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20
Introduction to Transaction 

Processing Concepts  
and Theory

The concept of transaction provides a mechanism 
for describing logical units of database processing. 

Transaction processing systems are systems with large databases and hundreds of 
concurrent users executing database transactions. Examples of such systems 
include airline reservations, banking, credit card processing, online retail purchas-
ing, stock markets, supermarket checkouts, and many other applications. These 
systems require high availability and fast response time for hundreds of concur-
rent users. In this chapter, we present the concepts that are needed in transaction 
processing systems. We define the concept of a transaction, which is used to repre-
sent a logical unit of database processing that must be completed in its entirety to 
ensure correctness. A transaction is typically implemented by a computer program 
that includes database commands such as retrievals, insertions, deletions, and 
updates. We introduced some of the basic techniques for database programming 
in Chapters 10 and 11.

In this chapter, we focus on the basic concepts and theory that are needed to ensure 
the correct executions of transactions. We discuss the concurrency control prob-
lem, which occurs when multiple transactions submitted by various users interfere 
with one another in a way that produces incorrect results. We also discuss the prob-
lems that can occur when transactions fail, and how the database system can recover 
from various types of failures.

This chapter is organized as follows. Section 20.1 informally discusses why concur-
rency control and recovery are necessary in a database system. Section 20.2 defines 
the term transaction and discusses additional concepts related to transaction 
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746 Chapter 20 Introduction to Transaction Processing Concepts and Theory

processing in database systems. Section 20.3 presents the important properties of 
atomicity, consistency preservation, isolation, and durability or permanency—
called the ACID properties—that are considered desirable in transaction process-
ing systems. Section 20.4 introduces the concept of schedules (or histories) of 
executing transactions and characterizes the recoverability of schedules. Sec-
tion 20.5 discusses the notion of serializability of concurrent transaction execution, 
which can be used to define correct execution sequences (or schedules) of concur-
rent transactions. In Section 20.6, we present some of the commands that support 
the transaction concept in SQL, and we introduce the concepts of isolation levels. 
Section 20.7 summarizes the chapter.

The two following chapters continue with more details on the actual methods and 
techniques used to support transaction processing. Chapter 21 gives an overview 
of the basic concurrency control protocols and Chapter 22 introduces recovery 
techniques.

20.1 Introduction to Transaction Processing
In this section, we discuss the concepts of concurrent execution of transactions and 
recovery from transaction failures. Section 20.1.1 compares single-user and multi-
user database systems and demonstrates how concurrent execution of transactions 
can take place in multiuser systems. Section 20.1.2 defines the concept of transac-
tion and presents a simple model of transaction execution based on read and write 
database operations. This model is used as the basis for defining and formalizing 
concurrency control and recovery concepts. Section 20.1.3 uses informal examples 
to show why concurrency control techniques are needed in multiuser systems. 
Finally, Section 20.1.4 discusses why techniques are needed to handle recovery 
from system and transaction failures by discussing the different ways in which 
transactions can fail while executing.

20.1.1 Single-User versus Multiuser Systems
One criterion for classifying a database system is according to the number of users 
who can use the system concurrently. A DBMS is single-user if at most one user at 
a time can use the system, and it is multiuser if many users can use the system—
and hence access the database—concurrently. Single-user DBMSs are mostly 
restricted to personal computer systems; most other DBMSs are multiuser. For 
example, an airline reservations system is used by hundreds of users and travel 
agents concurrently. Database systems used in banks, insurance agencies, stock 
exchanges, supermarkets, and many other applications are multiuser systems. In 
these systems, hundreds or thousands of users are typically operating on the data-
base by submitting transactions concurrently to the system.

Multiple users can access databases—and use computer systems—simultaneously 
because of the concept of multiprogramming, which allows the operating system of 
the computer to execute multiple programs—or processes—at the same time. A single 
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 20.1 Introduction to Transaction Processing 747

central processing unit (CPU) can only execute at most one process at a time. How-
ever, multiprogramming operating systems execute some commands from one pro-
cess, then suspend that process and execute some commands from the next process, 
and so on. A process is resumed at the point where it was suspended whenever it gets 
its turn to use the CPU again. Hence, concurrent execution of processes is actually 
interleaved, as illustrated in Figure 20.1, which shows two processes, A and B, execut-
ing concurrently in an interleaved fashion. Interleaving keeps the CPU busy when a 
process requires an input or output (I/O) operation, such as reading a block from disk. 
The CPU is switched to execute another process rather than remaining idle during I/O 
time. Interleaving also prevents a long process from delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel processing 
of multiple processes is possible, as illustrated by processes C and D in Figure 20.1. 
Most of the theory concerning concurrency control in databases is developed in terms 
of interleaved concurrency, so for the remainder of this chapter we assume this model. 
In a multiuser DBMS, the stored data items are the primary resources that may be 
accessed concurrently by interactive users or application programs, which are con-
stantly retrieving information from and modifying the database.

20.1.2  Transactions, Database Items, Read  
and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database pro-
cessing. A transaction includes one or more database access operations—these can 
include insertion, deletion, modification (update), or retrieval operations. The 
database operations that form a transaction can either be embedded within an 
application program or they can be specified interactively via a high-level query 
language such as SQL. One way of specifying the transaction boundaries is by 
specifying explicit begin transaction and end transaction statements in an appli-
cation program; in this case, all database access operations between the two are 
considered as forming one transaction. A single application program may contain 
more than one transaction if it contains several transaction boundaries. If the 
database operations in a transaction do not update the database but only retrieve 

A A

B B
C
D

CPU1

CPU2

t1 t2 t3 t4
Time

Figure 20.1 
Interleaved 
 processing versus 
parallel processing 
of concurrent 
 transactions.
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748 Chapter 20 Introduction to Transaction Processing Concepts and Theory

data, the transaction is called a read-only transaction; otherwise it is known as a 
read-write transaction.

The database model that is used to present transaction processing concepts is sim-
ple when compared to the data models that we discussed earlier in the book, such as 
the relational model or the object model. A database is basically represented as a 
collection of named data items. The size of a data item is called its granularity. A 
data item can be a database record, but it can also be a larger unit such as a whole 
disk block, or even a smaller unit such as an individual field (attribute) value of 
some record in the database. The transaction processing concepts we discuss are 
independent of the data item granularity (size) and apply to data items in general. 
Each data item has a unique name, but this name is not typically used by the pro-
grammer; rather, it is just a means to uniquely identify each data item. For example, 
if the data item granularity is one disk block, then the disk block address can be 
used as the data item name. If the item granularity is a single record, then the record 
id can be the item name. Using this simplified database model, the basic database 
access operations that a transaction can include are as follows:

 ■ read_item(X). Reads a database item named X into a program variable. To 
simplify our notation, we assume that the program variable is also named X.

 ■ write_item(X). Writes the value of program variable X into the database 
item named X.

As we discussed in Chapter 16, the basic unit of data transfer from disk to main 
memory is one disk page (disk block). Executing a read_item(X) command includes 
the following steps:

  1. Find the address of the disk block that contains item X.

  2. Copy that disk block into a buffer in main memory (if that disk block is not 
already in some main memory buffer). The size of the buffer is the same as 
the disk block size.

  3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

  1. Find the address of the disk block that contains item X.

  2. Copy that disk block into a buffer in main memory (if that disk block is not 
already in some main memory buffer).

  3. Copy item X from the program variable named X into its correct location in 
the buffer.

  4. Store the updated disk block from the buffer back to disk (either immedi-
ately or at some later point in time).

It is step 4 that actually updates the database on disk. Sometimes the buffer is not 
immediately stored to disk, in case additional changes are to be made to the buffer. 
Usually, the decision about when to store a modified disk block whose contents are in 
a main memory buffer is handled by the recovery manager of the DBMS in cooperation 
with the underlying operating system. The DBMS will maintain in the database cache 
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 20.1 Introduction to Transaction Processing 749

a number of data buffers in main memory. Each buffer typically holds the contents 
of one database disk block, which contains some of the database items being pro-
cessed. When these buffers are all occupied, and additional database disk blocks 
must be copied into memory, some buffer replacement policy is used to choose 
which of the current occupied buffers is to be replaced. Some commonly used buffer 
replacement policies are LRU (least recently used). If the chosen buffer has been 
modified, it must be written back to disk before it is reused.1 There are also buffer 
replacement policies that are specific to DBMS characteristics. We briefly discuss a 
few of these in Section 20.2.4.

A transaction includes read_item and write_item operations to access and update the 
database. Figure 20.2 shows examples of two very simple transactions. The read-set 
of a transaction is the set of all items that the transaction reads, and the write-set is 
the set of all items that the transaction writes. For example, the read-set of T1 in 
Figure 20.2 is {X, Y} and its write-set is also {X, Y}.

Concurrency control and recovery mechanisms are mainly concerned with the 
database commands in a transaction. Transactions submitted by the various users 
may execute concurrently and may access and update the same database items. If 
this concurrent execution is uncontrolled, it may lead to problems, such as an 
inconsistent database. In the next section, we informally introduce some of the 
problems that may occur.

20.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncontrolled 
manner. We illustrate some of these problems by referring to a much simplified air-
line reservations database in which a record is stored for each airline flight. Each 
record includes the number of reserved seats on that flight as a named (uniquely iden-
tifiable) data item, among other information. Figure 20.2(a) shows a transaction T1 
that transfers N reservations from one flight whose number of reserved seats is stored 
in the database item named X to another flight whose number of reserved seats is 
stored in the database item named Y. Figure 20.2(b) shows a simpler transaction T2 
that just reserves M seats on the first flight (X) referenced in transaction T1.2 To sim-
plify our example, we do not show additional portions of the transactions, such as 
checking whether a flight has enough seats available before reserving additional seats.

When a database access program is written, it has the flight number, the flight date, 
and the number of seats to be booked as parameters; hence, the same program can 
be used to execute many different transactions, each with a different flight number, 
date, and number of seats to be booked. For concurrency control purposes, a trans-
action is a particular execution of a program on a specific date, flight, and number 

1We will not discuss general-purpose buffer replacement policies here because they are typically discussed 
in operating systems texts.
2A similar, more commonly used example assumes a bank database, with one transaction doing a transfer 
of funds from account X to account Y and the other transaction doing a deposit to account X.
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750 Chapter 20 Introduction to Transaction Processing Concepts and Theory

of seats. In Figures 20.2(a) and (b), the transactions T1 and T2 are specific executions 
of the programs that refer to the specific flights whose numbers of seats are stored 
in data items X and Y in the database. Next we discuss the types of problems we 
may encounter with these two simple transactions if they run concurrently.

The Lost Update Problem. This problem occurs when two transactions that access 
the same database items have their operations interleaved in a way that makes the value 
of some database items incorrect. Suppose that transactions T1 and T2 are submitted at 
approximately the same time, and suppose that their operations are interleaved as 
shown in Figure 20.3(a); then the final value of item X is incorrect because T2 reads the 
value of X before T1 changes it in the database, and hence the updated value resulting 
from T1 is lost. For example, if X = 80 at the start (originally there were 80 reservations 
on the flight), N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X 
to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result 
should be X = 79. However, in the interleaving of operations shown in Figure 20.3(a), it 
is X = 84 because the update in T1 that removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when one 
transaction updates a database item and then the transaction fails for some reason (see 
Section 20.1.4). Meanwhile, the updated item is accessed (read) by another transaction 
before it is changed back (or rolled back) to its original value. Figure 20.3(b) shows an 
example where T1 updates item X and then fails before completion, so the system must 
roll back X to its original value. Before it can do so, however, transaction T2 reads the 
temporary value of X, which will not be recorded permanently in the database because 
of the failure of T1. The value of item X that is read by T2 is called dirty data because it 
has been created by a transaction that has not completed and committed yet; hence, 
this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate 
summary function on a number of database items while other transactions are 
updating some of these items, the aggregate function may calculate some values 
before they are updated and others after they are updated. For example, suppose 
that a transaction T3 is calculating the total number of reservations on all the flights; 
meanwhile, transaction T1 is executing. If the interleaving of operations shown in 
Figure 20.3(c) occurs, the result of T3 will be off by an amount N because T3 reads 
the value of X after N seats have been subtracted from it but reads the value of Y 
before those N seats have been added to it.

(a)

read_item(X );
X := X – N;
write_item(X );
read_item(Y );
Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X + M;
write_item(X );

T1 T2

Figure 20.2 
Two sample 
 transactions. 
(a) Transaction T1. 
(b) Transaction T2.
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 20.1 Introduction to Transaction Processing 751

(a)

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;

write_item(X );

Time

Item X has an incorrect value because
its update by T1 is lost (overwritten).

Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X – N;
write_item(X );

read_item(X );
X := X + M;
write_item(X );

Time

Transaction T1 fails and must change
the value of X back to its old value;
meanwhile T2 has read the temporary
incorrect value of X.

read_item(Y );

T1

T1

(c)

read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

read_item(X );
sum := sum + X;
read_item(Y );
sum := sum + Y;

T3 reads X after N is subtracted and reads
Y before N is added; a wrong summary
is the result (off by N ).

T3

T2

sum := 0;
read_item(A);
sum := sum + A;

T1 T2

Figure 20.3 
Some problems that occur when concurrent execution is uncontrolled. (a) The lost update 
problem. (b) The temporary update problem. (c) The incorrect summary problem.
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752 Chapter 20 Introduction to Transaction Processing Concepts and Theory

The Unrepeatable Read Problem. Another problem that may occur is called 
unrepeatable read, where a transaction T reads the same item twice and the item is 
changed by another transaction T′ between the two reads. Hence, T receives differ-
ent values for its two reads of the same item. This may occur, for example, if during 
an airline reservation transaction, a customer inquires about seat availability on 
several flights. When the customer decides on a particular flight, the transaction 
then reads the number of seats on that flight a second time before completing the 
reservation, and it may end up reading a different value for the item.

20.1.4 Why Recovery Is Needed
Whenever a transaction is submitted to a DBMS for execution, the system is 
responsible for making sure that either all the operations in the transaction are 
completed successfully and their effect is recorded permanently in the database, 
or that the transaction does not have any effect on the database or any other 
transactions. In the first case, the transaction is said to be committed, whereas 
in the second case, the transaction is aborted. The DBMS must not permit some 
operations of a transaction T to be applied to the database while other opera-
tions of T are not, because the whole transaction is a logical unit of database 
processing. If a transaction fails after executing some of its operations but before 
executing all of them, the operations already executed must be undone and have 
no lasting effect.

Types of Failures. Failures are generally classified as transaction, system, and 
media failures. There are several possible reasons for a transaction to fail in the 
middle of execution:

  1. A computer failure (system crash). A hardware, software, or network error 
occurs in the computer system during transaction execution. Hardware 
crashes are usually media failures—for example, main memory failure.

  2. A transaction or system error. Some operation in the transaction may 
cause it to fail, such as integer overflow or division by zero. Transaction fail-
ure may also occur because of erroneous parameter values or because of a 
logical programming error.3 Additionally, the user may interrupt the trans-
action during its execution.

  3. Local errors or exception conditions detected by the transaction. During 
transaction execution, certain conditions may occur that necessitate cancel-
lation of the transaction. For example, data for the transaction may not be 
found. An exception condition,4 such as insufficient account balance in a 
banking database, may cause a transaction, such as a fund withdrawal, to be 
canceled. This exception could be programmed in the transaction itself, and 
in such a case would not be considered as a transaction failure.

3In general, a transaction should be thoroughly tested to ensure that it does not have any bugs (logical 
programming errors).
4Exception conditions, if programmed correctly, do not constitute transaction failures.
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 20.2 Transaction and System Concepts 753

  4. Concurrency control enforcement. The concurrency control method (see 
Chapter 21)may abort a transaction because it violates serializability (see 
Section 20.5), or it may abort one or more transactions to resolve a state of 
deadlock among several transactions (see Section 21.1.3). Transactions 
aborted because of serializability violations or deadlocks are typically 
restarted automatically at a later time.

  5. Disk failure. Some disk blocks may lose their data because of a read or write 
malfunction or because of a disk read/write head crash. This may happen 
during a read or a write operation of the transaction.

  6. Physical problems and catastrophes. This refers to an endless list of problems 
that includes power or air-conditioning failure, fire, theft, sabotage, overwrit-
ing disks or tapes by mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. When-
ever a failure of type 1 through 4 occurs, the system must keep sufficient informa-
tion to quickly recover from the failure. Disk failure or other catastrophic failures of 
type 5 or 6 do not happen frequently; if they do occur, recovery is a major task. We 
discuss recovery from failure in Chapter 22.

The concept of transaction is fundamental to many techniques for concurrency 
control and recovery from failures.

20.2 Transaction and System Concepts
In this section, we discuss additional concepts relevant to transaction processing. 
Section 20.2.1 describes the various states a transaction can be in and discusses 
other operations needed in transaction processing. Section 20.2.2 discusses the 
 system log, which keeps information about transactions and data items that will 
be needed for recovery. Section 20.2.3 describes the concept of commit points of 
transactions and why they are important in transaction processing. Finally, 
 Sec tion 20.2.4 briefly discusses DBMS buffer replacement policies.

20.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that should either be completed in its entirety 
or not done at all. For recovery purposes, the system needs to keep track of when each 
transaction starts, terminates, and commits, or aborts (see Section 20.2.3). Therefore, 
the recovery manager of the DBMS needs to keep track of the following operations:

 ■ BEGIN_TRANSACTION. This marks the beginning of transaction execution.

 ■ READ or WRITE. These specify read or write operations on the database 
items that are executed as part of a transaction.

 ■ END_TRANSACTION. This specifies that READ and WRITE transaction opera-
tions have ended and marks the end of transaction execution. However, at 
this point it may be necessary to check whether the changes introduced by 
the transaction can be permanently applied to the database (committed) or 
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754 Chapter 20 Introduction to Transaction Processing Concepts and Theory

whether the transaction has to be aborted because it violates serializability 
(see Section 20.5) or for some other reason.

 ■ COMMIT_TRANSACTION. This signals a successful end of the transaction so that 
any changes (updates) executed by the transaction can be safely committed to 
the database and will not be undone.

 ■ ROLLBACK (or ABORT). This signals that the transaction has ended unsuc-
cessfully, so that any changes or effects that the transaction may have applied 
to the database must be undone.

Figure 20.4 shows a state transition diagram that illustrates how a transaction 
moves through its execution states. A transaction goes into an active state immedi-
ately after it starts execution, where it can execute its READ and WRITE operations. 
When the transaction ends, it moves to the partially committed state. At this 
point, some types of concurrency control protocols may do additional checks to see 
if the transaction can be committed or not. Also, some recovery protocols need to 
ensure that a system failure will not result in an inability to record the changes of 
the transaction permanently (usually by recording changes in the system log, 
 discussed in the next section).5 If these checks are successful, the transaction is said 
to have reached its commit point and enters the committed state. Commit points 
are discussed in more detail in Section 20.2.3. When a transaction is committed, it 
has concluded its execution successfully and all its changes must be recorded 
perma nently in the database, even if a system failure occurs.

However, a transaction can go to the failed state if one of the checks fails or if the trans-
action is aborted during its active state. The transaction may then have to be rolled back 
to undo the effect of its WRITE operations on the database. The terminated state corre-
sponds to the transaction leaving the system. The transaction information that is main-
tained in system tables while the transaction has been running is removed when the 
transaction terminates. Failed or aborted transactions may be restarted later—either 
automatically or after being resubmitted by the user—as brand new transactions.

5Optimistic concurrency control (see Section 21.4) also requires that certain checks are made at this 
point to ensure that the transaction did not interfere with other executing transactions.

Active

Begin 
transaction

End 
transaction Commit

AbortAbort

Read, Write

Partially committed

Failed Terminated

Committed

Figure 20.4 
State transition diagram illustrating the states for transaction execution.
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20.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains 
a log6 to keep track of all transaction operations that affect the values of database 
items, as well as other transaction information that may be needed to permit 
recovery from failures. The log is a sequential, append-only file that is kept on 
disk, so it is not affected by any type of failure except for disk or catastrophic 
failure. Typically, one (or more) main memory buffers, called the log buffers, 
hold the last part of the log file, so that log entries are first added to the log main 
memory buffer. When the log buffer is filled, or when certain other conditions 
occur, the log buffer is appended to the end of the log file on disk. In addition, the 
log file from disk is periodically backed up to archival storage (tape) to guard 
against catastrophic failures. The following are the types of entries—called log 
records—that are written to the log file and the corresponding action for each 
log record. In these entries, T refers to a unique transaction-id that is generated 
automatically by the system for each transaction and that is used to identify each 
transaction:

  1. [start_transaction, T]. Indicates that transaction T has started execution.

  2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has 
changed the value of database item X from old_value to new_value.

  3. [read_item, T, X]. Indicates that transaction T has read the value of database 
item X.

  4. [commit, T]. Indicates that transaction T has completed successfully, and affirms 
that its effect can be committed (recorded permanently) to the database.

  5. [abort, T]. Indicates that transaction T has been aborted.

Protocols for recovery that avoid cascading rollbacks (see Section 20.4.2)—which 
include nearly all practical protocols—do not require that READ operations are 
written to the system log. However, if the log is also used for other purposes—such 
as auditing (keeping track of all database operations)—then such entries can be 
included. Additionally, some recovery protocols require simpler WRITE entries 
that only include one of new_value or old_value instead of including both (see Sec-
tion 20.4.2).

Notice that we are assuming that all permanent changes to the database occur 
within transactions, so the notion of recovery from a transaction failure amounts 
to either undoing or redoing transaction operations individually from the log. If 
the system crashes, we can recover to a consistent database state by examining the 
log and using one of the techniques described in Chapter 22. Because the log con-
tains a record of every WRITE operation that changes the value of some database 
item, it is possible to undo the effect of these WRITE operations of a transaction T 
by tracing backward through the log and resetting all items changed by a WRITE 
operation of T to their old_values. Redo of an operation may also be necessary if a 
transaction has its updates recorded in the log but a failure occurs before the sys-

6The log has sometimes been called the DBMS journal.
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756 Chapter 20 Introduction to Transaction Processing Concepts and Theory

tem can be sure that all these new_values have been written to the actual database 
on disk from the main memory buffers.7

20.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the 
database have been executed successfully and the effect of all the transaction opera-
tions on the database have been recorded in the log. Beyond the commit point, the 
transaction is said to be committed, and its effect must be permanently recorded in 
the database. The transaction then writes a commit record [commit, T] into the log. 
If a system failure occurs, we can search back in the log for all transactions T that 
have written a [start_transaction, T] record into the log but have not written their 
[commit, T] record yet; these transactions may have to be rolled back to undo their 
effect on the database during the recovery process. Transactions that have written 
their commit record in the log must also have recorded all their WRITE operations 
in the log, so their effect on the database can be redone from the log records.

Notice that the log file must be kept on disk. As discussed in Chapter 16, updating 
a disk file involves copying the appropriate block of the file from disk to a buffer in 
main memory, updating the buffer in main memory, and copying the buffer to 
disk. As we mentioned earlier, it is common to keep one or more blocks of the log 
file in main memory buffers, called the log buffer, until they are filled with log 
entries and then to write them back to disk only once, rather than writing to disk 
every time a log entry is added. This saves the overhead of multiple disk writes of 
the same log file buffer. At the time of a system crash, only the log entries that have 
been written back to disk are considered in the recovery process if the contents of 
main memory are lost. Hence, before a transaction reaches its commit point, any 
portion of the log that has not been written to the disk yet must now be written to 
the disk. This process is called force-writing the log buffer to disk before commit-
ting a transaction.

20.2.4 DBMS-Specific Buffer Replacement Policies
The DBMS cache will hold the disk pages that contain information currently being 
processed in main memory buffers. If all the buffers in the DBMS cache are occu-
pied and new disk pages are required to be loaded into main memory from disk, a 
page replacement policy is needed to select the particular buffers to be replaced. 
Some page replacement policies that have been developed specifically for database 
systems are briefly discussed next.

Domain Separation (DS) Method. In a DBMS, various types of disk pages 
exist: index pages, data file pages, log file pages, and so on. In this method, the 
DBMS cache is divided into separate domains (sets of buffers). Each domain han-
dles one type of disk pages, and page replacements within each domain are han-

7Undo and redo are discussed more fully in Chapter 22.
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dled via the basic LRU (least recently used) page replacement. Although this 
achieves better performance on average that basic LRU, it is a static algorithm, and 
so does not adapt to dynamically changing loads because the number of available 
buffers for each domain is predetermined. Several variations of the DS page 
replacement policy have been proposed, which add dynamic load-balancing fea-
tures. For example, the GRU (Group LRU) gives each domain a priority level and 
selects pages from the lowest-priority level domain first for replacement, whereas 
another method dynamically changes the number of buffers in each domain based 
on current workload.

Hot Set Method. This page replacement algorithm is useful in queries that have 
to scan a set of pages repeatedly, such as when a join operation is performed using 
the nested-loop method (see Chapter 18). If the inner loop file is loaded completely 
into main memory buffers without replacement (the hot set), the join will be per-
formed efficiently because each page in the outer loop file will have to scan all the 
records in the inner loop file to find join matches. The hot set method determines 
for each database processing algorithm the set of disk pages that will be accessed 
repeatedly, and it does not replace them until their processing is completed.

The DBMIN Method. This page replacement policy uses a model known as QLSM 
(query locality set model), which predetermines the pattern of page references for 
each algorithm for a particular type of database operation. We discussed various 
algorithms for relational operations such as SELECT and JOIN in Chapter 18. 
Depending on the type of access method, the file characteristics, and the algorithm 
used, the QLSM will estimate the number of main memory buffers needed for each 
file involved in the operation. The DBMIN page replacement policy will calculate a 
locality set using QLSM for each file instance involved in the query (some queries 
may reference the same file twice, so there would be a locality set for each file 
instance needed in the query). DBMIN then allocates the appropriate number of 
buffers to each file instance involved in the query based on the locality set for that 
file instance. The concept of locality set is analogous to the concept of working set, 
which is used in page replacement policies for processes by the operating system 
but there are multiple locality sets, one for each file instance in the query.

20.3 Desirable Properties of Transactions
Transactions should possess several properties, often called the ACID properties; 
they should be enforced by the concurrency control and recovery methods of the 
DBMS. The following are the ACID properties:

 ■ Atomicity. A transaction is an atomic unit of processing; it should either be 
performed in its entirety or not performed at all.

 ■ Consistency preservation. A transaction should be consistency preserving, 
meaning that if it is completely executed from beginning to end without 
interference from other transactions, it should take the database from one 
consistent state to another.
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 ■ Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are execut-
ing concurrently. That is, the execution of a transaction should not be 
interfered with by any other transactions executing concurrently.

 ■ Durability or permanency. The changes applied to the database by a com-
mitted transaction must persist in the database. These changes must not be 
lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is 
the responsibility of the transaction recovery subsystem of a DBMS to ensure atomi-
city. If a transaction fails to complete for some reason, such as a system crash in the 
midst of transaction execution, the recovery technique must undo any effects of the 
transaction on the database. On the other hand, write operations of a committed 
transaction must be eventually written to disk.

The preservation of consistency is generally considered to be the responsibility of 
the programmers who write the database programs and of the DBMS module 
that enforces integrity constraints. Recall that a database state is a collection of 
all the stored data items (values) in the database at a given point in time. A 
 consistent state of the database satisfies the constraints specified in the schema 
as well as any other constraints on the database that should hold. A database 
program should be written in a way that guarantees that, if the database is in a 
consistent state before executing the transaction, it will be in a consistent state 
after the complete execution of the transaction, assuming that no interference 
with other transactions occurs.

The isolation property is enforced by the concurrency control subsystem of the 
DBMS.8 If every transaction does not make its updates (write operations) visible to 
other transactions until it is committed, one form of isolation is enforced that 
solves the temporary update problem and eliminates cascading rollbacks (see 
Chapter 22) but does not eliminate all other problems.

The durability property is the responsibility of the recovery subsystem of the DBMS. 
In the next section, we introduce how recovery protocols enforce durability and 
atomicity and then discuss this in more detail in Chapter 22.

Levels of Isolation. There have been attempts to define the level of isolation of a 
transaction. A transaction is said to have level 0 (zero) isolation if it does not over-
write the dirty reads of higher-level transactions. Level 1 (one) isolation has no lost 
updates, and level 2 isolation has no lost updates and no dirty reads. Finally, level 3 
isolation (also called true isolation) has, in addition to level 2 properties, repeatable 
reads.9 Another type of isolation is called snapshot isolation, and several practical 
concurrency control methods are based on this. We shall discuss snapshot isolation 
in Section 20.6, and again in Chapter 21, Section 21.4.

8We will discuss concurrency control protocols in Chapter 21.
9The SQL syntax for isolation level discussed in Section 20.6 is closely related to these levels.
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20.4  Characterizing Schedules Based  
on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the 
order of execution of operations from all the various transactions is known as a 
schedule (or history). In this section, first we define the concept of schedules, and 
then we characterize the types of schedules that facilitate recovery when failures 
occur. In Section 20.5, we characterize schedules in terms of the interference of 
participating transactions; this discussion leads to the concepts of serializability and 
serializable schedules.

20.4.1 Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, … , Tn is an ordering of the 
operations of the transactions. Operations from different transactions can be 
interleaved in the schedule S. However, for each transaction Ti that participates 
in the schedule S, the operations of Ti in S must appear in the same order in 
which they occur in Ti. The order of operations in S is considered to be a total 
ordering, meaning that for any two operations in the schedule, one must occur 
before the other. It is possible theoretically to deal with schedules whose opera-
tions form partial orders, but we will assume for now total ordering of the opera-
tions in a schedule.

For the purpose of recovery and concurrency control, we are mainly interested in 
the read_item and write_item operations of the transactions, as well as the commit and 
abort operations. A shorthand notation for describing a schedule uses the symbols 
b, r, w, e, c, and a for the operations begin_transaction, read_item, write_item,  
end_transaction, commit, and abort, respectively, and appends as a subscript the 
transaction id (transaction number) to each operation in the schedule. In this 
notation, the database item X that is read or written follows the r and w operations 
in parentheses. In some schedules, we will only show the read and write operations, 
whereas in other schedules we will show additional operations, such as commit or 
abort. The schedule in Figure 20.3(a), which we shall call Sa, can be written as  follows 
in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

Similarly, the schedule for Figure 20.3(b), which we call Sb, can be written as fol-
lows, if we assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Conflicting Operations in a Schedule. Two operations in a schedule are said to 
conflict if they satisfy all three of the following conditions: (1) they belong to differ-
ent transactions; (2) they access the same item X; and (3) at least one of the opera-
tions is a write_item(X). For example, in schedule Sa, the operations r1(X) and w2(X) 
conflict, as do the operations r2(X) and w1(X), and the operations w1(X) and w2(X). 
However, the operations r1(X) and r2(X) do not conflict, since they are both read 
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operations; the operations w2(X) and w1(Y) do not conflict because they operate on 
distinct data items X and Y; and the operations r1(X) and w1(X) do not conflict 
because they belong to the same transaction.

Intuitively, two operations are conflicting if changing their order can result in a dif-
ferent outcome. For example, if we change the order of the two operations r1(X); 
w2(X) to w2(X); r1(X), then the value of X that is read by transaction T1 changes, 
because in the second ordering the value of X is read by r1(X) after it is changed by 
w2(X), whereas in the first ordering the value is read before it is changed. This is 
called a read-write conflict. The other type is called a write-write conflict and is 
illustrated by the case where we change the order of two operations such as w1(X); 
w2(X) to w2(X); w1(X). For a write-write conflict, the last value of X will differ 
because in one case it is written by T2 and in the other case by T1. Notice that two 
read operations are not conflicting because changing their order makes no differ-
ence in outcome.

The rest of this section covers some theoretical definitions concerning schedules. A 
schedule S of n transactions T1, T2, … , Tn is said to be a complete schedule if the 
following conditions hold:

  1. The operations in S are exactly those operations in T1, T2, … , Tn, including 
a commit or abort operation as the last operation for each transaction in 
the schedule.

  2. For any pair of operations from the same transaction Ti, their relative order 
of appearance in S is the same as their order of appearance in Ti.

  3. For any two conflicting operations, one of the two must occur before the 
other in the schedule.10

The preceding condition (3) allows for two nonconflicting operations to occur in 
the schedule without defining which occurs first, thus leading to the definition of 
a schedule as a partial order of the operations in the n transactions.11 However, a 
total order must be specified in the schedule for any pair of conflicting operations 
(condition 3) and for any pair of operations from the same transaction (condi-
tion 2). Condition 1 simply states that all operations in the transactions must 
appear in the complete schedule. Since every transaction has either committed 
or aborted, a complete schedule will not contain any active transactions at the end 
of the schedule.

In general, it is difficult to encounter complete schedules in a transaction process-
ing system because new transactions are continually being submitted to the system. 
Hence, it is useful to define the concept of the committed projection C(S) of a 
schedule S, which includes only the operations in S that belong to committed trans-
actions—that is, transactions Ti whose commit operation ci is in S.

10Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.
11In practice, most schedules have a total order of operations. If parallel processing is employed, it is 
theoretically possible to have schedules with partially ordered nonconflicting operations.
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20.4.2 Characterizing Schedules Based on Recoverability
For some schedules it is easy to recover from transaction and system failures, 
whereas for other schedules the recovery process can be quite involved. In some 
cases, it is even not possible to recover correctly after a failure. Hence, it is impor-
tant to characterize the types of schedules for which recovery is possible, as well as 
those for which recovery is relatively simple. These characterizations do not actually 
provide the recovery algorithm; they only attempt to theoretically characterize the 
different types of schedules.

First, we would like to ensure that, once a transaction T is committed, it should 
never be necessary to roll back T. This ensures that the durability property of 
transactions is not violated (see Section 20.3). The schedules that theoretically 
meet this criterion are called recoverable schedules. A schedule where a committed 
transaction may have to be rolled back during recovery is called nonrecoverable 
and hence should not be permitted by the DBMS. The condition for a recoverable 
schedule is as follows: A schedule S is recoverable if no transaction T in S commits 
until all transactions T′ that have written some item X that T reads have commit-
ted. A transaction T reads from transaction T′ in a schedule S if some item X is 
first written by T′ and later read by T. In addition, T′ should not have been aborted 
before T reads item X, and there should be no transactions that write X after T′ 
writes it and before T reads it (unless those transactions, if any, have aborted 
before T reads X).

Some recoverable schedules may require a complex recovery process, as we shall 
see, but if sufficient information is kept (in the log), a recovery algorithm can be 
devised for any recoverable schedule. The (partial) schedules Sa and Sb from the 
preceding section are both recoverable, since they satisfy the above definition. Con-
sider the schedule Sa′ given below, which is the same as schedule Sa except that two 
commit operations have been added to Sa:

Sa′: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa′ is recoverable, even though it suffers from the lost update problem; this problem 
is handled by serializability theory (see Section 20.5). However, consider the two 
(partial) schedules Sc and Sd that follow:

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;
Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;
Se: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before T1 
commits. The problem occurs if T1 aborts after the c2 operation in Sc; then the value 
of X that T2 read is no longer valid and T2 must be aborted after it is committed, 
leading to a schedule that is not recoverable. For the schedule to be recoverable, the 
c2 operation in Sc must be postponed until after T1 commits, as shown in Sd. If T1 
aborts instead of committing, then T2 should also abort as shown in Se, because the 
value of X it read is no longer valid. In Se, aborting T2 is acceptable since it has not 
committed yet, which is not the case for the nonrecoverable schedule Sc.
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In a recoverable schedule, no committed transaction ever needs to be rolled back, 
and so the definition of a committed transaction as durable is not violated. How-
ever, it is possible for a phenomenon known as cascading rollback (or cascading 
abort) to occur in some recoverable schedules, where an uncommitted transaction 
has to be rolled back because it read an item from a transaction that failed. This is 
illustrated in schedule Se, where transaction T2 has to be rolled back because it read 
item X from T1, and T1 then aborted.

Because cascading rollback can be time-consuming—since numerous transactions 
can be rolled back (see Chapter 22)—it is important to characterize the schedules 
where this phenomenon is guaranteed not to occur. A schedule is said to be 
cascadeless, or to avoid cascading rollback, if every transaction in the schedule 
reads only items that were written by committed transactions. In this case, all items 
read will not be discarded because the transactions that wrote them have commit-
ted, so no cascading rollback will occur. To satisfy this criterion, the r2(X) com-
mand in schedules Sd and Se must be postponed until after T1 has committed (or 
aborted), thus delaying T2 but ensuring no cascading rollback if T1 aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in 
which transactions can neither read nor write an item X until the last transaction 
that wrote X has committed (or aborted). Strict schedules simplify the recovery 
process. In a strict schedule, the process of undoing a write_item(X) operation of an 
aborted transaction is simply to restore the before image (old_value or BFIM) of 
data item X. This simple procedure always works correctly for strict schedules, but 
it may not work for recoverable or cascadeless schedules. For example, consider 
schedule Sf :

Sf : w1(X, 5); w2(X, 8); a1;

Suppose that the value of X was originally 9, which is the before image stored in the 
system log along with the w1(X, 5) operation. If T1 aborts, as in Sf, the recovery pro-
cedure that restores the before image of an aborted write operation will restore the 
value of X to 9, even though it has already been changed to 8 by transaction T2, thus 
leading to potentially incorrect results. Although schedule Sf is cascadeless, it is not 
a strict schedule, since it permits T2 to write item X even though the transaction T1 
that last wrote X had not yet committed (or aborted). A strict schedule does not 
have this problem.

It is important to note that any strict schedule is also cascadeless, and any cascade-
less schedule is also recoverable. Suppose we have i transactions T1, T2, … , Ti, and 
their number of operations are n1, n2, … , ni, respectively. If we make a set of all 
possible schedules of these transactions, we can divide the schedules into two dis-
joint subsets: recoverable and nonrecoverable. The cascadeless schedules will be a 
subset of the recoverable schedules, and the strict schedules will be a subset of the 
cascadeless schedules. Thus, all strict schedules are cascadeless, and all cascadeless 
schedules are recoverable.

Most recovery protocols allow only strict schedules, so that the recovery process 
itself is not complicated (see Chapter 22).
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20.5  Characterizing Schedules Based  
on Serializability

In the previous section, we characterized schedules based on their recoverability 
properties. Now we characterize the types of schedules that are always considered 
to be correct when concurrent transactions are executing. Such schedules are known 
as serializable schedules. Suppose that two users—for example, two airline reserva-
tions agents—submit to the DBMS transactions T1 and T2 in Figure 20.2 at approx-
imately the same time. If no interleaving of operations is permitted, there are only 
two possible outcomes:

  1. Execute all the operations of transaction T1 (in sequence) followed by all the 
operations of transaction T2 (in sequence).

  2. Execute all the operations of transaction T2 (in sequence) followed by all the 
operations of transaction T1 (in sequence).

These two schedules—called serial schedules—are shown in Figures 20.5(a) and (b), 
respectively. If interleaving of operations is allowed, there will be many possible 
orders in which the system can execute the individual operations of the trans-
actions. Two possible schedules are shown in Figure 20.5(c). The concept of 
 serializability of schedules is used to identify which schedules are correct when 
transaction executions have interleaving of their operations in the schedules. This 
section defines serializability and discusses how it may be used in practice.

20.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figures 20.5(a) and (b) are called serial because the operations 
of each transaction are executed consecutively, without any interleaved operations 
from the other transaction. In a serial schedule, entire transactions are performed 
in serial order: T1 and then T2 in Figure 20.5(a), and T2 and then T1 in Figure 20.5(b). 
Schedules C and D in Figure 20.5(c) are called nonserial because each sequence 
interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the sched-
ule, all the operations of T are executed consecutively in the schedule; otherwise, the 
schedule is called nonserial. Therefore, in a serial schedule, only one transaction at a 
time is active—the commit (or abort) of the active transaction initiates execution of 
the next transaction. No interleaving occurs in a serial schedule. One reasonable 
assumption we can make, if we consider the transactions to be independent, is that 
every serial schedule is considered correct. We can assume this because every transac-
tion is assumed to be correct if executed on its own (according to the consistency 
preservation property of Section 20.3). Hence, it does not matter which transaction is 
executed first. As long as every transaction is executed from beginning to end in 
isolation from the operations of other transactions, we get a correct end result.

The problem with serial schedules is that they limit concurrency by prohibiting 
interleaving of operations. In a serial schedule, if a transaction waits for an I/O 
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operation to complete, we cannot switch the CPU processor to another transaction, 
thus wasting valuable CPU processing time. Additionally, if some transaction T is 
long, the other transactions must wait for T to complete all its operations before 
starting. Hence, serial schedules are unacceptable in practice. However, if we can 
determine which other schedules are equivalent to a serial schedule, we can allow 
these schedules to occur.

To illustrate our discussion, consider the schedules in Figure 20.5, and assume that 
the initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2. 
After executing transactions T1 and T2, we would expect the database values to be 
X = 89 and Y = 93, according to the meaning of the transactions. Sure enough, exe-
cuting either of the serial schedules A or B gives the correct results. Now consider 

(a)

Schedule A Schedule B

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;
write_item(X );

Time
Y := Y + N;
write_item(Y );

 (b)

read_item(X );
X := X + M;
write_item(X );

Time read_item(X );
X := X – N;

write_item(X );
read_item(Y );

Y := Y + N;
write_item(Y );

(c) T1 T2

Schedule C Schedule D

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;

write_item(X );

Time

Y := Y + N;
write_item(Y );

read_item(X );
X := X + M;
write_item(X );

read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

T1 T2

T1 T2 T1 T2

Time

Figure 20.5 
Examples of serial and nonserial schedules involving transactions T1 and T2. (a) Serial schedule A: T1 followed by 
T2. (b) Serial schedule B: T2 followed by T1. (c) Two nonserial schedules C and D with interleaving of operations.
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the nonserial schedules C and D. Schedule C (which is the same as Figure 20.3(a)) 
gives the results X = 92 and Y = 93, in which the X value is erroneous, whereas 
schedule D gives the correct results.

Schedule C gives an erroneous result because of the lost update problem discussed 
in Section 20.1.3; transaction T2 reads the value of X before it is changed by transac-
tion T1, so only the effect of T2 on X is reflected in the database. The effect of T1 on 
X is lost, overwritten by T2, leading to the incorrect result for item X. However, 
some nonserial schedules give the correct expected result, such as schedule D. We 
would like to determine which of the nonserial schedules always give a correct 
result and which may give erroneous results. The concept used to characterize 
schedules in this manner is that of serializability of a schedule.

The definition of serializable schedule is as follows: A schedule S of n transactions 
is serializable if it is equivalent to some serial schedule of the same n transactions. 
We will define the concept of equivalence of schedules shortly. Notice that there 
are n! possible serial schedules of n transactions and many more possible non-
serial schedules. We can form two disjoint groups of the nonserial schedules—
those that are equivalent to one (or more) of the serial schedules and hence are 
serializable, and those that are not equivalent to any serial schedule and hence are 
not serializable.

Saying that a nonserial schedule S is serializable is equivalent to saying that it is cor-
rect, because it is equivalent to a serial schedule, which is considered correct. The 
remaining question is: When are two schedules considered equivalent?

There are several ways to define schedule equivalence. The simplest but least sat-
isfactory definition involves comparing the effects of the schedules on the data-
base. Two schedules are called result equivalent if they produce the same final 
state of the database. However, two different schedules may accidentally produce 
the same final state. For example, in Figure 20.6, schedules S1 and S2 will produce 
the same final database state if they execute on a database with an initial value of 
X = 100; however, for other initial values of X, the schedules are not result equiva-
lent. Additionally, these schedules execute different transactions, so they defi-
nitely should not be considered equivalent. Hence, result equivalence alone 
cannot be used to define equivalence of schedules. The safest and most general 
approach to defining schedule equivalence is to focus only on the read_item and 
write_item operations of the transactions, and not make any assumptions about 
the other internal operations included in the transactions. For two schedules to 
be equivalent, the operations applied to each data item affected by the schedules 
should be applied to that item in both schedules in the same order. Two defini-
tions of equivalence of schedules are generally used: conflict equivalence and view 
equivalence. We discuss conflict equivalence next, which is the more commonly 
used definition.

Conflict Equivalence of Two Schedules. Two schedules are said to be conflict 
equivalent if the relative order of any two conflicting operations is the same in both 
schedules. Recall from Section 20.4.1 that two operations in a schedule are said to 
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conflict if they belong to different transactions, access the same database item, and 
either both are write_item operations or one is a write_item and the other a read_item. 
If two conflicting operations are applied in different orders in two schedules, the 
effect can be different on the database or on the transactions in the schedule, and 
hence the schedules are not conflict equivalent. For example, as we discussed in 
Section 20.4.1, if a read and write operation occur in the order r1(X), w2(X) in 
schedule S1, and in the reverse order w2(X), r1(X) in schedule S2, the value read by 
r1(X) can be different in the two schedules. Similarly, if two write operations occur 
in the order w1(X), w2(X) in S1, and in the reverse order w2(X), w1(X) in S2, the next 
r(X) operation in the two schedules will read potentially different values; or if these 
are the last operations writing item X in the schedules, the final value of item X in 
the database will be different.

Serializable Schedules. Using the notion of conflict equivalence, we define a 
schedule S to be serializable12 if it is (conflict) equivalent to some serial schedule S′. 
In such a case, we can reorder the nonconflicting operations in S until we form the 
equivalent serial schedule S′. According to this definition, schedule D in Fig-
ure 20.5(c) is equivalent to the serial schedule A in Figure 20.5(a). In both schedules, 
the read_item(X) of T2 reads the value of X written by T1, whereas the other read_item 
operations read the database values from the initial database state. Additionally, T1 
is the last transaction to write Y, and T2 is the last transaction to write X in both 
schedules. Because A is a serial schedule and schedule D is equivalent to A, D is a 
serializable schedule. Notice that the operations r1(Y) and w1(Y) of schedule D do 
not conflict with the operations r2(X) and w2(X), since they access different data 
items. Therefore, we can move r1(Y), w1(Y) before r2(X), w2(X), leading to the 
equivalent serial schedule T1, T2.

Schedule C in Figure 20.5(c) is not equivalent to either of the two possible serial 
schedules A and B, and hence is not serializable. Trying to reorder the operations of 
schedule C to find an equivalent serial schedule fails because r2(X) and w1(X) con-
flict, which means that we cannot move r2(X) down to get the equivalent serial 
schedule T1, T2. Similarly, because w1(X) and w2(X) conflict, we cannot move w1(X) 
down to get the equivalent serial schedule T2, T1.

Another, more complex definition of equivalence—called view equivalence, which 
leads to the concept of view serializability—is discussed in Section 20.5.4.

S1

read_item(X );
X := X + 10;
write_item(X );

S2

read_item(X );
X := X * 1.1;
write_item (X );

Figure 20.6 
Two schedules that are result 
equivalent for the initial value 
of X = 100 but are not result 
equivalent in general.

12We will use serializable to mean conflict serializable. Another definition of serializable used in 
 practice (see Section 20.6) is to have repeatable reads, no dirty reads, and no phantom records 
(see Section 22.7.1 for a discussion on phantoms).
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20.5.2 Testing for Serializability of a Schedule
There is a simple algorithm for determining whether a particular schedule is (con-
flict) serializable or not. Most concurrency control methods do not actually test for 
serializability. Rather protocols, or rules, are developed that guarantee that any 
schedule that follows these rules will be serializable. Some methods guarantee seri-
alizability in most cases, but do not guarantee it absolutely, in order to reduce the 
overhead of concurrency control. We discuss the algorithm for testing conflict seri-
alizability of schedules here to gain a better understanding of these concurrency 
control protocols, which are discussed in Chapter 21.

Algorithm 20.1 can be used to test a schedule for conflict serializability. The algo-
rithm looks at only the read_item and write_item operations in a schedule to con-
struct a precedence graph (or serialization graph), which is a directed graph  
G = (N, E) that consists of a set of nodes N = {T1, T2, … , Tn } and a set of directed 
edges E = {e1, e2, … , em }. There is one node in the graph for each transaction Ti in 
the schedule. Each edge ei in the graph is of the form (Tj → Tk ), 1 ≤ j ≤ n, 1 ≤ k ≤ n, 
where Tj is the starting node of ei and Tk is the ending node of ei. Such an edge 
from node Tj to node Tk is created by the algorithm if a pair of conflicting operations 
exist in Tj and Tk and the conflicting operation in Tj appears in the schedule before 
the conflicting operation in Tk.

Algorithm 20.1. Testing Conflict Serializability of a Schedule S

  1. For each transaction Ti participating in schedule S, create a node labeled 
Ti in the precedence graph.

  2. For each case in S where Tj executes a read_item(X) after Ti executes a 
write_item(X), create an edge (Ti → Tj) in the precedence graph.

  3. For each case in S where Tj executes a write_item(X) after Ti executes a 
read_item(X), create an edge (Ti → Tj) in the precedence graph.

  4. For each case in S where Tj executes a write_item(X) after Ti executes a 
write_item(X), create an edge (Ti → Tj) in the precedence graph.

  5. The schedule S is serializable if and only if the precedence graph has no 
cycles.

The precedence graph is constructed as described in Algorithm 20.1. If there is a 
cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no 
cycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((Tj → Tk), 
(Tk → Tp), … , (Ti → Tj)) with the property that the starting node of each edge—
except the first edge—is the same as the ending node of the previous edge, and the 
starting node of the first edge is the same as the ending node of the last edge (the 
sequence starts and ends at the same node).

In the precedence graph, an edge from Ti to Tj means that transaction Ti must come 
before transaction Tj in any serial schedule that is equivalent to S, because two con-
flicting operations appear in the schedule in that order. If there is no cycle in the pre-
cedence graph, we can create an equivalent serial schedule S′ that is equivalent to S, 
by ordering the transactions that participate in S as follows: Whenever an edge exists 
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in the precedence graph from Ti to Tj, Ti must appear before Tj in the equivalent serial 
schedule S′.13 Notice that the edges (Ti → Tj) in a precedence graph can optionally be 
labeled by the name(s) of the data item(s) that led to creating the edge. Figure 20.7 
shows such labels on the edges. When checking for a cycle, the labels are not relevant.

In general, several serial schedules can be equivalent to S if the precedence graph for 
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that 
we cannot create any equivalent serial schedule, so S is not serializable. The prece-
dence graphs created for schedules A to D, respectively, in Figure 20.5 appear in 
Figures 20.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable. 
The graph for schedule D has no cycle, so it is serializable, and the equivalent serial 
schedule is T1 followed by T2. The graphs for schedules A and B have no cycles, as 
expected, because the schedules are serial and hence serializable.

Another example, in which three transactions participate, is shown in Figure 20.8. 
Figure 20.8(a) shows the read_item and write_item operations in each transaction. 
Two schedules E and F for these transactions are shown in Figures 20.8(b) and (c), 
respectively, and the precedence graphs for schedules E and F are shown in Fig-
ures 20.8(d) and (e). Schedule E is not serializable because the corresponding prece-
dence graph has cycles. Schedule F is serializable, and the serial schedule equivalent 
to F is shown in Figure 20.8(e). Although only one equivalent serial schedule exists 
for F, in general there may be more than one equivalent serial schedule for a serial-
izable schedule. Figure 20.8(f) shows a precedence graph representing a schedule 

13This process of ordering the nodes of an acrylic graph is known as topological sorting.

T1(a)

(c)

(b)

(d)

T2

T1

X

X

X

X

T2

T1 T2

T1 T2

X

Figure 20.7 
Constructing the precedence graphs for schedules A to D from Figure 20.5 to test  
for conflict serializability. (a) Precedence graph for serial schedule A. (b) Precedence  
graph for serial schedule B. (c) Precedence graph for schedule C (not serializable).  
(d) Precedence graph for schedule D (serializable, equivalent to schedule A).
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Transaction T1

read_item(X );

write_item(X );

read_item(Y );

write_item(Y );

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

Transaction T3

read_item(Y );

read_item(Z );

write_item(Y );

write_item(Z );

read_item(Y );
read_item(Z );

write_item(Y);
write_item(Z );

Transaction T2

read_item(Z );

read_item(Y );

write_item(Y );

read_item(X );

write_item(X );

read_item(Z );
read_item(Y );
write_item(Y );

read_item(X );

write_item(X );

(b)

(a)

Schedule E

Time

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

read_item(Y );
read_item(Z );

write_item(Y );
write_item(Z );

read_item(Z );

read_item(Y );
write_item(Y );
read_item(X );
write_item(X );

(c)

Schedule F

Time

Transaction T1 Transaction T2 Transaction T3

Transaction T1 Transaction T2 Transaction T3

Figure 20.8 
Another example of serializability testing. (a) The read and write operations of three  
transactions T1, T2, and T3. (b) Schedule E. (c) Schedule F.
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that has two equivalent serial schedules. To find an equivalent serial schedule, start 
with a node that does not have any incoming edges, and then make sure that the 
node order for every edge is not violated.

20.5.3 How Serializability Is Used for Concurrency Control
As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S 
is (conflict) equivalent to a serial schedule—is tantamount to saying that S is cor-
rect. Being serializable is distinct from being serial, however. A serial schedule rep-
resents inefficient processing because no interleaving of operations from different 
transactions is permitted. This can lead to low CPU utilization while a transaction 
waits for disk I/O, or for a long transaction to delay other transactions, thus slowing 
down transaction processing considerably. A serializable schedule gives the benefits 
of concurrent execution without giving up any correctness. In practice, it is difficult 
to test for the serializability of a schedule. The interleaving of operations from con-
current transactions—which are usually executed as processes by the operating 
system—is typically determined by the operating system scheduler, which allocates 

(d)

X

Y

Y Y, Z

T1

Equivalent serial schedules

None

Reason

Cycle X(T1        T2),Y(T2        T1)
Cycle X(T1        T2),YZ (T2       T3),Y(T3        T1)

(e) X,Y

Y Y, Z

Equivalent serial schedules

(f) Equivalent serial schedules

T2

T3

T1 T2

T3

T1 T2

T3

T2T3 T1

T2T3 T1

T1T3 T2

Figure 20.8 (continued) 
Another example of serializability testing. (d) Precedence graph for schedule E. (e) Precedence graph for  
schedule F. (f) Precedence graph with two equivalent serial schedules.
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resources to all processes. Factors such as system load, time of transaction submis-
sion, and priorities of processes contribute to the ordering of operations in a sched-
ule. Hence, it is difficult to determine how the operations of a schedule will be 
interleaved beforehand to ensure serializability. 

If transactions are executed at will and then the resulting schedule is tested for seri-
alizability, we must cancel the effect of the schedule if it turns out not to be serializ-
able. This is a serious problem that makes this approach impractical. The approach 
taken in most commercial DBMSs is to design protocols (sets of rules) that—if 
followed by every individual transaction or if enforced by a DBMS concurrency 
control subsystem—will ensure serializability of all schedules in which the transac-
tions participate. Some protocols may allow nonserializable schedules in rare cases 
to reduce the overhead of the concurrency control method (see Section 20.6).

Another problem is that transactions are submitted continuously to the system, so 
it is difficult to determine when a schedule begins and when it ends. Serializability 
theory can be adapted to deal with this problem by considering only the committed 
projection of a schedule S. Recall from Section 20.4.1 that the committed projection 
C(S) of a schedule S includes only the operations in S that belong to committed 
transactions. We can theoretically define a schedule S to be serializable if its com-
mitted projection C(S) is equivalent to some serial schedule, since only committed 
transactions are guaranteed by the DBMS.

In Chapter 21, we discuss a number of different concurrency control protocols 
that guarantee serializability. The most common technique, called two-phase 
locking, is based on locking data items to prevent concurrent transactions from 
interfering with one another, and enforcing an additional condition that guaran-
tees serializability. This is used in some commercial DBMSs. We will also discuss 
a protocol based on the concept of snapshot isolation that ensures serializability 
in most but not all cases; this is used in some commercial DBMSs because it has 
less overhead than the two-phase locking protocol. Other protocols have been 
proposed14; these include timestamp ordering, where each transaction is assigned 
a unique timestamp and the protocol ensures that any conflicting operations are 
executed in the order of the transaction timestamps; multiversion protocols, 
which are based on maintaining multiple versions of data items; and optimistic 
(also called certification or validation) protocols, which check for possible serial-
izability violations after the transactions terminate but before they are permitted 
to commit.

20.5.4 View Equivalence and View Serializability
In Section 20.5.1, we defined the concepts of conflict equivalence of schedules and 
conflict serializability. Another less restrictive definition of equivalence of sched-
ules is called view equivalence. This leads to another definition of serializability 

14These other protocols have not been incorporated much into commercial systems; most relational 
DBMSs use some variation of two-phase locking or snapshot isolation.
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called view serializability. Two schedules S and S′ are said to be view equivalent if 
the following three conditions hold:

  1. The same set of transactions participates in S and S′, and S and S′ include the 
same operations of those transactions.

  2. For any operation ri(X) of Ti in S, if the value of X read by the operation has 
been written by an operation wj(X) of Tj (or if it is the original value of X 
before the schedule started), the same condition must hold for the value of X 
read by operation ri(X) of Ti in S′.

  3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then 
wk(Y) of Tk must also be the last operation to write item Y in S′.

The idea behind view equivalence is that, as long as each read operation of a trans-
action reads the result of the same write operation in both schedules, the write 
operations of each transaction must produce the same results. The read operations 
are hence said to see the same view in both schedules. Condition 3 ensures that the 
final write operation on each data item is the same in both schedules, so the data-
base state should be the same at the end of both schedules. A schedule S is said to be 
view serializable if it is view equivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a 
condition known as the constrained write assumption (or no blind writes) holds 
on all transactions in the schedule. This condition states that any write operation 
wi(X) in Ti is preceded by a ri(X) in Ti and that the value written by wi(X) in Ti 
depends only on the value of X read by ri(X). This assumes that computation of 
the new value of X is a function f(X) based on the old value of X read from the 
database. A blind write is a write operation in a transaction T on an item X that is 
not dependent on the old value of X, so it is not preceded by a read of X in the 
transaction T.

The definition of view serializability is less restrictive than that of conflict serializ-
ability under the unconstrained write assumption, where the value written by an 
operation wi(X) in Ti can be independent of its old value. This is possible when 
blind writes are allowed, and it is illustrated by the following schedule Sg of three 
transactions T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sg the operations w2(X) and w3(X) are blind writes, since T2 and T3 do not read 
the value of X. The schedule Sg is view serializable, since it is view equivalent to the 
serial schedule T1, T2, T3. However, Sg is not conflict serializable, since it is not con-
flict equivalent to any serial schedule (as an exercise, the reader should construct 
the serializability graph for Sg and check for cycles). It has been shown that any 
conflict-serializable schedule is also view serializable but not vice versa, as illus-
trated by the preceding example. There is an algorithm to test whether a schedule S 
is view serializable or not. However, the problem of testing for view serializability 
has been shown to be NP-hard, meaning that finding an efficient polynomial time 
algorithm for this problem is highly unlikely.
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20.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a 
condition for ensuring the correctness of concurrent executions. Some applica-
tions can produce schedules that are correct by satisfying conditions less strin-
gent than either conflict serializability or view serializability. An example is the 
type of transactions known as debit-credit transactions—for example, those 
that apply deposits and withdrawals to a data item whose value is the current 
balance of a bank account. The semantics of debit-credit operations is that they 
update the value of a data item X by either subtracting from or adding to the 
value of the data item. Because addition and subtraction operations are com-
mutative—that is, they can be applied in any order—it is possible to produce 
correct schedules that are not serializable. For example, consider the following 
transactions, each of which may be used to transfer an amount of money 
between two bank accounts:

T1: r1(X); X :{equal} X − 10; w1(X); r1(Y); Y :{equal} Y + 10; w1(Y);
T2: r2(Y); Y :{equal} Y − 20; w2(Y); r2(X); X :{equal} X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

With the additional knowledge, or semantics, that the operations between each 
ri(I) and wi(I) are commutative, we know that the order of executing the 
sequences consisting of (read, update, write) is not important as long as each 
(read, update, write) sequence by a particular transaction Ti on a particular item 
I is not interrupted by conflicting operations. Hence, the schedule Sh is consid-
ered to be correct even though it is not serializable. Researchers have been work-
ing on extending concurrency control theory to deal with cases where 
serializability is considered to be too restrictive as a condition for correctness of 
schedules. Also, in certain domains of applications, such as computer-aided 
design (CAD) of complex systems like aircraft, design transactions last over a 
long time period. In such applications, more relaxed schemes of concurrency 
control have been proposed to maintain consistency of the database, such as 
eventual consistency. We shall discuss eventual consistency in the context of dis-
tributed databases in Chapter 23.

20.6 Transaction Support in SQL
In this section, we give a brief introduction to transaction support in SQL. There 
are many more details, and the newer standards have more commands for trans-
action processing. The basic definition of an SQL transaction is similar to our 
already defined concept of a transaction. That is, it is a logical unit of work and is 
guaranteed to be atomic. A single SQL statement is always considered to be 
atomic—either it completes execution without an error or it fails and leaves the 
database unchanged.
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With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is 
done implicitly when particular SQL statements are encountered. However, every 
transaction must have an explicit end statement, which is either a COMMIT or a 
ROLLBACK. Every transaction has certain characteristics attributed to it. These 
characteristics are specified by a SET TRANSACTION statement in SQL. The charac-
teristics are the access mode, the diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is 
READ WRITE, unless the isolation level of READ UNCOMMITTED is specified (see 
below), in which case READ ONLY is assumed. A mode of READ WRITE allows select, 
update, insert, delete, and create commands to be executed. A mode of READ ONLY, 
as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, 
which indicates the number of conditions that can be held simultaneously in the 
diagnostic area. These conditions supply feedback information (errors or excep-
tions) to the user or program on the n most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>, 
where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED, 
REPEATABLE READ, or SERIALIZABLE.15 The default isolation level is SERIALIZABLE, 
although some systems use READ COMMITTED as their default. The use of the term 
SERIALIZABLE here is based on not allowing violations that cause dirty read, unre-
peatable read, and phantoms,16 and it is thus not identical to the way serializability 
was defined earlier in Section 20.5. If a transaction executes at a lower isolation level 
than SERIALIZABLE, then one or more of the following three violations may occur:

  1. Dirty read. A transaction T1 may read the update of a transaction T2, which 
has not yet committed. If T2 fails and is aborted, then T1 would have read a 
value that does not exist and is incorrect.

  2. Nonrepeatable read. A transaction T1 may read a given value from a table. 
If another transaction T2 later updates that value and T1 reads that value 
again, T1 will see a different value.

  3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps 
based on some condition specified in the SQL WHERE-clause. Now suppose 
that a transaction T2 inserts a new row r that also satisfies the WHERE-clause 
condition used in T1, into the table used by T1. The record r is called a 
 phantom record because it was not there when T1 starts but is there when 
T1 ends. T1 may or may not see the phantom, a row that previously did not 
exist. If the equivalent serial order is T1 followed by T2, then the record r 
should not be seen; but if it is T2 followed by T1,then the phantom record 
should be in the result given to T1. If the system cannot ensure the correct 
behavior, then it does not deal with the phantom record problem.

15These are similar to the isolation levels discussed briefly at the end of Section 20.3.
16The dirty read and unrepeatable read problems were discussed in Section 20.1.3. Phantoms are dis-
cussed in Section 22.7.1.
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Table 20.1 summarizes the possible violations for the different isolation levels. An 
entry of Yes indicates that a violation is possible and an entry of No indicates that it 
is not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is the 
most restrictive in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
 READ WRITE
 DIAGNOSTIC SIZE 5
 ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)
 VALUES ('Robert', 'Smith', '991004321', 2, 35000);
EXEC SQL UPDATE EMPLOYEE
 SET Salary = Salary * 1.1 WHERE Dno = 2;
EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table 
and then updating the salary of all employees who work in department 2. If an error 
occurs on any of the SQL statements, the entire transaction is rolled back. This 
implies that any updated salary (by this transaction) would be restored to its previ-
ous value and that the newly inserted row would be removed.

As we have seen, SQL provides a number of transaction-oriented features. The 
DBA or database programmers can take advantage of these options to try improv-
ing transaction performance by relaxing serializability if that is acceptable for 
their applications.

Snapshot Isolation. Another isolation level, known as snapshot isolation, is 
used in some commercial DBMSs, and some concurrency control protocols exist 
that are based on this concept. The basic definition of snapshot isolation is that a 
transaction sees the data items that it reads based on the committed values of the 
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since 

Table 20.1 Possible Violations Based on Isolation Levels as Defined in SQL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No
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the database transaction, or in some cases the database statement, will only see the 
records that were committed in the database at the time the transaction starts. Any 
insertions, deletions, or updates that occur after the transaction starts will not be 
seen by the transaction. We will discuss a concurrency control protocol based on 
this concept in Chapter 21.

20.7 Summary
In this chapter, we discussed DBMS concepts for transaction processing. We intro-
duced the concept of a database transaction and the operations relevant to transac-
tion processing in Section 20.1. We compared single-user systems to multiuser 
systems and then presented examples of how uncontrolled execution of concurrent 
transactions in a multiuser system can lead to incorrect results and database values 
in Section 20.1.1. We also discussed the various types of failures that may occur 
during transaction execution in Section 20.1.4.

Next, in Section 20.2, we introduced the typical states that a transaction passes 
through during execution, and discussed several concepts that are used in recovery 
and concurrency control methods. The system log (Section 20.2.2) keeps track of 
database accesses, and the system uses this information to recover from failures. A 
transaction can succeed and reach its commit point, or it can fail and has to be 
rolled back. A committed transaction (Section 20.2.3) has its changes permanently 
recorded in the database. In Section 20.3, we presented an overview of the desirable 
properties of transactions—atomicity, consistency preservation, isolation, and 
durability—which are often referred to as the ACID properties.

Then we defined a schedule (or history) as an execution sequence of the opera-
tions of several transactions with interleaving in Section 20.4.1. We character-
ized schedules in terms of their recoverability in Section 20.4.2. Recoverable 
schedules ensure that, once a transaction commits, it never needs to be undone. 
Cascadeless schedules add an additional condition to ensure that no aborted 
transaction requires the cascading abort of other transactions. Strict schedules 
provide an even stronger condition that allows a simple recovery scheme con-
sisting of restoring the old values of items that have been changed by an aborted 
transaction.

Then in Section 20.5 we defined the equivalence of schedules and saw that a serial-
izable schedule is equivalent to some serial schedule. We defined the concepts of 
conflict equivalence and view equivalence. A serializable schedule is considered 
correct. We presented an algorithm for testing the (conflict) serializability of a 
schedule in Section 20.5.2. We discussed why testing for serializability is impracti-
cal in a real system, although it can be used to define and verify concurrency con-
trol protocols in Section 20.5.3, and we briefly mentioned less restrictive definitions 
of schedule equivalence in Sections 20.5.4 and 20.5.5. Finally, in Section 20.6, we 
gave a brief overview of how transaction concepts are used in practice within SQL, 
and we introduced the concept of snapshot isolation, which is used in several com-
mercial DBMSs.
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Review Questions
 20.1. What is meant by the concurrent execution of database transactions in a 

multiuser system? Discuss why concurrency control is needed, and give 
informal examples.

 20.2. Discuss the different types of failures. What is meant by catastrophic failure?

 20.3. Discuss the actions taken by the read_item and write_item operations on a 
database.

 20.4. Draw a state diagram and discuss the typical states that a transaction goes 
through during execution.

 20.5. What is the system log used for? What are the typical kinds of records in a 
system log? What are transaction commit points, and why are they 
important?

 20.6. Discuss the atomicity, durability, isolation, and consistency preservation 
properties of a database transaction.

 20.7. What is a schedule (history)? Define the concepts of recoverable, cascade-
less, and strict schedules, and compare them in terms of their recoverability.

 20.8. Discuss the different measures of transaction equivalence. What is the dif-
ference between conflict equivalence and view equivalence?

 20.9. What is a serial schedule? What is a serializable schedule? Why is a serial 
schedule considered correct? Why is a serializable schedule considered 
correct?

 20.10. What is the difference between the constrained write and the unconstrained 
write assumptions? Which is more realistic?

 20.11. Discuss how serializability is used to enforce concurrency control in a data-
base system. Why is serializability sometimes considered too restrictive as a 
measure of correctness for schedules?

 20.12. Describe the four levels of isolation in SQL. Also discuss the concept of 
snapshot isolation and its effect on the phantom record problem.

 20.13. Define the violations caused by each of the following: dirty read, nonrepeat-
able read, and phantoms.

Exercises
 20.14. Change transaction T2 in Figure 20.2(b) to read

read_item(X);
X := X + M;
if X > 90 then exit
else write_item(X);
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  Discuss the final result of the different schedules in Figures 20.3(a) and (b), 
where M = 2 and N = 2, with respect to the following questions: Does adding 
the above condition change the final outcome? Does the outcome obey the 
implied consistency rule (that the capacity of X is 90)?

 20.15. Repeat Exercise 20.14, adding a check in T1 so that Y does not exceed 90.

 20.16. Add the operation commit at the end of each of the transactions T1 and T2 
in Figure 20.2, and then list all possible schedules for the modified transac-
tions. Determine which of the schedules are recoverable, which are cascade-
less, and which are strict.

 20.17. List all possible schedules for transactions T1 and T2 in Figure 20.2, and 
determine which are conflict serializable (correct) and which are not.

 20.18. How many serial schedules exist for the three transactions in Figure 20.8(a)? 
What are they? What is the total number of possible schedules?

 20.19. Write a program to create all possible schedules for the three transactions 
in Figure 20.8(a), and to determine which of those schedules are conflict 
serializable and which are not. For each conflict-serializable schedule, 
your program should print the schedule and list all equivalent serial 
schedules.

 20.20. Why is an explicit transaction end statement needed in SQL but not an 
explicit begin statement?

 20.21. Describe situations where each of the different isolation levels would be use-
ful for transaction processing.

 20.22. Which of the following schedules is (conflict) serializable? For each serializ-
able schedule, determine the equivalent serial schedules.

a. r1(X); r3(X); w1(X); r2(X); w3(X);

b. r1(X); r3(X); w3(X); w1(X); r2(X);

c. r3(X); r2(X); w3(X); r1(X); w1(X);

d. r3(X); r2(X); r1(X); w3(X); w1(X);

 20.23. Consider the three transactions T1, T2, and T3, and the schedules S1 and S2 
given below. Draw the serializability (precedence) graphs for S1 and S2, and 
state whether each schedule is serializable or not. If a schedule is serializable, 
write down the equivalent serial schedule(s).

T1: r1 (X); r1 (Z); w1 (X);
T2: r2 (Z); r2 (Y); w2 (Z); w2 (Y);
T3: r3 (X); r3 (Y); w3 (Y);
S1: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z); 

w2 (Y);
S2: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); w2 (Z); w3 (Y); 

w2 (Y);
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 20.24. Consider schedules S3, S4, and S5 below. Determine whether each schedule is 
strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictest 
recoverability condition that each schedule satisfies.)

S3: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); c1; w3 (Y); c3; r2 (Y);  
w2 (Z); w2 (Y); c2;

S4: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z);  
w2 (Y); c1; c2; c3;

S5: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); c1; w2 (Z); w3 (Y); 
w2 (Y); c3; c2;

Selected Bibliography
The concept of serializability and related ideas to maintain consistency in a data-
base were introduced in Gray et al. (1975). The concept of the database transaction 
was first discussed in Gray (1981). Gray won the coveted ACM Turing Award in 
1998 for his work on database transactions and implementation of transactions in 
relational DBMSs. Bernstein, Hadzilacos, and Goodman (1988) focus on concur-
rency control and recovery techniques in both centralized and distributed database 
systems; it is an excellent reference. Papadimitriou (1986) offers a more theoretical 
perspective. A large reference book of more than a thousand pages by Gray and 
Reuter (1993) offers a more practical perspective of transaction processing concepts 
and techniques. Elmagarmid (1992) offers collections of research papers on trans-
action processing for advanced applications. Transaction support in SQL is 
described in Date and Darwen (1997). View serializability is defined in Yannakakis 
(1984). Recoverability of schedules and reliability in databases is discussed in 
Hadzilacos (1983, 1988). Buffer replacement policies are discussed in Chou and 
DeWitt (1985). Snapshot isolation is discussed in Ports and Grittner (2012).
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21
Concurrency Control  

Techniques

In this chapter, we discuss a number of concurrency 
control techniques that are used to ensure the nonin-

terference or isolation property of concurrently executing transactions. Most of 
these techniques ensure serializability of schedules—which we defined in Sec-
tion 21.5—using concurrency control protocols (sets of rules) that guarantee serializ-
ability. One important set of protocols—known as two-phase locking protocols— 
employs the technique of locking data items to prevent multiple transactions from 
accessing the items concurrently; a number of locking protocols are described in 
Sections 21.1 and 21.3.2. Locking protocols are used in some commercial DBMSs, 
but they are considered to have high overhead. Another set of concurrency control 
protocols uses timestamps. A timestamp is a unique identifier for each transaction, 
generated by the system. Timestamp values are generated in the same order as the 
transaction start times. Concurrency control protocols that use timestamp ordering 
to ensure serializability are introduced in Section 21.2. In Section 21.3, we discuss 
multiversion concurrency control protocols that use multiple versions of a data 
item. One multiversion protocol extends timestamp order to multiversion time-
stamp ordering (Section 21.3.1), and another extends timestamp order to two-
phase locking (Section 21.3.2). In Section 21.4, we present a protocol based on the 
concept of validation or certification of a transaction after it executes its opera-
tions; these are sometimes called optimistic protocols, and they also assume that 
multiple versions of a data item can exist. In Section 21.4, we discuss a protocol that 
is based on the concept of snapshot isolation, which can utilize techniques similar 
to those proposed in validation-based and multiversion methods; these protocols 
are used in a number of commercial DBMSs and in certain cases are considered to 
have lower overhead than locking-based protocols.

chapter 21
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Another factor that affects concurrency control is the granularity of the data 
items—that is, what portion of the database a data item represents. An item can be 
as small as a single attribute (field) value or as large as a disk block, or even a whole 
file or the entire database. We discuss granularity of items and a multiple granular-
ity concurrency control protocol, which is an extension of two-phase locking, in 
Section 21.5. In Section 21.6, we describe concurrency control issues that arise 
when indexes are used to process transactions, and in Section 21.7 we discuss some 
additional concurrency control concepts. Section 21.8 summarizes the chapter.

It is sufficient to read Sections 21.1, 21.5, 21.6, and 21.7, and possibly 21.3.2, if your 
main interest is an introduction to the concurrency control techniques that are 
based on locking.

21.1  Two-Phase Locking Techniques  
for Concurrency Control

Some of the main techniques used to control concurrent execution of transactions 
are based on the concept of locking data items. A lock is a variable associated with 
a data item that describes the status of the item with respect to possible operations 
that can be applied to it. Generally, there is one lock for each data item in the data-
base. Locks are used as a means of synchronizing the access by concurrent transac-
tions to the database items. In Section 21.1.1, we discuss the nature and types of 
locks. Then, in Section 21.1.2, we present protocols that use locking to guarantee 
serializability of transaction schedules. Finally, in Section 21.1.3, we describe two 
problems associated with the use of locks—deadlock and starvation—and show 
how these problems are handled in concurrency control protocols.

21.1.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking con-
cepts gradually, first we discuss binary locks, which are simple but are also too 
restrictive for database concurrency control purposes and so are not used much. 
Then we discuss shared/exclusive locks—also known as read/write locks—which 
provide more general locking capabilities and are used in database locking schemes. 
In Section 21.3.2, we describe an additional type of lock called a certify lock, and we 
show how it can be used to improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocked 
(or 1 and 0, for simplicity). A distinct lock is associated with each database item X. 
If the value of the lock on X is 1, item X cannot be accessed by a database operation 
that requests the item. If the value of the lock on X is 0, the item can be accessed 
when requested, and the lock value is changed to 1. We refer to the current value 
(or state) of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item, are used with binary locking. A trans-
action requests access to an item X by first issuing a lock_item(X) operation. If 
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LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the 
transaction locks the item) and the transaction is allowed to access item X. When 
the transaction is through using the item, it issues an unlock_item(X) operation, 
which sets LOCK(X) back to 0 (unlocks the item) so that X may be accessed by 
other transactions. Hence, a binary lock enforces mutual exclusion on the data 
item. A description of the lock_item(X) and unlock_item(X) operations is shown in 
Figure 21.1.

Notice that the lock_item and unlock_item operations must be implemented as indi-
visible units (known as critical sections in operating systems); that is, no interleav-
ing should be allowed once a lock or unlock operation is started until the operation 
terminates or the transaction waits. In Figure 21.1, the wait command within the 
lock_item(X) operation is usually implemented by putting the transaction in a wait-
ing queue for item X until X is unlocked and the transaction can be granted access 
to it. Other transactions that also want to access X are placed in the same queue. 
Hence, the wait command is considered to be outside the lock_item operation.

It is simple to implement a binary lock; all that is needed is a binary-valued variable, 
LOCK, associated with each data item X in the database. In its simplest form, each 
lock can be a record with three fields: <Data_item_name, LOCK, Locking_transaction> 
plus a queue for transactions that are waiting to access the item. The system needs 
to maintain only these records for the items that are currently locked in a lock table, 
which could be organized as a hash file on the item name. Items not in the lock 
table are considered to be unlocked. The DBMS has a lock manager subsystem to 
keep track of and control access to locks.

If the simple binary locking scheme described here is used, every transaction must 
obey the following rules:

  1. A transaction T must issue the operation lock_item(X) before any  
read_item(X) or write_item(X) operations are performed in T.

  2. A transaction T must issue the operation unlock_item(X) after all read_item(X) 
and write_item(X) operations are completed in T.

lock_item(X):
B: if LOCK(X) = 0 (*item is unlocked*)
  then LOCK(X ) ←1 (*lock the item*)
 else
  begin
  wait (until LOCK(X ) = 0
   and the lock manager wakes up the transaction);
  go to B
  end;
unlock_item(X):
 LOCK(X ) ← 0; (* unlock the item *)
 if any transactions are waiting
  then wakeup one of the waiting transactions;

Figure 21.1 
Lock and unlock operations 
for binary locks.
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  3. A transaction T will not issue a lock_item(X) operation if it already holds the 
lock on item X.1

  4. A transaction T will not issue an unlock_item(X) operation unless it already 
holds the lock on item X.

These rules can be enforced by the lock manager module of the DBMS. Between the 
lock_item(X) and unlock_item(X) operations in transaction T, T is said to hold the 
lock on item X. At most one transaction can hold the lock on a particular item. 
Thus no two transactions can access the same item concurrently.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking 
scheme is too restrictive for database items because at most one transaction can 
hold a lock on a given item. We should allow several transactions to access the 
same item X if they all access X for reading purposes only. This is because read 
operations on the same item by different transactions are not conflicting (see Sec-
tion 21.4.1). However, if a transaction is to write an item X, it must have exclusive 
access to X. For this purpose, a different type of lock, called a multiple-mode 
lock, is used. In this scheme—called shared/exclusive or read/write locks—there 
are three locking operations: read_lock(X), write_lock(X), and unlock(X). A lock 
associated with an item X, LOCK(X), now has three possible states: read-locked, 
write-locked, or unlocked. A read-locked item is also called share-locked because 
other transactions are allowed to read the item, whereas a write-locked item is 
called exclusive-locked because a single transaction exclusively holds the lock on 
the item.

One method for implementing the preceding operations on a read/write lock is 
to keep track of the number of transactions that hold a shared (read) lock on an 
item in the lock table, as well as a list of transaction ids that hold a shared lock. 
Each record in the lock table will have four fields: <Data_item_name, LOCK,  
No_of_reads, Locking_transaction(s)>. The system needs to maintain lock records 
only for locked items in the lock table. The value (state) of LOCK is either read-
locked or write-locked, suitably coded (if we assume no records are kept in 
the  lock table for unlocked items). If LOCK(X) = write-locked, the value of 
 locking_transaction(s) is a single transaction that holds the exclusive (write) lock 
on X. If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one 
or more transactions that hold the shared (read) lock on X. The three operations 
read_lock(X), write_lock(X), and unlock(X) are described in Figure 21.2.2 As before, 
each of the three locking operations should be considered indivisible; no inter-
leaving should be allowed once one of the operations is started until either the 
operation terminates by granting the lock or the transaction is placed in a wait-
ing queue for the item.

1This rule may be removed if we modify the lock_item (X) operation in Figure 21.1 so that if the item is 
currently locked by the requesting transaction, the lock is granted.
2These algorithms do not allow upgrading or downgrading of locks, as described later in this section. The 
reader can extend the algorithms to allow these additional operations.
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When we use the shared/exclusive locking scheme, the system must enforce the 
following rules:

  1. A transaction T must issue the operation read_lock(X) or write_lock(X) before 
any read_item(X) operation is performed in T.

  2. A transaction T must issue the operation write_lock(X) before any write_item(X) 
operation is performed in T.

  3. A transaction T must issue the operation unlock(X) after all read_item(X) and 
write_item(X) operations are completed in T.3

read_lock(X):
B: if LOCK(X) = “unlocked”
  then begin LOCK(X) ← “read-locked”;
   no_of_reads(X) ← 1
   end
 else if LOCK(X) = “read-locked”
  then no_of_reads(X) ← no_of_reads(X) + 1
 else begin
   wait (until LOCK(X) = “unlocked”
    and the lock manager wakes up the transaction);
   go to B
   end;
write_lock(X):
B: if LOCK(X) = “unlocked”
  then LOCK(X) ← “write-locked”
 else begin
   wait (until LOCK(X) = “unlocked”
    and the lock manager wakes up the transaction);
   go to B
   end;
unlock (X):
 if LOCK(X) = “write-locked”
  then begin LOCK(X) ← “unlocked”;
    wakeup one of the waiting transactions, if any
    end
 else it LOCK(X) = “read-locked”
  then begin
    no_of_reads(X) ← no_of_reads(X) −1;
    if no_of_reads(X) = 0
     then begin LOCK(X) = “unlocked”;
       wakeup one of the waiting transactions, if any
       end
    end;

Figure 21.2 
Locking and unlocking 
operations for two-
mode (read/write, or 
shared/exclusive) 
locks.

3This rule may be relaxed to allow a transaction to unlock an item, then lock it again later. However, two-
phase locking does not allow this.
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  4. A transaction T will not issue a read_lock(X) operation if it already holds a 
read (shared) lock or a write (exclusive) lock on item X. This rule may be 
relaxed for downgrading of locks, as we discuss shortly.

  5. A transaction T will not issue a write_lock(X) operation if it already holds a 
read (shared) lock or write (exclusive) lock on item X. This rule may also be 
relaxed for upgrading of locks, as we discuss shortly.

  6. A transaction T will not issue an unlock(X) operation unless it already holds 
a read (shared) lock or a write (exclusive) lock on item X.

Conversion (Upgrading, Downgrading) of Locks. It is desirable to relax con-
ditions 4 and 5 in the preceding list in order to allow lock conversion; that is, a 
transaction that already holds a lock on item X is allowed under certain conditions 
to convert the lock from one locked state to another. For example, it is possible for 
a transaction T to issue a read_lock(X) and then later to upgrade the lock by issuing 
a write_lock(X) operation. If T is the only transaction holding a read lock on X at the 
time it issues the write_lock(X) operation, the lock can be upgraded; otherwise, the 
transaction must wait. It is also possible for a transaction T to issue a write_lock(X) 
and then later to downgrade the lock by issuing a read_lock(X) operation. When 
upgrading and downgrading of locks is used, the lock table must include transac-
tion identifiers in the record structure for each lock (in the locking_transaction(s) 
field) to store the information on which transactions hold locks on the item. The 
descriptions of the read_lock(X) and write_lock(X) operations in Figure 21.2 must be 
changed appropriately to allow for lock upgrading and downgrading. We leave this 
as an exercise for the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not 
guarantee serializability of schedules on its own. Figure 21.3 shows an example 
where the preceding locking rules are followed but a nonserializable schedule may 
result. This is because in Figure 21.3(a) the items Y in T1 and X in T2 were unlocked 
too early. This allows a schedule such as the one shown in Figure 21.3(c) to occur, 
which is not a serializable schedule and hence gives incorrect results. To guarantee 
serializability, we must follow an additional protocol concerning the positioning of 
locking and unlocking operations in every transaction. The best-known protocol, 
two-phase locking, is described in the next section.

21.1.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking opera-
tions (read_lock, write_lock) precede the first unlock operation in the transaction.4 

Such a transaction can be divided into two phases: an expanding or growing 
(first) phase, during which new locks on items can be acquired but none can be 
released; and a shrinking (second) phase, during which existing locks can be 
released but no new locks can be acquired. If lock conversion is allowed, then 
upgrading of locks (from read-locked to write-locked) must be done during the 

4This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter 23).
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expanding phase, and downgrading of locks (from write-locked to read-locked) 
must be done in the shrinking phase.

Transactions T1 and T2 in Figure 21.3(a) do not follow the two-phase locking pro-
tocol because the write_lock(X) operation follows the unlock(Y) operation in T1, and 
similarly the write_lock(Y) operation follows the unlock(X) operation in T2. If we 
enforce two-phase locking, the transactions can be rewritten as T1′ and T2′, as 
shown in Figure 21.4. Now, the schedule shown in Figure 21.3(c) is not permitted 
for T1′ and T2′ (with their modified order of locking and unlocking operations) 
under the rules of locking described in Section 21.1.1 because T1′ will issue its  
write_lock(X) before it unlocks item Y; consequently, when T2′ issues its read_lock(X), 
it is forced to wait until T1′ releases the lock by issuing an unlock (X) in the schedule. 
However, this can lead to deadlock (see Section 21.1.3).

(a) T1
Initial values: X=20, Y=30

Result serial schedule T1

followed by T2: X=50, Y=80

Result of serial schedule T2

followed by T1: X=70, Y=50

read_lock(Y );
read_item(Y );
unlock(Y );
write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

(b)

(c)

Time

read_lock(Y );
read_item(Y );
unlock(Y );

Result of schedule S:
X=50, Y=50
(nonserializable)

T2

T1 T2

Figure 21.3 
Transactions that do not obey two-phase locking. 
(a) Two transactions T1 and T2. (b) Results of 
possible serial schedules of T1 and T2. (c) A  
nonserializable schedule S that uses locks.
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It can be proved that, if every transaction in a schedule follows the two-phase lock-
ing protocol, the schedule is guaranteed to be serializable, obviating the need to test 
for serializability of schedules. The locking protocol, by enforcing two-phase lock-
ing rules, also enforces serializability.

Two-phase locking may limit the amount of concurrency that can occur in a sched-
ule because a transaction T may not be able to release an item X after it is through 
using it if T must lock an additional item Y later; or, conversely, T must lock the 
additional item Y before it needs it so that it can release X. Hence, X must remain 
locked by T until all items that the transaction needs to read or write have been 
locked; only then can X be released by T. Meanwhile, another transaction seeking to 
access X may be forced to wait, even though T is done with X; conversely, if Y is 
locked earlier than it is needed, another transaction seeking to access Y is forced to 
wait even though T is not using Y yet. This is the price for guaranteeing serializabil-
ity of all schedules without having to check the schedules themselves.

Although the two-phase locking protocol guarantees serializability (that is, every 
schedule that is permitted is serializable), it does not permit all possible serializable 
schedules (that is, some serializable schedules will be prohibited by the protocol).

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a 
number of variations of two-phase locking (2PL). The technique just described is 
known as basic 2PL. A variation known as conservative 2PL (or static 2PL) 
requires a transaction to lock all the items it accesses before the transaction begins 
execution, by predeclaring its read-set and write-set. Recall from Section 21.1.2 that 
the read-set of a transaction is the set of all items that the transaction reads, and the 
write-set is the set of all items that it writes. If any of the predeclared items needed 
cannot be locked, the transaction does not lock any item; instead, it waits until all 
the items are available for locking. Conservative 2PL is a deadlock-free protocol, as 
we will see in Section 21.1.3 when we discuss the deadlock problem. However, it is 
difficult to use in practice because of the need to predeclare the read-set and write-
set, which is not possible in some situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict 
schedules (see Section 21.4). In this variation, a transaction T does not release any 

read_lock(Y );
read_item(Y );
write_lock(X );
unlock(Y )
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
write_lock(Y );
unlock(X )
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

T1� T2�

Figure 21.4 
Transactions T1′ and T2′, which are the 
same as T1 and T2 in Figure 21.3 but 
follow the two-phase locking protocol. 
Note that they can produce a deadlock.
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of its exclusive (write) locks until after it commits or aborts. Hence, no other trans-
action can read or write an item that is written by T unless T has committed, lead-
ing to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A more 
restrictive variation of strict 2PL is rigorous 2PL, which also guarantees strict 
schedules. In this variation, a transaction T does not release any of its locks (exclu-
sive or shared) until after it commits or aborts, and so it is easier to implement 
than strict 2PL.

Notice the difference between strict and rigorous 2PL: the former holds write-locks 
until it commits, whereas the latter holds all locks (read and write). Also, the differ-
ence between conservative and rigorous 2PL is that the former must lock all its 
items before it starts, so once the transaction starts it is in its shrinking phase; the 
latter does not unlock any of its items until after it terminates (by committing or 
aborting), so the transaction is in its expanding phase until it ends.

Usually the concurrency control subsystem itself is responsible for generating 
the read_lock and write_lock requests. For example, suppose the system is to enforce 
the strict 2PL protocol. Then, whenever transaction T issues a read_item(X), the 
 system calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is 
write_locked by some other transaction T′, the system places T in the waiting queue 
for item X; otherwise, it grants the read_lock(X) request and permits the read_item(X) 
operation of T to execute. On the other hand, if transaction T issues a write_item(X), 
the system calls the write_lock(X) operation on behalf of T. If the state of LOCK(X) is 
write_locked or read_locked by some other transaction T′, the system places T in 
the waiting queue for item X; if the state of LOCK(X) is read_locked and T itself is 
the only transaction holding the read lock on X, the system upgrades the lock to 
write_locked and permits the write_item(X) operation by T. Finally, if the state of 
LOCK(X) is unlocked, the system grants the write_lock(X) request and permits the 
write_item(X) operation to execute. After each action, the system must update its 
lock table appropriately.

Locking is generally considered to have a high overhead, because every read or 
write operation is preceded by a system locking request. The use of locks can also 
cause two additional problems: deadlock and starvation. We discuss these problems 
and their solutions in the next section.

21.1.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is 
waiting for some item that is locked by some other transaction T′ in the set. Hence, 
each transaction in the set is in a waiting queue, waiting for one of the other trans-
actions in the set to release the lock on an item. But because the other transaction is 
also waiting, it will never release the lock. A simple example is shown in Fig-
ure 21.5(a), where the two transactions T1′ and T2′ are deadlocked in a partial 
schedule; T1′ is in the waiting queue for X, which is locked by T2′, whereas T2′ is in 
the waiting queue for Y, which is locked by T1′. Meanwhile, neither T1′ nor T2′ nor 
any other transaction can access items X and Y.
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Deadlock Prevention Protocols. One way to prevent deadlock is to use a deadlock 
prevention protocol.5 One deadlock prevention protocol, which is used in conserva-
tive two-phase locking, requires that every transaction lock all the items it needs in 
advance (which is generally not a practical assumption)—if any of the items cannot be 
obtained, none of the items are locked. Rather, the transaction waits and then tries 
again to lock all the items it needs. Obviously, this solution further limits concurrency. 
A second protocol, which also limits concurrency, involves ordering all the items in the 
database and making sure that a transaction that needs several items will lock them 
according to that order. This requires that the programmer (or the system) is aware of 
the chosen order of the items, which is also not practical in the database context.

A number of other deadlock prevention schemes have been proposed that make a 
decision about what to do with a transaction involved in a possible deadlock situation: 
Should it be blocked and made to wait or should it be aborted, or should the transac-
tion preempt and abort another transaction? Some of these techniques use the concept 
of transaction timestamp TS(T′), which is a unique identifier assigned to each trans-
action. The timestamps are typically based on the order in which transactions are 
started; hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2). 
Notice that the older transaction (which starts first) has the smaller timestamp value. 
Two schemes that prevent deadlock are called wait-die and wound-wait. Suppose that 
transaction Ti tries to lock an item X but is not able to because X is locked by some 
other transaction Tj with a conflicting lock. The rules followed by these schemes are:

 ■ Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; 
otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the 
same timestamp.

 ■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds 
Tj) and restart it later with the same timestamp; otherwise (Ti younger than 
Tj) Ti is allowed to wait.

(a) T1� (b)

read_lock(Y );
read_item(Y );

Time

write_lock(X );

read_lock(X );
read_item(X );

write_lock(Y );

T2�

   T2�T1�

X

Y

Figure 21.5 
Illustrating the deadlock problem. (a) A partial schedule of T1′ and T2′ that is  
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

5These protocols are not generally used in practice, either because of unrealistic assumptions or 
because of their possible overhead. Deadlock detection and timeouts (covered in the following sections) 
are more practical.
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In wait-die, an older transaction is allowed to wait for a younger transaction, whereas 
a younger transaction requesting an item held by an older transaction is aborted and 
restarted. The wound-wait approach does the opposite: A younger transaction is 
allowed to wait for an older one, whereas an older transaction requesting an item held 
by a younger transaction preempts the younger transaction by aborting it. Both 
schemes end up aborting the younger of the two transactions (the transaction that 
started later) that may be involved in a deadlock, assuming that this will waste less 
processing. It can be shown that these two techniques are deadlock-free, since in wait-
die, transactions only wait for younger transactions so no cycle is created. Similarly, in 
wound-wait, transactions only wait for older transactions so no cycle is created. How-
ever, both techniques may cause some transactions to be aborted and restarted need-
lessly, even though those transactions may never actually cause a deadlock.

Another group of protocols that prevent deadlock do not require timestamps. 
These include the no waiting (NW) and cautious waiting (CW) algorithms. In the 
no waiting algorithm, if a transaction is unable to obtain a lock, it is immediately 
aborted and then restarted after a certain time delay without checking whether a 
deadlock will actually occur or not. In this case, no transaction ever waits, so no 
deadlock will occur. However, this scheme can cause transactions to abort and 
restart needlessly. The cautious waiting algorithm was proposed to try to reduce 
the number of needless aborts/restarts. Suppose that transaction Ti tries to lock an 
item X but is not able to do so because X is locked by some other transaction Tj with 
a conflicting lock. The cautious waiting rule is as follows:

 ■ Cautious waiting. If Tj is not blocked (not waiting for some other locked 
item), then Ti is blocked and allowed to wait; otherwise abort Ti.

It can be shown that cautious waiting is deadlock-free, because no transaction will 
ever wait for another blocked transaction. By considering the time b(T) at which 
each blocked transaction T was blocked, if the two transactions Ti and Tj above both 
become blocked and Ti is waiting for Tj, then b(Ti) < b(Tj), since Ti can only wait for 
Tj at a time when Tj is not blocked itself. Hence, the blocking times form a total 
ordering on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection. An alternative approach to dealing with deadlock is 
 deadlock detection, where the system checks if a state of deadlock actually exists. 
This solution is attractive if we know there will be little interference among the 
transactions—that is, if different transactions will rarely access the same items at 
the same time. This can happen if the transactions are short and each transaction 
locks only a few items, or if the transaction load is light. On the other hand, if trans-
actions are long and each transaction uses many items, or if the transaction load is 
heavy, it may be advantageous to use a deadlock prevention scheme.

A simple way to detect a state of deadlock is for the system to construct and main-
tain a wait-for graph. One node is created in the wait-for graph for each transac-
tion that is currently executing. Whenever a transaction Ti is waiting to lock an 
item X that is currently locked by a transaction Tj, a directed edge (Ti → Tj) is cre-
ated in the wait-for graph. When Tj releases the lock(s) on the items that Ti was 
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waiting for, the directed edge is dropped from the wait-for graph. We have a state of 
deadlock if and only if the wait-for graph has a cycle. One problem with this 
approach is the matter of determining when the system should check for a dead-
lock. One possibility is to check for a cycle every time an edge is added to the wait-
for graph, but this may cause excessive overhead. Criteria such as the number of 
currently executing transactions or the period of time several transactions have 
been waiting to lock items may be used instead to check for a cycle. Figure 21.5(b) 
shows the wait-for graph for the (partial) schedule shown in Figure 21.5(a).

If the system is in a state of deadlock, some of the transactions causing the deadlock 
must be aborted. Choosing which transactions to abort is known as victim 
 selection. The algorithm for victim selection should generally avoid selecting trans-
actions that have been running for a long time and that have performed many 
updates, and it should try instead to select transactions that have not made many 
changes (younger transactions).

Timeouts. Another simple scheme to deal with deadlock is the use of timeouts. 
This method is practical because of its low overhead and simplicity. In this method, 
if a transaction waits for a period longer than a system-defined timeout period, the 
system assumes that the transaction may be deadlocked and aborts it—regardless of 
whether a deadlock actually exists.

Starvation. Another problem that may occur when we use locking is starvation, 
which occurs when a transaction cannot proceed for an indefinite period of time 
while other transactions in the system continue normally. This may occur if the 
waiting scheme for locked items is unfair in that it gives priority to some transac-
tions over others. One solution for starvation is to have a fair waiting scheme, such 
as using a first-come-first-served queue; transactions are enabled to lock an item 
in the order in which they originally requested the lock. Another scheme allows 
some transactions to have priority over others but increases the priority of a trans-
action the longer it waits, until it eventually gets the highest priority and proceeds. 
Starvation can also occur because of victim selection if the algorithm selects the 
same transaction as victim repeatedly, thus causing it to abort and never finish exe-
cution. The algorithm can use higher priorities for transactions that have been 
aborted multiple times to avoid this problem. The wait-die and wound-wait 
schemes discussed previously avoid starvation, because they restart a transaction 
that has been aborted with its same original timestamp, so the possibility that the 
same transaction is aborted repeatedly is slim.

21.2  Concurrency Control Based  
on Timestamp Ordering

The use of locking, combined with the 2PL protocol, guarantees serializability of 
schedules. The serializable schedules produced by 2PL have their equivalent serial 
schedules based on the order in which executing transactions lock the items they 
acquire. If a transaction needs an item that is already locked, it may be forced to 
wait until the item is released. Some transactions may be aborted and restarted 
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because of the deadlock problem. A different approach to concurrency control 
involves using transaction timestamps to order transaction execution for an equiv-
alent serial schedule. In Section 21.2.1, we discuss timestamps; and in Section 21.2.2, 
we discuss how serializability is enforced by ordering conflicting operations in dif-
ferent transactions based on the transaction timestamps.

21.2.1 Timestamps
Recall that a timestamp is a unique identifier created by the DBMS to identify a 
transaction. Typically, timestamp values are assigned in the order in which the 
transactions are submitted to the system, so a timestamp can be thought of as the 
transaction start time. We will refer to the timestamp of transaction T as TS(T). 
Concurrency control techniques based on timestamp ordering do not use locks; 
hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that 
is incremented each time its value is assigned to a transaction. The transaction time-
stamps are numbered 1, 2, 3, … in this scheme. A computer counter has a finite 
maximum value, so the system must periodically reset the counter to zero when no 
transactions are executing for some short period of time. Another way to implement 
timestamps is to use the current date/time value of the system clock and ensure that 
no two timestamp values are generated during the same tick of the clock.

21.2.2  The Timestamp Ordering Algorithm  
for Concurrency Control

The idea for this scheme is to enforce the equivalent serial order on the transac-
tions based on their timestamps. A schedule in which the transactions participate 
is then serializable, and the only equivalent serial schedule permitted has the trans-
actions in order of their timestamp values. This is called timestamp ordering 
(TO). Notice how this differs from 2PL, where a schedule is serializable by being 
equivalent to some serial schedule allowed by the locking protocols. In timestamp 
ordering, however, the schedule is equivalent to the particular serial order corre-
sponding to the order of the transaction timestamps. The algorithm allows inter-
leaving of transaction operations, but it must ensure that for each pair of conflicting 
operations in the schedule, the order in which the item is accessed must follow the 
timestamp order. To do this, the algorithm associates with each database item X 
two timestamp (TS) values:

  1. read_TS(X). The read timestamp of item X is the largest timestamp 
among all the timestamps of transactions that have successfully read item 
X—that is, read_TS(X) = TS(T), where T is the youngest transaction that 
has read X successfully.

  2. write_TS(X). The write timestamp of item X is the largest of all the time-
stamps of transactions that have successfully written item X—that is, 
write_TS(X) = TS(T), where T is the youngest transaction that has written 
X successfully. Based on the algorithm, T will also be the last transaction 
to write item X, as we shall see.
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Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a 
read_item(X) or a write_item(X) operation, the basic TO algorithm compares the 
timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp order 
of transaction execution is not violated. If this order is violated, then transaction T 
is aborted and resubmitted to the system as a new transaction with a new time-
stamp. If T is aborted and rolled back, any transaction T1 that may have used a value 
written by T must also be rolled back. Similarly, any transaction T2 that may have 
used a value written by T1 must also be rolled back, and so on. This effect is known 
as cascading rollback and is one of the problems associated with basic TO, since 
the schedules produced are not guaranteed to be recoverable. An additional proto-
col must be enforced to ensure that the schedules are recoverable, cascadeless, or 
strict. We first describe the basic TO algorithm here. The concurrency control algo-
rithm must check whether conflicting operations violate the timestamp ordering in 
the following two cases:

  1. Whenever a transaction T issues a write_item(X) operation, the following 
check is performed:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T 
and reject the operation. This should be done because some younger trans-
action with a timestamp greater than TS(T)—and hence after T in the 
timestamp ordering—has already read or written the value of item X 
before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X) 
operation of T and set write_TS(X) to TS(T).

  2. Whenever a transaction T issues a read_item(X) operation, the following 
check is performed:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. 
This should be done because some younger transaction with timestamp 
greater than TS(T)—and hence after T in the timestamp ordering—has 
already written the value of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and 
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Whenever the basic TO algorithm detects two conflicting operations that occur in 
the incorrect order, it rejects the later of the two operations by aborting the transac-
tion that issued it. The schedules produced by basic TO are hence guaranteed to be 
conflict serializable. As mentioned earlier, deadlock does not occur with timestamp 
ordering. However, cyclic restart (and hence starvation) may occur if a transaction 
is continually aborted and restarted.

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO ensures 
that the schedules are both strict (for easy recoverability) and (conflict) serializable. 
In this variation, a transaction T issues a read_item(X) or write_item(X) such that  
TS(T) > write_TS(X) has its read or write operation delayed until the transaction T′ 
that wrote the value of X (hence TS(T′) = write_TS(X)) has committed or aborted. 
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To implement this algorithm, it is necessary to simulate the locking of an item X that 
has been written by transaction T′ until T′ is either committed or aborted. This 
 algorithm does not cause deadlock, since T waits for T′ only if TS(T) > TS(T′).

Thomas’s Write Rule. A modification of the basic TO algorithm, known as 
Thomas’s write rule, does not enforce conflict serializability, but it rejects fewer 
write operations by modifying the checks for the write_item(X) operation as follows:

  1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

  2. If write_TS(X) > TS(T), then do not execute the write operation but continue 
processing. This is because some transaction with timestamp greater than 
TS(T)—and hence after T in the timestamp ordering—has already written 
the value of X. Thus, we must ignore the write_item(X) operation of T because 
it is already outdated and obsolete. Notice that any conflict arising from this 
situation would be detected by case (1).

  3. If neither the condition in part (1) nor the condition in part (2) occurs, then 
execute the write_item(X) operation of T and set write_TS(X) to TS(T).

21.3  Multiversion Concurrency  
Control Techniques

These protocols for concurrency control keep copies of the old values of a data item 
when the item is updated (written); they are known as multiversion concurrency 
control because several versions (values) of an item are kept by the system. When a 
transaction requests to read an item, the appropriate version is chosen to maintain 
the serializability of the currently executing schedule. One reason for keeping mul-
tiple versions is that some read operations that would be rejected in other tech-
niques can still be accepted by reading an older version of the item to maintain 
serializability. When a transaction writes an item, it writes a new version and the old 
version(s) of the item is retained. Some multiversion concurrency control algo-
rithms use the concept of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to 
maintain multiple versions of the database items. In some cases, older versions can 
be kept in a temporary store. It is also possible that older versions may have to be 
maintained anyway—for example, for recovery purposes. Some database applica-
tions may require older versions to be kept to maintain a history of the changes of 
data item values. The extreme case is a temporal database (see Section 26.2), which 
keeps track of all changes and the times at which they occurred. In such cases, there 
is no additional storage penalty for multiversion techniques, since older versions 
are already maintained.

Several multiversion concurrency control schemes have been proposed. We dis-
cuss two schemes here, one based on timestamp ordering and the other based on 
2PL. In addition, the validation concurrency control method (see Section 21.4) 
also maintains multiple versions, and the snapshot isolation technique used in 
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several commercial systems (see Section 21.4) can be implemented by keeping 
older versions of items in a temporary store.

21.3.1 Multiversion Technique Based on Timestamp Ordering
In this method, several versions X1, X2, … , Xk of each data item X are maintained. 
For each version, the value of version Xi and the following two timestamps associated 
with version Xi are kept:

  1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps 
of transactions that have successfully read version Xi.

  2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transac-
tion that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new ver-
sion Xk+1 of item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to 
TS(T). Correspondingly, when a transaction T is allowed to read the value of version 
Xi, the value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability, the following rules are used:

  1. If transaction T issues a write_item(X) operation, and version i of X has the 
highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T), 
and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise, 
create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

  2. If transaction T issues a read_item(X) operation, find the version i of X that 
has the highest write_TS(Xi) of all versions of X that is also less than or equal 
to TS(T); then return the value of Xi to transaction T, and set the value of 
read_TS(Xi) to the larger of TS(T) and the current read_TS(Xi).

As we can see in case 2, a read_item(X) is always successful, since it finds the appro-
priate version Xi to read based on the write_TS of the various existing versions of X. 
In case 1, however, transaction T may be aborted and rolled back. This happens if T 
attempts to write a version of X that should have been read by another transaction 
T′ whose timestamp is read_TS(Xi); however, T′ has already read version Xi, which 
was written by the transaction with timestamp equal to write_TS(Xi). If this conflict 
occurs, T is rolled back; otherwise, a new version of X, written by transaction T, is 
created. Notice that if T is rolled back, cascading rollback may occur. Hence, to 
ensure recoverability, a transaction T should not be allowed to commit until after 
all the transactions that have written some version that T has read have committed.

21.3.2 Multiversion Two-Phase Locking Using Certify Locks
In this multiple-mode locking scheme, there are three locking modes for an item—
read, write, and certify—instead of just the two modes (read, write) discussed previ-
ously. Hence, the state of LOCK(X) for an item X can be one of read-locked, 
write-locked, certify-locked, or unlocked. In the standard locking scheme, with 
only read and write locks (see Section 21.1.1), a write lock is an exclusive lock. We 
can describe the relationship between read and write locks in the standard scheme 
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by means of the lock compatibility table shown in Figure 21.6(a). An entry of Yes 
means that if a transaction T holds the type of lock specified in the column header 
on item X and if transaction T′ requests the type of lock specified in the row header 
on the same item X, then T′ can obtain the lock because the locking modes are com-
patible. On the other hand, an entry of No in the table indicates that the locks are 
not compatible, so T′ must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item, 
no other transactions can access that item. The idea behind multiversion 2PL is to 
allow other transactions T′ to read an item X while a single transaction T holds a 
write lock on X. This is accomplished by allowing two versions for each item X; one 
version, the committed version, must always have been written by some commit-
ted transaction. The second local version X′ can be created when a transaction T 
acquires a write lock on X. Other transactions can continue to read the committed 
version of X while T holds the write lock. Transaction T can write the value of X′ as 
needed, without affecting the value of the committed version X. However, once T is 
ready to commit, it must obtain a certify lock on all items that it currently holds 
write locks on before it can commit; this is another form of lock upgrading. The 
certify lock is not compatible with read locks, so the transaction may have to delay 
its commit until all its write-locked items are released by any reading transactions 
in order to obtain the certify locks. Once the certify locks—which are exclusive 
locks—are acquired, the committed version X of the data item is set to the value of 
version X′, version X′ is discarded, and the certify locks are then released. The lock 
compatibility table for this scheme is shown in Figure 21.6(b).

In this multiversion 2PL scheme, reads can proceed concurrently with a single write 
operation—an arrangement not permitted under the standard 2PL schemes. The 
cost is that a transaction may have to delay its commit until it obtains exclusive 
certify locks on all the items it has updated. It can be shown that this scheme avoids 
cascading aborts, since transactions are only allowed to read the version X that was 
written by a committed transaction. However, deadlocks may occur, and these 
must be handled by variations of the techniques discussed in Section 21.1.3.

(b) Read Write

Read

Write

Certify

Yes No No

No No No

Yes Yes No

Certify

(a) Read Write

Read

Write No No

Yes No

Figure 21.6 
Lock compatibility tables.  
(a) Lock compatibility table for  
read/write locking scheme.  
(b) Lock compatibility table for 
read/write/certify locking  
scheme.
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21.4  Validation (Optimistic) Techniques and 
Snapshot Isolation Concurrency Control

In all the concurrency control techniques we have discussed so far, a certain degree 
of checking is done before a database operation can be executed. For example, in 
locking, a check is done to determine whether the item being accessed is locked. In 
timestamp ordering, the transaction timestamp is checked against the read and 
write timestamps of the item. Such checking represents overhead during transac-
tion execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or 
 certification techniques, no checking is done while the transaction is executing. 
Several concurrency control methods are based on the validation technique. We 
will describe only one scheme in Section 21.4.1. Then, in Section 21.4.2, we discuss 
concurrency control techniques that are based on the concept of snapshot  isolation. 
The implementations of these concurrency control methods can utilize a combina-
tion of the concepts from validation-based techniques and versioning techniques, 
as well as utilizing timestamps. Some of these methods may suffer from anomalies 
that can violate serializability, but because they generally have lower overhead than 
2PL, they have been implemented in several relational DBMSs.

21.4.1 Validation-Based (Optimistic) Concurrency Control
In this scheme, updates in the transaction are not applied directly to the database 
items on disk until the transaction reaches its end and is validated. During transac-
tion execution, all updates are applied to local copies of the data items that are 
kept for the transaction.6 At the end of transaction execution, a validation phase 
checks whether any of the transaction’s updates violate serializability. Certain 
information needed by the validation phase must be kept by the system. If serializ-
ability is not violated, the transaction is committed and the database is updated 
from the local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this concurrency control protocol:

  1. Read phase. A transaction can read values of committed data items from the 
database. However, updates are applied only to local copies (versions) of the 
data items kept in the transaction workspace.

  2. Validation phase. Checking is performed to ensure that serializability will 
not be violated if the transaction updates are applied to the database.

  3. Write phase. If the validation phase is successful, the transaction updates 
are applied to the database; otherwise, the updates are discarded and the 
transaction is restarted.

The idea behind optimistic concurrency control is to do all the checks at once; hence, 
transaction execution proceeds with a minimum of overhead until the validation 

6Note that this can be considered as keeping multiple versions of items!
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phase is reached. If there is little interference among transactions, most will be vali-
dated successfully. However, if there is much interference, many transactions that 
execute to completion will have their results discarded and must be restarted later; 
under such circumstances, optimistic techniques do not work well. The techniques 
are called optimistic because they assume that little interference will occur and hence 
most transaction will be validated successfully, so that there is no need to do check-
ing during transaction execution. This assumption is generally true in many transac-
tion processing workloads.

The optimistic protocol we describe uses transaction timestamps and also requires 
that the write_sets and read_sets of the transactions be kept by the system. Addition-
ally, start and end times for the three phases need to be kept for each transaction. 
Recall that the write_set of a transaction is the set of items it writes, and the read_set 
is the set of items it reads. In the validation phase for transaction Ti, the protocol 
checks that Ti does not interfere with any recently committed transactions or with 
any other concurrent transactions that have started their validation phase. The vali-
dation phase for Ti checks that, for each such transaction Tj that is either recently 
committed or is in its validation phase, one of the following conditions holds:

  1. Transaction Tj completes its write phase before Ti starts its read phase.

  2. Ti starts its write phase after Tj completes its write phase, and the read_set of 
Ti has no items in common with the write_set of Tj.

  3. Both the read_set and write_set of Ti have no items in common with the 
write_set of Tj, and Tj completes its read phase before Ti completes its 
read phase.

When validating transaction Ti against each one of the transactions Tj, the first 
 condition is checked first since (1) is the simplest condition to check. Only if 
condi tion 1 is false is condition 2 checked, and only if (2) is false is condition 3—the 
most complex to evaluate—checked. If any one of these three conditions holds with 
each transaction Tj, there is no interference and Ti is validated successfully. If none 
of these three conditions holds for any one Tj, the validation of transaction Ti fails 
(because Ti and Tj may violate serializability) and so Ti is aborted and restarted later 
because interference with Tj may have occurred.

21.4.2 Concurrency Control Based on Snapshot Isolation
As we discussed in Section 20.6, the basic definition of snapshot isolation is that a 
transaction sees the data items that it reads based on the committed values of the 
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since 
the database transaction, or, in some cases, the database statement, will only see the 
records that were committed in the database at the time the transaction started. 
Any insertions, deletions, or updates that occur after the transaction starts will not 
be seen by the transaction. In addition, snapshot isolation does not allow the prob-
lems of dirty read and nonrepeatable read to occur. However, certain anomalies 
that violate serializability can occur when snapshot isolation is used as the basis for 
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concurrency control. Although these anomalies are rare, they are very difficult to 
detect and may result in an inconsistent or corrupted database. The interested 
reader can refer to the end-of-chapter bibliography for papers that discuss in detail 
the rare types of anomalies that can occur.

In this scheme, read operations do not require read locks to be applied to the items, 
thus reducing the overhead associated with two-phase locking. However, write 
operations do require write locks. Thus, for transactions that have many reads, the 
performance is much better than 2PL. When writes do occur, the system will have 
to keep track of older versions of the updated items in a temporary version store 
(sometimes known as tempstore), with the timestamps of when the version was 
created. This is necessary so that a transaction that started before the item was writ-
ten can still read the value (version) of the item that was in the database snapshot 
when the transaction started.

To keep track of versions, items that have been updated will have pointers to a list 
of recent versions of the item in the tempstore, so that the correct item can be read 
for each transaction. The tempstore items will be removed when no longer needed, 
so a method to decide when to remove unneeded versions will be needed.

Variations of this method have been used in several commercial and open source 
DBMSs, including Oracle and PostGRES. If the users require guaranteed serializ-
ability, then the problems with anomalies that violate serializability will have to be 
solved by the programmers/software engineers by analyzing the set of transactions 
to determine which types of anomalies can occur, and adding checks that do not 
permit these anomalies. This can place a burden on the software developers when 
compared to the DBMS enforcing serializability in all cases.

Variations of snapshot isolation (SI) techniques, known as serializable snapshot 
isolation (SSI), have been proposed and implemented in some of the DBMSs that 
use SI as their primary concurrency control method. For example, recent versions of 
the PostGRES DBMS allow the user to choose between basic SI and SSI. The tradeoff 
is ensuring full serializability with SSI versus living with possible rare anomalies but 
having better performance with basic SI. The interested reader is referred to the end-
of-chapter bibliography for more complete discussions of these topics.

21.5  Granularity of Data Items and  
Multiple Granularity Locking

All concurrency control techniques assume that the database is formed of a number 
of named data items. A database item could be chosen to be one of the following:

 ■ A database record

 ■ A field value of a database record

 ■ A disk block

 ■ A whole file

 ■ The whole database

https://hemanthrajhemu.github.io



 21.5 Granularity of Data Items and Multiple Granularity Locking  801

The particular choice of data item type can affect the performance of concurrency 
control and recovery. In Section 21.5.1, we discuss some of the tradeoffs with regard 
to choosing the granularity level used for locking; and in Section 21.5.2, we discuss 
a multiple granularity locking scheme, where the granularity level (size of the data 
item) may be changed dynamically.

21.5.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity 
refers to small item sizes, whereas coarse granularity refers to large item sizes. Sev-
eral tradeoffs must be considered in choosing the data item size. We will discuss 
data item size in the context of locking, although similar arguments can be made for 
other concurrency control techniques.

First, notice that the larger the data item size is, the lower the degree of concurrency 
permitted. For example, if the data item size is a disk block, a transaction T that 
needs to lock a single record B must lock the whole disk block X that contains B 
because a lock is associated with the whole data item (block). Now, if another trans-
action S wants to lock a different record C that happens to reside in the same disk 
block X in a conflicting lock mode, it is forced to wait. If the data item size was a 
single record instead of a disk block, transaction S would be able to proceed, because 
it would be locking a different data item (record).

On the other hand, the smaller the data item size is, the more the number of items 
in the database. Because every item is associated with a lock, the system will have a 
larger number of active locks to be handled by the lock manager. More lock and 
unlock operations will be performed, causing a higher overhead. In addition, more 
storage space will be required for the lock table. For timestamps, storage is required 
for the read_TS and write_TS for each data item, and there will be similar overhead 
for handling a large number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item 
size? The answer is that it depends on the types of transactions involved. If a typical 
transaction accesses a small number of records, it is advantageous to have the data 
item granularity be one record. On the other hand, if a transaction typically accesses 
many records in the same file, it may be better to have block or file granularity so 
that the transaction will consider all those records as one (or a few) data items.

21.5.2 Multiple Granularity Level Locking
Since the best granularity size depends on the given transaction, it seems appropri-
ate that a database system should support multiple levels of granularity, where the 
granularity level can be adjusted dynamically for various mixes of transactions. Fig-
ure 21.7 shows a simple granularity hierarchy with a database containing two files, 
each file containing several disk pages, and each page containing several records. 
This can be used to illustrate a multiple granularity level 2PL protocol, with 
shared/exclusive locking modes, where a lock can be requested at any level. How-
ever, additional types of locks will be needed to support such a protocol efficiently.
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Consider the following scenario, which refers to the example in Figure 21.7. Sup-
pose transaction T1 wants to update all the records in file f1, and T1 requests and is 
granted an exclusive lock for f1. Then all of f1’s pages (p11 through p1n)—and the 
records contained on those pages—are locked in exclusive mode. This is beneficial 
for T1 because setting a single file-level lock is more efficient than setting n page-
level locks or having to lock each record individually. Now suppose another trans-
action T2 only wants to read record r1nj from page p1n of file f1; then T2 would 
request a shared record-level lock on r1nj. However, the database system (that is, the 
transaction manager or, more specifically, the lock manager) must verify the com-
patibility of the requested lock with already held locks. One way to verify this is to 
traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a conflicting lock 
is held on any of those items, then the lock request for r1nj is denied and T2 is 
blocked and must wait. This traversal would be fairly efficient.

However, what if transaction T2’s request came before transaction T1’s request? In 
this case, the shared record lock is granted to T2 for r1nj, but when T1’s file-level lock 
is requested, it can be time-consuming for the lock manager to check all nodes 
(pages and records) that are descendants of node f1 for a lock conflict. This would 
be very inefficient and would defeat the purpose of having multiple granularity 
level locks.

To make multiple granularity level locking practical, additional types of locks, 
called intention locks, are needed. The idea behind intention locks is for a transac-
tion to indicate, along the path from the root to the desired node, what type of lock 
(shared or exclusive) it will require from one of the node’s descendants. There are 
three types of intention locks:

  1. Intention-shared (IS) indicates that one or more shared locks will be 
requested on some descendant node(s).

  2. Intention-exclusive (IX) indicates that one or more exclusive locks will be 
requested on some descendant node(s).

db

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk
. . . . . . . . .

. . .

. . . . . . . . . . . .

. . .

. . .

p11 p12

f1

p1n p21 p22 p2m

f2

Figure 21.7 
A granularity hierarchy for illustrating multiple granularity level locking.
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  3. Shared-intention-exclusive (SIX) indicates that the current node is locked in 
shared mode but that one or more exclusive locks will be requested on some 
descendant node(s).

The compatibility table of the three intention locks, and the actual shared and 
exclusive locks, is shown in Figure 21.8. In addition to the three types of intention 
locks, an appropriate locking protocol must be used. The multiple granularity 
locking (MGL) protocol consists of the following rules:

  1. The lock compatibility (based on Figure 21.8) must be adhered to.

  2. The root of the tree must be locked first, in any mode.

  3. A node N can be locked by a transaction T in S or IS mode only if the parent 
node N is already locked by transaction T in either IS or IX mode.

  4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the 
parent of node N is already locked by transaction T in either IX or SIX mode.

  5. A transaction T can lock a node only if it has not unlocked any node (to 
enforce the 2PL protocol).

  6. A transaction T can unlock a node, N, only if none of the children of node N 
are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state 
the conditions when a transaction may lock a given node in any of the lock modes. 
Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable sched-
ules. Basically, the locking starts from the root and goes down the tree until the 
node that needs to be locked is encountered, whereas unlocking starts from the 
locked node and goes up the tree until the root itself is unlocked. To illustrate the 
MGL protocol with the database hierarchy in Figure 21.7, consider the following 
three transactions:

  1. T1 wants to update record r111 and record r211.

  2. T2 wants to update all records on page p12.

  3. T3 wants to read record r11j and the entire f2 file.

IS

IX

S

SIX

X

IS

Yes

Yes

Yes

Yes

No

IX

Yes

No

Yes

No

No

S

No

Yes

Yes

No

No

SIX

No

No

Yes

No

No

X

No

No

No

No

No
Figure 21.8 
Lock compatibility matrix for 
multiple granularity locking.

https://hemanthrajhemu.github.io



804 Chapter 21 Concurrency Control Techniques

Figure 21.9 shows a possible serializable schedule for these three transactions. 
Only the lock and unlock operations are shown. The notation <lock_type>(<item>) 
is used to display the locking operations in the schedule.

The multiple granularity level protocol is especially suited when processing a 
mix of transactions that include (1) short transactions that access only a few 
items (records or fields) and (2) long transactions that access entire files. In 
this environment, less transaction blocking and less locking overhead are 
incurred by such a protocol when compared to a single-level granularity lock-
ing approach.

IX(db)
IX(f1)

T1

IX(p11)
X(r111)

IX(f2)
IX(p21)
X(p211)

unlock(r211)
unlock(p21)
unlock(f2)

unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)

T3

IS(db)
IS(f1)
IS(p11)

S(r11j)

S(f2)

unlock(r11j)
unlock(p11)
unlock(f1)
unlock(f2)
unlock(db)

IX(db)

T2

IX(f1)
X(p12)

unlock(p12)
unlock(f1)
unlock(db)

Figure 21.9 
Lock operations to 
illustrate a serializable 
schedule.
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21.6  Using Locks for Concurrency  
Control in Indexes

Two-phase locking can also be applied to B-tree and B+-tree indexes (see Chap-
ter 19), where the nodes of an index correspond to disk pages. However, holding 
locks on index pages until the shrinking phase of 2PL could cause an undue 
amount of transaction blocking because searching an index always starts at the 
root. For example, if a transaction wants to insert a record (write operation), the 
root would be locked in exclusive mode, so all other conflicting lock requests for 
the index must wait until the transaction enters its shrinking phase. This blocks all 
other transactions from accessing the index, so in practice other approaches to 
locking an index must be used.

The tree structure of the index can be taken advantage of when developing a con-
currency control scheme. For example, when an index search (read operation) is 
being executed, a path in the tree is traversed from the root to a leaf. Once a lower-
level node in the path has been accessed, the higher-level nodes in that path will not 
be used again. So once a read lock on a child node is obtained, the lock on the par-
ent node can be released. When an insertion is being applied to a leaf node (that is, 
when a key and a pointer are inserted), then a specific leaf node must be locked in 
exclusive mode. However, if that node is not full, the insertion will not cause 
changes to higher-level index nodes, which implies that they need not be locked 
exclusively.

A conservative approach for insertions would be to lock the root node in exclusive 
mode and then to access the appropriate child node of the root. If the child node is 
not full, then the lock on the root node can be released. This approach can be 
applied all the way down the tree to the leaf, which is typically three or four levels 
from the root. Although exclusive locks are held, they are soon released. An alterna-
tive, more optimistic approach would be to request and hold shared locks on the 
nodes leading to the leaf node, with an exclusive lock on the leaf. If the insertion 
causes the leaf to split, insertion will propagate to one or more higher-level nodes. 
Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the B+-tree, called the 
B-link tree. In a B-link tree, sibling nodes on the same level are linked at every level. 
This allows shared locks to be used when requesting a page and requires that the 
lock be released before accessing the child node. For an insert operation, the shared 
lock on a node would be upgraded to exclusive mode. If a split occurs, the parent 
node must be relocked in exclusive mode. One complication is for search opera-
tions executed concurrently with the update. Suppose that a concurrent update 
operation follows the same path as the search and inserts a new entry into the leaf 
node. Additionally, suppose that the insert causes that leaf node to split. When the 
insert is done, the search process resumes, following the pointer to the desired leaf, 
only to find that the key it is looking for is not present because the split has moved 
that key into a new leaf node, which would be the right sibling of the original leaf 

https://hemanthrajhemu.github.io



806 Chapter 21 Concurrency Control Techniques

node. However, the search process can still succeed if it follows the pointer (link) in 
the original leaf node to its right sibling, where the desired key has been moved.

Handling the deletion case, where two or more nodes from the index tree merge, is 
also part of the B-link tree concurrency protocol. In this case, locks on the nodes to 
be merged are held as well as a lock on the parent of the two nodes to be merged.

21.7 Other Concurrency Control Issues
In this section, we discuss some other issues relevant to concurrency control. In 
Section 21.7.1, we discuss problems associated with insertion and deletion of 
records and we revisit the phantom problem, which may occur when records are 
inserted. This problem was described as a potential problem requiring a concur-
rency control measure in Section 20.6. In Section 21.7.2, we discuss problems that 
may occur when a transaction outputs some data to a monitor before it commits, 
and then the transaction is later aborted.

21.7.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed 
until after the item is created and the insert operation is completed. In a locking 
environment, a lock for the item can be created and set to exclusive (write) mode; 
the lock can be released at the same time as other write locks would be released, 
based on the concurrency control protocol being used. For a timestamp-based pro-
tocol, the read and write timestamps of the new item are set to the timestamp of the 
creating transaction.

Next, consider a deletion operation that is applied on an existing data item. For 
locking protocols, again an exclusive (write) lock must be obtained before the trans-
action can delete the item. For timestamp ordering, the protocol must ensure that no 
later transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is 
being inserted by some transaction T satisfies a condition that a set of records 
accessed by another transaction T′ must satisfy. For example, suppose that transac-
tion T is inserting a new EMPLOYEE record whose Dno = 5, whereas transaction T′ 
is accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary 
values to calculate the personnel budget for department 5). If the equivalent serial 
order is T followed by T′, then T′ must read the new EMPLOYEE record and include 
its Salary in the sum calculation. For the equivalent serial order T′ followed by T, the 
new salary should not be included. Notice that although the transactions logically 
conflict, in the latter case there is really no record (data item) in common between 
the two transactions, since T′ may have locked all the records with Dno = 5 before T 
inserted the new record. This is because the record that causes the conflict is a 
phantom record that has suddenly appeared in the database on being inserted. If 
other operations in the two transactions conflict, the conflict due to the phantom 
record may not be recognized by the concurrency control protocol.
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One solution to the phantom record problem is to use index locking, as discussed 
in Section 21.6. Recall from Chapter 19 that an index includes entries that have an 
attribute value plus a set of pointers to all records in the file with that value. For 
example, an index on Dno of EMPLOYEE would include an entry for each distinct 
Dno value plus a set of pointers to all EMPLOYEE records with that value. If the index 
entry is locked before the record itself can be accessed, then the conflict on the 
phantom record can be detected, because transaction T′ would request a read lock 
on the index entry for Dno = 5, and T would request a write lock on the same entry 
before it could place the locks on the actual records. Since the index locks conflict, 
the phantom conflict would be detected.

A more general technique, called predicate locking, would lock access to all records 
that satisfy an arbitrary predicate (condition) in a similar manner; however, predi-
cate locks have proved to be difficult to implement efficiently. If the concurrency 
control method is based on snapshot isolation (see Section 21.4.2), then the trans-
action that reads the items will access the database snapshot at the time the transac-
tion starts; any records inserted after that will not be retrieved by the transaction.

21.7.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output 
to an interactive device, such as a monitor screen, before they are committed. The 
problem is that a user can input a value of a data item to a transaction T that is 
based on some value written to the screen by transaction T′, which may not have 
committed. This dependency between T and T′ cannot be modeled by the system 
concurrency control method, since it is only based on the user interacting with the 
two transactions.

An approach to dealing with this problem is to postpone output of transactions to 
the screen until they have committed.

21.7.3 Latches
Locks held for a short duration are typically called latches. Latches do not follow 
the usual concurrency control protocol such as two-phase locking. For example, a 
latch can be used to guarantee the physical integrity of a disk page when that page is 
being written from the buffer to disk. A latch would be acquired for the page, the 
page written to disk, and then the latch released.

21.8 Summary
In this chapter, we discussed DBMS techniques for concurrency control. We 
started in Section 21.1 by discussing lock-based protocols, which are commonly 
used in practice. In Section 21.1.2 we described the two-phase locking (2PL) pro-
tocol and a number of its variations: basic 2PL, strict 2PL, conservative 2PL, and 
rigorous 2PL. The strict and rigorous variations are more common because of 
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their better recoverability properties. We introduced the concepts of shared (read) 
and exclusive (write) locks (Section 21.1.1) and showed how locking can guarantee 
serializability when used in conjunction with the two-phase locking rule. We also 
presented various techniques for dealing with the deadlock problem in Sec-
tion 21.1.3, which can occur with locking. In practice, it is common to use time-
outs and deadlock detection (wait-for graphs). Deadlock prevention protocols, 
such as no waiting and cautious waiting, can also be used.

We then presented other concurrency control protocols. These include the time-
stamp ordering protocol (Section 21.2), which ensures serializability based on the 
order of transaction timestamps. Timestamps are unique, system-generated trans-
action identifiers. We discussed Thomas’s write rule, which improves performance 
but does not guarantee serializability. The strict timestamp ordering protocol was 
also presented. We discussed two multiversion protocols (Section 21.3), which 
assume that older versions of data items can be kept in the database. One tech-
nique, called multiversion two-phase locking (which has been used in practice), 
assumes that two versions can exist for an item and attempts to increase concur-
rency by making write and read locks compatible (at the cost of introducing an 
additional certify lock mode). We also presented a multiversion protocol based on 
timestamp ordering. In Section 21.4.1, we presented an example of an optimistic 
protocol, which is also known as a certification or validation protocol.

We then discussed concurrency control methods that are based on the concept of 
snapshot isolation in Section 21.4.2; these are used in several DBMSs because of 
their lower overhead. The basic snapshot isolation method can allow nonserializ-
able schedules in rare cases because of certain anomalies that are difficult to detect; 
these anomalies may cause a corrupted database. A variation known as serializable 
snapshot isolation has been recently developed and ensures serializable schedules.

Then in Section 21.5 we turned our attention to the important practical issue of 
data item granularity. We described a multigranularity locking protocol that 
allows the change of granularity (item size) based on the current transaction 
mix, with the goal of improving the performance of concurrency control. An 
important practical issue was then presented in Section 21.6, which is to develop 
locking protocols for indexes so that indexes do not become a hindrance to con-
current access. Finally, in Section 21.7, we introduced the phantom problem and 
problems with interactive transactions, and we briefly described the concept of 
latches and how this concept differs from locks.

Review Questions
 21.1. What is the two-phase locking protocol? How does it guarantee serializability?

 21.2. What are some variations of the two-phase locking protocol? Why is strict 
or rigorous two-phase locking often preferred?

 21.3. Discuss the problems of deadlock and starvation, and the different 
approaches to dealing with these problems.
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 21.4. Compare binary locks to exclusive/shared locks. Why is the latter type of 
locks preferable?

 21.5. Describe the wait-die and wound-wait protocols for deadlock prevention.

 21.6. Describe the cautious waiting, no waiting, and timeout protocols for dead-
lock prevention.

 21.7. What is a timestamp? How does the system generate timestamps?

 21.8. Discuss the timestamp ordering protocol for concurrency control. How 
does strict timestamp ordering differ from basic timestamp ordering?

 21.9. Discuss two multiversion techniques for concurrency control. What is a cer-
tify lock? What are the advantages and disadvantages of using certify locks?

 21.10. How do optimistic concurrency control techniques differ from other con-
currency control techniques? Why are they also called validation or certifi-
cation techniques? Discuss the typical phases of an optimistic concurrency 
control method.

 21.11. What is snapshot isolation? What are the advantages and disadvantages of 
concurrency control methods that are based on snapshot isolation?

 21.12. How does the granularity of data items affect the performance of concurrency 
control? What factors affect selection of granularity size for data items?

 21.13. What type of lock is needed for insert and delete operations?

 21.14. What is multiple granularity locking? Under what circumstances is it used?

 21.15. What are intention locks?

 21.16. When are latches used?

 21.17. What is a phantom record? Discuss the problem that a phantom record can 
cause for concurrency control.

 21.18. How does index locking resolve the phantom problem?

 21.19. What is a predicate lock?

Exercises
 21.20. Prove that the basic two-phase locking protocol guarantees conflict serializ-

ability of schedules. (Hint: Show that if a serializability graph for a schedule 
has a cycle, then at least one of the transactions participating in the schedule 
does not obey the two-phase locking protocol.)

 21.21. Modify the data structures for multiple-mode locks and the algorithms for 
read_lock(X), write_lock(X), and unlock(X) so that upgrading and downgrad-
ing of locks are possible. (Hint: The lock needs to check the transaction id(s) 
that hold the lock, if any.)
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 21.22. Prove that strict two-phase locking guarantees strict schedules.

 21.23. Prove that the wait-die and wound-wait protocols avoid deadlock and 
starvation.

 21.24. Prove that cautious waiting avoids deadlock.

 21.25. Apply the timestamp ordering algorithm to the schedules in Figures 21.8(b) 
and (c), and determine whether the algorithm will allow the execution of the 
schedules.

 21.26. Repeat Exercise 21.25, but use the multiversion timestamp ordering method.

 21.27. Why is two-phase locking not used as a concurrency control method for 
indexes such as B+-trees?

 21.28. The compatibility matrix in Figure 21.8 shows that IS and IX locks are com-
patible. Explain why this is valid.

 21.29. The MGL protocol states that a transaction T can unlock a node N, only if 
none of the children of node N are still locked by transaction T. Show that 
without this condition, the MGL protocol would be incorrect.
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22
Database Recovery Techniques

In this chapter, we discuss some of the techniques that 
can be used for database recovery in case of system 

failure. In Section 20.1.4 we discussed the different causes of failure, such as system 
crashes and transaction errors. In Section 20.2, we introduced some of the concepts 
that are used by recovery processes, such as the system log and commit points.

This chapter presents additional concepts that are relevant to recovery protocols 
and provides an overview of the various database recovery algorithms. We start 
in Section 22.1 with an outline of a typical recovery procedure and a categoriza-
tion of recovery algorithms, and then we discuss several recovery concepts, 
including write-ahead logging, in-place versus shadow updates, and the process 
of rolling back (undoing) the effect of an incomplete or failed transaction. In Sec-
tion 22.2, we present recovery techniques based on deferred update, also known 
as the NO-UNDO/REDO technique, where the data on disk is not updated until 
after a transaction commits. In Section 22.3, we discuss recovery techniques based 
on immediate update, where data can be updated on disk during transaction exe-
cution; these include the UNDO/REDO and UNDO/NO-REDO algorithms. In Sec-
tion 22.4, we discuss the technique known as shadowing or shadow paging, which 
can be categorized as a NO-UNDO/NO-REDO algorithm. An example of a practical 
DBMS recovery scheme, called ARIES, is presented in Section 22.5. Recovery in 
multidatabases is briefly discussed in Section 22.6. Finally, techniques for recov-
ery from catastrophic failure are discussed in Section 22.7. Section 22.8 summa-
rizes the chapter.

Our emphasis is on conceptually describing several different approaches to recov-
ery. For descriptions of recovery features in specific systems, the reader should con-
sult the bibliographic notes at the end of the chapter and the online and printed 
user manuals for those systems. Recovery techniques are often intertwined with the 
concurrency control mechanisms. Certain recovery techniques are best used with 
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specific concurrency control methods. We will discuss recovery concepts indepen-
dently of concurrency control mechanisms.

22.1 Recovery Concepts

22.1.1  Recovery Outline and Categorization  
of Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to 
the most recent consistent state before the time of failure. To do this, the system 
must keep information about the changes that were applied to data items by the 
various transactions. This information is typically kept in the system log, as we 
discussed in Section 21.2.2. A typical strategy for recovery may be summarized 
informally as follows:

  1. If there is extensive damage to a wide portion of the database due to cata-
strophic failure, such as a disk crash, the recovery method restores a past 
copy of the database that was backed up to archival storage (typically tape or 
other large capacity offline storage media) and reconstructs a more current 
state by reapplying or redoing the operations of committed transactions 
from the backed-up log, up to the time of failure.

  2. When the database on disk is not physically damaged, and a noncatastrophic 
failure of types 1 through 4 in Section 21.1.4 has occurred, the recovery 
strategy is to identify any changes that may cause an inconsistency in the 
database. For example, a transaction that has updated some database items 
on disk but has not been committed needs to have its changes reversed by 
undoing its write operations. It may also be necessary to redo some opera-
tions in order to restore a consistent state of the database; for example, if a 
transaction has committed but some of its write operations have not yet 
been written to disk. For noncatastrophic failure, the recovery protocol does 
not need a complete archival copy of the database. Rather, the entries kept in 
the online system log on disk are analyzed to determine the appropriate 
actions for recovery.

Conceptually, we can distinguish two main policies for recovery from non-
catastrophic transaction failures: deferred update and immediate update. The 
deferred update techniques do not physically update the database on disk until after 
a transaction commits; then the updates are recorded in the database. Before reach-
ing commit, all transaction updates are recorded in the local transaction workspace 
or in the main memory buffers that the DBMS maintains (the DBMS main memory 
cache; see Section 20.2.4). Before commit, the updates are recorded persistently in 
the log file on disk, and then after commit, the updates are written to the database 
from the main memory buffers. If a transaction fails before reaching its commit 
point, it will not have changed the database on disk in any way, so UNDO is not 
needed. It may be necessary to REDO the effect of the operations of a committed 

https://hemanthrajhemu.github.io



 22.1 Recovery Concepts 815

transaction from the log, because their effect may not yet have been recorded in the 
database on disk. Hence, deferred update is also known as the NO-UNDO/REDO 
algorithm. We discuss this technique in Section 22.2.

In the immediate update techniques, the database may be updated by some opera-
tions of a transaction before the transaction reaches its commit point. However, 
these operations must also be recorded in the log on disk by force-writing before 
they are applied to the database on disk, making recovery still possible. If a trans-
action fails after recording some changes in the database on disk but before reach-
ing its commit point, the effect of its operations on the database must be undone; 
that is, the transaction must be rolled back. In the general case of immediate 
update, both undo and redo may be required during recovery. This technique, 
known as the UNDO/REDO algorithm, requires both operations during recovery 
and is used most often in practice. A variation of the algorithm where all updates 
are required to be recorded in the database on disk before a transaction commits 
requires undo only, so it is known as the UNDO/NO-REDO algorithm. We discuss 
these two techniques in Section 22.3.

The UNDO and REDO operations are required to be idempotent—that is, executing 
an operation multiple times is equivalent to executing it just once. In fact, the whole 
recovery process should be idempotent because if the system were to fail during the 
recovery process, the next recovery attempt might UNDO and REDO certain  
write_item operations that had already been executed during the first recovery pro-
cess. The result of recovery from a system crash during recovery should be the same 
as the result of recovering when there is no crash during recovery!

22.1.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system func-
tions—in particular, the buffering of database disk pages in the DBMS main 
memory cache. Typically, multiple disk pages that include the data items to be 
updated are cached into main memory buffers and then updated in memory 
before being written back to disk. The caching of disk pages is traditionally an 
operating system function, but because of its importance to the efficiency of 
recovery procedures, it is handled by the DBMS by calling low-level operating 
systems routines (see Section 20.2.4).

In general, it is convenient to consider recovery in terms of the database disk pages 
(blocks). Typically a collection of in-memory buffers, called the DBMS cache, is 
kept under the control of the DBMS for the purpose of holding these buffers. A 
directory for the cache is used to keep track of which database items are in the buf-
fers.1 This can be a table of <Disk_page_address, Buffer_location, … > entries. When 
the DBMS requests action on some item, first it checks the cache directory to deter-
mine whether the disk page containing the item is in the DBMS cache. If it is not, 

1This is somewhat similar to the concept of page tables used by the operating system.
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the item must be located on disk, and the appropriate disk pages are copied into the 
cache. It may be necessary to replace (or flush) some of the cache buffers to make 
space available for the new item (see Section 20.2.4).

The entries in the DBMS cache directory hold additional information relevant to 
buffer management. Associated with each buffer in the cache is a dirty bit, which 
can be included in the directory entry to indicate whether or not the buffer has been 
modified. When a page is first read from the database disk into a cache buffer, a new 
entry is inserted in the cache directory with the new disk page address, and the dirty 
bit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corre-
sponding directory entry is set to 1 (one). Additional information, such as the trans-
action id(s) of the transaction(s) that modified the buffer, are also kept in the 
directory. When the buffer contents are replaced (flushed) from the cache, the con-
tents must first be written back to the corresponding disk page only if its dirty bit is 1.

Another bit, called the pin-unpin bit, is also needed—a page in the cache is pinned 
(bit value 1 (one)) if it cannot be written back to disk as yet. For example, the recov-
ery protocol may restrict certain buffer pages from being written back to the disk 
until the transactions that changed this buffer have committed.

Two main strategies can be employed when flushing a modified buffer back to disk. 
The first strategy, known as in-place updating, writes the buffer to the same origi-
nal disk location, thus overwriting the old value of any changed data items on disk.2 

Hence, a single copy of each database disk block is maintained. The second strategy, 
known as shadowing, writes an updated buffer at a different disk location, so mul-
tiple versions of data items can be maintained, but this approach is not typically 
used in practice.

In general, the old value of the data item before updating is called the before image 
(BFIM), and the new value after updating is called the after image (AFIM). If shad-
owing is used, both the BFIM and the AFIM can be kept on disk; hence, it is not 
strictly necessary to maintain a log for recovering. We briefly discuss recovery 
based on shadowing in Section 22.4.

22.1.3  Write-Ahead Logging, Steal/No-Steal,  
and Force/No-Force

When in-place updating is used, it is necessary to use a log for recovery (see Sec-
tion 21.2.2). In this case, the recovery mechanism must ensure that the BFIM of the 
data item is recorded in the appropriate log entry and that the log entry is flushed to 
disk before the BFIM is overwritten with the AFIM in the database on disk. This 
process is generally known as write-ahead logging and is necessary so we can 
UNDO the operation if this is required during recovery. Before we can describe a 
protocol for write-ahead logging, we need to distinguish between two types of log 
entry information included for a write command: the information needed for UNDO 

2In-place updating is used in most systems in practice.
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and the information needed for REDO. A REDO-type log entry includes the new 
value (AFIM) of the item written by the operation since this is needed to redo the 
effect of the operation from the log (by setting the item value in the database on 
disk to its AFIM). The UNDO-type log entries include the old value (BFIM) of the 
item since this is needed to undo the effect of the operation from the log (by setting 
the item value in the database back to its BFIM). In an UNDO/REDO algorithm, both 
BFIM and AFIM are recorded into a single log entry. Additionally, when cascading 
rollback (see Section 22.1.5) is possible, read_item entries in the log are considered to 
be UNDO-type entries.

As mentioned, the DBMS cache holds the cached database disk blocks in main 
memory buffers. The DBMS cache includes not only data file blocks, but also index 
file blocks and log file blocks from the disk. When a log record is written, it is stored 
in the current log buffer in the DBMS cache. The log is simply a sequential (append-
only) disk file, and the DBMS cache may contain several log blocks in main mem-
ory buffers (typically, the last n log blocks of the log file). When an update to a data 
block—stored in the DBMS cache—is made, an associated log record is written to 
the last log buffer in the DBMS cache. With the write-ahead logging approach, the 
log buffers (blocks) that contain the associated log records for a particular data 
block update must first be written to disk before the data block itself can be written 
back to disk from its main memory buffer.

Standard DBMS recovery terminology includes the terms steal/no-steal and  
force/no-force, which specify the rules that govern when a page from the database 
cache can be written to disk:

  1. If a cache buffer page updated by a transaction cannot be written to disk before 
the transaction commits, the recovery method is called a no-steal approach. 
The pin-unpin bit will be set to 1 (pin) to indicate that a cache buffer cannot be 
written back to disk. On the other hand, if the recovery protocol allows writing 
an updated buffer before the transaction commits, it is called steal. Steal is 
used when the DBMS cache (buffer) manager needs a buffer frame for another 
transaction and the buffer manager replaces an existing page that had been 
updated but whose transaction has not committed. The no-steal rule means 
that UNDO will never be needed during recovery, since a committed transac-
tion will not have any of its updates on disk before it commits.

  2. If all pages updated by a transaction are immediately written to disk before 
the transaction commits, the recovery approach is called a force approach. 
Otherwise, it is called no-force. The force rule means that REDO will never 
be needed during recovery, since any committed transaction will have all its 
updates on disk before it is committed.

The deferred update (NO-UNDO) recovery scheme discussed in Section 22.2 follows 
a no-steal approach. However, typical database systems employ a steal/no-force 
(UNDO/REDO) strategy. The advantage of steal is that it avoids the need for a very 
large buffer space to store all updated pages in memory. The advantage of no-force 
is that an updated page of a committed transaction may still be in the buffer when 
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another transaction needs to update it, thus eliminating the I/O cost to write that 
page multiple times to disk and possibly having to read it again from disk. This may 
provide a substantial saving in the number of disk I/O operations when a specific 
page is updated heavily by multiple transactions.

To permit recovery when in-place updating is used, the appropriate entries required 
for recovery must be permanently recorded in the log on disk before changes are 
applied to the database. For example, consider the following write-ahead logging 
(WAL) protocol for a recovery algorithm that requires both UNDO and REDO:

  1. The before image of an item cannot be overwritten by its after image in the 
database on disk until all UNDO-type log entries for the updating transaction—
up to this point—have been force-written to disk.

  2. The commit operation of a transaction cannot be completed until all the 
REDO-type and UNDO-type log records for that transaction have been force-
written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to 
maintain a number of lists related to the transactions being processed in the system. 
These include a list for active transactions that have started but not committed as 
yet, and they may also include lists of all committed and aborted transactions 
since the last checkpoint (see the next section). Maintaining these lists makes the 
recovery process more efficient.

22.1.4  Checkpoints in the System Log  
and Fuzzy Checkpointing

Another type of entry in the log is called a checkpoint.3 A [checkpoint, list of active 
transactions] record is written into the log periodically at that point when the system 
writes out to the database on disk all DBMS buffers that have been modified. As a 
consequence of this, all transactions that have their [commit, T ] entries in the log 
before a [checkpoint] entry do not need to have their WRITE operations redone in 
case of a system crash, since all their updates will be recorded in the database on 
disk during checkpointing. As part of checkpointing, the list of transaction ids for 
active transactions at the time of the checkpoint is included in the checkpoint 
record, so that these transactions can be easily identified during recovery.

The recovery manager of a DBMS must decide at what intervals to take a check-
point. The interval may be measured in time—say, every m minutes—or in the 
number t of committed transactions since the last checkpoint, where the values of 
m or t are system parameters. Taking a checkpoint consists of the following actions:

  1. Suspend execution of transactions temporarily.

  2. Force-write all main memory buffers that have been modified to disk.

3The term checkpoint has been used to describe more restrictive situations in some systems, such as 
DB2. It has also been used in the literature to describe entirely different concepts.
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  3. Write a [checkpoint] record to the log, and force-write the log to disk.

  4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include addi-
tional information, such as a list of active transaction ids, and the locations 
(addresses) of the first and most recent (last) records in the log for each active 
transaction. This can facilitate undoing transaction operations in the event that a 
transaction must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction 
processing because of step 1, which is not acceptable in practice. To overcome this, 
it is common to use a technique called fuzzy checkpointing. In this technique, the 
system can resume transaction processing after a [begin_checkpoint] record is writ-
ten to the log without having to wait for step 2 to finish. When step 2 is completed, 
an [end_checkpoint, … ] record is written in the log with the relevant information 
collected during checkpointing. However, until step 2 is completed, the previous 
checkpoint record should remain valid. To accomplish this, the system maintains a 
file on disk that contains a pointer to the valid checkpoint, which continues to point 
to the previous checkpoint record in the log. Once step 2 is concluded, that pointer 
is changed to point to the new checkpoint in the log.

22.1.5 Transaction Rollback and Cascading Rollback
If a transaction fails for whatever reason after updating the database, but before the 
transaction commits, it may be necessary to roll back the transaction. If any data 
item values have been changed by the transaction and written to the database on 
disk, they must be restored to their previous values (BFIMs). The undo-type log 
entries are used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the 
value of some data item X written by T must also be rolled back. Similarly, once S is 
rolled back, any transaction R that has read the value of some data item Y written by 
S must also be rolled back; and so on. This phenomenon is called cascading 
 rollback, and it can occur when the recovery protocol ensures recoverable schedules 
but does not ensure strict or cascadeless schedules (see Section 20.4.2). Understand-
ably, cascading rollback can be complex and time-consuming. That is why almost all 
recovery mechanisms are designed so that cascading rollback is never required.

Figure 22.1 shows an example where cascading rollback is required. The read and 
write operations of three individual transactions are shown in Figure 22.1(a). Fig-
ure 22.1(b) shows the system log at the point of a system crash for a particular execution 
schedule of these transactions. The values of data items A, B, C, and D, which are used 
by the transactions, are shown to the right of the system log entries. We assume that the 
original item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20. At the 
point of system failure, transaction T3 has not reached its conclusion and must be rolled 
back. The WRITE operations of T3, marked by a single * in Figure 22.1(b), are the T3 
operations that are undone during transaction rollback. Figure 22.1(c) graphically 
shows the operations of the different transactions along the time axis.
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(b)
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Figure 22.1 
Illustrating cascading rollback 
(a process that never occurs 
in strict or cascadeless  
schedules). (a) The read and 
write operations of three 
transactions. (b) System log at 
point of crash. (c) Operations 
before the crash.
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We must now check for cascading rollback. From Figure 22.1(c), we see that trans-
action T2 reads the value of item B that was written by transaction T3; this can also 
be determined by examining the log. Because T3 is rolled back, T2 must now be 
rolled back, too. The WRITE operations of T2, marked by ** in the log, are the ones 
that are undone. Note that only write_item operations need to be undone during 
transaction rollback; read_item operations are recorded in the log only to determine 
whether cascading rollback of additional transactions is necessary.

In practice, cascading rollback of transactions is never required because practical 
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no 
need to record any read_item operations in the log because these are needed only for 
determining cascading rollback.

22.1.6 Transaction Actions That Do Not Affect the Database
In general, a transaction will have actions that do not affect the database, such as 
generating and printing messages or reports from information retrieved from the 
database. If a transaction fails before completion, we may not want the user to get 
these reports, since the transaction has failed to complete. If such erroneous reports 
are produced, part of the recovery process would have to inform the user that these 
reports are wrong, since the user may take an action that is based on these reports 
and that affects the database. Hence, such reports should be generated only after the 
transaction reaches its commit point. A common method of dealing with such 
actions is to issue the commands that generate the reports but keep them as batch 
jobs, which are executed only after the transaction reaches its commit point. If the 
transaction fails, the batch jobs are canceled.

22.2  NO-UNDO/REDO Recovery Based  
on Deferred Update

The idea behind deferred update is to defer or postpone any actual updates to the 
database on disk until the transaction completes its execution successfully and 
reaches its commit point.4

During transaction execution, the updates are recorded only in the log and in the 
cache buffers. After the transaction reaches its commit point and the log is force-
written to disk, the updates are recorded in the database. If a transaction fails before 
reaching its commit point, there is no need to undo any operations because the 
transaction has not affected the database on disk in any way. Therefore, only REDO-
type log entries are needed in the log, which include the new value (AFIM) of the 
item written by a write operation. The UNDO-type log entries are not needed since 
no undoing of operations will be required during recovery. Although this may sim-
plify the recovery process, it cannot be used in practice unless transactions are short 
and each transaction changes few items. For other types of transactions, there is the 
potential for running out of buffer space because transaction changes must be held 

4Hence deferred update can generally be characterized as a no-steal approach.
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in the cache buffers until the commit point, so many cache buffers will be pinned 
and cannot be replaced.

We can state a typical deferred update protocol as follows:

  1. A transaction cannot change the database on disk until it reaches its commit 
point; hence all buffers that have been changed by the transaction must be 
pinned until the transaction commits (this corresponds to a no-steal policy).

  2. A transaction does not reach its commit point until all its REDO-type log 
entries are recorded in the log and the log buffer is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL) 
protocol. Because the database is never updated on disk until after the transaction 
commits, there is never a need to UNDO any operations. REDO is needed in case the 
system fails after a transaction commits but before all its changes are recorded in 
the database on disk. In this case, the transaction operations are redone from the 
log entries during recovery.

For multiuser systems with concurrency control, the concurrency control and 
recovery processes are interrelated. Consider a system in which concurrency con-
trol uses strict two-phase locking, so the locks on written items remain in effect 
until the transaction reaches its commit point. After that, the locks can be released. 
This ensures strict and serializable schedules. Assuming that [checkpoint] entries are 
included in the log, a possible recovery algorithm for this case, which we call RDU_M 
(Recovery using Deferred Update in a Multiuser environment), is given next.

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of trans-
actions maintained by the system: the committed transactions T since the last 
checkpoint (commit list), and the active transactions T′ (active list). REDO all 
the WRITE operations of the committed transactions from the log, in the order 
in which they were written into the log. The transactions that are active and did 
not commit are effectively canceled and must be resubmitted.

The REDO procedure is defined as follows:

Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP con-
sists of examining its log entry [write_item, T, X, new_value] and setting the value 
of item X in the database to new_value, which is the after image (AFIM).

Figure 22.2 illustrates a timeline for a possible schedule of executing transactions. 
When the checkpoint was taken at time t1, transaction T1 had committed, whereas 
transactions T3 and T4 had not. Before the system crash at time t2, T3 and T2 were 
committed but not T4 and T5. According to the RDU_M method, there is no need to 
redo the write_item operations of transaction T1—or any transactions committed 
before the last checkpoint time t1. The write_item operations of T2 and T3 must be 
redone, however, because both transactions reached their commit points after the 
last checkpoint. Recall that the log is force-written before committing a transaction. 
Transactions T4 and T5 are ignored: They are effectively canceled or rolled back 
because none of their write_item operations were recorded in the database on disk 
under the deferred update protocol (no-steal policy).
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We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that, 
if a data item X has been updated—as indicated in the log entries—more than once 
by committed transactions since the last checkpoint, it is only necessary to REDO 
the last update of X from the log during recovery because the other updates would 
be overwritten by this last REDO. In this case, we start from the end of the log; then, 
whenever an item is redone, it is added to a list of redone items. Before REDO is 
applied to an item, the list is checked; if the item appears on the list, it is not redone 
again, since its latest value has already been recovered.

If a transaction is aborted for any reason (say, by the deadlock detection method), it 
is simply resubmitted, since it has not changed the database on disk. A drawback of 
the method described here is that it limits the concurrent execution of transactions 
because all write-locked items remain locked until the transaction reaches its commit 
point. Additionally, it may require excessive buffer space to hold all updated items 
until the transactions commit. The method’s main benefit is that transaction opera-
tions never need to be undone, for two reasons:

  1. A transaction does not record any changes in the database on disk until after 
it reaches its commit point—that is, until it completes its execution success-
fully. Hence, a transaction is never rolled back because of failure during 
transaction execution.

  2. A transaction will never read the value of an item that is written by an 
uncommitted transaction, because items remain locked until a transaction 
reaches its commit point. Hence, no cascading rollback will occur.

Figure 22.3 shows an example of recovery for a multiuser system that utilizes the 
recovery and concurrency control method just described.

22.3  Recovery Techniques Based  
on Immediate Update

In these techniques, when a transaction issues an update command, the database on 
disk can be updated immediately, without any need to wait for the transaction to 
reach its commit point. Notice that it is not a requirement that every update be 

System crash TimeCheckpoint

T2

T1

T3

T5

T4

t1 t2

Figure 22.2 
An example of a 
recovery timeline to 
illustrate the effect of 
checkpointing.
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applied immediately to disk; it is just possible that some updates are applied to disk 
before the transaction commits.

Provisions must be made for undoing the effect of update operations that have been 
applied to the database by a failed transaction. This is accomplished by rolling back 
the transaction and undoing the effect of the transaction’s write_item operations. 
Therefore, the UNDO-type log entries, which include the old value (BFIM) of the 
item, must be stored in the log. Because UNDO can be needed during recovery, these 
methods follow a steal strategy for deciding when updated main memory buffers 
can be written back to disk (see Section 22.1.3).

Theoretically, we can distinguish two main categories of immediate update algorithms.

  1. If the recovery technique ensures that all updates of a transaction are 
recorded in the database on disk before the transaction commits, there is 
never a need to REDO any operations of committed transactions. This is 
called the UNDO/NO-REDO recovery algorithm. In this method, all updates 
by a transaction must be recorded on disk before the transaction commits, so 
that REDO is never needed. Hence, this method must utilize the steal/force 

(a) T1

read_item(A)
read_item(D)

write_item(D)

[checkpoint]

(b)

read_item(B)
write_item(B)

read_item(D)

write_item(D)

read_item(A)
write_item(A)

read_item(C)

write_item(C)

read_item(B)
write_item(B)

read_item(A)

write_item(A)

[start_transaction,T1]

[start_transaction, T2]

[write_item, T1, D, 20]
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[write_item, T2, B, 12]
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T2 and T3 are ignored because they did not reach their commit points.

T4 is redone because its commit point is after the last system checkpoint.

System crash

T2 T3 T4

Figure 22.3 
An example of  recovery 
using deferred update 
with concurrent 
 transactions. (a) The 
READ and WRITE 
operations of four 
transactions.  
(b) System log at the 
point of crash.
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strategy for deciding when updated main memory buffers are written back 
to disk (see Section 22.1.3).

  2. If the transaction is allowed to commit before all its changes are written to 
the database, we have the most general case, known as the UNDO/REDO 
recovery algorithm. In this case, the steal/no-force strategy is applied (see 
Section 22.1.3). This is also the most complex technique, but the most com-
monly used in practice. We will outline an UNDO/REDO recovery algorithm 
and leave it as an exercise for the reader to develop the UNDO/NO-REDO 
variation. In Section 22.5, we describe a more practical approach known as 
the ARIES recovery technique.

When concurrent execution is permitted, the recovery process again depends on 
the protocols used for concurrency control. The procedure RIU_M (Recovery using 
Immediate Updates for a Multiuser environment) outlines a recovery algorithm for 
concurrent transactions with immediate update (UNDO/REDO recovery). Assume 
that the log includes checkpoints and that the concurrency control protocol 
produces strict schedules—as, for example, the strict two-phase locking protocol 
does. Recall that a strict schedule does not allow a transaction to read or write an 
item unless the transaction that wrote the item has committed. However, deadlocks 
can occur in strict two-phase locking, thus requiring abort and UNDO of transac-
tions. For a strict schedule, UNDO of an operation requires changing the item back 
to its old value (BFIM).

Procedure RIU_M (UNDO/REDO with checkpoints).

  1. Use two lists of transactions maintained by the system: the committed 
transactions since the last checkpoint and the active transactions.

  2. Undo all the write_item operations of the active (uncommitted) transac-
tions, using the UNDO procedure. The operations should be undone in 
the reverse of the order in which they were written into the log.

  3. Redo all the write_item operations of the committed transactions from 
the log, in the order in which they were written into the log, using the 
REDO procedure defined earlier.

The UNDO procedure is defined as follows:

Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consists 
of examining its log entry [write_item, T, X, old_value, new_value] and setting the 
value of item X in the database to old_value, which is the before image (BFIM). 
Undoing a number of write_item operations from one or more transactions from 
the log must proceed in the reverse order from the order in which the operations 
were written in the log.

As we discussed for the NO-UNDO/REDO procedure, step 3 is more efficiently done 
by starting from the end of the log and redoing only the last update of each item X. 
Whenever an item is redone, it is added to a list of redone items and is not redone 
again. A similar procedure can be devised to improve the efficiency of step 2 so 
that an item can be undone at most once during recovery. In this case, the earliest 
UNDO is applied first by scanning the log in the forward direction (starting from 
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the beginning of the log). Whenever an item is undone, it is added to a list of 
undone items and is not undone again.

22.4 Shadow Paging
This recovery scheme does not require the use of a log in a single-user environ-
ment. In a multiuser environment, a log may be needed for the concurrency control 
method. Shadow paging considers the database to be made up of a number of fixed-
size disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n 
entries5 is constructed, where the ith entry points to the ith database page on disk. 
The directory is kept in main memory if it is not too large, and all references—reads 
or writes—to database pages on disk go through it. When a transaction begins exe-
cuting, the current directory—whose entries point to the most recent or current 
database pages on disk—is copied into a shadow directory. The shadow directory 
is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a 
write_item operation is performed, a new copy of the modified database page is cre-
ated, but the old copy of that page is not overwritten. Instead, the new page is writ-
ten elsewhere—on some previously unused disk block. The current directory entry 
is modified to point to the new disk block, whereas the shadow directory is not 
modified and continues to point to the old unmodified disk block. Figure 22.4 illus-
trates the concepts of shadow and current directories. For pages updated by the 
transaction, two versions are kept. The old version is referenced by the shadow 
directory and the new version by the current directory.

5The directory is similar to the page table maintained by the operating system for each process.

Current directory
(after updating 
pages 2, 5)

Database disk 
blocks (pages)

Shadow directory
(not updated)

Page 5 (old)

Page 1

Page 4

Page 2 (old)

Page 3

Page 6

Page 2 (new)

Page 5 (new)

1

2

3

4

5

6

1

2

3

4

5

6

Figure 22.4 
An example of shadow paging.
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To recover from a failure during transaction execution, it is sufficient to free the 
modified database pages and to discard the current directory. The state of the data-
base before transaction execution is available through the shadow directory, and 
that state is recovered by reinstating the shadow directory. The database thus is 
returned to its state prior to the transaction that was executing when the crash 
occurred, and any modified pages are discarded. Committing a transaction corre-
sponds to discarding the previous shadow directory. Since recovery involves nei-
ther undoing nor redoing data items, this technique can be categorized as a 
NO-UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must 
be incorporated into the shadow paging technique. One disadvantage of shadow pag-
ing is that the updated database pages change location on disk. This makes it difficult 
to keep related database pages close together on disk without complex storage man-
agement strategies. Furthermore, if the directory is large, the overhead of writing 
shadow directories to disk as transactions commit is significant. A further complica-
tion is how to handle garbage collection when a transaction commits. The old pages 
referenced by the shadow directory that have been updated must be released and 
added to a list of free pages for future use. These pages are no longer needed after the 
transaction commits. Another issue is that the operation to migrate between current 
and shadow directories must be implemented as an atomic operation.

22.5 The ARIES Recovery Algorithm
We now describe the ARIES algorithm as an example of a recovery algorithm used 
in database systems. It is used in many relational database-related products of IBM. 
ARIES uses a steal/no-force approach for writing, and it is based on three concepts: 
write-ahead logging, repeating history during redo, and logging changes during 
undo. We discussed write-ahead logging in Section 22.1.3. The second concept, 
repeating history, means that ARIES will retrace all actions of the database system 
prior to the crash to reconstruct the database state when the crash occurred. Trans-
actions that were uncommitted at the time of the crash (active transactions) are 
undone. The third concept, logging during undo, will prevent ARIES from repeat-
ing the completed undo operations if a failure occurs during recovery, which causes 
a restart of the recovery process.

The ARIES recovery procedure consists of three main steps: analysis, REDO, and 
UNDO. The analysis step identifies the dirty (updated) pages in the buffer6 and the 
set of transactions active at the time of the crash. The appropriate point in the log 
where the REDO operation should start is also determined. The REDO phase actu-
ally reapplies updates from the log to the database. Generally, the REDO operation 
is applied only to committed transactions. However, this is not the case in ARIES. 

6The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored in 
the log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to identify this information 
(as discussed later in this section).
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Certain information in the ARIES log will provide the start point for REDO, from 
which REDO operations are applied until the end of the log is reached. Additionally, 
information stored by ARIES and in the data pages will allow ARIES to determine 
whether the operation to be redone has actually been applied to the database and 
therefore does not need to be reapplied. Thus, only the necessary REDO operations 
are applied during recovery. Finally, during the UNDO phase, the log is scanned 
backward and the operations of transactions that were active at the time of the crash 
are undone in reverse order. The information needed for ARIES to accomplish its 
recovery procedure includes the log, the Transaction Table, and the Dirty Page 
Table. Additionally, checkpointing is used. These tables are maintained by the 
transaction manager and written to the log during checkpointing.

In ARIES, every log record has an associated log sequence number (LSN) that is 
monotonically increasing and indicates the address of the log record on disk. Each 
LSN corresponds to a specific change (action) of some transaction. Also, each data 
page will store the LSN of the latest log record corresponding to a change for that 
page. A log record is written for any of the following actions: updating a page 
(write), committing a transaction (commit), aborting a transaction (abort), undo-
ing an update (undo), and ending a transaction (end). The need for including the 
first three actions in the log has been discussed, but the last two need some explana-
tion. When an update is undone, a compensation log record is written in the log so 
that the undo does not have to be repeated. When a transaction ends, whether by 
committing or aborting, an end log record is written.

Common fields in all log records include the previous LSN for that transaction, the 
transaction ID, and the type of log record. The previous LSN is important because 
it links the log records (in reverse order) for each transaction. For an update (write) 
action, additional fields in the log record include the page ID for the page that con-
tains the item, the length of the updated item, its offset from the beginning of the 
page, the before image of the item, and its after image.

In addition to the log, two tables are needed for efficient recovery: the Transaction 
Table and the Dirty Page Table, which are maintained by the transaction manager. 
When a crash occurs, these tables are rebuilt in the analysis phase of recovery. The 
Transaction Table contains an entry for each active transaction, with information 
such as the transaction ID, transaction status, and the LSN of the most recent log 
record for the transaction. The Dirty Page Table contains an entry for each dirty 
page in the DBMS cache, which includes the page ID and the LSN corresponding to 
the earliest update to that page.

Checkpointing in ARIES consists of the following: writing a begin_checkpoint 
record to the log, writing an end_checkpoint record to the log, and writing the LSN 
of the begin_checkpoint record to a special file. This special file is accessed during 
recovery to locate the last checkpoint information. With the end_checkpoint record, 
the contents of both the Transaction Table and Dirty Page Table are appended to 
the end of the log. To reduce the cost, fuzzy checkpointing is used so that the 
DBMS can continue to execute transactions during checkpointing (see Sec-
tion 22.1.4). Additionally, the contents of the DBMS cache do not have to be flushed 
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to disk during checkpoint, since the Transaction Table and Dirty Page Table—
which are appended to the log on disk—contain the information needed for 
 recovery. Note that if a crash occurs during checkpointing, the special file will refer 
to the previous checkpoint, which would be used for recovery.

After a crash, the ARIES recovery manager takes over. Information from the 
last checkpoint is first accessed through the special file. The analysis phase 
starts at the begin_checkpoint record and proceeds to the end of the log. When the 
end_checkpoint record is encountered, the Transaction Table and Dirty Page Table 
are accessed (recall that these tables were written in the log during checkpointing). 
During analysis, the log records being analyzed may cause modifications to these 
two tables. For instance, if an end log record was encountered for a transaction T in 
the Transaction Table, then the entry for T is deleted from that table. If some other 
type of log record is encountered for a transaction T′, then an entry for T′ is inserted 
into the Transaction Table, if not already present, and the last LSN field is modified. 
If the log record corresponds to a change for page P, then an entry would be made 
for page P (if not present in the table) and the associated LSN field would be 
 modified. When the analysis phase is complete, the necessary information for 
REDO and UNDO has been compiled in the tables.

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES 
starts redoing at a point in the log where it knows (for sure) that previous changes 
to dirty pages have already been applied to the database on disk. It can determine 
this by finding the smallest LSN, M, of all the dirty pages in the Dirty Page Table, 
which indicates the log position where ARIES needs to start the REDO phase. Any 
changes corresponding to an LSN < M, for redoable transactions, must have already 
been propagated to disk or already been overwritten in the buffer; otherwise, those 
dirty pages with that LSN would be in the buffer (and the Dirty Page Table). So, 
REDO starts at the log record with LSN = M and scans forward to the end of the log.

For each change recorded in the log, the REDO algorithm would verify whether or 
not the change has to be reapplied. For example, if a change recorded in the log 
pertains to page P that is not in the Dirty Page Table, then this change is already on 
disk and does not need to be reapplied. Or, if a change recorded in the log (with 
LSN = N, say) pertains to page P and the Dirty Page Table contains an entry for P 
with LSN greater than N, then the change is already present. If neither of these two 
conditions holds, page P is read from disk and the LSN stored on that page, LSN(P), 
is compared with N. If N < LSN(P), then the change has been applied and the page 
does not need to be rewritten to disk.

Once the REDO phase is finished, the database is in the exact state that it was in 
when the crash occurred. The set of active transactions—called the undo_set—has 
been identified in the Transaction Table during the analysis phase. Now, the UNDO 
phase proceeds by scanning backward from the end of the log and undoing the 
appropriate actions. A compensating log record is written for each action that is 
undone. The UNDO reads backward in the log until every action of the set of trans-
actions in the undo_set has been undone. When this is completed, the recovery pro-
cess is finished and normal processing can begin again.
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Consider the recovery example shown in Figure 22.5. There are three transactions: 
T1, T2, and T3. T1 updates page C, T2 updates pages B and C, and T3 updates page A. 
Figure 22.5(a) shows the partial contents of the log, and Figure 22.5(b) shows the 
contents of the Transaction Table and Dirty Page Table. Now, suppose that a crash 
occurs at this point. Since a checkpoint has occurred, the address of the associated 
begin_checkpoint record is retrieved, which is location 4. The analysis phase starts 
from location 4 until it reaches the end. The end_checkpoint record contains the 
Transaction Table and Dirty Page Table in Figure 22.5(b), and the analysis phase 
will further reconstruct these tables. When the analysis phase encounters log record 6, 
a new entry for transaction T3 is made in the Transaction Table and a new entry for 
page A is made in the Dirty Page Table. After log record 8 is analyzed, the status of 
transaction T2 is changed to committed in the Transaction Table. Figure 22.5(c) 
shows the two tables after the analysis phase.

TRANSACTION TABLE

Last_lsn Status(b)

(c)

(a) Lsn

1

Last_lsn Tran_id Type Page_id Other_information

Transaction_id

TRANSACTION TABLE DIRTY PAGE TABLE

Transaction_id

T1 3

Last_lsn

commit

Status Page_id

C

Lsn

7

T3

T2 8

6 in progress

commit

A

B

6

2

T2

T1

DIRTY PAGE TABLE

Page_id

C

Lsn

1

B 22

3 commit

in progress

8

7

6

5

4

3

2

0

7

2

0

end checkpoint

begin checkpoint

1

0

T1

T2

T1

T3

T2

T2

update

commit

update

update

commit

update B

C

A

C . . .

. . .

. . .

. . .

. . .

. . .

Figure 22.5 
An example of recovery in ARIES. (a) The log at point of crash. (b) The Transaction and Dirty Page Tables at time of 
checkpoint. (c) The Transaction and Dirty Page Tables after the analysis phase.
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For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO 
will start at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7} 
corresponding to the updates for pages C, B, A, and C, respectively, are not less 
than the LSNs of those pages (as shown in the Dirty Page Table). So those data 
pages will be read again and the updates reapplied from the log (assuming the actual 
LSNs stored on those data pages are less than the corresponding log entry). At this 
point, the REDO phase is finished and the UNDO phase starts. From the Transaction 
Table (Figure 22.5(c)), UNDO is applied only to the active transaction T3. The UNDO 
phase starts at log entry 6 (the last update for T3) and proceeds backward in the log. 
The backward chain of updates for transaction T3 (only log record 6 in this exam-
ple) is followed and undone.

22.6 Recovery in Multidatabase Systems
So far, we have implicitly assumed that a transaction accesses a single database. In 
some cases, a single transaction, called a multidatabase transaction, may require 
access to multiple databases. These databases may even be stored on different types of 
DBMSs; for example, some DBMSs may be relational, whereas others are object-
oriented, hierarchical, or network DBMSs. In such a case, each DBMS involved in the 
multidatabase transaction may have its own recovery technique and transaction man-
ager separate from those of the other DBMSs. This situation is somewhat similar to the 
case of a distributed database management system (see Chapter 23), where parts of the 
database reside at different sites that are connected by a communication network.

To maintain the atomicity of a multidatabase transaction, it is necessary to have a 
two-level recovery mechanism. A global recovery manager, or coordinator, is 
needed to maintain information needed for recovery, in addition to the local recov-
ery managers and the information they maintain (log, tables). The coordinator usu-
ally follows a protocol called the two-phase commit protocol, whose two phases 
can be stated as follows:

 ■ Phase 1. When all participating databases signal the coordinator that the 
part of the multidatabase transaction involving each has concluded, the 
coordinator sends a message prepare for commit to each participant to get 
ready for committing the transaction. Each participating database receiving 
that message will force-write all log records and needed information for 
local recovery to disk and then send a ready to commit or OK signal to the 
coordinator. If the force-writing to disk fails or the local transaction cannot 
commit for some reason, the participating database sends a cannot commit 
or not OK signal to the coordinator. If the coordinator does not receive a 
reply from the database within a certain time out interval, it assumes a not 
OK response.

 ■ Phase 2. If all participating databases reply OK, and the coordinator’s vote is 
also OK, the transaction is successful, and the coordinator sends a commit 
signal for the transaction to the participating databases. Because all the local 
effects of the transaction and information needed for local recovery have 
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been recorded in the logs of the participating databases, local recovery from 
failure is now possible. Each participating database completes transaction 
commit by writing a [commit] entry for the transaction in the log and perma-
nently updating the database if needed. Conversely, if one or more of the 
participating databases or the coordinator have a not OK response, the 
transaction has failed, and the coordinator sends a message to roll back or 
UNDO the local effect of the transaction to each participating database. This 
is done by undoing the local transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating data-
bases commit the effect of the transaction or none of them do. In case any of the 
participants—or the coordinator—fails, it is always possible to recover to a state 
where either the transaction is committed or it is rolled back. A failure during or 
before phase 1 usually requires the transaction to be rolled back, whereas a failure 
during phase 2 means that a successful transaction can recover and commit.

22.7  Database Backup and Recovery  
from Catastrophic Failures

So far, all the techniques we have discussed apply to noncatastrophic failures. A key 
assumption has been that the system log is maintained on the disk and is not lost as 
a result of the failure. Similarly, the shadow directory must be stored on disk to 
allow recovery when shadow paging is used. The recovery techniques we have dis-
cussed use the entries in the system log or the shadow directory to recover from 
failure by bringing the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more catastrophic 
failures such as disk crashes. The main technique used to handle such crashes is a 
database backup, in which the whole database and the log are periodically copied 
onto a cheap storage medium such as magnetic tapes or other large capacity offline 
storage devices. In case of a catastrophic system failure, the latest backup copy can be 
reloaded from the tape to the disk, and the system can be restarted.

Data from critical applications such as banking, insurance, stock market, and other 
databases is periodically backed up in its entirety and moved to physically separate 
safe locations. Subterranean storage vaults have been used to protect such data 
from flood, storm, earthquake, or fire damage. Events like the 9/11 terrorist attack 
in New York (in 2001) and the Katrina hurricane disaster in New Orleans (in 2005) 
have created a greater awareness of disaster recovery of critical databases.

To avoid losing all the effects of transactions that have been executed since the last 
backup, it is customary to back up the system log at more frequent intervals than full 
database backup by periodically copying it to magnetic tape. The system log is usu-
ally substantially smaller than the database itself and hence can be backed up more 
frequently. Therefore, users do not lose all transactions they have performed since 
the last database backup. All committed transactions recorded in the portion of the 
system log that has been backed up to tape can have their effect on the database 
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redone. A new log is started after each database backup. Hence, to recover from disk 
failure, the database is first recreated on disk from its latest backup copy on tape. Fol-
lowing that, the effects of all the committed transactions whose operations have been 
recorded in the backed-up copies of the system log are reconstructed.

22.8 Summary
In this chapter, we discussed the techniques for recovery from transaction failures. 
The main goal of recovery is to ensure the atomicity property of a transaction. If a 
transaction fails before completing its execution, the recovery mechanism has to 
make sure that the transaction has no lasting effects on the database. First in Sec-
tion 22.1 we gave an informal outline for a recovery process, and then we discussed 
system concepts for recovery. These included a discussion of caching, in-place 
updating versus shadowing, before and after images of a data item, UNDO versus 
REDO recovery operations, steal/no-steal and force/no-force policies, system check-
pointing, and the write-ahead logging protocol.

Next we discussed two different approaches to recovery: deferred update (Sec-
tion  22.2) and immediate update (Section 22.3). Deferred update techniques 
 postpone any actual updating of the database on disk until a transaction reaches its 
commit point. The transaction force-writes the log to disk before recording the 
updates in the database. This approach, when used with certain concurrency 
 control methods, is designed never to require transaction rollback, and recovery 
simply consists of redoing the operations of transactions committed after the last 
checkpoint from the log. The disadvantage is that too much buffer space may be 
needed, since updates are kept in the buffers and are not applied to disk until a 
trans action commits. Deferred update can lead to a recovery algorithm known as 
NO-UNDO/REDO. Immediate update techniques may apply changes to the database 
on disk before the transaction reaches a successful conclusion. Any changes applied 
to the database must first be recorded in the log and force-written to disk so that 
these operations can be undone if necessary. We also gave an overview of a recovery 
algorithm for immediate update known as UNDO/REDO. Another algorithm, 
known as UNDO/NO-REDO, can also be developed for immediate update if all trans-
action actions are recorded in the database before commit.

We discussed the shadow paging technique for recovery in Section 22.4, which 
keeps track of old database pages by using a shadow directory. This technique, 
which is classified as NO-UNDO/NO-REDO, does not require a log in single-user sys-
tems but still needs the log for multiuser systems. We also presented ARIES in Sec-
tion 22.5, which is a specific recovery scheme used in many of IBM’s relational 
database products. Then in Section 22.6 we discussed the two-phase commit proto-
col, which is used for recovery from failures involving multidatabase transactions. 
Finally, we discussed recovery from catastrophic failures in Section 22.7, which is 
typically done by backing up the database and the log to tape. The log can be backed 
up more frequently than the database, and the backup log can be used to redo oper-
ations starting from the last database backup.
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Review Questions
 22.1. Discuss the different types of transaction failures. What is meant by cata-

strophic failure?

 22.2. Discuss the actions taken by the read_item and write_item operations on a 
database.

 22.3. What is the system log used for? What are the typical kinds of entries in a 
system log? What are checkpoints, and why are they important? What are 
transaction commit points, and why are they important?

 22.4. How are buffering and caching techniques used by the recovery subsystem?

 22.5. What are the before image (BFIM) and after image (AFIM) of a data item? 
What is the difference between in-place updating and shadowing, with 
respect to their handling of BFIM and AFIM?

 22.6. What are UNDO-type and REDO-type log entries?

 22.7. Describe the write-ahead logging protocol.

 22.8. Identify three typical lists of transactions that are maintained by the recov-
ery subsystem.

 22.9. What is meant by transaction rollback? What is meant by cascading rollback? 
Why do practical recovery methods use protocols that do not permit cascad-
ing rollback? Which recovery techniques do not require any rollback?

 22.10. Discuss the UNDO and REDO operations and the recovery techniques that 
use each.

 22.11. Discuss the deferred update technique of recovery. What are the advantages and 
disadvantages of this technique? Why is it called the NO-UNDO/REDO method?

 22.12. How can recovery handle transaction operations that do not affect the data-
base, such as the printing of reports by a transaction?

 22.13. Discuss the immediate update recovery technique in both single-user and 
multiuser environments. What are the advantages and disadvantages of 
immediate update?

 22.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO 
algorithms for recovery with immediate update? Develop the outline for an 
UNDO/NO-REDO algorithm.

 22.15. Describe the shadow paging recovery technique. Under what circumstances 
does it not require a log?

 22.16. Describe the three phases of the ARIES recovery method.

 22.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What 
information do the Dirty Page Table and Transaction Table contain? 
Describe how fuzzy checkpointing is used in ARIES.
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 22.18. What do the terms steal/no-steal and force/no-force mean with regard to buf-
fer management for transaction processing?

 22.19. Describe the two-phase commit protocol for multidatabase transactions.

 22.20. Discuss how disaster recovery from catastrophic failures is handled.

Exercises
 22.21. Suppose that the system crashes before the [read_item, T3, A] entry is written to 

the log in Figure 22.1(b). Will that make any difference in the recovery process?

 22.22. Suppose that the system crashes before the [write_item, T2, D, 25, 26] entry is 
written to the log in Figure 22.1(b). Will that make any difference in the 
recovery process?

 22.23. Figure 22.6 shows the log corresponding to a particular schedule at the point 
of a system crash for four transactions T1, T2, T3, and T4. Suppose that we 
use the immediate update protocol with checkpointing. Describe the recov-
ery process from the system crash. Specify which transactions are rolled 
back, which operations in the log are redone and which (if any) are undone, 
and whether any cascading rollback takes place.

[checkpoint]

[start_transaction, T1]

[start_transaction, T2]

[start_transaction, T3]

[read_item, T1, A]

[read_item, T1, D]

[read_item, T4, D]

[read_item, T2, D]

[read_item, T2, B]

[write_item, T1, D, 20, 25]

[write_item, T2, B, 12, 18]

[read_item, T4, A]

[write_item, T4, D, 25, 15]

[write_item, T3, C, 30, 40]

[write_item, T2, D, 15, 25]

[write_item, T4, A, 30, 20]

[commit, T1]

[commit, T4]

[start_transaction, T4]

System crash

Figure 22.6
A sample schedule and its 
corresponding log.
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 22.24. Suppose that we use the deferred update protocol for the example in Fig-
ure 22.6. Show how the log would be different in the case of deferred update 
by removing the unnecessary log entries; then describe the recovery process, 
using your modified log. Assume that only REDO operations are applied, 
and specify which operations in the log are redone and which are ignored.

 22.25. How does checkpointing in ARIES differ from checkpointing as described 
in Section 22.1.4?

 22.26. How are log sequence numbers used by ARIES to reduce the amount of 
REDO work needed for recovery? Illustrate with an example using the infor-
mation shown in Figure 22.5. You can make your own assumptions as to 
when a page is written to disk.

 22.27. What implications would a no-steal/force buffer management policy have 
on checkpointing and recovery?

Choose the correct answer for each of the following multiple-choice questions:

 22.28. Incremental logging with deferred updates implies that the recovery system 
must

a. store the old value of the updated item in the log

b. store the new value of the updated item in the log

c. store both the old and new value of the updated item in the log

d. store only the Begin Transaction and Commit Transaction records in the log

 22.29. The write-ahead logging (WAL) protocol simply means that

a. writing of a data item should be done ahead of any logging operation

b. the log record for an operation should be written before the actual data is 
written

c. all log records should be written before a new transaction begins execution

d. the log never needs to be written to disk

 22.30. In case of transaction failure under a deferred update incremental logging 
scheme, which of the following will be needed?

a. an undo operation

b. a redo operation

c. an undo and redo operation

d. none of the above

 22.31. For incremental logging with immediate updates, a log record for a transac-
tion would contain

a. a transaction name, a data item name, and the old and new value of the item

b. a transaction name, a data item name, and the old value of the item

c. a transaction name, a data item name, and the new value of the item

d. a transaction name and a data item name
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 22.32. For correct behavior during recovery, undo and redo operations must be

a. commutative

b. associative

c. idempotent

d. distributive

 22.33. When a failure occurs, the log is consulted and each operation is either 
undone or redone. This is a problem because

a. searching the entire log is time consuming

b. many redos are unnecessary

c. both (a) and (b)

d. none of the above

 22.34. Using a log-based recovery scheme might improve performance as well as 
provide a recovery mechanism by

a. writing the log records to disk when each transaction commits

b. writing the appropriate log records to disk during the transaction’s 
execution

c. waiting to write the log records until multiple transactions commit and 
writing them as a batch

d. never writing the log records to disk

 22.35. There is a possibility of a cascading rollback when

a. a transaction writes items that have been written only by a committed 
transaction

b. a transaction writes an item that is previously written by an uncommitted 
transaction

c. a transaction reads an item that is previously written by an uncommitted 
transaction

d. both (b) and (c)

 22.36. To cope with media (disk) failures, it is necessary

a. for the DBMS to only execute transactions in a single user environment

b. to keep a redundant copy of the database

c. to never abort a transaction

d. all of the above

 22.37. If the shadowing approach is used for flushing a data item back to disk, 
then

a. the item is written to disk only after the transaction commits

b. the item is written to a different location on disk

c. the item is written to disk before the transaction commits

d. the item is written to the same disk location from which it was read
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