
Artificial Intelligence

Open Elective

Module2: Knowledge
Representation: CH4

Dr. Santhi Natarajan

Associate Professor

Dept of AI and ML

BMSIT, Bangalore

2

Knowledge: What to represent
Knowledge: Knowledge is awareness or familiarity gained by experiences of facts,

data, and situations.

Knowledge-Base: The central component of the knowledge-based agents is the

knowledge base. It is represented as KB. The Knowledgebase is a group of the

Sentences (Here, sentences are used as a technical term and not identical with the

English language).

Knowledge about what

• Object: All the facts about objects in our world domain. E.g., Guitars contains

strings, trumpets are brass instruments.

• Events: Events are the actions which occur in our world.

• Performance: It describe behavior which involves knowledge about how to do

things.

• Meta-knowledge: It is knowledge about what we know.

• Facts: Facts are the truths about the real world and what we represent.

3

Ontological Engineering

Knowledge: The information related to the environment is stored in the machine.

Reasoning: The ability of the machine to understand the stored knowledge.

Intelligence: The ability of the machine to make decisions on the basis of the stored

information.

Ontological Engineering: Systems that represent large and modular knowledge on

complex domains. General concepts such as actions, time, physical objects,

performance, meta data and beliefs could be expressed on a larger scale.

4

Knowledge Representation and Mapping

Facts: truths in some relevant world. These are the things we want to represent.

Knowledge: typically large amount of knowledge is required to solve complex

problems in AI

Manipulation of knowledge: knowledge needs to be manipulated to find solutions.

Representation: facts are typically represented in some formalism. These

representations are the things that we actually be able to manipulate. A good

representation sometimes makes the operation of a reasoning program not only

correct, but trivial as well.

Structuring at two levels:

• Level 1: Knowledge level: here, the facts (including the agent’s behaviours and

current goals) are described.

• Level 2: Symbol level: here, representations of objects at the knowledge level are

defined in terms of symbols that can be manipulated by programs.

5

Knowledge: Types

6

Declarative Knowledge

Declarative Knowledge:

• Declarative knowledge is to know about something.

• It includes concepts, facts, and objects.

• It is also called descriptive knowledge and expressed in

declarative sentences.

• It is simpler than procedural language.

7

Procedural Knowledge

Procedural Knowledge

• It is also known as imperative knowledge.

• Procedural knowledge is a type of knowledge which is

responsible for knowing how to do something.

• It can be directly applied to any task.

• It includes rules, strategies, procedures, agendas, etc.

• Procedural knowledge depends on the task on which it

can be applied.

8

Meta Knowledge

Meta-knowledge:

• Knowledge about the other types of knowledge is called

Meta-knowledge.

9

Heuristic Knowledge

Heuristic knowledge:

• Heuristic knowledge is representing knowledge of some

experts in a field or subject.

• Heuristic knowledge is a set of rules of thumb based on

previous experiences, awareness of approaches, and

which are good to work but not guaranteed.

10

Structural Knowledge

Structural knowledge:

• Structural knowledge is basic knowledge to problem-

solving.

• It describes relationships between various concepts such

as kind of, part of, and grouping of something.

• It describes the relationship that exists between concepts

or objects.

11

Knowledge versus Intelligence

• Knowledge of real-worlds plays a vital role

in intelligence and same for creating

artificial intelligence.

• Knowledge plays an important role in

demonstrating intelligent behavior in AI

agents.

• An agent is only able to accurately act on

some input when he has some knowledge

or experience about that input.

• As we can see in the diagram, there is one

decision maker which act by sensing the

environment and using knowledge. But if

the knowledge part will not present then, it

cannot display intelligent behavior.

12

AI Knowledge Cycle

13

AI Approaches Knowledge Representation (KR)

• Simple Relational Knowledge

• Inheritable Knowledge

• Inferential Knowledge

• Procedural Knowledge

14

Simple Relational Knowledge

• It is the simplest way of storing facts which uses the relational method, and

each fact about a set of the object is set out systematically in columns.

• This approach of knowledge representation is famous in database systems

where the relationship between different entities is represented.

• This approach has little opportunity for inference.

Player Weight Age

Player1 65 23

Player2 58 18

Player3 75 24

15

Inheritable Knowledge

16

Inheritable Knowledge
• In the inheritable knowledge approach, all data must be stored into a

hierarchy of classes.

• All classes should be arranged in a generalized form or a hierarchal

manner.

• In this approach, we apply inheritance property.

• Elements inherit values from other members of a class.

• This approach contains inheritable knowledge which shows a relation

between instance and class, and it is called instance relation.

• Every individual frame can represent the collection of attributes and its

value.

• In this approach, objects and values are represented in Boxed nodes.

• We use Arrows which point from objects to their values.

17

Inferential Knowledge
• Inferential knowledge approach represents knowledge in the form of formal logics.

• This approach can be used to derive more facts.

• It guaranteed correctness.

18

Inferential Knowledge

19

Procedural Knowledge

• Procedural knowledge approach uses small programs and codes which

describes how to do specific things, and how to proceed.

• In this approach, one important rule is used which is If-Then rule.

• In this knowledge, we can use various coding languages such as LISP

language and Prolog language.

• We can easily represent heuristic or domain-specific knowledge using this

approach.

• But it is not necessary that we can represent all cases in this approach.

20

Requirements of a KR System

• Representational Adequacy: It is the ability of the system to represent all

kinds of knowledge needed in a specific domain.

• Inferential Adequacy: It is the ability of a knowledge representation system

to manipulate the current stored knowledge so that newly gained

knowledge could be added.

• Inferential Efficiency: It is the ability of the system to directly add new

knowledge in the system with efficiency

• Acquisitional Efficiency: It is the ability of the system to automatically

acquire new knowledge from the environment. This leads the system to

give more productive result as more knowledge adds up with the current

knowledge.

21

Techniques used for KR

22

Techniques used for KR

Logic:

It is the basic method used to represent the knowledge of a machine. The term logic

means to apply intelligence over the stored knowledge. Logic can be further divided as:

Propositional Logic:

This technique is also known as propositional calculus, statement logic, or sentential

logic. It is used for representing the knowledge about what is true and what is false.

First-order Logic:

It is also known as Predicate logic or First-order predicate calculus (FOPL). This

technique is used to represent the objects in the form of predicates or quantifiers. It is

different from Propositional logic as it removes the complexity of the sentence

represented by it. In short, FOPL is an advance version of propositional logic.

23

Techniques used for KR

Rule-based System:

• This is the most commonly used technique in artificial intelligence.

• In the rule-based system, we impose rules over the propositional logic and first-

order logic techniques.

• If-then clause is used for this technique.

• For example, if there are two variables A and B. Value of both A and B is True.

Consequently, the result of both should also be True and vice-versa.

• It is represented as:

If the value of A and B is True, then the result will be True.

• So, such a technique makes the propositional as well as FOPL logics bounded in

the rules.

24

Techniques used for KR

Semantic Networks:

• The technique is based on storing the knowledge into the system in the form of a

graph.

• Nodes of a graph represent the objects which exist in the real world, and the arrow

represents the relationship between these objects.

• Such techniques show the connectivity of one object with another object.

25

Techniques used for KR

Ram has a cycle.

Ram is a boy.

Cycle has a bell.

Ram is 12 years old.

Cycle has two paddles.

26

Techniques used for KR

Frames

• In this technique, the knowledge is stored via slots and fillers.

• As we have seen in DBMS, we store the information of an employee in the

database with entities and attributes.

• Similarly, the Slots are the entities and Fillers are its attributes. They are

together stored in a frame.

• So, whenever there is a requirement, the machine infers the necessary

information to take the decision.

• For example, Tomy is a dog having one tail.

It can be framed as:

Tomy((Species (Value = Dog))

(Feature (Value = Tail)))

27

Techniques used for KR

Script:

• It is an advanced technique over the Frames.

• Here, the information is stored in the form of a script.

• The script is stored in the system containing all the required information.

• The system infers the information from that script and solves the problem

28

Knowledge Representation and Mapping

• Spot is a dog

• dog(spot)

• [V]x : dog(x) -> hasatail(x),

logical expression for the fact

that all dogs have tail

• New representation,

hasatail(Spot)

• Using an appropriate

backward mapping function

the English sentence can be

generated as Spot has a tail

29

Knowledge Representation and Mapping

30

Issues in KR
• Attributes

✓ Are they basic?

✓ Are they occuring frequently?

✓ How are they properly represented?

✓ E.g., ISA, INSTANCE

• Relationship among attributes

✓ Inverse

✓ Existence in a ISA hierarchy

✓ Techniques for reasoning about value

✓ Single valued attributes

• Level of KR

✓ Use of primitives to represent knowledge

✓ Can knowledge be broken down into a defined set of primitives

✓ How such primitives help in KR

• Object Representation

• How to access knowledge from repository

✓ Use of primitives to represent knowledge

✓ Can knowledge be broken down into a defined set of primitives

✓ How such primitives help in KR

Artificial Intelligence

Open Elective

Module2: Knowledge
Representation: CH5

Dr. Santhi Natarajan

Associate Professor

Dept of AI and ML

BMSIT, Bangalore

32

KR: Simple Facts using Logic

33

KR: Simple Facts using Logic

34

KR: Simple Facts using Logic

35

KR: Simple Facts using Logic

36

KR: Simple Facts using Logic

37

KR: Simple Facts using Logic

38

KR: Simple Facts using Logic

39

KR: Simple Facts using Logic

40

KR: Simple Facts using Logic

41

KR: Simple Facts using Logic

42

KR: Simple Facts using Logic

43

KR: Simple Facts using Logic

44

KR: Simple Facts using Logic

45

KR: Simple Facts using Logic

46

KR: Simple Facts using Logic

47

KR: Simple Facts using Logic

48

KR: Simple Facts using Logic

49

KR: Simple Facts using Logic

50

KR: Simple Facts using Logic

51

KR: Simple Facts using Logic

52

KR: Simple Facts using Logic

53

KR: Simple Facts using Logic

54

KR: Simple Facts using Logic

55

KR: Simple Facts using Logic

56

KR: Simple Facts using Logic

57

KR: Simple Facts using Logic

58

KR: Simple Facts using Logic

59

KR: Simple Facts using Logic

Using Predicate Logic

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.

6. Every one is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

60

KR: Simple Facts using Logic

1. Marcus was a man.

man(Marcus)

2. Marcus was a Pompeian.

Pompeian(Marcus)

3. All Pompeians were Romans.

x: Pompeian(x) → Roman(x)

4. Caesar was a ruler.

ruler(Caesar)

5. All Pompeians were either loyal to Caesar or hated him.

inclusive-or

x: Roman(x) → loyalto(x, Caesar)  hate(x, Caesar)

exclusive-or

x: Roman(x) → (loyalto(x, Caesar)  hate(x, Caesar)) 

(loyalto(x, Caesar)  hate(x, Caesar))

61

KR: Simple Facts using Logic

6. Every one is loyal to someone.

x: y: loyalto(x, y) y: x: loyalto(x, y)

7. People only try to assassinate rulers they are not loyal to.

x: y: person(x)  ruler(y)  tryassassinate(x, y)

→ loyalto(x, y)

8. Marcus tried to assassinate Caesar.

tryassassinate(Marcus, Caesar)

Was Marcus loyal to Caesar?

man(Marcus)

ruler(Caesar)

tryassassinate(Marcus, Caesar)



x: man(x) → person(x)

loyalto(Marcus, Caesar)

62

KR: Simple Facts using Logic

• Many English sentences are ambiguous.

• There is often a choice of how to represent knowledge.

• Obvious information may be necessary for reasoning

• We may not know in advance which statements to deduce (P or P).

63

KR: Simple Facts using Logic

64

KR: Simple Facts using Logic

65

KR: Simple Facts using Logic

Computable Functions and Predicates

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 AD.

4. All men are mortal.

5. All Pompeians died when the volcano errupted in 79 AD.

6. No mortal lives longer than 150 years.

7.We are now in 2019 AD.

8. Alive means not dead.

9. If someone dies, he is dead at all later times

66

KR: Simple Facts using Logic

1. Marcus was a man.

man(Marcus)

2. Marcus was a Pompeian.

Pompeian(Marcus)

3. Marcus was born in 40 AD.

Born(Marcus, 40)

4. All men are mortal.

x: man(x) → mortal(x)

5. All Pompeians died when the volcano errupted in 79 AD.

Erupted(volcano, 79)  x: [Pompeian (x) → Died (x , 79)]

6. No mortal lives longer than 150 years.

x: t1: t2: died(x, t1)  greater-than(t2,-t1,150) → dead(x, t2)

67

KR: Simple Facts using Logic

7.We are now in 2019 AD.

now = 2008

8. Alive means not dead.

x: t: [Alive (x, t) → dead(x, t)]  [dead(x, t) →  Alive (x, t)]

9. If someone dies, he is dead at all later times

x: t1: t2: died(x, t1)  greater-than(t2, t1) → dead(x, t2)

68

KR: Simple Facts using Logic

Reasoning: Direct Proof

Is Marcus alive?

1. Pompeian(Marcus)

5. ∀x Pompeian(x) ⇒ died(x,79)

died(Marcus,79)

8. gt(now,79)

died(Marcus,79) ∧ gt(now,79)

7. ∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)

dead(Marcus,now)

69

KR: Simple Facts using Logic

Reasoning: Proof by Contradiction
Is Marcus alive?

70

KR: Resolution
• Resolution is an iterative process. At each step, two parent clauses are

compared and resolved, yielding a new clause that is inferred from them.

The new clause represents ways that the two parent clauses can interact

with each other.

➢ p

➢ ¬p

• A clausal sentence is either a literal or a disjunction of literals. If p and q are

logical constants, then the following are clausal sentences.

➢ p

➢ ¬p

➢ ¬p ∨ q

• A clause is the set of literals in a clausal sentence. For example, the

following sets are the clauses corresponding to the clausal sentences

above.

➢ {p}

➢ {¬p}

➢ {¬p, q}

71

KR: Resolution

• A literal is either an atomic sentence or a negation of an atomic sentence.

For example, if p is a logical constant, the following sentences are both

literals.

➢ winter ∨ summer (TRUE)

➢ ¬winter ∨ cold (TRUE)

• Resolution operates by taking two clauses, such that each contain the same

literal that occurs in positive form in one clause and negative form in another

clause.

• The resolvent is obtained by combining all of the literals of the two parent

clauses except the ones that cancel.

➢ Summer ∨ cold (RESOLVENT)

➢ ¬winter, winter will produce EMPTY clause

• If a contradiction exists, then eventually it will be found. If no contradiction

exists, it is possible that the procedure will never terminate.

72

KR: Resolution Procedure

1. Convert F to clause form: a set of clauses.

2. Negate S, convert it to clause form, and add it to your set
of clauses.

3. Repeat until a contradiction or no progress
a. Select two parent clauses.
b. Produce their resolvent.
c. If the resolvent = NIL, we are done.
d. Else add the resolvent to the set of clauses.

73

KR: Resolution CNF

1. Eliminate →.

P → Q  P  Q

x:  [Roman (x) → (Pompeian(x)   hate (x, Caesar))]

After step 1: i.e. elimination of → and  the above statement

becomes:

x:  [ Roman (x)  (Pompeian(x)   hate (x, Caesar))]

74

KR: Resolution CNF

2. Reduce the scope of each  to a single term.

(P  Q)  P  Q
(P  Q)  P  Q
x: P  x: P
x: p  x: P
 P  P

x: [Roman (x)  (Pompeian(x)   hate (x, Caesar))]

x: [Roman (x)  (Pompeian(x)  hate (x, Caesar))]

75

KR: Resolution CNF

3. Standardize variables so that each quantifier binds a unique variable.

(x: P(x))  (x: Q(x)) 
(x: P(x))  (y: Q(y))

x: [[y: animal (y) → loves(x , y)] → [y: loves(y , x)]]

After step 3 above stmt becomes,

x: [[y: animal (y) → loves(x , y)] → [z: loves(z, x)]]

76

KR: Resolution CNF

4. Move all quantifiers to the left without changing their relative

order.

(x: P(x))  (y: Q(y)) 
x: y: (P(x)  (Q(y))

• x: [[y: animal (y)  loves(x , y)]  [z: loves(z, x)]]

• After applying step 4 above stmt becomes:

• x: y: z: [animal (y)  loves(x , y)  loves(z, x)]

After first 4 processing steps of conversion are carried out

on original statement S, the statement is said to be in

PRENEX NORMAL FORM

77

KR: Resolution CNF

5. Eliminate  (Skolemization).

x: P(x)  P(c) Skolem constant

y: President (y)

Can be transformed into

President (S1)

where S1 is a function that somehow produces a value that

satisfies President (S1) – S1 called as Skolem constant

x: y P(x, y)  x: P(x, f(x)) Skolem function

y: x: leads (y , x)

Here value of y that satisfies ‘leads’ depends on particular value

of x hence above stmt can be written as:

x: leads (f(x) , x)

Where f(x) is skolem function.

78

KR: Resolution CNF

6. Drop .

x: P(x)  P(x)

x: y: z: [ Roman (x)  know (x, y)  hate(y, z)]

• After prefix dropped becomes,

[ Roman (x)  know (x, y)  hate(y, z)]

79

KR: Resolution CNF

7. Convert the formula into a conjunction of disjuncts.

(P  Q)  R  (P  R)  (Q  R)

• Roman (x)  ((hate (x , caesar)  loyalto (x , caesar))

• Roman (x)  ((hate (x , caesar)  loyalto (x , caesar))

P Q R

• P  (Q  R)  (P  Q)  (P  R)

CLAUSE 1 (Roman (x)  (hate (x , caesar)) 

CLAUSE 2 (Roman (x)  loyalto (x , caesar))

8. Create a separate clause corresponding to each conjunct.

9. Standardize apart the variables in the set of obtained

clauses.

80

KR: Resolution Operations
• Note that the empty set {} is also a clause. It is equivalent to an empty

disjunction and, therefore, is unsatisfiable. As we shall see, it is a particularly

important special case.

• Implications (I):

➢ φ ⇒ ψ → ¬φ ∨ ψ

➢ φ ⇐ ψ → φ ∨ ¬ψ

➢ φ ⇔ ψ → (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

• Negations (N):

➢ ¬¬φ → φ

➢ ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ

➢ ¬(φ ∨ ψ) → ¬φ ∧ ¬ψ

81

KR: Resolution Operations

• Distribution (D):

➢ φ ∨ (ψ ∧ χ) → (φ ∨ ψ) ∧ (φ ∨ χ)

➢ (φ ∧ ψ) ∨ χ → (φ ∨ χ) ∧ (ψ ∨ χ)

➢ φ ∨ (φ1 ∨ ... ∨ φn) → φ ∨ φ1 ∨ ... ∨ φn

➢ (φ1 ∨ ... ∨ φn) ∨ φ → φ1 ∨ ... ∨ φn ∨ φ

➢ φ ∧ (φ1 ∧ ... ∧ φn) → φ ∧ φ1 ∧ ... ∧ φn

➢ (φ1 ∧ ... ∧ φn) ∧ φ → φ1 ∧ ... ∧ φn ∧ φ

• Operators (O):

➢ φ1 ∨ ... ∨ φn → {φ1, ... , φn}

➢ φ1 ∧ ... ∧ φn → {φ1}, ... , {φn}

82

KR: Resolution Example
• Consider the job of converting the sentence (g ∧ (r ⇒ f)) to clausal form

g ∧ (r ⇒ f)

I g ∧ (¬r ∨ f)

N g ∧ (¬r ∨ f)

D g ∧ (¬r ∨ f)

O {g}

{¬r, f}

• Option II

¬(g ∧ (r ⇒ f))

I ¬(g ∧ (¬r ∨ f))

N ¬g ∨ ¬(¬r ∨ f)

¬g ∨ (¬¬r ∧ ¬f)

¬g ∨ (r ∧ ¬f)

D (¬g ∨ r) ∧ (¬g ∨ ¬f)

O {¬g,r}

{¬g, ¬f}

83

KR: Resolution Propositional

• Let C1 = L1 ∨L2 ∨… ∨Ln

• Let C2 = L1’ ∨L2’ ∨… ∨Ln’

• If C1 has a literal L and C2 has the opposite literal ¬L, they cancel each other and
produce

• resolvent(C1,C2) = L1 ∨L2 ∨… ∨Ln ∨L1’ ∨L2’ ∨… ∨Ln’ with both L and ¬L removed

• If no 2 literals cancel, nothing is removed

84

KR: Resolution Propositional

Formulas: P ∨Q, P ⇒Q, Q ⇒R
Conjecture: R

• Negation of conjecture: ¬R

• Clauses: {P ∨Q, ¬P ∨Q, ¬Q ∨R, ¬R}

• Resolvent(P ∨Q, ¬P ∨Q) is Q. Add Q to clauses.

• Resolvent(¬Q ∨R, ¬R) is ¬Q. Add ¬Q to clauses.

• Resolvent(Q, ¬Q) is NIL.

• The conjecture is proved.

85

KR: Resolution Unification

86

KR: Resolution Unification

• Used in predicate logic for resolution.

Unification:
UNIFY(p, q) = unifier  where SUBST(, p) = SUBST(, q)

x: knows(John, x) → hates(John, x)

knows(John, Jane)

y: knows(y, Leonid)

y: knows(y, mother(y))

x: knows(x, Elizabeth)

UNIFY(knows(John ,x) ,knows(John, Jane)) = {Jane/x}

UNIFY(knows(John, x), knows(y, Leonid)) = {Leonid/x, John/y}

UNIFY(knows(John, x), knows(y, mother(y))) = {John/y,

mother(John)/x}

UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL

87

KR: Resolution Unification

• Used in predicate logic for resolution.

Unification:
UNIFY(p, q) = unifier  where SUBST(, p) = SUBST(, q)

x: knows(John, x) → hates(John, x)

knows(John, Jane)

y: knows(y, Leonid)

y: knows(y, mother(y))

x: knows(x, Elizabeth)

UNIFY(knows(John ,x) ,knows(John, Jane)) = {Jane/x}

UNIFY(knows(John, x), knows(y, Leonid)) = {Leonid/x, John/y}

UNIFY(knows(John, x), knows(y, mother(y))) = {John/y,

mother(John)/x}

UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL

88

KR: Resolution Predicate Logic

• It is used as inference mechanism.

• Pre-processing steps:

1. Convert the given English sentence into predicate

sentence.

2. Not all of these sentences will be in clausal form (CNF).
If any sentence is not in clausal form then convert it into clausal form.

3. Give these sentences (clauses) as an input to resolution

algorithm.

89

KR: Resolution Predicate Logic
Resolution algorithm steps:

A. Negate the proposition which is to be proved.
i.e. If we have to prove :-

like(tommy , cookies) then assume  like(tommy,cookies)

Add the resultant sentence to the set of sentences from step 3

B. Repeat until contradiction is found or no progress can be

made:

i. Select two clauses , call them parent clauses and resolve

them together. The resultant clause is called resolvant.

ii. If resolvant contains empty clause then contradiction has

been found.

iii. If step ii. Results in empty clause , it means our assumption

is wrong and the original clause (to be proved) has to be true.

90

KR: Resolution Predicate Logic

91

KR: Resolution Predicate Logic

92

KR: Resolution Predicate Logic

93

KR: Resolution Predicate Logic

94

KR: Resolution Predicate Logic

95

KR: Resolution Predicate Logic

96

KR: Resolution Predicate Logic

97

KR: Resolution Predicate Logic

98

KR: Resolution Predicate Logic

99

KR: Resolution Predicate Logic

100

KR: Resolution Predicate Logic

101

KR: Resolution Predicate Logic

102

KR: Resolution Predicate Logic

103

KR: Resolution Predicate Logic

104

KR: Resolution Predicate Logic

105

KR: Resolution Predicate Logic

106

KR: Resolution Predicate Logic

107

KR: Resolution Predicate Logic

108

KR: Resolution Predicate Logic

109

KR: Simple Facts using Logic

110

Procedural Versus Declarative

• Declarative knowledge is defined as the factual information stored in memory

and known to be static in nature. Also known as descriptive knowledge,

propositional knowledge, etc

• It is the part of knowledge which describes how things are.

• Things/events/processes, their attributes, and the relations between these

things/events/processes and their attributes define the domain of declarative

knowledge.

• Procedural knowledge is the knowledge of how to perform, or how to

operate. Names such as know-how are also given.

• It is said that one becomes more skilled in problem solving when he relies

more on procedural knowledge than declarative knowledge.

• It embeds control information in the knowledge base, only to the extent that

the interpreter for the knowledge base recognizes the control information.

111

Procedural Versus Declarative
BASIS FOR

COMPARISON
PROCEDURAL KNOWLEDGE DECLARATIVE KNOWLEDGE

Basic Includes the knowledge of how a

particular thing can be accomplished.

Includes the basic knowledge about

something.

Alternate name Interpretive knowledge Descriptive knowledge

Stated by Direct application to the task and

difficult to articulate formally.

Declarative sentences and easily

articulated.

Popularity Less common Generally used

Ease of sharing

the knowledge

Hard to communicate Can be easily shared, copied, processed

and stored.

Taken from Experience, action, and subjective

insight.

Artifact of some type as a principle,

procedure, process and concepts.

Nature Process oriented Data-oriented

Represented by Set of rules Production systems

Feature Debugging is difficult Validation is quite simple

112

Procedural Versus Declarative

Procedural knowledge Declarative knowledge

• high efficiency

• low modifiability

• low cognitive adequacy (better for

knowledge engineers)

• higher level of abstraction

• suitable for independent facts

• good modifiability

• good readability

• good cognitive matching (better

for domain experts and end-users)

•low computational efficiency

113

Procedural Versus Declarative

man(Marcus)

man(Ceasar)

Person(Cleopatra)

x: man(x) → person(x)

y: person(y)

Y = Marcus

Y = Ceasar

Y = Cleopatra (DFS)

man(Marcus)

man(Ceasar)

x: man(x) → person(x)

Person(Cleopatra)

y: person(y)

Y = Marcus (DFS)

Y = Ceasar

Y = Cleopatra

man(Marcus)

man(Ceasar)

x: man(x) → person(x)

Person(Cleopatra)

y: person(y)

Y = Marcus

Y = Ceasar (DFS, Last to First)

Y = Cleopatra

