

One Stop for All Study Materials

& Lab Programs

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: <u>https://bit.ly/2GKiHnJ</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

AUTOMATA THEORY AND COMPUTABILITY				
[As per Unoice Based Urean System (UBUS) scheme]				
(Effective from the academic year 2017-2018) SEMESTED V				
Subject Code	SENIESTEK – V 17CS54	IA Marks	40	
Number of Lecture Hours/Week	1,0501	Exam Marka	60	
Number of Lecture Hours/ week	4	Exam Marks	00	
Total Number of Lecture Hours		Exam Hours	03	
CREDITS - 04				
Module – 1			Teaching Hours	
Why study the Theory of Computation, Languages and Strings: Strings,				
Languages. A Language Hierarchy, Computation, Finite State Machines			nes	
(FSM): Deterministic FSM, Regular languages, Designing FSM,				
Nondeterministic FSMs, From FSMs to Operational Systems, Simulators for				
FSMs. Minimizing FSMs. Canonical form of Regular languages. Finite State				
Transducers Bidirectional Transducers				
Textbook 1: Ch 1 2 3 4 5 1 to 5 10				
Module – 2				
Regular Expressions (RE): what is a RE? Kleene's theorem Applications of 10 Hours				
RES Manipulating and Simplifying RES Regular Grammars: Definition				
Res, Mainpulating and Simplifying Res. Regular Grammars: Definition, Degular Grammars and Degular languages. Degular Languages (DL) and Non				
regular Languages, How many DL, To show that a languages (RL) and Non-				
regular Languages: How many RLs, To show that a language is regular, Closure				
properties of RLs, to show some langu	lages are not RLs.			
Textbook 1: Ch 6, 7, 8: 6.1 to 6.4, 7.1	l, 7.2, 8.1 to 8.4			
Module – 3				
Context-Free Grammars(CFG): Introduction to Rewrite Systems and Grammars, 1			ars, 10 Hours	
CFGs and languages, designing CFGs, simplifying CFGs, proving that a			t a	
Grammar is correct, Derivation and Parse trees, Ambiguity, Normal Forms.				
Pushdown Automata (PDA): Definition of non-deterministic PDA, Deterministic				
and Non-deterministic PDAs, Non-determinism and Halting, alternative				
equivalent definitions of a PDA, alternatives that are not equivalent to PDA.				
Textbook 1: Ch 11, 12: 11.1 to 11.8, 12.1, 12.2, 12,4, 12.5, 12.6				
Module – 4	, , , , ,	,	I	
Context-Free and Non-Context-Free	Languages: When	e do the Context-F	ree 10 Hours	
Languages(CFL) fit Showing a lang	lage is context-free	e Pumping theorem	for	
CFL Important closure properties of	CFLs Deterministi	c CFLs Algorithms	and	
Decision Procedures for CELS. Dec	idable questions	Un-decidable questic	ns	
Turing Machine: Turing machine mod	lel Representation	L'anguage accentabi	lity	
by TM design of TM. Techniques, for TM construction				
Tarthook 1. Ch 13, 13 1 to 13 5. Ch 14, 14 1, 14 2. Tarthook 2. Ch 0.1 to 0.6				
1extbook 1: Ch 15: 15.1 to 15.5, Ch 14: 14.1, 14.2, 1extbook 2: Ch 9.1 to 9.6				
Module – 5	T 1 11 CT	D 11		
Variants of Turing Machines (TM),	The model of Lin	ear Bounded automa	ata: 10 Hours	
Decidability: Definition of an algo	rithm, decidability	v, decidable languag	ges,	
Undecidable languages, halting probl	em of TM, Post c	orrespondence proble	em.	
Complexity: Growth rate of function	ons, the classes of	t P and NP, Quant	um	
Computation: quantum computers, Ch	urch-Turing thesis.			
Textbook 2: Ch 9.7 to 9.8, 10.1 to 10).7, 12.1, 12.2, 12.8	, 12.8.1, 12.8.2		

Course outcomes: The students should be able to:			
• Tell the core concepts in automata theory and Theory of Computation			
• Explain how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).			
• Interpret Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.			
• Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.			
Classify a problem with respect to different models of Computation.			
Question paper pattern:			
The question paper will have TEN questions.			
There will be TWO questions from each module.			
Each question will have questions covering all the topics under a module.			
The students will have to answer FIVE full questions, selecting ONE full question from each			
module.			
Text Books:			
1. Elaine Rich, Automata, Computability and Complexity, 1 st Edition, Pearson			
Education,2012/2013			
2. K L P Mishra, N Chandrasekaran, 3 rd Edition, Theory of Computer Science, PhI, 2012.			
Reference Books:			
1. John E Hopcroft, Rajeev Motwani, Jefferv D Ullman, Introduction to AutomataTheory,			
Languages, and Computation, 3rd Edition, Pearson Education, 2013			
2. Michael Sipser : Introduction to the Theory of Computation, 3rd edition, Cengage			
learning.2013			
John C Martin, Introduction to Languages and The Theory of Computation, 3 rd Edition,			
Tata McGraw –Hill Publishing Company Limited, 2013			
4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition Narosa			
Publishers, 1998			
5. Basavarai S. Anami, Karibasappa K G. Formal Languages and Automata theory. Wiley			
India, 2012			

6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012.