

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/2GKiHnJ

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

https://hemanthrajhemu.github.io/
https://bit.ly/2GKiHnJ
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/

■ part 6
Database Design Theory and Normalization ■

chapter 14 Basics of Functional Dependencies
and Normalization for Relational
Databases 459

14.1 Informal Design Guidelines for Relation
Schemas 461

14.2 Functional Dependencies 471
14.3 Normal Forms Based on Primary Keys 474
14.4 General Definitions of Second and Third Normal

Forms 483
14.5 Boyce-Codd Normal Form 487
14.6 Multivalued Dependency and Fourth

Normal Form 491
14.7 Join Dependencies and Fifth Normal Form 494
14.8 Summary 495
Review Questions 496
Exercises 497
Laboratory Exercises 501
Selected Bibliography 502

chapter 15 Relational Database Design Algorithms
and Further Dependencies 503

15.1 Further Topics in Functional Dependencies: Inference Rules,
Equivalence, and Minimal Cover 505

15.2 Properties of Relational Decompositions 513
15.3 Algorithms for Relational Database Schema

Design 519
15.4 About Nulls, Dangling Tuples, and Alternative Relational

Designs 523
15.5 Further Discussion of Multivalued Dependencies

and 4NF 527
15.6 Other Dependencies and Normal Forms 530
15.7 Summary 533
Review Questions 534
Exercises 535
Laboratory Exercises 536
Selected Bibliography 537

xxii Contents

https://hemanthrajhemu.github.io

459

14
Basics of Functional

Dependencies and Normalization
for Relational Databases

In Chapters 5 through 8, we presented various aspects
of the relational model and the languages associated

with it. Each relation schema consists of a number of attributes, and the relational
database schema consists of a number of relation schemas. So far, we have assumed
that attributes are grouped to form a relation schema by using the common sense of
the database designer or by mapping a database schema design from a conceptual
data model such as the ER or enhanced-ER (EER) data model. These models make
the designer identify entity types and relationship types and their respective attri-
butes, which leads to a natural and logical grouping of the attributes into relations
when the mapping procedures discussed in Chapter 9 are followed. However, we
still need some formal way of analyzing why one grouping of attributes into a rela-
tion schema may be better than another. While discussing database design in
 Chapters 3, 4, and 9, we did not develop any measure of appropriateness or goodness
to measure the quality of the design, other than the intuition of the designer. In this
chapter we discuss some of the theory that has been developed with the goal of
evaluating relational schemas for design quality—that is, to measure formally why
one set of groupings of attributes into relation schemas is better than another.

There are two levels at which we can discuss the goodness of relation schemas. The
first is the logical (or conceptual) level—how users interpret the relation schemas
and the meaning of their attributes. Having good relation schemas at this level
enables users to understand clearly the meaning of the data in the relations, and
hence to formulate their queries correctly. The second is the implementation (or
physical storage) level—how the tuples in a base relation are stored and updated.

chapter 14

https://hemanthrajhemu.github.io

460 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

This level applies only to schemas of base relations—which will be physically stored
as files—whereas at the logical level we are interested in schemas of both base rela-
tions and views (virtual relations). The relational database design theory developed
in this chapter applies mainly to base relations, although some criteria of appropri-
ateness also apply to views, as shown in Section 14.1.

As with many design problems, database design may be performed using two
approaches: bottom-up or top-down. A bottom-up design methodology (also called
design by synthesis) considers the basic relationships among individual attributes as
the starting point and uses those to construct relation schemas. This approach is not
very popular in practice1 because it suffers from the problem of having to collect a
large number of binary relationships among attributes as the starting point. For prac-
tical situations, it is next to impossible to capture binary relationships among all such
pairs of attributes. In contrast, a top-down design methodology (also called design by
analysis) starts with a number of groupings of attributes into relations that exist
together naturally, for example, on an invoice, a form, or a report. The relations are
then analyzed individually and collectively, leading to further decomposition until all
desirable properties are met. The theory described in this chapter is applicable pri-
marily to the top-down design approach, and as such is more appropriate when per-
forming design of databases by analysis and decomposition of sets of attributes that
appear together in files, in reports, and on forms in real-life situations.

Relational database design ultimately produces a set of relations. The implicit goals
of the design activity are information preservation and minimum redundancy.
Information is very hard to quantify—hence we consider information preservation
in terms of maintaining all concepts, including attribute types, entity types, and
relationship types as well as generalization/specialization relationships, which are
described using a model such as the EER model. Thus, the relational design must
preserve all of these concepts, which are originally captured in the conceptual
design after the conceptual to logical design mapping. Minimizing redundancy
implies minimizing redundant storage of the same information and reducing the
need for multiple updates to maintain consistency across multiple copies of the
same information in response to real-world events that require making an update.

We start this chapter by informally discussing some criteria for good and bad rela-
tion schemas in Section 14.1. In Section 14.2, we define the concept of functional
dependency, a formal constraint among attributes that is the main tool for formally
measuring the appropriateness of attribute groupings into relation schemas. In Sec-
tion 14.3, we discuss normal forms and the process of normalization using func-
tional dependencies. Successive normal forms are defined to meet a set of desirable
constraints expressed using primary keys and functional dependencies. The normal-
ization procedure consists of applying a series of tests to relations to meet these
increasingly stringent requirements and decompose the relations when necessary. In
Section 14.4, we discuss more general definitions of normal forms that can be directly

1An exception in which this approach is used in practice is based on a model called the binary relational

model. An example is the NIAM methodology (Verheijen and VanBekkum, 1982).

https://hemanthrajhemu.github.io

 14.1 Informal Design Guidelines for Relation Schemas 461

applied to any given design and do not require step-by-step analysis and normaliza-
tion. Sections 14.5 to 14.7 discuss further normal forms up to the fifth normal form.
In Section 14.6 we introduce the multivalued dependency (MVD), followed by the
join dependency (JD) in Section 14.7. Section 14.8 summarizes the chapter.

Chapter 15 continues the development of the theory related to the design of good
relational schemas. We discuss desirable properties of relational decomposition—
nonadditive join property and functional dependency preservation property. A
general algorithm that tests whether or not a decomposition has the nonadditive
(or lossless) join property (Algorithm 15.3 is also presented). We then discuss prop-
erties of functional dependencies and the concept of a minimal cover of dependen-
cies. We consider the bottom-up approach to database design consisting of a set of
algorithms to design relations in a desired normal form. These algorithms assume
as input a given set of functional dependencies and achieve a relational design in a
target normal form while adhering to the above desirable properties. In Chapter 15
we also define additional types of dependencies that further enhance the evaluation
of the goodness of relation schemas.

If Chapter 15 is not covered in a course, we recommend a quick introduction to the
desirable properties of decomposition from Section 15.2. and the importance of the
non-additive join property during decomposition.

14.1 Informal Design Guidelines
for Relation Schemas

Before discussing the formal theory of relational database design, we discuss four
informal guidelines that may be used as measures to determine the quality of relation
schema design:

 ■ Making sure that the semantics of the attributes is clear in the schema

 ■ Reducing the redundant information in tuples

 ■ Reducing the NULL values in tuples

 ■ Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another, as we will see.

14.1.1 Imparting Clear Semantics to Attributes in Relations
Whenever we group attributes to form a relation schema, we assume that attri-
butes belonging to one relation have certain real-world meaning and a proper
interpretation associated with them. The semantics of a relation refers to its mean-
ing resulting from the interpretation of attribute values in a tuple. In Chapter 5 we
discussed how a relation can be interpreted as a set of facts. If the conceptual
design described in Chapters 3 and 4 is done carefully and the mapping procedure
in Chapter 9 is followed systematically, the relational schema design should have a
clear meaning.

https://hemanthrajhemu.github.io

462 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

In general, the easier it is to explain the semantics of the relation—or in other words,
what a relation exactly means and stands for—the better the relation schema design
will be. To illustrate this, consider Figure 14.1, a simplified version of the COMPANY
relational database schema in Figure 5.5, and Figure 14.2, which presents an example
of populated relation states of this schema. The meaning of the EMPLOYEE relation
schema is simple: Each tuple represents an employee, with values for the employee’s
name (Ename), Social Security number (Ssn), birth date (Bdate), and address
(Address), and the number of the department that the employee works for (Dnumber).
The Dnumber attribute is a foreign key that represents an implicit relationship between
EMPLOYEE and DEPARTMENT. The semantics of the DEPARTMENT and PROJECT
schemas are also straightforward: Each DEPARTMENT tuple represents a department
entity, and each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of
DEPARTMENT relates a department to the employee who is its manager, whereas
Dnum of PROJECT relates a project to its controlling department; both are foreign key
attributes. The ease with which the meaning of a relation’s attributes can be explained
is an informal measure of how well the relation is designed.

DEPARTMENT

DnumberDname

Ename Bdate Address Dnumber

EMPLOYEE

P.K.

P.K.

F.K.

Pname Pnumber Plocation Dnum

PROJECT F.K.

F.K.

DEPT_LOCATIONS

Dnumber Dlocation

P.K.

P.K.

Pnumber Hours

WORKS_ON
F.K. F.K.

P.K.

F.K.

Ssn

Dmgr_ssn

Ssn

Figure 14.1
A simplified COMPANY relational
database schema.

https://hemanthrajhemu.github.io

 14.1 Informal Design Guidelines for Relation Schemas 463

Ename

EMPLOYEE

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.
Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321
666884444

987987987

888665555

666884444

123456789

123456789

333445555

453453453
453453453

333445555

333445555
333445555

999887777

987987987

999887777
987987987

987654321

987654321
888665555

3

1

2

2

1
2

3

10

20

10

30
10

30

30

20

20

40.0

32.5

7.5

10.0

20.0
20.0

10.0

10.0

10.0

35.0

30.0
10.0

5.0

20.0

15.0

Null

1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20
1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Dnumber

Dname

DEPARTMENT

Research

Administration

Headquarters 888665555

333445555

987654321

Dnumber

5

1

4

DEPT_LOCATIONS

1

4

5

Dnumber

Houston

Dlocation

Bellaire

Stafford

Houston

Sugarland

5

5

PROJECT

ProductX

ProductY

ProductZ

Pname

1

Pnumber Plocation Dnum

3

2

20

10

Reorganization

30

5

5

5

1

4

4

Bellaire

Houston

Sugarland

Houston

Stafford

StaffordNewbenefits

Computerization

WORKS_ON

Pnumber Hours

Ssn

Dmgr_ssn

Ssn

Figure 14.2
Sample database state for the relational database schema in Figure 14.1.

https://hemanthrajhemu.github.io

464 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

The semantics of the other two relation schemas in Figure 14.1 are slightly more
complex. Each tuple in DEPT_LOCATIONS gives a department number (Dnumber)
and one of the locations of the department (Dlocation). Each tuple in WORKS_ON
gives an employee Social Security number (Ssn), the project number of one of the
projects that the employee works on (Pnumber), and the number of hours per week
that the employee works on that project (Hours). However, both schemas have a
well-defined and unambiguous interpretation. The schema DEPT_LOCATIONS rep-
resents a multivalued attribute of DEPARTMENT, whereas WORKS_ON represents
an M:N relationship between EMPLOYEE and PROJECT. Hence, all the relation
schemas in Figure 14.1 may be considered as easy to explain and therefore good
from the standpoint of having clear semantics. We can thus formulate the following
informal design guideline.

Guideline 1. Design a relation schema so that it is easy to explain its meaning. Do
not combine attributes from multiple entity types and relationship types into a sin-
gle relation. Intuitively, if a relation schema corresponds to one entity type or one
relationship type, it is straightforward to explain its meaning. Otherwise, if the rela-
tion corresponds to a mixture of multiple entities and relationships, semantic ambi-
guities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1. The relation schemas in Figures 14.3(a)
and 14.3(b) also have clear semantics. (The reader should ignore the lines under the
relations for now; they are used to illustrate functional dependency notation, dis-
cussed in Section 14.2.) A tuple in the EMP_DEPT relation schema in Figure 14.3(a)
represents a single employee but includes, along with the Dnumber (the identifier
for the department he/she works for), additional information—namely, the
name (Dname) of the department for which the employee works and the Social
Security number (Dmgr_ssn) of the department manager. For the EMP_PROJ rela-
tion in Figure 14.3(b), each tuple relates an employee to a project but also includes

Ssn

EMP_PROJ

(b)

(a)

FD1

FD2

FD3

Pnumber Hours Ename Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Figure 14.3
Two relation schemas
suffering from update
anomalies.
(a) EMP_DEPT and
(b) EMP_PROJ.

https://hemanthrajhemu.github.io

 14.1 Informal Design Guidelines for Relation Schemas 465

the employee name (Ename), project name (Pname), and project location (Plocation).
Although there is nothing wrong logically with these two relations, they violate
Guideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixes
attributes of employees and departments, and EMP_PROJ mixes attributes of
employees and projects and the WORKS_ON relationship. Hence, they fare poorly
against the above measure of design quality. They may be used as views, but they
cause problems when used as base relations, as we discuss in the following section.

14.1.2 Redundant Information in Tuples and Update Anomalies
One goal of schema design is to minimize the storage space used by the base rela-
tions (and hence the corresponding files). Grouping attributes into relation sche-
mas has a significant effect on storage space. For example, compare the space used
by the two base relations EMPLOYEE and DEPARTMENT in Figure 14.2 with that
for an EMP_DEPT base relation in Figure 14.4, which is the result of applying the
NATURAL JOIN operation to EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attri-
bute values pertaining to a particular department (Dnumber, Dname, Dmgr_ssn) are
repeated for every employee who works for that department. In contrast, each depart-
ment’s information appears only once in the DEPARTMENT relation in Figure 14.2.
Only the department number (Dnumber) is repeated in the EMPLOYEE relation for
each employee who works in that department as a foreign key. Similar comments
apply to the EMP_PROJ relation (see Figure 14.4), which augments the WORKS_ON
relation with additional attributes from EMPLOYEE and PROJECT.

Storing natural joins of base relations leads to an additional problem referred to as
update anomalies. These can be classified into insertion anomalies, deletion anom-
alies, and modification anomalies.2

Insertion Anomalies. Insertion anomalies can be differentiated into two types,
illustrated by the following examples based on the EMP_DEPT relation:

 ■ To insert a new employee tuple into EMP_DEPT, we must include either the
attribute values for the department that the employee works for, or NULLs (if
the employee does not work for a department as yet). For example, to insert
a new tuple for an employee who works in department number 5, we must
enter all the attribute values of department 5 correctly so that they are con-
sistent with the corresponding values for department 5 in other tuples in
EMP_DEPT. In the design of Figure 14.2, we do not have to worry about this
consistency problem because we enter only the department number in the
employee tuple; all other attribute values of department 5 are recorded only
once in the database, as a single tuple in the DEPARTMENT relation.

 ■ It is difficult to insert a new department that has no employees as yet in the
EMP_DEPT relation. The only way to do this is to place NULL values in the

2These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, as
we shall discuss in Section 15.3.

https://hemanthrajhemu.github.io

466 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

attributes for employee. This violates the entity integrity for EMP_DEPT
because its primary key Ssn cannot be null. Moreover, when the first
employee is assigned to that department, we do not need this tuple with
NULL values anymore. This problem does not occur in the design of Fig-
ure 14.2 because a department is entered in the DEPARTMENT relation whether
or not any employees work for it, and whenever an employee is assigned to
that department, a corresponding tuple is inserted in EMPLOYEE.

Ename

EMP_DEPT

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 FireOak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnumber Dname Dmgr_ssn

Ssn

EMP_PROJ

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

Null

Hours

Narayan, Ramesh K.

Smith, John B.

Smith, John B.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

English, Joyce A.

English, Joyce A.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Wallace, Jennifer S.

Borg, James E.

Ename

ProductZ

ProductX

ProductY

ProductY

ProductZ

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Pname Plocation

Computerization

Redundancy Redundancy

Redundancy

Figure 14.4
Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations
in Figure 14.2. These may be stored as base relations for performance reasons.

https://hemanthrajhemu.github.io

 14.1 Informal Design Guidelines for Relation Schemas 467

Deletion Anomalies. The problem of deletion anomalies is related to the second
insertion anomaly situation just discussed. If we delete from EMP_DEPT an employee
tuple that happens to represent the last employee working for a particular depart-
ment, the information concerning that department is lost inadvertently from the
database. This problem does not occur in the database of Figure 14.2 because
DEPARTMENT tuples are stored separately.

Modification Anomalies. In EMP_DEPT, if we change the value of one of the attri-
butes of a particular department—say, the manager of department 5—we must
update the tuples of all employees who work in that department; otherwise, the
database will become inconsistent. If we fail to update some tuples, the same depart-
ment will be shown to have two different values for manager in different employee
tuples, which would be wrong.3

It is easy to see that these three anomalies are undesirable and cause difficulties to
maintain consistency of data as well as require unnecessary updates that can be
avoided; hence, we can state the next guideline as follows.

Guideline 2. Design the base relation schemas so that no insertion, deletion, or
modification anomalies are present in the relations. If any anomalies are present,4

note them clearly and make sure that the programs that update the database will
operate correctly.

The second guideline is consistent with and, in a way, a restatement of the first
guideline. We can also see the need for a more formal approach to evaluating
whether a design meets these guidelines. Sections 14.2 through 14.4 provide these
needed formal concepts. It is important to note that these guidelines may some-
times have to be violated in order to improve the performance of certain queries. If
EMP_DEPT is used as a stored relation (known otherwise as a materialized view) in
addition to the base relations of EMPLOYEE and DEPARTMENT, the anomalies in
EMP_DEPT must be noted and accounted for (for example, by using triggers or
stored procedures that would make automatic updates). This way, whenever the
base relation is updated, we do not end up with inconsistencies. In general, it is
advisable to use anomaly-free base relations and to specify views that include the
joins for placing together the attributes frequently referenced in important queries.

14.1.3 NULL Values in Tuples
In some schema designs we may group many attributes together into a “fat” rela-
tion. If many of the attributes do not apply to all tuples in the relation, we end up
with many NULLs in those tuples. This can waste space at the storage level and may
also lead to problems with understanding the meaning of the attributes and with

3This is not as serious as the other problems, because all tuples can be updated by a single SQL query.

4Other application considerations may dictate and make certain anomalies unavoidable. For example, the
EMP_DEPT relation may correspond to a query or a report that is frequently required.

https://hemanthrajhemu.github.io

468 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

specifying JOIN operations at the logical level.5 Another problem with NULLs is how
to account for them when aggregate operations such as COUNT or SUM are applied.
SELECT and JOIN operations involve comparisons; if NULL values are present, the
results may become unpredictable.6 Moreover, NULLs can have multiple interpreta-
tions, such as the following:

 ■ The attribute does not apply to this tuple. For example, Visa_status may not
apply to U.S. students.

 ■ The attribute value for this tuple is unknown. For example, the Date_of_birth
may be unknown for an employee.

 ■ The value is known but absent; that is, it has not been recorded yet. For
example, the Home_Phone_Number for an employee may exist, but may not
be available and recorded yet.

Having the same representation for all NULLs compromises the different meanings
they may have. Therefore, we state another guideline.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose
values may frequently be NULL. If NULLs are unavoidable, make sure that they apply
in exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins with NULL values are the two overriding
criteria that determine whether to include the columns that may have NULLs in a
relation or to have a separate relation for those columns (with the appropriate key
columns). For example, if only 15% of employees have individual offices, there is
little justification for including an attribute Office_number in the EMPLOYEE rela-
tion; rather, a relation EMP_OFFICES(Essn, Office_number) can be created to include
tuples for only the employees with individual offices.

14.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.5(a),
which can be used instead of the single EMP_PROJ relation in Figure 14.3(b). A
tuple in EMP_LOCS means that the employee whose name is Ename works on at
least one project located at Plocation. A tuple in EMP_PROJ1 refers to the fact that the
employee whose Social Security number is Ssn works the given Hours per week on
the project whose name, number, and location are Pname, Pnumber, and Plocation.
Figure 14.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 corresponding
to the EMP_PROJ relation in Figure 14.4, which are obtained by applying the appro-
priate PROJECT (π) operations to EMP_PROJ.

5This is because inner and outer joins produce different results when NULLs are involved in joins. The users
must thus be aware of the different meanings of the various types of joins. Although this is reasonable for
sophisticated users, it may be difficult for others.

6In Section 5.5.1 we presented comparisons involving NULL values where the outcome (in three-valued
logic) is TRUE, FALSE, and UNKNOWN.

https://hemanthrajhemu.github.io

 14.1 Informal Design Guidelines for Relation Schemas 469

Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of
EMP_PROJ. This produces a particularly bad schema design because we cannot
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and
EMP_LOCS. If we attempt a NATURAL JOIN operation on EMP_PROJ1 and
EMP_LOCS, the result produces many more tuples than the original set of tuples
in EMP_PROJ. In Figure 14.6, the result of applying the join to only the tuples for
employee with Ssn = “123456789” is shown (to reduce the size of the resulting rela-
tion). Additional tuples that were not in EMP_PROJ are called spurious tuples
because they represent spurious information that is not valid. The spurious
tuples are marked by asterisks (*) in Figure 14.6. It is left to the reader to complete
the result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCS
tables in their entirety and to mark the spurious tuples in this result.

Ssn Pnumber Hours Pname Plocation

Ename

P.K.

EMP_PROJ1

Plocation

P.K.

EMP_LOCS

Ename
Smith, John B.
Smith, John B.
Narayan, Ramesh K.
English, Joyce A.
English, Joyce A.
Wong, Franklin T.
Wong, Franklin T.
Wong, Franklin T.
Zelaya, Alicia J.
Jabbar, Ahmad V.
Wallace, Jennifer S.
Wallace, Jennifer S.
Borg, James E.

Houston

Bellaire
Sugarland

Sugarland

Bellaire
Sugarland

Stafford

Houston

Stafford
Houston

Houston
Stafford
Stafford

Plocation

(b)

(a)

EMP_PROJ1

Ssn
123456789
123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777
999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3
10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

ProductZ

ProductX

ProductY

ProductY

ProductZ

Computerization

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Hours Pname Plocation

EMP_LOCS
Figure 14.5
Particularly poor design for the EMP_PROJ relation in
Figure 14.3(b). (a) The two relation schemas EMP_LOCS
and EMP_PROJ1. (b) The result of projecting the
extension of EMP_PROJ from Figure 14.4 onto the
relations EMP_LOCS and EMP_PROJ1.

https://hemanthrajhemu.github.io

470 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because
when we JOIN them back using NATURAL JOIN, we do not get the correct original
information. This is because in this case Plocation happens to be the attribute that
relates EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a
foreign key in either EMP_LOCS or EMP_PROJ1. We now informally state another
design guideline.

Guideline 4. Design relation schemas so that they can be joined with equality
conditions on attributes that are appropriately related (primary key, foreign key)
pairs in a way that guarantees that no spurious tuples are generated. Avoid relations
that contain matching attributes that are not (foreign key, primary key) combina-
tions because joining on such attributes may produce spurious tuples.

Ssn
123456789

123456789

123456789

123456789

123456789

666884444

666884444

453453453

453453453

453453453

453453453

453453453

333445555

333445555

333445555

333445555

2

1

1

3

2

2

2

2

2

2

2

3

1

1

2

3

Pnumber

7.5

32.5

32.5

40.0

40.0

20.0

20.0

7.5

7.5

20.0

10.0

20.0

20.0

10.0

10.0

10.0

Hours

ProductY

ProductX

ProductX

ProductZ

ProductZ

ProductX

ProductX

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductZ

Pname

Sugarland

Bellaire

Bellaire

Houston

Houston

Bellaire

Bellaire

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Houston
333445555 3 10.0 ProductZ Houston

333445555 10 10.0 Computerization Stafford
333445555 20 10.0 Reorganization Houston

333445555 20

*

*

*

*

*

*

*

*

*

*

*

10.0 Reorganization Houston

Smith, John B.

Smith, John B.

English, Joyce A.

Narayan, Ramesh K.

Wong, Franklin T.

Smith, John B.

English, Joyce A.

English, Joyce A.

Wong, Franklin T.

Smith, John B.

Smith, John B.

English, Joyce A.

Wong, Franklin T.

English, Joyce A.

Wong, Franklin T.

Narayan, Ramesh K.
Wong, Franklin T.

Wong, Franklin T.
Narayan, Ramesh K.

Wong, Franklin T.

Plocation Ename

*
*

*

Figure 14.6
Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCS
of Figure 14.5 just for employee with Ssn = “123456789”. Generated spurious
tuples are marked by asterisks.

https://hemanthrajhemu.github.io

 14.2 Functional Dependencies 471

This informal guideline obviously needs to be stated more formally. In Section 15.2
we discuss a formal condition called the nonadditive (or lossless) join property that
guarantees that certain joins do not produce spurious tuples.

14.1.5 Summary and Discussion of Design Guidelines
In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead to
problematic relation schemas and we proposed informal guidelines for a good rela-
tional design. The problems we pointed out, which can be detected without addi-
tional tools of analysis, are as follows:

 ■ Anomalies that cause redundant work to be done during insertion into and
modification of a relation, and that may cause accidental loss of information
during a deletion from a relation

 ■ Waste of storage space due to NULLs and the difficulty of performing selec-
tions, aggregation operations, and joins due to NULL values

 ■ Generation of invalid and spurious data during joins on base relations with
matched attributes that may not represent a proper (foreign key, primary
key) relationship

In the rest of this chapter we present formal concepts and theory that may be used
to define the goodness and badness of individual relation schemas more precisely.
First we discuss functional dependency as a tool for analysis. Then we specify the
three normal forms and Boyce-Codd normal form (BCNF) for relation schemas as
the established and accepted standards of quality in relational design. The strategy
for achieving a good design is to decompose a badly designed relation appropriately
to achieve higher normal forms. We also briefly introduce additional normal forms
that deal with additional dependencies. In Chapter 15, we discuss the properties of
decomposition in detail and provide a variety of algorithms related to functional
dependencies, goodness of decomposition, and the bottom-up design of relations
by using the functional dependencies as a starting point.

14.2 Functional Dependencies
So far we have dealt with the informal measures of database design. We now intro-
duce a formal tool for analysis of relational schemas that enables us to detect and
describe some of the above-mentioned problems in precise terms. The single most
important concept in relational schema design theory is that of a functional depen-
dency. In this section we formally define the concept, and in Section 14.3 we see
how it can be used to define normal forms for relation schemas.

14.2.1 Definition of Functional Dependency
A functional dependency is a constraint between two sets of attributes from the
database. Suppose that our relational database schema has n attributes A1, A2,
… , An; let us think of the whole database as being described by a single universal

https://hemanthrajhemu.github.io

472 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 relation schema R = {A1, A2, … , An}.7 We do not imply that we will actually store
the database as a single universal table; we use this concept only in developing the
formal theory of data dependencies.8

Definition. A functional dependency, denoted by X → Y, between two sets of
attributes X and Y that are subsets of R specifies a constraint on the possible
tuples that can form a relation state r of R. The constraint is that, for any two
tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on, or are deter-
mined by, the values of the X component; alternatively, the values of the X component
of a tuple uniquely (or functionally) determine the values of the Y component. We
also say that there is a functional dependency from X to Y, or that Y is functionally
dependent on X. The abbreviation for functional dependency is FD or f.d. The set of
attributes X is called the left-hand side of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever
two tuples of r(R) agree on their X-value, they must necessarily agree on their
Y-value. Note the following:

 ■ If a constraint on R states that there cannot be more than one tuple with a
given X-value in any relation instance r(R)—that is, X is a candidate key of
R—this implies that X → Y for any subset of attributes Y of R (because the
key constraint implies that no two tuples in any legal state r(R) will have the
same value of X). If X is a candidate key of R, then X → R.

 ■ If X → Y in R, this does not say whether or not Y → X in R.

A functional dependency is a property of the semantics or meaning of the
attributes. The database designers will use their understanding of the semantics of the
attributes of R—that is, how they relate to one another—to specify the functional
dependencies that should hold on all relation states (extensions) r of R. Relation
extensions r(R) that satisfy the functional dependency constraints are called legal
relation states (or legal extensions) of R. Hence, the main use of functional depen-
dencies is to describe further a relation schema R by specifying constraints on its
attributes that must hold at all times. Certain FDs can be specified without referring
to a specific relation, but as a property of those attributes given their commonly
understood meaning. For example, {State, Driver_license_number} → Ssn should
normally hold for any adult in the United States and hence should hold whenever
these attributes appear in a relation.9 It is also possible that certain functional

7This concept of a universal relation is important when we discuss the algorithms for relational database
design in Chapter 15.

8This assumption implies that every attribute in the database should have a distinct name. In Chapter 5
we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinct
relations had the same name.

9Note that there are databases, such as those of credit card agencies or police departments, where this
functional dependency may not hold because of fraudulent records resulting from the same driver’s
license number being used by two or more different individuals.

https://hemanthrajhemu.github.io

 14.2 Functional Dependencies 473

dependencies may cease to exist in the real world if the relationship changes. For
example, the FD Zip_code → Area_code used to exist as a relationship between postal
codes and telephone number codes in the United States, but with the proliferation
of telephone area codes it is no longer true.

Consider the relation schema EMP_PROJ in Figure 14.3(b); from the semantics of
the attributes and the relation, we know that the following functional dependencies
should hold:

 a. Ssn → Ename

 b. Pnumber → {Pname, Plocation}

 c. {Ssn, Pnumber} → Hours

These functional dependencies specify that (a) the value of an employee’s Social
Security number (Ssn) uniquely determines the employee name (Ename), (b) the
value of a project’s number (Pnumber) uniquely determines the project name
(Pname) and location (Plocation), and (c) a combination of Ssn and Pnumber values
uniquely determines the number of hours the employee currently works on the
project per week (Hours). Alternatively, we say that Ename is functionally deter-
mined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the
value of Ename, and so on.

A functional dependency is a property of the relation schema R, not of a particular
legal relation state r of R. Therefore, an FD cannot be inferred automatically from a
given relation extension r but must be defined explicitly by someone who knows
the semantics of the attributes of R. For example, Figure 14.7 shows a particular
state of the TEACH relation schema. Although at first glance we may think that
Text → Course, we cannot confirm this unless we know that it is true for all possible
legal states of TEACH. It is, however, sufficient to demonstrate a single counterexam-
ple to disprove a functional dependency. For example, because ‘Smith’ teaches both
‘Data Structures’ and ‘Database Systems,’ we can conclude that Teacher does not
functionally determine Course.

Given a populated relation, we cannot determine which FDs hold and which do not
unless we know the meaning of and the relationships among the attributes. All we can
say is that a certain FD may exist if it holds in that particular extension. We cannot
guarantee its existence until we understand the meaning of the corresponding attri-
butes. We can, however, emphatically state that a certain FD does not hold if there are

TEACH

Teacher
Smith

Smith

Hall

Brown

Bartram

Martin

Hoffman

Horowitz

Compilers

Data Structures

Data Management

Data Structures

Course Text

Figure 14.7
A relation state of TEACH with a
possible functional dependency
TEXT → COURSE. However,
TEACHER → COURSE,
TEXT → TEACHER and
COURSE → TEXT are ruled out.

https://hemanthrajhemu.github.io

474 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

tuples that show the violation of such an FD. See the illustrative example relation in
Figure 14.8. Here, the following FDs may hold because the four tuples in the current
extension have no violation of these constraints: B → C; C → B; {A, B} → C; {A, B} → D;
and {C, D} → B. However, the following do not hold because we already have viola-
tions of them in the given extension: A → B (tuples 1 and 2 violate this constraint);
B → A (tuples 2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD is
displayed as a horizontal line. The left-hand-side attributes of the FD are connected
by vertical lines to the line representing the FD, whereas the right-hand-side attri-
butes are connected by the lines with arrows pointing toward the attributes.

We denote by F the set of functional dependencies that are specified on relation
schema R. Typically, the schema designer specifies the functional dependencies that
are semantically obvious; usually, however, numerous other functional dependen-
cies hold in all legal relation instances among sets of attributes that can be derived
from and satisfy the dependencies in F. Those other dependencies can be inferred
or deduced from the FDs in F. We defer the details of inference rules and properties
of functional dependencies to Chapter 15.

14.3 Normal Forms Based on Primary Keys
Having introduced functional dependencies, we are now ready to use them to spec-
ify how to use them to develop a formal methodology for testing and improving
relation schemas. We assume that a set of functional dependencies is given for each
relation, and that each relation has a designated primary key; this information com-
bined with the tests (conditions) for normal forms drives the normalization process
for relational schema design. Most practical relational design projects take one of
the following two approaches:

 ■ Perform a conceptual schema design using a conceptual model such as ER
or EER and map the conceptual design into a set of relations.

 ■ Design the relations based on external knowledge derived from an existing
implementation of files or forms or reports.

Following either of these approaches, it is then useful to evaluate the relations for
goodness and decompose them further as needed to achieve higher normal forms
using the normalization theory presented in this chapter and the next. We focus in

Figure 14.8
A relation R (A, B, C, D)
with its extension.

A B C D

a1 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d3

a3 b3 c4 d3

https://hemanthrajhemu.github.io

 14.3 Normal Forms Based on Primary Keys 475

this section on the first three normal forms for relation schemas and the intuition
behind them, and we discuss how they were developed historically. More general
definitions of these normal forms, which take into account all candidate keys of a
relation rather than just the primary key, are deferred to Section 14.4.

We start by informally discussing normal forms and the motivation behind their
development, as well as reviewing some definitions from Chapter 3 that are needed
here. Then we discuss the first normal form (1NF) in Section 14.3.4, and we present
the definitions of second normal form (2NF) and third normal form (3NF), which
are based on primary keys, in Sections 14.3.5 and 14.3.6, respectively.

14.3.1 Normalization of Relations
The normalization process, as first proposed by Codd (1972a), takes a relation
schema through a series of tests to certify whether it satisfies a certain normal form.
The process, which proceeds in a top-down fashion by evaluating each relation
against the criteria for normal forms and decomposing relations as necessary, can
thus be considered as relational design by analysis. Initially, Codd proposed three
normal forms, which he called first, second, and third normal form. A stronger
definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed later
by Boyce and Codd. All these normal forms are based on a single analytical tool: the
functional dependencies among the attributes of a relation. Later, a fourth normal
form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of
multivalued dependencies and join dependencies, respectively; these are briefly dis-
cussed in Sections 14.6 and 14.7.

Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of
(1) minimizing redundancy and (2) minimizing the insertion, deletion, and update
anomalies discussed in Section 14.1.2. It can be considered as a “filtering” or “purifi-
cation” process to make the design have successively better quality. An unsatisfactory
relation schema that does not meet the condition for a normal form—the normal
form test—is decomposed into smaller relation schemas that contain a subset of the
attributes and meet the test that was otherwise not met by the original relation. Thus,
the normalization procedure provides database designers with the following:

 ■ A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes

 ■ A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired
degree

Definition. The normal form of a relation refers to the highest normal form
condition that it meets, and hence indicates the degree to which it has been
normalized.

Normal forms, when considered in isolation from other factors, do not guarantee a
good database design. It is generally not sufficient to check separately that each

https://hemanthrajhemu.github.io

476 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

relation schema in the database is, say, in BCNF or 3NF. Rather, the process of nor-
malization through decomposition must also confirm the existence of additional
properties that the relational schemas, taken together, should possess. These would
include two properties:

 ■ The nonadditive join or lossless join property, which guarantees that the
spurious tuple generation problem discussed in Section 14.1.4 does not
occur with respect to the relation schemas created after decomposition

 ■ The dependency preservation property, which ensures that each functional
dependency is represented in some individual relation resulting after
decomposition

The nonadditive join property is extremely critical and must be achieved at any
cost, whereas the dependency preservation property, although desirable, is some-
times sacrificed, as we discuss in Section 15.2.2. We defer the discussion of the for-
mal concepts and techniques that guarantee the above two properties to Chapter 15.

14.3.2 Practical Use of Normal Forms
Most practical design projects in commercial and governmental environment acquire
existing designs of databases from previous designs, from designs in legacy models, or
from existing files. They are certainly interested in assuring that the designs are good
quality and sustainable over long periods of time. Existing designs are evaluated by
applying the tests for normal forms, and normalization is carried out in practice so
that the resulting designs are of high quality and meet the desirable properties stated
previously. Although several higher normal forms have been defined, such as the 4NF
and 5NF that we discuss in Sections 14.6 and 14.7, the practical utility of these normal
forms becomes questionable. The reason is that the constraints on which they are
based are rare and hard for the database designers and users to understand or to
detect. Designers and users must either already know them or discover them as a part
of the business. Thus, database design as practiced in industry today pays particular
attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status,
such as 2NF, for performance reasons, such as those discussed at the end of Sec-
tion 14.1.2. Doing so incurs the corresponding penalties of dealing with the anomalies.

Definition. Denormalization is the process of storing the join of higher nor-
mal form relations as a base relation, which is in a lower normal form.

14.3.3 Definitions of Keys and Attributes Participating in Keys
Before proceeding further, let’s look again at the definitions of keys of a relation
schema from Chapter 3.

Definition. A superkey of a relation schema R = {A1, A2, … , An} is a set of attri-
butes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation
state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional property
that removal of any attribute from K will cause K not to be a superkey anymore.

https://hemanthrajhemu.github.io

 14.3 Normal Forms Based on Primary Keys 477

The difference between a key and a superkey is that a key has to be minimal; that is,
if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of R for any Ai,
1 ≤ i ≤ k. In Figure 14.1, {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename},
{Ssn, Ename, Bdate}, and any set of attributes that includes Ssn are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of
the candidate keys is arbitrarily designated to be the primary key, and the others
are called secondary keys. In a practical relational database, each relation schema
must have a primary key. If no candidate key is known for a relation, the entire rela-
tion can be treated as a default superkey. In Figure 14.1, {Ssn} is the only candidate
key for EMPLOYEE, so it is also the primary key.

Definition. An attribute of relation schema R is called a prime attribute of R if
it is a member of some candidate key of R. An attribute is called nonprime if it
is not a prime attribute—that is, if it is not a member of any candidate key.

In Figure 14.1, both Ssn and Pnumber are prime attributes of WORKS_ON, whereas
other attributes of WORKS_ON are nonprime.

We now present the first three normal forms: 1NF, 2NF, and 3NF. These were pro-
posed by Codd (1972a) as a sequence to achieve the desirable state of 3NF relations
by progressing through the intermediate states of 1NF and 2NF if needed. As we
shall see, 2NF and 3NF independently attack different types of problems arising
from problematic functional dependencies among attributes. However, for histori-
cal reasons, it is customary to follow them in that sequence; hence, by definition a
3NF relation already satisfies 2NF.

14.3.4 First Normal Form
First normal form (1NF)is now considered to be part of the formal definition of a
relation in the basic (flat) relational model; historically, it was defined to disallow
multivalued attributes, composite attributes, and their combinations. It states that
the domain of an attribute must include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be a single value from the domain of
that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a
combination of both as an attribute value for a single tuple. In other words, 1NF
disallows relations within relations or relations as attribute values within tuples. The
only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 14.1, whose primary
key is Dnumber, and suppose that we extend it by including the Dlocations attribute
as shown in Figure 14.9(a). We assume that each department can have a number of
locations. The DEPARTMENT schema and a sample relation state are shown in Fig-
ure 14.9. As we can see, this is not in 1NF because Dlocations is not an atomic attri-
bute, as illustrated by the first tuple in Figure 14.9(b). There are two ways we can
look at the Dlocations attribute:

 ■ The domain of Dlocations contains atomic values, but some tuples can have a
set of these values. In this case, Dlocations is not functionally dependent on
the primary key Dnumber.

https://hemanthrajhemu.github.io

478 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 ■ The domain of Dlocations contains sets of values and hence is nonatomic. In
this case, Dnumber → Dlocations because each set is considered a single mem-
ber of the attribute domain.10

In either case, the DEPARTMENT relation in Figure 14.9 is not in 1NF; in fact, it does
not even qualify as a relation according to our definition of relation in Section 3.1.
There are three main techniques to achieve first normal form for such a relation:

 1. Remove the attribute Dlocations that violates 1NF and place it in a separate
relation DEPT_LOCATIONS along with the primary key Dnumber of
DEPARTMENT. The primary key of this newly formed relation is the combi-
nation {Dnumber, Dlocation}, as shown in Figure 14.2. A distinct tuple in
DEPT_LOCATIONS exists for each location of a department. This decom-
poses the non-1NF relation into two 1NF relations.

Dname
DEPARTMENT
(a)

DEPARTMENT
(b)

DEPARTMENT
(c)

Dnumber Dmgr_ssn Dlocations

Dname
Research

Administration

Headquarters 1

5

4

Dnumber

888665555

333445555

987654321

Dmgr_ssn

{Houston}

{Bellaire, Sugarland, Houston}

{Stafford}

Dlocations

Dname
Research

Research

Research

Administration

Headquarters

Bellaire

Sugarland

Houston

Stafford

Houston

5

5

5

4

1

Dnumber

333445555

333445555

333445555

987654321

888665555

Dmgr_ssn Dlocation
Figure 14.9
Normalization into 1NF. (a) A
relation schema that is not in
1NF. (b) Sample state of
relation DEPARTMENT.
(c) 1NF version of the same
relation with redundancy.

10In this case we can consider the domain of Dlocations to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.

https://hemanthrajhemu.github.io

 14.3 Normal Forms Based on Primary Keys 479

 2. Expand the key so that there will be a separate tuple in the original
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Fig-
ure 14.9(c). In this case, the primary key becomes the combination {Dnumber,
Dlocation}. This solution has the disadvantage of introducing redundancy in
the relation and hence is rarely adopted.

 3. If a maximum number of values is known for the attribute—for example, if it
is known that at most three locations can exist for a department—replace the
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and
Dlocation3. This solution has the disadvantage of introducing NULL values if
most departments have fewer than three locations. It further introduces
spurious semantics about the ordering among the location values; that
ordering is not originally intended. Querying on this attribute becomes more
difficult; for example, consider how you would write the query: List the
departments that have ‘Bellaire’ as one of their locations in this design. For all
these reasons, it is best to avoid this alternative.

Of the three solutions above, the first is generally considered best because it
does not suffer from redundancy and it is completely general; it places no max-
imum limit on the number of values. In fact, if we choose the second solution, it
will be decomposed further during subsequent normalization steps into the
first solution.

First normal form also disallows multivalued attributes that are themselves com-
posite. These are called nested relations because each tuple can have a relation
within it. Figure 14.10 shows how the EMP_PROJ relation could appear if nesting is
allowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber,
Hours) within each tuple represents the employee’s projects and the hours per week
that employee works on each project. The schema of this EMP_PROJ relation can be
represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

The set braces { } identify the attribute PROJS as multivalued, and we list the com-
ponent attributes that form PROJS between parentheses (). Interestingly, recent
trends for supporting complex objects (see Chapter 12) and XML data (see Chap-
ter 13) attempt to allow and formalize nested relations within relational database
systems, which were disallowed early on by 1NF.

Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 14.10(a)
and (b), whereas Pnumber is the partial key of the nested relation; that is, within each
tuple, the nested relation must have unique values of Pnumber. To normalize this
into 1NF, we remove the nested relation attributes into a new relation and propa-
gate the primary key into it; the primary key of the new relation will combine the
partial key with the primary key of the original relation. Decomposition and pri-
mary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2, as shown in
Figure 14.10(c).

This procedure can be applied recursively to a relation with multiple-level nesting
to unnest the relation into a set of 1NF relations. This is useful in converting an

https://hemanthrajhemu.github.io

480 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

unnormalized relation schema with many levels of nesting into 1NF relations. As
an example, consider the following:

CANDIDATE (Ssn, Name, {JOB_HIST (Company, Highest_position,
{SAL_HIST (Year, Max_sal)})})

The foregoing describes data about candidates applying for jobs with their job his-
tory as a nested relation within which the salary history is stored as a deeper nested

EMP_PROJ
(a)

Projs
Pnumber HoursSsn Ename

EMP_PROJ1
(c)

Ssn Ename

EMP_PROJ2

HoursSsn Pnumber

EMP_PROJ
(b)

Ssn

123456789

666884444

453453453

333445555

999887777

987987987

987654321

888665555

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Borg, James E.

32.5

7.5
40.0

20.0

20.0

10.0
10.0

10.0

10.0

30.0
10.0

35.0

5.0
20.0

15.0

NULL

English, Joyce A.

Narayan, Ramesh K.

Smith, John B.

Wong, Franklin T.

Ename

3

1

2

1

2

2

20

3

10

30
10

10

20

30
30

20

Pnumber Hours

Figure 14.10
Normalizing nested
relations into 1NF.
(a) Schema of the
EMP_PROJ relation with
a nested relation attribute
PROJS. (b) Sample
extension of the
EMP_PROJ relation
showing nested relations
within each tuple.
(c) Decomposition of
EMP_PROJ into relations
EMP_PROJ1 and
EMP_PROJ2 by
propagating the primary
key.

https://hemanthrajhemu.github.io

 14.3 Normal Forms Based on Primary Keys 481

relation. The first normalization using internal partial keys Company and Year,
respectively, results in the following 1NF relations:

CANDIDATE_1 (Ssn, Name)
CANDIDATE_JOB_HIST (Ssn, Company, Highest_position)
CANDIDATE_SAL_HIST (Ssn, Company, Year, Max-sal)

The existence of more than one multivalued attribute in one relation must be han-
dled carefully. As an example, consider the following non-1NF relation:

PERSON (Ss#, {Car_lic#}, {Phone#})

This relation represents the fact that a person has multiple cars and multiple phones.
If strategy 2 above is followed, it results in an all-key relation:

PERSON_IN_1NF (Ss#, Car_lic#, Phone#)

To avoid introducing any extraneous relationship between Car_lic# and Phone#, all
possible combinations of values are represented for every Ss#, giving rise to redun-
dancy. This leads to the problems that are typically discovered at a later stage of
normalization and that are handled by multivalued dependencies and 4NF, which
we will discuss in Section 14.6. The right way to deal with the two multivalued attri-
butes in PERSON shown previously is to decompose it into two separate relations,
using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

A note about the relations that involve attributes that go beyond just numeric and
character string data. It is becoming common in today’s databases to incorporate
images, documents, video clips, audio clips, and so on. When these are stored in a
relation, the entire object or file is treated as an atomic value, which is stored as a
BLOB (binary large object) or CLOB (character large object) data type using SQL.
For practical purposes, the object is treated as an atomic, single-valued attribute
and hence it maintains the 1NF status of the relation.

14.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency.
A functional dependency X → Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold anymore; that is, for
any attribute A ε X, (X − {A}) does not functionally determine Y. A functional
dependency X → Y is a partial dependency if some attribute A ε X can be removed
from X and the dependency still holds; that is, for some A ε X, (X − {A}) → Y. In
Figure 14.3(b), {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours
nor Pnumber → Hours holds). However, the dependency {Ssn, Pnumber} → Ename is
partial because Ssn → Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is
fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute,
the test need not be applied at all. The EMP_PROJ relation in Figure 14.3(b) is in

https://hemanthrajhemu.github.io

482 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

1NF but is not in 2NF. The nonprime attribute Ename violates 2NF because of FD2,
as do the nonprime attributes Pname and Plocation because of FD3. Each of the func-
tional dependencies FD2 and FD3 violates 2NF because Ename can be functionally
determined by only Ssn, and both Pname and Plocation can be functionally deter-
mined by only Pnumber. Attributes Ssn and Pnumber are a part of the primary key
{Ssn, Pnumber} of EMP_PROJ, thus violating the 2NF test.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized
into a number of 2NF relations in which nonprime attributes are associated only
with the part of the primary key on which they are fully functionally dependent.
Therefore, the functional dependencies FD1, FD2, and FD3 in Figure 14.3(b) lead to
the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3
shown in Figure 14.11(a), each of which is in 2NF.

Ssn

EMP_PROJ
(a)

(b)

FD1

FD2

FD3

2NF Normalization

Pnumber Hours Ename Pname Plocation

Ssn

EP1

FD1

Pnumber Hours

Ename Ssn

ED1
Bdate Address Dnumber

Ssn

EP2

FD2

Ename Pnumber

EP3

FD3

Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Dnumber

ED2
Dname Dmgr_ssn

3NF Normalization

Figure 14.11
Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into
2NF relations. (b) Normalizing EMP_DEPT into 3NF relations.

https://hemanthrajhemu.github.io

 14.4 General Definitions of Second and Third Normal Forms 483

14.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A func-
tional dependency X → Y in a relation schema R is a transitive dependency if there
exists a set of attributes Z in R that is neither a candidate key nor a subset of any key of
R,11 and both X → Z and Z → Y hold. The dependency Ssn → Dmgr_ssn is transitive
through Dnumber in EMP_DEPT in Figure 14.3(a), because both the dependencies
Ssn → Dnumber and Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor a
subset of the key of EMP_DEPT. Intuitively, we can see that the dependency of Dmgr_ssn
on Dnumber is undesirable in EMP_DEPT since Dnumber is not a key of EMP_DEPT.

Definition. According to Codd’s original definition, a relation schema R is in
3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent
on the primary key.

The relation schema EMP_DEPT in Figure 14.3(a) is in 2NF, since no partial depen-
dencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitive
dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. We can normalize
EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2
shown in Figure 14.11(b). Intuitively, we see that ED1 and ED2 represent indepen-
dent facts about employees and departments, both of which are entities in their
own right. A NATURAL JOIN operation on ED1 and ED2 will recover the original
relation EMP_DEPT without generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (a proper subset) of the primary key, or any functional dependency in which the
left-hand side is a nonkey attribute, is a problematic FD. 2NF and 3NF normalization
remove these problem FDs by decomposing the original relation into new relations. In
terms of the normalization process, it is not necessary to remove the partial dependen-
cies before the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before it is tested for 3NF. Moreover,
the general definition of 3NF we present in Section 14.4.2 automatically covers the
condition that the relation also satisfies 2NF. Table 14.1 informally summarizes the
three normal forms based on primary keys, the tests used in each case, and the corre-
sponding remedy or normalization performed to achieve the normal form.

14.4 General Definitions of Second
and Third Normal Forms

In general, we want to design our relation schemas so that they have neither partial
nor transitive dependencies because these types of dependencies cause the update
anomalies discussed in Section 14.1.2. The steps for normalization into 3NF rela-
tions that we have discussed so far disallow partial and transitive dependencies on

11This is the general definition of transitive dependency. Because we are concerned only with primary
keys in this section, we allow transitive dependencies where X is the primary key but Z may be (a subset
of) a candidate key.

https://hemanthrajhemu.github.io

484 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

the primary key. The normalization procedure described so far is useful for analysis
in practical situations for a given database where primary keys have already been
defined. These definitions, however, do not take other candidate keys of a relation, if
any, into account. In this section we give the more general definitions of 2NF and
3NF that take all candidate keys of a relation into account. Notice that this does not
affect the definition of 1NF since it is independent of keys and functional depen-
dencies. As a general definition of prime attribute, an attribute that is part of any
candidate key will be considered as prime. Partial and full functional dependencies
and transitive dependencies will now be considered with respect to all candidate keys
of a relation.

14.4.1 General Definition of Second Normal Form
Definition. A relation schema R is in second normal form (2NF) if every
nonprime attribute A in R is not partially dependent on any key of R.12

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute,
the test need not be applied at all. Consider the relation schema LOTS shown in
Figure 14.12(a), which describes parcels of land for sale in various counties of a
state. Suppose that there are two candidate keys: Property_id# and {County_name,
Lot#}; that is, lot numbers are unique only within each county, but Property_id#
numbers are unique across counties for the entire state.

Table 14.1 Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form Test Remedy (Normalization)

First (1NF) Relation should have no multivalued
attributes or nested relations.

Form new relations for each multivalued
attribute or nested relation.

Second (2NF) For relations where primary key
contains multiple attributes, no nonkey
attribute should be functionally
dependent on a part of the primary key.

Decompose and set up a new relation
for each partial key with its dependent
attribute(s). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.

Third (3NF) Relation should not have a nonkey
attribute functionally determined by
another nonkey attribute (or by a set of
nonkey attributes). That is, there should
be no transitive dependency of a nonkey
attribute on the primary key.

Decompose and set up a relation that
includes the nonkey attribute(s) that
functionally determine(s) other nonkey
attribute(s).

12This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A
in R is fully functionally dependent on every key of R.

https://hemanthrajhemu.github.io

 14.4 General Definitions of Second and Third Normal Forms 485

Property_id#

LOTS
(a)

FD1

FD2

FD3

FD4

County_name Lot# Area Price Tax_rate

Property_id#
LOTS1

(b)

FD1

FD2

FD4

County_name Lot# Area Price

(c)

(d)

Property_id#
LOTS1A

FD1

FD2

County_name Lot# Area

LOTS2

FD3

County_name Tax_rate

LOTS1B

FD4

Area Price

LOTS 1NF

LOTS1

LOTS1A LOTS1B

LOTS2 2NF

LOTS2 3NF

Candidate Key

Figure 14.12
Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies
FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2.
(c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressive
normalization of LOTS into a 3NF design.

https://hemanthrajhemu.github.io

486 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Based on the two candidate keys Property_id# and {County_name, Lot#}, the func-
tional dependencies FD1 and FD2 in Figure 14.12(a) hold. We choose Property_id#
as the primary key, so it is underlined in Figure 14.12(a), but no special consider-
ation will be given to this key over the other candidate key. Suppose that the follow-
ing two additional functional dependencies hold in LOTS:

FD3: County_name → Tax_rate
FD4: Area → Price

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), whereas FD4 says that the price of a lot
is determined by its area regardless of which county it is in. (Assume that this is the
price of the lot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because Tax_rate is
partially dependent on the candidate key {County_name, Lot#}, due to FD3. To nor-
malize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2,
shown in Figure 14.12(b). We construct LOTS1 by removing the attribute Tax_rate
that violates 2NF from LOTS and placing it with County_name (the left-hand side of
FD3 that causes the partial dependency) into another relation LOTS2. Both LOTS1
and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to
LOTS1.

14.4.2 General Definition of Third Normal Form
Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X → A holds in R, either (a) X is a superkey
of R, or (b) A is a prime attribute of R.13

According to this definition, LOTS2 (Figure 14.12(b)) is in 3NF. However, FD4 in
LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute
in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the relation sche-
mas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A by
removing the attribute Price that violates 3NF from LOTS1 and placing it with Area
(the left-hand side of FD4 that causes the transitive dependency) into another rela-
tion LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

 ■ LOTS1 violates 3NF because Price is transitively dependent on each of the
candidate keys of LOTS1 via the nonprime attribute Area.

 ■ This general definition can be applied directly to test whether a relation schema
is in 3NF; it does not have to go through 2NF first. In other words, if a relation
passes the general 3NF test, then it automatically passes the 2NF test.

13Note that based on inferred f.d.’s (which are discussed in Section 15.1), the f.d. Y → YA also holds
whenever Y → A is true. Therefore, a slightly better way of saying this statement is that {A-X} is a prime
attribute of R.

https://hemanthrajhemu.github.io

 14.5 Boyce-Codd Normal Form 487

If we apply the above 3NF definition to LOTS with the dependencies FD1 through
FD4, we find that both FD3 and FD4 violate 3NF by the general definition above
because the LHS County_name in FD3 is not a superkey. Therefore, we could
decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive
and partial dependencies that violate 3NF can be removed in any order.

14.4.3 Interpreting the General Definition of Third Normal Form
A relation schema R violates the general definition of 3NF if a functional depen-
dency X → A holds in R that meets either of the two conditions, namely (a) and (b).
The first condition “catches” two types of problematic dependencies:

 ■ A nonprime attribute determines another nonprime attribute. Here we typi-
cally have a transitive dependency that violates 3NF.

 ■ A proper subset of a key of R functionally determines a nonprime attribute.
Here we have a partial dependency that violates 2NF.

Thus, condition (a) alone addresses the problematic dependencies that were causes
for second and third normalization as we discussed.

Therefore, we can state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute
of R meets both of the following conditions:

 ■ It is fully functionally dependent on every key of R.

 ■ It is nontransitively dependent on every key of R.

However, note the clause (b) in the general definition of 3NF. It allows certain func-
tional dependencies to slip through or escape in that they are OK with the 3NF
definition and hence are not “caught” by the 3NF definition even though they may
be potentially problematic. The Boyce-Codd normal form “catches” these depen-
dencies in that it does not allow them. We discuss that normal form next.

14.5 Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it
was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;
however, a relation in 3NF is not necessarily in BCNF. We pointed out in the last
subsection that although 3NF allows functional dependencies that conform to the
clause (b) in the 3NF definition, BCNF disallows them and hence is a stricter defini-
tion of a normal form.

Intuitively, we can see the need for a stronger normal form than 3NF by going back to
the LOTS relation schema in Figure 14.12(a) with its four functional dependencies FD1
through FD4. Suppose that we have thousands of lots in the relation but the lots are
from only two counties: DeKalb and Fulton. Suppose also that lot sizes in DeKalb
County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County

https://hemanthrajhemu.github.io

488 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

are restricted to 1.1, 1.2, … , 1.9, and 2.0 acres. In such a situation we would have the
additional functional dependency FD5: Area → County_name. If we add this to the other
dependencies, the relation schema LOTS1A still is in 3NF because this f.d. conforms to
clause (b) in the general definition of 3NF, County_name being a prime attribute.

The area of a lot that determines the county, as specified by FD5, can be represented
by 16 tuples in a separate relation R(Area, County_name), since there are only 16 pos-
sible Area values (see Figure 14.13). This representation reduces the redundancy of
repeating the same information in the thousands of LOTS1A tuples. BCNF is a
stronger normal form that would disallow LOTS1A and suggest the need for decom-
posing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X → A holds in R, then X is a superkey of R.

The formal definition of BCNF differs from the definition of 3NF in that clause (b)
of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent from
BCNF. That makes BCNF a stronger normal form compared to 3NF. In our exam-
ple, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A. We
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown
in Figure 14.13(a). This decomposition loses the functional dependency FD2
because its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if there
exists some f.d. X → A that holds in a relation schema R with X not being a superkey

Property_id#

LOTS1A(a)

(b)

FD1

FD2

FD1

FD2

FD5

BCNF Normalization

County_name Lot# Area

Property_id#

LOTS1AX
Area Lot#

A
R

B C

Area

LOTS1AY
County_name

Figure 14.13
Boyce-Codd normal form. (a) BCNF
normalization of LOTS1A with the
functional dependency FD2 being
lost in the decomposition. (b) A
schematic relation with FDs; it is in
3NF, but not in BCNF due to the
f.d. C → B.

https://hemanthrajhemu.github.io

 14.5 Boyce-Codd Normal Form 489

and A being a prime attribute will R be in 3NF but not in BCNF. The relation schema
R shown in Figure 14.13(b) illustrates the general case of such a relation. Such
an f.d. leads to potential redundancy of data, as we illustrated above in case of
FD5: Area → County_name.in LOTS1A relation. Ideally, relational database design
should strive to achieve BCNF or 3NF for every relation schema. Achieving the normal-
ization status of just 1NF or 2NF is not considered adequate, since both were developed
historically to be intermediate normal forms as stepping stones to 3NF and BCNF.

14.5.1 Decomposition of Relations not in BCNF
As another example, consider Figure 14.14, which shows a relation TEACH with the
following dependencies:

FD1: {Student, Course} → Instructor
FD2:14 Instructor → Course

Note that {Student, Course} is a candidate key for this relation and that the depen-
dencies shown follow the pattern in Figure 14.13(b), with Student as A, Course as B,
and Instructor as C. Hence this relation is in 3NF but not BCNF. Decomposition of
this relation schema into two schemas is not straightforward because it may be
decomposed into one of the three following possible pairs:

 1. R1 (Student, Instructor) and R2(Student, Course)

 2. R1 (Course, Instructor) and R2(Course, Student)

 3. R1 (Instructor, Course) and R2(Instructor, Student)

All three decompositions lose the functional dependency FD1. The question then
becomes: Which of the above three is a desirable decomposition? As we pointed out
earlier (Section 14.3.1), we strive to meet two properties of decomposition during

14This dependency means that each instructor teaches one course is a constraint for this application.

TEACH

Student
Narayan

Smith

Smith

Smith

Mark

Navathe

Ammar

Schulman

Operating Systems

Database

Database

Theory

Wallace

Wallace

Wong

Zelaya

Mark

Ahamad

Omiecinski

Navathe

Database

Database

Operating Systems

Database

Course Instructor

Narayan Operating Systems Ammar

Figure 14.14
A relation TEACH that is in
3NF but not BCNF.

https://hemanthrajhemu.github.io

490 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

the normalization process: the nonadditive join property and the functional depen-
dency preservation property. We are not able to meet the functional dependency
preservation for any of the above BCNF decompositions as seen above; but we must
meet the nonadditive join property. A simple test comes in handy to test the binary
decomposition of a relation into two relations:

NJB (Nonadditive Join Test for Binary Decompositions). A decomposition
D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a
set of functional dependencies F on R if and only if either

 ■ The FD ((R1 ∩ R2) → (R1 − R2)) is in F+15, or

 ■ The FD ((R1 ∩ R2) → (R2 − R1)) is in F+

If we apply this test to the above three decompositions, we find that only the third
decomposition meets the test. In the third decomposition, the R1 ∩ R2 for the above
test is Instructor and R1 − R2 is Course. Because Instructor → Course, the NJB test
is satisfied and the decomposition is nonadditive. (It is left as an exercise for the
reader to show that the first two decompositions do not meet the NJB test.) Hence,
the proper decomposition of TEACH into BCNF relations is:

TEACH1 (Instructor, Course) and TEACH2 (Instructor, Student)

We make sure that we meet this property, because nonadditive decomposition is
a must during normalization. You should verify that this property holds with
respect to our informal successive normalization examples in Sections 14.3
and 14.4 and also by the decomposition of LOTS1A into two BCNF relations
 LOTS1AX and LOTS1AY.

In general, a relation R not in BCNF can be decomposed so as to meet the nonaddi-
tive join property by the following procedure.16 It decomposes R successively into a
set of relations that are in BCNF:

Let R be the relation not in BCNF, let X ⊆ R, and let X → A be the FD that
causes a violation of BCNF. R may be decomposed into two relations:

R –A

XA

If either R –A or XA. is not in BCNF, repeat the process.

The reader should verify that if we applied the above procedure to LOTS1A, we
obtain relations LOTS1AX and LOTS1AY as before. Similarly, applying this proce-
dure to TEACH results in relations TEACH1 and TEACH2

15The notation F+ refers to the cover of the set of functional dependencies and includes all f.d.’s implied
by F. It is discussed in detail in Section 15.1. Here, it is enough to make sure that one of the two f.d.’s
actually holds for the nonadditive decomposition into R1 and R2 to pass this test.

16Note that this procedure is based on Algorithm 15.5 from Chapter 15 for producing BCNF schemas
by decomposition of a universal schema.

https://hemanthrajhemu.github.io

 14.6 Multivalued Dependency and Fourth Normal Form 491

Note that if we designate (Student, Instructor) as a primary key of the relation TEACH,
the FD instructor → Course causes a partial (non-fully-functional) dependency of
Course on a part of this key. This FD may be removed as a part of second normaliza-
tion (or by a direct application of the above procedure to achieve BCNF) yielding
exactly the same two relations in the result. This is an example of a case where we
may reach the same ultimate BCNF design via alternate paths of normalization.

14.6 Multivalued Dependency
and Fourth Normal Form

Consider the relation EMP shown in Figure 14.15(a). A tuple in this EMP relation
represents the fact that an employee whose name is Ename works on the project
whose name is Pname and has a dependent whose name is Dname. An employee
may work on several projects and may have several dependents, and the employee’s
projects and dependents are independent of one another.17 To keep the relation
state consistent and to avoid any spurious relationship between the two indepen-
dent attributes, we must have a separate tuple to represent every combination of an
employee’s dependent and an employee’s project. In the relation state shown in
Figure 14.15(a), the employee with Ename Smith works on two projects ‘X’ and ‘Y’
and has two dependents ‘John’ and ‘Anna’, and therefore there are four tuples to
represent these facts together. The relation EMP is an all-key relation (with key
made up of all attributes) and therefore has no f.d.’s and as such qualifies to be a
BCNF relation. We can see that there is an obvious redundancy in the relation
EMP—the dependent information is repeated for every project and the project
information is repeated for every dependent.

As illustrated by the EMP relation, some relations have constraints that cannot be
specified as functional dependencies and hence are not in violation of BCNF. To
address this situation, the concept of multivalued dependency (MVD) was proposed
and, based on this dependency, the fourth normal form was defined. A more formal
discussion of MVDs and their properties is deferred to Chapter 15. Multivalued depen-
dencies are a consequence of first normal form (1NF) (see Section 14.3.4), which disal-
lows an attribute in a tuple to have a set of values. If more than one multivalued attribute
is present, the second option of normalizing the relation (see Section 14.3.4) intro-
duces a multivalued dependency. Informally, whenever two independent 1:N relation-
ships A:B and A:C are mixed in the same relation, R(A, B, C), an MVD may arise.18

14.6.1 Formal Definition of Multivalued Dependency
Definition. A multivalued dependency X → Y specified on relation schema R,
where X and Y are both subsets of R, specifies the following constraint on any

17In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type
(see Chapter 7).

18This MVD is denoted as A →→ B|C.

https://hemanthrajhemu.github.io

492 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then
two tuples t3 and t4 should also exist in r with the following properties,19 where
we use Z to denote (R − (X ∪ Y)):20

 ■ t3[X] = t4[X] = t1[X] = t2[X]

 ■ t3[Y] = t1[Y] and t4[Y] = t2[Y]

 ■ t3[Z] = t2[Z] and t4[Z] = t1[Z]

(a) EMP

Ename

Smith
Smith

Smith

Smith

John
Anna

Anna

John

X

Y

X

Y

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

John
Anna

Dname

(c) SUPPLY

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Adamsky

Smith

Bolt

Bolt

Nut

Bolt

Nut

Nail

Bolt

ProjY

ProjX

ProjY

ProjX

ProjZ

ProjX

ProjY

Part_name Proj_name

(d) R1

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Bolt

Bolt

Nut

Nut

Nail

Bolt

Bolt

Nut

Nut

Nail

Part_name

R2

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Proj_name

ProjY

ProjX

ProjY

ProjZ

ProjX

R3

Part_name Proj_name

ProjY

ProjX

ProjY

ProjZ

ProjX

Figure 14.15
Fourth and fifth normal forms.
(a) The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname.
(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.
(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3).
(d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

19The tuples t1, t2, t3, and t4 are not necessarily distinct.

20Z is shorthand for the attributes in R after the attributes in (X ∪ Y) are removed from R.

https://hemanthrajhemu.github.io

 14.6 Multivalued Dependency and Fourth Normal Form 493

Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symme-
try in the definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y
implies X →→ Z and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R.
For example, the relation EMP_PROJECTS in Figure 14.15(b) has the trivial
MVD Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD
Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial
MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because
it does not specify any significant or meaningful constraint on R.

If we have a nontrivial MVD in a relation, we may have to repeat values redun-
dantly in the tuples. In the EMP relation of Figure 14.15(a), the values ‘X’ and ‘Y’ of
Pname are repeated with each value of Dname (or, by symmetry, the values ‘John’
and ‘Anna’ of Dname are repeated with each value of Pname). This redundancy is
clearly undesirable. However, the EMP schema is in BCNF because no functional
dependencies hold in EMP. Therefore, we need to define a fourth normal form that
is stronger than BCNF and disallows relation schemas such as EMP. Notice that
relations containing nontrivial MVDs tend to be all-key relations—that is, their
key is all their attributes taken together. Furthermore, it is rare that such all-key
relations with a combinatorial occurrence of repeated values would be designed in
practice. However, recognition of MVDs as a potential problematic dependency is
essential in relational design.

We now present the definition of fourth normal form (4NF), which is violated
when a relation has undesirable multivalued dependencies and hence can be used
to identify and decompose such relations.

Definition. A relation schema R is in 4NF with respect to a set of dependencies
F (that includes functional dependencies and multivalued dependencies) if, for
every nontrivial multivalued dependency X →→ Y in F+,21 X is a superkey for R.

We can state the following points:

 ■ An all-key relation is always in BCNF since it has no FDs.

 ■ An all-key relation such as the EMP relation in Figure 14.15(a), which has no
FDs but has the MVD Ename →→ Pname | Dname, is not in 4NF.

 ■ A relation that is not in 4NF due to a nontrivial MVD must be decomposed
to convert it into a set of relations in 4NF.

 ■ The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF
consists of decomposing it so that each MVD is represented by a separate relation
where it becomes a trivial MVD. Consider the EMP relation in Figure 14.15(a). EMP is
not in 4NF because in the nontrivial MVDs Ename →→ Pname and Ename →→ Dname,

21F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. This is
defined in Section 15.1.

https://hemanthrajhemu.github.io

494 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

and Ename is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and
EMP_DEPENDENTS, shown in Figure 14.15(b). Both EMP_PROJECTS and
EMP_DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in
EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No
other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No
FDs hold in these relation schemas either.

14.7 Join Dependencies and Fifth Normal Form
In our discussion so far, we have pointed out the problematic functional dependen-
cies and shown how they were eliminated by a process of repeated binary decompo-
sition during the process of normalization to achieve 1NF, 2NF, 3NF, and BCNF.
These binary decompositions must obey the NJB property for which we introduced
a test in Section 14.5 while discussing the decomposition to achieve BCNF. Achiev-
ing 4NF typically involves eliminating MVDs by repeated binary decompositions as
well. However, in some cases there may be no nonadditive join decomposition of R
into two relation schemas, but there may be a nonadditive join decomposition into
more than two relation schemas. Moreover, there may be no functional dependency
in R that violates any normal form up to BCNF, and there may be no nontrivial
MVD present in R either that violates 4NF. We then resort to another dependency
called the join dependency and, if it is present, carry out a multiway decomposition
into fifth normal form (5NF). It is important to note that such a dependency is a
peculiar semantic constraint that is difficult to detect in practice; therefore, normal-
ization into 5NF is rarely done in practice.

Definition. A join dependency (JD), denoted by JD(R1, R2, … , Rn), specified
on relation schema R, specifies a constraint on the states r of R. The constraint
states that every legal state r of R should have a nonadditive join decomposition
into R1, R2, … , Rn. Hence, for every such r we have

* (πR1
(r), πR2

(r), … , πRn
(r)) = r

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted
as JD(R1, R2) implies an MVD (R1 ∩ R2) →→ (R1 − R2)(or, by symmetry,
(R1 ∩ R2) →→ (R2 − R1)). A join dependency JD(R1, R2, … , Rn), specified on relation
schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, … , Rn) is equal
to R. Such a dependency is called trivial because it has the nonadditive join property
for any relation state r of R and thus does not specify any constraint on R. We can
now define the fifth normal form, which is also called project-join normal form.

Definition. A relation schema R is in fifth normal form (5NF) (or project-join
normal form (PJNF)) with respect to a set F of functional, multivalued, and
join dependencies if, for every nontrivial join dependency JD(R1, R2, … , Rn) in
F+ (that is, implied by F),22 every Ri is a superkey of R.

22Again, F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F.
This is defined in Section 15.1.

https://hemanthrajhemu.github.io

 14.6 Summary 495

For an example of a JD, consider once again the SUPPLY all-key relation in Fig-
ure 14.15(c). Suppose that the following additional constraint always holds: Whenever
a supplier s supplies part p, and a project j uses part p, and the supplier s supplies at
least one part to project j, then supplier s will also be supplying part p to project j.
This constraint can be restated in other ways and specifies a join dependency
JD(R1, R2, R3) among the three projections R1 (Sname, Part_name), R2 (Sname,
Proj_name), and R3 (Part_name, Proj_name) of SUPPLY. If this constraint holds, the
tuples below the dashed line in Figure 14.15(c) must exist in any legal state of the
SUPPLY relation that also contains the tuples above the dashed line. Figure 14.15(d)
shows how the SUPPLY relation with the join dependency is decomposed into three
relations R1, R2, and R3 that are each in 5NF. Notice that applying a natural join to
any two of these relations produces spurious tuples, but applying a natural join to
all three together does not. The reader should verify this on the sample relation in
Figure 14.15(c) and its projections in Figure 14.15(d). This is because only the JD
exists, but no MVDs are specified. Notice, too, that the JD(R1, R2, R3) is specified on
all legal relation states, not just on the one shown in Figure 14.15(c).

Discovering JDs in practical databases with hundreds of attributes is next to impos-
sible. It can be done only with a great degree of intuition about the data on the part
of the designer. Therefore, the current practice of database design pays scant atten-
tion to them. One result due to Date and Fagin (1992) relates to conditions detected
using f.d.’s alone and ignores JDs completely. It states: “If a relation schema is in
3NF and each of its keys consists of a single attribute, it is also in 5NF.”

14.8 Summary
In this chapter we discussed several pitfalls in relational database design using intu-
itive arguments. We identified informally some of the measures for indicating
whether a relation schema is good or bad, and we provided informal guidelines for
a good design. These guidelines are based on doing a careful conceptual design in
the ER and EER model, following the mapping procedure in Chapter 9 to map enti-
ties and relationships into relations. Proper enforcement of these guidelines and
lack of redundancy will avoid the insertion/deletion/update anomalies and genera-
tion of spurious data. We recommended limiting NULL values, which cause prob-
lems during SELECT, JOIN, and aggregation operations. Then we presented some
formal concepts that allow us to do relational design in a top-down fashion by ana-
lyzing relations individually. We defined this process of design by analysis and
decomposition by introducing the process of normalization.

We defined the concept of functional dependency, which is the basic tool for ana-
lyzing relational schemas, and we discussed some of its properties. Functional
dependencies specify semantic constraints among the attributes of a relation
schema. Next we described the normalization process for achieving good designs
by testing relations for undesirable types of problematic functional dependencies.
We provided a treatment of successive normalization based on a predefined pri-
mary key in each relation, and we then relaxed this requirement and provided more

https://hemanthrajhemu.github.io

496 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

general definitions of second normal form (2NF) and third normal form (3NF) that
take all candidate keys of a relation into account. We presented examples to illus-
trate how, by using the general definition of 3NF, a given relation may be analyzed
and decomposed to eventually yield a set of relations in 3NF.

We presented Boyce-Codd normal form (BCNF) and discussed how it is a stronger
form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement. We pre-
sented a test for the nonadditive join property of binary decompositions and also
gave a general algorithm to convert any relation not in BCNF into a set of BCNF
relations. We motivated the need for an additional constraint beyond the functional
dependencies based on mixing of independent multivalued attributes into a single
relation. We introduced multivalued dependency (MVD) to address such condi-
tions and defined the fourth normal form based on MVDs. Finally, we introduced
the fifth normal form, which is based on join dependency and which identifies a
peculiar constraint that causes a relation to be decomposed into several compo-
nents so that they always yield the original relation after a join. In practice, most
commercial designs have followed the normal forms up to BCNF. The need to
decompose into 5NF rarely arises in practice, and join dependencies are difficult to
detect for most practical situations, making 5NF more of theoretical value.

Chapter 15 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we
discuss the concepts of nonadditive (or lossless) join and dependency preservation,
which are enforced by some of these algorithms. Other topics in Chapter 15 include
a more detailed treatment of functional and multivalued dependencies, and other
types of dependencies.

Review Questions
 14.1. Discuss attribute semantics as an informal measure of goodness for a rela-

tion schema.

 14.2. Discuss insertion, deletion, and modification anomalies. Why are they con-
sidered bad? Illustrate with examples.

 14.3. Why should NULLs in a relation be avoided as much as possible? Discuss the
problem of spurious tuples and how we may prevent it.

 14.4. State the informal guidelines for relation schema design that we discussed.
Illustrate how violation of these guidelines may be harmful.

 14.5. What is a functional dependency? What are the possible sources of the
information that defines the functional dependencies that hold among the
attributes of a relation schema?

 14.6. Why can we not infer a functional dependency automatically from a partic-
ular relation state?

https://hemanthrajhemu.github.io

 Exercises 497

 14.7. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

 14.8. Define first, second, and third normal forms when only primary keys are
considered. How do the general definitions of 2NF and 3NF, which consider
all keys of a relation, differ from those that consider only primary keys?

 14.9. What undesirable dependencies are avoided when a relation is in 2NF?

 14.10. What undesirable dependencies are avoided when a relation is in 3NF?

 14.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-
nitions beyond primary keys?

 14.12. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it
considered a stronger form of 3NF?

 14.13. What is multivalued dependency? When does it arise?

 14.14. Does a relation with two or more columns always have an MVD? Show with
an example.

 14.15. Define fourth normal form. When is it violated? When is it typically applicable?

 14.16. Define join dependency and fifth normal form.

 14.17. Why is 5NF also called project-join normal form (PJNF)?

 14.18. Why do practical database designs typically aim for BCNF and not aim for
higher normal forms?

Exercises
 14.19. Suppose that we have the following requirements for a university database

that is used to keep track of students’ transcripts:

a. The university keeps track of each student’s name (Sname), student num-
ber (Snum), Social Security number (Ssn), current address (Sc_addr) and
phone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone),
birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, … ,
‘graduate’), major department (Major_code), minor department
(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, … , ‘ph.d.’).
Both Ssn and student number have unique values for each student.

b. Each department is described by a name (Dname), department code
(Dcode), office number (Doffice), office phone (Dphone), and college
(Dcollege). Both name and code have unique values for each department.

c. Each course has a course name (Cname), description (Cdesc), course
number (Cnum), number of semester hours (Credit), level (Level), and
offering department (Cdept). The course number is unique for each
course.

https://hemanthrajhemu.github.io

498 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

d. Each section has an instructor (Iname), semester (Semester), year (Year),
course (Sec_course), and section number (Sec_num). The section number
distinguishes different sections of the same course that are taught during
the same semester/year; its values are 1, 2, 3, … , up to the total number of
sections taught during each semester.

e. A grade record refers to a student (Ssn), a particular section, and a
grade (Grade).

Design a relational database schema for this database application. First show
all the functional dependencies that should hold among the attributes. Then
design relation schemas for the database that are each in 3NF or BCNF. Spec-
ify the key attributes of each relation. Note any unspecified requirements,
and make appropriate assumptions to render the specification complete.

 14.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of
Figures 14.3 and 14.4?

 14.21. In what normal form is the LOTS relation schema in Figure 14.12(a) with
respect to the restrictive interpretations of normal form that take only the
primary key into account? Would it be in the same normal form if the gen-
eral definitions of normal form were used?

 14.22. Prove that any relation schema with two attributes is in BCNF.

 14.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and
EMP_ LOCS relations in Figure 14.5 (result shown in Figure 14.6)?

 14.24. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set
of functional dependencies F = {{A, B}→{C}, {A}→{D, E}, {B}→{F},
{F}→{G, H}, {D}→{I, J}}. What is the key for R? Decompose R into 2NF and
then 3NF relations.

 14.25. Repeat Exercise 14.24 for the following different set of functional dependen-
cies G = {{A, B}→{C}, {B, D}→{E, F}, {A, D}→{G, H}, {A}→{I}, {H}→{J}}.

 14.26. Consider the following relation:

A B C TUPLE#

10 b1 c1 1

10 b2 c2 2

11 b4 c1 3

12 b3 c4 4

13 b1 c1 5

14 b3 c4 6

a. Given the previous extension (state), which of the following dependen-
cies may hold in the above relation? If the dependency cannot hold,
explain why by specifying the tuples that cause the violation.

 i. A → B, ii. B → C, iii. C → B, iv. B → A, v. C → A

https://hemanthrajhemu.github.io

 Exercises 499

b. Does the above relation have a potential candidate key? If it does, what is
it? If it does not, why not?

 14.27. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB → C, CD → E, DE → B

 Is AB a candidate key of this relation? If not, is ABD? Explain your answer.

 14.28. Consider the relation R, which has attributes that hold schedules of courses
and sections at a university; R = {Course_no, Sec_no, Offering_dept,
Credit_hours, Course_level, Instructor_ssn, Semester, Year, Days_hours, Room_no,
No_of_students}. Suppose that the following functional dependencies hold on R:

{Course_no} → {Offering_dept, Credit_hours, Course_level}
{Course_no, Sec_no, Semester, Year} → {Days_hours, Room_no,
 No_of_students, Instructor_ssn}
{Room_no, Days_hours, Semester, Year} → {Instructor_ssn, Course_no,
 Sec_no}

 Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

 14.29. Consider the following relations for an order-processing application data-
base at ABC, Inc.

ORDER (O#, Odate, Cust#, Total_amount)
ORDER_ITEM(O#, I#, Qty_ordered, Total_price, Discount%)

 Assume that each item has a different discount. The Total_price refers to one
item, Odate is the date on which the order was placed, and the Total_amount
is the amount of the order. If we apply a natural join on the relations
ORDER_ITEM and ORDER in this database, what does the resulting relation
schema RES look like? What will be its key? Show the FDs in this resulting
relation. Is RES in 2NF? Is it in 3NF? Why or why not? (State assumptions,
if you make any.)

 14.30. Consider the following relation:

 CAR_SALE(Car#, Date_sold, Salesperson#, Commission%, Discount_amt)

 Assume that a car may be sold by multiple salespeople, and hence {Car#,
Salesperson#} is the primary key. Additional dependencies are

Date_sold → Discount_amt and
Salesperson# → Commission%

 Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why
or why not? How would you successively normalize it completely?

 14.31. Consider the following relation for published books:

BOOK (Book_title, Author_name, Book_type, List_price, Author_affil,
 Publisher)

https://hemanthrajhemu.github.io

500 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Author_affil refers to the affiliation of author. Suppose the following depen-
dencies exist:

Book_title → Publisher, Book_type
Book_type → List_price
Author_name → Author_affil

a. What normal form is the relation in? Explain your answer.

b. Apply normalization until you cannot decompose the relations further.
State the reasons behind each decomposition.

 14.32. This exercise asks you to convert business statements into dependencies.
Consider the relation DISK_DRIVE (Serial_number, Manufacturer, Model, Batch,
Capacity, Retailer). Each tuple in the relation DISK_DRIVE contains information
about a disk drive with a unique Serial_number, made by a manufacturer, with a
particular model number, released in a certain batch, which has a certain stor-
age capacity and is sold by a certain retailer. For example, the tuple Disk_drive
(‘1978619’, ‘WesternDigital’, ‘A2235X’, ‘765234’, 500, ‘CompUSA’) specifies
that WesternDigital made a disk drive with serial number 1978619 and model
number A2235X, released in batch 765234; it is 500GB and sold by CompUSA.

 Write each of the following dependencies as an FD:

a. The manufacturer and serial number uniquely identifies the drive.

b. A model number is registered by a manufacturer and therefore can’t be
used by another manufacturer.

c. All disk drives in a particular batch are the same model.

d. All disk drives of a certain model of a particular manufacturer have
exactly the same capacity.

 14.33. Consider the following relation:

R (Doctor#, Patient#, Date, Diagnosis, Treat_code, Charge)

 In the above relation, a tuple describes a visit of a patient to a doctor along
with a treatment code and daily charge. Assume that diagnosis is determined
(uniquely) for each patient by a doctor. Assume that each treatment code
has a fixed charge (regardless of patient). Is this relation in 2NF? Justify your
answer and decompose if necessary. Then argue whether further normaliza-
tion to 3NF is necessary, and if so, perform it.

 14.34. Consider the following relation:

CAR_SALE (Car_id, Option_type, Option_listprice, Sale_date,
 Option_discountedprice)

 This relation refers to options installed in cars (e.g., cruise control) that were
sold at a dealership, and the list and discounted prices of the options.

 If CarID → Sale_date and Option_type → Option_listprice and CarID, Option_type
→ Option_discountedprice, argue using the generalized definition of the 3NF

https://hemanthrajhemu.github.io

 Laboratory Exercises 501

that this relation is not in 3NF. Then argue from your knowledge of 2NF,
why it is not even in 2NF.

 14.35. Consider the relation:

BOOK (Book_Name, Author, Edition, Year)

 with the data:

Book_Name Author Edition Copyright_Year

DB_fundamentals Navathe 4 2004

DB_fundamentals Elmasri 4 2004

DB_fundamentals Elmasri 5 2007

DB_fundamentals Navathe 5 2007

a. Based on a common-sense understanding of the above data, what are the
possible candidate keys of this relation?

b. Justify that this relation has the MVD {Book} →→ {Author} | {Edition, Year}.

c. What would be the decomposition of this relation based on the above
MVD? Evaluate each resulting relation for the highest normal form it
possesses.

 14.36. Consider the following relation:

TRIP (Trip_id, Start_date, Cities_visited, Cards_used)

 This relation refers to business trips made by company salespeople. Suppose
the TRIP has a single Start_date but involves many Cities and salespeople
may use multiple credit cards on the trip. Make up a mock-up population of
the table.

a. Discuss what FDs and/or MVDs exist in this relation.

b. Show how you will go about normalizing the relation.

Laboratory Exercises
Note: The following exercises use the DBD (Data Base Designer) system that is
described in the laboratory manual.

The relational schema R and set of functional dependencies F need to be coded as
lists. As an example, R and F for this problem are coded as:

 R = [a, b, c, d, e, f, g, h, i, j]
 F = [[[a, b],[c]],
 [[a],[d, e]],
 [[b],[f]],
 [[f],[g, h]],
 [[d],[i, j]]]

https://hemanthrajhemu.github.io

502 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Since DBD is implemented in Prolog, use of uppercase terms is reserved for vari-
ables in the language and therefore lowercase constants are used to code the attri-
butes. For further details on using the DBD system, please refer to the laboratory
manual.

 14.37. Using the DBD system, verify your answers to the following exercises:

a. 14.24 (3NF only)

b. 14.25

c. 14.27

d. 14.28

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original
definitions of first, second, and third normal form were also defined in Codd
(1972a), where a discussion on update anomalies can be found. Boyce-Codd nor-
mal form was defined in Codd (1974). The alternative definition of third normal
form is given in Ullman (1988), as is the definition of BCNF that we give here. Ull-
man (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many of
the theorems and proofs concerning functional dependencies. Date and Fagin
(1992) give some simple and practical results related to higher normal forms.

Additional references to relational design theory are given in Chapter 15.

https://hemanthrajhemu.github.io

503

15
Relational Database Design

Algorithms and Further
Dependencies

Chapter 14 presented a top-down relational design
technique and related concepts used extensively

in commercial database design projects today. The procedure involves designing an
ER or EER conceptual schema and then mapping it to the relational model by a
procedure such as the one described in Chapter 9. Primary keys are assigned to
each relation based on known functional dependencies. In the subsequent process,
which may be called relational design by analysis, initially designed relations from
the above procedure—or those inherited from previous files, forms, and other
sources—are analyzed to detect undesirable functional dependencies. These depen-
dencies are removed by the successive normalization procedure that we described
in Section 14.3 along with definitions of related normal forms, which are succes-
sively better states of design of individual relations. In Section 14.3 we assumed that
primary keys were assigned to individual relations; in Section 14.4 a more general
treatment of normalization was presented where all candidate keys are considered
for each relation, and Section 14.5 discussed a further normal form called BCNF.
Then in Sections 14.6 and 14.7 we discussed two more types of dependencies—
multivalued dependencies and join dependencies—that can also cause redundancies
and showed how they can be eliminated with further normalization.

In this chapter, we use the theory of normal forms and functional, multivalued, and
join dependencies developed in the last chapter and build upon it while maintain-
ing three different thrusts. First, we discuss the concept of inferring new functional
dependencies from a given set and discuss notions including closure, cover, mini-
mal cover, and equivalence. Conceptually, we need to capture the semantics of

chapter 15

https://hemanthrajhemu.github.io

504 Chapter 15 Relational Database Design Algorithms and Further Dependencies

attibutes within a relation completely and succinctly, and the minimal cover allows
us to do it. Second, we discuss the desirable properties of nonadditive (lossless)
joins and preservation of functional dependencies. A general algorithm to test for
nonadditivity of joins among a set of relations is presented. Third, we present an
approach to relational design by synthesis of functional dependencies. This is a
bottom-up approach to design that presupposes that the known functional depen-
dencies among sets of attributes in the Universe of Discourse (UoD) have been
given as input. We present algorithms to achieve the desirable normal forms,
namely 3NF and BCNF, and achieve one or both of the desirable properties of non-
additivity of joins and functional dependency preservation. Although the synthesis
approach is theoretically appealing as a formal approach, it has not been used in
practice for large database design projects because of the difficulty of providing all
possible functional dependencies up front before the design can be attempted.
Alternately, with the approach presented in Chapter 14, successive decompositions
and ongoing refinements to design become more manageable and may evolve over
time. The final goal of this chapter is to discuss further the multivalued dependency
(MVD) concept we introduced in Chapter 14 and briefly point out other types of
dependencies that have been identified.

In Section 15.1 we discuss the rules of inference for functional dependencies and
use them to define the concepts of a cover, equivalence, and minimal cover among
functional dependencies. In Section 15.2, first we describe the two desirable
properties of decompositions, namely, the dependency preservation property
and the nonadditive (or lossless) join property, which are both used by the design
algorithms to achieve desirable decompositions. It is important to note that it is
insufficient to test the relation schemas independently of one another for compli-
ance with higher normal forms like 2NF, 3NF, and BCNF. The resulting relations
must collectively satisfy these two additional properties to qualify as a good design.
Section 15.3 is devoted to the development of relational design algorithms that
start off with one giant relation schema called the universal relation, which is a
hypothetical relation containing all the attributes. This relation is decomposed (or
in other words, the given functional dependencies are synthesized) into relations
that satisfy a certain normal form like 3NF or BCNF and also meet one or both of
the desirable properties.

In Section 15.5 we discuss the multivalued dependency (MVD) concept further by
applying the notions of inference, and equivalence to MVDs. Finally, in Sec-
tion 15.6 we complete the discussion on dependencies among data by introducing
inclusion dependencies and template dependencies. Inclusion dependencies can
represent referential integrity constraints and class/subclass constraints across rela-
tions. We also describe some situations where a procedure or function is needed to
state and verify a functional dependency among attributes. Then we briefly discuss
domain-key normal form (DKNF), which is considered the most general normal
form. Section 15.7 summarizes this chapter.

It is possible to skip some or all of Sections 15.3, 15.4, and 15.5 in an introductory
database course.

https://hemanthrajhemu.github.io

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 505

15.1 Further Topics in Functional
Dependencies: Inference Rules,
Equivalence, and Minimal Cover

We introduced the concept of functional dependencies (FDs) in Section 14.2, illus-
trated it with some examples, and developed a notation to denote multiple FDs over
a single relation. We identified and discussed problematic functional dependencies
in Sections 14.3 and 14.4 and showed how they can be eliminated by a proper decom-
position of a relation. This process was described as normalization, and we showed
how to achieve the first through third normal forms (1NF through 3NF) given pri-
mary keys in Section 14.3. In Sections 14.4 and 14.5 we provided generalized tests for
2NF, 3NF, and BCNF given any number of candidate keys in a relation and showed
how to achieve them. Now we return to the study of functional dependencies and
show how new dependencies can be inferred from a given set and discuss the con-
cepts of closure, equivalence, and minimal cover that we will need when we later
consider a synthesis approach to design of relations given a set of FDs.

15.1.1 Inference Rules for Functional Dependencies
We denote by F the set of functional dependencies that are specified on relation
schema R. Typically, the schema designer specifies the functional dependencies
that are semantically obvious; usually, however, numerous other functional
dependencies hold in all legal relation instances among sets of attributes that can
be derived from and satisfy the dependencies in F. Those other dependencies can
be inferred or deduced from the FDs in F. We call them as inferred or implied
functional dependencies.

Definition: An FD X → Y is inferred from or implied by a set of dependencies
F specified on R if X → Y holds in every legal relation state r of R; that is, when-
ever r satisfies all the dependencies in F, X → Y also holds in r.

In real life, it is impossible to specify all possible functional dependencies for a given
situation. For example, if each department has one manager, so that Dept_no
uniquely determines Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a unique
phone number called Mgr_phone (Mgr_ssn → Mgr_phone), then these two dependen-
cies together imply that Dept_no → Mgr_phone. This is an inferred or implied FD
and need not be explicitly stated in addition to the two given FDs. Therefore, it is
useful to define a concept called closure formally that includes all possible depen-
dencies that can be inferred from the given set F.

Definition. Formally, the set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure of F; it is denoted
by F+.

For example, suppose that we specify the following set F of obvious functional
dependencies on the relation schema in Figure 14.3(a):

F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }

https://hemanthrajhemu.github.io

506 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Some of the additional functional dependencies that we can infer from F are the
following:

Ssn → {Dname, Dmgr_ssn}
Ssn → Ssn
Dnumber → Dname

The closure F+ of F is the set of all functional dependencies that can be inferred
from F. To determine a systematic way to infer dependencies, we must discover a
set of inference rules that can be used to infer new dependencies from a given set of
dependencies. We consider some of these inference rules next. We use the notation
F |=X → Y to denote that the functional dependency X → Y is inferred from the set
of functional dependencies F.

In the following discussion, we use an abbreviated notation when discussing func-
tional dependencies. We concatenate attribute variables and drop the commas
for convenience. Hence, the FD {X,Y} → Z is abbreviated to XY → Z, and the
FD {X, Y, Z} → {U, V} is abbreviated to XYZ → UV. We present below three rules
IR1 through IR3 that are well-known inference rules for functional dependencies.
They were proposed first by Armstrong (1974) and hence are known as
Armstrong’s axioms.1

IR1 (reflexive rule)2: If X ⊇ Y, then X →Y.

IR2 (augmentation rule)3: {X → Y} |=XZ → YZ.

IR3 (transitive rule): {X → Y, Y → Z} |=X → Z.

Armstrong has shown that inference rules IR1 through IR3 are sound and complete.
By sound, we mean that given a set of functional dependencies F specified on a rela-
tion schema R, any dependency that we can infer from F by using IR1 through IR3
holds in every relation state r of R that satisfies the dependencies in F. By complete,
we mean that using IR1 through IR3 repeatedly to infer dependencies until no more
dependencies can be inferred results in the complete set of all possible dependencies
that can be inferred from F. In other words, the set of dependencies F+, which we
called the closure of F, can be determined from F by using only inference rules IR1
through IR3.

The reflexive rule (IR1) states that a set of attributes always determines itself or any of its
subsets, which is obvious. Because IR1 generates dependencies that are always true, such
dependencies are called trivial. Formally, a functional dependency X → Y is trivial if
X ⊇ Y; otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the
same set of attributes to both the left- and right-hand sides of a dependency results in
another valid dependency. According to IR3, functional dependencies are transitive.

1They are actually inference rules rather than axioms. In the strict mathematical sense, the axioms (given
facts) are the functional dependencies in F, since we assume that they are correct, whereas IR1 through
IR3 are the inference rules for inferring new functional dependencies (new facts).
2The reflexive rule can also be stated as X → X; that is, any set of attributes functionally determines itself.
3The augmentation rule can also be stated as X → Y |= XZ → Y; that is, augmenting the left-hand-side
attributes of an FD produces another valid FD.

https://hemanthrajhemu.github.io

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 507

Each of the preceding inference rules can be proved from the definition of functional
dependency, either by direct proof or by contradiction. A proof by contradiction
assumes that the rule does not hold and shows that this is not possible. We now prove
that the first three rules IR1 through IR3 are valid. The second proof is by contradiction.

Proof of IR1. Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some rela-
tion instance r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y;
hence, X → Y must hold in r.

Proof of IR2 (by contradiction). Assume that X → Y holds in a relation instance
r of R but that XZ → YZ does not hold. Then there must exist two tuples t1
and t2 in r such that (1) t1 [X] = t2 [X], (2) t1 [Y] = t2 [Y], (3) t1 [XZ] = t2 [XZ],
and (4) t1 [YZ] ≠ t2 [YZ]. This is not possible because from (1) and (3) we
deduce (5) t1 [Z] = t2 [Z], and from (2) and (5) we deduce (6) t1 [YZ] = t2 [YZ],
contradicting (4).

Proof of IR3. Assume that (1) X → Y and (2) Y → Z both hold in a relation r.
Then for any two tuples t1 and t2 in r such that t1 [X] = t2 [X], we must have (3)
t1 [Y] = t2 [Y], from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z]
from (3) and assumption (2); thus X → Z must hold in r.

There are three other inference rules that follow from IR1, IR2 and IR3. They are
as follows:

IR4 (decomposition, or projective, rule): {X → YZ} |=X → Y.

IR5 (union, or additive, rule): {X → Y, X → Z} |=X → YZ.

IR6 (pseudotransitive rule): {X → Y, WY → Z} |=WX → Z.

The decomposition rule (IR4) says that we can remove attributes from the right-
hand side of a dependency; applying this rule repeatedly can decompose the
FD X → {A1, A2, … , An} into the set of dependencies {X → A1, X → A2, … , X → An}.
The union rule (IR5) allows us to do the opposite; we can combine a set of depen-
dencies {X → A1, X → A2, … , X → An} into the single FD X → {A1, A2, … , An}.
The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left-
hand side of a dependency with another set X that functionally determines Y, and
can be derived from IR2 and IR3 if we augment the first functional dependency
X → Y with W (the augmentation rule) and then apply the transitive rule.

One important cautionary note regarding the use of these rules: Although X → A and
X → B implies X → AB by the union rule stated above, X → A and Y → B does imply
that XY → AB. Also, XY → A does not necessarily imply either X → A or Y → A.

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any
additional valid inference rules. However, a simpler way to prove that an inference
rule for functional dependencies is valid is to prove it by using inference rules that
have already been shown to be valid. Thus IR4, IR5, and IR6 are regarded as a corol-
lary of the Armstrong’s basic inference rules. For example, we can prove IR4 through
IR6 by using IR1 through IR3. We present the proof of IR5 below. Proofs of IR4 and IR6
using IR1 through IR3 are left as an exercise for the reader.

https://hemanthrajhemu.github.io

508 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Proof of IR5 (using IR1 through IR3).

1. X →Y (given).

2. X → Z (given).

3. X → XY (using IR2 on 1 by augmenting with X; notice that XX = X).

4. XY → YZ (using IR2 on 2 by augmenting with Y).

5. X → YZ (using IR3 on 3 and 4).

Typically, database designers first specify the set of functional dependencies F that
can easily be determined from the semantics of the attributes of R; then IR1, IR2,
and IR3 are used to infer additional functional dependencies that will also hold on
R. A systematic way to determine these additional functional dependencies is first
to determine each set of attributes X that appears as a left-hand side of some func-
tional dependency in F and then to determine the set of all attributes that are depen-
dent on X.

Definition. For each such set of attributes X, we determine the set X+ of attri-
butes that are functionally determined by X based on F; X+ is called the closure
of X under F.

Algorithm 15.1 can be used to calculate X+.

Algorithm 15.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is
a subset of R.

X+ := X;
repeat
 oldX+ := X+;
 for each functional dependency Y → Z in F do
 if X+ ⊇ Y then X+ := X+ ∪ Z;
 until (X+ = oldX+);

Algorithm 15.1 starts by setting X+ to all the attributes in X. By IR1, we know that all
these attributes are functionally dependent on X. Using inference rules IR3 and IR4,
we add attributes to X+, using each functional dependency in F. We keep going
through all the dependencies in F (the repeat loop) until no more attributes are
added to X+ during a complete cycle (of the for loop) through the dependencies in F.
The closure concept is useful in understanding the meaning and implications of
attributes or sets of attributes in a relation. For example, consider the following
relation schema about classes held at a university in a given academic year.

CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity).

Let F, the set of functional dependencies for the above relation include the
following f.d.s:

FD1: Sectionid → Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity;

https://hemanthrajhemu.github.io

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 509

FD2: Course# → Credit_hrs;
FD3: {Course#, Instr_name} → Text, Classroom;
FD4: Text → Publisher
FD5: Classroom → Capacity

Note that the above FDs express certain semantics about the data in the relation
CLASS. For example, FD1 states that each class has a unique Classid. FD3 states
that when a given course is offered by a certain instructor, the text is fixed and the
instructor teaches that class in a fixed room. Using the inference rules about the
FDs and applying the definition of closure, we can define the following closures:

{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}
{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher,

Classroom, Capacity }

Note that each closure above has an interpretation that is revealing about the
attribute(s) on the left-hand side. For example, the closure of Course# has only
Credit_hrs besides itself. It does not include Instr_name because different instruc-
tors could teach the same course; it does not include Text because different instruc-
tors may use different texts for the same course. Note also that the closure of
{Course#, Instr_nam} does not include Classid, which implies that it is not a candi-
date key. This further implies that a course with given Course# could be offered by
different instructors, which would make the courses distinct classes.

15.1.2 Equivalence of Sets of Functional Dependencies
In this section, we discuss the equivalence of two sets of functional dependencies.
First, we give some preliminary definitions.

Definition. A set of functional dependencies F is said to cover another set of
functional dependencies E if every FD in E is also in F+; that is, if every
dependency in E can be inferred from F; alternatively, we can say that E is
covered by F.

Definition. Two sets of functional dependencies E and F are equivalent if
E+ = F+. Therefore, equivalence means that every FD in E can be inferred from
F, and every FD in F can be inferred from E; that is, E is equivalent to F if both
the conditions—E covers F and F covers E—hold.

We can determine whether F covers E by calculating X+ with respect to F for each
FD X → Y in E, and then checking whether this X+ includes the attributes in Y. If
this is the case for every FD in E, then F covers E. We determine whether E and F are
equivalent by checking that E covers F and F covers E. It is left to the reader as an
exercise to show that the following two sets of FDs are equivalent:

F = {A → C, AC → D, E → AD, E → H}
and G = {A → CD, E → AH}

https://hemanthrajhemu.github.io

510 Chapter 15 Relational Database Design Algorithms and Further Dependencies

15.1.3 Minimal Sets of Functional Dependencies
Just as we applied inference rules to expand on a set F of FDs to arrive at F+, its closure,
it is possible to think in the opposite direction to see if we could shrink or reduce the set
F to its minimal form so that the minimal set is still equivalent to the original set F.
Informally, a minimal cover of a set of functional dependencies E is a set of functional
dependencies F that satisfies the property that every dependency in E is in the closure
F+ of F. In addition, this property is lost if any dependency from the set F is removed; F
must have no redundancies in it, and the dependencies in F are in a standard form.

We will use the concept of an extraneous attribute in a functional dependency for
defining the minimum cover.

Definition: An attribute in a functional dependency is considered an extraneous
attribute if we can remove it without changing the closure of the set of depen-
dencies. Formally, given F, the set of functional dependencies, and a functional
dependency X → A in F, attribute Y is extraneous in X if Y ⊂ X, and F logically
implies (F − (X → A) ∪ { (X − Y) → A }).

We can formally define a set of functional dependencies F to be minimal if it satis-
fies the following conditions:

 1. Every dependency in F has a single attribute for its right-hand side.

 2. We cannot replace any dependency X → A in F with a dependency Y → A,
where Y is a proper subset of X, and still have a set of dependencies that is
equivalent to F.

 3. We cannot remove any dependency from F and still have a set of dependen-
cies that is equivalent to F.

We can think of a minimal set of dependencies as being a set of dependencies in a
standard or canonical form and with no redundancies. Condition 1 just represents
every dependency in a canonical form with a single attribute on the right-hand side,
and it is a preparatory step before we can evaluate if conditions 2 and 3 are met.4

Conditions 2 and 3 ensure that there are no redundancies in the dependencies
either by having redundant attributes (referred to as extraneous attributes) on the
left-hand side of a dependency (Condition 2) or by having a dependency that can be
inferred from the remaining FDs in F (Condition 3).

Definition. A minimal cover of a set of functional dependencies E is a mini-
mal set of dependencies (in the standard canonical form5 and without redun-
dancy) that is equivalent to E. We can always find at least one minimal cover F
for any set of dependencies E using Algorithm 15.2.

4This is a standard form to simplify the conditions and algorithms that ensure no redundancy exists in F.
By using the inference rule IR4, we can convert a single dependency with multiple attributes on the
right-hand side into a set of dependencies with single attributes on the right-hand side.
5It is possible to use the inference rule IR5 and combine the FDs with the same left-hand side into a
single FD in the minimum cover in a nonstandard form. The resulting set is still a minimum cover, as
illustrated in the example.

https://hemanthrajhemu.github.io

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 511

If several sets of FDs qualify as minimal covers of E by the definition above, it is
customary to use additional criteria for minimality. For example, we can choose the
minimal set with the smallest number of dependencies or with the smallest total
length (the total length of a set of dependencies is calculated by concatenating the
dependencies and treating them as one long character string).

Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Depen-
dencies E

Input: A set of functional dependencies E.

Note: Explanatory comments are given at the end of some of the steps. They
follow the format: (*comment*).

 1. Set F := E.

 2. Replace each functional dependency X → {A1, A2, … , An} in F by the n
functional dependencies X →A1, X →A2, … , X → An. (*This places the FDs
in a canonical form for subsequent testing*)

 3. For each functional dependency X → A in F

 for each attribute B that is an element of X

 if { {F − {X → A} } ∪ { (X − {B}) → A} } is equivalent to F

 then replace X → A with (X − {B}) → A in F.

(*This constitutes removal of an extraneous attribute B contained in the left-
hand side X of a functional dependency X → A when possible*)

 4. For each remaining functional dependency X → A in F

if {F − {X → A} } is equivalent to F,

then remove X → A from F. (*This constitutes removal of a redundant func-
tional dependency X → A from F when possible*)

We illustrate the above algorithm with the following examples:

Example 1: Let the given set of FDs be E: {B → A, D → A, AB → D}. We have to
find the minimal cover of E.

 ■ All above dependencies are in canonical form (that is, they have only one
attribute on the right-hand side), so we have completed step 1 of Algo-
rithm 15.2 and can proceed to step 2. In step 2 we need to determine if
AB → D has any redundant (extraneous) attribute on the left-hand side; that
is, can it be replaced by B → D or A → D?

 ■ Since B → A, by augmenting with B on both sides (IR2), we have BB → AB,
or B → AB (i). However, AB → D as given (ii).

 ■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Thus
AB → D may be replaced by B → D.

 ■ We now have a set equivalent to original E, say E′: {B → A, D → A, B → D}.
No further reduction is possible in step 2 since all FDs have a single attribute
on the left-hand side.

https://hemanthrajhemu.github.io

512 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 ■ In step 3 we look for a redundant FD in E′. By using the transitive rule on
B → D and D → A, we derive B → A. Hence B → A is redundant in E′ and
can be eliminated.

 ■ Therefore, the minimal cover of E is F: {B → D, D → A}.

The reader can verify that the original set F can be inferred from E; in other words,
the two sets F and E are equivalent.

Example 2: Let the given set of FDs be G: {A → BCDE, CD → E}.

 ■ Here, the given FDs are NOT in the canonical form. So we first convert
them into:

E: {A → B, A→ C, A→ D, A→ E, CD → E}.

 ■ In step 2 of the algorithm, for CD → E, neither C nor D is extraneous on the
left-hand side, since we cannot show that C → E or D → E from the given
FDs. Hence we cannot replace it with either.

 ■ In step 3, we want to see if any FD is redundant. Since A→ CD and
CD → E, by transitive rule (IR3), we get A→ E. Thus, A→ E is redundant
in G.

 ■ So we are left with the set F, equivalent to the original set G as: {A → B,
A→ C, A→ D, CD → E}. F is the minimum cover. As we pointed out in foot-
note 6, we can combine the first three FDs using the union rule (IR5) and
express the minimum cover as:

Minimum cover of G, F: {A → BCD, CD → E}.

In Section 15.3, we will show algorithms that synthesize 3NF or BCNF relations
from a given set of dependencies E by first finding the minimal cover F for E.

Next, we provide a simple algorithm to determine the key of a relation:

Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Depen-
dencies

Input: A relation R and a set of functional dependencies F on the attributes
of R.

 1. Set K := R.

 2. For each attribute A in K

{compute (K − A)+ with respect to F;

if (K − A)+ contains all the attributes in R, then set K := K − {A} };

In Algorithm 15.2(a), we start by setting K to all the attributes of R; we can say
that R itself is always a default superkey. We then remove one attribute at a time
and check whether the remaining attributes still form a superkey. Notice, too,
that Algorithm 15.2(a) determines only one key out of the possible candidate keys
for R; the key returned depends on the order in which attributes are removed
from R in step 2.

https://hemanthrajhemu.github.io

 15.2 Properties of Relational Decompositions 513

15.2 Properties of Relational Decompositions
We now turn our attention to the process of decomposition that we used through-
out Chapter 14 to get rid of unwanted dependencies and achieve higher normal
forms. In Section 15.2.1, we give examples to show that looking at an individual
relation to test whether it is in a higher normal form does not, on its own, guarantee
a good design; rather, a set of relations that together form the relational database
schema must possess certain additional properties to ensure a good design. In Sec-
tions 15.2.2 and 15.2.3, we discuss two of these properties: the dependency preser-
vation property and the nonadditive (or lossless) join property. Section 15.2.4
discusses binary decompositions, and Section 15.2.5 discusses successive nonaddi-
tive join decompositions.

15.2.1 Relation Decomposition and Insufficiency
of Normal Forms

The relational database design algorithms that we present in Section 15.3 start from
a single universal relation schema R = {A1, A2, … , An} that includes all the attri-
butes of the database. We implicitly make the universal relation assumption,
which states that every attribute name is unique. The set F of functional dependen-
cies that should hold on the attributes of R is specified by the database designers
and is made available to the design algorithms. Using the functional dependencies,
the algorithms decompose the universal relation schema R into a set of relation
schemas D = {R1, R2, … , Rm} that will become the relational database schema; D is
called a decomposition of R.

We must make sure that each attribute in R will appear in at least one relation
schema Ri in the decomposition so that no attributes are lost; formally, we have

R Ri
i

m

=
=

1
U

This is called the attribute preservation condition of a decomposition.

Another goal is to have each individual relation Ri in the decomposition D be in
BCNF or 3NF. However, this condition is not sufficient to guarantee a good data-
base design on its own. We must consider the decomposition of the universal rela-
tion as a whole, in addition to looking at the individual relations. To illustrate this
point, consider the EMP_LOCS(Ename, Plocation) relation in Figure 14.5, which is in
3NF and also in BCNF. In fact, any relation schema with only two attributes is auto-
matically in BCNF.6 Although EMP_LOCS is in BCNF, it still gives rise to spurious
tuples when joined with EMP_PROJ (Ssn, Pnumber, Hours, Pname, Plocation), which is
not in BCNF (see the partial result of the natural join in Figure 14.6). Hence,
EMP_LOCS represents a particularly bad relation schema because of its convoluted

6As an exercise, the reader should prove that this statement is true.

https://hemanthrajhemu.github.io

514 Chapter 15 Relational Database Design Algorithms and Further Dependencies

semantics by which Plocation gives the location of one of the projects on which an
employee works. Joining EMP_LOCS with PROJECT(Pname, Pnumber, Plocation,
Dnum) in Figure 14.2—which is in BCNF—using Plocation as a joining attribute also
gives rise to spurious tuples. This underscores the need for other criteria that,
together with the conditions of 3NF or BCNF, prevent such bad designs. In the next
three subsections we discuss such additional conditions that should hold on a
decomposition D as a whole.

15.2.2 Dependency Preservation Property
of a Decomposition

It would be useful if each functional dependency X → Y specified in F either
appeared directly in one of the relation schemas Ri in the decomposition D or
could be inferred from the dependencies that appear in some Ri. Informally, this
is the dependency preservation condition. We want to preserve the dependencies
because each dependency in F represents a constraint on the database. If one of
the dependencies is not represented in some individual relation Ri of the decom-
position, we cannot enforce this constraint by dealing with an individual relation.
We may have to join multiple relations so as to include all attributes involved in
that dependency.

It is not necessary that the exact dependencies specified in F appear themselves in
individual relations of the decomposition D. It is sufficient that the union of the
dependencies that hold on the individual relations in D be equivalent to F. We now
define these concepts more formally.

Definition. Given a set of dependencies F on R, the projection of F on Ri,
denoted by πRi

(F) where Ri is a subset of R, is the set of dependencies X → Y in
F+ such that the attributes in X ∪ Y are all contained in Ri. Hence, the projection
of F on each relation schema Ri in the decomposition D is the set of functional
dependencies in F+, the closure of F, such that all the left- and right-hand-side
attributes of those dependencies are in Ri. We say that a decomposition
D = {R1, R2, … , Rm} of R is dependency-preserving with respect to F if the
union of the projections of F on each Ri in D is equivalent to F; that is,
((πR1

(F)) ∪ K ∪ (πRm
(F)))+ = F+.

If a decomposition is not dependency-preserving, some dependency is lost in
the decomposition. To check that a lost dependency holds, we must take the
JOIN of two or more relations in the decomposition to get a relation that
includes all left- and right-hand-side attributes of the lost dependency, and
then check that the dependency holds on the result of the JOIN—an option that
is not practical.

An example of a decomposition that does not preserve dependencies is shown in
Figure 14.13(a), in which the functional dependency FD2 is lost when LOTS1A is
decomposed into {LOTS1AX, LOTS1AY}. The decompositions in Figure 14.12, how-
ever, are dependency-preserving. Similarly, for the example in Figure 14.14, no

https://hemanthrajhemu.github.io

 15.2 Properties of Relational Decompositions 515

matter what decomposition is chosen for the relation TEACH(Student, Course,
Instructor) from the three provided in the text, one or both of the dependencies orig-
inally present are bound to be lost. We now state a claim related to this property
without providing any proof.

Claim 1. It is always possible to find a dependency-preserving decomposition
D with respect to F such that each relation Ri in D is in 3NF.

15.2.3 Nonadditive (Lossless) Join Property
of a Decomposition

Another property that a decomposition D should possess is the nonadditive join
property, which ensures that no spurious tuples are generated when a NATURAL
JOIN operation is applied to the relations resulting from the decomposition. We
already illustrated this problem in Section 14.1.4 with the example in Fig-
ures 14.5 and 14.6. Because this is a property of a decomposition of relation
schemas, the condition of no spurious tuples should hold on every legal relation
state—that is, every relation state that satisfies the functional dependencies in F.
Hence, the lossless join property is always defined with respect to a specific set F
of dependencies.

Definition. Formally, a decomposition D = {R1, R2, … , Rm} of R has the
lossless (nonadditive) join property with respect to the set of dependencies
F on R if, for every relation state r of R that satisfies F, the following holds,
where * is the NATURAL JOIN of all the relations in D: *(πR1

(r), … , πRm
(r)) = r.

The word loss in lossless refers to loss of information, not to loss of tuples. If a
decomposition does not have the lossless join property, we may get additional spu-
rious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied;
these additional tuples represent erroneous or invalid information. We prefer the
term nonadditive join because it describes the situation more accurately. Although
the term lossless join has been popular in the literature, we used the term nonaddi-
tive join in describing the NJB property in Section 14.5.1. We will henceforth use the
term nonadditive join, which is self-explanatory and unambiguous. The nonaddi-
tive join property ensures that no spurious tuples result after the application of
PROJECT and JOIN operations. We may, however, sometimes use the term lossy
design to refer to a design that represents a loss of information. The decomposition
of EMP_PROJ(Ssn, Pnumber, Hours, Ename, Pname, Plocation) in Figure 14.3 into
EMP_LOCS(Ename, Plocation) and EMP_PROJ1(Ssn, Pnumber, Hours, Pname, Plocation)
in Figure 14.5 obviously does not have the nonadditive join property, as illustrated
by the partial result of NATURAL JOIN in Figure 14.6. We provided a simpler test
in case of binary decompositions to check if the decomposition is nonadditive—it
was called the NJB property in Section 14.5.1. We provide a general procedure for
testing whether any decomposition D of a relation into n relations is nonadditive
with respect to a set of given functional dependencies F in the relation; it is pre-
sented as Algorithm 15.3.

https://hemanthrajhemu.github.io

516 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Algorithm 15.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition D = {R1, R2, … , Rm} of R, and a
set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They
follow the format: (*comment*).

 1. Create an initial matrix S with one row i for each relation Ri in D, and one
column j for each attribute Aj in R.

 2. Set S(i, j): = bij for all matrix entries. (*Each bij is a distinct symbol associated
with indices (i, j)*)

 3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

 {if (relation Ri includes attribute Aj) then set S(i, j): = aj;};}; (*Each aj is
a distinct symbol associated with index (j)*)

 4. Repeat the following loop until a complete loop execution results in no
changes to S
{for each functional dependency X → Y in F

{for all rows in S that have the same symbols in the columns corresponding
to attributes in X

{make the symbols in each column that correspond to an attribute
in Y be the same in all these rows as follows: If any of the rows has
an a symbol for the column, set the other rows to that same a symbol
in the column. If no a symbol exists for the attribute in any of the
rows, choose one of the b symbols that appears in one of the rows for
the attribute and set the other rows to that same b symbol in the
column ;} ; } ;};

 5. If a row is made up entirely of a symbols, then the decomposition has the
nonadditive join property; otherwise, it does not.

Given a relation R that is decomposed into a number of relations R1, R2, … , Rm,
Algorithm 15.3 begins the matrix S that we consider to be some relation state r of
R. Row i in S represents a tuple ti (corresponding to relation Ri) that has a symbols
in the columns that correspond to the attributes of Ri and b symbols in the remain-
ing columns. The algorithm then transforms the rows of this matrix (during the
loop in step 4) so that they represent tuples that satisfy all the functional depen-
dencies in F. At the end of step 4, any two rows in S—which represent two tuples
in r—that agree in their values for the left-hand-side attributes X of a functional
dependency X → Y in F will also agree in their values for the right-hand-side attri-
butes Y. It can be shown that after applying the loop of step 4, if any row in S ends
up with all a symbols, then the decomposition D has the nonadditive join property
with respect to F.

If, on the other hand, no row ends up being all a symbols, D does not satisfy the
lossless join property. In this case, the relation state r represented by S at the end of

https://hemanthrajhemu.github.io

 15.2 Properties of Relational Decompositions 517

the algorithm will be an example of a relation state r of R that satisfies the depen-
dencies in F but does not satisfy the nonadditive join condition. Thus, this relation
serves as a counterexample that proves that D does not have the nonadditive join
property with respect to F. Note that the a and b symbols have no special meaning
at the end of the algorithm.

Figure 15.1(a) shows how we apply Algorithm 15.3 to the decomposition of the
EMP_PROJ relation schema from Figure 14.3(b)into the two relation schemas
EMP_PROJ1 and EMP_LOCS in Figure 14.5(a). The loop in step 4 of the algorithm
cannot change any b symbols to a symbols; hence, the resulting matrix S does not
have a row with all a symbols, and so the decomposition does not have the non-
additive join property.

Figure 15.1(b) shows another decomposition of EMP_PROJ (into EMP, PROJECT,
and WORKS_ON) that does have the nonadditive join property, and Figure 15.1(c)
shows how we apply the algorithm to that decomposition. Once a row consists only
of a symbols, we conclude that the decomposition has the nonadditive join prop-
erty, and we can stop applying the functional dependencies (step 4 in the algorithm)
to the matrix S.

15.2.4 Testing Binary Decompositions for the Nonadditive
Join Property

Algorithm 15.3 allows us to test whether a particular decomposition D into n rela-
tions obeys the nonadditive join property with respect to a set of functional depen-
dencies F. There is a special case of a decomposition called a binary
decomposition—decomposition of a relation R into two relations. A test called the
NJB property test, which is easier to apply than Algorithm 15.3 but is limited only to
binary decompositions, was given in Section 14.5.1. It was used to do binary decom-
position of the TEACH relation, which met 3NF but did not meet BCNF, into two
relations that satisfied this property.

15.2.5 Successive Nonadditive Join Decompositions
We saw the successive decomposition of relations during the process of second and
third normalization in Sections 14.3 and 14.4. To verify that these decompositions
are nonadditive, we need to ensure another property, as set forth in Claim 2.

Claim 2 (Preservation of Nonadditivity in Successive Decompositions). If a
decomposition D = {R1, R2, … , Rm} of R has the nonadditive (lossless) join
property with respect to a set of functional dependencies F on R, and if a decom-
position Di = {Q1, Q2, … , Qk} of Ri has the nonadditive join property with
respect to the projection of F on Ri, then the decomposition D2 = {R1, R2, … ,
Ri−1, Q1, Q2, … , Qk, Ri+1, … , Rm} of R has the nonadditive join property with
respect to F.

https://hemanthrajhemu.github.io

518 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Pnumber

PROJECT(b)

Pname Plocation

Ssn
R1 b11

a1

a2

b22

b13

a3

b14

a4

a5

a5

b16

a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R2

R1

R2

R3

D = {R1, R2 }

(No changes to matrix after applying functional dependencies)

Ename Pnumber Pname HoursPlocation

Ssn

EMP

(a) R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP_LOCS = {Ename, Plocation}
R2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

(c)

Ename Ssn

WORKS_ON
Pnumber Hours

Ssn

a1 b32 a3 b34 b35 a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R1

R2

R3 a1 a2b32 b34a3 a4 a5 a6

(Original matrix S at start of algorithm)

Ename Pnumber Pname HoursPlocation

Ssn

(Matrix S after applying the first two functional dependencies;
last row is all “a” symbols so we stop)

Ename Pnumber Pname HoursPlocation

F = {Ssn Ename; Pnumber {Pname, Plocation}; {Ssn, Pnumber} Hours}

D = {R1, R2, R3}R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP = {Ssn, Ename}
R2 = PROJ = {Pnumber, Pname, Plocation}
R3 = WORKS_ON = {Ssn, Pnumber, Hours}

F = {Ssn Ename; Pnumber {Pname, Plocation}; {Ssn, Pnumber} Hours}

b35

Figure 15.1
Nonadditive join test for n-ary decompositions. (a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1
and EMP_LOCS fails test. (b) A decomposition of EMP_PROJ that has the lossless join property.
(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.

https://hemanthrajhemu.github.io

 15.3 Algorithms for Relational Database Schema Design 519

15.3 Algorithms for Relational Database
Schema Design

We now give two algorithms for creating a relational decomposition from a universal
relation. The first algorithm decomposes a universal relation into dependency-
preserving 3NF relations that also possess the nonadditive join property. The second
algorithm decomposes a universal relation schema into BCNF schemas that possess the
nonadditive join property. It is not possible to design an algorithm to produce BCNF
relations that satisfy both dependency preservation and nonadditive join decomposition

15.3.1 Dependency-Preserving and Nonadditive (Lossless)
Join Decomposition into 3NF Schemas

By now we know that it is not possible to have all three of the following: (1) guaran-
teed nonlossy (nonadditive) design, (2) guaranteed dependency preservation, and
(3) all relations in BCNF. As we have stressed repeatedly, the first condition is a
must and cannot be compromised. The second condition is desirable, but not a
must, and may have to be relaxed if we insist on achieving BCNF. The original lost
FDs can be recovered by a JOIN operation over the results of decomposition. Now
we give an algorithm where we achieve conditions 1 and 2 and only guarantee 3NF.
Algorithm 15.4 yields a decomposition D of R that does the following:

 ■ Preserves dependencies

 ■ Has the nonadditive join property

 ■ Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 15.4 Relational Synthesis into 3NF with Dependency Preservation
and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

 1. Find a minimal cover G for F (use Algorithm 15.2).

 2. For each left-hand-side X of a functional dependency that appears in G, create
a relation schema in D with attributes {X ∪ {A1} ∪ {A2} … ∪ {Ak} }, where
X → A1, X → A2, … , X → Ak are the only dependencies in G with X as left-
hand side (X is the key of this relation).

 3. If none of the relation schemas in D contains a key of R, then create one
more relation schema in D that contains attributes that form a key of R.
(Algorithm 15.2(a) may be used to find a key.)

 4. Eliminate redundant relations from the resulting set of relations in the rela-
tional database schema. A relation R is considered redundant if R is a projec-
tion of another relation S in the schema; alternately, R is subsumed by S.7

7Note that there is an additional type of dependency: R is a projection of the join of two or more relations
in the schema. This type of redundancy is considered join dependency, as we discussed in Section 15.7.
Hence, technically, it may continue to exist without disturbing the 3NF status for the schema.

https://hemanthrajhemu.github.io

520 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Step 3 of Algorithm 15.4 involves identifying a key K of R. Algorithm 15.2(a) can be
used to identify a key K of R based on the set of given functional dependencies F.
Notice that the set of functional dependencies used to determine a key in Algo-
rithm 15.2(a) could be either F or G, since they are equivalent.

Example 1 of Algorithm 15.4. Consider the following universal relation:

U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

Emp_ssn, Esal, and Ephone refer to the Social Security number, salary, and phone
number of the employee. Pno, Pname, and Plocation refer to the number, name, and
location of the project. Dno is the department number.

The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal
relation. Hence F, the set of given FDs, includes {Emp_ssn → Esal, Ephone, Dno;
Pno → Pname, Plocation; Emp_ssn, Pno → Esal, Ephone, Dno, Pname, Plocation}.

By applying the minimal cover Algorithm 15.2, in step 3 we see that Pno is an extra-
neous attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is extrane-
ous in Emp_ssn, Pno → Pname, Plocation. Hence the minimal cover consists of FD1
and FD2 only (FD3 being completely redundant) as follows (if we group attributes
with the same left-hand side into one FD):

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

The second step of Algorithm 15.4 produces relations R1 and R2 as:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U.
Hence, the resulting design contains:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

R3 (Emp_ssn, Pno)

This design achieves both the desirable properties of dependency preservation and
nonadditive join.

Example 2 of Algorithm 15.4 (Case X). Consider the relation schema LOTS1A
shown in Figure 14.13(a).

Assume that this relation is given as a universal relation U (Property_id, County, Lot#,
Area) with the following functional dependencies:

https://hemanthrajhemu.github.io

 15.3 Algorithms for Relational Database Schema Design 521

FD1: Property_id → Lot#, County, Area

FD2: Lot#, County → Area, Property_id

FD3: Area → County

These were called FD1, FD2, and FD5 in Figure 14.13(a). The meanings of the above
attributes and the implication of the above functional dependencies were explained
in Section 14.4.For ease of reference, let us abbreviate the above attributes with the
first letter for each and represent the functional dependencies as the set

F: { P → LCA, LC → AP, A → C }

The universal relation with abbreviated attributes is U (P, C, L, A). If we apply the
minimal cover Algorithm 15.2 to F, (in step 2) we first represent the set F as

F: {P → L, P → C, P → A, LC → A, LC → P, A → C}

In the set F, P → A can be inferred from P → LC and LC → A; hence P → A by tran-
sitivity and is therefore redundant. Thus, one possible minimal cover is

Minimal cover GX: {P → LC, LC → AP, A → C}

In step 2 of Algorithm 15.4, we produce design X (before removing redundant rela-
tions) using the above minimal cover as

Design X: R1 (P, L, C), R2 (L, C, A, P), and R3 (A, C)

In step 4 of the algorithm, we find that R3 is subsumed by R2 (that is, R3 is always a
projection of R2 and R1 is a projection of R2 as well). Hence both of those relations
are redundant. Thus the 3NF schema that achieves both of the desirable properties
is (after removing redundant relations)

Design X: R2 (L, C, A, P).

or, in other words it is identical to the relation LOTS1A (Property_id, Lot#, County,
Area) that we had determined to be in 3NF in Section 14.4.2.

Example 2 of Algorithm 15.4 (Case Y). Starting with LOTS1A as the universal
relation and with the same given set of functional dependencies, the second step of
the minimal cover Algorithm 15.2 produces, as before,

F: {P → C, P → A, P → L, LC → A, LC → P, A → C}

The FD LC → A may be considered redundant because LC → P and P → A implies
LC → A by transitivity. Also, P → C may be considered to be redundant because
P → A and A → C implies P → C by transitivity. This gives a different minimal cover as

Minimal cover GY: { P → LA, LC → P, A → C }

The alternative design Y produced by the algorithm now is

Design Y: S1 (P, A, L), S2 (L, C, P), and S3 (A, C)

Note that this design has three 3NF relations, none of which can be considered as
redundant by the condition in step 4. All FDs in the original set F are preserved. The

https://hemanthrajhemu.github.io

522 Chapter 15 Relational Database Design Algorithms and Further Dependencies

reader will notice that of the above three relations, relations S1 and S3 were produced
as the BCNF design by the procedure given in Section 14.5 (implying that S2 is
redundant in the presence of S1 and S3). However, we cannot eliminate relation S2
from the set of three 3NF relations above since it is not a projection of either S1 or S3.
It is easy to see that S2 is a valid and meaningful relation that has the two candidate
keys (L, C), and P placed side-by-side. Notice further that S2 preserves the FD LC → P,
which is lost if the final design contains only S1 and S3. Design Y therefore remains
as one possible final result of applying Algorithm 15.4 to the given universal relation
that provides relations in 3NF.

The above two variations of applying Algorithm 15.4 to the same universal relation
with a given set of FDs have illustrated two things:

 ■ It is possible to generate alternate 3NF designs by starting from the same set
of FDs.

 ■ It is conceivable that in some cases the algorithm actually produces relations
that satisfy BCNF and may include relations that maintain the dependency
preservation property as well.

15.3.2 Nonadditive Join Decomposition into BCNF Schemas
The next algorithm decomposes a universal relation schema R = {A1, A2, … , An}
into a decomposition D = {R1, R2, … , Rm} such that each Ri is in BCNF and the
decomposition D has the lossless join property with respect to F. Algorithm 15.5
utilizes property NJB and claim 2 (preservation of nonadditivity in successive
decompositions) to create a nonadditive join decomposition D = {R1, R2, … , Rm} of
a universal relation R based on a set of functional dependencies F, such that each Ri
in D is in BCNF.

Algorithm 15.5. Relational Decomposition into BCNF with Nonadditive
Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

 1. Set D := {R} ;

 2. While there is a relation schema Q in D that is not in BCNF do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

} ;

Each time through the loop in Algorithm 15.5, we decompose one relation schema
Q that is not in BCNF into two relation schemas. According to property NJB for
binary decompositions and claim 2, the decomposition D has the nonadditive
join property. At the end of the algorithm, all relation schemas in D will be in

https://hemanthrajhemu.github.io

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs 523

BCNF. We illustrated the application of this algorithm to the TEACH relation
schema from Figure 14.14; it is decomposed into TEACH1(Instructor, Student)
and TEACH2(Instructor, Course) because the dependency FD2 Instructor → Course
violates BCNF.

In step 2 of Algorithm 15.5, it is necessary to determine whether a relation schema
Q is in BCNF or not. One method for doing this is to test, for each functional depen-
dency X → Y in Q, whether X+ fails to include all the attributes in Q, thereby deter-
mining whether or not X is a (super) key in Q. Another technique is based on an
observation that whenever a relation schema Q has a BCNF violation, there exists a
pair of attributes A and B in Q such that {Q − {A, B} } → A; by computing the clo-
sure {Q − {A, B} }+ for each pair of attributes {A, B} of Q and checking whether the
closure includes A (or B), we can determine whether Q is in BCNF.

It is important to note that the theory of nonadditive join decompositions is based
on the assumption that no NULL values are allowed for the join attributes. The next
section discusses some of the problems that NULLs may cause in relational decom-
positions and provides a general discussion of the algorithms for relational design
by synthesis presented in this section.

15.4 About Nulls, Dangling Tuples, and
Alternative Relational Designs

In this section, we discuss a few general issues related to problems that arise when
relational design is not approached properly.

15.4.1 Problems with NULL Values and Dangling Tuples
We must carefully consider the problems associated with NULLs when designing a
relational database schema. There is no fully satisfactory relational design theory as
yet that includes NULL values. One problem occurs when some tuples have NULL
values for attributes that will be used to join individual relations in the decomposi-
tion. To illustrate this, consider the database shown in Figure 15.2(a), where two
relations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—
‘Berger’ and ‘Benitez’—represent newly hired employees who have not yet been
assigned to a department (assume that this does not violate any integrity con-
straints). Now suppose that we want to retrieve a list of (Ename, Dname) values for
all the employees. If we apply the NATURAL JOIN operation on EMPLOYEE and
DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples will not appear in
the result. The OUTER JOIN operation, discussed in Chapter 8, can deal with this
problem. Recall that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT,
tuples in EMPLOYEE that have NULL for the join attribute will still appear in the
result, joined with an imaginary tuple in DEPARTMENT that has NULLs for all its
attribute values. Figure 15.2(c) shows the result.

In general, whenever a relational database schema is designed in which two or
more relations are interrelated via foreign keys, particular care must be devoted to

https://hemanthrajhemu.github.io

524 Chapter 15 Relational Database Design Algorithms and Further Dependencies

watching for potential NULL values in foreign keys. This can cause unexpected loss
of information in queries that involve joins on that foreign key. Moreover, if NULLs
occur in other attributes, such as Salary, their effect on built-in functions such as
SUM and AVERAGE must be carefully evaluated.

A related problem is that of dangling tuples, which may occur if we carry a decom-
position too far. Suppose that we decompose the EMPLOYEE relation in Fig-
ure 15.2(a) further into EMPLOYEE_1 and EMPLOYEE_2, shown in Figures 15.3(a)
and 15.3(b). If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2,
we get the original EMPLOYEE relation. However, we may use the alternative repre-
sentation, shown in Figure 15.3(c), where we do not include a tuple in EMPLOYEE_3
if the employee has not been assigned a department (instead of including a tuple
with NULL for Dnum as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of
EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3, the
tuples for Berger and Benitez will not appear in the result; these are called dangling
tuples in EMPLOYEE_1 because they are represented in only one of the two rela-
tions that represent employees, and hence they are lost if we apply an (INNER)
JOIN operation.

15.4.2 Discussion of Normalization Algorithms
and Alternative Relational Designs

One of the problems with the normalization algorithms we described is that the
database designer must first specify all the relevant functional dependencies among
the database attributes. This is not a simple task for a large database with hundreds
of attributes. Failure to specify one or two important dependencies may result in an
undesirable design. Another problem is that these algorithms are not deterministic
in general. For example, the synthesis algorithms (Algorithms 15.4 and 15.5) require
the specification of a minimal cover G for the set of functional dependencies F.
Because there may be, in general, many minimal covers corresponding to F, as we
illustrated in Example 2 of Algorithm 15.4 above, the algorithm can give different
designs depending on the particular minimal cover used. Some of these designs
may not be desirable. The decomposition algorithm to achieve BCNF (Algo-
rithm 15.5) depends on the order in which the functional dependencies are supplied
to the algorithm to check for BCNF violation. Again, it is possible that many different
designs may arise. Some of the designs may be preferred, whereas others may
be undesirable.

It is not always possible to find a decomposition into relation schemas that pre-
serves dependencies and allows each relation schema in the decomposition to be
in BCNF (instead of 3NF, as in Algorithm 15.4). We can check the 3NF relation
schemas in the decomposition individually to see whether each satisfies BCNF. If
some relation schema Ri is not in BCNF, we can choose to decompose it further
or to leave it as it is in 3NF (with some possible update anomalies). We showed by
using the bottom-up approach to design that different minimal covers in cases X
and Y of Example 2 under Algorithm 15.4 produced different sets of relations

https://hemanthrajhemu.github.io

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs 525

(b)

Ename

EMPLOYEE
(a)

Ssn Bdate Address Dnum

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

5

5

4

4

5

4

1

Berger, Anders C. 999775555 1965-04-26 6530 Braes, Bellaire, TX NULL

Benitez, Carlos M. 888664444 1963-01-09 7654 Beech, Houston, TX NULL

5

Dname

DEPARTMENT

Dnum Dmgr_ssn

Research

Administration
Headquarters

5

4
1

333445555

987654321
888665555

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnum Dname Dmgr_ssn

(c)

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555 1963-01-09

1965-04-26 6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

NULL

NULL

NULL

NULL

NULL

NULL

987654321

333445555

Dnum Dname Dmgr_ssnSsn

Figure 15.2
Issues with NULL-value
joins. (a) Some
EMPLOYEE tuples have
NULL for the join attribute
Dnum. (b) Result of
applying NATURAL JOIN
to the EMPLOYEE and
DEPARTMENT relations.
(c) Result of applying
LEFT OUTER JOIN to
EMPLOYEE and
DEPARTMENT.

https://hemanthrajhemu.github.io

526 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Ename

EMPLOYEE_1(a)

(b)

Ssn Bdate Address

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555

1965-04-26

1963-01-09

6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

EMPLOYEE_2

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

999775555

888664444

4

5

5

5

4

5

NULL

4

1

NULL

Dnum

(c) EMPLOYEE_3

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

4

5

5

5

4

5

4

1

Dnum

Figure 15.3
The dangling tuple problem.
(a) The relation EMPLOYEE_1 (includes

all attributes of EMPLOYEE from
Figure 15.2(a) except Dnum).

(b) The relation EMPLOYEE_2 (includes
Dnum attribute with NULL values).

(c) The relation EMPLOYEE_3 (includes
Dnum attribute but does not include
tuples for which Dnum has NULL
values).

based on minimal cover. The design X produced the 3NF design as LOTS1A
(Property_id, County, Lot#, Area) relation, which is in 3NF but not BCNF. Alternately,
design Y produced three relations: S1 (Property_id, Area, Lot#), S2 (Lot#, County,
Property_id), and S3 (Area, County). If we test each of these three relations, we find that
they are in BCNF. We also saw previously that if we apply Algorithm 15.5 to LOTS1Y
to decompose it into BCNF relations, the resulting design contains only S1 and S3 as a
BCNF design. In summary, the above examples of cases (called Case X and Case Y)
driven by different minimum covers for the same universal schema amply illustrate
that alternate designs will result by the application of the bottom-up design algo-
rithms we presented in Section 15.3.

Table 15.1 summarizes the properties of the algorithms discussed in this chapter
so far.

https://hemanthrajhemu.github.io

 15.5 Further Discussion of Multivalued Dependencies and 4NF 527

Table 15.1 Summary of the Algorithms Discussed in This Chapter

Algorithm Input Output Properties/Purpose Remarks

15.1 An attribute or a set
of attributes X, and a
set of FDs F

A set of attributes in
the closure of X with
respect to F

Determine all the
attributes that can be
functionally deter-
mined from X

The closure of a key
is the entire relation

15.2 A set of functional
dependencies F

The minimal cover
of functional depen-
dencies

To determine the
minimal cover of a
set of dependencies F

Multiple minimal
covers may exist—
depends on the order
of selecting func-
tional dependencies

15.2a Relation schema R
with a set of func-
tional dependencies F

Key K of R To find a key K (that
is a subset of R)

The entire relation R
is always a default
superkey

15.3 A decomposition D
of R and a set F of
functional depen-
dencies

Boolean result: yes
or no for nonaddi-
tive join property

Testing for nonaddi-
tive join decomposi-
tion

See a simpler test
NJB in Section 14.5
for binary decompo-
sitions

15.4 A relation R and a
set of functional
dependencies F

A set of relations in
3NF

Nonadditive join
and dependency-
preserving decom-
position

May not achieve
BCNF, but achieves
all desirable proper-
ties and 3NF

15.5 A relation R and a
set of functional
dependencies F

A set of relations in
BCNF

Nonadditive join
decomposition

No guarantee of
dependency preser-
vation

15.6 A relation R and a
set of functional and
multivalued depen-
dencies

A set of relations in
4NF

Nonadditive join
decomposition

No guarantee of
dependency preser-
vation

15.5 Further Discussion of Multivalued
Dependencies and 4NF

We introduced and defined the concept of multivalued dependencies and used it to
define the fourth normal form in Section 14.6. In this section, we discuss MVDs to
make our treatment complete by stating the rules of inference with MVDs.

15.5.1 Inference Rules for Functional
and Multivalued Dependencies

As with functional dependencies (FDs), inference rules for MVDs have been
developed. It is better, though, to develop a unified framework that includes both
FDs and MVDs so that both types of constraints can be considered together. The

https://hemanthrajhemu.github.io

528 Chapter 15 Relational Database Design Algorithms and Further Dependencies

following inference rules IR1 through IR8 form a sound and complete set for infer-
ring functional and multivalued dependencies from a given set of dependencies.
Assume that all attributes are included in a universal relation schema R = {A1, A2,
… , An} and that X, Y, Z, and W are subsets of R.

IR1 (reflexive rule for FDs): If X ⊇ Y, then X → Y.

IR2 (augmentation rule for FDs): {X → Y} |= XZ → YZ.

IR3 (transitive rule for FDs): {X → Y, Y → Z} |= X → Z.

IR4 (complementation rule for MVDs): {X →→ R} |= {X →→(R − (X ∪))}.

IR5 (augmentation rule for MVDs): If X →→ Y and W ⊇ Z, then WX →→ YZ.

IR6 (transitive rule for MVDs): {X →→ Y, Y →→ Z} | = X →→ (X − Y).

IR7 (replication rule for FD to MVD): {X → Y} | = X →→ Y.

IR8 (coalescence rule for FDs and MVDs): If X →→ Y and there exists W with
the properties that (a) W ∩ Y is empty, (b) W → Z, and (c) Y ⊇ Z, then X → Z.

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6
are inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs.
In particular, IR7 says that a functional dependency is a special case of a multi-
valued dependency; that is, every FD is also an MVD because it satisfies the formal
definition of an MVD. However, this equivalence has a catch: An FD X → Y is an
MVD X →→ Y with the additional implicit restriction that at most one value of Y
is associated with each value of X.8 Given a set F of functional and multivalued
dependencies specified on R = {A1, A2, … , An}, we can use IR1 through IR8 to infer
the (complete) set of all dependencies (functional or multivalued) F+ that will hold
in every relation state r of R that satisfies F. We again call F+ the closure of F.

15.5.2 Fourth Normal Form Revisited
We restate the definition of fourth normal form (4NF) from Section 14.6:

Definition. A relation schema R is in 4NF with respect to a set of dependencies F
(that includes functional dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency X →→ Y in F+, X in F+, X is a superkey for R.

To illustrate the importance of 4NF, Figure 15.4(a) shows the EMP relation in Fig-
ure 14.15 with an additional employee, ‘Brown’, who has three dependents (‘Jim’,
‘Joan’, and ‘Bob’) and works on four different projects (‘W’, ‘X’, ‘Y’, and ‘Z’). There
are 16 tuples in EMP in Figure 15.4(a). If we decompose EMP into EMP_PROJECTS
and EMP_DEPENDENTS, as shown in Figure 15.4(b), we need to store a total of
only 11 tuples in both relations. Not only would the decomposition save on stor-
age, but the update anomalies associated with multivalued dependencies would
also be avoided. For example, if ‘Brown’ starts working on a new additional project
‘P’, we must insert three tuples in EMP—one for each dependent. If we forget to

8That is, the set of values of Y determined by a value of X is restricted to being a singleton set with only
one value. Hence, in practice, we never view an FD as an MVD.

https://hemanthrajhemu.github.io

 15.5 Further Discussion of Multivalued Dependencies and 4NF 529

insert any one of those, the relation violates the MVD and becomes inconsistent in
that it incorrectly implies a relationship between project and dependent.

If the relation has nontrivial MVDs, then insert, delete, and update operations on
single tuples may cause additional tuples to be modified besides the one in ques-
tion. If the update is handled incorrectly, the meaning of the relation may change.
However, after normalization into 4NF, these update anomalies disappear. For
example, to add the information that ‘Brown’ will be assigned to project ‘P’, only a
single tuple need be inserted in the 4NF relation EMP_PROJECTS.

The EMP relation in Figure 14.15(a) is not in 4NF because it represents two inde-
pendent 1:N relationships—one between employees and the projects they work on
and the other between employees and their dependents. We sometimes have a rela-
tionship among three entities that is a legitimate three-way relationship and not a
combination of two binary relationships among three participating entities, such as
the SUPPLY relation shown in Figure 14.15(c). (Consider only the tuples in Fig-
ure 14.5(c) above the dashed line for now.) In this case a tuple represents a supplier sup-
plying a specific part to a particular project, so there are no nontrivial MVDs. Hence,
the SUPPLY all-key relation is already in 4NF and should not be decomposed.

(a) EMP

Ename

Smith

Smith

Smith

Smith

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

John

Anna

Anna

John

Jim

Jim

Jim

Jim

Joan

Joan

Joan

Joan

Bob

Bob

Bob

Bob

X

Y

X

Y

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

Brown

Brown

Brown

Brown

W

X

Y

Z

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

Brown
Brown

Brown

Jim
Joan

Bob

Anna
John

Dname

Figure 15.4
Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation with
additional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

https://hemanthrajhemu.github.io

530 Chapter 15 Relational Database Design Algorithms and Further Dependencies

15.5.3 Nonadditive Join Decomposition into 4NF Relations
Whenever we decompose a relation schema R into R1 = (X ∪ Y) and R2 = (R − Y)
based on an MVD X →→ Y that holds in R, the decomposition has the nonadditive
join property. It can be shown that this is a necessary and sufficient condition for
decomposing a schema into two schemas that have the nonadditive join property,
as given by Property NJB′ that is a further generalization of Property NJB given
earlier in Section 14.5.1. Property NJB dealt with FDs only, whereas NJB′ deals with
both FDs and MVDs (recall that an FD is also an MVD).

Property NJB′. The relation schemas R1 and R2 form a nonadditive join
decomposition of R with respect to a set F of functional and multivalued depen-
dencies if and only if

(R1 ∩ R2) →→ (R1 – R2)

or, by symmetry, if and only if

(R1 ∩ R2) →→ (R2 – R1)

We can use a slight modification of Algorithm 15.5 to develop Algorithm 15.7,
which creates a nonadditive join decomposition into relation schemas that are in
4NF (rather than in BCNF). As with Algorithm 15.5, Algorithm 15.7 does not nec-
essarily produce a decomposition that preserves FDs.

Algorithm 15.7. Relational Decomposition into 4NF Relations with Nonad-
ditive Join Property

Input: A universal relation R and a set of functional and multivalued depen-
dencies F

 1. Set D:= { R };

 2. While there is a relation schema Q in D that is not in 4NF, do

{ choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X →→ Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

};

15.6 Other Dependencies and Normal Forms

15.6.1 Join Dependencies and the Fifth Normal Form
We already introduced another type of dependency called join dependency (JD) in
Section 14.7. It arises when a relation is decomposable into a set of projected rela-
tions that can be joined back to yield the original relation. After defining JD, we
defined the fifth normal form based on it in Section 14.7. Fifth normal form has also
been known as project join normal form or PJNF (Fagin, 1979). A practical problem
with this and some additional dependencies (and related normal forms such as
DKNF, which is defined in Section 15.6.3) is that they are difficult to discover.

https://hemanthrajhemu.github.io

 15.6 Other Dependencies and Normal Forms 531

Furthermore, there are no sets of sound and complete inference rules to reason
about them. In the remaining part of this section, we introduce some other types of
dependencies that have been identified. Among them, the inclusion dependencies
and those based on arithmetic or similar functions are used frequently.

15.6.2 Inclusion Dependencies
Inclusion dependencies were defined in order to formalize two types of interrela-
tional constraints:

 ■ The foreign key (or referential integrity) constraint cannot be specified as a
functional or multivalued dependency because it relates attributes across
relations.

 ■ The constraint between two relations that represent a class/subclass rela-
tionship (see Chapters 4 and 9) also has no formal definition in terms of the
functional, multivalued, and join dependencies.

Definition. An inclusion dependency R.X < S.Y between two sets of attri-
butes—X of relation schema R, and Y of relation schema S—specifies the con-
straint that, at any specific time when r is a relation state of R and s is a relation
state of S, we must have

πX(r(R)) ⊆ πY(s(S))

The ⊆ (subset) relationship does not necessarily have to be a proper subset. Obviously,
the sets of attributes on which the inclusion dependency is specified—X of R and Y of
S—must have the same number of attributes. In addition, the domains for each pair of
corresponding attributes should be compatible. For example, if X = {A1, A2, … , An}
and Y = {B1, B2, … , Bn}, one possible correspondence is to have dom(Ai) compatible
with dom(Bi) for 1 ≤ i ≤ n. In this case, we say that Ai corresponds to Bi.

For example, we can specify the following inclusion dependencies on the relational
schema in Figure 14.1:

DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn

WORKS_ON.Ssn < EMPLOYEE.Ssn

EMPLOYEE.Dnumber < DEPARTMENT.Dnumber

PROJECT.Dnum < DEPARTMENT.Dnumber

WORKS_ON.Pnumber < PROJECT.Pnumber

DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

All the preceding inclusion dependencies represent referential integrity
constraints. We can also use inclusion dependencies to represent class/subclass
relationships. For example, in the relational schema of Figure 9.6, we can specify
the following inclusion dependencies:

EMPLOYEE.Ssn < PERSON.Ssn

ALUMNUS.Ssn < PERSON.Ssn

STUDENT.Ssn < PERSON.Ssn

https://hemanthrajhemu.github.io

532 Chapter 15 Relational Database Design Algorithms and Further Dependencies

As with other types of dependencies, there are inclusion dependency inference rules
(IDIRs). The following are three examples:

IDIR1 (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y, where X = {A1, A2, … , An} and
Y = {B1, B2, … , Bn} and Ai corresponds to Bi, then R.Ai < S.Bi for 1 ≤ i ≤ n.

IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X < T.Z.

The preceding inference rules were shown to be sound and complete for inclusion
dependencies. So far, no normal forms have been developed based on inclusion
dependencies.

15.6.3 Functional Dependencies Based on Arithmetic
Functions and Procedures

Sometimes some attributes in a relation may be related via some arithmetic func-
tion or a more complicated functional relationship. As long as a unique value of Y
is associated with every X, we can still consider that the FD X → Y exists. For exam-
ple, in the relation

ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,
Discounted_price)

each tuple represents an item from an order with a particular quantity, and the
price per unit for that item. In this relation, (Quantity, Unit_price) → Extended_price
by the formula

Extended_price = Unit_price * Quantity

Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price),
and thus it conforms to the definition of functional dependency.

Moreover, there may be a procedure that takes into account the quantity discounts,
the type of item, and so on and computes a discounted price for the total quantity
ordered for that item. Therefore, we can say

(Item#, Quantity, Unit_price) → Discounted_price, or
(Item#, Quantity, Extended_price) → Discounted_price

To check the above FDs, a more complex procedure COMPUTE_TOTAL_PRICE may
have to be called into play. Although the above kinds of FDs are technically present
in most relations, they are not given particular attention during normalization. They
may be relevant during the loading of relations and during query processing because
populating or retrieving the attribute on the right-hand side of the dependency
requires the execution of a procedure such as the one mentioned above.

15.6.4 Domain-Key Normal Form
There is no hard-and-fast rule about defining normal forms only up to 5NF. His-
torically, the process of normalization and the process of discovering undesirable

https://hemanthrajhemu.github.io

 15.7 Summary 533

dependencies were carried through 5NF, but it has been possible to define stricter
normal forms that take into account additional types of dependencies and con-
straints. The idea behind domain-key normal form (DKNF) is to specify (theoreti-
cally, at least) the ultimate normal form that takes into account all possible types of
dependencies and constraints. A relation schema is said to be in DKNF if all con-
straints and dependencies that should hold on the valid relation states can be
enforced simply by enforcing the domain constraints and key constraints on the
relation. For a relation in DKNF, it becomes straightforward to enforce all database
constraints by simply checking that each attribute value in a tuple is of the appro-
priate domain and that every key constraint is enforced.

However, because of the difficulty of including complex constraints in a DKNF
relation, its practical utility is limited, since it may be quite difficult to specify gen-
eral integrity constraints. For example, consider a relation CAR(Make, Vin#) (where
Vin# is the vehicle identification number) and another relation MANUFACTURE(Vin#,
Country) (where Country is the country of manufacture). A general constraint may be
of the following form: If the Make is either ‘Toyota’ or ‘Lexus’, then the first character
of the Vin# is a ‘J’ if the country of manufacture is ‘Japan’; if the Make is ‘Honda’ or
‘Acura’, the second character of the Vin# is a ‘J’ if the country of manufacture is
‘Japan’. There is no simplified way to represent such constraints short of writing a
procedure (or general assertions) to test them. The procedure COMPUTE_TOTAL_PRICE
above is an example of such procedures needed to enforce an appropriate integrity
constraint.

For these reasons, although the concept of DKNF is appealing and appears straight-
forward, it cannot be directly tested or implemented with any guarantees of consis-
tency or non-redundancy of design. Hence it is not used much in practice.

15.7 Summary
In this chapter we presented a further set of topics related to dependencies, a dis-
cussion of decomposition, and several algorithms related to them as well as to the
process of designing 3NF, BCNF, and 4NF relations from a given set of functional
dependencies and multivalued dependencies. In Section 15.1 we presented infer-
ence rules for functional dependencies (FDs), the notion of closure of an attribute,
the notion of closure of a set of functional dependencies, equivalence among sets
of functional dependencies, and algorithms for finding the closure of an attribute
(Algorithm 15.1) and the minimal cover of a set of FDs (Algorithm 15.2). We then
discussed two important properties of decompositions: the nonadditive join prop-
erty and the dependency-preserving property. An algorithm to test for an n-way
nonadditive decomposition of a relation (Algorithm 15.3) was presented. A sim-
pler test for checking for nonadditive binary decompositions (property NJB) has
already been described in Section 14.5.1. We then discussed relational design by
synthesis, based on a set of given functional dependencies. The relational synthesis
algorithm (Algorithm 15.4) creates 3NF relations from a universal relation
schema based on a given set of functional dependencies that has been specified by

https://hemanthrajhemu.github.io

534 Chapter 15 Relational Database Design Algorithms and Further Dependencies

the database designer. The relational decomposition algorithms (such as Algo-
rithms 15.5 and 15.6) create BCNF (or 4NF) relations by successive nonadditive
decomposition of unnormalized relations into two component relations at a time.
We saw that it is possible to synthesize 3NF relation schemas that meet both of the
above properties; however, in the case of BCNF, it is possible to aim only for the
nonadditiveness of joins—dependency preservation cannot be necessarily guaran-
teed. If the designer has to aim for one of these two, the nonadditive join condition
is an absolute must. In Section 15.4 we showed how certain difficulties arise in a
collection of relations due to null values that may exist in relations in spite of the
relations being individually in 3NF or BCNF. Sometimes when decomposition is
improperly carried too far, certain “dangling tuples” may result that do not par-
ticipate in results of joins and hence may become invisible. We also showed how
algorithms such as 15.4 for 3NF synthesis could lead to alternative designs based
on the choice of minimum cover. We revisited multivalued dependencies (MVDs)
in Section 15.5. MVDs arise from an improper combination of two or more inde-
pendent multivalued attributes in the same relation, and MVDs result in a combi-
national expansion of the tuples used to define fourth normal form (4NF). We
discussed inference rules applicable to MVDs and discussed the importance of
4NF. Finally, in Section 15.6 we discussed inclusion dependencies, which are used
to specify referential integrity and class/subclass constraints, and pointed out the
need for arithmetic functions or more complex procedures to enforce certain
functional dependency constraints. We concluded with a brief discussion of the
domain-key normal form (DKNF).

Review Questions
 15.1. What is the role of Armstrong’s inference rules (inference rules IR1 through

IR3) in the development of the theory of relational design?

 15.2. What is meant by the completeness and soundness of Armstrong’s infer-
ence rules?

 15.3. What is meant by the closure of a set of functional dependencies? Illustrate
with an example.

 15.4. When are two sets of functional dependencies equivalent? How can we
determine their equivalence?

 15.5. What is a minimal set of functional dependencies? Does every set of depen-
dencies have a minimal equivalent set? Is it always unique?

 15.6. What is meant by the attribute preservation condition on a decomposition?

 15.7. Why are normal forms alone insufficient as a condition for a good schema
design?

 15.8. What is the dependency preservation property for a decomposition? Why is
it important?

https://hemanthrajhemu.github.io

 Exercises 535

 15.9. Why can we not guarantee that BCNF relation schemas will be produced by
dependency-preserving decompositions of non-BCNF relation schemas?
Give a counterexample to illustrate this point.

 15.10. What is the lossless (or nonadditive) join property of a decomposition? Why
is it important?

 15.11. Between the properties of dependency preservation and losslessness, which
one must definitely be satisfied? Why?

 15.12. Discuss the NULL value and dangling tuple problems.

 15.13. Illustrate how the process of creating first normal form relations may lead to
multivalued dependencies. How should the first normalization be done
properly so that MVDs are avoided?

 15.14. What types of constraints are inclusion dependencies meant to represent?

 15.15. How do template dependencies differ from the other types of dependencies
we discussed?

 15.16. Why is the domain-key normal form (DKNF) known as the ultimate nor-
mal form?

Exercises
 15.17. Show that the relation schemas produced by Algorithm 15.4 are in 3NF.

 15.18. Show that, if the matrix S resulting from Algorithm 15.3 does not have a row
that is all a symbols, projecting S on the decomposition and joining it back
will always produce at least one spurious tuple.

 15.19. Show that the relation schemas produced by Algorithm 15.5 are in BCNF.

 15.20. Write programs that implement Algorithms 15.4 and 15.5.

 15.21. Consider the relation REFRIG(Model#, Year, Price, Manuf_plant, Color), which
is abbreviated as REFRIG(M, Y, P, MP, C), and the following set F of functional
dependencies: F = {M → MP, {M, Y} → P, MP → C}

a. Evaluate each of the following as a candidate key for REFRIG, giving rea-
sons why it can or cannot be a key: {M}, {M, Y}, {M, C}.

b. Based on the above key determination, state whether the relation REFRIG
is in 3NF and in BCNF, and provide proper reasons.

c. Consider the decomposition of REFRIG into D = {R1(M, Y, P),
R2(M, MP, C)}. Is this decomposition lossless? Show why. (You may
consult the test under Property NJB in Section 14.5.1.)

 15.22. Specify all the inclusion dependencies for the relational schema in Figure 5.5.

 15.23. Prove that a functional dependency satisfies the formal definition of multi-
valued dependency.

https://hemanthrajhemu.github.io

536 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 15.24. Consider the example of normalizing the LOTS relation in Sections 14.4
and 14.5. Determine whether the decomposition of LOTS into {LOTS1AX,
LOTS1AY, LOTS1B, LOTS2} has the lossless join property by applying
Algorithm 15.3 and also by using the test under property NJB from Sec-
tion 14.5.1.

 15.25. Show how the MVDs Ename →→ and Ename →→ Dname in Figure 14.15(a)
may arise during normalization into 1NF of a relation, where the attributes
Pname and Dname are multivalued.

 15.26. Apply Algorithm 15.2(a) to the relation in Exercise 14.24 to determine a key
for R. Create a minimal set of dependencies G that is equivalent to F, and apply
the synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations.

 15.27. Repeat Exercise 15.26 for the functional dependencies in Exercise 14.25.

 15.28. Apply the decomposition algorithm (Algorithm 15.5) to the relation R and
the set of dependencies F in Exercise 15.24. Repeat for the dependencies G in
Exercise 15.25.

 15.29. Apply Algorithm 15.2(a) to the relations in Exercises 14.27 and 14.28 to
determine a key for R. Apply the synthesis algorithm (Algorithm 15.4) to
decompose R into 3NF relations and the decomposition algorithm (Algo-
rithm 15.5) to decompose R into BCNF relations.

 15.31. Consider the following decompositions for the relation schema R of Exer-
cise 14.24. Determine whether each decomposition has (1) the dependency
preservation property, and (2) the lossless join property, with respect to F.
Also determine which normal form each relation in the decomposition is in.

a. D1 = {R1, R2, R3, R4, R5}; R1 = {A, B, C}, R2 = {A, D, E}, R3 = {B, F},
R4 = {F, G, H}, R5 = {D, I, J}

b. D2 = {R1, R2, R3}; R1 = {A, B, C, D, E}, R2 = {B, F, G, H}, R3 = {D, I, J}

c. D3 = {R1, R2, R3, R4, R5}; R1 = {A, B, C, D}, R2 = {D, E}, R3 = {B, F},
R4 = {F, G, H}, R5 = {D, I, J}

Laboratory Exercises
Note: These exercises use the DBD (Data Base Designer) system that is described
in the laboratory manual. The relational schema R and set of functional dependen-
cies F need to be coded as lists. As an example, R and F for Problem 14.24 are
coded as:

R = [a, b, c, d, e, f, g, h, i, j]
F = [[[a, b],[c]],

[[a],[d, e]],
[[b],[f]],
[[f],[g, h]],
[[d],[i, j]]]

https://hemanthrajhemu.github.io

 Selected Bibliography 537

Since DBD is implemented in Prolog, use of uppercase terms is reserved for variables
in the language and therefore lowercase constants are used to code the attributes. For
further details on using the DBD system, please refer to the laboratory manual.

 15.33. Using the DBD system, verify your answers to the following exercises:

a. 15.24

b. 15.26

c. 15.27

d. 15.28

e. 15.29

f. 15.31 (a) and (b)

g. 15.32 (a) and (c)

Selected Bibliography
The books by Maier (1983) and Atzeni and De Antonellis (1993) include a compre-
hensive discussion of relational dependency theory. Algorithm 15.4 is based on the
normalization algorithm presented in Biskup et al. (1979). The decomposition
algorithm (Algorithm 15.5) is due to Bernstein (1976). Tsou and Fischer (1982)
give a polynomial-time algorithm for BCNF decomposition.

The theory of dependency preservation and lossless joins is given in Ullman (1988),
where proofs of some of the algorithms discussed here appear. The lossless join
property is analyzed in Aho et al. (1979). Algorithms to determine the keys of a
relation from functional dependencies are given in Osborn (1977); testing for
BCNF is discussed in Osborn (1979). Testing for 3NF is discussed in Tsou and
Fischer (1982). Algorithms for designing BCNF relations are given in Wang (1990)
and Hernandez and Chan (1991).

Multivalued dependencies and fourth normal form are defined in Zaniolo (1976)
and Nicolas (1978). Many of the advanced normal forms are due to Fagin: the fourth
normal form in Fagin (1977), PJNF in Fagin (1979), and DKNF in Fagin (1981). The
set of sound and complete rules for functional and multivalued dependencies was
given by Beeri et al. (1977). Join dependencies are discussed by Rissanen (1977) and
Aho et al. (1979). Inference rules for join dependencies are given by Sciore (1982).
Inclusion dependencies are discussed by Casanova et al. (1981) and analyzed further
in Cosmadakis et al. (1990). Their use in optimizing relational schemas is discussed
in Casanova et al. (1989). Template dependencies, which are a general form of
dependencies based on hypotheses and conclusion tuples, are discussed by Sadri and
Ullman (1982). Other dependencies are discussed in Nicolas (1978), Furtado (1978),
and Mendelzon and Maier (1979). Abiteboul et al. (1995) provides a theoretical
treatment of many of the ideas presented in this chapter and Chapter 14.

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

