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Uncertainty 

 With FOL or propositional logic based knowledge representation, 
we might write A→B, which means if A is true then B is true

 But consider a situation where we are not sure about whether A is 
true or not then we cannot express this statement, this situation is 
called uncertainty.

 So to represent uncertain knowledge, where we are not sure about 
the predicates, we need uncertain reasoning or probabilistic 
reasoning.
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Probabilistic Reasoning

 Probabilistic reasoning is a way of knowledge representation where we 

apply the concept of probability to indicate the uncertainty in knowledge.

 In probabilistic reasoning, we combine probability theory with logic to 

handle the uncertainty.

 We use probability in probabilistic reasoning because it provides a way to 

handle the uncertainty that is the result of someone's laziness and 

ignorance.

 In the real world, there are lots of scenarios, where the certainty of 

something is not confirmed, such as 

◼ "It will rain today," 

◼ "behavior of someone for some situations," 

◼ "A match between two teams or two players."
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Need for Probabilistic Reasoning

Need of probabilistic reasoning in AI:

 When there are unpredictable outcomes.

 When specifications or possibilities of predicates becomes too large to 
handle.

 When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with 
uncertain knowledge:

 Bayes' rule

 Bayesian Statistics
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Probability 
Probability

Probability can be defined as a chance that an uncertain event will occur. It is the 
numerical measure of the likelihood that an event will occur. The value of probability 
always remains between 0 and 1 that represent ideal uncertainties.

0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A.

P(A) = 0, indicates total uncertainty in an event A.

P(A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.
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Probability 
 P(¬A) = probability of a not happening event.

 P(¬A) + P(A) = 1.

 Event: Each possible outcome of a variable is called an event.

 Sample space: The collection of all possible events is called sample space.

 Random variables: Random variables are used to represent the events and 

objects in the real world.

 Prior probability: The prior probability of an event is probability computed before 

observing new information.

 Posterior Probability: The probability that is calculated after all evidence or 

information has taken into account. It is a combination of prior probability and new 

information.
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Probability 
Conditional probability

 Conditional probability is a probability of occurring an event when another event has 

already happened.

 Let's suppose, we want to calculate the event A when event B has already 

occurred, "the probability of A under the conditions of B", it can be written as:

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be 

given as:



8

Probability 
Conditional probability

 Conditional probability is a probability of occurring an event when another event has 

already happened.

 Let's suppose, we want to calculate the event A when event B has already 

occurred, "the probability of A under the conditions of B", it can be written as:

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be 

given as:



9

Probability 
 In a class, there are 70% of the students who like English and 40% of the students 

who likes English and mathematics, and then what is the percent of students those 

who like English also like mathematics?

 Solution:

 Let, A is an event that a student likes Mathematics

 B is an event that a student likes English.

 Hence, 57% are the students who like English also like Mathematics.
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Bayesian Probability 
Bayes' theorem

 Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which 

determines the probability of an event with uncertain knowledge

.

 In probability theory, it relates the conditional probability and marginal probabilities of two 

random events.

 Bayes' theorem was named after the British mathematician Thomas Bayes. The Bayesian 

inference is an application of Bayes' theorem, which is fundamental to Bayesian statistics.

 It is a way to calculate the value of P(B|A) with the knowledge of P(A|B).

 Bayes' theorem allows updating the probability prediction of an event by observing new 

information of the real world.

 Example: If cancer corresponds to one's age then by using Bayes' theorem, we can 

determine the probability of cancer more accurately with the help of age.

 Bayes' theorem can be derived using product rule and conditional probability of event A with 

known event B
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Bayes' theorem

 P(A ⋀ B)= P(A|B) P(B)

 P(A ⋀ B)= P(B|A) P(A)

 The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic of 

most modern AI systems for probabilistic inference.

Bayesian Probability 
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Bayes' theorem

 P(A|B) is known as posterior, which we need to calculate, and it will be read as Probability of 

hypothesis A when we have occurred an evidence B.

 P(B|A) is called the likelihood, in which we consider that hypothesis is true, then we calculate 

the probability of evidence.

 P(A) is called the prior probability, probability of hypothesis before considering the evidence

 P(B) is called marginal probability, pure probability of an evidence.

 In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes' rule can 

be written as:

 Where A1, A2, A3,........, An is a set of mutually 

exclusive and exhaustive events.

Bayesian Probability 
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Bayes' theorem

 Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). 

 This is very useful in cases where we have a good probability of these three terms and want to 

determine the fourth one. 

 Suppose we want to perceive the effect of some unknown cause, and want to compute that 

cause, then the Bayes' rule becomes:

Bayesian Probability 
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Bayes' theorem

Example-1:

Question: what is the probability that a patient has diseases meningitis with a stiff neck?

Given Data:

 A doctor is aware that disease meningitis causes a patient to have a stiff neck, and it occurs 

80% of the time. He is also aware of some more facts, which are given as follows:

 The Known probability that a patient has meningitis disease is 1/30,000.

 The Known probability that a patient has a stiff neck is 2%.

Solution 

 Let a be the proposition that patient has stiff neck and b be the proposition that patient has 

meningitis. , so we can calculate the following as:

 P(a|b) = 0.8

 P(b) = 1/30000

 P(a)= .02

Hence, we can assume that 1 patient out of 750 patients has meningitis disease with a stiff 

neck.

Bayesian Probability 
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Bayes' theorem

Example-2:

Question: From a standard deck of playing cards, a single card is drawn. The probability 

that the card is king is 4/52, then calculate posterior probability P(King|Face), which means 

the drawn face card is a king card.

Solution 

 P(king): probability that the card is King= 4/52= 1/13

 P(face): probability that a card is a face card= 3/13

 P(Face|King): probability of face card when we assume it is a king = 1

 Putting all values in equation (i) we will get:

Bayesian Probability 
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Bayes' theorem

Following are some applications of Bayes' theorem:

 It is used to calculate the next step of the robot when the already executed step is given.

 Bayes' theorem is helpful in weather forecasting.

 It can solve the Monty Hall problem.

Bayesian Probability 
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Bayesian Belief Network in artificial intelligence

 Bayesian belief network is key computer technology for dealing with probabilistic events and 

to solve a problem which has uncertainty. We can define a Bayesian network as:

 "A Bayesian network is a probabilistic graphical model which represents a set of variables and 

their conditional dependencies using a directed acyclic graph."

 It is also called a Bayes network, belief network, decision network, or Bayesian model.

 Bayesian networks are probabilistic, because these networks are built from a probability 

distribution, and also use probability theory for prediction and anomaly detection.

 Real world applications are probabilistic in nature, and to represent the relationship between 

multiple events, we need a Bayesian network. 

 It can also be used in various tasks including prediction, anomaly detection, diagnostics, 

automated insight, reasoning, time series prediction, and decision making under 

uncertainty.

Bayesian Probability 
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Bayesian Belief Network in artificial intelligence

 Bayesian Network can be used for building models from data and experts opinions, and it 

consists of two parts:

◼ Directed Acyclic Graph

◼ Table of conditional probabilities.

 The generalized form of Bayesian network that represents and solve decision problems under 

uncertain knowledge is known as an Influence diagram.

 A Bayesian network graph is made up of nodes and Arcs (directed links), where:

Bayesian Probability 



20

Bayesian Belief Network in artificial intelligence

Bayesian Probability 

• Each node corresponds to the random variables, and a variable can be

continuous or discrete.

• Arc or directed arrows represent the causal relationship or conditional

probabilities between random variables. These directed links or arrows connect

the pair of nodes in the graph.

• These links represent that one node directly influence the other node, and if

there is no directed link that means that nodes are independent with each other

• In the above diagram, A, B, C, and D are random variables represented by the

nodes of the network graph.

• If we are considering node B, which is connected with node A by a directed

arrow, then node A is called the parent of Node B.

• Node C is independent of node A.

• The Bayesian network graph does not contain any cyclic graph. Hence, it is

known as a directed acyclic graph or DAG.
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Bayesian Belief Network in artificial intelligence

Bayesian Probability 

The Bayesian network has mainly two components:

Causal Component

Actual numbers

Each node in the Bayesian network has condition probability

distribution P(Xi |Parent(Xi) ), which determines the effect of the parent on that

node.

Bayesian network is based on Joint probability distribution and conditional

probability.
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Bayesian Belief Network in artificial intelligence

Bayesian Probability 

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a different

combination of x1, x2, x3.. xn, are known as Joint probability distribution.

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint

probability distribution.

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi ))
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Bayesian Belief Network in artificial intelligence

Bayesian Probability 

Example: Harry installed a new burglar alarm at his home to detect burglary. The

alarm reliably responds at detecting a burglary but also responds for minor

earthquakes. Harry has two neighbors David and Sophia, who have taken a

responsibility to inform Harry at work when they hear the alarm. David always calls

Harry when he hears the alarm, but sometimes he got confused with the phone

ringing and calls at that time too. On the other hand, Sophia likes to listen to high

music, so sometimes she misses to hear the alarm. Here we would like to compute

the probability of Burglary Alarm.

Problem:

Calculate the probability that alarm has sounded, but there is neither a

burglary, nor an earthquake occurred, and David and Sophia both called the

Harry.
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Bayesian Probability 

Solution:

List of all events occurring in this network:

Burglary (B)

Earthquake(E)

Alarm(A)

David Calls(D)

Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, S, A, 

B, E], can rewrite the above probability statement using joint probability distribution:

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

= P [D| A]. P [ S| A, B, E]. P[ A, B, E]

= P[D | A]. P[ S | A]. P[A| B, E]. P[B, E]

= P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E]
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Bayesian Probability 
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Bayesian Probability 

• The network structure is showing that burglary and earthquake is the parent

node of the alarm and directly affecting the probability of alarm's going off, but

David and Sophia's calls depend on alarm probability.

• The network is representing that our assumptions do not directly perceive the

burglary and also do not notice the minor earthquake, and they also not confer

before calling.

• The conditional distributions for each node are given as conditional probabilities

table or CPT.

• Each row in the CPT must be sum to 1 because all the entries in the table

represent an exhaustive set of cases for the variable.

• In CPT, a boolean variable with k boolean parents contains 2K probabilities.

Hence, if there are two parents, then CPT will contain 4 probability values
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Bayesian Probability 

• Let's take the observed probability for the Burglary and earthquake component:

• P(B= True) = 0.002, which is the probability of burglary.

• P(B= False)= 0.998, which is the probability of no burglary.

• P(E= True)= 0.001, which is the probability of a minor earthquake

• P(E= False)= 0.999, Which is the probability that an earthquake not occurred.

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for Alarm A:
The Conditional probability of Alarm A depends on Burglar and earthquake:
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Bayesian Probability 

A P(D= True) P(D= False)

True 0.91 0.09

False 0.05 0.95

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

Conditional probability table for David Calls:
The Conditional probability of David that he will call depends on the 
probability of Alarm.

Conditional probability table for Sophia Calls:
The Conditional probability of Sophia that she calls is depending on its 
Parent Node "Alarm."
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Bayesian Probability 

From the formula of joint distribution, we can write the problem statement in the form of 

probability distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

= 0.00068045.

Hence, a Bayesian network can answer any query about the domain by using 

Joint distribution.
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Bayesian Probability 

The semantics of Bayesian Network:

There are two ways to understand the semantics of the Bayesian network, which is 

given below:

1. To understand the network as the representation of the Joint probability 

distribution.

It is helpful to understand how to construct the network.

2. To understand the network as an encoding of a collection of conditional 

independence statements.

It is helpful in designing inference procedure.
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Dempster Shafer (D-S) Theory

 Provides a numerical method to represent and reason 
about uncertainty.

 “Absence of evidence is not an evidence of absence”.

 Provides a way to combine evidence from two or more 
sources and to draw conclusions from them.



32

Dempster Shafer (D-S) Theory

 Frame of Discernment  - Sample space of DS theory 
denoted by 

 Propositions - Subsets of frame of discernment 

 Probability values are assigned to the propositions. 

 Basic Probability Assignments - Probability values 
assigned to the propositions denoted by m.

 Focal Elements - Propositions with non-zero probability 
assignment.

 Core – Union of focal elements.


