
Artificial Intelligence

Open Elective

Class 7: Algorithms

Dr. Santhi Natarajan

Associate Professor

Dept of AI and ML

BMSIT, Bangalore

2

Generate and Test

• Particular point in problem space

• Path from the start state

• Compare chosen point with acceptable

goal state

• Compare end point of chosen path with

acceptable goal state

• Quit on solution

3

Generate and Test

• When done systematically, guaranteed to produce result

• Very exhaustive search, combinatorial problems in simple Generate and Test.

Inefficient for problems with large search spaces

• Applied search techniques:

 DFS – with heuristics

 British Museum – exhaustive complete search

• Most appropriate technique:

 DFS with backtracking

• Combination of techniques: DENDRAL

 Planning: Constraint satisfaction techniques

 Generate and Test: Planned list used to explore only a fairly limited set of

states or paths in graphs

 Planning often produces inaccurate solutions, as there is no feedback from

environment

4

Hill Climbing

• Variant of Generate and Test

• Feedback from the environment helps the generator to decide which direction to

move in the state space diagram

• Heuristics: How close is the current state to the goal state

• Computation of the heuristic cost function done at the same time of performing

the test for a solution

• Evaluation function is use as a way to inject task-specific knowledge into the

control process

• Is one state better than the other?

 Higher value of heuristic function

 Lower value of heuristic function

5

Hill Climbing

Navigating towards Downtowns

Absolute solution

Travelling salesman

Relative solution

6

Hill Climbing Landscape

Global Maximum: It is the highest point

on the hill, which is the goal state.

Local Maximum: It is the peak higher

than all other peaks but lower than the

global maximum.

Flat local maximum: It is the flat area

over the hill where it has no uphill or

downhill. It is a saturated point of the hill.

Shoulder: It is also a flat area where the

summit is possible.

Current state: It is the current position of

the person.

7

Hill Climbing

8

Hill Climbing

• Evaluate initial state:

 If initial state == goal state, quit.

 Else, initial state == current state

• Loop until a solution is found or no new operators are left to be applied

in current state

 Select an operator that has not yet been applied to current state

and apply to produce new state:

 Evaluate new state:

 If new state == goal state, quit

 If new state better than current state, current state == new state

 Else, retain current state and continue in loop

9

Steepest Ascend Hill Climbing

• Evaluate initial state:

 If initial state == goal state, quit.

 Else, current state == , initial state

• Loop until a solution is found or no new operators are left to be applied

in current state

 SUCC: a state such that any possible successor of current state is

better than SUCC

 For each operator applied on current state:

 Generate new state

 If new state == goal state, return and quit

 Else, compare(new state, SUCC).

 If new state >= SUCC, SUCC == new state

 Else, SUCC == SUCC

 Evaluate SUCC state:

 If SUCC >= current state, current state == SUCC

 Else, retain current state and continue in loop

10

Stochastic and Random Hill Climbing

Stochastic hill climbing

Stochastic hill climbing does not focus on all the nodes. It selects one node at

random and decides whether it should be expanded or search for a better one.

Random-restart hill climbing

Random-restart algorithm is based on try and try strategy. It iteratively searches

the node and selects the best one at each step until the goal is not found. The

success depends most commonly on the shape of the hill. If there are few

plateaus, local maxima, and ridges, it becomes easy to reach the destination.

11

Problems in Hill Climbing

12

Overcoming Problems in Hill Climbing

Backtrack for local maxima

• Reasonable, if the new node is in another direction that

looked as promising or almost as promising as the one that

was chosen earlier.

Big jump for plateaus

• Do this to try and get to a new section of the search space.

If the rules available describe only single small steps, apply

them several times in the same direction.

Combine rules for ridges

• Moving in several directions at once. Apply two or more

rules before doing the test.

13

Drawbacks of Hill Climbing

• Unsuited for problems, where value of heuristics function

suddenly drops off as we move away from solution, typical

cases are those where there is a threshold function

• Local method: the next move is decided by evaluating only

the immediate consequence, not by exploring

consequences exhaustively.

• Driving downtown:

• One way street and deadend: knowledge prerequisites

• When we convert local hill climbing into global hill climbing

by adding extra knowledge, sometimes computational

advantages of local hill climbing is lost.

14

Simulated Annealing

• Process in metallurgy, where metals are slowly cooled to make them reach a

state of low energy where they are very strong

• Use objective function and minimize it, instead of maximizing a heuristic

function.

• SA is a global optimization technique

• Iterative improvement algorithm

• Perform enough exploration of the whole search space early so that the final

solution is relatively insensitive to the starting state

• Lowers the possibilities of getting stuck in local maximas, plateaus and ridges

15

Simulated Annealing

16

Simulated Annealing

17

Best First Search – OR Graphs

18

Best First Search Algorithms

f(n) = g(n) + h(n), where

• g(n) the cost (so far) to reach the node

• h(n) estimated cost to get from the node to the goal

• f(n) estimated total cost of path through n to goal. It is implemented using

priority queue by increasing f(n).

OPEN: nodes that have been generated but not yet examined (had their

successors generated). This is a priority queue. Elements or nodes with

highest priority are those with the most promising values of the heuristic

function.

CLOSED: nodes that have already been examined.

19

Best First Search Algorithms

• Step 1: Define the OPEN list with a single node, the starting node.

• Step 2: Check whether or not OPEN is empty. If it is empty, then the algorithm returns

failure and exits.

• Step 3: Remove the node with the best score, n, from OPEN and place it in CLOSED.

• Step 4: The fourth step “expands” the node n, where expansion is the identification of

successor nodes of n.

• Step 5: check each of the successor nodes to see whether or not one of them is the goal

node. If any successor is the goal node, the algorithm returns success and the solution,

which consists of a path traced backwards from the goal to the start node. Otherwise, the

algorithm proceeds to the sixth step.

• Sep 6: For every successor node, the algorithm applies the evaluation function, f, to it,

then checks to see if the node has been in either OPEN or CLOSED. If the node has not

been in either, it gets added to OPEN.

• Step 7: Finally, the seventh step establishes a looping structure by sending the algorithm

back to the second step. This loop will only be broken if the algorithm returns success in

step five or failure in step two.

20

Best First Search Algorithms

• The algorithm is represented here in pseudo-code:

• 1. Define a list, OPEN, consisting solely of a single node, the start node, s.

• 2. IF the list is empty, return failure.

• 3. Remove from the list the node n with the best score (the node where f is the minimum),

and move it to a list, CLOSED.

• 4. Expand node n.

• 5. IF any successor to n is the goal node, return success and the solution (by tracing the

path from the goal node to s).

• 6. FOR each successor node:

• a) apply the evaluation function, f, to the node.

• b) IF the node has not been in either list, add it to OPEN.

• 7.looping structure by sending the algorithm back to the second step.

21

A* Algorithm

The goal node is denoted by node_goal and the source node is denoted by

node_start

We maintain two lists: OPEN and CLOSE:

OPEN consists on nodes that have been visited but not expanded (meaning

that sucessors have not been explored yet). This is the list of pending tasks.

CLOSE consists on nodes that have been visited and expanded (sucessors

have been explored already and included in the open list, if this was the

case).

22

A* Algorithm

Put node_start in the OPEN list with f(node_start) = h(node_start) (initialization)

while the OPEN list is not empty {

 Take from the open list the node node_current with the lowest

 f(node_current) = g(node_current) + h(node_current)

if node_current is node_goal we have found the solution; break

Generate each state node_successor that come after node_current

for each node_successor of node_current {

 Set successor_current_cost = g(node_current) + w(node_current, node_successor)

 if node_successor is in the OPEN list {

 if g(node_successor) ≤ successor_current_cost continue (to line 20)

 } else if node_successor is in the CLOSED list {

 if g(node_successor) ≤ successor_current_cost continue (to line 20)

 Move node_successor from the CLOSED list to the OPEN list

 } else {

 Add node_successor to the OPEN list

 Set h(node_successor) to be the heuristic distance to node_goal

 }

 Set g(node_successor) = successor_current_cost

 Set the parent of node_successor to node_current

 }

 Add node_current to the CLOSED list

}

if(node_current != node_goal) exit with error (the OPEN list is empty)

23

A* Algorithm: Under Estimation

24

A* Algorithm: Over Estimation

25

Problem Reduction: AND-OR Tree

FUTILITY: If estimated cost of a solution > FUTILITY, then abandon the search

26

Problem Reduction: AND-OR Tree

27

Problem Reduction: AND-OR Tree

28

Problem Reduction: Longer path is better

29

Problem Reduction: Interacting Subgoals

30

AO* ALGORITHM

31

AO* ALGORITHM

32

AO* ALGORITHM

33

MEANS ENDS ANALYSIS

34

MEANS ENDS ANALYSIS

35

Agenda Driven Search

36

Agenda Driven Search

37

Agenda Driven Search

38

Agenda Driven Search

39

Constraint Satisfaction

40

Constraint Satisfaction

41

Constraint Satisfaction

42

Constraint Satisfaction

43

Constraint Satisfaction

