

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

 Contents xix

■ part 3
The Relational Data Model and SQL ■

chapter 5 The Relational Data Model and Relational
Database Constraints 149

5.1 Relational Model Concepts 150
5.2 Relational Model Constraints and Relational Database Schemas 157
5.3 Update Operations, Transactions, and Dealing with Constraint

Violations 165
5.4 Summary 169
Review Questions 170
Exercises 170
Selected Bibliography 175

chapter 6 Basic SQL 177

6.1 SQL Data Definition and Data Types 179
6.2 Specifying Constraints in SQL 184
6.3 Basic Retrieval Queries in SQL 187
6.4 INSERT, DELETE, and UPDATE Statements in SQL 198
6.5 Additional Features of SQL 201
6.6 Summary 202
Review Questions 203
Exercises 203
Selected Bibliography 205

chapter 7 More SQL: Complex Queries, Triggers, Views,
and Schema Modification 207

7.1 More Complex SQL Retrieval Queries 207
7.2 Specifying Constraints as Assertions and Actions as Triggers 225
7.3 Views (Virtual Tables) in SQL 228
7.4 Schema Change Statements in SQL 232
7.5 Summary 234
Review Questions 236
Exercises 236
Selected Bibliography 238

chapter 8 The Relational Algebra and Relational Calculus 239

8.1 Unary Relational Operations: SELECT and PROJECT 241
8.2 Relational Algebra Operations from Set Theory 246

https://hemanthrajhemu.github.io

207

7

More SQL: Complex Queries,

Triggers, Views, and

Schema Modification

This chapter describes more advanced features of
the SQL language for relational databases. We start

in Section 7.1 by presenting more complex features of SQL retrieval queries, such as
nested queries, joined tables, outer joins, aggregate functions, and grouping, and
case statements. In Section 7.2, we describe the CREATE ASSERTION statement,
which allows the specification of more general constraints on the database. We also
introduce the concept of triggers and the CREATE TRIGGER statement, which will
be presented in more detail in Section 26.1 when we present the principles of active
databases. Then, in Section 7.3, we describe the SQL facility for defining views on
the database. Views are also called virtual or derived tables because they present the
user with what appear to be tables; however, the information in those tables is
derived from previously defined tables. Section 7.4 introduces the SQL ALTER

TABLE statement, which is used for modifying the database tables and constraints.
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries

In Section 6.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We
discuss several of these features in this section.

chapter 7

https://hemanthrajhemu.github.io

208 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that
NULL is used to represent a missing value, but that it usually has one of three differ-
ent interpretations—value unknown (value exists but is not known, or it is not
known whether or not the value exists), value not available (value exists but is pur-
posely withheld), or value not applicable (the attribute does not apply to this tuple
or is undefined for this tuple). Consider the following examples to illustrate each of
the meanings of NULL.

 1. Unknown value. A person’s date of birth is not known, so it is represented
by NULL in the database. An example of the other case of unknown would be
NULL for a person’s home phone because it is not known whether or not the
person has a home phone.

 2. Unavailable or withheld value. A person has a home phone but does not
want it to be listed, so it is withheld and represented as NULL in the database.

 3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a
person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for exam-
ple, a NULL for the home phone of a person can have any of the three meanings.
Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other
NULL value in the various database records. When a record with NULL in one of its
attributes is involved in a comparison operation, the result is considered to be
UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued
logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued
(Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the
results (or truth values) of three-valued logical expressions when the logical con-
nectives AND, OR, and NOT are used. Table 7.1 shows the resulting values.

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

(b) OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

(c) NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 209

In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the results
of comparison conditions, which would typically appear in the WHERE clause of an
SQL query. Each expression result would have a value of TRUE, FALSE, or
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of using
the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is
FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 7.1(c)
shows the result of the NOT logical operation. Notice that in standard Boolean logic,
only TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression in the WHERE clause of the query to TRUE
are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not
selected. However, there are exceptions to that rule for certain operations, such as
outer joins, as we shall see in Section 7.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or <> to compare an attribute value to NULL, SQL uses the comparison operators IS or
IS NOT. This is because SQL considers each NULL value as being distinct from every
other NULL value, so equality comparison is not appropriate. It follows that when a join
condition is specified, tuples with NULL values for the join attributes are not included in
the result (unless it is an OUTER JOIN; see Section 7.1.6). Query 18 illustrates NULL com-
parison by retrieving any employees who do not have a supervisor.

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE Super_ssn IS NULL;

7.1.2 Nested Queries, Tuples,
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used
in a comparison condition. Such queries can be conveniently formulated by using
nested queries, which are complete select-from-where blocks within another SQL
query. That other query is called the outer query. These nested queries can also
appear in the WHERE clause or the FROM clause or the SELECT clause or other
SQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but it
can be rephrased to use nested queries as shown in Q4A. Q4A introduces the com-
parison operator IN, which compares a value v with a set (or multiset) of values V
and evaluates to TRUE if v is one of the elements in V.

In Q4A, the first nested query selects the project numbers of projects that have an
employee with last name ‘Smith’ involved as manager, whereas the second nested query
selects the project numbers of projects that have an employee with last name ‘Smith’
involved as worker. In the outer query, we use the OR logical connective to retrieve a
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.

https://hemanthrajhemu.github.io

210 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q4A: SELECT DISTINCT Pnumber

 FROM PROJECT

 WHERE Pnumber IN

 (SELECT Pnumber

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum = Dnumber AND

 Mgr_ssn = Ssn AND Lname = ‘Smith’)
 OR

 Pnumber IN
 (SELECT Pno

 FROM WORKS_ON, EMPLOYEE

 WHERE Essn = Ssn AND Lname = ‘Smith’);

If a nested query returns a single attribute and a single tuple, the query result will be
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation),
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE (Pno, Hours) IN (SELECT Pno, Hours

 FROM WORKS_ON

 WHERE Essn = ‘123456789’);

This query will select the Essns of all employees who work the same (project, hours)
combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’)
works on. In this example, the IN operator compares the subtuple of values in paren-
theses (Pno, Hours) within each tuple in WORKS_ON with the set of type-compatible
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used
to compare a single value v (typically an attribute name) to a set or multiset v (typi-
cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v
is equal to some value in the set V and is hence equivalent to IN. The two keywords
ANY and SOME have the same effect. Other operators that can be combined with
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL V)
returns TRUE if the value v is greater than all the values in the set (or multiset) V.
An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

 FROM EMPLOYEE

 WHERE Dno = 5);

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 211

Notice that this query can also be specified using the MAX aggregate function (see
Section 7.1.7).

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an
unqualified attribute refers to the relation declared in the innermost nested query.
For example, in the SELECT clause and WHERE clause of the first nested query of
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the
PROJECT relation specified in the FROM clause of the nested query. To refer to an
attribute of the PROJECT relation specified in the outer query, we specify and refer
to an alias (tuple variable) for that relation. These rules are similar to scope rules for
program variables in most programming languages that allow nested procedures
and functions. To illustrate the potential ambiguity of attribute names in nested
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E
 WHERE E.Ssn IN (SELECT D.Essn

 FROM DEPENDENT AS D
 WHERE E.Fname = D.Dependent_name

 AND E.Sex = D.Sex);

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attri-
bute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute
called Sex. If there were any unqualified references to Sex in the nested query, they
would refer to the Sex attribute of DEPENDENT. However, we would not have to
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested
query because the DEPENDENT relation does not have attributes called Fname and
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q16.

7.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attri-
bute of a relation declared in the outer query, the two queries are said to be correlated.
We can understand a correlated query better by considering that the nested query is
evaluated once for each tuple (or combination of tuples) in the outer query. For
example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the
nested query, which retrieves the Essn values for all DEPENDENT tuples with the
same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple
is in the result of the nested query, then select that EMPLOYEE tuple.

https://hemanthrajhemu.github.io

212 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E, DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

 AND E.Fname = D.Dependent_name;

7.1.4 The EXISTS and UNIQUE Functions in SQL

EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence,
they can be used in a WHERE clause condition. The EXISTS function in SQL is used
to check whether the result of a nested query is empty (contains no tuples) or not.
The result of EXISTS is a Boolean value TRUE if the nested query result contains at
least one tuple, or FALSE if the nested query result contains no tuples. We illustrate
the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate
Query 16 in an alternative form that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E
 WHERE EXISTS (SELECT *
 FROM DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

 AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of
the EMPLOYEE relation from the outer query. We can think of Q16B as follows: For
each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT
tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at
least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE
tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested
query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS(Q) returns
TRUE if there are no tuples in the result of nested query Q, and returns FALSE other-
wise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Q6: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT *

 FROM DEPENDENT

 WHERE Ssn = Essn);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a
particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because
the WHERE-clause condition will evaluate to TRUE in this case. We can explain
Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 213

DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is
empty, no dependents are related to the employee, so we select that EMPLOYEE
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE EXISTS (SELECT *

 FROM DEPENDENT

 WHERE Ssn = Essn)
 AND

 EXISTS (SELECT *

 FROM DEPARTMENT

 WHERE Ssn = Mgr_ssn);

One way to write this query is shown in Q7, where we specify two nested cor-
related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE,
and the second selects all DEPARTMENT tuples managed by the EMPLOYEE. If at
least one of the first and at least one of the second exists, we select the EMPLOYEE
tuple. Can you rewrite this query using only a single nested query or no nested
queries?

The query Q3: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in
SQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and
Q3B. This is an example of certain types of queries that require universal quantifica-
tion, as we will discuss in Section 8.6.7. One way to write this query is to use the
construct (S2 EXCEPT S1) as explained next, and checking whether the result is
empty.1 This option is shown as Q3A.

Q3A: SELECT Fname, Lname

 FROM EMPLOYEE

 WHERE NOT EXISTS ((SELECT Pnumber

 FROM PROJECT

 WHERE Dnum = 5)
 EXCEPT (SELECT Pno

 FROM WORKS_ON

 WHERE Ssn = Essn));

In Q3A, the first subquery (which is not correlated with the outer query) selects all
projects controlled by department 5, and the second subquery (which is corre-
lated) selects all projects that the particular employee being considered works on.
If the set difference of the first subquery result MINUS (EXCEPT) the second sub-
query result is empty, it means that the employee works on all the projects and is
therefore selected.

1Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for
example, in Oracle.

https://hemanthrajhemu.github.io

214 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3A.

Q3B: SELECT Lname, Fname

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT *
 FROM WORKS_ON B

 WHERE (B.Pno IN (SELECT Pnumber

 FROM PROJECT

 WHERE Dnum = 5)
 AND

 NOT EXISTS (SELECT *

 FROM WORKS_ON C

 WHERE C.Essn = Ssn

 AND C.Pno = B.Pno)));

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of
Q3B matches the following rephrasing of Query 3: Select each employee such that
there does not exist a project controlled by department 5 that the employee does
not work on. It corresponds to the way we will write this query in tuple relation
calculus (see Section 8.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be
used to test whether the result of a nested query is a set (no duplicates) or a multiset
(duplicates exist).

7.1.5 Explicit Sets and Renaming in SQL

We have seen several queries with a nested query in the WHERE clause. It is also
possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on
project numbers 1, 2, or 3.

Q17: SELECT DISTINCT Essn

 FROM WORKS_ON

 WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query
by adding the qualifier AS followed by the desired new name. Hence, the AS con-
struct can be used to alias both attribute and relation names in general, and it can
be used in appropriate parts of a query. For example, Q8A shows how query Q8
from Section 4.3.2 can be slightly changed to retrieve the last name of each
employee and his or her supervisor while renaming the resulting attribute names

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 215

as Employee_name and Supervisor_name. The new names will appear as column
headers for the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name

 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

7.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to
permit users to specify a table resulting from a join operation in the FROM clause of
a query. This construct may be easier to comprehend than mixing together all the
select and join conditions in the WHERE clause. For example, consider query Q1,
which retrieves the name and address of every employee who works for the
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and
DEPARTMENT relations in the WHERE clause, and then to select the desired tuples
and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address

 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)

 WHERE Dname = ‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of
the second table, DEPARTMENT. The concept of a joined table also allows the user to
specify different types of join, such as NATURAL JOIN and various types of OUTER

JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an
implicit EQUIJOIN condition for each pair of attributes with the same name from R
and S is created. Each such pair of attributes is included only once in the resulting
relation (see Sections 8.3.2 and 8.4.4 for more details on the various types of join
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possible
to rename the attributes so that they match, and then to apply NATURAL JOIN. In
this case, the AS construct can be used to rename a relation and all its attributes in
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno,
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address

 FROM (EMPLOYEE NATURAL JOIN

 (DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))

 WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result;

https://hemanthrajhemu.github.io

216 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user
requires that all employees be included, a different type of join called OUTER JOIN
must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-

tional algebra). There are several variations of OUTER JOIN, as we shall see. In the
SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a
joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,

 S.Lname AS Supervisor_name

 FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
 ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN (only
pairs of tuples that match the join condition are retrieved, same as JOIN), LEFT

OUTER JOIN (every tuple in the left table must appear in the result; if it does not have
a matching tuple, it is padded with NULL values for the attributes of the right table),
RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it does
not have a matching tuple, it is padded with NULL values for the attributes of the left
table), and FULL OUTER JOIN. In the latter three options, the keyword OUTER may be
omitted. If the join attributes have the same name, one can also specify the natural
join variation of outer joins by using the keyword NATURAL before the operation (for
example, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specify
the CARTESIAN PRODUCT operation (see Section 8.2.2), although this should be
used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This allows the specification of the join of three or more tables
as a single joined table, which is called a multiway join. For example, Q2A is a differ-
ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)

 JOIN EMPLOYEE ON Mgr_ssn = Ssn)

 WHERE Plocation = ‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In
some systems, a different syntax was used to specify outer joins by using the compari-
son operators + =, = +, and + = + for left, right, and full outer join, respectively, when
specifying the join condition. For example, this syntax is available in Oracle. To specify
the left outer join in Q8B using this syntax, we could write the query Q8C as follows:

Q8C: SELECT E.Lname, S.Lname

 FROM EMPLOYEE E, EMPLOYEE S

 WHERE E.Super_ssn + = S.Ssn;

7.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples
into a single-tuple summary. Grouping is used to create subgroups of tuples
before summarization. Grouping and aggregation are required in many database

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 217

applications, and we will introduce their use in SQL through examples. A number
of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.2 The
COUNT function returns the number of tuples or values as specified in a query.
The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of
numeric values and return, respectively, the sum, maximum value, minimum
value, and average (mean) of those values. These functions can be used in the
SELECT clause or in a HAVING clause (which we introduce later). The functions
MAX and MIN can also be used with attributes that have nonnumeric domains if
the domain values have a total ordering among one another.3 We illustrate the use
of these functions with several queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

 FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table.
We could use AS to rename the column names in the resulting single-row table; for
example, as in Q19A.

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,

 MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal

 FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specific
department—say, the ‘Research’ department—we can write Query 20, where the
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-
ment, as well as the maximum salary, the minimum salary, and the average
salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)

 WHERE Dname = ‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (*)
 FROM EMPLOYEE;

Q22: SELECT COUNT (*)
 FROM EMPLOYEE, DEPARTMENT

 WHERE DNO = DNUMBER AND DNAME = ‘Research’;

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.

3Total order means that for any two values in the domain, it can be determined that one appears before
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings
on their values, as do alphabetic strings.

https://hemanthrajhemu.github.io

218 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of
rows in the result of the query. We may also use the COUNT function to count val-
ues in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)

 FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY
will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute); the only exception is for
COUNT(*) because tuples instead of values are counted. In the previous examples,
any Salary values that are NULL are not included in the aggregate function calcula-
tion. The general rule is as follows: when an aggregate function is applied to a col-
lection of values, NULLs are removed from the collection before the calculation; if
the collection becomes empty because all values are NULL, the aggregate function
will return NULL (except in the case of COUNT, where it will return 0 for an empty
collection of values).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce a table with a single row or a
single value. They illustrate how functions are applied to retrieve a summary value
or summary tuple from a table. These functions can also be used in selection condi-
tions involving nested queries. We can specify a correlated nested query with an
aggregate function, and then use the nested query in the WHERE clause of an outer
query. For example, to retrieve the names of all employees who have two or more
dependents (Query 5), we can write the following:

Q5: SELECT Lname, Fname
 FROM EMPLOYEE

 WHERE (SELECT COUNT (*)
 FROM DEPENDENT

 WHERE Ssn = Essn) > = 2;

The correlated nested query counts the number of dependents that each employee
has; if this is greater than or equal to two, the employee tuple is selected.

SQL also has aggregate functions SOME and ALL that can be applied to a col-
lection of Boolean values; SOME returns TRUE if at least one element in the
collection is TRUE, whereas ALL returns TRUE if all elements in the collection
are TRUE.

7.1.8 Grouping: The GROUP BY and HAVING Clauses

In many cases we want to apply the aggregate functions to subgroups of tuples in a
relation, where the subgroups are based on some attribute values. For example, we
may want to find the average salary of employees in each department or the number

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 219

of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will
consist of the tuples that have the same value of some attribute(s), called the
grouping attribute(s). We can then apply the function to each such group indepen-
dently to produce summary information about each group. SQL has a GROUP BY
clause for this purpose. The GROUP BY clause specifies the grouping attributes,
which should also appear in the SELECT clause, so that the value resulting from
applying each aggregate function to a group of tuples appears along with the value
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)

 FROM EMPLOYEE

 GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having
the same value for the GROUP BY attribute Dno. Hence, each group contains the
employees who work in the same department. The COUNT and AVG functions
are applied to each such group of tuples. Notice that the SELECT clause includes
only the grouping attribute and the aggregate functions to be applied on each
group of tuples. Figure 7.1(a) illustrates how grouping works and shows the
result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had some tuples that had NULL for the grouping attribute Dno, there would be
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON

 WHERE Pnumber = Pno

 GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations in
the WHERE clause.

Sometimes we want to retrieve the values of these functions only for groups that
satisfy certain conditions. For example, suppose that we want to modify Query 25 so
that only projects with more than two employees appear in the result. SQL provides
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this
purpose. HAVING provides a condition on the summary information regarding the
group of tuples associated with each value of the grouping attributes. Only the
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.

https://hemanthrajhemu.github.io

220 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Dno

5

4

1

4

3

1

33250

31000

55000

Count (*) Avg (Salary)

Result of Q24

Pname

ProductY

Computerization

Reorganization

Newbenefits

3

3

3

3

Count (*)

Result of Q26

These groups are not selected by

the HAVING condition of Q26.

Grouping EMPLOYEE tuples by the value of Dno

After applying the WHERE clause but before applying HAVING

After applying the HAVING clause condition

Fname

John

Franklin

Ramesh K

Jennifer

Alicia

Joyce A

Ahmad

James

V

E

T

B

J

S

Narayan

English

Jabbar

Bong

Smith

Wong

Zelaya

Wallace

666884444

453453453

987987987

888665555

123456789

333445555

999887777

987654321

Minit Lname

5

5

4

1

5

5

4

4

Dno

333445555

333445555

987654321

NULL

333445555

888665555

987654321

888665555

Super_ssn

38000

25000

25000

55000

30000

40000

25000

43000

Salary

. . .

Pname

ProductX

ProductX

ProductY

ProductZ

ProductY

ProductY

ProductZ

Computerization

Computerization

Computerization

Reorganization

Newbenefits

Reorganization

Reorganization

Newbenefits

Newbenefits

123456789

453453453

123456789

666884444

333445555

453453453

333445555

333445555

999887777

987987987

333445555

987987987

888665555

987654321

987654321

999887777

1

1

2

2

2

3

3

10

10

10

20

20

20

30

30

30

1

1

2

2

2

3

3

10

10

10

20

20

20

30

30

30

32.5

20.0

 7.5

20.0

10.0

40.0

10.0

10.0

10.0

35.0

10.0

15.0

NULL

5.0

20.0

30.0

Pnumber Hours

. . .

Pname

ProductY

ProductY

ProductY

Computerization

Computerization

Computerization

Reorganization

Reorganization

Reorganization

Newbenefits

Newbenefits

Newbenefits

123456789

453453453

333445555

987987987

999887777

333445555

333445555

987654321

888665555

987987987

987654321

999887777

2

2

2

10

10

10

20

20

20

30

30

30

2

2

2

10

10

10

20

20

20

30

30

30

7.5

20.0

 10.0

10.0

10.0

35.0

10.0

15.0

NULL

5.0

20.0

30.0

Pnumber Essn Pno Hours

. . .
(Pnumber not shown)

Ssn . . .(a)

(b) PnoEssn. . .

. . .

Figure 7.1

Results of GROUP BY and HAVING. (a) Q24. (b) Q26.

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 221

Query 26. For each project on which more than two employees work, retrieve the
project number, the project name, and the number of employees who work on
the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON

 WHERE Pnumber = Pno

 GROUP BY Pnumber, Pname

 HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to
which functions are applied, the HAVING clause serves to choose whole groups. Fig-
ure 7.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and
the number of employees from department 5 who work on the project.

Q27: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON, EMPLOYEE

 WHERE Pnumber = Pno AND Ssn = Essn AND Dno = 5

 GROUP BY Pnumber, Pname;

In Q27, we restrict the tuples in the relation (and hence the tuples in each group)
to those that satisfy the condition specified in the WHERE clause—namely, that
they work in department number 5. Notice that we must be extra careful when
two different conditions apply (one to the aggregate function in the SELECT
clause and another to the function in the HAVING clause). For example, suppose
that we want to count the total number of employees whose salaries exceed
$40,000 in each department, but only for departments where more than five
employees work. Here, the condition (SALARY > 40000) applies only to the
COUNT function in the SELECT clause. Suppose that we write the following
incorrect query:

SELECT Dno, COUNT (*)
FROM EMPLOYEE

WHERE Salary>40000

GROUP BY Dno

HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees who each earn more than $40,000. The rule is that the WHERE clause is
executed first, to select individual tuples or joined tuples; the HAVING clause is
applied later, to select individual groups of tuples. In the incorrect query, the tuples
are already restricted to employees who earn more than $40,000 before the function
in the HAVING clause is applied. One way to write this query correctly is to use a
nested query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve the
department number and the number of its employees who are making more
than $40,000.

https://hemanthrajhemu.github.io

222 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q28: SELECT Dno, COUNT (*)
 FROM EMPLOYEE

 WHERE Salary>40000 AND Dno IN
 (SELECT Dno

 FROM EMPLOYEE

 GROUP BY Dno

 HAVING COUNT (*) > 5)

 GROUP BY Dno;

7.1.9 Other SQL Constructs: WITH and CASE

In this section, we illustrate two additional SQL constructs. The WITH clause
allows a user to define a table that will only be used in a particular query; it is some-
what similar to creating a view (see Section 7.3) that will be used only in one query
and then dropped. This construct was introduced as a convenience in SQL:99 and
may not be available in all SQL based DBMSs. Queries using WITH can generally
be written using other SQL constructs. For example, we can rewrite Q28 as Q28′:

Q28′: WITH BIGDEPTS (Dno) AS

 (SELECT Dno

 FROM EMPLOYEE

 GROUP BY Dno

 HAVING COUNT (*) > 5)

 SELECT Dno, COUNT (*)
 FROM EMPLOYEE

 WHERE Salary>40000 AND Dno IN BIGDEPTS

 GROUP BY Dno;

In Q28′, we defined in the WITH clause a temporary table BIG_DEPTS whose
result holds the Dno’s of departments with more than five employees, then used
this table in the subsequent query. Once this query is executed, the temporary table
BIGDEPTS is discarded.

SQL also has a CASE construct, which can be used when a value can be different
based on certain conditions. This can be used in any part of an SQL query where a
value is expected, including when querying, inserting or updating tuples. We illus-
trate this with an example. Suppose we want to give employees different raise
amounts depending on which department they work for; for example, employees in
department 5 get a $2,000 raise, those in department 4 get $1,500 and those in
department 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we could
re-write the update operation U6 from Section 6.4.3 as U6′:

U6′: UPDATE EMPLOYEE

 SET Salary =

 CASE WHEN Dno = 5 THEN Salary + 2000
 WHEN Dno = 4 THEN Salary + 1500
 WHEN Dno = 1 THEN Salary + 3000
 ELSE Salary + 0 ;

https://hemanthrajhemu.github.io

 7.1 More Complex SQL Retrieval Queries 223

In U6′, the salary raise value is determined through the CASE construct based on
the department number for which each employee works. The CASE construct can
also be used when inserting tuples that can have different attributes being NULL
depending on the type of record being inserted into a table, as when a specialization
(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union type
is mapped into relations.

7.1.10 Recursive Queries in SQL

In this section, we illustrate how to write a recursive query in SQL. This syntax was
added in SQL:99 to allow users the capability to specify a recursive query in a
declarative manner. An example of a recursive relationship between tuples of the
same type is the relationship between an employee and a supervisor. This relation-
ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig-
ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) to
another employee tuple (in the role of supervisor). An example of a recursive oper-
ation is to retrieve all supervisees of a supervisory employee e at all levels—that is,
all employees e′ directly supervised by e, all employees e′ directly supervised by each
employee e′, all employees e″′ directly supervised by each employee e″, and so on.
In SQL:99, this query can be written as follows:

Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS

 (SELECT SupervisorSsn, Ssn

 FROM EMPLOYEE

 UNION

 SELECT E.Ssn, S.SupSsn

 FROM EMPLOYEE AS E, SUP_EMP AS S
 WHERE E.SupervisorSsn = S.EmpSsn)

 SELECT*

 FROM SUP_EMP;

In Q29, we are defining a view SUP_EMP that will hold the result of the recursive
query. The view is initially empty. It is first loaded with the first level (supervisor,
supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM
EMPLOYEE), which is called the base query. This will be combined via UNION
with each successive level of supervisees through the second part, where the view
contents are joined again with the base values to get the second level combinations,
which are UNIONed with the first level. This is repeated with successive levels until
a fixed point is reached, where no more tuples are added to the view. At this point,
the result of the recursive query is in the view SUP_EMP.

7.1.11 Discussion and Summary of SQL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is
ended by a semicolon. Query terms are separated by spaces, and parentheses can
be used to group relevant parts of a query in the standard way. The clauses are

https://hemanthrajhemu.github.io

224 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

specified in the following order, with the clauses between square brackets […]
being optional:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but
not those in nested queries. The WHERE clause specifies the conditions for selecting
the tuples from these relations, including join conditions if needed. GROUP BY
specifies grouping attributes, whereas HAVING specifies a condition on the groups
being selected rather than on the individual tuples. The built-in aggregate functions
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they
can also be applied to all the selected tuples in a query without a GROUP BY clause.
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define
the meaning or semantics of each query. A query is evaluated conceptually4 by first
applying the FROM clause (to identify all tables involved in the query or to materialize
any joined tables), followed by the WHERE clause to select and join tuples, and then by
GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query
result. If none of the last three clauses (GROUP BY, HAVING, and ORDER BY) are speci-
fied, we can think conceptually of a query as being executed as follows: For each combi-
nation of tuples—one from each of the relations specified in the FROM clause—evaluate
the WHERE clause; if it evaluates to TRUE, place the values of the attributes specified in
the SELECT clause from this tuple combination in the result of the query. Of course, this
is not an efficient way to implement the query in a real system, and each DBMS has
special query optimization routines to decide on an execution plan that is efficient to
execute. We discuss query processing and optimization in Chapters 18 and 19.

In general, there are numerous ways to specify the same query in SQL. This flexibility
in specifying queries has advantages and disadvantages. The main advantage is that
users can choose the technique with which they are most comfortable when specifying
a query. For example, many queries may be specified with join conditions in the
WHERE clause, or by using joined relations in the FROM clause, or with some form of
nested queries and the IN comparison operator. Some users may be more comfortable
with one approach, whereas others may be more comfortable with another. From the
programmer’s and the system’s point of view regarding query optimization, it is gener-
ally preferable to write a query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that
this may confuse the user, who may not know which technique to use to specify

4The actual order of query evaluation is implementation dependent; this is just a way to conceptually
view a query in order to correctly formulate it.

https://hemanthrajhemu.github.io

 7.2 Specifying Constraints as Assertions and Actions as Triggers 225

particular types of queries. Another problem is that it may be more efficient to
execute a query specified in one way than the same query specified in an alterna-
tive way. Ideally, this should not be the case: The DBMS should process the same
query in the same way regardless of how the query is specified. But this is quite
difficult in practice, since each DBMS has different methods for processing queries
specified in different ways. Thus, an additional burden on the user is to determine
which of the alternative specifications is the most efficient to execute. Ideally, the
user should worry only about specifying the query correctly, whereas the DBMS
would determine how to execute the query efficiently. In practice, however, it
helps if the user is aware of which types of constructs in a query are more expen-
sive to process than others.

7.2 Specifying Constraints as Assertions
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSERTION
statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATE

ASSERTION, which can be used to specify additional types of constraints that are
outside the scope of the built-in relational model constraints (primary and unique
keys, entity integrity, and referential integrity) that we presented in Section 5.2.
These built-in constraints can be specified within the CREATE TABLE statement of
SQL (see Sections 6.1 and 6.2).

In Section 7.2.2 we introduce CREATE TRIGGER, which can be used to specify auto-
matic actions that the database system will perform when certain events and condi-
tions occur. This type of functionality is generally referred to as active databases.
We only introduce the basics of triggers in this chapter, and present a more com-
plete discussion of active databases in Section 26.1.

7.2.1 Specifying General Constraints as Assertions in SQL

In SQL, users can specify general constraints—those that do not fall into any of the
categories described in Sections 6.1 and 6.2— via declarative assertions, using the
CREATE ASSERTION statement. Each assertion is given a constraint name and is
specified via a condition similar to the WHERE clause of an SQL query. For exam-
ple, to specify the constraint that the salary of an employee must not be greater than
the salary of the manager of the department that the employee works for in SQL, we
can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

 FROM EMPLOYEE E, EMPLOYEE M,

 DEPARTMENT D

 WHERE E.Salary>M.Salary

 AND E.Dno = D.Dnumber

 AND D.Mgr_ssn = M.Ssn));

https://hemanthrajhemu.github.io

226 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to
disable the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used,
but many constraints can be specified using the EXISTS and NOT EXISTS style of
SQL conditions. Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS
clause, the assertion will specify that the result of this query must be empty so that
the condition will always be TRUE. Thus, the assertion is violated if the result of the
query is not empty. In the preceding example, the query selects all employees whose
salaries are greater than the salary of the manager of their department. If the result
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on individual attributes and domains (see Section 6.2.1) and on indi-
vidual tuples (see Section 6.2.4). A major difference between CREATE

ASSERTION and the individual domain constraints and tuple constraints is that
the CHECK clauses on individual attributes, domains, and tuples are checked in
SQL only when tuples are inserted or updated in a specific table. Hence, con-
straint checking can be implemented more efficiently by the DBMS in these
cases. The schema designer should use CHECK on attributes, domains, and tuples
only when he or she is sure that the constraint can only be violated by insertion or
updating of tuples. On the other hand, the schema designer should use CREATE

ASSERTION only in cases where it is not possible to use CHECK on attributes,
domains, or tuples, so that simple checks are implemented more efficiently by
the DBMS.

7.2.2 Introduction to Triggers in SQL

Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and
when certain conditions are satisfied. For example, it may be useful to specify a
condition that, if violated, causes some user to be informed of the violation. A man-
ager may want to be informed if an employee’s travel expenses exceed a certain
limit by receiving a message whenever this occurs. The action that the DBMS must
take in this case is to send an appropriate message to that user. The condition is
thus used to monitor the database. Other actions may be specified, such as execut-
ing a specific stored procedure or triggering other updates. The CREATE TRIGGER
statement is used to implement such actions in SQL. We discuss triggers in detail in
Section 26.1 when we describe active databases. Here we just give a simple example
of how triggers may be used.

https://hemanthrajhemu.github.io

 7.2 Specifying Constraints as Assertions and Actions as Triggers 227

Suppose we want to check whenever an employee’s salary is greater than the salary
of his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6).
Several events can trigger this rule: inserting a new employee record, changing an
employee’s salary, or changing an employee’s supervisor. Suppose that the action to
take would be to call an external stored procedure SALARY_VIOLATION,5 which will
notify the supervisor. The trigger could then be written as in R5 below. Here we are
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION

 BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN

 ON EMPLOYEE

 FOR EACH ROW

 WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE

 WHERE SSN = NEW.SUPERVISOR_SSN))

 INFORM_SUPERVISOR(NEW.Supervisor_ssn,
 NEW.Ssn);

The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later. A typical trigger which is regarded as an ECA (Event,
Condition, Action) rule has three components:

 1. The event(s): These are usually database update operations that are explic-
itly applied to the database. In this example the events are: inserting a new
employee record, changing an employee’s salary, or changing an employee’s
supervisor. The person who writes the trigger must make sure that all pos-
sible events are accounted for. In some cases, it may be necessary to write
more than one trigger to cover all possible cases. These events are specified
after the keyword BEFORE in our example, which means that the trigger
should be executed before the triggering operation is executed. An alterna-
tive is to use the keyword AFTER, which specifies that the trigger should be
executed after the operation specified in the event is completed.

 2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed. The condition is specified in the
WHEN clause of the trigger.

 3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed. In this example, the action is to execute the stored
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A
complete discussion is given in Section 26.1.

5Assuming that an appropriate external procedure has been declared. We discuss stored procedures in
Chapter 10.

https://hemanthrajhemu.github.io

228 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.3 Views (Virtual Tables) in SQL

In this section we introduce the concept of a view in SQL. We show how views are
specified, and then we discuss the problem of updating views and how views can be
implemented by the DBMS.

7.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables.6 These
other tables can be base tables or previously defined views. A view does not neces-
sarily exist in physical form; it is considered to be a virtual table, in contrast to base
tables, whose tuples are always physically stored in the database. This limits the
possible update operations that can be applied to views, but it does not provide any
limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference
frequently, even though it may not exist physically. For example, referring to the
COMPANY database in Figure 5.5, we may frequently issue queries that retrieve the
employee name and the project names that the employee works on. Rather than
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT
every time we issue this query, we can define a view that is specified as the result of
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

7.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the
contents of the view. If none of the view attributes results from applying functions
or arithmetic operations, we do not have to specify new attribute names for the
view, since they would be the same as the names of the attributes of the defining
tables in the default case. The views in V1 and V2 create virtual tables whose sche-
mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

V1: CREATE VIEW WORKS_ON1

 AS SELECT Fname, Lname, Pname, Hours

 FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE Ssn = Essn AND Pno = Pnumber;

V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)

 AS SELECT Dname, COUNT (*), SUM (Salary)

 FROM DEPARTMENT, EMPLOYEE

 WHERE Dnumber = Dno

 GROUP BY Dname;

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,
since a user view would possibly include many relations.

https://hemanthrajhemu.github.io

 7.3 Views (Virtual Tables) in SQL 229

In V1, we did not specify any new attribute names for the view WORKS_ON1
(although we could have); in this case, WORKS_ON1 inherits the names of the
view attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON.
View V2 explicitly specifies new attribute names for the view DEPT_INFO, using
a one-to-one correspondence between the attributes specified in the CREATE

VIEW clause and those specified in the SELECT clause of the query that defines
the view.

We can now specify SQL queries on a view—or virtual table—in the same way we
specify queries involving base tables. For example, to retrieve the last name and first
name of all employees who work on the ‘ProductX’ project, we can utilize the
WORKS_ON1 view and specify the query as in QV1:

QV1: SELECT Fname, Lname

 FROM WORKS_ON1

 WHERE Pname = ‘ProductX’;

The same query would require the specification of two joins if specified on the base
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Section 7.3.4 and Chapter 30).

A view is supposed to be always up-to-date; if we modify the tuples in the base
tables on which the view is defined, the view must automatically reflect these
changes. Hence, the view does not have to be realized or materialized at the time of
view definition but rather at the time when we specify a query on the view. It is the
responsibility of the DBMS and not the user to make sure that the view is kept up-
to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-
date in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ON1;

7.3.3 View Implementation, View Update, and Inline Views

The problem of how a DBMS can efficiently implement a view for efficient querying
is complex. Two main approaches have been suggested. One strategy, called query
modification, involves modifying or transforming the view query (submitted by the

DEPT_INFO

Dept_name No_of_emps Total_sal

WORKS_ON1

Fname Lname Pname Hours

Figure 7.2

Two views specified on
the database schema of
Figure 5.5.

https://hemanthrajhemu.github.io

230 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

user) into a query on the underlying base tables. For example, the query QV1 would
be automatically modified to the following query by the DBMS:

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn = Essn AND Pno = Pnumber

 AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple view queries
are going to be applied to the same view within a short period of time. The second
strategy, called view materialization, involves physically creating a temporary or
permanent view table when the view is first queried or created and keeping that
table on the assumption that other queries on the view will follow. In this case, an
efficient strategy for automatically updating the view table when the base tables are
updated must be developed in order to keep the view up-to-date. Techniques using
the concept of incremental update have been developed for this purpose, where
the DBMS can determine what new tuples must be inserted, deleted, or modified in
a materialized view table when a database update is applied to one of the defining
base tables. The view is generally kept as a materialized (physically stored) table as
long as it is being queried. If the view is not queried for a certain period of time, the
system may then automatically remove the physical table and recompute it from
scratch when future queries reference the view.

Different strategies as to when a materialized view is updated are possible. The
immediate update strategy updates a view as soon as the base tables are changed;
the lazy update strategy updates the view when needed by a view query; and the
periodic update strategy updates the view periodically (in the latter strategy, a view
query may get a result that is not up-to-date).

A user can always issue a retrieval query against any view. However, issuing an
INSERT, DELETE, or UPDATE command on a view table is in many cases not pos-
sible. In general, an update on a view defined on a single table without any aggregate
functions can be mapped to an update on the underlying base table under certain
conditions. For a view involving joins, an update operation may be mapped to
update operations on the underlying base relations in multiple ways. Hence, it is
often not possible for the DBMS to determine which of the updates is intended. To
illustrate potential problems with updating a view defined on multiple tables, con-
sider the WORKS_ON1 view, and suppose that we issue the command to update the
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is
shown in UV1:

UV1: UPDATE WORKS_ON1

 SET Pname = ‘ProductY’
 WHERE Lname = ‘Smith’ AND Fname = ‘John’
 AND Pname = ‘ProductX’;

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. In addition, some of these updates will create

https://hemanthrajhemu.github.io

 7.3 Views (Virtual Tables) in SQL 231

additional side effects that affect the result of other queries. For example, here are
two possible updates, (a) and (b), on the base relations corresponding to the view
update operation in UV1:

(a): UPDATE WORKS_ON

 SET Pno = (SELECT Pnumber

 FROM PROJECT

 WHERE Pname = ‘ProductY’)
 WHERE Essn IN (SELECT Ssn

 FROM EMPLOYEE

 WHERE Lname = ‘Smith’ AND Fname = ‘John’)
 AND

 Pno = (SELECT Pnumber

 FROM PROJECT

 WHERE Pname = ‘ProductX’);

(b): UPDATE PROJECT SET Pname = ‘ProductY’
 WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) would
also give the desired update effect on the view, but it accomplishes this by changing
the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quite
unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples
with Pname = ‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to be
the sum of the individual employee salaries. This incorrect request is shown as UV2:

UV2: UPDATE DEPT_INFO

 SET Total_sal = 100000

 WHERE Dname = ‘Research’;

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update operation on the view. Whenever an
update on the view can be mapped to more than one update on the underlying base
relations, it is usually not permitted. Some researchers have suggested that the
DBMS have a certain procedure for choosing one of the possible updates as the
most likely one. Some researchers have developed methods for choosing the most
likely update, whereas other researchers prefer to have the user choose the desired
update mapping during view definition. But these options are generally not avail-
able in most commercial DBMSs.

In summary, we can make the following observations:

 ■ A view with a single defining table is updatable if the view attributes contain
the primary key of the base relation, as well as all attributes with the NOT

NULL constraint that do not have default values specified.

https://hemanthrajhemu.github.io

232 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 ■ Views defined on multiple tables using joins are generally not updatable.

 ■ Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION should be added at the end of the view
definition if a view is to be updated by INSERT, DELETE, or UPDATE statements.
This allows the system to reject operations that violate the SQL rules for view
updates. The full set of SQL rules for when a view may be modified by the user are
more complex than the rules stated earlier.

It is also possible to define a view table in the FROM clause of an SQL query. This is
known as an in-line view. In this case, the view is defined within the query itself.

7.3.4 Views as Authorization Mechanisms

We describe SQL query authorization statements (GRANT and REVOKE) in detail
in Chapter 30, when we present database security and authorization mechanisms.
Here, we will just give a couple of simple examples to illustrate how views can be
used to hide certain attributes or tuples from unauthorized users. Suppose a certain
user is only allowed to see employee information for employees who work for
department 5; then we can create the following view DEPT5EMP and grant the user
the privilege to query the view but not the base table EMPLOYEE itself. This user
will only be able to retrieve employee information for employee tuples whose
Dno = 5, and will not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

In a similar manner, a view can restrict a user to only see certain columns; for
example, only the first name, last name, and address of an employee may be visible
as follows:

CREATE VIEW BASIC_EMP_DATA AS

SELECT Fname, Lname, Address

FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view
and not the base tables, they would be restricted to retrieving only the data specified
in the view. Chapter 30 discusses security and authorization in detail, including the
GRANT and REVOKE statements of SQL.

7.4 Schema Change Statements in SQL

In this section, we give an overview of the schema evolution commands available
in SQL, which can be used to alter a schema by adding or dropping tables, attri-
butes, constraints, and other schema elements. This can be done while the database
is operational and does not require recompilation of the database schema. Certain

https://hemanthrajhemu.github.io

 7.4 Schema Change Statements in SQL 233

checks must be done by the DBMS to ensure that the changes do not affect the rest
of the database and make it inconsistent.

7.4.1 The DROP Command

The DROP command can be used to drop named schema elements, such as tables,
domains, types, or constraints. One can also drop a whole schema if it is no longer
needed by using the DROP SCHEMA command. There are two drop behavior
options: CASCADE and RESTRICT. For example, to remove the COMPANY database
schema and all its tables, domains, and other elements, the CASCADE option is used
as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only
if it has no elements in it; otherwise, the DROP command will not be executed. To
use the RESTRICT option, the user must first individually drop each element in the
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition
can be deleted by using the DROP TABLE command. For example, if we no longer
wish to keep track of dependents of employees in the COMPANY database of Fig-
ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is
not referenced in any constraints (for example, by foreign key definitions in another
relation) or views (see Section 7.3) or by any other elements. With the CASCADE
option, all such constraints, views, and other elements that reference the table being
dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table
if successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command (see Section 6.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

7.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed
by using the ALTER command. For base tables, the possible alter table actions
include adding or dropping a column (attribute), changing a column definition,
and adding or dropping table constraints. For example, to add an attribute for
keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY
schema (see Figure 6.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

https://hemanthrajhemu.github.io

234 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

We must still enter a value for the new attribute Job for each individual EMPLOYEE
tuple. This can be done either by specifying a default clause or by using the UPDATE
command individually on each tuple (see Section 6.4.3). If no default clause is speci-
fied, the new attribute will have NULLs in all the tuples of the relation immediately after
the command is executed; hence, the NOT NULL constraint is not allowed in this case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are
dropped automatically from the schema, along with the column. If RESTRICT is
chosen, the command is successful only if no views or constraints (or other schema
elements) reference the column. For example, the following command removes the
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

 DROP DEFAULT;
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

 SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a
named constraint. To be dropped, a constraint must have been given a name when
it was specified. For example, to drop the constraint named EMPSUPERFK in Fig-
ure 6.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE

DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD CONSTRAINT
keyword in the ALTER TABLE statement followed by the new constraint, which can
be named or unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. It is also possible to create new tables and views within a database schema
using the appropriate commands. There are many other details and options; we
refer the interested reader to the SQL documents listed in the Selected Bibliography
at the end of this chapter.

7.5 Summary

In this chapter we presented additional features of the SQL database language. We
started in Section 7.1 by presenting more complex features of SQL retrieval queries,
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 7.2, we described the CREATE ASSERTION statement, which allows
the specification of more general constraints on the database, and introduced the

https://hemanthrajhemu.github.io

 7.5 Summary 235

Table 7.2 Summary of SQL Syntax

CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]

{ , <column name> <column type> [<attribute constraint>] }

[<table constraint> { , <table constraint> }])

DROP TABLE <table name>

ALTER TABLE <table name> ADD <column name> <column type>

SELECT [DISTINCT] <attribute list>

FROM (<table name> { <alias> } | <joined table>) { , (<table name> { <alias> } | <joined table>) }

[WHERE <condition>]

[GROUP BY <grouping attributes> [HAVING <group selection condition>]]

[ORDER BY <column name> [<order>] { , <column name> [<order>] }]

<attribute list> ::= (* | (<column name> | <function> (([DISTINCT] <column name> | *)))

{ , (<column name> | <function> (([DISTINCT] <column name> | *)) }))

<grouping attributes> ::= <column name> { , <column name> }

<order> ::= (ASC | DESC)

INSERT INTO <table name> [(<column name> { , <column name> })]

(VALUES (<constant value> , { <constant value> }) { , (<constant value> { , <constant value> }) }

| <select statement>)

DELETE FROM <table name>

[WHERE <selection condition>]

UPDATE <table name>

SET <column name> = <value expression> { , <column name> = <value expression> }

[WHERE <selection condition>]

CREATE [UNIQUE] INDEX <index name>

ON <table name> (<column name> [<order>] { , <column name> [<order>] })

[CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [(<column name> { , <column name> })]

AS <select statement>

DROP VIEW <view name>

NOTE: The commands for creating and dropping indexes are not part of standard SQL.

concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, we
described the SQL facility for defining views on the database. Views are also called
virtual or derived tables because they present the user with what appear to be tables;
however, the information in those tables is derived from previously defined tables.
Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 7.2 summarizes the syntax (or structure) of various SQL statements. This
summary is not meant to be comprehensive or to describe every possible SQL
construct; rather, it is meant to serve as a quick reference to the major types of
constructs available in SQL. We use BNF notation, where nonterminal symbols

https://hemanthrajhemu.github.io

236 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

are shown in angled brackets < … >, optional parts are shown in square brac-
kets […], repetitions are shown in braces { … }, and alternatives are shown in
parentheses (… | … | …).7

Review Questions
 7.1. Describe the six clauses in the syntax of an SQL retrieval query. Show what

type of constructs can be specified in each of the six clauses. Which of the six
clauses are required and which are optional?

 7.2. Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

 7.3. Discuss how NULLs are treated in comparison operators in SQL. How are
NULLs treated when aggregate functions are applied in an SQL query? How
are NULLs treated if they exist in grouping attributes?

 7.4. Discuss how each of the following constructs is used in SQL, and discuss
the various options for each construct. Specify what each construct is
useful for.

a. Nested queries

b. Joined tables and outer joins

c. Aggregate functions and grouping

d. Triggers

e. Assertions and how they differ from triggers

f. The SQL WITH clause

g. SQL CASE construct

h. Views and their updatability

i. Schema change commands

Exercises
 7.5. Specify the following queries on the database in Figure 5.5 in SQL. Show the

query results if each query is applied to the database state in Figure 5.6.

a. For each department whose average employee salary is more than
$30,000, retrieve the department name and the number of employees
working for that department.

b. Suppose that we want the number of male employees in each department
making more than $30,000, rather than all employees (as in Exer-
cise 7.5a). Can we specify this query in SQL? Why or why not?

7The full syntax of SQL is described in many voluminous documents of hundreds of pages.

https://hemanthrajhemu.github.io

 Exercises 237

 7.6. Specify the following queries in SQL on the database schema in Figure 1.2.

a. Retrieve the names and major departments of all straight-A students
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not
have a grade of A in any of their courses.

 7.7. In SQL, specify the following queries on the database in Figure 5.5 using the
concept of nested queries and other concepts described in this chapter.

a. Retrieve the names of all employees who work in the department that has
the employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has
‘888665555’ for Ssn.

c. Retrieve the names of employees who make at least $10,000 more than
the employee who is paid the least in the company.

 7.8. Specify the following views in SQL on the COMPANY database schema
shown in Figure 5.5.

a. A view that has the department name, manager name, and manager sal-
ary for every department

b. A view that has the employee name, supervisor name, and employee sal-
ary for each employee who works in the ‘Research’ department

c. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project

d. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project with more than one employee working on it

 7.9. Consider the following view, DEPT_SUMMARY, defined on the COMPANY
database in Figure 5.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)

AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

State which of the following queries and updates would be allowed on the
view. If a query or update would be allowed, show what the correspond-
ing query or update on the base relations would look like, and give its
result when applied to the database in Figure 5.6.

a. SELECT *

FROM DEPT_SUMMARY;

b. SELECT D, C

FROM DEPT_SUMMARY

WHERE TOTAL_S > 100000;

https://hemanthrajhemu.github.io

238 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

c. SELECT D, AVERAGE_S

FROM DEPT_SUMMARY

WHERE C > (SELECT C FROM DEPT_SUMMARY WHERE D = 4);

d. UPDATE DEPT_SUMMARY

SET D = 3
WHERE D = 4;

e. DELETE FROM DEPT_SUMMARY

WHERE C > 4;

Selected Bibliography
Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor of
SQL, in which she found that users have some difficulty with specifying join condi-
tions and grouping correctly. Date (1984) contains a critique of the SQL language
that points out its strengths and shortcomings. Date and Darwen (1993) describes
SQL2. ANSI (1986) outlines the original SQL standard. Various vendor manuals
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle,
INGRES, Informix, and other commercial DBMS products. Melton and Simon
(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2.
Horowitz (1992) discusses some of the problems related to referential integrity and
propagation of updates in SQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller
(1982), and Langerak (1990), among others. View implementation is discussed in
Blakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

There are many books that describe various aspects of SQL. For example, two refer-
ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-
ther SQL standards—SQL 2006 and SQL 2008—are described in a variety of
technical reports; but no standard references exist.

https://hemanthrajhemu.github.io

239

8

The Relational Algebra and

Relational Calculus

In this chapter we discuss the two formal languages for
the relational model: the relational algebra and the

relational calculus. In contrast, Chapters 6 and 7 described the practical language
for the relational model, namely the SQL standard. Historically, the relational alge-
bra and calculus were developed before the SQL language. SQL is primarily based
on concepts from relational calculus and has been extended to incorporate some
concepts from relational algebra as well. Because most relational DBMSs use SQL
as their language, we presented the SQL language first.

Recall from Chapter 2 that a data model must include a set of operations to
manipulate the database, in addition to the data model’s concepts for defining the
database’s structure and constraints. We presented the structures and constraints
of the formal relational model in Chapter 5. The basic set of operations for the
formal relational model is the relational algebra. These operations enable a user
to specify basic retrieval requests as relational algebra expressions. The result of a
retrieval query is a new relation. The algebra operations thus produce new rela-
tions, which can be further manipulated using operations of the same algebra. A
sequence of relational algebra operations forms a relational algebra expression,
whose result will also be a relation that represents the result of a database query
(or retrieval request).

The relational algebra is very important for several reasons. First, it provides a
formal foundation for relational model operations. Second, and perhaps more
important, it is used as a basis for implementing and optimizing queries in the
query processing and optimization modules that are integral parts of relational
database management systems (RDBMSs), as we shall discuss in Chapters 18
and 19. Third, some of its concepts are incorporated into the SQL standard

chapter 8

https://hemanthrajhemu.github.io

x DATABASE J\;1ANAGEMENT SYSTEMS

Part II APPLICATION DEVELOPMENT 183

6 DATABASE APPLICATION DEVELOPMENT 185

6.1 Accessing Databases from Applications 187

6.1.1 Embedded SQL 187

6.1.2 Cursors 189

6.1.3 Dynamic SQL 194

6.2 An Introduction to JDBC 194

6.2.1 Architecture 196

6.3 JDBC Classes and Interfaces 197

6.3.1 JDBC Driver Management 197

6.3.2 Connections 198

6.3.3 Executing SQL Statements 200

6.3.4 ResultSets 201

6.3.5 Exceptions and Warnings 203

6.3.6 Examining Database Metadata 204

6.4 SQLJ 206

6.4.1 Writing SQLJ Code 207

6.5 Stored Procedures 209

6.5.1 Creating a Simple Stored Procedure 209

6.5.2 Calling Stored Procedures 210

6.5.3 SQL/PSM 212

6.6 Case Study: The Internet Book Shop 214

6.7 Review Questions 216

7 INTERNET APPLICATIONS 220

7.1 Introduction 220

7.2 Internet Concepts 221

7.2.1 Uniform Resource Identifiers 221

7.2.2 The Hypertext Transfer Protocol (HTTP) 223

7.3 HTML Documents 226

7.4 XML Documents 227

7.4.1 Introduction to XML 228

7.4.2 XML DTDs 231

7.4.3 Domain-Specific DTDs 234

7.5 The Three-Tier Application Architecture 236

7.5.1 Single-Tier and Client-Server Architectures 236

7.5.2 Three-Tier Architectures 239

7.5.3 Advantages of the Three-Tier Architecture 241

7.6 The Presentation Layer 242

7.6.1 HTrvlL Forms 242

7.6.2 JavaScript 245

7.6.3 Style Sheets 247

https://hemanthrajhemu.github.io

Contents :»:i

7.7 The Middle Tier

7.7.1 CGI: The Common Gateway Interface

7.7.2 Application Servers

7.7.3 Servlets

7.7.4 JavaServer Pages

7.7.5 Maintaining State

7.8 Case Study: The Internet Book Shop

7.9 Review Questions

251

251

252

254

256

258

261

264

Part III STORAGE AND INDEXING 271

273

274

275

277

277

278

279

280

282

283

284

285

287

288

289

290

291

292

292

295

299

299

Data on External Storage

File Organizations and Indexing

8.2.1 Clustered Indexes

8.2.2 Primary and Secondary Indexes

Index Data Structures

8.3.1 Hash-Based Indexing

8.3.2 Tree-Based Indexing

Comparison of File Organizations

8.4.1 Cost Model

8.4.2 Heap Files

8.4.3 Sorted Files

8.4.4 Clustered Files

8.4.5 Heap File with Unclustered Tree Index

8.4.6 Heap File With Unclustered Hash Index

8.4.7 Comparison of I/O Costs

Indexes and Performance Tuning

8..5.1 Impact of the Workload

8.5.2 Clustered Index Organization

8.5.3 Composite Search Keys

8.5.4 Index Specification in SQL:1999

Review Questions8.6

8.5

8.4

8.3

OVERVIEW OF STORAGE AND INDEXING
8.1

8.2

8

9 STORING DATA: DISKS AND FILES
9.1 The Memory Hierarchy

9.1.1 Magnetic Disks

9.1.2 Performance Implications of Disk Structure

9.2 Redundant Arrays of Independent Disks

9.2.1 Data Striping

9.2.2 Redundancy

9.2.3 Levels of Redundancy

9.2.4 Choice of RAID Levels

304

305

306

308

309

310

311

312

316

https://hemanthrajhemu.github.io

PART II

APPLICATION DEVELOPMENT

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

6
DATABASE APPLICATION

DEVELOPMENT

.. How do application programs connect to a DBMS?

.. How can applications manipulate data retrieved from a DBMS?

.. How can applications modify data in a DBMS?

.. What are cursors?

.. What is JDBC and how is it used?

.. What is SQLJ and how is it used?

.. What are stored procedures?

.. Key concepts: Embedded SQL, Dynamic SQL, cursors; JDBC,

connections, drivers, ResultSets, java.sql, SQLJ; stored procedures,

SQL/PSM

H f ~ profits most who serves best.

------Ivlotto for Rotary International

In Chapter 5, we looked at a wide range of SQL query constructs, treating SQL

as an independent language in its own right. A relational DBMS supports an

inteuLctive SqL interface, and users can directly enter SQL commands. This

simple approach is fine as long as the task at hand can be accomplished entirely

with SQL cormnands. In practice, we often encounter situations in which we

need the greater flexibility of a general-purpose programming language in addi-

tion to the data manipulation facilities provided by SQL. For example, we rnay

want to integrate a database application with a nice graphical user interface,

or we may want to integrate with other existing applications.

185

https://hemanthrajhemu.github.io

186 CHAPTEFt 6
J

Applications that rely on the DBMS to manage data run as separate processes

that connect to the DBlvIS to interact with it. Once a connection is established,

SQL commands can be used to insert, delete, and modify data. SQL queries can

be used to retrieve desired data. but we need to bridge an important difference

in how a database system sees data and how an application program in a

language like Java or C sees data: The result of a database query is a set (or

multiset) or records, hut Java has no set or multiset data type. This mismatch

is resolved through additional SQL constructs that allow applications to obtain

a handle on a collection and iterate over the records one at a time.

vVe introduce Embedded SQL, Dynamic SQL, and cursors in Section 6.1. Em-

bedded SQL allows us to access data using static SQL queries in application

code (Section 6.1.1); with Dynamic SQL, we can create the queries at run-time

(Section 6.1.3). Cursors bridge the gap between set-valued query answers and

programming languages that do not support set-values (Section 6.1.2).

The emergence of Java as a popular application development language, espe-

cially for Internet applications, has made accessing a DBMS from Java code a

particularly important topic. Section 6.2 covers JDBC, a prograruming inter-

face that allows us to execute SQL queries from a Java program and use the

results in the Java program. JDBC provides greater portability than Embed-

ded SQL or Dynamic SQL, and offers the ability to connect to several DBMSs

without recompiling the code. Section 6.4 covers SQLJ, which does the same

for static SQL queries, but is easier to program in than Java, with JDBC.

Often, it is useful to execute application code at the database server, rather than

just retrieve data and execute application logic in a separate process. Section

6.5 covers stored procedures, which enable application logic to be stored and

executed at the databa"se server. We conclude the chapter by discussing our

B&N case study in Section 6.6.

'Vhile writing database applications, we must also keep in mind that typically

many application programs run concurrently. The transaction concept, intro-

duced in Chapter 1, is used to encapsulate the effects of an application on

the datahase. An application can select certain transaction properties through

SQL cormnands to control the degree to which it is exposed to the changes of

other concurrently running applications. \Ve touch on the transaction concept

at many points i,n this chapter, and, in particular, cover transaction-related ~ h S ­

pects of JDBC. A full discussion of transaction properties and SQL's support

for transactions is deferred until Chapter 16.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook

https://hemanthrajhemu.github.io

Database Application DeveloplTu:nt

6.1 ACCESSING DATABASES FROlVl APPLICATIONS

187

In this section, we cover how SQL commands can be executed from within a

program in a host language such as C or Java. The use of SQL commands

within a host language program is called Embedded SQL. Details of E m b e d ~

ded SQL also depend on the host language. Although similar capabilities are

supported for a variety of host languages, the syntax sometimes varies.

vVe first cover the basics of Embedded SQL with static SQL queries in Section

6.1.1. We then introduce cursors in Section 6.1.2. vVe discuss Dynamic SQL,

which allows us to construct SQL queries at runtime (and execute them) in

Section 6.1.:3.

6.1.1 Embedded SQL

Conceptually, embedding SQL commands in a host language program is straight-

forward. SQL statements (i.e., not declarations) can be used wherever a state-

ment in the host language is allowed (with a few restrictions). SQL statements

must be clearly marked so that a preprocessor can deal with them before in-

voking the compiler for the host language. Also, any host language variables

used to pass arguments into an SQL command must be declared in SQL. In

particular, some special host language variables must be declared in SQL (so

that, for example, any error conditions arising during SQL execution can be

communicated back to the main application program in the host language).

There are, however, two complications to bear in mind. First, the data types

recognized by SQL may not be recognized by the host language and vice versa.

This mismatch is typically addressed by casting data values appropriately be-

fore passing them to or frorn SQL commands. (SQL, like other programming

languages, provides an operator to cast values of aIle type into values of an-

other type.) The second complication h ~ s to do with SQL being set-oriented,

and is addressed using cursors (see Section 6.1.2. Commands operate on and

produce tables, which are sets

In our discussion of Embedded SQL, w (~ assmne thi'Lt the host language is C

for concretenc~ss. because minor differcnces exist in how SQL statements are

embedded in differcnt host languages.

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-

language variables must be prefixed by a colon (:) in SQL statements and be

declared between the commands EXEC SQL BEGIN DECLARE SECTION and EXEC

https://hemanthrajhemu.github.io

188 CHAPTER 6
~

SQL END DECLARE SECTION. The declarations are similar to how they would

look in a C program and, as usual in C. are separated by semicolons. For

example. we can declare variables c-sname, c_sid, c_mt'ing, and cage (with the

initial c used as a naming convention to emphasize that these are host language

variables) as follows:

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20];

long csid;

short crating;

float cage;

EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various

C types, since we have just declared a collection of C variables whose val-

ues are intended to be read (and possibly set) in an SQL run-time environ-

ment when an SQL statement that refers to them is executed. The SQL-92

standard defines such a correspondence between the host language types and

SQL types for a number of host languages. In our example, c_snamc has the

type CHARACTER(20) when referred to in an SQL statement, csid has the type

INTEGER, crating has the type SMALLINT, and cage has the type REAL.

\Ve also need some way for SQL to report what went wrong if an error condition

arises when executing an SQL statement. The SQL-92 standard recognizes

two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is

the older of the two and is defined to return some negative value when an

error condition arises, without specifying further just what error a particular

negative integer denotes. SQLSTATE, introduced in the SQL-92 standard for the

first time, &':lsociates predefined values with several common error conditions,

thereby introducing some uniformity to how errors are reported. One of these

two variables must be declared. The appropriate C type for SQLCODE is long

and the appropriate C type for SQLSTATE is char [6J , that is, a character string

five characters long. (Recall the null-terminator in C strings.) In this chapter,

we assume that SQLSTATE is declared.

Embedding SQL Statements

All SQL staternents embedded within a host program must be clearly marked,

with the details dependent on the host language; in C, SQL statements must be

prefixed by EXEC SQL. An SQL statement can essentially appear in any place

in the host language program where a host language statement can appear.

https://hemanthrajhemu.github.io

Database Application DC?lelopment 189

As a simple example, the following Embedded' SQL statement inserts a row,

whose column values me based on the values of the host language variables

contained in it, into the Sailors relation:

EXEC SQL

INSERT INTO Sailors VALUES (:c_sname, :csid, :crating, :cage);

Observe that a semicolon terminates the command, as per the convention for

terminating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each

Embedded SQL statement. SQL provides the WHENEVER command to simplify

this tedious task:

EXEC SQL WHENEVER [SQLERROR I NOT FOUND] [CONTINUE I GOTO st'mt]

The intent is that the value of SQLSTATE should be checked after each Embedded

SQL statement is executed. If SQLERROR is specified and the value of SQLSTATE

indicates an exception, control is transferred to stmt, which is presumably re-

sponsible for error and exception handling. Control is also transferred to stmt

if NOT FOUND is specified and the value of SQLSTATE is 02000, which denotes NO

DATA.

6.1.2 Cursors

A major problem in embedding SQL statements in a host language like C is

that an impedance mismatch occurs because SQL operates on set" of records,

whereas languages like C do not cleanly support a set-of-records abstraction.

The solution is to essentially provide a mechanism that allows us to retrieve

rows one at a time from a relation.

This mechanism is called a cursor. vVe can declare a cursor on any relation

or on any SQL query (because every query returns a set of rows). Once a

curwr is declared, we can open it (which positions the cursor just before the

first row); fetch the next row; move the cursor (to the next row, to the row

after the next n, to the first row, or to the previous row, etc., by specifying

additional parameters for the FETCH command); or close the cursor. Thus, a

cursor essentially allows us to retrieve the rows in a table by positioning the

cursor at a particular row and reading its contents.

Basic Cursor Definition and Usage

r'11rsors enable us to examine, in the host language program, a collection of

JWS computed by an Embedded SQL statement:

https://hemanthrajhemu.github.io

190 CHAPTEl} 6

.. \Ve usually need to open a cursor if the embedded statement is a SELECT

(i.e.) a query). However, we can avoid opening a cursor if the answer

contains a single row, as we see shortly.

.. INSERT, DELETE, and UPDATE staternents typically require no cursor, al-

though some variants of DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning

a value to the host variable c ~ s i r 1 , declared earlier, as follows:

EXEC SQL SELECT

INTO

FROM

WHERE

S.sname, S.age

:c_sname, :c_age

Sailors S

S.sid = :c_sid;

The INTO clause allows us to assign the columns of the single answer row to

the host variables csname and c_age. Therefore, we do not need a cursor to

embed this query in a host language program. But what about the following

query, which computes the names and ages of all sailors with a rating greater

than the current value of the host variable cminmting?

SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating

This query returns a collection of rows, not just one row. 'When executed

interactively, the answers are printed on the screen. If we embed this query in

a C program by prefixing the cOlnmand with EXEC SQL, how can the answers

be bound to host language variables? The INTO clause is inadequate because

we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor

8 i r ~ l o is defined. Subsequently, we can open the cursor:

OPEN sinfo:

The value of cminmting in the SQL query associated with the cursor is the

value of this variable when we open the cursor. (The cursor declaration is

processed at compile-time, and the OPEN command is executed at run-time.)

https://hemanthrajhemu.github.io

Database Applicat'ion Development 191,

A cursor can be thought of as 'pointing' to a row in the collection of answers

to the query associated with it. vVhen a cursor is opened, it is positioned just

before the first row. \Ve can use the FETCH command to read the first row of

cursor sinfo into host language variables:

FETCH sinfo INTO :csname, :cage;

When the FETCH statement is executed, the cursor is positioned to point at

the next row (which is the first row in the table when FETCH is executed for

the first time after opening the cursor) and the column values in the row are

copied into the corresponding host variables. By repeatedly executing this

FETCH statement (say, in a while-loop in the C program), we can read all the

rows computed by the query, one row at a time. Additional parameters to the

FETCH command allow us to position a cursor in very flexible ways, but we do

not discuss them.

How do we know when we have looked at all the rows associated with the

cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.

SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to

indicate that there are no more rows if the FETCH statement positions the cursor

after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

It can be opened again if needed, and the value of : cminrating in the

SQL query associated with the cursor would be the value of the host variable

cminrating at that time.

Properties of Cursors

The general form of a cursor declaration is:

DECLARE cursomame [INSENSITIVE] [SCROLL] CURSOR

[WITH HOLD]

FOR some query

[ORDER BY order-item-list]

[FOR READ ONLY I FOR UPDATE]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if

it is a cursor on a base relation or an updatable view, to be an updatable

cursor (FOR UPDATE). If it is IIpdatable, simple variants of the UPDATE and

https://hemanthrajhemu.github.io

192 CHAPTER 6
il'

DELETE commands allow us to update or delete the row on which the cursor

is positioned. For example, if sinfa is an updatable cursor and open, we can

execute the following statement:

UPDATE Sailors S

SET S.rating = S.rating ~ 1

WHERE CURRENT of sinfo;

This Embedded SQL statement modifies the rating value of the row currently

pointed to by cursor sinfa; similarly, we can delete this row by executing the

next statement:

DELETE Sailors S

WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor

(see below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that

variants of the FETCH command can be used to position the cursor in very

flexible ways; otherwise, only the basic FETCH command, which retrieves the

next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging

over a private copy of the collection of answer rows. Otherwise, and by default,

other actions of some transaction could modify these rows, creating unpre-

dictable behavior. For example, while we are fetching rows using the sinfa

cursor, we might modify rating values in Sailor rows by concurrently executing

the command:

UPDATE Sailors S

SET S.rating = S.rating -

Consider a Sailor row such that (1) it has not yet been fetched, and (2) its

original rating value would have met the condition in the WHERE clause of the

query associated with sinfa, but the new rating value does not. Do we fetch

such a Sailor row'? If INSENSITIVE is specified, the behavior is as if all answers

were computed,and stored when sinfo was opened; thus, the update command

has no effect on the rows fetched by sinfa if it is executed after sinfo is opened.

If INSENSITIVE is not specified, the behavior is implementation dependent in

this situation.

A holdable cursor is specified using the WITH HOLD clause, and is not closed

when the transaction is conunitted. The motivation for this cornes from long

https://hemanthrajhemu.github.io

Database Apphcation Development 193

transactions in which we access (and possibly change) a large number of rows of

a table. If the transaction is aborted for any reason, the system potentially has

to redo a lot of work when the transaction is restarted. Even if the transaction

is not aborted, its locks are held for a long time and reduce the concurrency

of the system. The alternative is to break the transaction into several smaller

transactions, but remembering our position in the table between transactions

(and other similar details) is complicated and error-prone. Allowing the ap-

plication program to commit the transaction it initiated, while retaining its

handle on the active table (i.e., the cursor) solves this problem: The applica-

tion can commit its transaction and start a new transaction and thereby save

the changes it has made thus far.

Finally, in what order do FETCH commands retrieve rows? In general this order

is unspecified, but the optional ORDER BY clause can be used to specify a sort

order. Note that columns mentioned in the ORDER BY clause cannot be updated

through the cursor!

The order-item-list is a list of order-items; an order-item is a column name,

optionally followed by one of the keywords ASC or DESC. Every column men-

tioned in the ORDER BY clause must also appear in the select-list of the query

associated with the cursor; otherwise it is not clear what columns we should

sort on. The keywords ASC or DESC that follow a column control whether the

result should be sorted-with respect to that column-in ascending or descend-

ing order; the default is ASC. This clause is applied as the last step in evaluating

the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure

5.13. Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows

have the same minage value, these rows are sorted further in descending order

by rating. The cursor would fetch the rows in the order shown in Figure 6.1.

I rating I minage I

8 25.5

3 25.5

7 35.0

Figure 6.1 Order in which 'fuples Are Fetched

https://hemanthrajhemu.github.io

194 CHAPTER
c
6

6.1.3 Dynamic SQL

Consider an application such as a spreadsheet or a graphical front-end that

needs to access data from a DBMS. Such an application must accept commands

from a user and, based on what the user needs, generate appropriate SQL

statements to retrieve the necessary data. In such situations, we may not be

able to predict in advance just what SQL statements need to be executed, even

though there is (presumably) some algorithm by which the application can

construct the necessary SQL statements once a user's command is issued.

SQL provides some facilities to deal with such situations; these are referred

to as Dynamic SQL. We illustrate the two main commands, PREPARE and

EXECUTE, through a simple example:

char c_sqlstring[] = {"DELETE FROM Sailors WHERE rating>5"};

EXEC SQL PREPARE readytogo FROM :csqlstring;

EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sqlstring and initializes its value to

the string representation of an SQL command. The second statement results in

this string being parsed and compiled as an SQL command, with the resulting

executable bound to the SQL variable readytogo. (Since readytogo is an SQL

variable, just like a cursor name, it is not prefixed by a colon.) The third

statement executes the command.

Many situations require the use of Dynamic SQL. However, note that the

preparation of a Dynamic SQL command occurs at run-time and is run-time

overhead. Interactive and Embedded SQL commands can be prepared once

at compile-time and then re-executecl as often as desired. Consequently you

should limit the use of Dynamic SQL to situations in which it is essential.

There are many more things to know about Dynamic S Q L ~ ~ ~ h o w we can pa'3S

parameters from the host language program to the SQL statement being pre-

parcel, for example--but we do not discuss it further.

6.2 AN INTRODUCTION TO JDBC

Embedded SQL enables the integration of SQL with a general-purpose pro-

gramming language. As described in Section 6.1.1, a DBMS-specific preproces-

sor transforms the Embedded SQL statements into function calls in the host

language. The details of this translation vary across DBMSs, and therefore

even though the source code can be cOlnpiled to work with different DBMSs,

the final executable works only with one specific DBMS.

https://hemanthrajhemu.github.io

Database Application Develop'Tnent 195,

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase

Connectivity, also enable the integration of SQL with a general-purpose pro-

gramming language. Both ODBC and JDBC expose database capabilities in

a standardized way to the application programmer through an application

programming interface (API). In contrast to Embedded SQL, ODBC and

JDBC allow a single executable to access different DBMSs 'Without recompi­

lation. Thus, while Embedded SQL is DBMS-independent only at the source

code level, applications using ODBC or JDBC are DBMS-independent at the

source code level and at the level of the executable. In addition, using ODBC

or JDBC, an application can access not just one DBMS but several different

ones simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introduc-

ing an extra level of indirection. All direct interaction with a specific DBMS

happens through a DBMS-specific driver. A driver is a software program

that translates the ODBC or JDBC calls into DBMS-specific calls. Drivers

are loaded dynamically on demand since the DBMSs the application is going

to access are known only at run-time. Available drivers are registered with a

driver manager.

One interesting point to note is that a driver does not necessarily need to

interact with a DBMS that understands SQL. It is sufficient that the driver

translates the SQL commands from the application into equivalent commands

that the DBMS understands. Therefore, in the remainder of this section, we

refer to a data storage subsystem with which a driver interacts as a data

source.

An application that interacts with a data source through ODBC or JDBC se-

lects a data source, dynamically loads the corresponding driver, and establishes

a connection with the data source. There is no limit on the number of open

connections, and an application can have several open connections to different

data sources. Each connection has transaction semantics; that is, changes from

one connection are visible to other connections only after the connection has

committed its changes. While a connection is opcn, transactions are executed

by submitting SQL statements, retrieving results, processing errors, and finally

committing or rolling back. The application disconnects from the data source

to terminate the interaction.

In the remainder of this chapter, we concentrate on JDBC.

https://hemanthrajhemu.github.io

196 CHAPTEij. 6

r--
I JDBC Drivers: The most up-to-date source of .IDBC drivers is the Sun

JDBC Driver page at

http://industry.java.sun.com/products/jdbc/drivers

JDBC drivers are available for all major database sytems.

6.2.1 Architecture

The architecture of JDBC has four main components: the application, the

driver manager, several data source specific dr-iveTs, and the corresponding

data SOUTces.

The application initiates and terminates the connection with a data source.

It sets transaction boundaries, submits SQL statements, and retrieves the

results-----all through a well-defined interface as specified by the JDBC API. The

primary goal of the dr-iver manager is to load JDBC drivers and pass JDBC

function calls from the application to the correct driver. The driver manager

also handles JDBC initialization and information calls from the applications

and can log all function calls. In addition, the driver manager performs· some

rudimentary error checking. The dr-iver establishes the connection with the

data source. In addition to submitting requests and returning request results,

the driver translates data, error formats, and error codes from a form that is

specific to the data source into the JDBC standard. The data source processes

commands from the driver and returns the results.

Depending on the relative location of the data source and the application,

several architectural scenarios are possible. Drivers in JDBC are cla.ssified into

four types depending on the architectural relationship between the application

and the data source:

III Type I Bridges: This type of driver translates JDBC function calls

into function calls of another API that is not native to the DBMS. An

example is a JDBC-ODBC bridge; an application can use JDBC calls to

access an ODBC compliant data source. The application loads only one

driver, the bridge. Bridges have the advantage that it is easy to piggy-

back the applica.tion onto an existing installation, and no new drivers have

to be installed. But using bridges hl:l.-'3 several drawbacks. The increased

number of layers between data source and application affects performance.

In addition, the user is limited to the functionality that the ODBC driver

supports.

iii Type II Direct Thanslation to the Native API via N on-Java

Driver: This type of driver translates JDBC function calls directly into

method invocations of the API of one specific data source. The driver is

https://hemanthrajhemu.github.io

Database Application Develop'll1,ent 197
}

usually ,vritten using a combination of C++ and Java; it is dynamically

linked and specific to the data source. This architecture performs signif-

icantly better than a JDBC-ODBC bridge. One disadvantage is that the

database driver that implements the API needs to be installed on each

computer that runs the application.

II Type I I I ~ ~ N e t w o r k Bridges: The driver talks over a network to a

middleware server that translates the JDBC requests into DBMS-specific

method invocations. In this case, the driver on the client site (Le., the

network bridge) is not DBMS-specific. The JDBC driver loaded by the a p ~

plication can be quite small, as the only functionality it needs to implement

is sending of SQL statements to the middleware server. The middleware

server can then use a Type II JDBC driver to connect to the data source.

II Type IV-Direct Translation to the Native API via Java Driver:

Instead of calling the DBMS API directly, the driver communicates with

the DBMS through Java sockets. In this case, the driver on the client side is

written in Java, but it is DBMS-specific. It translates JDBC calls into the

native API of the database system. This solution does not require an in-

termediate layer, and since the implementation is all Java, its performance

is usually quite good.

6.3 JDBC CLASSES AND INTERFACES

JDBC is a collection of Java classes and interfaces that enables database access

from prograrl1s written in the Java language. It contains methods for con-

necting to a remote data source, executing SQL statements, examining sets

of results from SQL statements, transaction management, and exception han-

dling. The cla.sses and interfaces are part of the java. sql package. Thus, all

code fragments in the remainder of this section should include the statement

import java. sql . * at the beginning of the code; we omit this statement in

the remainder of this section. JDBC 2.0 also includes the j avax. sql pack-

age, the JDBC Optional Package. The package j avax. sql adds, among

other things, the capability of connection pooling and the Row-Set interface.

\\Te discuss connection pooling in Section 6.3.2, and the ResultSet interface in

Section 6.3.4.

\\Te now illustrate the individual steps that are required to submit a databa.se

query to a data source and to retrieve the results.

6.3.1 JDBC Driver Management

In .lDBe, data source drivers are managed by the Drivermanager class, which

maintains a list of all currently loaded drivers. The Drivermanager cla.ss has

https://hemanthrajhemu.github.io

198 CHAPTEa 6

methods registerDriver, deregisterDriver, and getDrivers to enable dy-

namic addition and deletion of drivers.

The first step in connecting to a data source is to load the corresponding JDBC

driver. This is accomplished by using the Java mechanism for dynamically

loading classes. The static method forName in the Class class returns the Java

class as specified in the argument string and executes its static constructor.

The static constructor of the dynamically loaded class loads an instance of the

Driver class, and this Driver object registers itself with the DriverManager

class.

The following Java example code explicitly loads a JDBC driver:

Class.forName("oracle/jdbc.driver.OracleDriver");

There are two other ways ofregistering a driver. We can include the driver with

-Djdbc. drivers=oracle/jdbc. driver at the command line when we start the

Java application. Alternatively, we can explicitly instantiate a driver, but this

method is used only rarely, as the name of the driver has to be specified in the

application code, and thus the application becomes sensitive to changes at the

driver level.

After registering the driver, we connect to the data source.

6.3.2 Connections

A session with a data source is started through creation of a Connection object;

A connection identifies a logical session with a data source; multiple connections

within the same Java program can refer to different data sources or the same

data source. Connections are specified through a JDBC URL, a URL that

uses the jdbc protocol. Such a URL has the form

jdbc:<subprotocol>:<otherParameters>

The code example shown in Figure 6.2 establishes a connection to an Oracle

database assuming that the strings userld and password are set to valid values.

In JDBC, connections can have different properties. For example, a connection

can specify the granularity of transactions. If autocommit is set for a con-

nection, then each SQL statement is considered to be its own transaction. If

autocommit is off, then a series of statements that compose a transaction can

be committed using the commit 0 method of the Connection cla..<;s, or aborted

using the rollbackO method. The Connection cla.'ss has methods to set the

https://hemanthrajhemu.github.io

Database Appl'ication Development

String uri = .. jdbc:oracle:www.bookstore.com:3083..

Connection connection;

try {

Connection connection =
DriverManager. getConnection (urI, userId,password);

}
catch(SQLException excpt) {

System.out.println(excpt.getMessageO);

return;

}

Figure 6.2 Establishing a Connection with JDBC

- ----~--._--_._---~,._-----~---_._-----,

199
I

JDBC Connections: Remember to close connections to data sources

and return shared connections to the connection pool. Database systems

have a limited number of resources available for connections, and orphan

connections can often only be detected through time-outs-and while the

database system is waiting for the connection to time-out, the resources

used by the orphan connection are wasted.

autocommit mode (Connection. setAutoCommit) and to retrieve the current

autocommit mode (getAutoCommit). The following methods are part of the

Connection interface and permit setting and getting other properties:

• public int getTransactionIsolation() throws SQLExceptionand

public void setTransactionlsolation(int 1) throws SQLException.

These two functions get and set the current level of isolation for transac-

tions handled in the current connection. All five SQL levels of isolation

(see Section 16.6 for a full discussion) are possible, and argument 1 can be

set as follows:

- TRANSACTIONJNONE

- TRANSACTIONJREAD.UNCOMMITTED

- TRANSACTIONJREAD.COMMITTED

- TRANSACTIONJREPEATABLEJREAD

- TRANSACTION.BERIALIZABLE

• public boolean getReadOnlyO throws SQLException and

public void setReadOnly(boolean readOnly) throws SQLException.

These two functions allow the user to specify whether the transactions

executecl through this connection are rcad only.

https://hemanthrajhemu.github.io

200 CHAPTER ()

.. public boolean isClosed() throws SQLException.

Checks whether the current connection has already been closed.

.. setAutoCommit and get AutoCommit.

vVe already discussed these two functions.

Establishing a connection to a data source is a costly operation since it in-

volves several steps, such as establishing a network connection to the data

source, authentication, and allocation of resources such as memory. In case an

application establishes many different connections from different parties (such

as a Web server), connections are often pooled to avoid this overhead. A con-

nection pool is a set of established connections to a data source. Whenever a

new connection is needed, one of the connections from the pool is used, instead

of creating a new connection to the data source.

Connection pooling can be handled either by specialized code in the application,

or the optional j avax. sql package, which provides functionality for connection

pooling and allows us to set different parameters, such as the capacity of the

pool, and shrinkage and growth rates. Most application servers (see Section

7.7.2) implement the j avax . sql package or a proprietary variant.

6.3.3 Executing SQL Statements

We now discuss how to create and execute SQL statements using JDBC. In the

JDBC code examples in this section, we assume that we have a Connection

object named con. JDBC supports three different ways of executing statements:

Statement, PreparedStatement, and CallableStatement. The Statement

class is the base class for the other two statment classes. It allows us to query

the data source with any static or dynamically generated SQL query. We cover

the PreparedStatement class here and the CallableStatement class in Section

6.5, when we discuss stored procedures.

The PreparedStatement cla,Cis dynamicaJly generates precompiled SQL state-

ments that can be used several times; these SQL statements can have param-

eters, but their structure is fixed when the PreparedStatement object (repre-

senting the SQL statement) is created.

Consider the sample code using a PreparedStatment object shown in Figure

6.3. The SQL query specifies the query string, but uses ''1' for the values

of the parameters, which are set later using methods setString, setFloat,

and setlnt. The ''1' placeholders can be used anywhere in SQL statements

where they can be replaced with a value. Examples of places where they can

appear include the WHERE clause (e.g., 'WHERE author=?'), or in SQL UPDATE

and INSERT staternents, as in Figure 6.3. The method setString is one way

https://hemanthrajhemu.github.io

Database Application Develop'ment

/ / initial quantity is always zero

String sql = "INSERT INTO Books VALUES('?, 7, '?, ?, 0, 7)";

PreparedStatement pstmt = con.prepareStatement(sql);

/ / now instantiate the parameters with values

/ / a,ssume that isbn, title, etc. are Java variables that

/ / contain the values to be inserted

pstmt.clearParameters() ;

pstmt.setString(l, isbn);

pstmt.setString(2, title);

pstmt.setString(3, author);

pstmt.setFloat(5, price);

pstmt.setInt(6, year);

int numRows = pstmt.executeUpdate();

Figure 6.3 SQL Update Using a PreparedStatement Object

201

to set a parameter value; analogous methods are available for int, float,

and date. It is good style to always use clearParameters 0 before setting

parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In

the example, we used the executeUpdate command, which is used if we know

that the SQL statement does not return any records (SQL UPDATE, INSERT,

ALTER, and DELETE statements). The executeUpdate method returns an inte-

ger indicating the number of rows the SQL statement modified; it returns 0 for

successful execution without modifying any rows.

The executeQuery method is used if the SQL statement returns data, such &"l

in a regular SELECT query. JDBC has its own cursor mechanism in the form

of a ResultSet object, which we discuss next. The execute method is more

general than executeQuery and executeUpdate; the references at the end of

the chapter provide pointers with more details.

6.3.4 Resul,tSets

As discussed in the previous section, the statement executeQuery returns a,

ResultSet object, which is similar to a cursor. ResultSet cursors in JDBC

2.0 are very powerful; they allow forward and reverse scrolling and in-place

editing and insertions.

https://hemanthrajhemu.github.io

202 CHAPTER 6

In its most basic form, the ResultSet object allows us to read one row of the

output of the query at a time. Initially, the ResultSet is positioned before

the first row, and we have to retrieve the first row with an explicit call to the

next 0 method. The next method returns false if there are no more rows in

the query answer, and true other\vise. The code fragment shown in Figure 6.4

illustrates the basic usage of a ResultSet object.

ResultSet rs=stmt.executeQuery(sqlQuery);

/ / rs is now a cursor

/ / first call to rs.nextO moves to the first record

/ / rs.nextO moves to the next row

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next()) {

/ / process the data

}

Figure 6.4 Using a ResultSet Object

While next () allows us to retrieve the logically next row in the query answer,

we can move about in the query answer in other ways too:

• previous 0 moves back one row.

• absolute (int num) moves to the row with the specified number.

• relative (int num) moves forward or backward (if num is negative) rela-

tive to the current position. relative (-1) has the same effect as previous.

• first 0 moves to the first row, and last 0 moves to the last row.

Matching Java and SQL Data Types

In considering the interaction of an application with a data source, the issues

we encountered in the context of Embedded SQL (e.g., passing information

between the application and the data source through shared variables) arise

again. To deal with such issues, JDBC provides special data types and speci-

fies their relationship to corresponding SQL data types. Figure 6.5 shows the

accessor methods in a ResultSet object for the most common SQL datatypes.

With these accessor methods, we can retrieve values from the current row of

the query result referenced by the ResultSet object. There are two forms for

each accessor method: One method retrieves values by column index, starting

at one, and the other retrieves values by column name. The following exam-

ple shows how to access fields of the current ResultSet row using accesssor

methods.

https://hemanthrajhemu.github.io

Database Application Development 2Q3

I SQL Type I Java cla.c;;s I ResultSet get method I
BIT Boolean getBooleanO

CHAR String getStringO

VARCHAR String getStringO

DOUBLE Double getDoubleO

FLOAT Double getDoubleO

INTEGER Integer getIntO
REAL Double getFloatO

DATE java.sql.Date getDateO

TIME java.sql.Time getTimeO

TIMESTAMP java.sql.TimeStamp getTimestamp ()

Figure 6.5 Reading SQL Datatypes from a ResultSet Object

ResultSet rs=stmt.executeQuery(sqIQuery);

String sqlQuerYi

ResultSet rs = stmt.executeQuery(sqIQuery)

while (rs.nextO) {

isbn = rs.getString(l);

title = rs.getString(" TITLE");

/ / process isbn and title

}

6.3.5 Exceptions and Warnings

Similar to the SQLSTATE variable, most of the methods in java. sql can throw

an exception of the type SQLException if an error occurs. The information

includes SQLState, a string that describes the error (e.g., whether the statement

contained an SQL syntax error). In addition to the standard getMessage 0
method inherited from Throwable, SQLException has two additional methods

that provide further information, and a method to get (or chain) additional

exceptions:

III public String getSQLState 0 returns an SQLState identifier based on

the SQL:1999 specification, as discussed in Section 6.1.1.

.. public i:p.t getErrorCode () retrieves a vendor-specific error code.

III public SQLException getNextExceptionO gets the next exception in a

chain of exceptions associated with the current SQLException object.

An SQL\¥arning is a subclass of SQLException. Warnings are not H•.'3 severe as

errors and the program can usually proceed without special handling of warn-

ings. \Varnings are not thrown like other exceptions, and they are not caught a.,

https://hemanthrajhemu.github.io

204 CHAPTER

part of the try"-catch block around a java. sql statement. VVe Heed to specif-

ically test whether warnings exist. Connection, Statement, and ResultSet

objects all have a getWarnings 0 method with which we can retrieve SQL

warnings if they exist. Duplicate retrieval of warnings can be avoided through

clearWarnings O. Statement objects clear warnings automatically on execu-

tion of the next statement; ResultSet objects clear warnings every time a new

tuple is accessed.

Typical code for obtaining SQLWarnings looks similar to the code shown in

Figure 6.6.

try {

stmt = con.createStatement();

warning = con.getWarnings();

while(warning != null) {

/ / handleSQLWarnings / / code to process warning

warning = warning.getNextWarningO; / /get next warning

}

con.clear\Varnings() ;

stmt.executeUpdate(queryString);

warning = stmt.getWarnings();

while(warning != null) {

/ / handleSQLWarnings / / code to process warning

warning = warning.getNextWarningO; / /get next warning

}

} / / end try

catch (SQLException SQLe) {

/ / code to handle exception

} / / end catch

Figure 6.6 Processing JDBC Warnings and Exceptions

6.3.6 Examining Database Metadata

\Ve can use tlw DatabaseMetaData object to obtain information about the

database system itself, as well as information frorn the database catalog. For

example, the following code fragment shows how to obtain the name and driver

version of the JDBC driver:

Databa..seMetaData md = con.getMetaD<Lta():

System.out.println("Driver Information:");

https://hemanthrajhemu.github.io

Database Appl'imtion Developrnent

System.out.println("Name:" + md.getDriverNameO

+ "; version:" + mcl.getDriverVersion());

205
~

The DatabaseMetaData object has many more methods (in JDBC 2.0, exactly

134); we list some methods here:

• public ResultSet getCatalogs 0 throws SqLException. This function

returns a ResultSet that can be used to iterate over all the catalog relations.

The functions getIndexInfo 0 and getTables 0 work analogously.

• pUblic int getMaxConnections 0 throws SqLException. This function

returns the ma.ximum number of connections possible.

We will conclude our discussion of JDBC with an example code fragment that

examines all database metadata shown in Figure 6.7.

DatabaseMetaData dmd = con.getMetaDataO;

ResultSet tablesRS = dmd.getTables(null,null,null,null);

string tableName;

while(tablesRS.next()) {

tableNarne = tablesRS .getString(" TABLE_NAME");

/ / print out the attributes of this table

System.out.println("The attributes of table"

+ tableName + " are:");

ResultSet columnsRS = dmd.getColums(null,null,tableName, null);

while (columnsRS.next()) {

System.out.print(colummsRS.getString(" COLUMN_NAME")

+" ");
}

/ / print out the primary keys of this table

System.out.println("The keys of table" + tableName + " are:");

ResultSet keysRS = dmd.getPrimaryKeys(null,null,tableName);

while (keysRS. next ()) {

'System.out.print(keysRS.getStringC'COLUMN_NAME") +" ");
}

}

Figure 6.7 Obtaining Infon-nation about it Data Source

https://hemanthrajhemu.github.io

206 CHAPTER.:6

6.4 SQLJ

SQLJ (short for 'SQL-Java') was developed by the SQLJ Group, a group of

database vendors and Sun. SQLJ was developed to complement the dynamic

way of creating queries in JDBC with a static model. It is therefore very close

to Embedded SQL. Unlike JDBC, having semi-static SQL queries allows the

compiler to perform SQL syntax checks, strong type checks of the compatibil-

ity of the host variables with the respective SQL attributes, and consistency

of the query with the database schema-tables, attributes, views, and stored

procedures--all at compilation time. For example, in both SQLJ and Embed-

ded SQL, variables in the host language always are bound statically to the

same arguments, whereas in JDBC, we need separate statements to bind each

variable to an argument and to retrieve the result. For example, the following

SQLJ statement binds host language variables title, price, and author to the

return values of the cursor books.

#sql books = {
SELECT title, price INTO :title, :price

FROM Books WHERE author = :author

};

In JDBC, we can dynamically decide which host language variables will hold

the query result. In the following example, we read the title of the book into

variable ftitle if the book was written by Feynman, and into variable otitle

otherwise:

/ / assume we have a ResultSet cursor rs

author = rs.getString(3);

if (author=="Feynman") {

ftitle = rs.getString(2):

}
else {

otitle = rs.getString(2);

}

vVhen writing SQLJ applications, we just write regular Java code and embed

SQL statements according to a set of rules. SQLJ applications are pre-processed

through an SQLJ translation program that replaces the embedded SQLJ code

with calls to an SQLJ Java library. The modified program code can then be

compiled by any Java compiler. Usually the SQLJ Java library makes calls to

a JDBC driver, which handles the connection to the datab&'3e system.

https://hemanthrajhemu.github.io

Database Application Development 2Q7

An important philosophical difference exists between Embedded SQL and SQLJ

and JDBC. Since vendors provide their own proprietary versions of SQL, it is

advisable to write SQL queries according to the SQL-92 or SQL:1999 standard.

However, when using Embedded SQL, it is tempting to use vendor-specific SQL

constructs that offer functionality beyond the SQL-92 or SQL:1999 standards.

SQLJ and JDBC force adherence to the standards, and the resulting code is

much more portable across different database systems.

In the remainder of this section, we give a short introduction to SQLJ.

6.4.1 Writing SQLJ Code

We will introduce SQLJ by means of examples. Let us start with an SQLJ code

fragment that selects records from the Books table that match a given author.

String title; Float price; String atithor;

#sql iterator Books (String title, Float price);

Books books;

/ / the application sets the author

/ / execute the query and open the cursor

#sql books = {

SELECT title, price INTO :titIe, :price

FROM Books WHERE author = :author

};

/ / retrieve results

while (books.next()) {

System.out.println(books.titleO + ", " + books.price());

}
books.close() ;

The corresponding JDBC code fragment looks as follows (assuming we also

declared price, name, and author:

PrcparcdStatcment stmt = connection.prepareStatement(

" SELECT title, price FROM Books WHERE author = ?");

/ / set the parameter in the query ancl execute it

stmt.setString(1, author);

ResultSet 1'8 = stmt.executeQuery();

/ / retrieve the results

while (rs.next()) {

https://hemanthrajhemu.github.io

208 CHAPTER

System.out.println(rs.getString(l) + ", " + rs.getFloat(2));

}

6

Comparing the JDBC and SQLJ code, we see that the SQLJ code is much

easier to read than the JDBC code. Thus, SQLJ reduces software development

and maintenance costs.

Let us consider the individual components of the SQLJ code in more detail.

All SQLJ statements have the special prefix #sql. In SQLJ, we retrieve the

results of SQL queries with iterator objects, which are basically cursors. An

iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes

through five steps:

• Declare the Iterator Class: In the preceding code, this happened through

the statement

#sql iterator Books (String title, Float price);

This statement creates a new Java class that we can use to instantiate

objects.

• Instantiate an Iterator Object from the New Iterator Class: We

instantiated our iterator in the statement Books books;.

• Initialize the Iterator Using a SQL Statement: In our example, this
happens through the statement #sql books ;;;;;;

• Iteratively, Read the Rows From the Iterator Object: This step is

very similar to reading rows through a ResultSet object in JDBC.

• Close the Iterator Object.

There are two types of iterator classes: named iterators and positional iterators.

For named iterators, we specify both the variable type and the name of each

column of the iterator. This allows us to retrieve individual columns by name as

in our previous example where we could retrieve the title colunm from the Books

table using the expression books. titIe (). For positional iterators, we need

to specifY only the variable type for each column of the iterator. To access

the individual columns of the iterator, we use a FETCH ... INTO eonstruct,

similar to Embedded SQL. Both iterator types have the same performance;

which iterator to use depends on the programmer's taste.

Let us revisit our example. \Ve can make the iterator a positional iterator

through the following statement:

#sql iterator Books (String, Float);

vVe then retrieve the individual rows from the iterator 3,.'3 follows:

https://hemanthrajhemu.github.io

Database Application Development

while (true) {

#sql { FETCH :books INTO :title, :price, };

if (books.endFetch()) {

break:

}

/ / process the book

}

6.5 STORED PROCEDURES

200

It is often important to execute some parts of the application logic directly in

the process space of the database system. Running application logic directly

at the databa.se has the advantage that the amount of data that is transferred

between the database server and the client issuing the SQL statement can be

minimized, while at the same time utilizing the full power of the databa.se

server.

When SQL statements are issued from a remote application, the records in the

result of the query need to be transferred from the database system back to

the application. If we use a cursor to remotely access the results of an SQL

statement, the DBMS has resources such as locks and memory tied up while the

application is processing the records retrieved through the cursor. In contrast,

a stored procedure is a program that is executed through a single SQL

statement that can be locally executed and completed within the process space

of the database server. The results can be packaged into one big result and

returned to the application, or the application logic can be performed directly

at the server, without having to transmit the results to the client at alL

Stored procedures are also beneficial for software engineering rea,sons. Once

a stored procedure is registered with the database server, different users can

re-use the stored procedure, eliminating duplication of efforts in writing SQL

queries or application logic, and making code maintenance ea."lY. In addition,

application programmers do not need to know the the databa.se schema if we

encapsulate all databa.'3e access into stored procedures.

Although they,are called stored procedur'es, they do not have to be procedures

in a programming language sense; they can be functions.

6.5.1 Creating a Simple Stored Procedure

Let us look at the example stored procedure written in SQL shown in Figure

(i.S. vVe see that stored procedures must have a name; this stored procedure

https://hemanthrajhemu.github.io

210 CHAPTER' 6

has the name 'ShowNumberOfOrders.' Otherwise, it just contains an SQL

statement that is precompiled and stored at the server.

CREATE PROCEDURE ShowNumberOfOrders

SELECT C.cid, C.cname, COUNT(*)

FROM Customers C, Orders a
WHERE C.cid = O.cid

GROUP BY C.cid, C.cname

Figure 6.8 A Stored Procedure in SQL

Stored procedures can also have parameters. These parameters have to be

valid SQL types, and have one of three different modes: IN, OUT, or INOUT.

IN parameters are arguments to' the stored procedure. OUT parameters are

returned from the stored procedure; it assigns values to all OUT parameters

that the user can process. INOUT parameters combine the properties of IN and

OUT parameters: They contain values to be passed to the stored procedures, and

the stored procedure can set their values as return values. Stored procedures

enforce strict type conformance: If a parameter is of type INTEGER, it cannot

be called with an argument of type VARCHAR.

Let us look at an example of a stored procedure with arguments. The stored

procedure shown in Figure 6.9 has two arguments: book_isbn and addedQty.

It updates the available number of copies of a book with the quantity from a

new shipment.

CREATE PROCEDURE Addlnventory (

IN book_isbn CHAR(lO),

IN addedQty INTEGER)

UPDATE Books

SET

WHERE

qty_in_stock = qtyjn_stock + addedQty

bookjsbn = isbn

Figure 6.9 A Stored Procedure with Arguments

Stored procedures do not have to be written in SQL; they can be written in any

host language. As an example, the stored procedure shown in Figure 0.10 is a

Java function that is dynamically executed by the databa..<;e server whenever it

is called by the dient:

6.5.2 Calling Stored Procedures

Stored procedures can be called in interactive SQL with the CALL statement:

https://hemanthrajhemu.github.io

Database Application Development

CREATE PROCEDURE RallkCustomers(IN number INTEGER)

LANGUAGE Java

EXTERNAL NAME 'file:/ / /c:/storedProcedures/rank.jar'

Figure 6.10 A Stored Procedure in Java

211

CALL storedProcedureName(argumentl, argument2, ... , argumentN);

In Embedded SQL, the arguments to a stored procedure are usually variables

in the host language. For example, the stored procedure AddInventory would

be called as follows:

EXEC SQL BEGIN DECLARE SECTION

char isbn[lO];

long qty;

EXEC SQL END DECLARE SECTION

/ / set isbn and qty to some values

EXEC SQL CALL AddInventory(:isbn,:qty);

Calling Stored Procedures from JDBC

We can call stored procedures from JDBC using the CallableStatment class.

CallableStatement is a subclass of PreparedStatement and provides the same

functionality. A stored procedure could contain multiple SQL staternents or a

series of SQL statements-thus, the result could be many different ResultSet

objects. We illustrate the case when the stored procedure result is a single

ResultSet.

CallableStatement cstmt=

COIl. prepareCall(" {call ShowNumberOfOrders}");

ResultSet rs = cstmt.executeQueryO

while (rs.next())

Calling Stored Procedures from SQLJ

The stored procedure 'ShowNumberOfOrders' is called as follows using SQLJ:

/ / create the cursor class

#sql !terator CustomerInfo(int cid, String cname, int count);

/ / create the cursor

https://hemanthrajhemu.github.io

212

CustomerInfo customerinfo;

/ / call the stored procedure

#sql customerinfo = {CALL ShowNumberOfOrders};

while (customerinfo.nextO) {

System.out.println(customerinfo.cid() + "," +
customerinfo.count()) ;

}

6.5.3 SQLIPSM

CHAPTER (5

All major databa...<;e systems provide ways for users to write stored procedures in

a simple, general purpose language closely aligned with SQL. In this section, we

briefly discuss the SQL/PSM standard, which is representative of most vendor-

specific languages. In PSM, we define modules, which are collections of stored

procedures, temporary relations, and other declarations.

In SQL/PSM, we declare a stored procedure as follows:

CREATE PROCEDURE name (parameter1,... , parameterN)

local variable declarations

procedure code;

We can declare a function similarly as follows:

CREATE FUNCTION name (parameterl, ... , parameterN)

RETURNS sqIDataType

local variable declarations

function code;

Each parameter is a triple consisting of the mode (IN, OUT, or INOUT as

discussed in the previous section), the parameter name, and the SQL datatype

of the parameter. We can seen very simple SQL/PSM procedures in Section

6.5.1. In this case, the local variable declarations were empty, and the procedure

code consisted of an SQL query.

We start out with an example of a SQL/PSM function that illustrates the

main SQL/PSM constructs. The function takes as input a customer identified

by her cid and a year. The function returns the rating of the customer, which

is defined a...'3 follows: Customers who have bought more than ten books during

the year are rated 'two'; customer who have purcha...<;ed between 5 and 10 books

are rated 'one', otherwise the customer is rated 'zero'. The following SQL/PSM

code computes the rating for a given customer and year.

CREATE PROCEDURE RateCustomer

https://hemanthrajhemu.github.io

Database Appl'ication Development

(IN custId INTEGER, IN year INTEGER)

RETURNS INTEGER

DECLARE rating INTEGER;

DECLARE numOrders INTEGER;

SET numOrders =

(SELECT COUNT(*) FROM Orders 0 WHERE O.tid = custId);

IF (numOrders> 10) THEN rating=2;

ELSEIF (numOrders>5) THEN rating=1;

ELSE rating=O;

END IF;

RETURN rating;

Let us use this example to give a short overview of some SQL/PSM constructs:

• We can declare local variables using the DECLARE statement. In our exam-

ple, we declare two local variables: 'rating', and 'numOrders'.

• PSM/SQL functions return values via the RETURN statement. In our ex-
ample, we return the value of the local variable 'rating'.

• vVe can assign values to variables with the SET statement. In our example,

we assigned the return value of a query to the variable 'numOrders'.

• SQL/PSM h&<; branches and loops. Branches have the following form:

IF (condition) THEN statements;

ELSEIF statements;

ELSEIF statements;

ELSE statements; END IF

Loops are of the form

LOOP

staternents:

END LOOP

• Queries can be used as part of expressions in branches; queries that return

a single ;ralue can be assigned to variables as in our example above.

• 'We can use the same cursor statements &s in Embedded SQL (OPEN, FETCH,

CLOSE), but we do not need the EXEC SQL constructs, and variables do not

have to be prefixed by a colon ':'.

We only gave a very short overview of SQL/PSM; the references at the end of

the chapter provide more information.

https://hemanthrajhemu.github.io

214 CHAPTER €i

6.6 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes finished logical database design, as discussed in Section 3.8, and now

consider the queries that they have to support. They expect that the applica-

tion logic will be implemented in Java, and so they consider JDBC and SQLJ as

possible candidates for interfacing the database system with application code.

Recall that DBDudes settled on the following schema:

Books(isbn: CHAR(10), title: CHAR(8), author: CHAR(80),

qty_in_stock: INTEGER, price: REAL, year_published: INTEGER)

Customers(cid: INTEGER, cname: CHAR(80), address: CHAR(200))

Orders (ordernum: INTEGER, isbn: CHAR(lO), cid: INTEGER,

cardnum: CHAR(l6), qty: INTEGER, order_date: DATE, ship_date: DATE)

Now, DBDudes considers the types of queries and updates that will arise. They

first create a list of tasks that will be performed in the application. Tasks

performed by customers include the following.

II Customers search books by author name, title, or ISBN.

.. Customers register with the website. Registered customers might want

to change their contact information. DBDudes realize that they have to

augment the Customers table with additional information to capture login

and password information for each customer; we do not discuss this aspect

any further.

III Customers check out a final shopping basket to complete a sale.

III Customers add and delete books from a 'shopping basket' at the website.

.. Customers check the status of existing orders and look at old orders.

Administrative ta.'3ks performed by employees of B&N are listed next.

II Employees look up customer contact information.

III Employees add new books to the inventory.

.. Employees fulfill orders, and need to update the shipping date of individual

books.

.. Employees analyze the data to find profitable customers and customers

likely to respond to special marketing campaigns.

Next, DBDudes consider the types of queries that will a,rise out of these tasks.

To support searching for books by name, author, title, or ISBN, DBDudes

decide to write a stored procedure as follows:

https://hemanthrajhemu.github.io

Database Application Development

CREATE PROCEDURE SearchByISBN (IN book.isbn CHAR (10))

SELECT B.title, B.author, B . q t y _ i n ~ ' 3 t o c k , B.price, B.yeaLpublished

FROM Books B

WHERE B.isbn = book.isbn

Placing an order involves inserting one or more records into the Orders table.

Since DBDudes has not yet chosen the Java-based technology to program the

application logic, they assume for now that the individual books in the order

are stored at the application layer in a Java array. To finalize the order, they

write the following JDBC code shown in Figure 6.11, which inserts the elements

from the array into the Orders table. Note that this code fragment assumes

several Java variables have been set beforehand.

String sql = "INSERT INTO Orders VALUES(7, 7, 7, 7, 7, 7)";

PreparedStatement pstmt = con.prepareStatement(sql);

con.setAutoCommit(false);

try {

/ / orderList is a vector of Order objects

/ / ordernum is the current order number

/ / dd is the ID of the customer, cardnum is the credit card number

for (int i=O; iiorderList.lengthO; i++)

/ / now instantiate the parameters with values

Order currentOrder = orderList[i];

pstmt.clearParameters () ;

pstmt.setInt(l, ordernum);

pstmt.setString(2, Order.getlsbnO);

pstmt.setInt(3, dd);

pstmt.setString(4, creditCardNum);

pstmt.setlnt(5, Order.getQtyO);

pstmt.setDate(6, null);

pstmt.executeUpdate();

}

con.commit();

catch (SqLException e){

con.rollbackO;

System.out. println (e.getMessage());

}

Figure 6.11 Inserting a Completed Order into the Database

https://hemanthrajhemu.github.io

216 CHAPTER (}

DBDudes writes other JDBC code and stored procedures for all of the remain-

ing tasks. They use code similar to some of the fragments that we have seen in

this chapter.

II Establishing a connection to a database, as shown in Figure 6.2.

II Adding new books to the inventory, a'3 shown in Figure 6.3.

II Processing results from SQL queries a'3 shown in Figure 6.4-

II For each customer, showing how many orders he or she has placed. We

showed a sample stored procedure for this query in Figure 6.8.

II Increa'3ing the available number of copies of a book by adding inventory,

as shown in Figure 6.9.

II Ranking customers according to their purchases, as shown in Figure 6.10.

DBDudcs takes care to make the application robust by processing exceptions

and warnings, as shown in Figure 6.6.

DBDudes also decide to write a trigger, which is shown in Figure 6.12. When-

ever a new order is entered into the Orders table, it is inserted with s h i p ~ d a t e

set to NULL. The trigger processes each row in the order and calls the stored

procedure 'UpdateShipDate'. This stored procedure (whose code is not shown

here) updates the (anticipated) ship_date of the new order to 'tomorrow', in

case qty jlLstock of the corresponding book in the Books table is greater than

zero. Otherwise, the stored procedme sets the ship_date to two weeks.

CREATE TRIGGER update_ShipDate

AFTER INSERT ON Orders

FOR EACH ROW

BEGIN CALL UpdatcShipDate(new); END

1* Event *j

1* Action *j

Figure 6.12 Trigger to Update the Shipping Date of New Orders

6.7 REVIEW QUESTIONS

Answers to the i'eview questions can be found in the listed sections.

lYl vVhy is it not straightforward to integrate SQL queries with a host pro-

gramming language? (Section 6.1.1)

IIii How do we declare variables in Ernbcdded SQL? (Section 6.1.1)

https://hemanthrajhemu.github.io

Database Applicat'ion Deuelop'Tnent 217
'*

• How do we use SQL statements within a host langl.lage? How do we check

for errors in statement execution? (Section 6.1.1)

• Explain the impedance mismatch between host languages and SQL, and

describe how cursors address this. (Section 6.1.2)

• '\That properties can cursors have? (Section 6.1.2)

• What is Dynamic SQL and how is it different from Embedded SQL? (Sec-
tion 6.1.3)

• What is JDBC and what are its advantages? (Section 6.2)

• What are the components of the JDBC architecture? Describe four differ-

ent architectural alternatives for JDBC drivers. (Section 6.2.1)

• How do we load JDBC drivers in Java code? (Section 6.3.1)

• How do we manage connections to data sources? What properties can

connections have? (Section 6.3.2)

• What alternatives does JDBC provide for executing SQL DML and DDL

statements? (Section 6.3.3)

• How do we handle exceptions and warnings in JDBC? (Section 6.3.5)

• 'What functionality provides the DatabaseMetaDataclass? (Section 6.3.6)

• What is SQLJ and how is it different from JDBC? (Section 6.4)

• vVhy are stored procedures important? How do we declare stored proce-

dures and how are they called from application code? (Section 6.5)

EXERCISES

Exercise 6.1 Briefly answer the following questions.

1. Explain the following terms: Cursor, Embedded SQL, JDBC, SQLJ, stored procedure.

2. What are the differences between JDBC and SQLJ? \Nhy do they both exist?

3. Explain the term stored procedure, and give examples why stored procedures are useful.

Exercise 6.2 Explain how the following steps are performed in JDBC:

1. Connect to a data source.

2. Start, commit, and abort transactions.

3. Call a stored procedure.

How are these steps performed in SQLJ?

https://hemanthrajhemu.github.io

218 CHAPTER (:)

Exercise 6.3 Compare exception handling and handling of warnings ill embedded SQL, dy-

namic SQL, .IDBC, and SQL.I.

Exercise 6.4 Answer the following questions.

1. Why do we need a precompiler to translate embedded SQL and SQL.J? Why do we not

need a precompiler for .IDBC?

2. SQL.J and embedded SQL use variables in the host language to pass parameters to SQL

queries, whereas .JDBC uses placeholders marked with a ''1'. Explain the difference, and

why the different mechanisms are needed.

Exercise 6.5 A dynamic web site generates HTML pages from information stored in a

database. Whenever a page is requested, is it dynamically assembled from static data and

data in a database, resulting in a database access. Connecting to the database is usually

a time~consuming process, since resources need to be allocated, and the user needs to be

authenticated. Therefore, connection pooling--setting up a pool of persistent database

connections and then reusing them for different requests can significantly improve the per-

formance of database-backed websites. Since servlets can keep information beyond single

requests, we can create a connection pool, and allocate resources from it to new requests.

Write a connection pool class that provides the following methods:

III Create the pool with a specified number of open connections to the database system.

11II Obtain an open connection from the pool.

III Release a connection to the pool.

III Destroy the pool and close all connections.

PROJECT-BASED EXERCISES

In the following exercises, you will create database-backed applications. In this chapter, you

will create the parts of the application that access the database. In the next chapter, you

will extend this code to other &'3pects of the application. Detailed information about these

exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/-dbbook

Exercise 6.6 Recall the Notown Records database that you worked with in Exercise 2.5 and

Exercise 3.15. You have now been tasked with designing a website for Notown. It should

provide the following functionality:

III Usen; can sem'ch for records by name of the musician, title of the album, and Bame of

the song.

11II Users can register with the site, and registered users ca.n log on to the site. Once logged

on, users should not have to log on again unless they are inactive for a long time.

III Users who have logged on to the site can add items to a shopping basket.

11II Users with items in their shopping basket can check out and ma.ke a purchase.

https://hemanthrajhemu.github.io

Database Apphcation De'velopment 219

NOtOWIl wants to use JDBC to access the datab&<;e, \¥rite .JDBC code that performs the

necessary data access and manipulation. You will integrate this code with application logic

and presentation in the next chapter.

If Notown had chosen SQLJ instead of JDBC, how would your code change?

Exercise 6.7 Recall the database schema for Prescriptions-R-X that you created in E x e r ~

cise 2.7. The Prescriptions-R-X chain of pharmacies has now engaged you to design their

new website. The website has two different classes of users: doctors and patients. Doctors

should be able to enter new prescriptions for their patients and modify existing prescriptions.

Patients should be able to declare themselves as patients of a doctor; they should be able

to check the status of their prescriptions online; and they should be able to purchase the

prescriptions online so that the drugs can be shipped to their home address.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-

essary data access and manipulation. You will integrate this code with application logic and

presentation in the next chapter.

Exercise 6.8 Recall the university database schema that you worked with in Exercise 5.l.

The university has decided to move enrollment to an online system. The website has two

different classes of users: faculty and students. Faculty should be able to create new courses

and delete existing courses, and students should be able to enroll in existing courses.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-

essary data access and manipulation. You will integrate this code with application logic and

presentation in the next chapter.

Exercise 6.9 Recall the airline reservation schema that you worked on in Exercise 5.3. De-

sign an online airline reservation system. The reservation system will have two types of users:

airline employees, and airline passengers. Airline employees can schedule new flights and can-

cel existing flights. Airline passengers can book existing flights from a given destination.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-

essary data access and manipulation. You will integrate this code with application logic and

presentation in the next chapter.

BIBLIOGRAPHIC NOTES

Information on ODBC can be found on Microsoft's web page (www.microsoft.com/data/odbc),

and information on JDBC can be found on tlw Java web page (j ava. sun. com/products/jdbc).

There exist rnany books on ODBC, for example, Sanders' ODBC Developer's Guicle [652] and

the lvIicrosoft ODBC SDK [5:3;3]. Books on JDBC include works by Hamilton et al. [359],

Reese [621], and White et a!. [773].

https://hemanthrajhemu.github.io

7
INTERNET APPLICATIONS

It How do we name resources on the Internet?

It How do Web browsers and webservers communicate?

It How do we present documents on the Internet? How do we differen-

tiate between formatting and content?

It What is a three-tier application architecture? How do we write three-

tiered applications?

It Why do we have application servers?

.. Key concepts: Uniform Resource Identifiers (URI), Uniform Re.-

source Locators (URL); Hypertext Transfer Protocol (HTTP), state-

less protocol; Java; HTML; XML, XML DTD; three-tier architecture,

client-server architecture; HTML forms; JavaScript; cascading style

sheets, XSL; application server; Common Gateway Interface (CGI);

servlet; JavaServer Page (JSP); cookie

Wow! They've got the Internet on computers now!

--Homer Simpson, The Simpsons

7.1 INTROpUCTION

The proliferation of computer networks, including the Internet and corporate

'intranets,' has enabled users to access a large number of data sources. This

increased access to databases is likely to have a great practical impact; data

and services can now be offered directly to customers in ways impossible until

220

https://hemanthrajhemu.github.io

Intc'T7wt Applications 221

recently. Examples of such electronic commerce rtpplications include pur-

chasing books through a \Veb retailer such <1.'3 Amazon.com, engaging in online

auctions at a site such as eBay, and exchanging bids and specifications for

products between companies. The emergence of standards such as XrvIL for

describing the content of documents is likely to further accelerate electronic

commerce and other online applications.

While the first generation of Internet sites were collections of HTML files, most

major sites today store a large part (if not all) of their data in database systems.

They rely on DBMSs to provide fast, reliable responses to user requests received

over the Internet. This is especially true of sites for electronic commerce and

other business applications.

In this chapter, we present an overview of concepts that are central to Internet

application development. We start out with a basic overview of how the Internet

works in Section 7.2. We introduce HTML and XML, two data formats that are

used to present data on the Internet, in Sections 7.3 and 7.4. In Section 7.5, we

introduce three-tier architectures, a way of structuring Internet applications

into different layers that encapsulate different functionality. In Sections 7.6

and 7.7, we describe the presentation layer and the middle layer in detail; the

DBMS is the third layer. We conclude the chapter by discussing our B&N case

study in Section 7.8.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook

7.2 INTERNET CONCEPTS

The Internet has emerged as a universal connector between globally distributed

software systems. To understand how it works, we begin by discussing two ba"lic

issues: how sites on the Internet are identified, and how programs at one site

communicate with other sites.

vVe first introduce Uniform Resource Identifiers, a naming schema for locating

resources on the Internet in Section 7.2.1. \Ve then talk about the most popular

protocol for accessing resources over the Vv"eh, the hypertext transfer protocol

(HTTP) in Se(tion 7.2.2.

7.2.1 Uniform Resource Identifiers

Uniform Resource Identifiers (URIs), are strings that uniquely identify

resources 011 the Internet. A resource is any kind of information that can

https://hemanthrajhemu.github.io

222 CHAPTER 7;

j;istributed Applications and Service-Oriented Architectures:

I ~he advent of XML, due to its loosely-coupled nature, has made· infor-
mation exchange between different applications feasible to an extent previ-

ously unseen. By using XML for information exchange, applications can be

written in different programming languages, run on different operating sys-

tems, and yet they can still share information with each other. There are

also standards for externally describing the intended content of an XML

file or message, most notably the recently adopted W3C XML Schemas

standard.
A promising concept that has arisen out of the XML revolution is the notion

of a Web service. A Web service is an application that provides a well-

defined service, packaged as a set of remotely callable procedures accessible
through the Internet. Web services have the potential to enable powerful
new applications by composing existing Web services-all communicating

seamlessly thanks to the use of standardizedXML-based information ex-
change. Several technologies have been developed or are currently under

development that facilitate design and implementation of distributed ap-

plications. SOAP is a W3C standard for XML-based invocation of remote

services (think XML RPC) that allows distributed applications to commu-
nicate either synchronously or asynchronously via structured, typed XML

messages. SOAP calls can ride on a variety of underlying transport layers,

including HTTP (part of what is making SOAP so successful) and vari-

ous reliable messaging layers. Related to the SOAP standard are W3C's

Web Services Description Language (WSDL) for describing Web

service interfaces, and Universal Description, Dis.;;overy, and Inte-
gration (UDDI), a WSDL-based Web services registry standard (think

yellow pages for Web services).

SOAP-based Web services are the foundation for Microsoft's recently re-
leased .NET framework, their application development infrastructure and

associated run-time system for developing distributed applications, as well

as for the Web services offerings of major software vendors such as IBM,

BEA, and others. Many large software application vendors (major compa-

nies like PeopleSoft and SAP) have announced plans to provide Web service

interfaces to their products and the data that they manage, and many are

hoping that XML and Web services will finally provide the answer to the

long-standing problem of enterprise application integration. Web services

are also being looked to as a natural foundation for the next generation of
business process management (or workflow) systems.

https://hemanthrajhemu.github.io

Internet Applications 223

be identified by a URI, and examples include webpages, images, downloadable

files, services that can be remotely invoked, mailboxes, and so on. The most

common kind of resource is a static file (such as a HTML document), but a

resource may also be a dynamically-generated HTML file, a movie, the output

of a program, etc.

A URI has three parts:

• The (name of the) protocol used to access the resource.

• The host computer where the resource is located.

• The path name of the resource itself on the host computer.

Consider an example URI, such as http://www.bookstore.com/index .html.

This URI can be interpreted as follows. Use the HTTP protocol (explained in

the next section) to retrieve the document index. html located at the computer

www.bookstore.com.This example URI is an instance of a Universal Re-

source Locator (URL) , a subset of the more general URI naming scheme;

the distinction is not important for our purposes. As another example, the

following HTML fragment shows a URI that is an email address:

Email the webmaster.

7.2.2 The Hypertext Transfer Protocol (HTTP)

A communication protocol is a set of standards that defines the structure

of messages between two communicating parties so that they can understand

each other's messages. The Hypertext Transfer Protocol (HTTP) is the

most common communication protocol used over the Internet. It is a client-

server protocol in which a client (usually a Web browser) sends a request to an

HTTP server, which sends a response back to the client. When a user requests

a webpage (e.g., clicks on a hyperlink), the browser sends HTTP request

messages for the objects in the page to the server. The server receives the

requests and responds with HTTP response messages, which include the

objects. It is important to recognize that HTTP is used to transmit all kinds

of resources, not just files, but most resources on the Internet today are either

static files or :(lIes output from server-side scripts.

A variant of the HTTP protocol called the Secure Sockets Layer (SSL)

protocol uses encryption to exchange information securely between client and

server. We postpone a discussion of SSL to Section 21.5.2 and present the basic

HTTP protocol in this chapter.

https://hemanthrajhemu.github.io

224 CHAPTER

As an example, consider what happens if a user clicks on the following link:

http://www.bookstore.com/index . html. 'We first explain the structure of an

HTTP request message and then the structure of an HTTP response message.

HTTP Requests

The client (\\Teb browser) establishes a connection with the webserver that

hosts the resource and sends a HTTP request message. The following example

shows a sample HTTP request message:

GET index.html HTTP/l.l

User-agent: Mozilla/4.0

Accept: text/html, image/gif, image/jpeg

The general structure of an HTTP request consists of several lines of ASCII

text, with an empty line at the end. The first line, the request line, has three

fields: the HTTP method field, the URI field, and the HTTP version

field. The method field can take on values GET and POST; in the exam-

ple the message requests the object index. html. (We discuss the differences

between HTTP GET and HTTP POST in detail in Section 7.11.) The version

field indicates which version of HTTP is used by the client and can be used

for future extensions of the protocol. The user agent indicates the type of

the client (e.g., versions of Netscape or Internet Explorer); we do not discuss

this option further. The third line, starting with Accept, indicates what types

of files the client is willing to accept. For example, if the page index. html

contains a movie file with the extension .mpg, the server will not send this file

to the client, as the client is not ready to accept it.

HTTP Responses

The server responds with an HTTP response message. It retrieves tht: page

index. html, uses it to assemble the HTTP response message, and sends the

message to the client. A sample HTTP response looks like this:

HTTP/l.l 200 OK

Date: Mon, 04 Mar 2002 12:00:00 GMT

Content-Length: 1024

Content-Type: text/html

Last-Modified: Mall, 22 JUIl 1998 09:23:24 GMT

<HTML>

<HEAD>

</HEAD>

<BODY>

https://hemanthrajhemu.github.io

Internet Applications

<H1>Barns and Nobble Internet Bookstore</H1>

Our inventory:

<H3>Science</H3>

The Character of Physical Law

225

The HTTP response message has three parts: a status line, several header

lines, and the body of the message (which contains the actual object that the

client requested). The status line has three fields (analogous to the request

line of the HTTP request message): the HTTP version (HTTP/1.1), a status

code (200), and an associated server message (OK). Common status codes and

associated messages are:

• 200 OK: The request succeeded and the object is contained in the body of

the response message";

• 400 Bad Request: A generic error code indicating that the request could

not be fulfilled by the server.

• 404 Not Found: The requested object does not exist on the server.

• 505 HTTP Version Not Supported: The HTTP protocol version that the

client uses is not supported by the server. (Recall that the HTTP protocol

version sent in the client's request.)

Our example has three header lines: The date header line indicates the time

and date when the HTTP response was created (not that this is not the object

creation time). The Last-Modified header line indicates when the object was

created. The Content-Length header line indicates the number of bytes in the

object being sent after the last header line. The Content-Type header line

indicates that the object in the entity body is HTML text.

The client (the Web browser) receives the response message, extracts the HTML

file, parses it, and displays it. In doing so, it might find additional URIs in the

file, and it then uses the HTTP protocol to retrieve each of these resources,

establishing a new connection each time.

One important issue is that the HTTP protocol is a stateless protocol. Every

message----from, the client to the HTTP server and vice-versa-is self-contained,

and the connection established with a request is maintained only until the

response message is sent. The protocol provides no mechanism to automatically

'remember' previous interactions between client and server.

The stateless nature of the HTTP protocol has a major impact on how Inter-

net applications are written. Consider a user who interacts with our exalIlple

https://hemanthrajhemu.github.io

226 CHAPTER ,7

bookstore application. Assume that the bookstore permits users to log into

the site and then carry out several actions, such as ordering books or changing

their address, without logging in again (until the login expires or the user logs

out). How do we keep track of whether a user is logged in or not? Since HTTP

is stateless, we cannot switch to a different state (say the 'logged in' state) at

the protocol level. Instead, for every request that the user (more precisely, his

or her Web browser) sends to the server, we must encode any state information

required by the application, such as the user's login status. Alternatively, the

server-side application code must maintain this state information and look it

up on a per-request basis. This issue is explored further in Section 7.7.5.

Note that the statelessness of HTTP is a tradeoff between ease of implementa-

tion of the HTTP protocol and ease of application development. The designers

of HTTP chose to keep the protocol itself simple, and deferred any functionality

beyond the request of objects to application layers above the HTTP protocol.

7.3 HTML DOCUMENTS

In this section and the next, we focus on introducing HTML and XML. In

Section 7.6, we consider how applications can use HTML and XML to create

forms that capture user input, communicate with an HTTP server, and convert

the results produced by the data management layer into one of these formats.

HTML is a simple language used to describe a document. It is also called a

markup language because HTML works by augmenting regular text with

'marks' that hold special meaning for a Web browser. Commands in the lan-

guage, called tags, consist (usually) of a start tag and an end tag of the

form <TAG> and </TAG>, respectively. For example, consider the HTML frag-

ment shown in Figure 7.1. It describes a webpage that shows a list of books.

The document is enclosed by the tags <HTML> and </HTML>, marking it as an

HTML document. The remainder of the document-enclosed in <BODY> ...

</BoDY>-contains information about three books. Data about each book is

represented as an unordered list (UL) whose entries are marked with the LI

tag. HTML defines the set of valid tags as well 8.'3 the meaning of the tags. :For

example, HTML specifies that the tag <TITLE> is a valid tag that denotes the

title of the document. As another example, the tag always denotes an

unordered list.

Audio, video, and even programs (written in Java, a highly portable language)

can be included in HTML documents. vVhen a user retrieves such a document

using a suitable browser, images in the document arc displayed, audio and video

clips are played, and embedded programs are executed at the uset's machine;

the result is a rich multimedia presentation. The e8."ie with which HTML docu-

https://hemanthrajhemu.github.io

Internet Applications

<HTML>

<HEAD>

</HEAD>

<BODY>

<Hl>Barns and Nobble Internet Bookstore</Hl>

Our inventory:

<H3>Science</H3>

The Character of Physical Law

Author: Richard Feynman

Published 1980

<Ll>Hardcover

<H3>Fiction</H3>

Waiting for the Mahatma

Author: R.K. Narayan

Published 1981</Ll>

The English Teacher

Author: R.K. Narayan

Published 1980

Paperback

</BODY>

</HTML>

Figure 7.1 Book Listing in HTML

227
»

ments can be created--there are now visual editors that automatically generate

HTML----and accessed using Internet browsers has fueled the explosive growth

of the Web.

7.4 XML DOCUMENTS

In this section, we introduce XML a.'3 a document format, and consider how

applications can utilize XML. Managing XML documents in a DBMS poses

several new challenges; we discuss this a.'3pect of XML in Chapter 27.

https://hemanthrajhemu.github.io

228 CHAPTER l

vVhile HTl\.fL can be used to mark up documents for display purposes, it is

not adequate to describe the structure of the content for more general applica-

tions. For example, we can send the HTML document shown in Figure 7.1 to

another application that displays it, but the second application cannot distin-

guish the first names of authors from their last names. (The application can

try to recover such information by looking at the text inside the tags, but this

defeats the purpose of using tags to describe document structure.) Therefore,

HTML is unsuitable for the exchange of complex documents containing product

specifications or bids, for example.

Extensible Markup Language (XML) is a markup language developed to

remedy the shortcomings of HTML. In contrast to a fixed set of tags whose

meaning is specified by the language (as in HTML), XML allows users to de-

fine new collections of tags that can be used to structure any type of data or

document the user wishes to transmit. XML is an important bridge between

the document-oriented view of data implicit in HTML and the schema-oriented

view of data that is central to a DBMS. It has the potential to make database

systems more tightly integrated into Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The

Standard Generalized Markup Language (SGML) is a metalanguage

that allows the definition of data and document interchange languages such as

HTML. The SGML standard was published in 1988, and many organizations

that rnanage a large number of complex documents have adopted it. Due to its

generality, SGML is complex and requires sophisticated programs to harness

its full potential. XML was developed to have much of the power of SGML

while remaining relatively simple. Nonetheless, XML, like SGML, allows the

definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the

display of the data in a Web browser, there is a style language for XML called

Extensible Style Language (XSL). XSL is a standard way of describing

how an XML docmnent that adheres to a certain vocabulary of tags should be

displayed.

7.4.1 Introduction to XML

Vve use the smaJI XML docmnent shown in Figure 7.2 a,s an example.

11II Elements: Elements, also called tags, a.rc the primary building blocks of

an XML docmnent. The start of the content of an element ELM is marked
with <ELM>, which is called the start tag, and the end of the content end

is marked with </ELM>, called the end tag. In our example document.

https://hemanthrajhemu.github.io

Internet Applicai'ions 229

The Design Goals ofXML: XML wa.."l developed'startingin 1996 by a

working group under guidance of the ';Yorld Wide Web Consortium (W3C)

XML Special Interest Group. The design goals for XML included the

following:

1. XML should be compatible with SGML.

2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

the element BOOKLIST encloses all information in the sample document.

The element BOOK demarcates all data associated with a single book.

XML elements are case sensitive: the element BOOK is different from

Book. Elements must be properly nested. Start tags that appear inside

the content of other tags must have a corresponding end tag. For example,

consider the following XML fragment:

<BOOK>

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>

<LASTNAME>Feynluan</LASTNAME>

</AUTHOR>

</BOOK>

The element AUTHOR is completely nested inside the element BOOK, and

both the elements LASTNAME and FIRSTNAME are nested inside the element

AUTHOR.

.. Attributes: An element can have descriptive attributes that provide ad-

ditional information about the element. The values of attributes are set

inside the start tag of an element. For example, let ELM denote an element

with the attribute att. We can set the value of att to value through the

following expression: <ELM att=" value II >. All attribute values must be

enclosed in quotes. In Figure 7.2, the element BOOK has two attributes.

The attribute GENRE indicates the genre of the book (science or fiction)

and the attribute FORMAT indicates whether the book is a hardcover or a

paperback.

III Entity References: Entities are shortcuts for portions of common text or

the content of external files, and we call the usage of an entity in the XML

document an entity reference. Wherever an entity reference appears in

the document, it is textually replaced by its content. Entity references

start with a '&' and end with a '; '. Five predefined entities in XML are

placeholders for chara.cters with special meaning in XML. For example, the

https://hemanthrajhemu.github.io

230 CHAPTER~7

<?xml version=11.0" encoding="UTF-S Il standalone=llyes ll?>

<BOOKLIST>

<BOOK GENRE=" Science" FORMAT=" Hardcover" >

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</AUTHOR>

<TITLE>The Character of Physical Law</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

<BOOK> GENRE=" Fiction" >

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>Waiting for the Mahatma</TITLE>

<PUBLISHED>1981</PUBLISHED>

</BOOK>

<BOOK GENRE=" Fiction" >

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>The English Teacher</TITLE>

<PUBLISHED> 1980</PUBLISHED>

</BOOK>

</BOOKLIST>

Figure 7.2 Book Information in XML

< character that marks the beginning of an XML command is reserved and

has to be represented by the entity It. The other four reserved characters

are &, >, ", and '; they are represented by the entities amp, gt, quot,

and apos. For example, the text '1 < 5' has to be encoded in an XML

document &'3 follows: ' 1&1t ; 5'. We can also use entities to

insert arbitrary Unicode characters into the text. Unicode is a standard

for character representations, similar to ASCII. For example, we can display

the Japanese Hiragana character a using the entity reference あ.

• Comments: We can insert comments anywhere in an XML document.

Comments start with <! - and end with ->. Comments can contain arbi-

trary text except the string --.

https://hemanthrajhemu.github.io

Internet Applications

• Document Type Declarations (DTDs): In XML, we can define our
own markup language. A DTD is a set of rules that allows us to specify

our own set of elements, attributes, and entities. Thus, a DTD is basically

a grammar that indicates what tags are allowed, in what order they can

appear, and how they can be nested. We discuss DTDs in detail in the

next section.

We call an XML document well-formed if it has no associated DTD but

follows these structural guidelines:

• The document starts with an XML declaration. An example of an XML

declaration is the first line of the XML document shown in Figure 7.2.

• A root element contains all the other elements. In our example, the root

element is the element BOOKLIST.

• All elements must be properly nested. This requirement states that start

and end tags of an element must appear within the same enclosing element.

7.4.2 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements,

attributes, and entities. A DTD specifies which elements we can use and con-

straints on these elements, for example, how elements can be nested and where

elements can appear in the document. We call a document valid if a DTD is

associated with it and the document is structured according to the rules set by

the DTD. In the remainder of this section, we use the example DTD shown in

Figure 7.3 to illustrate how to construct DTDs.

< ! DOCTYPE BOOKLIST [

<! ELEMENT BOOKLIST (BOOK)*>

<! ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»

<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME»

<! ELEMENT FIRSTNAME (#PCDATA»

<! ELEMENT LASTNAME (#PCDATA»

<! ELEMENT TITLE (#PCDATA»

<! ELEMENT PUBLISHED (#PCDATA»

<! ATTLIST BOOK GENRE (ScienceIFiction) #REQUIRED>

<!ATTLIST BOOK FORMAT (PaperbackIHardcover) "Paperback">

]>

Figure 7.3 Bookstore XML DTD

https://hemanthrajhemu.github.io

232 CHAPTER .;{

A DTD is enclosed in <! DOCTYPE name [DTDdeclarationJ >, where name is

the name of the outermost enclosing tag, and DTDdeclaration is the text of

the rules of the DTD. The DTD starts with the outermost element---the root

elenwnt--which is BOOKLIST in our example. Consider the next rule:

<!ELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK

elements. The * after BOOK indicates how many BOOK elements can appear

inside the BOOKLIST element. A * denotes zero or more occurrences, a + denotes

one or more occurrences, and a? denotes zero or one occurrence. For example,

if we want to ensure that a BOOKLIST has at least one book, we could change

the rule as follows:

<!ELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»

This rule states that a BOOK element contains a AUTHOR element, a TITLE ele-

ment, and an optional PUBLISHED clement. Note the use of the? to indicate

that the information is optional by having zero or one occurrence of the element.

Let us move ahead to the following rule:

< !ELEMENT LASTNAME (#PCDATA»

Until now we considered only elements that contained other elements. This

rule states that LASTNAME is an element that does not contain other elements,

but contains actual text. Elements that only contain other elements are said

to have element content, whereas elements that also contain #PCDATA are

::laid to have mixed content. In general, an element type declaration has the

following structure:

< !ELEMENT (contentType»

Five possible content types are:

III Other elements.

II The special syrnbol #PCDATA, which indicates (parsed) character data.

II The special symbol EMPTY, which indicates that the element has no content.

Elements that have no content are not required to have an end tag.

11II The special symbol ANY, which indicates that any content is permitted.

This content should be avoided whenever possible ::lince it disables all check-

ing of the document structure inside the element.

https://hemanthrajhemu.github.io

Internet Apphcat'ions 2 ~ 3

• A regular expression constructed from the preceding four choices. A

regular expression is one of the following:

- expL exp2, exp3: A list of regular expressions.

- exp*: An optional expression (zero or more occurrences).

- exp?: An optional expression (zero or one occurrences).

- exp+: A mandatory expression (one or more occurrences).

- expl I exp2: expl or exp2.

Attributes of elements are declared outside the element. For example, consider

the following attribute declaration from Figure 7.3:

<! ATTLIST BOOK GENRE (ScienceIFiction) #REQUIRED»

This XML DTD fragment specifies the attribute GENRE, which is an attribute

of the element BOOK. The attribute can take two values: Science or Fiction.

Each BOOK element must be described in its start tag by a GENRE attribute

since the attribute is required as indicated by #REQUIRED. Let us look at the

general structure of a DTD attribute declaration:

<! ATTLIST elementName (attName attType default)+>

The keyword ATTLIST indicates the beginning of an attribute declaration. The

string elementName is the name of the element with which the following at-

tribute dcfinition is associated. What follows is the declaration of one or more

attributes. Each attribute has a name, as indicated by attName, and a type,

as indicated by attType. XML defines several possible types for an attribute.

We discuss only string types and enumerated types here. An attribute of

type string can take any string as a value. We can declare such an attribute by

setting its type field to CDATA. F'or example, we can declare a third attribute of

type string of the elernent BOOK a.s follows:

<!ATTLIST BOOK edition CDATA "1">

If an attribute has an enumerated type, we list all its possible values in the

attribute declaration. In our example, the itttribute GENRE is an enumerated

attribute type; its possible attribute values are 'Science' and 'Fiction'.

The last part 'Of an attribute declaration is called its default specification.

The DTD in Figure 7.:3 shows two different default specifications: #REQUIRED

itnd the string 'Pitperback'. The default specification #REQUIRED indicates that

the attribute is required and whenever its associated element itppears some-

where in the XML document ~ t value for the attribute must be specified. The

debult specification indicated by the string 'Paperback' indicates that the at-

tribute is not required; whenever its a.')sociated element itppears without setting

https://hemanthrajhemu.github.io

234

<?xml version=11.0" encoding=IUTF-8" standalone=" no "?>

< ! DOCTYPE BOOKLIST SYSTEM" books.dtd" >

<BOOKLIST>

<BOOK GENRE=" Science" FORMAT=" Hardcover" >

<AUTHOR>

Figure 7.4 Book Information in XML

XML Schema: The DTD mechanism has several limitations, in spite of

its widespread use. For example, elements and attributes cannot be as-

signed types in a flexible way, and elements are always ordered, even if the

application does not require this. XML Schema is a new W3C proposal

that provides a more powerful way to describe document structure than

DTDs; it is a superset of DTDs, allowing legacy data to be handled eas-

ily. An interesting aspect is that it supports uniqueness and foreign key

constraints.

a value for the attribute, the attribute automatically takes the value 'Paper-

back'. For example, we can make the attribute value 'Science' the default value

for the GENRE attribute as follows:

<! ATTLIST BOOK GENRE (ScienceIFiction) "Science" >

In our bookstore example, the XML document with a reference to the DTD is

shown in Figure 7.4.

7.4.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains-including

a wide range of commercial, engineering, financial, industrial, and scientific

domains----and a lot of the excitement about XML h3...<; its origins in the belief

that more and more standardized DTDs will be developed. Standardized DTDs

would enable seamless data exchange among heterogeneous sources, a problem

solved today either by implementing specialized protocols such as Electronic

Data Interchange (EDI) or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to

straightforwardly integrate several XML documents by matching elements in

their DTDs, because even when two elements have identical names in two

different DTDs, the meaning of the elements could be completely different.

If both documents use a single, standard DTD, we avoid this problem. The

https://hemanthrajhemu.github.io

Internet Applications 235

development of standardized DTDs is more a social process than a research

problem, since the major players in a given domain or industry segment have

to collaborate.

For example, the mathematical markup language (MathML) has been

developed for encoding mathematical material on the Web. There are two

types of MathML elements. The 28 presentation elements describe the lay-

out structure of a document; examples are the mrow element, which indicates a

horizontal row of characters, and the msup element, which indicates a base and a

subscript. The 75 content elements describe mathematical concepts. An ex-

ample is the plus element, which denotes the addition operator. (A third type

of element, the math element, is used to pass parameters to the MathML pro-

cessor.) MathML allows us to encode mathematical objects in both notations

since the requirements of the user of the objects might be different. Content

elements encode the precise mathematical meaning of an object without ambi-

guity, and the description can be used by applications such as computer algebra

systems. On the other hand, good notation can suggest the logical structure to

a human and emphasize key aspects of an object; presentation elements allow

us to describe mathematical objects at this level.

For example, consider the following simple equation:

x 2
- 4x - 32 = 0

Using presentation elements, the equation is represented as follows:

<mrow>

<mrow> <msup><mi>x</mi><mn>2</mn></msup>

<mo>-</mo>

<mrow><mn>4</mn>

<mo>&invisibletimes;</mo>

<mi>x</mi>

</mrow>

<mo>-</ mo><mn>32< / mn>

</mrow><mo>=</mo><mn>O</nm>

</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>

<apply>

<minus/>

<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>

<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>

<cn>32</cn>

https://hemanthrajhemu.github.io

236

</apply> <cn>O</cn>

</reln>

CHAPTER J7

Note the additional power that we gain from using MathML instead of en-

coding the formula in HTML. The common way of displaying mathematical

objects inside an HTML object is to include images that display the objects,

for example, as in the following code fragment:

The equation is encoded inside an IMG tag with an alternative display format

specified in the ALI tag. Using this encoding of a mathematical object leads

to the following presentation problems. First, the image is usually sized to

match a certain font size, and on systems with other font sizes the image is

either too small or too large. Second, on systems with a different background

color, the picture does not blend into the background and the resolution of the

image is usually inferior when printing the document. Apart from problems

with changing presentations, we cannot easily search for a formula or formula

fragments on a page, since there is no specific markup tag.

7.5 THE THREE-TIER APPLICATION ARCHITECTURE

In this section, we discuss the overall architecture of data-intensive Internet

applications. Data-intensive Internet applications can be understood in terms

of three different functional components: data management, application logic,

and pTesentation. The component that handles data mallgement usually utilizes

a DBMS for data storage, but application logic and presentation involve much

more than just the DBMS itself.

We start with a short overview of the history of database-backed application

architectures, and introduce single-tier and client-server architectures in Section

7.5.1. \Ve explain the three-tier architecture in detail in Section 7.5.2, and show

its advantages in Section 7.5.3.

7.5.1 Single-Tier and Client-Server Architectures

In this section, we provide some perspective on the three-tier architecture by

discussing single-tier and client-server architectures, the predecessors of the

three-tier architecture. Initially, data-intensive applications were combined into

a single tier, including the DBMS, application logic, and user interface, a"
illustrated in Figure 7.5. The application typically ran on a mainframe, and

users accessed it through dumb teT'minals that could perform only data input

and display. This approach ha..s the benefit of being easily maintained by a

central administrator.

https://hemanthrajhemu.github.io

InteTnet Applications

Client

Application Logic

DBMS j

Figure 7.5 A Single-Tier Architecture

Figure 7.6 A Two-Server Architecture: Thin Clients

Single-tier architectures have a,n important drawback: Users expect graphical

interfaces that require much more computational power than simple dumb ter-

minals. Centralized computation of the graphical displays of such interfaces

requires much more computational power than a single server hclS available,

and thus single-tier architectures do not scale to thousands of users. The com-

moditization of the PC and the availability of cheap client computers led to

the developlnent of the two-tier architecture.

Two-tier architectures, often also referred to a<; client-server architec-

tures, consist of a client computer and a server computer, which interact

through a well-defined protocol. What part of the functionality the client im-

plements, and what part is left to the server, can vary. In the traditional client-

server architecture, the client implements just the graphical user interface,

and the server. implements both the business logic and the data management;

such clients are often called thin clients, and this architecture is illustra,ted in

Figure 7.6.

Other divisions are possible, such as more powerful clients that hnplement both

user interface and business logic, or clients that implement user interface and

part of the business logic, with the remaining part being implemented at the

https://hemanthrajhemu.github.io

238

//~\ I--"-"-'---~-~I

1\/ Chent .. j
I \ I Application Logic I

i i / ~. __-1

Client

Application Logic

Figure 7.7 A Two-Tier Architecture: Thick Clients

CHAPTERt7

server level; such clients are often called thick clients, and this architecture is

illustrated in Figure 7.7.

Compared to the single-tier architecture, two-tier architectures physically sep-

arate the user interface from the data management layer. To implement two-

tier architectures, we can no longer have dumb terminals on the client side;

we require computers that run sophisticated presentation code (and possibly,

application logic).

Over the last ten years, a large number of client-server development tools such

Microsoft Visual Basic and Sybase Powerbuilder have been developed. These

tools permit rapid development of client-server software, contributing to the

success of the client-server model, especially the thin-client version.

The thick-client model has several disadvantages when compared to the thin-

client model. First, there is no central place to update and maintain the busi-

ness logic, since the application code runs at many client sites. Second, a large

amount of trust is required between the server and the clients. As an exam--

pIe, the DBMS of a bank has to trust the (application executing at an) ATM

machine to leave the database in a consistent state. (One way to address this

problem is through stored procedures, trusted application code that is registered

with the DBMS and can be called from SQL statelnents. 'Ve discuss stored

procedures in detail in Section 6.5.)

A third disadvantage of the thick-client architecture is that it does not scale

with the number of clients; it typically cannot handle more than a few hundred

clients. The application logic at the client issues SQL queries to the server

and the server returns the query result to the client, where further processing

takes place. Large query results might be transferred between client and server.

https://hemanthrajhemu.github.io

Inter-net Applications 2:19

Application

Logic

Client

• • •

Client

Figure 7.8 A Standard Three-Tier Architecture

(Stored procedures can mitigate this bottleneck.) Fourth, thick-client systems

do not scale as the application accesses more and more database systems. As-

sume there are x different database systems that are accessed by y clients, then

there are x . y different connections open at any time, clearly not a scalable

solution.

These disadvantages of thick-client systems and the widespread adoption of

standard, very thin c l i e n t s ~ n o t a b l y , Web b r o w s e r s ~ h a v e led to the widespread

use thin-client architectures.

7.5.2 T h r e e ~ Tier Architectures

The thin-client two-tier architecture essentially separates presentation issues

from the rest of the application. The three-tier architecture goes one step

further, and also separates application logic from data management:

III Presentation Tier: Users require a natural interface to make requests,

provide input, and to see results. The widespread use of the Internet has

made Web-based interfaces increasingly popular.

III Middle Tier: The application logic executes here. An enterprise-class

application reflects complex business processes, and is coded in a general

purpose language such as C++ or Java.

III Data Management Tier: Data-intensive Web applications involve DBMSs,

which are the subject of this book.

Figure 7.8 shows a basic three-tier architecture. Different technologies have

been developed to enable distribution of the three tiers of an application across

multiple hardware platforms and different physical sites. Figure 7.9 shows the

technologies relevant to each tier.

https://hemanthrajhemu.github.io

240

~i ~-----",".~._,----~~---.~u·"r-----··'"

, Client Program I JavaScript

(Web Br_~=:~) __ ~_~_~~~~~__________ J

HTIP

---:;;""io:~~I--" servle~~~----l
JSP I

~PPlication Server) ~ __.__.__XSLT ~

JDBe. SQLJ

Data Storage---I----- XML -

(Database system)__ ___ Stored p : c e d u r e ~ ~ __

Figure 7.9 Technologies for the Three Tiers

Overview of the Presentation Tier

CHAPTERi' 7

At the presentation layer, we need to provide forms through which the user

can issue requests, and display responses that the middle tier generates. The

hypertext markup language (HTML) discussed in Section 7.3 is the basic data

presentation language.

It is important that this layer of code be easy to adapt to different display

devices and formats; for example, regular desktops versus handheld devices

versus cell phones. This adaptivity can be achieved either at the middle tier

through generation of different pages for different types of client, or directly at

the client through style sheets that specify how the data should be presented.

In the latter case, the middle tier is responsible for producing the appropriate

data in response to user requests, whereas the presentation layer decides how

to display that information.

\Ve cover presentation tier technologies, including style sheets, in Section 7.6.

Overview of the Middle Tier

The middle layer runs code that implements the business logic of the applica-

tion: It controls what data needs to be input before an action can be executed,

determines the control flow between multi-action steps, controls access to the

database layer, and often assembles dynamically generated HTML pages from

databa"se query results.

https://hemanthrajhemu.github.io

Internet Applications 24;1

The middle tier code is responsible for supporting all the different roles involved

in the application. For example, in an Internet shopping site implementation,

we would like customers to be able to browse the catalog and make purchases,

administrators to be able to inspect current inventory, and possibly data ana-

lysts to ask summary queries about purchase histories. Each of these roles can

require support for several complex actions.

For example, consider the a customer who wants to buy an item (after browsing

or searching the site to find it). Before a sale can happen, the customer has

to go through a series of steps: She has to add items to her shopping ba.sket,

she has to provide her shipping address and credit card number (unless she has

an account at the site), and she has to finally confirm the sale with tax and

shipping costs added. Controlling the flow among these steps and remembering

already executed steps is done at the middle tier of the application. The data

carried along during this series of steps might involve database accesses, but

usually it is not yet permanent (for example, a shopping basket is not stored

in the database until the sale is confirmed).

We cover the middle tier in detail in Section 7.7.

7.5.3 Advantages of the Three-Tier Architecture

The three-tier architecture has the following advantages:

1/ Heterogeneous Systems: Applications can utilize the strengths of dif-

ferent platforms and different software components at the different tiers.

It is easy to modify or replace the code at any tier without affecting the

other tiers.

II Thin Clients: Clients only need enough computation power for the pre-

sentation layer. Typically, clients are Web browsers.

II Integrated Data Access: In many applications, the data must be ac-

cessed from several sources. This can be handled transparently at the

middle tier, where we can centrally manage connections to all database

systems involved.

II Scalabilit,y to Many Clients: Each client is lightweight and all access to

the system is through the middle tier. The middle tier can share database

connections across clients, and if the middle tier becomes the bottle-neck,

we can deploy several servers executing the middle tier code; clients can

connect to anyone of these servers, if the logic is designed appropriately.

This is illustrated in Figure 7.10, which also shows how the middle tier

accesses multiple data sources. Of course, we rely upon the DBMS for each

https://hemanthrajhemu.github.io

242 CHAPTER

Figure 7.10 M i d d l e ~ T i e r Replication and Access to Multiple Data Sources

7

data source to be scalable (and this might involve additional parallelization

or replication, as discussed in Chapter 22).

• Software Development Benefits: By dividing the application cleanly

into parts that address presentation, data access, and business logic, we

gain many advantages. The business logic is centralized, and is therefore

easy to maintain, debug, and change. Interaction between tiers occurs

through well-defined, standardized APls. Therefore, each application tier

can be built out of reusable components that can be individually developed,

debugged, and tested.

7.6 THE PRESENTATION LAYER

In this section, we describe technologies for the client side of the three-tier ar-

chitecture. vVe discuss HTML forms as a special means of pa.ssing arguments

from the client to the middle tier (i.e., from the presentation tier to the middle

tier) in Section 7.6.1. In Section 7.6.2, we introduce JavaScript, a Java-based

scripting language that can be used for light-weight computation in the client

tier (e.g., for simple animations). We conclude our discussion of client-side tech-

nologies by presenting style sheets in Section 7.6.3. Style sheets are languages

that allow us to present the same webpage with different formatting for clients

with different presentation capabilities; for example, Web browsers versus cell

phones, or even a Netscape browser versus Microsoft's Internet Explorer.

7.6.1 HTML Forms

HTML forms are a common way of communicating data from the client tier to

the middle tier. The general format of a form is the following:

<FORM ACTION="page.jsp" METHOD="GET" NAME="LoginForm">

https://hemanthrajhemu.github.io

Internet Applications

</FORM>

246

A single HTML document can contain more than one form. Inside an HTML

form, we can have any HTML tags except another FORM element.

The FORM tag has three important attributes:

• ACTION: Specifies the URI of the page to which the form contents are

submitted; if the ACTION attribute is absent, then the URI of the current

page is used. In the sample above, the form input would be submited to

the page named page. j sp, which should provide logic for processing the

input from the form. (We will explain methods for reading form data at

the middle tier in Section 7.7.)

• METHOD: The HTTP /1.0 method used to submit the user input from the

filled-out form to the webserver. There are two choices, GET and POST; we

postpone their discussion to the next section.

• NAME: This attribute gives the form a name. Although not necessary,

naming forms is good style. In Section 7.6.2, we discuss how to write

client-side programs in JavaScript that refer to forms by name and perform

checks on form fields.

Inside HTML forms, the INPUT, SELECT, and TEXTAREA tags are used to specify

user input elements; a form can have many elements of each type. The simplest

user input element is an INPUT field, a standalone tag with no terminating tag.

An example of an INPUT tag is the following:

<INPUT TYPE=ltext" NAME="title">

The INPUT tag has several attributes. The three most important ones are TYPE,

NAME, and VALUE. The TYPE attribute determines the type of the input field. If

the TYPE attribute h&'3 value text, then the field is a text input field. If the

TYPE attribute has value password, then the input field is a text field where the

entered characters are displayed as stars on the screen. If the TYPE attribute

has value reset, it is a simple button that resets all input fields within the

form to their default values. If the TYPE attribute has value submit, then it is

a button that sends the values of the different input fields in the form to the

server. Note that reset and submit input fields affect the entire form.

The NAME attribute of the INPUT tag specifies the symbolic name for this field

and is used to identify the value of this input fi.eld when it is sent to the server.

NAME has to be set for INPUT tags of all types except submit and reset. In the

preceding example, we specified title as the NAME of the input field.

https://hemanthrajhemu.github.io

244 CHAPTER' 7

The VALUE attribute of an input tag can be used for text or password fields to

specify the default contents of the field. For submit or reset buttons, VALUE

determines the label of the button.

The form in Figure 7.11 shows two text fields, one regular text input field and

one password field. It also contains two buttons, a reset button labeled 'Reset

Values' and a submit button labeled 'Log on.' Note that the two input fields

are named, whereas the reset and submit button have no NAME attributes.

<FORM ACTION="page.jsp" METHoD="GET" NAME="LoginForm">

<INPUT TYPE="text" NAME="username" VALUE=" Joe"><P>

<INPUT TYPE="password" NAME="p&ssword"><P>

<INPUT TYPE="reset" VALUE="Reset Values"><P>

<INPUT TYPE="submit" VALUE="Log on">

</FoRM>

Figure 7.11 HTl'vlL Form with Two Text Fields and Two Buttons

HTML forms have other ways of specifying user input, such as the aforemen-

tioned TEXTAREA and SELECT tags; we do not discuss them.

Passing Arguments to S e r v e r ~ S i d e Scripts

As mentioned at the beginning of Section 7.6.1, there are two different ways to

submit HTML Form data to the webserver. If the method GET is used, then

the contents of the form are assembled into a query URI (as discussed next)

and sent to the server. If the method POST is used, then the contents of the

form are encoded as in the GET method, but the contents are sent in a separate

data block instead of appending them directly to the URI. Thus, in the GET

method the form contents are directly visible to the user as the constructed

URI, whereas in the POST method, the form contents are sent inside the HTTP

request message body and are not visible to the user.

Using the GET method gives users the opportunity to bookmark the page with

the constructed URI and thus directly jump to it in subsequent sessions; this

is not possible with the POST method. The choice of GET versus POST should

be determined' by the application and its requirements.

Let us look at the encoding of the URI when the GET method is used. The

encoded URI has the following form:

action?name1=vallle1&name2=value2&name;J=value3

https://hemanthrajhemu.github.io

Internet Applicat'icJns 245

The action is the URI specified in the ACTION attribute to the FORM tag, or the

current document URI if no ACTION attribute was specified. The 'name=value'

pairs are the user inputs from the INPUT fields in the form. For form INPUT

fields where the user did not input anything, the name is stil present with an

empty value (name=). As a concrete example, consider the PCl,.'3sword submission

form at the end of the previous section. Assume that the user inputs 'John

Doe' as username, and 'secret' as password. Then the request URI is:

page.jsp?username=J01111+Doe&password=secret

The user input from forms can contain general ASCII characters, such as the

space character, but URIs have to be single, consecutive strings with no spaces.

Therefore, special characters such as spaces, '=', and other unprintable charac-

ters are encoded in a special way. To create a URI that has form fields encoded,

we perform the following three steps:

1. Convert all special characters in the names and values to '%xyz,' where

'xyz' is the ASCII value of the character in hexadecimal. Special characters

include =, &, %, +, and other unprintable characters. Note that we could

encode all characters by their ASCII value.

2. Convert all space characters to the '+' character.

3. Glue corresponding names and values from an individual HTML INPUT tag

together with '=' and then paste name-value pairs from different HTML

INPUT tags together using'&' to create a request URI of the form:

action?namel=value1&name2=value2&name3=value3

Note that in order to process the input elements from the HTML form at

the middle tier, we need the ACTION attribute of the FORM tag to point to a

page, script, or program that will process the values of the form fields the user

entered. We discuss ways of receiving values from form fields in Sections 7.7.1

and 7.7.3.

7.6.2 JavaScript

JavaScript is a scripting language at the client tier with which we can add

programs to webpages that run directly at the client (Le., at the machine run-

ning the Web !)rowser). J avaScript is often used for the following types of

computation at the client:

III Browser Detection: J avaScript can be used to detect the browser type

and load a browser-specific page.

III Form Validation: JavaScript is used to perform simple consistency checks

on form fields. For example, a JavaScript program might check whether a

https://hemanthrajhemu.github.io

246 CHAPTER~ 7

form input that asks for an email address contains the character '@,' or if

all required fields have been input by the user.

• Browser Control: This includes opening pages in customized windows;

examples include the annoying pop-up advertisements that you see at many

websites, which are programmed using JavaScript.

J avaScript is usually embedded into an HTML document with a special tag,

the SCRIPT tag. The SCRIPT tag has the attribute LANGUAGE, which indicates

the language in which the script is written. For JavaScript, we set the lan-

guage attribute to JavaScript. Another attribute of the SCRIPT tag is the

SRC attribute, which specifies an external file with JavaScript code that is au-

tomatically embedded into the HTML document. Usually JavaScript source

code files use a '.js' extension. The following fragment shows a JavaScript file

included in an HTML document:

<SCRIPT LANGUAGE=" JavaScript" SRC="validateForm.js"> </SCRIPT>

The SCRIPT tag can be placed inside HTML comments so that the JavaScript

code is not displayed verbatim in Web browsers that do not recognize the

SCRIPT tag. Here is another JavaScipt code example that creates a pop-up

box with a welcoming message. We enclose the JavaScipt code inside HTML

comments for the reasons just mentioned.

<SCRIPT LANGUAGE=" JavaScript" >

<I--

alert (" Welcome to our bookstore");

//-->

</SCRIPT>

JavaScript provides two different commenting styles: single-line comments that

start with the '//' character, and multi-line comments starting with '/*' and

ending with ,*/' characters.l

JavaScript has variables that can be numbers, boolean values (true or false),

strings, and some other data types that we do not discuss. Global variables have

to be declared in advance of their usage with the keyword var, and they can

be used anywhere inside the HTML documents. Variables local to a JavaScript

function (explained next) need not be declared. Variables do not have a fixed

type, but implicitly have the type of the data to which they have been assigned.

1 Actually, '<! --' also marks the start of a single-line comment, which is why we did not have

to mark the HTML starting cormnent '<! --' in the preceding example using J avaScript comment

notation. In contrast, the HTML closing comment "-->" has to be commented out in JavaScript as

it is interpreted otherwise.

https://hemanthrajhemu.github.io

Internet Applications 247,

JavaScript has the usual assignment operators (=, + =, etc.), the usual arith-

metic operators (+, -, *, /, %), the usual comparison operators (==, ! =,
>=, etc.), and the usual boolean operators (&& for logical AND, 11 for logical

OR, and! for negation). Strings can be concatenated using the '+' charac-

ter. The type of an object determines the behavior of operators; for example

1+1 is 2, since we are adding numbers, whereas "1"+"1" is "11," since we

are concatenating strings. JavaScript contains the usual types of statements,

such as assignments, conditional statements (if Ccondition) {statements;}

else {statements; }), and loops (for-loop, do-while, and while-loop).

JavaScript allows us to create functions using the function keyword: function

f Cargl, arg2) {statements;}. We can call functions from JavaScript code,

and functions can return values using the keyword return.

We conclude this introduction to JavaScript with a larger example of a JavaScript

function that tests whether the login and password fields of a HTML form are

not empty. Figure 7.12 shows the JavaScript function and the HTML form.

The JavaScript code is a function called testLoginEmptyO that tests whether

either of the two input fields in the form named LoginForm is empty. In the

function testLoginEmpty, we first use variable loginForm to refer to the form

LoginForm using the implicitly defined variable document, which refers to the

current HTML page. (JavaScript has a library of objects that are implicitly de-

fined.) We then check whether either of the strings loginForm. userif. value

or loginForm. password. value is empty.

The function testLoginEmpty is checked within a form event handler. An

event handler is a function that is called if an event happens on an object in

a webpage. The event handler we use is onSubmit, which is called if the submit

button is pressed (or if the user presses return in a text field in the form). If

the event handler returns true, then the form contents are submitted to the

server, otherwise the form contents are not submitted to the server.

J avaScript has functionality that goes beyond the basics that we explained in

this section; the interested reader is referred to the bibliographic notes at the

end of this chapter.

7.6.3 Style Sheets

Different clients have different displays, and we need correspondingly different

ways of displaying the same information. For example, in the simplest ca.se,

we might need to use different font sizes or colors that provide high-contra.st

on a black-and-white screen. As a more sophisticated example, we might need

to re-arrange objects on the page to accommodate small screens in personal

https://hemanthrajhemu.github.io

248 CHAPTER 7

<SCRIPT LANGUAGE==" JavaScript">

<!--

function testLoginEmpty()

{
10ginForm = document.LoginForm

if ((loginForm.userid.value == "") II
(loginFonn.password.value == I. II)) {

alert(,Please enter values for userid and password.');

return false;

}
else

return true;

}
//-->

</SCRIPT>

<Hi ALIGN = "CENTER" >Barns and Nobble Internet Bookstore</Hi>

<H3 ALIGN = "CENTER">Plec1Se enter your userid and password:</H3>

<FORM NAME = "LoginForm ll METHOD="POST"

ACTI ON= II TableOfContents.jsp"

onSubmit=" return testLoginEmptyO" >

Userid: <INPUT TYPE="TEXT" NAME=lI userid"><P>

Password: <INPUT TYPE="PASSWORD" NAME="password"><P>

<INPUT TYPE="SUBMIT" VALUE="Login " NAME="SUBMIT">

<INPUT TYPE="RESET" VALUE=IIClear Input" NAME="RESET">

</FORM>

Figure 7.12 Form Validation with JavaScript

digital assistants (PDAs). As another example, we might highlight different

infonnation to focus on some important part of the page. A style sheet is a

method to adapt the same document contents to different presentation formats.

A style sheet contains instructions that tell a 'Veb browser (or whatever the

client uses to display the webpage) how to translate the data of a document

into a presentation that is suitable for the client's display.

Style sheets separate the transformative aspect of the page from the ren-

dering aspects of the page. During transformation, the objects in the XML

document are rearranged to form a different structure, to omit parts of the

XML document, or to merge two different XML documents into a single docu-

ment. During rendering, we take the existing hierarchical structure of the XML

document and format the document according to the user's display device.

https://hemanthrajhemu.github.io

Inte17u'.t Apphcations

BODY {BACKGROUND-COLOR: yellow}

Hi {FONT-SIZE: 36pt}

H3 {COLOR: blue}

P {MARGIN-LEFT: 50px; COLOR: red}

Figure 7.13 An Example Style sheet

249

The use of style sheets has many advantages. First, we can reuse the same doc-

ument many times and display it differently depending on the context. Second,

we can tailor the display to the reader's preference such as font size, color style,

and even level of detail. Third, we can deal with different output formats, such

as different output devices (laptops versus cell phones), different display sizes

(letter versus legal paper), and different display media (paper versus digital

display). Fourth, we can standardize the display format within a corporation

and thus apply style sheet conventions to documents at any time. Further,

changes and improvements to these display conventions can be managed at a

central place.

There are two style sheet languages: XSL and ess. ess was created for HTML

with the goal of separating the display characteristics of different formatting

tags from the tags themselves. XSL is an extension of ess to arbitrary XML

docurnents; besides allowing us to define ways of formatting objects, XSL con-

tains a transformation language that enables us to rearrange objects. The

target files for ess are HTML files, whereas the target files for XSL are XML

files.

Cascading Style Sheets

A Cascading Style Sheet (CSS) defines how to display HTML elements.

(In Section 7.13, we introduce a more general style sheet language designed for

XML documents.) Styles are normally stored in style sheets, which are files

that contain style definitions. Many different HTML documents, such as all

documents in a website, can refer to the same ess. Thus, we can change the

format of a website by changing a single file. This is a very convenient way

of changing the layout of many webpages at the seune time, and a first step

toward the separation of content from presentation.

An example style sheet is shown in Figure 7.13. It is included into an HTML

file with the following line:

<LINK REL="style sheet" TYPE="text/css" HREF="books.css" />

https://hemanthrajhemu.github.io

250 CHAPTER
t
7

Each line in a CSS sheet consists of three parts; a selector, a property, and a

value. They are syntactically arranged in the following way:

selector {property: value}

The selector is the element or tag whose format we are defining. The property

indicates the tag's attribute whose value we want to set in the style sheet, and

the property is the actual value of the attribute. As an example, consider the

first line of the example style sheet shown in Figure 7.13:

BODY {BACKGROUND-COLOR: yellow}

This line has the same effect as changing the HTML code to the following:

<BODY BACKGROUND-COLOR=" yellow" >.

The value should always be quoted, as it could consist of several words. More

than one property for the same selector can be separated by semicolons as

shown in the last line of the example in Figure 7.13:

P {MARGIN-LEFT: 50px; COLOR: red}

Cascading style sheets have an extensive syntax; the bibliographic notes at the

end of the chapter point to books and online resources on CSSs.

XSL

XSL is a language for expressing style sheets. An XSL style sheet is, like CSS,

a file that describes how to display an XML document of a given type. XSL

shares the functionality of CSS and is compatible with it (although it uses a

different syntax).

The capabilities of XSL vastly exceed the functionality of CSS. XSL contains

the XSL Transformation language, or XSLT, a language that allows 11S to

transform the input XML document into a XML document with another struc-

ture. For example, with XSLT we can change the order of elements that we are

displaying (e.g.; by sorting them), process elements more than once, suppress

elements in one place and present them in another, and add generated text to

the presentation.

XSL also contains the XML Path Language (XPath), a language that

allows us to refer to parts of an XML document. We discuss XPath in Section

https://hemanthrajhemu.github.io

Inte1~net Applications 251

27. XSL also contains XSL Formatting Object, a way of formatting the output

of an XSL transformation.

7.7 THE MIDDLE TIER

In this section, we discuss technologies for the middle tier. The first gen-

eration of middle-tier applications were stand-alone programs written in a

general-purpose programming language such as C, C++, and Perl. Program-

mers quickly realized that interaction with a stand-alone application was quite

costly; the overheads include starting the application every time it is invoked

and switching processes between the webserver and the application. Therefore,

such interactions do not scale to large numbers of concurrent users. This led

to the development of the application server, which provides the run-time

environment for several technologies that can be used to program middle-tier

application components. Most of today's large-scale websites use an application

server to run application code at the middle tier.

Our coverage of technologies for the middle tier mirrors this evolution. We

start in Section 7.7.1 with the Common Gateway Interface, a protocol that is

used to transmit arguments from HTML forms to application programs run-

ning at the middle tier. We introduce application servers in Section 7.7.2. We

then describe technologies for writing application logic at the middle tier: Java

servlets (Section 7.7.3) and Java Server Pages (Section 7.7.4). Another impor-

tant functionality is the maintenance of state in the middle tier component of

the application as the client component goes through a series of steps to com-

plete a transaction (for example, the purchase of a market basket of items or

the reservation of a flight). In Section 7.7.5, we discuss Cookies, one approach

to maintaining state.

7.7.1 CGI: The Common Gateway Interface

The Common Gateway Interface connects HTML forms with application pro-

grams. It is a protocol that defines how arguments from forms are passed to

programs at the server side. We do not go into the details of the actual CGI

protocol since libraries enable application programs to get arguments from the

HTML fonn; we shortly see an example in a CGI program. Programs that

communicate with the webserver via CGI are often called CGI scripts, since

many such application programs were written in a scripting language such Ike.;

Perl.

As an example of a program that interfaces with an HTML form via CGI,

consider the sample page shown in Figure 7.14. This webpage contains a form

where a user can fill in the name of an author. If the user presses the 'Send

https://hemanthrajhemu.github.io

252 CHAPTER, 7

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>

<BODY>

<FORM ACTION="find_books.cgi II METHOD=POST>

Type an author name:

<INPUT TYPE="text II NAME=lauthorName"

SIZE=30 MAXLENGTH=50>

<INPUT TYPE="submi til value="Send it">

<INPUT TYPE=lreset" VALUE="Clear form II >

</FORM>

</BODY></HTML>

Figure 7.14 A Sample 'Neb Page Where Form Input Is Sent to a CGI Script

it' button, the Perl script 'findBooks.cgi' shown in Figure 7.14 is executed as

a separate process. The CGl protocol defines how the communication between

the form and the script is performed. Figure 7.15 illustrates the processes

created when using the CGl protocol.

Figure 7.16 shows the example CGl script, written in Perl. We omit error-

checking code for simplicity. Perl is· an interpreted language that is often used

for CGl scripting and many Perl libraries, called modules, provide high-level

interfaces to the CGl protocol. \Ve use one such library, called the DBI li-

brary, in our example. The CGI module is a convenient collection of functions

for creating CGl scripts. In part 1 of the sample script, we extract the argument

of the HTML form that is passed along from the client as follows:

$authorName = $dataln- >paramCauthorName');

Note that the parameter name authorName wa.s used in the form in Figure

7.14 to name the first input field. Conveniently, the CGl protocol abstracts the

actual implementation of how the webpage is returned to the Web browser; the

webpage consists simply of the output of our program, and we start assembling

the output HTML page in part 2. Everything the script writes in print-

statements is part of the dynamically constructed webpage returned to the

browser. \Ve finish in part 3 by appending the closing format tags to the

resulting page.

7.7.2 Application Servers

Application logic can be enforced through server-side programs that are in-

voked using the CGl protocol. However, since each page request results in the

creation of a new process, this solution does not scale well to a large number

of simultaneous requests. This performance problem led to the development of

https://hemanthrajhemu.github.io

InteTnet Applications 253

DBMS

c++
Application

I HTTP i -l
Web Browser r- ~ Web Server I

//(G
(c~~-p-ro-c-'e-s-s -l--~

CGI~ - JDBC I
• • • CGI Process 2 'I

L..-- ---'

Figure 7.15 Process Structure with eGI Scripts

#!/usr/bin/perl

use CGI;

part 1

$dataln = new CGI;

$dataln-l,headerO;

$authorName = $dataln-l,param('authorName');

part 2

print (II<HTML><TITLE>Argument passing test</TITLE> II) ;

print (II The user passed the following argument: II) ;

print (lI authorName: ", $authorName);

part 3

print ("</HTML>");

exit;

Figure 7.16 A Simple Perl Script

specialized programs called application servers. An application server main-

tains a pool of threads or processes and uses these to execute requests. Thus,

it avoids the startup cost of creating a new process for each request.

Application servers have evolved into flexible middle-tier packages that pro-

vide many functions in addition to eliminating the process-creation overhead.

They facilitate concurrent access to several heterogeneous data sources (e.g., by

providing JDBC drivers), and provide session management services. Often,

business processes involve several steps. Users expect the system to maintain

continuity during such a multistep session. Several session identifiers such as

cookies, URI extensions, and hidden fields in HTML forms can be used to

identify a session. Application servers provide functionality to detect when a

session starts and ends and keep track of the sessions of individual users. They

https://hemanthrajhemu.github.io

254

Web Browser

DOD
DO ••• :

I

Pool of servlets I
--~-----~-~_

JDBC

JDBC/ODBC

CHAPTER" 7

c++
Application

JavaBeans
Application

DBMS I

DBMS 2

Figure 7.17 Process Structure in the Application Server Architecture

also help to ensure secure database access by supporting a general user-id mech-

anism. (For more on security, see Chapter 21.)

A possible architecture for a website with an application server is shown in Fig-

ure 7.17. The client (a Web browser) interacts with the webserver through the

HTTP protocol. The webserver delivers static HTML or XML pages directly

to the client. To assemble dynamic pages, the webserver sends a request to the

application server. The application server contacts one or more data sources to

retrieve necessary data or sends update requests to the data sources. After the

interaction with the data sources is completed, the application server assembles

the webpage and reports the result to the webserver, which retrieves the page

and delivers it to the client.

The execution of business logic at the webserver's site, server-side process-

ing, has become a standard model for implementing more complicated business

processes on the Internet. There are many different technologies for server-side

processing and we only mention a few in this section; the interested reader is

referred to the bibliographic notes at the end of the chapter.

7.7.3 Servlets

Java servlets are pieces of Java code that run on the middle tier, in either

webservers or application servers. There are special conventions on how to

read the input from the user request and how to write output generated by the

servlet. Servlets are truly platform-independent, and so they have become very

popular with Web developers.

Since servlets are Java programs, they are very versatile. For example, servlets

can build webpages, access databases, and maintain state. Servlets have access

https://hemanthrajhemu.github.io

InteT1Iet AIJplications

import java.io.*;

import javCLx.servlet.*;

import javax.servlet.http.*;

pUblic class ServletTemplate extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

/ / Use 'out' to send content to browser

out.println("Hello World");

}

}

Figure 7.18 Servlet Template

255
@

to all Java APls, including JDBC. All servlets must implement the Servlet

interface. In most cases, servlets extend the specific HttpServlet class for

servers that communicate with clients via HTTP. The HttpServlet class pro-

vides methods such as doGet and doPost to receive arguments from HTML

forms, and it sends its output back to the elient via HTTP. Servlets that

communicate through other protocols (such as ftp) need to extend the class

GenericServlet.

Servlets are compiled Java classes executed and maintained by a servlet con-

tainer. The servlet container manages the lifespan of individual servlets by

creating and destroying them. Although servlets can respond to any type of re-

quest, they are commonly used to extend the applications hosted by webservers.

For such applications, there is a useful library of HTTP-specific servlet classes.

Servlets usually handle requests from HTML forms and maintain state between

the client and the server. We discuss how to maintain state in Section 7.7.5.

A template of a generic servlet structure is shown in Figure 7.18. This simple

servlet just outputs the two words "Hello World," but it shows the general

structure of a full-fledged servlet. The request object is used to read HTML

form data. The response object is used to specify the HTTP response status

code and headers of the HTTP response. The object out is used to compose

the content that is returned to the client.

Recall that HTTP sends back the status line, a header, a blank line, and then

the context. Right now our servlet just returns plain text. We can extend our

servlet by setting the content type to HTML, generating HTML a,s follows:

https://hemanthrajhemu.github.io

256 CHAPTER .7

PrinfWriter out = response.get\Vriter();

String docType =
"<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 " +

"Transitional//EN"> \n";

out.println(docType +
"<HTML>\n" +

"<HEAD><TITLE>Hello 'vVWW</TITLE></HEAD>\n" +

"<BODY>\n" +

"<Hl>Hello WWW</Hl>\n" +

"</BODY></HTML>");

What happens during the life of a servlet? Several methods are called at

different stages in the development of a servlet. When a requested page is

a servlet, the webserver forwards the request to the servlet container, which

creates an instance of the servlet if necessary. At servlet creation time, the

servlet container calls the init () method, and before deallocating the servlet,

the servlet container calls the servlet's destroyO method.

When a servlet container calls a servlet because of a requested page, it starts

with the service () method, whose default behavior is to call one of the follow-

ing methods based on the HTTP transfer method: service () calls doGet 0
for a HTTP GET request, and it calls doPost () for a HTTP POST request.

This automatic dispatching allows the servlet to perform different tasks on the

request data depending on the HTTP transfer method. Usually, we do not over-

ride the service () method, unless we want to program a servlet that handles

both HTTP POST and HTTP GET requests identically.

We conclude our discussion of servlets with an example, shown in Figure 7.19,

that illustrates how to pass arguments from an HTML form to a servlet.

7.7.4 JavaServer Pages

In the previous section, we saw how to use Java programs in the middle tier

to encode application logic and dynamically generate webpages. If we needed

to generate HTML output, we wrote it to the out object. Thus, we can think

about servlets as Java code embodying application logic, with embedded HTML

for output.

JavaServer pages (.JSPs) interchange the roles of output amI application logic.

JavaServer pages are written in HTML with servlet-like code embedded in

special HT1VIL tags. Thus, in comparison to servlets, JavaServer pages are

better suited to quickly building interfaces that have some logic inside, wherea..':i

servlets are better suited for complex application logic.

https://hemanthrajhemu.github.io

Internet Applications

import java.io. *;

import javax.servlet. *;

import javax.servlet.http.*;

import java.util.*;

public class ReadUserName extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType('j textjhtml'j);

PrintWriter out = response.getWriter();

out.println("<BODY>\n" +

"<Hi ALIGN=CENTER> Username: </Hi>\n" +

"\n" +

" title: "

+ request.getParameter("userid") + "\n" +
+ request.getParameter("password'j) + "\n

j
' +

1\n" +

1</BODY></HTML>")j

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet (request, response);

}

}

Figure 7.19 Extracting the User Name and Password From a Form

257
J

https://hemanthrajhemu.github.io

258 CHAPTER,7

~ W h i l e there is a big difference for the programmer, the middle tier handles

JavaServer pages in a very simple way: They are usually compiled into a servlet,

which is then handled by a servlet container analogous to other servlets.

The code fragment in Figure 7.20 shows a simple JSP example. In the middle

of the HTML code, we access information that was passed from a form.

< !DOCTYPE HTML PUBLIC 11_/ /W3C/ /DTD HTML 4.0

Transitional//EN lI >

<HTML>

<HEAD><TITLE>Welcome to Barnes and Nobble</TITLE></HEAD>

<BODY>

<Hl>Welcome back!</Hl>

<% String name="NewUser ll ;

if (request.getParameter(lIusernamell) != null) {

name=request .getParameter (" username");

}

%>

You are logged on as user <%=name%>

<P>

Regular HTML for all the rest of the on-line store's webpage.

</BODY>

</HTML>

Figure 7.20 Reading Form Parameters in JSP

7.7.5 Maintaining State

As discussed in previous sections, there is a need to maintain a user's state

across different pages. As an example, consider a user who wants to make a

purchase at the Barnes and Nobble website. The user must first add items

into her shopping basket, which persists while she navigates through the site.

Thus, we use the notion of state mainly to remember information as the user

navigates through the site.

The HTTP protocol is stateless. We call an interaction with a webserver state-

less if no inforination is retained from one request to the next request. We call

an interaction with a webserver stateful, or we say that state is maintained,

if some memory is stored between requests to the server, and different actions

are taken depending on the contents stored.

https://hemanthrajhemu.github.io

Internet Applico,tiol/s 259
!

In our example of Barnes and Nobble, we need to maintain the shopping basket

of a user. Since state is not encapsulated in the HTTP protocol, it has to be

maintained either at the server or at the client. Since the HTTP protocol

is stateless by design, let us review the advantages and disadvantages of this

design decision. First, a stateless protocol is easy to program and use, and

it is great for applications that require just retrieval of static information. In

addition, no extra memory is used to maintain state, and thus the protocol

itself is very efficient. On the other hand, without some additional mechanism

at the presentation tier and the middle tier, we have no record of previous

requests, and we cannot program shopping baskets or user logins.

Since we cannot maintain state in the HTTP protocol, where should we mtain-

tain state? There are basically two choices. We can maintain state in the

middle tier, by storing information in the local main memory of the applica-

tion logic, or even in a database system. Alternatively, we can maintain state

on the client side by storing data in the form of a cookie. We discuss these two

ways of maintaining state in the next two sections.

Maintaining State at the Middle Tier

At the middle tier, we have several choices as to where we maintain state.

First, we could store the state at the bottom tier, in the database server. The

state survives crashes of the system, but a database access is required to query

or update the state, a potential performance bottleneck. An alternative is to

store state in main memory at the middle tier. The drawbacks are that this

information is volatile and that it might take up a lot of main memory. We

can also store state in local files at the middle tier, &s a compromise between

the first two approaches.

A rule of thumb is to use state maintenance at the middle tier or database tier

only for data that needs to persist over many different user sessions. Examples

of such data are past customer orders, click-stream data recording a user's

movement through the website, or other permanent choices that a user makes,

such as decisions about personalized site layout, types of messages the user is

willing to receive, and so on. As these examples illustrate, state information is

often centered around users who interact with the website.

Maintaining State at the Presentation Tier: Cookies

Another possibility is to store state at the presentation tier and pass it to the

middle tier with every HTTP request. We essentially work around around

the statelessness of the HTTP protocol by sending additional information with

every request. Such information is called a cookie.

https://hemanthrajhemu.github.io

260 C H A P T E ~ 7

/ / no 88L required

/ / one month lifetime

A cookie is a collection of (name, v a l ' U e) ~ ~ p a i r s that can be manipulated at

the presentation and middle tiers. Cookies are ea..''!Y to use in Java servlets

and J ava8erver Pages and provide a simple way to make non-essential data

persistent at the client. They survive several client sessions because they persist

in the browser cache even after the browser is closed.

One disadvantage of cookies is that they are often perceived as as being invasive,

and many users disable cookies in their Web browser; browsers allow users to

prevent cookies from being saved on their machines. Another disadvantage is

that the data in a cookie is currently limited to 4KB, but for most applications

this is not a bad limit.

We can use cookies to store information such as the user's shopping basket, login

information, and other non-permanent choices made in the current session.

Next, we discuss how cookies can be manipulated from servlets at the middle

tier.

The Servlet Cookie API

A cookie is stored. in a small text file at the client and. contains (name, val'l1e/­

pairs, where both name and value are strings. We create a new cookie through

the Java Cookie class in the middle tier application code:

Cookie cookie = new Cookie(II username" ,"guest");

cookie.setDomain(" www.bookstore.com ..);

cookie.set8ecure(false);

cookie.setMaxAge(60*60*24*7*31);

response.addCookie(cookie);

Let us look at each part of this code. First, we create a new Cookie object with

the specified (name, v a l ' l 1 e) ~ ~ · p a i r . Then we set attributes of the cookie; we list

some of the most common attributes below:

III setDomain and getDomain: The domain specifies the website that will

receive the cookie. The default value for this attribute is the domain that

created the cookie.

II setSecure and getSecure: If this flag is true, then the cookie is sent only

if we are llsing a secure version of the HTTP protocol, such <t,<; 88L.

III setMaxAge and getMaxAge: The MaxAge attribute determines the lifetime

of the cookie in seconds. If the value of MaxAge is less than or equal to

zero, the cookie is deleted when the browser is closed.

https://hemanthrajhemu.github.io

Inte7~net Applications 2 6 ~

• setName and getName: We did not use these functions in our code fragment;

they allow us to Ilame the cookie.

• setValue and getValue: These functions allow us to set and read the

value of the cookie.

The cookie is added to the request object within the Java servlet to be sent

to the client. Once a cookie is received from a site (www.bookstore.comin this

example), the client's Web browser appends it to all HTTP requests it sends

to this site, until the cookie expires.

We can access the contents of a cookie in the middle-tier code through the

request object getCookies 0 method, which returns an array of Cookie ob-

jects. The following code fragment reads the array and looks for the cookie

with name 'username.'

CookieD cookies = request.getCookiesO;

String theUser;

for(int i=O; i < cookies.length; i++) {

Cookie cookie = cookies[i];

if (cookie.getNameO.equals("username"))

theUser = cookie.getValueO;

}

A simple test can be used to check whether the user has turned oft' cookies:

Send a cookie to the user, and then check whether the request object that

is returned still contains the cookie. Note that a cookie should never contain

an unencrypted password or other private, unencrypted data, as the user can

easily inspect, modify, and erase any cookie at any time, including in the middle

of a session. The application logic needs to have sufficient consistency checks

to ensure that the data in the cookie is valid.

7.8 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes now moves on to the implementation of the application layer and

considers alternatives for connecting the DBMS to the World Wide Web.

DBDudes begifls by considering session management. For example, users who

log in to the site, browse the catalog, and select books to buy do not want

to re-enter their cllstomer identification numbers. Session management has to

extend to the whole process of selecting books, adding them to a shopping cart,

possibly removing books from the cart, and checking out and paying for the

books.

https://hemanthrajhemu.github.io

262 CHAPTERi 7

DBDudes then considers whether webpages for books should be static or dy-

namic. If there is a static webpage for each book, then we need an extra

database field in the Books relation that points to the location of the file.

Even though this enables special page designs for different books, it is a very

labor-intensive solution. DBDudes convinces B&N to dynamically assemble

the webpage for a book from a standard template instantiated with informa-

tion about the book in the Books relation. Thus, DBDudes do not use static

HTML pages, such as the one shown in Figure 7.1, to display the inventory.

DBDudes considers the use of XML a'S a data exchange format between the

database server and the middle tier, or the middle tier and the client tier.

Representation of the data in XML at the middle tier as shown in Figures 7.2

and 7.3 would allow easier integration of other data sources in the future, but

B&N decides that they do not anticipate a need for such integration, and so

DBDudes decide not to use XML data exchange at this time.

DBDudes designs the application logic as follows. They think that there will

be four different webpages:

• index. j sp: The home page of Barns and Nobble. This is the main entry
point for the shop. This page has search text fields and buttons that allow

the user to search by author name, ISBN, or title of the book. There is

also a link to the page that shows the shopping cart, cart. j sp.

• login. j sp: Allows registered users to log in. Here DBDudes use an

HTML form similar to the one displayed in Figure 7.11. At the middle

tier, they use a code fragment similar to the piece shown in Figure 7.19

and JavaServerPages as shown in Figure 7.20.

• search. j sp: Lists all books in the database that match the search condi-

tion specified by the user. The user can add listed items to the shopping

basket; each book ha'3 a button next to it that adds it. (If the item is

already in the shopping basket, it increments the quantity by one.) There

is also a counter that shows the total number of items currently in the

shopping basket. (DBDucles makes a note that that a quantity of five for a

single item in the shopping basket should indicate a total purcha'3c quantity

of five as well.) The search. j sp page also contains a button that directs

the user to cart. j sp.

III cart. j sp: Lists all the books currently in the shopping basket. The list-

ing should include all items in the shopping basket with the product name,

price, a text box for the quantity (which the user can use to change quanti-

ties of items), and a button to remove the item from the shopping basket.

This page has three other buttons: one button to continue shopping (which

returns the user to page index. j sp), a second button to update the shop-

https://hemanthrajhemu.github.io

Inter'net Applications

ping basket with the altered quantities from the text boxes, and a third

button to place the order, which directs the user to the page confirm.jsp.

II coni irm. j sp: Lists the complete order so far and allows the user to enter

his or her contact information or customer ID. There are two buttons on

this page: one button to cancel the order and a second button to submit

the final order. The cancel button ernpties the shopping ba.'3ket and returns

the user to the home page. The submit button updates the database with

the new order, empties the shopping basket, and returns the user to the

home page.

DBDudes also considers the use of JavaScript at the presentation tier to check

user input before it is sent to the middle tier. For example, in the page

login. j sp, DBDudes is likely to write JavaScript code similar to that shown

in Figure 7.12.

This leaves DBDudes with one final decision: how to connect applications to

the DBMS. They consider the two main alternatives presented in Section 7.7:

CGI scripts versus using an application server infrastructure. If they use CGI

scripts, they would have to encode session management logic-not an easy task.

If they use an application server, they can make use of all the functionality

that the application server provides. Therefore, they recommend that B&N

implement server-side processing using an application server.

B&N accepts the decision to use an application server, but decides that no

code should be specific to any particular application server, since B&N does

not want to lock itself into one vendor. DBDudes agrees proceeds to build the

following pieces:

III DBDudes designs top level pages that allow customers to navigate the

website as well as various search forms and result presentations.

II Assuming that DBDudes selects a Java-ba..sed application server, they have

to write Java servlets to process form-generated requests. Potentially, they

could reuse existing (possibly commercially available) JavaBeans. They

can use JDBC a." a databa.':ie interface; exarnples of JDBC code can be

found in Section 6.2. Instead of prograrnming servlets, they could resort

to Java Server Pages and annotate pages with special .JSP markup tags.

II DBDudes select an application server that uses proprietary markup tags,

but due to their arrangement with B&N, they are not allowed to use such

tags in their code.

For completeness, we remark that if DBDudes and B&N had agreed to use CGr

scripts, DBDucles would have had the following ta.sks:

https://hemanthrajhemu.github.io

264 C H A P T E R ~ 7

II Create the top level HTML pages that allow users to navigate the site and

vaTious forms that allow users to search the catalog by ISBN, author name,

or title. An example page containing a search form is shown in Figure

7.1. In addition to the input forms, DBDudes must develop appropriate

presentations for the results.

II Develop the logic to track a customer session. Relevant information must be

stored either at the server side or in the customer's browser using cookies.

II Write the scripts that process user requests. For example, a customer can

use a form called 'Search books by title' to type in a title and search for

books with that title. The CGI interface communicates with a script that

processes the request. An example of such a script written in Perl using

the DBI library for data access is shown in Figure 7.16.

Our discussion thus far covers only the customer interface, the part of the

website that is exposed to B&N's customers. DBDudes also needs to add

applications that allow the employees and the shop owner to query and access

the database and to generate summary reports of business activities.

Complete files for the case study can be found on the webpage for this book.

7.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

II What are URIs and URLs? (Section 7.2.1)

II How does the HTTP protocol work? What is a stateless protocol? (Sec-

tion 7.2.2)

II Explain the main concepts of HTML. Why is it used only for data presen-

tation and not data exchange? (Section 7.3)

II What are some shortc.ornings of HTML, and how does XML address them?

(Section 7.4)

II What are the main components of an XML document? (Section 7.4.1)

II Why do we have XML DTDs? What is a well-formed XML document?

What is a valid XML document? Give an example of an XML document

that is valid but not well-formed, and vice versa. (Section 7.4.2)

II 'What is the role of domain-specific DTDs? (Section 7.4.3)

II \Vhat is a three-tier architecture? 'What advantages does it offer over single-

tier and two-tier architectures? Give a short overview of the functionality

at each of the three tiers. (Section 7.5)

https://hemanthrajhemu.github.io

Internet Apphcat-ions 2&5

• Explain hmv three-tier architectures address each of the following issues

of databa.<;e-backed Internet applications: heterogeneity, thin clients, data

integration, scalability, software development. (Section 7.5.3)

• Write an HTML form. Describe all the components of an HTML form.

(Section 7.6.1)

• What is the difference between the HTML GET and POST methods? How

does URI encoding of an H T ~ I L form work? (Section 7.11)

• What is JavaScript used for? Write a JavaScipt function that checks

whether an HTML form element contains a syntactically valid email ad-

dress. (Section 7.6.2)

• What problem do style sheets address? What are the advantages of using

style sheets? (Section 7.6.3)

• What are Ca.5cading Style Sheets? Explain the components of Ca.<;cading

Style Sheets. What is XSL and how it is different from CSS? (Sections

7.6.3 and 7.13)

• What is CGl and what problem does it address? (Section 7.7.1)

• What are application servers and how are they different from webservers?

(Section 7.7.2)

• What are servlets? How do servlets handle data from HTML forms? Ex-
plain what happens during the lifetime of a servlet. (Section 7.7.3)

• What is the difference between servlets and JSP? When should we use

servlets and when should we use JSP? (Section 7.7.4)

• Why do we need to maintain state at the middle tier? What are cookies?

How does a browser handle cookies? How can we access the data in cookies

from servlets? (Section 7.7.5)

EXERCISES

Exercise 7.1 Briefly answer the following questions:

1. Explain the following terms and describe what they are used for: HTML, URL, XML,

Java, JSP, XSL, XSLT, servlet, cookie, HTTP, ess, DTD.

2. What is eGl? Why was eGI introduced? What are the disadvantages of an architecture

using eel scripts?

3. \Vhat is the difference between a webserver and an application server? What fUl1cionality

do typical application servers provide?

4. When is an XML document well-formed? When is an XML document valid?

Exercise 7.2 Briefly answer the following questions about the HTTP protocol:

https://hemanthrajhemu.github.io

266 CHAPTER$ 7

1. \Nhat is a communication protocol?

2. "What is the structure of an HTTP request message? What is the structure of an HTTP

response message? \Vhy do HTTP messages carry a version field?

3. vVhat is a stateless protocol? "Why was HTTP designed to be stateless?

4. Show the HTTP request message generated when you request the home page of this

book (http://TNWW . cs. wisc. edur dbbook). Show the HTTP response message that the

server generates for that page.

Exercise 7.3 In this exercise, you are asked to write the functionality of a generic shopping

basket; you will use this in several subsequent project exercises. Write a set of JSP pages that

displays a shopping basket of items and allows users to add, remove, and change the quantity

of items. To do this, use a cookie storage scheme that stores the following information:

• The UserId of the user who owns the shopping basket.

• The number of products stored in the shopping basket.

I! A product id and a quantity for each product.

When manipulating cookies, remember to set the Expires property such that the cookie can

persist for a session or indefinitely. Experiment with cookies using JSP and make sure you

know how to retrieve, set values, and delete the cookie.

You need to create five JSP pages to make your prototype complete:

.. Index Page (index. j sp): This is the main entry point. It has a link that directs the

user to the Products page so they can start shopping.

I! Products Page (products. j sp): Shows a listing of all products in the database with

their descriptions and prices. This is the main page where the user fills out the shopping

basket. Each listed product should have a button next to it, which adds it to the shopping

basket. (If the item is already in the shopping basket, it increments the quantity by

one.) There should also be a counter to show the total number of items currently in the

shopping basket. Note that if a user has a quantity of five of a single item in the shopping

basket, the counter should indicate a total quantity of five. The page also contains a

button that directs the user to the Cart page.

I! Cart Page (cart. jsp): Shows a listing of all items in the shopping basket cookie. The

listing for each item should include the product name, price, a text box for the quantity

(the user can changc the quantity of items here), and a button to remove the item from

the shopping basket. This page has three other buttons: one button to continue shopping

(which returns the user to the Products page), a second button to update the cookie

with the altered quantities from the text boxes, and a third button to place or confirm

the order, which directs the user to the Confirm page.

I! Confirm Pl;tge (confirm. j sp) : List.s the final order. There are two but.tons on this

page. One button cancels t.he order and the other submits the completed order. The

cancel button just deletes the cookie and returns the lIser to the Index page. The submit

button updates the database with the new order, delet.es the cookie, and returns the lIser

to the Index page.

Exercise 7.4 In the previous exercise, replace the page products. jsp with the follmving

search page search. j sp. 'T'his page allows users to search products by name or descrip-

tion. There should be both a text box for the search text and radio buttons to allow the

https://hemanthrajhemu.github.io

Internet Applications 2@7

user to choose between search-by-name and search-by-description (as \vell as a submit but-

ton to retrieve the results), The page that handles search results should be modeled after

products.jsp (as described in the previous exercise) and be called products.jsp. It should

retrieve all records where the search text is a substring of the name or description (as chosen

by the user). To integrate this with the previous exercise, simply replace all the links to

products. j sp with search. j sp.

Exercise 7.5 'Write a simple authentication mechanism (without using encrypted transfer of

passwords, for simplicity). We say a user is authenticated if she has provided a valid username-

password combination to the system; otherwise, we say the user is not authenticated. Assume

for simplicity that you have a database schema that stores only a customer id and a password:

Passwords(cid: integer, username: string, password: string)

1. How and where are you going to track when a user is 'logged on' to the system?

2. Design a page that allows a registered user to log on to the system.

3. Design a page header that checks whether the user visiting this page is logged in.

Exercise 7.6 (Due to Jeff Derstadt) TechnoBooks.com is in the process of reorganizing its

website. A major issue is how to efficiently handle a large number of search results. In a

human interaction study, it found that modem users typically like to view 20 search results at

a time, and it would like to program this logic into the system. Queries that return batches of

sorted results are called top N queries. (See Section 25.5 for a discussion of database support

for top N queries.) For example, results 1-20 are returned, then results 2 1 ~ 4 0 , then 41-60,

and so OIl. Different techniques are used for performing top N queries and TechnoBooks.com

would like you to implement two of them.

Infrastructure: Create a database with a table called Books and populate it with some

books, using the format that follows. This gives you III books in your database with a title

of AAA, BBB, CCC, DDD, or EEE, but the keys are not sequential for books with the same

title.

Books(bookid: INTEGER, title: CHAR(80), author: CHAR(80), price: REAL)

For i = 1 to 111 {

Insert the tuple (i, "AAA", "AAA Author", 5.99)

i=i+l
Insert the tuple (i, "BBB", "BBB Author", 5.99)

i = i + 1

Insert the tuple (i, "CCC", "CCC Author", 5.99)

i=i+1

Insert the tuple (i, "DDD", "DDD Author", 5.99)

1=i+l
Insert the tuple (i, "EEE", "EEE Author", 5.99)

Placeholder Technique: The simplest approach to top N queries is to store a placeholder

for the first and last result tuples, and then perform the same query. When the new query

results are returned, you can iterate to the placeholders and return the previous or next 20

results.

https://hemanthrajhemu.github.io

268

I Tuples Shown Lower Placeholder Previous Set Upper Placeholder Next Set I
1-20 1 None 20

"-
21-40

21-40 21 1-20 40 41-60

41-60 41 21-40 60 61-80

Write a webpage in JSP that displays the contents of the Books table, sorted by the Title and

BookId, and showing the results 20 at a time. There should be a link (where appropriate) to

get the previous 20 results or the next 20 results. To do this, you can encode the placeholders

in the Previous or Next Links as follows. Assume that you are displaying records 21-40. Then

the previous link is display. j sp?lower=21 and the next link is display. j sp?upper=40.

You should not display a previous link when there are no previous results; nor should you

show a Next link if there are no more results. When your page is called again to get another

batch of results, you can perform the same query to get all the records, iterate through the

result set until you are at the proper starting point, then display 20 more results.

What are the advantages and disadvantages of this technique?

Query Constraints Technique: A second technique for performing top N queries is to

push boundary constraints into the query (in the WHERE clause) so that the query returns only

results that have not yet been displayed. Although this changes the query, fewer results are

returned and it saves the cost of iterating up to the boundary. For example, consider the

following table, sorted by (title, primary key).

I Batch I Result Number Title I Primary Key

1 1 AAA 105

1 2 BBB 13

1 3 eee 48

1 4 DDD 52

1 5 DDD 101

2 6 DDD 121

2 7 EEE 19

2 8 EEE 68

2 9 FFF 2

2 10 FFF 33

FFF
. " ~

: ~ 11 58

3 12 FFF 59

3 13 GGG 93

3 14 EHH 132

3 15 HHH 135

In batch 1, rows 1 t.hrough 5 are displayed, in batch 2 rows 6 through 10 are displayed, and so

on. Using the placeholder technique, all 15 results would be returned for each batch. Using

the constraint technique, batch 1 displays results 1-5 but returns results 1-15, batch 2 will

display results 6-10 but returns only results 6-15, and batch : ~ will display results 11-15 but

return only results 11-15.

https://hemanthrajhemu.github.io

Internet Applications 299

The constraint can be pushed into the query because of the sorting of this table. Consider

the following query for batch 2 (displaying results 6-10):

EXEC SQL SELECT B.Title

FROM Books B

WHERE (B.Title = 'DDD' AND B.BookId > 101) OR (B.Title > 'DDD')

ORDER BY B.Title, B.Bookld

This query first selects all books with the title 'DDD,' but with a primary key that is greater

than that of record 5 (record 5 has a primary key of 101). This returns record 6. Also, any

book that has a title after 'DDD' alphabetically is returned. You can then display the first

five results.

The following information needs to be retained to have Previous and Next buttons that return

more results:

• Previous: The title of the first record in the previous set, and the primary key of the

first record in the previous set.

• Next: The title of the first record in the next set; the primary key of the first record in

the next set.

These four pieces of information can be encoded into the Previous and Next buttons as in the

previous part. Using your database table from the first part, write a JavaServer Page that

displays the book information 20 records at a time. The page should include Previous and

Next buttons to show the previous or next record set if there is one. Use the constraint query

to get the Previous and Next record sets.

P R O J E C T ~ B A S E D EXERCISES

In this chapter, you continue the exercises from the previous chapter and create the parts of

the application that reside at the middle tier and at the presentation tier. More information

about these exercises and material for more exercises can be found online at

h t t p : / / ~ . c s . w i s c . e d u / - d b b o o k

Exercise 7.7 Recall the Notown Records website that you worked on in Exercise 6.6. Next,

you are asked to develop the actual pages for the Notown Records website. Design the part

of the website that involves the presentation tier and the middle tier, and integrate the code

that you wrote in Exercise 6.6 to access the database.

I. Describe in detail the set of webpages that users can access. Keep the following issues

in mind:

• All users start at a common page.

• For each action, what input does the user provide? How will the user provide it -by

clicking on a link or through an HTML form?

• What sequence of steps does a user go through to purchase a record? Describe the

high-level application flow by showing how each lIser action is handled.

https://hemanthrajhemu.github.io

270 CHAPTER .,7

2. vVrite the webpages in HTML without dynamic content.

3. vVrite a page that allows users to log on to the site. Use cookies to store the information

permanently at the user's browser.

4. Augment the log-on page with JavaScript code that checks that the username consists

only of the characters from a to z.

5. Augment the pages that allow users to store items in a shopping basket with a condition

that checks whether the user has logged on to the site. If the user has not yet logged on,

there should be no way to add items to the shopping cart. Implement this functionality

using JSP by checking cookie information from the user.

6. Create the remaining pages to finish the website.

Exercise 7.8 Recall the online pharmacy project that you worked on in Exercise 6.7 in

Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and

presentation layer and finish the website.

Exercise 7.9 Recall the university database project that you worked on in Exercise 6.8 in

Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and

presentation layer and finish the website.

Exercise 7.10 Recall the airline reservation project that you worked on in Exercise 6.9 in

Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and

presentation layer and finish the website.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found at the website

of the World Wide Web Consortium (www. w3. org). It contains links to information about

I-ITML, cascading style sheets, XIvIL, XSL, and much more. The book by Hall is a gen-

eral introduction to Web progn1.111ming technologies [357]; a good starting point on the Web

is www.Webdeve1oper.com. There are many introductory books on CGI progranuning, for

example [210, 198]. The JavaSoft (java. sun. com) home page is a good starting point for

Servlets, .JSP, and all other Java-related technologies. The book by Hunter [394] is a good

introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a comparable

tedmology to .lSI'. l'vIore information about ASP can be found on the Microsoft Developer's

Network horne page (msdn. microsoft. com).

There are excellent websites devoted to the advancement of XML, for example 1.l1-iTW. xm1. com

and www.ibm.com/xm1. that also contain a plethora of links with information about the other

standards. There are good introductory books on many diflerent aspects of XML, for exarnple

[195, 158,597,474, :381, 320]. Information about UNICODE can be found on its home page

http://www.unicode.org.

Inforrnation about .lavaServer Pages ane! servlets can be found on the JavaSoft home page at

java. sun. com at java. sun. com/products/j sp and at java. sun. com/products/servlet.

https://hemanthrajhemu.github.io

