Algebra and

Relational Calculus

In this chapter we discuss the two formal languages for
the relational model: the relational algebra and the

relational calculus. In contrast, Chapters 6 and 7 described the practical language
for the relational model, namely the SQL standard. Historically, the relational alge-
bra and calculus were developed before the SQL language. SQL is primarily based
on concepts from relational calculus and has been extended to incorporate some
concepts from relational algebra as well. Because most relational DBMSs use SQL
as their language, we presented the SQL language first.

Recall from Chapter 2 that a data model must include a set of operations to
manipulate the database, in addition to the data model’s concepts for defining the
database’s structure and constraints. We presented the structures and constraints
of the formal relational model in Chapter 5. The basic set of operations for the
formal relational model is the relational algebra. These operations enable a user
to specify basic retrieval requests as relational algebra expressions. The result of a
retrieval query is a new relation. The algebra operations thus produce new rela-
tions, which can be further manipulated using operations of the same algebra. A
sequence of relational algebra operations forms a relational algebra expression,
whose result will also be a relation that represents the result of a database query
(or retrieval request).

The relational algebra is very important for several reasons. First, it provides a
formal foundation for relational model operations. Second, and perhaps more
important, it is used as a basis for implementing and optimizing queries in the
query processing and optimization modules that are integral parts of relational
database management systems (RDBMSs), as we shall discuss in Chapters 18
and 19. Third, some of its concepts are incorporated into the SQL standard

chapter 8

https://hemanthrajhemu.github.io

240 Chapter 8 The Relational Algebra and Relational Calculus

query language for RDBMSs. Although most commercial RDBMSs in use today
do not provide user interfaces for relational algebra queries, the core operations
and functions in the internal modules of most relational systems are based on
relational algebra operations. We will define these operations in detail in Sec-
tions 8.1 through 8.4 of this chapter.

Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative language for specifying rela-
tional queries. In a relational calculus expression, there is no order of operations to
specify how to retrieve the query result—only what information the result should
contain. This is the main distinguishing feature between relational algebra and rela-
tional calculus. The relational calculus is important because it has a firm basis in
mathematical logic and because the standard query language (SQL) for RDBMSs
has some of its foundations in a variation of relational calculus known as the tuple
relational calculus.1

The relational algebra is often considered to be an integral part of the relational data
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model (see Section 5.1). Set
operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN

PRODUCT (also known as CROSS PRODUCT). The other group consists of opera-
tions developed specifically for relational databases—these include SELECT,
PROJECT, and JOIN, among others. First, we describe the SELECT and PROJECT
operations in Section 8.1 because they are unary operations that operate on single
relations. Then we discuss set operations in Section 8.2. In Section 8.3, we discuss
JOIN and other complex binary operations, which operate on two tables by com-
bining related tuples (records) based on join conditions. The COMPANY relational
database shown in Figure 5.6 is used for our examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can summarize data
from the tables, as well as additional types of JOIN and UNION operations, known as
OUTER JOINs and OUTER UNIONs. These operations, which were added to the origi-
nal relational algebra because of their importance to many database applications,
are described in Section 8.4. We give examples of specifying queries that use rela-
tional operations in Section 8.5. Some of these same queries were used in Chap-
ters 6 and 7. By using the same query numbers in this chapter, the reader can contrast
how the same queries are written in the various query languages.

In Sections 8.6 and 8.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relational calculus is described in Section 8.6 and the domain relational
calculus is described in Section 8.7. Some of the SQL constructs discussed in

1SQL is based on tuple relational calculus, but also incorporates some of the operations from the
relational algebra and its extensions, as illustrated in Chapters 6, 7, and 9.

https://hemanthrajhemu.github.io

 8.1 Unary Relational Operations: SELECT and PROJECT 241

Chapters 6 and 7 are based on the tuple relational calculus. The relational calculus
is a formal language, based on the branch of mathematical logic called predicate
calculus.2 In tuple relational calculus, variables range over tuples, whereas in
domain relational calculus, variables range over the domains (values) of attributes.
In Appendix C we give an overview of the Query-By-Example (QBE) language,
which is a graphical user-friendly relational language based on domain relational
calculus. Section 8.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 8.4, 8.6, and 8.7 may be skipped.

8.1 Unary Relational Operations:
SELECT and PROJECT

8.1.1 The SELECT Operation

The SELECT operation is used to choose a subset of the tuples from a relation that
satisfies a selection condition.3 We can consider the SELECT operation to be a filter
that keeps only those tuples that satisfy a qualifying condition. Alternatively, we can
consider the SELECT operation to restrict the tuples in a relation to only those tuples
that satisfy the condition. The SELECT operation can also be visualized as a horizon-
tal partition of the relation into two sets of tuples—those tuples that satisfy the con-
dition and are selected, and those tuples that do not satisfy the condition and are
filtered out. For example, to select the EMPLOYEE tuples whose department is 4, or
those whose salary is greater than $30,000, we can individually specify each of these
two conditions with a SELECT operation as follows:

σDno=4(EMPLOYEE)
σSalary>30000(EMPLOYEE)

In general, the SELECT operation is denoted by

σ<selection condition>(R)

where the symbol σ (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression (condition) specified on the attributes of
relation R. Notice that R is generally a relational algebra expression whose result is a
relation—the simplest such expression is just the name of a database relation. The
relation resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made up of a number
of clauses of the form

<attribute name> <comparison op> <constant value>

2In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.
3The SELECT operation is different from the SELECT clause of SQL. The SELECT operation chooses
tuples from a table, and is sometimes called a RESTRICT or FILTER operation.

https://hemanthrajhemu.github.io

242 Chapter 8 The Relational Algebra and Relational Calculus

or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, ≤, >, ≥, ≠}, and <constant value> is a constant
value from the attribute domain. Clauses can be connected by the standard Boolean
operators and, or, and not to form a general selection condition. For example, to
select the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000, we can specify
the following SELECT operation:

σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result is shown in Figure 8.1(a).

Notice that all the comparison operators in the set {=, <, ≤, >, ≥, ≠} can apply to
attributes whose domains are ordered values, such as numeric or date domains.
Domains of strings of characters are also considered to be ordered based on the col-
lating sequence of the characters. If the domain of an attribute is a set of unordered
values, then only the comparison operators in the set {=, ≠} can be used. An exam-
ple of an unordered domain is the domain Color = { ‘red’, ‘blue’, ‘green’, ‘white’,
‘yellow’, …}, where no order is specified among the various colors. Some domains
allow additional types of comparison operators; for example, a domain of character
strings may allow the comparison operator SUBSTRING_OF.

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

Franklin

Jennifer

Ramesh

T Wong

Wallace

Narayan

333445555

987654321

666884444

1955-12-08

1941-06-20

1962-09-15

638 Voss, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

M

F

M

40000

43000

38000

888665555

888665555

333445555

5

4

5

Lname Fname Salary

Smith

Wong

Zelaya

Wallace

Narayan

English

Jabbar

Borg

John

Franklin

Alicia

Jennifer

Ramesh

Joyce

Ahmad

James

30000

40000

25000

43000

38000

25000

25000

30000

40000

25000

43000

38000

25000

55000

55000

Sex Salary

M

M

F

F

M

M

M

(c)(b)

(a)

S

K

Figure 8.1

Results of SELECT and PROJECT operations. (a) σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(b) πLname, Fname, Salary(EMPLOYEE). (c) πSex, Salary(EMPLOYEE).

https://hemanthrajhemu.github.io

 8.1 Unary Relational Operations: SELECT and PROJECT 243

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each individual tuple t in R. This
is done by substituting each occurrence of an attribute Ai in the selection condition
with its value in the tuple t[Ai]. If the condition evaluates to TRUE, then tuple t is
selected. All the selected tuples appear in the result of the SELECT operation. The
Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

 ■ (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; other-
wise, it is FALSE.

 ■ (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE;
otherwise, it is FALSE.

 ■ (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from
a SELECT operation—its number of attributes—is the same as the degree of R. The
number of tuples in the resulting relation is always less than or equal to the number
of tuples in R. That is, |σc (R)| ≤ |R| for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

σ<cond1>(σ<cond2>(R)) = σ<cond2>(σ<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade (or sequence) of SELECT operations into a single SELECT
operation with a conjunctive (AND) condition; that is,

σ<cond1>(σ<cond2>(... (σ<condn>(R)) ...)) = σ<cond1> AND<cond2> AND...AND <condn>(R)

In SQL, the SELECT condition is typically specified in the WHERE clause of a query.
For example, the following operation:

σDno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE

WHERE Dno=4 AND Salary>25000;

8.1.2 The PROJECT Operation

If we think of a relation as a table, the SELECT operation chooses some of the rows
from the table while discarding other rows. The PROJECT operation, on the other
hand, selects certain columns from the table and discards the other columns. If we
are interested in only certain attributes of a relation, we use the PROJECT operation
to project the relation over these attributes only. Therefore, the result of the PROJECT
operation can be visualized as a vertical partition of the relation into two relations:

https://hemanthrajhemu.github.io

244 Chapter 8 The Relational Algebra and Relational Calculus

one has the needed columns (attributes) and contains the result of the operation,
and the other contains the discarded columns. For example, to list each employee’s
first and last name and salary, we can use the PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

The resulting relation is shown in Figure 8.1(b). The general form of the PROJECT
operation is

π<attribute list>(R)

where π (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desired sublist of attributes from the attributes of relation R. Again,
notice that R is, in general, a relational algebra expression whose result is a relation,
which in the simplest case is just the name of a database relation. The result of the
PROJECT operation has only the attributes specified in <attribute list> in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are
likely to occur. The PROJECT operation removes any duplicate tuples, so the
result of the PROJECT operation is a set of distinct tuples, and hence a valid
relation. This is known as duplicate elimination. For example, consider the
following PROJECT operation:

πSex, Salary(EMPLOYEE)

The result is shown in Figure 8.1(c). Notice that the tuple <‘F’, 25000> appears only
once in Figure 8.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting or some other technique to
detect duplicates and thus adds more processing. If duplicates are not eliminated, the
result would be a multiset or bag of tuples rather than a set. This was not permitted in
the formal relational model but is allowed in SQL (see Section 6.3).

The number of tuples in a relation resulting from a PROJECT operation is always
less than or equal to the number of tuples in R. If the projection list is a superkey of
R—that is, it includes some key of R—the resulting relation has the same number of
tuples as R. Moreover,

π<list1> (π<list2>(R)) = π<list1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that commutativity does not hold
on PROJECT.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

πSex, Salary(EMPLOYEE)

would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary

FROM EMPLOYEE

https://hemanthrajhemu.github.io

 8.1 Unary Relational Operations: SELECT and PROJECT 245

Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-
cates will not be eliminated. This option is not available in the formal relational
algebra, but the algebra can be extended to include this operation and allow rela-
tions to be multisets; we do not discuss these extensions here.

8.1.3 Sequences of Operations and the RENAME Operation

The relations shown in Figure 8.1 that depict operation results do not have any
names. In general, for most queries, we need to apply several relational algebra
operations one after the other. Either we can write the operations as a single
relational algebra expression by nesting the operations, or we can apply one operation
at a time and create intermediate result relations. In the latter case, we must give
names to the relations that hold the intermediate results. For example, to retrieve
the first name, last name, and salary of all employees who work in department
number 5, we must apply a SELECT and a PROJECT operation. We can write a sin-
gle relational algebra expression, also known as an in-line expression, as follows:

πFname, Lname, Salary(σDno=5(EMPLOYEE))

Figure 8.2(a) shows the result of this in-line relational algebra expression. Alterna-
tively, we can explicitly show the sequence of operations, giving a name to each
intermediate relation, and using the assignment operation, denoted by ← (left
arrow), as follows:

DEP5_EMPS ← σDno=5(EMPLOYEE)
RESULT ← πFname, Lname, Salary(DEP5_EMPS)

It is sometimes simpler to break down a complex sequence of operations by specify-
ing intermediate result relations than to write a single relational algebra expression.
We can also use this technique to rename the attributes in the intermediate and
result relations. This can be useful in connection with more complex operations
such as UNION and JOIN, as we shall see. To rename the attributes in a relation, we
simply list the new attribute names in parentheses, as in the following example:

TEMP ← σDno=5(EMPLOYEE)
R(First_name, Last_name, Salary) ← πFname, Lname, Salary(TEMP)

These two operations are illustrated in Figure 8.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a
SELECT operation are the same as those in the original relation and in the same
order. For a PROJECT operation with no renaming, the resulting relation has the
same attribute names as those in the projection list and in the same order in which
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general
RENAME operation when applied to a relation R of degree n is denoted by any of the
following three forms:

ρS(B1, B2, ... , Bn)(R) or ρS(R) or ρ(B1, B2, ... , Bn)(R)

https://hemanthrajhemu.github.io

246 Chapter 8 The Relational Algebra and Relational Calculus

where the symbol ρ (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and B1, B2, … , Bn are the new attribute names. The first expression
renames both the relation and its attributes, the second renames the relation only,
and the third renames the attributes only. If the attributes of R are (A1, A2, … , An)
in that order, then each Ai is renamed as Bi.

In SQL, a single query typically represents a complex relational algebra expression.
Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary

FROM EMPLOYEE AS E

WHERE E.Dno=5,

8.2 Relational Algebra Operations
from Set Theory

8.2.1 The UNION, INTERSECTION, and MINUS Operations

The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security numbers of all

(b)

(a)

TEMP

Fname

John

Franklin

Ramesh

Joyce

Minit

B

T

K

A

Lname

Smith

Wong

Narayan

English

Ssn

123456789

333445555

666884444

453453453

Bdate

1965-01-09

1955-12-08

1962-09-15

1972-07-31

Address

731 Fondren, Houston,TX

638 Voss, Houston,TX

975 Fire Oak, Humble,TX

5631 Rice, Houston, TX

Sex

M

M

M

F

Salary

30000

40000

38000

25000

Dno

5

5

5

5

Super_ssn

333445555

888665555

333445555

333445555

Smith

Wong

Narayan

English

30000

40000

38000

25000

Fname Lname Salary

John

Franklin

Ramesh

Joyce

Smith

Wong

Narayan

English

30000

40000

38000

25000

First_name Last_name Salary

John

Franklin

Ramesh

Joyce

R

Figure 8.2

Results of a sequence of operations. (a) πFname, Lname, Salary (σDno=5(EMPLOYEE)).
(b) Using intermediate relations and renaming of attributes.

https://hemanthrajhemu.github.io

Vlll DATABASE "NIANAGEMENT SYSTEivlS

Preliminaries

Relational Algebra

4.2.1 Selection and Projection

4.2.2 Set Operations

3

4

2.5 Conceptual Design With the ER Model

2..5.1 Entity versus Attribute

2.5.2 Entity versus Relationship

2.5.3 Binary versus Ternary Relationships

2..5.4 Aggregation versus Ternary Relationships

2.6 Conceptual Design for Large Enterprises

2.7 The Unified Modeling Language

2.8 Case Study: The Internet Shop

2.8.1 Requirements Analysis

2.8.2 Conceptual Design

2.9 Review Questions

THE RELATIONAL MODEL
3.1 Introduction to the Relational Model

3.1.1 Creating and Modifying Relations Using SQL

3.2 Integrity Constraints over Relations

3.2.1 Key Constraints

:3.2.2 Foreign Key Constraints

3.2.3 General Constraints

3.3 Enforcing Integrity Constraints

3.3.1 Transactions and Constraints

3.4 Querying Relational Data

3.5 Logical Database Design: ER to Relational

3.5.1 Entity Sets to Tables

3.5.2 Relationship Sets (without Constraints) to Tables

3.5.3 Translating Relationship Sets with Key Constraints

3.5.4 Translating Relationship Sets with Participation Constraints

3.5.5 Translating Weak Entity Sets

3.5.6 cn'anslating Class Hierarchies

3.5.7 Translating ER Diagrams with Aggregation

3.5.8 ER to Relational: Additional Examples

:3.6 Introduction to Views

3.6.1 Views, Data Independence, Security

3.6.2 Updates on Views

:3.7 Destroying/Altering Tables and Views

:3.8 Case Study: The Internet Store

:3.9 Review Questions

RELATIONAL ALGEBRA AND CALCULUS
4.1

4.2

40

41

42

43

45

46

47

49

49

50

51

57

59

62

63

64

66

68

69

72

73

74

75

76

78

79

82

83

84

85

86

87

88

91

92

94

100

101

102

103

104

https://hemanthrajhemu.github.io

74 CHAPTERJ 3

In addition to selecting a subset of tuples, a query can extract a subset of the

fields of each selected tuple. vVe can compute the names and logins of students

who are younger than 18 with the following query:

SELECT S.name, S.login

FROM Students S

WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the se-

lection to the instance 81 of Students (to get the relation shown in Figure

3.6), followed by removing unwanted fields. Note that the order in which we

perform these operations does matter-if we remove unwanted fields first, we

cannot check the condition S. age < 18, which involves one of those fields.

I name

Madayan

Guldu

madayan@music

guldu@music

Figure 3.7 Names and Logins of Students under 18

We can also combine information in the Students and Enrolled relations. If we

want to obtain the names of all students who obtained an A and the id of the

course in which they got an A, we could write the following query:

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid = E.studid AND E.grade = 'A'

This query can be understood as follows: "If there is a Students tuple Sand

an Enrolled tuple E such that S.sid = E.studid (so that S describes the student

who is enrolled in E) and E.grade = 'A', then print the student's name and

the course id." When evaluated on the instances of Students and Enrolled in

Figure 3.4, this query returns a single tuple, (Smith, Topology112).

We cover relational queries and SQL in more detail in subsequent chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO

RELATIONAL

The ER model is convenient for representing an initial, high-level databi'lse

design. Given an ER diagram describing a databa'3e, a standard approach is

taken to generating a relational database schema that closely approximates

https://hemanthrajhemu.github.io

The Relational !'viodel

the ER design. (The translation is approximate to the extent that we cannot

capture all the constraints implicit in the ER design using SQL, unless we use

certain SQL constraints that are costly to check.) We now describe how to

translate an ER diagram into a collection of tables with associated constraints,

that is, a relational database schema.

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute

of the entity set becomes an attribute of the table. Note that we know both

the domain of each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in

Figure 3.8. A possible instance of the Employees entity set, containing three

Figure 3.8 The Employees Entity Set

Employees entities, is shown in Figure 3.9 in a tabular format.

I ssn I name I lot I
123-22-3666 Attishoo 48

231-31-5368 Smiley 22

131-24-3650 Smethurst 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the

domain constraints and key information:

CREATE TABLE Employees (ssn CHAR(11),

name CHAR(30) ,

lot INTEGER,

PRIMARY KEY (ssn))

https://hemanthrajhemu.github.io

76 CHAPTER~3

3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational

model. Vve begin by considering relationship sets without key and participa-

tion constraints, and we discuss how to handle such constraints in subsequent

sections. To represent a relationship, we must be able to identify each partic-

ipating entity and give values to the descriptive attributes of the relationship.

Thus, the attributes of the relation include:

• The primary key attributes of each participating entity set, as foreign key

fields.

• The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are

no key constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department

has offices in several locations and we want to record the locations at which

each employee works.

C ~ ~ ~ T : ~ : ~ ~ Cf) (~~fT3~~
I Employees I WorksJn2 r Departments I

~ddress~ capacity

Figure 3.10 A Ternary Relationship Set

All the available information about the Works-ln2 table is captured by the

following SQL definition:

CREATE TABLE \iVorks_In2 (ssn CHAR(11),

did INTEGER,

address CHAR(20) ,

since DATE,

PRIMARY KEY (8sn, did, address),

FOREIGN KEY (ssn) REFERENCES Employees,

https://hemanthrajhemu.github.io

The Relational Iv!odel

FOREIGN KEY (address) REFERENCES Locations,

FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did. and ssn fields cannot take on n'ull values. Because

these fields are part of the primary key for \Vorks_In2, a NOT NULL constraint

is implicit for each of these fields. This constraint ensures that these fields

uniquely identify a department, an employee, and a location in each tuple

of WorksJn. vVe can also specify that a particular action is desired when a

referenced Employees, Departments, or Locations tuple is deleted, as explained

in the discussion of integrity constraints in Section 3.2. In this chapter, we

assume that the default action is appropriate except for situations in which the

semantics of the ER diagram require some other action.

Finally, consider the Reports_To relationship set shown in Figure 3.11. The

Figure 3.11 The Reports_To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field

names in the CREATE statement for the Reports..To table:

CREATE TABLE Reports_To (

supervisor...ssn CHAR (11),

subordinate...ssn CHAR (11) ,

PRIMARY KEY (supervisor~'3sn, subordinate_",,:>sn),

FOREIGN KEY (supervisor...ssn) REFERENCES Employees(ssn),

FOREIGN KEY (subordinate...ssn) REFERENCES Employees(ssn))

Observe that we need to explicitly name the referenced field of Employees

because the field name differs from the name(s) of the referring field(s).

https://hemanthrajhemu.github.io

78 CHAPTER~3

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and somem of them are linked via

arrows in the ER diagTam, the key for anyone of these m entity sets constitutes

a key for the relation to which the relationship set is mapped. Hence we have

m candidate keys, and one of these should be designated as the primary key.

The translation discussed in Section 2.3 from relationship sets to a relation can

be used in the presence of key constraints, taking into account this point about

keys.

Consider the relationship set Manages shown in Figure 3.12. The table cor-

Manages >4I"f--~~-

Figure 3.12 Key Constraint on Manages

responding to Manages has the attributes ssn, did, since. However, because

each department has at most one manager, no two tuples can have the same

did value but differ on the ssn value. A consequence of this observation is that

did is itself a key for Manages; indeed, the set did, ssn is not a key (because it

is not minimal). The Manages relation can be defined using the following SQL

statement:

CREATE TABLE Manages (ssn CHAR (11) ,

did INTEGER,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees,

FOREIGN KEY (did~REFERENCES Departments)

A second approach to translating a relationship set with key constraints is

often superior because it avoids creating a distinct table for the relationship

set. The idea is to include the information about the relationship set in the

table corresponding to the entity set with the key, taking adyantage of the

key constraint. In the Manages example, because a departmerl~ has at most

one manager, we can add the key fields of the Employees tuple denoting the

Inanager and the since attribute to the Departments tuple.

https://hemanthrajhemu.github.io

The Relational 1\1odel 7~

This approach eliminates the need for a separate Manages relation, and queries

asking for a department's manager can be answered without combining infor-

mation from two relations. The only drawback to this approach is that space

could be wasted if several departments have no managers. In this case the

added fields would have to be filled with null values. The first translation (us-

ing a separate table for Manages) avoids this inefficiency, but some important

queries require us to combine information from two relations, which can be a

slow operation.

The following SQL statement, defining a DepLMgr relation that captures the

information in both Departments and Manages, illustrates the second approach

to translating relationship sets with key constraints:

CREATE TABLE DepLMgr (did INTEGER,

dname CHAR(20),

budget REAL,

ssn CHAR (11) ,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than

two entity sets. In general, if a relationship set involves n entity sets and some

Tn of them are linked via arrows in the ER diagram, the relation corresponding

to anyone of the m sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after

considering how to translate relationship sets with participation constraints

into tables.

3.5.4 Translating Relationship Sets with Participation

Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets,

Manages and "Vorks_In.

Every department is required to have a manager, due to the participation

constraint, and at most one manager, due to the key constraint. The following

SQL statement reflects the second translation approach discussed in Section

3.5.3, and uses the key constraint:

https://hemanthrajhemu.github.io

80 CHAPTER'3

Figure 3.13 Manages and WorksJn

CREATE TABLE DepLMgr (did INTEGER,

dname CHAR(20) ,

budget REAL,

ssn CHAR(11) NOT NULL,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE NO ACTION)

It also captures the participation constraint that every department must have

a manager: Because ssn cannot take on null values, each tuple of DepLMgr

identifies a tuple in Employees (who is the manager). The NO ACTION specifi-

cation, which is the default and need not be explicitly specified, ensures that

an Employees tuple cannot be deleted while it is pointed to by a Dept-Mgr

tuple. If we wish to delete such an Employees tuple, we must first change the

DepLMgr tuple to have a new employee &'3 manager. (vVe could have specified

CASCADE instead of NO ACTION, but deleting all information about a department

just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be cap-

tured using the first translation approach discussed in Section 3.5.3. (Look

at the definition of lVIanages and think about what effect it would have if we

added NOT NULL constraints to the ssn and did fields. Hint: The constraint

would prevent the firing of a manager, but does not ensure that a manager is

initially appointed for each department!) This situation is a strong argument

https://hemanthrajhemu.github.io

The Relational lvfodel 8~

in favor of using the second approach for one-to-many relationships such as

Manages, especially when the entity set with the key constraint also has a total

participation constraint.

Unfortunately, there are many participation constraints that we cannot capture

using SQL, short of using table constraints or assertions. Table constraints and

assertions can be specified using the full power of the SQL query language

(as discussed in Section 5.7) and are very expressive but also very expensive to

check and enforce. For example, we cannot enforce the participation constraints

on the \iVorks_In relation without using these general constraints. To see why,

consider the Works-ln relation obtained by translating the ER diagram into·

relations. It contains fields ssn and did, which are foreign keys referring to

Employees and Departments. To ensure total participation of Departments in

Works_In, we have to guarantee that every did value in Departments appears

in a tuple of Works_In. We could try to guarantee this condition by declaring

that did in Departments is a foreign key referring to Works_In, but this is not

a valid foreign key constraint because did is not a candidate key for Works_In.

To ensure total participation of Departments in Works_In using SQL, we need

an assertion. We have to guarantee that every did value in Departments appears

in a tuple of Works_In; further, this tuple of Works_In must also have non-null

values in the fields that are foreign keys referencing other entity sets involved in

the relationship (in this example, the ssn field). We can ensure the second part

of this constraint by imposing the stronger requirement that ssn in Works-ln

cannot contain null values. (Ensuring that the participation of Employees in

Works_In is total is symmetric.)

Another constraint that requires assertions to express in SQL is the requirement

that each Employees entity (in the context of the Manages relationship set)

must manage at least one department.

In fact, the Manages relationship set exemplifies most of the participation con-

straints that we can capture using key and foreign key constraints. Manages is

a binary relationship set in which exactly one of the entity sets (Departments)

has a key constraint, and the total participation constraint is expressed on that

entity set.

\Ve can also capture participation constraints using key and foreign key con-

straints in one other special situation: a relationship set in which all participat-

ing entity sets have key constraints and total participation. The best translation

approach in this case is to map all the entities &'3 well as the relationship into

a single table; the details are straightforward.

https://hemanthrajhemu.github.io

82 CHAPTER~3

3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and

has a key constraint and total participation. The second translation approach

discussed in Section 3.5.3 is ideal in this case, but we must take into account

that the weak entity has only a partial key. Also, when an owner entity is

deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial

key pname. A Dependents entity can be identified uniquely only if we take the

key of the owning Employees entity and the pname of the Dependents entity,

and the Dependents entity must be deleted if the owning Employees entity is

deleted.

Employees

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the

Dep_Policy relation:

CREATE TABLE Dep_Policy (pname CHAR(20) ,

age INTEGER,

cost REAL,

ssn CHAR (11) ,

PRIMARY KEY (pname, ssn),

FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

Observe that the primary key is (pna:me, ssn) , since Dependents is a weak

entity. This constraint is a change with respect to the translation discussed in

Section 3.5.3. \Ve have to ensure that every Dependents entity is associated

with an Employees entity (the owner), as per the total participation constraint

on Dependents. That is, ssn cannot be null. This is ensured because SST/, is

part of the primary key. The CASCADE option ensures that information about

an employee's policy and dependents is deleted if the corresponding Employees

tuple is deleted.

https://hemanthrajhemu.github.io

The Relational 1"1,,1oriel

3.5.6 Translating Class Hierarchies

83

We present the two basic approaches to handling ISA hierarchies by applying

them to the ER diagram shown in Figure 3.15:

Figure 3.15 Class Hierarchy

1. We can map each of the entity sets Employees, Hourly_Emps, and Con-

tracLEmps to a distinct relation. The Employees relation is created as

in Section 2.2. We discuss Hourly ~ m p s here; ContracLEmps is han-

dled similarly. The relation for Hourly_Emps includes the hourly_wages

and hours_worked attributes of Hourly_Emps. It also contains the key at-

tributes of the superclass (ssn, in this example), which serve as the primary

key for Hourly_Emps, a.', well as a foreign key referencing the superclass

(Employees). For each Hourly_Emps entity, the value of the name and

lot attributes are stored in the corresponding row of the supercla...,s (Em-

ployees). Note that if the superclass tuple is deleted, the delete must be

cascaded to Hourly ~ m p s .

2. Alternatively, we can create just two relations, corresponding to Hourly_Emps

and ContracLEmps. The relation for Hourly ~ m p s includes all the at-

tributes of Hourly_Emps as well as all the attributes of Employees (i.e.,

ssn, name, lot, hO'l.1,rly_wages, hours_worked:).

The first approach is general and always applicable. Queries in which we want

to (~ x a m i n e all employees and do not care about the attributes specific to the

subclasses are handled easily using the Employees relation. However, queries

in which we want to examine, say, hourly employees, may require us to com-

bine Hourly_Emps (or ContracLEmps, as the case may be) with Employees to

retrieve name and lot.

https://hemanthrajhemu.github.io

84 CHAPTER··~

The second approach is not applicable if we have employees who are neither

hourly employees nor contract employees, since there is no way to store such

employees. Also, if an employee is both an Hourly-.Emps and a ContracLEmps

entity, then the name and lot: values are stored twice. This duplication can lead

to some of the anomalies that we discuss in Chapter 19. A query that needs to

examine all employees must now examine two relations. On the other hand, a

query that needs to examine only hourly employees can now do so by examining

just one relation. The choice between these approaches clearly depends on the

semantics of the data and the frequency of common operations.

In general, overlap and covering constraints can be expressed in SQL only by

using assertions.

3.5.7 Translating ER Diagrams with Aggregation

Consider the ER diagram shown in Figure 3.16. The Employees, Projects,

Manilars

Departments

I

_______did~ fT:C~'~~)

Figure 3.16 Aggregation

and Departments entity sets and the Sponsors relationship set are mapped as

described in previous sections. For the Monitors relationship set, we create a

relation with the following attributes: the key attributes of Employees (88n), the

key attributes of Sponsors (d'id, p'id), and the descriptive attributes of Monitors

('/.tnt:'il). This translation is essentially the standard mapping for a relationship

set, as described in Section 3.5.2.

https://hemanthrajhemu.github.io

The Relational A!odd 85
~

There is a special case in which this translation can be refined by dropping the

Sponsors relation. Consicler the Sponsors relation. It has attributes pid, did,

and since; and in general we need it (in addition to l\rlonitors) for two reasons:

1. \Ve have to record the descriptive attributes (in our example, since) of the

Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some (p'id, did) pairs in the

Sponsors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation

in Monitors, every possible instance of the Sponsors relation can be obtained

from the (pid, did) columns of Monitors; Sponsors can be dropped.

3.5.8 ER to Relational: Additional Examples

Consider the ER diagram shown in Figure 3.17. We can use the key constraints

Figure 3.17 Policy Revisited

to combine Purchaser information with Policies and Beneficiary information

with Dependents, and translate it into the relational model as follows:

CREATE TABLE Policies (policyid INTEGER,

cost REAL,

ssn CHAR (11) NOT NULL,

PRIMARY KEY (policyid),

FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

https://hemanthrajhemu.github.io

86 CHAPTERB

CREATE TABLE Dependents (pname CHAR(20) ,

age INTEGER,

policyid INTEGER,

PRIMARY KEY (pname, policyid),

FOREIGN KEY (policyid) REFERENCES Policies

ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of all policies

owned by the employee and all dependents who are beneficiaries of those poli-

cies. Further, each dependent is required to have a covering policy-because

policyid is part of the primary key of Dependents, there is an implicit NOT NULL

constraint. This model accurately reflects the participation constraints in the

ER diagram and the intended actions when an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity

sets. For example, we assumed that policyid uniquely identifies a policy. Sup-

pose that policyid distinguishes only the policies owned by a given employee;

that is, policyid is only a partial key and Policies should be modeled as a weak

entity set. This new assumption about policyid does not cause much to change

in the preceding discussion. In fact, the only changes are that the primary

key of Policies becomes (policyid, ssn) , and as a consequence, the definition of

Dependents changes-a field called ssn is added and becomes part of both the

primary key of Dependents and the foreign key referencing Policies:

CREATE TABLE Dependents (pname CHAR(20) ,

ssn CHAR (11) ,

age INTEGER,

policyid INTEGER NOT NULL,

PRIMARY KEY (pname, policyid, ssn),

FOREIGN KEY (policyid, ssn) REFERENCES Policies

ON DELETE CASCADE)

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but

are computed as needed from a view definition. Consider the Students and

Enrolled relations. Suppose we are often interested in finding the names and

student identifiers of students who got a grade of B in some course, together

with the course identifier. \Ne can define a view for this purpose. Using SQL

notation:

CREATE VIEW B-Students (name, sid, course)

AS SELECT S.sname, S.sid, E.cid

https://hemanthrajhemu.github.io

