Artificial Intelligence
Open Elective

Module2: Knowledge
Representation: CH4

Dr. Santhi Natarajan
Associate Professor
Dept of Al and ML
BMSIT, Bangalore

Knowledge: What to represent

Knowledge: Knowledge is awareness or familiarity gained by experiences of facts,
data, and situations.

Knowledge-Base: The central component of the knowledge-based agents is the
knowledge base. It is represented as KB. The Knowledgebase is a group of the
Sentences (Here, sentences are used as a technical term and not identical with the
English language).

Knowledge about what

» Object: All the facts about objects in our world domain. E.g., Guitars contains
strings, trumpets are brass instruments.

« Events: Events are the actions which occur in our world.

« Performance: It describe behavior which involves knowledge about how to do
things.

 Meta-knowledge: It is knowledge about what we know.

e Facts: Facts are the truths about the real world and what we represent.

| should

jump or not ?

Knowledge Reasoning Dig
Based agent

Knowledge: The information related to the environment is stored in the machine.
Reasoning: The ability of the machine to understand the stored knowledge.

Intelligence: The ability of the machine to make decisions on the basis of the stored
information.

Ontological Engineering: Systems that represent large and modular knowledge on
complex domains. General concepts such as actions, time, physical objects,
performance, meta data and beliefs could be expressed on a larger scale.

Facts: truths in some relevant world. These are the things we want to represent.

Knowledge: typically large amount of knowledge is required to solve complex
problems in Al

Manipulation of knowledge: knowledge needs to be manipulated to find solutions.

Representation: facts are typically represented in some formalism. These
representations are the things that we actually be able to manipulate. A good
representation sometimes makes the operation of a reasoning program not only
correct, but trivial as well.

Structuring at two levels:

 Level 1: Knowledge level: here, the facts (including the agent’s behaviours and
current goals) are described.

 Level 2: Symbol level: here, representations of objects at the knowledge level are

defined in terms of symbols that can be manipulated by programs. 4

Relationship between
object, concept

gtructurgy
wnowledg,,

Knowledge about
knowledge

Declarative Knowledge:

« Declarative knowledge is to know about something.
* It includes concepts, facts, and objects.

* Itis also called descriptive knowledge and expressed in
declarative sentences.

* It is simpler than procedural language.

Procedural Knowledge

« Itis also known as imperative knowledge.

* Procedural knowledge is a type of knowledge which is
responsible for knowing how to do something.

|t can be directly applied to any task.
 Itincludes rules, strategies, procedures, agendas, etc.

* Procedural knowledge depends on the task on which it
can be applied.

Meta-knowledge:

« Knowledge about the other types of knowledge is called
Meta-knowledge.

Heuristic knowledge:

« Heuristic knowledge is representing knowledge of some
experts in a field or subject.

« Heuristic knowledge is a set of rules of thumb based on
previous experiences, awareness of approaches, and
which are good to work but not guaranteed.

Structural knowledge:

 Structural knowledge is basic knowledge to problem-
solving.

It describes relationships between various concepts such
as kind of, part of, and grouping of something.

It describes the relationship that exists between concepts
or objects.

10

Knowledge of real-worlds plays a vital role
in intelligence and same for creating
artificial intelligence.

Knowledge plays an important role in
demonstrating intelligent behavior in Al
agents.

An agent is only able to accurately act on
some input when he has some knowledge
or experience about that input.

As we can see in the diagram, there is one
decision maker which act by sensing the
environment and using knowledge. But if
the knowledge part will not present then, it
cannot display intelligent behavior.

11

12

Simple Relational Knowledge

Inheritable Knowledge
Inferential Knowledge

Procedural Knowledge

13

Simple Relational Knowledge

 Itis the simplest way of storing facts which uses the relational method, and
each fact about a set of the object is set out systematically in columns.

« This approach of knowledge representation is famous in database systems
where the relationship between different entities is represented.

« This approach has little opportunity for inference.

Player Weight Age
Playerl 65 23
Player2 58 18

Player3 75 24

14

Adult-male

1 IS-A

Player

IS'V ‘\IS_A

Cricket Foothball
instance T 1 mstance
Peter Ankit

15

Inheritable Knowledge

In the inheritable knowledge approach, all data must be stored into a
hierarchy of classes.

All classes should be arranged in a generalized form or a hierarchal
manner.

In this approach, we apply inheritance property.
Elements inherit values from other members of a class.

This approach contains inheritable knowledge which shows a relation
between instance and class, and it is called instance relation.

Every individual frame can represent the collection of attributes and its
value.

In this approach, objects and values are represented in Boxed nodes.
16

We tice Arrows which noint from obiects to their valiies

© N o g bk w N =

Inferential knowledge approach represents knowledge in the form of formal logics.

This approach can be used to derive more facts.

It guaranteed correctness.

Marcus was a man.

Marcus was a Pompeian.

All Pompeians were Romans.

Caesar was a ruler.

All Pompeians were either loyal to Caesar or hated him.
Every one is loyal to someone.

People only try to assassinate rulers they are not loyal to.

Marcus tried to assassinate Caesar.

1. Marcus was a man.

man(Marcus)

2. Marcus was a Pompeian.

Pompeian(Marcus)

3. All Pompeians were Romans.

7x: Pompeian(x) — Roman(x)

4. Caesar was a ruler.

ruler(Caesar)

17

All Pompeians were either loyal to Caesar or hated him. 8. Marcus tried to assassinate Caesar.

inclusive-or tryassassinate(Marcus, Caesar)

7x: Roman(x) — loyalto(x, Caesar) v hate(x, Caesar)

exclusive-or Was Marcus loyal to Caesar?
7x: Roman(x) — (loyalto(x, Caesar) ~ —hate(x, Caesar)) v man(Marcus)
(—loyalto(x, Caesar) » hate(x, Caesar)) ruler(Caesar)

tryassassinate(Marcus, Caesar)

I ¥x: man(x) — person(x)
Every one is loyal to someone.
—loyalto(Marcus, Caesar)

vx: Jy: loyalto(x, y) dy: ¥x: loyalto(x, y)

People only try to assassinate rulers they are not loyal to.

vX: Vy: person(x) A ruler(y) ~ tryassassinate(x, y)

— —loyalto(x, y)
18

Procedural knowledge approach uses small programs and codes which
describes how to do specific things, and how to proceed.

In this approach, one important rule is used which is If-Then rule.

In this knowledge, we can use various coding languages such as LISP
language and Prolog language.

We can easily represent heuristic or domain-specific knowledge using this
approach.

But it is not necessary that we can represent all cases in this approach.

19

Requirements of a KR System

* Representational Adequacy: It is the ability of the system to represent all
kinds of knowledge needed in a specific domain.

« Inferential Adequacy: It is the ability of a knowledge representation system
to manipulate the current stored knowledge so that newly gained
knowledge could be added.

« Inferential Efficiency: Itis the ability of the system to directly add new
knowledge in the system with efficiency

- Acquisitional Efficiency: It is the ability of the system to automatically
acquire new knowledge from the environment. This leads the system to
give more productive result as more knowledge adds up with the current
knowledge.

20

Propositional logic

First oder logic

Techniques used for
Knowledge
Representation

Rule-based System

Semantic Networks

Frames

21

Technigues used for KR

Logic:

It is the basic method used to represent the knowledge of a machine. The term logic
means to apply intelligence over the stored knowledge. Logic can be further divided as:

Propositional Logic:

This technique is also known as propositional calculus, statement logic, or sentential
logic. It is used for representing the knowledge about what is true and what is false.

First-order Logic:
It is also known as Predicate logic or First-order predicate calculus (FOPL). This
technique is used to represent the objects in the form of predicates or quantifiers. It is

different from Propositional logic as it removes the complexity of the sentence
represented by it. In short, FOPL is an advance version of propositional logic.

22

Rule-based System:

« This is the most commonly used technique in artificial intelligence.

* In the rule-based system, we impose rules over the propositional logic and first-
order logic techniques.

 If-then clause is used for this technique.

« For example, if there are two variables A and B. Value of both A and B is True.
Consequently, the result of both should also be True and vice-versa.

« Itis represented as:
If the value of A and B is True, then the result will be True.

« S0, such a technique makes the propositional as well as FOPL logics bounded in
the rules.

23

Semantic Networks:

« The technique is based on storing the knowledge into the system in the form of a
graph.

* Nodes of a graph represent the objects which exist in the real world, and the arrow
represents the relationship between these objects.

« Such techniques show the connectivity of one object with another object.

24

Ram has a cycle.

Ram is a boy.

Cycle has a bell.

Ram is 12 years old.
Cycle has two paddles.

25

Frames

* In this technique, the knowledge is stored via slots and fillers.

« As we have seen in DBMS, we store the information of an employee in the
database with entities and attributes.

Employee » Entity/Object

Emp name = Attribute

« Similarly, the Slots are the entities and Fillers are its attributes. They are
together stored in a frame.

« S0, whenever there is a requirement, the machine infers the necessary
information to take the decision.

* For example, Tomy is a dog having one tail.

It can be framed as:

Tomy((Species (Value = Dog)) 26
(Feature (Value = Tail)))

Script:

« Itis an advanced technique over the Frames.
» Here, the information is stored in the form of a script.
« The script is stored in the system containing all the required information.

« The system infers the information from that script and solves the problem

27

Reasoning
programs

Facts

—2 _linternal

«——|Representations [

*

English English.

understanding generation
English
Representation

Spotis adog

dog(spot)

fV]x : dog(x) -> hasatail(x),
logical expression for the fact
that all dogs have tall

New representation,
hasatail(Spot)

Using an appropriate
backward mapping function
the English sentence can be
generated as Spot has a tail

28

o ER R O ED T R ER EE R W O BT BT EE B W OEF OER OB BN BT W TS TR T mW e e o

Initial desired real reasoning o Final

facts facts
A
* forward backward *
representation representation
mapping mapping
Y
|Internal - Internal
representation . representation
of initial facts Operation | ¢ itial facts

of program

29

Attributes

v Are they basic?

v Are they occuring frequently?

v" How are they properly represented?
v E.g., ISA, INSTANCE

Relationship among attributes
v Inverse
v' Existence in a ISA hierarchy
v Techniques for reasoning about value
v Single valued attributes

Level of KR
v Use of primitives to represent knowledge
v" Can knowledge be broken down into a defined set of primitives
v" How such primitives help in KR

Object Representation

How to access knowledge from repository
v’ Use of primitives to represent knowledge
v' Can knowledge be broken down into a defined set of primitives
v" How such primitives help in KR

30

Artificial Intelligence
Open Elective

Module2: Knowledge
Representation: CH5

Dr. Santhi Natarajan
Associate Professor
Dept of Al and ML
BMSIT, Bangalore

Propositional logic

« Statements used in mathematics.

- Proposition :is a declarative sentence whose value is
either true or false.

Examples:

* “The sky is blue.” [Atomic Proposition]

* "The sky is blue and the plants are green.”
[Molecular/Complex Proposition]

+ “Today is a rainy day” [Atomic Proposition]
« “Today is Sunday” [Atomic Proposition]
« " 2%2=4" [Atomic Proposition]

32

Terminologies in propositional algebra:
Statement: sentence that can be true/false.

Properties of statement:

v' Satisfyability: a sentence is satisfyable if there is an
interpretation for which it is true.

Eg."we wear woollen cloths”

v" Contradiction: if there is no interpretation for which
sentence is true.

Eg. “Japan is capital of India”

v' Validity: a sentence is valid if it is true for every
interpretation.

Eg. “Delhi is the capital of India”

33

Inference rules:

Commutative pAq &= qAp pVq &= qVp
Associative (pAg)AT = pA(gAT) (pVg)Vr <= pV(gVr)
Distributive pA(gVvr) < (pAg)V(pAr) pV(gAr) &= (pVgA(pVT)

Identity pAT &= p pVF &= p
Negation pep =T pPA~p &= F
Double Negative ~(~p) = p

Idempotent PAp &= p pPVp &=p
Universal Bound pVT & T pAF < F

De Morgan’s ~(pAg) &= (~p)V(~vg ~(pVg) <= (~pA(~g)
Absorption pVipAg) &= p pA(pVg) &= p

Conditional (p=>4q) &= (~pVg) ~(p = q) = (pA~q) 34

INFERENCE RULES IN PROPOSITIONAL LOGIC

1. Idempotent rule:
PAP==>P
PvP==P
2. Commutative rule:
PAQ=>QAP
PvQ=>QvVP
3.Associative rule:
PAQAR)=—>PAQ)AR
PV QVR)=>PVQ)VR

36

4. Distributive Rule:
PV(QAR)=>PVQ)A(PVR)
PAQVR)==>PAQ)V(PAR)

5. De-Morgan’s Rule:
(P v Q)==> TP A 1Q
T(PAQ)=>7PVIQ
6. Implication elimination:

P>Q=>1PVvQ

37

7. Bidirectional Implication elimination:
(P Q)==(P2Q)AQ=>P)
8. Contrapositive rule:
P>Q=>7P=> 1Q
9. Double Negation rule:
W TP)=> P

10. Absorption Rule:

PV(PAQ)=>P

PA(PVQ)=>P

38

1 1.Fundamental identities:
PA9p=>F [contradiction]
PvVvaPp==>T [Tautology]

PvT=>P
PVF=>P
PvaT=>P

PAF=F
PAT=>P

39

12. Modus Ponens:

If P 1s true and P> Q then we can infer Q 1s also true.
P
P=2Q

Hence, Q

13. Modus Tollens:

If 9P 1s true and P=>Q then we can infer JQ .
1P
P2Q

40
Hence, 7Q

14. Chain rule:
If p2qand q=2r then p—=2r

15. Disjunctive Syllogism:

if 7p and pvq we can infer q 1s true.

16. AND elimination:

Given P and Q are true then we can deduce P and Q
seperately: PAQ=>P

PAQ>Q

41

17. AND mtroduction:
Given P and Q are true then we deduce P A Q

18. OR introduction:

Given P and Q are true then we can deduce P and QQ
separately:

P2 PVvQ
Q=>PVvQ

42

+ Example:
“I will get wet if it rains and | go out of the house”

Let Propositions be:
W %l will get wet ©
R “itrains “
S © “l go out of the house”

(SAR)> W

43

Using Propositional Logic

Representing simple facts

It is raining
RAINING

It is sunny
SUNNY

It is windy
WINDY

If it is raining, then it is not sunny
RAINING — —SUNNY

44

Normal Forms In propositional Logic
1. Conjunctive normal form (CNF):

eg. (PVQVR)A(PVQ)A(PVR)AP
It is conjunction (1) of disjunctions (V)

Where disjunctions are:
1. (PVQVR))
2. (PvQ)

3. (PVR) — clauses
4. P

45

2. Disjunctive normal form (DNF):

eg. (PrQAR)VIPrQ)V(IPAR)VP

It is disjunction (V) of conjunctions (/)

46

Procedure to convert a statement to CNF

1. Eliminate implications and biconditionals using formulas:
* (POQ)=>(P2Q)A(Q>P)
+ P>Q=>TPVQ

2. Apply De-Morgan’s Law and reduce NOT symbols so as to bring negations
before the atoms. Use:

¢+ APVQ)==> TP ATQ
+ T(®AQ)==>7PV1Q

3. Use distributive and other laws & equivalent formulas to obtain Normal forms.

47

Conversion to CNF example

Q. Convert into CNF : ((P=2Q)2>R)
Solution:

Step 1: ((P>Q)>R) ==>

==>

((7PVQ)=2>R)
7(7PVQ VR

Step2: 7(7PVQ VR ==> (PA7Q)VR

Step3: (PA7Q)VR ==>

(PVR)A(FQVR)
N J
N/
T 48
CNF

Resolution in propositional logic

Proof by Refutation / contradiction.

Used for theorem proving / rule of inference.

Method: Say we have to prove proposition A
Assume A to be false i.e. 7A
Continue solving the algorithm starting from 5A

If you get a contradiction (F) at the end it means your initial
assumption i.e. JA is false and hence proposition A must
be true.

Clause: disjunction of literals is called clause.

49

How it works?

E.g. “ Ifit is Hot then it is Humid. If it is humid then it will rain. It

is hot.” prove that “ it will rain.”

Solution:

Let us denote these statements with propositions H,O and R:

- H:“Itis humid”.

- O:"ltisHot”. And R:“lIt will rain”.

Formulas corresponding to the sentences are:

1. “if it is hot then it is humid”
2. “If it is humid then it will rain”.
3. “Iltis Hot”

To prove: R.

O>H] ==> 70 VH
'H>R] ==> 7HVR
O] ==> 0

50

« Letus assume “it will NOT rain® [9R]

* [T1R] [7H V R]

N

'I\f//

E [EMPTY CLAUSE / CONTRADICTION]

10 V H]

51

« Since an empty clause (E) has been deduced we say that
our assumption is wrong and hence we have proved:

“It will rain”

Using Prepositional Logic:
e Theorem proving is decidable BUT

e It Cannot represent objects and quantification.

e Hence we go for PREDICATE LOGIC
52

PREDICATE LOGIC

e Can represent objects and quantification

e Theorem proving is semi-decidable

53

Representing simple facts (Preposition)

“"SOCRATES IS A MAN”

SOCRATESMAN ~ ===mmmmm- 1
“PLATO IS A MAN”
PLATOMAN ~ ——m- 2

Fails to capture relationship between Socrates and man.
We do not get any information about the objects involved
EX:
if asked a question : “who is a man?” we cannot get
answer.

Using Predicate Logic however we can represent above

facts as: Man(Socretes) and Man(Plato)
54

Using Predicate Logic

Marcus was a man.

man(Marcus)

Marcus was a Pompeian.

Pompeian(Marcus)

55

Quantifiers:
2 types:-

Universal quantifier (V)

7Xx: means “for all” x
It is used to represent phrase “ for all”.

It says that something is true for all possible values of
a variable.

Ex. “ John loves everyone”
vX: loves(John , x)

56

« Existential quantifier (3):

« Used to represent the fact “ there exists some”
« EX

« “some people like reading and hence they gain good
knowledge”

3 x: { [person(x) A like (x, reading)] = gain(x, knowledge) }

+ “lord Haggins has a crown on his head”
« 3 x:crown(X) A onhead (x, Haggins)

S7

Nested Quantifiers
We can use both V and 1 seperately

Ex: “everybody loves somebody”

vx: Jy: loves (x,Y)

Connection between V and 3
“ everyone dislikes garlic”
vV x: - like (x, garlic)
» This can be also said as:
‘there does not exists someone who likes garlic

— Jx: like (X, garlic)

58

Using Predicate Logic

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.
6. Every one is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

59

1. Marcus was a man.
man(Marcus)

2. Marcus was a Pompeian.
Pompeian(Marcus)

3. All Pompeians were Romans.
vx: Pompeian(x) —» Roman(x)

4. Caesar was a ruler.
ruler(Caesar)

5. All Pompeians were either loyal to Caesar or hated him.
inclusive-or

vx: Roman(x) — loyalto(x, Caesar) v hate(x, Caesar)
exclusive-or

vx: Roman(x) — (loyalto(x, Caesar) A —hate(x, Caesar)) v
(—loyalto(x, Caesar) A hate(x, Caesar))

60

6. Every one is loyal to someone.
Vvx: 3y: loyalto(x, y) 3y: Vx: loyalto(x, y)

7. People only try to assassinate rulers they are not loyal to.
VX: Vy: person(x) A ruler(y) A tryassassinate(x, y)
— —loyalto(x, y)

8. Marcus tried to assassinate Caesar.
tryassassinate(Marcus, Caesar)

Was Marcus loyal to Caesar?
man(Marcus)

ruler(Caesar)
tryassassinate(Marcus, Caesar)

U

VX: man(x) — person(x)
—loyalto(Marcus, Caesar)

61

* Many English sentences are ambiguous.

* There is often a choice of how to represent knowledge.
* Obvious information may be necessary for reasoning

* We may not know in advance which statements to deduce (P or —P).

62

Some more examples

« “all indoor games are easy’
vX: indoor_game(x) =2 easy(X)

+ “Rajiv likes only cricket”
Like(Rajiv, Cricket)

« “Any person who is respected by every person is a kKing”
Ix:Yy: { person(x) A person(y) A respects (y ,x)=2> king(x)}

63

« “god helps those who helps themselves”
Vx: helps(god, helps(x , x))

» “everyone who loves all animals is loved by someone”
vx: [Vy: animal (y) =2 loves(x, vy)]

\ J

everyone who loves all animals

dz: loves(z , x) _}— there exist someone z and z loves x
Thus the predicate sentence is:

vx: [[Vy: animal (y) 2 loves(x,y)] 2> [dz:loves(z,x)]]

64

Computable Functions and Predicates

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 AD.

4. All men are mortal.

5. All Pompeians died when the volcano errupted in 79 AD.
6. No mortal lives longer than 150 years.

7.We are now in 2019 AD.

8. Alive means not dead.

9. If someone dies, he is dead at all later times

65

1. Marcus was a man.
man(Marcus)

2. Marcus was a Pompeian.
Pompeian(Marcus)

3. Marcus was born in 40 AD.
Born(Marcus, 40)

4. All men are mortal.
VXx: man(x) - mortal(x)

5. All Pompeians died when the volcano errupted in 79 AD.
Erupted(volcano, 79) A Vx: [Pompeian (x) 2 Died (x, 79)]

6. No mortal lives longer than 150 years.
VX: Vti: Vt2: died(x, t1) A greater-than(tz,-t1,15s0) -> dead(x, t2)

66

7.\We are now in 2019 AD.

now = 2008

8. Alive means not dead.

vx: Vt: [Alive (x, t) > —~dead(x, t)] A[dead(x, t) = — Alive (x, t)]
9. If someone dies, he is dead at all later times

VX: Vti: Vtz: died(X, t1) A greater-than(tz, t1) -» dead(x, t2)

67

Reasoning: Direct Proof

Is Marcus alive?

1. Pompeian(Marcus)

5. Vx Pompeian(x) = died(x,79)
died(Marcus,79)

8. gt(now,79)
died(Marcus,79) A gt(now,79)

7. VX Vtl vi2 died(x,t1) A gt(t2,t1) = dead(x,t2)
dead(Marcus,now)

68

Reasoning: Proof by Contradiction

Is Marcus alive?

— dead(Marcus,now)

\)‘mm died(x,t1) A gt(t2,t1) = dead(x,t2)

711 — [died(Marcus,t1) A gt(now,t1)]
7t1 — died(Marcus,t1) v — gt(now,t1)

\/died(Marcus,?g)*

— gt(now,79) gt(now,79)

contradiction
69

Resolution is an iterative process. At each step, two parent clauses are
compared and resolved, yielding a new clause that is inferred from them.
The new clause represents ways that the two parent clauses can interact
with each other.

> p

> p
A clausal sentence is either a literal or a disjunction of literals. If p and g are
logical constants, then the following are clausal sentences.

> p

> p

» “pvq
A clause is the set of literals in a clausal sentence. For example, the
following sets are the clauses corresponding to the clausal sentences
above.

> {p}
> {-p}

> {-p, q} .

KR: Resolution

« Aliteral is either an atomic sentence or a negation of an atomic sentence.
For example, if p is a logical constant, the following sentences are both
literals.

» winter v summer (TRUE)
» =winter v cold (TRUE)

« Resolution operates by taking two clauses, such that each contain the same
literal that occurs in positive form in one clause and negative form in another
clause.

* The resolvent is obtained by combining all of the literals of the two parent
clauses except the ones that cancel.
» Summer Vv cold (RESOLVENT)
» ~winter, winter will produce EMPTY clause

« |f a contradiction exists, then eventually it will be found. If no contradiction

exists, it is possible that the procedure will never terminate.
71

1. Convert F to clause form: a set of clauses.

2. Negate S, convert it to clause form, and add it to your set
of clauses.

3. Repeat until a contradiction or no progress
a. Select two parent clauses.
b. Produce their resolvent.
c. If the resolvent = NIL, we are done.
d. Else add the resolvent to the set of clauses.

72

1. Eliminate —.
P —> Q =—Pv Q

vx: — [Roman (x) > (Pompeian(x) A — hate (x, Caesar))]
After step 1: i.e. elimination of > and < the above statement
becomes:

vx: — [— Roman (x) v (Pompeian(x) A — hate (x, Caesar))]

73

2. Reduce the scope of each — to a single term.
—(PvQ)=-P A-Q

—(PAQ)=-Pv-Q

—VvXx: P=3x: —P

—3X: p = VXi =P

——P=P

vx: [Roman (x) A —=(Pompeian(x) A — hate (x, Caesar))]
vx: [Roman (x) A (—Pompeian(x) v hate (x, Caesar)) |

74

3. Standardize variables so that each quantifier binds a unique variable.
(vx: P(x)) v (3x: Q(x)) =
(vx: P(x)) v (By: Q(y))

vx: [[Vy: animal (y) 2> loves(x,y)]—=> [3dy:loves(y,x)]]
After step 3 above stmt becomes,
vx: [[Vy:animal (y) > loves(x,y)]=> [Jz: loves(z, x)]]

75

4. Move all quantifiers to the left without changing their relative
order.

(vx: P(x)) v (3y: Q(y)) =
vx: 3y: (P(x) v (Q(y))

« VX: [[Vy: animal (y) A loves(x,y)] Vv [3dz: loves(z, x)]]
« After applying step 4 above stmt becomes:

« Vx: Vy: dz: [animal (y) A loves(x,Yy) Vv loves(z, x)]
After first 4 processing steps of conversion are carried out

on original statement S, the statement is said to be In
PRENEX NORMAL FORM

76

5. Eliminate 3 (Skolemization).
Ix: P(x) = P(c) Skolem constant

3y: President (y)

Can be transformed into

President (S1)

where S1 is a function that somehow produces a value that
satisfies President (S1) — S1 called as Skolem constant

vx: 3y P(x, y) = Vx: P(x, f(x)) Skolem function

dy: vx:leads (y, x)

Here value of y that satisfies ‘leads’ depends on particular value
of x hence above stmt can be written as:

vXx: leads (f(x) , x)

Where f(x) is skolem function.

77

6. Drop V.
vx: P(x) = P(x)

vx: Vy: Vz: [- Roman (x) v =know (X, y) v hate(y, z)]
« After prefix dropped becomes,
[- Roman (x) v —know (X, y) v hate(y, z)]

78

7. Convert the formula into a conjunction of disjuncts.
(PAQ)VR=(PVvR)A(QVR)

 Roman (x) v ((hate (x , caesar) A —loyalto (x , caesar))

 Roman (x) v ((hate (x , caesar) A —loyalto (x , caesar))
P Q R

*Pv(QAR)=(PVvOQ)A(PVR)

CLAUSE 1 (Roman (x) v (hate (x , caesar)) A

CLAUSE 2 (Roman (x) v —loyalto (x , caesar))

8. Create a separate clause corresponding to each conjunct.

9. Standardize apart the variables in the set of obtained
clauses.

79

Note that the empty set {} is also a clause. It is equivalent to an empty
disjunction and, therefore, is unsatisfiable. As we shall see, it is a particularly
Important special case.

Implications (1):

> 0>y — TQOVY
> o<y — oVvy
> 0oy — (COVY)A(eVY)

Negations (N):

> —|—|(p — (p
» (QAY)— "oV Y
> (eVY)— TQATY

80

Distribution (D):
>
>
>
>
>
>

Operators (O):

@V (p1V..Ven)
(1Vv..ven)Vve
O A(PTA...APN)
(P1TA..AQN) AP

PVWAYX) — (VW) A(PVX)
(PAY)VX — (@VX)A(PVX)

— eVelVv..Vven
— elVv..venVvo
— QPAQPTA..APN
— QPIA..APNAQ

> o¢olv..von — {o1,..,on}
> 01 A...Aon — {1}, ..., {on}

81

Consider the job of converting the sentence (g A (r = f)) to clausal form
gA(r=1)
gA(-rvi)
gA(-rvi)
gA(-rvi)
{9}

{-r, f}

Option Il

- OO0z~

ORW,

(g A (r=1)

=(g A (=rvi))

=g V =(=r v)

=g V (=1 A =)
=gV (r A -f)

(g V) A(=gV -f)
{-g,r}

{-g, —f}

82

LetC1=L1L1VL2V...VLn

Let C2 =L1" VL2’ V... VLN’

If C1 has a literal L and C2 has the opposite literal -L, they cancel each other and
produce
resolvent(C1,C2) = L1 VL2 V... VLn VL1’ VL2’ V... VLn" with both L and -L removed

If no 2 literals cancel, nothing is removed

83

Formulas: PVvQ, P =Q, Q=R

Conjecture: R

PvQ —-PvQ

\ /
Negation of conjecture: =R Q\

Clauses: {P vQ, -P vQ, -Q VR, -R}

Resolvent(P vQ, -P vQ) is Q. Add Q to clauses.
Resolvent(-Q VR, -R) is -Q. Add -Q to clauses.
Resolvent(Q, —Q) is NIL.

The conjecture is proved.

—|QVR

\

Original Clauses: {P v Q, =P v Q, -Q v R, =R}

—-R

/

84

Unification

e |t's a matching procedure that compares two literals and discovers
whether there exists a set of substitutions that can make them

identical.
e Eg.
Hate(marcus, X) Hate (marcus , caesar)
.-"ff.-/
F_,f’
-
- caesar/ X
f,-f"
—~
e.g. 2.

Hate(X,Y) Hate(john,Z) could be unified as:

John/X and y/z 85

« Used in predicate logic for resolution.

Unification:
UNIFY(p, q) = unifier 6 where SUBST(0, p) = SUBST(0, q)

vx: knows(John, x) — hates(John, x)
knows(John, Jane)

Vy: knows(y, Leonid)

Vy: knows(y, mother(y))

vx: knows(X, Elizabeth)

UNIFY (knows(John ,x) ,knows(John, Jane)) = {Jane/x}

UNIFY (knows(John, x), knows(y, Leonid)) = {Leonid/x, John/y}
UNIFY (knows(John, x), knows(y, mother(y))) = {Johnly,
mother(John)/x}

UNIFY (knows(John, x), knows(x, Elizabeth)) = FAIL

86

« Used in predicate logic for resolution.

Unification:
UNIFY(p, q) = unifier 6 where SUBST(0, p) = SUBST(0, q)

vx: knows(John, x) — hates(John, x)
knows(John, Jane)

Vy: knows(y, Leonid)

Vy: knows(y, mother(y))

vx: knows(X, Elizabeth)

UNIFY (knows(John ,x) ,knows(John, Jane)) = {Jane/x}

UNIFY (knows(John, x), knows(y, Leonid)) = {Leonid/x, John/y}
UNIFY (knows(John, x), knows(y, mother(y))) = {Johnly,
mother(John)/x}

UNIFY (knows(John, x), knows(x, Elizabeth)) = FAIL

87

* It is used as inference mechanism.

* Pre-processing steps:

1. Convert the given English sentence into predicate
sentence.

2. Not all of these sentences will be in clausal form (CNF).
If any sentence is not in clausal form then convert it into clausal form.

3. Give these sentences (clauses) as an input to resolution
algorithm.

88

KR: Resolution Predicate Logic

Resolution algorithm steps:

A. Negate the proposition which is to be proved.
l.e. If we have to prove :-

like(tommy , cookies) then assume — like(tommy,cookies)
Add the resultant sentence to the set of sentences from step 3

B. Repeat until contradiction is found or no progress can be

made:

I. Select two clauses , call them parent clauses and resolve
them together. The resultant clause is called resolvant.

li. If resolvant contains empty clause then contradiction has
been found.

li. If step 1i. Results in empty clause , it means our assumption

IS wrong and the original clause (to be proved) has to be trugg.

P(x) v Q(x) R(x) v — P(X)

Q(x) v R(x)

G(x) — G(x)

E [EMPTY CLAUSE]

90

© N o O B~ 0Nh =

Example

Marcus was a man.

Marcus was a Pompeian.

All Pompeians were Romans.

Caesar was a ruler.

All Pompeians were either loyal to Caesar or hated him.
Every one is loyal to someone.

People only try to assassinate rulers they are not loyal to.

Marcus tried to assassinate Caesar.

91

1. “Marcus was a man”

man(marcus)

2. “Marcus was a Pompeian”

pompeian (marcus) —

3. “All Pompeian's were Romans”
=> Yx1: pompeian(x1) — roman(x1).
=> \/x1: - pompeian(x1) v roman(x1)

— pompeian (x1) v roman(x1)

92

1. “Marcus was a man”

man(marcus)

2. “Marcus was a Pompeian”

pompeian (marcus) —

3. “All Pompeian's were Romans”
=> Yx1: pompeian(x1) — roman(x1).
=> \/x1: - pompeian(x1) v roman(x1)

— pompeian (x1) v roman(x1)

93

4. “Caesar was a ruler”

ruler (caesar)

9. “all romans were either loyalto caesar or hated him”
=> VXx2: roman(x2) — [loyalto(x2 , caesar) v hate(x2 , caesar) |
=> Vx2: — roman(x2) v loyalto(x2 , caesar) v hate(x2 , caesar)
=> — roman(x2) v loyalto(x2 , caesar) v hate(x2 , caesar)

—roman (x2) v loyalto (x2 , caesar) v hate (x2 , caesar)

94

+ “Every one is loyal to someone”
=> ¥x3: dy1: loyalto(x3, y1).

Let f(x3) be a skolem function then,

=> /x3: loyalto(x3, f(x3)).
=> |oyalto(x3, f(x3))

loyalto (x3, f(x3)) |- 6

95

7. “People only try to assassinate rulers they are not loyal to.”

=> vx4: Yy2: [man(x4) A ruler(y2) » tryassassinate(x4, y2) |
— —loyalto(x4, y2)

=> Vx4: Vy2: — [man(x4) A ruler(y2) A tryassassinate(x4, y2) |
v —loyalto(x4, y2)

— Vx4: Yy2: — man(x4) v — ruler(y2) v — tryassassinate(x4, y2) v
—loyalto(x4, y2)

let f(x4) be skolem function then,

—=> Vx4: - man(x4) v — ruler(f(x4)) v
— tryassassinate(x4, f(x4)) v —loyalto(x4, f(x4)) 96

— — man(x4) v — ruler(f(x4)) v — tryassassinate(x4, f(x4)) v
—loyalto(x4, f(x4))

— man(x4) v — ruler(f(x4)) v — tryassassinate(x4, f(x4)) v
—loyalto(x4, f(x4))

8. “Marcus tried to assassinate Caesar’

tryassassinate(marcus , caesar)

tryassassinate(marcus, caesar) @@= | oo 2

To prove : marcus hate caesar i.e. hate(marcus, caesar) o

+ Assume — hate(marcus, caesar)

(5)

7 hate (marcus , caesar) —roman (x2) v loyalto (x2 , caesar) v
hate (x2 , caesar)

x2 / marcus

— roman (marcus) v loyalto (marcus, caesar)

— pompeian (x1) v roman(x1)

(3)
2)

pompeian (marcus)

T

—
"
o
e
.
e

~ — pompeian (marcus) v loyalto (marcus, caesar)

loyalto (ﬁ%ﬁféﬁ;,ﬂcaasar)

98

loyalto (marcus, caesar)

(7)

~ man(x4) v ruler(iox4)) v — tryassassinate(xd, f(x4)) v
oyatol)

4/ marcus
f(x4)/ caesar

. (8)
~ tryassassinate(marcus , caesar)

_—

.H.-___d_.-""-.
— man(marcus) v — ruler(caesar)

=

(1)

man(marcus)—__ —

—ruler(caesar) 99

— ruler(caesar)

(4) ,f’
ruler(caesar) e

« Since we get an empty clause i.e. contradiction our assumption
that — hate(marcus, caesar) is false

hence
hate(marcus, caesar) must be true.

100

« Consider the following paragraph:

“ anything anyone eats is called food. Milka likes all kind of
food. Bread is a food. Mango is a food. Alka eats pizza. Alka

eats everything milka eats.”

Translate the following sentences into (WFF) in predicate logic
and then into set of clauses. Using resolution principle answer
the following:

1. Does Milka like pizza”
2. what food Alka eats”? [Question answering]

101

+ Solution:

1. “anything anyone eats is called food.”
vx: Vy: eats(x, y) — food(y)

= Vx: Vy: — eats(x, y) v food(y)
= — eats(x, y) v food(y) (1)

2. "Milka likes all kind of food”
vy1: food(y1) — like(milka , y1)
= Yy1: - food(y1) v like(milka , y1)
= — food(y1) v like(milka , y1) (2)

3. “Bread is a food”
food(bread) (3)

4. “Mango is a food”
food(mango) (4)

102

5. “Alka eats Pizza”
eats(alka, pizza) ()

6. “Alka eats everything Milka eats”

vx1: eats(milka , x1) — eats(alka, x1)
=> ¥x1:. — eats(milka , x1) v eats(alka, x1)

=> — eats(milka, x1) v eats(alka, x1) (6)

Question to be answered : 1. “Does Milka likes Pizza ?”

assume : “Milka does not like Pizza”
— like(milka , pizza) (7)

103

— like(milka , pizza))

— food(y1) v like(milka , y1)

— food(pizza)
(1)
eats(x , y) v food(y) / pizzaly

i
i

!
i
i

— eats(x , pizza)

(3)
eats(alka, pizza)
T alka/

104
Since - like(milka , pizza) is contradiction like(milka , pizza) is true

Question to be answered : 2. “what food Alka eats 7"
eats(alka, ?7?)

there exist something which Alka eats we have to find the value of x
Jx: eats (alka, x)
Assume : alka does not eat anything

— [3x2: eats (alka, x2)]

=> Vx2: - eats (alka , x2)
=> — eats (alka , x2) (7)
(7) ()
— eats (alka , x2) eats(alka, pizza)
pizza/ x2 T~ "

~_ 105

Therefore alka does not eat anything is false and
Alka eats something is true.
And x2 stores pizza

Therefore we conclude

eats (alka, ?7?) answeris “pizza”

106

Instance and Isa relationship

« “Marcusis a man”
man(marcus)
OR

instance(marcus , man) where marcus is an object/
instance of class ‘man’

“ all pompeians were romans’
vX: pompeian(x) — roman(x).
OR
vX: instance(x, pompeian) — instance(x, roman).

107

* |sa Predicate :

“ all pompeians were romans’
vX: pompeian(x) — roman(x).
OR
vx: instance(x, pompeian) — instance(x, roman).------(1)
+ Now using isa predicate (1) becomes,

Isa(pompeian , roman)

which means pompeian is a subclass of roman class
but it also requires extra axiom :

vX: Vy: Vz:isa(y, z) A instance (x, y) =2 instance (x, z) 108

Different Logics

Propositional
Logic

Atomic symbols Concrete objects,

Examples of
formalizable
statements

AND, OR, NOT, IF-
THEN.

My son is at home
and my dad is not.

It either rains or it
does not.

If the president
sleeps, then a war
cannot start.

Predicate Logic = Temporal (Modal) Logic

Propositional logic + Predicate logic + temporal
variables + quantifiers: operators: always, eventually,
for all, exists. until, ...

All husbands cheat. Eventually all humans will

die.

if all colleges are bad,

CMU is bad. | always tell ducks not to
panic.

At least one chinchilla
is smarter than at least
one human.

109

Procedural Versus Declarative

» Declarative knowledge is defined as the factual information stored in memory
and known to be static in nature. Also known as descriptive knowledge,
propositional knowledge, etc

* |tis the part of knowledge which describes how things are.

« Things/events/processes, their attributes, and the relations between these
things/events/processes and their attributes define the domain of declarative
knowledge.

* Procedural knowledge is the knowledge of how to perform, or how to
operate. Names such as know-how are also given.

« Itis said that one becomes more skilled in problem solving when he relies
more on procedural knowledge than declarative knowledge.

* It embeds control information in the knowledge base, only to the extent that

the interpreter for the knowledge base recognizes the control information. 110

Procedural Versus Declarative

BASIS FOR

COMPARISON

Basic

Alternate name

Stated by

Popularity

Ease of sharing
the knowledge

Taken from

Nature
Represented by

Feature

PROCEDURAL KNOWLEDGE

Includes the knowledge of how a
particular thing can be accomplished.

Interpretive knowledge

Direct application to the task and
difficult to articulate formally.

Less common
Hard to communicate

Experience, action, and subjective
insight.

Process oriented
Set of rules

Debugging is difficult

DECLARATIVE KNOWLEDGE

Includes the basic knowledge about
something.

Descriptive knowledge

Declarative sentences and easily
articulated.

Generally used

Can be easily shared, copied, processed
and stored.

Artifact of some type as a principle,
procedure, process and concepts.

Data-oriented

Production systems

T L 111
Validation is quite simple

Procedural knowledge Declarative knowledge

¢ high efficiency higher level of abstraction

¢ low modifiability suitable for independent facts

¢ low cognitive adequacy (better for e good modifiability
knowledge engineers)

good readability

e good cognitive matching (better
for domain experts and end-users)
*low computational efficiency

112

man(Marcus)

man(Ceasar)

Person(Cleopatra)

VX: man(x) — person(x)
Jy: person(y)

Y = Marcus

Y = Ceasar

Y = Cleopatra (DFS)

man(Marcus)

man(Ceasar)

VX: man(x) — person(x)
Person(Cleopatra)

Jy: person(y)

Y = Marcus (DFS)

Y = Ceasar

Y = Cleopatra

man(Marcus)

man(Ceasar)

VX: man(x) — person(x)
Person(Cleopatra)

Jy: person(y)

Y = Marcus

Y = Ceasar (DFS, Last to First)

Y = Cleopatra

113

