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14
Basics of Functional 

Dependencies and Normalization 
for Relational Databases

In Chapters 5 through 8, we presented various aspects 
of the relational model and the languages associated 

with it. Each relation schema consists of a number of attributes, and the relational 
database schema consists of a number of relation schemas. So far, we have assumed 
that attributes are grouped to form a relation schema by using the common sense of 
the database designer or by mapping a database schema design from a conceptual 
data model such as the ER or enhanced-ER (EER) data model. These models make 
the designer identify entity types and relationship types and their respective attri-
butes, which leads to a natural and logical grouping of the attributes into relations 
when the mapping procedures discussed in Chapter 9 are followed. However, we 
still need some formal way of analyzing why one grouping of attributes into a rela-
tion schema may be better than another. While discussing database design in 
 Chapters 3, 4, and 9, we did not develop any measure of appropriateness or  goodness 
to measure the quality of the design, other than the intuition of the designer. In this 
chapter we discuss some of the theory that has been developed with the goal of 
evaluating relational schemas for design quality—that is, to measure formally why 
one set of groupings of attributes into relation schemas is better than another.

There are two levels at which we can discuss the goodness of relation schemas. The 
first is the logical (or conceptual) level—how users interpret the relation schemas 
and the meaning of their attributes. Having good relation schemas at this level 
enables users to understand clearly the meaning of the data in the relations, and 
hence to formulate their queries correctly. The second is the implementation (or 
physical storage) level—how the tuples in a base relation are stored and updated. 

chapter 14
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460 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

This level applies only to schemas of base relations—which will be physically stored 
as files—whereas at the logical level we are interested in schemas of both base rela-
tions and views (virtual relations). The relational database design theory developed 
in this chapter applies mainly to base relations, although some criteria of appropri-
ateness also apply to views, as shown in Section 14.1.

As with many design problems, database design may be performed using two 
approaches: bottom-up or top-down. A bottom-up design methodology (also called 
design by synthesis) considers the basic relationships among individual attributes as 
the starting point and uses those to construct relation schemas. This approach is not 
very popular in practice1 because it suffers from the problem of having to collect a 
large number of binary relationships among attributes as the starting point. For prac-
tical situations, it is next to impossible to capture binary relationships among all such 
pairs of attributes. In contrast, a top-down design methodology (also called design by 
analysis) starts with a number of groupings of attributes into relations that exist 
together naturally, for example, on an invoice, a form, or a report. The relations are 
then analyzed individually and collectively, leading to further decomposition until all 
desirable properties are met. The theory described in this chapter is applicable pri-
marily to the top-down design approach, and as such is more appropriate when per-
forming design of databases by analysis and decomposition of sets of attributes that 
appear together in files, in reports, and on forms in real-life situations.

Relational database design ultimately produces a set of relations. The implicit goals 
of the design activity are information preservation and minimum redundancy. 
Information is very hard to quantify—hence we consider information preservation 
in terms of maintaining all concepts, including attribute types, entity types, and 
relationship types as well as generalization/specialization relationships, which are 
described using a model such as the EER model. Thus, the relational design must 
preserve all of these concepts, which are originally captured in the conceptual 
design after the conceptual to logical design mapping. Minimizing redundancy 
implies minimizing redundant storage of the same information and reducing the 
need for multiple updates to maintain consistency across multiple copies of the 
same information in response to real-world events that require making an update.

We start this chapter by informally discussing some criteria for good and bad rela-
tion schemas in Section 14.1. In Section 14.2, we define the concept of functional 
dependency, a formal constraint among attributes that is the main tool for formally 
measuring the appropriateness of attribute groupings into relation schemas. In Sec-
tion 14.3, we discuss normal forms and the process of normalization using func-
tional dependencies. Successive normal forms are defined to meet a set of desirable 
constraints expressed using primary keys and functional dependencies. The normal-
ization procedure consists of applying a series of tests to relations to meet these 
increasingly stringent requirements and decompose the relations when necessary. In 
Section 14.4, we discuss more general definitions of normal forms that can be directly 

1An exception in which this approach is used in practice is based on a model called the binary relational 

model. An example is the NIAM methodology (Verheijen and VanBekkum, 1982).
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 14.1 Informal Design Guidelines for Relation Schemas  461

applied to any given design and do not require step-by-step analysis and normaliza-
tion. Sections 14.5 to 14.7 discuss further normal forms up to the fifth normal form. 
In Section 14.6 we introduce the multivalued dependency (MVD), followed by the 
join dependency (JD) in Section 14.7. Section 14.8 summarizes the chapter.

Chapter 15 continues the development of the theory related to the design of good 
relational schemas. We discuss desirable properties of relational decomposition—
nonadditive join property and functional dependency preservation property. A 
general algorithm that tests whether or not a decomposition has the nonadditive 
(or lossless) join property (Algorithm 15.3 is also presented). We then discuss prop-
erties of functional dependencies and the concept of a minimal cover of dependen-
cies. We consider the bottom-up approach to database design consisting of a set of 
algorithms to design relations in a desired normal form. These algorithms assume 
as input a given set of functional dependencies and achieve a relational design in a 
target normal form while adhering to the above desirable properties. In Chapter 15 
we also define additional types of dependencies that further enhance the evaluation 
of the goodness of relation schemas.

If Chapter 15 is not covered in a course, we recommend a quick introduction to the 
desirable properties of decomposition from Section 15.2. and the importance of the 
non-additive join property during decomposition.

14.1  Informal Design Guidelines  
for Relation Schemas

Before discussing the formal theory of relational database design, we discuss four 
informal guidelines that may be used as measures to determine the quality of relation 
schema design:

 ■ Making sure that the semantics of the attributes is clear in the schema

 ■ Reducing the redundant information in tuples

 ■ Reducing the NULL values in tuples

 ■ Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another, as we will see.

14.1.1 Imparting Clear Semantics to Attributes in Relations
Whenever we group attributes to form a relation schema, we assume that attri-
butes belonging to one relation have certain real-world meaning and a proper 
interpretation associated with them. The semantics of a relation refers to its mean-
ing resulting from the interpretation of attribute values in a tuple. In Chapter 5 we 
discussed how a relation can be interpreted as a set of facts. If the conceptual 
design described in Chapters 3 and 4 is done carefully and the mapping procedure 
in Chapter 9 is followed systematically, the relational schema design should have a 
clear meaning.
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462 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

In general, the easier it is to explain the semantics of the relation—or in other words, 
what a relation exactly means and stands for—the better the relation schema design 
will be. To illustrate this, consider Figure 14.1, a simplified version of the COMPANY 
relational database schema in Figure 5.5, and Figure 14.2, which presents an example 
of populated relation states of this schema. The meaning of the EMPLOYEE relation 
schema is simple: Each tuple represents an employee, with values for the employee’s 
name (Ename), Social Security number (Ssn), birth date (Bdate), and address 
(Address), and the number of the department that the employee works for (Dnumber). 
The Dnumber attribute is a foreign key that represents an implicit relationship between 
EMPLOYEE and DEPARTMENT. The semantics of the DEPARTMENT and PROJECT 
schemas are also straightforward: Each DEPARTMENT tuple represents a department 
entity, and each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of 
DEPARTMENT relates a department to the employee who is its manager, whereas 
Dnum of PROJECT relates a project to its controlling department; both are foreign key 
attributes. The ease with which the meaning of a relation’s attributes can be explained 
is an informal measure of how well the relation is designed.

DEPARTMENT

DnumberDname

Ename Bdate Address Dnumber

EMPLOYEE

P.K.

P.K.

F.K.

Pname Pnumber Plocation Dnum

PROJECT F.K.

F.K.

DEPT_LOCATIONS

Dnumber Dlocation

P.K.

P.K.

Pnumber Hours

WORKS_ON
F.K. F.K.

P.K.

F.K.

Ssn

Dmgr_ssn

Ssn

Figure 14.1 
A simplified COMPANY relational 
database schema.
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 14.1 Informal Design Guidelines for Relation Schemas  463

Ename

EMPLOYEE

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.
Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321
666884444

987987987

888665555

666884444

123456789

123456789

333445555

453453453
453453453

333445555

333445555
333445555

999887777

987987987

999887777
987987987

987654321

987654321
888665555

3

1

2

2

1
2

3

10

20

10

30
10

30

30

20

20

40.0

32.5

7.5

10.0

20.0
20.0

10.0

10.0

10.0

35.0

30.0
10.0

5.0

20.0

15.0

Null

1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20
1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Dnumber

Dname

DEPARTMENT

Research

Administration

Headquarters 888665555

333445555

987654321

Dnumber

5

1

4

DEPT_LOCATIONS

1

4

5

Dnumber

Houston

Dlocation

Bellaire

Stafford

Houston

Sugarland

5

5

PROJECT

ProductX

ProductY

ProductZ

Pname

1

Pnumber Plocation Dnum

3

2

20

10

Reorganization

30

5

5

5

1

4

4

Bellaire

Houston

Sugarland

Houston

Stafford

StaffordNewbenefits

Computerization

WORKS_ON

Pnumber Hours

Ssn

Dmgr_ssn

Ssn

Figure 14.2 
Sample database state for the relational database schema in Figure 14.1.
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464 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

The semantics of the other two relation schemas in Figure 14.1 are slightly more 
complex. Each tuple in DEPT_LOCATIONS gives a department number (Dnumber) 
and one of the locations of the department (Dlocation). Each tuple in WORKS_ON 
gives an employee Social Security number (Ssn), the project number of one of the 
projects that the employee works on (Pnumber), and the number of hours per week 
that the employee works on that project (Hours). However, both schemas have a 
well-defined and unambiguous interpretation. The schema DEPT_LOCATIONS rep-
resents a multivalued attribute of DEPARTMENT, whereas WORKS_ON represents 
an M:N relationship between EMPLOYEE and PROJECT. Hence, all the relation 
schemas in Figure 14.1 may be considered as easy to explain and therefore good 
from the standpoint of having clear semantics. We can thus formulate the following 
informal design guideline.

Guideline 1. Design a relation schema so that it is easy to explain its meaning. Do 
not combine attributes from multiple entity types and relationship types into a sin-
gle relation. Intuitively, if a relation schema corresponds to one entity type or one 
relationship type, it is straightforward to explain its meaning. Otherwise, if the rela-
tion corresponds to a mixture of multiple entities and relationships, semantic ambi-
guities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1. The relation schemas in Figures 14.3(a)  
and 14.3(b) also have clear semantics. (The reader should ignore the lines under the 
relations for now; they are used to illustrate functional dependency notation, dis-
cussed in Section 14.2.) A tuple in the EMP_DEPT relation schema in Figure 14.3(a) 
represents a single employee but includes, along with the Dnumber (the identifier 
for the department he/she works for), additional information—namely, the  
name (Dname) of the department for which the employee works and the Social 
Security number (Dmgr_ssn) of the department manager. For the EMP_PROJ rela-
tion in Figure 14.3(b), each tuple relates an employee to a project but also includes 

Ssn

EMP_PROJ

(b)

(a)

FD1

FD2

FD3

Pnumber Hours Ename Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Figure 14.3 
Two relation schemas 
suffering from update 
anomalies.  
(a) EMP_DEPT and  
(b) EMP_PROJ.
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 14.1 Informal Design Guidelines for Relation Schemas  465

the employee name (Ename), project name (Pname), and project location (Plocation). 
Although there is nothing wrong logically with these two relations, they violate 
Guideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixes 
attributes of employees and departments, and EMP_PROJ mixes attributes of 
employees and projects and the WORKS_ON relationship. Hence, they fare poorly 
against the above measure of design quality. They may be used as views, but they 
cause problems when used as base relations, as we discuss in the following section.

14.1.2 Redundant Information in Tuples and Update Anomalies
One goal of schema design is to minimize the storage space used by the base rela-
tions (and hence the corresponding files). Grouping attributes into relation sche-
mas has a significant effect on storage space. For example, compare the space used 
by the two base relations EMPLOYEE and DEPARTMENT in Figure 14.2 with that 
for an EMP_DEPT base relation in Figure 14.4, which is the result of applying the 
NATURAL JOIN operation to EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attri-
bute values pertaining to a particular department (Dnumber, Dname, Dmgr_ssn) are 
repeated for every employee who works for that department. In contrast, each depart-
ment’s information appears only once in the DEPARTMENT relation in Figure 14.2. 
Only the department number (Dnumber) is repeated in the EMPLOYEE relation for 
each employee who works in that department as a foreign key. Similar comments 
apply to the EMP_PROJ relation (see Figure 14.4), which augments the WORKS_ON 
relation with additional attributes from EMPLOYEE and PROJECT.

Storing natural joins of base relations leads to an additional problem referred to as 
update anomalies. These can be classified into insertion anomalies, deletion anom-
alies, and modification anomalies.2

Insertion Anomalies. Insertion anomalies can be differentiated into two types, 
illustrated by the following examples based on the EMP_DEPT relation:

 ■ To insert a new employee tuple into EMP_DEPT, we must include either the 
attribute values for the department that the employee works for, or NULLs (if 
the employee does not work for a department as yet). For example, to insert 
a new tuple for an employee who works in department number 5, we must 
enter all the attribute values of department 5 correctly so that they are con-
sistent with the corresponding values for department 5 in other tuples in 
EMP_DEPT. In the design of Figure 14.2, we do not have to worry about this 
consistency problem because we enter only the department number in the 
employee tuple; all other attribute values of department 5 are recorded only 
once in the database, as a single tuple in the DEPARTMENT relation.

 ■ It is difficult to insert a new department that has no employees as yet in the 
EMP_DEPT relation. The only way to do this is to place NULL values in the 

2These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, as 
we shall discuss in Section 15.3.

https://hemanthrajhemu.github.io



466 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

attributes for employee. This violates the entity integrity for EMP_DEPT 
because its primary key Ssn cannot be null. Moreover, when the first 
employee is assigned to that department, we do not need this tuple with 
NULL values anymore. This problem does not occur in the design of Fig- 
ure 14.2 because a department is entered in the DEPARTMENT relation whether 
or not any employees work for it, and whenever an employee is assigned to 
that department, a corresponding tuple is inserted in EMPLOYEE.

Ename

EMP_DEPT

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 FireOak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnumber Dname Dmgr_ssn

Ssn

EMP_PROJ

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

Null

Hours

Narayan, Ramesh K.

Smith, John B.

Smith, John B.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

English, Joyce A.

English, Joyce A.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Wallace, Jennifer S.

Borg, James E.

Ename

ProductZ

ProductX

ProductY

ProductY

ProductZ

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Pname Plocation

Computerization

Redundancy Redundancy

Redundancy

Figure 14.4 
Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations  
in Figure 14.2. These may be stored as base relations for performance reasons.
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 14.1 Informal Design Guidelines for Relation Schemas  467

Deletion Anomalies. The problem of deletion anomalies is related to the second 
insertion anomaly situation just discussed. If we delete from EMP_DEPT an employee 
tuple that happens to represent the last employee working for a particular depart-
ment, the information concerning that department is lost inadvertently from the 
database. This problem does not occur in the database of Figure 14.2 because 
DEPARTMENT tuples are stored separately.

Modification Anomalies. In EMP_DEPT, if we change the value of one of the attri-
butes of a particular department—say, the manager of department 5—we must 
update the tuples of all employees who work in that department; otherwise, the 
database will become inconsistent. If we fail to update some tuples, the same depart-
ment will be shown to have two different values for manager in different employee 
tuples, which would be wrong.3

It is easy to see that these three anomalies are undesirable and cause difficulties to 
maintain consistency of data as well as require unnecessary updates that can be 
avoided; hence, we can state the next guideline as follows.

Guideline 2. Design the base relation schemas so that no insertion, deletion, or 
modification anomalies are present in the relations. If any anomalies are present,4 

note them clearly and make sure that the programs that update the database will 
operate correctly.

The second guideline is consistent with and, in a way, a restatement of the first 
guideline. We can also see the need for a more formal approach to evaluating 
whether a design meets these guidelines. Sections 14.2 through 14.4 provide these 
needed formal concepts. It is important to note that these guidelines may some-
times have to be violated in order to improve the performance of certain queries. If 
EMP_DEPT is used as a stored relation (known otherwise as a materialized view) in 
addition to the base relations of EMPLOYEE and DEPARTMENT, the anomalies in 
EMP_DEPT must be noted and accounted for (for example, by using triggers or 
stored procedures that would make automatic updates). This way, whenever the 
base relation is updated, we do not end up with inconsistencies. In general, it is 
advisable to use anomaly-free base relations and to specify views that include the 
joins for placing together the attributes frequently referenced in important queries.

14.1.3 NULL Values in Tuples
In some schema designs we may group many attributes together into a “fat” rela-
tion. If many of the attributes do not apply to all tuples in the relation, we end up 
with many NULLs in those tuples. This can waste space at the storage level and may 
also lead to problems with understanding the meaning of the attributes and with 

3This is not as serious as the other problems, because all tuples can be updated by a single SQL query.

4Other application considerations may dictate and make certain anomalies unavoidable. For example, the 
EMP_DEPT relation may correspond to a query or a report that is frequently required.
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468 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

specifying JOIN operations at the logical level.5 Another problem with NULLs is how 
to account for them when aggregate operations such as COUNT or SUM are applied. 
SELECT and JOIN operations involve comparisons; if NULL values are present, the 
results may become unpredictable.6 Moreover, NULLs can have multiple interpreta-
tions, such as the following:

 ■ The attribute does not apply to this tuple. For example, Visa_status may not 
apply to U.S. students.

 ■ The attribute value for this tuple is unknown. For example, the Date_of_birth 
may be unknown for an employee.

 ■ The value is known but absent; that is, it has not been recorded yet. For 
example, the Home_Phone_Number for an employee may exist, but may not 
be available and recorded yet.

Having the same representation for all NULLs compromises the different meanings 
they may have. Therefore, we state another guideline.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose 
values may frequently be NULL. If NULLs are unavoidable, make sure that they apply 
in exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins with NULL values are the two overriding 
criteria that determine whether to include the columns that may have NULLs in a 
relation or to have a separate relation for those columns (with the appropriate key 
columns). For example, if only 15% of employees have individual offices, there is 
little justification for including an attribute Office_number in the EMPLOYEE rela-
tion; rather, a relation EMP_OFFICES(Essn, Office_number) can be created to include 
tuples for only the employees with individual offices.

14.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.5(a), 
which can be used instead of the single EMP_PROJ relation in Figure 14.3(b). A 
tuple in EMP_LOCS means that the employee whose name is Ename works on at 
least one project located at Plocation. A tuple in EMP_PROJ1 refers to the fact that the 
employee whose Social Security number is Ssn works the given Hours per week on 
the project whose name, number, and location are Pname, Pnumber, and Plocation. 
Figure 14.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 corresponding 
to the EMP_PROJ relation in Figure 14.4, which are obtained by applying the appro-
priate PROJECT (π) operations to EMP_PROJ.

5This is because inner and outer joins produce different results when NULLs are involved in joins. The users 
must thus be aware of the different meanings of the various types of joins. Although this is reasonable for 
sophisticated users, it may be difficult for others.

6In Section 5.5.1 we presented comparisons involving NULL values where the outcome (in three-valued 
logic) is TRUE, FALSE, and UNKNOWN.
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Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of 
EMP_PROJ. This produces a particularly bad schema design because we cannot 
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and 
EMP_LOCS. If we attempt a NATURAL JOIN operation on EMP_PROJ1 and  
EMP_LOCS, the result produces many more tuples than the original set of tuples  
in EMP_PROJ. In Figure 14.6, the result of applying the join to only the tuples for 
employee with Ssn = “123456789” is shown (to reduce the size of the resulting rela-
tion). Additional tuples that were not in EMP_PROJ are called spurious tuples 
because they represent spurious information that is not valid. The spurious 
tuples are marked by asterisks (*) in Figure 14.6. It is left to the reader to complete 
the result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCS 
tables in their entirety and to mark the spurious tuples in this result.

Ssn Pnumber Hours Pname Plocation

Ename

P.K.

EMP_PROJ1

Plocation

P.K.

EMP_LOCS

Ename
Smith, John B.
Smith, John B.
Narayan, Ramesh K.
English, Joyce A.
English, Joyce A.
Wong, Franklin T.
Wong, Franklin T.
Wong, Franklin T.
Zelaya, Alicia J.
Jabbar, Ahmad V.
Wallace, Jennifer S.
Wallace, Jennifer S.
Borg, James E.

Houston

Bellaire
Sugarland

Sugarland

Bellaire
Sugarland

Stafford

Houston

Stafford
Houston

Houston
Stafford
Stafford

Plocation

(b)

(a)

EMP_PROJ1

Ssn
123456789
123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777
999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3
10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

ProductZ

ProductX

ProductY

ProductY

ProductZ

Computerization

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Hours Pname Plocation

EMP_LOCS
Figure 14.5 
Particularly poor design for the EMP_PROJ relation in 
Figure 14.3(b). (a) The two relation schemas EMP_LOCS 
and EMP_PROJ1. (b) The result of projecting the  
extension of EMP_PROJ from Figure 14.4 onto the  
relations EMP_LOCS and EMP_PROJ1.
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Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because 
when we JOIN them back using NATURAL JOIN, we do not get the correct original 
information. This is because in this case Plocation happens to be the attribute that 
relates EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a 
foreign key in either EMP_LOCS or EMP_PROJ1. We now informally state another 
design guideline.

Guideline 4. Design relation schemas so that they can be joined with equality 
conditions on attributes that are appropriately related (primary key, foreign key) 
pairs in a way that guarantees that no spurious tuples are generated. Avoid relations 
that contain matching attributes that are not (foreign key, primary key) combina-
tions because joining on such attributes may produce spurious tuples.

Ssn
123456789

123456789

123456789

123456789

123456789

666884444

666884444

453453453

453453453

453453453

453453453

453453453

333445555

333445555

333445555

333445555

2

1

1

3

2

2

2

2

2

2

2

3

1

1

2

3

Pnumber

7.5

32.5

32.5

40.0

40.0

20.0

20.0

7.5

7.5

20.0

10.0

20.0

20.0

10.0

10.0

10.0

Hours

ProductY

ProductX

ProductX

ProductZ

ProductZ

ProductX

ProductX

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductZ

Pname

Sugarland

Bellaire

Bellaire

Houston

Houston

Bellaire

Bellaire

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Houston
333445555 3 10.0 ProductZ Houston

333445555 10 10.0 Computerization Stafford
333445555 20 10.0 Reorganization Houston

333445555 20

*

*

*

*

*

*

*

*

*

*

*

10.0 Reorganization Houston

Smith, John B.

Smith, John B.

English, Joyce A.

Narayan, Ramesh K.

Wong, Franklin T.

Smith, John B.

English, Joyce A.

English, Joyce A.

Wong, Franklin T.

Smith, John B.

Smith, John B.

English, Joyce A.

Wong, Franklin T.

English, Joyce A.

Wong, Franklin T.

Narayan, Ramesh K.
Wong, Franklin T.

Wong, Franklin T.
Narayan, Ramesh K.

Wong, Franklin T.

Plocation Ename

* 
* 

*

Figure 14.6 
Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCS  
of Figure 14.5 just for employee with Ssn = “123456789”. Generated spurious  
tuples are marked by asterisks.

https://hemanthrajhemu.github.io



 14.2 Functional Dependencies 471

This informal guideline obviously needs to be stated more formally. In Section 15.2 
we discuss a formal condition called the nonadditive (or lossless) join property that 
guarantees that certain joins do not produce spurious tuples.

14.1.5 Summary and Discussion of Design Guidelines
In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead to 
problematic relation schemas and we proposed informal guidelines for a good rela-
tional design. The problems we pointed out, which can be detected without addi-
tional tools of analysis, are as follows:

 ■ Anomalies that cause redundant work to be done during insertion into and 
modification of a relation, and that may cause accidental loss of information 
during a deletion from a relation

 ■ Waste of storage space due to NULLs and the difficulty of performing selec-
tions, aggregation operations, and joins due to NULL values

 ■ Generation of invalid and spurious data during joins on base relations with 
matched attributes that may not represent a proper (foreign key, primary 
key) relationship

In the rest of this chapter we present formal concepts and theory that may be used 
to define the goodness and badness of individual relation schemas more precisely. 
First we discuss functional dependency as a tool for analysis. Then we specify the 
three normal forms and Boyce-Codd normal form (BCNF) for relation schemas as 
the established and accepted standards of quality in relational design. The strategy 
for achieving a good design is to decompose a badly designed relation appropriately 
to achieve higher normal forms. We also briefly introduce additional normal forms 
that deal with additional dependencies. In Chapter 15, we discuss the properties of 
decomposition in detail and provide a variety of algorithms related to functional 
dependencies, goodness of decomposition, and the bottom-up design of relations 
by using the functional dependencies as a starting point.

14.2 Functional Dependencies
So far we have dealt with the informal measures of database design. We now intro-
duce a formal tool for analysis of relational schemas that enables us to detect and 
describe some of the above-mentioned problems in precise terms. The single most 
important concept in relational schema design theory is that of a functional depen-
dency. In this section we formally define the concept, and in Section 14.3 we see 
how it can be used to define normal forms for relation schemas.

14.2.1 Definition of Functional Dependency
A functional dependency is a constraint between two sets of attributes from the 
database. Suppose that our relational database schema has n attributes A1, A2, 
… , An; let us think of the whole database as being described by a single universal 
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 relation schema R = {A1, A2, … , An}.7 We do not imply that we will actually store 
the database as a single universal table; we use this concept only in developing the 
formal theory of data dependencies.8

Definition. A functional dependency, denoted by X → Y, between two sets of 
attributes X and Y that are subsets of R specifies a constraint on the possible 
tuples that can form a relation state r of R. The constraint is that, for any two 
tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on, or are deter-
mined by, the values of the X component; alternatively, the values of the X component 
of a tuple uniquely (or functionally) determine the values of the Y component. We 
also say that there is a functional dependency from X to Y, or that Y is functionally 
dependent on X. The abbreviation for functional dependency is FD or f.d. The set of 
attributes X is called the left-hand side of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever 
two tuples of r(R) agree on their X-value, they must necessarily agree on their 
Y-value. Note the following:

 ■ If a constraint on R states that there cannot be more than one tuple with a 
given X-value in any relation instance r(R)—that is, X is a candidate key of 
R—this implies that X → Y for any subset of attributes Y of R (because the 
key constraint implies that no two tuples in any legal state r(R) will have the 
same value of X). If X is a candidate key of R, then X → R.

 ■ If X → Y in R, this does not say whether or not Y → X in R.

A functional dependency is a property of the semantics or meaning of the  
attributes. The database designers will use their understanding of the semantics of the 
attributes of R—that is, how they relate to one another—to specify the functional 
dependencies that should hold on all relation states (extensions) r of R. Relation 
extensions r(R) that satisfy the functional dependency constraints are called legal 
relation states (or legal extensions) of R. Hence, the main use of functional depen-
dencies is to describe further a relation schema R by specifying constraints on its 
attributes that must hold at all times. Certain FDs can be specified without referring 
to a specific relation, but as a property of those attributes given their commonly 
understood meaning. For example, {State, Driver_license_number} → Ssn should 
normally hold for any adult in the United States and hence should hold whenever 
these attributes appear in a relation.9 It is also possible that certain functional 

7This concept of a universal relation is important when we discuss the algorithms for relational database 
design in Chapter 15.

8This assumption implies that every attribute in the database should have a distinct name. In Chapter 5 
we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinct  
relations had the same name.

9Note that there are databases, such as those of credit card agencies or police departments, where this 
functional dependency may not hold because of fraudulent records resulting from the same driver’s 
license number being used by two or more different individuals.
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dependencies may cease to exist in the real world if the relationship changes. For 
example, the FD Zip_code → Area_code used to exist as a relationship between postal 
codes and telephone number codes in the United States, but with the proliferation 
of telephone area codes it is no longer true.

Consider the relation schema EMP_PROJ in Figure 14.3(b); from the semantics of 
the attributes and the relation, we know that the following functional dependencies 
should hold:

 a. Ssn → Ename

 b. Pnumber → {Pname, Plocation}

 c. {Ssn, Pnumber} → Hours

These functional dependencies specify that (a) the value of an employee’s Social 
Security number (Ssn) uniquely determines the employee name (Ename), (b) the 
value of a project’s number (Pnumber) uniquely determines the project name 
(Pname) and location (Plocation), and (c) a combination of Ssn and Pnumber values 
uniquely determines the number of hours the employee currently works on the 
project per week (Hours). Alternatively, we say that Ename is functionally deter-
mined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the 
value of Ename, and so on.

A functional dependency is a property of the relation schema R, not of a particular 
legal relation state r of R. Therefore, an FD cannot be inferred automatically from a 
given relation extension r but must be defined explicitly by someone who knows 
the semantics of the attributes of R. For example, Figure 14.7 shows a particular 
state of the TEACH relation schema. Although at first glance we may think that  
Text → Course, we cannot confirm this unless we know that it is true for all possible 
legal states of TEACH. It is, however, sufficient to demonstrate a single counterexam-
ple to disprove a functional dependency. For example, because ‘Smith’ teaches both 
‘Data Structures’ and ‘Database Systems,’ we can conclude that Teacher does not 
functionally determine Course.

Given a populated relation, we cannot determine which FDs hold and which do not 
unless we know the meaning of and the relationships among the attributes. All we can 
say is that a certain FD may exist if it holds in that particular extension. We cannot 
guarantee its existence until we understand the meaning of the corresponding attri-
butes. We can, however, emphatically state that a certain FD does not hold if there are 

TEACH

Teacher
Smith

Smith

Hall

Brown

Bartram

Martin

Hoffman

Horowitz

Compilers

Data Structures

Data Management

Data Structures

Course Text

Figure 14.7 
A relation state of TEACH with a 
possible functional dependency 
TEXT → COURSE. However, 
TEACHER → COURSE,  
TEXT → TEACHER and  
COURSE → TEXT are ruled out.
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tuples that show the violation of such an FD. See the illustrative example relation in 
Figure 14.8. Here, the following FDs may hold because the four tuples in the current 
extension have no violation of these constraints: B → C; C → B; {A, B} → C; {A, B} → D; 
and {C, D} → B. However, the following do not hold because we already have viola-
tions of them in the given extension: A → B (tuples 1 and 2 violate this constraint);  
B → A (tuples 2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD is 
displayed as a horizontal line. The left-hand-side attributes of the FD are connected 
by vertical lines to the line representing the FD, whereas the right-hand-side attri-
butes are connected by the lines with arrows pointing toward the attributes.

We denote by F the set of functional dependencies that are specified on relation 
schema R. Typically, the schema designer specifies the functional dependencies that 
are semantically obvious; usually, however, numerous other functional dependen-
cies hold in all legal relation instances among sets of attributes that can be derived 
from and satisfy the dependencies in F. Those other dependencies can be inferred 
or deduced from the FDs in F. We defer the details of inference rules and properties 
of functional dependencies to Chapter 15.

14.3 Normal Forms Based on Primary Keys
Having introduced functional dependencies, we are now ready to use them to spec-
ify how to use them to develop a formal methodology for testing and improving 
relation schemas. We assume that a set of functional dependencies is given for each 
relation, and that each relation has a designated primary key; this information com-
bined with the tests (conditions) for normal forms drives the normalization process 
for relational schema design. Most practical relational design projects take one of 
the following two approaches:

 ■ Perform a conceptual schema design using a conceptual model such as ER 
or EER and map the conceptual design into a set of relations.

 ■ Design the relations based on external knowledge derived from an existing 
implementation of files or forms or reports.

Following either of these approaches, it is then useful to evaluate the relations for 
goodness and decompose them further as needed to achieve higher normal forms 
using the normalization theory presented in this chapter and the next. We focus in 

Figure 14.8
A relation R (A, B, C, D) 
with its extension.

A B C D

a1 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d3

a3 b3 c4 d3
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this section on the first three normal forms for relation schemas and the intuition 
behind them, and we discuss how they were developed historically. More general 
definitions of these normal forms, which take into account all candidate keys of a 
relation rather than just the primary key, are deferred to Section 14.4.

We start by informally discussing normal forms and the motivation behind their 
development, as well as reviewing some definitions from Chapter 3 that are needed 
here. Then we discuss the first normal form (1NF) in Section 14.3.4, and we present 
the definitions of second normal form (2NF) and third normal form (3NF), which 
are based on primary keys, in Sections 14.3.5 and 14.3.6, respectively.

14.3.1 Normalization of Relations
The normalization process, as first proposed by Codd (1972a), takes a relation 
schema through a series of tests to certify whether it satisfies a certain normal form. 
The process, which proceeds in a top-down fashion by evaluating each relation 
against the criteria for normal forms and decomposing relations as necessary, can 
thus be considered as relational design by analysis. Initially, Codd proposed three 
normal forms, which he called first, second, and third normal form. A stronger 
definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed later 
by Boyce and Codd. All these normal forms are based on a single analytical tool: the 
functional dependencies among the attributes of a relation. Later, a fourth normal 
form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of 
multivalued dependencies and join dependencies, respectively; these are briefly dis-
cussed in Sections 14.6 and 14.7.

Normalization of data can be considered a process of analyzing the given relation 
schemas based on their FDs and primary keys to achieve the desirable properties of 
(1) minimizing redundancy and (2) minimizing the insertion, deletion, and update 
anomalies discussed in Section 14.1.2. It can be considered as a “filtering” or “purifi-
cation” process to make the design have successively better quality. An unsatisfactory 
relation schema that does not meet the condition for a normal form—the normal 
form test—is decomposed into smaller relation schemas that contain a subset of the 
attributes and meet the test that was otherwise not met by the original relation. Thus, 
the normalization procedure provides database designers with the following:

 ■ A formal framework for analyzing relation schemas based on their keys and 
on the functional dependencies among their attributes

 ■ A series of normal form tests that can be carried out on individual relation 
schemas so that the relational database can be normalized to any desired 
degree

Definition. The normal form of a relation refers to the highest normal form 
condition that it meets, and hence indicates the degree to which it has been 
normalized.

Normal forms, when considered in isolation from other factors, do not guarantee a 
good database design. It is generally not sufficient to check separately that each 
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relation schema in the database is, say, in BCNF or 3NF. Rather, the process of nor-
malization through decomposition must also confirm the existence of additional 
properties that the relational schemas, taken together, should possess. These would 
include two properties:

 ■ The nonadditive join or lossless join property, which guarantees that the 
spurious tuple generation problem discussed in Section 14.1.4 does not 
occur with respect to the relation schemas created after decomposition

 ■ The dependency preservation property, which ensures that each functional 
dependency is represented in some individual relation resulting after 
decomposition

The nonadditive join property is extremely critical and must be achieved at any 
cost, whereas the dependency preservation property, although desirable, is some-
times sacrificed, as we discuss in Section 15.2.2. We defer the discussion of the for-
mal concepts and techniques that guarantee the above two properties to Chapter 15.

14.3.2 Practical Use of Normal Forms
Most practical design projects in commercial and governmental environment acquire 
existing designs of databases from previous designs, from designs in legacy models, or 
from existing files. They are certainly interested in assuring that the designs are good 
quality and sustainable over long periods of time. Existing designs are evaluated by 
applying the tests for normal forms, and normalization is carried out in practice so 
that the resulting designs are of high quality and meet the desirable properties stated 
previously. Although several higher normal forms have been defined, such as the 4NF 
and 5NF that we discuss in Sections 14.6 and 14.7, the practical utility of these normal 
forms becomes questionable. The reason is that the constraints on which they are 
based are rare and hard for the database designers and users to understand or to 
detect. Designers and users must either already know them or discover them as a part 
of the business. Thus, database design as practiced in industry today pays particular 
attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need not normalize to the 
highest possible normal form. Relations may be left in a lower normalization status, 
such as 2NF, for performance reasons, such as those discussed at the end of Sec- 
tion 14.1.2. Doing so incurs the corresponding penalties of dealing with the anomalies.

Definition. Denormalization is the process of storing the join of higher nor-
mal form relations as a base relation, which is in a lower normal form.

14.3.3 Definitions of Keys and Attributes Participating in Keys
Before proceeding further, let’s look again at the definitions of keys of a relation 
schema from Chapter 3.

Definition. A superkey of a relation schema R = {A1, A2, … , An} is a set of attri-
butes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation 
state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional property 
that removal of any attribute from K will cause K not to be a superkey anymore.
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The difference between a key and a superkey is that a key has to be minimal; that is, 
if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of R for any Ai, 
1 ≤ i ≤ k. In Figure 14.1, {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename}, 
{Ssn, Ename, Bdate}, and any set of attributes that includes Ssn are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of 
the candidate keys is arbitrarily designated to be the primary key, and the others 
are called secondary keys. In a practical relational database, each relation schema 
must have a primary key. If no candidate key is known for a relation, the entire rela-
tion can be treated as a default superkey. In Figure 14.1, {Ssn} is the only candidate 
key for EMPLOYEE, so it is also the primary key.

Definition. An attribute of relation schema R is called a prime attribute of R if 
it is a member of some candidate key of R. An attribute is called nonprime if it 
is not a prime attribute—that is, if it is not a member of any candidate key.

In Figure 14.1, both Ssn and Pnumber are prime attributes of WORKS_ON, whereas 
other attributes of WORKS_ON are nonprime.

We now present the first three normal forms: 1NF, 2NF, and 3NF. These were pro-
posed by Codd (1972a) as a sequence to achieve the desirable state of 3NF relations 
by progressing through the intermediate states of 1NF and 2NF if needed. As we 
shall see, 2NF and 3NF independently attack different types of problems arising 
from problematic functional dependencies among attributes. However, for histori-
cal reasons, it is customary to follow them in that sequence; hence, by definition a 
3NF relation already satisfies 2NF.

14.3.4 First Normal Form
First normal form (1NF)is now considered to be part of the formal definition of a 
relation in the basic (flat) relational model; historically, it was defined to disallow 
multivalued attributes, composite attributes, and their combinations. It states that 
the domain of an attribute must include only atomic (simple, indivisible) values and 
that the value of any attribute in a tuple must be a single value from the domain of 
that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a 
combination of both as an attribute value for a single tuple. In other words, 1NF 
disallows relations within relations or relations as attribute values within tuples. The 
only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 14.1, whose primary 
key is Dnumber, and suppose that we extend it by including the Dlocations attribute 
as shown in Figure 14.9(a). We assume that each department can have a number of 
locations. The DEPARTMENT schema and a sample relation state are shown in Fig-
ure 14.9. As we can see, this is not in 1NF because Dlocations is not an atomic attri-
bute, as illustrated by the first tuple in Figure 14.9(b). There are two ways we can 
look at the Dlocations attribute:

 ■ The domain of Dlocations contains atomic values, but some tuples can have a 
set of these values. In this case, Dlocations is not functionally dependent on 
the primary key Dnumber.
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 ■ The domain of Dlocations contains sets of values and hence is nonatomic. In 
this case, Dnumber → Dlocations because each set is considered a single mem-
ber of the attribute domain.10

In either case, the DEPARTMENT relation in Figure 14.9 is not in 1NF; in fact, it does 
not even qualify as a relation according to our definition of relation in Section 3.1. 
There are three main techniques to achieve first normal form for such a relation:

  1. Remove the attribute Dlocations that violates 1NF and place it in a separate 
relation DEPT_LOCATIONS along with the primary key Dnumber of  
DEPARTMENT. The primary key of this newly formed relation is the combi-
nation {Dnumber, Dlocation}, as shown in Figure 14.2. A distinct tuple in 
DEPT_LOCATIONS exists for each location of a department. This decom-
poses the non-1NF relation into two 1NF relations.

Dname
DEPARTMENT
(a)

DEPARTMENT
(b)

DEPARTMENT
(c)

Dnumber Dmgr_ssn Dlocations

Dname
Research

Administration

Headquarters 1

5

4

Dnumber

888665555

333445555

987654321

Dmgr_ssn

{Houston}

{Bellaire, Sugarland, Houston}

{Stafford}

Dlocations

Dname
Research

Research

Research

Administration

Headquarters

Bellaire

Sugarland

Houston

Stafford

Houston

5

5

5

4

1

Dnumber

333445555

333445555

333445555

987654321

888665555

Dmgr_ssn Dlocation
Figure 14.9 
Normalization into 1NF. (a) A 
relation schema that is not in 
1NF. (b) Sample state of  
relation DEPARTMENT.  
(c) 1NF version of the same 
relation with redundancy.

10In this case we can consider the domain of Dlocations to be the power set of the set of single  
locations; that is, the domain is made up of all possible subsets of the set of single locations.
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  2. Expand the key so that there will be a separate tuple in the original  
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Fig-
ure 14.9(c). In this case, the primary key becomes the combination {Dnumber, 
Dlocation}. This solution has the disadvantage of introducing redundancy in 
the relation and hence is rarely adopted.

  3. If a maximum number of values is known for the attribute—for example, if it 
is known that at most three locations can exist for a department—replace the 
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and 
Dlocation3. This solution has the disadvantage of introducing NULL values if 
most departments have fewer than three locations. It further introduces 
spurious semantics about the ordering among the location values; that 
ordering is not originally intended. Querying on this attribute becomes more 
difficult; for example, consider how you would write the query: List the 
departments that have ‘Bellaire’ as one of their locations in this design. For all 
these reasons, it is best to avoid this alternative.

Of the three solutions above, the first is generally considered best because it 
does not suffer from redundancy and it is completely general; it places no max-
imum limit on the number of values. In fact, if we choose the second solution, it 
will be decomposed further during subsequent normalization steps into the 
first solution.

First normal form also disallows multivalued attributes that are themselves com-
posite. These are called nested relations because each tuple can have a relation 
within it. Figure 14.10 shows how the EMP_PROJ relation could appear if nesting is 
allowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber, 
Hours) within each tuple represents the employee’s projects and the hours per week 
that employee works on each project. The schema of this EMP_PROJ relation can be 
represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

The set braces { } identify the attribute PROJS as multivalued, and we list the com-
ponent attributes that form PROJS between parentheses ( ). Interestingly, recent 
trends for supporting complex objects (see Chapter 12) and XML data (see Chap-
ter 13) attempt to allow and formalize nested relations within relational database 
systems, which were disallowed early on by 1NF.

Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 14.10(a)  
and (b), whereas Pnumber is the partial key of the nested relation; that is, within each 
tuple, the nested relation must have unique values of Pnumber. To normalize this 
into 1NF, we remove the nested relation attributes into a new relation and propa-
gate the primary key into it; the primary key of the new relation will combine the 
partial key with the primary key of the original relation. Decomposition and pri-
mary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2, as shown in 
Figure 14.10(c).

This procedure can be applied recursively to a relation with multiple-level nesting 
to unnest the relation into a set of 1NF relations. This is useful in converting an 
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unnormalized relation schema with many levels of nesting into 1NF relations. As 
an example, consider the following:

CANDIDATE (Ssn, Name, {JOB_HIST (Company, Highest_position,  
{SAL_HIST (Year, Max_sal)})})

The foregoing describes data about candidates applying for jobs with their job his-
tory as a nested relation within which the salary history is stored as a deeper nested 

EMP_PROJ
(a)

Projs
Pnumber HoursSsn Ename

EMP_PROJ1
(c)

Ssn Ename

EMP_PROJ2

HoursSsn Pnumber

EMP_PROJ
(b)

Ssn

123456789

666884444

453453453

333445555

999887777

987987987

987654321

888665555

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Borg, James E.

32.5

7.5
40.0

20.0

20.0

10.0
10.0

10.0

10.0

30.0
10.0

35.0

5.0
20.0

15.0

NULL

English, Joyce A.

Narayan, Ramesh K.

Smith, John B.

Wong, Franklin  T.

Ename

3

1

2

1

2

2

20

3

10

30
10

10

20

30
30

20

Pnumber Hours

Figure 14.10 
Normalizing nested  
relations into 1NF.  
(a) Schema of the  
EMP_PROJ relation with 
a nested relation attribute 
PROJS. (b) Sample  
extension of the  
EMP_PROJ relation 
showing nested relations 
within each tuple.  
(c) Decomposition of  
EMP_PROJ into relations 
EMP_PROJ1 and  
EMP_PROJ2 by  
propagating the primary 
key.
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relation. The first normalization using internal partial keys Company and Year, 
respectively, results in the following 1NF relations:

CANDIDATE_1 (Ssn, Name)
CANDIDATE_JOB_HIST (Ssn, Company, Highest_position)
CANDIDATE_SAL_HIST (Ssn, Company, Year, Max-sal)

The existence of more than one multivalued attribute in one relation must be han-
dled carefully. As an example, consider the following non-1NF relation:

PERSON (Ss#, {Car_lic#}, {Phone#})

This relation represents the fact that a person has multiple cars and multiple phones. 
If strategy 2 above is followed, it results in an all-key relation:

PERSON_IN_1NF (Ss#, Car_lic#, Phone#)

To avoid introducing any extraneous relationship between Car_lic# and Phone#, all 
possible combinations of values are represented for every Ss#, giving rise to redun-
dancy. This leads to the problems that are typically discovered at a later stage of 
normalization and that are handled by multivalued dependencies and 4NF, which 
we will discuss in Section 14.6. The right way to deal with the two multivalued attri-
butes in PERSON shown previously is to decompose it into two separate relations, 
using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

A note about the relations that involve attributes that go beyond just numeric and 
character string data. It is becoming common in today’s databases to incorporate 
images, documents, video clips, audio clips, and so on. When these are stored in a 
relation, the entire object or file is treated as an atomic value, which is stored as a 
BLOB (binary large object) or CLOB (character large object) data type using SQL. 
For practical purposes, the object is treated as an atomic, single-valued attribute 
and hence it maintains the 1NF status of the relation.

14.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. 
A functional dependency X → Y is a full functional dependency if removal of any 
attribute A from X means that the dependency does not hold anymore; that is, for 
any attribute A ε X, (X − {A}) does not functionally determine Y. A functional 
dependency X → Y is a partial dependency if some attribute A ε X can be removed 
from X and the dependency still holds; that is, for some A ε X, (X − {A}) → Y. In 
Figure 14.3(b), {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours 
nor Pnumber → Hours holds). However, the dependency {Ssn, Pnumber} → Ename is 
partial because Ssn → Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is 
fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side 
attributes are part of the primary key. If the primary key contains a single attribute, 
the test need not be applied at all. The EMP_PROJ relation in Figure 14.3(b) is in 
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1NF but is not in 2NF. The nonprime attribute Ename violates 2NF because of FD2, 
as do the nonprime attributes Pname and Plocation because of FD3. Each of the func-
tional dependencies FD2 and FD3 violates 2NF because Ename can be functionally 
determined by only Ssn, and both Pname and Plocation can be functionally deter-
mined by only Pnumber. Attributes Ssn and Pnumber are a part of the primary key 
{Ssn, Pnumber} of EMP_PROJ, thus violating the 2NF test.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized 
into a number of 2NF relations in which nonprime attributes are associated only 
with the part of the primary key on which they are fully functionally dependent. 
Therefore, the functional dependencies FD1, FD2, and FD3 in Figure 14.3(b) lead to 
the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3 
shown in Figure 14.11(a), each of which is in 2NF.

Ssn

EMP_PROJ
(a)

(b)

FD1

FD2

FD3

2NF Normalization

Pnumber Hours Ename Pname Plocation

Ssn

EP1

FD1

Pnumber Hours

Ename Ssn

ED1
Bdate Address Dnumber

Ssn

EP2

FD2

Ename Pnumber

EP3

FD3

Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Dnumber

ED2
Dname Dmgr_ssn

3NF Normalization

Figure 14.11 
Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into  
2NF relations. (b) Normalizing EMP_DEPT into 3NF relations.
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14.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A func-
tional dependency X → Y in a relation schema R is a transitive dependency if there 
exists a set of attributes Z in R that is neither a candidate key nor a subset of any key of 
R,11 and both X → Z and Z → Y hold. The dependency Ssn → Dmgr_ssn is transitive 
through Dnumber in EMP_DEPT in Figure 14.3(a), because both the dependencies  
Ssn → Dnumber and Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor a 
subset of the key of EMP_DEPT. Intuitively, we can see that the dependency of Dmgr_ssn 
on Dnumber is undesirable in EMP_DEPT since Dnumber is not a key of EMP_DEPT.

Definition. According to Codd’s original definition, a relation schema R is in 
3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent 
on the primary key.

The relation schema EMP_DEPT in Figure 14.3(a) is in 2NF, since no partial depen-
dencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitive 
dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. We can normalize 
EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2 
shown in Figure 14.11(b). Intuitively, we see that ED1 and ED2 represent indepen-
dent facts about employees and departments, both of which are entities in their 
own right. A NATURAL JOIN operation on ED1 and ED2 will recover the original 
relation EMP_DEPT without generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is 
part (a proper subset) of the primary key, or any functional dependency in which the 
left-hand side is a nonkey attribute, is a problematic FD. 2NF and 3NF normalization 
remove these problem FDs by decomposing the original relation into new relations. In 
terms of the normalization process, it is not necessary to remove the partial dependen-
cies before the transitive dependencies, but historically, 3NF has been defined with the 
assumption that a relation is tested for 2NF first before it is tested for 3NF. Moreover, 
the general definition of 3NF we present in Section 14.4.2 automatically covers the 
condition that the relation also satisfies 2NF. Table 14.1 informally summarizes the 
three normal forms based on primary keys, the tests used in each case, and the corre-
sponding remedy or normalization performed to achieve the normal form.

14.4  General Definitions of Second  
and Third Normal Forms

In general, we want to design our relation schemas so that they have neither partial 
nor transitive dependencies because these types of dependencies cause the update 
anomalies discussed in Section 14.1.2. The steps for normalization into 3NF rela-
tions that we have discussed so far disallow partial and transitive dependencies on 

11This is the general definition of transitive dependency. Because we are concerned only with primary 
keys in this section, we allow transitive dependencies where X is the primary key but Z may be (a subset 
of) a candidate key.
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the primary key. The normalization procedure described so far is useful for analysis 
in practical situations for a given database where primary keys have already been 
defined. These definitions, however, do not take other candidate keys of a relation, if 
any, into account. In this section we give the more general definitions of 2NF and 
3NF that take all candidate keys of a relation into account. Notice that this does not 
affect the definition of 1NF since it is independent of keys and functional depen-
dencies. As a general definition of prime attribute, an attribute that is part of any 
candidate key will be considered as prime. Partial and full functional dependencies 
and transitive dependencies will now be considered with respect to all candidate keys 
of a relation.

14.4.1 General Definition of Second Normal Form
Definition. A relation schema R is in second normal form (2NF) if every 
nonprime attribute A in R is not partially dependent on any key of R.12

The test for 2NF involves testing for functional dependencies whose left-hand side 
attributes are part of the primary key. If the primary key contains a single attribute, 
the test need not be applied at all. Consider the relation schema LOTS shown in 
Figure 14.12(a), which describes parcels of land for sale in various counties of a 
state. Suppose that there are two candidate keys: Property_id# and {County_name, 
Lot#}; that is, lot numbers are unique only within each county, but Property_id# 
numbers are unique across counties for the entire state.

Table 14.1 Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form Test Remedy (Normalization)

First (1NF) Relation should have no multivalued  
attributes or nested relations.

Form new relations for each multivalued 
attribute or nested relation.

Second (2NF) For relations where primary key  
contains multiple attributes, no nonkey 
attribute should be functionally  
dependent on a part of the primary key.

Decompose and set up a new relation 
for each partial key with its dependent 
attribute(s). Make sure to keep a relation 
with the original primary key and any 
attributes that are fully functionally 
dependent on it.

Third (3NF) Relation should not have a nonkey  
attribute functionally determined by 
another nonkey attribute (or by a set of 
nonkey attributes). That is, there should 
be no transitive dependency of a nonkey 
attribute on the primary key.

Decompose and set up a relation that 
includes the nonkey attribute(s) that 
functionally determine(s) other nonkey 
attribute(s).

12This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A 
in R is fully functionally dependent on every key of R.
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LOTS
(a)

FD1

FD2

FD3

FD4

County_name Lot# Area Price Tax_rate
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LOTS1

(b)

FD1

FD2

FD4

County_name Lot# Area Price

(c)

(d)

Property_id#
LOTS1A

FD1

FD2

County_name Lot# Area

LOTS2

FD3

County_name Tax_rate

LOTS1B

FD4

Area Price

LOTS 1NF

LOTS1

LOTS1A LOTS1B

LOTS2 2NF

LOTS2 3NF

Candidate Key

Figure 14.12 
Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies  
FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2.  
(c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressive  
normalization of LOTS into a 3NF design.
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Based on the two candidate keys Property_id# and {County_name, Lot#}, the func-
tional dependencies FD1 and FD2 in Figure 14.12(a) hold. We choose Property_id# 
as the primary key, so it is underlined in Figure 14.12(a), but no special consider-
ation will be given to this key over the other candidate key. Suppose that the follow-
ing two additional functional dependencies hold in LOTS:

FD3: County_name → Tax_rate
FD4: Area → Price

In words, the dependency FD3 says that the tax rate is fixed for a given county (does 
not vary lot by lot within the same county), whereas FD4 says that the price of a lot 
is determined by its area regardless of which county it is in. (Assume that this is the 
price of the lot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because Tax_rate is 
partially dependent on the candidate key {County_name, Lot#}, due to FD3. To nor-
malize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2, 
shown in Figure 14.12(b). We construct LOTS1 by removing the attribute Tax_rate 
that violates 2NF from LOTS and placing it with County_name (the left-hand side of 
FD3 that causes the partial dependency) into another relation LOTS2. Both LOTS1 
and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to 
LOTS1.

14.4.2 General Definition of Third Normal Form
Definition. A relation schema R is in third normal form (3NF) if, whenever a 
nontrivial functional dependency X → A holds in R, either (a) X is a superkey 
of R, or (b) A is a prime attribute of R.13

According to this definition, LOTS2 (Figure 14.12(b)) is in 3NF. However, FD4 in 
LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute 
in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the relation sche-
mas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A by 
removing the attribute Price that violates 3NF from LOTS1 and placing it with Area 
(the left-hand side of FD4 that causes the transitive dependency) into another rela-
tion LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

 ■ LOTS1 violates 3NF because Price is transitively dependent on each of the 
candidate keys of LOTS1 via the nonprime attribute Area.

 ■ This general definition can be applied directly to test whether a relation schema 
is in 3NF; it does not have to go through 2NF first. In other words, if a relation 
passes the general 3NF test, then it automatically passes the 2NF test.

13Note that based on inferred f.d.’s (which are discussed in Section 15.1), the f.d. Y → YA also holds 
whenever Y → A is true. Therefore, a slightly better way of saying this statement is that {A-X} is a prime 
attribute of R.

https://hemanthrajhemu.github.io



 14.5 Boyce-Codd Normal Form 487

If we apply the above 3NF definition to LOTS with the dependencies FD1 through 
FD4, we find that both FD3 and FD4 violate 3NF by the general definition above 
because the LHS County_name in FD3 is not a superkey. Therefore, we could 
decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive 
and partial dependencies that violate 3NF can be removed in any order.

14.4.3 Interpreting the General Definition of Third Normal Form
A relation schema R violates the general definition of 3NF if a functional depen-
dency X → A holds in R that meets either of the two conditions, namely (a) and (b). 
The first condition “catches” two types of problematic dependencies:

 ■ A nonprime attribute determines another nonprime attribute. Here we typi-
cally have a transitive dependency that violates 3NF.

 ■ A proper subset of a key of R functionally determines a nonprime attribute. 
Here we have a partial dependency that violates 2NF.

Thus, condition (a) alone addresses the problematic dependencies that were causes 
for second and third normalization as we discussed.

Therefore, we can state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute 
of R meets both of the following conditions:

 ■ It is fully functionally dependent on every key of R.

 ■ It is nontransitively dependent on every key of R.

However, note the clause (b) in the general definition of 3NF. It allows certain func-
tional dependencies to slip through or escape in that they are OK with the 3NF 
definition and hence are not “caught” by the 3NF definition even though they may 
be potentially problematic. The Boyce-Codd normal form “catches” these depen-
dencies in that it does not allow them. We discuss that normal form next.

14.5 Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it 
was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; 
however, a relation in 3NF is not necessarily in BCNF. We pointed out in the last 
subsection that although 3NF allows functional dependencies that conform to the 
clause (b) in the 3NF definition, BCNF disallows them and hence is a stricter defini-
tion of a normal form.

Intuitively, we can see the need for a stronger normal form than 3NF by going back to 
the LOTS relation schema in Figure 14.12(a) with its four functional dependencies FD1 
through FD4. Suppose that we have thousands of lots in the relation but the lots are 
from only two counties: DeKalb and Fulton. Suppose also that lot sizes in DeKalb 
County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County 
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are restricted to 1.1, 1.2, … , 1.9, and 2.0 acres. In such a situation we would have the 
additional functional dependency FD5: Area → County_name. If we add this to the other 
dependencies, the relation schema LOTS1A still is in 3NF because this f.d. conforms to 
clause (b) in the general definition of 3NF, County_name being a prime attribute.

The area of a lot that determines the county, as specified by FD5, can be represented 
by 16 tuples in a separate relation R(Area, County_name), since there are only 16 pos-
sible Area values (see Figure 14.13). This representation reduces the redundancy of 
repeating the same information in the thousands of LOTS1A tuples. BCNF is a 
stronger normal form that would disallow LOTS1A and suggest the need for decom-
posing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional 
dependency X → A holds in R, then X is a superkey of R.

The formal definition of BCNF differs from the definition of 3NF in that clause (b) 
of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent from 
BCNF. That makes BCNF a stronger normal form compared to 3NF. In our exam-
ple, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A. We 
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown 
in Figure 14.13(a). This decomposition loses the functional dependency FD2 
because its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if there 
exists some f.d. X → A that holds in a relation schema R with X not being a superkey 

Property_id#

LOTS1A(a)

(b)

FD1

FD2

FD1

FD2

FD5

BCNF Normalization

County_name Lot# Area

Property_id#

LOTS1AX
Area Lot#

A
R

B C

Area

LOTS1AY
County_name

Figure 14.13 
Boyce-Codd normal form. (a) BCNF 
normalization of LOTS1A with the 
functional dependency FD2 being 
lost in the decomposition. (b) A 
schematic relation with FDs; it is in 
3NF, but not in BCNF due to the 
f.d. C → B.
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and A being a prime attribute will R be in 3NF but not in BCNF. The relation schema 
R shown in Figure 14.13(b) illustrates the general case of such a relation. Such  
an f.d. leads to potential redundancy of data, as we illustrated above in case of  
FD5: Area → County_name.in LOTS1A relation. Ideally, relational database design 
should strive to achieve BCNF or 3NF for every relation schema. Achieving the normal-
ization status of just 1NF or 2NF is not considered adequate, since both were developed 
historically to be intermediate normal forms as stepping stones to 3NF and BCNF.

14.5.1 Decomposition of Relations not in BCNF
As another example, consider Figure 14.14, which shows a relation TEACH with the 
following dependencies:

FD1: {Student, Course} → Instructor
FD2:14  Instructor → Course

Note that {Student, Course} is a candidate key for this relation and that the depen-
dencies shown follow the pattern in Figure 14.13(b), with Student as A, Course as B, 
and Instructor as C. Hence this relation is in 3NF but not BCNF. Decomposition of 
this relation schema into two schemas is not straightforward because it may be 
decomposed into one of the three following possible pairs:

  1. R1 (Student, Instructor) and R2(Student, Course)

  2. R1 (Course, Instructor) and R2(Course, Student)

  3. R1 (Instructor, Course) and R2(Instructor, Student)

All three decompositions lose the functional dependency FD1. The question then 
becomes: Which of the above three is a desirable decomposition? As we pointed out 
earlier (Section 14.3.1), we strive to meet two properties of decomposition during 

14This dependency means that each instructor teaches one course is a constraint for this application.
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Figure 14.14 
A relation TEACH that is in 
3NF but not BCNF.
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the normalization process: the nonadditive join property and the functional depen-
dency preservation property. We are not able to meet the functional dependency 
preservation for any of the above BCNF decompositions as seen above; but we must 
meet the nonadditive join property. A simple test comes in handy to test the binary 
decomposition of a relation into two relations:

NJB (Nonadditive Join Test for Binary Decompositions). A decomposition 
D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a 
set of functional dependencies F on R if and only if either

 ■ The FD ((R1 ∩ R2) → (R1 − R2)) is in F+15, or

 ■ The FD ((R1 ∩ R2) → (R2 − R1)) is in F+

If we apply this test to the above three decompositions, we find that only the third 
decomposition meets the test. In the third decomposition, the R1 ∩ R2 for the above 
test is Instructor and R1 − R2 is Course. Because Instructor → Course, the NJB test 
is satisfied and the decomposition is nonadditive. (It is left as an exercise for the 
reader to show that the first two decompositions do not meet the NJB test.) Hence, 
the proper decomposition of TEACH into BCNF relations is:

TEACH1 (Instructor, Course) and TEACH2 (Instructor, Student)

We make sure that we meet this property, because nonadditive decomposition is 
a must during normalization. You should verify that this property holds with 
respect to our informal successive normalization examples in Sections 14.3 
and  14.4 and also by the decomposition of LOTS1A into two BCNF relations 
 LOTS1AX and LOTS1AY.

In general, a relation R not in BCNF can be decomposed so as to meet the nonaddi-
tive join property by the following procedure.16 It decomposes R successively into a 
set of relations that are in BCNF:

Let R be the relation not in BCNF, let X ⊆ R, and let X → A be the FD that 
causes a violation of BCNF. R may be decomposed into two relations:

R –A

XA

If either R –A or XA. is not in BCNF, repeat the process.

The reader should verify that if we applied the above procedure to LOTS1A, we 
obtain relations LOTS1AX and LOTS1AY as before. Similarly, applying this proce-
dure to TEACH results in relations TEACH1 and TEACH2

15The notation F+ refers to the cover of the set of functional dependencies and includes all f.d.’s implied 
by F. It is discussed in detail in Section 15.1. Here, it is enough to make sure that one of the two f.d.’s 
actually holds for the nonadditive decomposition into R1 and R2 to pass this test.

16Note that this procedure is based on Algorithm 15.5 from Chapter 15 for producing BCNF schemas 
by decomposition of a universal schema.
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Note that if we designate (Student, Instructor) as a primary key of the relation TEACH, 
the FD instructor → Course causes a partial (non-fully-functional) dependency of 
Course on a part of this key. This FD may be removed as a part of second normaliza-
tion (or by a direct application of the above procedure to achieve BCNF) yielding 
exactly the same two relations in the result. This is an example of a case where we 
may reach the same ultimate BCNF design via alternate paths of normalization.

14.6  Multivalued Dependency  
and Fourth Normal Form

Consider the relation EMP shown in Figure 14.15(a). A tuple in this EMP relation 
represents the fact that an employee whose name is Ename works on the project 
whose name is Pname and has a dependent whose name is Dname. An employee 
may work on several projects and may have several dependents, and the employee’s 
projects and dependents are independent of one another.17 To keep the relation 
state consistent and to avoid any spurious relationship between the two indepen-
dent attributes, we must have a separate tuple to represent every combination of an 
employee’s dependent and an employee’s project. In the relation state shown in 
Figure 14.15(a), the employee with Ename Smith works on two projects ‘X’ and ‘Y’ 
and has two dependents ‘John’ and ‘Anna’, and therefore there are four tuples to 
represent these facts together. The relation EMP is an all-key relation (with key 
made up of all attributes) and therefore has no f.d.’s and as such qualifies to be a 
BCNF relation. We can see that there is an obvious redundancy in the relation 
EMP—the dependent information is repeated for every project and the project 
information is repeated for every dependent.

As illustrated by the EMP relation, some relations have constraints that cannot be 
specified as functional dependencies and hence are not in violation of BCNF. To 
address this situation, the concept of multivalued dependency (MVD) was proposed 
and, based on this dependency, the fourth normal form was defined. A more formal 
discussion of MVDs and their properties is deferred to Chapter 15. Multivalued depen-
dencies are a consequence of first normal form (1NF) (see Section 14.3.4), which disal-
lows an attribute in a tuple to have a set of values. If more than one multivalued attribute 
is present, the second option of normalizing the relation (see Section 14.3.4) intro-
duces a multivalued dependency. Informally, whenever two independent 1:N relation-
ships A:B and A:C are mixed in the same relation, R(A, B, C), an MVD may arise.18

14.6.1 Formal Definition of Multivalued Dependency
Definition. A multivalued dependency X → Y specified on relation schema R, 
where X and Y are both subsets of R, specifies the following constraint on any 

17In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type  
(see Chapter 7).

18This MVD is denoted as A →→ B|C.
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relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then 
two tuples t3 and t4 should also exist in r with the following properties,19 where 
we use Z to denote (R − (X ∪ Y)):20

 ■ t3[X] = t4[X] = t1[X] = t2[X]

 ■ t3[Y] = t1[Y] and t4[Y] = t2[Y]

 ■ t3[Z] = t2[Z] and t4[Z] = t1[Z]

(a) EMP
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(d) R1
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ProjY
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ProjY

ProjZ
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ProjY

ProjZ
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Figure 14.15 
Fourth and fifth normal forms.
(a) The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname.
(b)  Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and  

EMP_DEPENDENTS.
(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3).
(d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

19The tuples t1, t2, t3, and t4 are not necessarily distinct.

20Z is shorthand for the attributes in R after the attributes in (X ∪ Y ) are removed from R.
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Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symme-
try in the definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y 
implies X →→ Z and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R. 
For example, the relation EMP_PROJECTS in Figure 14.15(b) has the trivial  
MVD Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD 
Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial 
MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because 
it does not specify any significant or meaningful constraint on R.

If we have a nontrivial MVD in a relation, we may have to repeat values redun-
dantly in the tuples. In the EMP relation of Figure 14.15(a), the values ‘X’ and ‘Y’ of 
Pname are repeated with each value of Dname (or, by symmetry, the values ‘John’ 
and ‘Anna’ of Dname are repeated with each value of Pname). This redundancy is 
clearly undesirable. However, the EMP schema is in BCNF because no functional 
dependencies hold in EMP. Therefore, we need to define a fourth normal form that 
is stronger than BCNF and disallows relation schemas such as EMP. Notice that 
relations containing nontrivial MVDs tend to be all-key relations—that is, their 
key is all their attributes taken together. Furthermore, it is rare that such all-key 
relations with a combinatorial occurrence of repeated values would be designed in 
practice. However, recognition of MVDs as a potential problematic dependency is 
essential in relational design.

We now present the definition of fourth normal form (4NF), which is violated 
when a relation has undesirable multivalued dependencies and hence can be used 
to identify and decompose such relations.

Definition. A relation schema R is in 4NF with respect to a set of dependencies 
F (that includes functional dependencies and multivalued dependencies) if, for 
every nontrivial multivalued dependency X →→ Y in F+,21 X is a superkey for R.

We can state the following points:

 ■ An all-key relation is always in BCNF since it has no FDs.

 ■ An all-key relation such as the EMP relation in Figure 14.15(a), which has no 
FDs but has the MVD Ename →→ Pname | Dname, is not in 4NF.

 ■ A relation that is not in 4NF due to a nontrivial MVD must be decomposed 
to convert it into a set of relations in 4NF.

 ■ The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF 
consists of decomposing it so that each MVD is represented by a separate relation 
where it becomes a trivial MVD. Consider the EMP relation in Figure 14.15(a). EMP is 
not in 4NF because in the nontrivial MVDs Ename →→ Pname and Ename →→ Dname, 

21F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. This is 
defined in Section 15.1.
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and Ename is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and 
EMP_DEPENDENTS, shown in Figure 14.15(b). Both EMP_PROJECTS and 
EMP_DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in  
EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No 
other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No 
FDs hold in these relation schemas either.

14.7 Join Dependencies and Fifth Normal Form
In our discussion so far, we have pointed out the problematic functional dependen-
cies and shown how they were eliminated by a process of repeated binary decompo-
sition during the process of normalization to achieve 1NF, 2NF, 3NF, and BCNF. 
These binary decompositions must obey the NJB property for which we introduced 
a test in Section 14.5 while discussing the decomposition to achieve BCNF. Achiev-
ing 4NF typically involves eliminating MVDs by repeated binary decompositions as 
well. However, in some cases there may be no nonadditive join decomposition of R 
into two relation schemas, but there may be a nonadditive join decomposition into 
more than two relation schemas. Moreover, there may be no functional dependency 
in R that violates any normal form up to BCNF, and there may be no nontrivial 
MVD present in R either that violates 4NF. We then resort to another dependency 
called the join dependency and, if it is present, carry out a multiway decomposition 
into fifth normal form (5NF). It is important to note that such a dependency is a 
peculiar semantic constraint that is difficult to detect in practice; therefore, normal-
ization into 5NF is rarely done in practice.

Definition. A join dependency (JD), denoted by JD(R1, R2, … , Rn), specified 
on relation schema R, specifies a constraint on the states r of R. The constraint 
states that every legal state r of R should have a nonadditive join decomposition 
into R1, R2, … , Rn. Hence, for every such r we have

* (πR1
(r), πR2

(r), … , πRn
(r)) = r

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted  
as JD(R1, R2) implies an MVD (R1 ∩ R2) →→ (R1 − R2)(or, by symmetry,  
(R1 ∩ R2) →→ (R2 − R1)). A join dependency JD(R1, R2, … , Rn), specified on relation 
schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, … , Rn) is equal 
to R. Such a dependency is called trivial because it has the nonadditive join property 
for any relation state r of R and thus does not specify any constraint on R. We can 
now define the fifth normal form, which is also called project-join normal form.

Definition. A relation schema R is in fifth normal form (5NF) (or project-join 
normal form (PJNF)) with respect to a set F of functional, multivalued, and 
join dependencies if, for every nontrivial join dependency JD(R1, R2, … , Rn) in 
F+ (that is, implied by F),22 every Ri is a superkey of R.

22Again, F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. 
This is defined in Section 15.1.
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For an example of a JD, consider once again the SUPPLY all-key relation in Fig- 
ure 14.15(c). Suppose that the following additional constraint always holds: Whenever 
a supplier s supplies part p, and a project j uses part p, and the supplier s supplies at 
least one part to project j, then supplier s will also be supplying part p to project j. 
This constraint can be restated in other ways and specifies a join dependency 
JD(R1, R2, R3) among the three projections R1 (Sname, Part_name), R2 (Sname, 
Proj_name), and R3 (Part_name, Proj_name) of SUPPLY. If this constraint holds, the 
tuples below the dashed line in Figure 14.15(c) must exist in any legal state of the 
SUPPLY relation that also contains the tuples above the dashed line. Figure 14.15(d) 
shows how the SUPPLY relation with the join dependency is decomposed into three 
relations R1, R2, and R3 that are each in 5NF. Notice that applying a natural join to 
any two of these relations produces spurious tuples, but applying a natural join to 
all three together does not. The reader should verify this on the sample relation in 
Figure 14.15(c) and its projections in Figure 14.15(d). This is because only the JD 
exists, but no MVDs are specified. Notice, too, that the JD(R1, R2, R3) is specified on 
all legal relation states, not just on the one shown in Figure 14.15(c).

Discovering JDs in practical databases with hundreds of attributes is next to impos-
sible. It can be done only with a great degree of intuition about the data on the part 
of the designer. Therefore, the current practice of database design pays scant atten-
tion to them. One result due to Date and Fagin (1992) relates to conditions detected 
using f.d.’s alone and ignores JDs completely. It states: “If a relation schema is in 
3NF and each of its keys consists of a single attribute, it is also in 5NF.”

14.8 Summary
In this chapter we discussed several pitfalls in relational database design using intu-
itive arguments. We identified informally some of the measures for indicating 
whether a relation schema is good or bad, and we provided informal guidelines for 
a good design. These guidelines are based on doing a careful conceptual design in 
the ER and EER model, following the mapping procedure in Chapter 9 to map enti-
ties and relationships into relations. Proper enforcement of these guidelines and 
lack of redundancy will avoid the insertion/deletion/update anomalies and genera-
tion of spurious data. We recommended limiting NULL values, which cause prob-
lems during SELECT, JOIN, and aggregation operations. Then we presented some 
formal concepts that allow us to do relational design in a top-down fashion by ana-
lyzing relations individually. We defined this process of design by analysis and 
decomposition by introducing the process of normalization.

We defined the concept of functional dependency, which is the basic tool for ana-
lyzing relational schemas, and we discussed some of its properties. Functional 
dependencies specify semantic constraints among the attributes of a relation 
schema. Next we described the normalization process for achieving good designs 
by testing relations for undesirable types of problematic functional dependencies. 
We provided a treatment of successive normalization based on a predefined pri-
mary key in each relation, and we then relaxed this requirement and provided more 
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general definitions of second normal form (2NF) and third normal form (3NF) that 
take all candidate keys of a relation into account. We presented examples to illus-
trate how, by using the general definition of 3NF, a given relation may be analyzed 
and decomposed to eventually yield a set of relations in 3NF.

We presented Boyce-Codd normal form (BCNF) and discussed how it is a stronger 
form of 3NF. We also illustrated how the decomposition of a non-BCNF relation 
must be done by considering the nonadditive decomposition requirement. We pre-
sented a test for the nonadditive join property of binary decompositions and also 
gave a general algorithm to convert any relation not in BCNF into a set of BCNF 
relations. We motivated the need for an additional constraint beyond the functional 
dependencies based on mixing of independent multivalued attributes into a single 
relation. We introduced multivalued dependency (MVD) to address such condi-
tions and defined the fourth normal form based on MVDs. Finally, we introduced 
the fifth normal form, which is based on join dependency and which identifies a 
peculiar constraint that causes a relation to be decomposed into several compo-
nents so that they always yield the original relation after a join. In practice, most 
commercial designs have followed the normal forms up to BCNF. The need to 
decompose into 5NF rarely arises in practice, and join dependencies are difficult to 
detect for most practical situations, making 5NF more of theoretical value.

Chapter 15 presents synthesis as well as decomposition algorithms for relational 
database design based on functional dependencies. Related to decomposition, we 
discuss the concepts of nonadditive (or lossless) join and dependency preservation, 
which are enforced by some of these algorithms. Other topics in Chapter 15 include 
a more detailed treatment of functional and multivalued dependencies, and other 
types of dependencies.

Review Questions
 14.1. Discuss attribute semantics as an informal measure of goodness for a rela-

tion schema.

 14.2. Discuss insertion, deletion, and modification anomalies. Why are they con-
sidered bad? Illustrate with examples.

 14.3. Why should NULLs in a relation be avoided as much as possible? Discuss the 
problem of spurious tuples and how we may prevent it.

 14.4. State the informal guidelines for relation schema design that we discussed. 
Illustrate how violation of these guidelines may be harmful.

 14.5. What is a functional dependency? What are the possible sources of the 
information that defines the functional dependencies that hold among the 
attributes of a relation schema?

 14.6. Why can we not infer a functional dependency automatically from a partic-
ular relation state?
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 14.7. What does the term unnormalized relation refer to? How did the normal forms 
develop historically from first normal form up to Boyce-Codd normal form?

 14.8. Define first, second, and third normal forms when only primary keys are 
considered. How do the general definitions of 2NF and 3NF, which consider 
all keys of a relation, differ from those that consider only primary keys?

 14.9. What undesirable dependencies are avoided when a relation is in 2NF?

 14.10. What undesirable dependencies are avoided when a relation is in 3NF?

 14.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-
nitions beyond primary keys?

 14.12. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it 
considered a stronger form of 3NF?

 14.13. What is multivalued dependency? When does it arise?

 14.14. Does a relation with two or more columns always have an MVD? Show with 
an example.

 14.15. Define fourth normal form. When is it violated? When is it typically applicable?

 14.16. Define join dependency and fifth normal form.

 14.17. Why is 5NF also called project-join normal form (PJNF)?

 14.18. Why do practical database designs typically aim for BCNF and not aim for 
higher normal forms?

Exercises
 14.19. Suppose that we have the following requirements for a university database 

that is used to keep track of students’ transcripts:

a. The university keeps track of each student’s name (Sname), student num-
ber (Snum), Social Security number (Ssn), current address (Sc_addr) and 
phone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone), 
birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, … , 
‘graduate’), major department (Major_code), minor department  
(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, … , ‘ph.d.’). 
Both Ssn and student number have unique values for each student.

b. Each department is described by a name (Dname), department code 
(Dcode), office number (Doffice), office phone (Dphone), and college  
(Dcollege). Both name and code have unique values for each department.

c. Each course has a course name (Cname), description (Cdesc), course 
number (Cnum), number of semester hours (Credit), level (Level), and 
offering department (Cdept). The course number is unique for each 
course.
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d. Each section has an instructor (Iname), semester (Semester), year (Year), 
course (Sec_course), and section number (Sec_num). The section number 
distinguishes different sections of the same course that are taught during 
the same semester/year; its values are 1, 2, 3, … , up to the total number of 
sections taught during each semester.

e. A grade record refers to a student (Ssn), a particular section, and a 
grade (Grade).

Design a relational database schema for this database application. First show 
all the functional dependencies that should hold among the attributes. Then 
design relation schemas for the database that are each in 3NF or BCNF. Spec-
ify the key attributes of each relation. Note any unspecified requirements, 
and make appropriate assumptions to render the specification complete.

 14.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of 
Figures 14.3 and 14.4?

 14.21. In what normal form is the LOTS relation schema in Figure 14.12(a) with 
respect to the restrictive interpretations of normal form that take only the 
primary key into account? Would it be in the same normal form if the gen-
eral definitions of normal form were used?

 14.22. Prove that any relation schema with two attributes is in BCNF.

 14.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and 
EMP_ LOCS relations in Figure 14.5 (result shown in Figure 14.6)?

 14.24. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set 
of functional dependencies F = {{A, B}→{C}, {A}→{D, E}, {B}→{F},  
{F}→{G, H}, {D}→{I, J}}. What is the key for R? Decompose R into 2NF and 
then 3NF relations.

 14.25. Repeat Exercise 14.24 for the following different set of functional dependen-
cies G = {{A, B}→{C}, {B, D}→{E, F}, {A, D}→{G, H}, {A}→{I}, {H}→{J}}.

 14.26. Consider the following relation:

A B C TUPLE#

10 b1 c1 1

10 b2 c2 2

11 b4 c1 3

12 b3 c4 4

13 b1 c1 5

14 b3 c4 6

a. Given the previous extension (state), which of the following dependen-
cies may hold in the above relation? If the dependency cannot hold, 
explain why by specifying the tuples that cause the violation.

 i. A → B, ii. B → C, iii. C → B, iv. B → A, v. C → A
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b. Does the above relation have a potential candidate key? If it does, what is 
it? If it does not, why not?

 14.27. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB → C, CD → E, DE → B

  Is AB a candidate key of this relation? If not, is ABD? Explain your answer.

 14.28. Consider the relation R, which has attributes that hold schedules of courses 
and sections at a university; R = {Course_no, Sec_no, Offering_dept,  
Credit_hours, Course_level, Instructor_ssn, Semester, Year, Days_hours, Room_no, 
No_of_students}. Suppose that the following functional dependencies hold on R:

{Course_no} → {Offering_dept, Credit_hours, Course_level}
{Course_no, Sec_no, Semester, Year} → {Days_hours, Room_no,
 No_of_students, Instructor_ssn}
{Room_no, Days_hours, Semester, Year} → {Instructor_ssn, Course_no,
 Sec_no}

  Try to determine which sets of attributes form keys of R. How would you 
normalize this relation?

 14.29. Consider the following relations for an order-processing application data-
base at ABC, Inc.

ORDER (O#, Odate, Cust#, Total_amount)
ORDER_ITEM(O#, I#, Qty_ordered, Total_price, Discount%)

  Assume that each item has a different discount. The Total_price refers to one 
item, Odate is the date on which the order was placed, and the Total_amount 
is the amount of the order. If we apply a natural join on the relations  
ORDER_ITEM and ORDER in this database, what does the resulting relation 
schema RES look like? What will be its key? Show the FDs in this resulting 
relation. Is RES in 2NF? Is it in 3NF? Why or why not? (State assumptions, 
if you make any.)

 14.30. Consider the following relation:

 CAR_SALE(Car#, Date_sold, Salesperson#, Commission%, Discount_amt)

  Assume that a car may be sold by multiple salespeople, and hence {Car#, 
Salesperson#} is the primary key. Additional dependencies are

Date_sold → Discount_amt and
Salesperson# → Commission%

  Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why 
or why not? How would you successively normalize it completely?

 14.31. Consider the following relation for published books:

BOOK (Book_title, Author_name, Book_type, List_price, Author_affil,
  Publisher)
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  Author_affil refers to the affiliation of author. Suppose the following depen-
dencies exist:

Book_title → Publisher, Book_type
Book_type → List_price
Author_name → Author_affil

a. What normal form is the relation in? Explain your answer.

b. Apply normalization until you cannot decompose the relations further. 
State the reasons behind each decomposition.

 14.32. This exercise asks you to convert business statements into dependencies. 
Consider the relation DISK_DRIVE (Serial_number, Manufacturer, Model, Batch, 
Capacity, Retailer). Each tuple in the relation DISK_DRIVE contains information 
about a disk drive with a unique Serial_number, made by a manufacturer, with a 
particular model number, released in a certain batch, which has a certain stor-
age capacity and is sold by a certain retailer. For example, the tuple Disk_drive 
(‘1978619’, ‘WesternDigital’, ‘A2235X’, ‘765234’, 500, ‘CompUSA’) specifies 
that WesternDigital made a disk drive with serial number 1978619 and model 
number A2235X, released in batch 765234; it is 500GB and sold by CompUSA.

  Write each of the following dependencies as an FD:

a. The manufacturer and serial number uniquely identifies the drive.

b. A model number is registered by a manufacturer and therefore can’t be 
used by another manufacturer.

c. All disk drives in a particular batch are the same model.

d. All disk drives of a certain model of a particular manufacturer have 
exactly the same capacity.

 14.33. Consider the following relation:

R (Doctor#, Patient#, Date, Diagnosis, Treat_code, Charge)

  In the above relation, a tuple describes a visit of a patient to a doctor along 
with a treatment code and daily charge. Assume that diagnosis is determined 
(uniquely) for each patient by a doctor. Assume that each treatment code 
has a fixed charge (regardless of patient). Is this relation in 2NF? Justify your 
answer and decompose if necessary. Then argue whether further normaliza-
tion to 3NF is necessary, and if so, perform it.

 14.34. Consider the following relation:

CAR_SALE (Car_id, Option_type, Option_listprice, Sale_date,
 Option_discountedprice)

  This relation refers to options installed in cars (e.g., cruise control) that were 
sold at a dealership, and the list and discounted prices of the options.

  If CarID → Sale_date and Option_type → Option_listprice and CarID, Option_type 
→ Option_discountedprice, argue using the generalized definition of the 3NF 
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that this relation is not in 3NF. Then argue from your knowledge of 2NF, 
why it is not even in 2NF.

 14.35. Consider the relation:

BOOK (Book_Name, Author, Edition, Year)

  with the data:

Book_Name Author Edition Copyright_Year

DB_fundamentals Navathe 4 2004

DB_fundamentals Elmasri 4 2004

DB_fundamentals Elmasri 5 2007

DB_fundamentals Navathe 5 2007

a. Based on a common-sense understanding of the above data, what are the 
possible candidate keys of this relation?

b. Justify that this relation has the MVD {Book} →→ {Author} | {Edition, Year}.

c. What would be the decomposition of this relation based on the above 
MVD? Evaluate each resulting relation for the highest normal form it 
possesses.

 14.36. Consider the following relation:

TRIP (Trip_id, Start_date, Cities_visited, Cards_used)

  This relation refers to business trips made by company salespeople. Suppose 
the TRIP has a single Start_date but involves many Cities and salespeople 
may use multiple credit cards on the trip. Make up a mock-up population of 
the table.

a. Discuss what FDs and/or MVDs exist in this relation.

b. Show how you will go about normalizing the relation.

Laboratory Exercises
Note: The following exercises use the DBD (Data Base Designer) system that is 
described in the laboratory manual.

The relational schema R and set of functional dependencies F need to be coded as 
lists. As an example, R and F for this problem are coded as:

 R = [a, b, c, d, e, f, g, h, i, j]
 F = [[[a, b],[c]],
        [[a],[d, e]],
        [[b],[f]],
        [[f],[g, h]],
        [[d],[i, j]]]
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Since DBD is implemented in Prolog, use of uppercase terms is reserved for vari-
ables in the language and therefore lowercase constants are used to code the attri-
butes. For further details on using the DBD system, please refer to the laboratory 
manual.

 14.37. Using the DBD system, verify your answers to the following exercises:

a. 14.24 (3NF only)

b. 14.25

c. 14.27

d. 14.28

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original 
definitions of first, second, and third normal form were also defined in Codd 
(1972a), where a discussion on update anomalies can be found. Boyce-Codd nor-
mal form was defined in Codd (1974). The alternative definition of third normal 
form is given in Ullman (1988), as is the definition of BCNF that we give here. Ull-
man (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many of 
the theorems and proofs concerning functional dependencies. Date and Fagin 
(1992) give some simple and practical results related to higher normal forms.

Additional references to relational design theory are given in Chapter 15.
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15
Relational Database Design 

Algorithms and Further 
Dependencies

Chapter 14 presented a top-down relational design 
technique and related concepts used extensively 

in commercial database design projects today. The procedure involves designing an 
ER or EER conceptual schema and then mapping it to the relational model by a 
procedure such as the one described in Chapter 9. Primary keys are assigned to 
each relation based on known functional dependencies. In the subsequent process, 
which may be called relational design by analysis, initially designed relations from 
the above procedure—or those inherited from previous files, forms, and other 
sources—are analyzed to detect undesirable functional dependencies. These depen-
dencies are removed by the successive normalization procedure that we described 
in Section 14.3 along with definitions of related normal forms, which are succes-
sively better states of design of individual relations. In Section 14.3 we assumed that 
primary keys were assigned to individual relations; in Section 14.4 a more general 
treatment of normalization was presented where all candidate keys are considered 
for each relation, and Section 14.5 discussed a further normal form called BCNF. 
Then in Sections 14.6 and 14.7 we discussed two more types of dependencies—
multivalued dependencies and join dependencies—that can also cause redundancies 
and showed how they can be eliminated with further normalization.

In this chapter, we use the theory of normal forms and functional, multivalued, and 
join dependencies developed in the last chapter and build upon it while maintain-
ing three different thrusts. First, we discuss the concept of inferring new functional 
dependencies from a given set and discuss notions including closure, cover, mini-
mal cover, and equivalence. Conceptually, we need to capture the semantics of 

chapter 15
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attibutes within a relation completely and succinctly, and the minimal cover allows 
us to do it. Second, we discuss the desirable properties of nonadditive (lossless) 
joins and preservation of functional dependencies. A general algorithm to test for 
nonadditivity of joins among a set of relations is presented. Third, we present an 
approach to relational design by synthesis of functional dependencies. This is a 
bottom-up approach to design that presupposes that the known functional depen-
dencies among sets of attributes in the Universe of Discourse (UoD) have been 
given as input. We present algorithms to achieve the desirable normal forms, 
namely 3NF and BCNF, and achieve one or both of the desirable properties of non-
additivity of joins and functional dependency preservation. Although the synthesis 
approach is theoretically appealing as a formal approach, it has not been used in 
practice for large database design projects because of the difficulty of providing all 
possible functional dependencies up front before the design can be attempted. 
Alternately, with the approach presented in Chapter 14, successive decompositions 
and ongoing refinements to design become more manageable and may evolve over 
time. The final goal of this chapter is to discuss further the multivalued dependency 
(MVD) concept we introduced in Chapter 14 and briefly point out other types of 
dependencies that have been identified.

In Section 15.1 we discuss the rules of inference for functional dependencies and 
use them to define the concepts of a cover, equivalence, and minimal cover among 
functional dependencies. In Section 15.2, first we describe the two desirable 
properties of decompositions, namely, the dependency preservation property 
and the nonadditive (or lossless) join property, which are both used by the design 
algorithms to achieve desirable decompositions. It is important to note that it is 
insufficient to test the relation schemas independently of one another for compli-
ance with higher normal forms like 2NF, 3NF, and BCNF. The resulting relations 
must collectively satisfy these two additional properties to qualify as a good design. 
Section 15.3 is devoted to the development of relational design algorithms that 
start off with one giant relation schema called the universal relation, which is a 
hypothetical relation containing all the attributes. This relation is decomposed (or 
in other words, the given functional dependencies are synthesized) into relations 
that satisfy a certain normal form like 3NF or BCNF and also meet one or both of 
the desirable properties.

In Section 15.5 we discuss the multivalued dependency (MVD) concept further by 
applying the notions of inference, and equivalence to MVDs. Finally, in Sec- 
tion 15.6 we complete the discussion on dependencies among data by introducing 
inclusion dependencies and template dependencies. Inclusion dependencies can 
represent referential integrity constraints and class/subclass constraints across rela-
tions. We also describe some situations where a procedure or function is needed to 
state and verify a functional dependency among attributes. Then we briefly discuss 
domain-key normal form (DKNF), which is considered the most general normal 
form. Section 15.7 summarizes this chapter.

It is possible to skip some or all of Sections 15.3, 15.4, and 15.5 in an introductory 
database course.
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15.1  Further Topics in Functional  
Dependencies: Inference Rules,  
Equivalence, and Minimal Cover

We introduced the concept of functional dependencies (FDs) in Section 14.2, illus-
trated it with some examples, and developed a notation to denote multiple FDs over 
a single relation. We identified and discussed problematic functional dependencies 
in Sections 14.3 and 14.4 and showed how they can be eliminated by a proper decom-
position of a relation. This process was described as normalization, and we showed 
how to achieve the first through third normal forms (1NF through 3NF) given pri-
mary keys in Section 14.3. In Sections 14.4 and 14.5 we provided generalized tests for 
2NF, 3NF, and BCNF given any number of candidate keys in a relation and showed 
how to achieve them. Now we return to the study of functional dependencies and 
show how new dependencies can be inferred from a given set and discuss the con-
cepts of closure, equivalence, and minimal cover that we will need when we later 
consider a synthesis approach to design of relations given a set of FDs.

15.1.1 Inference Rules for Functional Dependencies
We denote by F the set of functional dependencies that are specified on relation 
schema R. Typically, the schema designer specifies the functional dependencies 
that are semantically obvious; usually, however, numerous other functional 
dependencies hold in all legal relation instances among sets of attributes that can 
be derived from and satisfy the dependencies in F. Those other dependencies can 
be inferred or deduced from the FDs in F. We call them as inferred or implied 
functional dependencies.

Definition: An FD X → Y is inferred from or implied by a set of dependencies 
F specified on R if X → Y holds in every legal relation state r of R; that is, when-
ever r satisfies all the dependencies in F, X → Y also holds in r.

In real life, it is impossible to specify all possible functional dependencies for a given 
situation. For example, if each department has one manager, so that Dept_no 
uniquely determines Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a unique 
phone number called Mgr_phone (Mgr_ssn → Mgr_phone), then these two dependen-
cies together imply that Dept_no → Mgr_phone. This is an inferred or implied FD 
and need not be explicitly stated in addition to the two given FDs. Therefore, it is 
useful to define a concept called closure formally that includes all possible depen-
dencies that can be inferred from the given set F.

Definition. Formally, the set of all dependencies that include F as well as all 
dependencies that can be inferred from F is called the closure of F; it is denoted 
by F+.

For example, suppose that we specify the following set F of obvious functional 
dependencies on the relation schema in Figure 14.3(a):

F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }
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Some of the additional functional dependencies that we can infer from F are the 
following:

Ssn → {Dname, Dmgr_ssn}
Ssn → Ssn
Dnumber → Dname

The closure F+ of F is the set of all functional dependencies that can be inferred 
from F. To determine a systematic way to infer dependencies, we must discover a 
set of inference rules that can be used to infer new dependencies from a given set of 
dependencies. We consider some of these inference rules next. We use the notation 
F |=X → Y to denote that the functional dependency X → Y is inferred from the set 
of functional dependencies F.

In the following discussion, we use an abbreviated notation when discussing func-
tional dependencies. We concatenate attribute variables and drop the commas  
for convenience. Hence, the FD {X,Y} → Z is abbreviated to XY → Z, and the  
FD {X, Y, Z} → {U, V} is abbreviated to XYZ → UV. We present below three rules 
IR1 through IR3 that are well-known inference rules for functional dependencies. 
They were proposed first by Armstrong (1974) and hence are known as  
Armstrong’s axioms.1

IR1 (reflexive rule)2: If X ⊇ Y, then X →Y.

IR2 (augmentation rule)3: {X → Y} |=XZ → YZ.

IR3 (transitive rule): {X → Y, Y → Z} |=X → Z.

Armstrong has shown that inference rules IR1 through IR3 are sound and complete. 
By sound, we mean that given a set of functional dependencies F specified on a rela-
tion schema R, any dependency that we can infer from F by using IR1 through IR3 
holds in every relation state r of R that satisfies the dependencies in F. By complete, 
we mean that using IR1 through IR3 repeatedly to infer dependencies until no more 
dependencies can be inferred results in the complete set of all possible dependencies 
that can be inferred from F. In other words, the set of dependencies F+, which we 
called the closure of F, can be determined from F by using only inference rules IR1 
through IR3.

The reflexive rule (IR1) states that a set of attributes always determines itself or any of its 
subsets, which is obvious. Because IR1 generates dependencies that are always true, such 
dependencies are called trivial. Formally, a functional dependency X → Y is trivial if 
X ⊇ Y; otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the 
same set of attributes to both the left- and right-hand sides of a dependency results in 
another valid dependency. According to IR3, functional dependencies are transitive.

1They are actually inference rules rather than axioms. In the strict mathematical sense, the axioms (given 
facts) are the functional dependencies in F, since we assume that they are correct, whereas IR1 through 
IR3 are the inference rules for inferring new functional dependencies (new facts).
2The reflexive rule can also be stated as X → X; that is, any set of attributes functionally determines itself.
3The augmentation rule can also be stated as X → Y |= XZ → Y; that is, augmenting the left-hand-side 
attributes of an FD produces another valid FD.
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Each of the preceding inference rules can be proved from the definition of functional 
dependency, either by direct proof or by contradiction. A proof by contradiction 
assumes that the rule does not hold and shows that this is not possible. We now prove 
that the first three rules IR1 through IR3 are valid. The second proof is by contradiction.

Proof of IR1. Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some rela-
tion instance r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y; 
hence, X → Y must hold in r.

Proof of IR2 (by contradiction). Assume that X → Y holds in a relation instance 
r of R but that XZ → YZ does not hold. Then there must exist two tuples t1 
and t2 in r such that (1) t1 [X] = t2 [X], (2) t1 [Y] = t2 [Y], (3) t1 [XZ] = t2 [XZ], 
and (4) t1 [YZ] ≠ t2 [YZ]. This is not possible because from (1) and (3) we 
deduce (5) t1 [Z] = t2 [Z], and from (2) and (5) we deduce (6) t1 [YZ] = t2 [YZ], 
contradicting (4).

Proof of IR3. Assume that (1) X → Y and (2) Y → Z both hold in a relation r. 
Then for any two tuples t1 and t2 in r such that t1 [X] = t2 [X], we must have (3) 
t1 [Y] = t2 [Y], from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z] 
from (3) and assumption (2); thus X → Z must hold in r.

There are three other inference rules that follow from IR1, IR2 and IR3. They are 
as follows:

IR4 (decomposition, or projective, rule): {X → YZ} |=X → Y.

IR5 (union, or additive, rule): {X → Y, X → Z} |=X → YZ.

IR6 (pseudotransitive rule): {X → Y, WY → Z} |=WX → Z.

The decomposition rule (IR4) says that we can remove attributes from the right-
hand side of a dependency; applying this rule repeatedly can decompose the  
FD X → {A1, A2, … , An} into the set of dependencies {X → A1, X → A2, … , X → An}. 
The union rule (IR5) allows us to do the opposite; we can combine a set of depen-
dencies {X → A1, X → A2, … , X → An} into the single FD X → {A1, A2, … , An}. 
The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left-
hand side of a dependency with another set X that functionally determines Y, and 
can be derived from IR2 and IR3 if we augment the first functional dependency  
X → Y with W (the augmentation rule) and then apply the transitive rule.

One important cautionary note regarding the use of these rules: Although X → A and 
X → B implies X → AB by the union rule stated above, X → A and Y → B does imply 
that XY → AB. Also, XY → A does not necessarily imply either X → A or Y → A.

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any 
additional valid inference rules. However, a simpler way to prove that an inference 
rule for functional dependencies is valid is to prove it by using inference rules that 
have already been shown to be valid. Thus IR4, IR5, and IR6 are regarded as a corol-
lary of the Armstrong’s basic inference rules. For example, we can prove IR4 through 
IR6 by using IR1 through IR3. We present the proof of IR5 below. Proofs of IR4 and IR6 
using IR1 through IR3 are left as an exercise for the reader.
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Proof of IR5 (using IR1 through IR3).

1. X →Y (given).

2. X → Z (given).

3. X → XY (using IR2 on 1 by augmenting with X; notice that XX = X).

4. XY → YZ (using IR2 on 2 by augmenting with Y).

5. X → YZ (using IR3 on 3 and 4).

Typically, database designers first specify the set of functional dependencies F that 
can easily be determined from the semantics of the attributes of R; then IR1, IR2, 
and IR3 are used to infer additional functional dependencies that will also hold on 
R. A systematic way to determine these additional functional dependencies is first 
to determine each set of attributes X that appears as a left-hand side of some func-
tional dependency in F and then to determine the set of all attributes that are depen-
dent on X.

Definition. For each such set of attributes X, we determine the set X+ of attri-
butes that are functionally determined by X based on F; X+ is called the closure 
of X under F.

Algorithm 15.1 can be used to calculate X+.

Algorithm 15.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is 
a subset of R.

X+ := X;
repeat
 oldX+ := X+;
 for each functional dependency Y → Z in F do
  if X+ ⊇ Y then X+ := X+ ∪ Z;
 until (X+ = oldX+);

Algorithm 15.1 starts by setting X+ to all the attributes in X. By IR1, we know that all 
these attributes are functionally dependent on X. Using inference rules IR3 and IR4, 
we add attributes to X+, using each functional dependency in F. We keep going 
through all the dependencies in F (the repeat loop) until no more attributes are 
added to X+ during a complete cycle (of the for loop) through the dependencies in F. 
The closure concept is useful in understanding the meaning and implications of 
attributes or sets of attributes in a relation. For example, consider the following 
relation schema about classes held at a university in a given academic year.

CLASS ( Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity).

Let F, the set of functional dependencies for the above relation include the 
following f.d.s:

FD1: Sectionid → Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity;
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FD2: Course# → Credit_hrs;
FD3: {Course#, Instr_name} → Text, Classroom;
FD4: Text → Publisher
FD5: Classroom → Capacity

Note that the above FDs express certain semantics about the data in the relation 
CLASS. For example, FD1 states that each class has a unique Classid. FD3 states 
that when a given course is offered by a certain instructor, the text is fixed and the 
instructor teaches that class in a fixed room. Using the inference rules about the 
FDs and applying the definition of closure, we can define the following closures:

{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}
{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher, 

Classroom, Capacity }

Note that each closure above has an interpretation that is revealing about the 
attribute(s) on the left-hand side. For example, the closure of Course# has only 
Credit_hrs besides itself. It does not include Instr_name because different instruc-
tors could teach the same course; it does not include Text because different instruc-
tors may use different texts for the same course. Note also that the closure of 
{Course#, Instr_nam} does not include Classid, which implies that it is not a candi-
date key. This further implies that a course with given Course# could be offered by 
different instructors, which would make the courses distinct classes.

15.1.2 Equivalence of Sets of Functional Dependencies
In this section, we discuss the equivalence of two sets of functional dependencies. 
First, we give some preliminary definitions.

Definition. A set of functional dependencies F is said to cover another set of 
functional dependencies E if every FD in E is also in F+; that is, if every 
dependency in E can be inferred from F; alternatively, we can say that E is 
covered by F.

Definition. Two sets of functional dependencies E and F are equivalent if  
E+ = F+. Therefore, equivalence means that every FD in E can be inferred from 
F, and every FD in F can be inferred from E; that is, E is equivalent to F if both 
the conditions—E covers F and F covers E—hold.

We can determine whether F covers E by calculating X+ with respect to F for each 
FD X → Y in E, and then checking whether this X+ includes the attributes in Y. If 
this is the case for every FD in E, then F covers E. We determine whether E and F are 
equivalent by checking that E covers F and F covers E. It is left to the reader as an 
exercise to show that the following two sets of FDs are equivalent:

F = {A → C, AC → D, E → AD, E → H} 
and G = {A → CD, E → AH}
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15.1.3 Minimal Sets of Functional Dependencies
Just as we applied inference rules to expand on a set F of FDs to arrive at F+, its closure, 
it is possible to think in the opposite direction to see if we could shrink or reduce the set 
F to its minimal form so that the minimal set is still equivalent to the original set F. 
Informally, a minimal cover of a set of functional dependencies E is a set of functional 
dependencies F that satisfies the property that every dependency in E is in the closure 
F+ of F. In addition, this property is lost if any dependency from the set F is removed; F 
must have no redundancies in it, and the dependencies in F are in a standard form.

We will use the concept of an extraneous attribute in a functional dependency for 
defining the minimum cover.

Definition: An attribute in a functional dependency is considered an extraneous 
attribute if we can remove it without changing the closure of the set of depen-
dencies. Formally, given F, the set of functional dependencies, and a functional 
dependency X → A in F, attribute Y is extraneous in X if Y ⊂ X, and F logically 
implies (F − (X → A) ∪ { (X − Y) → A } ).

We can formally define a set of functional dependencies F to be minimal if it satis-
fies the following conditions:

  1. Every dependency in F has a single attribute for its right-hand side.

  2. We cannot replace any dependency X → A in F with a dependency Y → A, 
where Y is a proper subset of X, and still have a set of dependencies that is 
equivalent to F.

  3. We cannot remove any dependency from F and still have a set of dependen-
cies that is equivalent to F.

We can think of a minimal set of dependencies as being a set of dependencies in a 
standard or canonical form and with no redundancies. Condition 1 just represents 
every dependency in a canonical form with a single attribute on the right-hand side, 
and it is a preparatory step before we can evaluate if conditions 2 and 3 are met.4 

Conditions 2 and 3 ensure that there are no redundancies in the dependencies 
either by having redundant attributes (referred to as extraneous attributes) on the 
left-hand side of a dependency (Condition 2) or by having a dependency that can be 
inferred from the remaining FDs in F (Condition 3).

Definition. A minimal cover of a set of functional dependencies E is a mini-
mal set of dependencies (in the standard canonical form5 and without redun-
dancy) that is equivalent to E. We can always find at least one minimal cover F 
for any set of dependencies E using Algorithm 15.2.

4This is a standard form to simplify the conditions and algorithms that ensure no redundancy exists in F. 
By using the inference rule IR4, we can convert a single dependency with multiple attributes on the 
right-hand side into a set of dependencies with single attributes on the right-hand side.
5It is possible to use the inference rule IR5 and combine the FDs with the same left-hand side into a 
single FD in the minimum cover in a nonstandard form. The resulting set is still a minimum cover, as 
illustrated in the example.
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If several sets of FDs qualify as minimal covers of E by the definition above, it is 
customary to use additional criteria for minimality. For example, we can choose the 
minimal set with the smallest number of dependencies or with the smallest total 
length (the total length of a set of dependencies is calculated by concatenating the 
dependencies and treating them as one long character string).

Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Depen-
dencies E

Input: A set of functional dependencies E.

Note: Explanatory comments are given at the end of some of the steps. They 
follow the format: (*comment*).

  1. Set F := E.

  2. Replace each functional dependency X → {A1, A2, … , An} in F by the n 
functional dependencies X →A1, X →A2, … , X → An. (*This places the FDs 
in a canonical form for subsequent testing*)

  3. For each functional dependency X → A in F

 for each attribute B that is an element of X

  if { {F − {X → A} } ∪ { (X − {B} ) → A} } is equivalent to F

   then replace X → A with (X − {B} ) → A in F. 

(*This constitutes removal of an extraneous attribute B contained in the left-
hand side X of a functional dependency X → A when possible*)

  4. For each remaining functional dependency X → A in F

if {F − {X → A} } is equivalent to F,

then remove X → A from F. (*This constitutes removal of a redundant func-
tional dependency X → A from F when possible*)

We illustrate the above algorithm with the following examples:

Example 1:  Let the given set of FDs be E: {B → A, D → A, AB → D}. We have to 
find the minimal cover of E.

 ■ All above dependencies are in canonical form (that is, they have only one 
attribute on the right-hand side), so we have completed step 1 of Algo- 
rithm 15.2 and can proceed to step 2. In step 2 we need to determine if  
AB → D has any redundant (extraneous) attribute on the left-hand side; that 
is, can it be replaced by B → D or A → D?

 ■ Since B → A, by augmenting with B on both sides (IR2), we have BB → AB, 
or B → AB (i). However, AB → D as given (ii).

 ■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Thus 
AB → D may be replaced by B → D.

 ■ We now have a set equivalent to original E, say E′: {B → A, D → A, B → D}. 
No further reduction is possible in step 2 since all FDs have a single attribute 
on the left-hand side.
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 ■ In step 3 we look for a redundant FD in E′. By using the transitive rule on 
B → D and D → A, we derive B → A. Hence B → A is redundant in E′ and 
can be eliminated.

 ■ Therefore, the minimal cover of E is F: {B → D, D → A}.

The reader can verify that the original set F can be inferred from E; in other words, 
the two sets F and E are equivalent.

Example 2:  Let the given set of FDs be G: {A → BCDE, CD → E}.

 ■ Here, the given FDs are NOT in the canonical form. So we first convert 
them into:

E: {A → B, A→ C, A→ D, A→ E, CD → E}.

 ■ In step 2 of the algorithm, for CD → E, neither C nor D is extraneous on the 
left-hand side, since we cannot show that C → E or D → E from the given 
FDs. Hence we cannot replace it with either.

 ■ In step 3, we want to see if any FD is redundant. Since A→ CD and 
CD → E, by transitive rule (IR3), we get A→ E. Thus, A→ E is redundant 
in G.

 ■ So we are left with the set F, equivalent to the original set G as: {A → B, 
A→ C, A→ D, CD → E}. F is the minimum cover. As we pointed out in foot-
note 6, we can combine the first three FDs using the union rule (IR5) and 
express the minimum cover as:

Minimum cover of G, F: {A → BCD, CD → E}.

In Section 15.3, we will show algorithms that synthesize 3NF or BCNF relations 
from a given set of dependencies E by first finding the minimal cover F for E.

Next, we provide a simple algorithm to determine the key of a relation:

Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Depen-
dencies

Input: A relation R and a set of functional dependencies F on the attributes 
of R.

  1. Set K := R.

  2. For each attribute A in K

{compute (K − A)+ with respect to F;

if (K − A)+ contains all the attributes in R, then set K := K − {A} };

In Algorithm 15.2(a), we start by setting K to all the attributes of R; we can say 
that R itself is always a default superkey. We then remove one attribute at a time 
and check whether the remaining attributes still form a superkey. Notice, too, 
that Algorithm 15.2(a) determines only one key out of the possible candidate keys 
for R; the key returned depends on the order in which attributes are removed 
from R in step 2.

https://hemanthrajhemu.github.io



 15.2 Properties of Relational Decompositions 513

15.2 Properties of Relational Decompositions
We now turn our attention to the process of decomposition that we used through-
out Chapter 14 to get rid of unwanted dependencies and achieve higher normal 
forms. In Section 15.2.1, we give examples to show that looking at an individual 
relation to test whether it is in a higher normal form does not, on its own, guarantee 
a good design; rather, a set of relations that together form the relational database 
schema must possess certain additional properties to ensure a good design. In Sec-
tions 15.2.2 and 15.2.3, we discuss two of these properties: the dependency preser-
vation property and the nonadditive (or lossless) join property. Section 15.2.4 
discusses binary decompositions, and Section 15.2.5 discusses successive nonaddi-
tive join decompositions.

15.2.1  Relation Decomposition and Insufficiency  
of Normal Forms

The relational database design algorithms that we present in Section 15.3 start from 
a single universal relation schema R = {A1, A2, … , An} that includes all the attri-
butes of the database. We implicitly make the universal relation assumption, 
which states that every attribute name is unique. The set F of functional dependen-
cies that should hold on the attributes of R is specified by the database designers 
and is made available to the design algorithms. Using the functional dependencies, 
the algorithms decompose the universal relation schema R into a set of relation 
schemas D = {R1, R2, … , Rm} that will become the relational database schema; D is 
called a decomposition of R.

We must make sure that each attribute in R will appear in at least one relation 
schema Ri in the decomposition so that no attributes are lost; formally, we have

R Ri
i

m

=
=

1
U

This is called the attribute preservation condition of a decomposition.

Another goal is to have each individual relation Ri in the decomposition D be in 
BCNF or 3NF. However, this condition is not sufficient to guarantee a good data-
base design on its own. We must consider the decomposition of the universal rela-
tion as a whole, in addition to looking at the individual relations. To illustrate this 
point, consider the EMP_LOCS(Ename, Plocation) relation in Figure 14.5, which is in 
3NF and also in BCNF. In fact, any relation schema with only two attributes is auto-
matically in BCNF.6 Although EMP_LOCS is in BCNF, it still gives rise to spurious 
tuples when joined with EMP_PROJ (Ssn, Pnumber, Hours, Pname, Plocation), which is 
not in BCNF (see the partial result of the natural join in Figure 14.6). Hence,  
EMP_LOCS represents a particularly bad relation schema because of its convoluted 

6As an exercise, the reader should prove that this statement is true.
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semantics by which Plocation gives the location of one of the projects on which an 
employee works. Joining EMP_LOCS with PROJECT(Pname, Pnumber, Plocation, 
Dnum) in Figure 14.2—which is in BCNF—using Plocation as a joining attribute also 
gives rise to spurious tuples. This underscores the need for other criteria that, 
together with the conditions of 3NF or BCNF, prevent such bad designs. In the next 
three subsections we discuss such additional conditions that should hold on a 
decomposition D as a whole.

15.2.2  Dependency Preservation Property  
of a Decomposition

It would be useful if each functional dependency X → Y specified in F either 
appeared directly in one of the relation schemas Ri in the decomposition D or 
could be inferred from the dependencies that appear in some Ri. Informally, this 
is the dependency preservation condition. We want to preserve the dependencies 
because each dependency in F represents a constraint on the database. If one of 
the dependencies is not represented in some individual relation Ri of the decom-
position, we cannot enforce this constraint by dealing with an individual relation. 
We may have to join multiple relations so as to include all attributes involved in 
that dependency.

It is not necessary that the exact dependencies specified in F appear themselves in 
individual relations of the decomposition D. It is sufficient that the union of the 
dependencies that hold on the individual relations in D be equivalent to F. We now 
define these concepts more formally.

Definition. Given a set of dependencies F on R, the projection of F on Ri, 
denoted by πRi

(F) where Ri is a subset of R, is the set of dependencies X → Y in 
F+ such that the attributes in X ∪ Y are all contained in Ri. Hence, the projection 
of F on each relation schema Ri in the decomposition D is the set of functional 
dependencies in F+, the closure of F, such that all the left- and right-hand-side 
attributes of those dependencies are in Ri. We say that a decomposition  
D = {R1, R2, … , Rm} of R is dependency-preserving with respect to F if the 
union of the projections of F on each Ri in D is equivalent to F; that is, 
((πR1

(F)) ∪ K ∪ (πRm
(F)))+ = F+.

If a decomposition is not dependency-preserving, some dependency is lost in 
the decomposition. To check that a lost dependency holds, we must take the 
JOIN of two or more relations in the decomposition to get a relation that 
includes all left- and right-hand-side attributes of the lost dependency, and 
then check that the dependency holds on the result of the JOIN—an option that 
is not practical.

An example of a decomposition that does not preserve dependencies is shown in 
Figure 14.13(a), in which the functional dependency FD2 is lost when LOTS1A is 
decomposed into {LOTS1AX, LOTS1AY}. The decompositions in Figure 14.12, how-
ever, are dependency-preserving. Similarly, for the example in Figure 14.14, no 
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matter what decomposition is chosen for the relation TEACH(Student, Course, 
Instructor) from the three provided in the text, one or both of the dependencies orig-
inally present are bound to be lost. We now state a claim related to this property 
without providing any proof.

Claim 1. It is always possible to find a dependency-preserving decomposition 
D with respect to F such that each relation Ri in D is in 3NF.

15.2.3  Nonadditive (Lossless) Join Property  
of a Decomposition

Another property that a decomposition D should possess is the nonadditive join 
property, which ensures that no spurious tuples are generated when a NATURAL 
JOIN operation is applied to the relations resulting from the decomposition. We 
already illustrated this problem in Section 14.1.4 with the example in Fig- 
ures 14.5 and 14.6. Because this is a property of a decomposition of relation  
schemas, the condition of no spurious tuples should hold on every legal relation 
state—that is, every relation state that satisfies the functional dependencies in F. 
Hence, the lossless join property is always defined with respect to a specific set F 
of dependencies.

Definition. Formally, a decomposition D = {R1, R2, … , Rm} of R has the  
lossless (nonadditive) join property with respect to the set of dependencies  
F on R if, for every relation state r of R that satisfies F, the following holds,  
where * is the NATURAL JOIN of all the relations in D: *(πR1

(r), … , πRm
(r)) = r.

The word loss in lossless refers to loss of information, not to loss of tuples. If a 
decomposition does not have the lossless join property, we may get additional spu-
rious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied; 
these additional tuples represent erroneous or invalid information. We prefer the 
term nonadditive join because it describes the situation more accurately. Although 
the term lossless join has been popular in the literature, we used the term nonaddi-
tive join in describing the NJB property in Section 14.5.1. We will henceforth use the 
term nonadditive join, which is self-explanatory and unambiguous. The nonaddi-
tive join property ensures that no spurious tuples result after the application of 
PROJECT and JOIN operations. We may, however, sometimes use the term lossy 
design to refer to a design that represents a loss of information. The decomposition 
of EMP_PROJ(Ssn, Pnumber, Hours, Ename, Pname, Plocation) in Figure 14.3 into  
EMP_LOCS(Ename, Plocation) and EMP_PROJ1(Ssn, Pnumber, Hours, Pname, Plocation) 
in Figure 14.5 obviously does not have the nonadditive join property, as illustrated 
by the partial result of NATURAL JOIN in Figure 14.6. We provided a simpler test 
in case of binary decompositions to check if the decomposition is nonadditive—it 
was called the NJB property in Section 14.5.1. We provide a general procedure for 
testing whether any decomposition D of a relation into n relations is nonadditive 
with respect to a set of given functional dependencies F in the relation; it is pre-
sented as Algorithm 15.3.
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Algorithm 15.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition D = {R1, R2, … , Rm} of R, and a 
set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They 
follow the format: (*comment*).

  1. Create an initial matrix S with one row i for each relation Ri in D, and one 
column j for each attribute Aj in R.

  2. Set S(i, j): = bij for all matrix entries. (*Each bij is a distinct symbol associated 
with indices (i, j)*)

  3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

  {if (relation Ri includes attribute Aj) then set S(i, j): = aj;};}; (*Each aj is 
a distinct symbol associated with index (j)*)

  4. Repeat the following loop until a complete loop execution results in no 
changes to S
{for each functional dependency X → Y in F

{for all rows in S that have the same symbols in the columns corresponding 
to attributes in X

{make the symbols in each column that correspond to an attribute 
in Y be the same in all these rows as follows: If any of the rows has 
an a symbol for the column, set the other rows to that same a symbol 
in the column. If no a symbol exists for the attribute in any of the 
rows, choose one of the b symbols that appears in one of the rows for 
the attribute and set the other rows to that same b symbol in the 
column ;} ; } ;};

  5. If a row is made up entirely of a symbols, then the decomposition has the 
nonadditive join property; otherwise, it does not.

Given a relation R that is decomposed into a number of relations R1, R2, … , Rm, 
Algorithm 15.3 begins the matrix S that we consider to be some relation state r of 
R. Row i in S represents a tuple ti (corresponding to relation Ri) that has a symbols 
in the columns that correspond to the attributes of Ri and b symbols in the remain-
ing columns. The algorithm then transforms the rows of this matrix (during the 
loop in step 4) so that they represent tuples that satisfy all the functional depen-
dencies in F. At the end of step 4, any two rows in S—which represent two tuples 
in r—that agree in their values for the left-hand-side attributes X of a functional 
dependency X → Y in F will also agree in their values for the right-hand-side attri-
butes Y. It can be shown that after applying the loop of step 4, if any row in S ends 
up with all a symbols, then the decomposition D has the nonadditive join property 
with respect to F.

If, on the other hand, no row ends up being all a symbols, D does not satisfy the 
lossless join property. In this case, the relation state r represented by S at the end of 
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the algorithm will be an example of a relation state r of R that satisfies the depen-
dencies in F but does not satisfy the nonadditive join condition. Thus, this relation 
serves as a counterexample that proves that D does not have the nonadditive join 
property with respect to F. Note that the a and b symbols have no special meaning 
at the end of the algorithm.

Figure 15.1(a) shows how we apply Algorithm 15.3 to the decomposition of the 
EMP_PROJ relation schema from Figure 14.3(b)into the two relation schemas  
EMP_PROJ1 and EMP_LOCS in Figure 14.5(a). The loop in step 4 of the algorithm 
cannot change any b symbols to a symbols; hence, the resulting matrix S does not 
have a row with all a symbols, and so the decomposition does not have the non-
additive join property.

Figure 15.1(b) shows another decomposition of EMP_PROJ (into EMP, PROJECT, 
and WORKS_ON) that does have the nonadditive join property, and Figure 15.1(c) 
shows how we apply the algorithm to that decomposition. Once a row consists only 
of a symbols, we conclude that the decomposition has the nonadditive join prop-
erty, and we can stop applying the functional dependencies (step 4 in the algorithm) 
to the matrix S.

15.2.4  Testing Binary Decompositions for the Nonadditive  
Join Property

Algorithm 15.3 allows us to test whether a particular decomposition D into n rela-
tions obeys the nonadditive join property with respect to a set of functional depen-
dencies F. There is a special case of a decomposition called a binary 
decomposition—decomposition of a relation R into two relations. A test called the 
NJB property test, which is easier to apply than Algorithm 15.3 but is limited only to 
binary decompositions, was given in Section 14.5.1. It was used to do binary decom-
position of the TEACH relation, which met 3NF but did not meet BCNF, into two 
relations that satisfied this property.

15.2.5 Successive Nonadditive Join Decompositions
We saw the successive decomposition of relations during the process of second and 
third normalization in Sections 14.3 and 14.4. To verify that these decompositions 
are nonadditive, we need to ensure another property, as set forth in Claim 2.

Claim 2 (Preservation of Nonadditivity in Successive Decompositions). If a 
decomposition D = {R1, R2, … , Rm} of R has the nonadditive (lossless) join 
property with respect to a set of functional dependencies F on R, and if a decom-
position Di = {Q1, Q2, … , Qk} of Ri has the nonadditive join property with 
respect to the projection of F on Ri, then the decomposition D2 = {R1, R2, … , 
Ri−1, Q1, Q2, … , Qk, Ri+1, … , Rm} of R has the nonadditive join property with 
respect to F.
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Pnumber

PROJECT(b)

Pname Plocation

Ssn
R1 b11

a1

a2

b22

b13

a3

b14

a4

a5

a5

b16

a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R2

R1

R2

R3

D = {R1, R2 }

(No changes to matrix after applying functional dependencies)

Ename Pnumber Pname HoursPlocation

Ssn

EMP

(a) R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP_LOCS = {Ename, Plocation}
R2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

(c)

Ename Ssn

WORKS_ON
Pnumber Hours

Ssn

a1 b32 a3 b34 b35 a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R1

R2

R3 a1 a2b32 b34a3 a4 a5 a6

(Original matrix S at start of algorithm)

Ename Pnumber Pname HoursPlocation

Ssn

(Matrix S after applying the first two functional dependencies;
last row is all “a” symbols so we stop)

Ename Pnumber Pname HoursPlocation

F = {Ssn      Ename; Pnumber      {Pname, Plocation}; {Ssn, Pnumber}      Hours}

D = {R1, R2,  R3}R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP = {Ssn, Ename}
R2 = PROJ = {Pnumber, Pname, Plocation}
R3 = WORKS_ON = {Ssn, Pnumber, Hours}

F = {Ssn      Ename; Pnumber      {Pname, Plocation}; {Ssn, Pnumber}      Hours}

b35

Figure 15.1 
Nonadditive join test for n-ary decompositions. (a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1  
and EMP_LOCS fails test. (b) A decomposition of EMP_PROJ that has the lossless join property.  
(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.
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15.3  Algorithms for Relational Database 
Schema Design

We now give two algorithms for creating a relational decomposition from a universal 
relation. The first algorithm decomposes a universal relation into dependency- 
preserving 3NF relations that also possess the nonadditive join property. The second 
algorithm decomposes a universal relation schema into BCNF schemas that possess the 
nonadditive join property. It is not possible to design an algorithm to produce BCNF 
relations that satisfy both dependency preservation and nonadditive join decomposition

15.3.1  Dependency-Preserving and Nonadditive (Lossless)  
Join Decomposition into 3NF Schemas

By now we know that it is not possible to have all three of the following: (1) guaran-
teed nonlossy (nonadditive) design, (2) guaranteed dependency preservation, and 
(3) all relations in BCNF. As we have stressed repeatedly, the first condition is a 
must and cannot be compromised. The second condition is desirable, but not a 
must, and may have to be relaxed if we insist on achieving BCNF. The original lost 
FDs can be recovered by a JOIN operation over the results of decomposition. Now 
we give an algorithm where we achieve conditions 1 and 2 and only guarantee 3NF. 
Algorithm 15.4 yields a decomposition D of R that does the following:

 ■ Preserves dependencies

 ■ Has the nonadditive join property

 ■ Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 15.4 Relational Synthesis into 3NF with Dependency Preservation 
and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the 
attributes of R.

  1. Find a minimal cover G for F (use Algorithm 15.2).

  2. For each left-hand-side X of a functional dependency that appears in G, create 
a relation schema in D with attributes {X ∪ {A1} ∪ {A2} … ∪ {Ak} }, where 
X → A1, X → A2, … , X → Ak are the only dependencies in G with X as left-
hand side (X is the key of this relation).

  3. If none of the relation schemas in D contains a key of R, then create one 
more relation schema in D that contains attributes that form a key of R. 
(Algorithm 15.2(a) may be used to find a key.)

  4. Eliminate redundant relations from the resulting set of relations in the rela-
tional database schema. A relation R is considered redundant if R is a projec-
tion of another relation S in the schema; alternately, R is subsumed by S.7

7Note that there is an additional type of dependency: R is a projection of the join of two or more relations 
in the schema. This type of redundancy is considered join dependency, as we discussed in Section 15.7. 
Hence, technically, it may continue to exist without disturbing the 3NF status for the schema.
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Step 3 of Algorithm 15.4 involves identifying a key K of R. Algorithm 15.2(a) can be 
used to identify a key K of R based on the set of given functional dependencies F. 
Notice that the set of functional dependencies used to determine a key in Algo-
rithm 15.2(a) could be either F or G, since they are equivalent.

Example 1 of Algorithm 15.4. Consider the following universal relation:

U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

Emp_ssn, Esal, and Ephone refer to the Social Security number, salary, and phone 
number of the employee. Pno, Pname, and Plocation refer to the number, name, and 
location of the project. Dno is the department number.

The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal 
relation. Hence F, the set of given FDs, includes {Emp_ssn → Esal, Ephone, Dno; 
Pno → Pname, Plocation; Emp_ssn, Pno → Esal, Ephone, Dno, Pname, Plocation}.

By applying the minimal cover Algorithm 15.2, in step 3 we see that Pno is an extra-
neous attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is extrane-
ous in Emp_ssn, Pno → Pname, Plocation. Hence the minimal cover consists of FD1 
and FD2 only (FD3 being completely redundant) as follows (if we group attributes 
with the same left-hand side into one FD):

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

The second step of Algorithm 15.4 produces relations R1 and R2 as:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U. 
Hence, the resulting design contains:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

R3 (Emp_ssn, Pno)

This design achieves both the desirable properties of dependency preservation and 
nonadditive join.

Example 2 of Algorithm 15.4 (Case X ). Consider the relation schema LOTS1A 
shown in Figure 14.13(a).

Assume that this relation is given as a universal relation U (Property_id, County, Lot#, 
Area) with the following functional dependencies:
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FD1: Property_id → Lot#, County, Area

FD2: Lot#, County → Area, Property_id

FD3: Area → County

These were called FD1, FD2, and FD5 in Figure 14.13(a). The meanings of the above 
attributes and the implication of the above functional dependencies were explained 
in Section 14.4.For ease of reference, let us abbreviate the above attributes with the 
first letter for each and represent the functional dependencies as the set

F: { P → LCA, LC → AP, A → C }

The universal relation with abbreviated attributes is U (P, C, L, A). If we apply the 
minimal cover Algorithm 15.2 to F, (in step 2) we first represent the set F as

F: {P → L, P → C, P → A, LC → A, LC → P, A → C}

In the set F, P → A can be inferred from P → LC and LC → A; hence P → A by tran-
sitivity and is therefore redundant. Thus, one possible minimal cover is

Minimal cover GX: {P → LC, LC → AP, A → C}

In step 2 of Algorithm 15.4, we produce design X (before removing redundant rela-
tions) using the above minimal cover as

Design X: R1 (P, L, C), R2 (L, C, A, P), and R3 (A, C)

In step 4 of the algorithm, we find that R3 is subsumed by R2 (that is, R3 is always a 
projection of R2 and R1 is a projection of R2 as well). Hence both of those relations 
are redundant. Thus the 3NF schema that achieves both of the desirable properties 
is (after removing redundant relations)

Design X: R2 (L, C, A, P).

or, in other words it is identical to the relation LOTS1A (Property_id, Lot#, County, 
Area) that we had determined to be in 3NF in Section 14.4.2.

Example 2 of Algorithm 15.4 (Case Y ). Starting with LOTS1A as the universal 
relation and with the same given set of functional dependencies, the second step of 
the minimal cover Algorithm 15.2 produces, as before,

F: {P → C, P → A, P → L, LC → A, LC → P, A → C}

The FD LC → A may be considered redundant because LC → P and P → A implies  
LC → A by transitivity. Also, P → C may be considered to be redundant because  
P → A and A → C implies P → C by transitivity. This gives a different minimal cover as

Minimal cover GY: { P → LA, LC → P, A → C }

The alternative design Y produced by the algorithm now is

Design Y: S1 (P, A, L), S2 (L, C, P), and S3 (A, C)

Note that this design has three 3NF relations, none of which can be considered as 
redundant by the condition in step 4. All FDs in the original set F are preserved. The 
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reader will notice that of the above three relations, relations S1 and S3 were produced 
as the BCNF design by the procedure given in Section 14.5 (implying that S2 is 
redundant in the presence of S1 and S3). However, we cannot eliminate relation S2 
from the set of three 3NF relations above since it is not a projection of either S1 or S3. 
It is easy to see that S2 is a valid and meaningful relation that has the two candidate 
keys (L, C), and P placed side-by-side. Notice further that S2 preserves the FD LC → P, 
which is lost if the final design contains only S1 and S3. Design Y therefore remains 
as one possible final result of applying Algorithm 15.4 to the given universal relation 
that provides relations in 3NF.

The above two variations of applying Algorithm 15.4 to the same universal relation 
with a given set of FDs have illustrated two things:

 ■ It is possible to generate alternate 3NF designs by starting from the same set 
of FDs.

 ■ It is conceivable that in some cases the algorithm actually produces relations 
that satisfy BCNF and may include relations that maintain the dependency 
preservation property as well.

15.3.2 Nonadditive Join Decomposition into BCNF Schemas
The next algorithm decomposes a universal relation schema R = {A1, A2, … , An} 
into a decomposition D = {R1, R2, … , Rm} such that each Ri is in BCNF and the 
decomposition D has the lossless join property with respect to F. Algorithm 15.5 
utilizes property NJB and claim 2 (preservation of nonadditivity in successive 
decompositions) to create a nonadditive join decomposition D = {R1, R2, … , Rm} of 
a universal relation R based on a set of functional dependencies F, such that each Ri 
in D is in BCNF.

Algorithm 15.5. Relational Decomposition into BCNF with Nonadditive 
Join Property

Input: A universal relation R and a set of functional dependencies F on the 
attributes of R.

  1. Set D := {R} ;

  2. While there is a relation schema Q in D that is not in BCNF do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

} ;

Each time through the loop in Algorithm 15.5, we decompose one relation schema 
Q that is not in BCNF into two relation schemas. According to property NJB for 
binary decompositions and claim 2, the decomposition D has the nonadditive 
join property. At the end of the algorithm, all relation schemas in D will be in 
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BCNF. We illustrated the application of this algorithm to the TEACH relation 
schema from Figure 14.14; it is decomposed into TEACH1(Instructor, Student) 
and TEACH2(Instructor, Course) because the dependency FD2 Instructor → Course 
violates BCNF.

In step 2 of Algorithm 15.5, it is necessary to determine whether a relation schema 
Q is in BCNF or not. One method for doing this is to test, for each functional depen-
dency X → Y in Q, whether X+ fails to include all the attributes in Q, thereby deter-
mining whether or not X is a (super) key in Q. Another technique is based on an 
observation that whenever a relation schema Q has a BCNF violation, there exists a 
pair of attributes A and B in Q such that {Q − {A, B} } → A; by computing the clo-
sure {Q − {A, B} }+ for each pair of attributes {A, B} of Q and checking whether the 
closure includes A (or B), we can determine whether Q is in BCNF.

It is important to note that the theory of nonadditive join decompositions is based 
on the assumption that no NULL values are allowed for the join attributes. The next 
section discusses some of the problems that NULLs may cause in relational decom-
positions and provides a general discussion of the algorithms for relational design 
by synthesis presented in this section.

15.4  About Nulls, Dangling Tuples, and 
Alternative Relational Designs

In this section, we discuss a few general issues related to problems that arise when 
relational design is not approached properly.

15.4.1 Problems with NULL Values and Dangling Tuples
We must carefully consider the problems associated with NULLs when designing a 
relational database schema. There is no fully satisfactory relational design theory as 
yet that includes NULL values. One problem occurs when some tuples have NULL 
values for attributes that will be used to join individual relations in the decomposi-
tion. To illustrate this, consider the database shown in Figure 15.2(a), where two 
relations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—
‘Berger’ and ‘Benitez’—represent newly hired employees who have not yet been 
assigned to a department (assume that this does not violate any integrity con-
straints). Now suppose that we want to retrieve a list of (Ename, Dname) values for 
all the employees. If we apply the NATURAL JOIN operation on EMPLOYEE and 
DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples will not appear in 
the result. The OUTER JOIN operation, discussed in Chapter 8, can deal with this 
problem. Recall that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT, 
tuples in EMPLOYEE that have NULL for the join attribute will still appear in the 
result, joined with an imaginary tuple in DEPARTMENT that has NULLs for all its 
attribute values. Figure 15.2(c) shows the result.

In general, whenever a relational database schema is designed in which two or 
more relations are interrelated via foreign keys, particular care must be devoted to 

https://hemanthrajhemu.github.io



524 Chapter 15 Relational Database Design Algorithms and Further Dependencies

watching for potential NULL values in foreign keys. This can cause unexpected loss 
of information in queries that involve joins on that foreign key. Moreover, if NULLs 
occur in other attributes, such as Salary, their effect on built-in functions such as 
SUM and AVERAGE must be carefully evaluated.

A related problem is that of dangling tuples, which may occur if we carry a decom-
position too far. Suppose that we decompose the EMPLOYEE relation in Fig- 
ure 15.2(a) further into EMPLOYEE_1 and EMPLOYEE_2, shown in Figures 15.3(a) 
and 15.3(b). If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2, 
we get the original EMPLOYEE relation. However, we may use the alternative repre-
sentation, shown in Figure 15.3(c), where we do not include a tuple in EMPLOYEE_3 
if the employee has not been assigned a department (instead of including a tuple 
with NULL for Dnum as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of 
EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3, the 
tuples for Berger and Benitez will not appear in the result; these are called dangling 
tuples in EMPLOYEE_1 because they are represented in only one of the two rela-
tions that represent employees, and hence they are lost if we apply an (INNER) 
JOIN operation.

15.4.2  Discussion of Normalization Algorithms  
and Alternative Relational Designs

One of the problems with the normalization algorithms we described is that the 
database designer must first specify all the relevant functional dependencies among 
the database attributes. This is not a simple task for a large database with hundreds 
of attributes. Failure to specify one or two important dependencies may result in an 
undesirable design. Another problem is that these algorithms are not deterministic 
in general. For example, the synthesis algorithms (Algorithms 15.4 and 15.5) require 
the specification of a minimal cover G for the set of functional dependencies F. 
Because there may be, in general, many minimal covers corresponding to F, as we 
illustrated in Example 2 of Algorithm 15.4 above, the algorithm can give different 
designs depending on the particular minimal cover used. Some of these designs 
may not be desirable. The decomposition algorithm to achieve BCNF (Algo- 
rithm 15.5) depends on the order in which the functional dependencies are supplied 
to the algorithm to check for BCNF violation. Again, it is possible that many different 
designs may arise. Some of the designs may be preferred, whereas others may 
be undesirable.

It is not always possible to find a decomposition into relation schemas that pre-
serves dependencies and allows each relation schema in the decomposition to be 
in BCNF (instead of 3NF, as in Algorithm 15.4). We can check the 3NF relation 
schemas in the decomposition individually to see whether each satisfies BCNF. If 
some relation schema Ri is not in BCNF, we can choose to decompose it further 
or to leave it as it is in 3NF (with some possible update anomalies). We showed by 
using the bottom-up approach to design that different minimal covers in cases X 
and Y of Example 2 under Algorithm 15.4 produced different sets of relations 
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(b)

Ename

EMPLOYEE
(a)

Ssn Bdate Address Dnum

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

5

5

4

4

5

4

1

Berger, Anders C. 999775555 1965-04-26 6530 Braes, Bellaire, TX NULL

Benitez, Carlos M. 888664444 1963-01-09 7654 Beech, Houston, TX NULL

5

Dname

DEPARTMENT

Dnum Dmgr_ssn

Research

Administration
Headquarters

5

4
1

333445555

987654321
888665555

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnum Dname Dmgr_ssn

(c)

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555 1963-01-09

1965-04-26 6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

NULL

NULL

NULL

NULL

NULL

NULL

987654321

333445555

Dnum Dname Dmgr_ssnSsn

Figure 15.2 
Issues with NULL-value 
joins. (a) Some 
EMPLOYEE tuples have 
NULL for the join attribute 
Dnum. (b) Result of  
applying NATURAL JOIN 
to the EMPLOYEE and 
DEPARTMENT relations. 
(c) Result of applying 
LEFT OUTER JOIN to 
EMPLOYEE and 
DEPARTMENT.
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Ename

EMPLOYEE_1(a)

(b)

Ssn Bdate Address

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555

1965-04-26

1963-01-09

6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

EMPLOYEE_2

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

999775555

888664444

4

5

5

5

4

5

NULL

4

1

NULL

Dnum

(c) EMPLOYEE_3

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

4

5

5

5

4

5

4

1

Dnum

Figure 15.3 
The dangling tuple problem.
(a) The relation EMPLOYEE_1 (includes 

all attributes of EMPLOYEE from  
Figure 15.2(a) except Dnum).

(b) The relation EMPLOYEE_2 (includes 
Dnum attribute with NULL values).

(c) The relation EMPLOYEE_3 (includes 
Dnum attribute but does not include 
tuples for which Dnum has NULL  
values).

based on minimal cover. The design X produced the 3NF design as LOTS1A 
(Property_id, County, Lot#, Area) relation, which is in 3NF but not BCNF. Alternately, 
design Y produced three relations: S1 (Property_id, Area, Lot#), S2 (Lot#, County,  
Property_id), and S3 (Area, County). If we test each of these three relations, we find that 
they are in BCNF. We also saw previously that if we apply Algorithm 15.5 to LOTS1Y 
to decompose it into BCNF relations, the resulting design contains only S1 and S3 as a 
BCNF design. In summary, the above examples of cases (called Case X and Case Y) 
driven by different minimum covers for the same universal schema amply illustrate 
that alternate designs will result by the application of the bottom-up design algo-
rithms we presented in Section 15.3.

Table 15.1 summarizes the properties of the algorithms discussed in this chapter 
so far.
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Table 15.1 Summary of the Algorithms Discussed in This Chapter

Algorithm Input Output Properties/Purpose Remarks

15.1 An attribute or a set 
of attributes X, and a 
set of FDs F

A set of attributes in 
the closure of X with 
respect to F

Determine all the 
attributes that can be 
functionally deter-
mined from X

The closure of a key 
is the entire relation

15.2 A set of functional 
dependencies F

The minimal cover 
of functional depen-
dencies

To determine the 
minimal cover of a 
set of dependencies F

Multiple minimal 
covers may exist—
depends on the order 
of selecting func-
tional dependencies

15.2a Relation schema R 
with a set of func-
tional dependencies F

Key K of R To find a key K (that 
is a subset of R)

The entire relation R 
is always a default 
superkey

15.3 A decomposition D 
of R and a set F of 
functional depen-
dencies

Boolean result: yes 
or no for nonaddi-
tive join property

Testing for nonaddi-
tive join decomposi-
tion

See a simpler test 
NJB in Section 14.5 
for binary decompo-
sitions

15.4 A relation R and a 
set of functional 
dependencies F

A set of relations in 
3NF

Nonadditive join 
and dependency-
preserving decom-
position

May not achieve 
BCNF, but achieves 
all desirable proper-
ties and 3NF

15.5 A relation R and a 
set of functional 
dependencies F

A set of relations in 
BCNF

Nonadditive join 
decomposition

No guarantee of 
dependency preser-
vation

15.6 A relation R and a 
set of functional and 
multivalued depen-
dencies

A set of relations in 
4NF

Nonadditive join 
decomposition

No guarantee of 
dependency preser-
vation

15.5  Further Discussion of Multivalued 
Dependencies and 4NF

We introduced and defined the concept of multivalued dependencies and used it to 
define the fourth normal form in Section 14.6. In this section, we discuss MVDs to 
make our treatment complete by stating the rules of inference with MVDs.

15.5.1  Inference Rules for Functional  
and Multivalued Dependencies

As with functional dependencies (FDs), inference rules for MVDs have been 
developed. It is better, though, to develop a unified framework that includes both 
FDs and MVDs so that both types of constraints can be considered together. The 
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following inference rules IR1 through IR8 form a sound and complete set for infer-
ring functional and multivalued dependencies from a given set of dependencies. 
Assume that all attributes are included in a universal relation schema R = {A1, A2, 
… , An} and that X, Y, Z, and W are subsets of R.

IR1 (reflexive rule for FDs): If X ⊇ Y, then X → Y.

IR2 (augmentation rule for FDs): {X → Y} |= XZ → YZ.

IR3 (transitive rule for FDs): {X → Y, Y → Z} |= X → Z.

IR4 (complementation rule for MVDs): {X →→ R} |= {X →→(R − (X ∪))}.

IR5 (augmentation rule for MVDs): If X →→ Y and W ⊇ Z, then WX →→ YZ.

IR6 (transitive rule for MVDs): {X →→ Y, Y →→ Z} | = X →→ (X − Y).

IR7 (replication rule for FD to MVD): {X → Y} | = X →→ Y.

IR8 (coalescence rule for FDs and MVDs): If X →→ Y and there exists W with 
the properties that (a) W ∩ Y is empty, (b) W → Z, and (c) Y ⊇ Z, then X → Z.

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6 
are inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs. 
In particular, IR7 says that a functional dependency is a special case of a multi-
valued dependency; that is, every FD is also an MVD because it satisfies the formal 
definition of an MVD. However, this equivalence has a catch: An FD X → Y is an 
MVD X →→ Y with the additional implicit restriction that at most one value of Y 
is associated with each value of X.8 Given a set F of functional and multivalued 
dependencies specified on R = {A1, A2, … , An}, we can use IR1 through IR8 to infer 
the (complete) set of all dependencies (functional or multivalued) F+ that will hold 
in every relation state r of R that satisfies F. We again call F+ the closure of F.

15.5.2 Fourth Normal Form Revisited
We restate the definition of fourth normal form (4NF) from Section 14.6:

Definition. A relation schema R is in 4NF with respect to a set of dependencies F 
(that includes functional dependencies and multivalued dependencies) if, for every 
nontrivial multivalued dependency X →→ Y in F+, X in F+, X is a superkey for R.

To illustrate the importance of 4NF, Figure 15.4(a) shows the EMP relation in Fig-
ure 14.15 with an additional employee, ‘Brown’, who has three dependents (‘Jim’, 
‘Joan’, and ‘Bob’) and works on four different projects (‘W’, ‘X’, ‘Y’, and ‘Z’). There 
are 16 tuples in EMP in Figure 15.4(a). If we decompose EMP into EMP_PROJECTS 
and EMP_DEPENDENTS, as shown in Figure 15.4(b), we need to store a total of 
only 11 tuples in both relations. Not only would the decomposition save on stor-
age, but the update anomalies associated with multivalued dependencies would 
also be avoided. For example, if ‘Brown’ starts working on a new additional project 
‘P’, we must insert three tuples in EMP—one for each dependent. If we forget to 

8That is, the set of values of Y determined by a value of X is restricted to being a singleton set with only 
one value. Hence, in practice, we never view an FD as an MVD.
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insert any one of those, the relation violates the MVD and becomes inconsistent in 
that it incorrectly implies a relationship between project and dependent.

If the relation has nontrivial MVDs, then insert, delete, and update operations on 
single tuples may cause additional tuples to be modified besides the one in ques-
tion. If the update is handled incorrectly, the meaning of the relation may change. 
However, after normalization into 4NF, these update anomalies disappear. For 
example, to add the information that ‘Brown’ will be assigned to project ‘P’, only a 
single tuple need be inserted in the 4NF relation EMP_PROJECTS.

The EMP relation in Figure 14.15(a) is not in 4NF because it represents two inde-
pendent 1:N relationships—one between employees and the projects they work on 
and the other between employees and their dependents. We sometimes have a rela-
tionship among three entities that is a legitimate three-way relationship and not a 
combination of two binary relationships among three participating entities, such as 
the SUPPLY relation shown in Figure 14.15(c). (Consider only the tuples in Fig- 
ure 14.5(c) above the dashed line for now.) In this case a tuple represents a supplier sup-
plying a specific part to a particular project, so there are no nontrivial MVDs. Hence, 
the SUPPLY all-key relation is already in 4NF and should not be decomposed.

(a) EMP

Ename

Smith

Smith

Smith

Smith

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

John

Anna

Anna

John

Jim

Jim

Jim

Jim

Joan

Joan

Joan

Joan

Bob

Bob

Bob

Bob

X

Y

X

Y

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

Brown

Brown

Brown

Brown

W

X

Y

Z

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

Brown
Brown

Brown

Jim
Joan

Bob

Anna
John

Dname

Figure 15.4 
Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation with  
additional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS and  
EMP_DEPENDENTS.
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15.5.3 Nonadditive Join Decomposition into 4NF Relations
Whenever we decompose a relation schema R into R1 = (X ∪ Y) and R2 = (R − Y) 
based on an MVD X →→ Y that holds in R, the decomposition has the nonadditive 
join property. It can be shown that this is a necessary and sufficient condition for 
decomposing a schema into two schemas that have the nonadditive join property, 
as given by Property NJB′ that is a further generalization of Property NJB given 
earlier in Section 14.5.1. Property NJB dealt with FDs only, whereas NJB′ deals with 
both FDs and MVDs (recall that an FD is also an MVD).

Property NJB′. The relation schemas R1 and R2 form a nonadditive join 
decomposition of R with respect to a set F of functional and multivalued depen-
dencies if and only if

(R1 ∩ R2) →→ (R1 – R2)

or, by symmetry, if and only if

(R1 ∩ R2) →→ (R2 – R1)

We can use a slight modification of Algorithm 15.5 to develop Algorithm 15.7, 
which creates a nonadditive join decomposition into relation schemas that are in 
4NF (rather than in BCNF). As with Algorithm 15.5, Algorithm 15.7 does not nec-
essarily produce a decomposition that preserves FDs.

Algorithm 15.7. Relational Decomposition into 4NF Relations with Nonad-
ditive Join Property

Input: A universal relation R and a set of functional and multivalued depen-
dencies F

  1. Set D:= { R };

  2. While there is a relation schema Q in D that is not in 4NF, do

{ choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X →→ Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

};

15.6 Other Dependencies and Normal Forms

15.6.1 Join Dependencies and the Fifth Normal Form
We already introduced another type of dependency called join dependency (JD) in 
Section 14.7. It arises when a relation is decomposable into a set of projected rela-
tions that can be joined back to yield the original relation. After defining JD, we 
defined the fifth normal form based on it in Section 14.7. Fifth normal form has also 
been known as project join normal form or PJNF (Fagin, 1979). A practical problem 
with this and some additional dependencies (and related normal forms such as 
DKNF, which is defined in Section 15.6.3) is that they are difficult to discover. 
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Furthermore, there are no sets of sound and complete inference rules to reason 
about them. In the remaining part of this section, we introduce some other types of 
dependencies that have been identified. Among them, the inclusion dependencies 
and those based on arithmetic or similar functions are used frequently.

15.6.2 Inclusion Dependencies
Inclusion dependencies were defined in order to formalize two types of interrela-
tional constraints:

 ■ The foreign key (or referential integrity) constraint cannot be specified as a 
functional or multivalued dependency because it relates attributes across 
relations.

 ■ The constraint between two relations that represent a class/subclass rela-
tionship (see Chapters 4 and 9) also has no formal definition in terms of the 
functional, multivalued, and join dependencies.

Definition. An inclusion dependency R.X < S.Y between two sets of attri-
butes—X of relation schema R, and Y of relation schema S—specifies the con-
straint that, at any specific time when r is a relation state of R and s is a relation 
state of S, we must have

πX(r(R)) ⊆ πY(s(S))

The ⊆ (subset) relationship does not necessarily have to be a proper subset. Obviously, 
the sets of attributes on which the inclusion dependency is specified—X of R and Y of 
S—must have the same number of attributes. In addition, the domains for each pair of 
corresponding attributes should be compatible. For example, if X = {A1, A2, … , An} 
and Y = {B1, B2, … , Bn}, one possible correspondence is to have dom(Ai) compatible 
with dom(Bi) for 1 ≤ i ≤ n. In this case, we say that Ai corresponds to Bi.

For example, we can specify the following inclusion dependencies on the relational 
schema in Figure 14.1:

DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn

WORKS_ON.Ssn < EMPLOYEE.Ssn

EMPLOYEE.Dnumber < DEPARTMENT.Dnumber

PROJECT.Dnum < DEPARTMENT.Dnumber

WORKS_ON.Pnumber < PROJECT.Pnumber

DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

All the preceding inclusion dependencies represent referential integrity  
constraints. We can also use inclusion dependencies to represent class/subclass 
relationships. For example, in the relational schema of Figure 9.6, we can specify 
the following inclusion dependencies:

EMPLOYEE.Ssn < PERSON.Ssn

ALUMNUS.Ssn < PERSON.Ssn

STUDENT.Ssn < PERSON.Ssn
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As with other types of dependencies, there are inclusion dependency inference rules 
(IDIRs). The following are three examples:

IDIR1 (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y, where X = {A1, A2, … , An} and 
Y = {B1, B2, … , Bn} and Ai corresponds to Bi, then R.Ai < S.Bi for 1 ≤ i ≤ n.

IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X < T.Z.

The preceding inference rules were shown to be sound and complete for inclusion 
dependencies. So far, no normal forms have been developed based on inclusion 
dependencies.

15.6.3  Functional Dependencies Based on Arithmetic  
Functions and Procedures

Sometimes some attributes in a relation may be related via some arithmetic func-
tion or a more complicated functional relationship. As long as a unique value of Y 
is associated with every X, we can still consider that the FD X → Y exists. For exam-
ple, in the relation

ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,  
Discounted_price)

each tuple represents an item from an order with a particular quantity, and the 
price per unit for that item. In this relation, (Quantity, Unit_price ) → Extended_price 
by the formula

Extended_price = Unit_price * Quantity

Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price), 
and thus it conforms to the definition of functional dependency.

Moreover, there may be a procedure that takes into account the quantity discounts, 
the type of item, and so on and computes a discounted price for the total quantity 
ordered for that item. Therefore, we can say

(Item#, Quantity, Unit_price ) → Discounted_price, or
(Item#, Quantity, Extended_price) → Discounted_price

To check the above FDs, a more complex procedure COMPUTE_TOTAL_PRICE may 
have to be called into play. Although the above kinds of FDs are technically present 
in most relations, they are not given particular attention during normalization. They 
may be relevant during the loading of relations and during query processing because 
populating or retrieving the attribute on the right-hand side of the dependency 
requires the execution of a procedure such as the one mentioned above.

15.6.4 Domain-Key Normal Form
There is no hard-and-fast rule about defining normal forms only up to 5NF. His-
torically, the process of normalization and the process of discovering undesirable 
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dependencies were carried through 5NF, but it has been possible to define stricter 
normal forms that take into account additional types of dependencies and con-
straints. The idea behind domain-key normal form (DKNF) is to specify (theoreti-
cally, at least) the ultimate normal form that takes into account all possible types of 
dependencies and constraints. A relation schema is said to be in DKNF if all con-
straints and dependencies that should hold on the valid relation states can be 
enforced simply by enforcing the domain constraints and key constraints on the 
relation. For a relation in DKNF, it becomes straightforward to enforce all database 
constraints by simply checking that each attribute value in a tuple is of the appro-
priate domain and that every key constraint is enforced.

However, because of the difficulty of including complex constraints in a DKNF 
relation, its practical utility is limited, since it may be quite difficult to specify gen-
eral integrity constraints. For example, consider a relation CAR(Make, Vin#) (where 
Vin# is the vehicle identification number) and another relation MANUFACTURE(Vin#, 
Country) (where Country is the country of manufacture). A general constraint may be 
of the following form: If the Make is either ‘Toyota’ or ‘Lexus’, then the first character 
of the Vin# is a ‘J’ if the country of manufacture is ‘Japan’; if the Make is ‘Honda’ or 
‘Acura’, the second character of the Vin# is a ‘J’ if the country of manufacture is 
‘Japan’. There is no simplified way to represent such constraints short of writing a 
procedure (or general assertions) to test them. The procedure COMPUTE_TOTAL_PRICE 
above is an example of such procedures needed to enforce an appropriate integrity 
constraint.

For these reasons, although the concept of DKNF is appealing and appears straight-
forward, it cannot be directly tested or implemented with any guarantees of consis-
tency or non-redundancy of design. Hence it is not used much in practice.

15.7 Summary
In this chapter we presented a further set of topics related to dependencies, a dis-
cussion of decomposition, and several algorithms related to them as well as to the 
process of designing 3NF, BCNF, and 4NF relations from a given set of functional 
dependencies and multivalued dependencies. In Section 15.1 we presented infer-
ence rules for functional dependencies (FDs), the notion of closure of an attribute, 
the notion of closure of a set of functional dependencies, equivalence among sets 
of functional dependencies, and algorithms for finding the closure of an attribute 
(Algorithm 15.1) and the minimal cover of a set of FDs (Algorithm 15.2). We then 
discussed two important properties of decompositions: the nonadditive join prop-
erty and the dependency-preserving property. An algorithm to test for an n-way 
nonadditive decomposition of a relation (Algorithm 15.3) was presented. A sim-
pler test for checking for nonadditive binary decompositions (property NJB) has 
already been described in Section 14.5.1. We then discussed relational design by 
synthesis, based on a set of given functional dependencies. The relational synthesis 
algorithm (Algorithm 15.4) creates 3NF relations from a universal relation 
schema based on a given set of functional dependencies that has been specified by 
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the database designer. The relational decomposition algorithms (such as Algo-
rithms 15.5 and 15.6) create BCNF (or 4NF) relations by successive nonadditive 
decomposition of unnormalized relations into two component relations at a time. 
We saw that it is possible to synthesize 3NF relation schemas that meet both of the 
above properties; however, in the case of BCNF, it is possible to aim only for the 
nonadditiveness of joins—dependency preservation cannot be necessarily guaran-
teed. If the designer has to aim for one of these two, the nonadditive join condition 
is an absolute must. In Section 15.4 we showed how certain difficulties arise in a 
collection of relations due to null values that may exist in relations in spite of the 
relations being individually in 3NF or BCNF. Sometimes when decomposition is 
improperly carried too far, certain “dangling tuples” may result that do not par-
ticipate in results of joins and hence may become invisible. We also showed how 
algorithms such as 15.4 for 3NF synthesis could lead to alternative designs based 
on the choice of minimum cover. We revisited multivalued dependencies (MVDs) 
in Section 15.5. MVDs arise from an improper combination of two or more inde-
pendent multivalued attributes in the same relation, and MVDs result in a combi-
national expansion of the tuples used to define fourth normal form (4NF). We 
discussed inference rules applicable to MVDs and discussed the importance of 
4NF. Finally, in Section 15.6 we discussed inclusion dependencies, which are used 
to specify referential integrity and class/subclass constraints, and pointed out the 
need for arithmetic functions or more complex procedures to enforce certain 
functional dependency constraints. We concluded with a brief discussion of the 
domain-key normal form (DKNF).

Review Questions
 15.1. What is the role of Armstrong’s inference rules (inference rules IR1 through 

IR3) in the development of the theory of relational design?

 15.2. What is meant by the completeness and soundness of Armstrong’s infer-
ence rules?

 15.3. What is meant by the closure of a set of functional dependencies? Illustrate 
with an example.

 15.4. When are two sets of functional dependencies equivalent? How can we 
determine their equivalence?

 15.5. What is a minimal set of functional dependencies? Does every set of depen-
dencies have a minimal equivalent set? Is it always unique?

 15.6. What is meant by the attribute preservation condition on a decomposition?

 15.7. Why are normal forms alone insufficient as a condition for a good schema 
design?

 15.8. What is the dependency preservation property for a decomposition? Why is 
it important?
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 15.9. Why can we not guarantee that BCNF relation schemas will be produced by 
dependency-preserving decompositions of non-BCNF relation schemas? 
Give a counterexample to illustrate this point.

 15.10. What is the lossless (or nonadditive) join property of a decomposition? Why 
is it important?

 15.11. Between the properties of dependency preservation and losslessness, which 
one must definitely be satisfied? Why?

 15.12. Discuss the NULL value and dangling tuple problems.

 15.13. Illustrate how the process of creating first normal form relations may lead to 
multivalued dependencies. How should the first normalization be done 
properly so that MVDs are avoided?

 15.14. What types of constraints are inclusion dependencies meant to represent?

 15.15. How do template dependencies differ from the other types of dependencies 
we discussed?

 15.16. Why is the domain-key normal form (DKNF) known as the ultimate nor-
mal form?

Exercises
 15.17. Show that the relation schemas produced by Algorithm 15.4 are in 3NF.

 15.18. Show that, if the matrix S resulting from Algorithm 15.3 does not have a row 
that is all a symbols, projecting S on the decomposition and joining it back 
will always produce at least one spurious tuple.

 15.19. Show that the relation schemas produced by Algorithm 15.5 are in BCNF.

 15.20. Write programs that implement Algorithms 15.4 and 15.5.

 15.21. Consider the relation REFRIG(Model#, Year, Price, Manuf_plant, Color), which 
is abbreviated as REFRIG(M, Y, P, MP, C), and the following set F of functional 
dependencies: F = {M → MP, {M, Y} → P, MP → C}

a. Evaluate each of the following as a candidate key for REFRIG, giving rea-
sons why it can or cannot be a key: {M}, {M, Y}, {M, C}.

b. Based on the above key determination, state whether the relation REFRIG 
is in 3NF and in BCNF, and provide proper reasons.

c. Consider the decomposition of REFRIG into D = {R1(M, Y, P),  
R2(M, MP, C)}. Is this decomposition lossless? Show why. (You may 
consult the test under Property NJB in Section 14.5.1.)

 15.22. Specify all the inclusion dependencies for the relational schema in Figure 5.5.

 15.23. Prove that a functional dependency satisfies the formal definition of multi-
valued dependency.
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 15.24. Consider the example of normalizing the LOTS relation in Sections 14.4 
and 14.5. Determine whether the decomposition of LOTS into {LOTS1AX, 
LOTS1AY, LOTS1B, LOTS2} has the lossless join property by applying 
Algorithm 15.3 and also by using the test under property NJB from Sec-
tion 14.5.1.

 15.25. Show how the MVDs Ename →→ and Ename →→ Dname in Figure 14.15(a) 
may arise during normalization into 1NF of a relation, where the attributes 
Pname and Dname are multivalued.

 15.26. Apply Algorithm 15.2(a) to the relation in Exercise 14.24 to determine a key 
for R. Create a minimal set of dependencies G that is equivalent to F, and apply 
the synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations.

 15.27. Repeat Exercise 15.26 for the functional dependencies in Exercise 14.25.

 15.28. Apply the decomposition algorithm (Algorithm 15.5) to the relation R and 
the set of dependencies F in Exercise 15.24. Repeat for the dependencies G in 
Exercise 15.25.

 15.29. Apply Algorithm 15.2(a) to the relations in Exercises 14.27 and 14.28 to 
determine a key for R. Apply the synthesis algorithm (Algorithm 15.4) to 
decompose R into 3NF relations and the decomposition algorithm (Algo-
rithm 15.5) to decompose R into BCNF relations.

 15.31. Consider the following decompositions for the relation schema R of Exer-
cise 14.24. Determine whether each decomposition has (1) the dependency 
preservation property, and (2) the lossless join property, with respect to F. 
Also determine which normal form each relation in the decomposition is in.

a. D1 = {R1, R2, R3, R4, R5}; R1 = {A, B, C}, R2 = {A, D, E}, R3 = {B, F},  
R4 = {F, G, H}, R5 = {D, I, J}

b. D2 = {R1, R2, R3}; R1 = {A, B, C, D, E}, R2 = {B, F, G, H}, R3 = {D, I, J}

c. D3 = {R1, R2, R3, R4, R5}; R1 = {A, B, C, D}, R2 = {D, E}, R3 = {B, F},  
R4 = {F, G, H}, R5 = {D, I, J}

Laboratory Exercises
Note: These exercises use the DBD (Data Base Designer) system that is described 
in the laboratory manual. The relational schema R and set of functional dependen-
cies F need to be coded as lists. As an example, R and F for Problem 14.24 are 
coded as:

R = [a, b, c, d, e, f, g, h, i, j]
F = [[[a, b],[c]],

[[a],[d, e]],
[[b],[f]],
[[f],[g, h]],
[[d],[i, j]]]
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Since DBD is implemented in Prolog, use of uppercase terms is reserved for variables 
in the language and therefore lowercase constants are used to code the attributes. For 
further details on using the DBD system, please refer to the laboratory manual.

 15.33. Using the DBD system, verify your answers to the following exercises:

a. 15.24

b. 15.26

c. 15.27

d. 15.28

e. 15.29

f. 15.31 (a) and (b)

g. 15.32 (a) and (c)
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